Build our MODEM/FAX PROTECTOR and prevent damage from surges and transients.

Add an INRUSH-CURRENT LIMITER to your sensitive electronic equipment.

Now you can TALK ON A LIGHT BEAM with our experimental light-beam communicator.

How to put the 555 TIMER IC to work in practical circuits.

How improvements in COMPUTER MONITOR TECHNOLOGY have made PC's better than ever!

BUILD THIS GLITTER GLOBE

Brighten the holidays with this fascinating electronic sculpture!
The Fluke 79:
More Of A Good Thing

More high-performance features. More advanced measurement capabilities. More of the vital information you need to troubleshoot even the toughest problems — with both analog and digital displays.

Meet the latest, greatest member of our best selling 70 Series II family — the new Fluke 79 digital multimeter.

It picks up where the original family left off. In fact, it's a quantum leap forward — in performance, value and affordability.

It's got the features you'd expect from Fluke. Including high resolution, Fast autoranging, Patented, automatic Touch Hold®. A quick continuity beeper. Diode test. Automatic self-test. Battery-conserving sleep mode. And it's just as rugged and reliable as the rest of the 70 Series II family.

Easy to operate, too — with one hand.

And thanks to the Fluke 79's proprietary new integrated circuit technology, that's only the beginning. When it comes to zeroing in on tough electrical problems, the Fluke 79 leaves the competition behind.

Frequency: The Fluke 79's built-in frequency counter lets you measure from below 1 Hz to over 20 kHz. And while you view frequency on the digital display, the analog bar graph shows you AC voltage. So you can see if potentially hazardous voltage is present.

Fast 63-segment analog bar graph: The Fluke 79's bargraph moves as fast as the eye can see, updating at a rate of 40 times per second to simulate the functionality of an analog needle. You get the high speed and high resolution you need to detect peaking, nulling and trending.

Capacitance: No need to carry a separate dedicated capacitance tester; the Fluke 79 measures capacitance from 10 pF to 9999 µF.

Fluke 79 Series II

40Ω

Lo-Ohms range: Our proprietary Lo-Ohms function lets you measure resistance as low as 0.01 ohms. High noise rejection and a test lead Zero Calibration function make the Fluke 79 ideal for detecting small resistance changes.

SMOOTHING

Smoothing™: Our exclusive new Smoothing mode gives you a stable digital readout for unstable signals — by displaying the running average of eight readings. No more jitter or "digit rattle" due to noisy signals.

Get a good thing going: To put more meter to work for you — at a price that works for you, too — head for your nearest Fluke distributor. For the name of your nearest distributor, or for more product information, call 1-800-BE-FLUKE.

The Fluke 79 comes with a yellow holster and patented Flex-Stand™ — easy to hang from a door or pipe, clip onto a belt or tool kit, or hang at virtually any viewing angle. There's even storage space for test leads.

FLUKE AND PHILIPS
THE T&M ALLIANCE

John Fluke Mfg. Co., Inc. P.O. Box 9090, M/S 2305 Everett, WA 98206. © Copyright 1991. Prices and specifications subject to change without notice. Ad no. 00172.
Once again, the holidays are just around the corner, and it's time to start thinking about gift giving and tree trimming. If you agree with us that hand-made items make the nicest gifts and add special sparkle to the holiday decor, be sure to check out the Glitter Globe. Not an ordinary ornament, this sophisticated piece of "electronic sculpture" is made entirely of electronic components and small circuit boards. The two LED's on each PC board "chase" each other, creating the illusion that the Glitter Globe is spinning. Hanging on the tree, or in a window, it's a sure attention-grabber! Turn to page 35 for all the details.
BUILD THIS

35 BUILD THE GLITTER GLOBE
Add some sparkle to the holidays with this electronic ornament.
Ron Holzwarth

43 FAX/MODEM PROTECTOR
A low-cost project that safeguards your telephone-based gear.
Tom Petruzzellis

47 INRUSH CURRENT LIMITER
Protect sensitive electronics with this device.
Douglas Wirth

51 LIGHT BEAM COMMUNICATOR
The inexpensive “Air Hop” communicates with light!
Rodney A. Kreuter

COMPUTERS

69 MONITOR TECHNOLOGY
A look at today’s computer monitors.
Stan Warner

TECHNOLOGY

62 THE VERSATILE 555
More circuits than you ever thought possible!
Ray M. Marston

DEPARTMENTS

8 VIDEO NEWS
What’s new in this fast-changing field.
David Lachenbruch

16 EQUIPMENT REPORT
Beckman Industrial HD-160 DMM

77 HARDWARE HACKER
Conventional currents, and more.
Don Lancaster

88 DRAWING BOARD
A SSAVI descrambler.
Robert Grossblatt

94 AUDIO UPDATE
Hear today, gone tomorrow.
Larry Klein

97 COMPUTER CONNECTIONS
Computers and consumer electronics.
Jeff Holtzman

AND MORE

108 Advertising and Sales Offices
108 Advertising Index
91 Buyer’s Market
4 Editorial

14 Letters
32 New Lit
22 New Products
12 Q&A
6 What’s News
In plastic and ceramic packages, for low-cost solutions to dozens of application requirements, select Mini-Circuits’ flatpack or surface-mount wideband monolithic amplifiers. For example, cascade three MAR-2 monolithic amplifiers and end up with a 25dB gain, 0.3 to 2000MHz amplifier for less than $4.50. Design values and circuit board layout available on request.

It’s just as easy to create an amplifier that meets other specific needs, whether it be low noise, high gain, or medium power. Select from Mini-Circuits’ wide assortment of models (see Chart), sketch a simple interconnect layout, and the design is done. Each model is characterized with S parameter data included in our 740-page RF/IF Designers’ Handbook.

Mini-Circuits’ monolithic amplifiers...for innovative do-it-yourself problem solvers.
Now. This moment, this instant—it lives but a microsecond. Then it moves on and changes and becomes something new and different and better.

That’s exactly what our magazine—our magazine, yours and mine—is doing. I grew up on Radio-Craft and Radio-Electronics. You’ve probably grown up on Radio-Electronics. The next generation of electronics professionals may not even remember Radio-Electronics, but they will know Electronics Now. For this new, yet old, publication will be their introduction to electronics. It will be their primer, their teacher, their guide, their companion. It will travel with them through their career just as Radio-Electronics has through yours. As long as there are electronics professionals, as long as there are people who follow the wonderful ever-changing world of electronics, Electronics Now will be there.

Electronics Now is not a new magazine, it is simply a refinement of what has always been. It’s an evolution to something better, something wiser, something stronger. A magazine more closely matched to electronics today. Carefully designed, tailored and directed by selected experts who can point you, our reader, through our pages, toward tomorrow.

Electronics Now is your magazine. It is the culmination of almost 100 years of progress from the Electrical Experimenter to Radio-Electronics and finally Electronics Now.

If our founder, Hugo Gernsback, were here today, he’d probably note that we should have acted sooner. Perhaps he would have been right. But no matter what, we know we are correct in taking you and us on this new adventure. Join us as we go. Revel in the excitement of today and the adventure of tomorrow. Tell us what you like, what you hate, what we should do, and what we shouldn’t.

Write our editors, contact our bulletin board, send me your ideas, comments, and criticisms. Help us make Electronics Now exactly the kind of magazine you know it should be. And never forget we may now bear the name Electronics Now, but at heart we are Radio-Electronics, Radio Craft, Shortwave Craft, Television, and the Electrical Experimenter.

Larry Steckler, EHF/CET
Editor-in-Chief and Publisher
Before we built the new generation Beckman Industrial Series 2000 DMMs, we asked people like you what you really want.

You want more. More test and measurement capabilities. More troubleshooting features. All in an affordable hand-held DMM. The Series 2000 features the widest range Frequency Counter in any professional DMM, a full-range Capacitance Meter, True RMS measurements, Intermittent Detection, 50ns Pulse Detection, and Peak Measurement capabilities. Plus, the Series 2000 is the only meter to offer autoranging Min/Max recording and relative modes.

You want a DMM that's easier to use. The Series 2000's display is 25% larger, with bigger digits and backlighting for easier reading, even in the worst light. Plus the fast 4 digit display provides the high resolution needed for adjusting power supplies and generators down to 1mV. And only the Series 2000 features a menuing system for fast, simple feature access.

The Beckman Industrial Series 2000, priced from $209 to $279 offers you the best performance for your dollar. Look again at these features:

- 4 Digit, 10,000 Count Resolution
- Basic Accuracy to 0.1%
- True RMS, AC or AC on DC
- 0.01Ω Resolution
- Automatic Reading Hold
- 1ms Peak Hold
- Fully Autoranging Relative and Min Max Modes
- Intermittent Detector
- UL1244, IEC1010 Design
- Three Year Warranty

The Series 2000 offers the most solutions for your everyday test and measurement needs. The only DMMs designed by the people who use them. You.

For more information on these new DMMs call (outside CA) 1-800-854-2708 or (inside CA) 1-800-227-9781. Beckman Industrial Corporation, 3883 Ruffin Rd., San Diego, CA 92123-1898.
Fluke and Philips restructuring

John Fluke Mfg. Co., Inc. (Everett, WA) and Philips Electronics N.V. (Eindhoven, The Netherlands) on August 26 announced their intention to restructure their five-year-old alliance in the test and measurement business. Under the plan, which is expected to take several months to finalize, Fluke would acquire most of Philips' test and measurement operations for cash and stock. Once the contingency factors have been met (approval by Fluke shareholders and the Philips Board of Management, and review by the appropriate social and regulatory organizations), Fluke would acquire essentially all existing Philips' test and measurement businesses, with the exception of professional TV test equipment and power supplies. Fluke would then assume direct responsibility for worldwide marketing, development, manufacturing, sales, and support of most of the combined companies' present product lines. That includes the acquisition of sales and service operations in Europe. About 900 Philips employees would transfer to Fluke.

The management of both companies see the move as a logical progression in their alliance. According to Bill Parzybok, Fluke Chairman and CEO, "All along, we have been evolving the alliance to optimize our performance and improve our position in a changing marketplace. It has become apparent to both companies that a unified management structure, aligned under a single mission, would accelerate our growth and success." That mission, he said, is to position Fluke as the leader in compact, professional electronic test tools. The single focus is expected make the combined company more effective in product definition, design, and marketing, leading to streamlined production and better time-to-market for new products. In addition, Fluke hopes its European presence will allow the company to take advantage of EC'92.

The transaction is expected to add about $125 million to Fluke's earnings, and to favorably impact Fluke's earnings per share beginning in the first year of operations. Fluke expected to issue its proxy statement to shareholders in early November.

See-through magnetic material

Scientists at Xerox Corporation's Webster Research Center (Webster, NY) have produced a transparent magnetic material with potential applications in color imaging, computer information storage, magnetic fluids, and even magnetic refrigeration. (When a magnetic material is moved into a magnetic field it heats up; when moved out, it cools down. That so-called magnetocaloric effect can theoretically be used to build refrigerators. Although magnetic refrigerators have been built, none have worked at anything near room temperature.) The crystalline material is chemically identical to the gamma ferric oxide that has been used for decades to coat audio and video recording tape. But the crystals that make up the physical form of the new material are far smaller than those of conventional magnetic material. The Fe$_2$O$_3$ crystals comprising the magnetic material range in size from two to ten nanometers. With such small crystals, the material loses its usual ferromagnetic property and becomes superparamagnetic—a state in which the crystals will stick to a magnet but not to each other.

The transparency is an added bonus that is not generally found in magnetic materials at room temperature. The scientists have not yet determined why the nanocrystals are more transparent than the larger crystals of conventional Fe$_2$O$_3$. Although some transparent magnetic materials already exist, their magnetic properties are either too weak to be useful, or they function only at temperatures near absolute zero.

World's most powerful laser-light beam

A breakthrough in the international race to create the world's most powerful laser-light beam has been achieved by scientists at The University of Michigan (Ann Arbor, MI) and the French National Atomic Energy Commission. The 55-terawatt beam of laser light—one terawatt is equivalent to one trillion watts—was produced in April 1992 at the Centre d'Etudes de Limeil-Valenton (Limeil, France). The previous record, set last year in Japan, was 30 terawatts. The beam was produced by the Center's P-102 laser with a laser amplification technique and a second preamplifying laser developed by Gerard A. Mourou, professor of electrical engineering and computer science at Michigan, and his co-researchers.

During the brief laser burst, researchers produced the 55-terawatt of power—the equivalent of 100 times the total electrical power generated in the United States. According to Mourou, "The laser beam can be focused over a spot smaller than the diameter of a human hair to produce extremely high power densities." The researchers say that the most immediate application of the new technology will be to determine what happens when extremely intense laser beams interact with matter.

Preliminary experiments showed that when high-powered laser pulses are shot through plasma, shock waves are created that are capable of accelerating electrons close to the speed of light in very small distances. That could lead to

Continued on page 74
Ultravariavble Pulse Generator
- 0.5 to 5 MHz
- Run, Triggered, Gate, Single-Shot
- Independent width and space controls
- Variable 50Ω output

Model 4001 $199.95

Audio/Sweep Generator
- Sine/Square/Triangle
- 1 Hz to 100 kHz
- Variable DC offset
- Sweepable 100:1

Model 2001 $178.50

2 MHz Sweep Function Generator
- 0.2 Hz to 2 MHz
- Duty-cycle, symmetry controls
- 50Ω output
- VCO input

Model 2002 $219.95

Digitally Synthesized Generator
- DC to 1.6 MHz
- Trigger, Sweep, Burst, Hop and Gate modes
- Internal/External Sweep
- Sine, Square, Triangle, Ramps
- Optional RS-485 communications port
- 16 programmable memories

Model 2003 $499.95

Compare the specifications and the prices of these four instruments with the competition. Then compare the labels. Global's say "Proudly Made in U.S.A.". Designed and manufactured in our Connecticut factory with the value and quality that Global is known for. The competitors, they look alike because they are. Different names on the front. The same label on the back. "Made in Taiwan".

With Global you'll get a Good Buy, and can say Good-bye to imports.

Can't Wait? Call...1-800-572-1028

© 1992 Interplex Electronics
Specifications subject to change without notice.
VIDEO NEWS

What's new in the fast-changing video industry.

DAVID LACHENBRUCH

- **Nintendo goes 32-bit.** Taking its competitors by surprise, Nintendo announced that, unlike other video-game manufacturers, it will skip the current generation of 16-bit games and go directly to a 32-bit processor when it introduces its CD-ROM accessory next year. The company announced that it had developed a proprietary "Super FX" chip that will make possible 16-bit cartridge games with "true 3D effects." Because its next-generation cartridge games will be 16-bit, the company decided that it would need an enhanced CD-ROM to offer customers a "truly superior game experience."

The new CD-ROM drive will function within the CD-ROM/XA environment, Nintendo said, which theoretically would make it compatible with Philips' CD-I.

- **VIS vs. CD-I.** Tandy's Video Interactive System, or VIS, designed to play CD-ROM's through consumer TV sets (Electronics Now, November 1992), formally carries a suggested list price of $699, which includes Compton's Multimedia Encyclopedia. Philips' incompatible CD-I system also lists at $699, after recent price reductions, and dealers have been selling it at $599. Consumers who bought players at higher prices are being mailed coupons good for $100 worth of free software. In addition, purchasers returning warranty cards are sent coupons that are good for transfer of their photos to a Photo CD. The CD-I format is compatible with Kodak's Photo CD system but VIS currently isn't.

- **TV's are growing.** Larger picture sizes continue to grow as a share of the television-receiver market. In the first half of 1992, sales of direct-view sets with tubes 30 inches and larger (diagonally) were up 64% from the same period of 1991. Projection TV sales were up 14%, but the larger sized projectors (50 inches and larger) rose by more than 21%.

- **Who's number one?** Number one in TV set sales, that is. That position is still held by RCA as the leading brand in the United States, with just over 16% of the market. Zenith continues as number two, with a little more than 10%, followed by Magnavox with 9%. Sony is fourth with 7%, and Sharp is fifth with 5%. The rankings are by Television Digest, which has been surveying TV market shares for 26 years. In the first brand rankings for projection TV, Mitsubishi was the clear winner with 22.6% of the market, followed by Magnavox with 4% and RCA with 13%.

- **Digital HDTV works.** The first report on digital high-definition TV by the Advanced Television Test Center (ATTC), which is testing proposed systems for the FCC, offered great encouragement for the future of digital TV transmission. Reporting on the first digital system it tested—General Instrument's DigCipher—the ATTC's results indicated generally good picture quality with low levels of interference. Contrary to doubts expressed in Europe and Japan, where analog systems are espoused, the tests showed that DigCipher produces less interference with other broadcasts than the analog NTSC system used in the United States. The tests also appeared to show that the DigCipher system can provide the same coverage distance from the transmitter as the NTSC system, but at 13-dB lower power. However, digital HDTV does appear to be more sensitive to phase noise, which can probably be overcome by the development of improved filters in TV sets.

- **Priming HDTV's pump.** The fact that HDTV is technically possible doesn't necessarily mean that it will proceed rapidly once a system is chosen. As a matter of fact, it's difficult to determine how the first HDTV pictures will be delivered—by terrestrial broadcast stations, direct satellite, cable, or even possibly by prerecorded media such as videotape or laserdisc. Although the FCC-sponsored tests are designed to determine the best system for terrestrial HDTV broadcasting, it's entirely possible that broadcasters will take a wait-and-see attitude toward HDTV before going to the tremendous expense of adding new studio and transmission equipment—and quite likely new antenna towers to disseminate two separate types of broadcasts during the interim period of HDTV's introduction while NTSC signals are still being broadcast.

When color TV was introduced, TV station owners were extremely reluctant to add color origination equipment because the lack of audience meant that they couldn't charge advertisers a premium for color broadcasts. And it wasn't until 10 years after the introduction of color TV that consumers bought a million sets in any year. (The figure is now well over 20 million a year.) Broadcasters say they can't be certain that there is any market for HDTV—but they do see a lucrative by-product of the current HDTV tests. All digital HDTV systems rely on data compression to squeeze four times the current information into a single 6-MHz channel. So broadcasters are asking whether it might be more lucrative for them to use compression technology to cram two or more standard-definition broadcasts onto a single channel, and thus help on-air broadcasters attain the multi-channel capacity that will let them compete with cable.

Cable itself is in a better position than broadcasters to provide early

Continued on page 74
Plug a Friend into Electronics Now and Save $17.43!

This Christmas give an electrifying gift ... plug a friend into Electronics Now and brighten the whole new year! Whether electronics is your friend's livelihood or hobby, your gift will illuminate the whole spectrum of electronics throughout the coming year and provide a monthly reminder of your friendship.

Electronics Now will keep your friend informed and up-to-date with new ideas and innovations in all areas of electronics technology ... computers, video, radio, stereo, solid state devices, satellite TV, industrial and medical electronics, communications, robotics and much, much more.

We'll provide great plans and printed circuit patterns for great electronic projects. In just the last year, Electronics Now has presented amateur TV equipment, computer peripherals, stereo transmitters, test equipment, speakerphones, robots, audio amplifiers, power inverters, and much more.

In coming issues, Electronics Now will present practical, educational, and money-saving projects like: an electronic drum, an audio effects generator, communications equipment, a light-beam communicator, a remote car starter, an uninterruptible power supply, and many others!

PLUS ... equipment troubleshooting techniques ... circuit design ... reports on new technology and new products ... equipment test reports ... in-depth coverage on computers, video, audio, shortwave radio ... and lots more exciting features and articles.

SAVE $17.43* ... OR EVEN $35.83* ... For each gift of Electronics Now you give this Christmas, you save a full $17.43* off the newsstand price. And as a gift donor, you're entitled to start or extend your own subscription at the same Special Holiday Gift Rate — you save an additional $17.43*!

No need to send money ... if you prefer, we'll hold the bill till January, 1993. But you must rush the attached Gift Certificate to us to allow time to process your order and send a handsome gift announcement card, signed with your name, in time for Christmas.

So do it now ... take just a moment to fill in the names of a friend or two and mail the Gift Certificate to us in its attached, postage-paid reply envelope. That's all it takes to plug your friends into a whole year of exciting projects and new ideas in Electronics Now!

See page 100A for envelope.

*Basic sub rate — 1 yr/$19.97 2 yrs/$38.97
50-OHM TERMINATION
I recently bought a card for my PC that lets me control things like motors and relays. My problem is that the instructions tell me that each line to the relay or motor must be terminated with at least 50 ohms. I'm not exactly sure what that means, and I was hoping you could explain it to me.—G. Cherben, Nighten, IN

I'm not exactly sure what kind of hardware you bought for your PC, but no matter what it is, yours is the kind of question I like—nice and easy.

All the instructions are telling you is that each of the card's outputs want to see a load of 50 ohms. That kind of termination is standard for computer networks and other things. If you're having a hard time understanding why it's needed, think for a minute of the power-amplifier outputs on a stereo. It's never a good idea to leave them unconnected to anything because an infinite load like that (that's what an open connection is) can put an unnecessary strain on the stereo's output transistors.

The same is evidently true for your controller card. Just as it doesn't want to see a direct short on the control lines, it doesn't want to see too high a resistance either.

I'm a bit surprised that an external termination is required since it would have been easy for the card's designers to include it on the card itself. Most motors and relays have fairly low winding resistances, so the addition of a 50-ohm resistor is pretty silly—kind of like putting a 10-amp fuse on a line that will draw a maximum of only 1 amp. Remember that adding a 50-ohm resistor in parallel to a motor winding with a resistance of 3 ohms or so isn't going to add much to the equivalent total resistance of the pair.

You can buy 50-ohm terminators or just solder a 50-ohm resistor on the line. By the way, for all intents and purposes, a 47-ohm resistor is close enough.

CRYSTAL OSCILLATOR
I'm building a circuit that requires a crystal oscillator, but I'm not sure which design to use. I don't have to worry about any extreme temperatures, and I have a bunch of spare gates left over on the board. Most of the crystal oscillator designs I've seen require the addition of special chips, and I don't have a lot of room left on the board. Have you got a simple circuit that will do the job?—J. Gillan, Hendon, NH

If your requirements are as simple and straightforward as you say, the circuit in Fig. 1 is exactly what you need. It can be made from the extra gates you have, is self-starting, and is also extremely reliable.

The circuit will work well with as little as a 5-volt supply, and the crystal frequency limit really depends on the amount of gain there is in the gate you use. Something like a 4049 will work with crystals as high as 14 MHz. If you use more than 5 volts for the supply, you should be able to go even higher.

One interesting variation on this circuit is to use a two-legged gate instead of a simple inverter. That will let you turn the design into a gated oscillator so you can turn it on and off under circuit control. I don't know if that's important in your application, but it's a good thing to keep in the back of your mind.

SCAN RATES
I know this information has probably been printed somewhere before, but could you tell me what the scan rates are for the various kinds of IBM video? I have several monitors available, and I'm not sure which ones can be used with which graphics cards.—S. Heller, New York NY

The variety of IBM video standards has always caused confusion.

IBM VIDEO STANDARDS

<table>
<thead>
<tr>
<th>VIDEO TYPE</th>
<th>ACRONYM</th>
<th>COLOR</th>
<th>SCAN RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MONOCHROME DISPLAY ADAPTER</td>
<td>MDA</td>
<td>B&W</td>
<td>18432 kHz</td>
</tr>
<tr>
<td>HERCULES GRAPHICS ADAPTER</td>
<td>HGA</td>
<td>B&W</td>
<td>18432 kHz</td>
</tr>
<tr>
<td>COLOR GRAPHICS ADAPTER</td>
<td>CGA</td>
<td>8</td>
<td>15750 kHz</td>
</tr>
<tr>
<td>ENHANCED GRAPHICS ADAPTER</td>
<td>EGA</td>
<td>16</td>
<td>21800 kHz</td>
</tr>
<tr>
<td>PROF. GRAPHICS ADAPTER</td>
<td>PGA</td>
<td>2.56</td>
<td>30480 kHz</td>
</tr>
<tr>
<td>VIDEO GRAPHICS ARRAY</td>
<td>VGA</td>
<td>2.56</td>
<td>31500 kHz</td>
</tr>
</tbody>
</table>
QIC AND EASY

I have a QIC-40 tape backup in my computer, and I have just increased the size of my hard drive to 120 megabytes. I know I can back up the drive on several different tapes, but it’s a pain in the neck to tag a bunch of files, back them up, then tag another bunch, back them up, and so on.

Is there an easier way or will I have to buy a tape drive with a larger capacity?—D. Tunn, Tenafly, NJ

I can’t accept the idea that having to use a couple of tapes to back up your new, larger, drive is such a chore. You’ve obviously forgotten what it was like to back up on floppies. But there are several alternatives you can try.

The first, and most obvious, is that the software that drives the tape usually gives you a way to build a tag list and, by specifying that you want to back up everything in the listed directories, you should be able to avoid having to tag the files individually.

Most tape software also allows you to compress the files on the tape so you can effectively turn a 40-megabyte tape into a larger one. The number of extra files you can get on the tape depends on what kind of files you have to back up, and how effective the software’s compression algorithm is. Text and other data files will squeeze down by at least 70%. That is only an estimate, but you should be able to get a substantial savings by compressing the files as you back them up.

If the software that came with your tape drive doesn’t have any of those features, there are other programs that will provide them. QIC-40 is a standard that allows a tape recorded on any QIC-40 drive to be read on any other QIC-40 drive.

Another alternative to shelling out bucks for a new tape drive is to use a DC-2120 cartridge rather than the standard DC-2000 that you’re probably using now. Those cartridges are compatible with your drive and, because thinner Mylar is used for the tape itself, you can format it to about 60 megabytes. When you add data compression, you should be able to get over 100 megabytes on the tape.

If you are interested in buying a new tape drive, QIC-80 tape drives double the storage capacity of QIC-40 drives by packing twice as much data on the same tape. A QIC-80 drive formats a DC-2120 tape to 120 megabytes, and roughly doubles that to about 250 megabytes using software compression. A new drive won’t even set you back by much—QIC-80 drives, such as the Colorado Memory Systems’ Jumbo 250, sell for as little as $250, mail order.

LESS THAN MTS

I have an RCA stereo TV that I’m happy with for the most part. It’s just that, on occasion, a stereo broadcast will sound like it’s coming out of a seashell. I’d love to blame the cable company—and I usually can—but my VCR doesn’t suffer the same problem. Friends have told me that the problem is because my TV isn’t a true MTS-compatible set. Is this true?—M. Johnson, Lindenhurst, NY

Many people have complained about problems similar to yours—including the folks over at dbx, whose noise-reduction circuitry must be incorporated into any stereo TV circuitry in order for it to be called MTS. Lots of manufacturers insist that they can meet the MTS specifications without using dbx, but that’s usually done to avoid paying licensing fees to dbx. I suspect that your RCA TV does not have dbx, while your VCR does. If the noise really bothers you, and you’re not ready to buy a new TV—with dbx noise reduction—then just use your VCR as the tuner for as long as you have to.

Earn Your B.S. Degree in ELECTRONICS or COMPUTERS

By Studying at Home

Grantham College of Engineering, now in our 42nd year, is highly experienced in “distance education”—teaching by correspondence—through printed materials, computer materials, fax, and phone.

No commuting to class. Study at your own pace, while continuing on your present job. Learn from easy-to-understand but complete and thorough lesson materials, with additional help from our instructors.

Our Computer B.S. Degree Program includes courses in BASIC, PASCAL and C languages—as well as Assembly Language, MS DOS, CADD, Robotics, and much more.

Our Electronics B.S. Degree Program includes courses in Solid-State Circuit Analysis and Design, Control Systems, Analog/Digital Communications, Microwave, and much more.

An important part of being prepared to move up is holding the right college degree, and the absolutely necessary part is knowing your field. Grantham can help you both ways—to learn more and to earn your degree in the process.

Write or phone for our free catalog. Toll free, 1-800-955-2527, or see mailing address below.

Accredited by the Accrediting Commission of the National Home Study Council

GRANTHAM College of Engineering
Grantham College Road
Slidell, LA 70460

R-E

December 1992, Electronics Now
DISTORTIONLESS POCKET STEREO AMP

I have some information regarding the “Pocket Stereo Amp” (Ask R-E, Electronics Now, August 1992) that might be helpful to the person who was having distortion problems when using an LM386. I’ve experimented extensively with that IC, and while simplicity has its merits, we must remember that a job worth doing is worth doing well. Because pocket stereos often have excellent sound quality, steps should be taken to maintain that quality when building an add-on amplifier for it.

The bare-bones design shown in Fig. 2 of the article might work, but the inclusion of a few junk-box components will yield better results. I’ve been using the design shown to the right, which is the one that generally shows up in projects that incorporate an audio section. Though the values sometimes differ slightly, all of these components usually appear in the circuit.

The first time I built this amplifier, I omitted capacitor C3 thinking that it would be unnecessary with a battery supply that contains no ripple. That resulted in severe distortion even at low input signal levels. The amplifier even tended to oscillate at times. After some head scratching, I connected a large-value electrolytic capacitor between pin 6 (supply) and ground, which eliminated the problem completely.

The amplifier can be driven with a line-level signal from an auxiliary output or from the headphone jack of a pocket stereo. In the latter case, with R1 adjusted for maximum volume level, the pocket stereo’s volume control should be adjusted to the minimum level that will provide adequate sound. That will prevent the possibility of overdriving any LM386’s. Once that is done, R1 can be used to adjust the volume.

If two such amplifiers are being used for stereo, C3 can be connected between the common supply line and ground. If you use a power supply that contains a filter capacitor, C3 might not be necessary. C2 is optional as stated in the original article, depending on the need for gain. I recommend using it because even though the amplifier in the pocket stereo provides gain, most of that gain will be lost when the controls are adjusted to limit the level of the input signal.

Capacitor C1 can be omitted if there is no DC component on the input signal line. There probably is none if the source is an earphone jack or auxiliary output of a CD player or cassette player. I have occasionally seen pin 7 (bypass) connected to ground through a capacitor, but it doesn’t seem to make

The RMS225 was built around simplicity. Instead of a barrage of buttons to push, you simply scroll through a menu of special functions. Minimums, maximaums and automatic reading hold are simple functions with Beckman Industrial’s RMS225. It’s simply the best meter for the money.
any noticeable difference in this application, so I've never used it.

The design shown in Fig. 1 gives a surprisingly good sound considering the low cost of the IC.

As always, I'm grateful for the Letters column in Electronics Now that allows the exchange of information among readers.

STEVE BABBERT
Worthington, OH

THEFT OF SERVICES
I fail to understand you guys. Is Electronics Now a socialist magazine, advocating ripping off cable companies because they are Robber Baron Capitalist Fat Cats, or something? Robert Grossblatt says, "If the cable companies put the signal on your wire, you should have the right to use it." Does he steal from coin newspaper boxes too? After all, his quarter has purchased him access to the box. Right? Hasn't he ever heard of "implied contracts?"

