THREE GREAT PROJECTS YOU CAN BUILD FOR YOUR CAR

APRIL 1993

BUILD A REMOTE CAR STARTER
The ultimate convenience add-on for your car!

UPDATE YOUR DASHBOARD
With good-looking, smart electronic gauges

GREAT SOUNDS IN YOUR CAR
Build an audio signal processor

BUILD A SINGLE-CHIP DVM
It provides 4½-digit resolution

FIELD-EFFECT TRANSISTORS
Learn how JFET's work and how you can use them
Fluke meters are your top choice for accuracy, reliability, and performance. They offer more combinations of features and functions than any other meters on the market. Features like true-rms measurements, high resolution, Smoothing™ and Peak Hold. Or simultaneous scope and meter functions in one portable package. Whichever Fluke meter you choose you can count on benchtop accuracy, test lab versatility, and handheld convenience.

Plus, Fluke keeps you covered with a full line of quality accessories, strong customer support, and product warranties that measure up to any in the industry. When it's up to you to get the job done, look to Fluke for the choices you need to get it done right. See your Fluke distributor, or call 1-800-87-FLUKE for a catalog and the name of the distributor nearest you.
These days, people expect a lot from their car stereos—some even want music to sound as good as it does in their home listening rooms. In fact, it was popular demand that led us to resurrect the popular Acoustic Field Generator (AFG) project from January 1990. The circuit has been completely redesigned to operate from a 12-volt battery supply. The AFG II audio sound processor can turn your car into a concert hall on wheels. Using ambience effects like echoes and delays, it reconstructs a three-dimensional acoustic field. It also can decode any surround-sound material that's present. The completed project fits into a commercial enclosure that easily can be mounted in most vehicles. That's just one of three great automotive stories featured this month!
BUILD THIS

37 BUILD THE AFG II
The Acoustic Field Generator II will turn your car into a mobile listening room!
Tod T. Templin

45 BUILD THE SMARTGAGE
Get precise readouts of your car's water temperature, oil pressure and battery voltage.
N.J. & R.E. Tuthill

59 SINGLE CHIP DMM
Build this inexpensive alternative to a store-bought 4½-digit volt meter.
Anthony J. Caristi

71 REMOTE CAR STARTER
Start your car from the comfort of your house!
Martin Fournier

TECHNOLOGY

64 JUNCTION FIELD-EFFECT TRANSISTORS
Learn how to bias JFET's and use them in a variety of practical circuits.
Ray Marston

82 APRIL 6: ELECTRONICS TECHNICIANS DAY
If you've been thinking about becoming a CET, now's your chance!
Larry Steckler, EHF/CET

DEPARTMENTS

6 VIDEO NEWS
What's new in this fast-changing field.
David Lachenbruch

18 DRAWING BOARD
Finding a way to detect lines 24 and 247.
Robert Grossblatt

75 HARDWARE HACKER
Using cubic splines, and more.
Don Lancaster

85 AUDIO UPDATE
The Audio Answerman returns.
Larry Klein

95 COMPUTER CONNECTIONS
Microsoft and Intel take on the world.
Jeff Holtzman

AND MORE

108 Advertising Sales Offices
108 Advertising Index
102 Buyer's Mart
14 Letters

34 New Lit
24 New Products
8 Q&A
4 What's News
Mini-Circuits' new LRMS-series Ultra-Rel™ mixers are offered with a difference... unprecedented reliability. Units are manufactured with Ultra-Rel diodes, all-welded construction, metal stubs to all connections, and to 4.5 sigma performance repeatability. Each Ultra-Rel™ LRMS mixer can withstand strenuous shock and vibration, will perform over a -55° to +100°C range, and is guaranteed for five years.

Now available, a large variety of tiny, ultra-rel high performance mixers to handle your applications from extra wideband, high isolation, low two-tone third-order IM, to very low +3dBm LO power. Mini-Circuits' new LRMS-series Ultra-Rel™ mixers are offered with a difference... unprecedented reliability. Units are manufactured with Ultra-Rel diodes, all-welded construction, metal stubs to all connections, and to 4.5 sigma performance repeatability. Each Ultra-Rel™ LRMS mixer can withstand strenuous shock and vibration, will perform over a -55° to +100°C range, and is guaranteed for five years.

Aim for 4.5 sigma repeatability in your product designs by specifying Mini-Circuits' Ultra-Rel™ LRMS mixers, available for immediate delivery in tape-and-reel format (500 units, 16mm width) at prices from $6.25.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>Freq. Range LO (MHz)</th>
<th>RF (MHz)</th>
<th>IF (MHz)</th>
<th>LO Cony. Level (dBm)</th>
<th>Conv. Loss (X) mid-band</th>
<th>L-R Isol (X) mid-band</th>
<th>Price ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRMS-2L</td>
<td>800-1000</td>
<td>0-200</td>
<td>+3</td>
<td>6.6</td>
<td>24</td>
<td>6.95</td>
<td>1-9</td>
</tr>
<tr>
<td>LRMS-1L</td>
<td>0.5-500</td>
<td>0-300</td>
<td>+7</td>
<td>6.4</td>
<td>45</td>
<td>6.25</td>
<td>1-9</td>
</tr>
<tr>
<td>LRMS-1W</td>
<td>2.0-750</td>
<td>0-750</td>
<td>+7</td>
<td>5.8</td>
<td>45</td>
<td>6.75</td>
<td>1-9</td>
</tr>
<tr>
<td>LRMS-2</td>
<td>5-1000</td>
<td>0-1000</td>
<td>+7</td>
<td>6.8</td>
<td>38</td>
<td>6.95</td>
<td>1-9</td>
</tr>
<tr>
<td>LRMS-2D</td>
<td>5-1000</td>
<td>0-1000</td>
<td>+7</td>
<td>6.8</td>
<td>40</td>
<td>7.25</td>
<td>1-9</td>
</tr>
<tr>
<td>LRMS-2U</td>
<td>10-1000</td>
<td>0-1000</td>
<td>+7</td>
<td>6.5</td>
<td>46</td>
<td>11.45</td>
<td>1-9</td>
</tr>
<tr>
<td>LRMS-5</td>
<td>5-1000</td>
<td>0-1000</td>
<td>+7</td>
<td>6.0</td>
<td>41</td>
<td>13.95</td>
<td>1-9</td>
</tr>
<tr>
<td>LRMS-1LA</td>
<td>1400-1900</td>
<td>0-500</td>
<td>+7</td>
<td>7.0</td>
<td>25</td>
<td>16.95</td>
<td>1-9</td>
</tr>
<tr>
<td>LRMS-1LH</td>
<td>2.0-500</td>
<td>0-500</td>
<td>+10</td>
<td>5.8</td>
<td>47</td>
<td>7.95</td>
<td>1-9</td>
</tr>
<tr>
<td>LRMS-2LH</td>
<td>5-1000</td>
<td>0-1000</td>
<td>+10</td>
<td>6.6</td>
<td>40</td>
<td>8.95</td>
<td>1-9</td>
</tr>
<tr>
<td>LRMS-5LH</td>
<td>10-1500</td>
<td>0-900</td>
<td>+10</td>
<td>5.4</td>
<td>38</td>
<td>14.95</td>
<td>1-9</td>
</tr>
<tr>
<td>LRMS-1MH</td>
<td>2.0-500</td>
<td>0-500</td>
<td>+13</td>
<td>5.7</td>
<td>44</td>
<td>8.95</td>
<td>1-9</td>
</tr>
<tr>
<td>LRMS-2MH</td>
<td>5-1000</td>
<td>0-1000</td>
<td>+13</td>
<td>6.6</td>
<td>44</td>
<td>9.95</td>
<td>1-9</td>
</tr>
<tr>
<td>LRMS-5MH</td>
<td>10-1500</td>
<td>0-900</td>
<td>+13</td>
<td>5.8</td>
<td>46</td>
<td>15.95</td>
<td>1-9</td>
</tr>
<tr>
<td>LRMS-1H</td>
<td>2.0-500</td>
<td>0-500</td>
<td>+17</td>
<td>6.3</td>
<td>44</td>
<td>10.95</td>
<td>1-9</td>
</tr>
<tr>
<td>LRMS-2H</td>
<td>5-1000</td>
<td>0-1000</td>
<td>+17</td>
<td>7.2</td>
<td>36</td>
<td>11.95</td>
<td>1-9</td>
</tr>
<tr>
<td>LRMS-2UH</td>
<td>10-1000</td>
<td>0-1000</td>
<td>+17</td>
<td>7.1</td>
<td>38</td>
<td>14.45</td>
<td>1-9</td>
</tr>
<tr>
<td>LRMS-5H</td>
<td>10-1500</td>
<td>0-900</td>
<td>+17</td>
<td>7.2</td>
<td>45</td>
<td>17.95</td>
<td>1-9</td>
</tr>
</tbody>
</table>

Designers Kit, KH-3
available only $59.95 includes: 8 mixers, 2 each of LRMS-1, LRMS-2, LRMS-2U, LRMS-1LA, 740 page RF/IF DESIGNER'S HANDBOOK Contains application notes using mixers as electronic attenuators, frequency doublers, switches, and b-phase modulators.

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 Telexes: 6582944 or 620156

WE ACCEPT AMERICAN EXPRESS AND VISA

CIRCLE 182 ON FREE INFORMATION CARD

www.americanradiohistory.com
WHAT'S NEWS

A review of the latest happenings in electronics.

Sending voice and video over the airwaves

A microwave radio transmission system has been granted approval by the Federal Communications Commission (FCC) to operate in the 28-GHz band. An alternative to cable TV, it makes use of a band that was once considered to be too high a frequency for effective TV transmission.

The Cellular Vision system, financed by the Suite 12 Group (Freehold, N.J.), was invented by Bernard Bossard. Microcells transmit high-quality video signals at radio frequencies that are much higher than the UHF or VHF signals assigned to satellite TV transmission. The TV signals are received by a 4.5-inch-square, flat antenna that can be mounted either inside or outside a customer's house.

According to the system's inventor, the elimination of cables, which require costly installation and maintenance, permit Cellular Vision to be offered at a lower price than cable TV. Bossard claims that the system will improve TV the same way that FM improved radio.

Microwaves at 28 GHz can carry more information than longer-wave transmissions, and they can be bounced off buildings. The major drawback to microwave transmission is seen as its limited range—only a few miles from the transmitter. The proposed solution to that problem is the division of large geographical regions into smaller cells, each of which has its own microwave transmitter.

To eliminate mutual interference and ghosting, microwave transmissions from adjacent transmitters will be polarized as "vertical" or "horizontal" signals that can be distinguished by a customer's antenna.

The short 28-GHz wavelength permits the use of the small receiving antennas. Their size contrasts with the three-foot or greater diameters of the parabolic "dish" antennas that now receive TV transmissions directly from satellites. With only slight modification, a Cellular Vision microwave receiving antenna can be converted so it will transmit signals back to the base antenna. This would give Cellular Vision interactive capability.

The service was approved by the FCC in December 1992 for operation in the Brighton Beach section of Brooklyn, NY. At present, 49 channels of TV programming are being offered for less than $30 a month. The FCC also voted unanimously to seek public opinion on its plan to permit voice and video transmissions in the 28-GHz band. Licenses would be granted to two operators in each of 489 regions across the country. A 1000-MHz block of spectrum would be assigned to each operator.

The new technology puts TV cable companies and telephone operating companies in direct competition. It permits cable companies to provide telecommunications services, and local telephone operating companies to provide such services as video teleconferencing and movies on demand.

Unmanned police vehicle

An unmanned ground vehicle was tested by a police department in Huntsville, AL. The vehicle, called the Hazard Avoidance Reconnaissance Extender, or HARE, was tested in the training exercise by Huntsville police.

The Huntsville police department's Special Response Team and Hostage Negotiation Team, equipped with the HARE, put the vehicle to work in the realistic test. "Shots" were fired on the fourth floor of a Huntsville building, and one man seized an unknown number of hostages. A police unit entered the building and set up a command post at the opposite end of the floor on which the hostages were being held.

The "suspect" was persuaded to accept a portable phone delivered to him by HARE. The suspect did not know that HARE also contained three on-board video cameras that were filming his actions. Video of the suspect and the hostages was transmitted back to the police, permitting them to appraise the situation. That information, transmitted from HARE over a four-hour period, helped police to "rescue" the hostages without exposing themselves to possible gunfire.

Westinghouse plans to build and ship the first six production HARE's in the second half of 1993. The company asserts that HARE's can also be used by bomb squads to remove suspicious objects or known bombs for safe disposal. It is also seen as being useful in rescue work and fire fighting.

The HARE can enter hazardous situations without endangering human lives.
Before we built the new generation Beckman Industrial Series 2000 DMMs, we asked people like you what you really want.

You want more. More test and measurement capabilities. More troubleshooting features. All in an affordable hand-held DMM. The Series 2000 features the widest range Frequency Counter in any professional DMM, a full-range Capacitance Meter, True RMS measurements, Intermittent Detection, 50ns Pulse Detection, and Peak Measurement capabilities. Plus, the Series 2000 is the only meter to offer autoranging Min/Max recording and relative modes.

You want a DMM that's easier to use. The Series 2000's display is 25% larger, with bigger digits and backlighting for easier reading, even in the worst light. Plus the fast 4 digit display provides the high resolution needed for adjusting power supplies and generators down to 1mV. And only the Series 2000 features a menuing system for fast, simple feature access.

The Beckman Industrial Series 2000, priced from $209 to $279 offers you the best performance for your dollar. Look again at these features:

- 4 Digit, 10,000 Count Resolution
- Basic Accuracy to 0.1%
- True RMS, AC or AC on DC
- 0.01Ω Resolution
- Automatic Reading Hold
- 1ms Peak Hold
- Fully Autoranging Relative and Min Max Modes
- Intermittent Detector
- UL1244, IEC1010 Design
- Three Year Warranty

The Series 2000 offers the most solutions for your everyday test and measurement needs. The only DMMs designed by the people who use them. You.

For more information on these new DMMs call (outside CA) 1-800-854-2708 or (inside CA) 1-800-227-9781.
Widescreens are here. The new TV sets with 16:9 ratio screens have now been introduced and are slowly finding their way to the marketplace. They will not be available in any large numbers, and their high prices sharply limit their appeal for the time being, although manufacturers say price tags could come down fairly rapidly in larger-scale production. The first models are being aimed at movie buffs who like to see films on TV in the same proportions in which they were filmed. The laserdisc owner is being singled out because so many laserdiscs are available in the letterbox format. Suggested list prices for the sets run from about $5,000 and up, although actual selling prices are expected to range about $500 below list price.

CinemaScreen, billed as “the television set made for movies,” is being offered under the RCA and ProScan brands as a console and table model, respectively. Both are electronically identical and have 34-inch widescreen picture tubes. (This tube is made in Italy, where it’s known as a 36-inch tube because of a different way of measuring it.) These sets have two tuners for picture-in-picture (and picture out of picture, which puts the secondary picture to one side of a standard 4:3 ratio image). Among their many features are the capability of displaying two standard TV pictures side by side on a split screen (67% of each picture is displayed). Those sets are currently being offered in some stores at a $4,999 list price, and will gradually be made available nationwide.

Also scheduled to become available this month is the first widescreen projection TV set from Panasonic—a 50-inch CinemaVision set (the industry seems to be running out of “cinema” trade names), also with two tuners and picture in and out of picture (known in the trade as PIP and POP). Like the RCA tube-type set, the Panasonic projector carries a $4,999 list price. It will be followed in September by a 58-inch version, designed for custom home-theater installation, at $5,999.

Philips’ 16:9 TV set, like the RCA, has a 34-inch direct-view tube and is scheduled to be on the market by midyear at a $5,995 suggested list price. Philips calls its set “HDTV-ready” because it has an RGB input, which can accommodate a future HDTV decoder. Philips concedes the resolution isn’t up to high-definition standards, but says that at the distance consumers currently view TV’s, the resolution will be as good as on any HDTV set.

Another widescreen projection set, this one 55 inches, is promised for next month by JVC, at a suggested list price of $4,995. Like the other sets, it can display standard 4:3 pictures either in the proper ratio or stretched out to fit the wide screen. To eliminate distortion where the action occurs, JVC has varied the formula somewhat. When a standard picture is stretched to fit the screen, the central part of the picture is unprocessed, while the left and right edges of the picture are stretched. Sharp also promises a widescreen set later this year, using either a 34- or a 30-inch tube, but it has given no details.

The widescreen set is considered by its proponents as an interim product to ease the transition from the current NTSC image to the HDTV widescreen system, due to be selected this year and in use possibly in 1995. But some manufacturers—including Zenith, Sony, Toshiba and Hitachi—say they’ll sit out widescreen because of the lack of availability of wide program material and the confusion which could be caused by introducing non-HDTV widescreen sets. It’s expected that the widescreen TV could be the trend-setter among the Hollywood cognoscenti and, in effect, replace the much more expensive movie screening rooms.

Largest TV picture tube. If you’ve got $4,999 burning a hole in your pocket and don’t want a widescreen set, perhaps you’ll be tempted by Mitsubishi’s latest—a TV set in the standard proportions with a picture tube measuring 40-inches in diagonal measurement. Mitsubishi was the first to introduce the 35-inch tube set at about the same price as it’s asking for its 40-inch. Today, 35-inch sets are carrying list prices as low as $1,400 and less. Although the set isn’t much bulkier than a 35-inch, you’d better make sure your floor is well reinforced—the set weighs about 266 pounds (still less than a widescreen set).

Snap that video. In this age of combinations, someone had to come up with a combination TV and Polaroid camera. A company called VideoSnap Inc. has been demonstrating just such a device, and promises to deliver it within a year. In addition, that system includes what is probably the world’s smallest projection TV set—with a five-inch screen. The VideoSnap set is a wedge-shaped apparatus with a 0.7-inch LCD as its picture source. It can tune to TV stations or can be hooked up to a camcorder or VCR for capturing those rare moments as stills. The TV or video picture can be viewed on the five-inch rear projection screen, and a still picture of any frame can be made by pushing a button on the remote control. A slot below the screen yields a standard Polaroid Spectra print. The VideoSnap people estimate that the system could list for about $499.

The VideoSnap system is claimed to be compatible with NTSC, PAL, and SECAM TV standards. Although the product isn’t currently available, it’s scheduled to be manufactured and marketed by Phonex, of Midvale, Utah.
Some Breadboards Cost Less Than PROTO-BOARD® Brand . . . They Should

At Global Specialties® we make only one kind of breadboard, the very best, PROTO-BOARD® brand. American made and guaranteed for life.

Sure, save a few dollars today... buy cheap... but remember, you only get what you pay for! Is it really worth it??? Ask yourself... Do they perform like PROTO-BOARD® brand?

How can we guarantee PROTO-BOARD® brand breadboard for life unconditionally? Because we control every step right in our New Haven factory, and because we are obsessed with quality.

That's why we mold our own plastic and stamp our own precision contacts. We even designed our own machine to assemble each breadboard to exacting standards. Assuring every PROTO-BOARD® brand is built to perfection when it leaves our USA factory... backed by our unconditional "Life-Time" guarantee.

The others arrive from Taiwan, with good reason, they are made cheaper!

So next time you consider a cheaper breadboard, think twice. You'll need to, because even after you have worn out your second imported breadboard our PROTO-BOARD® brand would still be going strong.

PROTO-BOARD® brand. The breadboard you only buy once. Now which one really costs less?

PROTO-BOARD® brand breadboards and the complete Global® line of test instruments are in stock at fine electronic distributors everywhere.

Can't Wait! Call Toll-Free 1-800-572-1028
ELIMINATING LOCKUP
I've been using my 286-based PC clone for years without any problems and, since I'm a programmer, I spend a lot more time thinking about software than I do thinking about hardware. When I'm writing software, my computer locks up all the time as bugs show up in the program. Is it better to turn the PC off and then turn it back on or is it better to press the reset button on the front of the case? I want to keep this computer for a while yet, so which method will cause the least damage? Better yet, is there some way to keep it from locking up altogether?—F. Gish, Wind, IN

Computer lockup is common when you're developing software, so the first thing I'd tell you to do is to run your prototype code in some kind of programming shell so you can regain control of the computer when your code crashes. Of course, the best thing you could do is to write the program correctly in the first place so the computer never locks up at all.

Seriously, it's much better to use the reset button than it is to turn the computer off and on. Some of the worst enemies of the PC, or any electronic contraption for that matter, are the surges and peaks that appear as power is applied. Computers, especially the faster ones, generate lots of heat as they run, but that's a normal operating characteristic, and the IC's are designed to handle that. Power surges are much more of a problem because they are, by nature, unpredictable, and can cause a lot of damage.

Pressing the reset button on the case of the computer will, most of the time, be equivalent to turning the power off and on. I say "most of the time" because there are circumstances under which a lockout can be cleared only by disconnecting the power. This can only happen on AT-class computers, and has to do with how the CMOS memory is accessed by the BIOS.

As a programmer, the reset button on the front of your computer is your best friend. It's interesting that IBM, all the way through its PS2 series, never provided a reset button. Since providing one meant adding only a capacitor, resistor, button, and some wire, I've never understood why they left one out. Considering IBM's falling share in the marketplace they created, and what's happening to the value of their stock, I'd guess that the absence of a reset button is the least of its problems.

BULB DRIVER
I'm building some circuits that must control a few 12-volt light bulbs, and I am having a hard time getting the logic gates to turn the bulbs on and off. The logic is correct, but the bulbs need more current than can be supplied by the circuit. I can't use relays in the design because of the environment in which the circuit has to operate. Do you have any ideas?—J. Linz, Margate, FL

Computer lockup is common when you're developing software, so the first thing I'd tell you to do is to run your prototype code in some kind of programming shell so you can regain control of the computer when your code crashes. Of course, the best thing you could do is to write the program correctly in the first place so the computer never locks up at all.

Seriously, it's much better to use the reset button than it is to turn the computer off and on. Some of the worst enemies of the PC, or any electronic contraption for that matter, are the surges and peaks that appear as power is applied. Computers, especially the faster ones, generate lots of heat as they run, but that's a normal operating characteristic, and the IC's are designed to handle that. Power surges are much more of a problem because they are, by nature, unpredictable, and can cause a lot of damage.

Pressing the reset button on the case of the computer will, most of the time, be equivalent to turning the power off and on. I say "most of the time" because there are circumstances under which a lockout can be cleared only by disconnecting the power. This can only happen on AT-class computers, and has to do with how the CMOS memory is accessed by the BIOS.

As a programmer, the reset button on the front of your computer is your best friend. It's interesting that IBM, all the way through its PS2 series, never provided a reset button. Since providing one meant adding only a capacitor, resistor, button, and some wire, I've never understood why they left one out. Considering IBM's falling share in the marketplace they created, and what's happening to the value of their stock, I'd guess that the absence of a reset button is the least of its problems.

Computer lockup is common when you're developing software, so the first thing I'd tell you to do is to run your prototype code in some kind of programming shell so you can regain control of the computer when your code crashes. Of course, the best thing you could do is to write the program correctly in the first place so the computer never locks up at all.

Seriously, it's much better to use the reset button than it is to turn the computer off and on. Some of the worst enemies of the PC, or any electronic contraption for that matter, are the surges and peaks that appear as power is applied. Computers, especially the faster ones, generate lots of heat as they run, but that's a normal operating characteristic, and the IC's are designed to handle that. Power surges are much more of a problem because they are, by nature, unpredictable, and can cause a lot of damage.

Pressing the reset button on the case of the computer will, most of the time, be equivalent to turning the power off and on. I say "most of the time" because there are circumstances under which a lockout can be cleared only by disconnecting the power. This can only happen on AT-class computers, and has to do with how the CMOS memory is accessed by the BIOS.

As a programmer, the reset button on the front of your computer is your best friend. It's interesting that IBM, all the way through its PS2 series, never provided a reset button. Since providing one meant adding only a capacitor, resistor, button, and some wire, I've never understood why they left one out. Considering IBM's falling share in the marketplace they created, and what's happening to the value of their stock, I'd guess that the absence of a reset button is the least of its problems.
Start a money-making career in video/audio servicing!

Only NRI gets you started fast with real-world training designed around state-of-the-art equipment you keep!

NRI's newly expanded training covers all the latest advances in home entertainment electronics, then takes you inside today's high-tech equipment as you learn to troubleshoot, diagnose, and service the complete home entertainment system included in your course: 13" color TV, programmable VCR, and integrated audio rack system. Only NRI makes it so easy to start a new career, earn part-time income, even start a video/audio servicing business of your own!

Billions of dollars of video/audio equipment means big opportunity for you!

There's never been a better time to get involved in home entertainment electronics. Experts predict that consumers of video/audio equipment will spend over $26 billion by 1995 as product manufacturers race to fill the demand for increasingly sophisticated technology. This explosive acceleration of new product innovation means new opportunities for you in video/audio servicing. And NRI prepares you to take advantage of those opportunities by giving you the skills to troubleshoot and service a full range of TV, video, and audio equipment.

The most advanced, most complete video/audio training ever offered!

You start with lessons that give you a strong foundation in electronics fundamentals, mastering the basic circuits and components at the heart of today's video/audio equipment.

Then you build on that foundation as you explore the high technology of digital controls, CDs and digital audio tape players, advanced TV systems, cable TV, VCRs and camcorders, even microprocessors.

Best of all, you're prepared for the technology of today and tomorrow with hands-on training designed to give you invaluable practical experience.

State-of-the-art equipment included in your training makes theory come to life

Only NRI gives you so much real-world equipment ... all yours to train with and keep! Get hands-on experience as you work with a complete, high-tech home entertainment system: a 13" color TV with remote, a programmable VCR, and an integrated remote-controlled audio system including AM/FM tuner, 100 watt amplifier, CD player, dual cassette player, turntable, speakers, and audio rack cabinet.

Theory comes to life as you learn to perform component-level diagnosis and service on advanced technology audio equipment ... conduct in-set demonstrations of TV circuits and components ... and discover first-hand how to maintain and service today's commercial VCRs.

Plus, NRI custom-produced videos show you in close-up detail how to test, troubleshoot, and service TVs and VCRs like a pro.

No experience necessary ... NRI builds it in

You need no previous experience in electronics to succeed with NRI. Step by step, you accumulate the knowledge and practical experience that will make you uniquely qualified for today's opportunities in home entertainment electronics.

You learn at your own pace and on your own time. And all throughout your training, you have the full support of your personal NRI instructor and the entire NRI technical staff.

FREE catalog tells more

If the coupon is missing, write to NRI Schools, McGraw-Hill Continuing Education Center, 4401 Connecticut Avenue, NW, Washington, DC 20008.

SEND TODAY FOR FREE NRI CATALOG

NRI Schools
McGraw-Hill Continuing Education Center
4401 Connecticut Avenue, NW, Washington, DC 20008

Check one FREE catalog only

☐ TV/Video/Audio Servicing
☐ Microcomputer Servicing
☐ Computer Programming
☐ Telecommunications
☐ PC Applications Specialist
☐ Programming in C++ with Windows
☐ Desktop Publishing & Design
☐ Electronic Music Technology
☐ Home Inspection
☐ Automotive Servicing
☐ Basic Electronics
☐ Bookkeeping & Accounting

Name
(Please print)

Age

Address

City
State
Zip

For Career Opportunities approved under GI Bill check for details

www.americanradiohistory.com
SCHEMATIC DRAWING
I design a lot of PC boards at home and working out the patterns is a really time-consuming procedure. There are a lot of routing programs on the market now and I was wondering if I would make my work any easier. Some of the software is pretty reasonably priced, but before I buy any of them, I’d like to be sure that they would really help me out. I don’t expect you to recommend any one in particular, but is there any general rule?—D. Tunn, Boston, MA

The two major points to consider when you’re thinking about getting an autorouter are the complexity of the boards you generally make, and whether you actually make the boards yourself. How you answer those questions will tell you whether it’s worth your while to make the investment in hardware and software.

As a board gets more and more complex, the number of needed layers increases. If you regularly design double-sided boards, you’re really in a quandary because auto-routing software will undoubtedly generate a board with more vias than a hand-routed design. The algorithms used by autorouters, no matter how good they are, just can’t measure up to human experience.

I have a board that I use to test autorouters, and the results are always the same. None of the auto-routing packages produce a board that’s as easy to manufacture as the one I design by hand. And the more restrictions you give to the autorouter (single-sided boards, single traces through IC pins, minimize vias, etc.), the less chance you have of getting a complete route from the software.

Most autorouters will give you a list of the connections that it couldn’t complete, and then becomes your job to find a way to make them. Every time I’ve done this, it’s been necessary to throw away large quantities of successful routes and redo large sections of the PC board. Sometimes this takes more time than it would have taken to do the whole job by hand. Autorouters just don’t think the way we do, and they don’t seem to have the ability to look at the whole board in the middle of the job and decide to start all over again.

If you manufacture your own boards at home, an autorouter will give you a foil pattern that’s murder to produce. Boards that are designed for commercial production have the luxury of multiple layers, blind vias, and extremely thin trace widths. This is performance that, even after making lots of boards, I’ve never been able to match successfully on my kitchen table.

The best test for an autorouter is to ask it to generate a foil pattern with the same restrictions you have when you do a pattern by hand. Look at the results and make your decision based on how you plan to manufacture the board. For what it’s worth, I route boards both by hand and with an autorouter at times. Which way I’ll do it depends on the budget for the job.

Remember those Martian Space Ships in HG Wells War of the Worlds?

MYSTERY Levitating Device
Objects float on air and move to the touch. Delkis gravity! Amazing gift, conversation piece, magic trick or great scientific project.

Order: $19.50

FM Wireless Microphone!
Crystal clear, ultra-sensitive pickup transmits voices, sounds to any FM radio. For security, monitoring children, invalids. Be the local DJ!

Order: $7.00

Telephone Transmitter!
Automatically transmits 2 sides of phone conversation to any FM radio, tunable, easy-assembly PC board. Operates only when phone is in use.

Order: $7.00

INFORMATION UNLIMITED
Dept RE-4 Box 716, Amherst NH 03031
Phone 603-672-4730 FAX 603-672-5406
MC, VISA, COD, Check Accepted. ADD SS & H.
Order by Mail, or by 24 Hr Order Phone 800-221-1705

Master Electronics for Just $2.88 per Experiment

Gain vital, practical skills for today’s high-tech world. With Demax, you learn by doing, not memorizing and repeating. Experts know that you learn more, understand better with our hands-on method, plus you definitely have more fun. Order our 3 course package, Mastering the Digital Multimeter, Direct Current, and Alternating Current, and get a special 2 hour video, showing setup and results for all 104 experiments. Package also includes deluxe digital multimeter, learning module w/self-store case, 3 kits of parts, and clearly written, well illustrated books w/sample, step-by-step instructions for just $299-$305&H (less meter save $50). Act today, take command of basic electronics! Items also sold separately. Call for prices.

Demax Corporation
PO Box 946, Benton Harbor, MI 49022
VISA/MI orders, 1-800-79-DEMAX

CIRCLE 193 ON FREE INFORMATION CARD
See your participating Chemtronics distributor for an order form for your free SURVIVAL KIT gift (pictured here).

For information, call 1-800-645-5244.

The Right Products for the Long Run
What to use for Electronics Service and Repair:

CFC FREE ELECTRO-WASH® 2000
Clean and degrease circuit boards and components
- Flush PC boards safely, without CFC’s*

FREEZ-IT® 2000
Locate defective components
- Fast freeze with no CFC’s*

CFC FREE FLEX-OFF® 2000
Removes flux safely and effectively
- Contains no CFC’s*
- Dries fast

CONTACT CLEAN® 2000
Cleans switches, pots and relays
- Maximum reliability
- Reduced ODP*

ULTRAJET® 2000
Remove dust and dry dirt
- Ultra-filtered
- Contains no CFC’s*

CHEM-WIN® LITE
Desolder components with the industry standard desoldering braid
- Meets MIL-F-14256E.

* For the same of your stocking Chemtronics distributor, call 1-800-645-5244.

Chemtronics®
CIRCLE 54 ON FREE INFORMATION CARD

See www.americanradiohistory.com
MISSING TABLES
Our February 1993 issue featured Part 2 of "Crystal Oscillators." Unfortunately, eight tables that were supposed to accompany the article never made it to print. The missing tables appear on page 94. We apologize for any inconveniences we may have caused you.—Editor

PHOTO CD/CD-I VERSUS VIS
I think that Jeff Holtzman did his readers, Philips, and Kodak a disservice in his December Computer Connections.

While he admonishes Kodak to “work with Tandy to ensure that VIS can play Photo-CD discs,” he fails to mention that Kodak and Philips collaborated on the development of Photo-CD or that Philips (and probably other) CD-I players are already Photo-CD players, too. When I purchased my CD-I player a year ago, it included a coupon for a free Photo-CD demo disc, and I recently received a certificate good for a free Photo-CD with my own film.

Mr. Holtzman also fails to mention that the Philips CD-I player is also a top-notch audio CD player. It has some features not found on the average CD-DA player, such as the ability to create and store “Favorite Tracks Selections” lists in non-volatile memory. Those lists can be recalled at any time to play only selected tracks in a selected order, allowing you to, in effect, “customize” discs.

While the initial cost of a CD-I player might seem high at first ($599 "street" price here), when you consider that you are also getting a Photo-CD player and an audio CD player, the cost-per-function is very reasonable. Although the Philips CD-I player is the only one currently available in the U.S., I hope we will soon see other manufacturers join in, perhaps with a single player that will handle all CD formats including video formats.

