Radio Electronics
Combined with Electronics NOW

FEBRUARY 1993

BUILD THIS WIRELESS CAMCORDER MICROPHONE

Make videos that sound as good as they look!

CRYSTAL OSCILLATORS
A look at practical circuits

THE J-POLE ANTENNA
A practical 440-MHz antenna

BUILD THIS 250-VOLT POWER SUPPLY

Our bench-top DC supply delivers up to 100 milliamps

BOOT YOUR PC REMOTELY
Complete construction details for the computer user on the go

BUILD AN AUDIO LEVEL CONTROLLER
Get constant volume from any audio source

Plus: ★ Video News
★ Hardware Hacker
★ Audio Update
★ And Lots More!

www.americanradiohistory.com

$3.50 U.S.
$3.95 CAN

GERNSBACK PUBLICATION

02

0912848783 0
Whether you're doing first-level troubleshooting or component-level diagnosis, Fluke meters offer you one of the widest choice of capabilities and price ranges in the industry. Choices ranging from the basic Fluke 12 with auto function V-Chek™ and Continuity Capture™, to the classic Fluke 77 with Auto Touch Hold® and current measurements.

To the advanced Fluke 83 with Min/Max/Average recording, Frequency, Duty Cycle and Input Alert™. Plus a full line of quality accessories to extend those capabilities even further. No matter which Fluke meter you choose, you can count on precise, reliable, consistent performance year in and year out. Plus, strong customer support and product warranties that measure up to any in the industry. Make the choice that gives you the most choices.

Look to Fluke for the tools you need to get the job done right.

See your Fluke distributor, or call 1-800-87-FLUKE for a catalog and the name of the distributor nearest you.
With the growing popularity of stereo televisions and home theaters, we've become accustomed to watching video that sounds as good as it looks. How do your home videos measure up to today's demanding audio standards? If something's lacking from their soundtracks, it could be due to the quality of your camcorder's built-in microphone. It can't "zoom" in on sound the way the lens can zoom in on an image and it probably has a hard time picking up dialogue when there's a lot of background noise. An external microphone can make a world of difference in the sound quality of your videos, but commercial ones can also put a dent in your wallet. That's not the case with our Wireless Camcorder Microphone. Easy to build from readily available parts, it costs less than $15! For all the details, turn to page 31.

As a service to readers, ELECTRONICS NOW publishes available plans or information relating to newsworthy products, techniques and scientific and technological developments. Because of possible variances in the quality and condition of materials and workmanship used by readers, ELECTRONICS NOW disclaims any responsibility for the safe and proper functioning of reader-built projects based upon or from plans or information published in this magazine.

Since some of the equipment and circuitry described in ELECTRONICS NOW may relate to or be covered by U.S. patents, ELECTRONICS NOW disclaims any liability for the infringement of such patents by the making, using, or selling of any such equipment or circuitry, and suggests that anyone interested in such projects consult a patent attorney.

POSTMASTER: Please send address changes to ELECTRONICS NOW, Subscription Dept., Box 55115, Boulder, CO 80321-5115.

A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs if their return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.

PLEASE TURN PAGE FOR COMPLETE CONTENTS
31 WIRELESS CAMCORDER MICROPHONE
Add high-quality audio to your home videos with this inexpensive wireless device.
Paul E. Yost

41 AUDIO LEVEL CONTROLLER
Keep your receiver's output at a comfortable listening level.
Steve Szabo

45 250-VOLT BENCHTOP POWER SUPPLY
Build a DC power supply for working on high-voltage projects.
David Cuthbert

71 THE J-POLE ANTENNA
Our simple, portable 3/4-meter band antenna.
Phil Salas

65 BOOT YOUR PC REMOTELY
Construction details for the Ring-Thing.
Thomas E. Black

47 CRYSTAL OSCILLATORS
A crystal-controlled oscillator-circuit cookbook.
Dan Becker

57 RESISTORS
Learn how to effectively put them to use in your circuits.
Ray Marston

6 VIDEO NEWS
What's new in this fast-changing field.
David Lachenbruch

82 DRAWING BOARD
Generating missing pulses.
Robert Grossblatt

8 AUDIO UPDATE
Multi-channel made easy.
Larry Klein

22 EQUIPMENT REPORT

75 HARDWARE HACKER
The Video Toaster, and more.
Don Lancaster

87 COMPUTER CONNECTIONS
Video computing.
Jeff Holtzman

100 Advertising Sales Offices

100 Advertising Index

94 Buyer's Mart

16 Letters

26 New Lit

28 New Products

4 What's News
5 WAYS TO STOP WASTING TIME IN ELECTRONICS.

2. Stop wasting your time soldering. Here are three popular PROTO BOARD® Brand solderless breadboarding systems that meet any budget or time schedule. First the diminutive PB-10's 840 contact points and 3-color binding posts. PB-102 has 1,240 tie points, accepting up to 12 16-pin ICs. Finally, PB-103, with 2,250 contact points, and up to 24 16-pin capacity. They're affordable, American-made, lifetime guaranteed. You'll soon see why PROTO BOARD Brand is Today's Standard for Quality in Breadboarding.

3. Stop wasting your time jury-rigging large numbers of circuits. Here are two oversized PROTO BOARD® Brand, with expanded area, tie points, and more to keep your ideas together. PB-104 features 3,060 tie points, which can handle to 32 16-pin ICs with ease. Four color coded binding posts, and roomy 9.2” x 8” metal panel make it big...but simple. The humungous PB-105 lets you load up to 48 16-pin ICs, and much more onto its 5-color coded binding posts and 17 sockets, for over 4,560 contact points. Lifetime guarantee. American-made. Affordably priced.

4. Stop wasting your time plugging-in external power. We've added the power to the breadboard. And, what power! Up to triple voltage power, +5V, +12V, -12V, regulated/current limited and DC. Up to 2,250 tie points, with 24 IC capacity and 14 pin DIPs. Now you can create, test and modify TTL, CMOS, Op-Amps and even microprocessor circuits. Plus, there is the standard Global Lifetime Guarantee on the sockets. And, wait 'til you see the modest prices!

5. New! Stop wasting time designing computer circuits. Now you can use your solderless breadboard concepts for designing accessory circuits. PROTOCARD® is a PROTO BOARD Brand which fits any standard slot in your IBM, PC/XT or PC/AT computer. Some modules even include built-in basic decoder circuits for memory and I/O addressing. Breadboard areas up to 3,360 contact points. Buffered versions eliminate loading of pc buses.

Global Specialties. An Interplex Electronics Company. 70 Fulton Terrace, New Haven, CT 06512. Telephone: (203) 624-3103. © Interplex Electronics 1989. All Global Specialties breadboarding products made in USA.

Call toll-free for details 1-800-572-1028

CIRCLE 179 ON FREE INFORMATION CARD

February 1983, Electronics Now

www.americanradiohistory.com
Global Positioning to track buses

The Global Positioning System (GPS), originally intended as a navigation aid for military ships and aircraft anywhere on the earth, will be put to use tracking the positions of trains, buses and emergency vehicles in Dallas, Texas. The Dallas Area Rapid Transit (DART) system expects to be able to pinpoint the location of its entire fleet of 1500 buses, vans, police cars, and service vehicles to within 15 to 100 meters at any given time.

Rockwell International's Commercial GPS Business (Richardson, TX) has a joint venture with Techsonic Industries Inc. (Euapula, AL), to furnish DART with receivers for an Automatic Vehicle Location (AVL) system. The equipment needed to monitor and control the movement of the vehicles will be provided under a $16.4-million contract, and it will be based on Rockwell's NavCore V GPS receivers.

According to DART officials, the ability to accurately monitor vehicle positions will reduce operating costs by keeping buses running on more precise schedules. It will also improve service by shortening passenger waiting time for the buses. The officials say that the DART AVL system has built-in safety features that will allow dispatchers to summon help automatically—with the push of a button—in the event of medical emergencies, fire, robberies, or shootings.

The NavCore V GPS receiver circuitry will be embedded in the Techsonic Humminbird receiver located on top of each DART vehicle. It will determine the vehicle’s position precisely from signals transmitted by the constellation of NAVSTAR satellites regularly orbiting the earth.

The receiver will send position information to a radio receiver and transmitter combination in the vehicle that will transmit the data to DART’s dispatching office. A computer will take the received signal and process it for large displays. DART’s vehicles will appear as small moving icons on the screens.

NavCore V was designed for integration into a variety of navigation systems for vehicles, commercial and pleasure craft, and airplanes. It can also be organized to be a navigational aid for hikers and tourists.

Its single-board receiver—the world’s smallest and most powerful five-channel parallel GPS receiver, according to Rockwell—can take its first accurate reading from the satellite cluster in less than 30 seconds (compared to almost two minutes for a typical two-channel receiver). Time and velocity can then be read out once per second.

Satellite signals are picked up by a ¼-inch-square semiconductor device that is made up of 1291 components—the equivalent of putting the entire receiver portion of a TV on the head of a pencil eraser.

LCD optical filter tunes lightwaves

Researchers at Bellcore (Red Bank, NJ) have invented an experimental tunable optical filter based on liquid crystals that allows messages to be transmitted more efficiently by separating information-carrying lightwaves into different “colors.”

Today, telephone networks rely increasingly on optical-fiber transmission lines and multiplexing technologies to transmit voice and data around the network along common transmission paths. Despite optical fiber’s ability to carry vast amounts
Now you don’t have to be enrolled at CIE to receive our introductory Electronic and Electricity Lesson Modules. This program is available for a limited time to non-students for the shockingly low price of only $99.50.

With CIE’s patented AUTO-PROGRAMMED method of learning you will quickly learn and then master the basics of electronics and electricity and then move on to... DC/AC circuit theories, fundamentals of bi-pol junction transistors (BJT), field effect transistors (FET), wiring, diagram and schematic readings, component identification, soldering techniques... and much, much, more. This introductory offer includes the first 39 lessons in CIE's Associate in Applied Science in Electronic Engineering Technology Degree.

Your commitment to CIE ends with your payment, but CIE’s commitment to your success just begins when you receive your lessons, exams, binder and equipment. This special introductory price includes all the benefits and assistance CIE normally extends to its full time students. You’ll be entitled to unlimited access to CIE’s faculty and staff to assist you in your studies via a toll free 800 number six days a week, 24-hour turnaround on grading your submitted exams, CIE bookstore privileges, a patented learning method, reference library, access to CIE's electronic bulletin board and a free issue of CIE’s school newspaper The Electron.

And best of all, when you decide to continue your electronics education in any of CIE’s programs you’ll receive full academic credit for successful lessons submitted and a $100.00 Tuition Credit Certificate.

All this knowledge and support will put you on the road to understanding digital electronics, automotive and industrial electronics, microprocessing principals, computer systems, telecommunications and much, much, more.

All This For Only! $99.50

- $100.00 Tuition Credit
- Academic Credit
- Free issue of The Electron
- Build your personal burglar alarm
- Toll Free Instructor Assistance
- 24-hour grading
- CIE bookstore privileges

- 39 theory and hands-on training lessons and exams.
- Patented learning method
- CIE electronic bulletin board privileges

Yes! Send me CIE’s Introductory Electronic and Electricity Lessons and Equipment.

Name: __________________________ Street: ___________ Apt#:

City: __________________________ Zip: ___________

State: __________ Age: ________ Phone: (______)________

BOOKSTORE
1776 East 17th Street
Cleveland, Ohio 44114

A7318

Total Merchandise: $99.50

Ohio Residents add 7% Sales Tax:

California Residents add 6 1/2% Sales Tax:

Total This Order: ______________________

Shipping and Handling Charge: $5.00

Method of Payment/Amount Enclosed: ______________________

Personal Check or Money Order

□ Master Card □ Visa □ Discover

Card Expiration Date: __________

Signature: _______________________

CHARGE BY PHONE!

9 AM to 4:30 PM Eastern Time: 1-800-321-2155 ext. A7318

www.americanradiohistory.com
• Politics and HDTV. The touchy subject of foreign-made TV sets was broached by one HDTV system team in what appeared to be a non-scientific lobbying effort. Thomson Consumer Electronics (RCA) and North American Philips (Magnavox), members of the Advanced Television Research Consortium (ATRC), signed a pledge to manufacture TV sets, tubes, and "other key carpentry" for high-definition sets in the United States. The statement was endorsed by two unions, the International Brotherhood of Electrical Workers (IBEW) and the International Union of Electrical Workers (IUE). A union news release appeared to imply that the ATRC system was the only HDTV system that could benefit both "American consumers and workers."

The two manufacturers later elaborated on the statement and said they would produce HDTV sets mainly in the U.S. no matter which system was chosen by the FCC. However, they did note that proponents of competing systems couldn't make the same promise. Zenith, a competitive system developer, has moved its major TV production facilities to Mexico. The other system proponents—General Instrument, Massachusetts Institute of Technology, and Japan's NHK—have no existing tube- or set-manufacturing facilities in the United States.

• What's new in Japan? That question usually implies some exciting answers. However, at the latest Japan Electronics Show, the answer was awkward and subdued. If there was a trend, it had to be widescreen TV sets with 16:9 proportions to receive standard NTSC broadcasts. Although there were many demonstrations of sets designed for Japan's Hi-Vision analog satellite-transmitted HDTV system, they were priced too high for the general public. Japan is developing an extended-definition widescreen transmission system (which falls short of HDTV known as Clearvision II or iDTV for improved definition TV), but displays in this technology seemed to be without much conviction. Some individual displays were intriguing, including a Mitsubishi demonstration of a camcorder that required no direct connection to a TV set for playback (an infrared connection was used instead)—but Mitsubishi said that its display was merely a technological demonstration to get reaction from attendees.

Panasonic showed a high-resolution camcorder with three CCD pickups instead of one. But the company said that it felt American camcorder users weren't quite sophisticated enough to appreciate it, so the camcorder would be introduced here only if demand warranted it. Panasonic also demonstrated a home CD player with full-motion video, promising "combined digital motion pictures and high-fidelity digital sound," but that system isn't quite available yet to consumers.

• Wide screens for U.S. Plans to introduce TV sets with 16:9 aspect ratio pictures in the U.S. are being fixed up, although initial plans for a launch in late 1992 didn't pan out. Thomson Consumer Electronics plans to bring out its "CinemaScreen" sets with 34-inch widescreen tubes under its ProScan and RCA brands late in the second quarter of 1993. Panasonic is going with projection TV's, with 50- and 58-inch screens, for shipment in April and September, respectively. Philips says it will have a 34-inch tube set in the first quarter. Sharp says its first widescreen sets for the U.S. will be either 30- or 34-inch sets available around midyear, while JVC expects to enter the widescreen business here sometime this year. Toshiba says that it will sit out the widescreen derby this year because of the lack of widescreen program material available to viewers on either cable or broadcast TV.

• FCC approves the ghostbuster. The ghost-canceling system developed by Philips now has a green light from the FCC, which has given informal approval to the use of line 19 of TV's vertical blanking interval for transmission of the reference signal. To eliminate ghosts, receivers must have equipment that responds to the reference signal. Because that equipment will cost $4000 to $5000 at first, it will be sold principally to cable systems for clearing up the signals that they receive over the air. The semiconductor industry now faces the challenge of developing a chip to reduce the cost to a level low enough to permit it to be built into consumer TV sets. Philips says that such a chip could be available to manufacturers as soon as next year.

• How flat is flat? "Flat" is an absolute term, not a relative one, according to the National Advertising Review Board. It ruled in response to a petition by Zenith protesting the widespread use of the phrase "flat tube" in connection with computers. The ruling presumably will also apply to TV sets. Zenith said that its Flat Tension Mask (FTM) monitor tube is the only one with a truly flat face. Therefore, it was misleading for others to advertise "reduced curvature" tubes as "flat." The one company named by Zenith in its complaint—NEC Technologies—has agreed to discontinue advertising its computer-monitor tube as flat. The Review Board said, however, that it's acceptable for others to use the phrase "flat square technology," but only if it's "prominently accompanied by appropriate qualifying language."
Select any 5 books for only $4.95 (values up to $142.75) when you join the Electronics Book Club™

As a member of the Electronics Book Club... you'll enjoy receiving Club bulletins every 3-4 weeks containing exciting offers on the latest books in the field at savings of up to 50% off of regular publishers' prices. If you want the Main Selection do nothing and it will be shipped automatically. If you want another book, or no book at all, simply return the reply form with the book number containing exciting offers on the latest books in the field at savings of up to 50% off of regular publishers' prices. If you want the Main Selection do nothing and it will be shipped automatically. If you want another book, or no book at all, simply return the reply form with the book number...

If coupon is missing, write to: Electronics Book Club, Blue Ridge Summit, PA 17294-0810

YES! Please send me the books listed below, billing me for just $4.95 plus shipping/handling & tax. Enroll me as a member of the Electronics Book Club according to the terms outlined in this ad. If not satisfied, I may return the books within 10 days without obligation and have my membership cancelled. A shipping/handling charge & tax will be added to all orders.

If you select a book that counts as 2 choices, write the book number in one box and XXX in the next. If you select a Counts as 3 choice, write the book number in one box and XXXX in the next 2 boxes.

Name _____________________________
Address __________________________
City/State _________________________
Zip/Phone __________________________

Valid for new members only, subject to acceptance by EBC. Canada must remit in U.S. funds. Applicants outside the U.S. and Canada will receive special ordering instructions. All books are hardcover unless otherwise noted.

©1993 EBC

www.americanradiohistory.com
In the early 1970’s, I wrote a series of articles—‘The Four-Channel Follies’—chronicling the rise and fall of multi-channel sound reproduction. But despite the commercial failure of quadraphonics, I never lost faith. I felt—and still feel—that the only way sound reproduction is ever going to deliver you-are-there realism at home is through multiple channels. However, I never dreamed that the source and the motivation for a resurgence of interest in multi-channel sound would involve video movies and “home theaters”—but so be it.

It appears that about half the receivers expected to appear on the market in the coming year have built-in surround, delay, and/or ambience circuits. Most or all of the receivers manufactured by such major companies as Carver, JVC, Mitsubishi, Philips, Pioneer, Sony, Teac, and Technics have multi-channel capabilities. This could represent a lemming-like rush to leap on a perceived bandwagon, or it could be a real response to consumer demand. Only dealer cash-register receipts will ultimately tell.

In any case, multi-channel sound has risen like the phoenix from the ashes of past fiascoes, and is set to take flight—perhaps. Unfortunately, the process and complexities of the theater-sound setups are a bit daunting, particularly for those who own a conventional system. They might not be sure if they want to make that kind of a commitment to an unproven format. Luckily, there’s a cheap and easy way of dipping your toes (ears?) in the multi-channel stream.

Hafler ambience extraction
Developed about 25 years ago by David Hafler of Dynaco fame, the basic Hafler "ambience-extraction" pseudo four-channel setup essentially consists of two small, series-connected speakers wired across the hot terminals of an amplifier. If the idea seems familiar, it might be because I mentioned the Hafler circuit in Audio Update of November 1992. This simple circuit won’t deliver Dolby Pro-Logic performance, but it will give you a worthwhile, low-cost taste of the benefits of multi-channel audio/video reproduction. And while it isn’t quite a “free, get-acquainted” offer, it comes close.

Here is how it works: When a live stereo recording is made, the hall reflections—ambience/reverberation—arrive at the microphones from all directions, and are generally recorded with random playing in the two stereo channels. In studio recordings, the phasing of the sounds of the instruments are also random, but with a somewhat more chaotic relationship.

The phases and amplitude differences between the left and right channels (L minus R) are responsible for the conventional stereo effect from music recordings and video sound tracks. When the L – R signal is delivered separately to the rear of the listening room (rather than remaining mixed in with the front channels), enhanced realism is a frequent result. Because the mix of the L, R, L + R, and L – R signals varies from recording to recording, the specific results are unpredictable. But most listeners report that the effect is pleasing most of the time.

The rear ambience speakers
Happily, the somewhat costly and complicated ground rules that determine the quality and placement of conventional four-channel ambience or theater-sound speakers don’t apply to the Hafler configuration. Most Hafler setups use the regular main speakers up front, along with two inexpensive small speakers in the rear.

Small speakers such as those in the Radio Shack Minimus series serve nicely. Avoid 4-ohm units because they can reduce the total impedance of the circuit so that it is too low for your amplifier. Ideally, the ambience speakers should be barely audible; their contribution should be apparent only when you turn them off and find that the extra realism disappears.

For best results, the ambience speakers should be at least as far from your listening position as your main front speakers—the farther away the better. It might be helpful to mount them high up on the side or rear wall, toward the rear corners of the room, facing upward or parallel with respect to the walls.

There are no hard and fast rules (other than keeping them distant from the listening area), and I recommend experimentation. I see no reason why the speaker locations have to be exactly symmetrical with respect to the listening position, just as long as they are both far enough away to provide some time delay in the arrival of their signals.

Depending upon your choice of rear speakers, you might have to reduce their overall output and/or their treble response. Output is reduced simply by installing series resistors, as shown in Fig. 1.

A 25-ohm, 10-watt potentiometer (or rheostat) allows easy adjustment of speaker level, but if one is not available, you can accomplish the same result by trial and error with fixed-value power resistors. If you use circuit (a) one potentiometer will be sufficient; circuit (b) requires two.

The rear speakers you choose can, at times, produce distracting and inappropriate high-frequency
Be a computer programmer!

Only NRI gives you hands-on training with the latest programming tools:
- A 486sx computer with 80 meg hard drive
- Windows
- Visual Basic
- Power C
- QBASIC
- MS-DOS
- And much more!

Only NRI at-home training gives you real-world programming skills in three in-demand languages: QBASIC, C, and Visual Basic, today's hot new language designed for writing popular Windows applications. Best of all, you get hands-on training with a powerful new 486sx-based computer system, complete with 80 meg hard drive, Windows, and professional programming software you keep!

NRI, the leader in at-home computer training, shows you how to take advantage of today's newest programming opportunities.

Get in on the ground floor of one of today's fastest-growing career fields: computer programming. The Bureau of Labor Statistics forecasts that job opportunities for programmers will increase much faster than average over the next 10 years, with as many as 400,000 new jobs opening up by 2005.

And the fastest-growing segment of programming jobs will be PC programming, fueled by the phenomenal popularity of Windows, the efficient power of C, and the ascent of exciting new languages like QBASIC and Visual Basic.

Now, with NRI at-home training, you can get the new skills you need to build a top-paying career — even a full- or part-time business of your own — in this high-growth, high-opportunity field.

NEW! The only programming course that includes a powerful 486sx-based computer, 80 meg hard drive, Windows, Visual Basic, and more — all yours to keep!

Right from the start, NRI gets you actively involved in the challenge of real-world programming. Step by step, you learn to create the kinds of full-featured, powerful programs today's employers and clients demand...including programs designed for use in a Windows environment!

Only NRI gives you first-hand programming experience with a state-of-the-art 486sx mini-tower computer system, complete with hard disk drive, a full megabyte of RAM, high-density floppy drive, mouse, monitor, and more — all yours to train with and keep!

Plus you explore the extraordinary capabilities of three in-demand programming languages. You learn to design, code, run, debug, and document programs in QBASIC, C, and Visual Basic. Best of all, since Visual Basic is specifically designed for creating Windows applications, you learn to generate fully functioning Windows programs, complete with text boxes, command buttons, and other sophisticated graphical interface elements.

No previous experience necessary

Train with NRI, and immediately start getting the money-making job skills you need to be a computer programmer — no matter what your previous background.

NRI's step-by-step lessons and hands-on programming projects help you first master the design concepts used every day by successful PC programmers. Then, with the support of your experienced NRI instructor, you quickly move on to learn programming in three of today's hottest languages.

By the time you complete your course, you have a clear understanding of programming methods, languages, and techniques...and you're ready to handle any programming task with confidence.

Send today for your FREE catalog!

See how NRI at-home training gives you the programming know-how, the computer, and the software you need to get started in this top-paying field. Send today for your FREE catalog!

If the coupon is missing, write to us at the NRI School of Computer Programming, McGraw-Hill Continuing Education Center, 4401 Connecticut Avenue, NW, Washington, DC 20008.

IBM PC/AT is a registered trademark of the IBM Corporation. Windows, QBASIC, and Visual Basic are trademarks of Microsoft Corporation.
Rest assured, no scope was injured in the making of this ad.

After all, the volunteer is a member of our new TAS 400 family of analog oscilloscopes. And every TAS has its entire acquisition system (including the vertical, horizontal and trigger functions for each input channel) housed on a proprietary hybrid circuit.

The result is a kind of scope on a chip.

One with 75% fewer parts and far greater reliability. In fact, the TAS is three times more reliable than previous scopes.

What's more, each and every TAS
comes with smashing features like AutoSet, on-screen cursors and readout, dual timebases, and save and recall settings. Plus a unique user interface that makes the 60 MHz TAS 455 and 100 MHz TAS 465 easier to use and dramatically unlike any other analog scope.

A claim that is further backed up by their remarkably affordable price.

But then a lot of performance for not a lot of money is exactly what the TAS is all about. Scopes that add to a long list of low-cost Tektronix products. Like our handheld 60 MHz 224 digitizing oscilloscope. Our fully programmable, analog/digital 2212 scope. And our family of affordable and stackable basic test gear.

Now that's a lot to drop on you in one ad. So to learn more about these and other economical Tektronix products, call your authorized Tektronix distributor today.

Or call us at (800) 426-2200, ext. 140 to place your order or for the name of the distributor nearest you.
transients. You can reduce that effect by gluing a small piece of foam or fabric on the grille cloth over the center of the full-range or high-frequency driver in a trial-and-error process. The object of the process is to take the "edge" off the transients, yet preserve the midrange and low highs.

Circuit a vs. b

Circuit (a) has the advantage of simplicity. It makes use of only one gain-control resistance which can be omitted if the rear speaker's efficiency is low enough. In addition, it allows you to use only a single rear speaker.

Circuit (b) requires a pair of gain-control resistors and an additional resistance somewhat higher (about 50 ohms) to mix some stereo signal into the ambience signal. Some people claim that this modification gives the listener an enhanced impression of space and ambience, an improvement on the original (a) circuit.

Final note: There are a few amplifiers on the market that do not have a common ground shared by both speaker terminals. And there are at least two brands that, for good technical reasons, have the polarity markings on one channel's speaker terminals reversed. (Red indicates the grounded terminal rather than black.) If you have any doubts about how to wire your amplifier's speaker outputs, you can confirm that the black speaker ground terminals are common to both channels with an ohmmeter.

The Hafler circuit won't give you something for nothing, but it will deliver surprising performance, considering the small investment required in both time and money. R-E
The Ultimate Meter
TRUE RMS - LCR - Hz - dBm

GREAT VALUE!

FROM $19.95
High Performance

Standard Features - Models 100, 150, 200 & 400
- AC & DC VOLTAGES
- DC CURRENT
- RESISTANCE
- CONTINUITY TESTER - Buzzer
- DIODE TEST
- 3 1/2 Digit LCD
- LOW BATTERY INDICATOR
- ACCURACY +/- 0.5% RDG

Kelvin Meters backed by a 2 Yr Warranty - Parts & Labor

BATTERY TEST TRANSISTOR
$199.5 $299.5 $399.5

100 Basic
Model 990085
$19.95

150 Basic
Model 990090
$29.95

200 Advanced
Model 990091
$39.95

20MHz FREQUENCY COUNTER
$1499.5

PRO 400
Model 990092
$69.95

Protective Cases

- For Models 100, 150, 200 $4.95 (990085)
- Case For Model Pro 400 $9.95 (990094)

Standard Features - Models 92, 93, 94 & 95
- DC/AC VOLTETERS
- AC/DC CURRENT
- OHM METER
- FREQUENCY COUNTER to 4 MHz
- AUDIBLE CONTINUITY TESTER
- DIODE TESTER
- MAX/MIN AVERAGE MEMORY RECORD
- RELATIVE MODE
- 10A HIGH-ENERGY FUSE PROTECTION
- DATA HOLD
- AUTO SLEEP & AUTO POWER OFF

PERFORMANCE PLUS
Complete with above Standard Features plus WATER RESISTANT (92 & 94 Models only), 2 YEAR WARRANTY, YELLOW HOLSTER, PROBES, BATTERY, FUSE, STAND

Model 92
$119.95

Model 93
$149.95

Model 95
$199.95

DIAGNOSTIC PLUS
Complete with Standard & Model 92 Features plus LOGIC PROBE, CAPACITANCE TESTER, TRANSISTOR TESTER, TEMPERATURE TESTER & K-TYPE PROBE, HIGH VOLTAGE WARNING BUZZER

Model 93
$119.95

Model 94
$149.95

ENGINE ANALYZER PLUS
Complete with Standard & Model 92 Features plus TEMPERATURE, TACHOMETER & DUTY CYCLE, 10 MEGA OHM IMPEDANCE, ANALOG BAR GRAPH, K-TYPE TEMP PROBE, ALLIGATOR CLIP TEST LEADS, INDUCTIVE PICKUP CLIP, 6' TEST LEADS & CARRY CASE

Model 95
$199.95

10 HUB DRIVE
MELVILLE, NY 11747
M/C & VISA

KELVIN
(800) 645-9212
(516) 756-1750

12 INSTRUMENTS IN ONE - DC VOLTMETER, AC VOLTMETER, OHMMETER, AC CURRENT, DC CURRENT, DIODE TESTER, AUDIBLE CONTINUITY TESTER, dBm, FREQ COUNTER, CAPACITANCE METER, INDUCTANCE METER, LOGIC PROBE

0.1% ACCURACY
on DC voltages
Water Resistant

Model 94
$199.95

Cases for 90 Series Meters
Regular Padded Zippered $9.95 (990115)
Deluxe Padded Zippered $14.95 (990115)

Established 1945

This meter is designed in accordance with relevant safety requirements as specified in IEC-348, UL-1244 and VDE-0411.

CIRCLE 186 ON FREE INFORMATION CARD

www.americanradiohistory.com
NETWORK TROUBLESHOOTING

I read with interest the third installment of "From Not Working to Networking" (Electronics Now, October 1992) by Gary McClellan, and I agree that giving specific case examples is an effective way to discuss practical LAN troubleshooting. Unfortunately, I found several of McClellan’s examples to be deceptive because they describe situations that might occur, but they are not, in my opinion, typical of normal LAN’s.

For example, in the first problem scenario, McClellan recommends running a Disk Doctor program on the server. However, approximately 60 to 70% of LAN’s run on Novell’s proprietary software, so that advice not helpful. Novell does not use a DOS format, and Disk Doctor software is DOS-based. Disk Doctor programs that run on Novell networks might not work—and that will confuse the trainee—or they will destroy data on the disk—and that will surprise the novice.

