BUILD A PC-BASED TEST BENCH!

BUILD THIS ROBOT "BUG"
It's not the smartest robot, but you can learn a lot from it

VIDEO AMPLIFIERS
Some classic circuits

HARD-DISK DRIVE STANDARDS
ESDI, IDE, SCSI . . . We give you the straight story

BUILD A SOLID-STATE THERMOSTAT
Use temperature control in your next project

We'll show you how to build a lab's worth of test gear!

PC-BASED TEST BENCH!
We Only Skimped On The Price.
Introducing The Fluke Series 10—from $69.95

Fluke quality: Made in the USA by Fluke, with the same rugged reliability that's made us the world leader in digital multimeters. Count on hard-working high performance—and a two-year warranty to back it up.

Large, easy-to-read display: 4000 count digital readout.

New! Min/Max record with relative time stamp and Continuity Capture™: Makes intermittent problems easier to find. Records highs and lows—and “time stamps” when they occurred. In Continuity mode, opens or shorts as brief as 250 µs are captured and displayed.

Capacitance: Autoranging from .001 µF to 9999 µF. No need to carry a dedicated capacitance meter.

For high performance at Fluke's lowest price, get your hands on the new Series 10. Stop by your local Fluke distributor and feel what a powerful difference the right multimeter makes—at the right price. For a free product brochure or the name of your nearest distributor, call 1-800-877-FLUKE.

<table>
<thead>
<tr>
<th>Fluke 10</th>
<th>Fluke 11</th>
<th>Fluke 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>$69.95</td>
<td>$89.95</td>
<td>$89.95</td>
</tr>
<tr>
<td>4000 count digital display</td>
<td>4000 count digital display</td>
<td>4000 count digital display</td>
</tr>
<tr>
<td>1.9% basic dc volts accuracy</td>
<td>0.9% basic dc volts accuracy</td>
<td>0.9% basic dc volts accuracy</td>
</tr>
<tr>
<td>1.9% basic ac volts accuracy</td>
<td>0.9% basic ac volts accuracy</td>
<td>0.9% basic ac volts accuracy</td>
</tr>
<tr>
<td>0.9% basic ohms accuracy</td>
<td>0.9% basic ohms accuracy</td>
<td>0.9% basic ohms accuracy</td>
</tr>
<tr>
<td>Fast Continuity beeper</td>
<td>Fast Continuity beeper</td>
<td>Fast Continuity beeper</td>
</tr>
<tr>
<td>Two-year warranty</td>
<td>Two-year warranty</td>
<td>Two-year warranty</td>
</tr>
</tbody>
</table>

*Suggested U.S. list price.

New! V Chek™: For fast accurate checks on power sources and supplies, set your meter on V Chek—and let it do the rest. V Chek will determine continuity/ohms, if voltage is present, it will automatically change modes to measure AC or DC volts, whichever is detected. For most initial troubleshooting checks, here's the only setting you need to make.

New! Slide switch and a few pushbuttons control all functions: Designed for true one-hand operation.

Sleep Mode: Shuts itself off if you forget, extending long battery life even further.

Actual size: Easy to carry, easy to use.

Autoranging with manual option: Your choice, depending on your situation.

Audible Continuity: To perform fast continuity checks, just listen for the beep; no need to watch the display.

Safety—a Fluke standard: Designed to meet UL1244, IEC 1010, CSA and VDE safety requirements, extensive overload protection built in.

New! TI 75 Hard Point™ Test Leads: Comfort grip with extra strong tips for extended service life.

CIRCLE 121 ON FREE INFORMATION CARD

BUILD THIS

33 BUILD THIS ROBOT BUG
A fun—and inexpensive—robot project.
Roger Sonntag and Dennis Chaney

53 ELECTRONIC THERMOSTAT
Replace mechanical units for under $20!
Rodney A. Kreuter

57 CLASSIC VIDEO AMPS REVISITED
Mature amps still have lots of life for new video and RF circuits.
Edgardo Perez

COMPUTERS

39 PC-BASED TEST BENCH
In this first of a series, learn how to build an interface card.
Steve Wolfe

63 THE INSIDE STORY ON HARD-DISK STANDARDS
A look at today's competing disk-drive standards.
Byron Miller

DEPARTMENTS

6 VIDEO NEWS
What's new in this fast-changing field.
David Lachenbruch

16 EQUIPMENT REPORT
Multidyne TS-8-MTS TV test signal generator.

69 HARDWARE HACKER
FM stereo broadcasters, and more.
Don Lancaster

76 AUDIO UPDATE
Testing the testers.
Larry Klein

84 COMPUTER CONNECTIONS
Windows 3.1 and OS/2 2.0
Jeff Holtzman

AND MORE

98 Advertising and Sales Offices
98 Advertising Index
12 Ask R-E
14 Letters
85 Buyer's Mart
28 New Lit
22 New Products
4 What's News
If you're looking for a robot to serve you drinks, balance your checkbook, and cook your meals, dream on! If you're looking to learn about robotics by building a simple, inexpensive, and fun project, check out our Robot Bug. The free-roaming robot can sense and avoid obstacles to find a path through its environment. It has two switches—similar to an insect's antennas—that respond to a touch by causing the robot to stop, back up, and turn away from that side. Turn to page 33 for the details.

BUILD A STEREO TRANSMITTER
Use your portable CD player in your car with this easy-to-build device.

PC-BASED FREQUENCY COUNTER AND CAPACITANCE METER
Our series continues with instructions for these low-cost, high-quality PC-based test instruments.

BUILD THE CRANKING AMP ESTIMATOR
This high-tech device will let you know the condition of your car's battery.

WORKING WITH OPTOCOUPLES
Put optocouplers to use in your designs—including transistor- and SCR/Triac-output devices.
DIGITAL TRAINER

THE KELVIN LCD Laptop Digital Trainer

ONLY $99.95

Stock No. 840406

WALL TRANSFORMERS

BREADBOARDS

COMPOUNDS

KELVIN ELECTRONICS

CIRCLE RESPONSE CARD or FAX ORDER TO WHOLESALE PRICED ITEMS.

Stock No. 790999

Duracell: Eveready 9V Alkaline Battery

$1.95 ea

$10ea/50+ $1.75 ea

$20ea/100+ $1.65 ea

KELVIN’s PREMIER 9V DC BATTERY

$12ea/100+ $10.50 ea

MALE BATTERY SNAP-HOLDER

$1.50 ea

$15ea/100+ $1.10 ea

MINIATURE TOGGLE SWITCH

$3 ea

$30ea/100+ $2.50 ea

SEE OUR COMPLETE CATALOG OF ELECTRONIC COMPONENTS & TECHNOLOGY ACTIVITIES!

FREE SHIPPING ON FULL ORDER AMOUNT

June 1982 Radio-Electronics
High-brightness green laser
A 52-watt green laser beam generated by researchers at the GE Research and Development Center in Schenectady, NY, more than doubles the previously published brightness record for green light produced with solid-state lasers. As used in optical physics, "brightness" refers to both power—the watts of photon energy put out by the beam—and beam quality—a measure of the beam’s diameter and how much it diverges or spreads out.

To produce the high-brightness green beam, the GE researchers passed a 16-watt beam from a commercially available solid-state laser through a telescope and other optical elements, and then fed it into a specially built neodymium-doped yttrium-aluminum-garnet (Nd:YAG) face-pumped laser. That process amplified the beam to 92 watts while retaining the good beam quality. The 92-watt beam was then passed through a focusing lens and fed into a crystal of lithium triborate that acted as "frequency doubler" and halved the beam's wavelength to 532 nanometers. That produced the 52-watt green beam in combination with an invisible infrared beam. The two beams were passed through a dispersing prism to separate them.

The research is part of GE’s efforts to demonstrate new applications for its face-pumped laser technology, which is currently used in high-speed, high-precision metal cutting and drilling at GE’s aircraft-engine manufacturing plants. The green beam, alone or in combination with infrared beams, is well absorbed by certain polymeric composites and might be suited for cutting and drilling them. Because seawater is essentially transparent to a green beam, the laser might be used in submarines for underwater detection and communications. With additional frequency conversions, the green beams can be shifted to wavelengths in the ultraviolet and deep ultraviolet regions that are used in laser surgery and other medical applications, without significant power loss. At present, only excimer lasers can approach such applications.

New IC packaging
According to a study recently released by Market Intelligence, strong growth in the IC component market—from $50 billion in 1991 to more than $106 billion in 1997—will be largely due to new packaging technologies. Surface-mount technology (SMT) surpassed through-hole technology as the leading electronic systems manufacturing technology for new designs in 1991. The shift from through-hole technology to other packaging technologies will be fueled by increased operating speeds and the need for higher pin counts.

As world consumption of dual-in-line packaged (DIP) IC’s falls from 41% in 1990 to less than 3% by 1997, other technologies will fill the gap (Fig. 1). There is a clear trend toward specialized packaging by individual IC and application type, with the fastest growing packaging technologies expected to be small-outline (SO) packaging, multichip modules (MCM), and quad flat packs (QFP). The SO package is expected to gain the largest industry segment, rising from 22% in 1990 to 36% in 1997.
You Can Always Spot The Technician Who Doesn’t Use Tektronix.

If you’re sending technicians and FSEs into the field with equipment other than Tektronix, don’t be surprised to discover some unusual tools in their service kits.

Signal flares, for instance. On the other hand, portable test gear from Tek gets technicians to the root of the problem long before the problem gets to them. Everything from oscilloscopes and spectrum analyzers to handheld DMMs.

As a result, your customers will be back on their feet happy for that. Not to mention a whole lot nicer to touch with a Tektronix representative today. Or keep an eye peeled for signs of distress. TALK TO TEK/1-800-426-2200
• TV and X-rays. Those of you who are at least 40 years old may remember the Great X-Ray Scare of the 1960's. Articles about the possibility of severe radiation exposure of TV viewers were widely published, and specific data on rats bred in the vicinity of network broadcasts allegedly showed mutations. Supermarkets sprouted "X-ray detection kits" to tell consumers whether their TV's were leaking excessive amounts of radiation.

Congress got in on the act and passed the nobly-titled "Radiation Control for Health and Safety Act of 1968." Among other things, that law was intended to limit radiation from TV sets to below the level of background radiation—certainly an admirable goal—and let parents permit their offspring to view TV with complete assurance that even if it would endanger their impressionable brains, it wouldn't hurt their bones and other vitals.

The U.S. Public Health Service promulgated rules to save the American people from X-ray zapping by color TV. Basically, those involved the use of special high-voltage hold-down circuits in TV sets to keep power supplies below the danger level, the addition of more shielding in picture tubes, and the development of testing procedures to make sure that no radiation developed within the TV sets. Among those test procedures were factory tests with all user and servicer controls set to produce maximum radiation, AC line voltage at 130 volts, and simulated failure of any component that could possibly cause excessive radiation.

In addition, dealers and distributors were required to keep the names and addresses of TV-set purchasers for the "useful life" of the set.

Almost immediately after the radiation rules went into effect, the TV industry went to solid-state circuits, eliminating the power tube that was classified as a major source of radiation. Despite the switch to solid state and the heavily leaded glass in picture tubes, the regulations weren't changed. Ten years ago, the Public Health Service proposed eliminating many of the unnecessary regulations, but nothing ever happened. When we asked, nobody at the Public Health Service could remember the last time a consumer TV set was found to be radiating above the strict minimum. Nevertheless, the tentacles of the law reached out last year and nabbed a manufacturer—not for permitting excess radiation, but because of what the Public Health Service called improper test procedures. It impounded 30,000 sets made by that manufacturer. The manufacturer held up another 130,000 sets until everything was cleared up, losing most of the major Christmas selling season of 1991. Not one of the 160,000 sets was found to be radiating, but ... the law's the law, and inspectors visiting the factory found that the company wasn't following the right test procedures.

Asked the reason for the overreaction, a Public Health Service official involved admitted candidly that it was because of the widespread criticism of the Food and Drug Administration for laxness in enforcing its regulations on testing drugs and such devices as silicon breast implants. Partly as a result of the ridiculous crackdown on the TV manufacturer, the EIA is now seeking a revision of the government's X-ray regulations for TV sets to avoid future problems.

• Interactive TV. Hewlett-Packard is the latest American data-processing name to say it will have a go at the TV industry. HP has announced that it will make home interactive terminals for the TV Answer two-way television system. TV Answer might roughly be described as the video version of Prodigy. Unlike many proposed pay-per-view systems, TV Answer isn't designed to charge the consumer more for using his or her TV, but it is intended to provide home shopping, educational, and polling services, including participation in game shows and the like.

The FCC recently allocated spectrum space to Interactive Video and Data Services (IVDS) at the request of TV Answer. TV Answer has a deal with Hughes Network Systems to install "very small aperture terminals" (VSAT's) for transmission to satellites in a cellular-type network. TV Answer expects to begin service about a year from now, if the FCC acts on its promise to choose the first allocations by lottery by the end of the year. HP says that its home terminals will cost about $700 at the start—"lower than the first VCR or the first CD player"—but concedes that prices could "decay rapidly."

• Better, cheaper LCD's. Can America solve the liquid-crystal display logjam? One company, In Focus Systems of Beaverton, OR, is betting that it can. In Focus says that it has developed a passive matrix LCD system that it believes can solve the problems posed by active matrix systems—low yields and high costs. In Focus is pushing a system called "Active Addressing," which it says solves the problems of passive matrix systems without the problems of going to active matrix. The system, in effect, takes the complexity out of the display and puts it in the electronic addressing system. Although In Focus products currently are designed for the commercial and industrial markets—particularly, computing—the company's new technology, not yet in production, could result in a major breakthrough for such video devices as flat-panel TV sets and projection TV's.
Now, You Can Eavesdrop On The World. Introducing the new Drake R8 Communications Receiver.

It’s world class, world band radio, made-in the U.S.A. From Perth to the Persian Gulf, Moscow to Mozambique, local or global, you hear events as they happen with amazing clarity. Since 1943, Drake has been setting the standards in electronic communications … and then raising them. Today, there’s no better shortwave receiver than the Drake R8. Out-Of-This-World Performance. The new Drake R8 has more standard features than other shortwave radios. You get wide frequency range (100 KHz to 30,000 KHz), coverage of all world and local bands, and excellent dynamic range. But you also get important features you won’t find on receivers costing hundreds of dollars more. A multi-voltage power supply. Pre-amp and attenuator. Five filter bandwidths and synchronous detector. Dual mode noise blanker and passband offset. Non-volatile 100 channel memory. All designed to give you the best reception with the least distortion. Down-To-Earth Design. The ergonomic design of the R8 gives you real ease of operation. You have convenient keypad entry, with large, legible controls. The face is bold. Uncluttered. And the liquid crystal display (LCD) is backlighted for easy reading. Try The R8 …

At Our Risk. If you’re not impressed by Drake’s quality, performance and ease of operation, return the R8 Receiver within 15 days and we’ll refund your money in full, less our original shipping charge. For more information, or to order, call TOLL-FREE, 1-800-9-DRAKE-1. Telephone orders may be placed on a major credit card. $979.00 (Shipping and handling $10 in continental U.S. Ohio residents add 6½ % tax.) Call TOLL-FREE, 1-800-9-DRAKE-1 today. You can’t lose.
If You're Serious About a Future in Electronics, Ensure that Future with the Best Educational Training Available.

FREE!
SEND FOR YOUR CIE HOME STUDY COURSE CATALOG AND RECEIVE A FREE 24 PAGE CIE ELECTRONICS SYMBOL HANDBOOK!

Includes hundreds of the most frequently used electronic symbols. Published by CIE exclusively for our students and alumni. Yours free when you request a CIE Course Catalog.
If you want to learn about electronics, and earn a good income with that knowledge then CIE is your best educational value.

CIE's reputation as the world leader in home study electronics is based solely on the success of our graduates. And we've earned that reputation with an unconditional commitment to provide our students with the very best electronics training.

Just ask any of the 150,000-plus graduates of the Cleveland Institute of Electronics who are working in high-paying positions with aerospace, computer, medical, automotive and communication firms throughout the world. They'll tell you success didn't come easy...but, it did come... thanks to CIE. And today, a career in electronics offers more opportunities and greater rewards than ever before.

CIE's COMMITTED TO BEING THE BEST....IN ONE AREA....ELECTRONICS.

CIE isn't another be-everything-to-everybody school. We teach only one subject and we believe we're the best at what we do. Also, CIE is accredited by the National Home Study Council. And with more than a 1,000 graduates each year, we're the largest home study school specializing exclusively in electronics. CIE has been training career-minded students like yourself for nearly 60 years and we're the best at our subject.... ELECTRONICS... BECAUSE IT'S THE ONLY SUBJECT WE TEACH!

CIE PROVIDES YOU WITH A LEARNING METHOD SO GOOD, IT'S PATENTED.

CIE's Auto-programmed lessons are a proven learning method for building valuable electronics career skills. Each lesson is designed to take you step-by-step and principle-by-principle. And while all CIE lessons are designed for independent study, CIE's instructors are personally available to assist you with just a toll-free call. The result is practical training... the kind of experience you can put to work in today's marketplace.

LEARN BY DOING...WITH STATE-OF-THE-ART FACILITIES AND EQUIPMENT.

In 1969, CIE pioneered the first Electronics Laboratory course and in 1984, the first Microprocessor Laboratory course. Today, no other home study school can match CIE's state-of-the-art equipment and training. And all your laboratory equipment, books, and lessons are included in your tuition. It's all yours to use while you study at home and for on-the-job after graduation.

PERSONALIZED TRAINING....TO MATCH YOUR BACKGROUND.

While some of our students have a working knowledge of electronics others are just starting out. That's why we've developed twelve career courses and an A.A.S. Degree program to choose from. So, even if your not sure which electronics career is best for you, CIE can get you started with core lessons applicable to all areas of electronics. And every CIE course you take earns you credit towards completion of your Associate in Applied Science Degree. So you can work toward your degree in stages or as fast as you wish. In fact, CIE is the only school that actually rewards you for fast study, which can save you thousands of dollars.

SEND TODAY FOR YOUR CIE COURSE CATALOG AND WE'LL SEND YOU A FREE 24 PAGE CIE ELECTRONICS SYMBOL HANDBOOK!

YES! I want to get started.
Send me my CIE school catalog including details about the Associate Degree Program. (For your convenience, CIE will have a representative contact you there is no obligation.)

AE39

Name: ____________________________
Address: ____________________________
City: ___________________ State: __________
Zip: ___________________ Age: ______

Phone No. (____) ________
Check box for G.I. Bulletin Benefits
☑ Veteran ☐ Active Duty

CLEVELAND INSTITUTE OF ELECTRONICS
1776 East 17th Street
Cleveland, Ohio 44114
(216) 781-9400

A school of thousands: A class of one. Since 1934
TV SCRAMBLE

I’ve been tinkering with video signals, and I’m impressed at just how complex a video signal is. I’m amazed that cable companies can “scramble” and “des-scramble” the signal. I understand that each cable system has its own scrambling method. What exactly do they do to the video signal, and how can I determine what scrambling method my cable company uses?—G. Fischer, Deppee, NY

The fact that a video waveform is an extremely complex signal is exactly what makes scrambling possible. All the cable companies have to do is mess up just one part of the signal for the picture to become unviewable. Descrambling circuitry located in the box provided by your cable company is then used to restore the original signal.

I’d love to be able to tell you exactly what your cable company is doing, but there are many different ways to scramble video. The methods used by cable companies are constantly changing in order to keep one step ahead of the “illegal” descramblers that always show up.

In general, most scrambling methods involve some manipulation of the control portion on each line of video. And since the major player is the horizontal-sync signal (see Fig. 1), that’s usually the one that gets messed up. If you take away the horizontal-sync signal, the TV won’t be able to tell where each line ends. When that happens, the horizontal flyback in the TV will freewheel, and you’ll most likely see the entire horizontal interval weaving down the center of your TV screen with the left part of the picture on the right side of the screen and the right part of the picture on the left.

Sometimes the picture portion of the video signal is inverted, so you’ll see a negative image on the screen—or at least that’s what you would see if they didn’t also mess up the horizontal sync. To make matters even worse, the current trend in scrambling video is to do different combinations of these things on each frame of video. The information needed to decode the next frame of video is usually buried in one of the off-screen video lines present in the vertical interval.

We don’t know just how many different methods are used by cable companies to scramble video, but we’d like to find out. We encourage all readers to take a few photos of the scrambled signal as it appears on an oscilloscope, or make some sketches of it, and send them in to us. If you know what scrambling method is being used, make a note of it. If you don’t, we’ll try to figure out what they’re doing and get back to you with the answer.

60-HERTZ HUM

I live in an apartment and have a fairly elaborate audio system with speakers in every room. Recently, I moved the amplifiers to another part of the living room and since then I’ve been plagued with high levels of sixty-cycle hum. Is there anything I can do to get rid of the interference short of moving all the equipment back to where I originally had it?—B. Meredith, New York, NY

The problem of sixty-cycle hum is always hard to solve but the first thing you have to do is find out exactly where it’s coming from and, as soon as you know that, you can start to deal with it. Until you know the source of the hum, anything you try to do is wasted effort.

Start by shorting out the inputs of your equipment, beginning with the power amps and working back to the tape decks, turntables, and so on down the line. If the hum disappears when a particular input has been shorted, disconnect whatever is feeding that input and see if the hum disappears. If it does, you’ve got a grounding problem in either the cable or the equipment feeding that input. If the hum remains, you’ve got a problem with the input or power supply circuitry in that piece of equipment, and that’s where you should begin your search.

This wham-bam method of hum detection is great for locating faulty components, but it’s also possible that all your stuff is in perfect condition and you’re simply the victim of the friendly folks from your local power company. Unless you live deep in a cave, on the top of a remote mountain, or on an uninhabited moon of Neptune, you’re spending your days surrounded by a
As a member of the Electronics Book Club . . .

... you'll enjoy receiving Club bulletins every 3-4 weeks containing exciting offers on the latest books in the field at savings of up to 50% off of regular publishers' prices. You'll always have at least 10 days to make your decision. If you want the Main Selection do nothing and it will be shipped automatically. If you want another book, or no book at all, simply return the Reply Form to us by the date specified. Your only obligation is to purchase 3 more books during the next 12 months, after which you may cancel your membership at any time.

Your most complete and comprehensive source for the finest electronics books

Select any 5 books for only $4.95

(Values up to $137.75)

When you join the Electronics Book Club®

ELECTRONICS BOOK CLUB
Blue Ridge Summit, PA 17294-0810

Please accept my membership in the Electronics Book Club and send the 5 books listed below billing me $4.95 plus shipping/handling and applicable sales tax. If not satisfied for any reason, I may return the books within 10 days and have my membership cancelled. I agree to purchase 3 more books at regular Club prices during the next 12 months and may resign any time thereafter.

Code numbers of my 5 selections for $4.95

Name: ____________________________
Address: _________________________
City: __________________ State: _____ Zip: ________

Offer valid for new members only, subject to acceptance by EBC. Applicants outside the U.S. and Canada will receive special ordering instructions. Canada must remit in U.S. funds. All books are hardcover unless otherwise noted.

©1982 EBC, RIP692
LETTERS

Write to Letters, Radio-Electronics, 500-B Bi-County Blvd., Farmingdale, NY 11735

MONITOR TEST CORRECTIONS

Some errors appeared in our “Monitor Tester” article (Radio Electronics, January 1992). First, the two Schottky diodes in Fig. 1 (D2 and D3) were shown backward. Second, the input connection to IC1-c (pin 5) should jump two lines to the left to the “PSEUDO 3D EGA2” line instead of being connected to IC5 pin 12. Third, the intersection dot at J2 pin 1 should be removed—as it was shown, it wrongly grounded to output of IC1-d. And last, resistor R14 should be removed from the parts list.

SEEING THE LIGHT

I’ve been reading your great magazine for decades, and it’s still as fascinating today as the day I discovered it. Recently, something happened that I feel must be shared with the other readers of Radio-Electronics.

Back at Christmas time a friend and I were standing in the light-bulb aisle of Builder’s Square talking about the merits of different types of light bulbs. All of a sudden, without warning, he started telling me about the surge of power a light bulb uses to warm up, and how he leaves his lights on so that he doesn’t waste electricity turning them on and off. I’ve heard that insane notion before, but this guy launches satellites into orbit for a living. I was absolutely flabbergasted that an actual rocket scientist believed an old wife’s tale-like that.

Well, I asked him to explain, and he told me that the filament of a cold light bulb had a resistance close to zero, and therefore was effectively a short circuit when power was first applied. I replied that, while that might be true, the warm-up period is so short that it couldn’t possibly pull more current than even a second of operation, let alone the minutes and possibly hours he was talking about. He disagreed, and, after all, he is an engineer!

So, forget the opinions. Here’s an actual measurement. I stoked up my trusty Macintosh and set up my analog-to-digital converter to measure the current of a 100-watt GE soft white bulb (in my desk lamp) at 22,000 samples per second. Anything that was so short as to fall in between the samples would certainly not affect a power meter.

When first turned on, a 100-watt bulb pulls about 165 watts, but rapidly falls off to a nominal 100 watts in less than 1% second. In fact, it falls to less than 150 watts in just ¼ second. That makes the average wattage for the first second only 103 watts, but by the end of the next second, the wattage has been stabilized at 100 watts for 99% of a second.

My friend the rocket scientist told me in the light-bulb aisle that he leaves his lights on to the tune of 100 watts per second to save 3 watts for one second. In other words, he wastes 30 times more power in each extra second he leaves his lights on than were used to start them up. One extra minute’s operation would consume 1800 times the power to turn them on, and an hour’s would amount to a whopping 108,000 times the power to warm them up. No wonder it costs so much to run the space program.

If I were to figure in the inertia and internal friction of the power meter, I’m sure I would find that it would underread so short (and small) a change in power, reducing even those 3 watts. I wonder how I could measure that?

By the way, the same friend once told me that if you leave a car battery sitting on a concrete floor overnight it will go dead! But I’ve never actually checked on that. In light of all this, I have actually checked for the existence of satellites, and they are up there—amazing!

STEPHEN A. SCHLEICK
Livonia, Mi

IN HOT PURSUIT OF TV TRIVIA

If Ephrim Zimbalist Jr. did indeed sit on his chief’s desk and make conference calls around the country in 1958, as alleged in the “Speaker Mate” article (Radio-Electronics, January 1992), then he did so in the company of Roscoe, Rex, and Gerald Lloyd Kookson III. Thus, he was not in the role of FBI agent Lewis Erskin, but in the role of chief private investigator Stuart Bailey on 77 Sunset Strip. The FBI aired its first episode on September 19, 1965. I’m not a TV-trivia buff, but it would have been pretty difficult to stage chase scenes and traffic jams with about 500 identical 1965 Ford LTD’s, as the director often did, when the program’s sponsor was still making Edsels. “Kookie, lend me your comb!” Snap, snap.

MICHAEL W. TOLAND
Dover, NH

TRULY A TESLA COIL

In response to the letter titled “True Tesla Coil?” that appeared in the January issue, I would like to point out that the Solid-State Tesla Coil in question (Radio-Electronics, September 1991) is a true Tesla coil. I refer you to Tesla’s lecture that was delivered before the Franklin Institute in February 1893. The text can be found in the book The Inventions, Researches, and Writings of Nikola Tesla by Thomas Commerford Martin (1894). That book is available in reprint.

On page 344, Fig. 184 shows a generator driving two different coils. One coil looks like a so-called Oudin configuration, and the other coil is directly connected with a single wire. The Solid-State Tesla Coil works on exactly the same principle that Tesla used to describe that figure! The generator in the diagram could, of course, be any source of alternating current. Tesla was limited to mechanical generators and capacitive discharges as sources for his alternating currents. I called
my Tesla coil "solid-state" because it produces the same results that Tesla's coil produced, using his methods but introducing solid-state electronics.

Figures 180 and 181 from the same lecture also show his use of direct coupling. In fact, Tesla made many diagrams and wrote many descriptions on "open" circuits or those powered with "single wires." Tesla understood resonant phenomena very well, and I doubt that one could say the same for Oudin.

Tesla has priority on direct coupling—or any other kind of coupling—not Oudin.