Mr. Holtzman also leaves the impression that the available CD-I titles are limited in number and scope, which is not true. CD Marketplace 1992, an industry publication from Knowledge Industry Publications Inc., lists 92 titles published worldwide, and 29 more in production. It also lists more than 80 publishers, producers, and developers of CD-I software, including most of those that Mr. Holtzman lists as potential VIS developers. The current CD-I catalog includes a wide variety of titles, including such standards as Sargon Chess, Battle Ship, Backgammon, and Tetris. Others are ABC Sports Golf (and soon baseball), and adventure games such as Defender of the Crown and Escape from Cybercity. One can obtain "Jukebox" discs that include video lyrics and trivia, a large selection of children's educational works including Sesame Street, Richard Scarry, and Aesop's Fables. Adult educational selections include a tour of the Smithsonian, Time-Life's 35-mm Photography, and both classical and jazz guitar lessons. In the past several weeks, I was notified that Philips released 20 new titles, with more promised before Christmas (1992).

The article also mentions that Tandy's immense retail network will ensure broad availability of its VIS system. Within 10 minutes of my home there are at least six retailers, including Sears, Montgomery Ward, and Service Merchandise, that sell CD-I players and software. That is hardly what I would consider limited availability. Moreover, it exposes CD-I to a much wider audience than the typical Radio Shack Store ever will.

Philips, Sony, and others developed CD-I with the expectation that it would become an international standard (for example, the same CD-I disc can be played on both American NTSC and European PAL format players). I think it's unfortunate for all of us that Tandy has chosen to develop its own unique format rather than adopt the emerging CD-I standard. I'm afraid that this will only result in another VHS/Betamax-style battle for supremacy that will hurt the consumer in the long run.

Rather than wait for Tandy, Mr. Holtzman should consider hooking a CD-I player to his home-entertainment center to see what he's been missing for the last year. He might not have to "throw it away" as soon as he thinks.

MIKE MAGNUS
Des Plaines, IL

SIMPLER AUTOMATIC POWER CONTROLLER
I have been a subscriber to Radio-Electronics/Electronics Now for more years than I can remember, and look forward to each month's issue.

I enjoyed David Sweeney's article, "Automatic Power Controller," in the November 1992 issue. It provided me with new insights on a controller application I have planned.

However, Mr. Sweeney's approach seemed to be a bit of overkill for the task at hand. Figure 1 shows a cheaper, and simpler circuit that performs the same function: operating a remote relay while providing a dashboard indication that the relay has been switched.

By using a push-on/push-off
FROM A TO Z IN 1 SECOND FLAT

THE FASTEST, EASIEST CROSS-REFERENCING OF ORIGINAL DEVICES TO NTE REPLACEMENT PARTS!

NEW UPGRADE!

QUICKCross™ 3.0

The industry's first PC-based software cross-reference to NTE's highly successful line of semiconductors and relays is better than ever!

"QUICKCross 3.0" now offers:

- New resistor & capacitor selector guides
- Enhanced search capability into semiconductor and relay databases.
- On-screen information and literature guide

Just type in any of a quarter of a million industry device numbers - U.S., Japanese, and European - and you'll get the ideal replacement from over 4,000 NTE devices in about one second!

"QUICKCross 3.0" 5 1/4" and 3 1/2" floppy diskette MS-DOS versions are available direct from NTE or through your local NTE distributor. For your nearest one, call NTE toll-free 1-800-631-1250 (including Canada) or (201) 748-5089. FAX: (201) 748-6224.

NTE ELECTRONICS, INC.
A WORLDWIDE REPUTATION FOR QUALITY, SERVICE AND VALUE

□ YES, PLEASE SEND ME THE FOLLOWING NUMBER OF COPIES OF "QUICKCross™ 3.0" SOFTWARE ON FLOPPY DISKETTES

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 1/4"</td>
<td>$5.00 ea.</td>
</tr>
<tr>
<td>3 1/2"</td>
<td>$6.00 ea.</td>
</tr>
<tr>
<td>3 1/2"</td>
<td>$7.50 ea.</td>
</tr>
</tbody>
</table>

Prices include shipping and handling. Enclosed please find my check or money order for $________ (U.S. funds only.)

Name ___________________________ Company ___________________________
Address ___________________________ ___________________________
City ___________________________ State ______ Zip __________

Attach this coupon to your letterhead and mail to:
NTE, 44 Farrand St., Bloomfield, NJ 07003

CIRCLE 71 ON FREE INFORMATION CARD
“FREEDOM,” NOT THEFT
Does placing a tin cup on the sidewalk while I recite Hamlet to passers-by create an enforceable claim against one who stops to listen? Mr. Mihok’s “implicit” contract (Letters, Electronics Now December 1992) exists only in his imagination. Furthermore, removing three newspapers from a coin-operated vending box when only one was paid for, deprives a news dealer of the opportunity to sell those other two papers. However, tuning in to a signal that I have not paid for deprives the cable company only of the opportunity to sell services to me. The fundamental difference between finite newspapers and infinitely divisible signal renders Mr. Mihok’s argument void.

The reality is, passive reception is no more subject to restriction than eavesdropping. Legislation has attempted to intervene, but as Bruno Leoni has instructed us, legislation is not law. Real law is like language: It is universally accepted, and it does not pander to the majority or to the cable-industry’s special-interest group.

The socialist in Mr. Mihok would have the police force us to pay him for his Hamlet. In a free society, he will need a job making real products that people want to buy, rather than tinkering with something he enjoys while plotting ways for the government to make it worth his while.

JACK DENNON
Warrenton, OR

CURRENT-FLOW CONTROVERSY
I am writing to comment on Don Lancaster’s Hardware Hacker (Electronics Now, December 1992) regarding current flow.

His “bottom line,” that any textbook teaching electron current theory is ripping you off and will lead to confusion later on, oversimplifies the field of electronics. When I went to school, both theories were taught side-by-side, each with its application. Conventional current, also known as the Franklin Theory (after Ben) or Flow of Positive Charges, is fine for motors, transformers, and power electrical apparatus, and is used by electrical engineers, electricians, automotive technicians, and others identified in Mr. Lancaster’s article.

Conventional current theory simply does not explain the operation of vacuum tubes. They are still as CRT’s (monitors or television picture tubes). Here electron-flow theory provides a better explanation of tube operation, and conveys the actual makeup of electricity, re-
Select any 5 books for only $4.95 (values to $145.75)

when you join the Electronics Book Club

As a member of the Electronics Book Club... you'll enjoy receiving Club bulletins every 3-4 weeks containing exciting offers on the latest books in the field at savings of up to 50% off of regular publishers' prices. If you want the Main Selection do nothing and it will be shipped automatically. If you want another book, or no book at all, simply return the reply form by the date specified. You'll have at least 10 days to decide. And you'll be eligible for FREE books through our New Bonus Book Program. Your only obligation is to purchase 3 more books during the next 12 months, after which you may cancel your membership at any time. (Publishers' prices shown)

If coupon is missing, write to Electronics Book Club, Blue Ridge Summit, PA 17294-0810

YES! Please send me the books listed below, billing me for just $4.95 plus shipping/handling & tax. Enroll me as a member of the Electronics Book Club according to the terms outlined in this ad. If not satisfied, I may return the books within 10 days without obligation and have my membership cancelled.

If you select a book that counts as 2 choices, write the book number in one box and XX in the next. If you select a Counts as 3 choice, write the book number in one box and XXX in the next 2 boxes. A shipping/handling charge and sales tax will be added to all orders. All books are hardcover unless otherwise noted.

If coupon is missing, write to Electronics Book Club, Blue Ridge Summit, PA 17294-0810

YES! Please send me the books listed below, billing me for just $4.95 plus shipping/handling & tax. Enroll me as a member of the Electronics Book Club according to the terms outlined in this ad. If not satisfied, I may return the books within 10 days without obligation and have my membership cancelled.

If you select a book that counts as 2 choices, write the book number in one box and XX in the next. If you select a Counts as 3 choice, write the book number in one box and XXX in the next 2 boxes. A shipping/handling charge and sales tax will be added to all orders. All books are hardcover unless otherwise noted. Publishers’ prices shown. A shipping/handling charge & sales tax will be added to all orders.

Name ________________________ Address ________________________
City/State ________________________ Zip ____________ Phone ____________

Electronics Book Club® Blue Ridge Summit, PA 17294-0810

April 1990, Electronics Now

www.americanradiohistory.com
DRAWING BOARD

Here's how to make sure your SSAVI descrambler uses the correct sync.

ROBERT GROSSBLATT

No matter how carefully you plan things and how explicitly you set your goals, projects always take on a life of their own. It's very hard to decide officially that a job is finished. The more time you put in, the more difficult it is to stop putting time in. Project goals just seem to grow as the project develops.

There are only a few things to take care of in finishing the design of a basic SSAVI descrambler. We need a detector to let us know when lines 24 and 257 show up because they mark the points where we use our manufactured sync and where we switch to the transmitted sync, respectively. As we discussed last month, this subcircuit is no big deal because it just involves a counter that will keep track of the horizontal line numbers and some decoding circuitry that will signal the arrival of the two lines we're interested in.

You can use any counter you want, and the 4040 we used earlier is as good as any one of them. The tricky part of the design is that the decimal 257 is 100000001 in binary code. That means we need a counter/decoder that can handle nine lines. The 4040 can output the correct count, but the decoder must be able to "watch" nine lines. That's not a problem if you're using discrete logic gates to do the decoding because you can have as many input legs as you want. If you're using an EPROM, it's obvious that the extra available address lines for the input have to be tied to either power or ground.

Somewhere out there in designdland, there's a combination of gates that will decode the two numbers (24 and 257), but finding it is pretty tedious and, to make matters worse, there's not a lot to be learned from doing it. I haven't given it a lot of thought, but it can probably be done with a handful of gates. I'll leave the rest of this as an exercise for some of you out there. If someone works it out, drop me a note and I'll pass it along.

Continued on page 84

FIG. 1—THE EPROM WILL DECODE two input addresses (24 and 257) with only one or two data lines.

TABLE 1—EPROM CHARACTER GENERATOR CHART

<table>
<thead>
<tr>
<th>Line Number</th>
<th>EPROM Address</th>
<th>D7</th>
<th>D6</th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
<th>Hex Data Byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>001</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>002</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>003</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>004</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>017</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>018</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>26</td>
<td>019</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>27</td>
<td>01A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>28</td>
<td>01B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>29</td>
<td>01C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>257</td>
<td>080</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>258</td>
<td>081</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>259</td>
<td>082</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>083</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>261</td>
<td>084</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>262</td>
<td>085</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

This EPROM can also be used to decode line 20 (see text) by programming one of the data lines high when line 20 (address OFh in the EPROM) is reached.
Graduate as a Fully Trained Electronics Professional!

If you want to learn about electronics, and earn a good income with that knowledge, then CIE is the best educational value you can receive. CIE’s reputation as the world leader in home study electronics is based solely on the success of our graduates. And we’ve earned our reputation with an unconditional commitment to provide our students with the very best electronics training.

Just ask any of the 150,000-plus graduates of the Cleveland Institute of Electronics who are working in high-paying positions with aerospace, computer, medical, automotive and communications firms throughout the world.

They’ll tell you success didn’t come easy... but it did come... thanks to their CIE training. And today, a career in electronics offers more rewards than ever before.

CIE’S COMMITTED TO BEING THE BEST... IN ONE AREA... ELECTRONICS.

CIE isn’t another be-everything-to-everyone school. CIE teaches only one subject and we believe we’re the best at what we do. Also, CIE is accredited by the National Home Study Council. And with more than 1,000 graduates each year, we’re the largest home study school specializing exclusively in electronics. CIE has been training career-minded students like yourself for nearly sixty years and we’re the best at our subject... ELECTRONICS... BECAUSE IT’S THE ONLY SUBJECT WE TEACH!

CIE PROVIDES A LEARNING METHOD SO GOOD IT’S PATENTED.

CIE’s AUTO-PROGRAMMED® lessons are a proven learning method for building valuable electronics career skills. Each lesson is designed to take you step-by-step and principle-by-principle. And while all of CIE lessons are designed for independent study, CIE’s instructors are personally available to assist you with just a toll free call. The result is practical training... the kind of experience you can put to work in today’s marketplace.

LEARN BY DOING... WITH STATE-OF-THE-ART EQUIPMENT AND TRAINING.

CIE pioneered the first Electronics Laboratory Course and the first Microprocessor Course. Today, no other home study school can match CIE’s state-of-the-art equipment and training. And all your laboratory equipment, books and lessons are included in your tuition. It’s all yours to use while you study and for on-the-job after you graduate.

PERSONALIZED TRAINING... TO MATCH YOUR BACKGROUND.

While some of our students have a working knowledge of electronics others are just starting out. That’s why CIE has developed twelve career courses and an A.A.S. Degree program to choose from. So even if you’re not sure which electronics career is best for you, CIE can get you started with core lessons applicable to all areas in electronics. And every CIE Course earns credit towards the completion of your Associate in Applied Science Degree. So you can work toward your degree in stages or as fast as you wish. In fact, CIE is the only school that actually rewards you for fast study, which can save you money.

SEND FOR YOUR CIE COURSE CATALOG AND WE’LL SEND YOU A FREE 24-PAGE CIE ELECTRONIC SYMBOLS HANDBOOK.
NEW PRODUCTS

Use the Free Information Card for more details on these products.

PROFESSIONAL-GRADE DIGITAL MULTIMETERS.

Beckman Industrial has introduced two new four-digit DMM’s, Models 2020 and 2030. Both offer true RMS, AC, and AC plus DC measurement, a “fault finder,” a 2-MHz frequency counter, and a 50-nanosecond pulse detector. Capacitance values to 2000μF can be measured. The “fault finder” locates intermittent shorts, bad contacts, and broken wires.

Both DMM’s have backlit LCD analog and digital displays. Minimum, maximum and average readings can be recorded in the autoranging mode. Probe hold captures the last stable reading, beeps acknowledgement, and retains the reading on the display. Peak hold captures noise and events as fast as a millisecond. Both positive and negative peaks can be measured. The pulse-detection function detects CMOS and TTL logic pulses as short as 50 nanoseconds. With 0.01-ohms resolution on the resistance range, motorwindings and relay coils can be measured.

An overload alert warns the user of excessive input currents and voltages with a tone, and an incorrect input warning alerts the user when a lead is in the current jack but current is not being measured.

Both meters have AC and DC voltage ranges of 100 millivolts, 1 volt, 10 volts, 100 volts, and 1000 volts. The basic DC accuracy of the 2020 is given as 0.25%; for the 2030, it is 0.1%. A holster, strap, and tilt stand is included.

The Model 2020 DMM is priced at $249 and Model 2030 DMM is priced at $279. —Beckman Industrial Corporation, 3883 Ruffin Road, San Diego, CA 92123-1898. Phone: 619-495-3200.

CIRCUIT DESIGNER. A solderless “breadboard” for designing, prototyping, and testing circuits is now available from JPC International. Circuits can be built, modified, expanded, and dismantled on Circuit Designer TA102 without soldering. Leaded components are inserted into the breadboards, which accept DIP IC’s and most active and passive components.

The standard TA102 has 1380 tie-points, which can accommodate up to 16 14-pin DIP IC’s. It is expandable up to 2020 tie-points, to accommodate up to 24 14-pin DIP IC’s. Circuit Designer includes both +1.25 to +15-volt DC and -1.25 to -15-volt DC variable power supplies, and a center-tapped, 30-volt AC power supply. An included signal generator produces sine, square, and triangle waves with frequencies from 200 Hz to 200 kHz. A speaker, and 1- and 100-Kohm potentiometers are included. All outputs are short-circuit protected.

The TA102 Circuit Designer is priced at $149.95.—JPC International, Inc., P.O. Box 55, Agoura Hills, CA 91301; Phone: 818-707-1514; Fax: 818-707-7327.

PERMANENT REPLACEMENT CMOS BATTERY BACKUP. Clover Point is offering its C-LIFE! permanent replacement battery for CMOS memories. It is said to have a useful life in excess of ten years. C-LIFE! contains a nickel-cadmium (Ni-Cd) power pack and a charging circuit that was designed to match the characteristics of Ni-Cd cells.

CIRCUIT 16 ON FREE INFORMATION CARD

CIRCUIT 17 ON FREE INFORMATION CARD

CIRCUIT 18 ON FREE INFORMATION CARD

www.americanradiohistory.com
FROM $19.95
Standard

High Performance

GREAT VALUE!

The Ultimate Meter
TRUE RMS - LCR - Hz - dBm

Model 100 Basic
Model 150 Basic +
Model 200 Advanced

BATTERY TEST
TRANSISTOR hFE
DIODE TEST
CONTINUITY TESTER
LOW BATTERY INDICATOR
AC & DC VOLTAGES
DC CURRENT
RESISTANCE
CONTINUITY TESTER - Buzzer
DIODE TEST
3 1/2 Digit LCD
LOW BATTERY INDICATOR
ACCURACY +/- 0.5% RDG

Kelvin Meters backed by a
2 Yr Warranty - Parts & Labor

Perfomance Cases
For Models 100, 150, 200 $19.95 $29.95 $39.95
Case For Model Pro 400 $49.95 $69.95

Standard Features - Models 92, 93, 94 & 95
DC/DAC VOLTMETERS
AC/DC CURRENT
OHM METER
FREQUENCY COUNTER (a kHz)
AUDIBLE CONTINUITY TESTER
DIODE TESTER
MAX/MIN AVERAGE MEMORY RECORD
RELATIVE MODE
10A HIGH-ENERGY FUSE PROTECTION
DATA HOLD
AUTO SLEEP & AUTO POWER OFF

Performance Plus
Model 92 $99.95
Model 93 $129.95
Model 94 $199.95

Protective Cases
For Models 100, 150, 200 $4.95 $9.95
Case For Model Pro 400 $9.95 $14.95

Kelvin Instruments
10 Hub Drive
Melville, NY
(800) 645-9212
(516) 756-1750

M/C & VISA
Established 1945

CIRCLE 186 ON FREE INFORMATION CARD

April 1992, Electronics Now
power for one year. To maintain the CMOS indefinitely, the computer must operate for at least 12 hours within a year.

Clovis Point guarantees its product for the life of your computer—when installed and used according to its instructions. The introductory price of the backup power source is $25. A “Y” adapter, needed if all your disk power cables are in use, is priced at an additional $5.

Clovis Point, 215 Main Street, Rochester, VT 05777; Phone: 802-767-9292.

SPECTRUM PROBE. A new oscilloscope probe can measure RF voltage, field strength, and current being received by or transmitted from electronic equipment. Smith Design’s 255 Spectrum Probe is intended primarily for detecting and correcting electromagnetic interference (EMI) in equipment such as computers with internal high-frequency generators.

The probe can safely read RF voltage or current (with a simple adapter) on the power line, useful for any manufacturer or builder trying to meet FCC and VDE EMI standards. The probe can estimate the field strength of emissions, and help in efforts to reduce them to obtain FCC compliance.

The probe is said to be able to “see” RF currents and voltages on a PC board without loading the circuit. It will also provide RF “signatures” of the board for further reference, and it can “sniff” out sources of EMI. The 255 can also check the high-frequency sections of infrared and ultrasonic equipment.

The probe has a frequency range of less than 30 kHz up to 2.5 MHz, a minimum dynamic display range of 60dB, and 10 picofarads input loading. The 255 Spectrum Probe is priced at $279.

Smith Design, 207 East Prospect, North Wales, PA 19454; Phone: 215-661-9107.

TWO-CHANNEL OSCILLOSCOPE. A new 20-MHz, dual-channel oscilloscope has been introduced by Leader Instruments. The Model 8020 has twelve ranges from 1 millivolt to 5 volts per division. Vertical accuracy is stated at 3%, and the scope can be calibrated from front-panel controls.

The Model 8020 offers single-lever selection of NORM-AUTO, X-Y sweep modes, and trigger coupling selections including TV horizontal and vertical sync separators. It has a trigger source switch that includes a VERT setting. Sweep speeds range from 0.5 microseconds to 0.5 seconds per division with a maximum speed of 50 nanoseconds per division with a times ten magnifier. Rear-panel jacks provide channel 1 output for frequency counters, and Z-axis (intensity) modulation.

The Model 8020 oscilloscope is priced at $595.

Leader Instruments Corporation, 380 Osfer Avenue, Hauppauge, NY 11788; Phone: 516-231-6900 in NY, or 800-645-5104.

HANDHELD LCR BRIDGE. A new handheld LCR bridge is said to be able to measure inductance from 0.1 microhenry to 2,000 henries, capacitance from 0.1 picofarad to 10,000 microfarads, and resistance from 0.1 ohm to 20 megohms. The Model 878 LCR Bridge from R+K Precision is intended for field-service or general applications. Basic accuracy of the bridge is stated at 0.7%.

A data-hold function freezes any displayed reading. A minimum/maximum/average function keeps track of the running average of readings, and records the highest and lowest values. The microprocessor-based bridge signals when it needs recalibration, and this can be done with a pushbutton switch. The LCD bridge has separate four- and three-digit liquid crystal displays with function annunciators. Other features include auto or manual ranging and battery operation. It can also be powered from the AC-to-DC adapter provided.

The Model 878 LCD bridge is priced at $275.

R+K Precision, 6470 West Cortland Street, Chicago, IL 60635; Phone: 312-889-9087; Fax: 312-794-9740.

POCKET-SIZED FREQUENCY COUNTER. Startek’s ATH-15 frequency counter is said to be able to count frequencies in the range of 1 MHz to 1.5 GHz. The counter has an eight-digit LED readout (0.3-inch), and a 10-segment red LED bargraph display. The bargraph displays relative signal-strength for signals from less than 1 MHz to more than 4 GHz. The counter’s sensitivity is stated as less than 1 millivolt over the range of 1 to 800 MHz, 0.3 millivolt at 150 MHz, and 0.5 millivolt at 450 MHz.

The ATH-15 has an auto and manual hold switch and indicator. Its indicators include BATTERY CHARGE, COUNT, and HOLD.” Auto trigger and hold with AUTO CLEAN DROPOUT are standard. The automatic clean dropout feature prevents the display of erroneous data from a partial reading.
Introducing Australia's Leading Electronics Magazine...

Silicon Chip, the most popular hobby electronics magazine south of the equator is written for you; if you are fascinated by building projects, increasing your understanding of theory, fixing consumer electronic products, and keeping up-to-date with world-wide trends within your electronics interests.

Silicon Chip, an Australian publication, is reprinted in the United States offering the best of selected articles suitable for North American readers.

Plan to become a reader of Silicon Chip.

Packaged in a specially prepared format guaranteed to excite the electronics hobbyist with new ideas, novel projects, extraordinary features and down-right good reading.

Inside Silicon Chip you will discover how the other side of our world—down under—approaches the same hobby interests as you do, with ramifications that will amaze you.

Detailed construction projects to appear in upcoming issues of Silicon Chip include:

- 4-Channel Guitar Mixer
- Adjustable 0-45V, 8A Power Supply
- Interphone Digital Telephone Exchange
- 1.5V to 9V DC Converter
- Multi-Sector Home Burglar Alarm
- 1-Megabyte Printer Buffer

Exciting and imaginative Features like:

- Understanding Computer Memory
- How to Interlink Musical Instruments
- What’s New in Oscilloscopes

If you are fascinated by electronics, especially the hobby aspects related to construction projects, theory, applications in home and shop, and latest developments, if you are compelled to experiment and “fix-it,” then Silicon Chip is your kind of magazine.

Silicon Chip is available exclusively by subscription. So take advantage of this great opportunity and start your Charter Subscription today.

If you are fascinated by electronics and want to stay up-to-date with the latest developments, you can become a Charter Subscriber. Enter your subscription as designated below.

You can either pay by check or credit card. For your convenience, if paying by credit card: To avoid any interruption in service, your subscription will be renewed automatically at 12-issue intervals, at the then prevailing introductory rate, until you advise us to cancel it.

Signature

For your convenience, if paying by credit card: To avoid any interruption in service, your subscription will be renewed automatically at 12-issue intervals, at the then prevailing introductory rate, until you advise us to cancel it.

Signature

Account No. Expiration Date

Offer valid in the U.S.A. and Canada only. No foreign Orders.

All orders payable in U.S.A. funds only. Allow 6-8 weeks for delivery.
Two ranges each offer three selectable gate times. The ATH-15 can read an input signal, display the frequency, and automatically switch to hold status in less than 80 milliseconds. The ATH-15 is powered by rechargeable nickel-cadmium batteries, providing three to five hours of operation. A battery charge indicator and an AC-to-DC adapter/charger are included.

The Model ATH-15 frequency counter is priced at $235.—Startek International Inc., 398 NE 38th Street, Ft. Lauderdale, FL 33334; Phone: 305-561-2211 or 800-638-8050 (for orders); Fax: 305-561-9133.

SPECTRUM DISPLAY MONITOR. A spectrum display monitor for panoramic signal display for VHF scanners and communications receivers such as the ICOM R-7000 has been introduced by Avcom of Virginia. The SDM-42A displays all signals present in the receiver’s IF on a 5-inch CRT, so the operator can monitor signal activity. This capability permits the operator to tune quickly to signals as they appear on the spectrum display.

The display monitor makes it easy to locate and tune intermittent signals as well as monitor a particular frequency band. The SDM-42A can monitor a satellite receiver’s intermediate frequencies and demodulate single-channel-per-carrier satellite signals (with optional demodulator circuitry). It can also function as a general-purpose spectrum analyzer for specific frequency ranges. With a scanner, the SDM-42A can be paired with Avcom’s PSA-65A spectrum analyzer to form a spectrum monitoring system.

The SDM-42A spectrum display monitor costs $1145.—Avcom of Virginia, Inc., 500 Southlake Blvd., Richmond, VA 23236; Phone: 804-794-2500; Fax: 804-794-8284.

Even At $39, The Blues Can Last A Long, Long Time.

Conventional wisdom says if you spend less than forty bucks on a probe, it won’t be long until the thrill is gone. But Duraprobes start at $39, live practically forever, and work with almost any scope around, so it won’t surprise us if you pick up a whole case.

For the name of your nearest Duraprobe distributor, call us at 1-800-426-2200. After all, some folks were just born to have the blues.

Tektronix
Now you don’t have to be enrolled at CIE to receive our introductory Electronic and Electricity Lesson Modules. This program is available for a limited time to non-students for the shockingly low price of only $99.50.

With CIE’s patented AUTO-PROGRAMMED method of learning you will quickly learn and then master the basics of electronics and electricity and then move on to... DC/AC circuit theories, fundamentals of bi-polar junction transistors (BJT), field effect transistors (FET), wiring, diagram and schematic readings, component identification, soldering techniques... and much, much, more. This introductory offer includes the first 39 lessons in CIE’s Associate in Applied Science in Electronic Engineering Technology Degree.

Your commitment to CIE ends with your payment, but CIE’s commitment to your success just begins when you receive your lessons, exams, binder and equipment. This special introductory price includes all the benefits and assistance CIE normally extends to its full time students. You’ll be entitled to unlimited access to CIE’s faculty and staff to assist you in your studies via a toll free 800 number six days a week, 24-hour turnaround on grading your submitted exams, CIE bookstore privileges, a patented learning method, reference library, access to CIE’s electronic bulletin board and a free issue of CIE’s school newspaper The Electron.

And best of all, when you decide to continue your electronics education in any of CIE’s programs you’ll receive full academic credit for successful lessons submitted and a $100.00 Tuition Credit Certificate.

All this knowledge and support will put you on the road to understanding digital electronics, automotive and industrial electronics, microprocessing principals, computer systems, telecommunications and much, much, more.
<table>
<thead>
<tr>
<th>ISBN</th>
<th>Price</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3258P</td>
<td>$19.95</td>
<td>This book offers up-to-date instructions for troubleshooting and repairing all major brands of equipment, with hundreds of diagrams, specs, and schematics. Covers TVs, VCRs, CD players, and much more. 310 pp.</td>
</tr>
<tr>
<td>3991</td>
<td>$39.95</td>
<td>Engineers and technicians will find full coverage of standard power supply sources. Covers new frequency devices including insulated-gate bipolar transistor (IGBT), mos-controlled thyristor (MCT). 464 pp., 365 illus.</td>
</tr>
<tr>
<td>9255-XXX</td>
<td>$105.00</td>
<td>“Outstanding, extensive reference to current technology of electronics. Covers everything from principles to applications.” —Computer Book Review 2,528 pp., 1,800 illus. Count as 3</td>
</tr>
<tr>
<td>003961</td>
<td>$19.95</td>
<td>Here’s your guide to basic electrical measurements, component measurements, system tests, and performance verification. Most of the methods and procedures you’ll find here use available off-the-shelf test equipment. 224 pp., 180 illus.</td>
</tr>
<tr>
<td>3138-XX</td>
<td>$60.00</td>
<td>A GIANT “Circuit Book” of over 700 of the most widely-used, state-of-the-art electronic and integrated circuits ever compiled in a single source! The perfect sourcebook for all levels of electronics practitioners. 738 pp. Count as 2</td>
</tr>
<tr>
<td>012739-XX</td>
<td>$26.95</td>
<td>From the design, layout, and specification guidelines to material properties, this convenient manual contains authoritative coverage of all aspects of printed circuits engineering. 256 pp., Illus. Softcover Count as 2</td>
</tr>
<tr>
<td>9244P</td>
<td>$18.95</td>
<td>Written in a “cookbook” format, this source offers all the guidance you need to understand and use CMOS devices. It is both a comprehensive, industry-wide reference, and a valuable collection of project ideas. 512 pp., Illus. Softcover</td>
</tr>
<tr>
<td>1938-XX</td>
<td>$60.00</td>
<td>For quick-reference and on-the-job use, this sourcebook puts over 1,300 state-of-the-art designs at your fingertips. From A (alarm circuits) to Z (zero crossing detector circuits) this compendium excels in content, scope, and design. 768 pp. Count as 2</td>
</tr>
<tr>
<td>2672</td>
<td>$49.50</td>
<td>This “one-stop” sourcebook bridges the gap between data books and the designer’s search for the right component. Covers how linear ICs are fabricated, how they work, what types are available, and techniques for designing. 624 pp.</td>
</tr>
<tr>
<td>3589</td>
<td>$27.95</td>
<td>A practical toolbox reference for anyone in the electronics field. Phagan guides you through the practical calculations needed to design and troubleshoot circuits and components. 352 pp., 270 illus.</td>
</tr>
<tr>
<td>3540</td>
<td>$26.95</td>
<td>This guide brings you up-to-date on today’s most advanced power supply circuits, components, and measurement procedures. Covers switching rates up to 3-MHz and higher as well as the 20-kHz standard. 176 pp.</td>
</tr>
<tr>
<td>3710</td>
<td>$32.95</td>
<td>Understand the basics of receiver operation, the proper use and repair components in RF circuits, and principles of radio signal propagation from low frequencies to microwave. 416 pp., 411 illus.</td>
</tr>
<tr>
<td>004196</td>
<td>$47.95</td>
<td>Get concise information on all the major materials used for electrical engineering applications. This guide covers a full spectrum of conductor, magnetic, insulating, and structural materials. 320 pp., Illus.</td>
</tr>
<tr>
<td>011322-XX</td>
<td>$43.95</td>
<td>Get an inside look at the world of electrical engineering. Basic concepts are covered before moving on to more advanced topics—allowing you to master critical analysis techniques and other basic skills early in the book. 790 pp., Illus. Softcover Count as 2</td>
</tr>
</tbody>
</table>
Your source for quality, affordable and timely authoritative engineering books.

As a member of the Electronics Engineers' Book Club...

... you'll enjoy receiving Club bulletins every 3-4 weeks containing exciting offers on the latest books in the field at savings of up to 50% off of regular publishers' prices. If you want the Main Selection do nothing and it will be shipped automatically. If you want another book, or if no book at all, simply return a reply form to us by the date specified. You'll have at least 10 days to decide. And you'll be eligible for FREE books through the NEW Bonus Book Program. Your only obligation is to purchase 3 more books during the next 2 years, after which you may cancel your membership at any time.

YES! Please rush me the book(s) indicated below for just $9.95 plus shipping/handling & applicable sales tax. Enroll me as a member of the Electronics Engineers' Book Club according to the terms outlined in this ad. If not satisfied, I may return the book(s) within 10 days without obligation and my membership will be cancelled.

If you select a book that counts as 2 choices, write the book number in one box and XX in the next. If you select a Counts as 3 choice, write the book number in one box and XXX in the next 2 boxes.

Name ____________________________
Address _____________________________
City/State _____________________________
Zip ________ Phone ____________

Offer valid for new members only, subject to acceptance by EEBC. Canada must remit in U.S. funds drawn on U.S. banks. Applicants outside the U.S. and Canada will receive special ordering instructions. A shipping/handling charge & sales tax will be added to all orders.

DRE493

April 1993, Electronics Now

www.americanradiohistory.com
Fantastic Electronics: Build Your Own Negative-Ion Generator and Other Projects; by John Iovine. TAB Books, Division of McGraw-Hill Inc., Blue Ridge Summit, PA 17294-0850; Phone: 1-800-822-8138; $17.95.

Electronic hobbyists whose interests include all aspects of science, and particularly the technologies of the future, will enjoy building the projects presented in Iovine's book.

The subjects of the 23 projects and experiments presented in the book include lasers, holography, Kirlian photography, alternate energy sources, and even genetics. Included are a biofeedback/lie-detector, an ELF monitor, a Geiger counter, a magneto-hydrodynamic (MHD) generator, and an air-pollution monitor. As if that were not enough you'll find projects on an expansion-cloud chamber, a pinhole camera, and a laser power supply for holography. Experiments show how synthetic gas and oil are made from coal, and how energy is generated from plants.

Each project has been designed and thoroughly tested by the author, and each chapter includes background references and historical information on the technology being explored.

The ECG Relays and Accessories CompuCross Cross Reference Program.

CIRCLE 24 ON FREE INFORMATION CARD

CIRCLE 25 ON FREE INFORMATION CARD

NEW LIT

Use The Free Information Card for fast response.

ONLy $9.95

TTL-CMOS BONANZA

The Biggest Budget Buy an Experimenter, Circuit Designer, or Engineer would want!