When he took his cable service, he agreed to take the services he paid for. I agree that he should have the right to experiment. But if he steals programming, he isn't just stealing from the Fat Cat Cable Company—he steals from a lot of other people: technicians who work for the cable company, artists who do the programming, electronics manufacturers who supply products to the cable companies, and ultimately from little electronic companies like mine. We design and repair cable, and that work keeps a technician and an engineer employed. That's how I see it. And I think that the law agrees with me.

P. MIHOK
Don Mills, Ontario, Canada

TURN-SIGNAL FLASHER UPDATE
The circuit suggested by Timothy Brooks in September's Letters column, designed to augment the toofaint click of the automobile turn-signal flashers (a 47-μF capacitor in series with a small speaker connected across the flasher unit) works fine. However, there must be a current-limiting resistor in the circuit. Without it, the speaker's voice coil soon opens up.

F.G. HUTCHINSON
Redwood City, CA

ANOTHER FLASHER UPDATE
The letters in the September issue of Electronics Now, suggested different complicated electronic solutions for amplifying an automobile's turn-signal sound. There is a much simpler solution to the weak turn-signal sound problem. I have been using it for a number of years. Many automotive departments of retail stores stock replacement flashers. Look for an Ideal Loud Turn-Signal Flasher No. 577V (Ideal Division, St. Augustine, FL 32084).

It can replace any 12-volt, two-terminal flasher. Only one problem might be encountered: The loudflasher's case is slightly more than twice as long as a regular flasher's case. That becomes a problem only if there is a lid covering the terminal box containing the flasher. In that case, you can cut a hole in the lid to accommodate the new flasher, or leave the lid off entirely.

VINCENT M. SARITI
Dover, NJ

DISKETTE CONVERSION
In the Q&A column in the September issue of Electronics Now, there was a discussion of double- and high-density diskettes, and whether or not there really is a difference between them. I have converted 3.5-inch "floppy" disks from double-density to high-density by forming a hole in their cases, and I have found that the converted disks work fine without problems. However, be very careful not to let any small material chips get inside the disk case.

When a hole is made in the proper place, a small opening into the disk case is created. If a chip from the drilling or punching gets into that hole, it could cause serious damage to the disk—or, even worse, to the disk drive. I consider drilling the hole to be out of the question, and recommend using a very sharp and sturdy punch. Several of these are now on the market.

EMERSON M. HOYT
Beaverton, OR

If your meter doesn't have True RMS, it's lying to you. Those nasty nonsinusoidal and noisy sinusoidal wave forms fool even the best "averaging" meters. The problem was, True RMS used to be expensive. Good news. The RMS225 is half the price of similar meters.

Call (800) 854-2708, (800) 227-9781 in CA.

Beckman Industrial®

Beckman Industrial Corporation, San Diego, CA 92124-1840

CIRCLE 190 ON FREE INFORMATION CARD
Many people who use digital multimeters—even those who use one every day—consider DMM's to be little more than commodity items. Other people, especially those whose livelihoods depend on the DMM, know the importance of a well-designed meter. They’ll want to know about a new DMM from Beckman Industrial Corporation (Instrumentation Products Division, 3883 Ruffin Road, San Diego, CA 92123-1898): the HD160 heavy-duty digital multimeter.

The HD160 is the latest entry in Beckman Industrial’s “HD” line of heavy-duty DMM’s. It is housed in a sleek, bright yellow case that measures about 6.8 x 2.8 x 1.3 inches. A black rubber holster is supplied with the DMM to provide extra protection. Although the holster adds significant bulk to the meter, it can actually make handheld operation easier, thanks to two probe holders on the holster. The user can hold the meter with one attached probe in one hand, and the remaining probe in the other. The probe holders also provide a secure, safe place to store the probes when the meter is not in use.

The holster also provides a tilt stand that is particularly convenient for bench-top use; a tilt bale provides fixed tilt angles of 20 or 60 degrees from perpendicular. We would expect the HD160 to be used away from the benchtop as often as not. If you’ve ever used a DMM while at the top of a ladder or while perched on the service platform of a large industrial machine, you’ve undoubtedly found that three hands could come in very handy. The HD160 offers what might be the next best thing: “Flex-Strap.” The Flex-Strap is a Velcro-covered fabric strap that lets you hang the meter vertically from a wide variety of pipes, beams, and the like. Pipes up to about three inches in diameter will serve just fine.

The face of the meter is agreeably uncluttered. A large, 7-position rotary control sets the main function selections: AC volts, DC volts, resistance, diode test/continuity, DC current, and AC current. Below the rotary control are four input jacks: a common, one for voltage and resistance measurements one for current measurements of 40 milliamps or less, and one for current measurements up to 20 amps.

At the top of the meter’s face, below the 4-digit (10,000-count) LCD readout, are three round pushbuttons: MENU, SELECT, and CLEAR. The sensible menu system is what helps keep the meter face so uncluttered. When the meter is first powered up, it is in its autoranging mode. To change the range, you would press the menu key; a four-item menu (RANGE, HOLD, REL, and MIN MAX) flashes above the digits. With the first press, the menu cursor is on the range selection. Successive pushes of the SELECT button changes the range. Successive pushes of the MENU button changes the cursor position. The CLEAR button can clear a given entry, or it can clear the entire menu, resetting the meter. We found the menu system to be intuitive.

The meter’s hold mode, which Beckman Industrial calls “Probe Hold,” automatically freezes the meter’s display when a stable reading is reached. That means the meter user can keep his hands on the probes, not on the meter—an important feature if you work around dangerous voltages.

The relative mode lets the meter measure values with respect to a reference other than zero. The feature works in the voltage, resistance, current, and diode-test modes.

The max min mode lets the meter measure and record the minimum and maximum values of input signals. The feature works with all functions except diode test. The mode is not useful for capturing transients, but it can be used to measure the operating parameters of a circuit. The automatic power-down feature does not, fortunately, operate in max min mode.

An analog bar graph, made up of forty LCD segments, is useful for peaking circuits; they respond faster than the digital display (20 updates a second as opposed to 2 updates a second), and—as with an analog moving-coil meter—small changes are more obvious.

The HD160 offers true-rms measurement capability depending on the input signal’s crest factor. The crest factor is the ratio of a signal’s peak voltage to its rms value. A sine wave has a crest factor of 1.414, a full-wave rectified sine wave has a crest factor of 3.247. Signals with crest factors up to 5.0 can be measured when the display is at or below 2500 counts. At half scale

Continued on page 96
ELIMINATES SEARCHING, SCANNING, TUNING

INTERCEPTOR™

INTERCEPT, DETECT & CAPTURE
Near Field Transmissions with Optoelectronics' New
INTERCEPTOR™

NEW TECHNOLOGY

- Follows & Locks on even when frequency changes.
- Intercepts ALL FM Two-Way Transmissions without gaps in coverage.
- *Does Not* have to tune through RF Spectrum to find signals.

FCC Classified as Communication Test Instrument for:
- Deviation, FM, FMN
- Signaling Tones (CTCSS)
- Relative Signal Strength
- Modulation Monitor
- Great for testing VHF, UHF & Cellular transmitters

A New Dimension in Recreational Monitoring – Intercept the Two-Way Communication that Surrounds You.

Increase Your RF Security.

Hand Held/Shirt Pocket Size

INTRODUCTORY OFFER
Interceptor™ R10 FM Communications
Interceptor (Includes NiCads, AC/Charger Adapter, Antenna, Earphone) .. $359.

OPTIONS
Headphones (Lightweight personal headphones) ... $15.
Antenna Pak 2 (Five assorted rubber duck antennas – save $32.) ... $99.
TC200 Tone Counter (CTCSS signalling tones) .. $179.
APS-104 (Extends RF detection distance 10x) ... $995.
CF800 Cellular Band Pass Filter/Amplifier ... $299.

Optoelectronics
FACTORY DIRECT ORDER LINE 1-800-327-5912

305-771-2050 • FAX 305-771-2052 • 5821 NE 14th Ave., Ft. Lauderdale, FL 33334
5% Ship/Handling (Max$10.) U.S. & Canada. 15% outside continental U.S. Visa & Master Card accepted
CIRCLE 182 ON FREE INFORMATION CARD
No other training to troubleshoot computers

Only NRI walks you through the step-by-step assembly of a powerful 386sx computer system you train with and keep—giving you the hands-on experience you need to troubleshoot, and service today's most widely used computer systems. Only NRI gives you everything you need to start a money-making career, even a business of your own, in computer service.

No doubt about it: The best way to learn to service computers is to actually build a state-of-the-art computer from the keyboard on up. Only NRI, the leader in career-building at-home electronics training for more than 75 years, gives you that kind of practical, real-world computer servicing experience. Indeed, no other training—in school, on the job, anywhere—shows you how to troubleshoot and service computers like NRI.

Get inside the West Coast 386sx computer system... and experience all the power and speed of today's computer technology!

With NRI's exclusive hands-on training, you actually build and keep the powerful new West Coast 386sx/20 MHz mini tower computer system.

You start by assembling and testing your computer's 101-key "intelligent" keyboard, move on to test the circuitry of the main logic board, install the power supply and 1.2 meg high-density floppy disk drive, then interface your high-resolution monitor.

What's more, you now go on to install and test a powerful 40 meg IDE hard disk drive—today's most-wanted computer peripheral—included in your course to dramatically increase your computer's data storage capacity while giving you lightning-quick data access. But that's not all!

Professional diagnostic hardware and software makes troubleshooting fast and accurate

Your NRI training now includes a remarkable diagnostic package that allows you to quickly locate and correct defects in IBM XT, AT 80286/80386, and...
shows you how and service like NRI!

NEW! 40 MEG HARD DISK DRIVE!
You install this 40 meg IDE hard disk drive internally, for greater data storage capacity and data access speed.

NEW! 386sx/20 MHz MINI TOWER COMPUTER!
Features 32-bit 80386sx CPU, 1 meg RAM, 64K ROM, 1.2 meg high-density floppy disk drive.

NRI gives you the confidence and the know-how to step into a full-time, money-making career as an industry technician, even start a computer service business of your own!

No experience necessary... NRI builds it in

With NRI, you learn at your own pace in your own home. No classroom pressures, no night school, no need to quit your present job until you're ready to make your move. And all throughout your training, you have the full support of your personal NRI instructor and the NRI technical staff, always ready to answer your questions and give you help whenever you need it.

FREE catalog tells more. Send today!

Send today for NRI's big, free catalog that describes every aspect of NRI's innovative computer training, as well as hands-on training in TV/video/audio servicing, telecommunications, industrial electronics, and other high-growth, high-tech career fields.

If the coupon is missing, write to NRI School of Electronics, McGraw-Hill Continuing Education Center, 4401 Connecticut Avenue, NW, Washington, DC 20008.

IBM is a registered trademark of International Business Machines Corp.
QuickTech and R.A.C.E.R. are registered trademarks of Ultra-X, Inc.
West Coast is a member of the Syntax Group.
NEW PRODUCTS

Use the Free Information Card for more details on these products.

PROGRAMMABLE PCB BOARD TESTER. You can test more than 600 TTL and CMOS digital IC's with as many as 28 pins with a new Model 560A B+K-Precision tester. Said to be able to perform in- and out-of-circuit tests, it was designed for both speed and accuracy.

The tester's vacuum fluorescent display and front-panel LED's prompt the user through the test procedures for a device, and clearly indicate test results and the IC pins where failure has occurred. The "loop test" continuously checks the device under test until a failure is encountered. This technique detects intermittent failures before the components are assembled in a product.

A memory stores responses from a known to be good PC-board for in-circuit testing.

Responses are permanently stored in one of two internal EEPROM's or any of the four EEPROM's located behind the instrument's front-panel access door. In out-of-circuit testing, the device to be tested is inserted into the zero-insertion-force socket on the instrument, and a button is pressed so a display shows either a 'pass' or 'fail' and the pin numbers that have been identified as faulty.

The Model 560A includes a device data library that contains data on more than 90% of existing 14- to 28-pin IC's. That library will be updated free of charge as new IC's are introduced. Optional AK-560A custom programming software, which does require a processing by a personal computer, allows users to organize tests for non-standard and custom TTL and CMOS IC's.

The Model 560A is sold complete with an instruction manual, condensed instructions, IC library list, power cord, in-circuit IC test clips and cables, EEPROM for board-test routines, ground cable, and a spare fuse. It has a price of $3500. —B+K-Precision, 6470 est Cortland Street, Chicago, IL 60635; Phone: 312-889-1448.

RADAR-DETECTOR TESTER. When you are out driving, do you worry that your radar detector might not be working correctly—and you could get caught in a speed trap?

Dynaspek eases your worries with its Leash, just what you need to be sure that your radar detector (and those of your friends and neighbors) are up to snuff. A handheld radar transmitter, it simulates the feared signal of an X-band police radar gun. Used to test detectors, the unit activates when a button is pressed. A single red LED indicates that it's transmitting. A full signal intensity reading will appear on your police radar detector if it is functioning properly. The "Leash" has an effective range for test purposes of up to a mile.

The size of an audio cassette tape, (4.5 x 2.75 x 1 inch), The Leash transmits at least 12 milliwatts of power at 10.525 GHz. The manufacturer specifies an 8 dB antenna gain and a 36 x 72 antenna beamwidth. A 9-volt alkaline battery will keep it on the air for about six hours of continuous use, and will power it for several months of intermittent use.

The Leash has a list price of $99.—Dynaspek, Box 564, Westmont, IL 60559; Phone: 708-325-7450.

CABLE SCANNER LAN TESTER. It is now possible to eliminate local-area network faults and decrease network downtime when malfunctions occur with the Cable Scanner LAN tester from Contact East. The tester works with Ethernet, ARCnet, StarLAN, Token Ring, Twisted-Pair and other networks.

A stand-alone tester, Cable Scanner permits system analysis to determine if the fault is within the cabling. It then assists in pinpointing the location of the faults or breaks. The scanner provides measurements of cable resistance and noise level, and gives audible continuity checks. It can accommodate a line printer to log activity.

After the fault has been located with CE's Cable Scanner, an internal "Tracer" circuit indicates
precise solder application to help you evaluate its product. The kit includes two tubes each of 60% tin, 40% lead solder paste alloy and lead-free 96% tin and 4% silver solder. Each 35-gram tube is supplied with both an activated rosin flux and a water-washable flux. Also included in the kit is a prepackaged tube of ESP’s activated rosin paste flux for evaluating its desoldering effectiveness.

The Kit 5 evaluation kit is priced at $89. — ESP Solder Plus, 14 Blackstone Valley Place, Lincoln, RI 02865-1145; Phone: 1-800-338-4353; Fax: 401-333-4954.

DIAGNOSTIC CARD. A faulty power supply can introduce errors into a computer. The Power Good from Sibex is said to be the first diagnostic card dedicated to the test of PC power supplies. It is intended to assure the user that quality power at the specified voltage is being drawn by the computer.

The user plugs the card
Rest assured, no scope was injured in the making of this ad.

After all, the volunteer is a member of our new TAS 400 family of analog oscilloscopes. And every TAS has its entire acquisition system (including the vertical, horizontal and trigger functions for each input channel) housed on a proprietary hybrid circuit.

The result is a kind of scope on a chip.

One with 75% fewer parts and far greater reliability. In fact, the TAS is three times more reliable than previous scopes.

What's more, each and every TAS
comes with smashing features like AutoSet, on-screen cursors and readout, dual timebases, and save and recall settings. Plus a unique user interface that makes the 60 MHz TAS 455 and 100 MHz TAS 465 easier to use and dramatically unlike any other analog scope.

A claim that is further backed up by their remarkably affordable price.

But then a lot of performance for not a lot of money is exactly what the TAS is all about. Scopes that add to a long list of low-cost Tektronix products. Like our handheld 60 MHz 224 digitizing oscilloscope. Our fully programmable, analog/digital 2212 scope. And our family of affordable and stackable basic test gear.

Now that’s a lot to drop on you in one ad. So to learn more about these and other economical Tektronix products, call your authorized Tektronix distributor today.

Or call us at (800) 426-2200, ext. 140 to place your order or for the name of the distributor nearest you.
Tech Spray has developed a fast-acting and highly effective cleaner called Envi-Ro-Tech™ 1677(1677) that uses a formulation of HCFCs and other non-CFC chemicals.

This extremely pure product is non-corrosive, making it safe for use on most electronic equipment. Envi-Ro-Tech 1677 is effective in removing oils, greases, dirt, silicone, fluxes and similar soils.

Although Envi-Ro-Tech 1677 has universal cleaning power, its low surface tension makes it ideal for precision and microscopic cleaning.

For a sample of this, or any Tech Spray cleaner, de-luxer, duster or freeze spray, contact our Technical Assistance Department toll free at 1-800-858-4043.

Although Envi-Ro-Tech 1677 has universal cleaning power, its low surface tension makes it ideal for precision and microscopic cleaning.

For a sample of this, or any Tech Spray cleaner, de-luxer, duster or freeze spray, contact our Technical Assistance Department toll free at 1-800-858-4043.

![Image](https://example.com/techspray1677)

FM COMMUNICATIONS RECEIVER. A small handheld FM radio receiver is now available for security, communications, and recreational monitoring. The Model R10 FM Communications Interceptor from Optoelectronics is classified by the FCC as a communications test instrument. It can measure deviation (wide and narrow band), relative signal strength, isolating tones (CTCSS), and other demodulated FM. The receiver can also test VHF, UHF, and cellular radio transmitters.

According to its manufacturer, Model R10, unlike conventional radio receivers or scanners, receives any strong signal present, and is actually stabilized by the received signal. The company says the Model R10 does not have to be tuned to a specific frequency to receive a signal. Any FM signal from 30 MHz to 2 GHz can be intercepted without any gaps in coverage.

The Interceptor works best in the near-field, the region surrounding a transmitter where signal strength is high but falls off rapidly with increasing distance. The receiving range varies, depending on the presence of strong signals in adjacent bands. But distances of 200 to 400 feet from a 5-watt UHF or VHF transmitter are typical for Model R10.

The unit is completely automatic for hands-free operation, and is small enough to be carried in a shirt pocket. For test applications, demodulated audio output is available from a stereo phone jack. The R10 also has a built-in speaker.

A lock-release pushbutton frees the unit to lock onto a different signal. This feature is handy when several relatively large signals are present. Dual ten-segment bargraphs indicate deviation and relative signal level. A pushbutton switch selects wide- or narrow-band bargraph calibration.

An internal rechargeable battery pack provides up to six hours of operation.

The Model R10 FM Communications Interceptor is priced at $359.—Optoelectronics Inc., 5821 NE 14th Avenue, Fort Lauderdale, FL 33334; Phone: 800-327-5912 or 305-771-2050; Fax: 305-771-2052.
Kelvin Meters Backed by a 2 Yr Warranty - Parts & Labor

<table>
<thead>
<tr>
<th>Model</th>
<th>Standard</th>
<th>Basic</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>$19.95</td>
<td>$29.95</td>
<td>$39.95</td>
</tr>
<tr>
<td>150</td>
<td>$19.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>$19.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRO 400</td>
<td>$69.95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Protective Cases

For Models 100, 150, 200

- Case for Model PRO 400: $9.95

Standard Features - Models 100, 150, 200 & 400

- AC & DC Voltages
- DC Current
- Resistance
- Continuity Tester - Buzzer
- Diode Test
- 3 1/2 Digit LCD
- Low Battery Indicator
- Accuracy +/- 0.5% RDG

Standard Features - Models 92, 93, 94 & 95

- DC/AC Voltmeters
- AC/DC Current
- Frequency Counter to 4 MHz
- Audible Continuity Tester
- Diode Tester
- Max/Min Average Memory Record
- Relative Mode
- 10A High-Energy Fuse Protection
- Data Hold
- Auto Sleep & Auto Power Off

Standard Features - Models 92, 93, 94 & 95 (PLUS)

- Logic Probe, Capacitance Tester, Transistor Tester, Temperature Tester & K-Type Probe, High Voltage Warning Buzzer

Standard Features - Models 92, 93, 94 & 95 (ENGINE ANALYZER PLUS)

- Temperature, Tachometer & Dwell Angle Tester, Duty Cycle, 10 Mega Ohm Impedance, Analog Bar Graph, K-Type Temp Probe, Alligator Clip Test Leads, Inductive Pickup Clip, 6 Test Leads & Carry Case

Kelvin Meters - GREAT VALUE!

The Ultimate Meter

- True RMS
- LCR
- Hz - dbm

Kelvin Meters - Established 1945

10 HUB DRIVE
MELVILLE, NY 11747

(800) 645-9212
(516) 756-1750

M/C & VISA

CIRCLE 185 ON FREE INFORMATION CARD

This model is designed in accordance with relevant safety requirements as specified in IEC-954, UL-1244 and VDE-0411.
ELECTRONICS WORKBENCH SOFTWARE. Interactive Image Technologies Ltd. calls its Electronics Workbench software “the electronics lab in a computer.” The program in a computer is said to allow users to design, assemble, and test analog and digital circuits by simulation. The company recommends its software for teaching electronics, electronics experimenting, and the prototyping of circuits. The patterns on the computer screen are identical to those that would be displayed on an oscilloscope in an actual test procedure.

The program consists of two modules: the analog module permits the simulation of electronics components and transistors as they would be done with hardware in a real lab. The digital module provides simulated ideal digital components and instruments needed to build and test logic circuits. The analog module includes SPICE simulation. This permits both transient and steady-state analysis.

Among the components that can be simulated with the software are resistors, capacitors, inductors, transformers, diodes, LED's, bulbs, fuses, Zener diodes, and transistors. Both AC and DC voltage and current sources can be simulated. A function generator provides square, triangular, and sinusoidal waves for test purposes, and a multimeter, dual-trace oscilloscope, and a bode plotter can be called up for making simulated on-screen measurements.

The digital module permits the simulation of ideal logic: and, or, xor, not, nor, NAND, and NOR gates. Also available in the program are RS, JK, and D-flip-flop functions, a half adder, and a seven-segment LED display. The user can call up a voltmeter and an eight-channel logic analyzer to check out his work. Both logic conversion and simplification can be performed with the software.

Three versions of Electronics Workbench are available:
- IBM-compatible Professional—a color version that supports a math coprocessor.
- Personal Plus—for IBM PC's and compatibles, a monochrome alternative.
- Macintosh Program—available in monochrome only.

The Professional Version of Electronics Workbench is priced at $299. —Interactive Image Technologies Ltd., 908 Niagara Falls Boulevard, North Tonawanda, NY 14120-2060, Phone: 416-361-0333; Fax: 416-368-5799.

DC-TO-AC POWER INVERTER. Progress is still being made in the development of DC-to-AC power inverters, according to Statpower Technologies. The company says its new PROwatt 800 12-volt DC to 115-volt AC power inverter is designed for industrial applications and has a power output of 1000 watts for 10 minutes, 900 watts for 30 minutes and 800 watts continuous.

The PROwatt inverter is packaged in a small case measuring 3 x 9 x 10 inches and weighs five pounds. It can produce very high temporary power levels to run loads with high starting surge requirements (such as compressor motors). An LED bar-graph display provides continuous information on battery voltage and power draw. The unit can be easily connected to any deep-cycle storage battery.

PROwatt's low-no-load current draw easily permits the conversion of most of a vehicle's battery power to usable AC power. Solid-state circuits regulate the output voltage and frequency. PROwatt's modified sine-wave output is suitable for most electric motors and inductive loads. The output waveform does not change as the input voltage rises or falls. This permits it to power computers, test equipment, TV's, VCR's, and CCTV equipment from an automotive supply.

PROwatt 800 shuts down if the battery voltage exceeds its high and low limits. Audible alarms and LED indicators warn of faults so that corrective action can be taken. Once a fault is corrected, the unit will automatically restart.

PROwatt 800 is priced at $499. —Statpower Technologies Corporation, 7725 Lougheed Highway, Burnaby, BC, Canada, V5A 4V8; Phone: 604-420-1585; Fax: 604-420-1591.

RGB VIDEO GENERATOR. This programmable RGB video generator is intended for use in the design, production, service, and quality control of the most advanced computer-driven CRT and LCD monitor displays. The Leader model 1605 handles pixel rates to 300 MHz. Its graphic user interface uses on-screen menus and graphic displays with mouse control to provide visual guidance in raster assembly, pattern selection and design, signal drive options, storage, and retrieval. Waveforms are displayed to help in organizing rasters, and patterns are assembled on the screen with a palette of 256 colors from a range of 16.7 million colors. As many as 100 addresses can be stored in both RAM and ROM and storage capability can be expanded to 1800 addresses on the built-in floppy disk. EPROM's can be programmed by the this video generator without additional equipment, and it will accept data from all earlier Leader RGB video generators. High-speed data transfer can be carried out with analog, TTL, and ECL outputs. Those outputs have a wide range of sync options including tri-level sync, half-line equalizers, and serrations.

The Model 1605 RGB video generator is list priced at $18,500. —Leader Instruments Corporation, 380 Oser Avenue, Hauppauge, NY 11788. Phone: 800-645-5014 (in NY, 516-231-6900).
Graduate as a Fully Trained Electronics Professional!

If you want to learn about electronics, and earn a good income with that knowledge, then CIE is the best educational value you can receive.

CIE's reputation as the world leader in home study electronics is based solely on the success of our graduates. And we've earned our reputation with an unconditional commitment to provide our students with the very best electronics training.

Just ask any of the 150,000-plus graduates of the Cleveland Institute of Electronics who are working in high-paying positions with aerospace, computer, medical, automotive and communications firms throughout the world.

They'll tell you success didn't come easy...but it did come...thanks to their CIE training. And today, a career in electronics offers more rewards than ever before.

CIE'S COMMITTED TO BEING THE BEST...IN ONE AREA...ELECTRONICS.

CIE isn't another be-everything-to-everyone school. CIE teaches only one subject and we believe we're the best at what we do. Also, CIE is accredited by the National Home Study Council. And with more than 1,000 graduates each year, we're the largest home study school specializing exclusively in electronics. CIE has been training career-minded students like yourself for nearly sixty years and we're the best at our subject...ELECTRONICS...BECAUSE IT'S THE ONLY SUBJECT WE TEACH!

CIE PROVIDES A LEARNING METHOD SO GOOD IT'S PATENTED.

CIE's AUTO-PROGRAMMED® lessons are a proven learning method for building valuable electronics career skills. Each lesson is designed to take you step-by-step and principle-by-principle. And while all of CIE lessons are designed for independent study, CIE's instructors are personally available to assist you with just a toll free call. The result is practical training...the kind of experience you can put to work in today's marketplace.

LEARN BY DOING...WITH STATE-OF-THE-ART EQUIPMENT AND TRAINING.

CIE pioneered the first Electronics Laboratory Course and the first Microprocessor Course. Today, no other home study school can match CIE's state-of-the-art equipment and training. And all your laboratory equipment, books and lessons are included in your tuition. It's all yours to use while you study and for on-the-job after you graduate.

PERSONALIZED TRAINING...TO MATCH YOUR BACKGROUND.

While some of our students have a working knowledge of electronics others are just starting out. That's why CIE has developed twelve career courses and an A.A.S. Degree program to choose from. So, even if you're not sure which electronics career is best for you, CIE can get you started with core lessons applicable to all areas in electronics. And every CIE Course earns credit towards the completion of your Associate in Applied Science Degree. So you can work toward your degree in stages or as fast as you wish. In fact, CIE is the only school that actually rewards you for fast study, which can save you money.

SEND FOR YOUR CIE COURSE CATALOG AND WE'LL SEND YOU A FREE 24-PAGE CIE ELECTRONIC SYMBOLS HANDBOOK.

FREE!
SEND FOR YOUR CIE HOME STUDY COURSE CATALOG AND RECEIVE A FREE 24 PAGE CIE ELECTRONIC SYMBOLS HANDBOOK!
Includes hundreds of the most frequently used electronic symbols. Published exclusively by CIE for our students and alumni. Yours free when you request a CIE Course Catalog.

YES! I want to get started. Send me my CIE course catalog including details about the Associate Degree Program. (For your convenience, CIE will have a representative contact you - there is no obligation.)

AE45
Please print clearly
Name
Address
City State Zip
Phone No. (____)____
Check box for G.I. Bill Benefits
 Vetera n Active Duty

CIE
1776 East 17th Street
Cleveland, Ohio 44114
A School of Thousands.
A Class of One Since 1934.
Go ahead, put on some weight

Introducing the improved 372 Circuit Board Holder. A longtime favorite for circuit board work, the 372 now comes with our redesigned 300-base. A new, patented, internal modification to the 300 split ball-locking mechanism allows it to hold twice as much weight as its predecessor. Of course, the 372 still comes with the industry's best circuit board holder, the Panavise 315, which can hold PCBs up to 12 inches wide (up to 28" with 30" 316 Accessory Cross Bars). You can even handle multiple boards when you use additional 316 Circuit Board Arms. The new Panavise 372 Circuit Board Holder. When circuit boards are your business.

CIRCLE 107 ON FREE INFORMATION CARD

1993 CATALOG: from Radio Shack, 700 One Tandy Center, Fort Worth, TX 76102; free at local Radio Shack Stores.

Radio Shack's 1993 catalog has a redesigned layout and organization as well as a lot of new products. The 172-page, full-color, magazine-sized catalog now has a "Quick Index" up front, and a complete index at the end. New products highlighted in this edition include the Duofone ET-499 voice-scrambling cordless telephone. It scrambles the transmission between the handset and the base so people with nearby scanners can't eavesdrop on your conversations.

Others are the Memorex Model 800 8mm home VCR with stereo sound and the portable Model 17 8mm VCR/TV combination, both with 179-channel TV tuners. Tandy is offering a 25-MHz, 486-based multimedia PC that includes a wide selection of software for voice mail, communications, travel planning, and more.

Also included in the 1993 catalog are telephones and accessories, pages, scanners, world-band transceivers, VHS VCR's, remote controls, and automotive sound systems. There are also entries on home-control products, batteries, flashlights, multi-use testers, remote-controlled toys, computer based language and information sources, calculators, personal organizers, and notebook PC's.

21ST-CENTURY ELECTRONIC PROJECTS FOR A NEW AGE; by Delton T. Horn. TAB Books, Division of McGraw-Hill Inc., Blue Ridge Summit, PA 17294 - 0850; Phone: 1-800-822-8138; $16.95.

The term "New Age," usually associated with mysticism, music, and cultural fads, has now been applied to electronics projects by Mr. Horn in his new book. This volume—from a well known and prolific writer—presents an array of unusual electronic projects intended to test and demonstrate theories underlying New Age beliefs.

Included among the projects in the book are a dual-LED visual hypnotic aid, an alpha-wave biofeedback monitor, a two-choice ESP tester, a negative-ion generator, a biorhythm clock, a Kirlian photography experimental circuit, and a magnetic-field tester. Mr. Horn does not take a stand either for or against the theories that are the subjects of his experiments. However, the underlying concepts are fully explained.