In the second scenario, McClellan says that ARCNet operates over RG-58/U coaxial cable, but the ARCNet specifications call for either RG-62/U coaxial cable or twisted-wire pairs. I admit there might be an ARCNet LAN connected with RG-58/U cable, but it is not typical, and this too can confuse the novice.

McClellan states that soldered coaxial connectors are far more reliable than crimp-on connectors. That might be correct in theory, but as a practical matter it is only true if the installer has considerable soldering skill.

Also in the second scenario, McClellan talks about a Compaq 386 computer “configured as a hub.” While that computer can perform that function, its mention is misleading in that it implies that a Compaq 386 is a hub in typical ARCnet configurations.

When McClellan discussed the time-domain reflectometer (TDR), he said that a scope reading indicates the presence of a “sharp drop about 29 feet away.” I believe he should have said “29 meters away.”

I want to assure the author that I am not trying to “nit pick.” But I did want to call attention to what I see as errors.

BRIAN L. KENNEDY
San Diego, CA 92117

I’d like to thank Mr. Kennedy for writing and expressing his concern. Prior to writing the series, I developed and marketed a LAN test product to a range of customers from “mom and pop” service companies to the largest personal computer manufacturers. This experience put me in touch with a lot of people who told me about their service problems. (One is in San Diego, so I am familiar with what happens there.)

The troubleshooting examples I used in my article were based upon the most common problems that my contacts said they encountered, but the details I wrote about reflect my own experience.

Early Novell systems had a custom hard-disk formatting scheme that can be damaged by Disk Doctors. In fact, Novell gave preformatted hard-disk drives to their customers to spare them the lengthy formatting process. Talk to a Novell representative if you are unsure about how to correct hard-disk problems.

Officially, ARCNet was designed for RG-62/U coaxial cable, a 93-ohm cable that looks like RG-58/U, a 50-ohm cable. RG-58/U has been substituted for other cables in LAN’s because it is easier to obtain and somewhat cheaper than RG-62/U. In the example cited, RG-58/U was substituted by a cost-conscious company president and an installer (who probably was the lowest bidder on the installation contract).

Although that cable type was not recommended, the system worked after repairs, and no attempt was made to change the cable. In my opinion, incorrect cable substitutions account for relatively few problems in the industry, but troubleshooters should be aware of them.

A handy reference guide to network topologies and cable selection can be found in AMP’s Netconnect Open-Wiring Systems Catalog, which can be obtained free from AMP distributors or by calling 1-800-522-6752.

Some field-service technicians I know look upon crimp connectors as “built-in repeat-service business.” Crimping is popular because it is quick and fast, but unless the technician has the necessary skill and uses the connector manufacturer’s proprietary (or recommended) crimping tools, connection quality will suffer.

Last summer, I helped to solve three LAN-related service problems. One was caused by a “bug” in the LAN operating system, and the others were caused by connections performed by so-called professional installers.

The Compaq 386 “hub” computer in the ARCnet system was a popular configuration two to three years ago. Today, most networks have gone to 486-based computers for better performance because speed is critical in this business.—Gary McClellan

MORE 555 CIRCUITS

I was pleased to see Ray Marston’s article on 555 timer circuits in the October 1992 issue of Electronics Now. But I was disappointed to see that one of the simplest, yet most useful, circuits was not included in the article. In fact, this circuit seems to be one of the best-kept secrets because I’ve never seen it published—not even in Don Lancaster’s 555 Handbook—but only referred to in literature.

www.americanradiohistory.com
In the typical circuit for an astable oscillator using a 555 timer (Fig. 3 in the article), C1 charges through R1 and R2, but discharges via pin 7 of the 555 through only R2. As mentioned in the article, if R2 is much larger than R1, then a waveform with a duty cycle close to 50% will be generated. But it’s clear that unless R1 is actually zero (which would burn up the chip quite quickly!), then the waveform never will be exactly symmetrical.

But output pin 3 toggles between Vcc and ground, and it can source or sink a reasonable amount of current in both states. This is especially true for the 7555, the CMOS version of the 555. Therefore, by using that pin to charge and discharge C1 through a single resistor, as depicted in Fig. 1, the resultant output is a symmetrical waveform with a duty cycle of exactly 50%. R1 can be varied to change the frequency, and the duty cycle will remain abso-

utely constant.

Some asymmetry can be introduced if the output is heavily loaded. Thus, for example, if the timer is to drive a relay, discharge pin 7, otherwise open, can be used to pull the base of an NPN transistor normally biased “on” to ground Fig. 2) via a resistor of 1k or greater from Vcc (See Fig. 2).

I have combined these two circuits to drive alternating flashing circuits for volunteer fire department vehicles. A CMOS 7555 with a C1 of 0.1 μF and an R1 of 10 megohms, will oscillate at a frequency of about 80 flashes per minute.

DAVID BANKS, NOION
Colorado Springs, CO
FIGS 1 & 2 GO WITH ABOVE ITEM

The series of articles by Mr. Ray M. Marston in the September and October 1992 issues of Electronics Now are a welcome review of the 555 family of monolithic integrated devices and the circuits that can be made with them.

I have used the 555 in many applications since its introduction in 1972. Therefore, I am aware of the

New Tool Kit™ Series
THE MOST PRACTICAL, COMPACT, INEXPENSIVE DMMs AVAILABLE

<table>
<thead>
<tr>
<th>Model 2703A 2704A 2706 2707</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCV</td>
</tr>
<tr>
<td>PRICE</td>
</tr>
</tbody>
</table>

Measures voltage resistance and current, and lots more! 0.5% DC accuracy. Prices start at $39.95!

New Tool Kit™ DMMs from B+K PRECISION are the industry’s best values for performance, features and dependability. Compare these ruggedized testers against all comers—at up to twice the price. You’ll be sold on Tool Kit. All four Tool Kit™ DMMs measure DC current to 10 amps, have large 3½ digit LCD readouts and a continuity beeper. The Model 2704A adds AC current, capacitance and transistor tests. The Model 2706 adds temperature measurement. The Model 2707 is similar to the 2704A with added frequency counter and logic probe functions.

See your local distributor for immediate delivery.

BK PRECISION®
MAXTEC INTERNATIONAL CORP.
CIRCLE 77 ON FREE INFORMATION CARD

Domestic and International Sales
3410 W. Cortland St., Chicago, IL 60635
312-889-1448 FAX 312-794-3740

www.americanradiohistory.com
DIGITAL VIDEO STABILIZER ELIMINATES ALL VIDEO COPYGUARDS

While watching rental movies, you will notice annoying periodic color darkening, color shift, unwanted lines, flashing or jagged edges. This is caused by the copy protection jamming signals embedded in the video tape, such as Macrovision copy protection. The DIGITAL VIDEO STABILIZER RX1 COMPLETELY ELIMINATES ALL COPY PROTECTIONS AND JAMMING SIGNALS AND BRINGS YOU CRYSTAL CLEAR PICTURES.

WARNING
THE DIGITAL VIDEO STABILIZER IS INTENDED FOR PRIVATE HOME USE ONLY. IT IS NOT INTENDED TO COPY RENTAL MOVIES OR COPYRIGHTED VIDEO TAPES THAT MAY CONSTITUTE COPYRIGHT INFRINGEMENT.

To Order: $39.95 ea + $4 for p & h
Visa, M/C, COD Mon-Fri: 9-6 EST
1-800-445-9285
ZENTEK CORP. DEPT. CRE0293
3870-12 West Oceanic Rd. Oceanside, NY 11572

CIRCLE 189 ON FREE INFORMATION CARD

FEATURES
- Easy to use and a snap to install
- State-of-the-art Microchip technology
- 100% automatic
- Compatible to all types of VCRs and TVs
- The best and most exciting Video Stabilizer in the market
- Light weight (6 ounces) and compact (1x3.5x5"
- Uses a standard 9 Volt battery (last 1-2 years)
- Fast UPS delivery
- Air shipping available
- UNCONDITIONAL 30 day money back guarantee
- 1 year warranty
(Dealers Welcome)
FREE 20P Catalog

CABLE TV DESCRAMBLERS
How You Can Save Money on Cable Rental Fees
Bullet Proof

1 Unit $59.95
US Cable's Best
Var. Gain Adjustment $109.95-$285
Jerrold Super Tri-Bi Auto... $199.95-$279
Scientific Atlanta... $199.95-$279
Pioneer... $199.95-$279
Panasonic T22PC14... $99.95-$279
Stargate Converter... $99.95-$279
Digital Video Stabilizer $99.95-$279
 wakes Video System $99.95-$445.95

30 Day Money Back Guarantee
FREE 20 page Catalog
Visa, M/C, COD or send money order to:
U.S. Cable TV Inc. Dept. KRE0293
4100 N. Powerline Rd., Bldg. F-4
Pompano Beach, FL 33073
1-800-772-6244

For Our Record
I, the undersigned, do hereby declare under penalty of perjury that all products purchased, now and in the future, will only be used on Cable TV systems with proper authorization from local Cable TV or Cable TV operators in accordance with all applicable federal and state laws. FEDERAL AND VARIOUS STATE LAWS PROVIDE FOR SUBSTANTIAL CRIMINAL AND CIVIL PENALTIES FOR UNAUTHORIZED USE.

Date:
Signed:

No Florida Sales!

CIRCLE 190 ON FREE INFORMATION CARD

The fallacy about the minimum trigger-voltage level for a monostable oscillator is being perpetuated on the 555 that is being used on the circuit in the article. That, and other earlier references, have stated that a minimum falling-level voltage change of ½ V + is required to trigger the oscillator output "on." I say that is not correct. I’d like to call attention to a circuit that I developed and described. The schematic and description were published as the EDN magazine “Best of Issue” design in January 5, 1989. With the values shown in Fig. 3, the CMOS 7555 inverted monostable circuit will trigger on a sine-wave or other rising input signal with a level of less than 31 millivolts, rms, over a frequency range of 60 Hz to 23 kHz.

In the same circuit, the bipolar 555 will trigger on similar kinds of input signals of less than 15 millivolts, rms, over a frequency range of 10 Hz to 50 kHz. In both cases, the driving source impedance is 600 ohms, and V+ is 9.0 volts. The frequency range expands as the input signal level increases.

In those examples, I found that the key to this circuit’s operation is the addition of a sufficiently conductive current path through R1 around the almost infinite impedance across the input pins 5 and 6 of the threshold comparator. As a result, the voltage developed across R1 (in the voltage divider C1, R1, C2) to V+ is sufficient to trigger the threshold comparator and turn the output “on” or “high.” This circuit has found several applications as a low-level signal detector, amplifier, and sine-to-squarewave converter. I’d also like to point out that the lower end of the three 5K voltage-divider resistor strings shown in Fig. 1 of the September article is actually connected to ground (V–) internally, as is the emitter of the discharge transistor.

JOHN J. O’FARRELL
Tallahassee, FL

DISKETTE DIFFERENCES
I am responding to a question posed by F. Foeg about the differences in 3½-inch diskettes (Q&A, Electronics Now, September 1992). I manage a company that manufactures test equipment and special alignment and diagnostic diskettes for the manufacturer and service of floppy-disk drives. I gained 14 years of experience in various technical and management positions with Dysan, a diskette manufacturer, which later became Xidex. Therefore, I believe that I am qualified to explain this...
Graduate as a Fully Trained Electronics Professional!

If you want to learn about electronics, and earn a good income with that knowledge, then CIE is the best educational value you can receive.

CIE's reputation as the world leader in home study electronics is based solely on the success of our graduates. And we've earned our reputation with an unconditional commitment to provide our students with the very best electronics training.

Just ask any of the 150,000-plus graduates of the Cleveland Institute of Electronics who are working in high-paying positions with aerospace, computer, medical, automotive and communications firms throughout the world.

They'll tell you success didn't come easy...but it did come...thanks to their CIE training. And today, a career in electronics offers more rewards than ever before.

CIE'S COMMITTED TO BEING THE BEST...IN ONE AREA...ELECTRONICS.

CIE isn't another be-everything-to-everyone school. CIE teaches only one subject and we believe we're the best at what we do. Also, CIE is accredited by the National Home Study Council. And with more than 1,000 graduates each year, we're the largest home study school specializing exclusively in electronics. CIE has been training career-minded students like yourself for nearly sixty years and we're the best at our subject...ELECTRONICS...BECAUSE IT'S THE ONLY SUBJECT WE TEACH!

CIE PROVIDES A LEARNING METHOD SO GOOD IT'S PATENTED.

CIE's AUTO-PROGRAMMED® lessons are a proven learning method for building valuable electronics career skills. Each lesson is designed to take you step-by-step and principle-by-principle. And while all of CIE lessons are designed for independent study, CIE's instructors are personally available to assist you with just a toll free call. The result is practical training...the kind of experience you can put to work in today's marketplace.

LEARN BY DOING...WITH STATE-OF-THE-ART EQUIPMENT AND TRAINING.

CIE pioneered the first Electronics Laboratory Course and the first Microprocessor Course. Today, no other home study school can match CIE's state-of-the-art equipment and training. And all your laboratory equipment, books and lessons are included in your tuition. It's all yours to use while you study and for on-the-job after you graduate.

PERSONALIZED TRAINING...TO MATCH YOUR BACKGROUND.

While some of our students have a working knowledge of electronics others are just starting out. That's why CIE has developed twelve career courses and an A.A.S. Degree program to choose from. So, even if you're not sure which electronics career is best for you, CIE can get you started with core lessons applicable to all areas in electronics. And every CIE Course earns credit towards the completion of your Associate in Applied Science Degree. So you can work toward your degree in stages or as fast as you wish. In fact, CIE is the only school that actually rewards you for fast study, which can save you money.

SEND FOR YOUR CIE COURSE CATALOG AND WE'LL SEND YOU A FREE 24-PAGE CIE ELECTRONIC SYMBOLS HANDBOOK.

FREE!

SEND FOR YOUR CIE HOME STUDY COURSE CATALOG AND RECEIVE A FREE 24 PAGE CIE ELECTRONIC SYMBOLS HANDBOOK!

Includes hundreds of the most frequently used electronic symbols. Published exclusively by CIE for our students and alumni. Yours free when you request a CIE Course Catalog.

YES! I want to get started. Send me my CIE course Catalog including details about the Associate Degree Program. (For your convenience, CIE will have a representative contact you there is no obligation.)

AE47

Please print clearly

Name ________________________________

Address ________________________________

City __________________ State ______

Zip __________ Age ______

Phone No. (______) ________________________

Check box for G.I. Bill Benefits

 Veteran □ Active Duty □

CIE

1776 East 17th Street

Cleveland, Ohio 44114

A School of Thousands.

A Class of One. Since 1934.

www.americanradiohistory.com
New signal generator offers front-panel and computer control.

CIRCLE 10 ON FREE INFORMATION CARD

Once your test bench is equipped with a digital multimeter and an oscilloscope, a function generator is the next piece of gear you'll need. Although engineers and technicians know how important a function generator can be, even advanced hobbyists will find a host of uses for an instrument like the latest model from Global Specialties (70 Fulton Terrace, P.O. Box 1942, New Haven, CT 06512). Applications include testing the frequency response of filters and amplifiers, and troubleshooting and servicing electronic equipment.

Global's 2003 can produce sine, triangle, square, and ramp waveforms over a frequency range from DC to 1.6 MHz. Its 10-digit display provides a frequency resolution of 0.001 Hz. The generator's accuracy is rated at ±10 parts per million (ppm), with a drift of less than 5 ppm per year.

The 2003 generator is housed in a gray plastic cabinet that measures about 4 x 10 x 7 inches. The front panel features a 2-line by 16-character LCD, a 16-key membrane keyboard, a rotary, digitally encoded knob, and a BNC output jack. The rear panel holds the power switch and four BNC connectors (SYNC, TTL OUT, MARKER, and TRIG/GATE). An optional RS-485 serial interface is also provided on the rear panel.

Sine-wave distortion (both harmonic and non-harmonic) is rated a

The image in the box that opens this report should, at first glance, appear to be random dots. Study the image intently, however, and you should begin to see repetitive vertical strips of dots. But if you look at it as you would any normal two-dimensional image, you are not looking at it correctly.

The trick to seeing the hidden image is to focus your eyes, not on the page, but to an imaginary point several feet behind the page. Try to be completely relaxed, and hold the image between 8 and 16 inches from your eyes. Relax your eyes as you try to focus on the imaginary point behind the image. If you are persistent, you should see the image.

CIRCLE 11 ON FREE INFORMATION CARD
better than 40 dB below the fundamental. Triangle-wave and ramp nonlinearity are rated at less than 1% up to 100 kHz; square-wave jitter is less than 1%.

The amplitude of the output waveforms can vary from 5 millivolts to 20 volts peak-to-peak (p-p) into an open circuit, 2.5 millivolts to 10 volts p-p into 50 ohms. The output can be offset +10 volts to −10 volts.

Operating modes

The 2003 offers six operating modes: Continuous, triggered, gated, sweep, hop, and burst. In the continuous mode, the selected waveform is generated continuously. In the gated mode, the selected waveform is generated continuously as long as the GATE/TRIG input on the rear panel is held at a high TTL level. When that input is low, only the offset voltage is available at the output. In the triggered mode, the signal output is toggled on and off by a trigger pulse (1 microsecond or longer) on the GATE/TRIG input.

The generator offers both linear and logarithmic sweep modes. Both modes operate similarly, with the exception that the output varies logarithmically over time in the log-sweep mode. The start and stop frequencies can be programmed into the 2003, as can the sweep time. Each sweep is marked by a positive-going pulse on the SYNC output jack for oscilloscope triggering. Sweep-marker pulses are provided at the MARKER output; they’re typically used on a scope’s second channel to provide a scale.

The hop mode allows the user to store up to 16 frequencies—each with its own waveshape, amplitude, offset and duration—in the generator’s memory. The sequence can be played on command, so the hop mode is ideal for repetitive testing. The burst mode is a variation of the hop mode in which a frequency of 0 Hz is stored in memory in between other frequencies. The non-0 stored frequencies appear as bursts when the hop sequence is played back.

Many of the functions of the 2003 are controlled by a menu system: the rotary knob on the front panel controls a cursor on the LCD readout. Desired output frequencies can be input directly from the keyboard, or they can be set with the rotary knob by moving the cursor to the selected digit, and rotating the knob to increase or decrease the value of the digit.

The user interface is not intuitively understood. We got stuck on a couple of points and had to refer to the generally good manual to get us going. Once we understood the general operating procedures, we found the unit to be quite easy to use. Our only complaint is that the display is difficult to read in some lighting conditions.

The 2003 offers an optional RS-485 interface that can be controlled by any PC similarly equipped; all aspects of the unit’s operation can be controlled through the interface. Up to 32 devices can be attached on a daisy-chained RS-485 bus, with each device having a unique address.

Thanks to its innovative user interface and the optional computer-controlled capability, the 2003 provides impressive versatility at an attractive price of $499 ($750 with the RS-485 interface.)

or at least something strange, after only a few seconds. However, it could take up to several minutes to see the image.

If you have trouble seeing the random-dot image even after a few minutes, shift your gaze exclusively to the two square spots (known as **fusion dots**) at the top of the image. Stare at the dots until you are able to perceive the two squares becoming an apparent three. Now slowly transfer your focus from the squares to the image. Be patient. With your eyes properly “prepped,” you should be able to see the three-dimensional image.

When you look at a three-dimensional object, your brain uses the slightly different viewing angles between your left and right eyes to give you three-dimensional vision. The random-dot images do the same thing by hiding different images for each eye in vertical strips of dots. The strips are as wide as the distance between the two fusion dots. When one eye is looking at a dot in one strip, the other eye should be looking at the same dot two strips over. You might even see some very unusual double images when one eye focuses on a dot three strips away from the other. Some people find it easier to see the image when they cross their eyes.
NEW PRODUCTS

Use the Free Information Card for more details on these products.

SMC PROBE. This new probe from R & R Design is said to be a versatile alternative to present methods for testing surface-mount components. Handheld instrument probes allow only one test point to be observed at a time—a time-consuming chore that could cause damage to the components being tested. Clips for some surface-mount packages are available, but a different clip is needed for each surface-mount package size. And custom-made test stations are prohibitively expensive. *Quick Probe* is a weight-
ed spring-type contact probe with a flexible shaft and a connection point for coupling a test instrument. Different kinds of test points can be contacted with a single tool, and there is no need to solder test leads to components.

Quick Probe tests most surface-mount package styles. The *Quick Probe* is priced at $45.

R & R Design 20 Princeton Circle Longmont, CO 80503 Phone: 303-678-5004

COMMUNICATIONS DEBUGGER. This upgraded version of MicroTap’s (formerly DataScope) communications debugging software for data capture and analysis has applications in computer programming, manufacture, and industrial automation. According to its publisher, Paladin Software, MicroTap permits the user to apply capture, display, and search tools to ordinarily invisible serial transmission events. This, it says, is a cost-effective alternative to expensive hardware line monitors. *MicroTap* is said to be the only serial line monitor that includes context-sensitive Hypertext, Hypersetup, user-alterable multitasking window displays, and oscilloscope-like signal event tracing. All data and signal events are time-stamped to the nearest microsecond.

Version 2.1 also adds CUA-compliant file management, signal-pattern triggering (including "don’t care" signals), and expanded data-stream triggering capabilities (logical AND and OR functions, user-selectable source streams, and wild card bytes in binary or alphanumeric trigger strings).

MicroTap Version 2.1, including cable, connectors, and manual, costs $299.

PALADIN SOFTWARE, INC. 3945 Kenosha Avenue San Diego, CA 92117 Phone: 619-490-0368 619-490-0177

CONTINUOUS-DUTY DC POWER SUPPLY. A new portable high-current DC power supply from B + K Precision is said to be a compact, reasonably priced alternative to the use of batteries.

The *Model 1686* is priced at $199.

B + K Precision Chicago, IL 60635 Phone: 312-889-1448 Fax: 312-794-9740

HIGH-SPEED EPROM PROGRAMMERS. New high-speed EPROM programmers from JDR Micro-devices are capable of programming one EPROM or four EPROM’s simultaneously. The manufacturer reports that both units can program up to 8-megabit, 12.5-volt EPROM’s. The single-EPROM unit is the *Model MOD-MEP-1A*, and the four-EPROM unit is the *Model MOD-MEP-4A*.

Menu-driven software, located on the user’s PC-compatible system, gives the operator a choice of EPROM vendor and part number. The software then automatically sets the specified programming voltage, time constants, and other variables.

The user can choose from a list of programming methods based on the device selected. The software also provides a complete list of functions. These include device reads, compares, verifies, blank-checking, and an auto-programming mode. Code can be loaded, edited, displayed, and stored to save debugging time.

A conversion utility al-
NTSC VIDEO PATTERN GENERATOR. This NTSC video pattern generator from Leader produces split-field color bars, crosshatch, dots, single-cross, and flat-field (raster) patterns. The Model 401YB is intended for video, TV and VCR service. The generator's flat-field rasters can be set to eight colors, including black-and-white. Its color signals are true NTSC, suitable for test and checkout of both consumer and industrial circuits. Its outputs are baseband composite, video RF on VHF channels 3 or 4, Y/C (SVHS-type), and red green blue TTL-compatible. An H or V trigger signal is also available for synchronizing oscilloscopes. A choice of standard interlace or progressive scanning is offered. Progressive scanning is easier on the eyes during convergence adjustments. The Model 401YB pattern generator sells for $995.

LEADER INSTRUMENTS CORPORATION
380 Oser Avenue
Hauppauge, NY 11788
Phone: 800-645-5104
(in NY, 516-231-6900)

DUAL-WATTAGE SOLDERING STATION. A new soldering station from Ungar permits the user to switch between 35 watts, 850°, and 21 watts, 650°, with a front-panel knob. The dual-wattage soldering station, No. 46B991, is available from Jensen Tools. The station permits rapid heating. It is equipped with a fully grounded, ¥-inch chisel tip specifically for soldering sensitive electronic components. A broad selection of replacement tips is also available. The Ungar No. 46B991 soldering station is priced at $49.

JENSEN TOOLS INC.
7815 South 46th Street
Phoenix, AZ 85044
Phone: 602-968-6231

SUPervisory IC's. Supervisory integrated circuits from Maxim Integrated...
Products give reset or other warnings upon detection of a malfunction in a microprocessor's power supply or program execution. The MAX705 to MAX708 supervisory IC's are rated for both 3-volt and 5-volt operation.

reset input that lets the user generate reset pulses on command. An included independent comparator/reference circuit can monitor a supply voltage, battery voltage, or other voltage source.

The MAX705 to MAX708 supervisory IC's are priced from from $0.88 to $1.09 in quantities of 25,000 pieces.

MAXIM INTEGRATED PRODUCTS

120 San Gabriel Drive Sunnyvale, CA 94086
Phone: 408-737-7600, ext. 6087

MODULAR DIGITAL VOLTMETER. All of the models in this line of modular digital voltmeters from Datel have large (0.52-inch), 4½-digit LED readouts, and each measures only 0.85 \times 0.56 \times 2.17 inches.

The **DMS-40PC voltmeters** are available in a range of signal-input configurations \((\pm 2\text{volts DC}, \pm 20\text{volts DC}, \text{and } \pm 200\text{volts DC})\), and primary power options.

The **MNR-32 resistor network** includes two resistor elements in a 0.1 \times 0.1-inch package. The \(1/4\)-watt device is available with resistor values from 100 ohms to 330 K. The network has a rated maximum voltage of 50 volts.

According to Rohm, the network can be placed automatically because its pinout pitch is the same as that for miniature molded IC's. This network resistor, with only two resistive elements, reduces component count, assembly time, and cost because two resistors can be placed at the same time as one.

The package has concave electrodes and large solder pads. Those features assure a strong solder bond.

The MNR-32 is sold on reeled tape with 4000 units per tape resulting in a unit price of $0.03 each when ordered in 50,000-piece quantities.

ROHM CORPORATION

3034 Owen Drive Antioch, TN 37013
Phone: 615-641-2020
Fax: 615-641-2022

SWITCHODE POWER SUPPLIES. This new series of 40-watt switching power supplies from Sola provide both AC and DC voltage outputs. The **GL Series** was designed to power benchtop personal computers, laptop and notebook PC's, industrial control circuits, instruments, and disk drives.

The **GLD model** has dual outputs, and the **GLT model** has triple outputs. Each has an input range of 85 to 264 volts AC, and 120 to 370 volts DC. The outputs are 5, 12, 15, or 24 volts, depending on the model. Output ripple is specified at 1% p-to-p max. All models have automatic overvoltage, overload and 150% overload protection. 16-millisecond holdup time, a built-in EMI filter, and protective fusing. Cooling is by free-air convection, and Molex connectors are standard for AC input and DC output.

SOLA

1717 Busse Road Elk Grove Village, IL 60007-5666
Phone: 1-800-TRY-SOLA R-E

The ARRL Handbook has been the radio amateur's "bible," since the 1920's. It is a comprehensive handbook covering just about everything related to amateur radio. This edition has 39 chapters that cover everything from the fundamentals of electronics and radio to guidance on how to build your own equipment. Significant topics include modulation methods, propagation theory, test equipment, electromagnetic interference, and how to deal with it. You can also learn about simple wire antennas and baluns and slow-scan television.

The 70th (1993) edition of the comprehensive, single-volume handbook is extensively illustrated with photos, graphs, diagrams, schematics, and circuit-board foil patterns. It includes such new build-it projects as a 4.5 to 25-volt, 2.5-ampere precision power supply, a battery charger suitable for all lead-acid batteries, a low-cost high-frequency counter, and a receiver spectral-display based on DSP.

This book provides a comprehensive background on the way advancement in electronics have improved telephone communication. This third edition updates the information of the author's earlier editions.

In the U.S. today, the phone network permits communication between more than 100 million phones. Advancements in electronic technology have improved the speed as well as reliability of telephone interconnection. Mr. Bigelow's book explains how telephone conversations and data are received, switched, and transmitted.

It begins with an overview of telephone networking that introduces you to the basic telephone components and explains how they are connected to the network. A discussion of the non-electronic sound-powered telephone is included to give you a better understanding of the fundamentals of telephones. Such topics as analog and digital signal processing, telephone-line interfacing, tone and pulse generation, and ringers are included. Digital communication is introduced, and the advantages and disadvan-
Word for Windows Design Companion for Version 2; by Katherine Shelly Pfeiffer. Ventana Press, P.O. Box 2468, Chapel Hill, NC 27515; Phone: 919-942-0220; Fax: 919-942-1140; $21.95.

Word for Windows is intended to replace cumbersome existing software for most desktop publishing needs. Ms. Pfeiffer’s book tells you how to push Word beyond simple word-processing tasks and unleash its graphics power. She has included step-by-step directions and dozens of illustrations created using Word for Windows.

Now you can take advantage of Word’s desktop publishing capabilities to produce attractive newsletters, brochures, business correspondence, advertisements, catalogs, reports, forms, and surveys. The book also explains production shortcuts, helps you to manipulate fonts, and discusses printing techniques. The examples will inspire you to do your own designs.

AERIALS; by Kurt N. Sterba and Lil Paddle; Worldradio, 2120 28th Street, Sacramento, CA 95818; Phone: 916-457-3655; $10 (plus $2 shipping and handling).

This book is a compilation of articles on antennas and feed lines that the authors have published in Worldradio magazine. Kurt N. Sterba and Lil Paddle debunk many of the myths and misconceptions about amateur radio that have their origins in equipment and component manufacturers’ sales literature and catalogs.

The style of the articles is acerbic and irreverent. Nevertheless, the result is a sharp, witty dialogue between two experts. During their lively discourse, the authors reveal numerous discrepancies found in books on amateur radio, catalogs, and sales literature. They have purposely included 11 inconsistencies in the book, “to keep you, the reader, alert.”

The spirit of the book might best be summed up by the publisher’s disclaimer: “This book is sold only for its entertainment or amusement value. The publisher makes no guarantee as to the technical merit of any article. In fact, it is rather doubted that any antenna described by the author will work any better than a fifty-ohm resistor dunked in transformer oil, at the bottom of an elevator shaft.”

The World is Talking!

Shortwave Listening Guidebook by Harry Helms

Here’s your guide to getting the most from a shortwave radio! In clear, non-technical language, Harry explains how, when, and where to listen in. Its 320 heavily-illustrated pages are packed with advice on:

• antennas
• selecting the right radio
• accessories
• reception techniques

Learn how to hear the BBC, Radio Moscow, ham operators, ships, even spies and “pirate” radio stations! Includes hundreds of station frequencies and the times you can hear them.

Only $16.95 at radio equipment dealers, or order direct from HighText! Add $3 shipping ($4 Canada, $5 elsewhere). CA add sales tax. U.S. funds only please.

HighText publications inc.

7128 Miramar Road, Suite 15L
San Diego, CA 92121
Introducing the SC3100 "AUTO TRACKER"

NEW! Integrated Measurements of All Circuit Parameters With Autoranging Timebase And Attenuators!