5 compact pocket guides provide a comprehensive listing of all commonly used TTL and CMOS integrated circuits. All current families including: Standard, Low Power, Schottky, Low Power Schottky, Advanced Schottky, Advanced Low Power Schottky, High Speed and Fast Schottky, and all the commonly used CMOS devices.

They're easy to use! Each page describes one component only and is divided into eight parts, which offer the following: 1—The device's schematic diagram. 2—Logic description. 3—Data on the chip's operational characteristics such as signal levels, etc. 4—Major applications. 5—Summary of essential data. 6—Table of TTL families in which the component is available. 7—Device common name. 8—Type reference number highlighted at the bottom of page for rapid and easy reference.

ORDER THE COMPLETE SET TODAY!

Each Book is $9.95

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TTL Pocket Guide 7400-74200, Volume 1</td>
<td>$9.95</td>
</tr>
<tr>
<td>TTL Pocket Guide 74201-74640, Volume 2</td>
<td>$9.95</td>
</tr>
<tr>
<td>TTL Pocket Guide 74641-7430640, Volume 3</td>
<td>$9.95</td>
</tr>
<tr>
<td>CMOS Pocket Guide Standard Components, Volume 1</td>
<td>$9.95</td>
</tr>
<tr>
<td>CMOS Pocket Guide Special Components, Volume 2</td>
<td>$9.95</td>
</tr>
</tbody>
</table>

Shipping Charges

<table>
<thead>
<tr>
<th>Amount</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under $10.00</td>
<td>$2.50</td>
</tr>
<tr>
<td>$10.00 to $20.00</td>
<td>$3.50</td>
</tr>
<tr>
<td>$20.01 to $30.00</td>
<td>$4.50</td>
</tr>
<tr>
<td>$30.01 to $40.00</td>
<td>$5.50</td>
</tr>
<tr>
<td>$40.01 to $50.00</td>
<td>$6.50</td>
</tr>
<tr>
<td>Over $50.00</td>
<td>$8.00</td>
</tr>
</tbody>
</table>

Number of books ordered

- Total prices of books
- Shipping (See Chart)
- Sales Tax (NY Only)
- Total Amount

ALL PAYMENTS MUST BE IN U.S. FUNDS
ELENCO OSCILLOSCOPES

S-1325 25MHz $349
Dual Trace Oscilloscope

S-1340 40MHz $495
Dual Trace Oscilloscope

S-1360 60MHz Dual Trace, Delayed Sweep $775

- Automatic beam finder
- Built-in component tester
- 1mV sensitivity
- Dual time base

DIGITAL Capacitance Meter
CM-1550B $58.95
9 Ranges
1pF-20,000uF
5% basic accy.
Zero Control w/ Case
Big 1" Display

Digital LCR Meter
LC-1801 $125

- Measures: Coils 1uH-200uH
- Caps 1pF-200pF
- Resistors 01-20M

1.0GHz PORTABLE SPECTRUM ANALYZER
Model 2610 $2,595.95

- AC/DC operation (battery included)
- 70dB dynamic range
- Resolution bandwidth of 10kHz
- 50Hz and 75Hz input impedance (switch selectable)
- Fixed bandwidth setting for viewing TV signals
- Field calibratable with internally generated 100MHz, 80dB signal

FLUKE MULTIMETERS

SCOPEMETERS

- Model 93 $1,225.00
- Model 95 $1,549.00
- Model 97 $1,795.00
- Model 10 $62.95
- Model 12 $79.95

AM/FM TRANSISTOR RADIO KIT

Model AMFM 108 $27.95
14 Transistors + 5 Diodes Makes a great school project

Hitachi Compact Series Scopes

- V-212 - 20MHz Dual Trace $490
- V-525 - 50MHz, Cursors $975
- V-523 - 50MHz, Delayed Sweep $949
- V-522 - 50MHz, DT Offset $849
- V-422 - 40MHz, DT Offset $749
- V-322 - 20MHz, DT Offset $625
- V-660 - 60MHz, Dual Trace $1,095
- V-665A - 60MHz, DT, w/cursor $1,325
- V-1060 - 100MHz, Dual Trace $1,375
- V-1065A - 100MHz, DT, w/cursor $1,649
- V-1085 - 100MHz, QT, w/cursor $1,995
- V-1100A - 100MHz, Quad Trace $2,195
- V-1150 - 150MHz, Quad Trace $2,695

Hitachi RSO Series

- RSO's feature: roll mode, averaging, save memory, smoothing, interpolation, pretriggering, cursor measurements.
- VC-6023 - 20MHz, 20MS/s $1,650
- VC-6024 - 50MHz, 20MS/s $1,950
- VC-6025A - 50MHz, 20MS/s $2,350
- VC-6045A - 100MHz, 40MS/s Call
- VC-6145 - 100MHz, 100MS/s Call

48 HOUR SHIPPING

ELENCO & HITACHI & B+P PRODUCTS AT DISCOUNT PRICES

B+K OSCILLOSCOPES

- 2120 - 20MHz Dual Trace $395
- 2125 - 20MHz Delayed Sweep $539
- 1541B - 40MHz Dual Trace $749
- 2160 - 60MHz Dual Trace, Delayed Sweep, Dual Time Base $949
- 2190 - 100MHz Three Trace Dual Time Base, Delayed Sweep $1,395
- 2522 - 20MHz / 10MS/s Storage $895
- 1442 - 20MHz Portable $1,229
- 1443 - 40MHz Battery / AC operated with Cursor & Readouts $1,439

XK-500 Digital / Analog Trainer

A complete mini-lab for building, testing, prototyping analog and digital circuits. Elenco's Digital/Analog Trainer is specially designed for school projects, with 5 built-in power supplies. Includes a function generator with continuously variable, sine, triangular, square wave forms. All power supplies are regulated and protected against shorts.

Power Supplies

- Variable Power Supply
- +1.25 to 20VDC @ 5 Amp (+1.25 to 15VDC @ 1 Amp)
- +1.25 to 20VDC @ 5 Amp (+1.25 to 15VDC @ 1 Amp)
- +12VDC @ 1 Amp
- 30VAC Center-tapped @ 15VAC @ 1 Amp

Analogue - Section

- Function Generator Sine, Triangle, Square wave forms
- Frequency adjustable in five ranges from 1 to 100KHz
- Fine frequency adjust
- Amplitude adjust
- DC offset
- Frequency Meter

Digital - Section

- Eight data switches
- Two no bounce log switches
- LED readouts TTL buffered
- Clock frequency 1 to 10KHz
- Clock amplitude 5VPP square wave

Breadboards

2 breadboards, each contain: 440 1x0 pins (total 880)

$159.95 Assembled
$129.95 Kit

15 DAY MONEY BACK GUARANTEE

FULL FACTORY WARRANTY

WRITE FOR FREE CATALOG

PRICES SUBJECT TO CHANGE

www.americanradiohistory.com

CIRCLE 100 ON FREE INFORMATION CARD

48 Hour Shipping

TO ORDER

CALL TOLL FREE

1-800-292-7711

1-800-445-3201 (Can.)

WE WILL NOT BE UNDERSOLD

UPS SHIP: 48 STATES 5%
IL RES 7.5% TAX (53 min $10 max)
PROBES INCL. ALL SCOPES & METERS

C&S SALES INC.
1245 ROSEWOOD, DEERFIELD, IL 60015
FAX: 708-520-0085 • (708) 541-0710

April 1983, Electronics Now
ries Catalog. Listed are designations for replacements of many different electromechanical relays. Among them are relays with specialized magnetic contacts as well as solid-state, reed, DIP, time-delay, and programmable relays. There are also references to electronic timers and standard and in-line input/output modules.

The expanded ECG cross-reference gives readers access to a database of more than 39,500 industry part numbers. They are cross-referenced to over 530 ECG relays and accessories. The CompuCross program displays a description of the relay, including style, and all pertinent specifications data such as input voltage, contact arrangement, and current rating. A list of manufacturers of the relays that can be replaced is included.

CompuCross requires 512K of RAM, a hard drive, and a 3 1/2- or 5 1/4-inch floppy drive. The program is available on two standard-density or a single high-density 5 1/4-inch disk, or on a single standard-density 3 1/2-inch disk.

The Television Gray Market; by Henry L. Eisenson. Index Publishing Group, 6755 Mission Gorge Road, Suite 6, San Diego, CA 92120; Phone: 619-281-2957; $23.75.

An electronic underworld is stealing billions of dollars worth of television programs from satellites, cables, and videotapes. It is also violating state anti-pollution laws. Ironically, the vendors of the equipment or devices needed to steal these services, and in other ways violate the law are legitimate manufacturers. They include manufacturers and distributors of cable descramblers, descrambling ICs, and scanners that can be easily modified for eavesdropping on private conversations over cordless and even cellular telephones.

Other topics include a discussion of an industry that replaces original equipment automotive microcontrollers that meet the legal requirements of the states in which they are sold with modified versions that boost car performance by disregarding anti-pollution laws. And you can read about readily available surveillance “bugs” and cameras that you can buy retail or from mail-order houses.

They’re all perfectly legal—as long as you don’t use them. The “gray market” flourishes because no laws prohibit the manufacture, sales, distribution or purchase of those devices or products. Eisenson's book explores the gray market, describes legal issues, industry countermeasures, scrambling and descrambling methods, and the way certain equipment is modified illegally.

The author quotes members of the gray market and their customers. He also includes discussions with law-enforcement agencies. Appendices include a description of the television spectrum with call letters for TV channels, and a comprehensive listing of gray-market vendors.

Aliasing Errors in A/D Converters. Alligator Technologies, 17150 Newhope Street, Suite 114, P.O. Box 9706, Fountain Valley, CA 92728-9706; Phone: 714-850-9984; Fax: 714-850-9987; free.

These application notes summarize the causes of aliasing errors for engineers and scientists who sample data with analog-to-digital converters. They explain how to select the best filter for each application. The notes also describe Alligator Technologies' products—a front-end, low-pass filter board, the AAF-1.

Other topics covered include choosing the correct filter, setting and calibrating AAF-1 cut-off frequencies, using AAF-1 daughter boards in non-AAF-1 systems, and distinguishing between the six types of grounds and associated power sources. The subjects of the notes are:

- AP-301, Aliasing Errors in A/D Converters, describes the phenomenon of aliasing and explains the theory behind anti-alias filters and the benefits of using such filters.
- Note AP-302, AAF-1 Filter Selection, describes five switched capacitor filters available for the AAF-1 system.
- AP-303, Setting and Calibrating AAF-1 Cutoff Frequencies, explains how to use a built-in or external frequency clock source, with the AAF-1 and how to select the frequency range and how to measure the corner frequency.

Illustrations and step-by-step lessons teach you how to set up an efficient MIDI system. The basic MIDI components and functions are explained, and there is detailed coverage of subjects such as production techniques, synchronization, combining MIDI and sync-pulse timing, and the art of sequencing.

The MIDI Manual, by David Miles Huber. Sams, Division of Macmillan Computer Publishing, 11711 North College, Carmel, IN 46032; Phone: 800-428-5331 or 317-573-2500; Fax: 800-448-3804 or 317-573-2655; $24.95.

This all-around guide to MIDI technology explains how you can improve your techniques for recording music and your performance with MIDI. It describes the industry’s leading products, and explains how to integrate them with the IBM PC, as well as Macintosh, and Atari computers.
GET YOUR RECHARGE CATALOG FREE...EARN BIG $$ IN YOUR SPARE TIME—All supplies and Do-It-Yourself kits with complete instructions available. Supplies cost from $9.95 in qty and you can sell recharged toner cartridges for $40.00 to $55.00 each. Printers include HP LaserJet Series I, II, III, IV, Apple LaserWriter, QMS, etc. Canon PC Copiers also. CHENESKO PRODUCTS, 2221 Fifth Ave., Suite #4, Ronkonkoma, NY 11779, 516-467-3205. FAX 516-467-3223, 1-800-221-3516

CALL NOW AND RESERVE YOUR SPACE

- 6 x rate $94.00 per each insertion.
- Fast reader service cycle.
- Short lead time for the placement of ads.
- We typeset and layout the ad at no additional charge.

Call 516-293-3000 to reserve space. Ask for Arline Fishman. Limited number of pages available. Mail materials to: mini-ADS, ELECTRONICS NOW, 500-B Bi-County Blvd., Farmingdale, NY 11735.

FAX: 516-293-3115

CABLE TV 50dB NOTCH FILTERS for interference removal or channel censoring. Filters are user-adjustable to desired channel # or frequency. Eight Models available, each for certain channels: 2 & 3; 4 to 6; 7 to 13; 14 to 17; 18 to 22; 23 to 29; 30 to 36; 95 to 99 plus 0 & 1. Just $30 each or 3 for $75, includes shipping. ONE MONTH MONEY BACK, fast delivery. Visa, MC, check or M.O. (C.O.D. is $5 extra) Huge discounts for higher quantities. STAR CIRCUITS, P.O. Box 94917, Las Vegas, NV 89193. Call 24 hours 1-800-535-7827.

POMONA ELECTRONICS ELECTRONIC TEST ACCESSORY CATALOG—Pomona Electronics new 142-page 1993/1994 Catalog of Electronic Test Accessories introduces several new individual DMM test accessory products and an expanded line of oscilloscope probe kits including an active differential probe kit. The all new catalog also introduces a helpful guide to offer accurate SMT test clip selection for new low-profile, fine-pitch packages such as SQFP, SSOP and PQFP styles and safety-designed products. ITT POMONA ELECTRONICS, 1500 E. Ninth Street, P.O. Box 2767, Pomona, CA 91769, Telephone: 714-469-2900, Fax: 714-629-3317.

CABLE TV 50dB NOTCH FILTERS for interference removal or channel censoring. Filters are user-adjustable to desired channel # or frequency. Eight Models available, each for certain channels: 2 & 3; 4 to 6; 7 to 13; 14 to 17; 18 to 22; 23 to 29; 30 to 36; 95 to 99 plus 0 & 1. Just $30 each or 3 for $75, includes shipping. ONE MONTH MONEY BACK, fast delivery. Visa, MC, check or M.O. (C.O.D. is $5 extra) Huge discounts for higher quantities. STAR CIRCUITS, P.O. Box 94917, Las Vegas, NV 89193. Call 24 hours 1-800-535-7827.

WORLD'S SMALLEST FM TRANSMITTERS! New Surface Mount Technology (SMT) makes all others obsoilet! XST500 Transmitter—powerful 3 transistor audio amplifier, transmits whispers up to 1 mile. XSP250 Telephone Transmitter—line powered, transmits conversations up to 1/4 mile. Both tune 88-108 MHz. Easy to assemble E-Z KITS (SMT components pre-assembled to circuit board) XST500—$39.95, XSP250—$29.95, VISA/MC, COD add $5. XANDI ELECTRONICS, 201 E. Southern Ave., Suite 111, Tempe, AZ 85282. 1-800-336-7389.

CABLE TV 50dB NOTCH FILTERS for interference removal or channel censoring. Filters are user-adjustable to desired channel # or frequency. Eight Models available, each for certain channels: 2 & 3; 4 to 6; 7 to 13; 14 to 17; 18 to 22; 23 to 29; 30 to 36; 95 to 99 plus 0 & 1. Just $30 each or 3 for $75, includes shipping. ONE MONTH MONEY BACK, fast delivery. Visa, MC, check or M.O. (C.O.D. is $5 extra) Huge discounts for higher quantities. STAR CIRCUITS, P.O. Box 94917, Las Vegas, NV 89193. Call 24 hours 1-800-535-7827.
THE PARTS PLACE

TECHLINE™ Tools—The new standard in strength and precision!

- Precision-crafted with top-quality materials
- Designed for long life and ease of use
- Backed by Radio Shack's 1-Year Limited Warranty

New TECHLINE tools represent Radio Shack’s uncompromising dedication to quality. Each is precision-crafted of long-lasting, hard-working materials and employs the latest design innovations for comfort and ease of use. And, each is backed by our full 1-year limited warranty.

Portable Power Inverter. For camping, fishing, emergencies. Converts car/boat 12VDC to 115VAC for powering a TV, VCR, light or tool. Compact and efficient. Rated 140W continuous. #22-132 99.99

TECHLINE Swiss Army Knife. Tool kit for your pocket! You'll be prepared with a large blade, Phillips and slot screwdrivers, wire stripper, cutter, pliers, opener, tweezers and toothpick. #64-2001 29.95

Hi-Current Car DC Adapter. Plugs into vehicle lighter socket. Provides 6, 9 or 12VDC. With four Adapta plugs. #270-1562 15.95

Getting Started in Electronics. A great hands-on introduction to building your own electronic circuits. #276-5003 2.99

Anti-Static Spray. By STATX® brands. New high-tech cleaner and protector repels dust—cleans without scratching. #64-3310 3.99

Mini Audio Amp With Built-in Speaker. Many uses—test amp, signal tracer, phone amp and amplified PC speaker. #277-1008 11.95

Bench-Top Soldering Iron Holder/Cleaner. Safe way to hold hot iron while working. Sponge tip cleaner. #64-2078 6.49

Speedy service and low prices on thousands of parts and accessories!

- FREE delivery to Radio Shack on orders $5 and up
- Semiconductors and ICs
- Hard-to-find batteries
- CB and scanner crystals
- Long-life vacuum tubes
- Phono cartridges/stylis
- SAMS® service books

Why pay more for mail-order? Your Radio Shack stocks 1000 electronic components, and another 15,000 are available fast from our special-order warehouse. Ordering is easy! Bring in the exact part number (or old part). We’ll check availability and order by phone. Delivery time to your nearby Radio Shack for most items is a week.

Radio Shack® SINCE 1921

AMERICA'S TECHNOLOGY STORE™

CIRCLE 78 ON FREE INFORMATION CARD
BUILD THE AFG II

TOD T. TEMPLIN

WAY BACK IN JANUARY 1990, WE PUBLISHED PLANS DESCRIBING THE CONSTRUCTION OF THE ACOUSTIC FIELD GENERATOR. THAT CIRCUIT, THE AFG FOR SHORT, WILL RECOVER NATURAL AMBIENCE AND REFLECTIONS HIDDEN WITHIN ANY STEREO AUDIO SIGNAL. IN OTHER WORDS, IT WILL RECONSTRUCT A THREE-DIMENSIONAL ACoustIC FIELD BY REPRODUCING BOTH DIRECT AND DELAYED INDIRECT SOUND WAVES THROUGH A SET OF FOUR SPEAKERS SURROUNDING THE LISTENER. THE AFG CAN ALSO DECODE SPECIALLY ENCODED SURROUND SOUND MATERIAL, AND THUS WAS INTENDED PRIMARILY FOR USE IN A HOME THEATER SYSTEM.

Many builders of the AFG where so impressed with it that they requested information on how to modify the circuit to operate from a 12-volt power supply for use in their automobiles. It seems that a good number of audiophiles are looking for a circuit to enhance the acoustic properties of their automotive sound systems.

The circuitry of the original AFG included a bipolar power supply and was not readily adaptable to 12-volt operation. For that reason, an entirely new circuit, the AFG II, has been designed for use in a car. However, the AFG II can also be powered from a 12-volt DC wall transformer, and can therefore become part of any audio system.

Description

The AFG II is a true stereo circuit. It's designed to be placed in the line-level signal path of your car's audio system between the output of the receiver and the input of the equalizer or power amplifier, which drives the rear speakers of your vehicle. Figure 1 is a block diagram of a typical system. The AFG II uses a pair of bucket-brigade devices to delay the sound that is fed to the rear speakers. The delay (in relation to the front speakers) can be adjusted from about 5 to 35 milliseconds. A feedback control adds variable reverberation (echo) to the delayed signals.

In addition to its simple delay mode, the AFG II has a differential mode in which it decodes any surround-sound or ambience signals present. Volume and reverberation level are controlled by an electronic volume control IC. As in the original AFG, an electronic crossover is provided to drive an external power amplifier for a subwoofer system.

The entire unit is built on a single-sided 4- by 5-inch PC board with all controls and input/output jacks mounted on it. The completed PC board slides into an attractive commercial enclosure, so the finished project is quite compact, looks professional, and is easily mounted in most vehicles.

Circuitry

Figure 2 shows a block diagram of the AFG II circuit. Note that the circuit consists of two identical audio channels which share a common power supply and bucket-brigade clock generator. Next refer to the schematic
FIG. 1—THE AFG II IS DESIGNED to be placed in the line-level signal path of your car’s audio system between the outputs of the receiver and the inputs of the equalizer or power amplifier, which drives the rear speakers.

FIG. 2—AFG II BLOCK DIAGRAM. The circuit consists of two identical audio channels that share a common power supply and bucket brigade clock generator.

diagram shown in Fig. 3. An input buffer amplifier is made up of IC1-a and IC1-d. With SURROUND SELECT switch S1 open, IC1-a and -d act as simple inverting amplifiers, and have no effect on the input signal other than providing some gain and a low source impedance for driving the filter section of the following stage.

When S1 is closed, each op-amp becomes a differential amplifier because its non-inverting input is cross-connected, via R3-C6 and R4-C5, to the opposite audio channel of its inverting input. When operating in the differential mode, any audio information that is common to both channels (i.e., mono) is canceled from the output. Only the difference component (L - R and R - L) of the original signal remains. Operating the input amplifier stage in the differential mode decodes any ambience or surround information present in the incoming signal. Trimmers R73 and R74 provide a means for adjusting the overall circuit gain, thus compensating for the varying source signal levels of different components likely to be used with the AFG II.

When op-amps are operated from a single-ended power supply, their non-inverting inputs
should be biased at the same DC voltage as the inverting inputs; usually one half the supply voltage. To satisfy that requirement in our circuit, resistors R21 and R22 form a fixed voltage divider. Because the resistors have equal value, the divider splits the supply voltage in half. Capacitor C17 acts as a filter and ensures that no audio signal or noise is coupled to the non-inverting inputs of the op-amps. All of the op-amps in the entire circuit are biased in this manner. Op-amps IC1-b and IC1-c form a pair of anti-aliasing filters for the delay section (see Fig. 4).

The heart of the AFG II delay section consists of a pair of Panasoninc MN3008 2048-stage analog bucket-brigade devices, or BBD (one for each channel), and a shared MN3101 two-phase variable-frequency clock-pulse generator. Each element in the BBD is one of 2048 series-connected stages. Each stage consists of a small capacitor that stores an electric charge, and a tetrode transistor switches that charge from one capacitor to the next. Consider each of the 2048 capacitors to be a bucket in a fireman's brigade. A signal presented at the input to the BBD is transferred down the line of capacitors in the same manner in which firemen in a bucket brigade transfer a pail of water from one man to the next. The speed at which the signal is transferred down the line of buckets is controlled by the frequency of the clock signal applied. The more slowly the clock runs, the longer it takes for the signal to travel through the circuit and reach the far end.

When using delay lines, one must contend with a nasty property known as "aliasing." In this case, aliasing means "false signal." When the frequency of a signal applied to the input of a BBD is allowed to become higher (i.e., shorter) than one half of the clock pulse frequency, the sample time duration becomes longer than the actual frequency being sampled. Put another way, the amplitude of that high-frequency signal has a value that changes during the sample time; thus the value stored in the capacitor is not an accurate representation of that instant in time, and the output of the BBD is not "true." To avoid aliasing and the resulting distortion, a low-pass filter is placed ahead of the BBD to limit the input-signal frequency to one half or less of the lowest clock frequency used. The low-pass filter used for this purpose is referred to as an anti-aliasing filter.

Another property of BBD's is that clock phase one drives all of the odd number stages, and clock phase two drives the even number stages. When the signal reaches the end of the line, the output of the last odd stage must be combined with the output of the last even stage to

FIG. 3—WITH SWITCH S1 OPEN, IC1-a and IC1-d act as simple inverting amplifiers. With S1 closed, each op-amp becomes a differential amplifier because its non-inverting input is cross-connected to the opposite audio channel of its inverting input. The differential mode "decodes" any ambience or surround information.
properly reconstruct the input signal. The purpose for doing that is to cancel the clock signal from the audio signal at the BBD output. In practice, a post-BBD low-pass filter with a very sharp cutoff frequency further reduces any clock component in the recovered audio signal.

The delay time available from a BBD is equal to the number of stages divided by twice the clock frequency. Using Panasonic's data for the MN3101 clock generator IC, values were calculated for the frequency-determining components (R41, R42, C55, and R77) to produce a clock frequency, adjustable by R77, which ranges from approximately 145 kHz to 40 kHz. That produces a corresponding delay time ranging from about 5 to 30 milliseconds—more than enough to recreate the ambience of a large concert hall.

The BBD is rated by the manufacturer to have an upper frequency response limit of 10 kHz and a signal-to-noise ratio of 55 dB at a clock frequency of 40 kHz. (Note that the S/N ratio of a BBD improves as the clock frequency rises.) Actual testing of the device has proven that it will work slightly beyond 12 kHz. In the AFG II, the anti-aliasing low-pass filter (LPF) and post-BBD LPF were designed to obtain the maximum performance available from the BBD.

Returning to the circuit diagram Fig. 4, IC1-b and IC1-c form the anti-aliasing, low-pass BBD input filter. Although basically a second-order filter, component values have been selected to obtain a response curve which rises smoothly from 0 dB at 1 kHz until it peaks at about +5 dB at 10 kHz. The response then falls back to 0 dB at 14 kHz, and continues to drop at about 6 dB per octave. In Fig. 4, IC5-a and IC5-b form the post-BBD low-pass filter. Component values for this third-order Butterworth filter have been selected to produce a response curve nearly opposite that of the input filter circuit. This method of high-frequency pre-emphasis followed by de-emphasis of the audio signal passing through the BBD results in an improved signal-to-noise ratio for the delay section of about 5 dB. The actual measured frequency response of the entire AFG II from input to output varies no more than 1 dB from 20 Hz to 10 kHz. The -3 dB point is 12 kHz, and response beyond 12 kHz drops at more than 36 dB per octave.

The next section, shown in Fig. 5, is the volume and reverbation control stage. A TDA1074 two-section dual-ganged electronic volume control, or EVC (IC6), eliminates the need for an expensive dual-ganged potentiometers, as well as all the wires required to hook them up. Instead, a single control voltage applied to the control input of the EVC simultaneously adjusts the gain of a matched pair of amplifiers. The range of adjustment available is from infinite attenuation to unity gain. The volume control (R78) adjusts the level of the signal being sent to the final output filter stage. The reverb control (R79) adjusts the level of

FIG. 4—THE AFG II DELAY SECTION consists of a pair of Panasonic MN3008 2048-stage analog bucket-brigade devices and a shared MN3101 two-phase variable-frequency, clock-pulse generator.
FIG. 5—A TDA1074 ELECTRONIC VOLUME CONTROL simultaneously adjusts the gain of a matched pair of amplifiers (IC7-a and -b). The volume control (R78) adjusts the level of the signal being sent to the final output filter stage, and the reverberation control (R79) adjusts the level of the delayed signal being added back to the input.

The delayed signal being fed back to IC1-b and IC1-c where it is added back to the input signal to produce the reverberation effect. Components R17, R19, and C13, and R18, R20, and C14 form a pair of first-order LPF's to prevent ringing and match levels of the feedback signal. The output stage, IC7-a and IC7-b, is another pair of third-order LPF's with a corner frequency of 14 kHz. They provide for additional reduction of clock noise from the output signal as well as providing a low output-source impedance.

The other half of IC7 (IC7-c and IC7-d) forms an active crossover network for driving a subwoofer system: IC7-c sums the left and right channel inputs, inverts the summed signals by 180°, and provides a low driving impedance for the following low-pass filter stage (see Fig. 6). Potentiometer R76 adjusts the gain of this stage from unity to 3 times unity value. Op-amp IC7-d and its associated

FIG. 6—AN ACTIVE CROSSOVER NETWORK for driving a subwoofer system is formed by IC7-c and -d. Potentiometer R76 adjusts the gain of this stage.
RC network form an 80-Hz third-order low-pass filter. Because the filter inverts the signal another 180 degrees, the signal that appears at the output is back in phase with the signals at the inputs to the AFG II.

Finally, a brief word about the power supply. Rectifier D1, although unnecessary when operating the AFG II from an automotive DC electrical system, has been included in the circuit to serve as a protective device; it will protect about 350 worth of IC's if you should accidentally connect the unit to a car's electrical system with the polarity reversed. The AFG II can be powered from any source capable of supplying 14 to 18 volts of noise-free DC. A small, well-filtered DC wall transformer is all that's required to bench test the AFG II, or adapt it

FIG. 7—ABOUT 150 COMPONENTS mount on the AFG II board. Don't forget to install the six jumpers, marked "J," where indicated.

PARTS LIST

<table>
<thead>
<tr>
<th>Resistors</th>
<th>Capacitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>All resistors are 1/4-watt, 5%.</td>
<td>C1-C4, C18, C23, C24, C31, C32, C45, C46—2.2 µF, 50 volts, radial electrolytic</td>
</tr>
<tr>
<td>R1—R4, R13, R14, R25, R26, R41, R53—R58, R67—R69—10,000 ohms</td>
<td>C5, C6—4700 pF, 50 volts, Mylar or metal film, 5%</td>
</tr>
<tr>
<td>R5—R8, R33, R34, R43, R44—100,000 ohms</td>
<td>C7, C8, C15, C16, C35-C38—2.2 µF, 63 volts, axial electrolytic</td>
</tr>
<tr>
<td>R9, R10, R17, R18, R23, R24, R35—R40, R47, R48, R70—47,000 ohms</td>
<td>C9, C10, C13, C14—3900 pF, 50 volts, Mylar or metal film, 5%</td>
</tr>
<tr>
<td>R11, R12, R15, R16, R19, R20, R42, R59, R60, R71—20,000 ohms</td>
<td>C11, C12, C43, C44—220 pF, ceramic disc, 5%</td>
</tr>
<tr>
<td>R21, R22, R45, R46, R49—R52, R72—1000 ohms</td>
<td>C17, C19, C20—C22, C33, C48, C52, C54—10 µF, 35 volts, radial electrolytic</td>
</tr>
<tr>
<td>R27, R28, R61—R66—100 ohms</td>
<td>C25, C26—560 pF, ceramic disc, 5%</td>
</tr>
<tr>
<td>R29—R32—5600 ohms</td>
<td>C27, C28—470 pF, ceramic disc</td>
</tr>
<tr>
<td>R73, R74—1000 ohms, horizontal PC-mount trimmer potentiometer</td>
<td>C29, C30—47 pF, ceramic disc, 5%</td>
</tr>
<tr>
<td>R75—10,000 ohms, horizontal PC-mount trimmer potentiometer</td>
<td>C34—100 µF, 16 volts, radial electrolytic</td>
</tr>
<tr>
<td>R76—100,000 ohms, horizontal PC-mount trimmer potentiometer</td>
<td>C39, C40—2700 pF, 50 volts, Mylar or metal film, 5%</td>
</tr>
<tr>
<td>R77, R78, R79—50,000 ohms, PC-mount potentiometer</td>
<td></td>
</tr>
</tbody>
</table>
Construction
The AFG II is built entirely on one single-sided PC board. To make construction as easy and fast as possible, all of the components, including the input and output jacks, are mounted directly on the circuit board. Only the SURROUND SELECT switch and the power LED are mounted off the board; they are connected by short lengths of hookup wire. You can make the PC board yourself from the foil pattern provided, or you can order a finished board from the source listed in the Parts List. A complete kit of parts, including the custom case shown, is also available.

The printed-circuit board has many narrow foil paths and small pads which could be damaged by excessive heat during soldering. Use a low-wattage soldering pencil with a fine tip. And, be certain that you use rosin core solder.

The AFG II has about 150 electronic components mounted on its circuit board. To avoid errors, work slowly, and double check component values and polarity. Don’t try to rush the project and build it in one night. Refer to the parts-placement diagram shown in Fig. 7, and begin construction by inserting the resistors on the circuit board first. Then, using some of the clipped resistor leads, install the six short jumpers (J) where indicated.

Two of the 14-pin IC sockets must be modified to match the unusual pin arrangement of the BBD IC’s. Locate pin 1 of the socket, usually indicated by a notch or other unique indication at one corner. Referencing from pin 1, locate and carefully pry out or clip off pins 3–5 and 10–12 of both sockets. Examine the actual BBD IC if you are unsure of which pins to remove. Mount these and the remaining IC sockets next. Align pin 1 with the square-shaped pad on the circuit board. Don’t install the IC’s now; leave them in their protective shipping sleeve until called for later.

Wisconsin residents must add 5½% sales tax to total amount before adding shipping charge.
Figure 8—Inspect the completed board for bridged foil paths and missed solder connections before you slide it into the guide rails of the case.

Table 1

<table>
<thead>
<tr>
<th>Corner Frequency</th>
<th>C49</th>
<th>C50</th>
<th>C51</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 Hz</td>
<td>0.82 µF</td>
<td>0.68 µF</td>
<td>0.056 µF</td>
</tr>
<tr>
<td>80 Hz</td>
<td>0.56 µF</td>
<td>0.47 µF</td>
<td>0.039 µF</td>
</tr>
<tr>
<td>100 Hz</td>
<td>0.39 µF</td>
<td>0.33 µF</td>
<td>0.033 µF</td>
</tr>
<tr>
<td>120 Hz</td>
<td>0.33 µF</td>
<td>0.27 µF</td>
<td>0.027 µF</td>
</tr>
</tbody>
</table>

All capacitors are 5% tolerance.

Continue by mounting the four trimmer potentiometers and the electrolytic capacitors. Match the negative lead of each capacitor to the square pad on the circuit board. Follow this by mounting the remaining disc and Mylar capacitors, then IC8, and diode D1. Finally, mount the five phono jacks (J1–J5) at the rear of the board and the three large potentiometers at the front of the board. Note: If the shafts of the potentiometers are too long for your application, cut them off before you mount them on the circuit board.

