TUNE IN TO THE 800-MHz SCANNER BAND!

BUILD THIS
SCANNER CONVERTER
Gives your scanner
unrestricted coverage
of the
800-MHz
band

BUILD
R-E's
HYPER
CLOCK
You've
never seen
a clock project
like this before!

BUILD A SWEEP/FUNCTION
GENERATOR AND
FREQUENCY COUNTER
Upgrade your test bench
today!

NEW LIFE FOR AM RADIO?
New standards for AM might help
revive our broadcast band

DIGITAL-TO-ANALOG
CONVERSION
Experimenting with
the IBM PC

LLOYD DARKNELL
6450 MYRTLEWOOD DR
CUPERTINO, CA
95014

Gernsback
PUBLICATION

$2.95 U.S.
$3.75 CAN
Introducing SCOPEMETER.

There's More Than One Reason to Reach for It.

In fact, there's every reason to reach for ScopeMeter. Because only ScopeMeter combines the expertise of Fluke and Philips to bring you a dual-channel digital scope along with everything you've come to expect from Fluke digital multimeters.

The result: an integrated scope-and-multimeter that lets you see a waveform and digital meter display at the same time from the same input. Or switch between dedicated high-performance Scope and Meter functions with the touch of a key. That makes it faster and easier than ever to capture, store and analyze precisely what you're looking for. At a price that looks good, too.

To get your hands on a ScopeMeter, contact your Fluke sales office or your nearest Fluke distributor. For more product information, call 1-800-44-FLUKE.

SCOPEMETER. Now there's only one to reach for.

Double Duty.

- 50 MHz digital storage scope and 3000-count digital multimeter in one handheld package
- Precision Min Max Record and 40 ns Glitch Capture make it easy to troubleshoot intermittent failures
- Simultaneous waveform and digital display on a backlit screen you can read across the room.

Built to Take It.

- Completely sealed against water, dust and contaminants
- EMI protected and measures up to 600 volts rms.
- Rugged construction with shock-resistant holster
- Three-year warranty from Fluke.

Simply Easy.

- Intuitive front panel layout for simple, straightforward operation
- Pop-up menus and five function keys for easy control
- Autoset automatically sets voltage, time and trigger functions
- Safety-designed BNC connectors and probes simplify floating measurements