Integrated Measurements Of All Circuit Parameters
There's no need for a separate DVM to analyze the rest of the circuit parameters. Measure ohms and current with an integrated, complete circuit analyzer that provides you with troubleshooting answers.

Full Performance, 100 MHz, Dual Trace Oscilloscope
View any waveform quickly, easily, and more accurately. The "fiddly free" trigger controls provide rock solid viewing of any signal and include a special TV mode for complex video waveforms. No signal is too large or too small with our exclusive 2 mV to 2 kV input range.

Exclusive Autoranged Timebase And Vertical Attenuators
No more time wasted turning knobs. Simply set the Timebase and channel attenuators to Auto and view the waveform without resetting the controls as you step through the circuit. This allows you to concentrate on the circuit - not the equipment.

Digital Delta Measurements To Analyze Every Portion Of Any Waveform
Highlight any part of a waveform with Sencore's exclusive Delta Bar and analyze the amplitude, absolute DC, time, or frequency. No more wasting time on graticule counting or setting cursors.

Now Touch And Test Any Circuit Test Point
And Make Autoranged Error Free Measurements In A Fraction Of The Time!

The SC3100 "AUTO TRACKER" Automatic 100 MHz Waveform & Circuit Analyzer Offers:

A Complete Waveform And Circuit Analyzing System
Measure circuit parameters and view all of the waveforms shown in any service literature with one complete unit. The SC3100 is guaranteed to increase your analyzing capabilities with the push of a button.

Auto-Tracking Digital Readout Of Waveform Voltage And Frequency
Measure the key parameters of any waveform with one probe connection, at the push of a button, for fast and accurate troubleshooting.

For More Information, Call 1-800-SENCore (736-2673)
A MUST FOR OEMs AND MROs!

THE NEW NTE PARTS CROSS REFERENCE AND TECH GUIDE IS MORE USEFUL THAN EVER!

NTE's parts catalog just keeps getting better! Our new 1992-93 edition features:

- Over a quarter of a million U.S., Japanese and European devices cross-referenced to NTE's 3,500 quality replacement semiconductors — available off the shelf!
- Easier to read, thumb-through format
- Divided sections

Order your copy direct or through your local NTE distributor. For your nearest one, call NTE toll-free 1-800-631-1250 (including Canada) or (201) 748-5089. FAX: (201) 748-6224.

□ YES PLEASE SEND ME THE FOLLOWING NUMBER OF COPIES OF NTE'S 1992 CROSS REFERENCE: (715-PAGE PAPERBOUND CATALOG)

Copies @ $4.95 ea.
Enclosed please find my check or money order for $______
(U.S. funds only)

□ ALSO SEND ME INFORMATION ABOUT NTE'S QUICKCross™ SOFTWARE!

Name
Company
Address
City
State Zip

Attach this coupon to your letterhead and mail to: NTE, 44 Farrand St., Bloomfield, NJ 07003

QUICKCross™ software runs in MS-DOS on any IBM PC or compatible with 640K of RAM, a small hard drive, and a 5½" or 3½" floppy drive. NTE's database occupies only 2.1 Mbytes of hard disc space when loaded. It is a public domain release. MS-DOS is a registered trademark of Microsoft Corporation. IBM is a registered trademark of International Business Machines.

NTE's new PC-based software allows you to access the NTE cross reference of over 250,000 parts in about one second. Check the coupon box to receive more information.

CIRCLE 71 ON FREE INFORMATION CARD

www.americanradiohistory.com
EVERY FEW YEARS, AN ELECTRONIC gadget comes along and changes our lives. Devices such as televisions, cellular phones, VCRs, and personal computers, have had a profound impact on how we live. Today's hot item is the handheld camcorder. Falling prices, smaller sizes, and greater quality have made them quite common.

If you do a lot of camcorder recording, you're sure to notice that it's always harder to record quality audio than it is to record quality video. While the camcorder might be doing a great job recording the picture, the built-in microphone might not be doing as well picking up the sound. That's particularly true for long-distance shots—remember that most lenses can zoom in on a subject, but most microphones can't.

Another difficult situation is shooting a room full of people. If there is a lot of background chatter—and there usually is—that's what the camcorder's internal mike will record. The problem is caused by the automatic audio-level control circuit that most camcorders use—it can't differentiate between the audio you want and the babble you don't want.

The only sure-fire way to get good audio, regardless of the situation, is to use an external microphone, especially if your subject is at a distance. The most convenient mike is a wireless mike, which is the focus of this article. A good wireless mike will guarantee quality audio every time, regardless of the distance to the subject. A wireless mike also eliminates recording those annoying camcorder noises such as the sound of the autofocus mechanism.

While camcorder prices have fallen, microphone prices have not. Unfortunately, a high price does not always guarantee a high-quality wireless mike. The microphone we'll present here can be built from readily available, inexpensive parts. It takes less than 30 minutes to assemble, and requires no complicated setup or adjustment procedures. You don't even need any complicated test equipment. The resulting quality will surprise you.

Operation

The wireless microphone is basically a short-range, low-power FM transmitter. The circuit, as shown in the block diagram of Fig. 1, consists of three main sections: the microphone element, the audio amplifier, and the RF oscillator. Figure 2 shows the schematic.

The heart of the circuit is the oscillator section, which is built around a 2N3904 transistor (Q1). A parallel-resonant LC, or "tank" circuit, consisting of L1, C2, and D2, determines the operating frequency.

Varactor diode D2, a voltage-variable capacitor, tunes the circuit. To understand how the varactor works. recall that a capacitor is basically two conductors separated by an insulator. A reverse-biased diode is similar to a capacitor in that it has two electrodes (the anode and the cathode) separated by an insulator (the reverse-biased junction). Consequently, a reverse-biased diode acts like a capacitor. Although all diodes exhibit that effect, a varactor diode is designed to have as much capacitance as possible.

An oscillator is basically an...
amplifier with positive feedback. In our circuit, feedback is provided by capacitor C4, so that the part of the oscillation generated in the tank circuit is coupled back from Q1's collector to its emitter. Resistors R6 and R7 bias Q1. Capacitor C3 is the base bypass and R8 is the emitter load. If you want to see the oscillation, you can connect an oscilloscope to the top of R8 with a ×10 probe. The initial oscillation should be somewhere between 60 and 110 MHz, so a high-frequency scope must be used. If an oscilloscope is unavailable, you can use a frequency counter to check the signal.

The audio amplifier is a 741 op-amp chosen because it is one of the most common and versatile op-amps. It is wired as an inverting amplifier with a variable negative feedback gain control. The purpose of the op-amp is to amplify the microphone signal, and to electronically tune the oscillator frequency.

An op-amp normally requires a bipolar power supply. Fortunately, op-amp circuits can be made to operate from a single supply by placing a DC offset voltage on one of the inputs.

An op-amp is basically a differential amplifier with two inputs and one output. One input is inverting while the other is non-inverting. A signal applied to the inverting input will be phase-shifted (or inverted) 180 degrees at the output. A signal applied to the non-inverting input will remain unchanged in phase at the output. If a signal

Therefore, the difference between the two inputs is the incoming signal, which is amplified and passed through to the output. This circuit works fine when both negative and positive supplies are used. However, if only a positive supply is used, the output signal would only be able to swing positive, as shown in Fig. 4.

For the op-amp to work properly from a single supply voltage, the circuit must be able to produce both positive and negative signal swings. The easiest way to do that is to offset the output reference above ground. That's accomplished by referencing the unused input to one-half of Vcc, instead of connecting it to ground. In our circuit, that's done by the voltage-divider network of R3, R4, and R11. The output signal can swing both positive and negative, except that it does so around the new reference as shown in Fig. 5.

Normally, the DC component of the output is removed before the signal is passed on to the next stage, usually by a coupling capacitor. In this project, however, we do not remove the DC offset. Instead, it is used later to tune the oscillator's center frequency.

The cathode of tuning element (varactor D2) is connected to Vcc-sbC via coil L1, and its anode is connected to the op-amp output via R5. Since the cathode is at Vcc, and the anode is at approximately one-half Vcc, the varactor is reverse-biased, which is its normal operating condition.

One of the primary factors that determines a capacitor's value is the distance between its
plates. By controlling the amount of reverse bias applied to the varactor, we can control the thickness of the varactor's barrier region, and consequently the distance between its "plates." When you increase or decrease the reverse bias, the junction barrier increases or decreases. This, in turn, decreases or increases the effective capacitance, and raises or lowers the frequency of oscillation.

As mentioned earlier, the reverse bias is provided by the amplifier's DC offset, created by the voltage divider on pin 3 of IC1. Note that potentiometer R11 is part of that network. When you vary R11, the offset voltage varies as well. That, in turn, changes the bias on the varactor, which results in a frequency shift of oscillation. That's how the tuning is accomplished.

The other potentiometer, R12, is used to set the amplifier's gain. As you increase R12's resistance, you decrease the amount of negative feedback, which then increases the signal gain. The audio output rides on the DC offset, and the offset provides the tuning bias. Therefore, as the signal varies, so, too, does the bias and the oscillator frequency. That's how the frequency modulation (FM) is produced.

In FM, the frequency of the carrier varies with the frequency of the modulating signal; the amount of variation or deviation is determined by the amplitude of the modulating signal. In our case, the modulating signal is the audio picked up by the microphone, so when you adjust R12 you are adjusting the modulating signal's amplitude, which increases its deviation. A standard FM broadcast signal has a deviation bandwidth (or carrier swing) of plus or minus 75 kHz. That amount of deviation is considered to be 100% modulation. For our transmitter to work properly, we will need to adjust it to provide approximately the same amount of deviation.

The FM transmitter uses an electret microphone. An electret is a permanently polarized piece of dielectric material, usually a ceramic compound. It is formed by heating the material and then letting it cool in a strong electric field. That realigns the molecular structure of the material so that it retains a mild electric field after cooling. (That's analogous to the way iron can be made into a permanent magnet.) The electret is then used as the diaphragm or moving part of the microphone. The result is a small, though very sensitive, high-fidelity microphone. The microphone also contains an internal FET amplifier that adds to the microphone's fidelity and sensitivity.

Although the wireless microphone is battery operated, it uses a Zener diode voltage regulator which is absolutely essential for proper operation. A fresh battery may start out at 9 volts but, over time, the voltage slowly drops. Because the oscillator is voltage-tuned, it is voltage-sensitive. Any change in V_{CC} will shift the oscillator frequency. This is so critical that even a 0.1-volt change can shift the oscillator by 100 kHz or more. Obviously, we want the transmitter to stay on frequency so we must make sure that V_{CC} doesn't change; the Zener diode guarantees this.

Construction

Despite the simplicity of the mounted on the underside of the board with the battery holder secured to the bottom of the case and the PC board mounted on ¾-inch spacers (see Fig. 8).

Even though a metal case provides superior shielding, we packaged the board in the pocket-sized plastic case, and the transmitter seems to work just fine. However, to get the
board to fit in that case, three cuts must be made between the "CUT A," "CUT B," and "CUT C" points indicated in Fig. 6, and R10, which connects to the antenna, must be tack-soldered to the end of L1. Also, the potentiometer leads must be trimmed as shown in Fig. 9 to decrease their overall height so that they fit in the case. The plastic case, made by Pac-Tec, has a built-in compartment for a 9-volt battery. Figure 10 shows how the board fits in the Pac-Tec case. The final component to connect to the board is the antenna. A 30-inch length of wire is recommended because that's the quarter-wavelength of 98 MHz (the center of the FM band). But you are certainly free to use whatever length antenna works best for your needs, such as the 12-inch telescopic antenna we used for the plastic case. The antenna connects to the collector of Q1 via a R10, a 1k resistor. The resistor provides isolation for the oscillator, greatly enhancing its stability. Unfortunately the 1K resistor does decrease the unit's range. Without it, the signal will travel about 300 feet. With it, the range is approximately 100 feet, which is comparable to most commercially available products, and adequate for most video production work.

Testing

Unless you have a defective part or have misplaced something on the board, the transmitter should work as soon as power is applied. The easiest way to test it is to tune a standard FM radio to an unused frequency, and adjust R11 until you hear your voice coming from the radio's speaker. It's usually easier to adjust R11 until the microphone can be heard over the radio, and then fine tune the signal by adjusting the receiver.

You will probably have to adjust R12 as well for the proper volume level. Simply listen to the signal on an FM radio; if R12 is set too low, the audio will sound weak. If R12 is set too high, the audio will be too loud.
PARTS LIST

All resistors are 1/4-watt, 5%.
R1—4700 ohms
R2, R7—10,000 ohms
R3—47,000 ohms
R4—27,000 ohms
R5—12,000 ohms
R6—22,000 ohms
R8, R10—1000 ohms
R9—100 ohms
R11—50,000 ohms, potentiometer
R12—100,000 ohms, potentiometer

Capacitors
C1—1 μF, 25 volts, electrolytic
C2—47 pF, 25 volts, ceramic
C3—0.001 μF, 25 volts, ceramic
C4—10 pF, 25 volts, ceramic

Semiconductors
IC1—741 op-amp
D1—8.2-volt Zener, 1/2-watt
D2—MV2109 varactor diode
Q1—2N3904 NPN transistor, or equivalent
S1—SPST switch
MIC1—electret microphone

Other components
L1—2.5 turns of #18 wire on a 5/16-inch diameter form.

Miscellaneous: 9-volt battery and connector, battery holder, project case, PC board, 30 inches of antenna wire, solder, etc.

Note: The following items are available from Paul E. Yost, P.O. Box 32291, Louisville, KY 40232:
• A kit of parts including the PC board (no case)—$14.95 plus $1.50 S&H
• PC board only—$6.95 (postpaid USA)
• Metal project case (drilled and with rubber grommets)—$6.95 plus $1.75 S&H

Kentucky residents must please add 6% sales tax.
• The Pac-Tec HML-9VB plastic case sells for about $5. Call Pac-Tec at (800) 220-9800 for a distributor nearest you.

FIG. 9—TO USE THE PLASTIC CASE, the potentiometer leads must be trimmed as indicated by the dashed lines to decrease their overall height so that they have as low a profile as possible.

FIG. 10—HERE'S HOW THE BOARD fits in the plastic case. Remember to cut the board between the "CUT A," "CUT B," and "CUT C" points indicated in Fig. 6.

FIG. 11—THE FM RECEIVER CONNECTS to the external microphone input jack on your camcorder.

this test. Any other probe will load down the circuit and kill the oscillation.

If the oscillation is present, but below the FM frequency range of 88 to 108 MHz, you should be able to increase it by turning R11. If you cannot adjust it high enough, then you can compensate with coil L1, which is simply three turns of wire. Separating the windings slightly will lower its inductance and raise the resonant frequency. Adjust L1 as much as necessary until you are able to correct this situation.

If the oscillator does not work, but all the proper voltages are present, then either Q1 or D2 is probably defective.

6. If the oscillator signal is present, but no audio is present, then use an oscilloscope to check for an audio signal at pin 6 of IC1 as you speak into the microphone. Remember, the signal should be riding a DC and the R1-C1 junction.

3. Check for approximately 4-volts DC on pin 3 of IC1. This voltage should be variable by turning R11.

4. Check for approximately 2.4-volts DC on the base of Q1. If any of the voltages in steps 2, 3, or 4 are missing or the values are wrong, you have an open or short circuit.

5. You can check for an oscillation at the emitter of Q1 by using either a frequency counter or oscilloscope. Make sure that the device you use will work at 100 MHz or more. You must also use a x10 probe to make

If you have any trouble, the following steps should help you locate the cause and solve it:

1. Check for 8.2 volts DC at the cathode of D2. If a voltage is missing or low, you either have a bad battery, a defective Zener diode, an open R9, or a short circuit on the board.

2. Check for 8.2 volts DC at the transistor collector: pin 7 of IC1, or distorted.
BOOKS

The McGraw-Hill Handbook of Essential Engineering Information and Data

EXPERIMENTS WITH EPROMS

Electric Power Systems Manual

COMPUTER TECHNICIAN'S HANDBOOK

ELECTRONIC ENGINEERS' BOOK CLUB

Printed Circuits Workbook Series

Switching Power Supply

From the design, layout, and specification guidelines to material properties, this convenient manual contains authoritative coverage of all aspects of printed circuits engineering. 256 pp., Illus. Softcover

Counts as 2

PERFORM ROUTINE MAINTENANCE AND DIAGNOSE AND REPAIR ANY KIND OF COMPUTERIZED DEVICE. THIS POPULAR REFERENCE COVERS LARGE DYNAMIC RAMS, 32-BIT PROCESSORS, 80286, 80386, AND Z8001-Z8022 PROCESSORS. 570 PP. COUNTS AS 2

ORDER YOUR COPY OF THIS BOOK TODAY!

Your source for quality, affordable and timely authoritative engineering books.

As a member of the Electronics Engineers' Book Club you'll enjoy receiving Club bulletins every 3-4 weeks containing exciting offers on the latest books in the field at savings of up to 50% off of regular publishers' prices. If you want the Main Selection do nothing and it will be shipped automatically. If you want another book, or no book at all, simply return the reply form to us by the due date specified. You'll have at least 10 days to decide. And you'll be eligible for FREE books through the NEW Bonus Book Program. Your only obligation is to purchase 3 more books during the next 2 years, after which you may cancel your membership at any time.

All books are backordered unless otherwise noted. Publishers' prices shown. If you select a book that counts as 2 choices, write the book number in one box and XX in the next. If you select a Counts as 3 choice, write the book number in one box and XXX in the next 2 boxes.

A shipping/handling charge & sales tax will be added to all orders.

If card is missing, write to: Electronics Engineers' Book Club, Blue Ridge Summit, PA 17294-0860

ELECTRONICS ENGINEERS' BOOK CLUB

Blue Ridge Summit, PA 17294-0860

YES! Rush me the following titles, billing me just $9.95 (plus shipping/handling & sales tax). Enroll me as a member of the Electronics Engineers' Book Club according to the terms outlined in this ad. If not satisfied, I may return the books within 10 days for a full refund and my membership will be cancelled. I agree to purchase just 3 more selections at regular Club prices during the next 2 years and may resign anytime thereafter.

Code #'s of my books for $9.95

SPECIAL OFFER! Prepare your order by check, money order, or credit card and receive a 4th book of your choice FREE. YES! I want the FREE BOOK indicated below. My introductory payment of $9.95 plus $9.95 shipping/handling & applicable sales tax is enclosed.

Single selection only

Acct. No.
Signature (required on all credit card orders)
Name
Address/Apt.
City State
Zip Phone

Offer valid for new members only, subject to acceptance by EEBC. U.S. orders are shipped 4th Class Book Post. Canadian orders are shipped International Book Post—and $12.50 shipping/handling. Applicants outside the U.S. and Canada will receive special ordering instructions. A shipping/handling charge & sales tax will be added to all orders.

Guide to CMOS Cookbook

HANDBOOK

049530 $17.95

Keep the lines clean and fault-free with this organized approach to power systems analysis. You'll apply theoretical concepts to the solution of everyday power systems problems with the help of this book.

288 PP., 150 ILLUS.

098906 $54.95

This book emphasizes circuit, transformer, and magnets design and it provides worked-out examples of transformers, currents, power levels, and more. 550 PP., 230 ILLUS.

3279-XX $36.95

PERFORM ROUTINE MAINTENANCE AND DIAGNOSE AND REPAIR ANY KIND OF COMPUTERIZED DEVICE. THIS POPULAR REFERENCE COVERS LARGE DYNAMIC RAMS, 32-BIT PROCESSORS, 80286, 80386, AND Z8001-Z8022 PROCESSORS. 570 PP. COUNTS AS 2

02739-XX $26.95

FROM THE DESIGN, LAYOUT, AND SPECIFICATION GUIDELINES TO MATERIAL PROPERTIES, THIS CONVENIENT MANUAL CONTAINS AUTHORITATIVE COVERAGE OF ALL ASPECTS OF PRINTED CIRCUITS ENGINEERING.
level approximately equal to one-half of V_{CC}.

If no audio appears on pin 6, and R12 has no effect, then check for a signal input on pin 2. If a signal is present there, then IC1 might be defective. If no signal is present, the microphone might be defective.

Using the microphone

The best receiver for the wireless camcorder microphone is a good-quality (sensitive) Walkman-type FM receiver because it is portable and lightweight. The only requirement for the receiver is that it must have a headphone jack.

Tune the receiver to an unused frequency, and adjust the microphone until you hear a sound clearly over the radio’s headphones. Now remove the headphones from the receiver and connect an audio cable (see the Parts List) between the headset jack on the radio and the external microphone input jack on your camcorder (see Fig. 11). Experiment to find the maximum volume setting that can be used without distortion.

For best results, the antenna wire should be stretched out full length, such as down the wearer’s back or side. Speaking of antennas, many Walkman-type radios use the headset wire as their antennas. Unfortunately, the audio cable used to connect the receiver to the camera is shielded, and does make a good antenna. Thus, the range of that receiver is limited to about 25 feet. If you need greater range, you can either modify the radio to accept an external antenna or use a receiver that already has a built-in external antenna.

There are many applications for this project other than for camcorders. For example, when used in conjunction with a “boom box” receiver, it makes a very effective portable public-address system. It also makes an inexpensive nursery monitor. Another application is for those of you who, like the author, teach electronics: Students always want to do “hands on” work in the lab classes, and this project makes an excellent classroom lab.

R-E
HAVE YOU EVER BEEN STARTLED when the audio from your radio receiver went out of control and nearly blasted you out of your chair? Maybe you just turned up the volume in an effort to hear a distant station or a soft voice, and within seconds an unwanted burst of sound overwhelmed you. If your answer is yes, you need an automatic audio level controller.

Not all transceivers and scanners—even the most expensive high-end products—have automatic volume control circuits. Now you can build the Audio Leveler module to keep your receiver's audio volume constant, regardless of incoming signal strength. It will work in your ham receiver, scanner, marine or other mobile transceiver, television set, or stereo system.

The Audio Leveler is independent of the host receiver's volume control. You set its volume to a comfortable level, and the Audio Leveler locks in on that setting. It amplifies desired low-level audio signals while discriminating against background noise and attenuating strong random signals.

Circuit description

The heart of the Audio Leveler is a Signetics NE577, a programmable, low-power integrated circuit called a compandor. The NE577, shown as a simplified block diagram in Fig. 1, is packaged in a 14-pin DIP. The first question you might well ask is: What is a compandor, and what does it have to do with audio leveling? The answer is that it's a circuit capable of compressing and expanding an input signal to remove noise in a communications channel, and one of its sections can be organized to control audio input signal level. The term is derived from a contraction of the two words compressor and expander.

The compandor was developed as a discrete component circuit for telecommunications applications, primarily to reduce unwanted noise. The input signal is fed to a compressor stage which rectifies and conditions it so that the input signal level always remains above the noise level. The conditioned signal is then fed to the expander stage which restores it to its initial volume level—any noise is expanded below the audible level.

The NE577 has both a compressor and an expander stage, but the Audio Leveler uses only the compressor stage which is configured as a programmable automatic level control (ALC). The ALC accepts a range of input signals, and produces a constant AC output level. The host equipment can have a volume control, but with the Audio Leveler in your receiver, you will only have to set the receiver's volume control once.

Figure 2 is the schematic for the programmable Audio Leveler. Only the compressor section pins on IC1, the NE577, are used; pins 1 to 3 in the expander section are not used. The ALC function is configured with the rectifier at recti, pin 10 and gaincelli at pin 9 forming a closed loop around the internal op amp. Because the AC output level of the ALC can be programmed, you can choose a resistor value for a desired output level.

The audio signal is fed simultaneously to both pins 10 and
The crossover point of this circuit is defined as that point where the input signal is equal to the output signal. All input signals into the Audio Leveler circuit above the unity gain-level crossover point are attenuated, while all signals below that crossover point are amplified. The optimum threshold level for your application can be selected by choosing a value of R_X, by trial and error methods, within the limits set by Table 1.

Where practical, the Audio Leveler circuit should be installed within its host equipment enclosure in series with its volume control. Your receiver or scanner might not have enough space within its enclosure to accommodate the Audio Leveler, but do not alter the layout of the circuit board to fit a confined space unless you have enough experience to solve any interference, insulation, or thermal problems that might arise.

Table 1

<table>
<thead>
<tr>
<th>Input (volts, rms)</th>
<th>R_X (K ohms)</th>
<th>Gain (approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>6.43</td>
<td>1</td>
</tr>
<tr>
<td>0.050</td>
<td>136.0</td>
<td>2</td>
</tr>
<tr>
<td>0.100</td>
<td>715.0</td>
<td>10</td>
</tr>
</tbody>
</table>

Circuit construction

Conventional electronic circuit construction practice should be followed in building the Audio Leveler. The circuit can be built on standard perforated circuit board with a 0.1-inch grid, but a circuit board is strongly recommended. A foil pattern is provided in this article if you want to make the board. Alternatively, it can be purchased as a separate item from the source given in the Parts List. Regardless of your choice, be sure to drill holes in the corners of the board at the right locations for fastening it.
within your intended enclosure (host cabinet or separate plastic box) before starting assembly work.

Refer to the parts placement diagram, Fig. 3. Insert all resistors and capacitors in their proper places. (Two resistors in series might be required to obtain the desired value of \(R_x \).) Then insert a recommended socket for IC1. Insert the ends of all input, output and power cable or twisted wires at the terminals shown in Fig. 4.

Carefully check the module for mistakes and inadvertent solder shorts, and make all corrections before inserting and soldering IC2 and IC3. The Audio Leveler project

PARTS LIST

All resistors are ½-watt, 5%

- R1—100,000 ohms
- R2—6800 ohms
- R3—10,000 ohm, potentiometer, PC board mount
- R4—10 ohms
- \(R_x \)—715,000 ohms, 680,000 ohms in series with 33,000 ohms

Semiconductors

- IC1—NE 577 unity-gain, programmable low-power compandor (Signetics) or equivalent
- IC2—LM78L05ACZ 5-volt voltage regulator (National Semiconductor) or equivalent
- IC3—LM386 audio power amplifier (National Semiconductor) or equivalent

Capacitors

- C1-C4, C7, C9, C10—10 µF, 16 volts, electrolytic
- C5—22 µF, 10 volts, electrolytic
- C6—2.2 µF, 10 volts electrolytic
- C8—0.001 µF
- C11—220 µF, 16 volts, electrolytic
- C12—0.047 µF

Miscellaneous: circuit board, experimenter's plastic enclosure (optional), power source (see text), twisted-wire pairs or audio cable, solder, jacks and plugs as required.

Note: The following parts are available from C & S Electronics, P.O. Box 2142, Norwalk, CT 06852-2142, phone or fax: (203) 866-3208

- Formed and drilled PC board—$12.95
- Complete kit of parts excluding power supply and cabinet—$24.95
- An assembled and tested module (Model ALC225C)—$32.95.

Please send check or money order only. Connecticut residents add 6% tax. Add $3.00 for postage and handling.
dio Leveler is a low-level audio circuit, so trim all leads as short as possible to minimize noise interference. Then insert IC1 in its socket.

The twisted-wire pair from the prototype module’s speaker output terminals was terminated with a 1/4-inch open-frame jack, and the pair from the signal input terminals was terminated with a 1/4-inch plug. The 8 to 15 volts DC are supplied over a twisted pair. Select jacks and plugs that interface directly with those on your receiver or scanner.

If you plan to install the module within a receiver enclosure and do not need the output audio stage, omit the LM386 audio power amplifier, IC3, and related components R4, C11 and C12, and use the preamp output terminals for the circuit output.

If you plan to use the Audio Leveler as a stand-alone accessory, put it in a separate plastic experimenter’s enclosure as shown in Fig. 4. If you want to power the module with a battery, select an enclosure that will accommodate both.

Circuit testing

Connect the completed module to an 8- to 15-volt DC power source such as a battery or universal AC-to-DC adapter with a 100-milliamperes rating. (If you plan to omit the power amplifier stage, only 10 milliamperes will be required. A standard 9-volt transistor battery will meet this requirement.)

Set an audio signal generator at any frequency up to 1 kHz, turn its output level to the minimum setting, and connect it to the signal input terminals. Then place an AC voltmeter or oscilloscope across the preamp output terminals (see Figs. 2, 3, and 4, two drilled pads next to trimmer R3) to observe the instrument’s output.

Connect the speaker output of the module to an 8-ohm speaker. Set trimmer R3 to an audio output level that is comfortable for you. Then connect the signal input terminals of the module to the external speaker jack of your receiver. Turn the volume control to a minimum level, and slowly increase the setting until no further change is noticed. To change audio volume, only trimmer R3 need be set. As you increase the output amplitude of the signal generator, observe the circuit’s output on the AC voltmeter or oscilloscope. Any change in volume will be slight if the circuit is operating satisfactorily.

Amplifier not used

If you omit the output amplifier stage, connect the module in series with the input wire of the host receiver’s volume control—not the wiper. (If you can gain access to the host equipment’s power supply, you can also omit a separate power source.) The host receiver’s volume control should remain fully functional after the installation. The volume level of the host receiver will stay nearly constant, regardless of incoming signal strength.

Exciting Features, Projects, Reviews & Columns And Much More!

In the Next Issue of Popular Electronics

ON SALE

JANUARY 19, 1993

WATCH FOR IT!

Pick up Popular Electronics at your favorite Newsstand Bookstore or Supermarket

It opens wide. You’ll say Ahhh!

The newly improved 334 Portable Panavise now has a self-centering head big enough to easily hold objects up to 9 inches across! Double action jaws make quick work of clamping. Reversible jaw pads are ribbed on one side and grooved on the other for plenty of gripping power. And, weight is centered over the vise, so you'll be able to hold heavier objects. Plus, our newly patented 305 low profile base provides full lift, turn and rotation control, and now holds twice as much weight as its predecessor. The new 334 Portable Panavise. It cuts even the biggest jobs down to size.

1485 Southern Way • Spokanes, WA 89431 • (702) 353-9000 • FAX (800) 395-8002

CIRCLE 191 ON FREE INFORMATION CARD
Here's a DC power supply that makes working on high-voltage projects a breeze.

A VARIABLE HIGH-VOLTAGE POWER supply can be a great convenience to have on the bench. You can use it for servicing tube-type equipment, checking capacitors, and for general experimentation. This article describes the construction of a 0- to 250-volt, 100-milliamp regulated power supply. The supply is short-circuit protected and has an output impedance of 15 ohms. Output noise is less than 20 millivolts rms, while the temperature coefficient is only 0.03 percent per degree Celsius.

Operation

The circuit, shown in Fig. 1, uses two standard filament transformers to develop 300-volts DC. Transformer T1 steps down the 120-volt AC line power to 25 volts, and T2 steps the voltage back up to 120 volts. The 120-volt output of T2 feeds the full-wave doubler consisting of C7, C8, D1, and D2. Neon lamp NE2 and R11 form a combination bleeder and high-voltage warning light.