DUANE A. BYLUND

HAMFEST ALERT!
The Zero Beaters Amateur Radio Club will hold its 30th annual hamfest on Sunday July 19, 1992 at the Bernie H. Hillerman Park (Washington Fairgrounds) in Washington, Missouri, from 6 AM to 3 PM. There will be a flea market ($4-a-space parking fee for the flea-market), seminars, dealer displays, non-ham displays, and refreshments. VE exams will be given on a walk-in basis starting at 10 AM; bring your original license and a photocopy. Parking and admission are free. Talk in: 147.240 and 44.900 repeaters.

CRAIG BRUNE, NOMFD
Hamfest Chairman
Dutzow, MO

FUSE FIX
Some errors appeared in our Electronic Fuse article (Radio-Electronics, December, 1991). Pushbutton switch S3 and LED1 were shown incorrectly in Figures 1 and 2: S3 should normally be closed, and LED1 should be reversed. Also, the left side of R9 in Fig. 2 should be connected to the positive side of C5.

ASK R-E

continued from page 12

huge sixty-cycle electromagnetic field—and there's nothing you can do about it, short of packing up and moving into a cave.

The better your gear is, the more sensitive its inputs are, and, unfortunately, the better suited it is to picking up induced sixty-cycle hum from the power lines running in the walls of your apartment. Short of spending big bucks on transformers and other equipment, you should try shielding the cables in your system with aluminum foil. Just wrap them all individually and then try grounding the foil. Sometimes it works better if the foil is left unconnected to anything and other times it seems to be more effective when the foil is tied to a solid ground at one or both ends. Try both methods and see which one works out best for you.

I know this doesn't seem very scientific but it usually works. If you find some other easy and inexpensive way to solve the problem, I'd like to hear from you since a lot of people have exactly the same trouble. A lot of folks would be mighty happy if you did. Remember what they say: Build a better mousetrap and you'll catch a better mouse.

continued on page 78
Troubleshooting modern TV's and computer monitors is usually tricky business. Sometimes an experienced troubleshooter can diagnose problems without using any special test equipment, but usually he needs the right tools for the job. The right tool for repairing or aligning video equipment is the TS-8-MTS test-signal generator from Multidyne Electronics, Inc. (12 Frost Creek Drive, Locust Valley, NY 11560. Phone 1-800-4-TV-TEST). It can generate eight different video test signals as well MTS stereo audio signals.

The TS-8-MTS has a composite video output on a BNC connector as well as an RF audio/video output that is switch-selectable between channels 3 and 4. An RGB colorbar output is available on a 9-pin D connector for testing computer monitors. Using a VIDEO-SELECT pushbutton you can switch the BNC and RF outputs between eight different video test patterns. Eight LED's indicate which pattern is selected. A switched horizontal or vertical trigger pulse is output on a BNC connector for triggering an oscilloscope.

All controls and outputs are located on the front panel of the unit so it's easy to use on your test bench. Housed in a sturdy metal case, the unit measures about 12 x 6 x 3 inches.

Video modes
The video section of the TS-8-MTS produces 8 digitally generated test signals. When the unit is first powered up, it outputs an SMPTE colorbar signal, which is split up, top to bottom, into three different groups of color bars. The test signal is used to check video gain, setup, hue, and saturation. Three black or gray bars on the bottom right of the screen make up the plug portion of the signal, which is used to adjust the brightness of the picture. That is done by making the first two bars blend into each other. If all three bars are visible, the picture is too bright; if none of the three bars is visible, the picture is too dark.

Next is the multiburst signal where the video display is a series of vertical black and white bars ranging from thick to thin, left to right. The signal is used to check the video frequency response of a TV or VCR. The signal itself contains six sine-wave bursts that all have the same amplitude when initially generated. To check the frequency response of a TV, you would feed the signal into the TV and pick up the signal inside the set at a point just before it reaches the screen; the sine-wave bursts should still have the same amplitude when seen on an oscilloscope after the TV has processed the signal. The frequency response of a VCR can also be checked with this signal. All you do is record the signal on the VCR and check the output signal on an oscilloscope when playing back the tape.

The crosshatch, or convergence signal is next. The display is a grid with a dot in the center of each square. The signal is used to check and align the red, green, and blue color guns in a TV. When the grid-and-dot images from the three color guns are perfectly overlapped, the picture is fully converged. The grid can also be used to check vertical linearity. The horizontal bars should be equally spaced; crowding at either the top or bottom of the screen indicates a problem.

The NTC7 signal, or pulse-and-bar mode shows vertical blocks and bars on the screen. The test signal is used to measure short-time, line time, and field-time luminance distortions. The distortions can be seen on an oscilloscope as ringing, undershoots, over-shoots, and tilt of various parts of the signal after it has been processed.

The stair-step signal consists of five steps in luminance from 0 to 100 IRE which is seen on a video display as a gray scale of five vertical bars. (IRE is the picture brightness level: 0 is black and 100 is white.) The signal is used with an oscilloscope to measure luminance nonlinearities.

The modulated stair-step signal is used to measure differential gain and phase. Differential gain is present when the chroma or color gain is affected by the luminance or black and white gain. Differential phase is present when chroma, color phase, or tint are affected by the luminance or black and white gain. The measurement can only be made with a video vector scope having differential gain and phase measuring capabilities.

The red-field signal creates an entire video display of red to check for more, color purity, and noise. The black burst signal can be used to measure color burst and setup amplitude.

Audio
In addition to video signals, the TS-8-MTS can generate an MTS stereo audio signal. Audio is present at the RF output and a separate phono-plug output. The audio can continued on page 88
The new Tektronix 224 is as powerful as they come. And goes!

With this new 60 MHz digital oscilloscope, Tektronix takes handheld performance to an even higher plane! The 224 packs more power per pound than any other product and — with its on-board rechargeable batteries — goes wherever duty calls.

With its exclusive IsolatedChannel™ architecture, you can make two-channel floating measurements without the risk of shock or damage to delicate electronics. Such standards as Tek's sharp, bright CRT, rapid update rate and wide viewing angle make measuring fast and efficient. And the 224's familiar front panel and fully automated features keep it simple.

You get advanced capabilities like video line triggering and 10 MS/s digitizing per channel for excellent single-shot performance, plus time-correlated single-shot waveforms for easy comparison. With CAT200 software you can even control the 224 over phone lines from halfway round the world.

Call 1-800-426-2200 Ext. 83 to get the full story. We'll show you more of the 224 — and ways it's giving bench performance wings!
No other training
to troubleshoot
computers

Only NRI walks you through the step-by-step assembly of a powerful 386sx computer system you train with and keep—giving you the hands-on experience you need to work with, troubleshoot, and service today's most widely used computer systems. Only NRI gives you everything you need to start a money-making career, even a business of your own, in computer service.

No doubt about it: The best way to learn to service computers is to actually build a state-of-the-art computer from the keyboard on up. Only NRI, the leader in career-building at-home electronics training for more than 75 years, gives you that kind of practical, real-world computer servicing experience.

Indeed, no other training—in school, on the job, anywhere—shows you how to troubleshoot and service computers like NRI.

Get inside the West Coast 386sx computer system... and experience all the power and speed of today's computer technology!

With NRI's exclusive hands-on training, you actually build and keep the powerful new West Coast 386sx/20 MHz mini tower computer system.

You start by assembling and testing your computer's 101-key "intelligent" keyboard, move on to test the circuitry of the main logic board, install the power supply and 1.2 meg high-density floppy disk drive, then interface your high-resolution monitor.

What's more, you now go on to install and test a powerful 40 meg IDE hard disk drive—today's most-wanted computer peripheral—included in your course to dramatically increase your computer's data storage capacity while giving you lightning-quick data access. But that's not all!

Professional diagnostic hardware and software makes troubleshooting fast and accurate

Your NRI training now includes a remarkable diagnostic package that allows you to quickly locate and correct defects in IBM XT, AT 80286/80386, and
NRI gives you the confidence and the know-how to step into a full-time, money-making career as an industry technician, even start a computer service business of your own!

No experience necessary... NRI builds it in

With NRI, you learn at your own pace in your own home. No classroom pressures, no night school, no need to quit your present job until you're ready to make your move. And all throughout your training, you have the full support of your personal NRI instructor and the NRI technical staff, always ready to answer your questions and give you help whenever you need it.

FREE catalog tells more. Send today!

Send today for NRI's big, free catalog that describes every aspect of NRI's innovative computer training, as well as hands-on training in TV/video/audio servicing, telecommunications, industrial electronics, and other high-growth, high-tech career fields.

If the coupon is missing, write to NRI School of Electronics, McGraw-Hill Continuing Education Center, 4401 Connecticut Avenue, NW, Washington, DC 20008.

IBM is a registered trademark of International Business Machines Corp.
QuickTech and R.A.C.E.R. are registered trademarks of Ultra-X, Inc.
West Coast is a member of the Syntax Group.

FREE catalog tells more. Send today!
PC BOARD PROTOTYPE KIT. Multicore Solders’ patented Copperset System provides a simple way to form plated-through holes from drilled holes in printed-circuit boards quickly, reliably, and inexpensively. The portable system, intended for prototyping, modification, or repair, is packaged in a convenient kit containing the materials and tools needed to form 500 plated-through holes in each of three different diameters. The only additional tools required for formation of holes with 0.8-mm (0.031-inch), 1.0-mm (0.039-inch), and 1.2-mm (0.047-inch) diameters through standard 1.6-mm (0.062-inch) thick boards are a soldering iron and a desoldering tool. The Copperset System is based on thin solder wire rods that are plated with 25 to 30 microns of copper and a protective tin coat. According to Multicore, a plated-through hole can be formed with the kit in less than a minute at a cost of less than 20 cents a hole. The Copperset System costs $289.—Multicore Solders, 1751 Jay Ell Drive, Richardson, TX 75081; Phone: 214-238-1224; Fax: 214-437-0288.

16-BIT PCM AUDIO DAC CHIP. The AD1866 is the newest member of Analog Device’s Soundport family. It is a complete stereo 16-bit PCM audio DAC that operates from a single +5-volt supply. The DAC is intended for automotive, portable and low-power digital audio playback systems. The AD1866 requires very few external components to achieve its rated performance. The IC comprises two independent precision references, output amplifiers, and 16-bit converters. The DC-bias pins that position the output signal at 2.5 volts mid-scale (1.5 to 3.5-volt swing) eliminate the need for any type of false-ground circuitry. An input clock rate of up to 16 MHz permits operation at two, four, eight, or sixteen times the sampling frequency (where the sampling frequency is 44.1 kHz) for each channel. Operating at eight times the sampling frequency, key specifications of the device are resolution of 16 bits, THD+N at 990.5 Hz and 0 dB of 0.005 %, signal-to-noise ratio of 95 dB, channel separation of 115 dB, and power dissipation of 50 miliwatts. The D1866 is compatible with all digital filter chips and it is packaged in 16-pin plastic DIP’s or SOIC’s.

The AD1866 audio DAC IC is priced at $10.50 in hundreds quantities.—Analog Devices Inc., 181 Ballardvale Street, Wilmington MA 01887; Phone 617-937-1428 for applications assistance; Fax 617-821-4273 for literature.

SMT SOLDER CREAMS. Innovative packaging alternatives are now available for EPS Inc.’s surface-mount solder creams. The Flexpak pouch, made of a tough, impregnable barrier laminate, is notched for easy opening to dispense exact amounts of solder cream. Stenciling and screening grades of solder cream are packaged in premeasured 50- and 150-gram Flexpaks, each supplied with a unique dispensing tool that empties the entire package, eliminating solder waste, preweighing, and contamination.

For manual or pulsed-air dispensing, SMT solder creams are also available in prepackaged 75- and 35-gram syringes/barrels that provide consistent dot deposit control for SMT prototype and repair work. A “No-Drip” piston provides trouble-free dispensing and eliminates solder waste by wiping the barrel clean as it is emptied. In addition, ESP solder creams are available in 500-gram cartridges for di-
Our Name says quality, service and dependability – Our customers agree!

"The best part of the Optoelectronics LCD counters are their extreme sensitivity, their brilliant LCD readout that can be seen even in bright sunlight and the rugged construction allowing them to get banged around, but still continue to operate smack dab on frequency... Yours is the only counter which reliably gives us (at Radio School) an instant frequency readout with its rock-steady LCD digits featuring incredible 1Hz resolution."

Gordon West

Optoelectronics has satisfied its customers for over 18 years – See for yourself what countless others have already discovered!

FACTORY DIRECT ORDER LINE
1-800-327-5912
(305)771-2050 • FAX(305)771-2052

Made in the USA
SOLDER REFLOW MODULE.
The Air-Vac PCBRM-12 solder reflow modules are intended primarily for repair work, but customers are finding them useful for soldering PC boards in small production runs. The modules are suitable for mounting leaded components on conventional PC boards. The PCBRM-12 generates a restricted solder wave that matches the lead pattern of all multi-leaded through-hole components. The solder can be directed to limit component exposure to heat, and most components can be removed in about 5 seconds, regardless of the number of their leads. The module's high thermal capacity permits much lower operating temperatures than those of handheld or hot-air desoldering tools. According to Air-Vac, all leads will be evenly heated—even on multilayer PC boards. This feature eliminates the need for reheating and desoldering individual missed joints. The user of the PCBRM-12 is first in-

Economic Choice for High Quality from GOLDSTAR

OScilloscope

- **OS-3000A**
 - 20MHz, Dual Trace
 - CRT Headout
 - Delayed Sweep

- **OS-9040D**
 - 20MHz, Dual Trace
 - CRT Headout
 - Delayed Sweep

- **OS-9100**
 - 100MHz, 3 Channel
 - 8 Trace

Digital Multimeter

- **DM-9050**
 - 3 1/2 Digits
 - Pen Type DMM
 - Auto Range
 - Logic tester

- **DM-9180**
 - 3 1/2 Digits
 - Manual Range
 - Data Hold Function

- **DM-6335**
 - 3 1/2 Digits
 - Auto Range
 - Data Hold
 - Continuity

- **DM-6315**
 - 3 1/2 Digits
 - Auto Range
 - Data Hold
 - Continuity

- **DM-8135**
 - 3 1/2 Digits
 - Manual Range
 - Data Hold
 - Continuity

- **DM-7330**
 - 3 1/2 Digits
 - Manual Range
 - Data Hold

- **DM-8403**
 - 3 1/2 Digits
 - Manual Range
 - Data Hold

Frequency Counter

- **Frequency Counter**
 - **FUNCTION GENERATOR**
 - **DC POWER SUPPLY**

GoldStar Precision Co., Ltd.

1301 East 166th Street, Cerritos, Ca. 90701 U.S.A.
TEL: (310) 404-9101 FAX: (310) 921-6271

CIRCLE 179 ON FREE INFORMATION CARD
upgrade their present systems in the future. They will be pleased to know that this VGA card can be transferred to a faster system. Capable of operating in either 8- or 16-bit modes, the card can upgrade IBM compatible computers based on 8088 MPU as well as those with the 286, 386, and 486 MPU's. According to JDR Microdevices, advanced ASIC technology permitted them to minimize the number on-board components while providing the features found only in more expensive cards. This VGA card supports video monitor resolutions of 800 × 600 and 640 × 480 in 16 colors, and 320 × 200 in 256 colors. It provides automode switching for VGA, EGA, CGA, MDA, and HGC, and it supports both analog and multisync monitors. Software drivers for Windows 3.0, AutoCAD, Lotus 1-2-3, GEM, Ventura Publisher, and other programs are included in the purchase price.

The VGA Card costs $49.95.—JDR Microdevices, 2233 Samaritan Drive, San Jose, CA 95124. Phone: 800-538-5003; Fax: 408-559-0250.

ONE-PIECE TEST CENTER. Four of the most commonly used pieces of test equipment are combined in the Tenma Test Center, Model 72-710. The test center contains a 2-MHz sweep function generator, a 100-MHz frequency counter, a triple-output power supply, and a full-function auto-ranging digital multimeter. The frequency counter can stand in as a precision display for the sweep generator or it can be a stand-alone frequency counter. The power supply has three outputs. The first output provides variable voltage and current (0 to 5 volts DC and 0 to 0.5 amps). It has a three-digit LCD display that can be switched for voltage or current readout. The second and third outputs have fixed voltages of 5 volts DC at 2 amps and 15 volts DC at 1 amp, respectively. The Model 72-710 has a one-year limited warranty and the purchase price includes test leads and an owner's manual.

The Test Center 72-710 is list priced at $399.99—MCM Electronics, 650 Congress Park Drive, Centerville, OH 45459-4072; Tel: 800-543-4330.

SURFACE-MOUNT INDUCTORS. These miniature inductors are designed for automatic surface-mount assembly. The RL2515 Series inductors from Renco Electronics feature molded plastic packages. Said to be impervious to moisture, they are suitable for soldering with either vapor-phase or infrared soldering systems. The series includes 35 standard values ranging from 0.15 µH to 100 µH with DC current ratings of 70 to 610 milliamps. These
inductors can be used as filters and as components in filter networks. The operating temperature range of the inductors is \(-25^\circ\text{C}\) to \(+80^\circ\text{C}\).

The RL2515 inductors can be supplied on tape and reel or in bulk quantities. They are priced at 25 cents each in 2500-piece quantities.—Renco Electronics Inc., 60 Jefryn Blvd., East, Deer Park, NY 11729; Phone: 516-586-5566.

PC-BUS POWER MONITOR CARD. Intended for computer-service personnel, Wintek’s PC-Bus Power Monitor Card can detect power disturbances and identify substandard power supplies in PC, AT, and EISA computers. Packageaged on an ISA short card, the power monitor can be plugged into an expansion slot. It then checks to confirm that all four supplies are within specifications, detects the presence of glitches or dropouts, and displays the information on an LED display. Many intermittent operation problems that appear to be caused by memory or disk faults are actually power supply problems. The PC-Bus Power Monitor Card is a handy tool for identifying or ruling out power-related problems in the field. According to Wintek, the Power Monitor Card permits faster and easier power supply checking than a digital voltmeter or oscilloscope, especially when the faults are intermittent. By detecting a deteriorating power supply, system errors and catastrophic failures can be avoided.

The standard card provides a real-time indication of power quality and its memory stores momentary out-of-tolerance events. The enhanced version of the card includes an audible alarm and separate monitoring circuits to spot intermittent trouble with the system clock and dynamic-memory refresh signal.

The basic and enhanced PC-Bus Power Monitor Cards cost $195 and $249, respectively.—Wintek Corporation, 1801 South Street, Lafayette, IN 47904-2993; Phone: 800-742-6809; Fax: 317-448-4823.

1&Q MODULATOR. This modulator is intended for radar and communications applications. Mini-Circuits’ MIOA-70ML 1&Q Modulator offers –38dBc carrier and sideband rejection. Its third-harmonic suppression is –48dBc and its fifth harmonic rejection is –64dBc. This 50-ohm device operates over 66 to 73 MHz frequency range in both local oscillator and RF applications. It offers 10±1dBm local oscillator power over a \(-55\) to \(100^\circ\text{C}\) temperature span.

Conversion loss is specified at 5.1 dB. The modulator is housed in an EMI-shielded case that measures \(0.8 \times 0.31 \times 0.4\) inch.

The MIOA-70ML modulator is priced at $49.95 in quantities of 1 to 9.—Mini-Circuits, P.O. Box 350166, Brooklyn, NY 11235; Phone: 718-934-4500; Fax: 718-332-4661.

ANTI-THEFT VHF/UHF ANTENNA. A prominent external antenna on an automobile alerts thieves to the presence of expensive transceiver equipment within your car and attracts vandals. The Stealth antenna from J&Q is an internal antenna that disguises the presence of expensive transceivers in your car and offers no temptations for roving vandals. The antenna is made as a 0.003 inch thick etched copper serpentine on a gray shaded polymide substrate that measures \(3.5 \times 3.5\) inches. Its gray color permits it to blend almost invisibly behind the anti-glare band on the upper surface of an automobile windshield. According to J&Q, this inside-mounted antenna does not reduce transceiver performance. The etched-copper antenna is multipolarized to provide high gain regardless of signal polarization. That feature ensures good reception in rural as well as urban locations, and it provides a steady signal in your car when it is moving. Because The Stealth antenna could pass for a decal, it is also available with an optional printed warning symbol as a further deterrent to thieves. The antenna is said to have a low standing-wave ratio over its specified frequency band, and it does not require adjustment or tuning.

The Stealth is adheres to the inside of a windshield with the adhesive on its backing; no drilling, clips or suction cups are necessary. Because the antenna is mounted inside a vehicle, it is protected from the elements and need not be removed or retracted when entering garages with low-clearance entrances or car washes.

Standard and high-power models of The Stealth are available for mid-band operation at 146, 220, and 440 MHz. Standard models are rated for 50 watts of input power, and high-power models are rated for 110 watts. Sixteen feet of RG 58/U coaxial cable is included with each antenna.

The standard Stealth Antenna is priced at $59.95 and the high-power version is priced at $69.95.—J&Q, Box 194, Ben Lomand, CA 95005; Tel: 408-335-9120; Fax: 408-335-9121.
Pulse. Function. And Wave.

(Good-bye to imported instruments)

<table>
<thead>
<tr>
<th>Instrument Type</th>
<th>Specifications</th>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultravariabe Pulse Generator</td>
<td>0.5 to 5MHz, Run, Triggered, Gate, Single-Shot, Independent width and space controls, Variable 50Ω output</td>
<td>4001</td>
<td>$199.95</td>
</tr>
<tr>
<td>Audio/Sweep Generator</td>
<td>Sine/Square/Triangle, 1Hz to 100kHz, Variable DC offset, Sweepable 100:1</td>
<td>2001</td>
<td>$178.50</td>
</tr>
<tr>
<td>2MHz Sweep Function Generator</td>
<td>0.2Hz to 2MHz, Duty-cycle, symmetry controls, 50Ω output, VCO input</td>
<td>2002</td>
<td>$219.95</td>
</tr>
<tr>
<td>Digitally Synthesized Generator</td>
<td>DC to 1.6MHz, Trigger, Sweep, Burst, Hop and Gate modes, Internal/External Sweep, Sine, Square, Triangle, Ramps, Optional RS-485 communications port, 16 programmable memories</td>
<td>2003</td>
<td>$499.95</td>
</tr>
</tbody>
</table>

Compare the specifications and the prices of these four instruments with the competition. Then compare the labels. Global's say "Proudly Made in U.S.A.". Designed and manufactured in our Connecticut factory with the value and quality that Global is known for. The competitors, they look alike because they are. Different names on the front. The same label on the back. "Made in Taiwan".

With Global you'll get a Good Buy, and can say Good-bye to imports.

Can't Wait? Call...1-800-572-1028
BOB GROSSBLATT'S GUIDE TO CREATIVE CIRCUIT DESIGN; by Robert Grossblatt. TAB Books, Division of McGraw-Hill Inc., Blue Ridge Summit, PA 17294-0850; Phone: 1-800-822-8138; $17.95.

If you read Radio-Electronics regularly, then you're familiar with Bob Grossblatt's columns and occasional feature stories. If you write to Radio-Electronics occasionally to request help with circuit design problems, then you're one of the people credited with providing inspiration for this book.

Construction details for dozens of basic circuit "modules" that can be combined to form more complex—and quite useful—projects are presented, including a multivoltage bench power supply, an audio preamplifier and amplifier, a fully buffered, 64K RAM system, a programmable home-control center, a VCR sync stabilizer, a battery back-up circuit with automatic switch-over, and a microprocessor-based waveform generator. Information on where to find components and technical literature, and how to set up an efficient workbench is included. To keep things from getting too heavy, troubleshooting hints, design tips and tricks, and Bob Grossblatt's own adages are included. Comments like "First make it work, then make it neat," "People make more mistakes than electrons," and "Versatility breeds complexity" are liberally sprinkled throughout the text.

RF/IF SIGNAL PROCESSING HANDBOOK; from Mini-Circuits, P.O. Box 350166, Brooklyn, NY 11235; Phone: 718-934-4500; Fax: 718-934-4661; free.

Aimed at design engineers, this 718-page handbook is loaded with practical articles, answers to frequently asked questions, definitions of terms, convenient selection guides, and handy conversion charts. The comprehensive reference also includes hundreds of pages of fully detailed, 32-page, full-color catalog. Designed for start, stop, or limit control of a wide range of process variables, the controllers have broad applications in electrical, chemical, petrochemical, and other process industries. Models are available for AC and DC voltage current, 4-20mA DC, 1-5V DC resistance, 3-wire potentiometer, frequency, and tachometer (rpm) inputs. Also featured are models for 2-, 3-, or 4-wire RTD inputs and J, K, R, or S thermocouples. Each Hawk series model is neatly packaged in a compact ½ DIN case. The catalog provides descriptions, technical notes, complete specifications, a glossary of terms, available accessories, and ordering information.

By demonstrating the step-by-step development of manufacturing drawings for a quad power supply and a multiwave function generator, this book—and the included diskette—show readers how to design electronics products.
25MHz Elenco Oscilloscope

SPECIAL BUY

V-212 - 20MHz Scope $409

HiTech Portable Scopes

DC to 50MHz, 2-Channel, DC offset function, Analog or digital function

V-525 - CRT Readout, Cursor Meters $995
V-523 - Delayed Sweep $975
V-522 - Basic Model $875

PRICE BREAKTHRU

20MHz Digital Storage Oscilloscope

- Analog/Digital Scope
- 25kword/channel memory
- 10Ms/s sampling rate
- State of art technology
- Includes probes
- $1360 60MHz Delay Sweep $775

FLUKE MULTIMETERS

Scopemeters (All Models Available Call)

- Model 93 $1,095.00
- Model 95 $1,395.00
- Model 97 $1,695.00
- Model 5 $1,395.00
- Model 701 $1,900.00
- Model 701 $1,900.00

LASER KITS

- Build your own laser. This kit includes all parts needed to build a class II laser.
- Laser is safe to use, output is under one milliwatt. Kit includes a new He Ne 1.125 dia x 5.75" long laser tube. Comes with building instructions, schematic and all parts.
- Model LX-1 $79.95

Mirror & Motor Kit

- This unique kit allows you to project laser patterns on the ceiling or walls. You change the patterns by varying the speed of the motors. The kit comes complete with 2 motors, 2 flat surface mirrors, 2 motor brackets and 1 power rheostat control to vary speed of the motor.
- Model LM-1 $19.95
from scratch using AutoCAD. The text also demonstrates how a computer system works in the course of the product's development, how AutoCAD's commands are used, the technique for translating a hand-drawn sketch into a complete schematic/wiring diagram, and how to lay out a simple printed-circuit board. It also covers mechanical and electrical assembly methods, why components must be oriented in specific ways, universal drawing standards, etc. Practice exercises permit readers to improve their skills in dimensioning, text styles, and isometric and three-dimensional drawing. Concentrating on the basic commands that are used in all versions of AutoCAD, the book provides a knowledge of the fundamental concepts of computer-aided design and a foundation in AutoCAD from which the reader can go on to master more complex commands.

BSOFT SOFTWARE ENGINEERING TOOLS CATALOG #5; from BSOFT Software Inc., 444 Colton Road, Columbus, OH 43207-3902; Phone: 614-491-0832; Fax: 614-497-9971; free.

BSOFT's latest catalog offers low-cost, stand-alone engineering programs and hardware designed for engineers, technicians, and hobbyists using IBM-PC's or compatibles. Included are programs for drawing schematics, simulating logic control circuits, FFT analysis, and circuit analysis. CAD programs for structural analysis, designing electronic circuits, and PC board layout are also offered, along with PC bus board products for control and data acquisition. The 26-page booklet contains product descriptions, displays printouts of schematics and waveforms, and ordering information.

SURFACE MOUNT & IC TEST ACCESSORIES; from ITT Pomona Electronics, 1500 East Ninth Street, P.O. Box 2767, Pomona, CA 91769; Phone: 714-469-2900; Fax: 714-629-3317; free.