SCOPEMETER SELECTION GUIDE

<table>
<thead>
<tr>
<th>FLUKE 90 SERIES SCOPEMETER SELECTION GUIDE</th>
<th>FLUKE 97</th>
<th>FLUKE 95</th>
<th>FLUKE 93</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suggested List Price</td>
<td>$1795</td>
<td>$1195</td>
<td>$1195</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>50 MHz</td>
<td>50 MHz</td>
<td>50 MHz</td>
</tr>
<tr>
<td>Sample Rate</td>
<td>25 MS/s</td>
<td>25 MS/s</td>
<td>25 MS/s</td>
</tr>
<tr>
<td>Autoset</td>
<td>Automatic</td>
<td>Automatic</td>
<td>Automatic</td>
</tr>
<tr>
<td>Multimeter Display</td>
<td>3 1/2 dig. (>3000 Counts)</td>
<td>3 1/2 dig. (>3000 Counts)</td>
<td>3 1/2 dig. (>3000 Counts)</td>
</tr>
<tr>
<td>True RMS Volts</td>
<td>AC or AC+DC up to 600V (1700V Pk-Pk)</td>
<td>AC or AC+DC up to 600V (1700V Pk-Pk)</td>
<td>AC or AC+DC up to 600V (1700V Pk-Pk)</td>
</tr>
<tr>
<td>Grade Test</td>
<td>Up to 2.8V</td>
<td>Up to 2.8V</td>
<td>Up to 2.8V</td>
</tr>
<tr>
<td>Continuity Beaper</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time/Division</td>
<td>10 ns/div to 65 sec/div</td>
<td>10 ns/div to 65 sec/div</td>
<td>10 ns/div to 65 sec/div</td>
</tr>
<tr>
<td>Volts/Division</td>
<td>1 mV/div to 100V/div</td>
<td>1 mV/div to 100V/div</td>
<td>1 mV/div to 100V/div</td>
</tr>
<tr>
<td>Digital Delay or Pre-trigger</td>
<td>By Number of Cycles, Events, Time, or Zoom Mode</td>
<td>By Time</td>
<td>By Time</td>
</tr>
<tr>
<td>Special Multimeter Modes</td>
<td>Min Max Average Record, Relative (zero), dBm, OV, nV, Audio Watts, % Scale, Frequency, Smoothing, "Change Alert"</td>
<td>Min Max Average Record, Relative (zero), dBm, OV, nV, Audio Watts, % Scale, Frequency, Smoothing, "Change Alert"</td>
<td>Min Max Average Record, Relative (zero), dBm, OV, nV, Audio Watts, % Scale, Frequency, Smoothing, "Change Alert"</td>
</tr>
<tr>
<td>Oscilloscope</td>
<td>12 Measurements, Display & Simultaneously</td>
<td>12 Measurements, Display & Simultaneously</td>
<td>12 Measurements, Display & Simultaneously</td>
</tr>
<tr>
<td>Cursors</td>
<td>5 Measurements</td>
<td>5 Measurements</td>
<td>5 Measurements</td>
</tr>
<tr>
<td>Glitch Capture</td>
<td>>40 ns</td>
<td>>40 ns</td>
<td>>40 ns</td>
</tr>
<tr>
<td>Waveform Processing</td>
<td>Average, Variable Persistence, Min Max Record</td>
<td>Average, Variable Persistence, Min Max Record</td>
<td>Average, Variable Persistence, Min Max Record</td>
</tr>
<tr>
<td>Waveform Memory</td>
<td>Store and Recall 8 Waveforms</td>
<td>Store and Recall 8 Waveforms</td>
<td>Store and Recall 8 Waveforms</td>
</tr>
<tr>
<td>Set Up Memory</td>
<td>Store and Recall 10 Front Panel Set-Ups</td>
<td>Store and Recall 10 Front Panel Set-Ups</td>
<td>Store and Recall 10 Front Panel Set-Ups</td>
</tr>
<tr>
<td>Waveform Mathematics</td>
<td>Add, Subtract, Multiply, Invert, Filter or Integrate Waveforms</td>
<td>Add, Subtract, Multiply, Invert, Filter or Integrate Waveforms</td>
<td>Add, Subtract, Multiply, Invert, Filter or Integrate Waveforms</td>
</tr>
<tr>
<td>Signal Generator Output</td>
<td>Sine Wave or Square Wave</td>
<td>Sine Wave or Square Wave</td>
<td>Sine Wave or Square Wave</td>
</tr>
<tr>
<td>Component Test Output</td>
<td>Voltage or Current Ramp</td>
<td>Voltage or Current Ramp</td>
<td>Voltage or Current Ramp</td>
</tr>
<tr>
<td>Optically Isolated RS-232 Interface</td>
<td>Full Operation by Remote Control</td>
<td>Full Operation by Remote Control</td>
<td>Full Operation by Remote Control</td>
</tr>
<tr>
<td>Printer Output</td>
<td>Serial</td>
<td>Serial</td>
<td>Serial</td>
</tr>
<tr>
<td>Backlit Display</td>
<td>Electroluminescent</td>
<td>Electroluminescent</td>
<td>Electroluminescent</td>
</tr>
</tbody>
</table>

Goes Wherever You Go.

- Runs on rechargeable NiCad Batteries, standard C-cells or the included line voltage adapter/battery charger
- Adjustable tilt stand comes in handy as a hanger, too
- Compatible with a wide range of Fluke multimeter accessories

©1991 John Fluke Mfg Co. Inc. All No. 00575
BUILD THIS

33 BUILD THE HYPERCLOCK
Display the time in eight eye-catching modes!
Leon W. Schmidt

42 SCANNER CONVERTER
It allows unrestricted coverage of the 800-MHz band!
William Sheets and Rudolf F. Graf

53 SWEEP/FUNCTION GENERATOR
Measure square, triangle, and sine waves with this inexpensive benchtop instrument.
Michael A. Lashansky

65 EXPERIMENTING WITH ADC FOR YOUR PC
Add analog inputs to the PC-based analog-to-digital converter.
James J. Barbarello

TECHNOLOGY

48 AM TRIES FOR A COMEBACK
Will the new AMAX receivers breathe new life into the AM band?
Len Feldman

69 WORKING WITH LED'S
Our in-depth survey of LED's continues with practical chaser and bargraph circuits.
Ray Marston

DEPARTMENTS

6 VIDEO NEWS
What's new in this fast-changing field.
David Lachenbruch

16 EQUIPMENT REPORTS
Kelvin 100K DMM kit.

77 HARDWARE HACKER
Caller ID update, and more.
Don Lancaster

86 AUDIO UPDATE
More reader questions.
Larry Klein

89 DRAWING BOARD
Getting back to our oscilloscope.
Robert Grossblatt

92 COMPUTER CONNECTIONS
Pen-based computing.
Jeff Holtzman

AND MORE

106 Advertising and Sales Offices
106 Advertising Index
12 Ask R-E
14 Letters
97 Market Center
27 New Lit
22 New Products
4 What's News
The 800-1000 MHz band of UHF frequencies contains many signals of interest to the shortwave and scanner enthusiast. However, many scanner can't receive those frequencies. Our scanner converter receives signals from 800-1000 MHz, and outputs them at 400-500 MHz. That allows you to monitor frequencies in the 800-1000 MHz range using your 400-500 MHz scanner. You can also use it to measure frequencies as high as 1000 MHz with a 500-MHz counter. To find out more about our converter, turn to page 42.
A Shocking Offer!