The heart of the circuit is IC1, an LM317T regulator. The regulator is powered by 16 volts derived from the secondary of T1. Resistor R5 limits the current to IC1 during short-circuit operation. Current flowing through HV ADJUST potentiometer R12 generates a 1.25-volt drop across R7. If the power supply output voltage drops, IC1 turns Q1 on harder and raises the supply voltage. Resistor R3 improves the regulation by maintaining a minimum of 3 milliamps through IC1, and R2 is a parasitic oscillation suppressor for Q1.

Components R1, R4, and Q2 form the current-limit circuit, which works as follows: When 100 milliamps flows through R1, the resulting 0.7-volt drop turns Q2 on, which then steals the base drive to Q1 and limits the supply current. A 1-milliamp analog meter is used to read 250 volts or 100 milliamps full-scale. When reading voltage, the meter is connected between the emitter of Q1 and the negative output terminal through R6, R8, and R9. When reading current, meter M1 is connected across current-sense resistor R1 through calibration trimmer R6. Diode D4 protects the supply against reverse current from the load. Switch S1-a turns power on and off, and S1-b disconnects the output when the supply is switched off.

Construction

No PC board was used to build the prototype power supply. Instead, most of the power supply circuitry is contained on a 44-pin edge-connector perforated construction board (see Fig. 2), which plugs into a matching edge connector that is mounted to the bottom of the cabinet with a couple of standoffs. The plug-in board makes the supply easier to build and to service, if that becomes necessary, in the future. However, the power-supply construction is not critical to its operation.

Power transistor Q1 must be heatsinked. The heatsink for Q1 measures 3 x 3 inches square.
FIG. 1—HIGH-VOLTAGE DC SUPPLY. The circuit uses two transformers to develop 300-volts DC.

FIG. 2—MOST OF THE CIRCUITRY is contained on a 44-pin edge-connector-perforated construction board.

with 1-inch cooling fins, and is mounted on the outside rear panel of the metal cabinet, which measures 8 x 6 x 5 inches. The case of Q1 can be more than 400 volts above ground, so make sure you mount it with sufficient insulation and put an insulating cover over Q1 to prevent a shock hazard. The fuse holder is mounted on the rear panel.

Switches S1 (POWER) and S2 (METER), which must both be rated for 250 volts AC, are mounted on the front panel of the cabinet, along with the meter (M1), HV ADJUST potentiometer R12, output jacks J1–J3, and neon indicator NE1. Diode D5 is soldered directly across jacks J1 and J2. Figure 3 shows an internal view of the prototype.

FIG. 3—PROTOTYPE POWER SUPPLY. Everything fits neatly in the metal cabinet that measures 8 x 6 x 5 inches.

Calibration
During calibration, be very careful, as 300 volts will give you quite a shock! Set your DVM to the highest DC-voltage range, and connect it to the power supply outputs. Switch the supply on, and turn the HV ADJUST knob to maximum. Adjust HV LIMIT R7 for 260 volts. Switch the supply off, and set the DVM to the 200-milliamp range. Switch the supply on, and turn the HV ADJUST knob to maximum. The supply should limit at about 100 milliamperes. Adjust the current meter calibration trimmer R6 so the current meter agrees with the DVM. Switch the DVM continued on page 56
Learn how crystal-controlled oscillators produce precise, stable output frequencies by building the circuits.

DAN BECKER

THE CRYSTAL-CONTROLLED OSCILLATOR has provided stable timing and frequency signals for years, and is now an integral part of products ranging from watches and computers to handheld transceivers and satellite receivers. First introduced in vacuum-tube form, most are now transistorized. The word quartz in advertising copy and specification sheets is the clue that they're inside. A time or frequency base derived from a resonating quartz crystal is the next best thing to a national time standard.

In the first installment of this two part series, resonators based on the piezoelectric effect were introduced. It was pointed out that a piezoelectric crystal produced electricity if it is subjected to physical stress and, conversely, the crystal is physically distorted if a voltage is impressed across its faces. Both properties are put to use in depthfinder transducers.

In fact, the first practical application of a piezoelectric crystal was as a transducer to generate and receive sounds underwater for the detection of submarines during World War I. Later, crystal loudspeakers, microphones, and phonograph pickups were developed. The first quartz crystal-controlled oscillator was introduced in the 1920s.

Synthetic or cultured quartz is now the dominant material of both crystal resonators and filters. The desired physical and electrical properties are obtained by cutting the quartz blank according to a set of strict rules. Packaged quartz crystal resonators are available as low-cost catalog items, and if you can't find the frequency you need, you can order a custom-made resonator.

All this is background to the subject of crystal-controlled oscillators. This article covers the fundamentals of all transistorized oscillator circuits, and includes five schematics and eight tables covering crystal-controlled oscillators complete enough for you to build your own circuits for personal instruction, experimentation or to meet a specific project requirement. All of the components are low in cost and readily available through retail stores or mail-order houses.

What is an oscillator?
An oscillator is a circuit that generates a specific frequency and maintains that frequency within limits. A transistorized inductance-capacitance (LC) oscillator depends for its operation on the resonant interchange of energy between a capacitor and inductor for its operation; a transistor amplifier supplies pulses of energy of the proper phase and magnitude to maintain oscillations.

When used in oscillator circuits, transistors become converters that change DC electrical energy from the collector power supply into AC energy in the output circuit. The amplifying characteristic of the transistor maintains the circuit oscillations.
Two conditions are necessary to sustain oscillations. First, the feedback voltage from the collector circuit must be in phase with the original excitation voltage on the base—that is, the feedback must be positive or regenerative. Second, the amount of energy fed back to the base circuits must be sufficient to compensate for the energy losses that occur in the base circuit.

It is useful to review the concept of Q before discussing oscillator operation. Q is defined as a figure of merit in a resonant system. Equal to the reactance divided by the resistance, it represents the ability of the device or network to sustain oscillations with minimum feedback. In short, the higher the Q the more efficient the resonator.

The intrinsic Q of quartz is 10 million at 1 MHz. Although the Q value for a mounted resonator crystal is reduced to levels of 20,000 to well over a million, it is still orders of magnitude better than the best LC resonator or tank circuit.

Crystal oscillator theory.

The very high Q of a crystal oscillator significantly reduces frequency drift caused by temperature and power supply voltage variations. Moreover, crystal-controlled oscillators generate less noise than conventional oscillators with LC tank circuits, so they have a purer output signal.

The simplest crystal oscillator consists of a single bipolar transistor with a simple feedback network. Figure 1-a shows a block diagram for a generic crystal oscillator. Here, an NPN amplifier is connected in three feedback circuits. Appropriate DC bias is assumed but not shown. Figure 1-b is an equivalent circuit with components L_1 and C_1, and C_2 shown. All of the crystal oscillator circuits to be discussed here have the same basic topology, and include at least two capacitors and an inductor. The crystal can be considered to be part of the feedback circuit.

Capacitors C_1 and C_2 include residual transistor and junction capacitance. Capacitor C_2 can be equivalent to a parallel combination of an inductor and a capacitor. This pair functions as the crystal's third overtone selector because it is capacitive only at the crystal's overtone frequency, and inductive at its fundamental. Thus, an inductor located at C_2 prevents oscillation at the crystal's fundamental frequency.

![Feedback Circuit Diagram](image)

FIG. 1—BASIC OSCILLATOR CIRCUIT showing equivalent components, a and the circuit redrawn to show a feedback network, b.

In addition to amplification and feedback, an oscillator requires limiting, which occurs when an increase in the input signal no longer produces an increase in the output signal. Thus, the oscillator's output reaches a limit and stays there.

Some oscillator circuits are named for a circuit characteristic such as electron-coupled or phase-shift. However, many oscillators are named for their inventors: Among these are Butler, Colpitts, Hartley, and Miller. Five inventor-named circuit have been selected for this article: three are crystal-controlled versions of the Colpitts oscillator, one of the Pierce oscillator, and one of the Butler oscillator.

The standard Colpitts crystal-controlled oscillator has rigid load and tuning requirements, while the two semi-isolated versions are less temperamental, and are recommended as better choices for general-purpose applications. If you want very precise output frequency, the Pierce crystal oscillator is your best bet. However, if you want to experiment with oscillators, you'll find that the Butler circuit oscillates even without a crystal, you can observe the results with the crystal in or out. Table 1 compares the characteristics of each of these circuits.

Colpitts oscillators

Two versions of the Colpitts crystal-controlled oscillator are presented here: the standard and the semi-isolated. The standard circuit, shown in Fig. 2, is sensitive to variations in both crystal and load resistance. In addition, its output power is limited to less than half of the crystal's power dissipation. But, it's still a popular circuit.

Resistors R_1, R_2, and R_3 DC bias transistor Q_1. Potentiometer R_2 allows up to about 1.5 milliamperes of emitter current. Capacitors C_3, C_4, and C_6 bypass radio frequency at XTL1's operating frequency (fundamental or overtone). Capacitor C_2 functions like the feedback base circuit capacitor C_1 in Fig. 1. At XTL1's operating frequency, L_1 and C_5 have a net capacitive reactance, and thereby form collector circuit feedback capacitor C_2.

For overtone crystals, L_1 and C_5 act like an overtone selector, preventing oscillation at the crystal's fundamental frequency. Trimmer capacitor C_1 fine tunes feedback element L_1. As the value of C_1 is made smaller, the oscillator's output frequency increases.

To organize a standard Colpit-
Since oscillator for your specific output frequency requirements, refer to Table 2. Note that frequencies from 1 MHz to 30 MHz are obtained with the fundamental mode, and frequencies from 35 to 60 MHz are obtained with a third-overtone crystal. The values for C2, C4, and C5 are given in picofarads, and the values for L1 are given in microhenries.

Semi-isolated Colpitts

Two versions of the semi-isolated Colpitts oscillator are described here. The first, shown in the Fig. 3 schematic, includes a fundamental-mode crystal. The second, shown in Fig. 4, is the same as that shown in Fig. 3 except that it includes overtone selector L1, C6 and radio-frequency bypass capacitor C3. Its operation requires a third-overtone crystal.

In both circuits, RF transformer T1 takes an output signal from Q1's collector current, but T1 is not part of the oscillator's feedback network. In addition, the output power is up to 100 times the crystal's power dissipation. Therefore, 15 milliwatts of output can be obtained with only microwatts of crystal dissipation! Moreover, if the output transformer is tuned to a harmonic of the oscillator's frequency, the RF load current is effectively isolated from Q1's fundamental RF current. Therefore, variations in the load or T1 do not affect oscillator tuning.

For example, if a 10-MHz crystal is used, the RF transformer can be tuned to 20 MHz, 30 MHz, 40 MHz, or higher MHz.

Thus the circuit has its own built-in buffer that can drive low-impedance loads without detuning the oscillator.

However, as with the standard Colpitts circuit, the crystal is shunted by the emitter-base junction of the transistor—a low impedance. This lowers the oscillator's Q from tens of thousands to a few thousand, reducing its frequency stability. However, for most practical applications its stability is more than adequate.

Refer to the schematics shown in Figs. 3 or 4. In both circuits, resistors R1, R2, and R3 apply DC bias to transistor Q1. RF bypass capacitor C6 grounds one end of T1's primary. Capacitors C2, C4, and crystal XTAL1 form a feedback network as discussed earlier in reference to Fig. 1. Trimmer capacitor C1 serves the same function as it does in the standard Colpitts circuit. Transformer T1 and trimmer capacitor C3 (with C4) form a parallel resonant tank tuned to the desired output frequency.

If the output frequency is to be the same as the crystal's frequency, use the component values given in Table 3 or Table 5. (Tables 3 through 6 contain specifications information on winding transformer T1, which is explained under the Construction section.) In this case, the oscillator, the load, and T1 are all tuned to the same frequency, and each affects the tuning of the other. (The load resistor R should initially be a 1/4-watt resistor.)

If the output frequency is to be a harmonic of the crystal's frequency, use the component values given in Table 4 or Table 6. As mentioned earlier, this arrangement isolates T1 and the load, enabling the circuit to work with a wide range of load impedances.

The semi-isolated Colpitts oscillator shown in Fig. 4 requires a third-overtone crystal. Therefore, L1 and C5 appear capacitive at the third overtone, but they appear inductive at the crystal's fundamental frequency; together they form the collector circuit feedback element C2 shown in Fig. 1. Capacitor C6 bypasses DC-bias resistor R3, but it is most effective at the overtone rather than the fundamental frequency.

Pierce oscillator.

The best feature of the Pierce crystal oscillator, shown schematically in Fig. 5, is its very high operating Q. That very high Q is maintained because the crystal is connected between Q1's base and collector (a high impedance). This os-
cillator provides a very stable and accurate output frequency up to about 75 MHz. It is possible to tune this oscillator to within a few hertz of the desired frequency and expect it to remain stable there (when held at constant temperature).

If an oven-controlled crystal is used, frequency change will only be several hertz over a wide temperature range. However, the Pierce oscillator does not offer very high output power. Moreover, it requires a very high load resistance of about 3000 ohms.

Resistors R1, R2, and R3 establish the DC-emitter current. Capacitor C5 bypasses RF at all frequencies, while C4 bypasses RF current at the desired operating frequency (fundamental or, overtone only). Capacitor C2 is base circuit feedback element C1 as shown in Fig.1, and the parallel network of C3 and L1 yields a net capacitive reactance at the operating frequency and is analogous to collector circuit feedback element C2 as shown in Fig.1. Crystal XTAL1 forms feedback inductor L1 of Fig. 1, and as with the Colpitts oscillator, trimmer capacitor C1 fine tunes the circuit’s operating frequency.

The component values of the Pierce oscillator also depend on frequency and are given in Table 7. Note that a fundamental-mode crystal permits frequencies from 1 to 25 MHz, while a third-overtone crystal is required for output frequencies from 30 MHz to 75 MHz.

If a load resistance of the Pierce crystal oscillator is to be less than several thousand ohms, a 1- to 5-picofarad coupling capacitor must be used at C5 to prevent the low resistance of the load from detuning the circuit and preventing circuit oscillation.

Butler oscillator

A schematic of a Butler crystal oscillator is shown in Fig. 6. The Butler oscillator demonstrates what is known as input-resistance limiting. Transistor Q1’s DC-emitter current is directly proportional to the strength of the radio frequency input signal; in addition Q1’s RF-input resistance of approximately 40 ohms is inversely proportional to the DC-emitter current. Therefore, as the RF feedback increases, Q1’s DC-emitter current increases, but its RF-input resistance decreases. As Q1’s RF-input resistance decreases, its RF gain also decreases, and this causes the output signal strength to reach a plateau.

The Butler oscillator’s crystal circuit operates at series resonance, making it look resistive in the circuit. It is possible to substitute a 47-ohm resistor for the crystal and tune the circuit to a wide range of frequencies with variable inductor L1. But the circuit is so sensitive to variations in load resistance that a fixed resistive load must be connected to its output.

Resistors R1, R2, and R3 set the DC-emitter current. Bypass capacitors C1, C5, and C2 place transistor Q1 in a common-base configuration, couple the collector to the load, and bypass the positive supply lead, respectively. The feedback elements consist of capacitors C3 and C4, and inductor L2. The capacitors act like the base and collector elements C2, and C1 and inductor L2 act like the feedback circuit L1 in Fig.1.

Crystal XTAL1 feeds some of the RF output energy back into the emitter. Because the crystal behaves like a narrow bandpass filter, the emitter current forms clean sine waves that are low in harmonics. Inductor L1 cancels the detuning effects of the crystal’s static capacitance Cp. However, if you build this circuit, get it to oscillate first without L1. Then, after it is working, install and fine tune L1 to obtain a precise output frequency.

Table 8 gives the values of the components in Fig. 6 that are shown without values. Note that a third-overtone crystal is necessary to obtain output frequencies from 20 to 55 MHz, while a fifth-overtone crystal is needed to obtain output frequencies from 60 to 100 MHz.
Selecting components

Remember that many common passive electronics components such as capacitors, resistors, and inductors that perform well at audio frequencies become inefficient and lossy in the radio frequencies. For example, the parasitic inductance of a wirewound resistor can be significant in a radio-frequency circuit. Keep this in mind when selecting oscillator components.

Power-supply regulation is important for stable oscillator operation. Low-Q oscillators that are tunable over a wide range of frequencies require a very stable, low-noise supplies, but that is not a requirement for high-Q crystal-controlled oscillators because they are generally immune to voltage spikes and noise. Thus, while regulation is important, it can be obtained with low-cost integrated circuit regulators.

Even with minimal regulation, it is recommended that the power supply positive voltage lead be bypassed with a 6- to 10-microfarad tantalum capacitor and a 0.01 microfarad ceramic disc capacitor. Capacitors suitable for RF bypassing and tuning should have Q values of 100 or more, and most general purpose ceramic disc capacitors meet that requirement.

The crystal oscillators described here need only one bipolar transistor. In general, any NPN transistor with a gain-bandwidth product of at least 650 MHz is suitable. Possibilities include the 2N918 (shown in all of the circuits in this article), the MSH-10, and the 2N2857. The 2N918 is available in plastic packages and metal cans. If you use 2N918's in metal cans, be sure to ground their cases. For frequencies below 50 MHz, a 2N3904 switching transistor will perform satisfactorily.

Inductor variety

Two basic kinds of inductors (tuning coils) are generally available: air wound, and core wound. Most are wound from number 20 to 40 AWG enamel-coated magnet wire. Inductors for RF circuits usually have both magnetic and electrostatic shielding. This is obtained by winding the coil on an iron-powder core, and then enclosing the assembly in a small metal can.

Core-wound inductors offer high Q's, good temperature stability (usually ± 200 ppm/°C), and are small. Powdered-iron core materials are often mixed with other materials to make special powdered-iron alloys. Each is formulated to yield a high Q and optimum temperature stability over a specified frequency range. Oscillators or tuned circuits usually require Q's between 60 and 120. Before selecting a coil, examine the manufacturer's data to verify the coil's Q and usable frequency range.

Winding transformers

You can make your own radio-frequency transformer T1 for the semi-isolated Colpitts crystal oscillators shown in Figs. 3 and 4 from the toroidal cores and magnet wire specified in Tables 3 through 6. Under the column heading T1 (primary) those tables give the total number of primary turns, the wire gauge, and the designation for the appropriate core (e.g. T-80-2, T-50-2, T-50-10, T-50-17).

The first letter in this core code, T, stands for toroid, and the first number stands for the core outside diameter in fractions of an inch (e.g. 80 = 80/100 inch, 50 = 50/100 inch). The third number in the code designates a specific powdered-iron composition.

When winding wire on the core, first wind on approximately 12.5% of the total primary turns on the core (or three turns, whichever is larger). Then make a tap by twisting together several inches of wire to form a loop, and continue winding until all the primary turns have been wound. The loop can then be formed into a tap by cutting the loop and scraping the insulation off of the ends. This tap is then ready to be connected to Q1's collector as shown in Figs. 3 and 4 and soldered during the circuit assembly procedure.

The secondary of transformer T1 should reflect the load impedance shown on the schematics of Figs. 3 and 4 (at the primary's tap). The turns ratio between the secondary and the primary's tap should be the square root of tap resistance divided by load resistance. The secondary winding can be wound from the same gauge wire as the primary.

For example, to reflect a tap resistance of 500 ohms, a 50-ohm load would require a primary-tap to secondary-turns ratio of 3.16:1 (the square root of 500 divided by 50). Therefore, if the primary tap consists of three turns, use a one turn secondary. After you find that the circuit oscillates with the initial transformer, you can experiment by substituting other transformers with different turns ratios.

Oscillator construction

Carefully designed printed-circuit boards are preferable to standard perforated boards as substrates for radio-frequency oscillators to minimize noise and interference. When building radio-frequency circuits, it is important that all components be inserted so they lie as close as possible to the board.

Use coaxial cable or TV twin-lead to conduct high-frequency signals for any distances over an inch. RCA-type audio connectors work well up to frequencies of 30 MHz, but BNC, F, and equivalent 50- or 75-ohm connectors should be used at the higher radio frequencies.

The Colpitts and Pierce crystal-controlled oscillator circuits discussed here include parallel-resonance crystals, but the Butler oscillator has a series-resonance crystal. In all circuits the crystal's load capacitance rating can be from 12 to 32 picofarads.

However, the higher frequencies require a smaller load capacitance so the crystal will provide enough inductive reactance to prevent oscillation above the desired frequency. Therefore, a 12- to 20-picofarad
load capacitor should be used in circuits expected to operate at frequencies above 15 MHz.

After building the standard Colpitts oscillator, and before trying it for the first time, set variable capacitor C1 to its maximum capacitance value. The following start-up directions apply to all Colpitts oscillators and the Pierce oscillator, but not the Butler oscillator:
- Initially, couple a 4.7 K ohm resistor to the 0.1 microfarad load-coupling capacitor (C6 in Figs. 2 and 5).
- Adjust trimmer potentiometer R2 until the circuit oscillates. When the circuit is oscillating properly, a different load resistor value can be substituted. For 0.1 microfarad load-coupling capacitors, Rl must be a resistive load of 2 to 10 K ohms.
- For coupling a low-impedance load, use a 1- to 47-pico Farad capacitor.
- If the output frequency is to be the same as the crystal's resonant frequency, refer to the component values given in Table 3 or Table 5. In this case, the oscillator, the load, and T1 are all tuned to the same frequency, and each affects the tuning of the other. Therefore, a 1/4-watt resistor should be inserted initially at R12.

After completing the Pierce oscillator, lightly couple a radio-frequency or oscilloscope probe to Q1's collector with a 5 pico Farad capacitor. Then carefully adjust trimmer potentiometer R2 until the circuit oscillates properly.

As stated earlier, a 47-ohm resistor can be substituted for the crystal in building the Butler oscillator. The circuit can be tuned to a wide range of frequencies with the variable inductor L2. Be sure to keep a fixed resistive load connected to the oscillator's output because it is sensitive to variations in load resistance.

It was also stated earlier that a second optional inductor L1 will cancel the detuning effects of the crystal resonator's parallel capacitance C0. Complete the construction and make sure the circuit oscillates before installing L1 and fine tuning it. R-E

POWER SUPPLY

continued from page 46

PARTS LIST

| All resistors are 1/4-watt, 5%, unless otherwise noted. |
|---|---|
| R1—6.8 ohms |
| R2—10 ohms |
| R3, R4—220 ohms |
| R5—470 ohms, 1-watt |
| R6—1000-ohms, potentiometer |
| R7—5000-ohms, potentiometer |
| R8—50,000-ohms, potentiometer |
| R9, R10—220,000 ohms, 1/8-watt |
| R11—470,000 ohms |
| R12—1 megohm, panel-mount potentiometer |

Capacitors
- C1—C4—0.01 μF, 500 volts, ceramic disk
- C5—0.1 μF, ceramic disk
- C6—220 μF, 25 volts, electrolytic
- C7, C8—220 μF, 200 volts, electrolytic

Semiconductors
- IC1—LM317T variable positive regulator
- D1—D5—1N4005 diode (600V, 1A)
- Q1—2SC1308 NPN high-voltage transistor, TO-3 type (Radio Shack #276-2055)
- Q2—2N3904 NPN transistor

Other components
- T1, T2—120/25.2 volt center-tapped 2-amp power transformer
- J1—banana jack, red
- J2—banana jack, black
- J3—banana jack, green
- F1—1/8-amp slow-blow fuse
- S1, S2—DPDT switch; (6A, 250VAC)

Miscellaneous: Fuse holder, edge-mount perforated construction board and matching edge connector (optional), see text, enclosure, heatsink, TO-3 mounting hardware for Q1, stand-offs, knob for R12, wire, solder, etc.

Random dots continued from page 23

Where do they come from?

Our random-dot images were created on a PC with the Stare-EO Workshop software from N.E. Thing Enterprises (P.O. Box 1827, Cambridge, MA 02139, 617-621-7174). The software lets you turn graphics, text, and PCX files into professional-looking random-dot images. The $40 disk for a PC-compatible computer can run on nearly any machine. All it requires is 512K of memory, and an HGA, CGA, MCGA, EGA, or VGA display. A mouse and hard disk make the program a little easier to use, but neither is required. The images you create can be printed on most graphics printers. There's also a Mac version of the software available for $35.

Eyes slightly. If you do that, however, the image will be inverted; whatever would appear as floating above the page would now be recessed.

continued on page 90
The demand for resistors today directly reflects ongoing changes in the design and packaging of electronic products worldwide. Carbon-film, and metal-film fixed resistors with ratings of 1/4-watt or less have displaced the carbon composition and wirewound resistors so widely specified in the past. The lower power requirements of today's integrated circuits, and the incessant push toward miniaturization have led to wider use of smaller, low-cost, low-power resistors.

Thick- and thin-film resistive networks permit automated assembly of circuits, particularly digital, where large numbers of resistors of the same value are specified. The chip resistor has moved from its origins in hybrid microcircuits to circuit boards assembled by surface-mount technology (SMT). Some other recent trends in resistor specification include:

- Increased use of fixed resistors and resistor chips with resistive tolerances of ±1% to ±5% in preference to the ±10% to 20% acceptable in the past.
- Increased demand for planar chip resistors and networks for automated parts placement, increasing component density while saving PC board space and cutting assembly labor costs.
- Trimmer potentiometers made to withstand automated insertion or surface-mount placement, wave soldering, and high-pressure, water-based solvent cleaning.
- Decline in the demand for precision potentiometers because of the replacement of analog functions that required precise, repeatable setting with digital circuitry.

Fixed resistors
Every material impedes the flow of electric current to some extent.
extent. Materials such as copper or silver offer very little resistance to current flow, and they are called conductors. Other materials such as glass, ceramics, and plastic offer high resistance to current flow, and they are called insulators. Electronic circuits need components with known resistance values in the range between insulators and conductors; these components are called resistors.

The unit of resistance is the ohm (represented by the Greek letter Ω). Resistance values in thousands of ohms are expressed as kilohms (K or k ohms) and in millions of ohms as megohms (MEG or M ohms). Nominal values of resistors are given at an ambient temperature of 25°C. The graphical symbol for a fixed resistor is shown at the top of Fig. 1. The block diagram "tree" illustrates how fixed resistors are classified.

The resistance of any resistive material is given by the following equation:

\[R = \rho \frac{L}{A} \]

where \(R \) = resistance, \(\rho \) = resistivity of the material, ohms-cm, \(L \) = length of material, cm, \(A \) = cross-sectional area of material, cm².

Resistivity \(\rho \) (Greek letter rho) is an inherent property of materials. Values of \(\rho \) for some commonly used materials are summarized in Table 1.

The equation says that for a material with a given resistivity, the resistance varies directly with length \(L \) and inversely with cross-sectional area \(A \). For example, a long wire has greater resistance than a short wire, and a thick wire has less resistance than a thin wire.

The voltage and current in a resistor are related by ohm's law:

\[I = \frac{E}{R}, \quad E = I R, \quad R = \frac{E}{I} \]

where \(E \) = voltage across the resistor and \(I \) = current flowing in the resistor.

Power \(P \) (in watts, W) dissipated in a resistor can be stated with any of the following math expressions:

\[P = EI, \quad I^2 R, \quad E^2/R \]

A number of terms define a resistor in addition to its nominal value in ohms: tolerance, temperature coefficient of resistance, power rating, and rated continuous working voltage.

- **Tolerance** expresses the maximum deviation in resistance from the resistor's nominal value, expressed as a percent. General purpose resistors have tolerances of ±5%, ±10%, and ±20%. Most carbon composition and carbon film, and some metal-film and wire-wound resistors are in this class. The ±1% and ±2% semi-precision class includes some metal-film resistors and networks, while the ±0.5% and 1% precision class includes those with metal-film and wire-wound elements.

- **Temperature coefficient of resistance** (abbreviated TCR, or tempco) states how the resistor's resistance changes with temperature. TCR is usually expressed as parts per million per degree Celsius (ppm/°C), and can be positive or negative. Semi-precision and precision units typically have the lowest TCRs.

- **Power rating** is the maximum continuous power, in watts, that a resistor can dissipate at a temperature as high as 70°C. At temperatures beyond 70°C, the power rating is reduced or de-rated. A typical derating curve for a resistor is given in Fig. 2.

- **Rated continuous working voltage** (RCWV) is the maximum voltage that can be applied non-destructively to the resistor.

- **Noise.** Electrons move randomly in all materials and produce random voltages or noise. Noise in resistors increases with resistance value, operating temperature, and the bandwidth of the circuit in which the resistor is located.

Resistor classification

The blocks in Fig. 1 represent the four most widely specified

Table 1

Resistivities of Common Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>(\rho) ohms-centimeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>(1.5 \times 10^{-6})</td>
</tr>
<tr>
<td>Copper</td>
<td>(1.7 \times 10^{-6})</td>
</tr>
<tr>
<td>Aluminum</td>
<td>(2.6 \times 10^{-6})</td>
</tr>
<tr>
<td>Carbon</td>
<td>(30 \times 10^{-6})</td>
</tr>
<tr>
<td>(graphite)</td>
<td>(190 \times 10^{-6})</td>
</tr>
<tr>
<td>Nichrome</td>
<td>(100 \times 10^{-6})</td>
</tr>
<tr>
<td>Glass</td>
<td>(10^{10} - 10^{14})</td>
</tr>
</tbody>
</table>

Fig. 2—A Typical Resistor Derating Curve plots power against ambient temperature, the temperature of the environment in which the resistor is operating.
types of fixed resistor—carbon composition, metal-film, carbon-film, and wirewound. The "special" category includes such products as high-voltage resistors, chip resistors, and resistor networks.

Table 2 summarizes the characteristics of the most popular fixed resistors. The values given in this table state the typical extremes for any given resistor, not what is readily available as a commercial product. Manufacturers offer a limited selection of resistors with preferred ratings as standard catalog items. Thus, it may not be possible to obtain the exact resistor type and value you need off-the-shelf or from the catalog. Resistors with an application-specific combination of features can be custom ordered.

The preferred values for all fixed resistors are given later in this article. It is important to keep in mind that for many general applications, more than one resistor type will perform satisfactorily. In those instances, the purchase decision will be based on lowest unit price.

Carbon-composition resistors

Carbon-composition resistors were, for many years, the commodity products among fixed resistors. Figure 3-a is a cutaway view of the classical molded carbon-composition resistor. It has a resistance element made by mixing graphite, a form of carbon, with a suitable viscous binder to form a uni-form bulk resistive material. These resistors were made by inserting leads in the resistive element, coating it with an insulating jacket, and molding the unit in a single step before firing it under pressure at a high temperature.

The resistance values of the molded carbon-composition element can be altered by changing the ratio of carbon to binder or the size of the element. Another form of carbon composition resistor that is made by applying a thick film of carbon in a binder on an insulating mandrel was also introduced.