1992/1993 DISCOUNT TEST EQUIPMENT CATALOG. Print Products International, 8931 Brookville Road, Silver Spring, MD 20910; Phone: 1-800-638-2020 or 1-301-587-7824; Fax: 1-800-545-0058 or 1-301-585-5402; free.

Here is another discount equipment catalog. This one has 68 pages filled with entries on bargain-priced test and measurement equipment from such well-known manufacturers as Kenwood, B + K, Avcom, Pace, Philips, Hitachi, and Leader. Included in the catalog's coverage are oscilloscopes, power supplies, meters, and spectrum analyzers. In addition, the catalog describes new lines of closed-circuit TV systems for security and monitoring.

CIRCLE 39 ON FREE INFORMATION CARD

CIRCLE 38 ON FREE INFORMATION CARD

CIRCLE 37 ON FREE INFORMATION CARD
TROUBLESHOOTING INTEGRATED CIRCUITS

FAX tubes, ally any hands-on guide. You'll -2ND age. 368 and control and replace the Service low- and high- voltage problems locate Save MICROWAVE OVEN REPAIR

data. 1,168 pp., 4,000 illus. connections, tables and charts, and manufacturer functions and uses, pinout diagrams with external reference gives you Find the circuits you need INTERNA';
TECHLINE™ Tools—The new standard in strength and precision!

- Precision-crafted with top-quality materials
- Designed for long life and ease of use
- Backed by Radio Shack’s 1-Year Limited Warranty

New TECHLINE tools represent Radio Shack’s uncompromising dedication to quality. Each is precision-crafted of long-lasting, hard-working materials and employs the latest design innovations for comfort and ease of use. And, each is backed by our full 1-year limited warranty.

Speedy service and low prices on thousands of parts and accessories!

- FREE delivery to Radio Shack on orders $5 and up
- Semiconductors and ICs ■ Hard-to-find batteries
- CB and scanner crystals ■ Long-life vacuum tubes
- Phono cartridges/styli ■ SAM'S service books

Why pay more for mail-order? Your Radio Shack stocks 1000 electronic components, and another 15,000 are available fast from our special-order warehouse. Ordering is easy! Bring in the exact part number (or old part). We'll check availability and order by phone. Delivery time to your nearby Radio Shack for most items is a week.

High-Speed 12VDC Mini-Motor. Produces an amazing 15,200 RPM at no load. Ideal for projects, robotics, fun! About 2" long (with shaft). #273-255

PC/XT Circuit Card. Epoxy. Fits computer expansion bus. 10-1/4" long. #276-1598 23.95

Right-Angle D-Sub 25 Female Connector for Above. #276-1504 2.69

Infrared Project Box. Ideal for a remote. Has removable infrared-transparent end panel and space for 9V battery. 7/8" x 2-7/8" x 4-1/4". #270-254 4.49

100-Watt Soldering Gun. For big jobs! Reaches full temperature in seconds. Built-in work light. Replacement tips in stock. UL listed. #64-2193 11.95
WE'D LIKE TO PRESENT ONE OF THE most unusual construction projects you're likely to build. Of course, the Glitter Globe simply doesn't do justice to the electronic sculpture that is more accurate. This is a challenging project, and not for the inexperienced builder. Building the Glitter Globe is a lot like building a model airplane or car, because the quality of your workmanship will be very evident in the finished appearance of the circuit. You can't hide sloppy construction inside a case!

The Glitter Globe is perhaps the world's most sophisticated Christmas ornament: it's constructed entirely of electronic components and very small circuit boards. Each circuit board holds a pair of LEDs that chase each other around the globe, creating the illusion that the globe is spinning. The LEDs can be the same or different colors, and at least 12 LEDs light up at each step. One diagonal line of LEDs is always one step ahead of another, creating the illusion that the Glitter Globe is spinning.

Two different animations are possible depending on the value of a resistor (R2): the globe can appear to accelerate and decelerate smoothly over a time period of about 20 seconds, or it can slow gently until almost stopping, and then accelerate quickly. The cycle then repeats. The globe can hang from its power cord in a Christmas tree or lie on any flat surface.

The small PC boards used to make the Glitter Globe can also be hidden in various places (other than as part of the Glitter Globe), such as in clothing or behind photographs, to add lights at strategic places. Art forms of this kind are rather popular.

The Glitter Globe is a geodesic sphere; the particular shape is a star-dodecahedron with twenty vertices, which is one of two star-dodecahedra known as the Kepler-Poinsot polyhedra. The other star polyhedra has twelve vertices, and could also be constructed from the Glitter Globe's board set.

Circuit description

Figure 1 is the schematic for the Glitter Globe, which is powered from a 12-volt DC supply. (It can therefore be powered from a car's cigarette lighter.) The first stage of the circuit is a Schmitt trigger circuit, made from IC1-a and -b, which are part of an LM3900 quad-amplifier chip. This stage

point is reached. Increasing the value of C1 will lengthen the time period between accelerations. Resistor R2 is set at 2 megohms for a triangle wave output and 200 kilohms for a negative-ramp sawtooth output.

The output of the waveform generator goes to the input of IC1-c, a voltage-controlled os-

RONDON HOLZWARTH

Build the Glitter Globe, and brighten the holidays with electronics.
FIG. 1—GLITTER GLOBE SCHEMATIC. The first stage of the circuit, a triangle/sawtooth waveform generator, varies the speed of the Glitter Globe's apparent rotation. All horizontal resistors marked with a "J" are zero-ohm jumpers.
cillator (VCO). The VCO operates very much like the waveform generator except that its voltage reference is the output of the waveform generator instead of the power supply. When transistor Q1 conducts, it grounds pin 2 of IC1-c and the output voltage of the integrator decreases. When the trip point is reached, Q1 ceases conduction, and the output then rises again. The value of C2 (as well as the voltage from the function generator) determines the speed of rotation. To decrease the speed of the spin action, simply increase the value of C2.

The output of Schmitt trigger IC1-d is the input for IC2, a CD4017 decade counter. Only five outputs of the counter are used; after a count of five, the counter resets, resulting in continuous "motion" around the globe.

Since the outputs of IC2 cannot provide enough current to drive a dozen or more LED's, transistor pairs (a PN2222 and a PN2907) are used to drive them. A high output from IC2 turns on the NPN transistors (the PN2222's) and a low output turns on the PNP transistors (the PN2907's). The output of IC2 that is high will turn on the PN2222 transistor connected to it, which sources the LED current. The current is then drained through the two PN2907 transistors on the adjacent outputs.

Zero-ohm resistors (jumpers) distribute power around the globe. Plain wire jumpers could be used, but the zero-ohm resistors look much better. Current-limiting 680-ohm resistors (one for each LED pair) ensure that less than 20 milliamperes passes through each forward-biased LED during conduction.

The LED's are all connected back to back so that current flow in one direction lights one, and current flow in the other direction lights the other. That way a color orientation is maintained as the Glitter Globe steps around its five outputs.

Conduction through one LED limits the reverse voltage across the opposite LED. That's not a concern, except with blue LED's which have a reverse-voltage limit of only 5 volts.

Assembly

Before beginning assembly, have the following tools on hand: a small vise or clamp to hold the globe steady as you work, a pair of needle-nose...
COMPONENT SIDE of the Glitter Globe's breakout panel.

SOLDER SIDE of the Glitter Globe's breakout panel.
PARTS LIST

All resistors are 1/4-watt, 5%.
R1, R6—2 megohms
R2—1 megohm for triangle wave, 200,000 ohms for sawtooth wave
R3—100,000 ohms
R4, R10, R11—1.2 megohms
R5—120,000 ohms
R7—1 megohm
R8—10,000 ohms
R9, R13—1000 ohms
R12, R14—R44—680 ohms

Capacitors
C1—10 µF, 16 volts, nonpolarized electrolytic
C2—1 µF, 16 volts, nonpolarized electrolytic
C3—10 µF, 25 volts, tantalum electrolytic

Semiconductors
IC1—LM3900 quad amplifier
IC2—CD4017 decade counter
Q1—PN2222 NPN transistor
Q7—PN2907 PNP transistor

Miscellaneous: 64 LED's (any color), 28 structural resistors (680-ohm units will match the rest of the resistors), 25 zero-ohm jumpers, 12-volt DC 300-mA wall transformer, PC board set, solder, etc.

Note: The following items are available from Art Works, 415 E. Emerson Street, Saint Francis, Kansas 67756:
- Set of 32 PC boards, supplied on a breakout panel—$30.00 each, three or more are $25.00 each
- Complete Glitter Globe kit (includes PC board, 300-mA wall transformer, 64 LED’s, and all components)—$65.00 each, three or more are $55.00 each
All prices include taxes, shipping, and handling. Please state LED color preference (red, green, or yellow); colors can be mixed. Visa/Mastercard orders (800) 486-6862. For technical assistance call (913) 332-2726. Blue LED’s are not available with the kit.

Insert the components into the control board, making sure that the IC’s are inserted correctly and that the tantalum capacitor (C3) is inserted with the proper polarity. Capacitors C1 and C2, and all of the transistors, except Q1, are installed on the solder side of the board. The “c” silkscreened on the board indicates the collector lead of each transistor. Looking at the flat side of the transistors with the leads pointed down, the leads are, from left to right, emitter, base, and collector.

In the center of the control board there is a hole for soldering a loop of wire that acts as a strain relief for the power leads. Strip and tin the ground and power wires from the transformer, and then insert them through the center support loop before soldering them into the PC board. The transformer included with the kit (see the Parts List) has the positive lead marked with a white stripe—other transformers can be marked with the opposite convention, so be sure to check the polarity before soldering!

Test the control board to make sure that it works correctly before building the rest of the globe. When powered up, the two LED’s on the control board should light sequentially, and then stay off for a brief time. The flash rate change will be

FIG. 5—TO MAKE A SPHERICAL GLOBE, all of the resistors and jumpers that connect to any five-point board (levels 2, 5, and 7) must be preformed to 3/8-inch, with the rest remaining 1/4-inch.

FIG. 7—THIS “COMPONENT MAP” shows how the level 1-4 pieces connect together. All connections marked “J” are zero-ohm jumpers, all connections showing a resistor symbol must be 680 ohms, and all unmarked connections can be made using any material you like.
very obvious. Unplug the transformer before continuing.

The LED boards are numbered on one side in groups from 1 to 7. Groups 1–6 contain five boards each; group 7 is just a single board. The numbers represent the levels away from the controller board in which the LED boards are installed. For example, level 1 boards are installed immediately around the controller board, level 2 surrounds level 1, 3 surrounds 2, and so on. All boards in each level are identical. Locate the numbered side of each board on the inside of the globe, with the LED's on the outside. Putting the numbers on the outside of the globe will result in the diagonal power buses (and thus the lighting pattern) running the other way, although the spin direction will remain unchanged. Also, always position the LED boards so that the numbers on their inside surfaces are pointing away from the control board.

Solder the LED's into the small PC boards before removing them from the breakout panel. If you are making a globe with two colors, one color should always be on the left, and the other on the right. Because changing a defective LED can be very difficult after the globe is assembled, test all LED's before soldering. Some multimeters can quickly check LED's; otherwise set up a DC power supply and current-limiting resistor to make sure all the LED's work. The LED's are installed in the boards with their cathodes facing each other (with the flat sides toward each other). Clip excess leads after soldering.

It's much easier to keep the small boards oriented correctly while adding them to the globe if you remove them from the panel only as needed. When you remove the boards from the breakout panel, use a small file to remove any excess material.

Shapes

The least difficult shape to complete is the star dodecahedra. That's the shape that results if all the structural resistors and jumpers are preformed to the same length—approximately ¾-inch. Their actual lengths are not critical, as long as they are all equal. That results in the pentagon (five point) boards sticking out a little more than the hexagon (six point) boards (see Fig. 4). With ¾-inch spacing, the globe will be about the size of a softball.

It is possible to construct a globe with a uniform resistor spacing of ¼-inch, but this should be attempted by only the most skilled assemblers. That results in globes the size of a baseball (see Fig. 5). Once you decide on the proper lead spacing for the globe you wish to build, use a bending jig to make all components the same length. If you don't have a real bending jig, cut a piece of wood to the proper width (¼-inch, ½-inch, etc.), and make a depression in it for the body of the component. You can do that by pressing an unneeded resistor into the wood to leave an impression. (Try to center the impression within the width of the wood.)

Although it might seem to be easier to loop the resistors and jumpers through the boards, it is not recommended because they are difficult to remove later, in case of an error. It's best to put the lead straight through the PC board, and then snip it off after soldering. If a repair is necessary, the lead can then be lifted straight out after remelting the solder.

To make the globe into a spherical shape about the size of a softball, all of the resistors and jumpers that connect to any five-point board (levels 2, 5, and 7) must be preformed to ¾-inch, with the rest remaining ¼-inch (see Fig. 6).

Continued on page 85
A Shocking Offer!

Now you don’t have to be enrolled at CIE to receive our introductory Electronic and Electricity Lesson Modules. This program is available for a limited time to non-students for the shockingly low price of only $99.50.

With CIE’s patented AUTO-PROGRAMMED method of learning you will quickly learn and then master the basics of electronics and electricity and then move on to... DC/AC circuit theories, fundamentals of bi-polar junction transistors (BJT), field effect transistors (FET), wiring, diagram and schematic readings, component identification, soldering techniques... and much, much, more. This introductory offer includes the first 39 lessons in CIE’s Associate in Applied Science in Electronic Engineering Technology Degree.

Your commitment to CIE ends with your payment, but CIE’s commitment to your success just begins when you receive your lessons, exams, binder and equipment. This special introductory price includes all the benefits and assistance CIE normally extends to its full time students. You’ll be entitled to unlimited access to CIE’s faculty and staff to assist you in your studies via a toll free 800 number six days a week, 24-hour turnaround on grading your submitted exams, CIE bookstore privileges, a patented learning method, reference library, access to CIE’s electronic bulletin board and a free issue of CIE’s school newspaper The Electron.

And best of all, when you decide to continue your electronics education in any of CIE’s programs you’ll receive full academic credit for successful lessons submitted and a $100.00 Tuition Credit Certificate.

All this knowledge and support will put you on the road to understanding digital electronics, automotive and industrial electronics, microprocessing principals, computer systems, telecommunications and much, much, more.

$99.50

Yes! Send me CIE’s Introductory Electronic and Electricity Lessons and Equipment.

Name: ___________________________ Street: ___________________________ Apt#: ___________________________

City: ___________________________ Zip: ___________________________

Age: _______ Phone: (_____)______

Total Merchandise: $99.50

Ohio Residents add 7% Sales Tax: ___________________________

California Residents add 6 1/2% Sales Tax: ___________________________

Total This Order: ___________________________

Shipping and Handling Charge: $5.00

Method of Payment/Amount Enclosed: ____________

Personal Check or Money Order

Master Card ______ Visa ______ Discover ______

Card Expiration Date: ___________________________

Signature: ___________________________

December 1982, Electronics Now
ELenco & Hitachi & B+K Products

48 Hour Shipping

ELenco Oscilloscopes
- S-1325 25MHz $495
- S-1340 40MHz $495
- S-1360 60MHz Dual Trace, Delayed Sweep $775

1.0GHz Portable Spectrum Analyzer
Model 2610 $2,595.95
- AC/DC operation (battery included)
- 70dB dynamic range
- Resolution bandwidth of 10kHz
- 50Ω and 75Ω input impedance (switch selectable)
- Fixed bandwidth setting for viewing TV signals
- Field calibratable with internally generated 100MHz, 80dB signal

FLuke Multimeters
Scopemeters (All Models Available Call)
- Model 93 $1,095.00
- Model 95 $1,395.00
- Model 97 $1,695.00

AM/FM Transistor Radio Kit with Training Course
Model AM/FM 108 $27.95
- Makes a great school project

XK-500 Digital / Analog Trainer
A complete mini-lab for building, testing, prototyping analog and digital circuits. Elenco's Digital/Analog Trainer is specially designed for school projects, with built-in power supplies. Includes a function generator with continuously variable, sine, triangular, square wave forms. All power supplies are regulated and protected against shorts.

True RMS 4 1/2 Digit Multimeter
Model M-700T $135
- 100% DC Accuracy
- 1% Resistance with Freq. Counter Data Hold

Hitachi RSO Series
RSM's feature, roll mode, averaging, save memory, smoothing, interpolation, pretrigger, cursor measurements

Power Supplies
- Model 97 $1,695.00

B+K Oscilloscopes
- 2120 - 20MHz Dual Trace $395
- 2125 - 20MHz Delayed Sweep $539
- 1541B - 40MHz Dual Trace $749
- 2160 - 60MHz Dual Trace, Delayed Sweep, Dual Time Base $949
- 2210 - 100MHz Three Trace Dual Time Base, Delayed Sweep $1,395
- 2522 - 20MHz 10Ms/s Storage $869
- 1442 - 20MHz Portable $1,229
- 1443 - 40MHz Battery / AC operated with Cursor & Readouts $1,439

A complete mini-lab for building, testing, prototyping analog and digital circuits.

Options
- Fully regulated and short circuit protected
- 2.2V @ 2A
- 12V @ 1A
- 5V @ 3A
- 5V @ 5A

Learn to Build and Program Computers with this Kit
Includes: All Parts, Assembly and Lesson Manual
Model MM-8000 $129.00

Starting from scratch build a complete system. Our Micro-Master trainer teaches you to write into RAMs, ROMs and run a 8085 microprocessor, which uses similar machine language as IBM PC.

ELenco Wide Band Signal Generators
Model SG-9000 $129
- RF Freq 10kHz-450MHz AM Modulation of 1kHz Variable RF output
- SG-9000 w/ Digital Display & 150MHz built-In Counter $249

Sweep/Function Generator with Freq. Counter
Model GF-8026 $259
- Sine, Square, Triangle, Pulse, Ramp
- 2 to 2MHz, Freq. Counter, 1-10MHz
- Internal Linear & Logic Sweep

Triple Power Supply
Assembled $75
- Kit $50
- 2 to 15V @ 1A
- 2 to 15V @ 1A
- (2 or 30V @ 1A) and 5V @ 5A
- All the desired features for doing experiments
- Features short circuit protection, all supplies

Function Generator Brix
Model #9600 $28.95
- Provides sine, triangle, square wave from 1kHz to MHz
- AM or FM capability

B+K Capacitance Meter
Model CM-1500B $58.95
- 9 Ranges
- 10-20,000uf
- 5% basic acety
- Zero control w/ Case
- Big 1" Display

Digital LCR Meter
Model LC-1801 $125
- Measures:
 - Capacitance
 - Inductance
 - Resistance
 - Ohms Current, Capacitors, Transistors
- Big 1" Display

Elenco Digital Section
- Analog Section
 - Transistor Tester
 - Capacitance
 - Meter
- Digital Section
 - LED readouts TTL buffered
 - Fixed bandwidth setting for viewing TV signals
 - Field calibratable with internally generated 100MHz, 80dB signal

Hitachi Compact Series Scope
V-212 - 20MHz Dual Trace $409
V-525 - 50MHz, Cursors $975
V-523 - 50MHz, Delayed Sweep $949
V-522 - 10MHz DC Offset $849
V-422 - 40MHz, DC Offset $749
V-222 - 20MHz, DC Offset $625
V-660 - 60MHz, Dual Trace $1,095
V-665A - 60MHz, DT, w/cursor $1,325
V-1060 - 100MHz, Dual Trace $1,375
V-1065A - 100MHz DT, w/cursor $1,649
V-1055 - 100MHz, Q, w/cursor $1,995
V-1100A - 100MHz, Quad Trace $2,195
V-1150 - 150MHz, Quad Trace $2,695

20MHz / 10Ms/s S-1340
- 60MHz
- Dual Trace
- Delayed Sweep
- Dual Time Base
- Fully regulated
- Zero Input Impedance
- Dual Trace
- Delayed Sweep
- Fully regulated
- Zero Input Impedance
- Dual Trace
- Delayed Sweep
- Fully regulated
- Zero Input Impedance

100MHz, 100MS/s Call
- $1,950
- 10MHz, 20MS/s Call
- $1,325
- 20MHz Dual Trace
- $409
- 50MHz, 100MS/s Call
- $1,650
- 100MHz, Dual Trace, Delayed Sweep
- $949
- 10MHz, 50MHz, Delayed Sweep
- $749
- 100MHz, Dual Trace
- $1,649
- 20MHz, Delayed Sweep
- $625
- 50MHz, Dual Trace
- $1,095
- 20MHz, Delayed Sweep
- $625
- 60MHz, Dual Trace
- $1,325
- 100MHz, Dual Trace
- $2,195
- 150MHz, Quad Trace
- $2,695

14 Transistors & 5 Diodes
- Makes a great school project

㋛

15 Day Money Back Guarantee
Full Factory Warranty
Write for Free Catalog

Prices Subject to Change

C C S SALES INC
1235 ROSEWOOD, DEERFIELD, IL 60015
FAX: 708-520-0085 (708) 541-0710

1800-292-7711 TOLLFREE
1800-445-3201 (Can.)

We will not be undersold.
UPS Shipping: 48 States 5%
IL Res 7.5% Tax (3% min $10 max)
Probes incl. all scopes & meters

15 Day Money Back Guarantee
Full Factory Warranty
Write for Free Catalog

Prices Subject to Change

CIRCLE 109 ON FREE INFORMATION CARD
Protect your modem and fax machine against errant transients with this easy-to-build circuit.

FAX/MODEM PROTECTOR

TOM PETRUZZELLIS

SHIELD YOUR MODEM, FAX, OR ANSWERING MACHINE AGAINST HARMFUL TRANSIENTS ARRIVING OVER THE PHONE LINE BY BUILDING THIS FAST-ACTING MODEM/FAX PROTECTOR. THEN YOU'LL BE ABLE TO RELAX WHEN ELECTRIC STORMS BEAR DOWN ON YOUR HOME OR OFFICE. IT'S AN EASY, INEXPENSIVE PROJECT, AND LOW-COST INSURANCE FOR YOUR EXPENSIVE TELEPHONE-DEPENDENT EQUIPMENT.

Even people who plug their computers and entertainment electronics into power-line surge protectors (and wouldn't dream of leaving them unprotected) are likely to forget about protecting modems, faxes and answering machines from transients arriving over the phone line. Then comes the first thunder storm of the season. Before they remember to do anything about it, the innards of that equipment could disappear in a puff of smoke.

You could, of course, disconnect your telephone gadgets with a switch when they're not in use. But will you remember to do it in time? Needless to say, the switch won't help much if the devices are running when the lightning starts to flash.

Telephone electrical values

When a telephone handset is "on the hook" there is 48 volts DC across the two wires designated "tip" and "ring." The green tip wire is at ground potential, or zero volts, and the red ring wire is at negative 48 volts. Approximately 21 to 35 milliamperes of current flows in this condition.

When the handset is picked up, phone-line voltage drops to 6 volts DC. The 20- or 30-Hz telephone-ringing signal can be from about 100 volts to about 120 volts AC. It is superimposed across the normal 48-volt DC signal. That "ringing" voltage determines the voltage ratings of the protective devices.
Telephone protection

Although the effects of lightning are well known, many people believe that only a direct strike on a nearby phone or power line will cause damage. However, most damage to electronic equipment is caused by voltages induced in those conductors by direct strikes elsewhere. Harmful voltages can be caused by strikes as far as 15 miles away!

Telephone circuits generally have resistive elements in each wire to protect the telephone handsets from transient spikes in excess of about 500 volts. However, this rather crude passive protection is inadequate for protecting more vulnerable electronics.

Spark-gap tubes or surge voltage protectors (SVP) have been used for many years to protect electronic circuits from manmade and natural surges arriving over either power or phone lines. They provide low-resistance paths for excessive voltage transients but appear open to normal voltages. The devices are hermetically sealed gas-discharge tubes. Typically made of ceramic with properly spaced electrodes, they are filled with a rare gas.

The main purpose of the SVP is to provide a conductive path for unwanted and excessive transients, thereby preventing the transient energy and associated voltages from damaging equipment and components—and harming people. They are designed to switch current at a pre-established breakdown voltage.

The breakdown voltage causes the internal gas to ionize and change from a non-conducting to a conducting state, thus permitting an arc to form and short the connected wires to ground. During conduction, the SVP can momentarily carry high currents. After the voltage transient has been discharged, the gas deionizes and the SVP is ready for another voltage transient.

The SVP is bipolar and has a symmetrical characteristic. In the restored or extinguished condition, it causes very little loss because of its high impedance. This characteristic contrasts with those of transient absorption Zener diodes and metal-oxide varistors that exhibit leakage. However, both of those devices have faster response times than SVP's.

The metal-oxide varistor (MOV or SIOV) has also been used to protect electronics connected to telephone lines. It is made from finely powdered zinc oxide mixed with binders and pressed into a disk. After firing, the disk becomes a matrix of conductive zinc-oxide grains separated by highly resistive boundaries. This property gives them a symmetrical electrical characteristic similar to the SVP (or two back-to-back Zener diodes).

However, the MOV's breakdown time is too slow to protect connected electronics against the fastest voltage spikes caused by lightning. As a result, faster Zener diodes and SVP's have been combined in our Modem/Fax Protector.

How the protector works

The Modem/Fax Protector (Fig. 1) is shown schematically in Fig. 2. It has a typical response time of about 10 nanoseconds—fast enough to protect your equipment against the speediest voltage spikes. Zener diodes D1 and D2 are connected back-to-back in parallel with
surge-voltage protector SVP1 between the ring and the PC board earth ground connection. Similarly, Zener diodes D3 and D4 are connected in parallel with SVP2 between the tip wire and the PC board earth ground. The SVPs are rated for a nominal DC voltage of 230 volts with breakdown voltage from 195 to 265 volts DC.

The Zener diodes break down at 180 volts DC within about 10 nanoseconds to protect the telephone circuits from the fastest initial voltage spikes, and then the SVPs ionize to ground the overcurrent. Note that the circuit has no batteries; all it really needs to protect your equipment is an effective ground.

Construction

The prototype Modem/Fax Protector was built on a small square PC board measuring 1½ inches on a side (see Fig. 3). However, point-to-point wiring techniques can also be used. Note that the board has a hole drilled through it for the screw that clamps the enclosure together and provides the ground connection.

Refer to parts-placement diagram, Fig. 4. Install all of the components as shown, observing the polarities of the Zener diodes. Solder all components in position and trim excess leads.

Obtain a small modular plastic phone jack cover with an included jack. The jack should have a short section of 4-wire telephone cable attached. Cut off the black and yellow wires and connect the red ring and green tip wire pigtauls within the box as shown in Fig. 5. Cut a bottom plate from sheet micarta, phenolic or other suitable thin but rigid insulating material slightly larger (about 9/16-inch) than the outer dimensions of the jack box. Carefully mark the location on the cover plate for a hole to accommodate the central screw so that it is opposite the hole in the jack box, and drill a hole of the same diameter through the cover.

Determine a suitable length for the four-wire telephone cable between your telephone outlet to be pulled through a distance of 3 to 4 inches. Clamp the cable with a plastic cable tie.

Strip the cable jacket back to about 1/8 inch from the cable tie, select out the red ring wire and green tip wire and strip their ends, and cut off the yellow and black wires close to the cable tie. Then strip the ends of the red and green wires from the jack. Solder both red and green wires to the circuit board, as shown in Fig. 4. Cut a short length of insulated 14 or 16 AWG wire, strip both ends, and solder one end to the ground pad on the PC board.

Apply four drops of silicone RTV adhesive to the inside of the jack box as shown, align the hole in the circuit board over the hole in the jack box, and bed the board down in the adhesive. Allow sufficient time for the adhesive to set up before proceeding. Determine a suitable length for a 14 to 16 AWG solid-copper ground wire based on the proximity of your telephone apparatus to a suitable location for a ground rod (to be discussed later).

Form a loop in one end of the heavy ground wire to accommodate the central screw in the Modem/Fax Protector. Then insert the screw through the loop in the ground wire, jack box, and circuit board. Tightly wrap the bare copper end of the ground wire on the circuit board several times around the screw to complete the ground connection. Then apply solder to the outside of the turns.

Plug your modem or fax into the jack, and plug the length of cable into your telephone wall outlet. The ring and tip wires of the telephone line must remain consistent throughout. The tip lead must be positive with respect to the ring lead.

After making sure that all connections have been made correctly, apply a thin layer of RTV adhesive to the rim of the jack box, assemble the cover over the screw, and clamp it in position with a washer and two nuts, as shown in Fig. 5.

Good grounding

The necessity for a good
ground in protective circuits cannot be overstated; a bad ground is no ground at all! The most effective ground is achieved with a metal rod, preferably copper, at least four feet long, driven into moist soil. Connect the ground rod to the Modem/Fax Protector with the other end of the insulated solid copper ground wire. It can be led to the ground strap through a window opening or a hole drilled through the wall. Suitable grounding rods with wire-connecting clamps are available from electronics supply stores.

The next best grounding method is to connect the 14 to 16 AWG wire to a cold-water pipe. The third, and least satisfactory method (not recommended), is to connect the ground wire to the ground of the 120-volt AC outlet. (This ground can actually be at a higher potential than true earth ground by many millivolts!)

Variations on a theme

Figure 6 shows the Modem/Fax Protector concept applied to the protection of remote computer terminals or personal computers connected to a larger computer over long-distance phone lines. The schematic shows a typical four-channel protective circuit.

The SVPs and transient absorption Zener diodes in Fig. 6 differ from those in the Modem/Fax Protector. The SVPs are C.P. Clare C675L's or equivalent, and the Zener diodes are 1N5360B units. Resistors R1 through R4 are 2-watt wire-wound units, and resistors R5 through R8 are 1/2-watt.

FIG. 5—MODEM/FAX PROTECTOR ASSEMBLY. Note the location of the hole formed for the 4-wire telephone cable. Only the red and green wires are used; the others are cut off near the cable clamp. The assembly is set on four spots of RTV adhesive, and the cover is held on with the central screw, nuts and washer.

FIG. 6—VARIATION OF THE MODEM/FAX PROTECTOR for use in telephone line connections between PC or terminal and larger distant computer.
Protect sensitive electronics with an easy-to-build inrush-current limiter that can be embedded in host equipment or be a stand-alone unit.

The inrush-current limiter described here can protect sensitive line-powered electronics against normal current surges that occur when that circuitry is powered up. The limiter gives a "soft start," to any product or system it protects, and it can be expected to lengthen the operating life and improve the reliability of the host. A thermistor and relay protect against normal "turn-on" overcurrent, and a metal-oxide varistor protects against unwanted over-voltages and overcurrents occurring after startup.