Now for the first time in CIE's 56 year history you do not have to be enrolled at CIE to receive our Electronics and Electricity Lesson Modules. Available for a limited time to non-students for the shockingly low introductory price of only $99.50.

With CIE's patented AUTO-PROGRAMMED method of learning you'll quickly learn and then master the basics of electronics and electricity and then move on to ... soldering techniques, applications of Kirchhoff's law, voltage and power, printed circuit boards ... and much, much, more.

Your commitment to CIE ends with your payment, but CIE's commitment to your success just begins when you receive your lessons, exams, binder and equipment. This special price includes the benefits CIE normally extends to its students and graduates.

You'll receive CIE Bookstore privileges, a patented learning method, access to CIE's student, faculty and alumni electronic bulletin board and a free issue of CIE's school newspaper "The Electron". 24-Hour grading and unlimited access to CIE's faculty is available on an optional basis.

And best of all, when you decide to continue your electronics education in any of CIE's programs, you'll receive a $100.00 CIE tuition credit certificate.All this knowledge and support will put you on the road to understanding digital electronics, microprocessing principles, computer systems, telecommunications, and much, much, more.

All This For Only!

$99.50

• A $100.00 CIE TUITION CREDIT CERTIFICATE

□ Yes, send me CIE's Introductory Electronic and Electricity Lessons and Equipment.

Name: ___________________________
Street: ___________________________ Apt. #: ___________________________
City: ___________________________ State: ___________________________ Zip: ___________________________
Age: ___________________________ Phone (_____) ___________________________

BOOKSTORE
1776 East 17th Street
Cleveland, Ohio 44114

Total Merchandise: $99.50
Ohio Residents add 7% Sales Tax:
California Residents add 6 1/2% Sales Tax:
Total this order:
Shipping and Handling Charges: $5.00
Method of Payment: Amount Enclosed: $__________
☐ Personal Check or Money Order
☐ Master Card ☐ Visa
Card Expiration Date: ___________________________

Signature: ___________________________

CHARGE BY PHONE! 9 AM to 4:30 PM Eastern Time; 1-800-321-2155 ext. 7302; In Ohio 1-800-523-9109 ext. 7302
Device for multiple automobile air bags

Researchers at Sandia National Laboratories (Albuquerque, NM) have invented a low-energy explosive igniter that could make it easier for automobile manufacturers to install multiple air bags in their vehicles. The device, called a semiconductor bridge or SCB, requires much less energy than the hot-wire igniters that are traditionally used in air-bag systems.

During the rapid deceleration caused by a crash, air bags are electrically ignited by a hot-wire device in an explosive cartridge. As the device heats, the sensitive explosive material burns. A hot gas is produced that enters the stowed air bag and ignites a gas-generating propellant, which then releases a burst of nitrogen gas that quickly inflates the bag. That entire process takes place in just thousandths of a second.

When designing air-bag systems, a worst-case scenario of an almost depleted battery is used. In such a case, one hot-wire igniter would consume nearly all of the battery's remaining voltage output—which means trouble for systems incorporating several air bags and explosively activated seat belts.

The semiconductor bridge is about one one-hundredth the volume of a conventional hot wire, and can be heated much faster and with much less energy. Because SCB's are processed on a silicon wafer, the chip can incorporate extra circuitry for logic, timing, and safety.

Multimillion dollar interactive TV/satellite contract

The introduction of nationwide interactive television is a step closer with the signing of a multimillion contract between TV Answer, a pioneer in real-time wireless Interactive Video Data Service (IVDS) technology, and Hughes Network Systems, Inc. (HNS), manufacturer of interactive Very Small Aperture Terminals (VSAT's). Pending FCC approval, the TV Answer system would allow television viewer to use their TV's as communication devices to pay bills, order take-out food, shop for groceries, do banking transactions, and respond in real time to game shows, TV shopping shows, advertisements, polls, and interactive news and educational programs. In addition, it would serve as a universal remote control, and would provide on-screen TV schedules and VCR programming. The system would work with cable, satellite, and roof-top antenna systems and is expected to cost about $12.95 a month.

Similar in structure to a cellular phone network, the TV Answer network relies on individual cell sites to provide service to a market area consisting of a maximum of 10,000 households. Each cell site includes a VSAT two-way satellite dish earth-station that communicates with TV Answer Headquarters via a Hughes satellite, and a TV Answer radio receiver/transmitter that communicates with TV Answer home units. The data received via satellite is transformed at the cell site into a radio signal that is transmitted to each home unit. Viewer responses are relayed to the cell site and then back to headquarters in the same way. There the responses are processed and appropriate collection, billing, and ordering activities are performed.