Carbon-composition resistors can have resistance values from about 10 ohms to 22 megohms, and typical tolerances ranging from ±5% to ±20%. Power ratings are 1/8 to 5 watts. Their temperature coefficients are typically greater than 500 ppm/°C. Continuous working voltages can be up to 350 volts. These resistors can absorb moisture in storage or when not operating that will alter their resistance values. They generally recover after operation, because heat drives out the moisture.

Carbon-composition resistors continued in use long after cheaper carbon-film resistors were introduced because of their ability to withstand significant overcurrents without being destroyed.

Wirewound resistors

Wirewound resistors are classified as power or precision components, and both types are made by winding resistance wire on ceramic or epoxy mandrels and terminating each end of the wire with a leded end cap as shown in Fig. 3-b.

Power wirewound resistors are made by winding a single layer of resistive alloy wire around a ceramic mandrel. The winding is then coated with an insulating material such as vitreous enamel (an inorganic ceramic) or silicone to protect it from moisture and damage while insulating it from contact with surrounding objects. The winding can become hot in normal operation.

Resistance wire is selected for uniform resistance properties, low temperature coefficient, and ability to withstand high
temperature. Nickel-chromium alloy (nichrome) is commonly used to obtain high resistance values, and copper alloys are used for low resistance values.

Resistance values of commercial power wirewounds range from less than an ohm to greater than a megohm, and resistive tolerances can be from ±2% to ±10%. Power ratings can be as high as 1500 watts and TCR's can be as low as ±20 ppm/°C. A power resistor's normal power rating can be doubled by inserting it in an aluminum case with heat-radiating fins, and mounting the case on a heatsink.

Precision wound resistors are usually made as multilayer coils wound on epoxy mandrels. Copper-alloy resistance wire is used for low resistance values, and nichrome wire is used for high resistance values. Precision wound resistance values range from less than an ohm to 60 megohms, resistive tolerances can be less than 1%, and TCR's can be as low as 0.5 ppm/°C. Power ratings are 5 watts, and working voltages can exceed 200 volts.

Cermet-film resistor elements are prepared by mixing precious metal with a binder to form an ink and screening it on ceramic mandrels before the mandrels are fired. Cermet resistors have values to 10 megohms, resistive tolerances as low as 1%, TCR's as low as 25 ppm/°C, and power ratings to 3 watts.

Carbon-film resistors

Carbon-film resistors are made in the same general way as cermet metal-film resistors, as shown in Fig. 3-c. These resistors have gained in popularity for general purpose applications because they cost less than carbon composition resistors. Because they are widely used in protected, low-voltage transistorized circuits, they do not need to be as rugged.

Carbon-film resistors are available with resistance values from about 1 ohm to 10 megohms with resistive tolerances as low as ±5%. TCR's under 200 ppm/°C, and power ratings up to 3 watts. They are less noisy than carbon-composition resistors, and are less likely to be affected by humidity.

Common characteristics

All resistors exhibit some capacitance and inductance. Figure 4 is the equivalent circuit for a resistor operating at a high frequency. An effective inductance is in series with the nominal resistance, and both are shunted by an effective capacitance. Both inductance and capacitance are caused by the composition of the resistive element and its connecting leads. These undesirable effects, L and C, are called parasitics.

The inductance is negligible in carbon-composition resistors, but somewhat higher in

FIG. 4—THE EQUIVALENT CIRCUIT FOR A RESISTOR operating at high frequencies shows that stray inductance and capacitance, called parasitics, can be present.

FIG. 5—THE EIA STANDARD COLOR CODE FOR FIXED RESISTORS is based on colored stripes that are read from left to right to give resistance value and tolerance.
both metal- and carbon-film units. Inductance can, however, be a serious consideration with wirewound resistors operating at high-frequency because they are coils. This inductance can be reduced by a winding technique called bifilar winding. A length of resistance wire is folded back on itself before being wound on the mandrel. This cancels most of the parasitic inductance.

The true value of a resistor also varies with ambient temperature, humidity, age, and applied voltage. The magnitude of these variations depends on resistor composition.

Resistor coding

The values and tolerances of axial-leaded resistors can be read from alphanumeric markings (e.g. 4.7K, 5%) or by interpreting colored bands on them. The Electronic Industries Association (EIA) color code, shown in Fig. 5, is now the most widely used code in North America. (It agrees with U.S. military specification MIL-R-11.)

Bands of different color designate both resistance value and tolerance. The first two bands denote the first and second digits of the resistance value, and the third band indicates the multiplier—the number of zeros that follow the first two digits. The fourth band gives resistance tolerance.

A resistor with four colored bands can be identified by reading the colors from left to right—yellow, violet, orange, silver. These identifies it as a 47,000-ohm resistor with a ±10% tolerance.

A fifth band found on MIL-R-39008 resistors denotes reliability: Brown = 1.0%, Red = 0.1%, Orange = 0.01%, and Yellow = 0.001%

Wirewound resistors may have a double-width first band. A final blue band indicates the resistor is recognized by Underwriters Laboratories as fail-safe. Some general-purpose and semi-precision film resistors may have a final white band to indicate that its leads can be soldered. Also, precision film resistors may have three rather than only two significant-figure bands.

As in many other areas of electronics. Government specifications and standards set the acceptance level for resistors. In the U.S., for example, military standards are referenced in most manufacturer's catalogs as a quality benchmark. Among the military specifications referenced are MIL-R-11 (four-band color code identification) and MIL-R-10509 and MIL-R-22684 for metal-film resistors. The procurement of high-reliability, military-qualified resistors is mandatory in many military and aerospace contracts.

Resistors in series

Certain formulas apply when resistors are connected in series and parallel in DC and low-frequency AC circuits. Figure 6-a shows n resistors connected in series. In a series circuit, the current flowing in each resistor is the same. The total equivalent resistance of the series circuit R_total is equal to the sum of the individual resistors: R_total = R1 + R2 + R3...Rn

If n equal resistors are connected in series, the total equivalent resistance is equal to the product of the value of an individual resistor and n: R_total = nR

The maximum voltage E_max

![Fig. 6](image-url)

![Fig. 7](image-url)

February 1992. Electronics Now
that can be applied across a series of resistors is equal to the sum of the rated continuous working voltage (RCWV) of each resistor:
\[E_{\text{max}} = (\text{RCWV})_1 + (\text{RCWV})_2 + \ldots + (\text{RCWV})_n \]

Resistors in parallel

Figure 6-b shows \(n \) resistors connected in parallel. In a parallel circuit, the voltage \(E \) across each resistor is the same. The equivalent resistance of two resistors, \(R_1 \) and \(R_2 \) in parallel, is equal to their product divided by their sum:
\[R = \frac{R_1 \times R_2}{R_1 + R_2} \]

For \(n \) equal resistors in parallel, the equivalent resistance is equal to the value of an individual resistor, \(R_1 \), divided by \(n \):
\[R_{\text{total}} = \frac{R_1}{n} \]

For \(n \) resistors with different values, the equivalent parallel resistance is equal to 1 divided by the sum of the reciprocals of the individual resistor values:
\[R_{\text{total}} = \frac{1}{1/R_1 + 1/R_2 + 1/R_3 + \ldots + 1/R_n} \]

The maximum voltage that can be applied across resistors in parallel is limited by the smallest value of \(\text{RCWV} \) for a resistor in the circuit.

Special resistors

There are many different kinds of fixed resistors made for special applications. In general, most are manufactured with the same kinds of resistive elements that are used in making conventional fixed resistors. Therefore, all the technology and formulas previously discussed apply to those products as well. Special resistors include high-voltage resistors, chip resistors, and packaged resistor networks.

High-voltage resistors are resistors that are effective at voltages as high as 40,000 volts. These can be manufactured as axial-leaded, carbon-film resistors that are hermetically sealed in glass capsules.

Chip resistors are basically thin- or thick-film resistors that have been deposited on a ceramic substrate as shown in Fig. 7-a. Ruthenium-oxide thick-film cermet is widely used as a resistive element in commercial-grade chip resistors for surface mounting. Wrap-around electrodes permit solder bonding to the circuit board, and glass passivation soldering to the circuit board, and glass passivation.

The typical power rating for a chip resistor is \(\frac{1}{8} \) watt or less. Chip resistors for surface mounting are formed in a 1.6 x 3.2 millimeter (0.125 x 0.063 inch) standard size to permit them to be picked up and placed by automatic machines.

Resistive networks are arrays of thick- or thin-film resistors deposited on a common substrate and packaged for ease of assembly on circuit boards. They are classed as DIP (dual-in-line package) or SIP (single-in-line package) networks. A SIP network is shown in Fig. 7-b.

DIP and SIP network conductors are formed as silver-palladium powders in a volatile binder screened on the ceramic

![Diagram of variable-resistor family tree](https://example.com/diagram.jpg)

Fig. 8—This variable-resistor family tree shows how potentiometers are classified in industry by resistive element, function and application. Schematic symbol (a) shows a voltage divider, and symbol (b) shows a rheostat.
substrates and fired. These conductors are brought out to the pins that are brazed to the edges of the substrate. The conductors can also form a variety of interconnection patterns. In standard commercial networks, the resistors have the same value, but networks with different values can be custom ordered.

Resistive networks are used for pull-up and pull-down transitions between logic circuits, as sense amplifier terminations, and for LED display limiting. DIP networks, formed by epoxy molding, are available with 14 or 16 pins. They can be inserted by the same machines that insert DIP-packaged IC's. SIP networks, by contrast, typically have 6, 8 or 10 pins on one edge for vertical mounting to save PC board space. They are packaged by epoxy molding or conformal coating.

Standard commercial thick-film resistive networks have resistor values that range from 10 ohms to 10 megohms with TCR's of ±2%. Total power dissipation of ½-watt is a typical upper limit for the package.

Resistor networks are also available in small-outline IC (SOIC) packages—miniature DIPs with stub leads—as well as open network packages, and hermetic-sealed leadless chip carriers for surface mounting.

Preferred values

By international agreement, general-purpose resistors are manufactured in a limited number of preferred nominal values that are related to each other in a logical order. The number of values per decade is related to a distribution of desired resistance tolerance. Thus, if a precision of ±20% is adequate for some design requirement, the entire spectrum of possible resistance values in the 80-ohm to 800-ohm decade can be adequately spanned with just six preferred resistors with the nominal values and tolerance ranges shown in Table 3.

The values in Table 3 increase logarithmically, in increments of about 50%. This range of preferred values can be expanded in decade multiples and submultiples to span all possible resistance values from below 10 ohms to greater than 10 megohms. Resistor manufacturers refer to this set of values as the 20% tolerance series, but in most European countries it is known as the E6 series because it is based on six values per decade.

Variable resistors

Variable resistors are commonly called potentiometers or pots. These components include a means for changing their nominal resistance values by the manual movement of a contact or wiper over the resistive element. The qualities of variable resistors depend on their resistive elements, the size of those elements, and the construction or package style of the component.

All potentiometers are the electrical equivalents of three-terminal resistors shown schematically at the top of Fig. 8. Symbol a depicts a voltage divider. However, symbol b depicts a rheostat, organized by connecting the wiper terminal with one other terminal. Thus, the wiper shorts out part of the resistance element so that the value of the resistive element can be changed with each setting.

Figure 8 is a block diagram "tree" showing how potentiometers are classified as general purpose, semi-precision, and adjustable (trimmer). General-purpose and semi-precision units are also called volume controls or panel potentiometers. Resistive elements are classed as wirewound or non-wirewound (e.g. conductive plastic, carbon, and cermet).

Precision potentiometers

A potentiometer with an accuracy of 1% or greater is defined as a precision potentiometer. These variable resistors are generally considered to be instruments rather than electronic components. A close relationship is maintained between the position of the wiper and the potentiometer's re-

![FIG. 9—A CUTAWAY OF A MULTITURN PRECISION POTENTIOMETER shows how the wiper tracks around the inside of the helical resistance element for high resolution.](https://www.americanradiohistory.com)
Potentiometers look very much like panel-mounted volume controls. Most are made as applications-specific products, but certain commercial units are available off-the-shelf. The potentiometers can be either single-turn or multiturn for higher resolution.

Single-turn precision potentiometers have planar (circular) resistive elements, but multiturn precision potentiometers have helical elements. Figure 8 is a cutaway view of a multiturn potentiometer whose wiper rotates and traverses axially down the length of case while tracking the helical resistive element. Most multiturn potentiometers are actuated with vernier dials to permit repeatability. Their resistive elements are wirewound or hybrid helixes. Hybrid elements are wirewound helixes coated with conductive plastic. Up to ten turns may be required for the wiper to track the entire length of the element.

The resistance elements of single-turn precision potentiometers are most likely to be conductive plastic or cermet rather than wirewound today. Conductive plastic elements are made by mixing carbon with a suitable plastic binder to yield a sheet with uniform volumetric resistance. It can be cut or stamped as uniform C-shaped elements or shaped for special functions. This material exhibits good linearity and long rotational life.

Most standard, off-the-shelf precision potentiometers have linear tapers—resistance values that are proportional to wiper movement between the two end terminals as shown in Fig. 10-a. If the resistance value is not directly proportional to wiper motion, the wiper is said to have a nonlinear resistive element. Tapers are produced by shaping the resistive element. The variation in resistance value (and output) can follow the square law as shown in Fig. 10-b or other mathematical function as shown in Fig. 10-c.

Panel controls

Panel or volume controls are general purpose potentiometers whose setting is determined subjectively. These controls set audio volume in radios and TVs, and brightness on TV and computer CRTs. A precise relationship between wiper setting and resistance value is not required.

Panel potentiometers have wirewound or non-wirewound (e.g. carbon, conductive plastic or cermet) resistance elements. The performance of these components is related to their resistive elements (e.g. range of values, tolerance, TCR, and power handling ability) Carbon elements wear with repeated wiper rotation, and cermet elements tend to abrade the wiper. The elements of panel potentiometers can also be tapered as shown in Fig. 10.

Some panel potentiometers are assembled from modules and have a common shaft. This permits them to be ganged so that one axial shaft motion changes two or more resistive elements all at the same time. Panel potentiometers are also made for PC board and surface mounting.

continued on page 90
Part 2 of building a remote-boot controller for your PC.

THOMAS E. BLACK

RING-THING is an inexpensive yet extremely useful telephone-based AC power controller. You connect Ring-Thing to your phone line, and an AC-powered device to Ring-Thing. When Ring-Thing recognizes a set number or pattern of ring signals, it turns on a relay that applies 117 volts AC to whatever is plugged into the power strip. After the phone connection terminates, Ring-Thing waits about five minutes and then removes power from the power strip. Ring-Thing can control both computers and other equipment.

Last time we described operating modes and began a detailed circuit description. This time we'll complete the circuit description and move on to construction details. You can order partial and complete parts kits, and software can be found on the RE-BBS (516-293-2283, 1200/2400, 8N1).

In the descriptions that follow, remember that the control unit has three separate ground circuits: analog for the ring detector, digital for the microcontroller and functional units, and a separate relay ground.

LPT interface

Referring to Fig. 4 (shown last time), ports P80 and P81 of the microcontroller support the PC power-down feature by detecting inputs from the parallel port of a PC. Those inputs receive a stream of two-bit code values from a standard Centronics parallel printer port (LPT1–4). There is no false triggering because Ring-Thing must receive a specific series of codes.

The PC interface also depends on the microcontroller's PA7 output, whose main function is to control the LED2 (POWER), but which is also used to provide a handshaking signal. (The LED drive circuit was shown last time in Fig. 5.) Incidentally, LED2 will blink while Ring-Thing sends handshaking messages, but normal operation will resume thereafter.

The PC interface circuit, shown in Fig. 6, works as follows: Optoisolators IC3–IC5...
provide electrical isolation between Ring-Thing and the attached PC. The Schmitt triggers in IC6-e and IC6-f condition the optoisolator outputs for the microcontroller. Diodes D7–D9 protect the optoisolators from reverse voltages that might occur if the interface were accidentally plugged into a PC's serial (RS-232) port.

Telephone interface

The telephone interface circuit, shown in Fig. 7, senses the voltages present on the phone line. A standard phone line sits at −48-volts DC when it is not in use (on-hook). When it is in use (off-hook), the nominal voltage is approximately −7-volts DC. While ringing, the phone receives a 90-volt 20-Hz AC signal. Because of the circuit's high input impedance (about 1 megohm), the phone line does not recognize that Ring-Thing is connected.

Surge absorber MOV1 protects against minor lightning strikes. Diodes D2, D3, D5, and D6 form a bridge rectifier and provide polarity protection. Op-amp IC2-a functions as a voltage comparator with a threshold reference of 2.5-volts DC, provided by the R3/R4 voltage divider. Resistors R9, R14, and R7 scale the rectified phone-line voltage by a factor of V/6. Diode D4 limits the attenuated ring voltage present at IC2-a to safe levels. With the phone line on-hook, the input voltage at pin 2 of IC2-a is about 4.8-volts DC, which compared with the 2.5-volt reference sets the op-amp's output (pin 1) high.

Schmitt trigger IC6-a inverts that signal and feeds it to the microcontroller's active-low input (pin 4).

If the phone line goes off-hook, the input voltage at pin 2 of IC2-a drops to about 1 volt, which sets the output of IC2-a high. That, in turn, raises the output of IC6-a and triggers the microcontroller's interrupt input. If the phone is ringing, the output of IC6-a switches at the 20-Hz AC ringing frequency. The microcontroller firmware can quickly determine whether the phone is ringing or simply off-hook.

DC supply and AC connections

Figures 8-a, 8-b, and 8-c show the DC power supply, AC transformer, and bypass capacitor wiring, respectively. The bypass capacitors in Fig. 8-c mount on the main board, as do the DC supply components in Fig. 8-a. The transformer and relay in Fig. 8-b mount on a separate board that installs inside the AC power strip. The main circuit board installs in a separate case.

The power supply (Fig. 8-a) provides several interesting features. Bridge BR1 rectifies the 12-volt AC input, which after filtering by C17 powers the switching relay. The unregulated DC voltage also drives IC8, which provides 5 volts for the digital circuitry. The regulator IC differs from most in that it has very low quiescent current drain, and operates with minimal input voltage. If AC power goes down while Ring-Thing is in operation, battery B1 can re-
chargeable nickel-cadmium (Ni-Cd) type packaged like a traditional transistor-radio battery. It actually puts out 7.2–8.4 volts DC, which is more than adequate to drive the regulator. During AC operation, resistor R23 limits end-of-charge current to less than 5 milliams. Note: Do not install R23 if non-rechargeable batteries are used.

Now that we understand how Ring-Thing works—let's put it together!

Construction

First a few general notes. Use a 25–47 watt soldering iron; temperature-controlled irons set at 700–800° work best. Use only 60/40 rosin core solder. Use the components shown in the Parts List; substitutions are not recommended. Be especially careful in selecting parts for the telephone interface—low-leakage components are a must! Read through all assembly instructions before beginning, and make sure you understand each step before continuing.

Component XTAL1 can be either a quartz crystal or a ceramic resonator. Delete C7 and C8 if you use a ceramic resonator with built-in capacitors. Use care in handling the IC's; they are static discharge-sensitive CMOS devices that can be damaged through mishan-

TABLE 4—POWER CABLE WIRING

<table>
<thead>
<tr>
<th>Function</th>
<th>Jack/Pin No.</th>
<th>Cable Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay power</td>
<td>J3/1</td>
<td>Red</td>
</tr>
<tr>
<td>Relay ground</td>
<td>J3/2</td>
<td>Black</td>
</tr>
<tr>
<td>12 VAC</td>
<td>J4/1</td>
<td>White</td>
</tr>
<tr>
<td>12 VAC</td>
<td>J4/2</td>
<td>Green</td>
</tr>
</tbody>
</table>

TABLE 5—POWER DOWN CABLE WIRING

<table>
<thead>
<tr>
<th>J2 Pin No.</th>
<th>Cable Color</th>
<th>DB-25 Pin No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>White</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Green</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Red</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Brown</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>Black</td>
<td>18 + 19</td>
</tr>
</tbody>
</table>
dling. Use high-quality sockets for all IC's, especially IC1 (the microcontroller).

Foil patterns for both PC boards have been provided; component-mounting diagrams for the main and power boards appear in Fig. 9 and Fig.

POWER STRIP PRIMARY WIRING

```
TO WHITE
TO ON/OFF
TO SOCKET HOT
```

FIG. 10—PARTS-PLACEMENT diagram for the power supply board.

ORDERING INFORMATION

The following parts are available from Digital Products Company, Attn: Thomas E. Black, 134 Windstar Circle, Folsom, CA 95630, 24 hr phone/FAX: (916) 985-7219:

- Ring-Thing Kit (all components, programmed microcontroller, enclosure, PC board set, documentation (no PC power-down feature)—$79.95
- PC power-down kit (parts, DB25 cable, and software)—$9.95
- Basic kit (PC board set, microcontroller, transformer, relay, software, and documentation)—$59.95
- PC board set (#RT001)—$24.95
- Programmed MC68HC705K1 microcontroller—$14.50
- Six-outlet metal power strip with fuse kit—$16.00
- Rechargeable battery (9-volt NiCd)—$7.00
- Documentation package with schematic—$4.75
- PC software (5-inch disk only, includes RT.EXE source)—$7.50

All orders add $4.50 S&H ($9.50 to Canada). CA residents add applicable sales tax. U.S. funds only. MasterCard and Visa accepted. Prices subject to change.

68

POWER-SUPPLY BOARD, component side.
files. For best results, install the board near the main power switch. Some power strips may require removal of one outlet to provide room for the PC board. If so, cover the opening with a blank plate.

Install the relay contacts in series with the hot side of the power strip's outlets by disconnecting the black 120-volt AC wire at the output of the switch. Then solder the free end to the power board at pad four. (Refer back to Fig. 3 for explicit wiring details.) The other end of the wire should still be connected to the outlets in the strip. You might want to replace the wire with an equivalent stranded wire to ease handling. Using 14-gage insulated wire, connect the power strip's 120-volt AC wiring to the power PC board. Drill a hole in the power strip near the PC board, mount a plastic strain relief, insert the four-conductor cable, and connect the ends referring to Fig. 3 and Table 4.

Double check all wiring to ensure accuracy. Any mistakes could be exciting—and dangerous—so use an ohmmeter to ensure that nothing is shorted. While you are at it, inspect the existing wiring for cold solder joints and look for loose screws (most power strips are poorly assembled). Last, reinstall the power strip's cover.

Now let's test the circuit. If any of the following tests do not give the as specified results, correct the problem before continuing. Note: If troubleshooting is necessary you must use AC-isolated test equipment.

Use battery-powered devices or an isolation transformer. Failure to do so will cause in-
correct operation of the telephone-interface circuit.

LED and switch tests

1. Disconnect the line cord from your phone system. Plug a lamp into the power strip as a test load.
2. Apply AC power and listen for a short beep. Verify that the lamp is off.
3. Observe that LED1 (green) is flashing rapidly, and that LED2 (red) is flashing somewhat slower. This LED combination indicates that Ring-Thing has detected a power failure.
4. Press S1 (ON/STANDBY); you should hear a short modulated beep. Now LED1 should be blinking slowly, and LED2 should be off. Push S1 again: the modulated beep should sound, and LED1 should go out.
5. Press S2 (POWER ON/OFF); you should hear a short beep. Now LED2 should be on, and so should the table lamp. Hold S2 down; you should hear a beep, and both LED2 and the table lamp should go out. (Be sure to hold S2 for a moment; this push-and-hold requirement prevents power loss if the switch is bumped accidentally.

Power fail battery test

1. With AC power still applied, install Ni-Cd battery B1.
2. Turn LED1 back on by pressing S1. Disconnect AC power and verify that the green LED continues to blink.
3. Leave the battery in place and restore AC power.

Telephone interface tests

1. Unplug the table lamp from the power strip and plug in your computer.
2. Now plug the modular phone cord into a spare telephone jack or the back of your modem. Correct operation requires that you use a standard telephone line. Electronic keysets and PBXs are not compatible. If you can use a generic telephone or modem, Ring-Thing will probably work; if you use a special telephone set, Ring-Thing will probably not work correctly.
3. With the phone line connected, verify that LED1 blinks when a telephone is in use (off-hook), and that the LED lights steadily when the phone line is inactive.
4. Enable ring-counting mode by installing jumper JU1. Enable answer on one ring by removing jumper JU2.
5. Configure Ring-Thing as described above so that LED1 is on and LED2 is off.
6. Have someone call you and verify that Ring-Thing chirps and that LED1 flashes rapidly while the phone rings. Also, computer power should be enabled after the first ring, and LED2 should be blinking slowly to indicate ring-activated power.
7. Have the caller hang up and then do not use the phone. After about four minutes LED2 will flash rapidly, indicating that power will shut down shortly. With one minute remaining, a continuous warning tone will sound. After five or six minutes, computer power will turn off, warning beeps will cease, and LED2 will stop blinking.
8. If the phone line is placed off-hook during this step, the shutdown mode will be reset. In that case, merely wait an additional 5–6 minutes after the phone line becomes inactive.

Software usage

You can control Ring-Thing power via software. The software is available from the author and from the RE-BBS (516-293-2283, 1200/2400, 8N1). The file is called RINGTHING.EXE; it is a self-extracting archive that contains source and object code for the PC control program, and object code for the firmware.

Create a directory for the software on your hard disk, put a copy of RINGTHING.EXE there, and then run it. Several files will be extracted into the directory; README.EXE explains the purpose of each. The file called RT.EXE is the only one required to operate Ring-Thing. You may want to move it to a utilities directory.

- Connect the DB-25 connector to a spare LPT port; you can use LPT1–4. The software accepts command-line parameters to specify which LPT port and which I/O port you use. The program has a built-in help screen, shown in Fig. 11, that you can view by typing RT or RT/? at the DOS prompt.
- Note that the LPT port parameter is required whenever you communicate with Ring-Thing. For example, if you were connected to LPT2 and wanted to view current status, you would type: RT /LPT2 STAT followed by the Enter key. Assuming a proper connection between Ring-Thing and your PC, you would see one of the messages listed in Table 6.

The numerical values in column one are ERRORLEVEL numbers returned by the program; your batch files can use these values to branch to appropriate routines. (See your DOS manual on how to use the IF statement to test ERRORLEVEL values.) Also, include the NOFR parameter before the /STAT switch to obtain ERRORLEVEL values without displaying screen messages.

Although the program is designed for PC (or compatible) operation, the C++ source code could easily be modified for other architectures. Or you could use it as the basis of your own custom application.

Power down test

1. Plug the DB-25 connector into your LPT1 printer port. (Any LPT port could be used, but for the first test, use LPT1.)
2. Turn on your computer by pushing S2.
3. Execute RT.EXE by typing RT /LPT1 OFF-CS followed by pressing ENTER key.
4. You should immediately hear the one-minute warning beep, and LED2 should be flashing. After one minute the PC will shut off. To cancel the power-down, tap S2.

Final installation

Ring-Thing’s handy AC power switch will let you place your tested unit in a convenient location. One recommended mounting arrangement uses velcro or double-sided tape to mount it to the side of your computer case or monitor.
The 3/4-meter band is becoming almost as popular as the 2-meter band among radio amateurs. A lot of 2-meter band projects have been published in books and magazines for the amateur radio enthusiast, but there is a definite shortage of projects that address the 3/4-meter band.

This article describes the J-440, a very simple J-pole gain antenna for the 440 to 450 MHz band, that you can hang in just almost any convenient location for operation. The J-440 is a Hertz antenna that does not require grounding, and it can be made in a few minutes with simple tools from materials costing only a few pennies.

The J-pole antenna

What is a J-pole antenna? It is a popular form of Hertz antenna that can be hung from a window frame, a ceiling, or even a tree trunk—if you want to operate in the field. The J-pole provides higher gain than the ¼-wave whip antenna that is widely used on portable transceivers that operate in the 440 MHz amateur region. The ¼-wave whip, a Marconi antenna, is really one-half of a half-wavelength antenna fed at its center, its low-impedance point. Although quite short in this band, it requires a ground plane or radials to provide the necessary reflected image to make it work.

By contrast, the J-pole antenna described here is an end-fed half-wave antenna that does not require a reflected image. At the high frequencies of the 3/4-meter band, the antenna is only 17 ½ inches long, which makes it easy to move around. While the J-440 antenna is longer than the ¼-wave whip, it is also more efficient because of its higher radiation resistance.

The J-440's angle of radiation is lower than that of a quarter-wave whip antenna. Theoretically, there should be about a 2 decibel improvement in gain. However, you should be able to obtain better results because vertical whips on handheld transceivers are far from 100% efficient.

THE J-POLE ANTENNA

Build this simple, portable 3/4-meter band antenna, and make working that band easier and more enjoyable.

PHIL SALAS

The J-440 antenna includes a half-wave antenna, and a quarter-wave section of transmission line coupled in series giving it the properties that make it useful as a tuned circuit. Neglecting losses, the impedances at each end of a half-
wave transmission line are very high, as shown in Fig. 1-a. Therefore, a quarter-wave matching section is needed to transform that high impedance to a low impedance, preferably about 50 ohms.

A ¼-wave shorted transmission line, shown in Fig. 1-b, looks like an open circuit at its open end at the length corresponding to the desired frequency. At a point between the shorted and open ends of the transmission line, a low impedance point that provides an adequate match to 50-ohms can be found. Figure 2 illustrates what happens when to the voltage and current waveforms shown in Figs. 1-a and 1-b are connected in series.

Antenna construction

Figure 3 is a scaled drawing of the J-440 antenna made from readily available, low-cost, unshielded television lead-in cable. It consists of two parallel stranded No. 22 to 20 AWG copper conductors. Although three different styles are available with typical impedances of 300 ohms, the lowest-priced cable was selected. That cable has parallel stranded conductors covered and joined together with polyethylene insulation that forms both the jacket and spacer.

The velocity factor in transmission lines determines the difference between the physical length of the antenna and its electrical length. The velocity of wave travel along the antenna is less than it would be in free space. This has the effect of making the physical half wavelength too long. To compensate for this, the physical length of the antenna must be made shorter than the corresponding wavelength in free space. This is calculated by making use of known velocity factors.

The velocity factor for uninsulated wire is 95%, while the velocity factor for 300-ohm TV lead-in cable is 85%. The upper ½-wave section has only a single active insulated wire so a velocity factor of 90% was used, but the 85% factor was used in calculating the length of the ¼-wave stub. The antenna length was determined as follows:

1. Wavelength = 300/0(MHz) meters = 300/446 MHz = 0.067 meter
 0.067 meter × 39.37 inches/meter = 26.48 inches
2. ½-wave section length = wavelength/2 × velocity factor = 26.5/2 inches × 0.90 = 11.9 inches
3. ¼-wave matching section = wavelength/4 × velocity factor = 26.5/4 × 0.85 = 5.6 inches
4. Overall J-440 antenna length = 11.9 + 5.6 = 17.5 inches

The calculated 17.5-inch overall length provides the best...
standing-wave ratio (SWR), the ratio of the maximum voltage or current to minimum voltage or current distribution. The author has built several of these antennas and has obtained favorable results with each. Therefore, you can cut the cables to the dimensions shown in Fig. 3, and be certain that your antenna will work well in the ¼-meter band.