Our inrush-current limiter, shown packaged in an enclosure in Fig. 1, can protect any equipment operated from 120-volt, 60-Hz AC. It can also protect non-electronic circuits such as lighting networks and appliances, provided that they do not include motors. (Many appliance motors depend on surge current for starting.) The circuit can be modified for protection at higher or lower AC voltages or DC voltages.

Current limiting

Most power supplies for electronic equipment that are embedded within the enclosure (typically sharing a PC board with other circuitry) are conventional linear circuits. As shown in Fig. 2, they consist of a transformer, bridge rectifier circuit, and one or more filter capacitors. When AC power is applied to such equipment, there is no charge on its capacitors, and the circuit components present an extremely low impedance to the line voltage. As a result, a large inrush current surge with a fast rise time occurs, and it decays exponentially only as the filter capacitors charge. The peak inrush current is orders of magnitude greater than the circuit's steady state current. It is limited primarily by the short circuit characteristics of the power transformer and rectifier, which are determined by their internal resistance and inductance values and the wiring, as shown in Fig. 3.

An inrush-current limiter, as its name implies, limits inrush current and allows the voltage to rise gradually across the protected circuit. The limiter was designed for high-power stereo amplifiers to avoid the excessive current surges that occur at turn-on. The current drain of large stereo amplifiers is high enough to dim the lights in an
average home when it is turned on.

Electronic equipment and power-supply manufacturers typically limit inrush current by placing a momentary switching device with a fixed resistance at the power input terminal of the circuitry to be protected. After a predetermined time interval, relay contacts close, shorting out the input resistor so that full voltage is applied to the load.

Our inrush-current limiter circuit takes that conventional approach one step further. The fixed-value protective resistor is replaced by a temperature-variable resistor whose resistance value declines with increasing inrush current. A negative temperature-coefficient (NTC) thermistor optimized for inrush-current protection, its manufacturer refers to it as an inrush-current limiter.

A typical temperature vs. resistance curve for an inrush current limiter device is shown in Fig. 4. These devices are widely used in AC/DC switching power supplies. The unit specified for this project has a resistance of 120 ohms at 25°C, a maximum steady state current of 2 amperes, and an approximate resistance of 1.18 ohms at maximum current.

Inrush-current limiting

Refer to the simplified block diagram, Fig. 5. The hot side of the AC line is fed through the inrush-current limiter (shown as a resistor with the letter "T.") Actual resistance change depends on the magnitude and duration of the current drawn. With a nominal resistance of 120 ohms, the maximum instantaneous current through any connected circuit will be limited to 120 volts/120 ohms = 1.0 ampere. (The current drawn will be less than the theoretical value because of the impedance of other components.)

At the end of a preset elapsed time after power is applied, a relay is actuated and it shorts out thermistor R9; that applies full power to the protected circuitry. The time delay is adjustable and determined by the value of a single resistor or potentiometer; it can range from less that a second to more than a minute.

How the limiter works

The schematic of the inrush-current limiter circuit is given in Fig. 6. The 24-volt DC for the timer circuitry and relay are derived from a regulated power supply made up of resistor R1, capacitors C1 and C2, and diodes D1 to D3. The 120-volt input voltage is dropped primarily by C1, and applied to the two series-connected Zener diodes, D1 and D2.

When the polarity of the hot (upper) AC line is positive with respect to the neutral (bottom) AC line, a positive voltage is developed across the Zener diodes. That voltage charges filter capacitor C2 through diode D3. Resistor R1 and parallel metal-oxide varistor MOV1 limit the peak current in the circuit. Resistor R2 discharges C1 and resistor R3 discharges the filter and timing capacitors when power is removed, readying the circuit for immediate restart.

The relay power supply in Fig. 6 is popular in isolated electronics products where only small DC currents are needed to power circuitry. It eliminates the bulk and expense of a power transformer. However, appropriate safeguards must be taken because the supply is not isolated from the AC line. The timing circuit consists of resistors R4 to R7, capacitors C3, diode D4, transistors Q1 and Q2, and relay RY1. Timing capacitor C3 charges through timing resistor R4. (With a value of 150 K, the time delay will be 11 seconds.)

The PC board provides three holes for 1 megohm board-mounted potentiometer R9. Its adjustment will give a continuous range of time delays from about 1 second to 60 seconds. As an alternative, Table 1 lists the values of resistor R4 needed to obtain time delays from 1.5 to 180 seconds in discrete increments. The time delays given in the table can vary because of the wide tolerances of electrolytic capacitors.

When the voltage on C3 reaches the 12-volt breakdown threshold of Zener diode D4, it conducts and applies base drive to turn on NPN Darlington transistor Q1. When Q1 conducts, its collector voltage decreases, turning on PNP Darlington transistor Q2, whose collector current actuates relay RY1. The
relay's normally open contacts are connected across the inrush current limiting device. When closed, the contacts apply full power to any connected load. Resistor R7 provides positive feedback to Q1's base, ensuring positive turn-on of the relay.

Diode D5 protects the circuit from the inductive "kickback" of the relay coil when it is de-energized. The resistance of the relay's coil must be at least 1.3 K for effective relay operation. The metal-oxide varistor MOV1 will protect the load against voltage spikes and transients, but it is not a requirement for the operation of this circuit. It has symmetrical bidirectional "breakdown" characteristics similar to those of back-to-back-connected Zener diodes.

Construction

All of the circuitry fits on a PC board measuring 2.5 x 2.5 inches. However, you might want to make the PC board's outer dimensions larger or smaller. If you plan to mount the circuit in a case, the board size and the hold-down screw spacing will depend on the case selected. The complete circuit assembly can also be mounted within the enclosure of its host equipment with mounting holes and insulating standoffs, if desired.

The PC board for this project is simple enough for an amateur to make, so its foil pattern is included here. However, because there are no critical components on the board, the components can be assembled on prepunched insulating board and connected by point-to-point wiring. Before doing any assembly work, drill the four corner holes in the board for the screws to mount the board to the case or inside the host's enclosure with standoffs.

Figure 7 is the parts-placement diagram. Install the resistors, capacitors and diodes first, observing the proper polarities for the capacitors and diodes. If you elect not to use the 1 megohm potentiometer R9, the value of R4 should be 150 K ohms rather than the 10 K shown on Fig. 6, and a jumper should be installed across two of the holes as shown. (Table 1 gives values of R4 for specific time delays.) After all the components are assembled on the board (see Fig. 8), solder them, and trim all excess leads. Re-check your work, carefully examining the circuit for shorts before continuing with the checkout.

Checkout procedure

Warning: This is a line-operated device, so perform all testing and troubleshooting with a line-isolation transformer. Never operate the circuit outside of an insulating housing and never make adjustments or any kind of modifications to it when it is directly connected to the AC line.

An isolation transformer is recommended for testing this circuit. If you cannot obtain a commercial unit, you can build one by connecting the secondaries of two identical transformers back-to-back as shown in

<table>
<thead>
<tr>
<th>Resistance (R4) (ohms)</th>
<th>Time delay (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 K</td>
<td>1.5</td>
</tr>
<tr>
<td>47 K</td>
<td>3.0</td>
</tr>
<tr>
<td>68 K</td>
<td>5.0</td>
</tr>
<tr>
<td>100 K</td>
<td>7.0</td>
</tr>
<tr>
<td>150 K</td>
<td>11.0</td>
</tr>
<tr>
<td>220 K</td>
<td>17.0</td>
</tr>
<tr>
<td>470 K</td>
<td>40.0</td>
</tr>
<tr>
<td>1.0 MEG</td>
<td>80.0</td>
</tr>
<tr>
<td>2.2 MEG</td>
<td>180.0</td>
</tr>
</tbody>
</table>

December 1982, Electronics Now
Fig. 9. (It can also be used to test other transformerless electronic circuits.) The 120-volt line is stepped down, and then stepped back up to 120 volts. Use only transformers with the same secondary voltages, and do not exceed the current or power ratings of each of the transformers.

With no power applied to the circuit, perform the following resistance checks:

- Measure the resistance between the AC inputs, the hot AC line connected to R1, and the neutral AC line connected to the anode of D2. The readings should be greater than 10 megohms—anything less could indicate a problem.

PARTS LIST

<table>
<thead>
<tr>
<th>Parts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistors</td>
<td>All resistors are 1/4-watt, 5%, unless otherwise stated</td>
</tr>
<tr>
<td>R1</td>
<td>100 ohms, 2 watt, 5%, metal-oxide</td>
</tr>
<tr>
<td>R2</td>
<td>2,200 ohms</td>
</tr>
<tr>
<td>R3</td>
<td>22,000 ohms</td>
</tr>
<tr>
<td>R4</td>
<td>10,000 ohms (see text)</td>
</tr>
<tr>
<td>R5</td>
<td>100,000 ohms</td>
</tr>
<tr>
<td>R6</td>
<td>220,000 ohms</td>
</tr>
<tr>
<td>R7</td>
<td>120 ohms inrush-current limiter (NTC thermistor) 2-ampere (Keystone) CL-90 or equivalent</td>
</tr>
<tr>
<td>C1</td>
<td>1.2 µF, 250-volt, polyester-film</td>
</tr>
<tr>
<td>C2</td>
<td>220 µF, 35-volt, aluminum electrolytic</td>
</tr>
<tr>
<td>C3</td>
<td>100 µF, 16-volt, aluminum electrolytic</td>
</tr>
<tr>
<td>Semiconductors</td>
<td>D1, D2, D4—1N5742, Zener diode, 12-volt, 1-watt</td>
</tr>
<tr>
<td>D3</td>
<td>0.5—1N4002, 1 ampere, 100 peak volts</td>
</tr>
<tr>
<td>Q1</td>
<td>MPSA14, NPN Darlington transistor, (National Semiconductor) or equivalent</td>
</tr>
<tr>
<td>Q2</td>
<td>MPSA64 NPN Darlington transistor, (National Semiconductor) or equivalent</td>
</tr>
<tr>
<td>Other components</td>
<td>MOV1—metal-oxide varistor, 130-volt AC, (Panasonic) 20K201U, or equivalent</td>
</tr>
<tr>
<td>R4</td>
<td>SPST relay, coil, 24-V, contact: 5 A, 250-V AC, 30-V DC, coil resistance 1300 ohms, PC-mount, (Omron) G5L-12P-Ps or equivalent</td>
</tr>
<tr>
<td>S1</td>
<td>Toggle or rocker switch, panel-mounted, 350-volt, 3 amp</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>circuit board, panel-mounted receptacle (three-prong), length of 3-conductor power cord 18 AWG with 3-prong plug, four 1/4-inch insulated standoffs (see text), insulated case with cover, cable grommet, screws as needed, and solder</td>
</tr>
</tbody>
</table>

FIG. 8—ASSEMBLED INRUSH-CURRENT LIMITER circuit.

FIG. 9—SCHEMATIC FOR AN ISOLATION transformer to be used in testing the circuit. All turns ratios must be equal.

- Measure the resistance between the same end of R1 and the end of R2 connected to D1. The readings should be 2.2 megohms. Those measurements assure that there are no shorts or low resistances across the AC line.

- Connect the circuit to the isolation transformer and apply power. If the circuit is operating properly, you should hear the faint click of the relay contacts closing after the appropriate time delay.

- Check for proper operation of the power supply by measuring the voltage across filter capacitor C2. The reading should be about 22 volts DC when the relay is energized.

When testing and experimenting with loads connected to the inrush-current limiter, allow several minutes for the circuit to cool down to room temperatures and the nominal resistance values to be restored. The allowed time should depend on the magnitude and duration of the current drawn through the device. In normal operation, allow about a minute after power is removed for timing capacitor C3 to discharge before initiating a new time delay sequence.

Installation

The inrush current limiter can be installed within the enclosure of the host equipment. Connect the circuit to the AC line after the host equipment power switch and preferably after the line fuse or circuit breaker. Install the circuit so that the hot leg of the AC line is connected to the surge limiter, as shown in Fig. 6. Cut the AC line to the host and install the circuit in series, as shown in Fig. 8. Be sure the circuit board for the inrush-current limiter and all components are insulated from the equipment's chassis and all other components with insulated standoffs. As an alternative, install the inrush-current limiter in a suitable insulated case with a line cord, power receptacle, and on-off power switch as shown in Fig. 9. The prototype case measured 4½ x 3½ x 1½ inches deep.

It might be necessary to cut down the four standoff posts within the case to accommodate continued on page 76.
Imagine you were challenged to build a device that could send an optical audio signal—with a bandwidth of 300 to 3000 Hertz—as far as possible. To make the contest as fair as possible, the rules would require that only commonly available parts could be used. Also, because optics would play a large role in determining the range of such a device, no optics with a collection area greater than seven square inches could be used.

A dozen years ago, the author lost just such a contest by achieving a communications distance of a little over two and a half miles. The winning entry achieved a distance of 6 miles!

The optical communications system presented here is a somewhat modified version of the author's original Air Hop. The circuits have been redesigned in order to use common parts and provide a decent link at a reasonable cost. The unit has an output power of about 10 milliwatts peak and 5 milliwatts average. It uses frequency modulation on a 50-kilohertz carrier and has a bandwidth of 300–3000 Hertz. Without optics, the Air Hop can communicate about 40 feet—with 3-inch diameter optics (a magnifying glass), the range is increased to over a mile.

Air Hop can be used as a simple point-to-point audio communications system or to transmit digital data. Since its bandwidth is the same as a phone line, modems can be used to send and receive digital data. It can also be used as a link for a remote control such as that used in a TV receiver, perhaps with a tone encoder/decoder combination. A remote link to a repeater or a long-distance "broken beam" security system can also be made. Whether you need a link from a house to a barn or a short jump across the commotion of Wall Street, Air Hop can do it.

Electro optics
Before we get into the design and construction of the Air Hop, let's explain some optical terms.

PIN Diode. A photosensitive di-
ode with a response time of a few nanoseconds. It can be used in a photoconductive mode where the current through it is a function of light, or in a photovoltaic mode where the voltage across it is a function of light (see Fig. 1).

Phototransistor. A transistor whose base current is a function of light. The collector current is the base current times the gain of the device. Response time is a few microseconds.

Photodarlington. Two transistors in the same package connected in a Darlington configuration. The first transistor is a phototransistor and the second is an ordinary transistor. Response time is tens to hundreds of microseconds.

Detector area. The area (in square inches or millimeters) of the light-gathering detector. Most PIN diodes have a plastic case that acts as a simple lens and provides a collection area of 0.01 to 0.025 square inches. This area is important when you're calculating lens gain.

Inverse square law. This is the "killer" in nearly all communications systems. Very simply stated, it means that if you increase the distance between the transmitter and the receiver, the signal strength will drop in proportion to the square of the distance. For example, if you receive 9 microwatts of power when the distance between the transmitter and receiver is ten feet, you will receive only 1 microwatt of power if you increase the distance to thirty feet.

Transimpedance amplifier. An amplifier with a very low input impedance. Sometimes called current-to-voltage converters, these special amplifiers are often used in optical systems because their low impedance will ensure maximum current from a photodiode. They can provide a bandwidth up to a few hundred megahertz.

Lens gain. The ratio of the lens area to the detector area. Since the area of a lens is larger than the area of the detector, more light is gathered by the lens. Lens losses and focusing errors (which together should be about 15%) must be included in a rigorous calculation of lens gain.

Infrared. The region of the light spectrum next to the color red (about 800 nanometers). Most infrared LEDs emit at either 880 nanometers or 940 nanometers. Most silicon detectors have maximum response at about 900 nanometers. Infrared is used because most red (visible light) LEDs have trouble producing a half a milliwatt of power, while many IR LED's have an output of 10 milliwatts or more.

Collimate. To direct in a straight line. When light from a source travels in parallel beams instead of a divergent cone, it is said to be collimated. Although you can't form a truly collimated beam, the lens on the transmitter attempts to do that (see Fig. 2).

Divergence. The "spreading out" of an optical beam. In other words, a divergent beam is the opposite of a collimated beam. All optical beams diverge, some more than others. If you could form a beam with zero divergence (you can't), it would not obey the inverse square law. In other words, you could send your beam an infinite distance because the energy wouldn't spread out. Laser beams have small divergence compared with other light sources. Spot lights are built to have a small amount of divergence, whereas flood lights are built to have a great deal of divergence (see Fig. 2).

Responsivity. A measure of the relationship between the optical and the electrical signal of a detector. A rule of thumb for PIN diodes is 0.4 to 0.6 amps per watt. This means that if 1 milliwatt of light strikes a PIN diode, a current of 0.4 to 0.6 milliamps will flow through the diode. To put that in perspective, Air Hop will work at levels of about 100 picowatts of current or about 200 picowatts of optical power.

AC and DC light. If you pulse an LED on and off it becomes an AC-light source. If you simply apply DC though it, it becomes a DC-light source. This concept is important because most light sources contain some AC and some DC light. Normal tungsten-filament light bulbs contain a lot of DC and some AC light (because of the thermal time constant of a hot filament). The sun contains a lot of DC and a lot of AC. Fluorescent lights contain some DC and a lot of AC. The only reason that this is important is that if you build a DC-coupled optical receiver and operate it outdoors where there is a lot of sunlight, the receiver can easily "saturate" and your AC signal will not be amplified correctly. Some kind of "light shield," such as those that are used on some
camera lenses, will help. That's why the Air Hop uses an AC-coupled detector.

f number or lens speed. In lenses, the ratio of the focal length to the diameter is called the "f" number (f = f/d). The smaller the number, the "faster" and more expensive the lens. It is convenient to think of this as an optical "acceptance" angle (see Fig. 3). This will be important in choosing the transmitter's collimating lens. In cameras, where the focal length is fixed, a lens with a larger diameter than another lens has a smaller "f" number, and is said to be faster. That's because the larger lens gathers more light and the shutter can be set to a faster speed than the smaller lens. Table 1 shows f numbers vs. acceptance angles.

Thermal noise. Although thermal noise is not applicable to optical devices such as lenses, the electronic performance of your optical system will be limited by thermal noise. Thermal noise is caused in an electrical device by the random movement of molecules. The thermal current noise (I_n) of a resistor is given by:

\[I_n^2 = 4KTB/R \]

where

- K = Boltzmann's constant (1.38 × 10^-23)
- T = temperature in Kelvin (300)
- B = bandwidth in Hertz
- R = resistance in ohms

A 300K resistor operated at near room temperature in a receiver with a bandwidth of 20 kilohertz will have a thermal noise current of 33 picamps.

Although 33 picamps might not sound like a lot of current, the noise it will cause at the output of the transimpedance amplifier will be about 10 microvolts (RMS). Converting to peak-to-peak noise gives about 60 microvolts peak-to-peak.

In the Air Hop, the only amplifier between the transimpedance amplifier and the comparator is a differential amplifier with a gain of about 50. That amplifies the 60 microvolts of noise and produces about 3 millivolts of noise at the output of the optical amplifier. Actual measurements showed 5 millivolts of noise. That is reasonable because there are other noise-producing devices in the system such as the current noise of the first transistor. Although every transistor produces some noise, the first one produces more because of its higher signal amplification.

One reason it's important to present equations like this is that they give us insight into system improvement. If there were no noise, virtually unlimited distances could be achieved. However, when the strength of the signal is less than the noise, we're out of luck. We can control temperature to some extent, and the equation shows that at a lower temperature, the noise is lower. But lowering the temperature of the transimpedance resistor even by 100 degrees Kelvin will decrease the noise power only by a factor of about 1.2.

If a system requires only a small amount of bandwidth, say a few hertz, as in a television remote control, we could decrease the bandwidth from 20 kilohertz to 20 Hertz and decrease the noise by a factor of about 30. Even with the inverse square law working against us, that would improve the range by a factor of about 5. Such a bandwidth reduction would require a good tunable filter, but it certainly can be done. Of course, audio signals sent over a link with a 20-Hertz bandwidth wouldn't be recognizable as audio. It would, however, permit Morse-code communication.

Photodetector. Any device that can convert light into an electrical signal. Phototransistors, photoSCRs, phototriacs, photocells, solar cells, and photodiodes are all examples. Even photoresistors and thermocouples can be loosely considered as forms of photodetectors.

Phototransistors and photodarlington detectors are often used to detect light. Both work well if you don't require high speed. Typical phototransistor rise and falls times are 1 to 5 microseconds; for Darlington they are hundreds of microseconds. In electronics that is equivalent to measuring bandwidth with a stopwatch and a calendar, respectively.

The author prefers to use PIN diodes in the photoconductive mode as detectors. Rather than being limited by the gain and bandwidth of a phototransistor, PINs give us the choice of both by allowing us to design our own amplifiers. PIN diodes are also very "quiet." Their noise is almost unmeasurable.

LED's. A light-emitting diode is a semiconductor device that emits light when forward biased. You would think that choosing an LED for a system such as this would be a simple matter, but it's not. Characteristics such as power output,
wavelength, speed, and beam angle all come into play.

The first consideration is usually the power output. However, if you can’t get the power into your lens, it’s simply wasted, and if it’s at the wrong wavelength, your detector won’t see it.

Wavelength is important. The most widely used wavelengths for infrared devices are 880 nanometers and 940 nanometers. The first choice is to find a detector and emitter that match. We used 940 nanometers, which is further into the infrared than 880. Many detectors made for 940 nanometers have a built-in visible-light filter. Filters are not often put on the 880-nanometer devices because that wavelength is near the visible spectrum and such a narrow filter would be difficult to produce in large quantities.

If you wish to produce a hundred thousand Air Hop systems with optics, you would want to buy emitters with wide but uniform beams. Then you would have a custom lens designed and produced at a small cost in plastic material. That would produce the most uniform beam and would be reproducible in large quantities. In applications such as remote control, you might want to use an emitter or many emitters to “flood” an area. In that case, you would want an emitter with a wide beam.

If, on the other hand, you’re just trying to see how far you can “air hop” a signal, you will want something totally different. Narrow beam angles are necessary for efficient coupling to an off-the-shelf lens. As a matter of fact, choosing the smallest beam angle available will save money when it comes to buying a lens. The smallest easily obtainable beam angle for an LED is about 20 degrees. When a manufacturer specifies that angle, he really means a “half angle” of 20 degrees, or a solid cone of 40 degrees.

The angle also specifies the half-power point. For example, if a manufacturer specifies 5 milliwatts and a beam angle of 20 degrees, that means that if you can capture all of the power contained in a 40-degree cone, you will get 2.5 milliwatts of optical power. In any case, purchase an LED with a small beam angle, as much power as possible, and a reasonable speed.

Lenses. Lenses are to the optical world what antennas are to the world of RF. The importance of even simple lenses cannot be over emphasized. If any high-frequency RF engineer could build an antenna with 60 dB of gain for less than ten dollars, we would see a lot of happy RF engineers! Since the optical world deals with very small wavelengths, 60 dB (a gain of 1000) is certainly possible.

Although at first it might be hard to believe, the size of the lens on the receiver is very important, but on the transmitter it isn’t. That’s because at the receiver you are trying to intercept as much light as possible, so the larger the lens, the better. The purpose of the lens at the transmitter is to collimate the beam, so any lens with the right “f” number will work.

The “speed” of a lens, also called the “f” number, should be familiar to anyone with photography as a hobby. It’s a measure of the angle of acceptance of a lens. On the transmitting end, any light from the LED that

<table>
<thead>
<tr>
<th>Lens Diameter/Area (inch/sq. inch)</th>
<th>Power Gain (at 0.01 sq. inch)</th>
<th>Distance Improvement (85% lens efficiency)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3/14</td>
<td>314</td>
<td>x 16</td>
</tr>
<tr>
<td>3.7/07</td>
<td>707</td>
<td>x 24</td>
</tr>
<tr>
<td>4/12.6</td>
<td>1260</td>
<td>x 33</td>
</tr>
<tr>
<td>6/28.3</td>
<td>2830</td>
<td>x 49</td>
</tr>
</tbody>
</table>

FIG. 4—THE AIR HOP IS BUILT FROM THREE MODULES: an FM transmitter, an optical amplifier, and an FM demodulator.
FIG. 5—FM TRANSMITTER MODULE. It provides a microphone amplifier and FM modulator.

FM DEMODULATOR PARTS LIST

<table>
<thead>
<tr>
<th>All resistors are 1/4-watt, 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1—100 ohms</td>
</tr>
<tr>
<td>R2, R3, R6, R11–R13, R16—10,000 ohms</td>
</tr>
<tr>
<td>R4, R5—100,000 ohms</td>
</tr>
<tr>
<td>R7—33,000 ohms</td>
</tr>
<tr>
<td>R8—50,000 ohms, potentiometer</td>
</tr>
<tr>
<td>R9, R14, R15—68,000 ohms</td>
</tr>
<tr>
<td>R17—4700 ohms</td>
</tr>
<tr>
<td>R18—10,000 ohms, potentiometer</td>
</tr>
<tr>
<td>R19—22,000 ohms</td>
</tr>
<tr>
<td>R20—470,000 ohms</td>
</tr>
<tr>
<td>R21—10 ohms</td>
</tr>
<tr>
<td>Capacitors</td>
</tr>
<tr>
<td>C1, C6, C10, C16—1 µF, 16 volts, electrolytic</td>
</tr>
<tr>
<td>C2, C5, C9, C12—0.1 µF, ceramic</td>
</tr>
<tr>
<td>C3—100 µF, 16 volts, electrolytic</td>
</tr>
<tr>
<td>C4, C7—0.001 µF, ceramic, 10%</td>
</tr>
<tr>
<td>C8—470 pF, ceramic, 10%</td>
</tr>
<tr>
<td>C11—0.01 µF, ceramic</td>
</tr>
<tr>
<td>C13—100 pF, ceramic</td>
</tr>
<tr>
<td>C14—4.7 µF, 16 volts, electrolytic</td>
</tr>
<tr>
<td>C15—470 µF, 16 volts, electrolytic</td>
</tr>
<tr>
<td>Semiconductors</td>
</tr>
<tr>
<td>IC1—LM311 or LT1011 comparator</td>
</tr>
<tr>
<td>IC2—CD4046 phase locked loop</td>
</tr>
<tr>
<td>IC3—MC34119 audio amplifier (Motorola)</td>
</tr>
<tr>
<td>Q1—2N3904 NPN transistor</td>
</tr>
<tr>
<td>Miscellaneous: 9-volt battery and clip, PC board, blank PC-board material and solder-quick strips for shield (see text), PVC pipe, plastic disks, hardware, wire, solder, etc.</td>
</tr>
</tbody>
</table>

Note: The following items are available from Q-Sat, P.O. Box 110, Boalsburg, Pa. 16827:
- Complete Air Hop kit including all three PC boards (does not include speaker, 10K volume control, lenses, PVC pipe and batteries), AIRHOP-KIT—$30.00
- FM demodulator kit including one IR LED and PC board, AHTX-KIT—$110.00
- FM demodulator kit including PC board only, AHTX-PCB—$50.00
- Optical amplifier kit including PIN diode and PC board, AHOPTAMP-KIT—$12.00
- FM demodulator kit including PC board only, AHOPTAMP-PCB—$6.00
- FM demodulator kit including PC board (no speaker or 10K volume control), AHTFDEMOD-KIT—$12.00
- FM demodulator kit including PC board, AHTFDEMOD-PCB—$6.00

Add $3.00 shipping and handling to all orders. Pennsylvania residents must add 6% sales tax. Please allow 3 to 4 weeks for delivery.

doesn't stay within that cone is lost. A 50-milliwatt LED will be of no value if the light "sprays" out at 90 degrees—any light that can't be coupled into the lens is lost.

The gain of a lens is basically the ratio of the area of the lens to the area of the detector. For example, the area of most PIN diodes is about 0.01 square inch. The area of a 2-inch diameter lens is 3.14 square inches. Therefore, the gain of a 2-inch lens is about 3.14/0.01 or 314. Remember that this amplifier (the lens) consumes no power, has (for our purposes) infinite bandwidth, and adds no noise to the signal. A device of this kind in the electrical world would be nothing short of a miracle.

Table 2 shows the gain for some different size lenses. The calculations assume that no light is absorbed or reflected by the lens, and the detector is at the exact focal point of the lens. Those assumptions are certainly not true. Even fine-quality camera lenses, which are coated with anti-reflective coatings, do not pass 100 percent of the light. There's plenty of room here for experimentation. Some crude experiments showed about 85% of the theoretical gain.

FM transmitter

The Air Hop is built from three modules. The first module is the FM transmitter. Two other modules (the optical amplifier and FM demodulator) comprise the receiver. A block diagram of the system is shown in Fig. 4.

The FM transmitter module, shown in Fig. 5, provides a microphone amplifier (Q1 and Q2) and an FM modulator built from a 555 timer (IC1). There are two adjustments, one for the FM center frequency (R11) and one for the amount of deviation (R4). Resistor R1 is for microphones that require an external power source, such as an electret type. For an external audio source, the input must be limited to a few millivolts.

The output of IC1 (pin 3) is adjusted via R11 so that the frequency is 50 kHz (20 microseconds). The output of the 555 can be frequency modulated by applying the upper trip-point
FIG. 6—THE OPTICAL AMPLIFIER MODULE converts the optical signal into an electrical signal, limits its bandwidth, and provides a differential drive to the comparator.

FIG. 7—YOU CAN MATCH transistors Q5 and Q6 using this circuit. Any transistor having less than about a volt between the collector and emitter has too much gain. Choose two transistors that have the closest match between collector-to-emitter voltages.

voltage reference to pin 5. Although you cannot sweep the frequency very far, deviations of 10 percent or so can be obtained easily. The FM deviation is a function of the amplitude of the signal applied to pin 5. If a DC voltage is applied to pin 5 and switched on and off, FSK (digital) data will result. Although the output of the 555 could drive a modest LED, transistor drivers are provided to drive multiple LEDs.

Current-limiting resistors R17 and R18 are adjusted to limit the current for your particular LED. Currents of up to 200 milliamps pose no problem for the LED's, but they will drain your batteries quickly. If you're using one LED, values of about 47 ohms will yield about 45 mil-

...tance across it. Using two resistors decreases the capacitance by a factor of two. All you have to do is join the two resistors above the PC board.

The output of the transimpedance amplifier is simply its input current times the transimpedance resistance. That's why it's sometimes called a current-to-voltage converter. As you increase the resistance, the signal increases, but the bandwidth decreases. Since the signal increases directly with the value of the resistance and the noise increases with the square root of the resistance, it makes sense to have the resistance as large as possible—it would, if you still had enough bandwidth. That's why Q1 is a VHF transistor.

Since the center frequency of the signal is at 50 kilohertz, it's desirable to limit the bandwidth of the optical amplifier to reduce the total noise. Transistor Q3 and the surrounding components form a two-pole high-pass filter at about 40 kilohertz. That eliminates such low-frequency noise as the 60-hertz optical noise given off by room lights.

Transistor Q4 and its associated circuitry form a 60-kilohertz low-pass filter. That eliminates high-frequency electrical noise such as that from AM radio stations.