Highlighted in this 14-page catalog are Porrona's complete lines of SMT/IC test accessories, kits, and probe sets. The booklet features DIP/SOIC, FLCC, QFP, and SMD Microtest clips and assemblies. Miniature pincer and hooked test clips, standard hooked test clips, alligator test clips, coax cable assemblies, test lead kits, adaptors, breakouts, and interfaces. Fifteen major product categories are presented.
Electronics Paperback Books

GREAT PAPERBACKS AT SPECIAL PRICES

- **BP248—TEST EQUIPMENT CONSTRUCTION** ...$5.95. Details construction of simple, inexpensive, but extremely useful test equipment: AF Gen, Test Bench Amp, Audio Multimeter, Transistor Tester and six more.
- **CMOS1—CMOS POCKET GUIDE 1** ...$18.95. Works like the TTL Guides but covers all commonly used CMOS standard devices. Six major sections. The first shows the device schematic. Next is a brief description of the component and is followed by full operating details. The fourth section lists major applications, while the 5th and 6th sections present essential data for that device and a list of the relevant manufacturers. The final two sections are a valuable cross-reference.

- **BP245—DIGITAL AUDIO PROJECTS** ...$5.95. Practical circuits to build and experiment with. Includes A/D converter, input amplifier, digital delay line, counter, etc.
- **BP247—MORE ADVANCED MIDI PROJECTS** ...$5.95. Circuits include a MIDI indicator, TRUE box, mixer unit, code generator, patch, programmer, channelizer, and analyzer.

- **PCP115—ELECTRONIC PROJECTS FOR HOME SECURITY** ...$10.00. 25 projects ranging from a single-device pressure circuit that can be completed in an hour or two, to a sophisticated multi-channel security system. Each project is described in detail with circuit diagrams, explanations of how it works, instructions for building and testing, and how to adapt circuits to meet special requirements.

- **BP249—MORE ADVANCED TEST EQUIPMENT CONSTRUCTION** ...$6.95. Eleven more test equipment construction projects. They include a digital voltmeter, capacitor meter, current tracer and more.

- **BP250—INTERNATIONAL RADIO STATIONS GUIDE** ...$7.95. Provides the casual listener, amateur radio DXer and the professional radio monitor with an essential reference work designed to guide him or her around than ever more complex radio bands.

CHECK OFF THE BOOKS YOU WANT

BP255—INTERNATIONAL RADIO STATIONS GUIDE ...$7.95. Provides the casual listener, amateur radio DXer and the professional radio monitor with an essential reference work designed to guide him or her around than ever more complex radio bands.

BP256—INTRO TO LOUDSPEAKERS AND ENCLOSURE DESIGN ...$5.95. We explore the variety of enclosure and speaker designs in use today, so the reader can understand the principles involved.

BP257—INTRO TO AMATEUR RADIO ...$5.95. Amateur is a unique and fascinating hobby. This book gives the newcomer a comprehensive and easy to understand guide to the subject written for the professional engineer, electronics enthusiast, or others who want to know more before they buy 8 x 10 in.

BP258—ADVANCED ELECTRONIC SECURITY PROJECTS ...$5.95. Includes a passive infra-red detector, a fiber-optic loop alarm, computer-based alarms, and an unusual form of ultrasonic intruder detector.

BP259—GETTING THE MOST FROM YOUR MULTIMETER ...$5.95. Covers basics of analog and digital meters. Methods of component testing includes transistors, thyristors, resistors, capacitors and other active and passive devices.

BP260—IC PROJECTS FOR BEGINNERS ...$5.50. Power supplies, radio and audio circuits, oscillators, timers, switches, and more. All payments must be in U.S. funds.
Micromini Toggle Switches. Reliability at low cost. Rated 3A at 125VAC. $1.79-
dia. stem.

SPST. #274-624 2.29
SPDT. #274-625 2.39
DPDT. #274-626 2.59

Double-Shielded, 4 Conductor Cable. For data or audio. The best! 30 ft. #278-777 7.95

Coaxial Microwave Cable. Replace RG, ham, marine radio cords. 4 conductors. 5 ft. #278-358 2.99

1N914/4148 Switching Diodes. Popular silicon type. Rated 75 PIV. #276-1122 Pkg. of 10/99c

1N34 Germanium Diodes. Hard-to-find signal diodes. Rated 60 PIV. #276-1123 Pkg. of 10/99c

(1) Thermal Fuses. 100° C. #270-1321. 10° C. #270-1322. 25° C. #270-1323. 150° C. #270-1324. Each 1.99

(2) Thermistor. Resistance is proportional to temperature. #274-410 1.99

(3) Surface-Mount Resistors. 200 pieces, 15 popular values! Rated 1/4 watt, 5% #271-313 Set 4.99

IC Inserter/Extractor Kit. Why risk bending or breaking pins on expensive chips? This kit makes it easy to install and remove any DIP-style IC from 6 to 40 pins. Both tools are groundable to prevent static "zaps". #276-1581 6.95

UL-Listed DVM. Micronta® makes electronics testing as a snap! Autoranging, 1/2" LCD digits, bar graph to spot peaks, data hold to freeze display, continuity sounder, diode-check. #22-186 69.95

PC/XT Experimenter’s Circuit Card. This premium-quality prototyping board fits a computer’s XT expansion bus connector. Features durable epoxy glass construction and plated-through holes on standard 0.100” centers. Accepts D-sub connector shown at right. 3 7/8” x 10 1/8” x 1/4” #276-1596 29.95

Since 1921 Radio Shack has been the place to obtain up-to-date electronic parts as well as quality tools, test equipment and accessories at low prices. Nearly 7600

Radio Shack a division of Tandy Corporation

Prices apply at participating Radio Shack stores and dealers. Radio Shack is a division of Tandy Corporation.

CIRCLE 78 ON FREE INFORMATION CARD
IN A SIMPLE ENVIRONMENT, A FREE-roaming robot does not have to be very smart to function in what appears to be an intelligent manner. The robot has only to sense an obstacle and avoid it. When that is repeated many times, a path can almost always be found through its environment and the robot seems to be surviving on its own.

The robot we’re going to build is a lot like an insect; it has two “antennas” (actually switches) that help it navigate around obstacles. If you touch one antenna of a bug crawling along, the bug will avoid your finger by stopping, backing up, and turning away from it. Because you touch only one antenna, the bug knows which side of his path is blocked and responds by stopping, backing up, and turning his body away from that side. Touch the other antenna and the bug will stop, back up and turn the other way. If both antennas are touched, the bug stops, backs up, and tries to go to one side or the other.

Our robot bug is designed to respond to obstacles in a similar manner. It always backs up first and then turns away from the object sensed. You can modify its response by adjusting three time-delay controls on its circuit board. The time delays determine how much time the robot spends backing up and turning. The block diagram in Fig. 1 shows how the adjustable time delays interact to control the robot’s response.
Three time-delay circuits share the control of two reversing relays. When the right antenna is triggered, it activates the back-up delay and the right-turn delay. When the left antenna is triggered, it activates the back-up delay and the left-turn delay. The back-up delay activates both reversing relays for a period of \(\frac{1}{2} \) to 2 seconds. During that time, the robot moves straight back, away from the obstacle. A turning delay (right or left) is set for period of 2 to 5 seconds. That keeps one motor in reverse after the other stops. If the left motor continues in reverse after the right motor stops, the robot turns to the left, and vice versa. The size of the turn depends on how long one motor continues in reverse after the other one stops. If both antennas are triggered, all three time delays are activated. The direction the robot turns is determined by whichever turn delay is longest.

The robot's control circuitry is based on simple "one-shots" that wait to receive a signal before turning on for a predetermined time. Three potentiometers let you adjust each one-shot separately. The timing diagram in Fig. 2 will help you visualize the different timing events. Either antenna (or both) will start the back-up one-shot which reverses both motors. One potentiometer sets the time that the robot spends going straight back. When the back-up time is over, one of the "turning" one-shots keeps one of the motors in reverse, causing the robot to turn away from the object. The direction of the turn is determined by the motor that stays in reverse; the size of the turn is determined by how long that motor stays in reverse after the back-up time is over.

Circuitry

As shown in Fig. 3, three one-shots (IC1, IC2, and IC3) control two relays (RY1 and RY2). The backup time delay is controlled by IC3, and is variable between \(\frac{1}{2} \) and 2 seconds via R20. The left- and right-turn delays are controlled by IC1 and IC2, respectively, and are variable be-
FIG. 3—THE BACKUP TIME DELAY is controlled by IC3, and variable between ½ and 2 seconds via R20. The left- and right-turn delays are controlled by IC1 and IC2, respectively, and variable between 2 and 5 seconds via R18 and R19.

ELECTRONIC PARTS LIST

All resistors are 1/4-watt, 5%, unless otherwise noted.
R1, R2, R6, R7, R8, R11—4700 ohms
R3, R5—47,000 ohms
R4, R8—100 ohms
R12—47 ohms
R13—1 megohm
R14—100,000 ohms
R15—470 ohms
R17—3 ohms
R18—125,000 ohms, potentiometer
R21—50,000 ohms, potentiometer

Capacitors
C1, C3, C4, C6, C7, C9, C11, C12—0.47 µF, monolythic
C2, C5, C10—33 µF, electrolytic
C8—100 µF, electrolytic
C13—220 µF, electrolytic
C14, C15, C17—0.033 µF, Mylar
C16—0.01 µF, Mylar
C18—22 µF, electrolytic
C19—1 µF, tantalum

Semiconductors
IC1—IC3—555 timer
D—D8—1N4148 diode
Q1—Q3—2N3904 NPN transistor
Q4—2N3906 PNP transistor
LED1, LED2—red light-emitting diodes
LED3, LED4—jumbo round or rectangular light-emitting diodes

Other components
RY1, RY2—DPDT 5-volt relay
S1—SPST switch
SPKR1—Knowles electronics WO-340 speaker module or equivalent

Miscellaneous:
IC sockets, PC board, two dual "AA" battery holders, all mechanical parts (see mechanical-parts list), wire, etc.

To see how the 555 timers are used as one-shots, take a look at IC2 in the schematic. When a negative-going pulse is received from the right antenna at pin 2, the following timing cycle is started: pin 3 of IC2 goes high and turns on Q2 and RY2. At the same time, C5 charges through potentiometer R19. The charging time depends on the setting of the potentiometer. When C5 charges to approximately 4 volts, it begins to discharge through IC2. Pin 3 of IC2 returns to a low state and RY2 turns off. The one-shot now waits for the next pulse at pin 2. The circuit built around IC1 works in the same way.

The backup time-delay circuit built around IC3 differs from the other two one-shots in that it has four diodes added; D2 and D3 at pin 2 and D4 and D5 at pin 3. The diodes serve as an "or function," causing pin 2 to respond if either antenna
makes contact. Pin 3 of IC3 is controlled by the output of the other two one-shots; if either turning one-shot is activated, the backup delay, which takes precedence, is also activated.

Mechanical assembly

The robot is assembled in three steps. The first step is to assemble the mechanical parts, the second is to assemble the circuit board, and the third is to join the two sections together. The robot kit available from the source mentioned in the Parts List includes all of the mechanical parts. If you wish to build the robot without buying the kit, we've provided a list describing all of the mechanical parts. If you can't find the exact parts we've specified, it's very easy to improvise using similar parts. All the robot really needs is two independent drive wheels and one trailing wheel, mounted on a chassis with enough room to accommodate the two motors, two battery holders, and the PC board.

Follow Fig. 4 as a mechanical assembly guide. Note that the motors come attached to the metal chassis plate, and can break lose if you flex or bend the chassis.

Follow Fig. 4 as a mechanical assembly guide. Note that the motors come attached to the metal chassis plate included with the kit. Do not pull on the motors as they can break lose, and do not flex or bend the chassis as it will make the wheel alignment more difficult. Start the mechanical assembly by pressing the metal wheel sleeves into the nylon bushings. Then assemble each front wheel onto the metal chassis as shown, using a screwdriver to tighten the bolt while holding the nut with pliers. You might want to put a small drop of oil on the bushings, but do not get any oil on the inside surface of the wheels where the rubber band attaches.

Turn the chassis over and attach the rear-wheel hexagon standoff as shown, and tighten it securely. Note the position of the hole through the standoff; it should be aligned parallel to the back edge of the chassis. Arrange the roller ball as shown onto the standoff. Again you might want to put a small drop of oil on the inside of the roller ball. After tightening the assembly, make sure the ball can still turn.

The DC motors included in the kit have one terminal marked with a white dot. If you're using motors with no polarity markings, make the electrical connections temporary. Later, when testing, if both wheels do not turn in the forward direction when the robot is free-running, simply reverse the leads to the motor(s) running in the wrong direction. For now, though, we'll assume you're using the motors included in the kit.

Solder a 3-inch red wire to each motor terminal marked with a white dot and solder a 3-inch black wire to the other two motor terminals. Put two "AA" cells in one of the battery holders and put a rubber band over the wheel and motor pulley on each side. Temporarily twist the battery-holder wires to the right motor wires—red to red and black to black—and make sure the wheel turns and the rubber

Fig. 4—FOLLOW THIS DIAGRAM as a mechanical assembly guide. Note that the motors come attached to the metal chassis plate, and can break lose if you flex or bend the chassis.

MECHANICAL PARTS LIST

- Metal chassis plate, approx. 3½ inches wide (after the sides are bent up at 90° angles) × 3½ inches long, drilled to accommodate all other hardware
- Two DC motors with shaft pulleys
- Two front wheels (the kit uses two plastic knobs, 1¼-inch outside diameter, with ¼-inch shaft hole)
- Two nylon or metal wheel sleeves, ¼-inch outside diameter, ½-inch inside diameter, ⅛-inch long
- Two nylon bushings, ¾-inch outside diameter, ¼-inch inside diameter, ½-inch thick
- Two 1-inch wheel screws with a nut and washer for each
- One ¾-inch diameter roller ball with hole drilled through the diameter
- One roller-ball axle screw with two nuts and two washers
- One ⅛-inch threaded hex standoff for the roller-ball assembly, cross-drilled on the bottom end
- One mounting screw for roller-ball standoff
- Two spring-wire antennas/feathers
- Two antenna posts
- Two ⅛-inch threaded hex standoffs and mounting screws for the PC board
- Rubber pads and adhesive-backed felt for the two battery holders
- Two rubber bands

Note: The following items are available from The Electronic Goldmine, PO Box 5408, Scottsdale, AZ 85261 (602) 451-9495: (Add $3.50 shipping/handling)
- Complete robot kit (C6466, batteries not included)—$39.95
- PC board only—$10.00

If the rubber band comes off you must align the wheel by bending the chassis slightly. Run the motor again to see if the rubber band stays on. If it stays on, reverse the battery leads and check it again—you may have to readjust the wheel. (Never bend the chassis where the motors are attached and do not put any stress on the motors as they may come lose from their mounting.) When you finish aligning the right wheel, repeat the process for the left wheel.

Two metal standoffs are installed on top of the chassis using bolts and washers through the bottom of the chassis. The bolts go up through the chassis, through the standoffs, through the PC board, and the board held down with the nuts as shown. But first we have to build the PC board.

Electronic assembly

Assemble the circuit board as shown in Fig. 5. Watch the polarity of the ICs, electrolytic capacitors, and diodes. Note that the leads of LED3 and LED4 should be bent at 90° angles so that they look like headlights when mounted on the board. It's a good idea to insulate the exposed portions of the headlight LED's. Install SPKR1 as shown. DO NOT attempt to remove the capacitor soldered across the speaker terminals; the leads of the capacitor are used to connect the speaker to the board.

Now install feeler wires as shown in Fig. 6. Each feeler is made from a length of spring wire, bent as shown in Fig. 6. Fit the straight portion of the left feeler wire at the point shown until it is flush with the board. Bend the other end around and insert it into the other hole as shown and solder that end. Repeat those steps for the right feeler wire.

Now make two feeler posts by bending wire as shown in Fig. 6. After bending, solder the posts to the board in place over the feelers. Adjust the straight part of each feeler wire so that it's centered under the post. Mak-
FOIL PATTERN FOR THE ROBOT shown actual size.

FIG. 6—THE FEELER WIRES are installed as shown here. The feeler posts are soldered to the board over the feelers, with the straight part of each feeler centered under the post.

FIG. 7—HERE'S WHAT THE ROBOT'S board looks like close up. You can also see how the feelers work.

left wheel should reverse direction for a short period of time (LED2 will also light for just a second). Now bump the right antenna: LED2 should light up and the right wheel should change direction. Bump both antennas: LED1 and LED2 should light up and both wheels should change direction.

Final assembly
Install felt strips on the solder side of the PC board where the battery packs will come in contact with it. Lay the battery holders (with batteries installed) into chassis with the wires coming out on top near the motors. Set the board onto the standoffs and secure it with one nut on each standoff. Do not overtighten the nuts.

Operating tips
Find a large area and turn on the robot. The robot works best on a smooth, hard floor. It does not work well on carpeting, cement, dirt, or asphalt. The back up time delay should always be much shorter than either the left or right time delays. If the left or right delay is really long, the robot will make loops and other strange movements. In small spaces all time delays should be kept short and in larger spaces longer time delays work better. Make sure that the obstacles the robot encounters are solid all the way down to the floor. When the rubber bands get dirty from prolonged use, they will begin to slip. Replace them whenever necessary.

The end
A PC is the perfect thing to use to accumulate, manipulate, plot, and store the results of an experiment. PC-based test equipment has an advantage over traditional instruments: since various instruments share the same PC, the money that would normally be spent duplicating the display, keyboard, etc., can be saved. That's the idea behind this series of articles. We'll build a number of PC-based test instruments, including a capacitance meter, a 100-MHz frequency counter, a logic IC tester/identifier, and an oscilloscope. We'll start this month with an interface card.

The search for the perfect PC interface begins with the serial port. Unfortunately, the serial port is too slow for transferring large quantities of data needed to control and monitor test equipment. Another possibility is the parallel port which can transfer 8 bits in 500 nanoseconds (best case). Unfortunately, the parallel port is not truly bidirectional. A couple of handshake lines can be used as data inputs, but that means converting fast parallel data into slower serial data. Also, several data lines would have to be sacrificed so that they could be used as address lines. Another possible solution would be to connect a circuit directly to the computer's expansion bus. That would be very fast and easy to program, but it would require giving up an expansion slot every time you added another device.

What's needed is a general-purpose, fully bidirectional parallel port that can select and drive different peripherals all connected to a single generic ribbon cable. That is all contained in the I1000 Data Interface that we'll build this month. The I1000 can address up to 256 peripheral devices, all connected in parallel, using 25-conductor ribbon cable. The I1000 is simple to program; an "out" or "write" command sends a byte, and an "in" or "read" command receives a byte.

I1000 operation

Each card in a PC has its own address. That is necessary to ensure that information intended for a certain card is received only by that card, and to ensure that only one card can place data on the bus at a time. Typically, the I1000 is set to address 768 (hex 300)—an address that IBM left available for prototyping. The I1000 can be re-addressed as needed by changing an address DIP switch. As far as software goes, we'll use BASIC due to its broad popularity, but almost any other language can be used.

Sending a byte

Refer to Fig. 1 for the following example. When the BASIC instruction "OUT 768,85" is executed, the byte "85" (01010101) is sent to address "768" (where the I1000 resides). The PC expansion bus address lines A5–A9 are attached to the card-address block, along with the ADDRESS ENABLE (AEN) line, which indicates that the address data is valid, and the WRITE (WR) line, which indicates that an "out" was performed. If the AEN and WR lines are low (logic 0) and the address lines match the DIP switch settings, an 8-bit magnitude comparator in the card-address block changes state (goes low). That tells the I1000 that the CPU has selected it.

The PC's WRITE pulse, in conjunction with the ENABLE pulse from the card-address block, causes the address latch to store the address, and the data latch to store the PC bus data. At that point, the I1000 is finished using the expansion bus, and it places the data, address, and SEND pulse on the interface cable that is going to the peripheral. The SEND pulse is sent along as confirmation that the data and address information is valid. Approximately 750 nanoseconds later, the I1000 sends a 500-nanosecond peripheral WRITE pulse. By the time the WRITE pulse reaches the peripheral, the data, address, and SEND pulses have finished any ringing associated with parallel interfacing. Additionally, each of the signals mentioned are terminated and buffered on the I1000 and at the peripheral. That defeats any error and noise (reflection, bounce, and
Receiving a byte

For the following example, we will execute the line of BASIC:

A = INP(768) : A = INP(768) : PRINT A. When the ADDRESS ENABLE (AEN) and the PC's READ (RD) lines are low, the card-address section once again goes low, and the send and address information is sent to the peripheral. A READ pulse is sent to the peripheral 500 nanoseconds later. This causes the peripheral to send the data back to the 11000. The data from the peripheral is stored in the 11000 250 nanoseconds later. The second input statement moves the data from the 11000 to the variable (A). Finally, the byte is displayed on the PC's monitor.

Control register enable

The 11000 has the ability to talk to 32 locations within 256 peripheral devices. That tremendous flexibility is accomplished through the use of the control register. When the 11000 is set to a base address of 768, it is actually active from 768 to 799, and covers 32 addressable bytes. If we say that the variable "bas" is equal to 768, then one 11000 can cover bas + o (768) to bas + 31 (799). Within the 11000, bas + 31 has been decoded to a single line. In other words, when an "out" is sent to bas + 31, the CREN line goes low.

When the CREN line goes low, any peripheral attached enters a comparator mode. While in that mode, each peripheral compares the information on the data bus with its own hard-wired identification byte. If they match, that peripheral will attach itself to the data bus. In a peripheral where the bytes do not match, that peripheral will ignore or disconnect itself from the data bus. Once a peripheral has been called, it continues to be connected to the data bus until another bas + 31 activates a different peripheral.

Suppose peripheral 1 is an A/D converter with a unit address of 0 and peripheral 2 is a capacitance meter with a unit address of 4. An "out bas + 31.4" would select the A/D converter unit. The A/D would not actually do anything other than connect to the bus. After that, outs and ins to addresses between bas + 0 (768) and bas + 30 (798) would cause the A/D peripheral to perform its job. An "out bas - 31.4" at this point would remove the A/D converter from the cable and connect the capacitance meter. Again, outs and ins to the range bas + 0 to bas + 30 would control the instrument selected.

Finally, an "out bas + 31.99" would disconnect both of the peripherals from the interface cable. That occurs because there is no device currently connected with a hard-wired identification byte of 99. The data bus is eight bits wide, so 255 (2^8) different peripherals can be addressed. Leaving bas + 31 for addressing different units. 31 addresses (0–30) remain for accessing IC's within each unit. The total number of locations accessible by one 11000 is 7936 (256 x 31).

Detailed operation

Take a look at the timing diagrams in Figs. 2 and 3 and the schematic in Fig. 4. A 74LS688 8-bit magnitude comparator (IC1) compares DIP switch S1's settings to the address present at address lines A5–A9 (P1, pins A22–A26). It also checks to see that WR and AEN are low. When those conditions are met, IC1 pin 19 goes low, telling the 11000 that it has been selected by the CPU. Address lines A0–A4 (P1 pins A27–A31) are connected to IC10, a 74LS573 address latch. When pin 19 of IC1 goes low, it causes pin 6 of IC2-b (a 74LS86) to go high, latching the address information into IC10. When
the \texttt{WR} and \texttt{EN} pulses at the inputs of IC3-a (a 74LS32) go low. The output of IC3-a does the same. That causes the output of IC2-c to go high and moves DO-D7 data from the PC into data latch IC4.

Components IC6-IC9 (74HCT221's) are rising-edge triggered monostable multivibrators (one-shots) triggered by rising pulses. After approximately 500 nanoseconds, the \texttt{WR} and \texttt{EN} pulses return to their inactive high state and, as a result, the output of IC3-a returns to a high state. The rising edge produced by IC3-a triggers IC9-b and IC6-a. The \texttt{WEND} pulse, generated by IC9-a, when anded with the \texttt{WEND} pulse, produces the \texttt{SEND} pulse. The \texttt{SEND} pulse tells the peripheral that the bus information is valid. The \texttt{WEND} and \texttt{SEND} pulses also enable IC10 and IC4, allowing A0-A4 and DO-D7 onto the peripheral buses.

At the same time IC9-b is triggered. IC6-a is triggered, producing a 750-nanosecond delay pulse. As IC6-a times out, it triggers IC6-b, which produces a 500-nanosecond \texttt{WR} pulse that is centered within the 2-\mu s \texttt{SEND} timing window. The \texttt{WR} and \texttt{SEND} pulses pass through IC13, a 74LS541 line driver/buffer. The \texttt{WR} pulse is reshaped by R9 and C30 to a waveform more suited to a long cable with inductive reactance. The \texttt{SEND} pulse is similarly reshaped by DIP resistors R10 (pins 6 and 11) and C27. During a \texttt{WR} operation, the data lines DO-D7 are conditioned by R11, R16, and C31-C38 on the way to the peripheral device. The address lines at the output of IC10 (A0-A4) are conditioned by R10 and C22-C26. Those address lines and the \texttt{WEND} pulse are applied to IC11, a 74LS138 demultiplexer. If \texttt{WEND} is low and the address is equal to the base address (768) plus thirty one (as discussed earlier), pin 7 of IC11 goes low producing the \texttt{CREN} pulse.

\section*{I1000 PARTS LIST}

All resistors are 1/4-watt, 1%, unless otherwise noted.

\begin{itemize}
 \item R1, R3, R5—1000 ohms, 5%
 \item R2, R6—4320 ohms
 \item R4—9090 ohms
 \item R7, R8—20,000 ohms
 \item R9—33 ohms
 \item R10, R11—33 ohms, 16-pin DIP resistor
 \item R12-R14—10,000 ohms, multilayer potentiometer
 \item R15—4700 ohms, 10-pin SIP resistor
 \item R16—2200 ohms, 10-pin SIP resistor
\end{itemize}

\begin{itemize}
 \item Capacitors
 \begin{itemize}
 \item C1-C13—0.1 \mu F, 50 volts, monolithic or polystyrene
 \item C14-C21—105 pF, 100 volts, dipped mica
 \item C22-C29—1500 pF, 63 volts, polystyrene
 \item C30—0.001 \mu F, 100 volts, ceramic disc
 \item C31-C38—220 pF, 100 volts, ceramic disc
 \item C39—100 \mu F, 25 volts, electrolytic
 \item C40-C45—10 \mu F, 35 volts, electrolytic
 \end{itemize}
 \item Semiconductors
 \begin{itemize}
 \item IC1—74LS68D 8-bit magnitude comparator
 \item IC2—74LS65 quad 2-input XOR gate
 \item IC3—74LS32D quad 2-input OR gate
 \item IC4, IC5, IC10—74LS573D octal latch
 \item IC8-IC9—74HCT221D dual one shot
 \item IC11—74LS138D demultiplexer
 \item IC12—74LS08D quad 2-input AND gate
 \item IC13—74LS541D octal buffer
 \end{itemize}
 \item Other components
 \begin{itemize}
 \item J1—Right-angle PC-mount female D25 connector
 \item S1—8-position DIP switch
 \end{itemize}
 \item Miscellaneous: I1000 PC board, PC mounting bracket and hardware with DB25 cutout, socket, etc.
\end{itemize}
FIG. 4—II000 SCHEMATIC. The II000 can talk to 32 locations within 256 peripheral devices to provide tremendous flexibility.
Receiving a byte

When receiving a byte, IC1 operates the same as when it is sending except that the RD line goes low. The address data (A0–A4) is again stored in IC10. The RD and EN pulses go low, and as a result IC3-b transitions low. The PC then reads back the contents of IC5. (The information read back at this point is irrelevant, since information from the peripheral unit has not reached the 11000 yet.) As the RD and EN pulses end, a rising pulse edge occurs at IC3. That activates IC7-a, IC8-a, and IC9-a.

The REND pulse is produced by IC9-a, which, when it passes through IC12-d, becomes SEND. A 500-nanosecond delay pulse is produced by IC7-a; as IC7-a times out, it triggers IC7-b, which produces a 1000-nanosecond RD pulse which is sent to the peripheral unit. (The SEND pulse and address information arrived at the peripheral 500 nanoseconds earlier.) Upon receiving the RD pulse, the peripheral sends the DO–D7 data to the 11000 (IC8-a went active at the same time as IC7-a, and produced a delay pulse of 750 nanoseconds). As IC8-a times out, it triggers IC8-b to produce a 500-nanosecond latching pulse. The pulse controls the LATCH line of IC5 and stores the information sent by the peripheral during the [still active] 1000-nanosecond RD pulse. A second identical input statement will now cause IC3-b to go low. That again activates IC5 and returns valid data to the PC.