Before cutting the cable to length, strip approximately an inch of insulation from both lead-in cable conductors on one end. Twist the bare wires together to form a short, solder the joint, and trim off the excess wire. The optimum 50-ohm tap point was found to be ¼-inch up from the short. Carefully trim back the insulation around both conductors at that point.

Strip the end of the coaxial cable to your transceiver about ¼ inch, and make one turn of the center conductor of the coax around one lead of the TV cable. Then connect the coax shield to the other twin lead conductor with a short length of wire as shown in Fig. 3. Solder both connections and trim off any excess wire.

Notch out a ¼-inch section of the lead-in cable 5 ⅛ inch up from the shorted end, as shown. This ¼-wave matching section also doubles as a 1:1 balanced-to-unbalanced transformer (or balun). Punch a hole with a diameter of about 0.050-inch in the polyethylene webbing between the conductors about ½-inch from the open end of the cable. This permits the antenna to be hung from a convenient hook or tied up with a nylon cord for operating either indoors or out-of-doors.

The standing-wave ratio was measured on several antennas made to the dimensions shown in Fig. 3. The measured SWR’s at three different frequencies were found to be: 1.5 @ 442 MHz, 1.25 @ 446 MHz, and 1.40 @ 449 MHz.

These measurements verified that the lowest standing-wave ratios were obtained at 446 MHz, which is the middle of the ¼-meter band.

Electronics Workbench

The electronics lab in a computer

"...you can do 10 times as many experiments with Electronics Workbench than you'd get done with the real stuff."

-Jerry Pournelle, Ph.D., Byte Magazine

Building and testing circuits is fast and easy with Electronics Workbench. Just click-and-drag with a mouse to add parts, run wires, and adjust instruments. The traces on the simulated instruments are the same as you'd get on real equipment.

DOS Professional Version - $299

DOS Personal Plus Version - $199

Macintosh Version - $199

Includes two independent modules:
- Analog Module with passive and active components including transistors, diodes, and op-amps, a function generator, an oscilloscope, a multimeter, and a Bode plotter.
- Digital Module with gates, flip-flops, adders, a word generator, a logic analyzer, and a unique logic converter and simplifier.

Call (416) 361-0333

Fax: (416) 368-5799

Interactive Image Technologies Ltd.

908 Niagara Falls Boulevard

North Tonawanda, NY 14120-2060

700 King St. W., Ste 815

Toronto, Ontario

Canada MSV 2V6

Includes two independent modules:
- Analog Module with passive and active components including transistors, diodes, and op-amps, a function generator, an oscilloscope, a multimeter, and a Bode plotter.
- Digital Module with gates, flip-flops, adders, a word generator, a logic analyzer, and a unique logic converter and simplifier.

DOS Professional Version - $299

DOS Personal Plus Version - $199

Macintosh Version - $199

Includes two independent modules:
- Analog Module with passive and active components including transistors, diodes, and op-amps, a function generator, an oscilloscope, a multimeter, and a Bode plotter.
- Digital Module with gates, flip-flops, adders, a word generator, a logic analyzer, and a unique logic converter and simplifier.

Call (416) 361-0333

Fax: (416) 368-5799

Interactive Image Technologies Ltd.

908 Niagara Falls Boulevard

North Tonawanda, NY 14120-2060

700 King St. W., Ste 815

Toronto, Ontario

Canada MSV 2V6

FREE DEMO

Call or fax for your copy!
NEW JENSEN MASTER CATALOG

Jensen's 1993 Master Catalog, available free, contains many innovative products for design, testing and repair of electronic equipment. Presents new instruments from Fluke, Beckman, Tektronix, Huntron, Leader, BK Precision, and others. Introduces latest inch and metric tools, tools kits, soldering supplies, cables, connectors, static control products, PC diagnostics and more. Enjoy free technical assistance and free shipping within the continental USA. JENSEN TOOLS INC., 7815 S. 46th St., Phoenix AZ 85044 (602) 968-6231.

CIRCLE 115 ON FREE INFORMATION CARD

WORLD'S SMALLEST FM TRANSMITTERS! New Surface Mount Technology (SMT) makes all others obsolete! XST500 Transmitter—powerful 3 transistor audio amplifier, transmits whispers up to 1 mile. XSP250 Telephone Transmitter—line powered, transmits conversations up to 1/4 mile. Both tune 88-108 MHz. Easy to assemble E-Z KITS (SMT components pre-assembled to circuit board)! XST500—$39.95, XSP250—$29.95, VISA/MC COD add $5. XANDI ELECTRONICS, 201 E. Southern Ave., Suite 111, Tempe, AZ 85282. 1-800-336-7399.

CIRCLE 177 ON FREE INFORMATION CARD

CABLE TV 50dB NOTCH FILTERS for interference removal or channel censoring. Filters are user-adjustable to desired channel # or frequency. Eight Models available, each for certain channels: 2 & 3; 4 to 6; 7 to 13; 14 to 17; 18 to 22; 23 to 29; 30 to 36; 95 to 99 plus 0 & 1. Just $30 each or 3 for $75, includes shipping. ONE MONTH MONEY BACK, fast delivery. Visa, MC, check or M.O. (C.O.D. is $5 extra) Huge discounts for higher quantities. STAR CIRCUITS, P.O. Box 94917, Las Vegas, NV 89193. Call 24 hours 1-800-535-7827.

CALL NOW AND RESERVE YOUR SPACE

- 6 x rate $940.00 per each insertion.
- Fast reader service cycle.
- Short lead time for the placement of ads.
- We typeset and layout the ad at no additional charge.

Call 516-293-3000 to reserve space. Ask for Arline Fishman. Limited number of pages available. Mail materials to: mini-ADS, ELECTRONICS NOW, 500-B Bi-County Blvd., Farmingdale, NY 11735.

FAX: 516-293-3115
This month, we seem to have a pair of really exciting new opportunities from opposite ends of the broad hardware-hacking spectrum. Before we begin, though, our usual reminder that you can pick up technical help, consultant referrals, and off-the-wall networking by calling me per the box below—or by accessing our superb Genie PSRT, which has just seen its 40,000th library download. You can voice call my (800) 638-9636 number for connect information.

Let’s start off with...

Newtek’s video toaster

Tim Jenison recently sent me one of his Newtek Video Toasters to play with. What follows is just some of my preliminary impressions and random comments, rather than a thorough or unbiased review.

The Video Toaster is basically an Amiga computer with some special software, a plug-in card, and several extra jacks on the back. At a street cost of $2000 (card only) or $4000–$5300 (a full slow or fast system), the Video Toaster can replace something like $100,000 worth of real broadcast-quality video postproduction editing equipment. It doesn’t imitate; it replaces outright, or even totally blows away.

In theory, you can now produce total broadcast-quality videotapes cheaply and quickly in your own home. The genlocking and switching abilities of the Video Toaster seem to be three years or so ahead of anything Mac-based, and eons beyond anything based on an IBM or PC platform.

The Video Toaster’s performance is absolutely and totally stunning. But let’s knock it anyway, just so you are sure what you are getting into.

First, if you just want to slap some titles or computer art onto any old home video, the virtually unknown $129 Apple II Video Overlay card is much cheaper, surprisingly powerful, and vastly easier to use. A2 Central is one remaining source of the card.

Second, you can’t simply drop this beast down on your kitchen table. An entire room dedicated exclusively to the Video Toaster is your minimum possible workspace. Although quite compact by itself, the toaster often will attract bulky and expensive high-tech goodies like a huge magnet.

Third, plain old VHS is not suitable for any serious production or editing. Period. One big reason is the generation loss effects because copies simply are not as good as an original. Another is the inability of the user to selectively edit a single frame. An ability to write a single frame is essential for any animated sequence. Many of the Toaster’s more exotic features are definitely not VHS compatible. No way.

Yes, you can handle fairly fancy production with the latest Super-VHS or Hi-8 equipment. But if you’re the least bit serious about making a commercially marketable product, a minimum of Sony Betacam should be used for your taping and editing.

Fourth, by the time you pick up a “real” camera or two, a “real” VCR or two, the three quality color monitors required, the two time-base correctors demanded for the VCR’s, the station syncing genlock, an extra AC circuit breaker, your storyboards, and some support furniture, your price for the toaster itself seems insignificant by comparison.

Fifth, the Toaster does not address any audio mixing or processing. It simply passes the audio on from input tape to output tape. There’s a kind of imbalance here, since the toaster does so much so well on the video tracks. Yet it almost completely ignores the audio side.

Finally, the Toaster has a very steep learning curve. Bunches of time and effort are required to do the job right. Just because your toaster potentially can do full broadcast quality work doesn’t mean that you still can’t create totally and utterly atrocious results.

So, what is in the box?

Figure 1 shows a typical Toaster configuration. The toaster card and software consist of nine very fancy subsystems. These are the switcher, keyer, framestore, chroma FX processor, digital video effects, character generator, ToasterPaint drawing program, Lightwave 3D modeling program, and the genlock.

The production switcher forms the heart of the system. There are three buses, called the program bus (which is your current output), the preview bus (which often will be your future output), and the overlay bus (which can determine how your preview and future outputs will be combined).

Each bus can be connected to seven different sources, either manually or by software. The sources include four live video inputs, two still picture frames, and a background color.

Say you want to switch from live video to a color title screen. To do
an instantaneous switch, you would put the live video on the program bus, the title art on the preview bus, and press the take button. To do a manual gradual fade, there's a large mouse-controlled "T" handle which lets you gradually shift between the two. There's also lots of pre-programmed wipes and fades available, which can be controlled either manually or automatically in three speeds. Plus you can write your own font software or use third-party effects.

It gets complicated from there, but you can easily do picture-in-picture, and pretty much every other special effect that you'll see on a network or cable program. Full animation is certainly possible, but only when you use those video formats and control hardware that let you do single-frame writes under exact control.

The luminance keyer lets you put live action over a fixed background. As a selected "white" or "black" level is tripped, your switcher instantly changes between the action and the background. The frame grabber does what you would expect: it freezes an instant of live video for future use—except that it actually grabs four fields at once. That is needed because there are two fields per frame and two frames used for the NTSC color-phase sequence. A number of options are available to remove any blurring or motion in any particular field.

The chroma FX processor lets you do all sorts of neat color stuff, while the digital video effects give you lots of wowie-gees like sliding, spinning, zooming, or a spherical mapping—all of which are software programmable. The key to all those effects is the processor's ability to reach into RAM and address it in a non-obvious manner.

The character generator can place messages on your screen. It offers some very fancy special effects such as glitters, highlights, and drop shadows.

ToasterPaint is a powerful drawing program, while Lightwave 3-D is a sophisticated image-rendering and animation system. Once again, actual animation is useful only on the video standards and support hardware that allow single-frame writes. Animation sequences can be up to 120 frames, or four seconds long.

Ah yes, that genlock. When you take any old pair of video sources and try to switch between them, you will get a horrible and useless glitch. The only way around this is to make sure that each of your video sources is carefully locked to the exact same timing. An exact lock means that all horizontal lines must start precisely at the same instant and last exactly the same time. Color phase on all the lines must precisely match. The vertical synchronization pulses must be precisely aligned. And finally, those four NTSC color-phase fields must be precisely positioned in the correct time sequence.

Now, if you have one live video camera source or one off-the-air live video broadcast, your toaster will automatically lock all of its effects. Genlock here will be no problem. But if any other combination of sources is used, careful thought must be given to the way genlocking is done.

Most VCR's introduce a second big problem, even if you are only using one of them. Mechanical differences, alignment changes, and tape stretch will slightly but continuously jitter the timing obtained from a prerecorded source. A twenty-nanosecond error is noticeable.

To clean up the output from any
recorder, one or two steps might be needed. A *Timebase Corrector* (TBC) simply eliminates jitter. If you are using one recorder as your *only* video source, then a plain old TBC will suffice. On the other hand, if you are using two or more video sources, your recorder output will have to be routed through a much fancier combination TBC and *frame synchronizer*.

Typical low-end TBC's are the *Digital Processing* VT-2000 and the *Iden TR-7*. Fancier TBC/synchronizer devices include the *Hotronic AP41* and the *Iden IVT-7*. The typical street pricing ranges from $750 to $1600. With widely expanding world markets, it's likely that those prices will soon drop dramatically.

Grass Valley Group and *Ikogama* offer full broadcast-quality switchers, synchronizers and correctors, but these are not cheap.

At any rate, if you want to use multiple video sources, you pick your best source and use it for the *station sync*. Additional sources that accept external synchronization can be cable-connected to the station sync source. Sources that cannot be externally synchronized have to go to their own TBC/synchronizers, which in turn are cable-connected to your station sync.

Figure 2 shows a typical synchronization hookup. Remember that all recorders must be time-base corrected, and that only one source is allowed to provide station sync. All other sources must be locked.

What's wrong with it?

While the current 2.0 version of the Video Toaster is a stupendous product, I believe this product could be further improved. First off, a true Mac-based version is a must. Commodore might have a temporary and illusory lead on genlocking, but the Mac color-image generation and editing has long ago passed up the Amiga (and everybody else). Obvious examples of these include Pixar's *Renderman*, Apple's own *QuickTime* and Adobe's *Photoshop*.

Newtek's new Mac Desktop Video Gateway is a good first step toward full Mac compatibility.

Speaking of Adobe, some toaster compatibility with its PostScript language and its *Carousel* offspring sure would be useful. PostScript is ideal for most video artwork, either regular or animated. While the public domain *GhostScript* (now available cheaply on my *Genie* PSRT) could be used immediately, a genuine Adobe Display PostScript is the best choice. PostScript type I and type III fonts are incomparably better than the current crop of

Earn Your B.S. Degree in ELECTRONICS or COMPUTERS

By Studying at Home

Grantham College of Engineering, now in our 42nd year, is highly experienced in "distance education"—teaching by correspondence—through printed materials, computer materials, fax, and phone.

No commuting to class. Study at your own pace, while continuing on your present job. Learn from easy-to-understand but complete and thorough lesson materials, with additional help from our instructors.

Our Computer B.S. Degree Program includes courses in BASIC, PASCAL and C languages — as well as Assembly Language, MS DOS, CADD, Robotics, and much more.

An important part of being prepared to *move up* is holding the right college degree, and the absolutely necessary part is knowing your field. *Grantham* can help you both ways—to learn more and to earn your degree in the process.

Write or phone for our free catalog. Toll free, 1-800-955-2527, or see mailing address below.

Accredited by the Accrediting Commission of the National Home Study Council

GRANTHAM College of Engineering

Grantham College Road
Slidell, LA 70460

February 1993, Electronics Now
toaster characters. Full compatibility with Kodak's new PhotoCD technology is also a must. As are better audio process-

<table>
<thead>
<tr>
<th>Names and Numbers</th>
<th>Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Devices</td>
<td>1 Tech Way, PO Box 9106 Norwood, MA 02062 (617) 329-4700 CIRCLE 354 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>Kara Computer Graphics</td>
<td>2554 Lincoln Blvd, Ste 1010 Marina Del Rey CA 90291 (310) 578-9177 CIRCLE 355 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>A2 Central</td>
<td>PO Box 11250 Overland Park, KS 66207 (913) 469-6502 CIRCLE 355 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>NewTek</td>
<td>215 SE 8th Avenue Topeka, KS 66603 (800) 765-3406 CIRCLE 366 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>B&H Video</td>
<td>119 West 17th Street New York, NY 10011 (800) 932-1977 CIRCLE 356 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>Radio World</td>
<td>5827 Columbia Pike, Ste 310 Falls Church, VA 22041 (703) 998-7600 CIRCLE 357 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>Black Book Auction Report</td>
<td>PO Box 758 Gainesville, GA 30503 (706) 532-4111 CIRCLE 357 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>Rodeo Video</td>
<td>PO Box G Snowflake, AZ 85937 (800) 331-1269 CIRCLE 368 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>Digital Processing Systems</td>
<td>11 Spiral Drive, Suite 10 Florence, KY 41042 (606) 371-5533 CIRCLE 358 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>Sierra</td>
<td>2075 N Capitol Avenue San Jose, CA 95132 (408) 263-9300 CIRCLE 369 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>GEnie</td>
<td>401 N Washington Street Rockville, MD 20850 (800) 638-9636 CIRCLE 359 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>Synergetics</td>
<td>Box 809 Thatcher, AZ 85552 (602) 428-4073 CIRCLE 370 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>Grass Valley Group</td>
<td>PO Box 1114 Grass Valley, CA 95945 (916) 478-3000 CIRCLE 360 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>Timmins/Kingsway</td>
<td>2427 Hart Avenue Santa Clara, CA 95050 (408) 244-9692 CIRCLE 371 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>Grass Valley Group</td>
<td>PO Box 1114 Grass Valley, CA 95945 (916) 478-3000 CIRCLE 360 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>Hotronic</td>
<td>1875 S Winchester Blvd Campbell, CA 95008 (408) 378-3883 CIRCLE 362 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>Timmins/Kingsway</td>
<td>2427 Hart Avenue Santa Clara, CA 95050 (408) 244-9692 CIRCLE 371 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>I.DEN</td>
<td>9620 Chesapeake Dr, Ste 204 San Diego, CA 92123 (619) 492-9239 CIRCLE 363 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>TRW</td>
<td>Box 2472 La Jolla, CA 92038 (619) 475-1000 CIRCLE 373 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>Ikegami</td>
<td>37 Brook Avenue Maywood, NJ 07607 (201) 368-9171 CIRCLE 364 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>TV Technology</td>
<td>5827 Columbia Pike, Ste 310 Falls Church, VA 22041 (703) 998-7600 CIRCLE 374 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>Video Toaster User</td>
<td>21611 Stevens Creek Blvd Cupertino, CA 95014 (408) 252-0508 CIRCLE 375 ON FREE INFORMATION CARD</td>
</tr>
</tbody>
</table>

Who needs it?

Judging by the number of people who immediately piled up on my doorstep on the mere rumor that I was getting a Video Toaster, pretty near anybody. In fact, your chances are good that "Wanna play with my toaster?" is now the number one singles-bar pickup line.

Its amazing who your friends are. Let's see who was in the pile. Phil runs the alternate cable service here, and is about to offer ultra-cheap local ads. Diane is the public information officer (a.k.a. the directorate of the ministry of propaganda) for a federal bureaucracy. Henry now consults for a university multimedia department. Craig is a timber-management type. Kathy is big into theater arts. Bee is into how-to papermaking. Irene sells weaving and loom stuff.

Boyd shoots rodeo events. Dan is heavy on his computer servicing. Jeff now publishes a high-tech magazine. And Chris is shooting sprin-
nder-hookup videos for the fire department. Myra is now busy networking all her regional bed and breakfasts. Mike is editing down his JFO stuff. Jay has been making a sig flap in avian raptor research. Also birds. Keith is the honcho of a large regional rent-a-vid chain. And I am now producing PostScript intro videos.

To get started with the Newtek Video Toaster, first get a copy of the mind-blowing free video demo, either by calling them or circling the bingo card. Newtek also has an outstanding tech support helpline. One of many retail toaster sources is B & H Video, that also stocks TBC cards.

The leading magazine is Video Toaster User, while Coffee and Toast is an interactive video service. One source for toaster fonts is Kara Computer Graphics, while public domain disks of toaster effects are available at $6 each from Timmins/Kingsway.

Two associates of mine who offer custom video editing work and post production include Limel Schneiker of HDS Systems (for Mac based apps) and Boyd Baim of Rodeo Video (for Sony Betacam).

More on this whenever.

Electric-discharge machining

EDM, otherwise known as spark machining, has held a rather obscure corner in the odd world of industrial electronics. But EDM has recently moved out of the toolroom and onto the production floor. There’s nothing inherently expensive or complicated about EDM. It has some great new hacker potential. Especially since it lends itself so well to CAD/CAM and computer control.

Figure 3 shows you the basic idea. You place a workpiece of metal to be machined in a pan filled with a normally recirculating and insulating dielectric fluid. While kerosene was originally used, deionized water with a polymer resin is more popular today. You then bring a tool close to but not touching your workpiece and then discharge a capacitor between the two—which creates an arc.

The arc vaporizes some of the dielectric, and blasts a crater out of the workpiece, creating a liquid-metal puddle. After the arc ceases, the puddle solidifies and the circulating dielectric washes the dregs away. The “dirty” electrolyte is then filtered and recycled for reuse.

The process is repeated zillions of times. The next arriving arc strikes somewhere else, since the crater just increased the average spacing. As the workpiece erodes, the tool can be lowered. Eventually, the workpiece will assume the exact shape of the tool. Servo controls can sense the spark intensity and control the descent rate, making sure that optimum spacing between a tool and workpiece is maintained.

Although spark machining sounds rather crude, EDM can easily do ultra-smooth microinch machining with accuracies to a fraction of a mil.

Figure 4 shows several popular variations. With die sinking EDM, a master pattern is “pushed” into the workpiece. The tool can be exceedingly complex and virtually any shape as long as there are no undercuts. Wire EDM works like a bandsaw. You start with a supply reel of brass or other wire above your work and have a take-up reel below the work. The wire speed is adjusted so that the wire will erode and be “used up” at an acceptable rate. Wires are typically from two to ten mils in diameter.

FIGURE 3—ELECTRIC DISCHARGE machining uses a spark to blast craters out of a workpiece. The dielectric fluid washes the dregs away after each spark. Surprisingly, sub mil accuracies and microinch finishes are easily and cheaply obtainable. The trick is to use lots of sparks and tiny craters.

RADON. THE HEALTH HAZARD IN YOUR HOME THAT HAS A SIMPLE SOLUTION.

Call 1-800-SOS-RADON to get your Radon test information.

Be an FCC LICENSED ELECTRONIC TECHNICIAN!

Earn up to $30 an hour and more!

No costly school. No commuting to class. The Original Home-Study course prepares you for the “FCC Commercial Radio-telephone License." This valuable license is your professional "ticket" to thousands of exciting jobs in Communications, Radio-TV, Microwave, Maritime, Radar, Avionics and more...even start your own business! You don't need a college degree to qualify, but you do need an FCC License.

No Need to Quit Your Job or Go To School! This proven course is easy, fast and low cost! GUARANTEED PASS—You get your FCC License or money refunded. Send for FREE facts now. MAIL COUPON TODAY!

COMMAND PRODUCTIONS

FCC LICENSE TRAINING, Dept. 98
P.O. Box 2924, San Francisco, CA 94126

Please rush FREE details immediately!

NAME
ADDRESS
CITY ____ STATE ____ ZIP

www.americanradiohistory.com
With small-hole EDM, tiny holes can be "drilled" very deeply and very accurately. An obvious use for small-hole EDM is drilling pilot holes in the workpiece to start an internal path wire for the EDM machining process.

Finally, a metal disintegrator is a coarser EDM process which uses a vibrating electrode and an arc welder to blast some holes into your workpiece. Important uses for this process are the removal of snapped studs, stuck taps, or broken drills.

There are several unique advantages to EDM. The tool can be much softer than the workpiece, so you can now routinely use brass, copper, or carbon to cut up hardened steel, titanium, or carbide alloys. Ideally, there is no tool contact, so there is no friction, chatter, or side loading.

By choosing the correct discharge polarity, the workpiece erodes much faster than your tool. Since you can now temper or harden the workpiece before you start to machine it, the final results are more accurate.

Those EDM tool paths can be very complex. You can easily perform such tricks as "drilling" a deep and blind square hole that has sharp bottom corners. With wire EDM, a punch and a die can be simultaneously cut from a single piece of steel, guaranteeing a perfect fit with exact clearances between the two pieces.

The disadvantages to EDM? Both the tool and your workpiece must be conductors. Tool life is fairly short. And the machining rates are rather slow; say a cubic inch an hour for die sinking, or thirty square inches per hour for wire EDM. Thus,
The voltages and currents needed are not excessive. Since your arc is less than a mil long, 80 volts or so is all you usually need. Typical EDM power requirements are several kilowatts. Or roughly the same as those for operating a larger milling machine or lathe.

Spark repetition rates for EDM are usually 20,000 to 500,000 sparks per second.

Most EDM circuits are a variation of the simple relaxation oscillator. Sort of a big brother to the neon-lamp flasher circuit we have shown in Fig. 5.

In any relaxation oscillator, a capacitor will slowly charge up to its critical voltage which breaks down the capacitor's dielectric and turns on some nonlinear switch (e.g., creates a gas plasma or a spark gap). The capacitor normally continues discharging at a high current rate until it drops below a current threshold. At that point, gas deionizes or the spark quits, and the capacitor is free to once again begin recharging again. The cycle then repeats.

Typical EDM capacitors are in the 50-microfarad region. The value of the capacitor determines the size for each spark crater, thus trading off surface smoothness against cutting time. High-quality capacitors with a low ESR (equivalent series resistance) are an absolute must. Electrolytics are a no-no.

In modern EDM, triacs or other electronic switches can speed up and improve the operation of the simple relaxation oscillator. But the idea is still the same. Charge a capacitor to its breakdown voltage. Then discharge the capacitor into the spark gap. Repeat the cycle over and over again. Spark times and duty cycles are adjustable over wide ranges.

As our resource sidebar for this month, I've gathered together the names of places to go for more information on EDM. The leading trade journal on the subject is called EDM Today, while ads and articles occasionally show up in American Machinist and Metalfax. In addition to all the other great machinery and home shop books, Lindsay Publications offers a Practice and Theory of Electrochemical Machining, and the Ramah Machines Metal Disintegrator. Several other resources listed give a random sampling of prominent manufacturers and distributors for EDM equipment.

New tech lit

There's loads of interesting new chips piling up. Particularly the Aria sound circuits from Sierra, or the new TMC22190 digital video layering engine, and the TMC22070 gen-locking video digitizer from TRW. A multimedia stereo audio mixer applications note is now offered by Analog Devices.

The Black Book Official Auction Report is like a car blue book for shop machinery. It also lists lots of auction houses likely to conduct electronic auctions.

A great cable and television station tabloid technical magazine is TV Technology. Among other stuff, it's got lots of ads for toaster supports and products. A similar publication for commercial radio stations is called Radio World.

For all the fundamentals of digital integrated circuits, be sure to check into my TTL Cookbook and CMOS Cookbook. Autographed copies are available as per my nearby Synergetics ad. And my NUTS10.PS on GEnie PSRT offers a brand new tutorial on PostScript for Hardware Hackers.

Our new Synergetics Consultant's Network is also now up and running. Do give me a call at (602) 428-4073 if you want to participate in this, or need any information on any other technical topic. Let's hear from you.

R-E
Once upon a time, when gated sync was the last word in video signal scrambling, it was relatively easy to descramble the system there were two constants you could count on. The first was that the missing horizontal sync pulses were recoverable from information that was buried elsewhere in the RF signal. The second, more subtle, constant was that the horizontal sync pulses were always missing from each line of video.

The SSAVI system makes this part of the descrambling process a bit more difficult.

As we’ve discussed over the last couple of months, the horizontal sync pulse in the SSAVI system is considerably sneaker than in any previous scrambling technique. In any given field of video, the pulses can be absent or at the wrong levels. They could be present, although the chances of that are rare. The only constant is that the horizontal pulses will be there during the vertical interval—and that’s while the electron beam is off the screen.

Given all that, the job is to come up with some way to generate horizontal pulses only when they’re needed. Not only that, but we have to be sure that the pulses we create are placed correctly on each line, and are produced at the exact same rate as the horizontal frequency of the incoming scrambled video signal. This sounds like an insurmountable design problem but, in fact, it’s not really that difficult. The key to the design is the use of a phase-locked loop, or PLL.

The phase-locked is one of the most useful subcircuits, and one of the most underused as well. Back in prehistory, when dinosaurs roamed the earth and the IC hadn’t been invented, the design of phase-locked loops was a real pain in the neck. They were complete circuits in themselves, and several people were usually required to complete the designs. That changed completely with the introduction of IC’s in general, and the CMOS family in particular.

Before we get into the details of how a phase-locked loop circuit is going to solve our sync problem, it’s worth spending a few minutes on the basics of phase-locked loops. Since this is such an important part of our total circuit, it’s impossible to understand how the descrambler works without a foundation in the theory of phase-locked loops.

The basic components of a standard phase-locked loop are shown in Fig. 1. There are two basic parts: the first is an input conditioning circuit that cleans up the signal applied to the phase detector, and the second is a local oscillator whose frequency is determined by a control voltage. That part is usually referred to as a voltage-controlled oscillator (VCO) or voltage-to-frequency converter.

The output of the VCO is compared to the input frequency, and the phase detector generates an error voltage that’s proportional to the difference between the two frequencies. The error voltage controls the frequency of the VCO, and the result is that the VCO’s output is always in-phase—or synchronized, if you prefer that term—with the input frequency.

By setting the VCO’s base frequency to some multiple of the input frequency, we can have the counter/divider chop the VCO frequency down to the input frequency and keep the VCO in sync with the input, even though the frequencies aren’t the same. So, PLL’s let us easily multiply frequencies, build filters, and—more to our point—keep signals in sync.

Phase-locked loops are basic building blocks in circuit design, and it’s well worth your time to learn as much as possible about them. I might spend more time on them in the future, but at the moment my only interest is how they can be used in descramblers. I strongly urge all of you out there to read about, experiment with, and build PLL circuits. There’s a lot of good information around regarding phase-locked loops and a good deal of it comes from the semiconductor industry.

![Phase-Locked Loop Block Diagram](image-url)
Countersurveillance

ever before has so much professional information on the art of detecting and eliminating electronic snooping devices—and how to defend against experienced formation thieves—been placed on a single VHS video. If you are a fortune 500 CEO, an executive in the hi-tech industry, or a novice seeking entry into an honorable, rewarding field of work in countersurveillance, you must view this video presentation again and again.

Wake up! You may be the victim of omen words—precious ideas that would’ve made you very wealthy! Yes, professionals, even rank amateurs, may be listening to your most private conversations.

Wake up! If you are not the victim, aren’t you surrounded by countless victims who need your help if they know how to discover telephone taps, locate bugs, or “weep” a room clean.

There is a thriving professional service with high-tech techniques that you may become a part of! But first, you must now and understand Countersurveillance technology. Your very first insight into this highly rewarding field is made possible by a video VHS presentation that you won’t view on broadcast television, satellite, or cable. It presents an informative program prepared by professionals in the field who know their industry technology, kinks and loopholes. Men who are tell you more in 45 minutes than was ever attempted before.