When the low-pass and high-pass filters are cascaded, they form a bandpass filter centered...
on 50 kilohertz, with a pass band of about 20 kilohertz. You could reduce the noise by making the filter narrower, or by putting a narrower filter between the output of the optical amplifier and the input of the demodulation board. The disadvantage of doing that is that you would have to make the narrow filter tunable, and use a scope to adjust it.

Transistors Q5 and Q6 form a differential amplifier that is the only real gain stage in the optical amplifier besides Q1. The purpose of using a differential amplifier is so that a differential signal will be available to drive the voltage comparator. It’s nice to drive a comparator differentially because you get twice the signal but not twice the noise. There is one problem with a differential amplifier: if you want a reasonable amount of gain, the transistors must be well matched. That prevents one transistor from “current hogging” and saturating.

The matching of transistors can be done in several different ways—a curve tracer is best but most people don’t have access to one. Next best is a meter that actually measures gain at a given base or collector current. As a last resort, the circuit in Fig. 7 can be used. Some kind of socket, such as an IC socket with only three pins can be used to hold the transistor. Simply measure the voltage from the collector to emitter, and choose two transistors that have the closest match between the collector-to-emitter voltage. Any transistor having less than about a volt has too much gain.

It’s also a good idea to use bias resistors that have nearly the same values. Try to match the values of R16 and R23 and R17 and R24 as close as possible. If the final amplifier isn’t matched within a volt, you might want to adjust the values of R19 and R22. Those resistors were purposely put there to allow some “balancing” of the differential amplifier. Values from 10 to 33 ohms should be fine. (Potentiometers were not used because they are expensive.)

FM demodulator

The schematic for the FM demodulator is shown in Fig. 8. An LM311 comparator (IC1) converts the rather small analog signal to a digital level for the CD4046 phase-locked loop (IC2). Remember that the amplitude of the recovered audio has nothing to do with the amplitude of the received signal. The amplitude of the recovered audio depends only on the amount of frequency deviation set by the transmitter and the amplitude of your voice.

The phase-locked loop (IC2) is configured as a first-order FM demodulator. With no input signal, the center frequency of the loop (pin 3 of IC2, which is also TP3) is adjusted by R8 for a frequency of 50 kilohertz. Because the variation from one CD4046 to another can be quite large, you might have to adjust R7 and, perhaps, R9 as well.

The demodulated output from IC2 is low-pass filtered at 3 kilohertz by Q1 and its associated circuitry, and then sent to audio power amplifier IC3, a Motorola MC34119. A wider bandwidth can be obtained by making the filter higher in frequency. Since the “carrier” frequency is only 50 kilohertz, don’t try extending the audio bandwidth to more than 6 or 7 kilohertz. Pin 1 of the MC34119 can be used for squelch or in conjunction with a push-to-talk switch to silence the receiver while transmitting. If you don’t need the squelch, simply jumper pin 1 of IC3 to ground.

Although you can use a standard alkaline 9-volt battery to power the receiver, the current draw can be quite high on voice peaks. Six AA cells would be a much better choice.

We’ll finish up the project next month with complete construction details.
Use the 555 to generate sawtooth waves, detect missing pulses, convert DC to AC, boost DC voltage and more.

RAY M. MARSTON

THE POPULAR 555 TIMER IC HAS been the star of three previous Electronics Now articles (September 1992, page 58, October 1992, page 69 and November 1992, page 61.) Just when you thought that all possible applications for that versatile 555 had been exhausted—surprise! This article takes the 555 into new territory—a sawtooth generator, a “ramp” generator, a time-base generator, a frequency meter, and even a tachometer for your car.

But that’s not all—there is a missing-pulse detector, and DC voltage doubler, tripler and quadrupler. There are also negative and high-voltage generators and a DC to AC inverter!

If you’ve been following the previous articles and (we hope) building some or all of the circuits presented in them, you’ll be all set for the circuits presented here. Who said the microprocessor was the most versatile IC, anyway?

The last three articles on the 555 explained its basic operating principles. You would have learned (or refreshed your memory) about how to place external components so the timer functions either as a monostable or astable multivibrator. You might want to reread the introductory sections of those articles to brush up on the unusual features of the 555. A complete schematic of the circuitry contained in the 555 is given as Fig. 2 on page 64 of the September 1992 issue.

Figure 1 is another functional block diagram and pinout of the bipolar 555 with a different arrangement of functional blocks than the others given earlier, illustrating yet another manufacturer’s preferred data book presentation. Neither diagrams nor data sheets on the 555 have been standardized.

Sawtooth-wave generators

The 555 with external components can become a triggered nonlinear (exponential) sawtooth waveform generator, as shown in the schematic Fig. 2-a. The circuit is a modified
monostable multivibrator that is triggered by an external square wave trigger pin 2 obtained through capacitor C2 from the collector of transistor Q1. Note that output pin 3 of the 555, used in most of the 555-based circuits presented earlier is unused here.

The voltage across C4 (the timing component) is normally zero, but whenever the circuit is triggered, C4 charges exponentially through resistor R5 and period potentiometer R6 to two-thirds of the supply voltage. At that time, the monostable period ends and the voltage across C4 drops abruptly to zero. The output sawtooth waveform (Fig. 2-b) is taken across capacitor C4 through buffer transistors Q2 and Q3 and level potentiometer R7.

The period of the sawtooth or width can be varied from 9 microseconds to 1.2 seconds with the capacitance values for C4 listed in Table 1. The circuit's maximum usable repetition frequency is approximately 100 kHz.

The generator must be triggered by rectangular input waveforms with short rise and fall times. Potentiometer R6 controls the sawtooth period over a decade, and potentiometer R7 controls the amplitude of the output waveform.

Figure 3-a shows a triggered linear sawtooth or ramp waveform generator. Capacitor C4 is charged by a constant-current generator that includes Q1. The output waveform (Fig. 3-b) is taken at the wiper of level potentiometer R6, which is coupled to the voltage across C4 through Q2. Note that the curved ramps of Fig. 2-b have been flattened.

When a capacitor is charged from a constant current source, its voltage rises at a predictable linear rate that can be expressed as:

\[\text{Volts/second} = \frac{\text{amperes}}{\text{farad}} \]

By introducing more practical values, alternative expressions for the rate of voltage rise are:

\[\text{V/µs} = \frac{\text{mA}}{\text{µF}} \]

\[\text{V/ms} = \frac{\text{mA}}{\text{µF}} \]

Those formulas state that voltage rate-of-rise can be in-
FIG. 5—TRIGGER SELECTION CIRCUIT for the Fig. 4 circuit

FIG. 6—A 1-kHz LINEAR-SCALE ANALOG FREQUENCY meter circuit based on the 555.

FIG. 7—VEHICULAR TACHOMETER CIRCUIT based on the 555.

FIG. 8—ALTERNATIVE ANALOG TACHOMETER CIRCUIT to Fig. 6.

increased either by increasing the charging current or by decreasing the capacitance value.

The charging current in the Fig. 3-a circuit can be varied over the range of about 90 microamperes to 1 milliampere with PERIOD potentiometer R5, thus giving the 0.01 microfarad timing capacitor rates-of-rise of 9 volts per millisecond to 100 volts per millisecond.

Each one-shot or monostable cycle of the 555 ends when the voltage across C4 reaches two-thirds of the supply voltage. As shown in Fig. 3-a, the supply is 9 volts, so two-thirds of 9 volts is 6 volts, the amplitude of the ramp waveforms in Fig. 3-b.

The sawtooth cycles of the circuit have periods variable from 666 microseconds (2/3 millisecond) to 60 microseconds (6/100 millisecond).

Periods can be increased beyond those values by increasing the value of C4, or reduced by reducing the value of C4. In this circuit, stable timing periods depend on a stable voltage source.

Fig. 4-a shows how the circuit in Fig. 3-a can be modified to become an oscilloscope timebase generator. It can be triggered by external square waves through a suitable trigger selector circuit. The ramp output waveform (top of Fig. 4-b) is fed to the X plates of an oscilloscope with a suitable amplifier stage. The pulsed output from pin 3 of the 555 (shown in the lower half of Fig. 4-b) is fed to the CRT's Z axis to trace the ramps with higher brightness.

The shortest useful ramp period that can be obtained from the circuit in Fig. 4-a (with a 0.001 microfarad capacitor C3) is about 5 microseconds. That value, when expanded to give full deflection on an oscilloscope with a ten-division graticule, yields a maximum timebase rate of 0.5 microsecond per division.

The timebase circuit of Fig. 4-a can synchronize signals at trigger frequencies up to about 150 KHz. At higher frequencies, the input signals must be divided by a single- or multi-decade frequency divider. With that approach, the timebase can be used to view input signals at megahertz frequencies.

Figure 5 illustrates a simple but versatile trigger selector circuit for the timebase generator in Fig. 4-a. Operational amplifier IC1 (a μA741) has a reference voltage fed to its non-inverting input pin 3 by trigger level potentiometer R4. The signal voltage is then fed to IC1's inverting input 2 through switch S1. Resistor R1 and SENSITIVITY potentiometer R3.

Switch S1 selects either in-phase or out-of-phase input signals from the Y-driving amplifier of the oscilloscope, permit-
ting the selection of either the plus or minus trigger modes. The output of the circuit in Fig. 5 is coupled directly to the C1 input of Fig. 4.

Analog frequency meters

Figure 6 shows the 555 IC organized as a linear-scale analog frequency meter with a full-scale sensitivity of 1 kHz. The circuit's power is obtained from a regulated 6-volt supply, and its input signals can be pulses or square-wave signals with peak-to-peak amplitudes of 2 volts or greater. Transistor Q1 amplifies this input signal enough to trigger the 555. The output from pin 3 is fed to the 1-milliampere full-scale deflection moving-coil meter M1 through offset-canceling diode D1 and multiplier resistor R5.

Each time the monostable multivibrator is triggered, it generates a pulse with a fixed duration and amplitude. If each generated pulse has a peak amplitude of 6 volts and a period of 1 millisecond, and the multivibrator is triggered at an input frequency of 500 Hz, the pulse will be high (at 6 volts) for 500 milliseconds in each 1000 milliseconds. Moreover, the mean value of output voltage measured over this period is 500 milliseconds/1000 milliseconds × 6 volts = 3 volts or half of 6 volts.

Similarly, if the input frequency is 250 Hz, the pulse is high for 250 milliseconds in each 1000-millisecond period. Therefore, the mean output voltage equals 250 milliseconds/1000 milliseconds × 6 volts = 1.5 volts or one quarter of 6 volts. Thus, the circuit's mean value of output voltage, measured over a reasonable total number of pulses, is directly proportional to the repetition frequency of the monostable multivibrator.

Moving-coil meters give mean readings. In the circuit of Fig. 6 a 1-milliampere meter is connected in series with multiplier resistor R5, which sets meter's sensitivity at about 3.4 volts full-scale deflection. The meter is connected to give the mean output value of the multi-

FIG. 9—MISSING-PULSE DETECTOR with LED or relay output.

FIG. 10—DC VOLTAGE-DOUBLER based on the 555.

FIG. 11—DC VOLTAGE-TRIPLER based on the 555.

FIG. 12—DC VOLTAGE-QUADRUPLER based on the 555.
vibrator, and its reading is directly proportional to the input frequency.

With the component values shown, the circuit is organized to read full-scale deflection at 1 kHz. To set up the circuit initially, a 1-kHz square-wave signal is fed to its input, and full-scale-adjust potentiometer R7 (it controls pulse length) is set to give a full-scale reading on the meter.

The full-scale frequency of the circuit in Fig. 6 can be varied from about 100 Hz to 100 kHz by selecting the value of C3. The circuit can read frequencies up to tens of megahertz by introducing the input signals to the monostable multivibrator through either a single or multi-decade digital divider. The dividers can reduce the input frequencies to values that can be read on the meter.

Figure 7 shows how the circuit in Fig. 6 can be modified to become an analog tachometer or revolutions per minute (rpm) meter for motor vehicles. The circuit is powered by a regulated 8.2 volts derived from the vehicle's 12-volt battery with resistor R1. Zener diode D1, capacitor C1, and the ignition switch. The 555 is triggered by a signal from the vehicle's breaker points conditioned by the network of resistor R2, capacitor C2, and Zener diode D2.

The 50-microampere moving coil meter M1, the rpm indicator, is activated from output pin 3 of the 555 through diode D3. Current is applied to the meter through series-connected resistor R5 and calibrate potentiometer R6 from the power supply when the 555's output is high. But current is dropped nearly to zero by diode D1 when the 555's output is low.

Both the circuits of Figures 6 and 7 are powered from regulated sources to ensure a constant pulse amplitude and provide accurate, repeatable readings from the meter. The meter is actually a current-indicating device, but it is connected as a voltage-reading meter with suitable multiplying resistors. They are R6 and R7 in Fig. 6 and R5 and R6 in Fig. 7.

The diagram of Fig. 8 shows the outline schematic for an alternative analog frequency meter that requires neither a multiplier resistor nor a regulated power supply. In this circuit, output pin 3 of the 555 is connected to the meter through JFET transistor Q1. Configured as a constant-current generator through potentiometer R3, it sends a fixed-amplitude pulse to the meter regardless of variations in the supply voltage.

Missing-pulse detector

Figure 9 illustrates how the 555 can become the key component in a missing-pulse detector that closes a relay or illuminates a LED if a normally expected event fails to occur. The 555 is connected as a monostable multivibrator except that Q1 is placed across timing capacitor C1, and its base is connected to trigger pin 2 of the IC through R1.

A series of short pulse- or switch-derived clock input signals from the monitored event is sent to pin 2. The values of R3 and C1 were selected so that the natural monostable period of
the IC is slightly longer than the repetition period of the clock input signals.

Thus, each time a short clock pulse arrives, C1 is rapidly discharged through Q1, and simultaneously a one-shot timing period is initiated through trigger pin 2 of the IC, forcing output pin 3 high. Before each monostable period can terminate naturally, however, a new clock pulse arrives and starts a new timing period. Therefore output pin 3 remains high as long as clock-input pulses continue to arrive within the preset time limits.

If a clock pulse is missing or its period exceeds the pre-set limits, the monostable period will end on its own. If this happens, pin 3 of the IC will go low and drive either the relay or LED "on." As a result, the circuit becomes a missing-pulse detector. It will produce a pulse output when an input pulse fails to occur within the timer delay.

Missing-pulse detectors like this can automatically warn of gaps or one or more missing pulses in a stream of pulses at the input. They are used in communications systems, continuity testers, and security systems. With the component values shown, the timer has a natural period of about 30 seconds. This period can be changed by changing R3 or C1 to satisfy specific needs.

Voltage converters.
The 555 IC can be instrumental in converting a DC voltage to a higher DC voltage, reversing the polarity of a DC voltage or converting it to an AC voltage. Figures 10 to 15 show variations of those circuits.

Figure 10, for example, shows how the 555 functions in a DC voltage doubler. The 555 is organized as a free-running astable multivibrator or square-wave generator that oscillates at about 3 kHz. (The oscillation frequency is set by the values of R1, R2 and C2.) The circuit's output is sent to the capacitor/diode voltage-doubler network made up of C4, D1, C5, and D2. That network produces a voltage that is about twice the supply voltage. Capacitor C1, across the supply, prevents the 3-kHz output of the 555 from being fed back to the IC, and C3 stabilizes the circuit.

The voltage-doubler circuit of Fig. 10 will operate from any DC supply offering from 5 to 15 volts. As a voltage doubler it can provide outputs from about 10 to 30 volts. Higher output voltages can be obtained by adding more multiplier stages to the circuit circuit. Figure 11 is the schematic for a DC-voltage tripler that can supply from 15 to 45 volts, and Fig. 12 is the schematic for a DC voltage quadrupler that supplies from 20 to 60 volts.

The DC negative-voltage generator is a particularly useful 555-based converter circuit. It supplies an output voltage that is almost equal in amplitude but opposite in polarity to that of the IC supply. This circuit can provide both positive and negative voltages for powering op-amps and other ICs with dual power requirements from a positive supply. The DC negative-voltage generator in Fig. 13, like that shown in Fig. 10, is a 3-kHz oscillator that drives a voltage-doubler output stage made up of C4, C5, D1, and D2.

Figures 14-a and 15 show DC to AC inverters that change input DC voltage to output AC voltage by means of transformer coupling. The AC voltage from these inverters needs no further conditioning, and it can be converted back into higher DC voltages with the addition of only a half-wave rectifier and a capacitor filter.

The inverter shown in Fig. 14-a can drive a neon lamp with its AC output. If the lamp and resistor R4 are replaced by the diode and capacitor filter as shown in Fig. 14-b, the AC output can be converted back to a low-current, high-voltage DC output. For example, with a 5- to 15-volt DC input, the inverter can produce an output of several hundred volts DC.

The 555 in Fig. 14-a is configured as a 4-kHz oscillator and its square-wave output from pin 3 is fed back to the input of an audio transformer T1 through resistor R3. Transformer T1 has the necessary ratio of primary to secondary turns to produce the desired output voltage. For example, with a 10-volt supply and a 1:20 turns ratio on T1, the unloaded output of T1 will be 200 volts, peak.

The DC-to-AC inverter schematic of Fig. 15 produces an AC output at line frequency and voltage. The 555 is configured as a low-frequency oscillator, tunable over the frequency range of 50 to 60 Hz by FREQUENCY potentiometer R4. The 555 feeds its output (amplified by Q1 and Q2) to the input turns of transformer T1, a reverse-connected filament trans-
form with the necessary step-up turns ratio. Capacitor C4 and coil L1 filter the input to T1, assuring that it is effectively a sinewave.

A CMOS version of the 555
The standard bipolar 555 timer IC is still one of the most popular and versatile IC’s today, but it has some drawbacks that were overcome by a CMOS version. For example, the 555 will not operate from voltages less than about 5 volts. Moreover, it typically draws 10 milliamperes of quiescent current when run from a 15-volt supply. This rather large current drain makes it unsatisfactory for most battery-powered circuits.

In addition to those shortcomings, the 555 produces a massive 400-milliampere current spike from the supply as its output is switched from one state to the other. A spike, lasting only a fraction of a microsecond, can cause lost bits in digital circuits near the 555 or powered from the same supply.

The CMOS version of the 555 timer, also able to operate in both monostable and astable modes, is known generically as the 7555. Figure 16 shows the functional block diagram and pinout of the 7555. This can be compared with the functional block diagram of Fig 1. Note that the pinout is identical.

Harris Semiconductor’s version of the 7555, for example, is designated the ICM7555. In common with all other 7555’s, it will run from a +2- to +18-volt DC supply. Notice that the resistors in its internal voltage divider are 50 K ohms rather than the 5K of the 555. Other sources of the 7555 are Maxim (ICM7555) and Sanyo (LC7555).

Supply current to the 7555 is typically only 60 microamperes when run from an 18-volt supply. In addition, typical trigger, threshold, and reset currents are 20 microamperes, orders of magnitude lower than those of the bipolar 555. Those low currents permit the use of higher impedance timing elements for longer RC time constants. The 7555 can be organized to time out in periods from microseconds to hours.

Table 2 compares the characteristics of the 7555 to those of the 555. The 7555 permits:
• Lower supply current
• Wider supply voltage range
• Lower power dissipation
• Lower current spikes in output transitions
• Higher switching frequency performance

These improvements must be balanced against the higher cost of the 7555. The 7555 should be specified only if:
• It is to be used in a battery-powered circuit where power economy is critical
• Available power is 5 volts or less (too low for the 555)
• It is to be in digital circuitry whose signal output could be degraded by noise.

The 7556 is the dual CMOS counterpart of the bipolar 556. The 7556 can directly replace any 555 in all the circuits presented in this series.

Rates: Ads are 2½" x 2½". One insertion $995 each. Six insertions $950 each. Twelve insertions $925 each. Closing date same as regular rate card. Send order with remittance to Computer Admart, Electronics Now Magazine, 500-B Bi-County Blvd., Farmingdale, NY 11735. Direct telephone inquiries to Arline Fishman, area code-1-516-293-3000. FAX 1-516-293-3115. Only 100% Computer ads are accepted for this Admart.
High resolution and lots of color bring gorgeous images to your PC.

STAN WARNER

Tumbling prices and surging power have brought computers into nearly every facet of our lives. Gone forever are the days when only large companies could afford computers. No longer does it take a mainframe that nearly fills an entire room to sort business records or do mind-bending arithmetic. Today's powerful yet affordable desktop machines are taking on exciting new chores in every phase of business—and the home.

According to the Electronic Industries Association (EIA), the computer and peripheral market more than doubled during the 1980's, from $24.3 billion in 1980 to $56.1 billion in 1990, as shown in Fig. 1. According to the EIA, the home computer market grew 50% in one three-year period, from $4.5 billion in 1988 to $6.4 billion in 1991. In addition, personal computers can be found in 33% of the homes in the United States.

Today's computers can crunch reams of data at blinding speeds, but improvements in monitor technology have also increased the number of computer applications. Desktop publishing systems that combine text and graphics are bringing print-shop quality to financial reports, company newsletters, and sales presentations. Surgeons create computer-generated, 3-D images of their patients' insides long before they pick up a scalpel. Landscape artists design life-like layouts with trees, shrubs, and flowers before turning a single spade of dirt.

Monitor improvements

These improvements have come about as a result of enhancing four primary performance-defining characteristics: horizontal frequency, horizontal resolution, vertical frequency, and vertical resolution, as shown in Fig. 2. Each is defined below:

Horizontal Frequency The number of times per second the electron beam travels horizontally across the CRT and back. Horizontal scan time is the inverse of horizontal frequency \(f_h \).

Horizontal Resolution The number of dots or picture elements ("pixels") that can be displayed horizontally. A pixel is the smallest dot the monitor can display.

Vertical Frequency The number of times per second the electron beam travels from the
FIG. 1—SALES OF COMPUTERS AND PERIPHERALS surged in the 1980's, and continue to grow in the 1990's.

The smaller the dot pitch, the sharper the image. Typical values of dot pitch are between 0.26 and 0.50 mm. Figure 3 shows the distance between the centers of two red dots.

Today's high-resolution monitors represent improvements over their predecessors in several ways, including increased horizontal and vertical frequency and resolution, and decreased dot pitch. On early monitors, the electron beam typically took 63.7 µs (corresponding to a frequency of 15.7 kHz) to scan one line. Today it is not uncommon for the beam to complete its trip in 13.0 µs (76.9 kHz) or even less, as shown in Fig. 4.

In addition, more pixels are being displayed per horizontal line, and more lines are displayed per frame. Whereas early computer monitors had 640 horizontal pixels and 200 lines, common monitors today have 1,024 horizontal pixels and 768 lines—or more. A faster scan rate gives the monitor extra time to display additional lines and pixels.

Video bandwidth

Video bandwidth is the highest frequency the monitor's video circuits can pass. In general, higher resolution requires higher bandwidth. A visual indication of sufficient bandwidth comes from displaying a pattern that produces a single-pixel line, as shown in Fig. 5.

To get a basic understanding of the bandwidths required by high- and low-resolution monitors, let's calculate the bandwidth required by each.
We'll analyze a high-resolution monitor that scans at 64 kHz and displays 1024 pixels per line, and a low-resolution monitor that scans at 15.7 kHz and displays 640 pixels per line.

High-Resolution Bandwidth

Inverting the horizontal scanning frequency (64 kHz) gives a total horizontal scan time of 15.6 µs. As shown in Fig. 6, about 80% of that time is for active video (what's seen on the monitor) and about 20% is for blanking. Using the 80/20 ratio in the example translates into 12.5/3.1 µs active/blanking. If it takes 12.5 µs to display 1024 pixels, it therefore takes 12.5/1024 = 12.2 ns to display a single pixel. Inverting that figure gives a bandwidth of 81.9 MHz. So, to see a crisp, distinct line, one pixel wide, the bandwidth of the video amplifiers in a high-resolution monitor must be 81.9 MHz or greater.

Low-Resolution Bandwidth

A horizontal scan rate of 15.7 kHz gives a horizontal scan time of 63.7 µs. Eighty percent of that is 51.0 µs, during which 640 pixels will be displayed. Thus the time per pixel = 51/640 = 79.6 ns. Inverting that figure gives a low-resolution bandwidth of 12.6 MHz.

Computer monitors

Monitors can be divided into three basic categories: digital, analog, and ECL (emitter-coupled logic). Digital and analog monitors can be either monochrome or color. ECL monitors are always monochrome.

The video input signals to a digital monitor are TTL logic levels that are either high (greater than 2 volts) or low (less than 0.8 volts). A color digital monitor has red, green, blue, and (usually) intensity inputs, and it can display as many as 64 colors, depending on the binary code on the RGBI inputs. Figure 7 shows how different combinations of 1's and 0's translate into different colors on a digital color monitor. A digital monochrome monitor can display as many as 64 shades of gray (or green or amber, depending on the phosphor), also by using combinations of logic levels.

An analog monitor can display an infinite number of colors (or shades of gray). The video signal fed to an analog monitor is usually 0.7 volts peak-to-peak (black to white).
put voltage and gray level.

To achieve fast switching time and higher resolution, some high-end monitors use ECL ICs. ECL monitors are monochrome, can display only a limited number of shades of gray, typically have a 19-inch or larger screen, and horizontal resolutions greater than 1024 pixels.

Video adapters

Most IBM-compatible personal computers have a video adapter card that is responsible for generating the video and sync signals used by the monitor. There are many standards for the different video formats, as shown in Table 1. Each format has a different resolution and scan rate. Fixed-frequency monitors are built to handle just one format; multi-frequency monitors can handle several. Digital monochrome monitors are least expensive, followed by analog monochrome monitors, followed by fixed-frequency color monitors, followed by multi-frequency color monitors.

IBM introduced the CGA and MDA formats in the early 1980s. Both are digital formats. CGA provides 16 colors and can display bit-mapped graphics at a resolution of 640 × 200. MDA provides only two shades of a single color and cannot display graphics. The Hercules card met a need by providing total compatibility with the MDA and also providing the ability to display bit-mapped graphics, e.g., graphs in Lotus 1-2-3.

IBM introduced the EGA standard in 1984. EGA's increased scanning frequency allowed a significant improvement in resolution over CGA, from 200 to 350 lines (horizontal resolution remained the same). EGA is a digital standard that can simultaneously display 16 of a total of 64 colors.

Next came IBM's PGA standard, in 1985. It was the first PC-based analog format, with TTL composite sync. The scanning frequency increased EGA's 21.8 kHz by about 50% to 30.5 kHz. The PGA standard displays 256 colors out of 4096.

IBM introduced the VGA standard in 1987. VGA produces analog video with separate TTL sync, and a horizontal scan frequency of 31.5 kHz. VGA can display 256 colors out of 256,000 in a low-resolution mode, and 16 colors in a text mode. VGA increased vertical resolution from 350 to 480 lines, again keeping horizontal resolution the same at 640.

After VGA started to become popular, the market demanded even more resolution and color. IBM introduced the 8514, but prices were high, and at first only a model for the PS/2 was available. So video-card vendors introduced a variety of Super VGA formats that typically max-out at 1024 × 768, with 256 colors. IBM later introduced XGA, the current version of which supports 1024 × 768 × 256. There are rumors that an upcoming 80×66 microprocessor from Intel will have a built-in XGA video processor.

The Macintosh II standard produces an analog video signal with separate composite TTL sync. Other MAC standards place the composite sync on the green video line. Some Macintosh video cards are capable of producing 256 colors from more than 16 million. These cards are also available for PCs.

The video formats shown in Table 1 illustrate the vast changes that have occurred in the PC side of the computer market during the past ten years. But the chart doesn't tell the entire story; these are only the monitors sold for mainstream applications (e.g., word processing, spreadsheets, and home finance). In other areas (e.g., engineering workstations, medical imaging devices, high-end publishing equipment), it is not uncommon for monitors to have resolutions of 2,048 pixels or more, and horizontal scan frequencies three to four times greater than that of VGA. Wouldn't it be great to have one of those monitors sitting on your desk? If current market trends continue, there's a good chance that you will—and soon.

TABLE 1—COMMON COMPUTER MONITOR FORMATS

<table>
<thead>
<tr>
<th>System/Mode</th>
<th>Horizontal Frequency (kHz)</th>
<th>Vertical Frequency (Hz)</th>
<th>Horizontal Resolution (Pixels)</th>
<th>Vertical Resolution (Lines)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color/Graphics Array (CGA)</td>
<td>15.7</td>
<td>60</td>
<td>640</td>
<td>200</td>
</tr>
<tr>
<td>Monochrome Display Adapter (MDA)</td>
<td>18.4</td>
<td>50</td>
<td>720</td>
<td>350</td>
</tr>
<tr>
<td>Hercules Graphics Adapter (HGC)</td>
<td>18.4</td>
<td>50</td>
<td>720</td>
<td>350</td>
</tr>
<tr>
<td>Enhanced Graphics Adapter (EGA)</td>
<td>21.8</td>
<td>60</td>
<td>640</td>
<td>350</td>
</tr>
<tr>
<td>Professional Graphics Adapter (PGA)</td>
<td>30.5</td>
<td>60</td>
<td>640</td>
<td>480</td>
</tr>
<tr>
<td>Video Graphics Array (VGA) Mode 1</td>
<td>31.5</td>
<td>70</td>
<td>640</td>
<td>350</td>
</tr>
<tr>
<td>Video Graphics (VGA) Mode 2</td>
<td>31.5</td>
<td>70</td>
<td>640</td>
<td>480</td>
</tr>
<tr>
<td>Video Graphics (VGA) Mode 3</td>
<td>31.5</td>
<td>70</td>
<td>720</td>
<td>400</td>
</tr>
<tr>
<td>Super VGA</td>
<td>35.2</td>
<td>56</td>
<td>800</td>
<td>600</td>
</tr>
<tr>
<td>8514A</td>
<td>35.2</td>
<td>87</td>
<td>1024</td>
<td>768</td>
</tr>
<tr>
<td>Extended Graphics Adapter (XGA)</td>
<td>35.2</td>
<td>87</td>
<td>1024</td>
<td>768</td>
</tr>
<tr>
<td>Apple Macintosh II</td>
<td>35.5</td>
<td>67</td>
<td>640</td>
<td>480</td>
</tr>
</tbody>
</table>
The latest in electronics is only a phone call away! 1-800-221-7774

In N.Y. or if busy call: 1-718-722-4750. Please mention code ES892.