The January 10, 1991 FCC Notice of Proposed Rulemaking proposed the allocation of 1/2-MHz of the radio spectrum—between 218.00 and 219.00 MHz, which is the frequency on which TV Answer's system operates—for an Interactive Video Data Service. The action is expected to be finalized, and technical standards and licensing procedures issued, by mid-1992.

Under the initial phase of the contract between HNS and TV Answer, HNS will build and install 1000 VSAT units for use in cell sites—enough to meet the projected first-year requirement. The initial phase includes a $2.1 million hub and network control system at TV Answer headquarters in Reston, VA. TV Answer estimates that a minimum of 10,000 VAST units will be needed to provide nationwide coverage for its technology.
You Can Always Spot The Technician Who Doesn’t Use Tektronix.

If you’re sending technicians and FSEs into the field with equipment other than Tektronix, don’t be surprised to discover some unusual tools in their service kits. Signal flares, for instance. On the other hand, portable test gear from Tek gets technicians to the root of the problem long before the problem gets to them. Everything from oscilloscopes and spectrum analyzers to handheld DMMs.

As a result, your customers will be back on their feet in what’ll seem like no time at all. They’ll be happy for that. Not to mention a whole lot nicer to work with. For your employees’ sake, get in touch with a Tektronix representative today. Or keep an eye peeled for signs of distress. TALK TO TEK/1-800-426-2200
VIDEO NEWS

What’s new in the fast-changing video industry.

DAVID LACHENBRUCH

- **Compact Disc-Interactive.** Philips has launched its CD-I interactive audio-video multimedia system through 5000 stores, and first reports indicated that the players and discs were selling well. Philips changed its mind about brand name, and its first products were issued under the “Philips” instead of the “Magnavox” brand. The list price of the player was dropped to $1000 from $1400, but for all practical purposes, players are selling at about $800, and discs from $20 to $40. Using the theme, “the Imagination Machine,” Philips plans major advertising campaigns for the system throughout 1992. This is the second multimedia CD system aimed at the general public via attachments to TV sets, the first being Commodore’s CDTV (which stands for Commodore Dynamic Total Vision). Other manufacturers are competing with video and audio CD-ROM systems designed as computer peripherals.

- **Zenith moves TV.** The last major American-owned TV manufacturer will end color-TV manufacture in the United States sometime this year. Zenith Electronics announced that it will start phasing out final assembly of sets in its Springfield, MO plant when its union contract expires on March 22. The company, which has been losing money, explained that price erosion has continued in the TV industry and cost-cutting efforts haven’t been sufficient, despite wage concessions by its union in Springfield.

Zenith will move final assembly of large-screen TV sets to its cabinet plant in Juarez, Mexico. Its 19- and 20-inch sets are already being assembled in Reynosa, Mexico. Some plastic molding and distribution operations will continue in Springfield. Zenith will continue to operate its large-picture-tube plant and headquarters in the Chicago. The only other American-owned TV assembler, Curtis Mathis Corporation, has a final assembly plant in Athens, TX. Although the remainder of TV manufacturers are foreign-owned, many of them continue to assemble their large-screen color TV’s in the United States. The leaders are Thomson Consumer Electronics (French-owned), which assembles RCA and GE sets in Bloomington, IN, and Philips (Dutch), which produces Magnavox, Sylvania, and Philips sets in Greeneville, TN. Other final TV assembly is done in Huntsville, AL, by Goldstar (Korean); by Japanese manufacturers in Anaheim, CA; JVC in Elmwood Park, NJ; Mitsubishi in Santa Ana, CA and Braselton, GA; Orion in Princeton, IN; Sanyo in Forrest City, AR; Sharp in Memphis; Toshiba in Lebanon, TN; and Sony in San Diego and soon in New Stanton, PA.

- **“Stereo” TV debate.** As it promised more than a year ago (Radio-Electronics, March 1991), a company called dbx Technology Licensing has started a public-relations campaign to inform the public that if a television set doesn’t conform with the FCC-backed stereo-TV system, it shouldn’t be called “stereo TV.” However, Thomson Consumer Electronics, manufacturer of RCA and GE brand sets, has challenged dbx, saying that some of its sets contain a new system called “XS” and qualify as stereo even though they don’t use the dbx noise-reduction decoding technology that is officially part of the Multichannel TV System (MTS) stereo standard.