Use some insulated 26 to 28 AWG hook-up wire to make six jumper leads, each about five inches long. Solder these wires to the SURROUND switch and power LED first, then solder the other ends to the circuit board, being careful to match each lead to the proper pad. If you are using a wall transformer to power the AFG II, determine the polarity of its leads, and solder them to the board with the polarity indicated in Figure 7. If you will be using the unit in your car, cut an appropriate length of 26 to 28 AWG hook-up wire to run between the AFG II and the power source in your vehicle. Solder the wires to the PC board first, and mark the positive lead for later reference.

All of the ICs in the AFG II are CMOS and, although they are rugged, handle them carefully to avoid ESD damage. If possible, try to keep one hand grounded while handling the ICs. Carefully place each IC in its socket as shown in Figure 7. Make sure that none of the pins have become folded underneath the body of the IC. Figure 8 shows the inside of the completed prototype.

Setup

Use shielded patch cables to interconnect the AFG II to your audio system as shown in Figure 1. If your auto radio does not have line-level outputs, you will need a matching transformer to go between the radio's rear speaker outputs and the AFG II inputs. These can be purchased at electronic supply stores which sell automobile audio equipment. Connect the positive lead of the AFG II's power input to the switched power output of the radio (if present). If your radio doesn't have a switched power lead, you might have to connect directly to the car's fuse block. Connect the negative lead to ground, preferably at the same point at which the radio is grounded.

Although there are no critical adjustments in the AFG II, trimmers have been provided to calibrate the signal levels of the unit to the requirements of your particular system. Begin by setting each trimmer to the center of its range. Next, turn everything on.

If all is well, you should hear sound coming from your surround (rear) speakers. Check that the VOLUME, DELAY, and REVERB controls of the AFG II operate properly. Set the SURROUND SELECT switch to off and set the VOLUME control to about the center of its range. Now adjust R73 and R74 (input sensitivity) in equal amounts to get the level from the surround speakers about equal to the level from the front speakers. If you have a subwoofer in your system, adjust R76 for proper drive to the subwoofer amplifier. Potentiometer R75 adjusts the bias voltage to the bucket brigade devices; set it for minimum distortion, which is usually at the exact center of its range.

Each component in your finished audio system will probably have its own volume control. There will be one on the radio, one on an equalizer, if used, one on your power amplifier, and, of course, one on the AFG II. To get the best possible signal-to-noise ratio from the AFG II, the audio level fed into it should be at the highest possible level that does not cause any distortion. Since you will most likely want to use only the volume control on the radio to control the entire system volume, it might be necessary to perform

Continued on page 90
MODERN AUTOMOBILE DASHboards have a lot of warning in-dicator lights, but they don't give you, the driver, much meaningful information. When they light up, they tell you that there is some malfunction: some variable is outside of a vague limit. Unfortunately, when you get that warning, your engine or one of its sup-port systems might already have been damaged. However, that cluster of lights is the only status reporting system that your car has.

Would you like a single mini-ature instrument on your dashboard that would give you a quantitative readout of water temperature, oil pressure, and battery voltage—not just vague fault indications? Smartgage, the subject of this article, does exactly that.

Smartgage provides a digital readout of the three variables as well as an illuminated icon to indicate the nature of the fault. It supplements rather than replaces the existing instrumentation in your car. Before discussing Smartgage in detail, it is useful to consider the accuracy of the existing status instru-ments in even the latest cars.

A survey of automobiles made within the last ten years reveals considerable tolerance varia-
tion in warning lights. For ex-ample, the temperature warn-ing light of a typical General Motors car will not be illumi-nated until the engine has reached a temperature of be-tween 245°F and 265°F. The toler-ance of Ford car indicators was found to be similar.

The low oil pressure indica-tors installed by the two giant U.S. automakers are equally in-effectual. Ford cars indicate a lubrication problem when oil pressure has dropped to about 5 psi, and the warning light on GM cars turns on only when oil pressure is between 2 and 7 psi. Table 1 summarizes the mea-surement limits for oil pressure.
and water temperature indicators for cars made by different manufacturers. There is no evidence to suggest that these limits have been tightened on 1992 model cars.

You could obtain more accurate readings if you installed separate electromechanical gauges, but each gauge would be larger than the multifunction Smartgage. Moreover, aftermarket gauges are unsightly and are not compatible with the interior decor of a late-model car.

Smartgage is a compact microcontroller-based system that can monitor and display three parameters. It has user-settable alarms that permit the driver to enter specific “safe-limit” conditions for water temperature, oil pressure, and battery voltage so they can be individually monitored. Smartgage can be installed easily in most vehicles. Measuring only 2 × 2.5 inches, it smaller than a 1-inch stack of business cards.

How Smartgage works
Whenever your car’s ignition switch is turned on, Smartgage beeps twice to tell you that it’s in working order. First it displays all four alarm settings sequentially so that they can be checked, and then it displays the actual temperature, oil pressure and battery voltage. If a setting is exceeded, the out-of-limit display and annunciator flash, while the in-limit displays are blanked.

The speaker beeps ten times and then stays quiet for five minutes. During that time, the in-limit displays are unblanked, while the out-of-limit display continues to flash. At the end of the five-minute interval, the in-limit displays are again blanked and the speaker beeps ten more times. This cycle will continue until the alarm condition is corrected or readjusted.

Whenever the reading returns to an in-limit value, the alarm condition is reset automatically, and will stop the display from flashing and beeping. The highest alarm priority is given to oil pressure; next are water temperature, low-battery voltage, and finally high-battery voltage.

The alarm settings are stored in nonvolatile EEPROM, and are fetched and displayed sequentially whenever the ignition switch is turned on. Smartgage includes a simple two-button alarm setting sequence.

Smartgage theory
Figure 1 is a functional block diagram for Smartgage. Input signals are supplied to the instrument from standard automotive transducers or senders available in most retail automotive parts stores. The inclusion of a software-driven microcontroller permits a low parts count. There are only four integrated circuits: voltage regulator, microcontroller, EEPROM, and display driver. The multidigit, seven-segment LED display modules are multiplexed, a feature which further reduces circuit complexity and component count.

The functional block diagram for the Motorola MC68705R3, an 8-bit microcontroller with an

TABLE 1
WARNING LIGHT THRESHOLDS FOR TYPICAL AUTOMOBILES

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Temperature (°F)</th>
<th>Oil Pressure (PSI)</th>
<th>Model Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ford</td>
<td>239 – 251</td>
<td>4 – 7.5</td>
<td>1967 – 89</td>
</tr>
<tr>
<td>General Motors</td>
<td>245 – 265</td>
<td>2 – 7</td>
<td>1958 – 88</td>
</tr>
<tr>
<td>Chrysler</td>
<td>247 – 259</td>
<td>8 – 12</td>
<td>1962 – 82</td>
</tr>
<tr>
<td>Foreign</td>
<td>250 – 265</td>
<td>2.5 – 7.5</td>
<td>1962 – 85</td>
</tr>
</tbody>
</table>

Figure 1—Signals from transducers for water temperature, battery voltage, and oil pressure are processed by the microcontroller for display and alarm.
In Smartgage, Port B drives the segments and decimal points (a through g and d.p.) of the LED digital displays, and Port C controls the anodes of the eight digits. Port A is assigned to several alarm function, and EEPROM communications tasks.

Two of the eight port A pins, PA0 (pin 33) and PA1 (pin 34), are assigned to serial data and serial clock for the EEPROM, which stores the alarm settings. Pin PA2 (pin 35) is assigned to alarm switch S2, and PA3 (pin 36) is assigned to set switch S1. Pin PA7 (pin 40) drives the speaker.

The port D input lines service IC3’s internal analog-to-digital converter. Electrolytic capacitor C7 is connected between the two A/D converter reference voltage pins (PD4/VRL) pin 20 and PD5/VRL (pin 19) to reduce any noise voltage.

Control for the on-chip clock oscillator is provided through pin 5 (EXTAL) and pin 6 (XTAL) of IC3. A crystal resistor/capacitor combination or an external signal can be connected to these pins to provide clock pulses. Analog-to-digital conversion in IC3 is performed by successive approximation, so a crystal-controlled timebase is not necessary; an RC oscillator option was selected. A 15 K resistor between pin 6 and pin 4 (VCC) provides an approximate 4-MHz clock frequency.

An important feature of the MC68705R3 for this application is its on-chip multi-channel eight bit A/D converter. It reads analog voltages and converts them to digital values. The converter processes analog input data for three inputs: battery voltage, oil pressure, and water temperature. One digital conversion is made for each analog input every 30 machine cycles.

Refer again to the schematic, Fig. 3. To initiate the alarms connected to Port A, alarm settings must be stored when the car’s ignition switch is off. Two options were considered:

- Storing alarm settings in CMOS static RAM and retaining the data in memory with the car battery as a standby power source.
- Installing an EEPROM which does not need standby power.

The CMOS SRAM was the least desirable option because data would be lost if the car battery were disconnected, as would occur if the battery were replaced. By contrast, an EEPROM is ideal because it can store alarm settings without data loss even if Smartgage is removed from the car. Whenever an alarm is set or changed, the new values are written serially to the EEPROM. Therefore, when the Smartgage is powered up, the settings are fetched and stored in the microcontroller’s RAM for program execution.

The Xicor X24C00 in
Smartgage is a CMOS 128-bit serial EEPROM organized internally as 16×8 bits. It has a serial interface and a bidirectional bus permitting data transfer over only two wires. The microcontroller always initiates data transfer, and provides the clock pulses for both transmit and receive operations. In Smartgage, all data transfers are done with byte reads and writes (eight bytes per operation). As stated earlier, pin 33 transfers data serially to and from EEPROM IC4, and Pin 34 (PA1) provides its serial clock signal.

The alarm switch S1 and set switch 2 interrupts (connected to pin 36 (PA3) and pin 35 (PA2), respectively, access the software. A more complete discussion of the alarm-setting procedure appears later in this article.

Miniature speaker SPKR1, which sounds an audible alarm, is driven by bipolar transistor Q1 from pin 40 (PA7). The transistor amplifies the alarm so that it can be heard above ambient noise within a moving car.

As stated earlier, port B pins PB0 to PB7 (pins 25 to 32) drive the segments and decimal points of the LED display modules DISP1, DISP2, and DISP3. A binary word with the desired segment-switching information is stored by IC3's software. Simultaneously, a digit enable pulse for each digit is stored in Port C—PC0 (pin 9) to PC7 (pins 16). These are labeled D1 to D8 in Fig. 3. The multiplexed switching sequence runs through all digits and then repeats itself.

Port B was assigned to switch all of the LED display segments and decimal points because it is the only port capable of sinking necessary 10-milliampere current. Resistor network RN1 contains the series current-limiting resistors needed to switch the segments and decimal points because IC3's input/output ports do not include internal resistors.

Common-anode LED display modules were selected so a worst-case current of only 80 milliamperes will still be able to

FIG. 3—SMARTGAGE SCHEMATIC. The water temperature and oil pressure senders are equivalent to variable resistors.
illuminate all eight segments when a number "8" is displayed. Because a current of that magnitude is not available from IC3, an octal noninverting buffer, IC2, is needed to drive the display module's anodes. The digits are time-division multiplexed by the microcontroller's program.

The annunciator light bars LED1, LED2, and LED3 are turned on sequentially to coincide with display module digits D8, D5 and D3. Thus, only the appropriate icon will be illuminated during the alarm-check, alarm-active, or alarm-setting modes.

Port D, configured as an input only port, supplies input information to the microcontroller's A/D converter. Pin 20 (PD4/V_{INL}) voltage reference low, and pin 19 PD5/V_{RH}) voltage reference high, define the acceptable input voltage limits. Pins 21 through 24 (PD3/AN3 to PD0/AN0) are inputs for the four multiplexed channels of the A/D converter. Pin 17 (PD7) and pin 18 (PD6/INT2) are not used in Smartgage.

Pin 24 (PD0/AN0), designated V_{INT}, receives an analog input voltage from the temperature sender TR1 on the car's engine. The sender is an NTC (negative temperature coefficient) thermistor in a brass housing. Because the voltage across the sender is inversely proportional to temperature, a software instruction inverts that value before it is used by the program. Smartgage's temperature gauge reads from 0°F to 255°F.

Pin 23 (PD1/AN1), designated V_{INB}, is the battery voltage input. Battery voltage is scaled by voltage-divider R1-R2. The scale factor is approximately 5:1. Thus, a battery voltage of 13.8 volts DC is reduced to 2.7 volts DC before it reaches the A/D converter. When processed by the software program, that voltage produces an accurate voltage readout on display DISP1. Electrolytic capacitor C3 filters any AC noise present on the battery voltage input pin. The battery voltage readout has a range of 0 to 25 volts DC.

Pin 22 (PD2/AN2), designated V_{IN}, is connected to the oil pressure sender TR2, a variable resistor. The signal from the oil pressure sender specified in the Parts List is directly proportional to pressure.

Software explained
Software gives Smartgage its ability to multiplex the analog-to-digital inputs, perform binary to BCD (binary-coded decimal) conversion, and do display scanning as well as alarm servicing. It also makes it possible to monitor three independent gauges with a single compact instrument.

The main program flow chart is shown in Fig. 4. The program begins at POWER-ON RESET with initialization. The alarm settings, which are stored in the EEPROM, are fetched and written to microcontroller IC3's RAM memory. The program then multiplexes through the A/D inputs: temperature, oil pressure, and battery voltage. The analog voltages are converted to binary numbers by IC3's on-chip A/D converter and stored in the assigned memory locations.

The binary to BCD conversion subroutine is then called, and the stored binary numbers are converted to BCD. The converted numbers are then stored in a different memory location where they will be fetched by the display scanning subroutine of the program. In this section of the program, a timer interrupts to multiplex the display and update the eight digits individually and sequen-
entially with new segment data about every 1.6 milliseconds. (The entire display is updated every 13 milliseconds.)

Alarm switch S2 is checked regularly during program execution to determine if an alarm setting condition has been set. If it has, the alarm setting subroutine is called. If any settings are changed, EEPROM IC4 is updated with the new values when the program exits the subroutine. The alarm settings that are fetched from IC4 at the start of the program are constantly compared with the values read from the sender to determine if an alarm condition has occurred.

The Smartgage firmware in the Motorola 5-record format is available from the address given in the Parts List or from the R-E BBS (526-293-3000; 1200/2400 baud 8, N, 1 as SMRTGAGE.519). If an EEPROM other than the one specified in the Parts List is substituted, it might not work correctly in this application.

Building Smartgage

Smartgage is built on two 2 × 2.5-inch single-sided printed circuit boards: a display board and a microcontroller board. Printed circuit board artwork is provided for both boards if you want to make them. However, they can be purchased from the source given in the Parts List.

The completed display board shown in the photograph, Fig. 5, contains the three LED multidigit display modules, three LED icon light bars, resistor R7, and the SET and ALARM switches, S1 and S2. Refer to the display board parts placement diagram Fig. 6. Position the display board with its foil side up on the benchtop, and position a 10-pin header (P1 or P2) so that the longer pins are directed downwards as shown in Fig. 7.

Carefully align the ends of the pins with the matching holes in the circuit board, and inset until the ends penetrate the board thickness and are flush with the surface on the component side. Repeat this step for the second header. Now reverse the board and solder the two end pins of each header with a low-heat soldering pencil. Then solder the rest of the pins carefully, making sure that molten solder does not short any pins.

Before inserting any more components on the display board, position the board with its component side up and insert three fine bare wires J1, J2, and J3, as shown in Fig. 6 and solder them in place. (The jumper wires must be flush with the surface of the board because the solder flux cleaning gap under the modules limits the diameter of the jumper if the modules are to seat flush with the board.) Then insert the rest of the components, making sure that they are all mounted flush against the board surface before soldering them in place.

Figure 8 is photograph of the completed microcontroller board. Refer to parts placement diagram Fig. 9 for the installation of components on that board. Start by soldering the surface-mount resistors (SMT) R1, R2, and R6 on the foil side of the board first. (Use fine tweezers to hold the chip resistors in place while you solder them). Use a low-heat soldering pencil with a fine tip and fine gauge solder wire. Only a small amount of solder is needed on each end of the chip resistors.
Turn the board over, and insert the axial-leded resistors and diodes first, making sure that each diode's polarity markings are observed. Next, insert the radial-leded capacitors and transistor, making sure that their pins are oriented correctly before soldering all parts to the circuit board. Be sure that all of the parts on the component side of the board are installed so that highest surfaces are less than ⅛-inch above the board. Note: Figure 8 shows the three radial-leded tantalum dipped resistors that were in the prototype, but these are replaced by the miniature aluminum electrolytic capacitors listed in the Parts List.

Insert voltage regulator IC1 so its three pins are positioned in the correct holes in the board and its heat sink is flush with the board. Fasten the sink to the board with a No. 4-40 machine screw, lock washer, and nut through the punched holes in both sink and board. Insert IC2 and IC4 and resistor network RN1, observing their pin positions. Solder all pins.

Insert and solder speaker SPKRI last. For correct phasing and maximum speaker volume, observe the correct polarity. The plus indicator on the bottom of the speaker should be connected to Q1's collector—not to +5 volts. Finally, insert microcontroller IC3 in its socket. Carefully examine the completed circuit board for solder shorts, and check to see that all components have been installed correctly.

Cut a length of colored 0.050-pitch flat ribbon cable with 28 AWG conductors long enough to extend from the intended location of Smartgage on your dashboard, through the firewall to the senders on your car's engine block. With a razor knife, carefully slit the end of the cable to remove a ribbon of four connected conductors. (The colors selected are not important as long as you make note of the color of each wire and its intended function.)

In the prototype, a yellow wire was selected for water temperature, an orange wire for oil pressure, a red wire for 12-volt DC source, and brown wire for ground. This code is used in the remainder of this article and in all figures.

Strip both ends of all wires approximately ¼-inch, and wrap the yellow, orange, and red wire ends around projecting leads at the locations shown in Fig. 9, and solder them in position. The brown ground wire can be secured to the board by loosening the bolt and nut on the heat sink of voltage regulator IC1, wrapping the bare end of the wire around the screw, and tightening the screw. Now trim any excess lead lengths.

A fuse holder with fuse should be inserted in the red wire between the microcontroller board and the battery power source. This can be done by carefully splitting out the red
wire at a convenient distance from the Smartgage (so it is out of sight under the dashboard in the final installation). Cut the red wire and splice in the fuse holder.

Set a DC power source between 12 and 15 volts DC, and connect test leads terminated with miniclip to the ends to the supply's output terminals. With the power supply off, attach the black miniclip (negative power supply lead) to the anode of diode D1 and the red miniclip (positive power supply lead) to the cathode of D1. Now turn on the power supply, and adjust current to the 100- to 150-milliampere range. Voltage regulator IC1 should produce an output voltage of +5 volts DC ± 10%.

If the circuitry is operating properly, after about a 10-second waiting period, the speaker will emit two short beeps. Approximately five seconds later ten beeps will be heard. If this test has been passed successfully, the two boards can now be connected.

Refer to exploded view Fig. 9. Position both boards component side up as shown with set switch S1 on the display board above voltage regulator IC1 on the microcontroller board. Insert both sets of header pins into the matching holes on the microcontroller board. Be sure there is at least a 1/4-inch gap between the bottom of the display board and the top surface of any component on the microcontroller board. Solder all header pins on the foil side of the microcontroller board.

Cut an approximate 2 5/8 x 2 1/4 inch rectangle from a sheet of red transparent plastic plastic about 0.080-inch thick. Carefully drill a 1 1/4-inch hole in each of the four corners to align with those in the corners of the display board. (You might also want to countersink the holes

FIG. 8—MICROCONTROLLER CIRCUIT board with the microcontroller at center, and clockwise from the top, speaker, logic IC, voltage regulator, EEPROM memory, and resistor network
so the four mounting screws can be inset). Then drill two \(\frac{1}{8} \)-inch holes in the plastic at locations directly over the centers of switched S1 and S2. These will provide access for switch actuation with a paper clip or other fine wire.

Make a high-contrast photographic negative from the display mask artwork provided. (Most local photo shops will perform this for you.) Trim the completed mask, punch four \(\frac{1}{8} \)-inch holes in the corners to align with those of the filter, and punch two more holes to align with the access holes over switches S1 and S2.

Place the red filter over the mask as shown in Fig. 10. (The icons are over the LED light bars and the open frames are over the LED display modules.) Then carefully assemble the mask and filter to the display board as shown in Fig. 10 with \(\frac{1}{4} \)-inch standoffs, screws, and lock washers. Before tightening the screws, carefully align the mask over the display modules and light bars.

Installation

Smartgage can now be installed in your car. Select a location on your dashboard where the front face of the readout will be shielded from direct sunlight, or consider making a hood for it, perhaps as part of the packaging. (LED displays are difficult to read in direct sunlight.) The unit can be mounted directly to the dashboard or placed in any suitable enclosure. The way the instrument is packaged and mounted to the car dashboard is left to the discretion of the builder. If the instrument is to be enclosed in a case, be sure to leave adequate openings in the case for internal cooling.

Connect the end of red wire with the in-line fuse holder and fuse from the +12 volt DC pad on the microcontroller board to any point in the automobile's electrical system that is energized by the car's ignition switch. Then connect the brown wire between the ground pad and the automobile's chassis ground.

It is recommended that the existing water temperature and oil pressure senders that are connected to your car's temperature and pressure indicator lights be removed and remounted on brass "tees." This will give your car redundant backup warnings. (Brass sender tees are standard items that can be purchased in retail automotive parts stores.) Install the water temperature sender (TR1) and oil pressure transducer (TR2) on the appropriate tees in parallel at the correct locations on the engine block of your car.

Run the paired yellow and orange wires through the firewall of your car at the nearest convenient location. Depress the rubber grommet and carefully thread the wire through. Secure the wires to the existing cable harness in the engine compartment with tie wraps so they will not contact any hot engine parts. Crimp spade lugs on the
Few gifts actually improve with age. Your bank sells one of them.

You can count on one hand the gifts that actually get better as they get older. There's only one, though, you can buy at your bank:
a U.S. Savings Bond.
Visit your bank for the gift that improves with age:
a U.S. Savings Bond.
For more information, write:
Office of Public Affairs,
U.S. Savings Bonds Division,
Washington, DC 20226.

FIG. 10—EXPLODED VIEW OF SMARTGAGE assembly. The assembled unit can be housed in a plastic box.

Wire ends and fasten them to the sensors TR1 and TR2.

Operation

With Smartgage installed, the alarms can be set and the system will be ready for operation. After carefully checking the wiring, turn the your car's ignition switch on. The speaker should beep twice, and then sequence through it's alarm check routine. After a ten-second delay, assuming that no alarm condition exists, the gauge will display all three readings.

To set the alarms, press the ALARM switch S2 (left side) with a wire through the front filter, and hold it down as the display sequences through the existing alarm settings. The temperature alarm setting is displayed first, then the oil pressure setting is displayed, followed by low battery, and high battery.

Release the ALARM switch when the alarm being set is displayed, and then press the SET switch S1 until the display is incremented to the desired setting. Release the SET switch and again push the ALARM switch to increment the display.

Each time the display returns to the actual readings, the EEPROM is updated with the new alarm settings. When the temperature alarm display reaches 255 (25.5 for both battery settings) or oil pressure is indicated as 55, the display will reset to 000. (Oil pressure must be cycled twice before resetting because the "1" or "2"most significant digit (MSD) is not displayed).

Smartgage will also reset to internally programmed default settings when both the ALARM and SET switches are pressed simultaneously.
A digital voltmeter, or DVM, is probably the first test instrument that most electronics enthusiasts buy, because it's a necessary instrument. Moreover, they don't cost much these days. However, one voltmeter is often not enough; a second voltmeter, allowing simultaneous measurements, is always handy.

Our DVM project fills the need for a second voltmeter that can be made at low cost. But, although our DVM is inexpensive to build, it has a full 4½-digit display. That allows measurement resolution of 10 microvolts on its most sensitive range, which is not possible with 3½-digit meters.

The input resistance of the voltmeter is about 11 megohms, which is comparable to that of commercial DVMS. Calibration of the instrument is very easy; it's accomplished by adjusting a single potentiometer.

An additional feature of this DVM is a continuity function that allows the instrument to locate opens or shorts in circuit wiring. Continuity is indicated not only by a continuity flag on the display, but also by the digital readout which gives an approximate indication of the resistance between the test leads. Also, an audio tone is automatically generated when the test leads are placed across a conductive path.

The circuit is relatively simple, containing just one IC and a handful of other components. There are four DC voltage ranges: 200 millivolts, 2 volts, 20 volts, and 200 volts full scale. The current drain by the circuit is only 1 milliamp from a 9-volt battery, which permits several hundred hours of operation from a fresh alkaline battery. A low battery indicator is automatically energized when the battery nears the end of its useful life.

The circuit

The heart of this digital voltmeter is IC1, a Maxim ICL7129A 4½-digit A/D converter with LCD driver (see the schematic diagram in Fig. 1). The chip has a ±20,000-count resolution, features high input impedance, and auto polarity indication. Only one active external component is required for voltage measurement: D1, a Harris 1.2-volt bandgap reference.

Power to IC1 is provided by 9-volt battery B1 that is connected to pins 23 and 24 of IC1 through power switch S1. The battery also drives the external reference voltage circuit composed of R6–R9 and D1. About 1.2 volts is developed across D1, and potentiometer R8 is adjusted during instrument calibration so that the voltage differential between pins 34 and 35 is set to 1 volt.

The dual-slope conversion technique of IC1 requires an oscillator circuit; in this DVM it's a 120-kHz crystal, XTAL1, and its associated components. A 120-kHz crystal allows maximum normal-mode rejection at 60 hertz, the standard U.S. power-line frequency. For countries where 50-hertz power-line frequencies are common, a 100-kHz crystal should be used.

The DVM chip, IC1, is designed to accommodate an RC oscillator instead of a crystal, as shown in Fig. 2. However, for 10-microvolt resolution, provided by the DVM's most sensitive range, a crystal oscillator is recommended.

The input voltage to IC1 is fed to pins 32 and 33. The test leads of the instrument, connected to J1 and J2, drive a voltage divider composed of R1–R4. The values of those resistors are chosen so that each step of range switch S2-a results in a 10:1 reduction in the voltage presented to pin 33 of IC1. Components R11 and C5 form a low-pass filter to attenuate any noise or AC component appearing across J1 and J2. That helps by providing a more stable DC voltage reading.

Pin 37 of IC1, the digital input control terminal, sets the full-scale sensitivity of the A/D converter. When pin 37 of IC1 is connected to pin 36, digital common, the full-scale sensitivity is 200 millivolts. With a high-level logic input at pin 37, full-scale sensitivity is 2 volts. Switches S2-a and S2-b allow
FIG. 1—THE HEART OF THE CIRCUIT is IC1, a Maxim ICL7129A 4½-digit A/D converter with a built-in LCD driver.

FIG. 2—THIS RC OSCILLATOR can replace the crystal. The PC board is designed to accommodate either circuit. However, the crystal is recommended for highest accuracy.

The voltmeter to be set to any one of the four full-scale ranges.

Switch S2-c controls the display’s decimal point. A logic high presented to any one of the decimal-point control inputs (pins 38, 20, and 21) activates the appropriate decimal point on the display. The most sensitive range of the instrument displays millivolts. While the other ranges indicate volts.

A built-in comparator within IC1, with a threshold voltage of 200 millivolts, monitors the analog voltage applied to pins 32 and 33 from input terminals J1 and J2. When the voltage is less than the threshold level, the continuity flag of the display is activated. At the same time, pin 27 goes high, which allows an audio-tone circuit to be activated on the DVM.

Resistor R10 keeps pin 33 of IC1 above 2 volts when the instrument is used as a continuity checker and the test leads are open. That causes the display to go to overrange, and extinguishes the continuity flag. Pin 27 goes low, and the tone circuit (Q1 and BZ1) is held dormant.

When the test leads are shorted together or connected across a low resistance, the voltage across pins 32 and 33 falls to less than 200 millivolts. That activates the continuity flag and sounds the buzzer. At the same time, the reduced voltage appearing across pins 32 and 33 provides a relative indication of the resistance between the test leads.

Switch S3-b defeats the continuity function during voltage measurement by pulling pin 27 (the input/output control) low. That also ensures that Q1 is cut off, silencing the buzzer. A 4½-digit tri-multiplexing liquid crystal display (LCD) module (DISP1) allows control of all 37 segments, including the continuity and low battery flags, with just 15 connections from IC1. That is accomplished by separating the various elements of the display into three sections. Three backplane ter-
minals are used for the tri-multiplexing scheme. (Ordinary LCD displays contain just one backplane terminal.)

The segments of the display are in three groups, each controlled by its own backplane square-wave voltage. Driver IC1 generates the backplane signals that cause the appropriate elements of the display to be activated in sequence. The process takes place at such high speeds that all three sections of the display appear to have constant illumination. The low battery indicator of the display is automatically energized when the supply voltage between pins 23 and 24 of IC1 falls below 7.2 volts.

Construction

The volt meter circuit is constructed on a single-sided PC board. We've provided a foil pattern if you wish to make your own. However, the circuit layout is not critical, so it can be hard-wired on perforated construction board.

Figure 3 is the parts-placement diagram. Be sure to use a socket for IC1—it is well worth the slight additional cost, and permits easy IC removal should that ever be necessary. Do not insert the IC in its socket at this time.

Be sure to use the specified 1% metal-film resistors for R1, R2, and R3; the accuracy and stability of the volt meter depend on the accuracy and stability of their values. Ordinary carbon resistors are temperature-sensitive and should not be used in this DVM.

Although a crystal oscillator is preferred, the alternate RC oscillator circuit (shown in Fig. 2) can be accommodated on the PC board using the extra pad on pin 2 of IC1. The existing pads on pins 1 and 40 can be used to mount R16 and C7 of the RC oscillator circuit.

The band gap reference, D1, is packaged in a three-terminal transistor package. Only two of the terminals are active—the third is unused. Position it on the board as shown in Fig. 3.

The LCD module is packaged like an IC with 15 pins on each
side. However, only pins 1–15 (the row near the decimal points) are active. The other row of pins is used only for mounting. The module, which is fragile, can be directly soldered onto the PC board, but it is recommended that you make a socket for it by carefully cutting apart a 40-pin DIP socket to form two 15-pin SIP sockets. Note that the module is brittle, and can be fractured if excessive force is used during handling.

All of the switches and jacks are connected to the PC board with appropriate lengths of insulated wire. Refer to the Parts-Placement diagram as a wiring guide. Be sure to use stranded 24- or 26-AWG wire, as solid wire has a propensity to break. Make the connections to S2 first. Note that S2 has three poles with four contacts each. Observe which pole terminal of the switch belongs to which set of four contacts. If you’re in doubt, check with an ohmmeter to be sure. A wiring error here will require a lot of troubleshooting later. Next, make the connections to S1 and S2. Finally, install the 9-volt battery connector, observing proper polarity.

When the PC board is completely assembled, examine it thoroughly for opens, shorts, and cold solder joints before proceeding with the checkout.

Checkout procedure
The calibration of the instrument requires a DC voltmeter with an input resistance of at least 10 megohms. A 1.5-volt battery will be handy as a voltage source to calibrate the circuit. Prepare a set of test leads consisting of two banana plugs and lengths of red and black flexible wire. Insert the plugs into jacks J1 and J2, and short the ends of the wires together. Set function switch S3 to “DVM” and range switch S2 to 200 millivolts. Insert a fresh battery to power the DVM, and turn S1 on.

The normal display should be 00.00. The reading might flicker between 00.00 and 00.01. Rotate the range switch to the other three positions. A normal indication is .0000, 0.000, and 00.00 for the 2-, 20-, and 200-volt ranges, respectively. Again, the least significant digit might flicker between 0 and 1. The minus sign might also appear intermittently.

If the display does not operate as described, troubleshoot the problem before proceeding. If the display is totally blank, measure the terminal voltage of the battery across C1 to be sure that it is delivering at least 7 volts to the circuit and the polarity is correct. Verify that IC1, C1, and D1 are properly oriented on the board. Also check all electrolytic capacitors to be sure they are installed correctly. Examine the board for any open circuits or short circuits. Resolder any solder joints that don’t appear smooth and bright.

To verify that the oscillator circuit is operating, examine the wave shape at pin 40 of IC1 with an oscilloscope, using digital ground (pin 36) as the reference. A normal indication is a 5-volt peak-to-peak square wave at a frequency of about 120 kHz.

If the oscillator waveform is absent, check XTAL1 and its associated components. If a substitute crystal is not available, XTAL1, C2, C3, and R5 can be temporarily removed from the board and replaced with the RC oscillator circuit of Fig. 2. That will verify that the on-chip oscillator circuit within IC1 is operating correctly.

If the only problems are with the decimal-point display, check the wiring between S2-c and pin 38 of IC1. If the circuit seems to be working, but some
of the digits are not fully illuminated, check the connections between DISPl and IC1. Once the circuit is operating properly, proceed with calibration.

Calibration

Set R8 to mid-position, and the RANGE switch to the 2-volt scale. Connect a separate digital voltmeter and the test leads of this DVM across the 1.5-volt test cell, and compare the readings of the two voltmeters. Carefully adjust R8 to obtain a reading that is as close to the test voltmeter as possible. Check the reading with the polarity of the cell reversed to verify the operation of the minus sign.

Rotate the RANGE switch to the 20- and 200-volt range, and ascertain that the voltage display is still correct. Set the RANGE switch to 200 millivolts, and verify that the DVM goes into overrange with only a “1” displayed.

If the readings do not track within about 1% for the 2-, 20- and 200-volt positions of S2, measure the values of R1, R2, R3, and R4 to be sure they are correct. If the readings are off by a factor of 10, check the wiring to S2-a, S2-b, and pins 36 and 37 of IC1.

Remove the 1.5-volt test battery and short the meter leads together. Set the FUNCTION switch to “continuity” and the RANGE switch to the 2-volt scale. The **continuity** indicator should be activated, and the piezoelectric buzzer should emit a tone. Disconnect the leads; the audio tone and **continuity** indicator should be extinguished, and the display should go off scale.