- Camera Equipment
- Business Machines
- Calculators/Organizers
- Electronic Games
- Hi-Fi Equipment
- Imageburst
- Watching/Sunglasses
- Small Home Appliances
- Jewelry

Visit our superstores at:
67 West 47th Street 115 West 45th Street
Bet. 7th & 8th, N.Y.C. (B) 1-212-921-1287
Bet. 6th & Broadway, N.Y.C. (B) 1-212-921-1287

Sun. 10-5, Mon.-Thurs. 10-8, Fri. 9-8

Toll-free line is open
SUN. 10-5, DAILY 8-7, FRI. 8-2
Local lines are open
SUN. 10-5, DAILY 9-9, FRI. 9-9

OVERNIGHT DELIVERY to any point in the continental USA

A New York Landmark for over 26 years!
TWO TRANSMITTERS IN ONE! 5 MINUTE ASSEMBLY! MONEYBACK GUARANTEE!
New Law Enforcement grade device on a single chip is the most sensitive, powerful, stable room transmitter you can buy. Uses any 3V-12V battery. Or attach to telephone line to monitor all telephone conversations over 1 mile away without batteries! 100mW output! 80-130MHZ. Receive on any FM radio or wideband scanner. VT-75 microtransmitter. $49.95 + 1.50 S&H. VISA, MC, MO. COD's add $4.00. DECO Industries, Box 607, Bedford Hills, NY 10507. 914-232-3878.
CIRCLE 127 ON FREE INFORMATION CARD

CABLE TV 50dB NOTCH FILTERS for interference removal or channel censoring. Filters are user-adjustable to desired channel or frequency. Eight Models available, each for certain channels: 2 & 3; 4 to 6; 7 to 13; 14 to 17; 18 to 22; 23 to 28; 30 to 36; 95 to 99 plus 0 & 1. Just $30 each or 3 for $75, includes shipping. ONE MONTH MONEY BACK, fast delivery. Visa, MC, check or M.O. (C.O.D. is $5 extra) Huge discounts for higher quantities. Star Circuits, P.O. Box 94917, Las Vegas, NV 89193. Call 24 hours 1-800-535-7827.

CABLE TV CONVERTERS and DESCRAMBLERS SB-3, TRI-BI, MLG, M35B, DRZ-DIC. Call for catalog and price list. Special combos available. We ship COD. Quantity discounts. Call for pricing on other products. Dealers wanted. FREE CATALOG. We stand behind our products where others fail. One year warranty. Ace Products, 1-800-234-0726.
CIRCLE 75 ON FREE INFORMATION CARD

GET YOUR RECHARGE CATALOG FREE...EARN BIG $ IN YOUR SPARE TIME—All supplies and Do-It-Yourself kits with complete instructions available. Supplies cost from $9.95 in qty and you can sell recharged toner cartridges for $40.00 to $55.00 each. Printers include HP LaserJet and Series II, Apple LaserWriter, QMS, etc. Canon PC-25 Copier also. Chenesko Products, 2221 Fifth Ave., Suite #4, Ronkonkoma, NY 11779, 516-467-3205. FAX 516-467-3223, 1-800-221-3516 CIRCLE 181 ON FREE INFORMATION CARD

WORLD'S SMALLEST FM TRANSMITTERS! New Surface Mount Technology (SMT) makes all others obsolete! XST500 Transmitter—powerful 3 transistor audio amplifier, transmits whispers up to 1 mile. XSP250 Telephone Transmitter—line powered, transmits conversations up to ¼ mile. Both tune 88-108 MHz. Easy to assemble E-Z KITS (SMT components pre-assembled to circuit board) XST500—$39.95, XSP250—$29.95, Visa/MC COD add $5. Xandi Electronics, 201 E. Southern Ave., Suite 111, Tempe, AZ 85282, 1-800-336-7389.
CIRCLE 193 ON FREE INFORMATION CARD

WHAT'S NEWS
continued from page 6

the development of table-top, laser-powered particle accelerators, as opposed to today's massive, expensive accelerators. Another potential use for supercharged laser beams is the development of an X-ray laser capable of observing the molecular and atomic action of living cells.

The secret to the record-breaking power levels is a technique called chirped-pulse amplification, in which laser pulses are first produced in short bursts of a fraction of a picosecond (about one trillionth of a second). The duration of the pulses is then stretched out about a thousand times before the pulses enter the laser's amplifier. After amplification, the pulse is compressed back to the original fraction of a picosecond burst.

The research teams' "ultimate goal," according to Jacques Coutant, department head at the Centre, "is to push the power of the beam to 1000 terawatts." R-E

VIDEO NEWS
continued from page 8

HDTV service, since most major cable systems have channels to spare. It's easy to see the possibility of a pay channel carrying movies in widescreen near-theater definition, the way they were intended to be seen. In fact, HBO and other pay cable operators are excited over the prospect. The same is true of the proposed multi-channel direct satellite-to-home systems, such as Hughes Aircraft's DirectV, which seem certain to earmark some channels for HDTV.

The real key to the equation lies with consumers. Will they be willing to pay $2000 and up—perhaps way up—for the first HDTV sets when there is little or no programming? Test after test shows average viewers regard program content as more important than picture quality. A massive education job and some significant program pump-priming seem indicated if HDTV is to catch on in a faster time frame than color TV's 10 years. R-E
Welcome to...

Science PROBE!®

The Amateur Scientist's Journal

Embark on an irresistible new journey into the realm of mystery, challenge, and exploration! The perfect magazine for the budding scientist, the serious amateur, the professional who would like to relax, and those who simply want to gaze at the stars.

Articles to appear in upcoming issues of Science PROBE! are:

- Inside Internet—A Scientific Computer Network
- Make your own Seismometer
- Operate a Solar-Powered Weather Station
- Assemble a Solid-State Portable Barometer
- The Bicycle—A Traveling Scientific Laboratory

If you're fascinated by science in all its many forms, if you are compelled to experiment and explore, then Science PROBE! is your kind of magazine!

For Faster Service—Call Today:
1-800-777-5489

Science PROBE!
500-B Bi-County Boulevard
Farmingdale, NY 11735

Please forward my copy of Science PROBE! as soon as it comes off the press. I am enclosing $3.95-U.S.A. ($4.82-Canada includes G.S.T.) plus $1.00 for shipping and handling. Better still, please enroll me as a subscriber and send the next four (4) quarterly issues of Science Probe. I am enclosing $11.95-U.S.A. ($18.14-Canada includes G.S.T.)

[Box for options: Next Issue Only, Next Four Issues (1 Year)]

Offers valid in the U.S.A. and Canada only. No foreign orders.

Name
Address
City State ZIP

All Orders payable in U.S.A. Funds only.

ON SALE AT QUALITY NEWSSTANDS, CONVENIENCE STORES AND SUPERMARKETS
GET YOUR COPY TODAY—$3.95-U.S.A.—$4.50-Canada
Cable TV Article Parts

We stock the exact Parts & PC Board for an article published in Radio Electronics Magazine on building a Snooper Stopper.

Snooper Stopper Kit.............$19.95
Includes all the original Parts & Etched, Drilled Silk-Screened PC Board.

Snooper Stopper...................$39.00
This is an assembled and tested fixed frequency 106.5MHz. Snooper Stopper for most Jerrold systems.

Protect yourself from descrambler detection and stop the Bullet with one of our Snooper Stoppers.

Macrovision...now you see it, now you don't.

Macrovision Kit.....................$29.00
Includes all the original Parts & Etched, Drilled Silk-Screened PC Board. Originally Published in Radio Electronics Magazine.

Call Toll Free 1-800-886-8699
Visa, MasterCard or COD

Northeast Electronics, Inc.
PO Box 3310
N. Attleboro, Ma. 02761

FIG. 10—EXPLODED VIEW OF INRUSH-CURRENT limiter circuit in enclosure. Note the completion of ground within the case with a 3-wire power cord.

The completed circuit. Pull the three-wire cable through a grommet in the case sidewall as shown. Strip the jacket from the cable in the case, strip the end of the green ground wire, and connect it to the ground terminal of the three-prong receptacle. Solder one of the cable's conductors to the PC board, as shown, and solder the other conductor to one terminal of the switch.

Using short insulated lengths of the same cable conductor, solder a connection from the switch to the other side of the PC board, as shown. Solder two more short lengths of conductor to the output pads on the PC board, and connect their other ends to the panel-mount receptacle.

Fasten the circuit assembly in the case with hold-down screws and close the cover. Fasten the cover in position with the four screws included. The inrush-current limiter then becomes a plug-in accessory and the host equipment need not be altered. The equipment's power switch should be clamped in the "on" position so that power to the equipment is then applied with the limiter's on-off toggle or rocker switch.

Although the surge protector is in the circuit only for short time intervals, be sure that any protected equipment does not draw more than 2 amperes. R-E
So many exciting new hacker opportunities have come down this month that I do not even know where to start. We seem to be moving into a boundless new era of hardware hacking.

Before we begin, though, there have been a few recent helpline calls over some really ancient history which we should go over one final time...

Follow that current!

Which way does the current travel in any electrical or electronic circuit? Many years ago, one of the electrical pioneers ventured his wild guess that electrical current always goes from the negative to the positive terminal in an energy source and from positive to negative in an energy sink.

It took over a century to verify, but the guess turned out to be correct. At least for certain solid-state circuits, at least some of the time.

To this day, this guess is called the conventional electrical current, and appears in Fig. 1. Conventional current is the only standard taught in all university- and all graduate-level engineering courses, is used by all physicists, and is accepted by all large electronic firms worldwide.

Conventional current is shown in the direction of the arrows on all the standard electronic symbols. Even the IEEE tie clasp and cuff links strongly restates conventional current. So does the right-hand generator rule and left-hand motor rule.

Yeah, but just which way does the current really go? Well, a glib answer for the new age nineties is "any way you want it to."

In semiconductor loads, the current direction is decided by the majority carriers. In any PNP transistor or any P-channel MOSFET, conduction is by hole carriers, and the current does in fact go in exactly the same direction as the conventional current. In N-type devices, the current is the opposite of the conventional current direction.

So what is the problem? And why am I standing here whipping this long-dead horse?

Way back during World War II, PNP vacuum tubes were very few and far between. Come to think of it, they still are. Because of that, the military introduced the concept of the electron current to explain how a vacuum tube works. And many trade schools and lower-level textbooks continued the practice into the fifties and sixties.

That led to the absurd result that a few hackers, technicians, and much of the hobby press had their currents heading in one way, while all of the engineers, physicists, and the rest of industry had their currents heading in the exact opposite direction.

The bottom line: If any individual or any textbook still tries to teach you electron current, they are ripping you off. They are also doing you a serious disservice that will lead you to untold confusion and later day hassles.

Neither electron nor conventional current is correct all of the time. The overwhelming majority of industry and professional-level training always goes with the conventional current. Because there is no compelling reason not to.

Just what would it take to convert industry over to electron current? For openers, extremely frigid conditions in a distinctly unpleasant locale. Or some words to that effect. Even then, I would not expect to see this happen until a few weeks after the Ayatolla's Bar Mitzvah.

Navicube update

Way back in a July 1988 Hardware Hacker, we looked at the Navicube, a 3-inch, $10 cube that always knew where it was and which way it was pointed. Well, we still don't have $10 Navicubes, although I do expect some Korean toy manufacturer or two kids in an Iowa basement to come up with a really good one shortly.

A lot is happening with Navicubes, both evolutionary and revolutionary. An update summary of Navicube info appears as our resource sidebar.

Today's popular approaches to the Navicubes include the GPS satellite system, fluxgates, real gyros, laser gyros, accelerometers, and a pair of brand new piezo gyros.

The GPS global positioning system is going great guns. Their eighteenth satellite is now in orbit, and both Russian and ECC competing systems are now being established. Receiver prices are in free fall, and the $500 barrier has recently been broken.

GPS World is your foremost trade journal. Its publisher also just started up a new *GPS World Showcase* shopper. As before, the *Journal of the Institute of Navigation* is the finest Navicube technical resource.

Although Rockwell is still the most obvious source for the GPS chip sets, Hewlett Packard has just developed a new single-chip GPS front end. While it's too early for a part number, several details now appear in Microwaves & RF for August
1992. I expect cheap new GPS parts real soon now, from several obvious sources.

North sensing is best done using fluxgate magnetometers. Radio Shack has a cheap one in its car compass, and KVH sells expensive commercial units. We have seen several fluxgate construction projects, and references to them in those Hardware Hacker II reprints. Naturally, any magnetic sensor gets confused by nearby iron.

Many hackers still labor under the delusion that Hall-effect devices can be used as compasses. Well, possibly they can, but fluxgates are thousands of times more sensitive.

One exception is the very low cost Dinsmore magnetic compass sensor. Sadly, its best possible accuracy is a crude 22.5 degrees.

Solid-state accelerometers continue to drop in price, spurred on by newer automotive uses, especially airbags. While Motorola and Micro Switch are the largest suppliers, the better priced and more innovative sensors are now provided by Analog Devices, Sensym, IC Sensors, and NovaSensor.

Your two best accelerometer trade journals are Measurement & Control and Sensors.

Note that you could integrate (sum through time) any acceleration to get velocity, and then integrate velocity to get the position. There is one huge technical hassle with accelerometers, though—it’s called the “t-squared” problem. Any bias or similar error in acceleration ultimately piles up as a position error that is proportional to time squared.

That means if you wait around long enough for your position, it is certain to be wrong. Accelerometers work best for short-term uses, when they can be repeatedly recalibrated or reset from some other standard every now and then.

Classic navigation is usually done by using mechanical gyroes. They are nothing but rapidly spinning masses, comparable to a toy gyroscope. They can be costly, cumbersome, and often involve precision elements rotating at very high speeds. Gyros are available as surplus from Fair Radio Sales, Radio Research Instruments, and AST Servo Systems. One current manufacturer is Humphrey Products.

Yes, there are laser gyroscopes. A coil of fiber-optic cable has coherent laser light beams routed through it in opposite directions which then can be phase compared. But not much seems to be happening here to drop the costs by the 1000:1 needed to make them a practical hacker tool. Good information on laser gyroscopes is available from the IEEE Press and from SPIE.

But our really big Navicube gyro news for this month involves a pair of brand new...

Solid-state rate gyroes

A rate gyro is a special gyroscope that can tell you how fast you are turning. By integrating your rate of turn, you can get your direction. By combining that with some separately measured velocity, you can find your present position. And there will be no t-squared problem, since no double integration is involved.

Traditional rate gyroes are available from the sources of regular gyroes, we just looked at. A hackable and a low-cost fluidic rate gyro was made a few years back by Doug Garner at NASA. It used an airstream differential cooling a pair of thermistors. But not too much seems to have come of that approach either.

A pair of new solid-state rate gyroes are now available. At least one of them promises to end up as a $5 component. Because they both use vibrating piezo structures, it is not quite correct to say that they have no moving parts. But they certainly are simple and rugged single-piece units with no rotating parts or precision mechanisms.

The first unit is the GyroChip by Systron Donner, shown in Fig. 2-a. This is a pair of back-to-back tuning forks machined from a single piece of silicon. The phase of the output signal it determined by the Coriolis force caused by turning.

The second piezo gyro is that new Gyrostar by Murata-Erie, shown in Fig. 2-b. This is just a triangular piezo oscillator. The Coriolis force of rotation again changes the phase of the output signal in propor-
tion to the rotation rate. This new scheme looks ridiculously simpler and vastly more elegant than the GyroChip design.

While both of those breakthrough devices have the potential to become low-cost parts, samples today cost $300 for Murata's GyroStar, and a ludicrous $2000 for the GyroChip. Their support literature so far is also utterly dismal. But a new $5 Hong Kong knockoff is just about certain to become quickly available.

Assorted wondersments

Continuing this month's stunning new developments, here is a double handful of great new stuff...

- Image Striking—Be sure to check out Motion Imaging Processing: Striking Possibilities in the August 1992 issue of Advanced Imaging. What we apparently have here is a unique new concept and toolset for video, movie, and multimedia editing.

Put one frame of a small image in the upper left of your monitor screen. Next, move down one pixel and one pixel to the right, and then repeat the process for the next frame in the sequence. Continue until you have a diagonal smirp on down your screen, ending with a full small image. While you are at it, show your sound amplitude for each frame along the top diagonal of the smirp.

What do you have? In one place and at one time, you can see what has happened and what is going to happen. An instant and real-time plot of images versus time.

Naturally, the edges will only show you wildly abstract colors or patterns. But, with practice, those patterns can easily be read for the scene, camera angle, panning, duration, sound sync, and much more.

A non-obvious application: Quickly finding a buried sequence in a humongous video database. It is sort of the video equivalent to that ISAM, or indexed sequential access method long used in databases.

The editing, tweening, scanning, high-speed access, and all the visual flow possibilities of this new scheme seem boundless.

- Waves—The onslaught continues. A second book is now available and titled Ten Lectures on Wavelets by Ingrid Daubechies and published by SIAM, shorthand for the Society for Industrial and Applied Mathematics. While it's a first-rate text, this is a very advanced math book that makes for rough reading by mere mortals.

A brief story on optical wavelet transforms appears in the August 1992 issue of Photonics Spectra. All those optics books sure do have it easy. They just dump a pile of crockery on the table, squirt some light through it, and they get instant real-time 2-dimensional Fourier or wavelet transforms. None of the old point-by-point computation nonsense for them.

An entire issue on optical wavelet transforms appears as the September 1992 issue of Optical Engineering. I have added #494 EMERGOP2.PS and #456 WAVELETS.PS to GENIE PSRT to go along with all the rest of our wavelet downloads. A complete list appears in Fig. 3.

- Multilayer PC breakthrough—I am still looking for a hacker solution that makes printed-circuit plated-through holes cheaply possible at home. Or some workaround that flat out does away with the need for through holes.

A major step in this direction has been taken by Sheldahl, whose new special adhesive lets you build ultra expensive multilayer boards out of
the cheaper double-sided ones. Sadly, you still need some plate-throughs.

Their Zlink 1900 is basically a new adhesive that conducts only in its thickness direction. Just take a pair of double-sided boards and selectively apply the adhesive to one of them. You then add heat and pressure to bond the pair together. You can end up with either a three- or a four-layer board at a tiny fraction of the going price. And, yes, you can do six layers, eight layers, or as many as you want. You can even have buried plated-through holes! Far simpler, cheaper, and with a much lower scrap rate than before.

Carefully isolated solder particles make the adhesive conduct in only one direction with conductivity about the same as real multilayer conductors.

A small free sample is available from Sheldahl on request.

- Buckyballs—The price of Buckyballs continues to drop dramatically, and they are now hacker-acceptable. The leading supplier remains MER Inc., and their pricing starts as low as $5.50 a gram raw, and $90 per gram fully refined. Minimum order is $50.

Meanwhile, a fourth carbon form has been discovered that is called the Buckytube: hollow cylindrical pipes of carbon that have both the hardness of diamond and the surface area of graphite. Possible new uses include their use as lubricants, and unique materials that conduct heavily in only one direction. Check out the August 17 issue of E.E. Times for a summary update.

More on FM antennas

Last month, we checked into the fundamentals of distant FM reception. We have had some requests for still more information, so here goes...

The noise situation at 100 MHz is a tad further complicated than I first made out. If you do have any remote rural site, then your first-stage KTB thermal agitation noise does, in fact, dominate. And the best noise figure you can get is super important.

Atmospheric noise is negligible at FM frequencies. Galactic noise runs ten decibels or so above KTB, around 100 MHz. But you do not normally point an FM antenna straight up on a clear day, so this is also no problem. The potential killer is the manmade noise, which can be 25 decibels above KTB in suburban locations, and 40 decibels or more in urban locations. Nearby dimmers or computers could also induce those noise levels.

Most of the manmade noise comes from car ignitions. It sure would be interesting to watch the FCC try to enforce the same Part 15 rules and regulations on Detroit iron that they do on Hardware Hackers. Talk about potential noise levels! The howl over this would probably
be unbearable. At any rate, you'll still want to get the best first-stage noise figure you can. But it might not help you out too much if your external noise is much stronger than KT6. On the other hand, a slight increase in antenna gain can make a dramatic improvement in your FM reception.

That happens because of a limiter's capture effect. For instance, if you've got a noisy FM signal, an increase of only two decibels in antenna gain or S/N ratio can make up to a seven or eight decibel improvement in receiver quieting.

I've found several interesting FM antennas. The Radio Shack 15-1636 is cheap at $17 and easy to find. And it does a good job in near-fringe areas. But it is just plain too small. It measures only four feet by five feet, while a no-compromise Yagi solution will measure five by thirteen.

Radio Shack used the broadband co-linear array, rather than a Yagi design. Then, to save on the materials and size, they apparently designed it up at 120 megahertz or so and hoped there was still some gain down in the FM band. Almost always, a broadband antenna has lower gain than one cut for a single station. From their point of view, this is a useful engineering mix that gives you a small and cheap solution which meets the needs of a majority of their customers. Their gain is 6.4 dB over a dipole.

The most rugged "real" FM DX antenna is the Cushcraft Y-FM5. This is available by way of Anixter, the leading cable TV distributor chain. The gain is 9.5 decibels over a dipole, and the cost is around $70. Size is 99 by 104 inches.

Another interesting antenna is the ChannelMaster 4408 with a 9-decibel gain in a 138-inch boom length. The price seems high at $104.

The highest-gain stock antenna I could find was the Panasonic T2-1/4, the only one I have seen with a 15-decibel gain. It has a 15-decibel gain over a dipole, and the cost is around $100. Size is 96 by 131 inches.

Another interesting antenna is the ChannelMaster 4408 with a 9-decibel gain in a 138-inch boom length. The price seems high at $104.

The highest-gain stock antenna I could find was the Panasonic T2-1/4, the only one I have seen with a 15-decibel gain. It has a 15-decibel gain over a dipole, and the cost is around $100. Size is 96 by 131 inches.
The stunning animations, hypertext glossary, and easy-to-understand text make learning the concepts of electronics a breeze...and fun!

Learn Electronics the easy and affordable way from the Masters in Electronics Training - Heathkit Educational Systems. From Basic Electricity and Electronics to Advanced Microprocessor Applications and much more, Heathkit will provide you with an unparalleled learning experience at a fraction of the cost of other programs.

For your FREE Catalog, call Toll-Free 1-800-44-HEATH (020-004).

CIRCLE 96 ON FREE INFORMATION CARD

have found is the Winegard CA-6065; it has a whopping 10.6 decibels of gain on a 127-inch boom and costs around $78. This appears to be the best choice.

Be sure to remember that raising your antenna height is usually the best way to improve the signal-to-noise ratio in typical locations. The closer to line of sight you can get, the better the results.

But I live in a pecan grove. Nuts. My trees gloop over everything, most especially antennas. So some indoor solution seemed better for me.
grommeted screw eyes can be used for support.

First, note that there are two styles of driver elements to a Yagi antenna. As Fig. 4 shows, if you use a half-wavelength dipole hairpin loop, the terminal impedance should end up near a balanced 300 ohms.

If you use a pair of straight wires of half-wavelength total spacing, then your terminal impedance should be a balanced 75 ohms. Note that normal 75-ohm coaxial cable is unbalanced; you will need a balun or a 1:1 transformer to go from balanced to unbalanced.

Note that driver impedances inside an antenna array usually end up lower than those values. They also must be carefully matched for best results.

The bottom line: use a hairpin loop for 300 ohms balanced or the pair of quarter-wave wires when you want 75 ohms balanced. Either way, a final matching will still be needed.

A six-element narrowband Yagi cut for 100 megahertz is shown in Fig. 5. Use quite thin but rigid conductors for the best narrowband gain. Something like bare 12 AWG solid copper house wire might be a good choice. To cut the antenna to your desired station, divide the frequency in megahertz by 100, and then divide all sizes by the resultant number. For instance, to pick up KDKB at 93.3 MHz, all element lengths and all spacings will get divided by 0.933. Note the inverse relationship: stations under 100 MHz need slightly larger antenna designs.

The directors should point towards your chosen station. Use a map for starters, and then try rotating a tad either way. Your beamwidth should be around thirty degrees, so pointing in just the right direction is super important.

Additional directors can, in theory, be added, in a size progression. But all you gain is something like half a decibel per director, and the size does get out of hand real quick. And a careful match, or finding a local hot spot, or a tad extra height can often get you much more signal.

The theory behind a Yagi antenna? The optimum spacing is usually 0.2 wavelengths. The driver should be half a wavelength wide. The reflector should be around five percent longer, while the initial director should be five percent shorter. The rest of the directors should be progressively six, seven, and, eight percent shorter.

More on Yagi antennas appears in two ARRL publications, the Antenna Handbook and Yagi Antenna Design. Also see NBC technical note No. 688.

Close matching of an antenna to its transmission line is essential for the best gain. The simplest method
All dimensions are shown in decimal inches. The antenna is shown top view, and assumes the station is horizontally polarized.

To cut your antenna for a specific station, divide the station frequency by 100 and then divide all sizes shown below by the same value.

For instance, a 93.3 Mhz station needs all the values divided by 0.933. A 104.5 Mhz station needs all of the values divided by 1.045.

FIG. 5—AN INDOOR SINGLE-STATION long-distance FM antenna can be built using nothing but bare 12 AWG house wire. Here is one possible design. Note that the antenna size should be “cut” for your favorite station. Values shown assume an insulated boom or other supports. All elements must be very straight, rigid, parallel, and precisely centered. Contact a local radio ham for help in matching.

is called a gamma match, and it is done by just spreading the ends of a 300-ohm twinlead to tap maximum signal strength. Better methods appear in the books mentioned.

It would be real interesting to route both of your dipole rods straight into a VHF differential amplifier. Such an antenafier can greatly simplify tuning and matching. But a lot of black magic could be involved, so be sure to experiment.

Let me know all your experiences with any homemade ultra-range FM antenna designs. I'll try to publish the best of them.

New tech lit

A green 1991 Product Handbook from MX-Comm. This little-known semiconductor house offers all sorts of exciting hacker chips, especially those involved with tone signalling, speech scrambling, cellular phones, and pagers. One real sleeper: MX-Comm's MX009 octal digital gain-controlled amplifier array. Lots of application-notes are also included.

Free engineering samples of its new 41VHS-1 humidity sensor have been offered on professional request from Victory Engineering.

Heartland America is yet another Distressed Yuppy Surplus direct-mail outfit. It has all varieties of high-tech goodies. Its latest new catalog does offer the first laser pointers that I have seen selling for less than $100.

RePlay and Play Meter are the two leading trade journals for the coin-operated video-game industry. While they mostly concentrate on the buying and selling of games and supply products, there are occasional technical articles plus repair books and videos.

If you are interested in starting up your own tech venture, be certain to check into my at long last available Incredible Secret Money Machine II. We have also begun shipping the latest Hardware Hacker III reprints with their newest updates. See my nearby Synergetics ad for more details.

A reminder here that lots of great technical downloads are available on GENie PSRT.

As usual, we've gathered many of the resources mentioned together into either the Names & Numbers or the Navicube Resources sidebars. Do be sure to check these out before you use our no-charge tech helpline or call for a free hacker secrets brochure.
After testing the controller board, assemble the five boards of the first level. (A “1” is etched on each of them.) Assemble the level-1 boards into a ring shape using resistors R14-R18, which should already be bent to the proper length—1/8 or 3/4 inches (see Fig. 7). Creating the top ring in that manner will set the proper spacing for the rest of the globe. Leave the top hole on each level-1 board open (the hole farthest from the number etched on the inside surface), for connecting level 1 to the globe’s control board.

Figure 7 is a “component map,” showing levels 1–4, and how they connect together. All connections marked “J” are zero-ohm jumpers; all connections showing a resistor symbol must be 680 ohms, and all unmarked connections are structural components and can be made from anything you like (the kit includes additional 680-ohm resistors for use in these locations). Connect the level-1 ring to the control board as shown in Fig. 8; if you are using ¾-inch spacing, level 1 mounts as shown in Fig. 8-a; for ½-inch spacing, level 1 mounts as shown in Fig. 8-b. To connect level 1, install five 1-inch leads rising vertically from the control board. Then bend them to fit the level-1 ring as shown in Fig. 8.

Next add the level-2 boards. Each level-2 board connects to level 1 with one resistor (R19-R23) and one zero-ohm jumper. Solder the resistor and jumper to each level-2 board first, and then attach them to level 1. While building the globe, you’ll begin to notice patterns. For example, after level 2 is complete each new board (except for level 7) connects to the previous level with two resistors (one structural only), and one zero-ohm jumper.

Figure 9 shows the rest of the globe (levels 5–7). Note that Figs. 7 and 9 both show the outside surface of the globe. The letters surrounding each half of the globe in Figs. 7 and 9 indicate the connections between the two halves. Install each level in order from 1 to 7 (even though we have shown the globe in two halves).

Layer 2 is composed of five-point boards, so to make a sphere, keep the lead spacing of the resistors and jumpers attached to all layer-2 boards at 3/8 inch. It’s a good idea to plug in the globe after each layer is installed to make sure all LEDs are working. It’s best to repair errors early before they become difficult to correct. Continue adding each layer and testing the globe until it’s finished. Figure 10 shows a globe in different stages of construction.

When complete, the Glitter Globe forms a surprisingly sturdy structure, and you can hold it while it’s operating. If the globe is dropped or crushed, it is a simple matter to bend it back into shape. With reasonable care, it will last for decades to come.
HOLIDAY SPIRIT is your complete headquarters for surviving the holidays! Whether you need tips on the latest technology in sound systems, televisions or video games, Holiday Spirit will provide the latest information on electronic technology that will be just in time for the holiday season.

Hosted by Spencer Christian, American’s favorite weatherman, Holiday Spirit is a series of three, one hour television specials that guide Americans through their favorite holidays: Thanksgiving, Christmas-Hanukkah and New Year’s.

Innovative electronic technologies are thriving in the 90’s. An array of new technologies are unveiled every holiday season, increasing consumer confusion on how to choose the latest electronic gifts.

Holiday Spirit will look at the latest gifts; including Metrosound’s Malibu 100 Car Audio Amplifier for your older teenagers and Royal Appliance’s Dirt Devil for mom. For those looking for high fidelity, Holiday Spirit will profile the Bose Lifestyle Music System for listening to Christmas carols and will showcase Hitachi’s Ultravision Big Screen Television for watching the New Year’s bowl games like never before.

Holiday Spirit has valuable tips and information for everyone. For the youngsters in the family, Sunsoft’s Road Runner’s Death Valley Rally will be the latest Nintendo game to fill their stockings. For music lovers who
demand accurate and natural music reproduction, Holiday Spirit will feature Ohm Walsh 5 Loud Speakers for full room stereo sound.

Need a gift for the handyman or professional tradesman? Snap-On Tools Racheting Screwdrivers are fast, easy to use, and are economically sound. Traveling? Holiday Inn will give you a comfortable, affordable place to stay with the family.

Last year, you thought you had enough time to shop, you thought you bought the right brands, you thought you called every relative. This year, if you think you can’t get everything finished in time, Holiday Spirit will show you how to have "Happy Holidays" with time-saving tips and gift recommendations. Check your local TV guide for times and dates.

HOLIDAY SPIRIT
A Brookstone Production
Before we get into the nitty gritty of the SSAVI system, I have to take a few lines to make a few things clear. I've touched on them before, but it's important to repeat them. All we've gone into so far is gated sync suppression, which can be considered pretty unsophisticated these days.