Although Thomson’s higher-priced sets do use dbx decoding, Thomson says that the XS sound system, which uses phase shift to process the sound, qualifies as “stereo” even though little separation between left and right channels shows up in tests. dbx demonstrated test results that it says shows that some RCA and GE sets don’t reconstruct the true sound transmitted by the TV stations. Thomson retorts that its XS system sounds better than dbx in lower-priced sets. In addition to Thomson, dbx Technology found that some Philips and some Sharp sets don’t use dbx decoding in their stereo systems. Both of those companies, which use dbx in some of their sets, say they plan to add dbx across the board to all of their sets later this year. Since there is no official definition of “stereo,” the dispute is expected to continue for some time. Stereo systems using various types of phase-shift techniques to enhance the “presence” effect include Q sound and SRS, the latter developed by Hughes Aircraft and being used in some high-end sets by Sony and Thomson as an adjunct to MTS stereo. dbx says that’s okay, some people may prefer processed sound, but officially MTS sound includes dbx encoding and decoding; therefore, saying that a set included “broadcast TV stereo” or “MTS stereo” is misleading.

- **TV for computers.** For years we’ve heard about the upcoming merger of TV and the computer. The CD-I system is one aspect of it—adding computer functions to the TV set. Moving in the opposite direction, IBM and others are adding TV functions to the computer. In March, IBM will offer a TV accessory for its PS/2 computers. That is an adaptor that permits the computer’s keyboard to be used to select from among 70 TV channels as well as the other normal TV functions. Of course, other video devices may be input as well, including laserdisc players or VCR’s. The TV picture may be viewed full-screen or inserted in a window—there’s nothing like watching MTV while working on a spreadsheet! The IBM accessory will carry a list price of $495, which may be cheap for a computer add-on. But in TV-land, the same amount will be a 25-inch color TV set with a remote control.
Some Breadboards Cost Less Than PROTO-BOARD brand. They Should.

At Global Specialties, we make only one kind of breadboard, the very best, PROTO-BOARD brand. American made and guaranteed for life.

Sure, save a few dollars today...buy cheap...but remember, you only get what you pay for! Is it really worth it??? Ask yourself...Do they perform like PROTO-BOARD brand? Are they as reliable? Will they last like a PROTO-BOARD brand?

How can we guarantee PROTO-BOARD brand breadboard for life unconditionally? Because we control every step right in our New Haven factory, and because we are obsessed with quality.

That's why we mold our own plastic and stamp our own precision contacts. We even designed our own machine to assemble each breadboard to exacting standards. Assuring every PROTO-BOARD brand is built to perfection when it leaves our USA factory..... backed by our unconditional "Life-Time" guarantee.

The others, they arrive from Taiwan. With good reason, they are made cheaper!

So next time you consider a cheaper breadboard, think twice. You'll need too, because even after you have worn out your second imported breadboard our PROTO-BOARD brand would have still been going strong.

PROTO-BOARD brand. The breadboard you only buy once. Now which one really cost less?

PROTO-BOARD brand breadboards and the complete Global line of test instruments are in stock at fine electronic distributors everywhere.

Can't Wait! Call Toll-Free 1-800-572-1028

GLOBAL SPECIALTIES

GLOBAL SPECIALTIES
70 Fulton Terrace, New Haven, CT 06512

GLOBAL SPECIALTIES
All Global Specialties' breadboarding products are made in New Haven, CT.
Learn to troubleshoot and service today's computer systems as you build a 386sx/20 MHz mini tower computer!

Train the NRI way—and learn to service today's computers as you build your own 386sx computer system, now with 1 meg RAM, 40 meg IDE hard drive, and exciting new diagnostic hardware and software!

Jobs for computer service technicians will almost double in the next 10 years according to Department of Labor statistics, making computer service one of the top growth fields in the nation.

Now you can cash in on this exciting opportunity—either as a full-time industry technician or in a money-making computer service business of your own—once you've mastered electronics and computers the NRI way.

NRI's practical combination of "reason-why" theory and hands-on building skills starts you with the fundamentals of electronics, then guides you through more sophisticated circuitry all the way up to the latest advances in computer technology.

Train with and keep a powerful 386sx/20 MHz computer system plus popular Microsoft® Works software!

Only NRI gives you hands-on training with the finest example of state-of-the-art technology: the powerful new West Coast 386sx/20 MHz mini tower computer. As you assemble this 1 meg RAM, 32-bit CPU computer from the keyboard up, you actually see for yourself how each section of your computer works.

You assemble and test your computer's "intelligent" keyboard, install the power supply and 1.2 meg, high-density floppy disk drive, then interface the high-resolution monitor.

Your hands-on training continues as you install a powerful new 40 meg IDE hard disk drive—now included in your course to dramatically increase the data storage capacity of your computer while giving you lightning-quick data access.