11000 construction

To build the 11000 interface, you can either buy a PC board from the source mentioned in the Parts List or make one from the foil patterns we've provided. Install parts on the board as shown in Fig. 5. You will notice that for many of the capacitors, there are three holes on the board, with two of them electrically the same. Those two holes are for mounting capacitors of different sizes. Use the pair of holes that best fit the capacitors you use. Figure 6 shows a completed card.
FIG. 5—INSTALL PARTS AS SHOWN HERE. For many of the capacitors there are three mounting holes to accommodate different-sized capacitors.

FIG. 6—COMPLETED INTERFACE CARD. This is installed in one of your PC's expansion slots.

The front end

Any I1000-compatible peripheral must contain an interface section to control the flow of data and clean up any noisy pulses. We'll call this interface section the "front end." The front end will be nearly identical for each I1000-compatible peripheral showcased in this series of articles. Each peripheral will contain its own front end, which will be included on the main PC board. Although we will not be discussing any of the PC peripherals this month, let's go over the operation of the front end now.

As shown in Fig. 7, each front end contains a data termination block and an address and handshake termination block. These sections are activated by inserting push-on jumpers. If the jumpers are removed, the termination section will be electrically inert. The I1000 is capable of addressing up to 256 (2^8)
peripherals. The DB-25 connectors on the rear of each peripheral are simply connected in parallel with one another. Termination of the data bus must occur at the most distant point on the bus and only at that point. If more than one peripheral were terminated at the same place, the termination impedance and its location would be altered, thus distorting the performance of the front ends.

After passing the active or inactive termination section, the data bus is attached to the Peripheral Address Comparator (PAC) and the Bidirectional Data Register (BDR). The PAC is responsible for activating a peripheral called by CREN as previously described. Each peripheral's PAC section contains its own unique address. If, during an active CREN pulse, the data on the bus matches the PAC address, the PAC section produces a low BOARD ENABLE handshake (BEN). That signal and its complement (BEN) connect the remainder of the peripheral to the data bus and handshake lines (RD, WR, etc.).

The BDR is now capable of passing data to, and receiving data from, the main peripheral circuitry. The BDR is controlled by RD, SEND, and BEN. Those lines tell the BDR the direction of data movement as well as the timing of that movement. After passing the active or inactive termination section, the address and handshake signals enter the address and handshake buffer. The signals are rounded by the termination sections to minimize crosstalk and other noise associated with fast rise and fall times. The address

FIG. 7—ANY 11000-COMPATIBLE PERIPHERAL must contain an interface section to control the flow of data and clean up any noisy pulses. This front end will be nearly identical for all of the peripherals.
FIG. 8—FRONT-END SCHEMATIC. Each front end contains a data termination block and an address and handshake termination block that use push-on jumpers.
and handshake buffer restores the original fast rise and fall times of the signals.

Sending a byte
When describing software-related functions, we'll again use BASIC due its wide popularity and we'll assume the following initial conditions:

- The base address of the I1000 is 768 (hex 300).
- The front end of the peripheral has not been selected.
- The address of the peripheral is 4.

Refer to the front-end schematic in Fig. 8 and the following source code:

10 BAS = 768
20 OUT BAS = 31.4
30 OUT BAS = 2.170

Line 10 in that example assigns the address “768” to the variable “bas.” Line 20 causes the SEND and CREN pulses at IC6 pins 8 and 9 to go low (refer to the timing diagrams in Figs. 2 and 3). If the shorting blocks have been installed at header J2, then the RD, WR, ADDRESS, SEND, and CREN lines are all terminated. Line driver IC6 restores the original wave shape of any signals fed to it. The SEND and CREN pulses exit IC6 at pins 12 and 11. If the shorting blocks have been installed at J1, then the data lines DO-7 are terminated. Either way, the data is fed to the input of latch IC1. IC3 is inactive at this time. At a time 750 nanoseconds later, the WR pulse enters IC5-a where it is reshaped. It is combined with the cleansed CREN pulse by IC4-d to produce the WR-CREN pulse.

The WR-CREN pulse latches the data (a binary 4) into IC1. The binary 4 appears at the output of IC1 and, subsequently, at the input of IC2, an 8-bit magnitude comparator. The magnitude comparator (IC2) compares the byte fed into it from IC1 with its hardwired address (see the IC2 address-configuration chart contained in Fig. 8). If the two bytes match, pin 19 of IC2 goes low (BEN). BEN is then combined with SEND by IC4-b to produce the output ENABLE control line signal (OES) used by IC3, which transfers all the data to and from the peripheral.

When BEN is high, IC3 is inactive. The BEN line (BEN’s complement) is produced at IC4-c and enables or disables the chip-select section in the peripheral circuitry.

The BEN and BEN lines are the primary lines that determine whether a peripheral on the bus is active or dormant. The direction pin on IC3 (DIR) is controlled by the RD pulse. The RD pulse is high during a write op-
operation, allowing data to flow from the 11000 side of IC3 to the peripheral side of IC3.

Line 20 in the software example activates the peripheral by causing \texttt{EN} to transition low. Line 30 in the software example will not affect IC1 or IC2. As explained earlier, only an "out" to bas + 31 will activate \texttt{EN}. Line 30 will cause the following sequence of events: \texttt{SEND} goes low. The data (a decimal 170 in this case) will pass through IC3 to the peripheral circuitry. Address information (a decimal 2 in this case) will pass through IC6 to the peripheral circuitry. At a time 750 nanoseconds later, a 500-nanosecond \texttt{WR} pulse will pass through IC5 to the peripheral circuitry. The address is decoded by the chip-select circuit in the peripheral and the \texttt{WR} pulse is then routed to the addressed IC. Any "out" to an address between bas + 0 and bas + 30 will initiate the process commanded by line 30.

Termination

The termination sections are composed of J1, C12–C19, R2, J2, C20–C28, and R3. Those sections provide a termination impedance to ground as well as an R-C time constant. The termination impedance reduces the reflected signal caused by the inductive and resistive properties of the six-foot cable. The R-C time constant slows down the rise and fall times of the signal in the cable, thus reducing crosstalk. As stated earlier, the original transition times are subsequently restored.

Receiving a byte

As we describe how the front end of the 11000 interface works, let's assume the following initial conditions:

- The base address of the 11000 is 768 (hex 300).
- The front-end peripheral has been activated at an earlier time.

Next refer to the following source code:

- 40 A = \texttt{INP(BAS + 3)}
- 50 A = \texttt{INP(BAS + 3)}
- 60 PRINT A

Lines 10–30 are assumed to have been executed previously. Therefore, our theoretical peripheral has already been selected (activated). Line 40 produces a read function as described earlier. The \texttt{SEND} pulse goes low. The address lines (A0–A4) function as they did during the write function. At a time 500 nanoseconds later, a 1-μs \texttt{RD} pulse is received by the front end. It is reshaped by IC5-c and IC5-d. The \texttt{RD} pulse passes through IC7-d to IC5 pin 1. The peripheral side of IC3 becomes an octal input while the 11000 side of IC3 becomes an octal output.

The \texttt{RD} pulse arrives at the read chip-select section of the peripheral circuitry. The \texttt{RD} pulse, in conjunction with the address lines, cause the target IC to place its byte onto the bus. The transmitted byte passes through IC3 to the IC3000 where it is latched. A data bus directional delay (DBDD) is provided by IC5-e-IC5-h in combination with IC7-a-IC7-d.

The DBDD provides a delay after the read cycle has finished before returning IC3 to its normal "output" configuration. That prevents IC3's peripheral side from going into its low-impedance state before the IC that was just read is able to deactivate. Line 50 causes the byte latched in the 11000 to be sent to the PC where it is stored under the variable "A." Line 60 prints the value contained in variable "A" on the screen.

As mentioned before, there's no separate front end PC board; each peripheral contains its own front end. Next month you'll see the final periphery installed on the first peripheral.

- If you have any questions or comments about this article, please include them in your letter to us. We'll consider any response you have regarding the peripheral board we'll work on: the TI01. That peripheral contains a 100-MHz frequency counter for digital signals, a period timer, a capacitance meter covering 1 picoahad to 10,000 microfarads. Other PC-based test instruments that we will build in future articles, include a logic-IC tester/identifier, and an A/D-D/A peripheral that can also be used as a low-frequency 8-channel digital storage oscilloscope.
THE MEASUREMENT AND CONTROL of temperature is one area in which electronics has had a great impact. From "set back" home thermostats to laboratory controllers with ±0.001-degree accuracy and digital fever thermometers, the use of electronics has all but eliminated mechanical systems.

Many methods are used for measuring and controlling temperature, including the expansion of mercury or alcohol, bimetallic strips, thermistors, silicon sensors, and thermocouples. Each has its advantages and disadvantages.

The author was recently asked to design an inexpensive thermostat to replace some old bimetallic-type thermostats. The new thermostat had to meet the ±5°C accuracy of the bimetallic strips, have a −50 to +150°C range, and cost less than twenty dollars. A simple solid-state thermostat was the only solution.

Whether you're trying to keep a fish-tank temperature to within 1°C, maintain working temperature for PC-board etchant, shut down an overheated amplifier, or turn on cooling fans, you'll find that this simple solid-state thermostat will do the job.

Note that this project is only a controller, so you must supply the heater (or cooler), a suitable relay, and a temperature-measuring device for calibration.

Looking around

Before anyone decides to design and build something, it pays to have a look around to see what's available on the market. First there's the Radio Shack Thermometer/Controller: Total cost (with switches, etc.) is about twenty eight dollars. The temperature range is −40 to +50°C (−40 to +122°F), and it has a digital readout and temperature memory. So far so good—if the temperature range suits your needs. Maximum measurement speed is once per second. However, the real drawback is that if the temperature limit is exceeded, the output goes high for one minute; during that time period the temperature is not measured!

National Semiconductor has been making a number of temperature sensor/controllers for at least 15 years. The LM3911 (−25 to +85°C) and the LM35 (−55 to +150°C) are two examples. They are easy to work with, but they are more difficult to find and ones with a large temperature range aren't exactly cheap.

Sensors are also made by Linear Technology (the LM134 with a −55 to +125°C range) and Analog Devices (the AD590 with a −55 to +150°C range) as well as dozens of others. The only catch, besides availability, is that they are precision sensors meant to measure as well as control temperature. They are also quite expensive.

Complete controllers are also made by other companies such as Omega, but the cost is about the same as a cheap personal computer. That is due partly to super accuracy and digital temperature readout.
Rollin' your own

When so many people are making temperature sensor/controllers, why build one from scratch? There are two basic reasons:
- Commonly available parts can be used.
- You can control such parameters as accuracy and temperature measurement bandwidth.

Theory of operation

If a constant current is passed through an ordinary silicon diode, the voltage across the diode will be a function of temperature. There are more accurate ways to measure and control temperature, but at twenty for a dollar you can't beat the price, and control accuracy of ±0.5°C is typical.

The actual voltage across the diode with 1 milliamp of current passing through it is about 0.75 volt at −50°C and 0.35 volt at 150°C. That works out to about 2 millivolts per °C. Although a controller could be made to work at that level, a little amplification makes things much simpler.

The schematic of the controller is shown in Fig. 1. Transistors Q1 and Q2 make up the 1-milliamp constant-current source for the temperature-sensing diode. D1. The base-emitter junction of Q1 is used to temperature-compensate the base-emitter drop of Q2. The 1.25-volt reference of the LM317 regulator appears across resistor R4, keeping the emitter current (and therefore the collector current) of Q2 constant at about 1 milliamp. The actual amount of current isn't nearly as critical as the fact that the current remains constant.

Differential amplifier IC1-a serves two purposes. The first is to subtract a DC voltage from the temperature-sensing diode D1. That's necessary so that a DC amplifier can be used to amplify the signal from D1 without saturating. The signal is also inverted by IC1-a so that an increase in temperature produces an increase in voltage.

Op-amp IC1-b is configured with a gain of 11 (1 + R11/R10). That makes the job of comparator IC1-d easier.

The temperature set point is controlled by resistor R15 and buffered by IC1-c. Note that by changing the values of R14 and R16 you can restrict the control range, making it easy to vary the set point in very fine steps. Using the values shown, control is adjustable from about −50 to
+150°C. With that much range, a small movement of a single-turn potentiometer will produce a large change in the set point. A ten-turn potentiometer would be a better choice for a large-range thermostat. Table 1 shows recommended values for R14, R15, and R16 for smaller temperature ranges.

 Comparator IC1-d compares the set-point voltage with the output voltage of IC1-c. If the voltage at TP3 is greater than TP4, the output of the comparator will be low; thus shutting off transistor Q3. If more heat is needed, the voltage at TP3 will be less than TP4 and the comparator output will go high, turning on Q3.

 Resistors R18 and R19 provide some hysteresis. Providing a small amount of hysteresis in a comparator ensures a smooth transition from one state to the other. Although it limits the accuracy somewhat, the benefits far outweigh the disadvantages. Without hysteresis, the output of the comparator would dither, or oscillate from one state to the other when the inputs are about equal. Imagine ordering an oil-burning furnace to turn on and off a thousand times a second!

 The amount of hysteresis can be controlled by resistors R18 and R19. Decreasing R18 will increase the hysteresis and cause a greater temperature variation in the controller. For example, using the highest resistance, the temperature window might be 0.5°C. At the lowest, it might be 3°C.

 The output of the controller can control a conventional or solid-state relay. A solid-state relay is preferable since its reliability is much greater than that of a conventional relay. (If you'd like to build your own solid-state relay, see Radio-Electronics, May 1992.) Any relay rated from five to twelve volts will work if you connect it to the positive side of C1 through the appropriate resistor. That resistor value can be obtained by dividing the voltage drop required by the current consumed by the relay. If a conventional relay is used, a snubbing diode such as a 1N4002 should be used to protect Q3 when the relay turns off.

Constitution

 Any method of construction can be used since there is nothing critical about the circuit layout, but it will be easier using a PC board made from the foil pattern we've provided or one purchased from the source mentioned in the Parts List. Do not substitute another regulator for the LM317. In addition to providing a regulated voltage, the LM317's 1.25-volt reference is used to operate the constant-current source for diode D1. Figure 2 shows the parts-placement diagram.

 Twelve-volts AC can be supplied from just about any transformer since only a few milliamps are required—not counting the relay current. Relay current of up to 100 milliamps can be handled by Q3.

 The temperature probe can be made of metal or glass. The diode is so small that it can be put into standard glass tubing and sealed with RTV (room-temperature vulcanizing) silicone. Coating the diode with RTV silicone.
icone might also work although the thermal time constant would probably increase using that method. You must use a shielded cable between the probe and the measuring circuit. Figure 3 is a close-up view of the probe assembly with the diode installed in a length of glass-tubing.

The printed circuit board is designed to accept two different trim potentiometers, hence the four holes instead of three. If you must adjust the temperature often, you might opt to run wires from the PCB to standard-type potentiometers. Figure 4 shows the author’s completed prototype.

Testing
You should first test the 1-milliamper current source. If the voltage across R4 measures about 1.2, you’re in business.

Placing a milliammeter in series with D1 can confirm that.

For the purposes of testing, it’s handy to replace D1 with a 1K potentiometer. Since a constant current of 1 millamp is flowing through the resistor, a voltage from 0 to 1 volt can be obtained depending on its setting. Of course that range is too much since the diode voltage varies only from about 0.8 volt at -50°C to about 0.3 volt at +150°C.

First measure the voltage from pin 3 of IC1 to ground. It should be about 0.55 volt. Using the 1K potentiometer, adjust TP1 for the voltages shown in Table 2, and make sure the TP2 and TP3 voltages agree with Table 2 for each voltage at TP1. Next check the temperature set-point range. Measure the voltage from TP4 to ground; with the potentiometer set at the ex-

![FIG. 4—THE AUTHOR’S PROTOTYPE. If you will need to adjust the temperature often, run wires from the PCB to standard-type potentiometers.](image)

TABLE 2—TEST-POINT VOLTAGES

<table>
<thead>
<tr>
<th>Approximate Temperature (°C)</th>
<th>TP1</th>
<th>TP2</th>
<th>TP3</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>0.300</td>
<td>0.766</td>
<td>8.38</td>
</tr>
<tr>
<td>0.350</td>
<td>0.350</td>
<td>0.717</td>
<td>7.84</td>
</tr>
<tr>
<td>0.400</td>
<td>0.400</td>
<td>0.665</td>
<td>7.28</td>
</tr>
<tr>
<td>0.450</td>
<td>0.450</td>
<td>0.616</td>
<td>6.74</td>
</tr>
<tr>
<td>0.500</td>
<td>0.500</td>
<td>0.566</td>
<td>6.81</td>
</tr>
<tr>
<td>0.550</td>
<td>0.550</td>
<td>0.515</td>
<td>6.53</td>
</tr>
<tr>
<td>0.600</td>
<td>0.600</td>
<td>0.465</td>
<td>6.08</td>
</tr>
<tr>
<td>0.650</td>
<td>0.650</td>
<td>0.415</td>
<td>4.54</td>
</tr>
<tr>
<td>0.700</td>
<td>0.700</td>
<td>0.364</td>
<td>3.97</td>
</tr>
<tr>
<td>0.750</td>
<td>0.750</td>
<td>0.315</td>
<td>3.43</td>
</tr>
<tr>
<td>-50</td>
<td>0.800</td>
<td>0.263</td>
<td>2.87</td>
</tr>
<tr>
<td>-0.850</td>
<td>0.850</td>
<td>0.212</td>
<td>2.31</td>
</tr>
</tbody>
</table>

PARTS LIST

All resistors are ½-watt, 5%, unless otherwise noted.

- R1—100 ohms
- R2—750 ohms
- R3, R10, R12, R17—10,000 ohms
- R4—1200 ohms
- R5—1000 ohms
- R6, R7, R11—100,000 ohms
- R8—1 megohm
- R9—56,000 ohms
- R13—2200 ohms
- R14—1500 ohms (see text)
- R15—10,000-ohm potentiometer (see text)
- R16—330 ohms (see text)
- R18—1-megohm potentiometer
- R19—470,000 ohms

Capacitors

- C1—470 µF, 25 volts, electrolytic
- C2, C4—10 µF, 16 volts, electrolytic
- C3—0.1 µF, Mylar

Semiconductors

- IC1—LM324 quad op-amp
- IC2—LM317L voltage regulator
- D1, D2—1N4148 diode
- LED1—light-emitting diode, any color
- Q1, Q2—2N3906 PNP transistor
- Q3—3N3904 NPN transistor
- BR1—50-volt bridge rectifier

Miscellaneous: 12-volt AC power supply, PCB, glass or other similar tube for temperature probe, RTV cement, wire, solder, etc.

Note: The following items are available from Q-Sat, PO Box 110, Boalsburg, PA 16827:

- PC board (Temp-PCB)—$7.00 postpaid
- All parts (including PC board) except 12-volt transformer (Temp-KIT)—$18.00 postpaid

Pennsylvania residents please add 6% sales tax.
BANDWIDTHS OF THE LATEST MONOLITHIC VIDEO AMPLIFIERS have now reached 600 megahertz. That performance has been achieved in differential two-stage video amplifier IC's because of recently introduced vertically integrated PNP structures. These new products have pre-empted earlier, more mature video amplifiers, including the 592 and 733, from many new designs.

Nevertheless, the 592 and 733, introduced in the early 1970's for such applications as tape- or disk-memory read amplifiers remain versatile devices. Leading-edge video amps in their day, they offered typical differential voltage gains of 400 and adjustable pass bands. Moreover, neither required frequency compensation. The typical bandwidth of the 592 is 90 megahertz while that of the 733 is 120 megahertz. Risetime on the 733 is 2.5 nanoseconds, and typical propagation delay time is 3.6 nanoseconds.

Originally developed by Fairchild as the µA592 and µ733, the parts were second sourced by IC suppliers including Motorola, National Semiconductor, Signetics, Texas Instruments, and VTC Inc. They were redesignated by those manufacturers with their prefixes such as MC1733, LM592, SE592, TL592, and VAS592.

After making them for many years Motorola and National Semiconductor recently bowed out, but Signetics, TI, and VTC have confirmed that they are still producing one or both of those video amps. Both devices are available in a variety of packages including plastic and ceramic DIP's, and metal cans.

Although their performance has been superseded by newer video amps, the characteristics of the 592 and 733 remain attractive. They might no longer be at the forefront of video amplifier IC technology but they are definitely not obsolete! What's more, maturity has brought about a steady decline in pricing. Bargain prices as low as 25 cents apiece have been reported, but you can expect to pay from 70 to 90 cents for a plastic-DIP version from your distributor.

There are slight differences in performance between the 592 which was introduced in about 1974, and the 733 which was introduced a few years later. For most of the circuits in this article the 592 and 733 are pin-for-pin interchangeable. Figure 1 is the schematic of the 592, with an inset showing the circuit differences in the 733. (The 592 has two transistors in its first-stage differential amplifier (Q11 and Q12) while the 733 has only one (Q11).

Designers use both of these video amps in the differential output mode for DC applications, or with AC coupling for single-ended output. In place of external feedback to control gain, the video amps have built-in internal local feedback for operation in the open-loop mode only. Because they include only NPN transistors (as shown in Fig. 1), the outputs are always 2.4 to 3.4 volts above ground when both inputs are grounded.

Construction guidelines
You can take advantage of the low prices for these devices in your next RF- or video-circuit design if you are willing to follow some basic rules for designing and building radio-frequency circuits. So before you start to build anything, let's take time to review these guidelines.

- Use only passive components that are stable at radio frequencies. For example, use only car-
bon-composition or non-inductive metal-film resistors. For small capacitance values, use only silvered-mica (rather than foil and mica), ceramic, and mylar-film capacitors. For large capacitance values, use solid or foil tantalum capacitors in place of aluminum electrolytics.

- Keep all traces on your PC boards short and wide to minimize both stray inductance and stray signal coupling from the input to the output. That precaution preserves the system bandwidth and eliminates possible circuit oscillation.

- Keep capacitance and resistor values as small as possible to minimize all unwanted time constants. High capacitance and resistance values could also cause oscillation or reduce bandwidth. This is especially true for feedback resistors. The use of resistors with values of less than 2 K is a good point of departure in resistor selection.

- Use a ground plane to keep return resistances as low as possible. Avoid point-to-point wiring but if you must use that construction technique, be sure to return all ground leads to one and only one point to reduce the possibility of ground loops. In circuits where large stray noise signals could show up, suitable input shielding is required.

- Each power supply lead of the video amplifier should be properly bypassed to ground with a capacitor located as close to the video-amp as possible. A 10-ohm resistor ahead of the capacitor will also help to decouple the power supply from the amplifier. In addition, if you have a problem decoupling the power supply from the video amp, try a radio-frequency choke (RFC) in place of the resistor, or slide a few ferrite beads on the resistor's leads.

- Keep the input resistance as low as possible to reduce the effects of input noise currents.

Communications applications

Both monolithic video amps will give you access to the emitters of their first differential amplifier stages (as shown in Fig. 1) via gain-select pins \(G_{1A}, G_{1B}, G_{2A}, \) and \(G_{2B} \). By placing a variable potentiometer between the \(G_{1A} \) and \(G_{1B} \) pins (pins 4 and 11 on the DIP), you can adjust differential voltage gain over a range of 250 to 600.

With the addition of frequency-dependent components, these IC's can function as video-band active filters or RF amplifiers. Figure 3 illustrates five possible filter configurations. The components are placed across the \(G_{1A} \) and \(G_{1B} \) pins (4 and 11 on the DIP) for the out-

FIG. 1—SCHEMATIC FOR THE 592 with an inset showing the differences in the 733. Transistor Q11 and three related resistors replace transistors Q11 and Q12 and two emitter resistors.

![Image](image-url)

**FIG. 2—TOP VIEWS OF 592 and 733 packages: (a) metal can and (b) ceramic and plastic DIP.
FIG. 3—ACTIVE FILTER using the 733 and 592: (a) crystal, (b) notch, (c) band-pass, (d) high-pass and, (e) low-pass.

FIG. 4—A 4.5-MHz AMPLIFIER based on the 592 video amp.

FIG. 5—A GENERAL PURPOSE PREAMPLIFIER based on either the 592 or 733 video amps.

FIG. 6—FREQUENCY COUNTER based on either the 592 or 733 video amps.

In Fig. 4, the addition of a 4.5-MHz ceramic filter between pins 4 and 9 of the 592 converts the circuit into an audio intermediate-frequency amplifier that is...
suitable for use with TV signals. Many variations are possible. You could also place passive filters on the input, output, and gain-control pins for even better signal rejection and separation.

The 592, like the 733, permits you to control gain with an external impedance value. However, the 733's differential voltage gain (A_{dv}) can be as low as 8 with all gain-select pins open, an option not available on the 592. Thus, in a filter application, the unwanted signal will have a theoretical voltage gain of 20 dB minimum, making the 592 unsuitable for that application. However, the video amps can usually be interchanged with minimal or no modifications to your basic design.

Instrumentation applications

Because these amplifiers are wide-band devices, they are suitable for use as preamplifiers in meter and oscilloscope circuits. Figure 5 shows a basic general-purpose instrumentation preamplifier that will operate at frequencies down to DC. The preamplifier in Fig. 5 will work with either the 592 or 733. You can set resistor R3 (R_{IN}) to meet your requirements up to a maximum of a few hundred ohms. This design is limited, however, by its inherent low input impedance and high output impedance.

Figure 6 shows an improvement on the circuit in Fig. 5 making it suitable as a preamplifier for a frequency counter preamplifier. An FET buffer Q1 has been placed on the input of the 592 or 733, and the input impedance has been increased to 1 Megohm with R1. Input protection is provided by forward-biased diodes D1 to D4 which prevent input signals from overdriving the amplifier. Diodes D3 and D4 also keep the video-amp's outputs from saturating with increased switching fre-
quency. The FET buffer has a bandwidth of 100 MHz so it will not restrict the bandwidth of the video amp.

For interfacing the preamplifier to TTL devices such as those found in a TTL frequency counter, the circuit in Fig. 6 also has an output buffer and TTL translator made up of Q4, Q5, and a 7414 inverter. Those will operate at 45 MHz with the gain of the 592 or 733 set to 10. (The gain pins of the 733 are left open.) To obtain measurable gain from the 592, an emitter resistor of the proper value must be placed across the gain-select inputs G1A and G1B (pins 4 and 11 of the DIP). Alternatively, a 1K potentiometer can be adjusted for the desired gain.

If you want to design your own oscilloscope, modify the circuit in Fig. 6 to those shown in Figs. 7 or 8. Both are oscilloscope preamplifier circuits that will operate at frequencies up to 10 MHz. In those preamplifiers more elaborate input circuits and gain-switching arrangements can produce the standard 1-2-5 calibrated oscilloscope steps with a range from 10 millivolts per division to 5 volts per division.

Figure 7 shows a method for coupling the preamplifier to an oscilloscope's vertical deflection amplifier for DC measurement without concern for the DC offset which occurs at the outputs. In that way, the equal offset at both outputs of the video amp are nulled by the common-mode rejection ratio (CMRR) inherent in the vertical-deflection differential amplifier. Capacitors C3 to C5 are input-compensation capacitors that can be adjusted with a square-wave input after the preamplifier has been completed and tested. Trimmer capacitors C14 through C16 compensate a ten-power magnification probe so that it will respond the same way to all input attenuators.

The circuit in Fig. 8 shows a modification of Fig. 7. It permits the video amp to be used in a single-output mode by eliminating the DC offset. A voltage-shifter arrangement around Q4 performs that function. With the related components shown, the output of Q4's collector is zero volts. To maintain the bandwidth of the video amp, a buffer configuration made up of Q5 and Q6 isolates the load from the high impedance of Q4's collector. The buffer will drive a 50-ohm load to 20 MHz at about 3 volts peak-to-peak. This characteristic makes it possible to couple the preamplifier to the front end of an oscilloscope near the attenuators so that the vertical amplifier can be driven through a coaxial cable.

Before placing either video-amp IC in the circuits of Fig. 6, 7 or 8, adjust the 200-ohm offset potentiometer (R7, R13, or R17, respectively) so that the voltage at the emitter of Q3 (a 2N3904) is zero. That moves the video-amplifier's output into a "ballpark" operating region.