The SSAVI system isn't the last word in scrambling but it's reasonably recent and it, or some variation of it, will be the scrambling system of choice for some time to come. That is true even if you consider only the economic side of changing scrambling methods.

I have no doubt that many cable companies use this scrambling technique, or at least something very similar. If that's true in your area, it would be a good idea to do some experimenting with the actual signal—hands-on experience is always the best. What you'll probably find out in the real world is that the system used in your area isn't an exact match for the one we'll be taking apart. The general principles might be the same, but the particular details will undoubtedly vary.

When the SSAVI system first started, there were some constants in the video signal that could be used to descramble it. Remember that the picture can be messed up in any one of three ways (see October's column for the details), and the instructions for the descrambler are transmitted somewhere in the vertical interval. The word "somewhere" is a late addition to the SSAVI system. When it first started, the descrambling information was always on the same line. That's where we'll start.

Once upon a time, the sanctity of the vertical interval was closely guarded by the FCC, but as alternatives to standard broadcast TV became more popular (cable, satellite, etc), more and more junk started to show up there.

When the SSAVI system started, lines 0 to 9 were left alone by a request of the FCC, but lines 10 to 13 were where the cable companies transmitted individual subscriber codes. Don't forget that there are unique ID numbers stored in an EPROM (or some other kind of memory) in the cable box. There's also logic circuits there to count the video lines, read the transmitted code, and match it up against the one stored in the box. This is a big thing for the cable companies because it prevents a New York box from being used in California. The scrambling is the same, but the codes are completely different.

The decoder circuitry is also controlled by this coding process because a match between the transmitted bytes and the ones stored in the box will enable or disable the decoder. That is true for both the premium cable services and the pay-per-view events.

That kind of coding might be important to the cable companies, but it doesn't mean anything to us. We can build an experimental descrambler without paying any attention to them.

Since the video can be transmitted with either normal or inverted picture information, one of the tasks that has to be done by the descrambler is to tell the rest of the circuit what has been done to the picture. The place to find that information was originally in line 20, but it has been moved around since the system became popular. As you can see in Fig. 1, the last half of the line will tell you whether the picture is normal or inverted. Remember that

FIG. 1—THE LAST HALF OF THE LINE OF VIDEO will tell you whether the picture is normal or inverted. We're talking about the picture part of the line only.
we’re talking about the picture part of the line only, and not the control section.

If the following field is normal, the last half of the line will be black, and if the picture is normal, the whole line is white. One of the things a decoder needs, therefore, is some way to detect the line and store the data it contains. The stored data is then used as a switch by the circuit to route the video through an inverter if the picture is being transmitted upside down.

This is pretty straightforward stuff. Since we’re looking at only one piece of information, all we need is a place to store one bit of information. Your basic piece of cake. The circuitry needed to detect the data, however, is a bit more complex. We need a reference in the signal. So establish a zero point for a line counter, and some counting circuitry to keep track of which line is being received.

You might be wondering what we can count if the signal is being scrambled. But remember, that in the vertical interval (the first 26 lines of video), the signal is being sent in the clear.

Now that we have an approach to handling the possibility of an inverted picture, the last problem to tackle is the one of varying horizontal sync pulses. Sometimes they’re there, sometimes they’re absent, and sometimes they’re not at the proper level. Anything that unstable is a pretty poor choice for a reference signal. So, to avoid a mammoth circuit design problem, the best way to deal with it is to scrap the transmitted horizontal sync (even when it’s there), and come up with a way to generate the signal ourselves.

That can also seem to be an insurmountable problem but, just as in the case of the inverted picture, the answer is going to be found in the vertical interval. Once again, remember that the first 26 lines of video are sent in the clear and, even during the rest of the video frame, (no matter what’s going on with the picture), the horizontal sync pulse is never inverted. It might be weak or missing entirely, but it’s never upside down. That’s important to keep in mind because if we generate our own horizontal sync, we don’t want an upside down, positive-going sync signal present. If that was the case, the two sync signals would add together and cancel, which is not a good thing.

We’ve talked about how to regenerate sync when the signal being received is unreliable. If you don’t remember it or haven’t read it, go back to October’s column and review it. Basically, the approach is to take the horizontal pulses sent in the clear during the vertical interval and use them as the reference for a phase-locked loop that will supply the missing pulses during the rest of the video frame. If you’ve got twenty or so reliable pulses per frame, you can accurately generate the missing two hundred and forty or so for the rest of the frame.

The block diagram of the circuit we need is shown in Fig. 2. In a nutshell, the job of the circuit is to make sure the picture is always present at the output in a non-inverted state, and that it has horizontal sync pulses present at the right level and the right position.

The scrambled video is fed to an op-amp and the output is sent to a sync separator—the same basic circuit that’s found in every TV set in the universe. The sync pulses drive a phase-locked loop whose output is decoded to provide the missing sync pulses for the video lines outside the vertical interval (where most of the interesting stuff is found). These generated sync pulses are mixed with the incoming video and then sent, through a gated inverter, to the back of your TV set.

The gated inverter is controlled by a signal that tells it whether or not the picture portion of the video is upside down. The control signal is derived by watching the state of line 20, as we discussed before.

All this sounds incredibly complicated but, if you look over the block diagram, you’ll see that it’s just a collection of gates and counters—the same sort of stuff we’ve been messing around with for years.

The only box in the diagram I haven’t explained is the reset circuit for the counter. I’ll explain that in the next column but you should be able to figure out for yourself exactly what it is. If you get it right, you’ve got a good handle on the subject of video in general and scrambling in particular. If you can’t figure it out, spend the next month getting ready by boning up on the essentials of basic video theory.
Take any 3 PROFESSIONAL BOOKS for $9.95 when you join the ELECTRONICS ENGINEERS’ BOOK CLUB

3258 $28.95
This book offers up-to-date instructions for troubleshooting and repairing all major brands of equipment, with hundreds of diagrams, specs, and schematics. Covers TVs, VCRs, CD players, and much more. 310 pp.

3991 $39.95
Engineers and technicians will find full coverage of standard power supply sources. Covers new frequency devices including insulated-gate bipolar transistor (IGBT), mos-controlled thyristor (MCT), 464 pp., 365 illus.

9255-XXX $105.00
"Outstanding, extensive reference to current technology of electronics. Covers everything from principles to applications." —Computer Book Review. 2,528 pp., 1,800 illus. Counts as 3

003961 $39.95
Here's your guide to basic electrical measurements, component measurements, system tests, and performance verification. Most of the methods and procedures you'll find here are available off-the-shelf test equipment. 224 pp., 180 illus.

3138-XX $60.00
A GIANT "Circuit Book" of over 700 of the most widely-used, state-of-the-art electronic and integrated circuits ever compiled in a single source! The perfect sourcebook for all levels of electronics practitioners. 738 pp. Counts as 2

3147-XX $38.95
Provides a ready source of basic information on using programmable controllers to achieve a wide variety of manufacturing goals. You'll find flowcharts and step-by-step explanations to develop, improve, and monitor process control. 304 pp., 187 illus. Counts as 2

3203-XX $46.95
This reference offers you comprehensive discussion of theory and application of solder pastes with particular emphasis on how they affect the electronics industry. Covers metallurgy, rheology, fine particle measurement, and more. 288 pp., 162 illus., 4 pp. color Counts as 2

1938-XX $60.00
For quick-reference and on-the-job use, this sourcebook puts over 1,300 state-of-the-art designs at your fingertips. From A (alarm circuits) to Z (zero crossing detector circuits) this compendium excels in content, scope, and design. 768 pp. Counts as 2

2672 $49.50
This "one-stop" sourcebook bridges the gap between data books and the designer's search for the right component. Covers how linear ICs are fabricated, how they work, what types are available, and techniques for designing. 624 pp.

020975-XXX $104.50
The essential reference for all electrical engineers. Completely revised and updated, this classic handbook covers the generation, transmission, distribution, control, conservation, and application of electrical power. 2,416 pp., 1,388 illus., 430 tables. Counts as 3

3540 $26.95
This guide brings you up-to-date on today’s most advanced power supply circuits, components, and measurement procedures. Covers switching rates up to 3-MHz and higher as well as the 20-kHz standard. 176 pp.

3710 $32.95
Understand the basics of receiver operation, the proper use and repair components in RF circuits, and principles of radio signal propagation from low frequencies to microwave. 416 pp., 411 illus.

025354 $29.95
Understand the latest data communications software systems and how they interface with the hardware. This hands-on guide emphasizes the practical side of the field while keeping mathematical theory to a minimum. 192 pp., 30 illus.

3589 $27.96
A practical toolbox reference for anyone in the electronics field. Phagan guides you through the practical calculations needed to design and troubleshoot circuits and components. 352 pp., 270 illus.
COMPUTATION OF ELECTRIC POWER SYSTEMS

This is a "one-stop" guide to the theory and design of communications receivers: shortwave, broadcast, radar, military, broadcast (AM-FM), radar aeronautical, marine, and directional finding. 608 pp., 402 illus. Counts as 2

053570-XX $64.95

The McGraw-Hill Handbook of Essential Engineering Information and Data

022764-XX $92.50

This complete EPROM instruction manual provides a detailed explanation of underlying theory, plus 15 different projects, including programmers, erasers, and EPROM-based circuits. 240 pp. Softcover

02962P $17.95

049530 $44.95

Keep the lines clean and fault-free with this organized approach to power systems analysis. You'll apply theoretical concepts to the solution of everyday power systems problems with the help of this book.

050006-XX $54.95

This book emphasizes circuit, transformer, and magnetics design. Provides worked-out examples of transformers, currents, power levels, and more.

Your only obligation is to purchase 3 more books during the next 2 years, after which you may cancel your membership at any time.

037504 $39.95

Packed with simplified, circuit-by-circuit troubleshooting examples, this handbook provides the practical know-how you need to operate and troubleshoot modern RF equipment. 352 pp., 150 illus.

037504 $39.95

Performs routine maintenance and diagnose and repair any kind of computerized device. This popular reference covers large dynamic RAMs, 32-Bit processors, 80286, 80386, and 28001-28002 processors. 570 pp.

3279 $36.95

Perform routine maintenance and diagnose and repair any kind of computerized device. This popular reference covers large dynamic RAMs, 32-Bit processors, 80286, 80386, and 28001-28002 processors. 570 pp.

037504 $39.95

Get clear, straightforward coverage of all principles underlying the operation and analysis of state-of-the-art circuits—along with a lot of examples, problems, and illustrations. 434 pp., illustrated

358261-XX $52.00

Counts as 2

3365P $24.95

Both a professional reference and a study guide for the aspiring technician, this is a well-illustrated introduction to modern communications. Use it to prepare for your FCC General Radiotelephone Operator License or CET exam.

3365P $24.95

3920-XX $36.00

This book provides the practical approaches and innovative, easy-to-perform troubleshooting techniques you need to pinpoint symptoms and effectively evaluate the cause of electronic malfunctions. 318 pp., Illus. Counts as 2

PIECEWORK HANDYHINTS

If you select a book that counts as 2 choices, write the book number in one box and XX in the next.

If you select a Counts as 3 choice, write the book number in one box and XXX in the next 2 boxes.

Electronics Engineers' Book Club
Blue Ridge Summit, PA 17294-0860

YES! Please rush me the books indicated below for just $9.95 plus shipping/handling & applicable sales tax. Enroll me as a member of the Electronics Engineers' Book Club according to the terms outlined in this ad. If not satisfied, I may return the books within 10 days without obligation and my membership will be cancelled. A shipping/handling charge and sales tax will be added to all orders.

Name ____________________________

Address ____________________________

City/State ____________________________

Zip __________________ Phone __________________

Offer valid for new members only, subject to acceptance by EEBCC. Canada must remit in U.S. funds. Applicants outside the U.S. and Canada will receive special ordering instructions.

DRE1292C

December 1992, Electronics Now
It's a matter of hear today, gone tomorrow

Larry Klein

It's an unhappy paradox that at a time when music reproduction is approaching perfection, there is widespread failure in the music listener's ability to hear it fully. Four years ago I wrote in this column about the audiometric hearing tests given by the Audio Engineering Society at their 1986 Los Angeles convention. The more than 200 AES members tested showed small but consistent hearing losses that exceeded those expected from the normal aging process. A wide variation of hearing thresholds was measured in the sensitive 3- to 6-kHz range with more than 10% of the respondents showing significant hearing loss at 4 kHz.

It's a sure bet that things have not improved any in the last six or seven years. In fact, from what I hear, the quantity and level of ear-damaging environmental sounds have escalated beyond reason. Under environmental sounds, I include everything from power mowers and blowers to live and reproduced rock music. Can anything be done to tame the wild decibels?

English ears

For some reason, many of the extensive research studies on hearing loss and music listening have been done in the U.K. Several years ago, two researchers at the University of Keele tested two groups of Staffordshire high-school students; one group had frequent exposure to loud music at rock concerts, discos, and through personal stereo headphones. The control group (I wonder where they found them) had little or no such exposure.

Although conventional diagnostic tests revealed no overall hearing loss, two problems did become evident with more precise techniques. There was evidence of the group's diminished sensitivity to a narrow band of mid frequencies and, surprisingly, a reduced ability to distinguish between adjacent musical pitches.

Environmentally engendered hearing loss is not limited to kids addicted to rock concerts, loud headphones, and killer car-stereo systems—all of which have been measured at noise levels over 110 dB. The older, if not wiser, generation is also surrounded by equipment that is not intentionally loud but just happens to be. I'm referring to a variety of home, yard, and recreational equipment. These include power tools (my radial-arm saw cutting through hardwood makes quite a racket!), power mowers, and leaf and snow blowers. Recreational vehicles such as outboard motor boats and snowmobiles, are also potent sources of the kind of sustained sound levels that can be particularly damaging.

In general, the rule seems to be that constant sound levels, particularly in a narrow band, are more harmful than louder intermittent sounds. In other words, if your sound-pressure level (SPL) meter needle seems stuck at the 90-dB level, the sound is likely to be far more damaging than if the needle is swinging wildly with occasional 100-dB peaks.

Since the ear-damaging effects of noise result from cumulative exposure over time, noise-dosage meters have been developed for industrial use. They average out the varying sound-pressure level to provide an equivalent continuous sound level, or L_{eq}. Such devices are analogous to the radiation-dosage meters that are supposed to keep workers in the nuclear industries safe. Experience has shown that some hearing loss will occur in 20% to 25% of workers exposed to the legally allowed limit of 90 dB (L_{eq} in dBA) for 8 hours. That is the sound level of heavy street traffic or a subway train.

Damage report

Exactly how does hearing damage occur? Aside from eardrum rupture caused by a high-pressure pulse from a loud nearby sound, rapid pressure changes and diseases of the auditory nerve and central nervous pathways, the major area of damage occurs in the microscopic hair cells residing in the spiral-shaped cochlea of the inner ear. Dr. John Rosowski of Harvard Medical School has been investigating the problem. At relatively low levels of intensity, he says, damage appears to be proportional to the amount of energy entering the ear during a particular period of time.
But beyond some critical level of sound pressure, the hair cells become much more susceptible to trauma. With only a small increase in SPL beyond this critical point, the damage increases significantly and disproportionately.

The microscopic hair cells are the specific transducers that convert the vibrations in the inner ear to the electrical impulses sent to the brain. Each hair cell, which has a diameter about \(\frac{1}{8} \) that of a hair, is topped off by 20 or so stereocilia that resemble the bristles on a toothbrush. Scanning electron micrographs of sound-damaged microcilia show them bent, fused, and even missing. That results in a medical diagnosis of "nerve deafness," an irreversible condition.

In general, everyone who lives in a civilized (meaning noisy) environment is subject to some hearing loss over time. [See Fig. 1-a.] At first, the loss appears only in the upper frequencies usually reproduced by tweeters. In time, however, the loss progresses downward to the upper midrange frequencies that differentiate the sounds important to speech comprehension.

FIG. 1. LOSS OF HEARING is a natural result of aging (a), but a much more severe loss can result from long-term exposure to an excessively noisy environment (b). Both curves are at 4 KHz, but high-frequency hearing goes first.

Now hear this

There is good evidence that individuals vary in their physical tolerance of loud sounds. Nevertheless, there are some ground rules that those who care about their hearing should follow. Since ear damage is cumulative, resulting in a gradual deterioration, sounds that are instantly heard as too loud—

that cause ringing or other inner ear noises—should be avoided or at least diminished by placing damp cotton wads in the ears or by the use of more effective medically-approved ear-protection devices. However, loud, but not obviously excessive, sound sources, musical or otherwise, can also be damaging in the long run.

I have an audiophile friend who wears earplugs in the subway and in other noisy environments. Aside from the noise level in public places, you should consider ear protection when performing such activities as power-tool carpentry and lawn care. Even wads of cotton stuffed tightly in your ear canals will help. It's not just that you are saving yourself an immediate headache, but you might avoid a hearing-aid purchase 30 or 40 years from now. Don't be dumb today—and deaf tomorrow.
To prevent crime in Tucson, police use sensitive, highly sophisticated surveillance equipment:
Tim, Rose, Gert, Anthony, Yvonne, and Ramon.

Citizen participation is critical to police effectiveness. Do you care about your neighborhood enough to help protect it?

The Case of the Tucson Tip-off.
In a particular neighborhood in Tucson, Arizona, folks were having a real problem with burglaries and break-ins.
They started talking to each other about what they could do. They got fed up. About 400 people went to the police for advice. They learned about surveillance. They got to know their beat officers. Citizens and police became partners in crime prevention.
In just three weeks, 17 arrests were made and burglaries went down 30%.
And Tucson is only one case where people successfully worked to beat crime. To find out more, write: The McGruff Files, 1 Prevention Way, Washington, D.C. 20539-0001.
You can make a difference.
You can help...

ATTENTION!
ELECTRONICS
TECHNICIANS

Earn Your
B.S.E.E.
Degree
THROUGH HOME STUDY

Our New and Highly Effective Advanced-Placement Program for experienced Electronic Technicians grants credit for previous Schooling and Professional Experience, and can greatly reduce the time required to complete Program and reach graduation. No residence schooling required for qualified Electronic Technicians. Through this Special Program you can pull all of the loose ends of your electronics background together and earn your B.S.E.E. Degree. Upgrade your status and pay to the Engineering Level. Advance Rapidly! Many finish in 12 months or less. Students and graduates in all 50 States and throughout the World. Established Over 40 Years! Write for free Descriptive Literature.

COOK'S INSTITUTE
OF ELECTRONICS ENGINEERING

4251 CYPRESS DRIVE
JACKSON, MISSISSIPPI 32712

CIRCLE 55 ON FREE INFORMATION CARD

Your Ticket To
SUCCESS

Over 28,000 technicians have gained admission worldwide as certified professionals. Let your ticket start opening doors for you.
ISCET offers Journeyman certification in Consumer Electronics, Industrial, Medical, Communications, Radar, Computer and Video. For more information, contact the International Society of Certified Electronics Technicians, 2708 West Berry Street, Fort Worth, TX 76109; (817) 921-9101.

Name
Address
City
State Zip

Send material about ISCET and becoming certified.
Send one "Study Guide for the Associate Level CET Test." Enclosed is $10 (inc. postage).

COMING NEXT MONTH
The January 1993 Issue goes on sale December 3, 1992

WORLD BAND SHORTWAVE RECEIVER
Keep informed on world events and learn RF construction techniques!

BUILD THE RING THING
Now you can have remote access to your PC even if the power is off!

BUILD A VOICE CHANGER
A project that's as fun to use as it is to build!

RESISTORS
A comprehensive guide.

AND LOTS MORE!

EQUIPMENT REPORTS
continued from page 16

(5000 counts) signals with crest factors up to 3.0 can be measured. At full scale, a signal must have a crest factor less than 1.5 to be measured accurately.
The HD160 offers impressive overload and safety protection. The voltage inputs can withstand up to 1000 volts AC or DC. Both current jacks are protected by fuses. An added safety feature protects the meter, user, and the device under test: When a probe is inserted in one of the current jacks and the function switch is set to a non-current mode, the meter's display will show an error message to warn the user.
The HD160 is priced at $199. The capable, rugged high-quality meter will be appreciated by anyone who needs a DMM for serious professional use.

R-E
Computers and Consumer Electronics

JEFF HOLTZMAN

Computers and consumer electronics are merging. Kodak and Tandy have added fuel to the fire with their recent introductions of Photo-CD and the Visual Information System (VIS), respectively. Photo-CD and VIS join CD-ROM Interactive (CD-I) and Commodore Dynamic Total Vision (CDTV) as the major attempts to put computer-like interactivity on a television screen, thereby capturing the hearts and minds—and pocketbooks—of noncomputerized consumers. VIS, CDTV, and CD-I are direct competitors; although similar in some ways, Photo-CD is really in a category by itself. (You might also want to keep in mind upcoming CD-based systems from Nintendo and Sega.) Photo-CD, CD-I, CDTV, and VIS all share the following in common:

- They are meant to be operated in the family room, not in a home office or corner of the bedroom.
- They use the home entertainment system (TV and stereo) for audio and video output.
- They emphasize early education, games, entertainment, and reference works.
- They use some form of CD-ROM as the primary delivery medium.
- They operate with simple infrared remote-control devices rather than computer keyboards.
- They are meant to appeal to less technically sophisticated consumers than computer users.
- They cost in the $600–1000 range.

To understand what each of these technologies has to offer and which is likely to be successful, let’s summarize the key points of each.

CDTV This system descends from a long-time player in the personal-computer market. Starting way back with the Pet (in the late 1970's), and moving on through the C-64, and then to the Amiga, Commodore has always had a presence in personal computing. However, the company has never developed and executed a clear marketing strategy, hence has been a sideline player in most areas. The single exception is video production on the Amiga, where word of mouth and an unbeatable price/performance ratio have brought success. CDTV was introduced in the early summer of 1991, and has yet to achieve major acceptance. CDTV consists of a stripped-down Amiga 500 computer that has been specially modified to respond to commands from an infrared remote. The unit can be expanded to be a functional Amiga 500 by adding keyboard, disk drive, memory, and mouse. CDTV is sold by Commodore dealers.

CD-I Philips Consumer Electronics introduced the CD-I system in the fall of 1991 after several delays. It consists of a proprietary 68000-based system running a special version of the OS-9 operating systems. CD-I players are sold by consumer-electronics outlets. Approximately 65 CD-I titles are available, including several "celebrity" titles narrated by Danny Glover, Mia Farrow, Robin Williams, Jack Nicholson, Raul Julia, and Sir John Gielgud. One CD-I disc explores jazz giants such as Charlie Parker, Miles Davis, and Sarah Vaughan. Another disc explores the paintings of Rembrandt, and includes narration in seven languages (Dutch, English, French, German, Italian, Japanese, and Spanish). Titles start at $15; most are priced in the $20 to 40 range.

VIS Like Commodore, Tandy has been involved with personal com-

FIG. 1—KODAK’S PHOTO-CD puts 100 images in five different resolutions on a single CD-ROM disc. The player displays images on your TV screen and plays regular audio CD’s through your stereo. A future upgrade will allow you to add audio and text to a Photo-CD disc, thereby allowing annotated, navigable slide shows.
computers since the earliest days. Its chief products include the TRS-80 series, the Color Computer, the Model 100/200 portables, a line of semicompatible PC’s, and a line of fully compatible PC’s. While never achieving great success in the business community, the PC compatibles have, nonetheless, held their own in the hobbyist/consumer market. VIS, is in fact, the “Nintendo” device discussed here in the October issue that has fueled the industry rumor mill for months. Unlike the other products discussed here, VIS software architecture is based on MS-DOS and Modular Windows, a ROM version of Microsoft’s Windows optimized for use in a consumer (television) environment. Virtually all leading content developers, including Berlitz/Cruise Watch, Broderbund, Compton’s New Media, Electronic Arts, Lucas Arts, Sierra, and others, are developing VIS titles. AimTech (iconAuthor) and OWL (Guide) have authoring systems, and Microsoft might have something up its sleeve in that area as well.

The DOS/Windows platform is good for several reasons. Content developers don’t have to buy specialized and costly development platforms; standard PC’s (with emulation boards) will do the trick. Porting VIS titles to and from other systems (e.g., MPC-compatible PC’s) will be simpler than porting to or from a whole new architecture. Tandy’s immense retail network ensures broad product availability and servicing. Zenith will also be selling VIS systems under its own brand name.

Photo-CD Kodak’s technology is not currently designed to compete in the interactive-TV market, although it does have architectural features that might eventually provide interactivity. Photo-CD is designed to appeal to both professional and broad consumer bases. In the consumer world, Kodak hopes Photo-CD will supplement the family photo album and slide projector. In a professional setting, it will be useful for desktop publishing, corporate image databases, stock photo image bases, medical imaging, image archiving, and probably lots more. Photo-CD works like this: You take or mail a standard roll of print or slide film (up to 4 x 5 inches now, with larger formats coming) to a special Photo-CD processor, which then scans each image at five resolutions ranging from catalog-quality “thumbnails” (128 x 196) to publication-quality scans (6000 x 4000).

Depending on image size and content, it is possible to store about 100 images per disk in the standard consumer Photo-CD format. Other professional formats are available that allow storage of as many as 6000 low-resolution images (e.g., for image catalogs).

For family-room use, Photo-CD’s can “play back” on special players (like that shown in Fig. 1) that also handle audio CDs, and on select computer-based CD-ROM drives (in particular, those claiming CD-ROM/XA compatibility). For computer-based use, Kodak has introduced low-cost PC- and Macintosh-based software packages for viewing images and getting them into standard bitmap formats such as PICT, TIFF, and EPS. Some commercial graphics editors (e.g., Publishers Paintbrush) already offer built-in Photo-CD support. Apple has announced that it will support the Photo-CD format directly in System 7 software, and via QuickTime (Apple’s set of technologies and specifications for time-dependent data, e.g., audio and video sequences). Kodak has also announced several advanced image-editing packages.

Photo-CD uses a multiple-write technology that allows several sessions to be placed on a single disc at several times. If you’re interested in using multi-write capabilities on a computer, make sure your CD-ROM drive can handle it. Check Kodak’s hotline at the number shown in the sidebar for information on compatible CD-ROM drives, processing centers, and software availability.

You want a revolution?

Will CDTV, CD-I, VIS, or Photo-CD bring about some revolution in the computer industry, the consumer electronics industry, or both? Are they destined for the junk heap, along with the early personal computers and dedicated video games of the 70’s and 80’s?

They’re probably all headed for the junk heap sooner or later, but VIS and Photo CD have the best chance of survival during the next few years. Commodore’s on-again/off-again marketing style inspires confidence in neither developers nor consumers. Philips’ system has some technical advantages, for example hardware-assisted full-motion video based on the industry-standard Motion Picture Expert Group (MPEG) compression format. But even that is an add-on to the basic player. Development systems are proprietary, and there is a lack of broad industry support.

Photo-CD, on the other hand, offers immediate advantages to the computing community, especially desktop publishing and professional imaging concerns.

Broad appeal is problematic in that Photo-CD will be competing for consumer dollars against VIS and the other systems, all of which offer more general-purpose functionality.
It seems unlikely that people would want to buy more than one CD-based digital information appliance to connect to their TV's and stereos. Viewed in that light, Photo-CD might find it difficult to crack the home market. If VIS (or the other systems) could provide Photo-CD compatibility, then Kodak might lose the player battle but win the format/usage war. There is a lot of money to be made in processing Photo-CD's and in selling processing its workstations.

Photo-CD stands a very good chance of survival, simply because the publishing and imaging industries need it. The consumer market might go for it, depending on consumer awareness of the more general-purpose nature of VIS. I think Kodak would be smart to work with Tandy to ensure that VIS can play Photo-CD discs.

On paper, VIS looks like the safest bet among the interactive systems, both for developers and consumers. Like CDTV, VIS is really a general-purpose computer, albeit not in the present incarnation an expandable one. Because VIS is so closely related to the DOS/Windows platform, content developers can create and port titles at low cost and low risk. Assuming Tandy stays with the architecture, upgrading to higher-performance technology (e.g., full-motion video) should be fairly painless. Also, if anywhere near the number of promised titles actually materialize by the time VIS hits the market (presently aimed for Christmas 1992), Tandy will have a huge advantage.

VIS is extremely interesting. If it succeeds, it will mark the first success of a manufacturer in more than a decade in trying to penetrate the consumer market with a general-purpose digital information system. Computerphiles will probably view VIS as underpowered. But with the Windows platform underpinning the system, there's lots of potential for growth.

I'm looking forward to hooking a VIS system up to my home-entertainment center. However, I know up-front that it's a throw-away purchase; the computer industry is still evolving so rapidly that VIS will be superseded by something. My hope is that, between now and obsolescence, my kids will get more from it than from a video game.

Product watch

I've looked at several multimedia upgrade kits over the past year, and have reached several conclusions. First, the base MPC specification is pretty low-fi. Nonetheless, results can still be startling. The best MPC upgrade kit I've found is from MediaVision. It includes what is currently one of the best CD-ROM drives on the market, NEC's SCSI-based CDR-33, along with the ProAudio Spectrum 16-bit stereo audio card, which has a built-in SCSI interface. The bundle also includes a slew of software, including Lotus 1-2-3, Compton's Multimedia Encyclopedia, a CD-based version of Sierra's King's Quest V, an authoring tool called Action from Macromind, and numerous DOS and Windows utilities for recording, mixing, and playing back sound and MIDI files. The utility software varies widely in quality, user interface, and usefulness, and it does not include a Windows-based MIDI editor, the major shortcoming of the package. The methods for configuring system interrupts and I/O port use is poorly documented, but once running, the package works like a charm.

Bookshelf

You probably take that voltages-versus-time display on the front of your oscilloscope for granted. What you might not know is that graphical displays of data were not even invented until the latter half of the nineteenth century, long after the invention of calculus. An Englishman, William Playfair, and a Swiss-German, J. H. Lambert, claim the honor of first publishing the many basic techniques of statistical graphics. You might also be unaware of what makes bar charts, time series, and other kinds of graphs really work. Why is that important? Because most technical professionals use spreadsheet, data-analysis, and visualization programs to analyze and display data, be it voltage, current, resistance, impedance, dollars, or other quantities. Computer tools give you lots of options for displaying your data using color, gray scales, hatching, perspective, and more. However, unless you're careful, you can get into trouble, graphically speaking, and thereby obscure your real message.