If the piezoelectric buzzer does not work, check the orientation of Q1 and the buzzer. Check the wiring to S3-b, and try a new transistor.

Final assembly

The entire DVM assembly easily fits in a small plastic or metal enclosure. Figure 4 shows the author’s completed prototype. Before drilling holes in the enclosure for the control switches and jacks, determine the location for the LCD cutout by holding the board assembly next to the panel and measuring and marking carefully. A 1-× 2-inch opening is suitable for the display module specified in the Parts List from LXD, Inc. of Beachwood, Ohio.

Once the LCD cutout has been made, locate the mounting holes for the PC board. Carefully drill both the board and front panel to accommodate the mounting hardware. Four machine screws, spacers, and nuts are recommended. Be sure the spacers are long enough to prevent the LCD module from contacting the front panel so that no stress will be put on the display.

With the board assembly temporarily mounted to the front panel, determine the desired location of switches S1, S2, and S3, and jacks. J1 and J2; the jacks should be spaced ¾-inch apart to accommodate a standard dual banana plug. Remove the PC board assembly before proceeding with the mechanical work on the panel. Remember to install a mounting clip for the 9-volt battery inside the case so it will not contact any of the DVM circuitry.

Using the DVM

Your new instrument works like any other DVM. When using the continuity function, the RANGE switch must be set to the 2-volt scale. The display will indicate about .0000 for a dead short between test leads, and will provide a relative reading for resistances up to 100K. Note that the continuity function is not calibrated, and can be used for relative resistance readings only.

When the battery is near the end of its service life, the **low battery** indicator of the display will be activated. Replace the battery at that time with a new one, and be sure to turn off the instrument when it’s not in use.

As with many other digital voltmeters, this meter will continue to operate for some time in the low-battery condition, its accuracy will be affected, and you will not be able to trust the displayed value. That situation can be inconvenient when you are measuring low voltages; it becomes dangerous when you measure high voltages.
Learn how to bias junction FET’s and apply them in practical amplifier, voltmeter, multivibrator, and converter circuits

RAY MARSTON

The Junction Field-Effect Transistor (JFET) has interesting characteristics that set it apart from the bipolar transistor. This article contains schematics for a selection of practical JFET circuits that range from amplifiers and analog voltmeters to a multivibrator and a DC- to AC-converter. Last month’s article discussed the differences between JFET’s and MOSFET’s, and FET terms were defined.

JFET, has the same terminals as other FET’s: source, drain and gate. The JFET is a unipolar device whose operation depends only on the movement of majority carriers—electrons or holes—not both as in bipolar transistors. As a voltage-operated transistor, the appropriate voltage applied to the JFET’s gate controls the flow of current between the drain and source.

Figure 1-a is a cross-section view of a modern diffused planar N-channel JFET showing its three terminals and three doped regions: substrate, source-to-drain channel, and gate. Figure 1-b is the schematic symbol for an N-channel JFET. The vertical bar represents the normally conductive channel region. (Symmetry within the JFET permits the source and drain terminals to be interchanged.)

Figure 2-a illustrates the structure of a P-channel JFET. It is made the same way as the N-channel JFET shown in Fig. 1-a except that N- and P- doped regions are interchanged. The schematic symbol for the P-channel JFET, shown in Fig. 2-b, has its arrow pointed away from the bar representing the channel.

All JFET’s operate in the depletion mode. This means that maximum current flows in the source-to-drain channel when the gate bias is zero. To reduce

You might want to read— or reread—last month’s article before you tackle this one unless you are really “up to speed” on FET’s, their operation, symbols and terms. The many combinations and permutations of N- and P-channel FET’s operating in enhancement and depletion modes can be very confusing even for the experienced circuit designer.

The JFET reviewed

The subject of this article, the small-signal, general-purpose (deplete) or entirely pinchoff that current, the gate must be reverse biased. In an N-channel JFET, a negative bias must be applied, while in a P-channel JFET, a positive bias must be applied.

Figure 3 is a family of drain characteristic curves for an N-channel JFET. Note that the amplitude of the drain current (ID) decreases as gate bias (VGS) becomes more negative from VGS equals zero. The family of curves for a P-channel JFET are similar except that the bias val-
ues become more positive with decreasing drain current.

All of the schematics in this article are based on the classic 2N3819 N-channel JFET. First introduced more than 25 years ago, it is packaged in three-pin TO-92 plastic case. Table 1 gives the maximum ratings for this device at 25°C free-air temperature. If you want to build these circuits with an N-channel JFET other than the 2N3819, be sure that the substitute's electrical characteristics are closely matched to those of the 2N3819. Also, be sure that the pinout arrangements are similar.

Biasing the JFET

The JFET will work in digital as well as linear circuits. In a low-distortion analog amplifier, it must operated in its linear region by reverse biasing its gate relative to its source. There are three common JFET biasing techniques: self-, offset-, and constant-current.

Self-biasing is shown in Fig. 4. The JFET's gate is grounded through resistor R_G, and resistor R_S grounds the source. Any current flowing in R_S drives the source positive with respect to the gate, so the gate is effectively reverse-biased. If drain current (I_D) is to be set at 1 milliampere, and it is known that a gate-to-source bias voltage (V_{GS}) of -2.2 volts is needed, the correct value of source resistor (R_S) must be determined.

This correct bias can be obtained with a 2200-ohm value of resistor R_S. By Ohm's law, if 2.2 volts appears across a 2200-ohm source resistor, a 1 milliampere current will flow. If the drain current decreases, gate-to-source bias voltage also decreases. This causes drain current to increase and counter the original change. Thus, the bias is self-regulating through negative feedback.

The value of gate-source bias needed to set a desired drain current can vary widely even among identical JFET's in actual circuits. Thus, the only sure way to set a precise drain current is to pick a source resistor by trial and error or use a potentiometer. Regardless of how it is obtained, self-biasing is satisfactory for most practical applications, and only a few external components are needed. That's why it is still the most popular way to bias a JFET.

The second scheme, offset-biasing is illustrated in Fig. 5-a. It gives more accurate gate biasing than self-biasing. Here, the voltage at the junction of resistors R_1 and R_2 is applied as a fixed positive bias to the gate through gate resistor R_G. The voltage at the source equals this bias voltage minus the negative value of the gate-source bias.

Therefore, if positive gate voltage is large with respect to gate-source bias, drain current is controlled mainly by R_S and gate-voltage; it is not greatly influenced by variations of gate-source bias between individual JFETs. Offset biasing permits drain current to be set accurately, avoiding the chore of individual resistor selection. Similar results can be obtained by grounding the gate and coupling the low-end of the source resistor to a high negative voltage, as shown in Fig. 5-b.

The third scheme, constant-current biasing, is illustrated in Fig. 6. The source resistor is replaced by NPN bipolar transistor Q2, which is organized as a constant-current generator. Consequently it determines the
drain current. The constant current is set by Q2's base voltage, which is set from the R1-R2 voltage divider and emitter resistor R3.

Resistor R2 can also be replaced by a Zener diode or other voltage reference. Thus, in this bias circuit, drain current is independent of JFET characteristics, and high biasing stability is obtained. However, this improvement is gained at the expense of additional components.

In the three biasing schemes, resistor R_C can have any value up to about 10 megohms. That limit is imposed by the voltage drop across the resistor caused by gate leakage currents, which could upset biasing conditions.

Source-followers

JFET transistors in a linear amplifiers are usually configured as either a common-source or common-drain (source-follower) amplifier. These are the JFET equivalents of the bipolar common-emitter and common-collector (emitter-follower) amplifier, respectively.

The source-follower amplifier offers very high input impedance and near-unity overall voltage gain. (That's why it's also called a voltage-follower). A simple source-follower amplifier is illustrated in Fig. 7. It is self-biasing, and drain current can be varied with potentiometer R4.

That self-biasing source-follower amplifier will work from any positive 12- to 20-volt supply. Potentiometer R4 should be set so that the quiescent voltage across R2 is 5.6 volts, which provides a 1 milliamper drain current. Expect a voltage gain of about 0.95 between input and output.

Because of the voltage division at the junction of potentiometer R4 in series with R1 and resistor R2, some bootstrapping is applied to R3. In this circuit where the output is taken from the emitter, the output voltage directly affects the bias. In this amplifier, negative output pulses cause an increase in the negative voltage at the input, and positive output causes a reduction in the negative voltage at the input.

The input is applied between the source and the gate. In this circuit bootstrapping multiplies the effective value of R3 by a factor of about five. The input impedance to the circuit is about 10 megohms, shunted by 10 picofarads. Therefore, input impedance can be as high as 10 megohms at very low frequencies. However, this value drops to about 1 megohm near 16 kHz, and down to about 100 K at 160 kHz.

Figure 8 is an alternative source-follower amplifier that has offset biasing. Resistor adjustment is not needed in this amplifier, and its overall voltage gain is about 0.95. Electrolytic capacitor C2, which provides bootstrapping, boosts the effective value of gate resistor R3 about 20 fold. However, it is not required for normal amplifier operation.

With C2 out of the amplifier, the source-follower's input impedance is about 2.2 megohms, shunted by 10 picofarads; with C2 in place, input impedance is increased to about 44 megohms, also shunted by 10 picofarads. Alternative impedance values can be obtained by

TABLE 1

SILICON N-CHANNEL JFET: 2N3819

ABSOLUTE MAXIMUM RATINGS

(25°C Free air temperature)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-Source Breakdown Voltage</td>
<td>$V_{BR(GS)}$</td>
</tr>
<tr>
<td>Zero-Gate Voltage Drain Current</td>
<td>I_{DSS} mA</td>
</tr>
<tr>
<td>Forward Transconductance</td>
<td>g_{mSS} pA</td>
</tr>
<tr>
<td>Reverse Gate Leakage</td>
<td>f_{DS} ohms</td>
</tr>
<tr>
<td>"ON" Resistance</td>
<td>f_{BSS} mho</td>
</tr>
<tr>
<td>Pinchoff Voltage</td>
<td>$V_{DSS(OFF)}$ V</td>
</tr>
<tr>
<td>Output Conductance</td>
<td>G_{ds} umho</td>
</tr>
<tr>
<td>Feedback Capacitance</td>
<td>C_{ss} pF</td>
</tr>
<tr>
<td>Input Conductance</td>
<td>C_{gs} pF</td>
</tr>
<tr>
<td>Power Gain</td>
<td>P_{ps} dB</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_{ds} mW</td>
</tr>
</tbody>
</table>

FIG. 4—A JFET SELF-BIASING schemes for JFET's with $+$V supply (a) and $+$V and $-V$ supplies (b).

FIG. 5—JFET OFFSET-BIASING schemes for JFET's with $+$V supply (a) and $+$V and $-V$ supplies (b).

FIG. 6—A JFET CONSTANT-CURRENT biasing scheme.
put impedance is about 500 megohms, shunted by 10 picofarads. Here, offset biasing is applied through a voltage divider formed at the resistor R1-R2 junction. This configuration is similar to that of Fig. 8, but source resistor R4 is replaced by a resistor-transistor-diode network (R4, Q2, D1, and D2). This network makes "source load" Q2 act as a constant-current generator with a high output (collector) impedance, which causes a quiescent drain-to-source current of about 1 milliampere to flow in Q1.

As a result, Q1 functions as a source follower, and the collector of Q2, acting as its source load, appears as a high impedance. Because of the high effective value of this load, JFET Q1 has a voltage gain of about 0.99. Electrolytic capacitor C2 passes a bootstrap signal from the source of Q1 to R3 at the R1-R2 junction. The high-voltage gain of the circuit permits this bootstrap signal to boost the effective value of R3 100 times to about 1000 megohms.

As a result of bootstrapping, the actual input impedance of the source-follower in Fig. 9 is equal to 1000 megohms-shunted by the JFET's gate impedance of about 1000 megohms. The equivalent resistance turns circuit high: The output can be coupled to external circuitry with another emitter-follower stage (shown enclosed in dotted lines in Fig. 9), or all loads to which it is coupled must have high impedances.

Common-source amplifiers

Figure 10 is a schematic for a simple self-biasing, common-source amplifier that can powered from any 12- to 20-volt supply. Potentiometer R4 should be adjusted so that a quiescent 5.6 volts is developed across R3, providing a drain current of 1 milliampere. The biasing of potentiometer R4 in series with resistor R2 is decoupled by electrolytic capacitor C2.

The typical voltage gain for the circuit shown in Fig. 10 is about 21 dB (a multiplying factor of 12), and its frequency response is flat within 3 dB from 15 Hz to 250 kHz. The input impedance of the circuit is 2.2 megohms, shunted by 50 picofarads. This comparatively high value of shunt capacitance is the result of Miller feedback from drain-to-gate. That feedback boosts the JFET's internal gate-to-drain capacitance directly with respect to voltage gain.

Voltage-biasing potentiometer R4 in Fig. 10 can be adjusted so that the circuit accepts, with minimal distortion, strong input signals that generate large output-voltage swings. In applications where only low-level input signals are to be accepted (such as in preamplifiers), a fixed-bias network can be substituted for the potentiometer. Figures 11 and 12 show circuits with that substitution.

Figure 11 shows a simple amplifier for headphones with impedances of 1 K or greater. With an input impedance of 2.2 megohms, the amplifier includes an integral volume control potentiometer R3, and it can be powered from any 9- to 18-volt positive supply.

The circuit shown in Fig. 12 is a general purpose, add-on preamplifier that can be coupled to any amplifier operating from a single-ended 9- to 18-volt supply.

Increasing R3

Figure 9 shows a JFET-bipolar "hybrid" version of a source-follower amplifier. Its input circuit has an input impedance of 500 megohms.

Increasing R3 up to a maximum of 10 megohms.

FIG. 7—A JFET SELF-BIASING source-follower with an input impedance of 10 megohms.

FIG. 8—THIS JFET SOURCE-follower with offset biasing has an input impedance of 44 megohms.

FIG. 9—THIS JFET SOURCE-FOLLOWER amplifier with bipolar transistors in its source circuit has an input impedance of 500 megohms.

Input: [Image of a circuit diagram]

Output: [Image of a circuit diagram]

www.americanradiohistory.com

April 1963, Electronics Now

67
positive supply. The voltage gain from this preamplifier exceeds 20 dB, bandwidth exceeds 100 kHz, and its input impedance is 2.2 megohms.

When exceptional biasing accuracy is required, JFET common-source amplifiers can be designed with either of two constant-current offset biasing techniques. Figures 13 and 14 illustrate both options. The common-source amplifier in Fig. 13, with offset gate biasing, can only be powered by a 16- to 20-volt positive supply. However, the "hybrid" version shown in Fig. 14 can be powered with any 12- to 20-volt positive supply. Both circuits offer voltage gains of 21 dB, input impedances of 2.2 megohms, and -3 dB bandwidths from 15 Hz to 250 kHz.

DC voltmeters.

Figure 15 is a schematic for a simple three-range JFET analog voltmeter offering a nominal sensitivity of 22.2 megohms per volt. Its maximum full-scale voltage sensitivity is 0.5 volt, and its input resistance remains constant at 11.1 megohms on all ranges.

In the analog voltmeter shown in Fig. 15, resistor R6, potentiometer R9, and resistor R7 form a voltage divider across the 12-volt battery supply. With the proper setting of R9, 4 volts will appear across R7. The upper end of resistor R7 is connected to circuit ground (zero-volt reference), and its lower end is at -4 volts, setting the upper end of at +8 volts.

JFET Q1 is configured as a source-follower with its gate grounded through a resistor network consisting of R1 through R4. However, Q1's source is connected to -4 volts through source load resistor R5. As a result, Q1 is offset gate-biased, and its drain current is about 1 milliamperc.

A closer look at the circuit shows that R6 in series with R9, and Q1 in series with R5 act as the arms of a Wheatstone bridge. The adjustment of potentiometer R9 balances the bridge, and no current flows in the meter unless there is an input voltage at Q1's gate. Any voltage applied to Q1's gate unbalances the bridge by an amount that is proportional to that voltage. The value of the voltage can be read directly on the meter.

Series resistors R1, R2, and R3 form a multiplier network providing full-scale deflection (FSD) ranges of 0.5, 5, and 50 volts. Other resistor networks can be substituted to obtain different voltages. However, if the voltmeter is to be accurate, all the resistors must have tight tolerances. Resistor R4 prevents damage to transistor Q1 if the input voltage at the gate becomes excessive.

To use the voltmeter shown in Fig. 16, first adjust zero-set potentiometer R9 so that meter M1 reads zero when no input voltage is present. Then connect an accurate 0.5-volt source at the voltmeter's input terminals, and adjust R9 so that the meter reads full scale. If you are able to obtain consistent zero and full-scale readings, the voltmeter is ready for use.

Unfortunately, the circuit shown in Fig. 15 is inherently unstable because it tends to drift with changes in temperature and supply voltage. That makes it necessary to adjust zero-set potentiometer R9 frequently. However, drift can be greatly reduced if you power the circuit from a Zener-regulated 12-volt supply.

Figure 16 is the schematic for a low-drift version of the DC voltmeter shown in Fig. 15. JFET Q1 and resistor R5 form one arm of a differential amplifier, and JFET Q2 and resistor R6 form the other arm. Any drift that occurs in one arm will be automatically offset by a similar drift in the other arm. High stability is one benefit obtained with the bridge inherent in this circuit.

Ideally, Q1 and Q2 should be a pair of JFET's with their drain-to-source currents (I_DS) matched within 10%. This DC voltmeter circuit will work from any 12- to 18-volt positive supply. The calibration procedure is similar to that specified for Fig. 15.
Multivibrator and amplifier

Figure 17 is the schematic for a very low-frequency (VLF) free-running multivibrator that produces a squarewave output. The multivibrator’s ON and OFF periods are controlled by the time constants from the resistor-capacitor pairs C1R4 and C2R3. Because of very high JFET input impedances, the resistive factors of these time constants can be very large. This permits long time periods to be obtained with low capacitance values.

With the components shown in Fig. 17, the oscillator switches once every 20 seconds (0.05 Hz). Unfortunately, START button S1 must be held closed for at least one second to initiate the astable action. Because of this shortcoming, consider the circuit to be more of an experiment than a practical circuit.

Figure 18 illustrates how an N-channel JFET can combine with a classical µA741 operational amplifier to form a voltage-controlled amplifier/attenuator. Here, the op-amp is connected as an inverting amplifier with its gain determined by the ratio of input resistor R2 to feedback resistor R3. Thus, JFET Q1 functions as a voltage-controlled resistor. The circuit can attenuate an input signal to the amplifier.

When a large negative control voltage (\(-V_e\)) appears at its gate, JFET Q1 acts as a virtual infinite resistance because its drain current (\(I_D\)) is pinched off. Because there is no input signal attenuation, the circuit functions as a high-gain amplifier. However, if the gate bias falls to zero, Q1 becomes a virtual short circuit. (Drain current is maximum and gate-to-source resistance falls to a few hundred ohms.) As a result, the input signal is heavily attenuated by the circuit.

Amplifier and converter

Intermediate values of signal attenuation and overall gain or loss can be obtained by varying the control voltage (\(V_{CD}\)) applied to the gate of Q1 between the zero bias and pinchoff limits.

Figure 19 is a schematic for a constant-volume amplifier that exploits the voltage-controlled resistor characteristics of the JFET. The amplifier produces an output signal that shifts only 7.5 dB when the input signal is varied over a 40 dB range (from 3 to 300 millivolts, rms). The amplifier can accept input signals as high as 500 millivolts, rms.

In Fig. 19, JFET Q1 and resistor R4 are in series to form a voltage-controlled attenuator that controls the input signal level to bipolar transistor Q2, which is in a common-emitter amplifier. Signal output from Q2 is buffered by bipolar transistor Q3.

Part of the output signal from Q3 is fed back to the gate of
FIG. 18—A JFET CONTROLS AMPLIFICATION AND ATTENUATION for this op-amp.

FIG. 19—THIS CONSTANT-VOLUME AMPLIFIER has a JFET in a closed loop for audio control.

FIG. 20—THIS DC TO AC CONVERTER has a JFET switch and a bipolar multivibrator pulse generator.

JFET Q1 by the DC negative-feedback loop consisting of capacitor C5, resistor R9, diodes D1 and D2, capacitor C4, and resistor R5. The negative-feedback automatically adjusts the constant-volume amplifier’s voltage gain by holding the output signal level constant as the input signal level is varied.

When a small signal is applied to the audio input terminals of the amplifier, the output at the emitter of Q3 is relatively small. Thus, very little negative bias is developed and fed to the gate of JFET Q1. JFET Q1 now acts like a low resistance and little signal attenuation occurs in the series resistance of the drop across Q1 and R4. As a result, most of the input signal is applied to the base of Q2.

However, when a large signal appears at the input terminals, the output at the emitter of Q3 is large. Thus, a large negative bias is developed and fed back to the gate of JFET Q1. In this condition, only a fraction of the input signal is applied to the base of Q2. Because of the negative DC feedback, the output level remains relatively constant over a wide range of inputs.

Figure 20 is the schematic for a DC-to-AC converter. The JFET acts as a switch, and a bipolar transistor flip-flop acts as the switching-signal generator. The converter produces a square-wave AC output with a peak amplitude equal to that of the DC input signal at its AC signal output terminals.

JFET Q1, the electronic switch, has its drain connected in series with input resistor R1 forming the positive DC terminal. JFET Q1 is switched on and off at a 1 kHz rate by the flip-flop consisting of bipolar transistors Q2 and Q3 and associated resistors and capacitors. The switching or “chopping” action converts DC to AC.

Potentiometer R8 varies the amplitude of the signal on Q1’s gate. If Q1’s gate signal is too large, its gate-to-source junction will avalanche, causing a voltage spike to appear at the drain. That transient will develop a small output signal at the drain of Q1 even when no DC input is present.

To prevent this glitch, connect a DC input to the converter, and adjust potentiometer R9 until the amplitude of the AC output just starts to decrease. JFET avalanching will not occur when this adjustment is made. As a result, the converter can reliably convert DC voltages with amplitudes as low as a fraction of a millivolt.
REMOTE CAR STARTER

Build this RF remote starter for your car.

MARTIN FOURNIER

There seems to be a universal hatred of getting out of bed on a cold winter morning. But most people will agree that going outside and warming up a freezing cold car is even worse. It always leaves you shivering for at least fifteen minutes. Wouldn't it be great if you could have someone else go outside and start your car so that you could jump right into a warm car and drive away?

Well you can scratch that one off your wish list. Our remote car starter will let you start your car remotely, from indoors, so that it's warmed up and ready to go when you are. And starting the car is not all it will do; it will also let you control power doors, trunks, and other car accessories.

Although this project is not difficult to build, it should not be attempted by anyone who is not intimately familiar with automotive installations. It is impossible for us to give detailed hookup instructions because every car model will need a different installation procedure. A complete installation requires tapping into your car's ignition, starter, door-lock, and other systems. Professional, experienced installation assistance is strongly recommended.

How it works

The RF remote starter consists of two major systems: an RF transmitter/receiver system and a starter control unit. Because RF remote controls are so difficult to tune, and expensive to build, the system uses a commercially made RF remote transmitter/receiver system, called the Enforcer, made by Seco-Larm. However, you can use any other RF remote-control system as long as it has a contact output. If you already have one, you might be able to modify it for use with this project.

The starter control unit is based on the 68HC705C8S microcontroller from Motorola. This chip consumes 4–10 milliamps in the operating mode and can go as low as a few microamps in its sleep mode. There are lots of microcontrollers that can do the job, but our choice was the 68HC705 with a "CBS" suffix which means that it's an extended temperature range device. Assembly-language source code for the microcontroller will be posted on the RE-BBS (516-293-2283, 1200/2400, 8N1), as a file called STATER.ASM. If you can't program your own, a pre-programmed microcontroller is available from the source mentioned in the Parts List. Figure 1 shows the schematic of the starter control unit.

The starter control unit contains two power supplies. The ICL7660 (IC2) supplies the −5 volts for the LCD. The chip provides a stable −5 volts when you apply 5–12 volts DC to pin 8. The LM7805 (IC4) feeds all the circuitry with +5 volts derived from the car's 12-volt supply.

Software

The flowchart for the microcontroller's main operating program is shown in Fig. 2. When the operator pushes the transmitter button once for less than 3 seconds, the microcontroller unlocks the doors. If nobody opens the doors within 20 seconds it will automatically relock them. If the operator unlocks the doors and pushes the transmitter button again within 5 seconds, the trunk will open. When the operator holds down the button for more than 3 seconds, the microcontroller executes the start routine.

The start routine, whose flowchart is shown in Fig. 3, operates as follows: First assume that the engine isn't running. The start request is acknowledged by the flashing of the car's headlights. Then the program verifies that the engine is not running, and turns on the accessory power of the car for 4 seconds. That delay is sometimes needed to let the fuel injection pump raise the pressure. Next, the starter relay closes for at least 0.5 second, and the program again checks to see if the engine is running by monitoring the signal from

www.americanradiohistory.com
FIG. 1—STARTER SCHEMATIC. IC2 generates −5 volts from a 5–12 volt DC source and IC3 generates +5 volts from the car's 12-volt supply.
the car's distributor points. If it isn't, the start process will repeat a maximum of 5 times. If the engine is not running after 5 tries, an error message is displayed on the LCD and the microcontroller is ready for another request. If the engine is running and somebody presses the button for more than 3 seconds, the engine will stay on and the monitor routine, shown in Fig. 4, begins.

Because security is very important, if somebody opens any door when the car is in the monitor routine, they'll have only 15 seconds to put the keys into the ignition before the engine shuts off. Also, if the engine is still running and after 30 minutes, an error message will be displayed.

Note that the operator can lock or unlock the doors or open the trunk at any time. Figure 5 shows the door/trunk routine.

FIG. 2—THE MAIN PROGRAM. When the operator pushes the transmitter button once, the microcontroller unlocks the doors; if nobody opens them within 20 seconds, they automatically lock again.

FIG. 3—THE START ROUTINE. The microcontroller turns on the accessory power of the car for 4 seconds, and then attempts to start the car.

FIG. 4—THE MONITOR ROUTINE. If the engine is running and somebody presses the button for more than 3 seconds, this routine will start.

FIG. 5—DOOR/TRUNK ROUTINE. If the doors are open, the microcontroller locks them and waits for 5 seconds to see if the transmitter button is pressed.
PARTS LIST

All resistors are 1/4-watt, 5%, unless otherwise noted.

R1, R11—470 ohms
R2, R8, R12, R21, R26, R29, R31, R32, R33, R36—10,000 ohms
R3, R9, R15—20 megohms
R4—10 megohms
R5—R7, R10, R13, R14, R34—1000 ohms
R23—10,000 ohms, potentiometer
R24—10,000 ohms, SIP resistor
R25—4700 ohms
R27—100,000 ohms
R30—470,000 ohms
R35—51 ohms

Capacitors
C1, C7, C8, C10, C12, C22—0.1 µF filter
C2—0.22 µF
C3—0.023 µF
C4, C5, C6, C9, C11, C13, C14, C16, C21—not used
C15, C19, C20—10 µF, 12 volts, electrolytic
C17, C18—15 pF

Semiconductors
IC1—68705CS8 microcontroller
IC2—ICL7660 voltage inverter (Signetics)
IC3—MC145041 A/D
IC4—LM7805 5-volt regulator
IC5—UA741 op-amp
IC6—MAX690 watchdog chip (Maxim)
IC7—not used
IC8, IC9, IC10—4N35 optoisolator (Signetics)

D1—D6—1N914 diode
D7, D8, D10, D11—1N4001 diode
D9—1N4739 9.1-volt Zener diode
D12—15-volt Transorb
D13—5-volt Transorb
Q1—Q6, Q9, Q10—2N2222 NPN transistor
Q7, Q8—not used
MOD1—Optrex 140-volt DC inverter (included with backlit display module)

Other components

DISP1—Optrex LCD module
RY1—RY6—12-volt relay (Omron)
XTAL—4-MHz crystal
J1—RJ-11 telephone jack
J2—18-position terminal strip
S1—SPST on/off switch
L1—100 mH coil

Miscellaneous

Project case, Enforcer RF remote control system (or equivalent), PC board, ribbon cable, wire, etc.

Note: The following items are available from Les Controles Micro-Tech enr., 147 14th Ave, Dolbeau Quebec Canada, G8L 2L9, 418-276-2477 (leave message):

- Remote starter, assembled and tested—$300
- Complete kit—$250
- PC board only—$40
- Programmed microcontroller—$25
- Case and hardware—$40
- LCD module with inverter—$60
- Write or call for quantity discounts.

When this routine is called, the program checks if the doors are open or not for 20 seconds. If the doors are open, the microcontroller locks them and waits for 5 seconds to see if the transmitter button is pressed. If it is, the processor opens the trunk and again checks to see if any doors are open and returns back to the main program. The 20-second delay is helpful in case you accidentally press the button once. The microcontroller will know that and will lock the doors if nobody opens them within 20 seconds.

The engine-run routine, shown in Fig. 6, waits for an input capture interrupt. After that the content of the timer is loaded in a memory location and the software waits again for another interrupt. When an interrupt occurs, the value of the timer is compared to a certain preset value to determine if the engine is running. A flag is set for engine running and clear for engine stop.

The engine-running feedback is taken from the breaker point of the car. Two jumpers, JMP1 and JMP2, are used to let the microprocessor know whether you have a 3-, 4-, 6-, or 8-cylinder engine. Note that information on setting those two jumpers is included in Fig. 1. The program will modify the

FIG. 6—ENGINE-RUN ROUTINE. The microcontroller waits for an input capture interrupt to determine if the engine is running.

FIG. 7—THE FINISHED BOARD is shown here installed in its case.
Let’s start with some updates to our earlier columns. Yet another approach to the $5 Navicube is a plain-old low-cost mechanical gyro. That’s the route that Gyration has chosen with its unique GyroPoint system. The entire gyro, the size of a film can, has been designed from the ground up for consumer applications.

Prototype costs, of course, are still totally outrageous. To me, spinning wheels seem a hopelessly outdated interim solution at best. There’s no doubt that micro-machined silicon is ultimately the only way to go.

The CEO of a traditional gyro firm has assured me that it was "absolutely impossible" to create a $5 rate gyro. Well, there are too many emerging applications that demand a $5 gyro replacement. The paradigm has shifted, and the time is long past due for stunning cost reductions here. The choice a traditional gyro CEO has is simple: bring out this inevitable product by yourself. Or else go down in flames.

Here are two more Asian electronic resources: There’s now an EDN Asia version of this popular magazine. The Hong Kong Trade Development Council has a toll-free number that lists 52,000 manufacturers, importers, and exporters. Some other assistance is also available.

Cubic splines

There are lots of times and places where you would like a machine or a computer to create a graceful curve. Perhaps with a CAD/CAM mill, on an engineering graph, in a 3-D surface modeler, vinyl sign cutter, or for any other typography, plain or fancy.

I have recently been exploring a really great scheme to deal elegantly with graceful curves. These are called cubic splines. They are sometimes called Bezier curves, after the French mathematician who explored them. What do we ask of a curve-drawing method? First and foremost, the curve should look good. Second, we want the method to be largely device independent, working the exact same way for video screens, laser printers, typesetters, embroidery machines, or whatever. All done from the same ordinary text file.

Third, we’ll want it to use sparse data, easily described with only a few size-independent values. Fourth, we’ll want to be able to splice simple splines together into more complex curves without serious glitches.

Fifth and finally, we want it to be reasonably fast and easy to compute. And easy to understand.

The simplest way to build a curve is the step method, where you move over a click and up one notch. You keep repeating with different-sized clicks and notches until you step along the entire curve. You want the clicks and notches small enough for "smooth" results, but big enough so that you don’t need a zillion of them.

Better yet, do your clicking and notching at the same time by using a vector or stroke method that’s able to approximate your curve with straight line segments. This curve looks a lot better than one from the step method, but there are still joint breaks. And an incredible amount of detail work is needed.

A fancier approach is to use little broken pieces of parabolas. This is the quadratic spline or second order curve-fitting method. But lots of pieces are still needed, and the results just do not look all that great. More on this another time.

I believe the "best" method for drawing simple and graceful curves involves a cubic spline technique. There are two ways of looking at cubic splines, and you’ll have to use both of them for full control. You can work in a graph space, where you are actually looking at the spline. Or you can work in an equation space, where you can precisely control your underlying math.

Figure 1 first shows a cubic spline in its graph space. Regardless of its size, only four points (or eight x-y data values) are needed to fully specify the spline...

- The initial point at \(x_0, y_0 \) tells you where the spline starts.
- The final point at \(x_3, y_3 \) tells you where the spline ends.
- The first influence point at \(x_1, y_1 \) should set the direction and enthusiasm with which your curve leaves the initial point.
- The second influence point at \(x_2, y_2 \) should set the direction and enthusiasm that your curve enters the final point.

Other names for the enthusiasm are the tension or the velocity.

A line connecting the initial point and first influence point defines the initial tangent direction taken by the spline. The first tiny step along your spline should always head out in this direction. Similarly, a line connecting the second influence point and the final point defines the final tangent direction for your spline.

To build a cubic spline in the graph...
space, set your end points. Then you move the influence points around to stretch and squeeze the spline into its intended shape. Typically, the influence points are well away from the curve itself.

Just like any middle management magician, you will find limits to the "rabbits" a single cubic spline can pull out of its hat. One spline can produce any straight line or smoothly curved path; some smooth curves with at most, one inflection point (such as a sine wave); some curves with a single cusp (or "point"); or certain curves with one single and simple loop in them. All of them are both graceful and sparsely defined.

For fancier stuff, use several splines end-to-end. We’ll see more on this shortly.

Figure 1 also shows a cubic spline in its equation space. Instead of relating x to y, you relate them both to a new parameter, t. You can think of t as time. t will always range precisely from zero to one as your spline smoothly moves from its initial point to its final point.