In the frequency-counter preamplifier circuit Fig. 6, the offset potentiometer R7 and the 1K trimmer R11 at Q4's emitter will vary the threshold point of Q5, so both must be adjusted to obtain the best switching speed and bandwidth.

For communications purposes, the circuit shown in Fig. 8 can be modified once again to that shown in Fig. 9, a DC-to-20-MHz line driver. That type of general-purpose amplifier can be a variable-gain video distribution amplifier or even a broad-band local-area network (LAN) line driver.
GET THE LATEST ADVANCES IN ELECTRONICS
WITH A SUBSCRIPTION TO

Radio Electronics

Radio-Electronics gives you exciting articles like:

- ISDN: The Telephone Network of Tomorrow
- The Facts on FAX
- A Digital Phone Lock
- How To Design Switching Circuits
- EIA-232 A real standard for serial interfacing?
- Build a synergy card for your PC
- '286 Power at a '286 price
- Build a biofeedback monitor
- More on Multiplexing

ENJOY THE WORLD OF ELECTRONICS EACH MONTH!

Now you can subscribe to the best electronics magazine. The only one that brings you articles on—electronics projects, technology, circuit design, communications, new products and much more.

Radio-Electronics looks to the future and shows you what new video, audio and computer products are on the horizon. What's more you'll find helpful, monthly departments such as Video News, Equipment Reports, Hardware Hacker, Audio Update, Drawing Board, Communications Corner. All designed to give you instruction, tips, and fun.

FOR FASTER SERVICE CALL TODAY
1-800-999-7139

DON'T DELAY SUBSCRIBE TODAY!

Just fill out the order card in this magazine and mail it in today.
THE INSIDE STORY

BYRON MILLER

THERE IS A BATTLE RAGING. IT IS A battle to assume the role of standard bearer for the PC hard-disk drive interface. The venerable ST-506 served the PC industry well during its first decade, but as we move off into the 90's with increasing reliance on high-performance 386, 486, and 586 systems, users demand ever-greater speed, capacity, and ease-of-use.

Three technologies—ESDI, IDE, and SCSI—are vying to become the next standard. But how does a person choose among them? In this article we will examine the basic ideas and history behind each, compare and contrast their strengths and weaknesses, and point out situations where each would be useful.

Background

Because each of the three new drive-interface standards represents, in some way, a response to the ST-506, let's begin with a little history and background on that standard.

Properly speaking, the ST-506 was the model number of a hard-disk drive that Seagate Technology introduced in 1980. The capacity of that drive was a whopping five megabytes! Several years later, Seagate introduced a 10-megabyte monster (the ST-412) with a similar electrical interface, and a new feature called 'buffered seeking' that allowed the drive to "collect" sequential seek commands and then move the read/write head across the surface of the disk in one quick, smooth motion. These drives recorded data on the disk platters using modified frequency modulation (MFM).

The market continued to demand greater performance, so by spring of 1983, an ad hoc committee formed and produced the first draft of a specification for a new drive interface, what later became known as the Enhanced Small Device Interface (ESDI). By 1986, ESDI became a proposed ANSI standard, and early in 1990, it became officially recognized as ANSI X3.170-1990.

Development of the Intelligent Drive Electronics (IDE) interface began in 1984 when Compaq got together with Western Digital to develop an ST-506 controller that mounted directly on a hard-disk drive. The following year Compaq worked with Imprimis (now a part of Seagate) to integrate Western Digital circuitry on a Wren disk.
drive. Soon Compaq shipped the first PC with an IDE drive; other manufacturers followed suit shortly thereafter. The appeal of IDE is that it eliminates one PC board and most of the interface electronics required between a system bus and a hard disk, thereby significantly lowering cost. Today, IDE has pretty much displaced ST-506 as the standard drive interface for desktop PCs.

The Small Computer System Interface (SCSI) traces back to the Shugart Associates System Interface (SASI), which was developed by the same company (Shugart Associates) and the same designer (Al Shugart) that developed the ST-506. In fact, Shugart developed SASI around the same time as the original ST-506. From the beginning, the SASI interface was designed to be more general than the specialized interfaces heretofore developed for personal computer peripherals. Rather than using specialized signals to control various low-level hardware functions, SASI/SCSI included from the beginning a general-purpose 8-bit parallel bus and several control signals. The hope was (and still is) that a general-purpose bus would attract designers of various types of peripherals.

SASI supported several important features, including daisy-chaining drives and issuing high-level commands via a command block. Vendors quickly adopted SASI and began to add features and functionality, e.g., support for Write Once Read Many (WORM) drives and other types of devices. Similarly, vendors increased the maximum number of devices from two to seven. They also added the ability to service several devices at once. After some evolution, the SASI interface became so popular that in 1986 the X3T9.2 ANSI working group adopted it as standard ANSI X3.131-1986, or SCSI-1 for short. An enhanced version, SCSI-2, was finalized in 1990; it provides for wider bus widths and other performance-enhancing features.

With that background in mind, let's now look at each type of interface in more detail.

ESDI basics
ESDI is a disk-controller interface that is like an enhanced ST-506. For one, ESDI uses a similar cable and connector scheme: a 34-conductor control cable that is daisy-chained from drive to drive, and a separate 20-conductor data cable for each drive. ESDI controllers typically support only two drives, even though the specification allows a maximum of seven.

The signals on ESDI and ST-506 cables are similar but by no means identical, so you cannot run an ESDI drive on an ST-506 controller, nor an ST-506 drive on an ESDI controller. Electrically, all signals are TTL compatible; the maximum length of an ESDI drive cable is nine feet. Table 1 compares signals from both of those systems.

Another similarity between ESDI and ST-506 is that ESDI is a device-level interface. In other words, its control signals direct low-level actions such as selecting a drive head and moving it to a desired track on the disk. As we'll see, SCSI and IDE devices contain high-level interfaces in which the operating system issues commands like, "Give me a block of data as quickly as you can, and don't bother me with the details!"

The biggest difference between ESDI and ST-506 drives is the data transfer rate, which for basic ESDI drives runs at twice the ST-506 rate (10 Mbps), and which reaches its maximum at 24 Mbps.

As for disk format, ESDI drives typically put about 34 sectors on a track (versus 17 for a standard ST-506 drive), and they run with a 1:1 interleave.

In operation on a PC, most ESDI controllers emulate standard ST-506 controllers (e.g., the ubiquitous WD1003), so no additional software drivers are required. IDE drives also emulate the WD1003, but SCSI drives always require external software drivers.

IDE
The IDE interface strongly resembles the AT I/O expansion bus, as shown in Table 2. There are some important differences, and there is some inconsistency in the way different manufacturers use some signals. For example, !READY can appear on pin 21, 27, or both, depending on the disk drive manufacturer. Many new system boards contain a built-in IDE interface, so

<table>
<thead>
<tr>
<th>ESDI Signal</th>
<th>ST-506 Signal</th>
<th>Pin No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head select</td>
<td>Reserved</td>
<td>2</td>
</tr>
<tr>
<td>Head select</td>
<td>Head select</td>
<td>4</td>
</tr>
<tr>
<td>Write gate</td>
<td>Write gate</td>
<td>6</td>
</tr>
<tr>
<td>Config/status data</td>
<td>Seek complete</td>
<td>8</td>
</tr>
<tr>
<td>Xfer Ack</td>
<td>Track 0</td>
<td>10</td>
</tr>
<tr>
<td>Attention</td>
<td>Write Fault</td>
<td>12</td>
</tr>
<tr>
<td>Head select</td>
<td>Head select</td>
<td>14</td>
</tr>
<tr>
<td>Sector</td>
<td>Pin 7 on data cable</td>
<td>16</td>
</tr>
<tr>
<td>Head select</td>
<td>Head select</td>
<td>18</td>
</tr>
<tr>
<td>Index</td>
<td>Index</td>
<td>20</td>
</tr>
<tr>
<td>Ready</td>
<td>Ready</td>
<td>22</td>
</tr>
<tr>
<td>Xfer request</td>
<td>Step</td>
<td>24</td>
</tr>
<tr>
<td>Drive select</td>
<td>Drive select</td>
<td>26</td>
</tr>
<tr>
<td>Drive select</td>
<td>Drive select</td>
<td>28</td>
</tr>
<tr>
<td>Drive select</td>
<td>Drive select</td>
<td>30</td>
</tr>
<tr>
<td>Read gate</td>
<td>Drive select</td>
<td>32</td>
</tr>
<tr>
<td>Command data</td>
<td>Direction in</td>
<td>34</td>
</tr>
</tbody>
</table>

TABLE 1—ESDI AND ST-506 SIGNALS
TABLE 2—IDE AT I/O BUS SIGNALS

<table>
<thead>
<tr>
<th>IDE signal</th>
<th>AT I/O signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS1FX</td>
<td>N/A</td>
<td>Chip select for ST-506 compatible I/O</td>
</tr>
<tr>
<td>CS3FX</td>
<td>N/A</td>
<td>Chip select for ST-506 compatible I/O</td>
</tr>
<tr>
<td>DA0-DA2</td>
<td>SA0-SA2</td>
<td>Drive address bus lines</td>
</tr>
<tr>
<td>DASP</td>
<td>N/A</td>
<td>Drive Active I Drive one percent</td>
</tr>
<tr>
<td>DD0-DD15</td>
<td>SDO-SD15</td>
<td>Drive data bus</td>
</tr>
<tr>
<td>DIOR-</td>
<td>-IOR</td>
<td>Drive I/Q read</td>
</tr>
<tr>
<td>DIOW-</td>
<td>-IOW</td>
<td>Drive I/O write</td>
</tr>
<tr>
<td>DMACK-</td>
<td>-DACKx</td>
<td>DMAWQ acknowledge</td>
</tr>
<tr>
<td>DMARQ</td>
<td>DRQx</td>
<td>DMA request</td>
</tr>
<tr>
<td>INTRQ</td>
<td>IRQ14</td>
<td>Drive interrupt</td>
</tr>
<tr>
<td>IOCS16-</td>
<td>-I/OCS16</td>
<td>Drive 16-bit I/O</td>
</tr>
<tr>
<td>IORDY</td>
<td>IOCHRDY</td>
<td>I/O channel ready</td>
</tr>
<tr>
<td>PDIAG-</td>
<td>N/A</td>
<td>Passed diagnostics</td>
</tr>
<tr>
<td>RESED-</td>
<td>RESET</td>
<td>Reset; on AT bus is opposite polarity</td>
</tr>
<tr>
<td>SPSYNC</td>
<td>N/A</td>
<td>Spindle sync. Produces clock for slave drives.</td>
</tr>
</tbody>
</table>

there's no need to waste an expansion slot on a disk controller. Inexpensive IDE adapter cards are also available for older systems. If you're not buying a preconfigured system, you must ensure compatibility between your intended controller and drive(s). Electrically, an IDE drive connects to the controller with a 40-conductor ribbon cable.

Like ESDI, the IDE interface emulates a standard IBM hard-disk controller, and an IDE drive masquerades as one with a corresponding value in the host system's BIOS drive table. Internally, an IDE drive typically has 34 sectors per track, although translation can make it appear to have 17, to match a BIOS table value. In addition, IDE drives usually operate at a 1:1 interleave. You cannot change interleave, perform a low-level format, or run low-level disk utilities, for example the Norton Utility, Calibrate.

The controller electronics reside at standard disk-drive I/O port addresses (1F0–1F7 and 3F0–3F7), and respond to all standard commands (format track, read sector, write sector, etc.), as well as enhanced commands that allow more efficient operation. For example, commands C4 and C5 allow the system to read and write multiple sectors, respectively. However, most AT BIOSs do not yet support the enhanced disk-drive commands.

The interface has evolved rapidly since 1984, occasionally with different vendors creating incompatible enhancements. Hence, in 1988 a Common Access Method (CAM) committee formed to define standards. By spring of 1989, the committee had produced a draft of an AT Attachment (ATA) interface standard. That document has evolved quite a bit over the years, and it is now well on its way to becoming an ANSI standard, by way of the X3T92 working group.

Like the ST-506, the IDE standard allows a maximum of two devices on its shared bus. Drive 0 functions as the master, and drive 1 as the slave. Maximum cable length is only 18 inches, so the drives must be situated close together.

SCSI

SCSI is an intelligent system-level interface that, in theory, can connect through a common parallel 8-bit bus a variety of devices, including disk drives, optical scanners, printers, tape drives, network adapters, and various types of optical drives. It is an unfortunate fact of life that in practice, you'd probably end up installing a different SCSI host adapter for each type of device in your system. (My main system currently has three SCSI adapters: hard disk, CD-ROM, and Bernoulli Box.—Editor) And it is difficult if not impossible to use a SCSI device intended for one system (e.g., a DOS-based PC) on another (e.g., a Macintosh) system.

The SCSI bus consists of eight data bits, a parity bit, nine

<table>
<thead>
<tr>
<th>Signal(s)</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB0-7</td>
<td>8-bit bidirectional parallel data bus</td>
</tr>
<tr>
<td>DBP</td>
<td>Data bus parity line (optional)</td>
</tr>
<tr>
<td>ATN</td>
<td>Attention, used to send message to target when it has control of the bus</td>
</tr>
<tr>
<td>BSY</td>
<td>Busy indicates that the bus is unavailable for use</td>
</tr>
<tr>
<td>ACK</td>
<td>Acknowledge, used by initiator for handshaking</td>
</tr>
<tr>
<td>RST</td>
<td>Reset, used to initiate a bus free phase</td>
</tr>
<tr>
<td>MSG</td>
<td>Driven by target to indicate that current transfer is a message</td>
</tr>
<tr>
<td>SEL</td>
<td>Used by initiator to select target before command execution. Also used by target to reconnect when the reselection phase is implemented.</td>
</tr>
<tr>
<td>C/D</td>
<td>Control/Data, used during information transfer phases to transfer commands, status, messages, and data over the bus.</td>
</tr>
<tr>
<td>REQ</td>
<td>Request by target during information transfer phases. Handshakes with ACK to envelop data.</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output determines direction of transfer during information transfer phases.</td>
</tr>
</tbody>
</table>
control lines, and a line for terminator power, as shown in Table 3. The bus can be driven with either single-ended or differential line drivers. In both cases, the bus has a total of 50 lines. A single-ended system alternates grounds with signals; in a differential system, even and odd pins form differential signal pairs. Maximum cable length is six meters for single-ended and 25 meters for differential systems. SCSI devices on PCs and Macintoshes usually follow the single-ended standard.

A host device issues a command to a SCSI device via a 6-byte command descriptor block, which specifies an opcode, a logical unit number and block address, a length control byte, and a control byte. The control byte has a feature that allows multiple SCSI commands to be sent in a single block. Every SCSI command returns a status byte, each bit of which has a specific meaning (good, busy, etc.).

Most devices currently on the market adhere to the SCSI-1 standards. However, many new devices conform to SCSI-2, which offers much greater potential performance. Whereas SCSI-1 allows a maximum of 4 million transfers per second, SCSI-2 allows 10. In addition, SCSI-2 increases maximum bus width from the 8-bit SCSI-1 standard to an optional 16 or 32 bits. The X3T9.2 committee completed the SCSI-2 specification in August 1990; after editorial polishing, it should be published sometime in 1992. (The committee has also begun work on another standard, SCSI-3.—Editor)

SCSI can communicate with several different devices simultaneously. For example, an SCSI host can disconnect from a target device after issuing a command, connect to a different target device, give it a command, disconnect from it, and then reconnect back to the original device. By contrast, IDE operates in a master/slave mode in which the interface can issue only a single command at a time.

To use an SCSI device in a PC requires BIOS-level software drivers, typically added through adapter-based EPROM or a device driver loaded at boot time. The Macintosh has a built-in SCSI Manager.

SCSI compatibility is still a problem. Although electrically identical, SCSI peripherals from different vendors may be dissimilar. In other words, an SCSI drive from vendor A may work fine with a given SCSI adapter, while an SCSI drive from vendor B does not. That is due to variations in interpretation and implementation of the SCSI command set. Hundreds of commands are available, some of which work differently with different types of devices. For example, one form of the write command can be used for writing to a Direct Access Device (DAD) and another for a Sequential Access Device (SAD). One vendor can interpret a disk drive as a DAD where another would interpret it as a SAD. Sending a SAD write command to a DAD device will not work. In response to that dilemma, the CAM committee has defined a standard subset of SCSI commands that performs basic functions (read, write, etc.). The resulting eleven commands are known as the Common Command Set (CCS), and are part of the SCSI-2 standard.

Compare and contrast

Like ST-506, ESDI is an unintelligent device-level interface that transfers data serially from drive to controller, which compiles serial bits into 8-, 16-, or 32-bit chunks of data and presents them to the host. IDE and SCSI devices, by contrast, build up data bytes on the drive and present them to the system in 8-, 16-, or 32-bit chunks. The advantages are several: less-expensive controllers and adapters, less cabling required, more reliable performance, and higher performance.

IDE drives (even with an adapter, if required) typically cost less than SCSI and ESDI drives of comparable capacity and performance. However, a given system can hold a maximum of two IDE drives, whereas seven SCSI devices can be handled directly, and theoretically thousands indirectly. ESDI controllers typically allow only two drives, and there is no pretense of supporting other types of devices.

Both IDE and SCSI drives suffer from various types of compatibility problems that make system integration trickier than it should be.

Recommendations

Selecting a drive interface depends on your performance needs, capacity needs, budget, and future system migration plans. If cost is the main determinant, you'll probably want to go with IDE. If performance is paramount, ESDI or SCSI will be your choice. Remember that performance you don't need right now may become necessary in the future. Sometimes a little added expense turns out to be a good investment. If you need a really large drive, ESDI or SCSI will also be required. If you hope to share a single interface card among multiple peripherals, SCSI may eventually help you realize that goal.
WORLD'S SMALLEST FM TRANSMITTERS! New Surface Mount Technology (SMT) makes all others obsolete! XST500 Transmitter—powerful 3 transistor audio amplifier, transmits whispers up to 1 mile XSP250 Telephone Transmitter—line powered, transmits conversations up to ¼ mile. Both tune 88-108 MHz. Easy to assemble E-Z KITS (SMT components pre-assembled to circuit board)! XST500—$39.95, XSP250—$29.95, VISA/MC COD add $5. XANDI ELECTRONICS, 201 E. Southern Ave., Suite 111, Tempe, AZ 85282. 1-800-336-7389.

CIRCLE 194 ON FREE INFORMATION CARD

CREATE INTELLIGENT PROJECTS WITH THE VERSATILE Z8 PROGRAMMABLE MICROCOMPUTER. This powerful computer was designed for flexibility and can be used for various electronic projects. I/O Intensive. Up to 20MHz operation. Download programs or run EPROM code. Special hardware features included. Prices from $125.00. Battery-backed RAM, X-assembler, and other options available. CALL FOR FREE BROCHURE.

CIRCLE 181 ON FREE INFORMATION CARD

CIRCLE 127 ON FREE INFORMATION CARD

FM BAND 50dB NOTCH FILTER—Can easily be tuned to eliminate any troublesome signal in the FM band. Uses high quality Johanson tuner. Tuning range of 88-120 Mhz is also usable on Cable TV channels 9 thru 99 or A-1 thru A-5. Just $30 each, includes shipping, Visa, MC, or check. (C.O.D. $5 extra) Fast delivery, 20 day money back. Quantity prices to $16. STAR CIRCUITS, P.O. Box 94917, Las Vegas, Nevada 89193. Call 24 hours 1-800-535-7827 FAX 1-702-795-2729.

GET YOUR RECHARGE CATALOG FREE...EARN BIG $$ IN YOUR SPARE TIME—All supplies and Do-It-Yourself kits with complete instructions available. Supplies cost from $9.95 in qty and you can sell recharged toner cartridges for $40.00 to $55.00 each. Printers include HP LaserJet and Series II, Apple LaserWriter, QMS, etc. Canon PC-25 Copier also. CHENESKO PRODUCTS, 2221 Fifth Ave., Suite #4, Ronkonkoma, NY 11779, 516-467-3205. FAX 516-467-3223, 1-800-221-3516

CIRCLE 127 ON FREE INFORMATION CARD

TWO TRANSMITTERS IN ONE! 5 MINUTE ASSEMBLY, MONEYBACK GUARANTEE! New Law Enforcement grade device on a single chip is the most sensitive, powerful, stable room transmitter you can buy. Uses any 3V-12V battery. Or attach to telephone line to monitor all telephone conversations over 1 mile away without batteries! 100mW output! 50-130MHz. Receive on any FM radio or wideband scanner. VT-75 microtransmitter. $49.95 + $15.00 S&H VISA, MC, COD's add $4.00. DECO INDUSTRIES, Box 607, Bedford Hills, NY 10507. 1-800-759-5553.

CIRCLE 127 ON FREE INFORMATION CARD

CALL NOW AND RESERVE YOUR SPACE

- 6 x rate $940.00 per each insertion.
- Fast reader service cycle.
- Short lead time for the placement of ads.
- We typeset and layout the ad at no additional charge.

Call 516-293-3000 to reserve space. Ask for Arline Fishman. Limited number of pages available. Mail materials to: mini-ADS, RADIO-ELECTRONICS, 500-B Bi-County Blvd., Farmingdale, NY 11735.

FAX: 516-293-3315

CABLE TV CONVERTERS AND DESCRAMBLERS SB-3 $79.00 TRIBI $95.00 MLD-$79.00 M35B $69.00 DRZ-DIC $149.00. Special combos available. We ship COD. Quantity discounts. Call for pricing on other products. Dealers wanted. FREE CATALOG. We stand behind our products where others fail. One year warranty. ACE PRODUCTS, P.O. Box 582, Saco, ME 04072. 1-800-234-0726.

CIRCLE 75 ON FREE INFORMATION CARD

$79 PC DATA ACQUISITION SYSTEM! Have your PC Control relays, lights, motors. Measure temperature, pressure. Input switch positions, thermostats. Great for robotics, Home control systems. Model 30 Features:
- 24 Lines of programmable output/input
- B channel 8 bit A/D conversion
- 12 bit CMOS counter
- Optional 7 channel 50V driver $5
- Example programs included (360K floppy)
- Check, VISA/MC, COD. Include $7 for 2nd day s/h.

PRAIRIE DIGITAL, INC., 846 17th St., Prairie Du Sac, WI 53578. 608-643-8599 FX 608-643-6754.

CIRCLE 201 ON FREE INFORMATION CARD
Countersurveillance

Never before has so much professional information on the art of detecting and eliminating electronic snooping devices—and how to defend against experienced information thieves—been placed in one VHS video. If you are a Fortune 500 CEO, an executive in any hi-tech industry, or a novice seeking entry into an honorable, rewarding field of work in countersurveillance, you must view this video presentation again and again.

Wake up! You may be the victim of stolen words—precious ideas that would have made you very wealthy! Yes, professionals, even rank amateurs, may be listening to your most private conversations.

Wake up! If you are not the victim, then you are surrounded by countless victims who need your help if you know how to discover telephone taps, locate bugs, or "sweep" a room clean.

There is a thriving professional service steeped in high-tech techniques that you can become a part of! But first, you must know and understand Countersurveillance Technology. Your very first insight into this highly rewarding field is made possible by a video VHS presentation that you cannot view on broadcast television, satellite, or cable. It presents an informative program prepared by professionals in the field who know their industry, its techniques, kinks and loopholes. Men who can tell you more in 45 minutes in a straightforward, exclusive talk than was ever attempted before.

Foil Information Thieves

Discover the targets professional snooper seek out! The prey are stock brokers, arbitrage firms, manufacturers, high-tech companies, any competitive industry, or even small businesses in the same community. The valuable information they fish may be marketing strategies, customer lists, product formulas, manufacturing techniques, even advertising plans. Information thieves caw-down on court decisions, bidding information, financial data. The list is unlimited in the mind of man—especially if he is a thief!

You know that the Russians secretly installed countless microphones in the concrete work of the American Embassy building in Moscow. They converted

1-516-293-3751

HAVE YOUR VISA or MC CARD AVAILABLE

what was to be an embassy and private residence into the most sophisticated recording studio the world had ever known. The building had to be torn down in order to remove all the bugs.

Stolen Information

The open taps from where the information pours out may be from FAXs, computer communications, telephone calls, and everyday business meetings and lunchtime encounters. Businessmen need counselling on how to eliminate this information drain. Basic telephone use coupled with the user's understanding that someone may be listening or recording vital data and information greatly reduces the opportunity for others to purloin meaningful information.

The professional discussions seen on the TV screen in your home reveals how to detect and disable wiretaps, midget radio-frequency transmitters, and other bugs, plus when to use disinformation to confuse the unwanted listener, and the technique of voice scrambling telephone communications. In fact, do you know how to look for a bug, where to look for a bug, and what to do when you find it?

Bugs of a very small size are easy to build and they can be placed quickly in a matter of seconds, in any object or room. Today you may have used a telephone handset that was bugged. It probably contained three bugs. One was a phony bug to fool you into believing you found a bug and secured the telephone. The second bug placates the investigator when he finds the real thing! And the third bug is found only by the professional, who continued to search just in case there were more bugs.

The professional is not without his tools. Special equipment has been designed so that the professional can sweep a room so that he can detect voice-activated (VOX) and remote-activated bugs. Some of this equipment can be operated by novices, others require a trained coun tersurveillance professional.

The professionals viewed on your television screen reveal information on the latest technological advances like laser-beam snoopers that are installed hundreds of feet away from the room they snoop on. The professionals disclose that computers yield information too easily.

This advertisement was not written by a countersurveillance professional, but by a beginner whose only experience came from viewing the video tape in the privacy of his home. After you review the video carefully and understand its contents, you have taken the first important step in either acquiring professional help with your surveillance problems, or you may very well consider a career as a countersurveillance professional.

The Dollars You Save

To obtain the information contained in the video VHS cassette, you would attend a professional seminar costing $350-750 and possibly pay hundreds of dollars more if you had to travel to a distant city to attend. Now, for only $49.95 (plus $4.00 P&H) you can view Countersurveillance Techniques at home and take refresher views often. To obtain your copy, complete the coupon below or call toll free.
HARDWARE HACKER

Super Nintendo update, FM stereo broadcasters, Ockham's razor revisited, DYS and other resources, and CD-to-car-radio adapters.

DON LANCASTER

Let's start off with an update to those Nintendo interface circuits we looked into back in April. For those of you who came in late, you will find a special connector at the rear of the Super Nintendo machines that lets you connect them to stereo amplifiers, headphones, RGB monitors, Super VHS recorders, and bunches more.

We looked at the connector in some detail, and we saw several useful and low-cost interface circuits. And we found that Redmond Cable offers all sorts of custom and stock video-game interface kits.

But after some further testing, the RGB SYNC line on a Super Nintendo connector pin 3 is not quite what it appears to be. As Fig. 1 shows you, the pin looks like it should be both CMOS- and TTL-compatible, but it is not. You can't pull it up fully for CMOS, and there isn't enough current-sinking capability for much of TTL. Some (but not all) RGB monitors will refuse to lock to the output.

The problem is that the output does not come from a "real" logic gate. It apparently arises from an emitter follower that has a weak pull-down resistor. And a low supply voltage.

There seem to be several simple workarounds you can try. The easiest is to add the external 680-ohm resistor shown in Fig. 1. That should give you enough current sinking for typical LSTTL inputs. Use a scope to verify your levels. There is even a place for the resistor on the circuit board we looked at in April.

Otherwise, you should be able to directly interface to any low-cost but rare 74HCT CMOS logic. Or you can use the sync stripper circuit we saw in April as a substitute, deriving your sync from the composite NTSC video instead.

Finally, next month we might look at a simple sync amplifier which also will be needed for an upcoming new Neo-Geo interface. It should also work and is based on adding feedback to a 4049 inverter to make it into a simple AC amplifier. Stay tuned.

Ockham's razor

See, I even got the spelling correct. William of Ockham was a fourteenth century English philosopher. Paraphrased, Ockham's really big thing in life was that "The simplest possible explanation is usually the best and probably also the most correct." And Ockham's razor can be your ongoing process of slicing away and reducing everything to its bare (but still quite correct) essentials.

Very few engineering design courses ever mention Ockham. But his razor should be the very center of virtually all engineering design, all analysis, development, debugging, and repair. So, I thought I'd use Ockham's razor as an excuse to simplify the few loose helpline odds and ends that I've been meaning to comment on anyway.