Foilng Information Thieves

Discover the targets professional noosek seek out! The prey are stockbrokers, arbitrage firms, manufacturers, high-tech companies, any competitive industry, or even small businesses in the area community. The valuable information they filch may be marketing strategies, customer lists, product formulas, manufacturing techniques, even advertising plans. Information thieves eavesdrop on court decisions, bidding information, financial data. The list is unlimited in the mind of man—especially if he is a thief!

You know that the Russians secretly installed countless microphones in the concrete work of the American Embassy building in Moscow. They converted

The professional discussions seen on the TV screen in your home reveals how to detect and disable wiretaps, midget radio-frequency transmitters, and other bugs, plus when to use disinformation to confuse the unwanted listener and the technique of voice scrambling telephone communications. In fact, do you know what to look for a bug, and what to do when you find it? Bugs of a very small size are easy to build and they can be placed quickly in a matter of seconds, in any object or room. Today you may have used a telephone handset that was bugged. It probably contained three bugs. One was a phony bug to fool you into believing you found a bug and secured the telephone. The second bug places the investigator when he finds the real thing! And the third bug is found only by the professional, who continued to search just in case there were more bugs.

The professional is not without his tools. Special equipment has been designed so that the professional can sweep a room so that he can detect voice-activated (VOX) and remote-activated bugs. Some of this equipment can be operated by novices; others require a trained countersurveillance professional.

The professionals viewed on your television screen reveal information on the latest technological advances like laser-beam snoppers that are installed hundreds of feet away from the room they snoop on. The professionals disclose that computers yield information too easily.

This advertisement was not written by a countersurveillance professional, but by a beginner whose only experience came from viewing the video tape in the privacy of his home. After you review the video carefully and understand its contents, you have taken the first important step in either acquiring professional help with your surveillance problems, or you may very well consider a career as a countersurveillance professional.

The Dollars You Save

To obtain the information contained in the video VHS cassette, you would attend a professional seminar costing $350-750 and possibly pay hundreds of dollars more if you had to travel to a distant city to attend. Now, for only $49.95 (plus $4.00 P&H) you can view Countersurveillance Techniques at home and take refresher views often. To obtain your copy, complete the coupon or call.

CIAGGK INC. EN
P.O. Box 4099 • Farmingdale, NY 11735

Please fax my copy of the Countersurveillance Techniques Video VHS Cassette for a total cost of $43.95 each (which includes $1.00 postage and handling).

No. of cassettes ordered

Amount of payment $

Sales tax (N.Y.S. only)

Total enclosed

Mail my □ VISA □ MasterCard

Card No.

Expire Date

Signature

Name

Address

City State ZIP

All payments in U.S.A. funds. Canadians add $3.00 per VHS cassette. No foreign orders.

CALL NOW!

HAY YOUR VISA or MC CARD AVAILABLE

1-516-293-3751

what was to be an embassy and private residence into the most sophisticated recording studio the world had ever known. The building had to be torn down in order to remove all the bugs.

Stolen Information

The open taps from where the information pours out may be from FAXs, computer communications, telephone calls, and everyday business meetings and lunchtime encounters. Businessmen need counselling on how to eliminate this information drain. Basic telephone use coupled with the user’s understanding that someone may be listening or recording vital data and information greatly reduces the opportunity for others to purloin meaningful information.

www.americanradiohistory.com
manufacturers themselves. I know that Signetics has a whole data book devoted to phase-locked loops. Give them a call (408-991-2000) and find out how you can get a copy of their "Phase Locked Loop Handbook." While it's not really the kind of reading that will keep you up at night, it's a very good source of information.

The phase-locked loop we'll be using is the old tried-and-true 4046. The pinout for the chip is shown in Fig. 2, and a block diagram of the chip is shown in Fig. 3. The frequency of the VCO is determined by RC constant of the resistors at pins 11 and 12, and the capacitor between pins 6 and 7. A second factor affecting the VCO is the control, or error voltage on pin 9.

The VCO will stay in sync with the input frequency that's applied to pin 14. If you put a divider circuit between the VCO output on pin 4 and the comparator input on pin 3, the VCO frequency will be the input frequency multiplied by whatever value you're using for the division.

There are lots of things to watch out for when you're designing a circuit around a 4046, or any PLL for that matter, but we're more interested in the application than the theory. I'll leave the theory for another column—and by that time you'll have gotten the data books and learned a lot about phase-locked loop theory on your own. Right?

In our descrambler, the PLL is the perfect solution for solving the horizontal sync problem. Remember that the only time we can be sure of receiving transmitted sync pulses is during the vertical-blanking interval. The question we had to answer is how any circuit could "know" when to generate a horizontal sync pulse if there's nothing that can be used as a reference. The way to make that happen is to do a couple of creative things with a PLL. To start off with, the 4046 setup we need is shown in Fig. 4.

The VCO base frequency is set at 504 kHz. That frequency is an even multiple of the standard horizontal scan rate (15,750 Hz x 32). During the vertical interval, we get 26 usable horizontal sync pulses from the broadcast signal. When line 27 comes along, the picture starts and the horizontal sync is missing. But because the VCO is still running, the divider produces a horizontal sync signal anyway. The pulse is fed back to the input video amplifier and injected into the video signal so that line 27 is displayed correctly on the TV.

The artificially generated sync signal is then split from the video signal by the sync-separator circuit and routed to the PLL. The 4046 has no way of knowing that the sync pulse isn't a "real" one, so it treats it exactly the same as one obtained from the television broadcaster. This kind of self-bootstrap operation continues for the rest of the video frame until the next vertical interval is reached, when the whole thing starts all over again.

As you can see, the success of this whole scheme depends completely on the stability of the VCO in the phase-locked loop. In fact, while that might seem to be a real concern, it's really much less of a problem than you might think. I'm not continued on page 90
48 HOUR SHIPING

ELENCO & HITACHI & B+K PRODUCTS
AT DISCOUNT PRICES

ELENCO OSCILLOSCOPES

2120 - 20MHz Dual Trace $395
2125 - 20MHz Delayed Sweep $539
1541B - 40MHz Dual Trace $749
2160 - 60MHz Dual Trace, Delayed Sweep, Dual Time Base $949
2190 - 100MHz Three Trace Dual Time Base, Delayed Sweep $1,395
2522 - 20MHz / 10MS/storage $869
1442 - 20MHz Portable $1,229
1443 - 40MHz Battery / AC operated with Cursor & Readouts $1,439

1GHz PORTABLE SPECTRUM ANALYZER
Model 2610 $2,595.95
- AC/DC operation (battery included)
- 70dB dynamic range
- Resolution bandwidth of 10kHz
- 50Hz and 75Hz input impedance (switch selectable)
- Fixed bandwidth setting for viewing TV signals
- Field calibratable with internally generated 100MHz, 80dB signal

FLUKE MULTIMETERS

Scoopemeters (All Models Available)
Model 93 $1,095.00
Model 95 $1,395.00
Model 97 $1,695.00
Model 99 $1,995.00

10 Series
Model 10 $62.95
Model 12 $79.95

Quad Power Supply
XP-580 $69.95
2-20V @ 2A
12V @ 1A
5V @ 3A

Triple Power Supply
XP-620 Assmebled $75
Kit $50
2 to 15V @ 1A,
2 to 30V @ 1A
-8V to 1A

AM/FM Radio Kit with Training Course
Model AM-FM 108 $27.95
14 Transistors + 5 Diodes
Makes a great school project

ELENCO & HITACHI & B+K PRODUCTS

S-1325 25MHz $349
Dual Trace Oscilloscope

S-1340 40MHz $495
Dual Trace Oscilloscope

S-1360 60MHz Dual Trace, Delayed Sweep $775

Digital Capacitance Meter
CM-1550B $58.95
9 Ranges
1pF-20,000uf
5% basic ac	
Zero control w/ Case
Big 1" Display

Digital LCR Meter
LC-1801 $125
Measures:
Capacs 1pF-100uf
Res 0.1m-20M

Multimeter with Capacitance & Transistor Tester
$55 CM-1500B
Reads Volts, Ohms, Current, Capacitors, Transistors and Diodes / with case

Digital Sweep/Function Generator
$259
Elenco
Model GP-8026
Sine, Square, Triangle, Pulse, Ramp
2 to 2MHz, Freq. Counter -10MHz

Learn to Build and Program Computers with this Kit
Includes: All Parts, Assembly and Lesson Manual
Model MM-8000
$129.00

Function Generator Blox
$960
Elenco
Provides sine, triangle, square wave from 1Hz to 1MHz
AM or FM capability

SG-9000 $129
RF Freq 10K-40MHz, AM modulation of MHz Variable RF output
SG-9000 w/ Digital Display & 150 MHz built-in Counter $249

Hitachi RS-3 Series
RDS's feature: roll mode, averaging, saving memory, smoothing, interpolation, pretriggering, cursor measurements.
VC-6023 - 20MHz, 20MS/s $1,650
VC-6024 - 50MHz, 20MS/s $1,950
VC-6025A - 50MHz, 20MS/s $2,350
VC-6045A - 100MHz, 40MS/s Call
VC-6145 - 100MHz, 100MS/s Call

Hitachi Compact Series Scopes
V-212 - 20MHz Dual Trace $409
V-252 - 50MHz, Cursors $975
V-253 - 50MHz, Delayed Sweep $949
V-522 - 50MHz, DC Offset $849
V-422 - 40MHz, DC Offset $749
V-222 - 20MHz, DC Offset $625
V-650 - 60MHz, Dual Trace $1,095
V-665A - 60MHz DT, w/cursor, $1,325
V-1060 - 100MHz, Dual Trace $1,375
V-1065A - 100MHz, DT, w/cursor $1,649
V-1085 - 100MHz, QT, w/cursor $1,995
V-1100A - 100MHz, Quad Trace $2,195
V-1150 - 150MHz, Quad Trace $2,695

XK-500 Digital / Analog Trainer
A complete mini-lab for building, testing, prototyping analog and digital circuits
eLenco's Digital/Analog Trainer is specially designed for school projects, with 5 built-in power supplies. Includes a function generator with continuously variable sine, triangular, square wave forms. All power supplies are regulated and protected against shorts.

Power Supplies
- Variable Power Supply
 +12VDC @ 5 Amp
 +5VDC @ 5 Amp
- Linear Power Supply
 +5VDC @ 1 Amp
 +12VDC @ 1 Amp
 +24VDC @ 1 Amp
 +36VDC @ 1 Amp

Analog Section
- Function Generator: Sine, Triangle, Square wave forms
- Frequency adjustable in five ranges from 1 to 100kHz
- Fine frequency adjust
- Amplitude adjust
- DC offset
- Modulation FM AM

Digital Section
- Eight data switches
- Two no bounce digital switches
- 6 LED board TTL buffered
- Clock frequency up to 100kHz
- Clock amplitude 1KHz square wave

Breadboards $159.95
Kit $129.95

C&$ SALES INC.
1234 ROSEWOOD, DEERFIELD, IL 60015
FAX: 708-520-0085 • (708) 541-0710

WE WILL NOT BE UNDERSOLD
15 DAY MONEY BACK GUARANTEE
FULL FACTORY WARRANTY
WRITE FOR FREE CATALOG

CIRCLE 109 ON FREE INFORMATION CARD
www.americanradiohistory.com
controversial and apparently misunderstood subject.

First, I have read the advertisements for diskette punches that supposedly turn a double-density disk into a high-density disk by forming a second hole in the disk's protective shell. I cringe whenever I see those ads because they usually claim that there is no difference between the two diskettes—at least in terms of media.

That notion is pure hogwash! It comes from those people who will profit from selling those punches to the unwary consumer. Unfortunately, they will work in some cases, but that can result in dire consequences. So, buyer beware!

The data-storage capacity of a diskette is a function of two variables: track spacing or density per unit area, and bit density per unit length of track. While track density is identical in the two formats—approximately 135 tracks per inch—the problem lies in bit density.

The high-density diskette track packs exactly twice the number of bits (magnetic pulses) as the double-density track, which means it stores twice as much data. This can be confusing until you learn that the double-density disk was so named because it holds twice as much data as a single-density disk—not a high-density disk. Single-density disks are rare these days, particularly in the 3½-inch size.

Q&A noted correctly that many drives have an internal optical sensor to distinguish between the two disk formats. The presence of that sensor will prevent the user from accidentally inserting the wrong format, which would cause data errors. Unfortunately, IBM did not include that kind of sensor in some of its drives, which puts the burden of inserting the disk with the correct format on the user.

How can a diskette permit reliable doubling of its bit density per unit of track length? Simply stated, that variable is controlled by the thickness of the magnetic material and its composition. Thinner coating thickness permits higher bit density.

Unlike common 5¼-inch diskettes, the magnetic material thickness on both of the 3½-inch diskette formats is about the same—40 to 50 microinches. A 40-microinch coating thickness was the minimum practical limit for the production equipment in use when the 3½-inch diskettes were introduced. That equipment was not suitable for making the coating any thinner, so product yields would have suffered from "droplets" if it had been used, and disks would have been useless for systems requiring error-free media.

As a result, when faced with the challenge of doubling the disk's capacity, designers relied primarily on changing the composition of the magnetic coating. Therefore, the significant difference between the two disk formats is in their magnetic coating. The magnetic particles in double-density disks have a coercivity of about 600 oersteds. (An oersted is a unit of magnetic field strength, and coercivity is the magnetic field strength required to reduce the flux density of fully saturated magnetic material to zero.) By contrast, high-density diskettes have magnetic particles that measure about 720 oersteds.

If a disk is fully magnetized in one direction, an opposing magnetic field is required to demagnetize the media. The magnitude of that field is the disk's coercivity. The higher the coercivity, the higher the magnetic energy that is required from the recording head to magnetize or demagnetize the media. Also, the higher the coercivity, the greater the bit density per track (within limits).

The 3½-inch drive's magnetic read/write heads had to be redesigned to accommodate the increased recording currents and data rate (frequency) of the high-density format.

Why does punching a second hole to fool the drive's sensor, and formatting the 600-oersted disk to a 720-oersted capacity often work? The answer is that because the diskettes have similar media thickness and coercivity, the latest disk drives (designed to work with a reasonable tolerance) can't always discriminate between them.

Although hole punching might work initially, you might find out later that your data can't be recovered from the diskette. This is especially true when data is written on one drive and read with another.

Moreover, as you continue to "overwrite" previously recorded data, you are likely to encounter read errors and lost data. Because a disk can be formatted with no errors, you do not have a guarantee that it will work reliably. That is the purpose of the analog certification test. If a disk passes that test you are assured a reasonable expectation that the disk will operate error-free throughout its life.

I do not recommend cross-formatting diskettes—unless you just don't care if your programs and data are lost! If you do choose to cross format, at least be aware of the risks involved. Despite what you might have read in some unscrupulous ads, disk suppliers have not consented to cheat the consumer.

BRAD BAKER
President, Accurate Technologies Inc.
San Jose, CA
Video computing is the hottest area of development right now. Last month I presented an overview of some of the issues involved, and discussed one of the more robust solutions, Intel's Digital Video Interactive (DVI). Until very recently, DVI was only available in expensive, proprietary board sets. By the time you read this, Intel and Microsoft will have introduced a software-only version of DVI, made possible by the widespread proliferation of low-cost high-powered CPUs (486s and 68040s).

Software approaches
Generally speaking, all data-compression algorithms are software-based. However, the software approaches discussed here typically use a general-purpose CPU (i.e., the system's 80x86 or 680x0) for processing, rather than a special-purpose chip or board set.

Two names that crop up frequently are JPEG and MPEG, acronyms for Joint Photographic Experts Group and Motion Picture Experts Group, respectively. Both groups are sponsored by the International Standards Organization (ISO), which gives their algorithms broader appeal than proprietary ones like DVI. Both JPEG and MPEG are lossy, which means that some data is thrown away. The advantage of that is much higher compression ratios than with lossless algorithms.

MPEG provides two-dimensional, spatial, or intra-frame compression. JPEG provides temporal or inter-frame compression, in which only the part of each frame changed relative to the preceding frame is stored. The advantage is higher compression, but random access becomes more difficult and less efficient. MPEG has just emerged from the standardizing process; it deals only with video data. MPEG-II is on the way; it deals with synchronized audio and video data.

M-JPEG (Motion JPEG) is a kind of hybrid that compresses a series of JPEG frames without regard for common contents among adjacent frames. JPEG is coming into common use in the desktop publishing community for compressing single-frame images. M-JPEG and MPEG have been implemented only by a few vendors (including Intel on its DVI board set), but broad support is yet to come.

Another important compression algorithm is \(p \times 64 \), also known as CCITT recommendation H.261. The \(p \) represents a parameter that specifies some multiple of a 64-kilobit data rate; that use stems from high-speed T1 telephone lines, which consist of 24 64-kilobit channels. When \(p \) gets up to about 6 (i.e., there is a 384K bit rate), fairly respectable motion video is possible. The \(p \times 64 \) algorithm standard is fairly well supported in the videoconferencing market, although major providers there (PictureTel and Compression Labs) also exploit proprietary algorithms.

More immediately relevant to the personal-computer industry are commercially available compression technologies that include Apple's QuickTime, introduced in December, 1991, and Microsoft's Video for Windows, slated for release by the time you read this. QuickTime is actually more than just a compression algorithm; it includes compression technology, file formats, system software, and user-interface guidelines. The compression technology includes four types: JPEG (for photos), animation (for low-frame-rate computer-generated images), video (providing 15 frame/second software-only decompression at a resolution of 160 \(\times \) 120 pixels), and graphics (similar to video, but higher compression and slower playback). An updated version, QuickTime 1.5, doubles both resolution and frame rate; the latter, however, is achievable only on very high-end Mac computers (Quadra 900's and 950's). Version 1.5 also supports Kodak's Photo CD (discussed here in the December 1992 column).

QuickTime is important because it was the first software-only video-delivery system available for desktop computers. It is a native part of the Macintosh system software, hence is available via a documented API to any application. And, as usual, pioneering editing tools were available on the Mac first. Also, Apple has demonstrated, and is scheduled to release soon, a Windows-based QuickTime player, reportedly by the end of 1992.

Like QuickTime, Video for Windows includes several compression algorithms—a derivative of DVI is a very important one. Last summer, Asymetrix, a company that sells a slick Windows-based object-oriented programming environment and authoring tool called ToolBook, released a CD-ROM containing a soft-video demo, in which several company officers present their visions of the multimedia industry. Click on a small snapshot (about 1/4 of a standard VGA screen), and talking heads come to life. Both audio and video tracks came directly from the CD. The audio was perfect, but audio-video synchronization was not. Sync should be better in the final version of the product. The important point is that the demo indicates a trend. There is something magical about seeing motion video on a computer screen.
Conclusions

Poorly synced soft video reminds me of CGA graphics in the early 1980's. Lack of resolution and color depth appear almost laughable in today's light; nonetheless, CGA represented a start. Recent acceleration in the evolution of CPU and memory technology means that video computing won't take as long to reach prime time as did high-resolution graphics.

But we're not there yet. The question is: Will users accept software-based—or even hardware-assisted—DVI-level video? Not in the long run. Right now, anything that puts motion video on a computer screen falls in the category of novelty. But the lack of quality will become apparent, and people will demand more. Remember how FM superseded AM, and FM stereo supplanted FM; how stereo overcame mono recordings; how CD's overcame LP's; how color TV overcame black and white; and how HDTV is likely to render obsolete NTSC. The real question is not if but when video computing will become widespread.

Until then, anyone with a 386-, 68030-, or better based computer can enjoy software-only video. The effect is startling at first, but the lack of synchronization between audio and video tracks, not to mention the extremely small images sizes, clearly add up to an interim solution. Now the industry has taken the all-important first step. But the media-integration game is not over yet. Not by a long shot.

Product watch

I've run across several nice accessories and utility programs recently. The Writer's Toolkit is a Windows application that squeezes a grammar checker and six reference works into about 6.5 megabytes of disk space. The works include the American Heritage Electronic Dictionary, the Dictionary of Common Knowledge, Roget's Electronic Thesaurus, the Concise Columbia Dictionary of Quotations, an abbreviation program, and an online grammar and style reference. Writer's Toolkit comes on ten floppy diskettes, and though no match for a CD-based work like Microsoft's Bookshelf, manages to cram a lot of useful information into very little space. You can bring up each reference work in a separate window, and even synchronize look-ups among windows (whatever you look up in one window is also looked up in all open windows, as shown in Fig. 1). One nice feature is that you can cut and paste information from the package and directly into your word processor. My main complaint is that the grammar and style guide, which is hard to use and is not well indexed. If you're Windows-based, do a lot of writing, and have no CD-ROM, the Writer's Toolkit is a worthwhile addition to your hard disk.

The Supra V.32bis FXAModem is Hayes compatible, runs at bit rates as fast as 14.4K, has V.42bis data compression and error correction, and also includes a 14.4K fax. The external model is about ½ the size of a standard modem, and has a two-character status display in addition to several status LED's. DOS and Windows bundles are available; the Windows package includes a "lite" version of WinFax pro, which installs as a Windows print driver and allows you to fax documents directly from the source application, complete with fonts and graphics. The most intriguing feature of the Supra is its upgradability to voice processing and caller ID, unrel eased as of press time. The modem lists for $399.

The NotePort from Kodiak Technology is an external Ethernet adapter that connects via a stand ard parallel port. The device has a pass-through printer port, both 10Base-T and BNC connectors, and a built-in power supply (i.e., no bulky wall transformer). Drivers are available for Novell, Vines, and Lantastic, and high-performance drivers for bidirectional parallel ports are also available.

I tested the NotePort on a Lantastic network, and learned several interesting things in the process. The NotePort driver requires the latest version of Lantastic (4.1), and it must be the Adapter Independent (AI) version. The regular version runs only on Artssoft's Network Interface Cards (NIC's); the AI version runs on all popular cards. So I upgraded my network to Version 4.1, and obtained a single-user license for an AI node. I tested the NotePort on several machines, with varying results. It worked just fine on an AST Premium 286, but would not work on an IBM PS/2 model 70. The driver simply refused to recognize the parallel port, and the company had no explanation for that behavior as of press time.

I downloaded the NotePort and Lantastic drivers with LapLink to a Zeos PalmTop PC (discussed here last time), and got the drivers to work just fine. However, the PalmTop PC has no free drive letters, and it boots from a ROM-based CONFIG.SYS with no LASTDRIVE

FIG. 1—THE WRITER'S TOOLKIT includes six reference works and a grammar checker. CD-ROMless writers will find it indispensable.
statement, so I couldn’t map any network drives to the machine, although test software indicated that the drivers were running just fine. However, Quarterdeck Office System’s 386 memory manager QEMM includes a program that allows you to alter the LASTDRV setting from the DOS command line. I added several drive letters, and was soon accessing the network via the Palm-Top PC and the NotePort. Sweet. All in all, the NotePort is an elegant solution for making notebook and other temporary Ethernet connections. It lists for $399.

HiJaak for Windows is the long-awaited Windows version of one of the best screen-capture, format-conv, and image-manipulation utilities around. If you’ve ever fought and lost the conversion battle among multiple flavors of TIFF, PCX, BMP, GIF, and other file formats, you need a copy of HiJaak. Enough said.

News bits

The Microelectronics and Computer Technology Corporation, together with eleven major corporations (including Kalieda, Apple, Kodak, Philip, Bellcore, US West, Corning, among others) has launched the most ambitious effort so far to provide interactive multimedia services to a general consumer market. The idea is to define a network infrastructure based on telephone, cable-TV, and upcoming fiber-optic cabling, then figure out applications that will use the infrastructure. The project is called First Cities. Watch this one.

TI has introduced a digital signal processor (DSP) that spells the beginning of the end for dedicated fax, modem, sound synthesis, speech-recognition, and image-compression chips. TI will sell the chips to OEM’s, and is expected to introduce PC expansion cards based on it in early 1993. A $150 board will include 8- and 16-bit MPC audio, audio compression, a text-to-speech converter, JPEG image compression, Sound Blaster compatibility, and MIDI and joystick ports. A $350 board with microphone and headset will include V.32 modem, Group III fax, and intelligent telephone-answering capabilities.

Intel finally named the next-generation x86, aka the P5, aka the 80586: It will be called Pentium, because it is the fifth in the series (8086, 80286, 80386, 80486). (Yes there is an 80186, but it has the 8086 CPU core.) The name-for-number switch was done to protect Intel from cloners, who found it easy to bury x86 somewhere in their part numbers. The chip itself, however, remains unreleased; Intel now estimates delivery in the first quarter of 1993. There are also strong hints that the company will release a Pentium Jr. that will plug into the overdrive socket built on recent 486 motherboards.

Intel also announced a 486SL microprocessor, which includes 3.3 volt operation, 486SX compatibility, and power-saving features. The latter are accessible via a System Management Interrupt (SMI), which puts the chip into a System Management Mode (SMM). That in turn provides a different address space for performing system-level functions (e.g. putting unneeded peripherals—or the CPU itself—to sleep). However, Intel is also committed to providing system-management features in the 486SX and DX lines. And that has angered several laptop computer manufacturers that had already committed to the more-expensive 486SL.

RESOURCES

- SupraFAXModem ($399), Supra Corp., 7101 Supra Drive S.W., Albany, OR 97321. (503) 967-2400. CIRCLE 41 ON FREE INFORMATION CARD.
- NotePort ($399), Kodak Technology, 1338 Ridder Park Drive, San Jose, CA 95131. (408) 441-8900. CIRCLE 42 ON FREE INFORMATION CARD.
- HiJaak for Windows ($249), Inset Systems, 71 Commerce Drive, Brookfield, CT 06804-3405. (800) 828-8088, (203) 740-2400. CIRCLE 43 ON FREE INFORMATION CARD.
- Writer’s Toolkit ($129), Systems Compatibility Corporation, 401 N. Wabash, Suite 600, Chicago, IL 60611. (312) 329-3700. CIRCLE 44 ON FREE INFORMATION CARD.
- Lantastic, Artisoft, Inc., 611 East River Road, Tuscon, AZ 85704. (800) TINY-RAM, (602) 293-4000. CIRCLE 45 ON FREE INFORMATION CARD.
of information at super-fast speeds, many scientists doubt that the existing technology can keep pace with rising consumer demand for new multimedia services (e.g. pay-per-view video, and computer shopping networks).

Bellcore's Optical Filter

Bellcore's optical filter, based on liquid crystals, increases the speed and efficiency of fiberoptic data transmission by separating lightwaves into different colors.

Bellcore researchers have been working on experimental devices to boost fiber's data-carrying capacity. They claim that their tunable optical filter is the first practical device that could be used by local telephone operating companies to send hundreds of messages through a single optical fiber simultaneously. The liquid crystals, similar to those in computer and watch displays, do the filtering.

Most fiberoptic networks transmit just one color at a time. The prototype tunable optical filter includes a paper-thin film of liquid crystal sandwiched between two glass mirrors separated by a micrometer (millionth of a meter). If a voltage is applied across the liquid crystal layer, its property that allows a specific wavelength of light to pass through both mirrors is changed.

According to Bellcore researcher, Jay Patel, the prototype represents "a potentially low-cost approach to wavelength selection, which could lower the cost of installing and using fiber in the local loop" (the link between the central office and customers). The research team is now seeking to increase the lightwave sorting speed.
JRI knows: The best way to learn to service today's computers is to actually build a state-of-the-art computer from the keyboard up.

TRAIN WITH THE LEADER - NRI

rain with NRI and prepare for a high-paying position as a computer service technician, even a computer service business of your own! Regardless of your previous electronics background, you can succeed with NRI, the leader in career-building at-home electronics training for over 78 years. You begin with the basics, rapidly building on the fundamentals of electronics to master today's advanced microcomputer concepts.

LEARN BY DOING

NRI's highly acclaimed learn-by-doing approach gives you a complete understanding of the intricate electronics behind the 1 meg RAM, 32-bit CPU computer system included in your course. You perform hands-on electronics experiments with your NRI Discovery Lab and digital multimeter, then build and test the powerful 486SX/25 MHz computer you will own. You install the 1.2 neg, 5-1/4" floppy disk drive, learning disk drive operation and adjustment. Later, you dramatically improve your computer's data storage capacity by installing a powerful 80 meg IDE hard drive. You even learn to diagnose and service virtually any computer problem with the extraordinary R.A.C.E.R. plug-in diagnostic card and QuickTech diagnostic software included in your course.

STUDY AT YOUR OWN PACE

With NRI, you study in the privacy and convenience of your own home — with your personal instructor and NRI's team of technical professionals behind you every step of the way. You learn at your own pace — no classroom pressures, no night school, no need to quit your present job until you're ready to make your move!

Step by step you're guided through the assembly of a powerful 486SX-based computer system — the centerpiece of your coursework — complete with monitor, floppy drive, 80 meg hard drive, operating and applications software.

You get the hands-on experience you need to troubleshoot any IBM-compatible computer, plus the confidence to tackle any service job you take on.

What's more, you work with today's most popular integrated software package, Microsoft Works, learning to use its word processing, spreadsheet, database, and communications utilities for your own personal and professional applications.

It's a fact: Only NRI gives you such thorough, effective training in computer servicing. And no other school gives you hand-on experience with a computer more powerful than the 486SX-based system included in your course.

NRI is a registered trademark of International Business Machines Corp. R.A.C.E.R. and QuickTech are registered trademarks of Ultra X, Inc.

The Department of Labor forecasts over 220,000 jobs for computer service technicians by the year 2005 — a full 38% increase over today's level. With the right training and skills, you can cash in on this wide-open opportunity and become a high-paid computer service technician. Whether you choose a full- or part-time job — or start a computer service business of your own — you'll be well prepared, continuously drawing on the real-world experience of your NRI training. Master electronics and computers the NRI way and master your future!

LEARN MORE ABOUT NRI TODAY

Send today for NRI's free, full-color catalog that describes every aspect of NRI's innovative computer training, as well as hands-on training in other growing high-tech career fields. If coupon is missing write: NRI Schools, McGraw-Hill Continuing Education Center, 4401 Connecticut Avenue, NW, Washington, DC 20008.

SEND CARD TODAY FOR FREE NRI CATALOG

McGraw-Hill Continuing Education Center
4401 Connecticut Avenue, NW, Washington, DC 20008

Check one FREE catalog only

- MICROCOMPUTER SERVICING
- TV/Video/Audio Servicing
- Telecommunications
- Industrial Electronics & Robotics
- Security Electronics
- Electronic Music Technology
- Basic Electronics
- Computer Programming
- Programming in C++ with Windows
- Desktop Publishing & Design
- Word Processing Home Business
- Bookkeeping & Accounting
- Home Inspection
- Building Construction
- Small Engine Repair
- Automotive Servicing

For career courses approved under GI Bill, check for details

Name (please print) Age

City/State/Zip

Accredited Member, National Home Study Council

3 0 2 9 3

www.americanradiohistory.com
BUYER'S MART

FOR SALE

TUBES. "oldest," "latest." Parts and schematics. SASE for list. STEINMETZ, 7519 Maplewood Ave., Hammond, IN 46324.