One interesting way to look at the cubic splines is to think of a box in x, y, and t space. Inside the box is a three-dimensional snake-like curve. Look in the xy end of the box and you will see the spline. Look in the xt side, and you will see how y varies as t (or time) goes from 0 to 1. Or look down through the xt top to see how x varies, again as t goes from 0 to 1.

Note that x and y are independent of each other. Each is separately defined in terms of t. Knowing one does not reveal the other—unless you find t first. Note that t usually does not move uniformly along the curve. Instead t tends to move faster along the "more bent" portions of the curve and slower along the straighter portions.

Bopping between the equation and graph space is the key to controlling your splines. Figure 1 also shows the simple ninth-grade algebra needed to go from those influence points to the math equations, and vice versa. For some strange reason, this simple and obvious two-way math is very hard to find in textbooks.

Let's repeat the basic cubic spline equations here:

\[x = A t^3 + B t^2 + C t + D \]
\[y = E t^3 + F t^2 + G t + H \]

Once again, t goes from zero to one as one goes from the beginning to the end of your spline.

The obvious reason we call these cubic splines is that the highest power of t involved is a third power cube. The cubic term is most effective on the right end of the curve. The quartic (squared) term does most of its useful work in the middle. The linear term sets the initial slope, and the final D value sets the offset. By suitably combining those four terms, a wide and useful variety of spline curves can be generated as needed.

But doesn't a cubic spline have a length? Well, obviously. But only if you are not a mathematician. Go through the lengthy math, and a big ugly square root of some fourth-order polynomial (which is much worse than it sounds) should leap out at you. After years of careful asking, I have yet to find any simple and exact closed-form solution for the length of a cubic spline.

Yet, knowing the length of a spline becomes very interesting for positioning typography on a curved surface, to fit fuzzy data, for correcting or creating distortions, or for...
that just-for-fun avuncular sleezoid surface you will find in Fig. 2.

So, what I'll do instead is chop up any cubic spline into a hundred or so pieces. I then assume each piece is a straight line, and add their lengths up. The answer is typically good enough for most graphical uses, and a mere hundred points usually gives better than one part per thousand final accuracy.

By the way, if you know how to quickly and conveniently find the exact length of a cubic spline, please let me know. There's a free Incredible Secret Money Machine for your trouble. Every math freak that I've talked to insists this is im-

Earn Your B.S. Degree in ELECTRONICS or COMPUTERS

By Studying at Home

Grantham College of Engineering, now in our 43rd year, is highly experienced in “distance education”—teaching by correspondence—through printed materials, computer materials, fax, and phone.

No commuting to class. Study at your own pace, while continuing on your present job. Learn from easy-to-understand but complete and thorough lesson materials, with additional help from our instructors.

Our Computer B.S. Degree Program includes courses in BASIC, PASCAL and C languages—as well as Assembly Language, MS DOS, CADD, Robotics, and much more.

Our Electronics B.S. Degree Program includes courses in Solid-State Circuit Analysis and Design, Control Systems, Analog/Digital Communications, Microwave Eng.), and much more.

An important part of being prepared to move up is holding the right college degree, and the absolutely necessary part is knowing your field. Grantham can help you both ways—to learn more and to earn your degree in the process.

Write or phone for our free catalog. Toll free, 1-800-955-2527, or see mailing address below.

* Accredited by the Accrediting Commission of the National Home Study Council

GRANTHAM College of Engineering
Grantham College Road
Slidell, LA 70460

April 1983. Electronics Now
possible. They have almost convinced me.

Things become interesting when you splice cubic splines together. This is how you build fancy typography and other complex shapes. Ideally, you want to at least match the end points and the end point slopes. The rate of change of the curvature at each joint should also be constant, but this gets nasty in a hurry.

Picking the points gets tricky. Try to go too far with each spline and you lose accuracy. Don’t go far enough, and you need too many splines, and the splines can automatically pick how many splines to use to produce the “best” possible results. This is not trivial, especially with noisy data.

You first have to decide how long each spline is to be and where it is to go. Then, you’ll most often want to constrain all the intermediate splines, controlling both the entry angles and entry points. Or otherwise restricting them for continuity.

The “horses’ mouth” paper on all of this is Curvefitting with piecewise parametric cubics by Michael Plass and Maureen Stone (with a little help by some guy named Warnock). This appeared in the July 1983 issue of Computer Graphics pg. 229–239, otherwise known as the SIGGRAPH Proceedings for 1983. The math here is unbearably heavy and obtuse.

So, I decided to take this general “fancy but noisy data into a connected cubic splines” concept and I have generated somewhat similar results with #588 FUZZYBEZ.PS. It will create the best smooth cubic spline through any noisy data while keeping your choice of constraints. Only ninth-grade algebra is involved, and most of that is fully automated. Speed is around five seconds per spline.

We will have several contests this month. To start off, either find me a simple Bezier length formula (lots of luck!), or show me a new and unusual tool for cubic splines. Or curve trace me something that is interesting.

There will be the usual Incredible Secret Money Machine book prizes, along with an all-expense-paid (FOB Thatcher, AZ) tinaja quest for two going to the very best of all.

Be sure to send your written entries to me at Synergetics, rather than to Electronics Now editorial. Any code can be directly uploaded to PSRT.

Non-ionizing radiation safety

Do power lines cause cancer? One recent movie and a lot of my helpline callers seem quite concerned over this. As with any controversy, your first step is to pick up accurate and unbiased data, and useful tools for your own research.

Start off with Polarized Debate: EMF’s and Cancer, found in Science for December 11, 1992, pg. 1724–1725. This is an unbiased summary. There’s also the Microwave News: A Report on Non-ionizing Radiation. This one is expensive and it has an alarmist tone about it.

As usual, any ongoing scientific controversy can be followed via the Dialog Information Service. And any newer important papers are likely to show up in those Electric Power Research Institute reports.

For instruments and components, two sources include F. W. Bell and Walker Scientific. And ads for similar products appear in Compliance Engineering, an engineering magazine.

One little noted fact: while high-voltage power lines sound strong and nasty, their field strengths, expressed in volts-per-inch at same distances, are much lower than a normal internal electrical human cell potentials. And by far, the largest magnetic field that you’ve ever been exposed to is that of earth itself.

My own belief is that if there were any major problems here, they would have become obvious a long time ago. There probably are some observable effects, but they probably lie within acceptable risk bounds. Moreover, they are reasonably avoidable.

On the other hand, avoiding some really dumb stuff (such as building new playgrounds under high-volt-
age lines or sitting on a police radar) is probably a good idea. However, utilities studiously avoiding any careful and unbiased research certainly is not. There is probably a hacker buck to be made providing low-cost monitoring instruments. And possibly a science-fair project or school paper can come out of your own surveys.

National's simple switcher

The National Semiconductor folks have been offering free sample kits of their new simple switcher series of voltage regulators. Figure 4 shows a typical circuit. Only five parts are needed to take raw 7–60 volts of input and provide a fixed +5-volt output. Other chips in the series give other values of fixed or adjustable output: step-up, step-down, and polarity-inverting circuits.

We've looked at these switchmode regulators in previous columns and in the Hardware Hacker reprints. The major advantage of any switchmode regulator is its potential efficiency. Stepping 40 volts down to 5 volts with a one-amp linear regulator is, at best, only 12.5 percent efficient. For each watt of load power, you have to burn up an extra seven watts internally.

But a switching regulator can, in theory, be 100 percent efficient. And getting above 85 percent is very easy in the real world. Thus, you burn up only around 150 milliwatts internally for each watt of load power that means less input power and less heat gets dumped. Heat sinks can often be eliminated entirely from the circuit.

Any switching regulator does just that. It is a high-speed switch that is rapidly turned on and off at a chosen duty cycle. The duty cycle sets the average current through the output inductor, and thus the load current. A feedback loop adjusts the time the switch is on. During times the switch is off, a freewheeling diode continues the inductor's current path.

In our 40-volt input example, the switch is on only for one eighth of the time. Thus, the average input current is only an eighth that of a comparable linear regulator. The frequency used is 50 kilohertz.

Full details appear on the related data sheets and application notes. There's also a companion diskette that lets you optimize all your exter-
FIG. 4—THE SIMPLE SWITCHER series of chips from National let you build an efficient switchmode regulator with only five parts. Heatsinking can often be eliminated completely. Free kits are available on professional request.

Switchmode resources

For this month's resource sidebar, I have gathered together a few of the more obvious places to go for more information on these switching-mode techniques. Not only for regulators, but also for motor controls and power inverters. The listing is mostly a mix of semiconductor houses that provide switchmode chips and a collection of the leading electronics publications.

National's simple switcher is nice, but your best switchmode resource is Maxim. It offers bunches of freebie samples and evaluation boards of an incredibly wide selection of voltage regulators and converters. Lots of application notes, too.

Let me know if I've missed anyone important. There are scads of hacker opportunities here. Especially in the area of clean, stable,

NAMES AND NUMBERS

<table>
<thead>
<tr>
<th>F W Bell</th>
<th>GEnie</th>
</tr>
</thead>
<tbody>
<tr>
<td>6120 Hanging Moss Road</td>
<td>401 N Washington Street</td>
</tr>
<tr>
<td>Orlando, FL 32807</td>
<td>Rockville, MD 20850</td>
</tr>
<tr>
<td>(407) 678-6900</td>
<td>(800) 638-9636</td>
</tr>
<tr>
<td>CIRCLE 332 ON FREE INFORMATION CARD</td>
<td>CIRCLE 338 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>Compliance Engineering</td>
<td>Gyration</td>
</tr>
<tr>
<td>593 Massachusetts Avenue</td>
<td>12930 Saratoga Avenue, Bldg C</td>
</tr>
<tr>
<td>Boxborough, MA 01719</td>
<td>Saratoga, CA 95070</td>
</tr>
<tr>
<td>(508) 264-4208</td>
<td>(408) 255-3016</td>
</tr>
<tr>
<td>CIRCLE 333 ON FREE INFORMATION CARD</td>
<td>CIRCLE 339 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>Data I/O</td>
<td>Hong Kong Trade Council</td>
</tr>
<tr>
<td>P.O. Box 97046</td>
<td>219 East 46th Street</td>
</tr>
<tr>
<td>Redmond, WA 98052</td>
<td>New York, NY 10017</td>
</tr>
<tr>
<td>(800) 3-DATAIO</td>
<td>(212) 838-8688</td>
</tr>
<tr>
<td>CIRCLE 334 ON FREE INFORMATION CARD</td>
<td>CIRCLE 340 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>Dialog</td>
<td>Microwave News</td>
</tr>
<tr>
<td>3460 Hillview Avenue</td>
<td>POB 1799, Grand Central Station</td>
</tr>
<tr>
<td>Palo Alto, CA 94304</td>
<td>New York, NY 10163</td>
</tr>
<tr>
<td>(415) 858-2700</td>
<td>(212) 517-2800</td>
</tr>
<tr>
<td>CIRCLE 335 ON FREE INFORMATION CARD</td>
<td>CIRCLE 341 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>EDN Asia</td>
<td>National Semiconductor</td>
</tr>
<tr>
<td>275 Washington Street</td>
<td>475 Ellis Street</td>
</tr>
<tr>
<td>Newton, MA 02158</td>
<td>Mountain View, CA 94043</td>
</tr>
<tr>
<td>(617) 964-3030</td>
<td>(800) 632-3531</td>
</tr>
<tr>
<td>CIRCLE 336 ON FREE INFORMATION CARD</td>
<td>CIRCLE 342 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>Electric Power Research Inst</td>
<td>Philips</td>
</tr>
<tr>
<td>PO Box 10412</td>
<td>811 East Arques Avenue</td>
</tr>
<tr>
<td>Palo Alto, CA 94303</td>
<td>Sunnyvale, CA 94088</td>
</tr>
<tr>
<td>(415) 855-2000</td>
<td>(800) 447-1500</td>
</tr>
<tr>
<td>CIRCLE 337 ON FREE INFORMATION CARD</td>
<td>CIRCLE 343 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>Science</td>
<td>Synergetics</td>
</tr>
<tr>
<td>1333 H Street NW</td>
<td>Box 809</td>
</tr>
<tr>
<td>Washington, DC 20005</td>
<td>Thatcher, AZ 85552</td>
</tr>
<tr>
<td>(202) 326-6400</td>
<td>(602) 428-4073</td>
</tr>
<tr>
<td>CIRCLE 344 ON FREE INFORMATION CARD</td>
<td>CIRCLE 347 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>Sound & Communications</td>
<td>TDK</td>
</tr>
<tr>
<td>25 Willowdale Avenue</td>
<td>1600 Feehanville Drive</td>
</tr>
<tr>
<td>Port Washington, NY 11050</td>
<td>Mount Prospect, IL 60056</td>
</tr>
<tr>
<td>(516) 767-2500</td>
<td>(708) 803-6100</td>
</tr>
<tr>
<td>CIRCLE 345 ON FREE INFORMATION CARD</td>
<td>CIRCLE 348 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>Sound & Video Contractor</td>
<td>Walker Scientific</td>
</tr>
<tr>
<td>9800 Metcalf</td>
<td>Rockdale Street</td>
</tr>
<tr>
<td>Overland Park, KS 66212</td>
<td>Worcester, MA 01606</td>
</tr>
<tr>
<td>(913) 341-1300</td>
<td>(800) 962-4638</td>
</tr>
<tr>
<td>CIRCLE 346 ON FREE INFORMATION CARD</td>
<td>CIRCLE 349 ON FREE INFORMATION CARD</td>
</tr>
</tbody>
</table>

Tional component values. By the way, both the inductor and the freewheeling diode values are critical and exact brands and values must be used. The circuit will not work with an inductor that has too high a DC resistance or one that saturates at higher current levels.

New tech lit

New Electrorheological Fluids are
found in Science for October 30, 1992 on pages 761–766. These are fluids whose apparent viscosity can change with the applied voltage. Obvious applications would be in clutches, four-wheel drive-on-demand, and robots. Plus, of course, it is a "just-obscure-enough" student paper topic.

From Philips, there's a Semiconductor Sensors Data Handbook. It includes magnetic field sensors, temperature sensors, and proximity detectors. And through TDK, a similar Sensors short-form catalog on devices for infrared, humidity, current, surface potential, and even powder levels.

An enormous and free Wall Chart of Programmable Devices from Data I/O lists just about all the EPROM's, EEPROM's, PLD's, and similar devices.

Two magazines of interest to professional sound installers are the Sound & Communications and the Sound & Video Contractor.

A reminder that I stock just about all of the important PostScript books from all of the major authors. I have even gathered together one each of everything into our PostScript Whole Works package. And much more on everything PostScript appears on my GEnie PSRT.

I've just added a new way to write fancy math equations in PostScript that includes some TEX-like features. See GNZOTRX2.PS for details. Or try HACK61.GPS for an editable copy of my Fig. 1 example. As usual, I've gathered a lot of the resources I've mentioned into the Names and Numbers and Switchmode Resources sidebars. Check here first before calling our tech helpline.

For your Heart's sake get PULSE STICK II

Your very own sophisticated pocket health monitor, PULSE STICK II, checks your pulse rate quickly and accurately anywhere. Regular monitoring of your pulse rate during exercise will enable you to plan an exercise regimen suitable for your stage of fitness. pulse stick II provides an early warning that you may be exceeding your own capabilities.

PULSE STICK II photoelectrically measures the changes in the pulsed intensity of infrared radiation emitted by superficial blood vessels below the skin of the thumb. The time intervals between pulses are automatically measured and displayed in a liquid-crystal display (LCD).

Before attempting any exercise program, consult your doctor. Ask for guidance regarding the recommended safe pulse ranges for your exercise program. Follow your doctor's instructions carefully.

Only $39.95

Uses three AA dry cells supplied with PULSE STICK II

Ideal for running, walking and aerobic training programs!

PSII-2

☐ YES! Please send me PULSE STICK II at $39.95 each. Price includes shipping and handling charges.

Total amount of order $__________________

☐ Check or Money Order enclosed. Make check payable to CLAGGK Inc. PULSE STICK II Offer

Charge my [] Visa [] MasterCard

Account No. ____________________________

Exp. Date______/______

Credit Card Signature _________________________

Print Name ________________________________

Address __________________________________

City ______ State ______ Zip ______

No telephone orders or C.O.D. Signature required on credit card orders. All prices include postage and handling. Payments in U.S. funds only. New York residents must include local applicable sales taxes. No foreign orders.

Mail orders to CLAGGK Inc. Pulse Stick II Offer, P.O. Box 4099, Farmingdale, NY 11735

FAX orders to 1-516-293-3115
LARRY STECKLER, EH/ CET
EDITOR-IN-CHIEF

ELECTRONICS OF ALL KINDS ARE BECOMING MORE SOPHISTICATED EVEN AS THEY SHRINK IN SIZE AND DROP IN PRICE. THIS TREND CAN BE SEEN IN ALL AREAS—MILITARY, INDUSTRIAL, COMMERCIAL, AND CONSUMER. TO COMPLICATE THE ISSUE, THE RAPID PACE OF NEW TECHNOLOGY INTRODUCTION IS RENDERING LAST YEAR’S CUTTING EDGE PRODUCT—VCR, TV, CD PLAYER OR EVEN PC—A CANDIDATE FOR THE BACK SHELF, BASEMENT—OR WORSE—THE JUNKYARD.

THIS SITUATION POSES BOTH A THREAT AND A CHALLENGE TO THE QUALIFIED TECHNICIAN. IS IT POSSIBLE TO EXTEND THE LIFE OF OTHERWISE SERVICEABLE PRODUCTS BY MAKING COST-EFFECTIVE REPAIRS? THE PAYOFF IS IN SAVING THEIR EMPLOYERS’ OR CUSTOMERS’ MONEY, INCONVENIENCE, AND PERHAPS EVEN DOWNTIME.

UNFORTUNATELY, THE NUMBER OF QUALIFIED ELECTRONICS TECHNICIANS CAPABLE OF MAINTAINING, REPAIRING OR UPGRADING TODAY’S EQUIPMENT HAS BEEN DECLINING. THERE IS NOW A GROWING NEED FOR MORE TECHNICIANS WELL VERSED IN THE LATEST ANALOG AND DIGITAL TECHNOLOGY WHO CAN WORK PRODUCTIVELY. ALL TOO OFTEN, THE COST OF EVEN MINOR REPAIRS IS A SIGNIFICANT FRACTION OF REPLACEMENT COST. THAT FREQUENTLY RESULTS IN A BUY VS. REPAIR DECISION—AND CONSEQUENT WASTE OF VALUABLE HARDWARE.

A SKILLED ELECTRONICS TECHNICIAN HAS AN OPPORTUNITY TO ADVANCE TO MORE RESPONSIBLE SUPERVISORY OR MANAGEMENT POSITIONS—IF HE OR SHE HAS SOME OBJECTIVE WAY TO DEMONSTRATE HIS OR HER EXPERIENCE AND SKILL.

FOR MANY, THAT IS ACCOMPLISHED BY ON-THE-JOB PROMOTION OR PRODUCTIVITY AWARDS. BUT FOR MOST, ONE OF THE BEST WAYS TO GAIN THAT RECOGNITION IS TO BECOME A CERTIFIED ELECTRONICS TECHNICIAN (CET).

DESPITE THE WELL PUBLICIZED DOWNSIZING OF SOME OF THE INDUSTRY GIANTS, AND CUTBACKS AS DEFENSE CONTRACTORS ATTEMPT TO RETOOL FOR ALTERNATE WORK, MOST INDUSTRY LEADERS AGREE THAT THERE WILL ALWAYS BE AMPLE OPPORTUNITIES FOR CAPABLE, RESPONSIBLE, VERSATILE ELECTRONICS TECHNICIANS. THE TURNAROUND HAS BEGUN, AND NOW IS THE TIME TO BECOME A CET. YOU ARE INVITED TO JOIN MORE THAN 35,000 CERTIFIED ELECTRONICS TECHNICIANS IN A WORLD-WIDE OBSERVANCE OF “ELECTRONICS TECHNICIANS DAY” ON APRIL 6, 1993.

ERNIE CURTIS, CET, CHAIRMAN OF THE INTERNATIONAL SOCIETY OF CERTIFIED ELECTRONICS TECHNICIANS STATED, “MORE THAN EVER BEFORE, WE MUST ASSIST QUALIFIED ELECTRONICS TECHNICIANS IN ATTAINING POSITIONS COMMENSURATE WITH THEIR TRAINING AND EXPERIENCE. THROUGH OUR QUALIFIED RECOGNITION PROGRAM OF CERTIFICATION, WE CAN ASSIST CERTIFIED ELECTRONICS TECHNICIANS IN THEIR EFFORTS TO GAIN RESPONSIBLE EMPLOYMENT.

ISCET RECOGNIZES THAT WITHOUT THIS HIGHLY-SKILLED AND SPECCHY-TRAINED CORPS OF CERTIFIED ELECTRONICS TECHNICIANS, BREAKDOWNS IN MODERN COMPLEX ELECTRONICS COULD QUICKLY BRING OUR SOCIETY TO AN ABRUPT HALT.

“ISCET’S SALIENT INTENTION,” CURTIS CONTINUES, “IS TO FOCUS INTERNATIONAL RECOGNITION ON THE HIGH STANDARDS OF PERFORMANCE AND EXCELLENCE MAINTAINED BY PROFESSIONAL ELECTRONICS TECHNICIANS.”

OVER 150 ISCET CERTIFICATION Test Administrators, THROUGHOUT THE UNITED STATES, HAVE VOLUNTEERED TO GIVE CET TESTS DURING THE WEEK OF APRIL 4 THROUGH 10 TO HONOR ELECTRONICS TECHNICIANS DAY. THE COMPLETE LIST OF ALL OF THESE TEST SITES, WHICH INCLUDES THIS PUBLICATION’S OFFICES, IS INCLUDED ELSEWHERE IN THIS ARTICLE.

WHILE THE CET PROGRAM IS FOCUSED PRIMARILY IN THE U.S., TECHNICIANS AROUND THE WORLD SEEK CET CERTIFICATION, EVEN IN SUCH WAR-TORN COUNTRIES AS SLOVENIA, FORMALLY A PART OF YUGOSLAVIA. IN THE SUMMER OF 1992, DRAGO LUMBAR, CET, PASSED HIS RADAR OPTION TO BECOME THE FIRST CET IN THAT NEW NATION. LUMBAR, WHO STUDIED ELECTRONICS BY CORRESPONDENCE FROM CLEVELAND INSTITUTE OF ELECTRONICS, IS EMPLOYED AT LUMBAR & CO. IN LJUBLJANA, SLOVENIA.

WHAT IS ISCET?

AS THE PROUD ELECTRONICS TECHNICIANS DIVISION OF THE NATIONAL ELECTRONICS SERVICE DEALERS ASSOCIATION (NESDA), ISCET WAS FOUNDED IN 1970 BY A COMMITTEE OF CERTIFIED ELECTRONICS TECHNICIANS WHOSE MAIN PURPOSE WAS TO FOSTER RESPECT AND ADMIRATION FOR THEIR PROFESSION. BY MAINTAINING RIGOROUS STANDARDS IN ITS CERTIFICATION PROGRAM, ISCET IS ABLE TO SEPARATE THE HIGHLY SKILLED AND KNOWLEDGEABLE TECHNICIANS FROM THOSE WITH LESS EXPERIENCE. ISCET’S MAIN FUNCTIONS INCLUDE DIRECTION AND ADMINISTRATION OF THE CET PROGRAM, THE NATIONAL APPRENTICE AND TRAINING PROGRAM, TECHNICAL INFORMATION-TRAINING AND
6: ELECTRONICS TECHNICIANS DAY

upgrading programs, and the serviceability programs.
In addition, ISCET offers its members a continual source of technical material, including regular updates on new technology, training seminars, discounts on books, tapes, and software, newsletters, and a magazine. There is also an annual industry directory; and an annual convention with management and technical-training seminars, an instructor's conference, and a trade show.

The CET program is designed to measure the degree of theoretical knowledge and technical proficiency of practicing technicians. A technician with a CET certificate is considered in the industry to be one who possesses the training and expertise necessary to perform his job with professional competence. Since its inception, the CET program has continued to gain acceptance by technicians, manufacturers, and consumers. Many organizations encourage, and often require, their technical employees to be certified by ISCET.

Technician skills.
Just keeping up with the changes that seem to occur daily in equipment is a full-time task. To be able to service the latest electronic equipment with its new circuitry, new components, and new principles is a difficult challenge. Today's electronics technicians must constantly learn, constantly acquire new skills, and constantly develop new techniques. They must become familiar with new kinds of test equipment and advanced servicing techniques to repair the latest electronics marvels.
Perhaps this was best summed up by Don Winchel, CET, ISCET's Immediate Past Chairman, when he said, "Because of the dynamic changes that have occurred in electronics during the past decade, all corners of our modern world now look to electronics technicians to keep our civilization ticking. The new techniques, devices, and technologies that have appeared in just one product, the camcorder, in the past few years alone are mind-boggling. Today's electronics technicians must be able to analyze complex problems instantly which places them in a select group of the world's work force that will see unprecedented rewards of a grateful industry in the 21st century."

The CET exam.
To become certified by ISCET, the electronics technician must pass both a 75-question Associate-level CET test, and a 75-question Journeyman-level test. To pass, the candidate must score a grade of 75 percent or better. An electronics technician or student with less than four years of experience may apply for the Associate-level exam only, which covers the following subjects: Basic Mathematics, DC Circuits, AC Circuits, Transistors and Semiconductors, Electronic Components, Instruments, Tests and Measurements, Troubleshooting, and Network Analysis.
A fully certified technician must have four or more years of education or experience in electronics, and must pass, in addition to the Associate-level test, one or more of the Journeyman options available in specialized fields of electronics. The Journeyman options are:
• Consumer—Subjects covered include antennas and transmission lines, digital and linear circuits in consumer products, TV and VCR servicing problems, and the use of appropriate test equipment.
• Industrial—Subjects include transducers, switches, power factor, differential amplifiers, closed-loop feedback, basic logic circuits and functions, elements of numeric control, thyristors, and SCR controls.
• Communications—This test covers two-way radio receiver theory and servicing, receivers, transmitters, basic communications theory, deviation sensitivity, quieting, and troubleshooting.
• Computer—This test covers operation of computer systems with basic emphasis on hardware. Subjects covered include basic arithmetic and logic operations, computer organization, input and output equipment, and memory and storage.
• Audio—Products covered in this option include turntables.

Continued on page 91
Your Ticket To SUCCESS
Over 28,000 technicians have gained admittance worldwide as certified professionals. Let your ticket start opening doors for you.
ISCET offers Journeyman certification in Consumer Electronics, Industrial, Medical, Communications, Radar, Computer and Video. For more information, contact the International Society of Certified Electronics Technicians, 2708 West Berry Street, Fort Worth, TX 76109; (817) 921-9101.
Name ____________________________
Address __________________________
City ________________________________
State __________________ Zip

Send material about ISCET and becoming certified.
Send one “Study Guide for the Associate Level CET Test.” Enclosed is $10 (inc. postage).

Rates: Ads are 2 1/4” x 2 1/4”. One insertion $995 each. Six insertions $950 each. Twelve insertions $925 each. Closing date same as regular rate card. Send order with remittance to Computer Admart, Electronics Now Magazine, 500-B Bi-County Blvd., Farmingdale, NY 11735. Direct telephone inquiries to Arline Fishman, area code-1-516-293-3000. FAX 1-516-293-3115. Only 100% Computer ads are accepted for this Admart.

DR. "CHIP" MUNK SAYS

"Chip" experts agree with Dr. Munk. TECI's PC based microcontroller development tools are the most cost effective for veterans or beginners.

6805 PRIMER FOR BEGINNERS - $95.00
6805/68HC05/68HC11 DEVELOPMENT TOOLS - $99.00
6805/68HC05 SIMULATOR/DEBUGGERS - $99.00
6805/68HC05/68HC11 SIMULATORS FROM $29.00
68HC705/68HC805 PROGRAMMERS FROM $395.00
COMPLETE PC BASED DEV. SYSTEMS FROM $499.00
68HC705/68HC805 REAL TIME SIMULATORS FROM $985.00

TECI CALL TOLL FREE 1-800-336-8321
The Engineers Collaborative, Inc.
Rt 97 Box RC, Barton, VT 05822 USA
TOLL FREE 1-802-525-3458 FAX: (802)525-3451

DRAWING BOARD
continued from page 18
Don't get me wrong—decoding like this is sometimes necessary, and if you’re new to design, it’s a good learning experience. But a smarter way to go about this is to use an EPROM, a one-chip solution to the problem.

You can use any EPROM you happen to have around, because we’re interested in only two input addresses (24 and 257), and need only one or two data lines (depending on how we design the circuit that enables the manufactured or transmitted sync). The circuit is shown in Fig. 1, and the EPROM's truth table is shown in Table 1. I'm using two data lines to switch between sync sources, but a design could easily be worked out that uses only a single data line.

This is easier to understand when you look at Fig. 2, a block diagram that shows all of the circuitry we've just been talking about. There are two possible sources of horizontal sync pulses: the ones from the original video signal, and the ones being generated by the phase-locked loop circuit. We want to use the transmitted sync during the vertical interval (it's sent in the clear during the vertical interval), and the generated sync for the rest of the time. We have 28 lines of signal with transmit-
FIG. 3—THE SYNC SWITCHER is really just an electronic single-pole, double-throw switch. Here we've added the EPROM and the 4066 switch. The EPROM's data lines directly control the two 4066 control lines.

ted horizontal sync: they are lines 261 and 262 at the end of one frame, and lines 1–26 at the start of the next frame.

The sync switcher we need is really just an electronic version of a single-pole, double-throw switch, and the easiest way to put one of them together is to use a 4066 just as we did some months ago. Figure 3 shows our circuit so far, with the addition of the EPROM and the 4066 switch. Notice that the EPROM's data lines directly handle the two 4066 control lines. That can be done because the EPROM outputs change state only when the 4040 counter signals the arrival of either line 24 or line 257. If you use gates to decode the counter output, you'll have to find a way to do the same thing. One approach would be to use some of the gates left over from last month's project to build a set/reset flip-flop.

FIG. 4—INSTEAD OF AN EPROM, you can use some of the gates left over from last month's project to build a set/reset flip-flop.
SUPER 12 HOUR RECORDER
CALL TOLL FREE
Modified Panasonic Slimline,
6 hrs per side
120 TDK tape furnished.
AC/DC Operation.
Quality Playback.
Digital Counter.
Durable Lightweight Plastic.
$119.00*

PHONE RECORDING ADAPTER
Starts & Stops Recorder
Automatically When
Hand Set is Used.
Solid State!
FCC Approved
$28.50*

VOX VOICE ACTIVATED CONTROL
$28.50*

* Add for ship. & handling, Phone Adapter & Vox $2.00 each, Recorders $5.00 each. Colo. Res add tax. Mail Order, VISA, M/C, COD’s OK. Money Back Guar. Qty Disc. available. Dealer inquiries invited. Free data on other products.
AMC SALES INC. 193 Vaquero Dr.
Boulder, CO. 80303
Phones (303) 499-5405 1-800-926-2488
FAX (303) 494-4924
Mon-Fri 8-5 MTN. TIME

FIG. 5—IF THE 4046 PULSES WON’T TRIGGER the horizontal flyback in your TV, this circuit will generate 4.7-microsecond pulses when triggered by the 4046.

FIG. 6—TO CORRECT INVERTED VIDEO, we need the information buried in line 20.

flop whose control lines are triggered by the arrival of lines 24 and 257. The basic idea is outlined in Fig. 4.

Back to theory
Let’s go over the general SSAMI theory for a minute. In the SSAMI system, there are two parts of the video signal that get messed up: the first is the horizontal sync pulse and the second is the polarity of the picture portion of each individual line of video. All the circuitry we’ve been developing so far has been aimed at taking care of horizontal sync. The circuitry has become a bit complicated, but we now have a way to generate sync even if it has been left out.

The circuitry we’ve built so far will do a good job of restoring horizontal sync. Just about the only problem you might have relates to the width of the generated pulse. The official width of horizontal sync pulse, according to NTSC specifications, is 4.7 microseconds—and the closer you get to that, the better your chances are of having everything work properly. That leads us to the age-old question, “How close is close enough?”

The answer to that question depends on your TV’s horizontal sync detector; some of them will recog-
ed this project, we talked about how the SSAVI system encodes information about the polarity of the next frame of video. The original SSAVI system buried this information on line 20, as shown in Fig. 6. Now that we have circuitry to count the lines of video, it’s a piece of cake to signal the arrival of line 20 and examine it.

Restoring inverted video is a completely separate deal, and we’ll have to wait until next month to get into the nitty gritty of it.

Popular Electronics ON SALE

WATCH FOR IT!

MARCH 18, 1993

Pick up _Popular Electronics_ at your favorite Newsstand Bookstore or Supermarket

LETTERS

continued from page 16

Regardless of established conventions, Mr. Lancaster apparently wants to ignore the evidence of 75 years of vacuum-tube theory and development and their relevance to electricity just because “everybody” uses conventional flow (plus-to-minus) practices.

I am not confused about either theory or the symbols after 30 years of application of what I was taught in school. In search of truth, one should never be influenced by “might makes right” thinking.

ROGER L. RAVENSBORG
Saint Paul, MN

DISKETTE CONVERSION

I’m writing in response to William B. Proctor’s letter (_Electronics Now_, January 1993), in which he listed his relevant background qualifying him to write with authority on the subject of converting double-density disks to high-density disks. While I am impressed by his credentials, I do not agree with his “facts” and his conclusion that the conversion discussed is a bad idea.

Specifically, Mr. Proctor wrote, “we also found that we had to decrease the diameter of the hub to allow reliable recording at the innermost tracks.” Excuse me, but I have a 3.5-inch double-density and a high-density disk in front of me, and I can measure no difference in their hubs with my pocket caliper.