Cold fusion. Ockham's razor says they had their chance to get their act together, and they blew it. Yes, strange amounts of heat can apparently be produced in highly unusual lab circumstances. No, such rather mundane reasons as hydrogen fires, mixed-gas fuel cells, or an embrittlement stress relief have not been totally ruled out. And no, I have not seen so much as one credible and reproducible shred of evidence that anything atomic is in fact coming down. Barring any new developments, cold fusion seems to be on hold. And it probably remains a sucker bet for hackers at this time.

Pseudo radio astronomy. Several years back, a "radio astronomy" receiver appeared in Radio-Electronics that seemed to be responding to extragalactic signals in a circuit that was vastly simpler than those used by far more credible researchers. I've often been asked for my comments, so Ockham says the circuit was just a simple analog thermometer that was measuring the temperature drift of the offset voltage of a 741 op-amp. When the sun set, so did...
the 741. And the circuit capacitors that mysteriously acquired charge are no mystery at all. The effect is known as bounceback and has to do with lateral charge migration in a dielectric.

Utility linemen do learn all about bounceback in lecture one of day one in lineman’s school. And there is a very simple way to spot any utility lineman who knows all about bounceback: they are still alive.

Now, the circuit might or might not have been receiving the extragalactic signals. But the temperature drift and bounceback effects clearly would have been many millions to many billions of times larger. Thus there would be no way to tell until all of those first-order effects have been carefully and painstakingly removed from the circuit.

The Newman motor: The Newman motor is (or was) a perpetual-motion machine that still seems to eke out a meager existence on late-night talk shows. This one-time media circus has been around for a decade or so. Yet, for some strange reason, working models still remain few and far between. Now, if we’re going to grant the true believers that something weird was in fact going on, then Ockham’s razor reduces it down to “sparks may lengthen battery life.”

That might bear further looking into as a hacker topic. An ordinary flashlight cell does not yield all of its chemical energy whenever it “runs down.” Clearly, if so much as a tiny scrap of the zinc case remains, then recoverable chemical energy might still remain—at least in theory. Instead, a cell will polarize and thus raise its series resistance to the
point where it can no longer deliver useful power.

What if you recycle a fraction of the power back into the cell as a high-current pulse? Let’s say we put in ten amps for ten milliseconds per second for every continuous one amp out. Could that partially delay the increase of cell resistance by slowing down the polarization process? Or maybe just warm the cell up to a more optimum power delivery point?

Note that electroplaters do this all the time. They occasionally reverse the plating process and purposely unplate for a while. That improves the smoothness, and does other good things to the finish.

The obvious questions to ask here are “Does energy recycling help us at all?” “What are the optimum recycle pulse strengths and best duty cycles?” “Does any higher-frequency AC help?” and, of course, “Even if all these effects do significantly improve life, are the economics there?”

Let’s have your thoughts on this. Cell energy recycling does look like a reasonable and legitimate research topic. But as a warning, if you’re going to experiment, keep your target carbon-zinc cells in a suitable “bomb shelter.” And be careful.

Microcontrollers. The breakeven point between using and not using a CPU and RAM-ROM-I/O architecture in any hacker project was passed a decade ago. Ockham’s razor says that it’s now ridiculously faster, cheaper, and far better to include a microprocessor these days, rather than foolishly trying to leave one out.

Yet, I get all of these strange calls for projects that require such things as keyboards, displays, fancy timing, strange sensors, and microscale markets. All of which could be done insanely faster and cheaper by first making a model with a $30 Commodore 64 from a yard sale and then, if really needed, working out a one- or two-chip RAM-ROM-I/O solution.

Besides lots of really great microcontroller projects found right here in Radio-Electronics, you’ll find lots of others over in Steve Giacca’s Circuit Cellar Ink. And I do offer my

Micro Cookbook I and Micro Cookbook II that can get you started on many of the fundamentals.

Wireless broadcasters

One of the less pleasant recent hacker surprises is that most low-cost FM wireless broadcaster circuits flat out will no longer work. Older analog FM radios could be tuned anywhere across the entire band and had a very strong AFC or automatic frequency control circuit that would lock onto a non-standard signal and track it anywhere. But nearly all of today’s digitally synthesized FM receivers (especially most car radios) absolutely demand that the transmitted signal be precisely locked onto one of the FM broadcast channels.

Designing any high-quality FM transmitter that is both ultra-stable and able to be rapidly and linearly frequency modulated gets tricky fast because you are asking for a circuit that both will and will not change its frequency. The “technically correct” high-end solution is to use an indirect circuit known as the frequency lock loop. The average output frequency from your transmitter gets divided down with a counter and compared against a crystal reference. An error signal is then derived phase-lock-loop style and used with varactor diodes to continuously force your transmitter back onto the correct frequency.

Hams have long chosen a simpler technique called crystal pulling. Your average crystal is slightly sensitive to reactive loading in a circuit. The rule of thumb is that you can pull a plain old crystal around one-tenth percent. But crystal pulling is usually highly nonlinear.

To pick up enough deviation, hams would start off with a low-frequency crystal and then multiply up into their final 145 megahertz—or whatever frequency range. Typical hams rarely concern themselves with any wide-deviation broadcast-quality audio. In fact, they are not allowed to do so.

Apparently both Sony and Pioneer have figured out how to linearly pull a special third-overtone HF crystal to directly let you do a full CD-quality FM stereo transmitter that is precisely locked onto the cor-
irect frequency. Sony's product is called the XA-7A, and Pioneer's is the CD-FM-1. While the intended use of those units is to let you conveniently add a CD player to your car radio, either one will apparently make up most of the critical circuitry for an excellent and very high-quality FM stereo wireless broadcaster. Dealer cost for the units is in the $42 range, and they seem to be easy and fun to hack. They offer both on-channel lock and near-broadcast quality. We will look at the Pioneer CD-FM-1 here.

Obvious uses for a short-range FM broadcaster include "Please buy my house" messages for drive-bys; baby sitting or handicapped monitoring; and cord-free audio for a teacher, a public speaker, or a video actor. But there are also zillions of non-obvious uses, including such things as getting data onto or off of a rotating shaft, and short-range rocket telemetry.

Limited-range and limited-power FM broadcasters are now generally allowed by the FCC, while the more powerful units have to meet specific licensing and certain type-approval requirements. More details on getting and meeting FCC specs appear in our Hardware Hacker III reprints. Both the unmodified Sony and Pioneer seem to have been created with full FCC compliance code in mind.

I could also see several wired or semi-wireless broadcaster applications that might use twin lead to route high-quality audio all over your plant or whatever. With wires, you could easily go several hundred feet without running afoul of FCC specifications, all the while avoiding the hum and noise problems of using "real" audio. And a whole new world of point-of-sight light-modulated FM data links is also newly opened up.

In their intended use, you unplug your car radio antenna, plug in the CD-FM-1, and then reconnect your antenna. A DIN-8 connector goes to your CD player, and the usual red wire goes to your +12-volt battery.

When your CD is turned on, its audio appears at 88.1 on your FM dial. All other stations are muted. That quickly and conveniently lets you use your existing car audio system without needing anything fancy in the way of rework or switches.

A block diagram of this matchbox-sized module appears in Fig. 2, while an approximate and unofficial schematic is shown in Fig. 3. Because of the surface-mount parts used, certain component values are based only on my estimates. The exact circuit shown also might not be fully accurate.

At first glance, the circuit seems deceptively simple. But if you flip the board over, you'll find nearly a dozen more surface-mount semiconductors on the foil side. It is obvious that bunches of time and effort went into the design.

As with any circuit, you usually want to start off with your power distribution. The twelve volts from the car battery turned off and on by an auxiliary (AUX) logic signal. The power is applied only when your CD is to be used. The power switching is via input-switching field-effect transistor Q5 and series power driver Q6. Driver Q6 is followed by a two-volt regulator IC2, which in turn is followed by a dynamic regulator or capacitance multiplier at Q8. The post-regulator will obviously introduce a temperature drift that might or might not be intentional.

Several refinements in the supply switching include Zener diode D2 to prevent turn-on with a weak battery or during cranking. The network R27-C30 gives a slight turnoff delay to eliminate clicks or thumps.

Except for that switchover relay, the rest of the circuit runs on the dynamically regulated 1.4-volt supply. Theoretically, a single AA cell could be used instead.

The heart of the circuit is the great Rohm BA-1404 FM stereo broadcaster chip that we have looked at in the Hardware Hacker II reprints. Only this time, the internal RF transmitter circuitry is not used and gets very carefully deactivated. A 38-kHz signal (X1) is needed to modulate the incoming audio and to create the 19-kHz pilot signal. Control VR1 adjusts your balance, and VR2 sets the 19-kilohertz pilot level.

The multiplexed audio output is added to the pilot and routed to a combination driver and preemphasis network via Q1 and Q2. The amount of high-frequency preemphasis is adjusted by TC1.

The linear and broadband "crystal puller" is an interesting reactance modulator scheme using a pair of varactor diodes at D1. A simplified circuit of the modulator appears in Fig. 4. What you've got is a crystal in series with the parallel resonant circuit "A," which is, in turn, in series with a second resonant circuit "B."

Tank "A" is tuned well below the crystal's parallel resonance and will normally appear as a high inductive reactance. Tank "B" is tuned above the crystal parallel resonance and will appear as a capacitive reactance. In the absence of any audio...
In the diagram, Q3 is a Pierce-style oscillator that can oscillate at the frequency determined by the highest impedance sum of the crystal's third overtone resonance and the reactance modulator tanks. A frequency of 88.1 megahertz is used in my particular sample, with a final trim given by TC2.

The fundamental crystal frequency is way down at 29.7 megahertz, but the oscillator tries its best to run at 88.1. The resultant waveform thus has some uneven subharmonic lumps.

It is very important to keep the loading on any FM oscillator constant, especially when using an overtone crystal. So, a buffer and driver transistor follows at Q4. That in turn drives a special bandpass filter (probably a surface acoustical wave, or a SAW device) to eliminate any subharmonics and out-of-band harmonics. Only the crystal's third overtone at a frequency of 88.1 MHz is allowed through the filter.

Even with the attenuation through the bandpass filter, the output signal is still too strong to directly couple into an FM receiver's antenna, so it is further attenuated by R20 and R21.

Recall that the supply power is turned on only when you want to listen to your CD player. When the 1.4-volt DC supply voltage is present, relay-driver Q4 and spike-suppressor D4 pull in the relay, connecting the RF-converted CD audio directly to your auto-radio antenna input. At the same time the antenna is disconnected to prevent any back radiation or unintentional broadcasting. You do, of course, also have to pushbutton select 88.1 MHz on your car radio to listen to the CD audio.

Once again, this description is for the FM-CD-1. The XA-7A uses a somewhat different circuit that we might look at in a future column if there's enough interest.
DIGITAL VIDEO STABILIZER
ELIMINATES ALL VIDEO COPYGUARD

While watching rental
movies, you will notice annoying peri-
dodic color darkening, color shift, un-
wanted lines, flashing or jagged edges. This is
caused by the copy protection jamming signals em-
bedded in the video tape, such as Macrovision
copy protection. THE DIGITAL VIDEO STABILIZER
COMPLETELY ELIMINATES ALL COPY
PROTECTIONS AND JAM-
MING SIGNALS AND
BRINGS YOU CRISTAL
CLEAR PICTURES.

WARNING
THE DIGITAL VIDEO STA-
BLIZER IS INTENDED FOR
PRIVATE HOME USE
ONLY. IT IS NOT IN-TEN-
DED TO COPY RENTAL
MOVIES OR
COPYRIGHTED VIDEO
TAPE THAT MAY CON-
STITUTE COPYRIGHT
INFRA-NGEMENT.

To Order: $59.95 ea + $4 for p & h
Visa, M/C, COD Mon-Fri 9-6 EST 1-800-445-9285
CRE6
367/0-17 WST OCEANSIDE RD. OCEANSIDE, NY 11572

FIG. 4—SIMPLIFIED SCHEMATIC of the linear reactance modulator.

Hacking the CD-FM-1

In the absence of a CD player, the
CD-FM-1 can be activated by con-
necting the AUX input to the +12-
volt supply. Your left and right audio
inputs are normally at "line" level;
additional gain will be needed for
most microphones. Any and all au-
 dio connections must be shielded.

The antenna changeover relay
might be optionally defeated by
shorting R23. Supply current is 30
milliamps with the relay active and
17 milliamps with it defeated.

Another four milliamps can be saved by
disconnecting the AUX input and
shorting the collector to emitter on
Q6. Nearly another milliamp can be
saved by removing R22. The re-
maining power needed by the
"useful" part of the circuit is then
1.4 volts at eleven milliamps, or
something around fifteen milliwatts.

With these power reductions, you
probably could substitute an ordi-
nary 9-volt transistor battery for
your 12-volt supply. But be sure to
turn the power off when you are not
using the transmitter.

Theoretically, you might want to
replace the dynamic regulator Q8
and substitute a single AA cell in-
stead. A bypass capacitor or two
would also be a good idea if you try
that. One way or another, though,
you can easily get the circuit down
into the millipower range, but not
the micropower range.

A possible antenna takeoff point
for any low-level direct-broadcasting
experiments seems to be the col-
lector of Q4. Figure 5 shows how to
route a 30-inch antenna wire
through a grommet in the case. I got
a 50-foot useful range with a good
cable car radio that way. Be sure to insu-
late the wire tip to prevent possible
shorting of the DC supply or
damaging of the filter. A far cleaner
but weaker takeoff point would be
the pin-4 filter output.

While the BA1404 supply voltage
can be raised as high as 3 volts,
doing so may change the per-
f ormance of the reactance modulator.

The best way to increase the
range is to improve the antenna on
your receiver. Be sure to connect a
good receiving antenna and dis-
connect any cable connections. Exper-
iment with the antenna orientation;
vertical might be best for car radios
and horizontal might work out better
for a home hi-fi.

The range can also be improved
by placing a ground plane, such as a
grounded cookie sheet (or preferably
something bigger), under your
transmitter. That could give you a
even pattern with double field
strength.

A directional receiving antenna,
such as a correctly cut Yagi, can
also dramatically improve your
range.

Note that lower power plus good
antenna matching and orientation
will give you vastly more range than
will high power and poor or in-
properly aligned antennas.
While there is that extra booster amplifier remaining unused in the BA1404, it might be tricky to access and still have it remain stable. An external boost circuit could also be built using a 2N918 transistor or something similar. That would best be done in a separately shielded and a properly decoupled box. Do not, under any circumstances, attempt to amplify the unfiltered output. Doing so will create unacceptably strong outband signals especially at 29.7 megahertz.

What can you get away with in the way of increased power? Any boost at all gets you into a legal gray area. But, as a practical matter, if your DC input power to your boost stage is under 50 milliwatts, and if nobody complains, and if your total useful range is well under a hundred feet, and if you use the transmitter yourself rather than selling it to someone else, you can probably get away without any serious problems or hassles.

On the other hand, using one of these as a predriver to broadcast heavy metal to your entire college campus is a very big no-no.

Another contest or two

This CD-FM-1 is one of the most hackable projects to come down the pike in a long, long time. For here we have all of the compact and millipower core circuitry needed for one very high-quality and quite stable FM stereo (or mono) broadcaster all in one place and ready to go—with the nasty stuff fully debugged. And one that works with synthesized auto receivers.

For our first contest this month, just tell me about a new or unusual use for a short-range and high-quality FM stereo or mono wireless transmitter. Or show me a variation on the circuits we just looked at.

There will be all of those usual Incredible Secret Money Machine II book prizes going to the dozen or so best entries. In addition there will be an all-expense paid (FOB Thatcher, AZ) tinaja quest for two going to the very best of all.

Be sure to send your written entries directly to me here at Synergetics per the help box, rather than on over to Radio-Electronics editorial.

You do have to be selective. For instance, a CPM computer is pretty much worthless at any price, as is any laser printer that does not speak real PostScript or, for that matter any teletext receiver with no teletext to receive.

My three favorite DYS sources are Dak, Comb, and Damark. But every once in a while, a good solution to a technical problem can even be found in such unlikely sources as Taylor Gifts or Harriet Carter.

I thought I had a lot more of these DYS catalogs than I could find at column deadline time. Is JS&A still around? They invented DYS in the first place. How about the Sharper Image folks? So why don’t you tell me about the rest of them?

As a second contest, just tell me about any non-obvious direct-mail resource that can be used to get ideas and solve hacking and other technical problems. Include a sample copy if you are able to.

I’ve also added a great heaping bunch of other unusual direct-mail sources to our sidebar. While several of these are clearly not DYS, they do offer very interesting and very useful catalogs. And every hacker should definitely know about them.

New tech lit

From Analog Devices, the fat new Data Book Volume 10 on their analog integrated circuits. From WSI, there’s a new Programmable Peripherals Design and Applications Handbook that includes lots of free demo software. From Intel, you can get their new PLD shell Plus programmable logic design and its supervision software. It is free on a professional request.

Assorted free samples of Kydex thermoplastic sheets are obtainable from Kleerdex. This stuff looks great for custom thermoformed cases and enclosures. There’s lots of colors, thicknesses, and surface finishes. And free tackle dome keyswitch samples are available through Snaptron. Finally, Avery Dennison now has test-fixture samples of their FasTape UHA super-strong clear adhesives.

A reminder that I still have lots of book-on-demand bound reprint continued on page 88
Conventional listening tests have always been problematic for dedicated audiophiles. By "conventional," I mean tests posing as scientific with such methods as double-blind techniques, careful controls, statistical analysis, and instant switching with precise level equalization. The editors of The Absolute Sound, Stereophile, and other non-mainstream audio publications believe that those techniques obscure the sound quality differences that they hear so easily when listening under relaxed conditions. i.e., where an audio component is listened to for hours, days, or even weeks to evaluate its sound quality, and then its sound is compared to that of a reference component under similar listening conditions. If quality differences heard during this long-term audiophile testing fail to appear under the tightly controlled "quick-switch" procedures, then, in their view, the purportedly rigorous scientific procedures (espoused by people such as myself) must be somehow flawed and thus terribly misleading.

Incidentally, it's worth pointing out that the contention between the two opposing camps seldom is reduced to determining which of two amplifiers sounds better. Instead, the argument is usually about whether properly operating modern amplifiers sound alike or different.

If, as claimed by most audiophiles, carefully performed switching tests based on double-blind techniques (in which neither the tester nor the listener knows the identity of the components being compared) are of dubious value, it's important that those involved in new-product and new-technology evaluations know that their tools are flawed. David L. Clark, of ABX fame, discusses these matters and more in the Audio Engineering Society preprint.

Ten Years of ABX Testing
[David L. Clark (3167 K-1)]

About ten years ago, David Clark and his associates invented the ABX switch, a sophisticated component that enables a listener to do double-blind listening evaluations without the need for a second or third party to handle the random switching involved. The ABX switch automatically charts a listener's judgment about whether component A or B is the same as X, which might be A or B in a given trial series. At the end of the test series, the number of correct decisions is given.

When it became available, Clark and his associates thought that the ABX comparator would be a powerful tool for determining, once and for all, whether small differences in components such as power amplifiers are audible and commonly heard. However, the debate raged on as though the ABX device were never invented. When the ABX comparator confirmed that audiophile listeners consistently fail to identify components on a basis of sounds that they thought they heard, the audiophiles were not embarrassed. Most convinced themselves that they heard those differences clearly under normal, not test, listening conditions.

Audiophiles offered two explanations for their failure to discern acoustic differences during ABX testing: (1) The switching relays and connectors used in the ABX switch introduce artifacts that somehow mask the differences, and (2) short-term, quick-switched listening does not permit differences that are readily apparent on typical long-term audiophile testing. In other words, the stress induced by a rigorous test de-sensitizes the listener and impairs his ability to hear differences that are apparent under more relaxed circumstances.

Clark set out to test the reality of the explanations and excuses. Two audiophile societies participated: The Audiophile Society (TAS), consisting mostly of true believers in high-end audio equipment and Clark's group, the Southeastern Michigan Woofer and Tweeter Marching Society (SMWTMS) who tended to be rationalists.

The test consisted of the insertion/non-insertion of a black box non-linear circuit that injected 2.5% harmonic distortion into the signal path. Two sets of tests were planned for each group. One employed the ABX switch for the typical quick-switch procedures preferred by the "scientific" audio group, while the other called for the long-term listening preferred by the high-end, everything-sounds-different crowd.

As might have been predicted, the "golden ears" of the TAS group refused to have the signal passed through the ABX comparator and instead used a much slower, manually plugged 16-trial comparison test with a very expensive high-end system familiar to most of them. The SMWTMS group listened in an unfamiliar room to an unfamiliar sound system.

Double-blind black boxes

The second part of the test attempted to set up the long-term, relaxed listening situation favored by high-end audiophiles. Ten sealed black boxes were distributed double-blind to at least 16 members of each group. Half of the boxes contained the distortion circuit; the others were simply bypass circuits. Participants were instructed to patch their black boxes into the tape...
loops of their home preamplifiers and listen for as long as necessary to decide whether or not the black box was neutral.

No one in either group was able to distinguish the distorting box from the non-distorting box reliably in long-term listening on a home system. Moreover, no one in the TAS group could identify reliably the distorting black box in the manually patched series of relatively quick trials. However, with the ABX comparator, the SMWTMS group was able to differentiate between the distorting and non-distorting black boxes within 45 minutes. And they went on to perform just as well with the black box at even lower distortion levels!

This, to my mind, constitutes an ultimate rebuttal to those who claim that long-term listening is required for detecting differences, and that instant switching with boxes such as the ABX comparator somehow masks audiosonic differences. To repeat: the Audiophile Society failed to detect the 2.5% total harmonic distortion (THD) under its preferred listening conditions. By contrast, the SMWTMS group, using the ABX switch, detected the distortion quickly and, later, at even lower levels.

Those who have been involved with ABX testing agree that the reason for the high sensitivity of the ABX procedure is the ease and speed of the comparison, which enables one to focus on the detection task. Dependence on one's memory of what one thinks one heard—interrupted by juggling cables while switching components—obviously does not make for reliability in evaluating components, despite audiophile claims to the contrary.

Final note

People I consider to be fuzzy-minded, non-technical elitists are not the only ones who believe that rigorous double-blind testing obscures small audible differences under non-test conditions. When Clark was chairman of an AES Workshop on Esoteric Audio in 1988, he asked the audience to indicate by a show of hands whether they believed that different modern gain-matched power amplifiers sounded different from each other. (It was assumed that all of the amplifiers would measure up well in conventional testing, and be operated within their ratings.)

Approximately 70% of the AES audience indicated that they thought the amplifiers would probably sound different! Along with Clark, I find that result disheartening, especially in light of all the carefully controlled tests and studies that have failed to show that such audible differences exist.

PRESERVATION PLAN ON IT

Planning on restoring a house, saving a landmark, reviving your neighborhood!

Gain a wealth of experience and help preserve our historic and architectural heritage. Join the National Trust for Historic Preservation and support preservation efforts in your community.

Write:

National Trust for Historic Preservation
Department PA
1785 Massachusetts Ave., N.W.
Washington, D.C. 20036

Earn Your B.S. Degree in ELECTRONICS or COMPUTERS

By Studying at Home

Grantham College of Engineering, now in our 42nd year, is highly experienced in "distance education"—teaching by correspondence—through printed materials, computer materials, fax, and phone.

No commuting to class. Study at your own pace, while continuing on your present job. Learn from easy-to-understand but complete and thorough lesson materials, with additional help from our instructors.

Our Computer B.S. Degree Program includes courses in BASIC, PASCAL and C languages—as well as Assembly Language, MS DOS, CADD, Robotics, and much more.

Our Electronics B.S. Degree Program includes courses in Solid-State Circuit Analysis and Design, Control Systems, Analog/Digital Communications, Microwave Engr, and much more.

An important part of being prepared to move up is holding the right college degree, and the absolutely necessary part is knowing your field. Grantham can help you both ways—to learn more and to earn your degree in the process.

Write or phone for our free catalog. Toll free, 1-800-955-2527, or see mailing address below.

* Accredited by the Accrediting Commission of the National Home Study Council*

GRANTHAM College of Engineering

Grantham College Road
Slidell, LA 70460
Need Information about Businesses?
Call the Business INFOLINE!

There are over 9 million businesses in the U.S. — and finding information about them can be virtually impossible, especially when you need it fast. But now there’s a way...a revolutionary new service called Business INFOLINE!
Need to know the address and phone number for “XYZ Company” somewhere in Florida, or the name and phone number of a “Cadillac Dealer” in Palm Beach? Even telephone company directory assistance can’t help you in these situations...but we can!

For example...

“Your BMW breaks down on the interstate, and you need to know if there’s a dealer in the next town.”

“An out-of-town company is trying to sell you vinyl siding for your house, and you need more information about them — how long the company has been in business, and how many employees they have.”

“You’re planning a vacation in the Pacific Northwest, and you want to line up things for the kids to do. So you need to find the amusement parks and zoos in Oregon and Washington.”

“A friend gave you a tip that “Apex Industries” would be a good stock investment, but you want to know more. What do they do? What are their approximate annual sales?”

The Business INFOLINE is indispensable for home or office! And the cost is only $3.00 for the first minute and $1.50 for each additional minute, conveniently billed to your phone number. The service is available Monday through Friday, 7:00 a.m. to 6:00 p.m., Central Time.

Dial 1-900-896-0000
Ask for Ext. # 255.

A Service of American Business Information • 5711 So. 86th Circle • Omaha, NE 68127

NO COMPLICATED ELECTRONICS, NO EXPENSIVE INSTRUMENTS:

Home study course shows you how to make good money in VCR repair.

An amazing fact: you can do more than four out of five VCR repairs with ordinary tools and basic fix-it procedures. Our home study program shows you how.

Learn all of the systems, mechanisms, and parts of almost all brands of VCRs. With no expensive instruments. No complicated electronics. No fancy workshop. The step-by-step texts and close personal attention from your instructor make learning easy.

Texts, course materials, and tool kit are sent to your home. Graduate ready to make up to $50.00 or more per hour in your own spare-time or full-time business.

Send today for your free career booklet. Or call 800-223-4542

ANALOG SWITCH LOSS

I’m building a circuit that uses a 4066 CMOS analog switch to select between various audio sources. Everything works fine but I notice that there’s some loss in signal level through the switch. According to the data books, a closed 4066 switch acts like a 75-ohm resistor and, since that is a characteristic of the IC, I’d guess there’s no way around it. Or is there? — W. Meredith, Elkins, WV

Analog switches are neat devices that allow digital circuits to control the flow of analog signals. When these IC’s first appeared on the market they were immediate hits. But you’re right; there is an internal loss.

While there’s no way to pop the cover off the IC and do a bit of creative microsurgery to cut down the signal loss, there are some more conventional alternatives that can help. After all, the losses are due to routing signals through transistors as opposed to mechanical contacts.

The most obvious answer is to put a simple amplifier after the switch, which is what I would do if faced with your problem. A one-transistor or op-amp circuit doesn’t cost much nor does it take a lot of board space. An added benefit is that you’ll be able to adjust the overall gain to any level you want. And since you’re dealing with audio, it’s not much of a job to tailor the amp’s characteristics to match whatever equipment the circuit has to feed.

If you’re not using all the switches in the IC, there’s no reason why you can’t use two or more switches in parallel. The apparent resistance will drop in the standard reciprocal-addition pattern used for calculating the equivalent resistance of parallel resistors. You can never reduce the resistance to zero but you might be able to get it down low enough to make the problem unimportant.

Your last alternative is to use a different IC. Some of the more expensive analog switches designed for video and other high-frequency applications have a lower inherent
signal loss but they’re much harder to get in single quantities. A less expensive and more available choice would be something like the 4016, the father of the 4066. That earlier chip has a higher internal resistance (about 300 ohms), but does a better job of preventing signal leakage. Anyone who stocks the 4066 would probably stock the 4016 as well.