Plus you now go on to work with today's most popular integrated software package, Microsoft Works, learning to use its word processing, spreadsheet, database, and communications utilities for your own personal and professional applications. But that's not all.

Only NRI gives you hands-on training with the remarkable R.A.C.E.R. plug-in diagnostic card and QuickTech diagnostic software from Ultra-X—professional, state-of-the-art diagnostic tools that make computer troubleshooting fast and accurate.
Your NRI computer training includes all this: • NRI’s unique Discovery Lab for circuit design and testing • Hand-held digital multimeter with “talk-you-through” instructions on audio cassette • Digital logic probe that lets you visually examine computer circuits • The new West Coast 386sx-20 MHz computer system, featuring a high-speed 80386sx CPU, 1 meg RAM, 101-key “intelligent” keyboard, 1.2 meg high-density floppy drive, and high-resolution monitor • 40 meg IDE hard drive • MS-DOS, GW-BASIC, and Microsoft Works software • R.A.C.E.R. plug-in diagnostic card and QuickTech menu-driven diagnostic software • Reference manuals with guidelines and schematics

Printer ports, serial communications ports, video display memory, floppy drives, and hard disk drives.

Only NRI gives you such confidence-building, real-world experience. Only NRI gives you both the knowledge and the professional tools to succeed as today’s in-demand computer service technician.

No experience needed ... NRI builds it in

NRI training gives you practical, hands-on experience that makes you uniquely prepared to take advantage of today’s opportunities in computer service. You learn at your own convenience in your own home. No classroom pressures, no night school, no need to quit your present job until you’re ready to make your move. NRI starts you with the basics, building on that foundation step by step until you have the knowledge and skills you need for success.

And all throughout your training you’ve got the full support of your personal NRI instructor and the entire NRI technical staff, always ready to answer your questions and help you achieve your training goals.

FREE catalog tells more. Send today!

Send today for NRI’s big, free catalog that describes every aspect of NRI’s innovative computer training, as well as hands-on training in other growing high-tech career fields.

NOW! Training now includes Ultra-X diagnostic hardware and software for quick, accurate troubleshooting!

Now you train with and keep the latest in diagnostic hardware and software: the extraordinary R.A.C.E.R. plug-in diagnostic card and QuickTech diagnostic software, both from Ultra-X. Using these state-of-the-art tools, you learn to quickly identify and service virtually any computer problem on XT, AT 80286/80386, and compatible machines.

You discover how to use the R.A.C.E.R. diagnostic card to identify individual defective RAM chips, locate interfacing problems, and pinpoint defective support chips. Plus you learn to use your QuickTech diagnostic software to test the system RAM and such peripheral adapters as parallel printer ports, serial communications ports, video display memory, floppy drives, and hard disk drives.

IBM is a registered trademark of International Business Machines Corp. R.A.C.E.R. and QuickTech are registered trademarks of Ultra-X, Inc.

SEND TODAY FOR FREE CATALOG

McGraw-Hill Continuing Education Center
4401 Connecticut Avenue, NW
Washington, DC 20008

NEW! 386sx

Check one FREE catalog only

MICROCOMPUTER SERVICING

TV/Video/Audio Servicing
Telecommunications
Industrial Electronics
Security Electronics
Electronic Music Technology
Basic Electronics
Automotive Servicing

Computer Programming
PC Software Engineering Using C
Desktop Publishing
Word Processing
Home Business
Paralegal
Building Construction
Bookkeeping & Accounting

Name (please print) Age

Address

City/State/Zip Accredited Member, National Home Study Council 3-022
MOTOR SPEED CONTROLLER

I have a electric model boat and I’d like to be able to control the speed of the motor. The circuit should be able to make the motor go from very slow to very fast without stalling. I’ve tried all sorts of things but haven’t had any luck—particularly at low speed. The motor is powered by a 7.2-volt battery pack. Do you have any circuits that can help me?—A. Balsys, Howell, NJ

Electric boats aren’t my thing but I would have imagined that they all had some way to vary the speed of the motors. Oh well, you live and learn.

Controlling the speed of a small DC motor is something I’ve talked about several times before but, judging from the number of times I get asked about it in letters and on the phone, it seems a lot of people are interested in the subject. There are several ways to get the job done and even some fairly inexpensive commercial products that will do it for you. In this case, particularly with such a low-voltage motor, there’s an easy circuit you can build that will do the job and operate reliably for the life of the motor.

The circuit I’m referring to is shown in Fig. 1. Despite its apparent simplicity, the circuit will drive the motor over a range of speeds from dead slow to full ahead (that’s boat talk, I think), without any stalling at even the lowest speeds. The reason it can do this is that the circuit works by controlling the duty cycle of the motor rather than, as in other controllers, the supply voltage.