Do you remember when single-density, single-sided, and 40-tpi were standard and manufacturers charged premium prices for double-side, double-density, and 80-tpi? Actually, the materials and manufacturing cost were the same.

People use converted disks every day with no problems. I am convinced that the only differences are the label and the price. Until someone can demonstrate that is not the case, I will continue to recommend the use of converted disks.

JAMES A. PILARSKI
Northglenn, CO

Introducing the improved 372 Circuit Board Holder. A longtime favorite for circuit board work, the 372 now comes with our redesigned 300 base. A new, patented, internal modification to the 300 split ball locking mechanism allows it to hold twice as much weight as its predecessor. Of course, the 372 still comes with the industry’s best circuit board holder, the PanaVise 300, which can hold PCBs up to 12 inches wide (up to 28° with 30° 318 Accessory Cross Bars.)

You can even handle multiple boards when you use additional 316 Circuit Board Arms. The new PanaVise 372 Circuit Board Holder. When circuit boards are your business.

Go ahead, put on some weight

1485 Southern Way • Sparks, NV 89431 • (702) 353-2900 • FAX (800) 395-8002

CIRCLE 178 ON FREE INFORMATION CARD
HQ query

Most new VCR's are advertised as having "HQ" circuitry, but I've never seen an explanation of what HQ is supposed to accomplish. Can you give me an answer?

R.A.
Cerritos, CA

HQ stands for "High Quality," and the technology was developed by the Victor Company of Japan (JVC) for VHS VCR's. Essentially, it is a collection of video signal-enhancement circuits that operate separately on various parts of the signal. The HQ circuits are designed to reduce luminance- and chrominance-signal noise (and thereby reduce "snow" or graininess), and color patching and streaking, respectively. White-clip level inadequacies are also reduced with a consequent improvement in image-edge sharpness.

Because different HQ circuits operate during recording and playback, some of the improved quality of HQ-recorded tapes will show up during playback on non-HQ machines. Older tape playback on an HQ machine will also be improved, but to a lesser degree. The improvements are most obvious at the slower tape speeds; it is claimed that tapes that are HQ recorded in the slow-speed EP mode will have the visual quality of conventional standard-speed tapes. Perhaps.

One caveat: The HQ logo on a VCR does not necessarily mean that it includes all of the different circuits in the HQ standard. I don't know how you could determine that with certainty for any machine without checking with the manufacturer.

Woofers

I am hoping that you can settle an argument. I've been told that violent movement of a woofer cone is due to some flaw in the recording or playback system. But a friend of mine says that woofers are supposed to do that. Who is right?

T.P.
Barryton, MI

Woofers create sound by pushing (and pulling) air with their diaphragms. In general, the lower the audio frequency, the further the woofer cone must travel to create the same sound volume. Each time the bass response drops an octave, the woofer cone must travel four times the distance (assuming that it can) to reproduce it. You can see how cone movement might well be visible at the very lowest and loudest frequencies. However, you certainly should not see wild fluctuations on most program material — and the movement you see should coincide with and produce audible bass.

The amount of spurious woofer-cone movement usually relates to its enclosure's internal acoustical damping, but other factors certainly can have a contributing effect. An unstable amplifier, an LP turntable with severe infrasonic rumble, warped records, flexing of the floors, low-frequency acoustic feedback, and even misbehaving tapes and FM stations have all been known to produce excessive woofer-cone movement.

For the most part, what reaches a speaker system at infrasonic frequencies depends on the low-frequency design embodied in the accompanying preamplifier and power amplifier. If either unit has a built-in, low-frequency rolloff at 10 Hz—or even slightly higher—then the woofer won't have to undergo excessive excursions, and the distortions that are probably caused by them. For this reason, many designers believe that extending an amplifier's response down to DC (0 Hz), or close to it, causes nothing but trouble.

Once I saw an interesting article in a British technical journal suggesting that the extended low-frequency performance of CD's would be extremely troublesome for conventional vented (bass-reflex) enclosures. Unlike acoustic-suspension systems, whose sealed boxes "load" the rear of the woofer cone down to infrasonic frequencies, vented designs usually provide little or no cone control below system resonance. However, in light of the sophisticated woofer-box computer-design programs now available, I suspect that the knowledgeable designer can house his woofer any way he wants without running into infrasonic troubles.

Power upgrade

I have a 40-watt-per-channel receiver that generally sounds good, but I suspect that it is clipping when played at high volumes. I am considering trading up to an 80-watt-per-channel receiver, and I wonder what improvement that will make.

A.C.
New York, NY

Not much. Generally, if you double the available power (as measured in watts) from your amplifier, you'll gain only 3 dB more signal headroom before signal clipping (overload) occurs. Of course, every bit of additional power helps, but if you are changing your equipment specifically to obtain greater power reserve, it makes sense to trade up to at least triple your present power.

When comparing amplifiers of equivalent cost and continuous-power ratings, it's a good idea to choose one that also has a high dynamic headroom rating; say, 3 to 6 dB. Such amplifiers can provide two to four times their continuous-power rating for brief musical peaks—which is precisely when you need more power.

Whether or not your present amplifier is clipping, would depend on your preferred listening levels, the
kind of music you like, the size and acoustics of your listening room, and the efficiency of your speakers. If you have access to an oscilloscope, you can visually monitor the musical output waveforms being sent to your speakers for indications of clipping. Clipping will appear as bright spots at the tops and bottoms of the highest waveforms.

Perhaps you can borrow a high-powered amplifier to substitute for your present amplifier to find out if you hear a difference at the levels at which you normally listen. If there is a difference to be heard, it will show up as a more “open” quality with greater detail during the very loud passages. There should also be a greater sense of dynamics in the music. Your listening tests should be done with music that has a wide dynamic range (lots of loud and soft passages) rather than with hard rock or similarly compressed, consistently loud material.

Overprocessed signals?

I’m appalled by the proliferation of signal processors—particularly equalizers—in the audio marketplace. What ever happened to the notion that a superior high-fidelity system is simply “a straight wire with gain”? [R.
Buffalo, NY]

The idea is alive and well, although it is beset by philosophical confusion. While the concept has validity for, say, power amplifiers, it really can’t be applied to the entire recording/reproduction chain. Straight-wire-with-gain audiophiles, for whom tone controls of any kind are anathema, appear to assume that whatever signal comes out of their carefully chosen disk player or tape machine somehow perfectly embodies an original performance. Anyone naive enough to harbor such a belief has, at best, a very unclear concept about how sound is recorded and reproduced—and probably also owns shares in the Brooklyn Bridge.

Assuming that you had a perfect stereo recording of the sound field (at a specific location) of a live musical event—and that all the electromechanical and electronic elements of your playback system were perfect—your speakers would still have the task of replicating the acoustics of a concert hall within the comparatively cramped environs of a conventional listening room. In short, the chances of exactly duplicating an original live sound field in your listening room is about zero.

Given the aberrations in frequency response, noise level, and dynamic range likely to be introduced—deliberately or otherwise—at every stage in the recording/playback process—plus the loss of rear ambience and reflections—I see nothing wrong with using the appropriate signal processors to minimize, ameliorate, or eliminate the various ill effects. As you might guess, I’ve long since given up any hope of reproducing the precise sound of any original musical performance in my home. But when I achieve plausible reproduction—meaning that I hear the music as it might be heard live in some adequate acoustic environment—then I’m satisfied that I’ve achieved high, if not absolute, fidelity.
VCR Repair Can Payoff Big
You Can Earn $1000.00 a Week Working Part Time from Your Own Home
Secrets Revealed...
No Special Tools or Equipment Needed.

Sounds impossible but it's true. VCR technicians report earning $80.00 an hour for simple VCR repairs. You can learn to be a VCR Technician in just a few short weeks. Enroll in the Foley-Belsaw Institute of VCR Repair where you learn by the Viejo Method. Designed in a VCR Repair Shop to teach individuals with no electronic or VCR repair skills, the Viejo Method has been proven fast and efficient. The Viejo Method works on the principle that the vast majority of VCR repairs are simple mechanical or electro-mechanical problems. You learn these simple repairs first to start earning money right away. These simple repairs than serve as the foundation for more complicated repair work.

You earn top dollar with your new skills. Just think, a cleaning procedure that takes less than an hour can earn you $80.00 to $120.00. If you are not happy or feel you can't reach your full potential in your present job, now is the time to act.

For your FREE Information Kit, mail the coupon below to: Foley-Belsaw Institute of VCR Repair, Dept. 620004, 6301 Equitable Road, Kansas City, MO 64120

FREE
Electronics & Computer Software
Education Catalog

*Fast-Track Individual Learning Programs
*State-of-the-Art Classroom Courses
*The Best Values In Electronics Education

New
Career-Level Courses
Personal Computer Servicing
TV and VCR Servicing

New
Computer-Aided Instruction

DC & AC Electronics
Semiconductors
Electronic Circuits

The stunning animations, hyper-text glossary, and easy-to-understand text make learning electronics a breeze...and fun!
Learn the easy and affordable way from the Masters in Electronics Training - Heathkit®. From Basic Electricity to Advanced Microprocessor Applications and more, Heathkit will provide you with an unparalleled learning experience at a fraction of the cost of other programs.

Heathkit®
Educational Systems
For your FREE Catalog, call Toll-Free 1-800-44-HEATH
please mention this code when calling 107-010

IT'S A TRAGEDY
BEYOND DESCRIPTION.

96,000 acres of irreplaceable rain forest are being burned every day. These once lush forests are being cleared for grazing and farming. But the tragedy is without the forest this delicate land quickly turns barren.

The National Arbor Day Foundation, the world's largest tree-planting environmental organization, has launched Rain Forest Rescue. By joining the Foundation, you will help stop further burning. For the future of our planet, for hungry people everywhere, support Rain Forest Rescue. Call now.

Rain Forest Rescue.
The National Arbor Day Foundation
Call Rain Forest Rescue. 1-800-255-5500

some experiments with audio levels at various locations in the system to achieve optimum results.

Other considerations
Capacitors C49-C51 (surrounding IC7-d in Fig. 6) tune the crossover frequency of the subwoofer low-pass filter. The values indicated in the Parts List and Fig. 6 produce a filter that has its -3 dB point (corner frequency) at approximately 80 hertz, which is a good frequency for most automobile subwoofer systems. However, if you experience excessive resonance or "boominess", you can move the crossover point up or down by changing the values of the filter-tuning capacitors as indicated in Table 1. All three capacitors must be changed as a set, and they should have a tolerance of 5 percent.

The AFG II, as described here, is capable of providing ample amounts of delay and reverberation for most listening situations. However, it is possible to double the available delay by substituting MN3005 4096-stage bucket-brigade devices for the MN3008 2048-stage devices used in the prototype. The pinouts of the two IC's are identical, and no other changes to the circuit are necessary if you choose to use the 4096-stage devices.

Actual delay and reverberation adjustments are, of course, a matter of individual taste, but note that in live listening situations, the amount of delay and reverberation reaching the listener are a small percentage of the overall sound field. Also, using the AFG II in the surround mode will highlight any reverberation and delay which might exist in the original audio signal. To achieve the most realistic listening environment, judicious and sparing use of reverberation and delay are recommended. If you add too much, the sound becomes artificial and even annoying to some people.

Ω
tape decks, compact discs, and radios. The exam consists of digital and analog sections.

- Medical—The priorities of this option are safety and accuracy of calibration for electromagnetic instruments. The technician must be familiar with basic medical instrumentation, telemetry, measurements, and differential and operational amplifiers.

- Radar—A general knowledge of both pulsed and continuous-wave radar is necessary to take this Journeyman option. The test covers transmitters and receivers, CRT display systems and their power supplies, and antennas, transmission lines, and their characteristics.

- Video—The rapidly growing field of video is covered by this exam. The technician must know the NTSC standards, video basics, test signals, and the operation of both the electronic and mechanical systems in VCRs and camcorders.

In addition, there is the Certified Appliance Technician (CAT) exam, which is independent of the CET Associate or Journeyman certificate. The experience requirement is the same four years as for a Journeyman CET option, and the successful CAT receives a permanent wall certificate. CAT's are eligible to join ISICT. The exam consists of 100 multiple-choice questions covering electrical circuits and components, refrigerator systems, cooking equipment, and dishwashers.
MISSING TABLES

Our February 1993 issue featured Part 2 of "Crystal Oscillators" (page 47). Unfortunately, eight tables that were supposed to accompany the article never made it to print. Here are the missing tables. We apologize for any inconvenience we may have caused you.—Editor

TABLE 1
COMPARISON OF FOUR CRYSTAL-CONTROLLED OSCILLATORS

<table>
<thead>
<tr>
<th></th>
<th>Colpitts</th>
<th>Pierce</th>
<th>Butler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (MHz, max.)</td>
<td>Standard</td>
<td>Semi-Isol.*</td>
<td>Pierce</td>
</tr>
<tr>
<td>Power output (mW)</td>
<td>60</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>Load resistance (ohms, typ.)</td>
<td>0.3</td>
<td>15</td>
<td>0.3</td>
</tr>
<tr>
<td>Crystal power dissipation (mW)</td>
<td>2-10 K</td>
<td>5-500</td>
<td>>1K</td>
</tr>
<tr>
<td>Stability (short-term) (Hz)</td>
<td>±1 K</td>
<td>±1 K</td>
<td>±10</td>
</tr>
<tr>
<td>Crystal Mode: parallel</td>
<td>parallel</td>
<td>parallel</td>
<td>series</td>
</tr>
</tbody>
</table>

*Data applies to both versions.

TABLE 2
COMPONENT VALUES FOR STANDARD COLPITTS OSCILLATOR 1

<table>
<thead>
<tr>
<th>F (MHz)</th>
<th>C2(pF)</th>
<th>C5(pF)</th>
<th>C4(pF)</th>
<th>L1(µH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2800</td>
<td>228</td>
<td>2300</td>
<td>556</td>
</tr>
<tr>
<td>2</td>
<td>1600</td>
<td>141</td>
<td>1400</td>
<td>901</td>
</tr>
<tr>
<td>4</td>
<td>976</td>
<td>104</td>
<td>1000</td>
<td>305</td>
</tr>
<tr>
<td>5</td>
<td>796</td>
<td>99</td>
<td>985</td>
<td>51</td>
</tr>
<tr>
<td>10</td>
<td>624</td>
<td>78</td>
<td>780</td>
<td>101</td>
</tr>
<tr>
<td>15</td>
<td>585</td>
<td>85</td>
<td>852</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>527</td>
<td>84</td>
<td>844</td>
<td>6.7</td>
</tr>
<tr>
<td>25</td>
<td>455</td>
<td>74</td>
<td>735</td>
<td>7.7</td>
</tr>
<tr>
<td>30</td>
<td>392</td>
<td>68</td>
<td>682</td>
<td>4.6</td>
</tr>
<tr>
<td>40</td>
<td>338</td>
<td>59</td>
<td>595</td>
<td>5.3</td>
</tr>
<tr>
<td>55</td>
<td>267</td>
<td>54</td>
<td>538</td>
<td>3.8</td>
</tr>
<tr>
<td>60</td>
<td>207</td>
<td>42</td>
<td>418</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Third-overtone crystal:

<table>
<thead>
<tr>
<th>F (MHz)</th>
<th>C2(pF)</th>
<th>C5(pF)</th>
<th>C4(pF)</th>
<th>L1(µH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>218</td>
<td>48</td>
<td>602</td>
<td>1.7</td>
</tr>
<tr>
<td>40</td>
<td>119</td>
<td>30</td>
<td>373</td>
<td>2.1</td>
</tr>
<tr>
<td>45</td>
<td>105</td>
<td>27</td>
<td>342</td>
<td>1.8</td>
</tr>
<tr>
<td>50</td>
<td>93</td>
<td>25</td>
<td>318</td>
<td>1.6</td>
</tr>
<tr>
<td>55</td>
<td>83</td>
<td>24</td>
<td>297</td>
<td>1.4</td>
</tr>
<tr>
<td>60</td>
<td>75</td>
<td>22</td>
<td>278</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Note 1: The range of values corresponds to a crystal load capacitance between 32 and 12 picofarads for each frequency.

TABLE 3
COMPONENT VALUES FOR SEMI-ISOLATED COLPITTS OSCILLATORS 1

<table>
<thead>
<tr>
<th>F (MHz)</th>
<th>C2(pF)</th>
<th>C5(pF)</th>
<th>C1(C4(pF))</th>
<th>T1 (primary) 2</th>
<th>C3(C4(pF)) 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1828</td>
<td>2123</td>
<td>37µH, 80 trns</td>
<td>No. 26/T-50-2</td>
<td>685</td>
</tr>
<tr>
<td>2</td>
<td>1000</td>
<td>1186</td>
<td>37µH, 80 trns</td>
<td>No. 26/T-50-2</td>
<td>171</td>
</tr>
<tr>
<td>4</td>
<td>616</td>
<td>740</td>
<td>7.26µH, 36 trns</td>
<td>No. 24/T-50-2</td>
<td>218</td>
</tr>
<tr>
<td>5</td>
<td>381</td>
<td>465</td>
<td>7.26µH, 36 trns</td>
<td>No. 24/T-50-2</td>
<td>140</td>
</tr>
<tr>
<td>10</td>
<td>397</td>
<td>475</td>
<td>1.38µH, 20 trns</td>
<td>No. 20/T-50-10</td>
<td>184</td>
</tr>
<tr>
<td>15</td>
<td>357</td>
<td>409</td>
<td>1.38µH, 20 trns</td>
<td>No. 20/T-50-10</td>
<td>82</td>
</tr>
<tr>
<td>20</td>
<td>270</td>
<td>304</td>
<td>1.38µH, 20 trns</td>
<td>No. 20/T-50-10</td>
<td>47</td>
</tr>
<tr>
<td>25</td>
<td>192</td>
<td>214</td>
<td>1.38µH, 20 trns</td>
<td>No. 20/T-50-10</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>145</td>
<td>161</td>
<td>1.38µH, 20 trns</td>
<td>No. 20/T-50-10</td>
<td>20</td>
</tr>
<tr>
<td>114</td>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes 1: The range of values corresponds to a crystal load capacitance between 32 and 12 picofarads for each frequency. 2: Transformer primary turns wire gauge in AWG. 3: Values are for capacitors in parallel.

TABLE 4
COMPONENT VALUES FOR SEMI-ISOLATED COLPITTS OSCILLATORS 1

<table>
<thead>
<tr>
<th>F (MHz)</th>
<th>C2(pF)</th>
<th>C5(pF)</th>
<th>C1(C4(pF))</th>
<th>T1 (primary) 2</th>
<th>C3(C4(pF)) 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>925</td>
<td>2919</td>
<td>37µH, 80 trns</td>
<td>No. 26/T-50-2</td>
<td>171</td>
</tr>
<tr>
<td>2</td>
<td>510</td>
<td>1630</td>
<td>7.26µH, 36 trns</td>
<td>No. 24/T-50-2</td>
<td>218</td>
</tr>
<tr>
<td>4</td>
<td>318</td>
<td>1030</td>
<td>4.97µH, 32 trns</td>
<td>No. 24/T-50-2</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>201</td>
<td>662</td>
<td>1.38µH, 20 trns</td>
<td>No. 22/T-50-10</td>
<td>184</td>
</tr>
<tr>
<td>10</td>
<td>209</td>
<td>683</td>
<td>1.38µH, 20 trns</td>
<td>No. 22/T-50-10</td>
<td>47</td>
</tr>
<tr>
<td>15</td>
<td>189</td>
<td>619</td>
<td>1.38µH, 20 trns</td>
<td>No. 22/T-50-10</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>145</td>
<td>483</td>
<td>1.38µH, 20 trns</td>
<td>No. 22/T-50-10</td>
<td>34</td>
</tr>
<tr>
<td>25</td>
<td>124</td>
<td>417</td>
<td>0.47µH, 15 trns</td>
<td>No. 20/T-50-17</td>
<td>34</td>
</tr>
<tr>
<td>30</td>
<td>106</td>
<td>361</td>
<td>0.47µH, 15 trns</td>
<td>No. 20/T-50-17</td>
<td>22</td>
</tr>
<tr>
<td>106</td>
<td>97</td>
<td>333</td>
<td>0.47µH, 15 trns</td>
<td>No. 20/T-50-17</td>
<td>15</td>
</tr>
<tr>
<td>30</td>
<td>79</td>
<td>277</td>
<td>0.47µH, 15 trns</td>
<td>No. 20/T-50-17</td>
<td>15</td>
</tr>
<tr>
<td>67</td>
<td>239</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes 1: The range of values corresponds to a crystal load capacitance between 32 and 12 picofarads for each frequency. 2: Transformer primary turns wire gauge in AWG. 3: Values are for capacitors in parallel.
Table 5: Component Values for Semi-Isolated Colpitts Oscillator with Overtone Selector

<table>
<thead>
<tr>
<th>F (MHz)</th>
<th>C2(pf)</th>
<th>C5(pF)</th>
<th>C6(pF)</th>
<th>L1(µH)</th>
<th>T1 (primary)</th>
<th>C3(C4(pF))</th>
<th>J1</th>
<th>T2 (secondary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>323</td>
<td>847</td>
<td>11000</td>
<td>0.50</td>
<td>1.38µH, 20 tns</td>
<td>82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>274</td>
<td>732</td>
<td>9600</td>
<td>0.60</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>233</td>
<td>625</td>
<td>8300</td>
<td>0.38</td>
<td>1.36µH, 20 tns</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>196</td>
<td>540</td>
<td>7200</td>
<td>0.44</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>178</td>
<td>491</td>
<td>6700</td>
<td>0.30</td>
<td>1.38µH, 22 tns</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>149</td>
<td>424</td>
<td>5800</td>
<td>0.35</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>122</td>
<td>365</td>
<td>5600</td>
<td>0.25</td>
<td>1.00µH, 18 tns</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>118</td>
<td>347</td>
<td>4800</td>
<td>0.29</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>117</td>
<td>339</td>
<td>4800</td>
<td>0.22</td>
<td>0.80µH, 16 tns</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>96</td>
<td>292</td>
<td>4100</td>
<td>0.25</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>66</td>
<td>232</td>
<td>3200</td>
<td>0.24 0.47µH, 16 tns</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>49</td>
<td>187</td>
<td>2700</td>
<td>0.29</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>45</td>
<td>171</td>
<td>2600</td>
<td>0.20</td>
<td>0.47µH, 15 tns</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>37</td>
<td>152</td>
<td>2400</td>
<td>0.20</td>
<td>0.47µH, 15 tns</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>25</td>
<td>128</td>
<td>2200</td>
<td>0.21</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Component Values for Semi-Isolated Colpitts Oscillator with Overtone Selector

<table>
<thead>
<tr>
<th>F (MHz)</th>
<th>C2(pf)</th>
<th>C5(pF)</th>
<th>C6(pF)</th>
<th>L1(µH)</th>
<th>T1 (primary)</th>
<th>C3(C4(pF))</th>
<th>J1</th>
<th>T2 (secondary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>168</td>
<td>929</td>
<td>11600</td>
<td>0.48</td>
<td>1.00µH, 18 tns</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>143</td>
<td>804</td>
<td>10000</td>
<td>0.56</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>122</td>
<td>696</td>
<td>8900</td>
<td>0.36</td>
<td>0.47µH, 16 tns</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>104</td>
<td>602</td>
<td>7600</td>
<td>0.42</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>96</td>
<td>556</td>
<td>7000</td>
<td>0.29</td>
<td>0.47µH, 15 tns</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>81</td>
<td>481</td>
<td>6000</td>
<td>0.33</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>77</td>
<td>462</td>
<td>5800</td>
<td>0.24</td>
<td>0.30µH, 10 tns</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>65</td>
<td>400</td>
<td>5100</td>
<td>0.28</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>66</td>
<td>396</td>
<td>5000</td>
<td>0.21</td>
<td>0.28µH, 14 tns</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>54</td>
<td>342</td>
<td>4300</td>
<td>0.24</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>39</td>
<td>267</td>
<td>3400</td>
<td>0.23</td>
<td>0.28µH, 14 tns</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>34</td>
<td>237</td>
<td>3000</td>
<td>0.21</td>
<td>0.28µH, 14 tns</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>26</td>
<td>200</td>
<td>2600</td>
<td>0.25</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>22</td>
<td>179</td>
<td>2300</td>
<td>0.22</td>
<td>0.10µH, 8 tns</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>19</td>
<td>163</td>
<td>2000</td>
<td>0.20</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>22</td>
<td>177</td>
<td>2300</td>
<td>0.16</td>
<td>0.10µH, 8 tns</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>16</td>
<td>149</td>
<td>1900</td>
<td>0.18</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7: Component Values for the Pierce Oscillator

<table>
<thead>
<tr>
<th>F (MHz)</th>
<th>C2(pf)</th>
<th>C3(pF)</th>
<th>C4(pF)</th>
<th>L1(µH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2800</td>
<td>237</td>
<td>2200</td>
<td>528</td>
</tr>
<tr>
<td>2</td>
<td>1132</td>
<td>120</td>
<td>13300</td>
<td>258</td>
</tr>
<tr>
<td>3</td>
<td>911</td>
<td>107</td>
<td>13900</td>
<td>287</td>
</tr>
<tr>
<td>4</td>
<td>945</td>
<td>113</td>
<td>8000</td>
<td>68</td>
</tr>
<tr>
<td>5</td>
<td>626</td>
<td>80</td>
<td>8000</td>
<td>96</td>
</tr>
<tr>
<td>6</td>
<td>923</td>
<td>115</td>
<td>6400</td>
<td>43</td>
</tr>
<tr>
<td>7</td>
<td>650</td>
<td>87</td>
<td>6600</td>
<td>58</td>
</tr>
<tr>
<td>8</td>
<td>800</td>
<td>117</td>
<td>3800</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>586</td>
<td>87</td>
<td>3800</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>528</td>
<td>65</td>
<td>2600</td>
<td>6.0</td>
</tr>
<tr>
<td>11</td>
<td>455</td>
<td>74</td>
<td>2600</td>
<td>7.0</td>
</tr>
<tr>
<td>12</td>
<td>393</td>
<td>69</td>
<td>2300</td>
<td>4.4</td>
</tr>
<tr>
<td>13</td>
<td>338</td>
<td>59</td>
<td>2300</td>
<td>5.0</td>
</tr>
<tr>
<td>14</td>
<td>312</td>
<td>58</td>
<td>1925</td>
<td>3.3</td>
</tr>
<tr>
<td>15</td>
<td>268</td>
<td>50</td>
<td>1935</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Table 8: Component Values for a Butler Oscillator

<table>
<thead>
<tr>
<th>F (MHz)</th>
<th>C4(pF)</th>
<th>C3(pF)</th>
<th>C1(pF)</th>
<th>L2(µH)</th>
<th>L1(µH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1884</td>
<td>1.30</td>
<td>9.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1500</td>
<td>1.00</td>
<td>5.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>890</td>
<td>1.20</td>
<td>4.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1214</td>
<td>0.60</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1130</td>
<td>0.50</td>
<td>2.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1000</td>
<td>0.46</td>
<td>1.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>850</td>
<td>0.44</td>
<td>1.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>672</td>
<td>0.47</td>
<td>1.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>490</td>
<td>0.55</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>452</td>
<td>0.50</td>
<td>0.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>420</td>
<td>0.47</td>
<td>0.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>370</td>
<td>0.47</td>
<td>0.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>346</td>
<td>0.44</td>
<td>0.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>314</td>
<td>0.43</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>272</td>
<td>0.45</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>257</td>
<td>0.40</td>
<td>0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>244</td>
<td>0.40</td>
<td>0.36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. The range of values corresponds to a crystal load capacitance between 32 and 12 picofarads for each load frequency.
2. Transformer primary turns wire gauge in AWG.
3. Values are for capacitors in parallel.
preset frequency to adjust it with your car's engine. The frequency (f) is equal to:

$$f = \text{RPM} \times \left(\text{number of cylinders}/120\right).$$

Construction

The automatic starter is built on a double-sided PC board, for which we've provided foil patterns if you'd like to make your own. Otherwise, a board is available from the source mentioned in the Parts List. The author's prototype is shown in Fig. 7. Follow the Parts-Placement diagram in Fig. 3 when installing the components. Note that the Enforcer RF receiver plugs into the RJ-11-type telephone jack (J1) located on the remote starter PC board.

The finished board can be installed in any suitable case.
Computer operating systems have been a raging battleground for as long as there have been computers. The PC industry has been mostly immune to these battles ever since Microsoft introduced MS-DOS 1.0 back in 1981. However, rapid advances in hardware, along with corresponding increases in desired functionality, reliability, and security, have, in recent years, nudged PC-based operating systems closer and closer to proprietary mainframe and minicomputer operating systems. Skirmishes that have smoldered in the background over the past few years are on the verge of erupting into full-scale war. There are more than half a dozen participating companies and products in this battle. They are listed below in order of influence and likelihood of long-term survival:

- Microsoft: DOS, Windows, Windows for WorkGroups, LAN Manager, Windows New Technology (NT), and a full suite of applications programs
- Novell: NetWare, UnixWare
- IBM: OS/2, AIX
- Apple: System 7
- Other UNIX dialects from HP, DEC, and others
- Sun: Solaris
- Next: NextStep, NextStep 486.

Let’s examine the contenders in reverse order, from the least to the most important.

Friday the 13th, part 79,482

UNIX is like the horror-flick creature that just won’t die. No matter how many times you kill it, it keeps coming back for more. Despite its tenacity, UNIX never comes close to achieving the dominance to which it aspires. Every few years it comes back in some mutated form, threatening Microsoft’s operating-system hegemony. The latest reincarnation arrives courtesy of Novell Corporation, of NetWare fame. We’ll get to Novell in a minute. For now, let’s just state that the UNIX market has consistently misunderstood the PC “message” (power, personal productivity, local control, low pricing, intense competition, and continual innovation). However, there is little reason to believe that, even if it has now finally learned how to compete, it will be able to either shake off the UNIX onus or deflect Windows’ momentum. IBM suffers from a similar problem with OS/2, which may offer technical superiority over Windows, but no compelling, innovative applications. We’ll get to OS/2 in a moment.

The UNIX market has consistently overrated its importance in the overall scheme of things. Its strongholds include CAD, manufacturing, financial analysis, and, thanks to Next, multimedia development. But past fragmentation of the UNIX market, because of bitter competition among IBM, DEC, HP, Sun, and others, has all but eliminated serious support by influential PC software vendors. Yes, you can buy character-based versions of WordPerfect and Word that run under some version or other of UNIX. But except for a few innovative products like Lotus’ Improv for the Next, there’s precious little truly compelling technology that would entice or seduce users out of the Intel-based world and into the proprietary CPU’s and UNIX dialects that have been prevalent.

That’s the way things have been in the UNIX market for the past decade. Recently, however, Novell purchased the rights to the official UNIX code from AT&T. To understand the significance of that purchase, let’s first take a closer look at Novell.

NetWare and UnixWare

Novell is the premier vendor of local-area networking (LAN) software. The company’s NetWare products together hold about 60–70% of the PC LAN market, which consists primarily of Intel-based PC’s, but with connectivity to Macintoshes and UNIX systems running the TCP/IP protocol.

Despite its preeminent position in local-area networking, Novell is in dire straits because it is essentially a single-product company. Ten years ago, WordStar (then called MicroPro) dominated the word-processor market. The company is still alive today, but its market share is next to nil, and WordStar is hardly known for technological innovation. Lotus Development Corporation is in danger of falling prey to the WordStar syndrome, as is WordPerfect. But back to Novell.

To help shore up its withering position relative to Microsoft, Novell recently purchased from AT&T a company called UNIX Systems Laboratory (USL) for a reported $350 million. USL, in which Novell already had a prior investment, owns the rights to the UNIX operating system originally developed by AT&T.

Now Novell owns all code and all rights to future development of UNIX. UNIX industry analysts are reacting positively to this development, because it brings a glimmer of hope that the until now fragmented UNIX market can be unified, thereby providing a real economic incentive for innovative software development native to UNIX platforms.

Novell also owns a company called Digital Research, whose CP/M operating system was the first successful general-purpose operating system for 8080- and Z80-based desktop computers in the late 1970’s. In the mid 1980’s, the company marketed a non-multitasking Windows competitor called the Graphical Environment Manager (GEM), whose only real success centered on its use by Xerox Corp. for Ventura Publisher.

(also on its sixth birthday) is a prime example of IBM’s habit. After years of proselytizing, IBM never succeeded in convincing either add-on developers or the general market that MCA offered real technical superiority over the AT bus, which is now called the Industry Standard Architecture (ISA).

Meanwhile, out of the blue (so to speak) in the past year have come several implementations of so-called local buses that provide direct 32-bit interfaces to the host CPU. Ignoring the battle among these implementations (which will take another 12–18 months to sort out), the point is clear: local bus provides a readily apparent speed advantage over the ISA. EISA, and MCA buses. Local-bus video and hard-disk adapters provide ripping-fast performance compared with even the best traditional interface cards. Competing local-bus implementations have sprung from Intel and the Video Electronics Standards Association (VESA)—not IBM. IBM spawned a revolution in color graphics when it introduced VGA (another six year old), but subsequently dropped the ball with the 8514 and more recently the XGA video standards. The latter is being squashed by the performance of local-bus video.

In software, there were the pre-2.0 versions of OS/2, which never garnered serious industry support, and, in fact, offended many. There was PC-DOS 4.0, a bug-ridden version of DOS that sorely damaged the company’s already poor reputation in software. There was TopView; a DOS-based multitasker whose poor quality helped ensure the success of Quarterdeck’s DESQview. There was the desktop software unit, which was simply disbanded about 18 months ago, due to its inability to identify, develop, and market significant applications programs. IBM’s version of UNIX, called AIX, has been successful because of the price/performance advantage of the RISC-based RS/6000 platform it runs on. IBM’s partnership with Apple involves a project called Taligent, an object-oriented operating system about which little is known at the present time.