FM ANTENNA

I’m having a lot of trouble getting good FM reception in my home. No matter what kind of antenna I try or where I put it in the room, the reception is garbled and distorted. I live only a few miles from the main transmitting antenna so I know it’s not a problem with the level of the signal. I’m thinking of getting one of those devices I’ve seen advertised that turn my electrical wiring into an antenna. Do they really work?—L. Lasky, New York, NY

I thought those phony balcony contraptions disappeared along with more important things like the Rosicrucians (AMORC everyone) and White Cleverine Brand Salve. The answer is a definite no. Few things in life are for sure but the fact that those antennas are a waste of time is something you can bet on. The reason you’re getting such terrible reception is because of multipath reception. The signal from the transmitter bounces around off the metal in buildings and you’re getting several delayed versions of the same signal. If you had the same problem with TV reception you’d be talking about ghosting. And the way to solve the problem is to follow the same route you would with ghosting: increase the signal strength.

I’ve seen lots of devices that purport to eliminate multipath reception but I’ve never run across one that delivered what was promised in the ads. The bottom line is that if you have excessive signal reflection and the reflections are strong enough, you’re going to have poor reception. FM antenna amplifiers—the ones that go in front of the antenna inputs—can solve problems caused by a weak signal but they can’t do anything with multipath reception. As they say, garbage in, garbage out.

Until someone out there can show me otherwise, all you can do is try to get cable FM service, or put your antenna somewhere that it has a clear shot at the transmitter’s antenna. That would be out a nearby window if you’re up high enough, or out on the roof if you’re not.
How the Club Works:

The Electronics Engineers and Designers Book Club and the Electronics and Control Engineers' Book Club have joined forces to bring you all the best titles from the most prominent electronic publishers.

YOUR BENEFITS: You get 3 books for $9.95 plus shipping and handling when you join. You keep on saving with discounts of up to 50% off as a member.

YOUR PROFESSIONAL BOOKSTORE BY MAIL: Every 3-4 weeks, you will receive the ELECTRONICS ENGINEERS' BOOK CLUB News describing the Main Selection and Alternates, as well as bonus offers and special sales, with scores of titles to choose from. CLUB CONVENIENCE & EASY RISK-FREE TERMS: If you want the Main Selection, do nothing and it will be sent to you automatically. If you choose another selection, or no selection at all, simply indicate your choice on the reply form provided. You will have at least 10 days to decide. As a member, you agree to purchase at least 3 books within the next 2 years and may resign at any time thereafter. If not satisfied with your books, return them within 10 days without obligation.

BONUS BOOKS: Starting immediately, you will be eligible for our Bonus Book Plan, with savings of up to 80% off publishers' prices.

EXCEPTIONAL QUALITY: All books are quality publishers' editions from all the publishers in the field especially selected by our Editorial Board to ensure the information is reliable and specific enough to meet your needs.
Windows 3.1 is destined to be an extremely popular upgrade to Microsoft's already popular graphical operating environment. It is an incremental upgrade that fixes many small problems and adds several significant new features. I wish Microsoft had gone further with some things, but there is enough new and improved here to capture a heck of a lot of user interest (and dollars). This report is based on the "final" beta (3.1.061d, shown in Fig. 1); some features might vary slightly in the finished product (due out by the time you read this).

Win31 contains five major areas of improvement: higher reliability, Object Linking and Embedding (OLE), the TrueType font system, a new File Manager with "drag-n-drop" file management, and lots of small user-interface enhancements. Let's discuss each in turn.

Improved reliability is first on the minds of many (including yours truly). Put simply, Win31 is not as robust as OS/2, but it's better than Win30. When a program crashes, it usually brings up a dialog box stating where the fault occurred, and allows you to terminate the application without rebooting or corrupting Windows' internal memory-management scheme. I say usually because (at least in the beta), it's still not 100% reliable.

A related feature is Ctrl-Alt-Delete trapping: You can't simply reboot at any time. If you press Ctrl-Alt-Delete, a text-mode screen pops up advising you to press the key combination again if you really want to reboot, to press Esc if you'd really rather not reboot, or press Enter to terminate the current application. The purpose of the latter is to terminate hung applications. If an application hangs, you can "reset" just that session and return to Windows. (DESQview has had that feature for years; it's about time Windows got it as well!)

OLE

Object Linking and Embedding (OLE) provides the most interesting and far-ranging enhancements to Windows. Recent versions of various Windows applications (Excel, WinWord, Ami, PowerPoint) have been getting smarter and smarter about how they integrate data from other applications. For example, you might want to include an Excel worksheet in a budget statement, or include an Excel graph of data collected as part of a school report. In the old way of doing things, you would leave a big hole in your document, print the worksheet or graph separately, then paste the printout physically into the document. Savvy Windows users have, for several years, eliminated the physical cut and paste, instead doing so through the Windows clipboard. However, doing so has limitations. What if the Excel data changes? Then you must delete the version in the document and "paste" in a new one.

A better way is to set up a "link" between the Excel data and the word-processor document. The link allows you to work on both document and data separately, perhaps with separate users performing different tasks. The word processor watches over the link; when it detects new or changed data, it updates the document with a new copy of the spreadsheet.

An embedded object is quite different, and there is much confusion floating around about this point. An embedded object exists only in the main document, not in a separate file. That means that only one user can get at an embedded object at a time.

Let's back up a couple of steps. What does Microsoft mean by the term object?

In the Windows scheme of things, an object is a chunk of data. It could
be a cell in a spreadsheet, a range in a spreadsheet, or the entire spreadsheet. It could be a paragraph of text or a whole document. It could be a bit-mapped image created in a paint program. It could be a sound file containing voice annotations to a document. The point is that it could be just about anything; the "document" containing such an object does not need to know how to display it or print it.

Object linking and embedding doesn't happen in a vacuum; applications must be "OLE-aware." There are two types of OLE-aware applications: OLE servers, which provide objects that can be linked to or embedded in other documents, and OLE clients, which can accept objects supplied by an OLE server. A given application can be a client, a server, or both. In Win31, PaintBrush and the Sound Recorder (only available with multimedia hardware) are OLE servers; CardFile and Write are OLE clients. Current versions of Excel and Word for Windows can function in both roles. (The next version of Word is rumored to have extensive built-in OLE capabilities.)

Whereas a linked object exists in a separate file, an embedded object exists only in the primary file. You edit an embedded object by double-clicking on it, which causes the corresponding application to load with that data. After you edit the data, you close the second application, which inserts an updated copy of the object in the document.

What about applications (DOS programs, for example) that are not (and may never be) OLE-aware? Win31 includes a special program called the Object Packager. What it does is link an application and its data file to an icon that you embed in an OLE client. The type of application and data is irrelevant; all that appears in the OLE document is the icon. To access the "packaged" data, you double-click the icon. Windows then executes the corresponding application.

The iconic representation has some interesting ramifications. Hard-copy and on-line versions of OLE documents differ. The hard-copy version will contain only the iconic representation, not the actual data. The irony is that the on-line version will be richer than the hard-copy version, not the other way around. The implication is that you'll need a computer to get at all the information contained in the OLE document. As computer hardware continues its evolution toward rich, standardized multimedia capabilities, this will become the rule rather than the exception.

The whole OLE procedure is awkward, time-consuming, and distracting. In the current way of doing things, a whole new application launches in a separate window that takes you out of the context of your document. Ideally, when you selected an embedded object, the menu and tool palettes of the current application would change to reflect available capabilities. Then you would have the feeling that it was your document that mattered, not the computer applications used to create it. OLE represents the first cut at that type of transparent editing capability.

TrueType

Microsoft's answer to Adobe Type Manager (as well as similar products from BitStream and others) is called TrueType. TT provides built-in device-independent scalable fonts. Device-independent means that, within the resolution of the device, fonts will appear identical on any supported video display or printer. With font support built into the operating system, documents can easily be ported among different machines without loss of formatting information.

Win31 includes four typefaces corresponding to Helvetica, Times, Courier, and Symbol. These fonts are rendered quickly and are quite good looking. Adobe might be in for trouble on that count. Professional desktop publishers will likely still prefer ATM and Adobe Type 1 PostScript fonts, but run-of-the-mill users probably won't care what's under the hood as long as it works. And even in this beta, it does. I've already seen lots of public-domain TT typefaces floating around on the telecommunications services. Win31's ability to work with both TrueType and PostScript Type 1 fonts was unclear as of this writing.
It's important to understand that TrueType is no substitute for PostScript. PostScript is a robust language for describing both fonts and complex page layouts, but TrueType covers only the font portion. Microsoft has a related technology, TrueImage, that attempts to make up for the deficiency. However, few laser-printer manufacturers and even fewer application programs support either TrueImage or TrueType. The point is that PostScript is well-supported, hence is likely to be with us for a long time.

Other improvements

File manager is incrementally faster and easier to use. Using the Multiple Document Interface (MDI), it allows you to open multiple windows in various drives, and then to copy and move files among them. Drag-n-drop allows you to select a file from the file manager, then drop it to another application to move, copy, or print the file. Moving and copying work fairly well; the print feature is not so elegant. For example, if you drag FILE.TXT to the Print Manager, it in turn launches NOTEPAD.EXE, which does the actual printing. You can drop the file icon on either the minimized PrintMan icon, or on the open PrintMan window. The idea behind this capability is great, but the implementation is awkward. If I drag something to the printer icon, I just want it to start printing while I go on about my business. Instead, the dropped-on application takes over the screen and keyboard until printing is done. For this capability to work smoothly, applications vendors are going to have to cooperate, i.e., provide DDE-accessible print modules that do their thing in the background, without disturbing the user. FileMan also provides a "backdoor" capability for adding new functions; already there are shareware packages that do so. FileMan is much better than in previous incarnations, but I would have a hard time giving up the Norton Desktop for Windows.

As with Microsoft's recent release of Word for Windows 2.0, there are lots of small user-interface improvements that together add up to a much more pleasant computing experience. To name a few, PrintMan and FileMan save settings much quicker when exiting; high-speed support for many super-VGA cards is built-in; full mouse support for DOS apps running in a window; faster switching among applications; a large collection of application icons; built-in screen savers; built-in multimedia support; built-in tutorial on Windows operations; a Startup group in PrintMan (the virtual equivalent of the LOAD= and RUN= lines in WIN.INI); better support for COM3 and CCM4 serial I/O; variable size fonts for windowed DOS sessions.

In prior versions of Windows, you could press Alt-Tab to cycle through all open applications. Win31 includes a "smart" version in which you press and hold Alt; subsequent presses of Tab cycle through a win-
dow that lists each running application, complete with icon and title. When you reach the one you want, release Tab and you switch to it. Simple but elegant.

Win31 includes an updated version of Microsoft's disk caching program SmartDrv. SmartDrv 4.0 hooks in at the DOS level, hence is able to cache more types of devices. The program now includes the ability to cache both reads and writes. In addition, the final version should have its own Ctrl-Alt-Delete trap which will help ensure that cached writes actually are written to disk before the system resets.

In conclusion, Win31 sports many small improvements and several indicators of great things to come. Windows is still not perfect, but it's a whole lot better. The detailed attention paid to improved user interaction echoes similar improvements in the recent release of Word for Windows 2.0. This type of user focus is what would-be competitors had better pay attention to.

OS/2 2.0 update

Flash: I just received beta version 6.304, which now allows Windows and OS/2 windows on the screen simultaneously. My initial impression is highly favorable. Choosing between OS/2 and Windows is no longer as easy as it once was. More next time.

Multimedia update

As soon as things settle down on the system software front, I will get back to my promise to provide an in-depth look at CompuAdd's multimedia upgrade kit, which puts a CD-ROM, sound card, and optional AM/FM and TV tuners in your PC. You've gotta see it to believe it! R-E

"Let me guess: The computer never goes down up here!"

Cable TV

Article Parts

We stock the exact Parts & PC Board for an article published in Radio Electronics Magazine on building a Snooper Stopper.

Snooper Stopper Kit $19.95
Includes all the original Parts & Etcheco, Drilled Silk-Screened PC Board.

Snooper Stopper $39.00
This is an assembled and tested fixed frequency 106.5Mhz. Snooper Stopper for most Jerrold systems.

Protect yourself from descrambler detection and stop the Bullet with one of our Snooper Stoppers.

Macrovision...now you see it, now you don't.

Macrovision Kit $29.00
Includes all the original Parts & Etcheco, Drilled Silk-Screened PC Board. Originally Published in Radio Electronics Magazine.

Call Toll Free 1-800-886-8699

Visa, MasterCard or COD

Northeast Electronics, Inc.
PC Box 3310
N. Attleboro, Ma. 02761
LEARN
COMPUTERS!

Home study. Become an expert with personal computers for home or business use. Step-by-step instruction is easy to understand, even if you have little or no computer experience. Learn in your spare time at your own pace. Send or call today for your free career literature.

CALL 800-223-4542

Name
Address
City State Zip

SCHOOL OF COMPUTER TRAINING
2245 Perimeter Park
Dept 165, Atlanta, Georgia 30341

CIRCLE 109 ON FREE INFORMATION CARD

sets available on pretty near all of my recent columns. Included are Ask the Guru I, II, and III, Hardware Hacker II and III, LaserWriter Secrets, and Blatant Opportunist. Write or call me for more details.

I’ve just posted my printed-circuit layout package up to GEnie PSRT as our file #401 PRINCRCT.PS. It lets you do ultra-fancy PC layouts using nothing but your very favorite word processor or editor. And please note that all my Ask the Guru and LaserWriter Corner columns continue to be electronically published, also on GEnie PSRT-on time, full length, and uncensored. I have also updated all my book-on-demand publishing secrets as #410 BOOKDEM.PS.

As usual, we have gathered most of the sources together into either our Names and Numbers or our DYS Resources sidebars.

be switched between the frequencies of 300 Hz, 1 kHz, 3 kHz, and 8 kHz, and the output level can be switched between 0 and -6 dB. Stereo-pilot and SAP (Second Audio Program) signals can be switched on and off, and stereo-sum and difference signals (L + R and L – R) are also individually available. With the four audio output signals from the TS-8-MTS, all sections of a TV’s decoding circuitry can be checked.

The TS-8-MTS is a versatile piece of test equipment, and at $895 it’s also competitively priced. It’s a worthwhile investment for anyone who regularly works on TV’s and VCR’s—or someone considering getting into servicing. The generator is intended for troubleshooting and aligning video equipment but it would be great if stores had them to demonstrate the quality of the next TV set you are about to buy!
BUYER’S MART

FOR SALE

TUBES: “oldest,” “latest.” Parts and schematics SASE for lists. STEINMETZ, 7519 Maplewood Ave., R.E., Hammond, Ind. 46324

RADIO: Classified Ads - Complete printed circuit fabric-

CIRCUIT Boards — Complete printed circuit fab-

CIRCUIT CENTER, PO Box 126, Addison, IL

60110. (708) 543-0671.

RESTRICTED technical information: Electronic surveillance, schematics, locksmithing, covert sciences, hacking, etc. Huge selection. Free brochures. MENTOR-Z, Drawer 1549, Asbury Park, NJ 07712.

CABLE TV DECODERS

PRESENTING

STARRING

JERROLD, HAMIL, OAK

AND OTHER FAMOUS MANUFACTURERS

- FINEST WARRANTY PROGRAM AVAILABLE
- LOWEST RETAIL WHOLESALE PRICES IN U.S.
- ORDERS SHIPPED FROM STOCK WITHIN 24 HRS.
- ALL MAJOR CREDIT CARDS ACCEPTED

FOR ALL INFORMATION

1-800-345-8277

PACIFIC CABLE CO., INC.

4255 7th Reseda Blvd., Dept. 2115

Reseda, CA 91335

TUBES, new, up to 90% off, SAGE, KINBY, 298 West Carmel Drive, Carmel, IN 46032.

T.V., notch filters, phone recording equipment, brochure $1.00. MICRO Thinc, Box 63/6052, Margate, FL 33063. (305) 752-9202.

FREE CATALOG

FAMOUS “FIRESTIK” BRAND CB ANTENNAS AND ACCESSORIES. QUALITY PRODUCTS FOR THE SERIOUS CB’er. SINCE 1982

FIRESTIK ANTENNA COMPANY

2614 EAST ADAMS

PHOENIX, ARIZONA 85034

ENGINEERING software and hardware, PCB/MSDOS. Circuit design and drawing, PCBOEM, software development, survey, generation, I/O, etc. Call or write for free catalog.

(614) 919-0832. BSOF SOFTWARE, INC., 444 Colton Rd., Columbus, OH 43207.

WIRELESS CABLE RECEIVERS 1.9 TO 2.7 GHZ

30 CH PARABOLO DISH SYSTEM $75.00

30 CH MICRO DISH SYSTEM $125.00

30 CH CRYSTAL CONTROLLED SYSTEM 324-385

SUN MICROFONE IT, INC. INS 310.00 FOR P.S. BOX 422 CATALOG ON THESE PHOENIX, AZ 85027 AND OTHER FINE VIDEO PRODUCTS

VISA, MC, AMEX 3

ORDERS ONLY 1-800-444-4980 CODE 975

June 1982, Radio-Electronics
FREE CATALOG! 1-800-648-7938

JERROLD HAMLIN OAK ETC
CABLE TV

DERSCRAMBLERS
MAKE THE CONNECTION
NU-TEK ELECTRONICS
CABLE TV EQUIPMENT

ORDER TOLL FREE 1-800-228-7404
DON'T FORGET TO ASK ABOUT OUR FREE CATALOG WITH BUYING GUIDE
FRIENDLY, PROFESSIONAL SERVICE
30 DAY MONEY BACK GUARANTEE
BEST PRICE! BEST SERVICE

CALL TOLL FREE 1-800-338-5031

UNIQUE kit! Send for free catalog. LNS TECHNOLOGIES, 20993 Foothill Blvd., Suite 307R, Hayward, CA 94541-1511.

SATELLITE TV

SATELLITE TV — Do it yourself, systems, upgrades, parts. Major brands discounted 40%-60%, we’ll beat everyone’s price. LJH INC., call Larry (605) 596-0656.

VHF-FM amplifier plans 75-1100MHz. 15-25 watts. $8.95. PROGRESSIVE CONCEPTS, 1313 North Grand Ave., #291, Walnut, CA 91789.

CAMPAERT backpackable perimeter alarm kit $3.95 + $3.00. Send stamp to PROTECTION CONCEPTS, 340 Terrance Ave., Vestal, NY 13850.

CHANGING your own printed circuit board! Free cata-
ter - $7.00. Detailed plans include film positive for
tension phones - $7.00, phone
$49.95. Send check or money order to CD&M,
tions $16.50 w/PH. NORM HOGARTH, 955 NW
303 Northwoods Drive, Ballgouf, GA 30107.

TECHNOTES, 4080 Paradise Rd., #15, Dept RE992
Las Vegas, NV 89109

FOR MORE INFORMATION NU-TEK ELECTRONICS
5114 BALCONES WOOD DR.
AUSTIN, TX 78759

ETCH PCB's yourself, no chemicals, easy, cheap,
full instructions, $2.00, SASE, NICKNAP, PO Box
593, Howell, NJ 07731-0593.

DEFEAT videotape anti-copy, PCB PAL instruc-
ions $16.50 w/PH. NORM HOGARTH, 955 NW
303 Northwoods Drive, Ballgouf, GA 30107.

HAND held digital recorder announcer. New
technology permits permanent storage of per-
aroid recordings and messages. Plans $9.95. Kit
$49.95. Send check or money order to CD&M,
tions $16.50 w/PH. NORM HOGARTH, 955 NW
303 Northwoods Drive, Ballgouf, GA 30107.

TELEPHONE Projects! Automatic recorder inter-
face -$7.00, disable extension phones -$7.00, phone
$49.95. Send check or money order to CD&M,
tions $16.50 w/PH. NORM HOGARTH, 955 NW
303 Northwoods Drive, Ballgouf, GA 30107.

BUILD your own stereo! Complete plans and sche-
ematic drawings for passive, pre-etched,
crossovers, 2,892 LED meters, speakers, and more. Send $14.95 to BT ELECTRONICS, 424 7th Ave. S., Brookings, SD 57006. (605) 692-7857.

CREDIT card encoding standard explained in
plain English. Illustrative examples included, send
$5.00 BSC, Box 1841, Alexandria, VA 22314.

REMOV
LEAD
VOCALS

Call or write
for free info
(513) 444-2276

Suff List
Parts
Express
340 E. First St., Dayton, Ohio 45402
Local: 1-513-222-0173
FAX: 513-222-4644

VHF-FM amplifier plans 75-1100MHz. 15-25 watts. $8.95. PROGRESSIVE CONCEPTS, 1313 North Grand Ave., #291, Walnut, CA 91789.

CAMPAERT backpackable perimeter alarm kit $3.95 + $3.00. Send stamp to PROTECTION CONCEPTS, 340 Terrance Ave., Vestal, NY 13850.

CHANGING your own printed circuit board! Free cata-
ter - $7.00. Detailed plans include film positive for
tension phones - $7.00, phone
$49.95. Send check or money order to CD&M,
tions $16.50 w/PH. NORM HOGARTH, 955 NW
303 Northwoods Drive, Ballgouf, GA 30107.

TECHNOTES, 4080 Paradise Rd., #15, Dept RE992
Las Vegas, NV 89109

FOR MORE INFORMATION NU-TEK ELECTRONICS
5114 BALCONES WOOD DR.
AUSTIN, TX 78759

ETCH PCB's yourself, no chemicals, easy, cheap,
full instructions, $2.00, SASE, NICKNAP, PO Box
593, Howell, NJ 07731-0593.

DEFEAT videotape anti-copy, PCB PAL instruc-
ions $16.50 w/PH. NORM HOGARTH, 955 NW
303 Northwoods Drive, Ballgouf, GA 30107.

HAND held digital recorder announcer. New
technology permits permanent storage of per-
aroid recordings and messages. Plans $9.95. Kit
$49.95. Send check or money order to CD&M,
tions $16.50 w/PH. NORM HOGARTH, 955 NW
303 Northwoods Drive, Ballgouf, GA 30107.

TELEPHONE Projects! Automatic recorder inter-
face -$7.00, disable extension phones -$7.00, phone
$49.95. Send check or money order to CD&M,
tions $16.50 w/PH. NORM HOGARTH, 955 NW
303 Northwoods Drive, Ballgouf, GA 30107.

BUILD your own stereo! Complete plans and sche-
ematic drawings for passive, pre-etched,
crossovers, 2,892 LED meters, speakers, and more. Send $14.95 to BT ELECTRONICS, 424 7th Ave. S., Brookings, SD 57006. (605) 692-7857.

CREDIT card encoding standard explained in
plain English. Illustrative examples included, send
$5.00 BSC, Box 1841, Alexandria, VA 22314.
EASY work! Excellent pay! Assembles products at home. Call toll free 1 (800) 467-5565 Ext. 5192.

MAKE $$$! Become an American electronics dealer! Profit opportunities since 1965. Call SCOTT PRUETT, 1 (800) 872-1373.

HOME assembly work available! Guaranteed easy money! Free details! HOMEWORK-K, Box 520, Danville, N.H. 03831.

MAKE $75,000.00 to $250,000.00 yr early or any more fixing IBM color monitors. No investment, start doing it from your home (a telephone required). Information, USA, Canada $2.00 cash for brochure, other countries $10.00 U.S. funds RAN-DALL DISPLAY, Box 2168-R, Van Nuys, CA 91404 USA. Fax (818) 990-7603.

BROADWAY\TEXT 124511

THE ART INSTITUTE OF DALLAS. 15222 E. Pearce St., Dallas, TX 75231 or call 1 (888) 208-3423.

ELECTRONIC ENGINEERING. 8 volu mes complete. $109.95. No prior knowledge required. Free brochure. BANNER TECHNICAL BOOKS, 1203 Grant Avenue, Rockford, IL 61013.

SECRET cable desecerator. Build your own desecerator for less than $8.00, in seven easy steps. Radio Shack parts list included. Also free desecrating methods that cost nothing to try! Send $20.00 to LOU WHITE, 2 Marion, Baytown, TX 77520.

VIDEOCIPHER II, desecrating manual. Schematics, video, and audio. Explains DES, Epro, ClockMane, Jersk, and video (HBO, Cinemax, Showtime, etc) $165.00. $2.00 postage. Schematics for Videocipher Plus, $20.00. Schematics for Videocipher Plus, $15.00. Collection of software to copy and alter Exon codes, $25.00. CABLETECHNICS, Box 3050R, Bethesda, MD 20824.

BUSINESS OPPORTUNITIES

YOUR own radio station! Licensed/unlicensed AM, FM, TV, cable. Information $1.00. BROADCASTING, Box 130-F6, Paradise, CA 95967.

LET the government finance your small business. Grants/loans to $500,000. Free recorded message: (707) 449-8600. (KSI).

MONEYMAKERS! Easy! One man CRT rebuilding machinery. $5,900.00 rebuilt. $15,900.00 new. CRT, 1909 Louise, Crystalaile, IL 60144. (815) 459-0666. Fax (815) 477-7013.

FREE catalog — lowest prices worldwide. Satisfaction guarantee on everything sold — systems, upgrades, parts, all major brands factory fresh and warranted. SATELLITE, 1012 Frontier, Fergus Falls, MN 56537. 1 (800) 334-6455. Outside US (218) 739-5231.

SATELLITE-Cable desecrating secrets-surveillance transmission. Send $2.00 for catalog. COMMUNICATIONS ENGINEERING, 76 Boulevard, Hudson Falls, NY 12839.

FREE catalog — lowest prices worldwide. Satisfaction guarantee on everything sold — systems, upgrades, parts, all major brands factory fresh and warranted. SATELLITE, 1012 Frontier, Fergus Falls, MN 56537. 1 (800) 334-6455. Outside US (218) 739-5231.

SATELLITE-Cable desecrating secrets-surveillance transmission. Send $2.00 for catalog. COMMUNICATIONS ENGINEERING, 76 Boulevard, Hudson Falls, NY 12839.

SECRET cable desecerator. Build your own desecerator for less than $11.00, in seven easy steps. Radio Shack parts list included. Also free desecrating methods that cost nothing to try! Send $20.00 to LOU WHITE, 2 Marion, Baytown, TX 77520.

VIDEOCIPHER II, desecrating manual. Schematics, video, and audio. Explains DES, Epro, ClockMane, Jersk, and video (HBO, Cinemax, Showtime, etc) $165.00. $2.00 postage. Schematics for Videocipher Plus, $20.00. Schematics for Videocipher Plus, $15.00. Collection of software to copy and alter Exon codes, $25.00. CABLETECHNICS, Box 3050R, Bethesda, MD 20824.

BUSINESS OPPORTUNITIES

YOUR own radio station! Licensed/unlicensed AM, FM, TV, cable. Information $1.00. BROADCASTING, Box 130-F6, Paradise, CA 95967.

LET the government finance your small business. Grants/loans to $500,000. Free recorded message: (707) 449-8600. (KSI).

MONEYMAKERS! Easy! One man CRT rebuilding machinery. $5,900.00 rebuilt. $15,900.00 new. CRT, 1909 Louise, Crystalaile, IL 60144. (815) 459-0666. Fax (815) 477-7013.
****SINCE 1961 - YOUR I.C. SOURCE - AND MUCH MORE!!!
NO SHIPPING CHARGES ON PRE-PAYED ORDERS -
NO CREDIT CARD SURCHARGE!!
SCHOOL P.O.'s WELCOME!!