Two of the inverters in the 4049 are set up as an oscillator whose frequency is roughly determined by: $F = \frac{1}{1.4RC}$

where R is the total value of the potentiometer. The two diodes isolate both the positive and negative halves of the output frequency and make the output waveform stick close to a 50-50 duty cycle all through its entire operating range.

Even though the schematic shows the supply voltage to the motor and the circuit on two separate lines, there’s no reason why you can’t use the 7.2-volt battery for both of them. The battery is supplying a perfect voltage for CMOS stuff like the 4049.

There’s nothing critical about the layout of the circuit and you can build it using any technique you want. In actual fact, it’s such a handy circuit you may want to generate a printed circuit board for it so you can easily use the circuit somewhere else.

WATCH THE SPEED LIMIT

I have an XT-compatible computer and, while it works perfectly, it’s turning out to be much too slow for some of the newer software I want to use. Is it possible to speed up the computer by just changing the 14.1318-MHz crystal and are there limits as to how much of a speed increase this will give me?—F. Geeben, Hunter, IN

Before we get into this, I want to make sure you understand that any increase in speed you can get like this is going to be far outweighed by the amount of brain damage it takes to do it. The theory is great but the maximum speed of a motherboard, like an automotive engine, is a consequence of how it’s designed. They both have red-line numbers.

At the most basic level, the parts on your motherboard were chosen to match the computer’s original design specifications. The memory, I/O controller, interrupt controller, and DMA (Direct Memory Access) controller have maximum speed ratings and the ones in your computer were picked to match the speed of the board. The faster any chip’s speed rating, the more expensive it is. I don’t know who made your motherboard but it’s a safe bet that the parts on it are only as fast as they have to be.

Changing the crystal changes the board’s master clock and the more you step on the electronic accelerator, the closer you’re going to get to the point where these chips first get flaky and finally fail completely. The point where that happens is determined by the speed rating stamped on the chips and the details of the design of your motherboard.

Memory chips have a maximum speed rating as well and it’s usually
stamped on the top of the IC right after the chip number. A suffix of 20 means 200 nanoseconds, 15 means 150 nanoseconds, and so on. If the only crystal on your motherboard is a 14.31818-MHz one, it’s more than likely that your computer is running, like the original IBM PC, at a speed of 4.77 MHz. This means that your motherboard can operate with memory as slow as 200 nanoseconds. If that’s what you have in your machine, you don’t have much of a chance of upping the system speed and still maintain much in the way of reliability.

It’s possible you can overcome these problems if the design of your motherboard incorporates enough wait states to do things like memory refresh and other housekeeping chores at an increased speed. But there’s still another problem that has to be considered.

There are two clock frequencies at the expansion slots and most of the cards you plug into the motherboard are designed to expect the two clocks to be in a particular frequency range. Pin #B20 is known as the CK and on your motherboard it’s probably a buffered version of the 8088’s clock frequency—4.77 MHz. That frequency can be higher, and you’ll find 14.31818 MHz. When you change the crystal on the original PC (of which yours is a clone), pin #B30 was a buffered version of the crystal frequency—14.31818 MHz. That has remained a standard, even up to this day. Measure the frequency at that pin on the latest 33-MHz 486 motherboard and you’ll find 14.31818 MHz. When you change the crystal on the board, you’ll also be changing both frequencies at the expansion slots which can cause a problem with some cards that use the two clocks.

The biggest problem will come with floppy-disk controllers since they use those clocks for writing to the disk. Even if you somehow avoid the problem, it’s a guaranteed fact that you’ll have problems formatting disks.

Keeping all this stuff in mind, you can start experimenting with higher-frequency crystals to see how far you can go before you have major problems. My guess is that the most you’ll be able to get is a 50% increase in speed. If you want to be able to format disks, you have to supply the computer with the original frequencies so don’t get rid of the original crystal. Probably the easiest way to do that is to have both the crystals on the motherboard and use a switch to select one or the other.

We’re talking about doing a good deal of work here and the possible rewards are really minimal. A 50% increase in speed may sound like a lot but you’ll find that the practical effects are just not all that noticeable. A much better solution to the whole problem is to buy a new motherboard that’s been designed from the ground up to run faster than the one you have now.

Plant a tree today for all the world to share

You can make life better for your children and for the future. Join me and plant a tree today for all the world to share.

For your free brochure, write: Trees for America, The National Arbor Day Foundation, Nebraska City, NE 68410.

Be an FCC LICENSED ELECTRONIC TECHNICIAN!