In sum, IBM has had a few hits and lots of misses. The hits have all been hardware related. IBM has never developed nor marketed any significant software product for the PC market. OS/2 will probably hang on, but it will never overcome either its self-inflicted onus or Microsoft’s inexorable momentum.

Apple

Until very recently, Apple scorned the PC market. However, the company’s software subsidiary, Claris, recently released a Windows port of a classic Macintosh database manager. In addition, Apple has tacitly acknowledged the PC’s growing importance in multimedia technologies with the release of a QuickTime player for Windows. (As discussed here in the past, QuickTime is Apple’s architecture for time-variant data, particularly sound and motion video.) Historically, Apple’s forte was user-interface design, but through the use of usability testing and product iteration, Microsoft is improving in this area tremendously, as witness Excel 4.0 and the Access database manager. Apple’s recent partnerships with IBM indicate the degree to which both companies fear Microsoft. Apple has a lot to offer, and is not simply going to go away. The Macintosh operating system will probably survive at a low level like DR-DOS and OS/2, but Apple will substantially reinvent itself around portable stylus-input handheld computers.

A few good vendors

The computer industry has gone through wrenching changes the past decade—but even greater changes lie ahead. IBM and Digital Equipment are in deep trouble. Microsoft’s dominance continues to grow, and that dominance angers and challenges many people. I think we are heading toward massive industry consolidation that will leave only a few hardware vendors and only a few software vendors. Take it a step further. There will be only a few computer vendors.

The distinctions among hardware, operating system, networking, and applications programs exist for technical reasons: most consumers don’t understand and could not care less. People buy cars, not engines, transmission, and chassis. Soon computers will be sold as complete units with CD-ROM’s full software. These CD-ROM’s will be the equivalent of the Sears tool kit with so many different socket wrenches, screwdrivers, and pliers. The CD will have a basic set of software and many optional add-on modules for specific tasks. The add-on’s will be encrypted; users will be able to gain access via an 800 telephone call and credit-card number—fonts are already sold that way.

Microsoft will have its own CD; another company will arise from the ashes of Borland, Lotus, WordPerfect, and Novell, which in concert might be able to cobble together something comparable to Microsoft’s strengths in operating systems and applications. This new company’s strong point will be networking. Microsoft and this other megacorporation will outsource some modules, just as the big-three auto makers purchase tires, radios, and many other subassemblies from contractors.

IBM will team up with this megacorporation to provide one leading computer brand. Microsoft will team up with Intel (which will merge with Gateway 2000 or Compaq or both) to provide the other. Hong Kong will produce a clone of the entire system, and quickly too, it is easier to copy an existing design than to invent a new one from scratch. Western Europe might even produce a version of its own.

The UNIX market will hang on for awhile, and eventually succumb to this emerging world order of mega-PC’s. The shakeout will happen sooner than many people expect, due to increasingly rapid product innovation by Intel.

Like it or not, Microsoft is in control of the computer industry. Industry resentment of that fact will not change it. Recent FTC investigations of the company appear to be turning up irregularities in the way it markets DOS. But DOS is only a piece of the overall picture. The FTC never split up an auto company for having its hand in too many pots. I don’t expect to see it in the computer industry either.
Be a computer programmer!

Only NRI gives you hands-on training with the latest programming tools:

- A 486sx computer with 80 meg hard drive
- Windows
- Visual Basic
- Power C
- QBasic
- MS-DOS
- And much more!

Only NRI at-home training gives you real-world programming skills in three in-demand languages: QBasic, C, and Visual Basic, today's hot new language designed for writing popular Windows applications. Best of all, you get hands-on training with a powerful new 486sx-based computer system, complete with 80 meg hard drive, Windows, and professional programming software you keep!

NRI, the leader in at-home computer training, shows you how to take advantage of today's newest programming opportunities.

Get in on the ground floor of one of today's fastest-growing career fields: computer programming. The Bureau of Labor Statistics forecasts that job opportunities for programmers will increase much faster than average over the next 10 years, with as many as 400,000 new jobs opening up by 2005.

And the fastest-growing segment of programming jobs will be PC programming, fueled by the phenomenal popularity of Windows, the efficient power of C, and the ascertainment of exciting new languages like QBasic and Visual Basic.

Now, with NRI at-home training, you can get the new skills you need to build a top-paying career — even a full- or part-time business of your own — in this high-growth, high-opportunity field.

NEW! The only programming course that includes a powerful 486sx-based computer, 80 meg hard drive, Windows, Visual Basic, and more — all yours to keep!

Right from the start, NRI gets you actively involved in the challenge of real-world programming. Step by step, you learn to create the kinds of full-featured, powerful programs today's employers and clients demand...including programs designed for use in a Windows environment!

Only NRI gives you first-hand programming experience with a state-of-the-art 486sx mini-tower computer system, complete with hard disk drive, a full megabyte of RAM, high-density floppy drive, mouse, monitor, and more — all yours to train with and keep!

Plus you explore the extraordinary capabilities of three in-demand programming languages. You learn to design, code, run, debug, and document programs in QBasic, C, and Visual Basic. Best of all, since Visual Basic is specifically designed for creating Windows applications, you learn to generate fully functioning Windows programs, complete with text boxes, command buttons, and other sophisticated graphical interface elements.

No previous experience necessary

Train with NRI, and immediately start getting the money-making job skills you need to be a computer programmer — no matter what your previous background.

NRI's step-by-step lessons and hands-on programming projects help you first master the design concepts used every day by successful PC programmers. Then, with the support of your experienced NRI instructor, you quickly move on to learn programming in three of today's hottest languages.

By the time you complete your course, you have a clear understanding of programming methods, languages, and techniques, and you're ready to handle any programming task with confidence.

Send today for your FREE catalog

See how NRI at-home training gives you the programming know-how, the computer, and the software you need to get started in this top-paying field. Send today for your FREE catalog!

If the coupon is missing, write to us at the NRI School of Computer Programming, McGraw-Hill Continuing Education Center, 4401 Connecticut Avenue, NW, Washington, DC 20008.

IBM PC/AT is a registered trademark of the IBM Corporation. Windows, QBasic, and Visual Basic are trademarks of Microsoft Corporation.

SEND COUPON TODAY FOR FREE NRI CATALOG!

NRI Schools
McGraw-Hill Continuing Education Center
4401 Connecticut Avenue, NW, Washington, DC 20008

☐ Check one FREE catalog only
☐ COMPUTER PROGRAMMING
☐ PC Applications Specialist
☐ Programming in C++ with Windows

Other Computer Career Courses
☐ Microcomputer Servicing
☐ Desktop Publishing
☐ Bookkeeping and Accounting
☐ Computer-Aided Drafting

Name ___________________________ Age ________

City/State/Zip ___________________________ Address ___________________________

For career courses approved under GI Bill, check for details

Accredited Member National Home Study Council 5415-0493
BUYER’S MART

FOR SALE
TUBES, new, up to 90% off. SASE, KIRBY, 298 West Carmel Drive, Carmel, IN 46032.
T.V. notch filters and bullet stopper, free brochure. MICRO THinc, Box 63-0625, Margate, FL 33063. (305) 752-9202.

CLASSIFIED AD ORDER FORM
To run your own classified ad, put one word on each of the lines below and send this form along with your check to:

PRINTED circuit boards fabricated from your design or schematic. Small or large runs — 25 years experience. SHORE PRINTED CIRCUITS, 36 Fairview Avenue, Little Silver, NJ 07739. (908) 752-1574, (908) 747-6300 (NJ). Fax (908) 747-6301.

Classified Information

102

www.americanradiohistory.com
CABLE test chips, Jerrold, Tocorn, S.A., Zenith. Puts cable boxes into full service mode! $29.95 to $59.95. 1 (800) 452-7096, (310) 887-9051.

EPROMs, Assorted, i.e., 27128A-15 $3.00 each minimum quantity 15 pieces. C.O.D., American Express. H.E.A.R.T.Inc., 1 (800) 677-3773.

CABLE Converters, accessories below wholesale! Immediate delivery from giant stock! COD orders only. 1 (800) 995-1749.

OAK Sigma descrambler, CH3 output, orders sale! 260 MOUNT HOOD CR66003M $99.00.

Lasers, 292, Fort Mill, SC 29715.

MOUNT HOOD ELECTRONICS, 9250 Hatch Rd Cedar Park, Texas 78613.

WIRELESS CABLE RECEIVERS 1.9 to 2.7 GHz
36 CH 20" Disk Dish System $175.90
36 CH 28" Rod Ant. Sys. $193.90
36 CH 16x20 Grid Ant. Sys. $69.00
36 CH 24x20 Grid Ant. Sys. $114.95
SUN MICROWAVE INT'L INC. Send $1 for product catalog.
PHOENIX, AZ 85007. Dealer discounts available. (602) 220-7425 FAX (602) 269-6599.
ORDERS ONLY 1-800-484-4190.

RESTRICTED technical information: Electronic surveillance & schematics, locksmithing, cable pheaking, hacking, etc. Free brochures: MENTOR, Box 1549-Z, Asbury Park, NJ 07712.

CABLE TV converters, Jerrold, Zenith, Pioneer, Oak, Scientific Atlanta, and many more. 12 years experience gives us the advantage. Visa/MC Amex COD ADVANTAGE ELECTRONICS, INC., 1 (800) 952-3916 1125 Frasierwood Dr., Dunraville, MN 55337.

VIDEO tapes covering electronics, computers and communications. Demo $3 50. OCS, PO Box 292, Fort Mill, SC 29715.

LASERS, light shows, plans, books, 5mw to 20 watts, free catalog call 1 (800) 356-7714 or write MWK IND., 198 Lewis Ct., Corona, CA 92917.

CABLE converters, Tocorn-VIP $289.00, Jerrold DPV-5 $189.00, SAB55x $179.00, Hamlin CRES6603M $99.00, Oak RTC-56 $99.00, Sylvania 4040 $79.00, fully bullet proof. MOUNT HOOD ELECTRONICS, (206) 260-0107.

There's only one way to fully appreciate just how much better MCM ELECTRONICS' parts and services are. Take us out for a test drive! See for yourself how we've fine-tuned our inventory of 22,000 parts and components and powered it with streamlined sales and service expertise. Then, you'll see why our track record is unbeatable.

For A FREE Catalog Call: 1-800-543-4330
To Order By FAX: 1-513-434-6959
For Product Questions: 1-800-824-TECH (8324)
RECEIVING TUBES
VERSION TUBES
Over 3000 TYPES IN STOCK!
Also hard-to-find transformers, capacitors and parts for tube equipment.
Send 50¢ for latest page catalog.

ANTIQUE ELECTRICAL SUPPLY
4221 S. Maple Ave. • Temple, AZ 85283-602-820-4141

REMOTE car starter.
Now from up to 750 ft.
away, start or turn off car engine, heat, AC, lights etc. w/o key. Anti-theft/safety, easy to install.
Fuel injected: $69.95; carburetor engine: $97.95, plus $5.00 S/H satisfaction guaran-
teed. Send money order or charge to: ZAMTECH CORP., 500 Carmans Rd., S.
Farmington, NY 14005.

RETURN address labels: to make your mail easier write to: LEON HARRELL & ASSOCIATES, PO Box 34787, Philadelphia, PA 19101.

STUN guns. Legal protection. Up to 120,000 volts knockdown power defender. $29.95 + 45¢ S/H. VIDEOMAGAZINE SUPPLEMENT, 7825 Santa Monica Blvd., #127, Las Vegas, NV 89102. (702) 876-2340.

RECEIVING TUBES
Over 3000 TYPES IN STOCK!
Also hard-to-find transformers, capacitors and parts for tube equipment.
Send 50¢ for latest page catalog.

ANTIQUE ELECTRICAL SUPPLY
4221 S. Maple Ave. • Temple, AZ 85283-602-820-4141

REMOTE car starter.
Now from up to 750 ft.
away, start or turn off car engine, heat, AC, lights etc. w/o key. Anti-theft/safety, easy to install.
Fuel injected: $69.95; carburetor engine: $97.95, plus $5.00 S/H satisfaction guaran-
teed. Send money order or charge to: ZAMTECH CORP., 500 Carmans Rd., S.
Farmington, NY 14005.

RETURN address labels: to make your mail easier write to: LEON HARRELL & ASSOCIATES, PO Box 34787, Philadelphia, PA 19101.

STUN guns. Legal protection. Up to 120,000 volts knockdown power defender. $29.95 + 45¢ S/H. VIDEOMAGAZINE SUPPLEMENT, 7825 Santa Monica Blvd., #127, Las Vegas, NV 89102. (702) 876-2340.

RECEIVING TUBES
Over 3000 TYPES IN STOCK!
Also hard-to-find transformers, capacitors and parts for tube equipment.
Send 50¢ for latest page catalog.

ANTIQUE ELECTRICAL SUPPLY
4221 S. Maple Ave. • Temple, AZ 85283-602-820-4141

REMOTE car starter.
Now from up to 750 ft.
away, start or turn off car engine, heat, AC, lights etc. w/o key. Anti-theft/safety, easy to install.
Fuel injected: $69.95; carburetor engine: $97.95, plus $5.00 S/H satisfaction guaran-
teed. Send money order or charge to: ZAMTECH CORP., 500 Carmans Rd., S.
Farmington, NY 14005.

RETURN address labels: to make your mail easier write to: LEON HARRELL & ASSOCIATES, PO Box 34787, Philadelphia, PA 19101.

STUN guns. Legal protection. Up to 120,000 volts knockdown power defender. $29.95 + 45¢ S/H. VIDEOMAGAZINE SUPPLEMENT, 7825 Santa Monica Blvd., #127, Las Vegas, NV 89102. (702) 876-2340.

RECEIVING TUBES
Over 3000 TYPES IN STOCK!
Also hard-to-find transformers, capacitors and parts for tube equipment.
Send 50¢ for latest page catalog.

ANTIQUE ELECTRICAL SUPPLY
4221 S. Maple Ave. • Temple, AZ 85283-602-820-4141

REMOTE car starter.
Now from up to 750 ft.
away, start or turn off car engine, heat, AC, lights etc. w/o key. Anti-theft/safety, easy to install.
Fuel injected: $69.95; carburetor engine: $97.95, plus $5.00 S/H satisfaction guaran-
teed. Send money order or charge to: ZAMTECH CORP., 500 Carmans Rd., S.
Farmington, NY 14005.

RETURN address labels: to make your mail easier write to: LEON HARRELL & ASSOCIATES, PO Box 34787, Philadelphia, PA 19101.

STUN guns. Legal protection. Up to 120,000 volts knockdown power defender. $29.95 + 45¢ S/H. VIDEOMAGAZINE SUPPLEMENT, 7825 Santa Monica Blvd., #127, Las Vegas, NV 89102. (702) 876-2340.

RECEIVING TUBES
Over 3000 TYPES IN STOCK!
Also hard-to-find transformers, capacitors and parts for tube equipment.
Send 50¢ for latest page catalog.

ANTIQUE ELECTRICAL SUPPLY
4221 S. Maple Ave. • Temple, AZ 85283-602-820-4141

REMOTE car starter.
Now from up to 750 ft.
away, start or turn off car engine, heat, AC, lights etc. w/o key. Anti-theft/safety, easy to install.
Fuel injected: $69.95; carburetor engine: $97.95, plus $5.00 S/H satisfaction guaran-
teed. Send money order or charge to: ZAMTECH CORP., 500 Carmans Rd., S.
Farmington, NY 14005.

RETURN address labels: to make your mail easier write to: LEON HARRELL & ASSOCIATES, PO Box 34787, Philadelphia, PA 19101.

STUN guns. Legal protection. Up to 120,000 volts knockdown power defender. $29.95 + 45¢ S/H. VIDEOMAGAZINE SUPPLEMENT, 7825 Santa Monica Blvd., #127, Las Vegas, NV 89102. (702) 876-2340.
INVENTORS

INVENTORS! Can you patent and profit from your idea? Call AMERICAN INVENTORS CORP. for free information. Serving inventors since 1975, 1 (800) 338-5656.

EDUCATION & INSTRUCTION

ELECTRONIC ENGINEERING, 8 volumes complete, $109.95. No prior knowledge required. Free brochure. BANNER TECHNICAL BOOKS, 1203 Grant Avenue, Rockford, IL 61103.

CREDIT card encoded, encoding info $5.00, w/planes & software (PC) $12.25, w/kit $64.50, $4.50 S/H (USA). Assembled add $10.00. BSC, Box 1841, Alexandria, VA 22314.

BUILD 0-5 volt regulated dual tracking power supply. Complete schematics and instructions. $5.95 SMS ENGINEERING, RE 9392 West Bell Road, Suite D106, Glendale, AZ 85308.

LEARN to earn, Electronic skills bring income. As low as 149.50. Send $2.00 for catalog to A&A PRODUCTS, Rt1 Box 482-L, Rockdale, TX 76567.

BUILD your own PC! Kit building is alive and well. Call PC-BUILD for free catalog. 1 (800) 798-6363.

MASTERCARD and VISA are now accepted for payment of your advertising. Simply complete the form on the first page of the Market Center and we will bill. $15.00 minimum.

Black Widow Challenger Remote Security System

Dollar for dollar, and feature for feature the Challenger security system out performs most competitors in its class. Features include: Two-2 button remote transmitters, compact design for under dash or under seat installation, passive or active arming, visual/audible indication when arming/disarming, remote panic, 360 degree shock sensor, door lock output, starter disable with relay and harness, 120 dB siren, entry/ tamper violation memory, built-in parking light flasher or horn sounding circuit, current and setting switch, manual override switch. 1 positive and 2 negative triggers, flashing LED, RF safety lock-out, automatic reset, glass break sensor and more. Net weight: 3 lbs. Pioneer: #A30FL020-5FL.

Thiele's Goldmine

THE ELECTRONIC GOLDMINE

Electronics has one of the greatest selection of unique electronic products today. Available in the world! We have over 25 kits and over 2000 unique bargain priced components in our new 80 page catalog.

MINIATURE MOTOR

Precision high speed mini motor. Bld out your own with M.D.C., $6.60 standard. 50 - 5000 RPM. DC, AC., 50 - 10000 RPM. AC. Lathe, etc.

COPPER CLAD

Make your own PC boards with these double sided FR-4 printed circuit board kits. 3 oz. copper plating. Each kit comes with: Stencil, Printed circuit board, 1 oz. acid,丝网印刷板, with a size of 1.75 x 1.0 x 0.0625. G939 $1.39

MEDIUM INDUCTOR

Operates with a size of 1.75 x 1.0 x 0.0625. G502 $5.00

SPECIAL ITEMS

ULTRABRIGHT RED LED

=G993 $1.75 ea. $10.00/100 $9.00/50 $8.00/25 $7.50

4V TRIGGER COIL

High quality assembly consisting of a 1/4" square iron core toroid wound in a plastic sleeve (1-1/4 x 1") furnished with terminals. A1083 $2.49, 10/22.00

STROBE LIGHTS

Bright strobe flash to mark small items, includes strobe strobe, showing this tube on a circuit board this #2 trigger coil G936 $1.39

INTRODUCTORY ORDER: $1.00 pickup (California's. Handling and shipping $2.00 each. Material kit with MC, VISA & Money orders. Send order to: THE ELECTRONIC GOLDMINE, P.O. Box 1106, Santa Barbara, CA 93116.

PHONE ORDERS (619) 451-7435. FAX ORDERS (619) 451-9495

CIRCLE 125 ON FREE INFORMATION CARD

Triplet DMM

Large, easy to read 3-1/2 digit LCD display. Tests voltage in 5 ranges to 750VAC, resistance in 6 ranges to 20M, plus diode test with audible continuity, 6 current ranges to 10A. Built-in battery test and "FHE test for NPN and PNP transistors. Test leads, instructions and carrying case included.

#RN-390-140

$47.00 Each

6-1/2" Two-Way System

Perfect surround speakers. Customize your media room with these super quality, in-wall speakers pairs. Fullbass-1/2" woofer. Heavy duty 1" soft dome tweeter. Built-in crossover. Fits any standard 2 x 4 or larger wall. Retrofit design allows easy installation in new or existing walls. Response: 40-20,000 Hz. 8 ohm impedance. 60 watts maximum. Includes provision for easy 70V/25V transformer mounting. Overall dimensions: 6-1/4" x 12". Net weight: 9 lbs.

#RN-300-036

$295.00 Each

$99.95 (1-3 prs)

$59.95 (4 prs-up)

Mini Electrolytic Cap Kit

This 60 piece kit contains a selection of 16 volt and 50 volt mini electrolytic capacitors. 5 pieces each of 10, 47, 100, 220, and 470 uf, 16 volt radial caps. 5 pieces each of 2.2, 4.7, 10, 22, 33, 4.7 and 100 uf, 50 volt radial caps. This convenient kit has many of the "low profile" caps used in camcorders, VCRs, portables and other products where space is limited. A $27.00 value.

#RN-024-01

$19.95 Each

Ultimate 5", 2 Way System

A perfect way to upgrade your car's sound system. 5", 2 way bridgeless speaker pair, featuring paper cones that are impregnated with a special ingredient to prevent water damage. 1" aluminum voice coil, 6 oz. magnet. Impedance 4 ohm. Frequency response: 20-21,000 Hz. Power handling: 60 watts RMS, 85 watts maximum. SPL: 92 db 1W/1M. Mounting depth: 1-3/4" Net weight: 4 lbs.

#RN-265-282

$499.00 Each

$43.50 (1-3 prs)

$34.95 (4 prs-up)

12" Pioneer Woofer

#RN-300-337

$999.00 Each

The Ultimate Test CD

The Ultimate test CD was designed for use by both the audio amateur and the professional sound engineer. This CD can be used to test CD players, speakers, amplifiers, and for tuning instruments. The manual is written in easy to understand English and takes you step-by-step through each track of the CD and explains its purpose. The Ultimate test CD is a necessary tool for anyone who is serious about quality audio sound.

#RN-510-100

$79.95 Each

CALL TOLL FREE

1-800-338-0531
LEARN TV/VCR REPAIR

Now you can train at home in spare time for a money-making career as a TV/VCR Repair Specialist. No previous experience necessary. No need to quit your job or school. Everything is explained in easy-to-understand language with plenty of drawings, diagrams and photos. We show how to troubleshoot and repair video-cassette recorders and TV sets, how to handle house calls and shop repairs for almost any make of television or VCR. Tools are included with your course so you can get "hands-on" practice as you follow your lessons step by step. Send for free facts about the exciting opportunities in TV/VCR Repair and find out how you can start making money in this great career.

MAIL COUPON TODAY

SCHOOL OF TV/VCR REPAIR
Dept. ADE335
505 Oak Street, Scranton, PA 18515

Please send me full information and color brochure on how I can learn TV/VCR Repair at home in my spare time. I understand there is no obligation and no salesman will visit me.

Name

Address

City-State

Phone

[] Payment Enclosed

PHONE (800) 288-IDEA

WANTED

INVENTORS: We submit ideas to industry. Find out what we can do for you. 1 (800) 288-IDEA.

ATTENTION! No fees to inventors! Call INVENTORS AWARENESS GROUP, INC. for a free brochure. 1 (800) 288-3938.

BUSINESS OPPORTUNITIES

YOUR own radio station! Licensed unlicensed AM, FM, TV, cable. Information $1.00, BROADCASTING, Box 130-F-4, Paradise, CA 95967.

SUPER low satellite prices. Free U.S. and international catalog. SATMAN, (309) 692-4140 (Int'l), 1 (800) 472-8626 in U.S.

GIVE the power to become. Support Easter Seals.

PANASONIC, JERROLD, OAK, PIONEER, SCIENTIFIC ATLANTA AND MORE. LOWEST PRICES. FREE CATALOG.

CABLE READY COMPANY (800) 234-1006

SAVE MONEY. DON'T RENT!

Rates: Write National, Box 5, Sarasota, FL 34230

BEST BY MAIL

FINANCIAL

8% VISA'S, LOANS!! It's a fact! Complete list $4.00. 1-800-967-4960.

EARN UNLIMITED: Earn Six Figure Income As A Mortgage Regional Manager. 1-800-365-7500 Ext. 3464.

MONEymAKING OPPORTUNITIES

MAKE THOUSANDS WEEKLY! Exposing Mail Order Frauds. FREE Information, Rush Stamped, Envelope, Wealth Seeker, 1947 Southern St., Chattanooga, TN 37408.

HOMEMAKERS NEEDED! EXCELLENT Pay! Plus Sweepstakes - WIN MILLION! Send $1P8H: FORTUNE, Box 4252-MF, Lincoln, NE 68504.

IF INTEREST TO ALL

FREE CD OR CASSETTE (Specify) $3 & GUARANTEED: KML, 627 Central #201, Dover, NH 03820-2008.

AMAZING LOTTERY SECRET #31: POPBOOK, Box 6519- (R), Burbank, CA 91510-6519.

CHINESE HOROSCOPE BASED ON Birth Year — 24hrs. 1-900-443-0328 $2/minute.
ABS SPEEDY BOXES
Will not crack or split when drilled or punched. Complete with four screws and lid. All sizes below are for interior dimensions. Color: black.

Part No. Size (L x W x H) Price
419821 3.125" x 2.0" x 0.875" $1.95
419813 4.875" x 2.5" x 1.5" 2.49
418892 6.0" x 3.5" x 1.875" 2.75
418905 7.5" x 4.25" x 2.25" 3.25

VECTOR PROTOTYPING BOARDS
Prototyping boards with punched holes are convenient, economical tools for assembling circuit components — and cost effective alternatives to custom designs.

Part No. Description Size (L x W) Price
4R37604 Epoxy Glass PCB Board 6.5" x 4.5" $4.75
4R37604 Epoxy Glass PCB Board 17" x 6.5" 10.95
4R37604 Epoxy Glass PCB Board 17" x 6.5" 19.95
4R37612 Phenolic PCB Board 17" x 4.5" 7.95

REGULATED POWER SUPPLY KITS
Build the power supply you've been needing for years. Ideal for home or instructional use. Select from three different versions. Each kit is complete with printed circuit board, electronic components, and user assembly instructions.

Part No. Product No. Input Voltage (VDC) Output Voltage (VDC) Current (mA) Dimensions (L x W x H inches) Price
4R20360 JE200 120 -5 1000 3.5 x 5.0 x 2.0 $14.95
4R20362 JE215 120 -5 to +15 750 to 175 3.5 x 5.0 x 2.0 19.95
4R37613 JE225 120 -5 fixed 1000 5.12 x 5.12 x 2.25 29.95

Carbon Film 1/4 Watt 5% Resistors

Part No. Ohms Price
4R22946 100 $1.95
4R30867 330 $1.95
4R30653 10K $1.95
4R30514 100K $1.95

Order toll-free 1-800-831-4242
Call or write for your FREE 1993 Annual Catalog: 1-800-637-8471
ADVERTISING INDEX

Electronics Now does not assume any responsibility for errors that may appear in the index below.

<table>
<thead>
<tr>
<th>Free Information Number</th>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td>86</td>
<td>AMC Sales</td>
</tr>
<tr>
<td>107</td>
<td>108</td>
<td>All Electronics</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Amazing Concepts</td>
</tr>
<tr>
<td>98</td>
<td>5</td>
<td>B.J. — A Division of WaveTech</td>
</tr>
<tr>
<td>109</td>
<td>33</td>
<td>C & S Sales</td>
</tr>
<tr>
<td>185</td>
<td>89</td>
<td>Cable Warehouse</td>
</tr>
<tr>
<td>54</td>
<td>13</td>
<td>Chemtronics</td>
</tr>
<tr>
<td>110</td>
<td>35</td>
<td>Chenesko Products</td>
</tr>
<tr>
<td>183</td>
<td>35</td>
<td>Deco Industries</td>
</tr>
<tr>
<td>193</td>
<td>12</td>
<td>Demax Corp.</td>
</tr>
<tr>
<td>125</td>
<td>105</td>
<td>Electronic Goldmine</td>
</tr>
<tr>
<td>126</td>
<td></td>
<td>Electronics Book Club</td>
</tr>
<tr>
<td>128</td>
<td>17</td>
<td>Electronics Tech. Today</td>
</tr>
<tr>
<td>129</td>
<td>84</td>
<td>ISCE</td>
</tr>
<tr>
<td>139</td>
<td>16</td>
<td>Interactive Image Tech</td>
</tr>
<tr>
<td>114</td>
<td>107</td>
<td>Jameco</td>
</tr>
<tr>
<td>115</td>
<td>35</td>
<td>Jensen Tools</td>
</tr>
<tr>
<td>186</td>
<td>23</td>
<td>Kelvin</td>
</tr>
<tr>
<td>179</td>
<td>106</td>
<td>Lake Sylvan Sales, Inc.</td>
</tr>
<tr>
<td>87</td>
<td>103</td>
<td>MCM Electronics</td>
</tr>
<tr>
<td>93</td>
<td>104</td>
<td>Mark V. Electronics</td>
</tr>
<tr>
<td>182</td>
<td>3</td>
<td>Mini-Circuits</td>
</tr>
<tr>
<td>71</td>
<td>15</td>
<td>NTE Electronics</td>
</tr>
<tr>
<td>184</td>
<td>87</td>
<td>Optoelectronics</td>
</tr>
<tr>
<td>178</td>
<td>87</td>
<td>Panavise</td>
</tr>
<tr>
<td>56</td>
<td>105</td>
<td>Parts Express</td>
</tr>
</tbody>
</table>

ADVERTISING SALES OFFICE
Gernsback Publications, Inc.
500-B Bi-County Blvd.
Farmington, NY 11735
1-800-292-3000
President: Larry Steckler

For Advertising ONLY
516-293-3000
Fax 1-516-293-3115
Larry Steckler
Publisher

Christina Estrada
assistant to the President

Airline Fishman
advertising director

Denise Mullen
advertising assistant

Kelly McQuade
credit manager

Subscriber Customer Service
1-800-288-0652
Order Entry for New Subscribers
1-800-999-7139
7:00 AM - 6:00 PM M-F MST

ADVERTISING SALES OFFICES

EAST/SOUTHEAST
Stanley Levin, Eastern Advertising Sales Manager
Electronics Now
1 Overlook Ave.
Great Neck, NY 11021
1-516-487-9252
Fax 1-516-487-3000

MIDWEST/Texas/Arkansas/Okl.
Ralph Bergen, Midwest Advertising Sales Manager
Electronics Now
1 Northfield Plaza, Suite 300
Northfield, IL 60063-1214
1-708-446-1444
Fax 1-708-559-0562

PACIFIC COAST/Mountain States
Pamela Kuster
Pattis/3M
1800 North Highland Avenue
Suite 717
Hollywood, CA 90028
1-213-462-2700
FAX 1-213-463-0544

EN Shopper
Joe Shere, National Representative
P.O. Box 169
Idyllwild, CA 92549
1-714-659-9743
Fax 1-714-659-2469

www.americanradiohistory.com
The Fastest Counter Starts with the Fastest Chip

Optoelectronics Puts the OE10 Inside

Since the 70's the frequency counter chip most used was the 7216 (8 digits, 10 million counts per second). The only way to have a faster more reliable counter was to design our own chip. So we did — the OE10. Faster — 10 digits, 220 million counts per second. Reliable — zero field failures.

And now we have added a microprocessor to unleash the power of the OE10. Optoelectronics introduces the 3000A Multifunction Micro HandiCounter® with these new and exciting features:

- **Digital Filter Technique** (patent pending)
 Filters stable signals from background clutter

- **Digital Auto Capture** (patent pending)
 Holds present reading and stores previous reading for hands free unattended operation

- **Works Even in Presence of Strong RF Signals**

- **Stores Frequencies**

- **Increased Sensitivity**

- **Synchronous RF Detection**
 Super sensitive 16 segment bargraph operates independently from counter

- **High Speed ASIC**
 220 million counts per second.

- **10Hz-3GHz**

- **Multifunction HandiCounter®**

- **Dual High Impedance Amplifiers**
 For ratio and time interval functions

- **High Resolution**
 Direct count to over 200MHz

- **Extended Battery Use**

- **1 Year Full Warranty**

- **All This and More for the Low Price of $279.**

Options for the NEW 3000A

TCXO30
± .2ppm ... $100.

BL30/Backlight 45.

Antenna - TA100S
Telescoping Whip Antenna │ 12.

Antenna Pack 2
Includes RD27, RD50, RD100 RD440, RD800 — Save $32 99.

CC30
Padded black vinyl carrying case │ 15.

Factory Direct Order Line
1-800-327-5912
305-771-2050 • Fax 305-771-2052
5821 NE 14th Ave, Ft. Lauderdale, FL 33334
5% Ship/Handling (Max $10) U.S. & Canada. 15% outside continental U.S. • Visa, Master Card, C.O.D. (Cash or Money Order only).

BE SURE YOU HAVE AN OE10 INSIDE

www.americanradiohistory.com
Within budget. Without compromise.

Get more of what you want in a 6½ digit DMM for just $995.

It has more standard features. Like HP-IB, RS-232 and built-in SCPI commands for more system flexibility. Plus ten extended functions including continuity, diode test, limit test, reading hold, dB and null to give you greater flexibility on the bench.

What more could you want? The HP 34401A also comes with a 3-year warranty, standard.

For more information, or same-day shipment from HP DIRECT, call 1-800-452-4844*. Ask for Ext. TB26. And we’ll send you a data sheet.

<table>
<thead>
<tr>
<th>HP 34401A Digital Multimeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Accuracy (1 year)</td>
</tr>
<tr>
<td>AC Accuracy (1 year)</td>
</tr>
<tr>
<td>Maximum input</td>
</tr>
<tr>
<td>Reading speed</td>
</tr>
<tr>
<td>Resolution</td>
</tr>
</tbody>
</table>

* U.S. list price
** In Canada call 1-800-387-3867, Dept. 434

There is a better way.