TUBES, new, up to 90% off, SASE, KIRBY, 296 Winooski Ave., Winooski, VT 05401.

T.V. notch filters and bullet stopper, free brochure. MICRO TH INC. Box 63-6025, Margate, FL 33063. (305) 752-9202.

ENGINEERING software and hardware, PC/MSDOS. Circuit design and drawing, PCB layout, FFT analysis, mathematics, circuit data. Acquisition, generation, I/O PCB's. Call or write for free catalog. (614) 497-0832, or fax (614) 497-9971.

BSOFT SOFTWARE, INC., 444 Colton Rd., Columbus, OH 43207.

CABLE test chips. Jerrold, Tocom, S.A., Zenith. Puts cable boxes into full service model! $29.95 to $59.95, 1 (800) 452-7090, (310) 867-0061.

CABLE descramblers! Build your own descrambler for less than $12.00 in seven easy steps. Radio Shack parts list and free descrambling methods that cost nothing to try included. Send $10.00 to HARRY WHITE, PO Box 1790, Baytown, TX 77520-1790.

CLASSIFIED AD ORDER FORM

To run your own classified ad, put one word on each of the lines below and send this form along with your check to:

Electronics Now Classified Ads, 500-B Bi-County Boulevard, Farmingdale, NY 11735

PLEASE INDICATE in which category of classified advertising you wish your ad to appear? For special headings, there is a surcharge of $25.00.

() Plans/Kits () Business Opportunities () For Sale
() Education/Instruction () Wanted () Satellite Television

Special Category: $25.00

PLEASE PRINT EACH WORD SEPARATELY, IN BLOCK LETTERS. (No refunds or credits for typsetting errors can be made unless you clearly print or type your copy) Rates indicated are for standard style classified ads only. See below for additional charges for special ads. Minimum: 15 words.

| Rate (for 12 issues within one year; individuals who subscribe are entitled to 25% discount on the rate above) |
|----|----|----|----|----|
| 1 | 2 | 3 | 4 | 5 |
| 6 | 7 | 8 | 9 | 10 |
| 11 | 12 | 13 | 14 | 15 | ($46.50) |
| 16 ($49.60) | 17 ($52.70) | 18 ($55.80) | 19 ($58.90) | 20 ($62.00) |
| 21 ($55.10) | 22 ($58.20) | 23 ($61.30) | 24 ($64.40) | 25 ($67.50) |
| 26 ($80.60) | 27 ($83.70) | 28 ($86.80) | 29 ($89.90) | 30 ($93.00) |
| 31 ($96.10) | 32 ($99.20) | 33 ($102.30) | 34 ($105.40) | 35 ($108.50) |

We accept MasterCard and Visa for payment of orders. If you wish to use your credit card to pay for your ad fill in the following additional information (Sorry, no telephone orders can be accepted!)

Card Number

Expiration Date

Please Print Name

Signature

IF YOU USE A BOX NUMBER YOU MUST INCLUDE YOUR PERMANENT ADDRESS AND PHONE NUMBER FOR OUR FILES. ADS SUBMITTED WITHOUT THIS INFORMATION WILL NOT BE ACCEPTED.

CLASSIFIED COMMERCIAL RATE: (for firms or individuals offering commercial products or services) $3.10 per word prepaid (no charge for zip code). MINIMUM 15 WORDS. 5% discount for same ad in 6 issues; 10% discount for same ad in 12 issues within one year; if prepaid (not applicable on credit card orders). NON-COMMERCIAL RATE: $4.50 per word prepaid. ONLY FIRST WORD AND NAME set in bold caps at no extra charge. Additional bold face (not available as all caps) $5.00 per word. TINT SCREEN BEHIND ENTIRE AD: $4.70 per word prepaid. TINT SCREEN BEHIND ENTIRE AD PLUS ALL BOLD FACE AD: $4.50 per word. EXPANDED TYPE AD: $4.70 per word prepaid. Entire ad in boldface, $5.00 per word. TINT SCREEN BEHIND ENTIRE AD PLUS EXPANDED TYPE AD: $5.90 per word. TINT SCREEN BEHIND ENTIRE AD PLUS ALL BOLD FACE AD: $6.80 per word. DISPLAY ADS: 1" x 2"—$410.00. 2" x 2"—$820.00. 3" x 2"—$1,230.00. General Information: Frequency rates and prepayment discounts are available. ALL COPY SUBJECT TO PUBLISHERS APPROVAL. ADVERTISEMENTS USING P.O. BOX ADDRESS WILL NOT BE ACCEPTED UNTIL ADVERTISER SUPPLIES PUBLISHER WITH PERMANENT ADDRESS AND PHONE NUMBER. Copy to be in our hands on the 15th of the month preceding the date of the issue. (i.e., Aug. issue copy must be received by May 15th. When normal closing date falls on Saturday, Sunday or Holiday, issue closes on preceding working day. Send for the classified brochure. Circle Number 49 on the Free Information Card.
BS SPEEDY BOXES
Il not crack or it when drilled punched. mplete with tr screws and . All sizes owe are for error dimensions. hor: black

Capacitors

Electrolytic Capacitors

Axial Lead

Yield Capacitors

Linear ICs*

IC Sockets

Part No. Description Price
2R31570 8LP 8-pin low profile $.10
2R31761 14LP 14-pins low profile $.11
2R31772 16LP 16-pins low profile $.12
2R31935 24LP 24-pin low profile $.19
2R40301 28LP 28-pins low profile $.22
2R41110 40LP 40-pin low profile $.28

LEDs

Part No. Description Price
2R32471 XC566G T1 3/4, (red) $.12
2R34025 XC565Y T1 3/4, (yellow) $.16

Transistors And Diodes

Part No. Description Price
2R32628 PN2222 TO-92 case $.12
2R32644 PN2907 TO-92 case $.12
2R35991 IN4004 DO-41 case $.10
2R36126 IN4735 DO-41 case $.25
2R36359 IN3904 TO-92 case $.12
2R36129 IN751 DO-35 case $.15
2R36421 N4401 TO-92 case $.15
2R36038 IN4148 DO-35 case $.07
2R38308 2N3055 TO-3 case $.69

Carbon Film 1/4 Watt 5% Resistors

Part No. Description Price
2R28946 100 $1.95/C 2R29911 10K $1.95/C
2R30667 330 1/5% 2R30543 22K 1/5% 2R30514 100K 1/5% 2R32698 1.0M 1/5%

Sold in packages of 100 pcs.

3/4 Watt Linear Taper-15 Turn Cermet Potentiometers

Part No. Resistance Price
2R41785 1K $.99
2R41822 10K $.99
2R41849 100K $.99
2R41806 1MEG $.99

Carbon Film 1/4 Watt 5% Resistors

Part No. Description Price
2R28946 100 $1.95/C 2R29911 10K $1.95/C
2R30667 330 1/5% 2R30543 22K 1/5% 2R30514 100K 1/5% 2R32698 1.0M 1/5%

Sold in packages of 100 pcs.

3/4 Watt Linear Taper-15 Turn Cermet Potentiometers

Part No. Resistance Price
2R41785 1K $.99
2R41822 10K $.99
2R41849 100K $.99
2R41806 1MEG $.99

Order toll-free 1-800-831-4242

Call or write for your FREE 1993 Annual Catalog: 1-800-637-8471

For International Sales, Customer Service, Credit Department and all other inquiries: Call 415-592-8007 between 7AM-5PM P.S.T.

CA Residents please add applicable sales tax.

$30.00 Minimum Order

Terms: Prices subject to change without notice. Items subject to availability and prior sale. Complete list of terms/warranties is available upon request.

© 1993 Jameco 2/93 All trademarks are registered trademarks of their respective companies.
ISOEML LAM
Road,
$5.95
supply.
BUILD
Melbourne,
732 -5000.

TELECODE,
1-
1-
LEPHONE
YOUR
MCM
800
SELECTION
VALUE, SERVICE
Irt010.0
Suite 0106, Glendale, AZ 85308.

VIDEO
Complete schematics
0
To
technical assistance
components, test equipment, tools
selection. Whether
electronic
feel
superior
1-9.95
/1
other

For
Assemble
FL 32951.

Transmus
up
Many
phone
sides
recorder
home
Connects
between
any
Cassette
or
tape.

TELECODE, PO Box 6426-RE, Yuma, AZ 85308-6426.

STEREO amplifier. 300W RMS: channel. Complete plans $39.50. STEVE FREEL, 195 Ibis Drive, Melbourne FL 32951. (407) 676-5833.

BUILD 0-50 volt regulated dual tracking power supply. Complete schematics and instructions. $5.95 SMS ENGINEERING, RE 5932 West Bell Road, Suite D106. Glendale, AZ 85308.

BACKUP power when you need it. Complete detailed plans to build your own uninterruptible power supply for your PC or Mac. Why lose valuable data. Send check or money order for $19.95 to CUSTOM POWER SOLUTIONS, Box 1242, Hampton, NH 03824.

PROJECTION TV. Convert your TV to project a 7-foot picture. Easy! Results comparable to $2,500.00 projectors. Plans and 8" lens $29.95. Professional systems available. Illustrated catalog. Free. MACROCOMA, 15-GF Main Street, Washington Crossing, PA 18977. Credit card orders (215) 736-3979.

SATELLITE TV
FREE catalog — Lowest prices worldwide. Satisfaction guarantee on everything sold — systems, upgrades, parts, all major brands factory fresh and warranted. SKYVISION, 1012 Frontier, Ferguson, PA 15637, 1 (800) 534-6455. Outside US (215) 739-5231.

VIDEOCIPHER II descrambling manual. Schematics, video, and audio. Explains DES, Eeprom, clone master, 3Musketeer, pay-per-view (HBO, Cinemax, Showtime, Adult, etc.) $16.95. $2.00 postage. Schematics for VideoCipher Plus, $20.00. Schematics for VideoCipher 032, $15.00. Collection of software to copy and alter Eeprom codes, $25.00. CABLETRONICS, Box 30520, Bethesda, MD 20824.

CABLE TV DESCABLERS
** VIDEO STABILIZERS AVAILABLE & Bullet Protectors **
(tFeaturing)
1. "Call Identifiers"
2. Power Antennas
3. Mod Machines
4. Wireless Cable Receivers T.V.
5. Stun-Guns
6. Surveillance
7. Dual B. VCR

(800) 835-2330
(800) 327-8544

BEST Buys! Best Service STARTS WITH A FREE CATALOG

FREE TECH LINE (402) 321-3228

M & G Electronics, Inc. 301 Westminster Street Providence, RI 02903

CIRCLE 195 ON FREE INFORMATION CARD

MCM ELECTRONICS...
VALUE, SERVICE AND SELECTION CAN TURN YOUR WORLD AROUND

Feel like your whole world's spinning out of control? You don't know where to look for the kinds of electronic parts and components your customers demand? The kind of parts that do the job right the first time? MCM Electronics has what it takes to put your world back in order. We can give you more than 20,000 quality items, and we can have them ready to ship within 24 hours. That's value. That's service. And that's selection. Whether you need connectors, semiconductors, parts and accessories for VCRs, television components, test equipment, tools or chemicals, MCM can deliver. And we're always ready to give you the technical assistance you need.

For a FREE Catalog call: 1-800-543-4330
To Order By Fax: 1-513-434-6959
For Product Questions: 1-800-824-TECH (8324)

Cable TV
Descrambler Kits

Universal Kit.................. $59.95
Includes all parts and PC Board. Not included is the ac adaptor or enclosure.

Tri-Mode Kit.................. $39.00
Includes all parts, PC Board and AC Adaptor. Not included is the enclosure.

SB-3 Kit...................... $29.00
Includes all parts, PC Board and AC Adaptor. Not included is the enclosure.

Universal Tutorial............. $9.95
Includes an in-depth study of the technology used and has troubleshooting hints.

Tri-Mode Tutorial............ $9.95
Includes a gate by gate study of the circuit and has troubleshooting hints.

Snooper Stopper............... $39.00
Protect yourself from descrambler detection and stop the "bullet".

Call Toll Free
1-800-258-1134
C.O.D.

www.americanradiohistory.com
Cable TV Descramblers, Converters, and Accessories

Satellite TV — Do it yourself — major brands discounted, we’ll beat everyone’s price. Call LARRY (609) 596-0565.

Cable Ready

Company (800) 234-1006

Cable Box Wholesalers, Inc.

BEST BOXES—BEST PRICES

Immediate Shipping — COD’S Satisfaction Guaranteed

FREE Catalog—Call Now 800-841-7835

Be a TV/VCR Repair Specialist

NOW you can train at home in spare time for a money-making career as a TV/VCR Repair Specialist. No previous experience necessary. No need to quit your job or school. Everything is explained in easy-to-understand language with plenty of drawings, diagrams, and photos. You'll know how to troubleshoot and repair video-cassette recorders and TV sets. Now to handle hours, and anytime you have TV or VCR troubles, any makes or models.

MAIL COUPON TODAY

SCHOOL OF TV/VCR REPAIR, Dept. ADE01

1553 Jerrold Ave., Scranton, PA 18513

Please send me full information and color brochure on how I can learn TV/VCR Repair at home in my spare time. I understand there is no obligation and no salesman will visit me.

Name

Address

City/State

Phone

Cable Box Wholesalers, Inc.

BEST BOXES—BEST PRICES

Immediate Shipping — COD’S Satisfaction Guaranteed

FREE Catalog—Call Now 800-841-7835

Business Opportunities

YOUR own radio station! Licensed/unlicensed AM, FM, TV, cable. Information $1.00

BROADCASTING, Box 130-F2, Paradise, CA 95967

LET the government finance your small business. Grants/loans to $500,000. Free recorded message:

(707) 449-8600, (KSI)

EASY work! Excellent pay! Assemble products at home. Call toll free (1-800-467-5566 Ext. 5192.)

Pay TV and Satellite Descrambling

ALL NEW — 1992 EDITION ALL NEW

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>997M</td>
<td>1100 MHz Audio/Video Power Amplifier</td>
</tr>
<tr>
<td>984M</td>
<td>1100 MHz Audio/Video Power Amplifier</td>
</tr>
<tr>
<td>974M</td>
<td>1100 MHz Audio/Video Power Amplifier</td>
</tr>
<tr>
<td>964M</td>
<td>1100 MHz Audio/Video Power Amplifier</td>
</tr>
<tr>
<td>954M</td>
<td>1100 MHz Audio/Video Power Amplifier</td>
</tr>
<tr>
<td>944M</td>
<td>1100 MHz Audio/Video Power Amplifier</td>
</tr>
<tr>
<td>934M</td>
<td>1100 MHz Audio/Video Power Amplifier</td>
</tr>
<tr>
<td>924M</td>
<td>1100 MHz Audio/Video Power Amplifier</td>
</tr>
<tr>
<td>914M</td>
<td>1100 MHz Audio/Video Power Amplifier</td>
</tr>
<tr>
<td>904M</td>
<td>1100 MHz Audio/Video Power Amplifier</td>
</tr>
<tr>
<td>894M</td>
<td>1100 MHz Audio/Video Power Amplifier</td>
</tr>
<tr>
<td>884M</td>
<td>1100 MHz Audio/Video Power Amplifier</td>
</tr>
<tr>
<td>874M</td>
<td>1100 MHz Audio/Video Power Amplifier</td>
</tr>
<tr>
<td>864M</td>
<td>1100 MHz Audio/Video Power Amplifier</td>
</tr>
</tbody>
</table>

Antique Electronic Supply

2621 S. Maple Ave. Tempe, AZ 85284-893-8511

Electronics Now, February 1993

MARK V ELECTRONICS, INC.

Complimentary Gifts — Fast Shipping — Since 1963

CIRCLE 93 ON FREE INFORMATION CARD

Cable Box Wholesalers, Inc.

BEST BOXES—BEST PRICES

Immediate Shipping — COD’S Satisfaction Guaranteed

FREE Catalog—Call Now 800-841-7835

WANTED

INVENTORS: We submit ideas to industry. Find out what we can do for you. 1 (800) 288-IDEA.

ATTENTION! No fees to inventors! Call INVENTORS AWARENESS GROUP, INC. for a free brochure. 1 (800) 298-3938

Receiving Tubes

Over 3000 TUBES IN STOCK!

Also hard-to-find transformers, capacitors and parts for tube equipment.

Send $2.00 for our 32 page catalog.

Business Opportunities

YOUR own radio station! Licensed/unlicensed AM, FM, TV, cable information $1.00

BROADCASTING, Box 130-F2, Paradise, CA 95967

LET the government finance your small business. Grants/loans to $500,000. Free recorded message:

(707) 449-8600, (KSI)

EASY work! Excellent pay! Assemble products at home. Call toll free (1-800-467-5566 Ext. 5192.)

CABLE BOX DESCRAMBLERS, CONVERTERS, AND ACCESSORIES.

SAVE MONEY. DON'T RENT!

PANASONIC, JERROLD, OAK, PIONEER, SCIENTIFIC ATLANTA AND MORE LOWEST PRICES, FREE CATALOG

CABLE READY

(800) 234-1006

INVENTORS

INVENTORS! Can you patent and profit from your idea? Call AMERICAN INVENTORS CORP. for free information. Serving inventors since 1975. 1 (800) 338-5566

EDUCATION & INSTRUCTION

F.C.C. Commercial General Radiotelephone license, electronics home study fast, inexpensive, for anyone, any age. D-176, Box 2824, San Francisco, CA 94126.

ELECTRO

HOME assembly work available! Guaranteed easy money! Free details! HOMEWORK-R, Box 520, Danville, NV 89029.

MAKE $75,000.00 to $250,000.00 yearly or more if IBM color monitors. No investmen, start doing it from your home (telephone required). Information, USA, Canada $2.00 cash for brochure, other countries $10.00 US funds. ROLLAND DISPLAY, Box 2168-R, Van Nuys, CA 91404 USA. FAX (818) 990-7903.

CABLE BOX WHOLESALERS, INC.

BEST BOXES—BEST PRICES

Immediate Shipping — COD’S Satisfaction Guaranteed

FREE Catalog—Call Now 800-841-7835

BUY BONDS

www.americanradiohistory.com
Triplet DMM
Large, easy to read 3-1/2 digit LCD display. Tests voltage in 5 ranges to 750VAC, resistance in 6 ranges to 20MΩ, plus diode test with audible continuity, 6 current ranges to 10A. Built-in battery test and HFE test for NPN and PNP transistors. Test leads, instructions and carrying case included.

#RN-390-140
6-1/2" Two-Way System
Perfect surround speakers. Customize your media room with these super quality, in-wall speakers. Features 4-1/2" woofers. Heavy duty 1" soft dome tweeters,Built-in crossover. Fits any standard 2 x 4 or larger wall. Retrofit design allows easy installation in new or existing walls. Response: 40-20,000 Hz. Fits any standard 2 x 4 or larger wall. Retrofit design allows easy installation in new or existing walls. Response: 40-20,000 Hz. Overall dimensions: 8-1/2" x 12". Net weight: 9 lbs.

#RN-300-036 $249.95
Mini Electrolytic Cap Kit
This 60 piece kit contains a selection of 16 volt and 50 volt mini electrolytic capacitors. 5 pieces each of 10, 47, 100, 220, and 470µf. 16 volt radial caps. 5 pieces each of 2.2, 4.7, 10, 22, 33, 4.7 and 100µf. 50 volt radial caps. This convenient kit has many of the "low profile" caps used in camcorders, VCRs, portable and other products where space is limited. A $27.00 value.

#RN-004-900

Parts Express
340 E. First St., Dayton, Ohio 45402
Local: 513-222-0173
FAX: 513-222-4644

Ultimate 5", 2 Way System
A perfect way to upgrade your car's sound system. 5", 2 way bridgeless speaker pair featuring paper cones that are impregnated with a special ingredient to prevent water damage. 1" aluminum voice coil, 6 oz. magnet. Impedance 4 ohm. Frequency response: 20-21,000 Hz. Power handling: 30 watts RMS, 55 watts maximum. Overall dimensions: 2-1/4". Net weight: 4 lbs.

#RN-265-282 $46.95
12" Pioneer Woofer

Black Widow Challenger Remote Security System
Dollar for dollar, and feature for feature the Challenger security system out performs most competitors in its class. Features include: Two 2-button remote transmitters, compact design for use under dash or seat, passive or active arming, visual/audible indication when arming/disarming, remote panic, 360 degree shock protection, door alarm system, one-way arm/disarm, built-in battery and harness. 120 dB siren, tamper protection memory, entry/exit, lock-out, glass break, panic button remote transmitters, and a light flasher or homing circuit, current and switch sensing, manual override switch, 1 positive and 2 negative triggers, flashing LED, RF safety lock-out, automatic reset, glass break sensor and more. Net weight: 3 lbs.

#RN-330-037 $99.95
The Ultimate Test CD
The Ultimate test CD was designed for use by both the hobby electronics amateur and the professional sound engineer. This CD can be used to test CD players, speakers, amplifiers, and for tuning of instruments. The manual is written in easy to understand English and takes you step-by-step through each track of the CD and explains its purpose. The Ultimate test CD is a necessary tool for anyone who is serious about quality audio sound. Net weight: 1 oz.

#RN-510-100 $7.95

CALL TOLL FREE
1-800-338-0531

CIRCLE 56 ON FREE INFORMATION CARD

Whether you wish to save money, boldly go where no guitarist has gone before or simply have fun building electronic gadgets designed for your musical pleasure, then read

Electronic Projects for GUITAR

Some of the add-on guitar gadgets you can build are:

- Preamplifier
- Headphone Amplifier
- Soft Distortion Effects Unit
- Compressor
- Auto-waa
- Waa-waa Pedal
- Phaser
- Dual Tracking Effects
- Distortion Unit
- Expander
- Dynamic Treble Booster
- Direct Injection Box
- Dynamic Tremolo
- Thin Distortion Unit
- and Guitar Tuner.

Anyone with some previous electronic project building experience should have no problem assembling the projects.

ELECTRONICS TECHNOLOGY TODAY INC.
P.O. Box 240, Massapequa Park, NY 11762-0240

Yes, send my copy of ELECTRONIC PROJECTS FOR GUITAR by RA Pentoid to the address at right. I am enclosing $12.95 plus $2.95 for shipping charges in USA and Canada. All payments must be made in US funds. Sorry, no orders accepted outside of the USA and Canada. New York State residents add 8% sales tax. Allow 3-5 weeks for delivery.

Please charge my [] Visa [] MasterCard [] Amex

Signature __________________________

Account No __________________________ Expir. Date ________

Name __________________________

Address __________________________

City __________________________

State ________ ZIP ________

www.americanradiohistory.com
Handi-Counter® 3000

The world's finest hand held multifunction counter - incorporates many unique functions usually found only in very expensive bench models. Designed for virtually every measurement application from near DC through microwave including measuring RF transmission frequencies at the maximum possible distance. The 3000 is also the world's first HandiCounter with Period, Time interval and Ratio measurement capability.

$259.

R10 FM Communications Interceptor™

ALL NEW TECHNOLOGY!! The Interceptor follows & locks on even when frequency changes and intercepts ALL FM Two-Way Transmissions without gaps in coverage. It does not have to tune through RF Spectrum to capture signals. FCC Classified as Communication Test Instrument - increase your RF Security!!

$359.

APS104

Our Active Preselector allows you to pick-up transmissions or frequencies at 10 times the distance. Use with our HandiCounter® or R-10 Interceptor®. 10MHz - 1GHz Tunable over 5 octaves

$995.

Tone Counter Model TC200

NEW! Ideal companion for use with the R10 FM Communications Interceptor. It measures sub audible signalling tones off the air. The TC200 can also be used with scanners and communications receivers to monitor sub audible tones.

$179.

Bench/Portable Multifunction Counter Model 8030

10Hz - 3GHz extremely High Sensitivity, High Resolution and Accuracy, includes a Bargraph, ±1PPM TCXO, Two Inputs, Adjustable Trigger Level, Trigger Variable and Hold Button Optional ±.1 TCXO: $135.

$579.

Handi Counter® Model 2300

The Original Pocket Sized Counter. 1MHz to 2.4GHz - 8 digit LED. Maximized Sensitivity, ±1ppm TCXO Includes Hold Switch, NiCads and Charger/ Adapter! **$99.**

ACCESSORIES

Vinyl Carry Case

CC12 - Padded Black Vinyl carrying case for 2300 size LED Counters $12

CC30 - Padded Black Vinyl carrying case for 3000 size LCD counters $15

Antennas

TA100S Telescoping Whip Antenna $12

TA100P Save $11 Antenna Packs:

Ant-Pak 1 (includes RD27, RD800), TA100S - Save $11 $65

Ant-Pak 2 (includes five assorted rubber ducks, 27-1000MHz) Save $32 $99

Probes

P30 - Counter/Oscilloscope probe - for direct coupling to signal sources or circuit test points. 1x/10x, switchable $35

P101 - Low-Pass probe attenuates RF noise from Audio frequencies. Has two stage low pass filter $20

OptoElectronics

Factory Direct ORDER LINE 1-800-327-5912

305-771-2050 • FAX 305-771-2052

5821 NE 14th Ave, Ft. Lauderdale, FL 33334

5% Ship/Handling (Max $10) U.S. & Canada. 15% outside continental U.S.

Visa, Master Card, C.O.D., Cash or Money Order only.

CIRCLE 184 ON FREE INFORMATION CARD
Our tough SBL-mixers just got tougher, by including Mini-Circuits’ exclusive Ultra-Rel diodes that can endure 160 hours of test at a scorching 300°C. Rugged, more reliable mixers in your systems lower production and test costs and increase systems reliability.

Over the past fifteen years, millions of SBL-units were installed in formidable industrial and commercial applications. Under severe operating conditions, they have earned the reputation as the world’s most widely accepted mixers, based on quality, consistent performance in the field, and lowest cost.

In addition to the Ultra-Rel diodes, each SBL contains components that can withstand the strenuous shock and vibration requirements of MIL-STD-28837 along with more than 200 cycles of thermal shock extending from -55 to +100°C. Every Ultra-Rel™ SBL-mixer carries a five-year guarantee.

Unprecedented 4.5 sigma unit-to-unit repeatability is also guaranteed, meaning units ordered today and next year will provide performance identical to those delivered last year.

Tougher SBL-mixers, spanning 25KHz to 2000MHz, with +7dBm, +10dBm, and +13dBm LO models, priced from $4.50 (10 qty) are available only from Mini-Circuits. Don’t settle for a substitute or equivalent...insist on Ultra-Rel™ SBLs.

SBL SPECIFICATIONS (typ).

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency (MHz)</th>
<th>Conv. Loss (dB)</th>
<th>Isolation (dB)</th>
<th>LO Level (dBm)</th>
<th>Price: $ ea. (10 qty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBL-1</td>
<td>1-500</td>
<td>5.5</td>
<td>45</td>
<td>+7</td>
<td>4.50</td>
</tr>
<tr>
<td>SBL-1X</td>
<td>10-1000</td>
<td>6.0</td>
<td>40</td>
<td>+7</td>
<td>6.25</td>
</tr>
<tr>
<td>SBL-1Z</td>
<td>10-1000</td>
<td>6.5</td>
<td>35</td>
<td>+7</td>
<td>7.25</td>
</tr>
<tr>
<td>SBL-11</td>
<td>0.025-200</td>
<td>5.5</td>
<td>45</td>
<td>+7</td>
<td>7.25</td>
</tr>
<tr>
<td>SBL-11LH</td>
<td>2-500</td>
<td>5.8</td>
<td>68</td>
<td>+10</td>
<td>5.50</td>
</tr>
<tr>
<td>SBL-11LH</td>
<td>1-400</td>
<td>5.2</td>
<td>64</td>
<td>+10</td>
<td>8.25</td>
</tr>
<tr>
<td>SBL-11LH</td>
<td>2-1000</td>
<td>6.0</td>
<td>40</td>
<td>+10</td>
<td>8.25</td>
</tr>
<tr>
<td>SBL-2LH</td>
<td>5-1000</td>
<td>5.9</td>
<td>61</td>
<td>+10</td>
<td>8.25</td>
</tr>
<tr>
<td>SBL-3LH</td>
<td>0.07-200</td>
<td>5.0</td>
<td>60</td>
<td>+10</td>
<td>10.0</td>
</tr>
<tr>
<td>SBL-11LH</td>
<td>2-1000</td>
<td>7.0</td>
<td>45</td>
<td>+10</td>
<td>19.75</td>
</tr>
<tr>
<td>SBL-1MH</td>
<td>1-500</td>
<td>5.5</td>
<td>45</td>
<td>+13</td>
<td>9.80</td>
</tr>
<tr>
<td>SBL-1ZMH</td>
<td>2-1100</td>
<td>6.5</td>
<td>40</td>
<td>+13</td>
<td>11.70</td>
</tr>
<tr>
<td>IF not DC coupled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ULTRA-REL™ MIXERS 5 yr. Guarantee

with extra long life due to unique HP monolithic diode construction, 300°C high temp. storage, 1000 cycles thermal shock, vibration, acceleration, and mechanical shock exceeding MIL requirements.

Designers Kit, KH-2 available only $59.95 includes: 12 MIXERS covering DC to two GHz, 5 SBL-1, 5 SBL-1X, 2 SBL-11 740 page RF IF DESIGNER’S HANDBOOK Contains application notes using mixers as electronic attenuators, frequency doublers, switches, and bi-phase modulators.

Our tough SBL-mixers just got tougher, by including Mini-Circuits’ exclusive Ultra-Rel diodes that can endure 160 hours of test at a scorching 300°C. Rugged, more reliable mixers in your systems lower production and test costs and increase systems reliability.

Over the past fifteen years, millions of SBL-units were installed in formidable industrial and commercial applications. Under severe operating conditions, they have earned the reputation as the world’s most widely accepted mixers, based on quality, consistent performance in the field, and lowest cost.

In addition to the Ultra-Rel diodes, each SBL contains components that can withstand the strenuous shock and vibration requirements of MIL-STD-28837 along with more than 200 cycles of thermal shock extending from -55 to +100°C. Every Ultra-Rel™ SBL-mixer carries a five-year guarantee.

Unprecedented 4.5 sigma unit-to-unit repeatability is also guaranteed, meaning units ordered today and next year will provide performance identical to those delivered last year.

Tougher SBL-mixers, spanning 25KHz to 2000MHz, with +7dBm, +10dBm, and +13dBm LO models, priced from $4.50 (10 qty) are available only from Mini-Circuits. Don’t settle for a substitute or equivalent...insist on Ultra-Rel™ SBLs.