LASER DIODES

<table>
<thead>
<tr>
<th>STOCK #</th>
<th>MFG.</th>
<th>WAVE LENGTH</th>
<th>POWER</th>
<th>CURR.</th>
<th>OPER. VOLT.</th>
<th>1-24</th>
<th>25-99</th>
<th>100+</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS9220</td>
<td>TOSHIBA</td>
<td>660nm</td>
<td>3 mW</td>
<td>85 mA</td>
<td>2.5 V</td>
<td>1299</td>
<td>1234</td>
<td>1114</td>
</tr>
<tr>
<td>LS9200</td>
<td>TOSHIBA</td>
<td>670nm</td>
<td>3 mW</td>
<td>85 mA</td>
<td>2.3 V</td>
<td>4999</td>
<td>4799</td>
<td>4319</td>
</tr>
<tr>
<td>LS9201</td>
<td>TOSHIBA</td>
<td>670nm</td>
<td>5 mW</td>
<td>85 mA</td>
<td>2.4 V</td>
<td>5999</td>
<td>5699</td>
<td>5129</td>
</tr>
<tr>
<td>LS9211</td>
<td>TOSHIBA</td>
<td>670nm</td>
<td>5 mW</td>
<td>85 mA</td>
<td>2.3 V</td>
<td>6999</td>
<td>6699</td>
<td>5984</td>
</tr>
<tr>
<td>LS9215</td>
<td>TOSHIBA</td>
<td>705nm</td>
<td>5 mW</td>
<td>70 mA</td>
<td>2.4 V</td>
<td>1099</td>
<td>1049</td>
<td>9404</td>
</tr>
<tr>
<td>LS3200</td>
<td>NEC</td>
<td>670nm</td>
<td>85 mA</td>
<td>2.2 V</td>
<td>5999</td>
<td>5699</td>
<td>5129</td>
<td></td>
</tr>
<tr>
<td>LS5221</td>
<td>SHARP</td>
<td>850nm</td>
<td>2 mW</td>
<td>65 mA</td>
<td>1.75 V</td>
<td>1299</td>
<td>1199</td>
<td>1069</td>
</tr>
<tr>
<td>SB1053</td>
<td>PHILLIPS</td>
<td>820nm</td>
<td>10 mW</td>
<td>90 mA</td>
<td>2.2 V</td>
<td>1099</td>
<td>1044</td>
<td>9400</td>
</tr>
</tbody>
</table>

PROTOBOARD DESIGN STATION

<table>
<thead>
<tr>
<th>STOCK #</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV961</td>
<td>WAO II Programmable Robotic Kit</td>
</tr>
<tr>
<td>WIRAP</td>
<td>Interface Kit for Apple II, II+, IIe</td>
</tr>
</tbody>
</table>

WAO II PROGRAMMABLE ROBOTIC KIT

The pen mechanism included with the robot allows it to draw. In addition to drawing straight lines, it can also accurately draw circles, and even draw out words and short pictures. WAO II comes with 128 x 4 x bits RAM and 2K ROM, and is programmed directly via the keypad attached to it. With its built-in connector port, WAO II is ready to communicate with your computer. With the optional interface kit, you can connect WAO II to an Apple II, II+, or IIe computer. Editing and transferring of any movement program, as well as saving and loading a program can be performed by the interface kit. The kit includes software, cable, card, and instructions. The programming language is BASIC.

Power Source - 3 AA batteries (not included)

ORDER LINE - (800) 824-3432 • INTERNATIONAL ORDERS - (818) 341-8833
FAX ORDERS - (818) 988-7975 • TECHNICAL SUPPORT - (818) 341-8833

93
We recently received a load of these PC boards which contain, among other things, an RF modulator. With a little desoldering you should be able to separate a working unit from the board. Also contains a 7605V voltage regulator with a couple of heatsinks, 20 ICs, capacitors, resistors, diodes and connectors. No hook-up information available on the modulator. CATE VMB-1

$275 each

Wireless Remote Control FOR NINTENDO™

CAMERICA "Freedom Connection"™ Turns your wired NINTENDO™ control paddle into a remote control unit. Infrared remote like those used on TV's and VCR's eliminates messy wires. Allows players more mobility. Two players can use one remote unit except on games where they play simultaneously. In those games two "Freedom Connections" units are required. A well-known national discount toy chain charges more than twice our price. Operates on 4 AAA batteries (not included). CATE RC-1 $95 each

L.E.D.'s

- **Surface mount**
 - LED chip.
 - Clear when off, green when lit.
 - Very tiny - whole unit is 0.118" X 0.039" X 0.006" thick. 1.004" lens diameter.
 - Gold-plated mounting surfaces for superior conductivity.
 - CATÉ SMLED-2: 10 for $2.00 or 100 for $18.00
 - CATÉ LED-2: 10 for $2.00 or 100 for $17.00

- **Flash LED**
 - W/built in flashing circuit 5 volt operation. 1-3/4" (45mm)
 - SPECIAL REDUCED PRICES)
 - RED CATÉ LED-1: 10 for $1.50 or 100 for $13.00
 - GREEN CATÉ LED-2: 10 for $2.00 or 100 for $17.00
 - YELLOW CATÉ LED-3: 10 for $2.00 or 100 for $17.00
 - LED HOLDER: Two piece holder. CATÉ RH-1: $3.75 each

FLASH UNITS

NEW compact flash assemblies from a camera manufacturer. Operates on 3 Vdc. Measures 2 1/2" X 1 1/4". Ideal for use as a strobe, warning light or attention getter. Includes a hook-up diagram. CATE FSH-1: $3.75 each

10 for $35.00 • 100 for $265.00

RECHARGEABLE BATTERIES (nickel-cadmium)

<table>
<thead>
<tr>
<th>Size</th>
<th>Volts</th>
<th>Amps</th>
<th>O.D.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>1.20</td>
<td>180 mAh</td>
<td>NCB-AAA</td>
<td>$1.50 • $13.50</td>
</tr>
<tr>
<td>AA</td>
<td>1.20</td>
<td>500 mAh</td>
<td>NCB-AA</td>
<td>$2.00 • $18.00</td>
</tr>
<tr>
<td>AA w/Solder Tab</td>
<td>1.20</td>
<td>500 mAh</td>
<td>NCB-S</td>
<td>$2.20 • $20.00</td>
</tr>
<tr>
<td>Sub-C w/Solder Tab</td>
<td>1.20</td>
<td>1200 mAh</td>
<td>NCB-SC</td>
<td>$4.50 • $45.00</td>
</tr>
<tr>
<td>C</td>
<td>1.20</td>
<td>1200 mAh</td>
<td>NCB-C</td>
<td>$5.25 • $45.00</td>
</tr>
<tr>
<td>D</td>
<td>1.25</td>
<td>1800 mAh</td>
<td>NCB-D</td>
<td>$5.50 • $45.00</td>
</tr>
<tr>
<td>Heavy Duty</td>
<td>1.25</td>
<td>3000 mAh</td>
<td>NCB-D</td>
<td>$5.50 • $45.00</td>
</tr>
<tr>
<td>D Heavy Duty</td>
<td>1.50</td>
<td>4000 mAh</td>
<td>NCB-D</td>
<td>$7.00 • $65.00</td>
</tr>
</tbody>
</table>

D.C. Wall Transformers (120 Vac INPUT)

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Amperes</th>
<th>Plug Style</th>
<th>Center</th>
<th>Case</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Vdc</td>
<td>70 ma.</td>
<td>2.5mm co-ax</td>
<td>negative</td>
<td>DCX-470</td>
<td>$2.00</td>
</tr>
<tr>
<td>6 Vdc</td>
<td>300 ma.</td>
<td>2.1 mm co-ax</td>
<td>positive</td>
<td>DCX-632</td>
<td>$2.75</td>
</tr>
<tr>
<td>9 Vdc</td>
<td>300 ma.</td>
<td>2.1 mm co-ax</td>
<td>positive</td>
<td>DCX-633</td>
<td>$3.00</td>
</tr>
<tr>
<td>12 Vdc</td>
<td>100 ma.</td>
<td>2.1 mm co-ax</td>
<td>positive</td>
<td>DCX-910</td>
<td>$5.00</td>
</tr>
<tr>
<td>12 Vdc</td>
<td>500 ma.</td>
<td>2.1 mm co-ax</td>
<td>positive</td>
<td>DCX-1210</td>
<td>$5.50</td>
</tr>
<tr>
<td>12 Vdc</td>
<td>500 ma.</td>
<td>2.1 mm co-ax</td>
<td>positive</td>
<td>DCX-1215</td>
<td>$5.50</td>
</tr>
<tr>
<td>12 Vdc</td>
<td>500 ma.</td>
<td>2.1 mm co-ax</td>
<td>positive</td>
<td>DCX-645</td>
<td>$4.50</td>
</tr>
<tr>
<td>12 Vdc</td>
<td>500 ma.</td>
<td>2.1 mm co-ax</td>
<td>positive</td>
<td>DCX-2121</td>
<td>$5.00</td>
</tr>
<tr>
<td>12 Vdc</td>
<td>500 ma.</td>
<td>2.1 mm co-ax</td>
<td>positive</td>
<td>DCX-1475</td>
<td>$5.25</td>
</tr>
<tr>
<td>12 Vdc</td>
<td>500 ma.</td>
<td>2.1 mm co-ax</td>
<td>positive</td>
<td>DCX-1540</td>
<td>$4.50</td>
</tr>
</tbody>
</table>

ELECTROLUMINESCENT BACKLIGHTS

- **5 Volt - S.P.S.T.**
 - GI Clare # PM-105B Normal open snap relay 2.5V or 5V coil Lined Diode protected.
 - CATÉ DRILY-67 $1.50 each
 - 12 Vdc - S.P.S.T.
 - CATÉ DRILY-67 $1.50 each
 - 24 Vdc - S.P.D.T.
 - GI Clare # PM-124C 2.150 volt coil
 - 10 VA switching power.
 - CATÉ DRILY-12 $1.50 each
 - 24 Volt - S.P.D.T.
 - GI Clare # PM-124C $1.00 coil 2400 volt coil
 - 10 VA switching power.
 - CATÉ DRILY-12 $1.50 each
 - 24 Volt - N.C.
 - GI Clare # PM-124C $1.00 coil 2400 volt coil
 - 10 VA switching power.
 - CATÉ DRILY-12 $1.50 each

DIP RELAYS

- **Miniature Relays With Pin Configuration To Fit 14 DIP**
 - 5 Volt - S.P.S.T.
 - GI Clare # PM-105B Normal open snap relay 2.5V or 5V coil Lined Diode protected.
 - CATÉ DRILY-67 $1.50 each
 - 12 Vdc - S.P.S.T.
 - CATÉ DRILY-67 $1.50 each
 - 24 Vdc - S.P.D.T.
 - GI Clare # PM-124C 2.150 volt coil
 - 10 VA switching power.
 - CATÉ DRILY-12 $1.50 each
 - 24 Volt - S.P.D.T.
 - GI Clare # PM-124C $1.00 coil 2400 volt coil
 - 10 VA switching power.
 - CATÉ DRILY-12 $1.50 each
 - 24 Volt - N.C.
 - GI Clare # PM-124C $1.00 coil 2400 volt coil
 - 10 VA switching power.
 - CATÉ DRILY-12 $1.50 each

HALL EFFECT SENSORS

- **Microswitch # 5S41**
 - Tiny solid state switch reacts instantly to proximity of magnetic field.
 - Operates at extremely high speeds, up to 100,000 cycles.
 - CATÉ MKE-10 for $6.50 • $60.00

SURFACE MOUNT STYLE

- **Soragia # UGN20751LT**
 - Operates on 4.5 - 24 Volts
 - With suitable output pull-up, can be used directly with bipolar or CMOS logic circuits.
 - Especially suited for electronic communication in business D.C. motors using multiple signals. Very low surface mount package 0.095 X 0.060 thick.
 - CATÉ MKE-2 $75.00 each
 - CATÉ MKE-5 $100.00 each
 - CATÉ MKE-10 for $150.00

HIGHEST QUALITY METAL CASSETTES

- **Premium quality metal tape in C-60 style cassettes (30 or more per side) One of the finest "brand-name" tapes on the market, in durable, clear plastic transport mechanisms. Recorded and built without the record-protect tabs have been removed and therefore, need to be taped over to re-record. Audiophiles will appreciate the wide dynamic range of this tape. If your cassette deck has a "metal" setting you will hear the difference. A real bargain!**

ORDER TOLL FREE 1-800-826-5432

Fax (818) 781-2653 • Information (818) 904-0524

Call Or Write For Our Free 64 Page Catalog

Outside the U.S. send $2.00 postage for a catalog.
Jameco Solderless Breadboards

Jameco’s long-lasting breadboards feature screen-printed color coordinates and are suitable for many kinds of prototyping and circuit design. Larger models feature a heavy-duty aluminum backing with voltage and grounding posts.

Jameco IC Test Clip Series

• Test Clips are designed for temporary connections to DIP package components
• Heavy-duty spring loaded hinge provides positive contact

EPROMs - for your programming needs

A.R.T. EPROM Programmer

• Programs all current EPROMs in the 2716 to 27512 range plus the X2864 EEPROM
• RS232 port • Software Included

UVP EPROM Eraser

• Erases all EPROM's • Erases 1 chip in 15 minutes and 8 chips in 21 min • UV intensity: 6800 UW/CMS

Partial Listing • Over 4000 Electronic and Computer Components in Stock!
at Competitive Prices

Computer Upgrade Products and Electronic Components

Upgrade your existing computer system! Jameco will help you upgrade easily and economically.

Jameco 80386SX Motherboard

- 16MHz processing speed
- Baby motherboard (8.5" x 13")
- Zero or one wait state operation
- Supports up to 16MB of RAM
- Intel 80386SX-compatible math coprocessor socket
- AMI BIOS
- Six 16-bit and two 8-bit expansion bus slots
- One-year Warranty

JE3616SN..............$269.95

Jameco IBM Compatible Power Supplies

JE1030: 150Watt PC/XT Power Supply.............$69.95
JE1036: 200 Watt AT Power Supply..................$89.95

Integrated Circuits*

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Function</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74L007...</td>
<td>1-9......</td>
<td>$2.55</td>
</tr>
<tr>
<td>74L008...</td>
<td>1-9......</td>
<td>$2.55</td>
</tr>
<tr>
<td>74L009...</td>
<td>1-9......</td>
<td>$2.55</td>
</tr>
<tr>
<td>74L011...</td>
<td>1-9......</td>
<td>$2.55</td>
</tr>
<tr>
<td>74L012...</td>
<td>1-9......</td>
<td>$2.55</td>
</tr>
<tr>
<td>74L013...</td>
<td>1-9......</td>
<td>$2.55</td>
</tr>
<tr>
<td>74L015...</td>
<td>1-9......</td>
<td>$2.55</td>
</tr>
<tr>
<td>74L016...</td>
<td>1-9......</td>
<td>$2.55</td>
</tr>
<tr>
<td>74L018...</td>
<td>1-9......</td>
<td>$2.55</td>
</tr>
<tr>
<td>74L020...</td>
<td>1-9......</td>
<td>$2.55</td>
</tr>
<tr>
<td>74L021...</td>
<td>1-9......</td>
<td>$2.55</td>
</tr>
<tr>
<td>74L022...</td>
<td>1-9......</td>
<td>$2.55</td>
</tr>
<tr>
<td>74L023...</td>
<td>1-9......</td>
<td>$2.55</td>
</tr>
<tr>
<td>74L024...</td>
<td>1-9......</td>
<td>$2.55</td>
</tr>
<tr>
<td>74L025...</td>
<td>1-9......</td>
<td>$2.55</td>
</tr>
</tbody>
</table>

Linear ICs*

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Function</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74L208...</td>
<td>1-9......</td>
<td>$2.55</td>
</tr>
<tr>
<td>74L224...</td>
<td>1-9......</td>
<td>$2.55</td>
</tr>
<tr>
<td>74L245...</td>
<td>1-9......</td>
<td>$2.55</td>
</tr>
<tr>
<td>74L373...</td>
<td>1-9......</td>
<td>$2.55</td>
</tr>
<tr>
<td>74L374...</td>
<td>1-9......</td>
<td>$2.55</td>
</tr>
</tbody>
</table>

Miscellaneous Components*

Potentiometers

Values available (insert ohms into space marked "Ω") 500Ω, 1K, 5K, 10K, 20K, 50K, 100K, 1MEG

43PXX 3/4 Watt, 15 Turn $0.99
63PXX 1/2 Watt, 1 Turn $0.99

Transistors And Diodes

PN2222 $1.12 1N751 $1.15
PN2907 $1.12 C10681 $0.65
1N4004 $1.10 2N4401 $0.15
2N2222A $2.25 1N4148 $0.75
1N4735 $2.25 2N3055 $0.69
2N3904 $2.25 1N270 $0.75

Switches

JMT123 SPDT, On-Off (Toggle) $1.15
806-8 SPDT, 16-pin (DIP) $1.09
MPC121 SPDT.

Additional components available

Jameco 101-Key Enhanced Keyboard

This keyboard features 12 function keys, separate cursor and numeric keys.
- IBM PC/XT/AT and compatible computers
- Automatically switches between XT or AT
- LED Indicators for Num Lock, Caps Lock, and Scroll Lock
- Tactile Feedback
- Manual included • One-year Warranty
FKB4700..................$79.95

Toshiba 1.44MB 3.5" Internal Floppy Disk Drive

- IBM PC/XT/AT and compatibles
- Compatible with DOS versions 3.3 or higher
- Includes all necessary installation hardware
- 1.44MB formatted high density mode
- 720KB formatted low density mode
- Size: 1.7" x 4" x 5.5" (actual drive size)
- One-Year Manufacturer's Warranty
356KU..................$99.95

Call or Write for your FREE Spring Catalog: 1-800-637-8471

24-Hour Toll-Free Order Hotline: 1-800-831-4242

JAMECO® $30.00 Minimum Order
FAX: 1-800-237-6948(Texas) FAX: 415-592-2503(Illinois)
BBS Support: 415-637-9025
ServiceLineTM: 1-800-831-8020

For International Sales, Customer Service, Credit Department and All Other Inquiries: Call 415-592-8097 between 7AM-5PM P.S.T.

CA Residents please add applicable sales tax.

Terms: Prices subject to change without notice. Items subject to availability and prior sale. Complete list of terms/warranties is available upon request.

Registered Trademarks are property of their respective companies.
98

Cable TV Descrambler Kits

Universal Kit..................$55.00
Includes all parts and PC Board. Not included is the ac adapter or enclosure.

Tri-Mode Kit..................$39.00
Includes all parts. PC Board and AC Adaptor. Not included is the enclosure.

SB-3 Kit......................$29.00
Includes all parts. PC Board and AC Adaptor. Not included is the enclosure.

Universal Tutorial............$9.95
Includes an in depth study of the technology used and has troubleshooting hints.

Tri-Mode Tutorial.............$9.95
Includes a gate by gate study of the circuit and has troubleshooting hints.

Snooper Stopper..............$39.00
Protect yourself from descrambler detection and stop the "bullet".

Call Toll Free
1-800-258-1134
C.O.D.

M & G Electronics, Inc.
301 Westminster Street
Providence, RI 02903

CIRCLE 191 ON FREE INFORMATION CARD

"CABLE BOXES" BELOW WHOLESALE
GUARANTEED STOCK - COD'S

- DESCRAMBLERS -
(QTY) (10) (20) (40) CALL
NEW TB/3 70 55 CALL
TB 2 or 3 45 40 CALL
SA-3B 45 40 CALL
OAK N-12 43 38 CALL
SB 2 OR 3 43 38 CALL

COMBINATION UNITS
DRX-DIC 89 CALL
SYL D.C 59 CALL
PIONEER 295 275 CALL

- CONVERTERS W/REMOTES -

PANASONIC -
TZPC145 65 60 CALL
STARQUEST -
E-Z550 65 60 CALL
E-ZY550 75 65 CALL

"THEFT OF SERVICE IS A CRIME. INSTALLING ANY DEVICE WITHOUT PERMISSION MAY SUBJECT YOU TO CIVIL OR CRIMINAL PENALTIES. YOU MUST CHECK WITH YOUR LOCAL CABLE COMPANY AND PAY FOR ALL SERVICE YOU USE. IT IS NOT THE INTENT OF LAKE SYLVAN TO DEPRIVE ANY TELEVISION OPERATOR AND WE WILL NOT ASSIST ANY COMPANY OR INDIVIDUAL IN DOING THE SAME." LAKE SYLVAN SALES, INC.

CALL FOR A CATALOG NOW!!
800-800-4582

CIRCLE 177 ON FREE INFORMATION CARD

ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

<table>
<thead>
<tr>
<th>Free Information Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>108 AMC Sales..............</td>
<td>88</td>
</tr>
<tr>
<td>75 Ace Products...........</td>
<td>67</td>
</tr>
<tr>
<td>107 All Electronics......</td>
<td>95</td>
</tr>
<tr>
<td>- Amazing Concepts......</td>
<td>92</td>
</tr>
<tr>
<td>178 American Reliance Inc.</td>
<td>85</td>
</tr>
<tr>
<td>- Business INFORLINE</td>
<td>78</td>
</tr>
<tr>
<td>109 C & S Sales..........</td>
<td>29</td>
</tr>
<tr>
<td>- CIE....................</td>
<td>8</td>
</tr>
<tr>
<td>186 Cable Warehouse......</td>
<td>87</td>
</tr>
<tr>
<td>50 Caig Laboratories.....</td>
<td>30</td>
</tr>
<tr>
<td>- Chenesko Products......</td>
<td>67</td>
</tr>
<tr>
<td>- Command Productions...</td>
<td>87</td>
</tr>
<tr>
<td>127 Deco Industries......</td>
<td>67</td>
</tr>
<tr>
<td>192 Electronic Goldmine...</td>
<td>90</td>
</tr>
<tr>
<td>- Electronic Tech. Today.</td>
<td>31</td>
</tr>
<tr>
<td>197 Electronics Book Club</td>
<td>13</td>
</tr>
<tr>
<td>- Electronics Engineers B.C.</td>
<td>80</td>
</tr>
<tr>
<td>121 Fluke Manufacturing...</td>
<td>CV2</td>
</tr>
<tr>
<td>184 Global Specialties...</td>
<td>27</td>
</tr>
<tr>
<td>179 Goldstar Precision...</td>
<td>24</td>
</tr>
<tr>
<td>- Grantham College......</td>
<td>77</td>
</tr>
<tr>
<td>200 Hameg Instruments...</td>
<td>25</td>
</tr>
<tr>
<td>190 Hewlett Packard......</td>
<td>CV4</td>
</tr>
<tr>
<td>- HighText Publications, Inc...</td>
<td>48</td>
</tr>
<tr>
<td>- ISCET..................</td>
<td>48</td>
</tr>
<tr>
<td>114 Jameco................</td>
<td>96, 97</td>
</tr>
<tr>
<td>190 Kelvin...............</td>
<td>3</td>
</tr>
<tr>
<td>177 Lake Sylvan Sales, Inc.</td>
<td>98</td>
</tr>
<tr>
<td>191 M&G Electronics......</td>
<td>98</td>
</tr>
<tr>
<td>89 MAT Electronics.......</td>
<td>30</td>
</tr>
<tr>
<td>53 MD Electronics........</td>
<td>90</td>
</tr>
<tr>
<td>181 MJS Design...........</td>
<td>67</td>
</tr>
<tr>
<td>93 Mark V. Electronics...</td>
<td>94</td>
</tr>
<tr>
<td>117 Mouser..............</td>
<td>86</td>
</tr>
<tr>
<td>- NRI Schools...........</td>
<td>18</td>
</tr>
<tr>
<td>199 Northeast Electronics</td>
<td>87</td>
</tr>
<tr>
<td>197 Optoelectronics.....</td>
<td>23</td>
</tr>
<tr>
<td>56 Parts Express.........</td>
<td>91</td>
</tr>
<tr>
<td>201 Prairie Digital Inc.</td>
<td>67</td>
</tr>
<tr>
<td>176 R.L. Drake Co.........</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Free Information Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>78 Radio Shack...........</td>
<td>32</td>
</tr>
<tr>
<td>- R.E. Video Offer.......</td>
<td>68</td>
</tr>
<tr>
<td>- Science Probe.........</td>
<td>CV3</td>
</tr>
<tr>
<td>- Star Circuits.........</td>
<td>67</td>
</tr>
<tr>
<td>198 TECI................</td>
<td></td>
</tr>
<tr>
<td>92, 182 Tektronix........</td>
<td>5, 17</td>
</tr>
<tr>
<td>188 The School of VCR Repair...</td>
<td>78</td>
</tr>
<tr>
<td>189 The Sch. of Computer Training...</td>
<td>88</td>
</tr>
<tr>
<td>193 Unicorn...............</td>
<td>93</td>
</tr>
<tr>
<td>203 U.S. Cable...........</td>
<td>74</td>
</tr>
<tr>
<td>187 Viejo Publications...</td>
<td>86</td>
</tr>
<tr>
<td>183 WPJ Publications.....</td>
<td>79</td>
</tr>
<tr>
<td>195 Weatherport..........</td>
<td>86</td>
</tr>
<tr>
<td>194 Xandi Electronics....</td>
<td>67</td>
</tr>
<tr>
<td>202 Zentek Corp...........</td>
<td>74</td>
</tr>
</tbody>
</table>

ADVERTISING SALES OFFICE

Gernback Publications, Inc.
500-B Bi-County Blvd.
Farmingdale, NY 11735
1-(516) 293-3000
President: Larry Steckler
For Advertising ONLY
516-293-3000
Fax 1-516-293-3115
Larry Steckler
publisher
Christina Estrada
assistant to the President
Airline Fishman
advertising director
Denise Haven
advertising assistant
Kelly McQuade
credit manager
Subscriber Customer Service
1-800-288-0652
Order Entry for New Subscribers
1-800-999-7139
7:00 AM - 6:00 PM M-F MST
SALES OFFICES
EAST/SOUTHEAST
Stanley Levitan, Eastern Sales Manager
Radio-Electronics 1-516-487-9402

MIDWEST/Texas/Akron/Okla.
Ralph Bergren, Midwest Sales Manager
Radio-Electronics 1-516-487-9357, 1-516-293-3000
Fax 1-516-487-9402

PACIFIC COAST/Mountain States
Marvin Green, Pacific Sales Manager
Radio-Electronics
5430 Van Nuys Blvd. Suite 316
Van Nuys, CA 91401
1-818-928-0001
Fax 1-818-928-2009
RE Shopper
Joe Shere, National Representative
P.O. Box 165
Idyllwild, CA 92615
1-714-650-9743
Fax 1-714-650-2469
Welcome to...

SCIENCE PROBE!
The Amateur Scientist's Journal

Embark on an irresistible new journey into the realm of mystery, challenge, and exploration! The perfect magazine for the budding scientist, the serious amateur, the professional who would like to relax, and those who simply want to gaze at the stars.

Articles to appear in upcoming issues of Science PROBE! are:

- How an Amateur Mapped the Milky Way
- Make your own Seismometer
- Operate a Solar-powered Weather Station
- Grow Crystals Automatically
- Experiment with a Saltwater Aquarium
- How to Keep a Science Notebook

If you’re fascinated by science in all its many forms, if you are compelled to experiment and explore, then Science PROBE! is your kind of magazine!

Obtain your next issue of Science PROBE! by visiting a quality Newsstand, Convenience Store, or Supermarket or by reserving your personal copy through the mail by completing the coupon below.

From your very first issue of Science PROBE! you will be involved in a world of scientific facts, experiments, and studies pursued by amateur scientists who are university students, investors, academicians, engineers, or office workers, salesmen, farmers—whose quest is to probe into the mysteries of science and reveal them to all.

Plan to become a Science PROBE! reader!

Science PROBE! — the only magazine devoted entirely to Amateur Scientists! If you are fascinated by science in all its many forms... if you can’t stay away from a microscope, telescope, calipers, or test tube — we invite you to share the wonders in every issue of Science PROBE! You will join a community of Amateur and Student Scientists who enthusiastically seek scientific knowledge or follow scientific pursuits for their own sakes and not merely as a profession.

Plan to become a Science PROBE! reader!
Within budget.
Without compromise.

The value of this 100 MHz digital scope is easy to see.

Take a close look at the HP 54600 oscilloscope, and you can't help but notice certain things.

It looks and feels like an analog scope, with dedicated knobs and a display that responds instantly to your control changes. Yet it has all the digital power that analog can't give you—high accuracy, automatic measurements, hard copy output and programmability. And superior viewing of virtually any waveform, even at low rep rates and slow sweep speeds.

But what really stands out is that the HP 54600 gives you this performance for just $2,895 (4-channel) and $2,495 (2-channel version)*. And that's a value worth looking into.

* For more information, or same-day shipment, call HP DIRECT, 1-800-452-4844. Ask for Ext. TB28. And we'll send you a data sheet.

<table>
<thead>
<tr>
<th>HP 54600 Digital Oscilloscope</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of channels</td>
<td>2 or 4</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>100 MHz</td>
</tr>
<tr>
<td>Timebase accuracy</td>
<td>± 0.01%</td>
</tr>
<tr>
<td>Vertical accuracy</td>
<td>± 1.5%</td>
</tr>
</tbody>
</table>

* U.S. list price
** In Canada call 1-800-387-3867, Dept. 435

There is a better way.