If you ever produce a chart or graph as part of your job, you absolutely must look at two books by Yale statistics professor Edward R. Tufte: *The Visual Display of Quantitative Information* (originally published in 1983), and *Envisioning Information* (1990). Alternate titles for those two exquisite works could be Volumes I and II of Use and (Especially) Abuse of Statistical Data in Graphical Form. In example after example, Tufte shows and tells why some things work and others don't, along the way exposing numerous misguided attempts at "improving" the presentation of statistical data. Tufte understands that effective communication of information involves carefully meshing form and content. He practices what he preaches. Beg, buy, or borrow copies of these works. You won't be disappointed.
WIRELESS CABLE RECEIVERS 1.9 TO 2.7 GHz
30 CH PARABOLIC DISH SYSTEM $173.00
30 CH ROD ANTENNA SYSTEM $103.00
30 CH CRYSTAL CONTROLLED SYSTEM $34.95
SUN MICROWAVE INTL INC SEND $1.00 504-366-6200
IN PHOENIX, AZ 85003 AND OTHER AREAS
FREE CABLE INC, 444 Colton Rd., Columbus, OH 43207
FREE CABLE TV Equipment. Most type available. Special: Oak $59.95. No catalog. COD orders only. (800) 822-9955.
JERROLD, Tocom and Zenith "test" chips. Fully activates unit. $50.00. Cable descramblers from $200.00. Orders 1 (800) 452-7090. Information (213) 867-0081.
Tocom-Jerrod Impulse-Scientific Atlanta Converters, two year warranties, also test modules for your Converters. Contact NATIONAL CABLE, (219) 935-4128 full details.
FREE CATALOG
FIESTIK ANTENNA COMPANY 2314 E. ASHLEY ST. ADAMS PHOENIX, ARIZONA 85034
SECRET cable descramblers! Build your own descrambler for less than $12.00 in seven easy steps. Complete instructions $10.00. Radio Shack parts list and free descrambing methods that cost nothing to try included. HARRIWHIT, PO Box 1790, Baytown, TX 77520.
PROTECT yourself and equipment from electrical shocks. Complete unit $98.95. SAFETY-UNLIMITED, 1748 Baldwin Road, Yorktown, NY 10598. S/H $5.00.
TEST equipment pre-owned now at affordable prices. Signal generators from $50.00, oscilloscopes from $50.00. Other equipment including manuals available. Send $2.00 U.S. for catalog refunded on first order. J.B. ELECTRONICS, 3446 Dempster, Skokie, IL 60076. (708) 982-1973.
CABLE TV converters: Jerrold, Oak, Scientific Atlanta, Zenith & many others. "New MTS" stereo add-on: mute & volume, ideal for 400 and 450 owners! (800) 826-7623, Amex, Visa, M/C accepted. B & B INC., 4030 Beau-Drie Drive, Eagan, MN 55122.
CABLE TV converters: Jerrold, Zenith, Pioneer, Oak, Scientific Atlanta, and many more. 12 years experience gives us the advantage. Visa/MC Amex COD ADVANTAGE ELECTRONICS, INC., (1) 800) 952-3916 1125 Riverwood Dr., Burnsville, MN 55337.
You Need
Tree City USA

City trees add the soft touch of nature to our busy lives. They cool our cities, fight pollution, conserve energy, give wildlife a home, and make our neighborhoods more liveable.

Support Tree City USA where you live. For your free booklet, write: Tree City USA, The National Arbor Day Foundation, Nebraska City, NE 68410.

Triplett DMM

Large, easy to read 3-1/2 digit LCD display. Tests voltage in 5 ranges up to 750VAC, resistance in 6 ranges to 20M, plus diode test with audible continuity, 6 current ranges to 10A. Built-in battery test and HFE test for NPN and PNP transistors. Test leads, instructions and carrying case included.

#RN-390-140

6-1/2" Two-Way System

Perfect surround speakers. Customize your media room with these super quality, Perfect surround speakers. Customize your

Ultimate 5", 2 Way System

A perfect way to upgrade your car's sound system. 5", 2 way, bridgeless speaker pair featuring paper cones that are impregnated with a special ingredient to prevent water damage. 1" aluminum voice coil, 6 oz. magnet. Impedance 4 ohm. Frequency response: 20-21,000 Hz. Power handling: 30 watts RMS, 55 watts maximum. SPL: 92 dB 1W/1M. Mounting depth: 1-3/4". Net weight: 4 lbs.

#RN-265-282

$4695

(1-3 prs)

$4350

(4 prs-up)

Mini Electrolytic Cap Kit

This 60 piece kit contains a selection of 16 volt and 50 volt mini electrolytic capacitors. 5 pieces each of 10, 15, 22, 33, 47, and 100 uf, 50 volt radial caps. This convenient kit has many of the "low profile" caps used in camcorders, VCRs, portables and other products where space is limited. A $27.00 value.

#RN-300-036

$2495

Sug List

$1995

Each

$995

(1-3 prs)

$50

(4 prs-up)

Black Widow Challenger Remote Security System

Dollar for dollar, and feature for feature the Challenger security system outperforms most competitors in its class. Features include: Two-2 button remote transmitters, compact design for under dash or under seat installation, passive or active arming, visual/audible indication when arming/disarming, remote panic, 360 degree shock sensor, door lock output, starter disable with relay and harness. 120 dB siren, entry tamper violation memory, built-in parking light flasher or horn sounding circuit, current and switch sensing, manual override switch. 1 positive and 2 negative triggers, flashing LED, RF safety lock-out, automatic reset, glass break sensor and more. Net weight: 3 lbs.

#RN-330-037

$9995

Each

The Ultimate Test CD

The Ultimate test CD was designed for use by both the audio amateur and the professional sound engineer. This CD can be used to test CD players, speakers, amplifiers, and for tuning instruments. The manual is written in easy to understand English and takes you step-by-step through each track of the CD and explains its purpose. The Ultimate test CD is a necessary tool for anyone who is serious about quality audio sound.

#RN-510-100

$795

Each

CALL TOLL FREE
1-800-338-0531
REMOTE CONTROL KEYCHAIN
Complete wintr-transmitter and -4 Vdc RF receiver
Fully assembled including plans
to build your own auto alarm.
Check Visa or M/C
Add 5¢ shipping
5 @ $19.95, 10 @ $14.95

DESCRIPTIVE CATALOGS

SURVEILLANCE transmitter kits tune from 65 to 305 MHz. Mains powered duplex, telephone, or TV receiver, complete TV or audio, and a complete day or night plan. Free brochure. No New York sales.

FEBRUARY TECHNICAL ARTICLES

IDENTIFICATION
to etched board

PROTOCAL ADAPTOR
to etched board

BUILD G-5 VOLT DUAL TRANSISTOR RADIO

GREAT PROJECT

PROJECT

REMOTELY CONTROLLED TV/AM/FM RECEIVER

ONE TREE can save 1000000 trees.

CABLETELEVISION

CONVERTERS

1-4 Units 5 Units 10 Units

PANASONIC T2P 145 $85.00 $75.00 $70.00
STARGATE 2000 $79.00 $69.00 $65.00
HAMLIN MCC 3000 $25.00 $19.00 $15.00

ADD-ON DESCRAMBLERS

SB-3 (NEW) $50.00 $45.00 $40.00
SB-3 FACTORY $45.00 $39.00 $35.00
SA-3 $50.00 $45.00 $40.00
DBT-3 $65.00 $55.00 $50.00
KN12A-2 or 3 $49.00 $45.00 $40.00
HAMLIN MLD 1200-3 $49.00 $40.00 $35.00
ZENITH SSAVI $165.00 $149.00 $125.00
SA-D $109.00 $95.00 $75.00

COMBOS

CALL FOR PRICES

JERROLL DPB $299.00 $225.00 $215.00
JERROLL DPBB $165.00 $105.00 $89.00
JERROLL DRZ-3-DIC $175.00 $115.00 $99.00
JERROLL DRZ-5-DIC $275.00 $185.00 $169.00
OAK M35 $45.00 $35.00 $30.00
HAMLIN SPC 4000 3M $50.00 $44.00 $44.00
ADD $10.00 FOR VARIETY

California Penal Code §593-D Forbids us from shipping any cable descrambling unit to anyone residing in the state of California. Prices subject to change without notice. COD/Credit Card

Please Print

Name
Address
City
State
Zip
Tel:
Visa
MC
Exp. Date
COD

DECLARATION OF AUTHORIZED USE - I, the undersigned, do hereby declare under penalty of perjury that all products purchased, now and in the future, will only be used on TV systems with all applicable federal and state laws. FEDERAL AND VARIOUS STATE LAWS REQUIRE SUBSTANTIAL CRIMINAL AND CIVIL PENALTIES FOR UNAUTHORIZED USE.

For Free Catalog, or to place an order call
(800) 433-2011 • FAX (818) 790-7065

Stewart, CA 91330
AMAZING * ELECTRONIC PRODUCTS and KITS

Remember those Martian Space Ships in HG Wells' War of the Worlds?

MYSTERIAL Device
Objects float on air and move to the touch. Defies gravity! Amazing gift, conversation piece, magic trick or great scientific project.

ANTK: Easy-Ass' y Kit. Plans $15.99

3 MILE FM Wireless Microphone!
Crystal clear, ultra-sensitive pickup transmits voices, sounds to any FM radio. For security, monitoring children, invalids. Be the local DJ!

MVP1: Plans $7.00
MVP1K Kit/Plans $39.50

100,000 V - 20' Range Intimidation Device!
Electronic module, may be enclosed for handheld, portable, or fixed use.

ITM2 Plans (citable to kit) $10.00
ITM2K Kit & Plans $49.50

READY-TO-USE, AUTOMATIC Phone Recording System
Complete with extended play tape recorder & line interface switch. Automatically records both sides of conversation. Check Local Laws on Proper Use! Ready to Use System.

TAP20X System $149.50

Laser Pen
P凭什么 lens, great for movies, drive-ins, parties. Ready to use, with battery. LAPTR Laser Pen $149.50

Pocket Laser Kit
3mw or 5mw kits, with solid state 670nm diode. Caution, Class 3B laser

VRL3MK 3mw Laser Kit $99.50
VR5M Laser Kit $119.50

MORE Laser Kits!
LAS1KT 1mw Laser, 632nm, HeNe Easy to Build Kit $69.50
LAS4KM 3mw Version, Kit $99.50

LATOM Low Cost HeNe Laser Tube! .5mw Tube & Plans... only $24.50
Other parts available separately.

Great Low Budget Science Project!

Incredible Projects that will fascinate your friends! Easy to Build, Meticulously Designed, Simple Operation. All American Made, Guaranteed.

MAIL for FREE INFORMATION CARD

FREE CATALOG
- CABLE T.V. BOXES - ALL TYPES -
- LOW PRICES - DEALER PRICES -

HOME assembly work available! Guaranteed easy money! Get details! HOMEWORK- R, Box 520, Danville, NH 03831.

MONEYMAKERS! Easy! One man CRT rebuild machine, $6,900.00 rebuilt, $15,900.00 new. CRT, 1909 Louise, Crystalake, IL 60014. (615) 477-8655. FAX (615) 477-7013.

MAKE $75,000.00 to $250,000.00 yearly or more fixing IBM color monitors. No investment, start doing it from your home (a telephone required). Information, USA, Canada $2.00 cash for brochure, other countries $10.00 US funds. RAN-DALL DISPLAY, Box 2166-R, Van Nuys, CA 91404 USA. FAX (818) 990-7803.

FREE CABLE TV DECODERS

DEALERS WANTED QUANTITY DISCOUNTS ON 5 OR MORE UNITS

MODEL 5 10 20 50 100
$99.95 $89.95 $84.95 $79.95 $74.95

*DTI-3 65 60 50 45 40 CALL
*SAT-3 55 50 45 40 CALL
*SA-80 120 110 100 95 90 CALL

* DTI - Digital Tri-Mode Impulse
** SAT - SCI ATL
**SA-80 - SCI ATL 8980 & above

All equipment is new and guaranteed
CALL V.I.
1-800-677-0321

Anyone implying theft of service will be denied assistance
No Florida Sales

LEARN gold, silver, platinum scrap recycling business. (Free) Information. Write: RECLCING, Box 11216PE, Reno, NV 89510-1216.

ELECTRONICS dealers: Expand your product line. Make $$$! Become an AMERICAN ELECTRONICS dealer! Profit opportunities since 1965. Call Scott Pruett, 1 (800) 872-1373.

*FLORIDA residents add 6% sales tax.

**ๆ.. ELEETECH / CABLE T.V. DECODERS
- All quality brand names
- All fully guaranteed
- All the time
- Knowedgeable Sales Service Department For FREE CATALOG 800-253-0099

WANTED
INVENTORS: We submit ideas to industry. Find out what we can do for you. 1 (800) 288-IDEA.

ELECTRONIC jobs to do at home. 17 years experience. Mil spec quality. Reliable, references (602) 378-3626.

INVENTORS
INVENTORS! Can you patent and profit from your idea? Call AMERICAN INVENTORS CORP. for free information. Serving inventors since 1975. 1 (800) 338-5566
Learn VCR repair!

Professional-level home study program. Master easy-to-learn, high-profit repairs without investing in costly high-tech instruments. Send or call today.

Free Career Kit: 800-223-4542

Name __________________________
Address __________________________
City __________________ State _______ Zip ______
The School of VCR Repair, Dept. VP342
2245 Perimeter Park, Atlanta, GA 30341

EDUCATION & INSTRUCTION

BUILDING A Robot: A Straightforward Approach. 152 pages fully illustrated. Instructions how you can easily construct a robot. Check or money order $19.95 plus $3.00 shipping. HUMANFORM ROBOTICS, PO Box 158486, Nashville, TN 37215.

CABLE TV DESCRAMBLERS ★ CONVERTERS ★ and ACCESSORIES.

SAVE MONEY. DON'T RENT!

PANASONIC, JERROLD, OAK, PIONEER, SCIENTIFIC ATLANTA and MORE. LOWEST PRICES. FREE CATALOG.

CABLE READY (800) 234-1006

CABLE BOX WHOLESALERS, INC.

BEST BOXES—BEST PRICES
Immediate Shipping—COD's
Satisfaction Guaranteed
FREE Catalog—Call Now
800-841-7835

PLUG INTO THE SERVICE, SELECTION AND VALUE MCM ELECTRONICS PROVIDES

A defense against cancer can be cooked up in your kitchen.

There is evidence that diet and cancer are related. Follow these modifications in your daily diet to reduce chances of getting cancer:
1. Eat more high-fiber foods such as fruits and vegetables and whole-grain cereals.
2. Include dark green and deep yellow fruits and vegetables rich in vitamins A and C.
3. Include cabbage, broccoli, Brussels sprouts, kohlrabi and cauliflower.
4. Be moderate in consumption of fats, including oils.
5. Cut down on total fat intake from animal sources and trans and poly unsaturated fats.
6. Avoid obesity.
7. Be moderate in consumption of alcoholic beverages.

No one faces cancer alone.

AMERICAN CANCER SOCIETY

To get the full power of MCM Electronics’ array of products and services, you have to be plugged in. And that’s easy. Just call. We’ll wire you in to more than 20,000 components and parts, many of them top brand names, others hard-to-find items. We offer connectors, semiconductors, VCR parts and accessories, television components, test equipment, tools and chemicals. Everything you need for computer, audio, video, or telephone repair. We’ll give you all the technical assistance you need. Then speed your order to you, within 24 hours. That’s selection, and service. And that means value to you, and to your customers.

For A Free Catalog Call: 1-800-543-4330
To Order By Fax: 1-513-334-6989
For Product Questions: 1-800-824-TECH (8324)

MCM ELECTRONICS
650 CONGRESS PARK DR.
CENTERVILLE, OH 45459-4072
A PREMIER Company
Shortwave Listening Guidebook by Harry Helms

Here's your guide to getting the most from a shortwave radio. In clear, nontechnical language, Harry explains how it works, and where to listen in. Its 320 heavily-illustrated pages are packed with advice on:

- antennas
- selecting the right radio
- accessories
- reception techniques

Learn how to hear the BBC, Radio Moscow, ham operators, ships, even spies and "pirate" radio stations! Includes hundreds of station frequencies and the times you can hear them.

Only $16.95 at radio equipment dealers, or order direct from HighText! Add $3 shipping ($4 Canada, $5 elsewhere) CA add sales tax. U.S. funds only please.

HighText
7128 Miramar Road, Suite 15L
San Diego, CA 92121

Cable TV DESCRAMBLERS

- 90-day Money Back Guarantee
- The Most Complete Line of Descramblers
- Friendly, professional service
- FREE Catalog

1-800-228-7404
Go to the Source
NU-Tek Electronics
3250 Hatch Rd
Cedar Park, TX 78613

ANTIQUE RADIO CLASSIFIED

Free Sample! Antique Radio's Largest Circulation Monthly Articles, Ads & Classifieds. 6-Month Trial: $15. 1-Yr: $27 (40-1st Class). A.R.C., P.O. Box 802-L9, Carlisle, MA 01741

BE A GOOD NEIGHBOR

Volunteer.

American Heart Association
REGULATED POWER SUPPLY KITS

Build the power supply you've been needing for years. Ideal for home or instructional use, select from three different versions. Each kit is complete with printed circuit board, electronic components, and user assembly instructions.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Product No.</th>
<th>Input Voltage (VAC)</th>
<th>Output Voltage (VDC)</th>
<th>Current (mA)</th>
<th>Dimensions (L x W x H inches)</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR203600</td>
<td>JE200</td>
<td>120</td>
<td>+5</td>
<td>1000</td>
<td>3.5 x 5.0 x 2.0</td>
<td>14.95</td>
</tr>
<tr>
<td>DR20626</td>
<td>JE215</td>
<td>120</td>
<td>+5 to +15</td>
<td>750 to 175</td>
<td>3.5 x 5.0 x 2.0</td>
<td>19.95</td>
</tr>
<tr>
<td>DR73613</td>
<td>JE225</td>
<td>120</td>
<td>+5 fixed</td>
<td>1000</td>
<td>5.12 x 5.12 x 2.25</td>
<td>29.95</td>
</tr>
</tbody>
</table>

VOICE SCRAMBLER KIT

Transmit voice messages with complete privacy and security. The Voice Scrambler Kit converts intelligible human speech into unrecognizable garble for recording or transmitting over standard media. The descrambler module restores the signal to fully intelligible speech. Operate with a cassette tape recorder or build a secure telephone system using a separate kit at each end of the line.

Audio Power Output: 0.5 Watts
Resolution: 8 bits (companded, Mo-Law)
Sample Rate: 8 kHz
Power Supply: +5 & -5 VDC @ 25 mA, +12 VDC @ 250 mA; (recommend power supply DR73613-L)
Dimensions: PCB is 3.55" x 3.10" (LxW)

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Product No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR70519</td>
<td></td>
<td></td>
<td>$34.95</td>
</tr>
</tbody>
</table>

TWO-DIGIT VOLTMETER KIT

Now you can build a versatile, practical, high-performance digital panel voltmeter. Finished kits deliver ±2% accuracy at full scale. Its basic input range of 0.0 to 9.9 VDC is easily scaled for any application.

Input Impedance: 82KΩ with 9.9 VDC range
Displays: 0.3" red MAN74A type
Power Supply: +5 VDC, regulated. 100 mA; (recommend power supply DR20360- L)
Dimensions: 4.3” x 2.2” x 1.3” (LxWxH)

Order toll-free 1-800-831-4242

Other Jameco Resources

- Test/Measurement and Prototyping Equipment
- Computer Upgrade and Accessory Products
- Full line of Integrated Circuits and Electronic Components
- Exciting Project Kits for Hobbyists

Call or write for your 1993 Annual Catalog: 1-800-637-8471

$30.00 Minimum Order
For International Sales, Customer Service, Credit Department and all other inquiries: Call 415-592-8907 between 7AM-5PM PST.
CA Residents please add applicable sales tax.

Terms: Price subject to change without notice. Items subject to availability and prior sale. Complete list of terms/warranties is available upon request.

(c) 1992 Jameco 12992 All trademarks are registered trademarks of their respective companies.
ADVERTISING INDEX

Electronics Now does not assume any responsibility for errors that may appear in the index below.

<table>
<thead>
<tr>
<th>Free Information Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>47th Street Photo</td>
<td>73</td>
</tr>
<tr>
<td>108 AMC Sales</td>
<td>83</td>
</tr>
<tr>
<td>75 Ace Products</td>
<td>74</td>
</tr>
<tr>
<td>107 All Electronics</td>
<td>106</td>
</tr>
<tr>
<td>98 Beckman Industrial</td>
<td>5</td>
</tr>
<tr>
<td>190 Beckman Industrial</td>
<td>14.15</td>
</tr>
<tr>
<td>109 C & S Sales</td>
<td>42</td>
</tr>
<tr>
<td>183 Cable Warehouse</td>
<td>82</td>
</tr>
<tr>
<td>181 Chesenko Products</td>
<td>74</td>
</tr>
<tr>
<td>181 CLAGG Video Offer</td>
<td>CV3</td>
</tr>
<tr>
<td>58 Command Productions</td>
<td>83</td>
</tr>
<tr>
<td>127 Deco Industries</td>
<td>74</td>
</tr>
<tr>
<td>179 Electronic Goldmine</td>
<td>108</td>
</tr>
<tr>
<td>179 Electronics Book Club</td>
<td>33.90</td>
</tr>
<tr>
<td>179 Electronic Tech. Today</td>
<td>68</td>
</tr>
<tr>
<td>121 Fluke Manufacturing</td>
<td>CV2</td>
</tr>
<tr>
<td>187 Global Specialties</td>
<td>7</td>
</tr>
<tr>
<td>198 Goldstar Precision</td>
<td>95</td>
</tr>
<tr>
<td>177 Lake Sylvan Sales, Inc.</td>
<td>108</td>
</tr>
<tr>
<td>199 M&G Electronics</td>
<td>104</td>
</tr>
<tr>
<td>87 MCM Electronics</td>
<td>105</td>
</tr>
<tr>
<td>53 MD Electronics</td>
<td>107</td>
</tr>
<tr>
<td>191 Mark V. Electronics</td>
<td>102</td>
</tr>
<tr>
<td>186 Mini Circuits</td>
<td>3</td>
</tr>
<tr>
<td>194 Northeast Electronics</td>
<td>76</td>
</tr>
<tr>
<td>182 Optoelectronics</td>
<td>17</td>
</tr>
</tbody>
</table>

197 Panavise 32
56 Parts Express 107
74 Radio Shack 34
184 Star Circuits 74
178 Tech Spray 26
92 Tektronix 24
176 U.S. Cable 81
192 Viejo Publications 76
193 Xandi Electronics 74
195 Zentek Corp. 81

ADVERTISING SALES OFFICE
Gernsback Publications, Inc.
500 B Bi-County Blvd.
Farmington, NY 11735
1-516-293-3000
Fax 1-516-293-3115
President: Larry Steckler
For Advertising ONLY
1-516-293-3000
Fax 1-516-293-3115
Ad Sales Manager: Larry Steckler
Publisher: Christie Estrada
Advertising Director: Arline Fishman
Advertising Assistant: Kelly McQuade
Credit Manager: Denise Mullin
Subscriber Service: 1-800-288-0652
Order Entry: 1-800-999-7139
7:00 AM - 6:00 PM MST

EAST/SOUTHEAST
Stanley Levitan, Eastern Advertising Sales Manager
Electronics Now
1 Overlook Ave
Great Neck, NY 11021
1-516-487-9357, 1-516-293-3000
Fax 1-516-487-8402

WEST/Texas/Arkansas/Oklahoma
Ralph Bergen, Midwest Advertising Sales Manager
Electronics Now
One Northfield Plaza, Suite 300
Northfield, IL 60093-1214
1-708-446-1444
Fax 1-708-559-0562

PACIFIC/COAST/Mountain States
Pamela Kuster
Pattis/3M
1800 North Highland Avenue
Suite 711
Hollywood, CA 90028
EN Shopper
Joe Shere, National Representative
P.O. Box 169
Idyllwild, CA 92549
Phone 1-714-659-9743
Fax 1-714-659-2469

CIRCLE 177 ON FREE INFORMATION CARD

"CABLE BOXES" BELOW WHOLESALE GUARANTEED STOCK - COD'S

- DESCRAMBLERS:
 (QTY) (10) (20) (40)
 NEW TB/3 70 55 CALL
 TB 2 or 3 45 40 CALL
 SA-3B 45 40 CALL
 OAK N-12 43 38 CALL
 SB 2 OR 3 43 38 CALL

- CONVERSIONS WIREMOTES:
 DRX-DIC 89 CALL
 SYL DIC 59 CALL
 PIONEER 295 275 CALL
 CITY 65 60 CALL

- STARQUEST:
 E-Z550 65 60 CALL
 E-ZY550 75 65 CALL

- PACSONIC:
 TPZC145 65 60 CALL

- THEFT OF SERVICE IS A CRIME INSTALLING ANY DEVICE WITHOUT PERMISSION MAY SUBJECT YOU TO CIVIL OR CRIMINAL PENALTIES. YOU MUST CHECK WITH LOCAL CABLE COMPANY AND PAY FOR ALL SERVICES YOU USE. IT IS NOT THE INTENTION OF LAKE SYLVAN TO DEFRAUD ANY TELEVISION OPERATOR AND WE WILL NOT IMPOSE ANY ADDITIONAL CHARGES.
Countersurveillance

Never before has so much professional information on the art of detecting and eliminating electronic snooping devices—and how to defend against experienced information thieves—been placed in one VHS video. If you are a Fortune 500 CEO, an executive in any hi-tech industry, or a novice seeking entry into an honorable, rewarding field of work in countersurveillance, you must view this video presentation again and again.

Wake up! You may be the victim of stolen words—precious ideas that would have made you very wealthy! Yes, professionals, even rank amateurs, may be listening to your most private conversations.

Wake up! If you are not the victim, then you are surrounded by countless victims who need your help if you know how to discover telephone taps, locate bugs, or “sweep” a room clean.

There is a thriving professional service steeped in high-tech techniques that you can become a part of! But first, you must know and understand Countersurveillance Technology. Your very first insight into this highly rewarding field is made possible by a video VHS presentation that you cannot view on broadcast television, satellite, or cable. It presents an informative program prepared by professionals in the field who know their industry, its techniques, kinks and loopholes. Men who can tell you more in 45 minutes in a straightforward, exclusive talk than was ever attempted before.

Foiling Information Thieves
Discover the targets professional snoopers seek out! The prey are stock brokers, arbitrage firms, manufacturers, high-tech companies, any competitive industry, or even small businesses in the same community. The valuable information they filch may be marketing strategies, customer lists, product formulas, manufacturing techniques, even advertising plans. Information thieves cavedrop on court decisions, bidding information, financial data. The list is unlimited in the mind of man—especially if he is a thief!

You know that the Russians secretly installed countless microphones in the concrete work of the American Embassy building in Moscow. They converted

CALL NOW!

The professional discussions seen on the TV screen in your home reveals how to detect and disable wiretaps, midget radio-frequency transmitters, and other bugs, plus when to use disinformation to confuse the unwanted listener, and the technique of voice scrambling telephone communications. In fact, do you know how to look for a bug, where to look for a bug, and what to do when you find it?

Bugs of a very small size are easy to build and they can be placed quickly in a matter of seconds, in any object or room. Today you may have used a telephone handset that was bugged. It probably contained three bugs. One was a phony bug to fool you into believing you found a bug and secured the telephone. The second bug placates the investigator when he finds the real thing! And the third bug is found only by the professional, who continued to search just in case there were more bugs.

The professional is not without his tools. Special equipment has been designed so that the professional can sweep a room so that he can detect voice-activated (VOX) and remote-activated bugs. Some of this equipment can be operated by novices, others require a trained countersurveillance professional.

The professionals viewed on your television screen reveal information on the latest technological advances like laser-beam snoopers that are installed hundreds of feet away from the room they snoop on. The professionals disclose that computers yield information too easily. This advertisement was not written by a countersurveillance professional, but by a beginner whose only experience came from viewing the video tape in the privacy of his home. After you review the video carefully and understand its contents, you have taken the first important step in either acquiring professional help with your surveillance problems, or you may very well consider a career as a countersurveillance professional.

The Dollars You Save
To obtain the information contained in the video VHS cassette, you would attend a professional seminar costing $350-750 and possibly pay hundreds of dollars more if you had to travel to a distant city to attend. Now, for only $49.95 (plus $4.00 P&H) you can view Countersurveillance Techniques at home and take refresher views often. To obtain your copy, complete the coupon or call.

1-516-293-3751

HAVE YOUR VISA or MC CARD AVAILABLE

what was to be an embassy and private residence into the most sophisticated recording studio the world had ever known. The building had to be torn down in order to remove all the bugs.

Stolen Information
The open taps from where the information pours out may be from FAX'S, computer communications, telephone calls, and everyday business meetings and lunchtime encounters. Businessmen need counselling on how to eliminate this information drain. Basic telephone use coupled with the user's understanding that someone may be listening or recording vital data and information greatly reduces the opportunity for others to purloin meaningful information.

CLAGGK INC.
P.O. Box 4099 • Farmingdale, NY 11735

CALL NOW!
Soder-Wick® Facts # 1:

The Desoldering System.

Soder-Wick® Fine-Braid is uniquely designed for each desoldering application, from SMT pads to large wire connectors. This ultra-pure, oxygen-free copper is engineered in an open-weave pattern that provides near-perfect capillary action. Solder is wicked cleanly away, without damaging the board or surrounding components.

Choose from nine widths and three flux arrangements, including static dissipative packaging for ESD-sensitive operations. Call us at 1-800-SOS-WICK and get all the facts on the Soder-Wick System.

Soder-Wick Facts # 22:

The SMT Wick.

Soder-Wick® Ultra-Braid is designed for precision cleaning tight-tolerance SMT pads. This ultra-pure, oxygen-free copper wire is engineered for superior thermal conductivity which ensures lower heat transfer and faster wicking action. Solder and contaminants are quickly removed, without affecting surrounding pads or intergrated circuits.

Call us at 1-800-SOS-WICK and get all the facts.

Soder-Wick® Facts # 12:

The Fastest-Acting Wick.

Soder-Wick® Fine-Braid exceeds the desoldering rate specified by Mil Standard 883B, Method 2022. This ultra-pure, oxygen-free copper wire is engineered for superior thermal conductivity, which lowers heat transfer and won’t cause damage to the board or surrounding components.

Soder-Wick® Fine-Braid is designed for desoldering operations from SMT pads to large wire connectors. Call us at 1-800-SOS-WICK and get all the facts on the Soder-Wick System.

Soder-Wick® Facts # 7:

The Static Dissipative System.

Soder-Wick's unique Static Dissipative blue bobbin packaging qualifies under DOD Standard 1686 and DOD Handbook 263, and meets the decay rate provision specified in MIL-B-81705B. Solder-Wick Fine-Braid and Ultra-Braid in the SD blue bobbin provide maximum protection for circuit boards and components during ESD-sensitive operations.

Soder-Wick® is engineered for desoldering applications from SMT pads to large wire connectors. Call 1-800-SOS-WICK for all the facts on the Soder-Wick System.