- No costly school. No commuting to class.
- The Original Home-Study course prepares you for the “FCC Commercial Radio-telephone License.” This valuable license is your professional “ticket” to thousands of exciting jobs in Communications, Radio, TV, Microwave, Maritime, Radar, Avionics and more… even start your own business!
- You don’t need a college degree to qualify, but you do need an FCC License.
- No Need to Quit Your Job or Go To School
- This proven course is easy, fast and low cost: GUARANTEED PASS—You get your FCC License or money refunded. Send for FREE facts now. MAIL COUPON TODAY!

<table>
<thead>
<tr>
<th>COMMAND PRODUCTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCC LICENSE TRAINING, Dept. 90</td>
</tr>
<tr>
<td>P.O. Box 2824, San Francisco, CA 94126</td>
</tr>
<tr>
<td>Please rush FREE details immediately!</td>
</tr>
</tbody>
</table>

LEARN to CLEAN/MAINTAIN/REPAIR CMCORDERS

- Earn up to $30 an hour and more!
- Learn at home in spare time. No previous experience needed!

HUGE EXPANDING MARKET!

Work from your home part time or full time! No previous experience needed. Average mechanic makes only $10-$20 an hour to service a single microwave, VCR, or TV. In a month you can make $300-$400 in your spare time. No costly school. No commuting to class. Can earn $400 a month. No license required, however.

FREE INFORMATION PACKAGE

Call or write: 4470-107 Sunset Blvd. #600
Los Angeles, CA 90027, Dept. REC

CIRCLE 193 ON FREE INFORMATION CARD
VEHICLE GENERATORS AND REGULATORS

Radio-Electronics and its predecessor, Radio-Craft, have given me much pleasure for 50 years. Robert Grossblatt’s articles have been favorites, but he fell off the track with his comment, "... (vehicle) generators and the regulators that control the current they produce are a really stupid charging system ..." (Drawing Board, Radio-Electronics, December 1991).

Low-cost, high-current silicon rectifiers that made the superior alternator available were not developed until after the transistor was invented in 1947. There happened to be a lot of high technology before that. Radio, TV, computers, and automobiles all pre-date the benefits brought by advanced solid-state devices. As I recall, submarines, Rolls Royce automobiles, and high-speed aircraft all used generators, and the electromechanical voltage regulators they required. I don’t believe the word "stupid" characterizes that use.

I suspect the author was just trying to interject some lightness—which is all right with me—but his description of the operation of the older voltage regulator is incorrect.

The generator’s field current was modulated by a voltage-sensing relay that inserted various values of resistance in the field circuit, not the output lead. The varying field current would then cause the output voltage to remain at the desired value. The relay was also designed to sense the ambient temperature and change the generator-charging voltage accordingly. The voltage regulator case usually contained a current-limiting relay to protect the generator from overload, and a reverse-current relay to prevent the battery from discharging through the generator windings when the engine was not running.

These latter two functions were not needed in the alternator, but when they were first installed in new cars, there were no low-cost, high-current transistors developed that could operate at the high-temperatures in the engine compartment. So the same old electromechanical voltage regulator that had been used for 40 years was used again with the new alternator!

The rest of Mr. Grossblatt’s article was well done and informative, as usual. I just didn’t want to read your fine magazine for the next 50 years without contributing to its technical excellence!

GEORGE W. HAILS
Arlington Heights, IL

TESLA COIL IMPOSTORS

I have been tempted several times in the past to write to various magazines after the appearance of certain articles on the construction of Tesla coils. Don Lancaster’s comments on the Tesla coil (Hardware Hacker, Radio-Electronics, October 1991) finally pushed me to fire up the word processor.

I agree that many “Tesla” coils are essentially nothing more than glorified step-up transformers. The Tesla coil, however, is meant to generate its high-frequency high voltage by taking advantage of the special properties of the resonant (quarter wavelength) transmission line (also known, somewhat esoterically, as the Ferranti effect). It can be shown that the voltage amplitude V, at the unloaded end of an ideal (i.e., lossless, uniform, etc.) quarter wavelength transmission line driven by a source of resonant voltage of amplitude V_S, and of impedance Z_S at the resonant frequency (assumed real for notational simplicity) is $V = \left(\frac{Z_0}{Z_S}\right)V_S$, where Z_0 is the characteristic impedance of the line. This is different in numerous ways from the standard voltage multiplication of a transformer, as it should be; these are quite distinct physical phenomena.

Although the physics of the transformer is pretty amazing, what is more impressive is that a wire (or, more properly, a transmission line) may itself act as a “transformer.” A great experiment that shows this is the construction of a mock transmission line using discrete components to model (mock) the distributed parameters of a real transmission line.

In reality, a Tesla coil impostor is pretty easy to spot. It will suffer from a variety of maladies, some of which include improper magnetic coupling (making it a transformer instead of a propagating transmission line) and a marked insensitivity to resonant frequency tuning. Generally, even the most heinously constructed “Tesla coils” will generate hefty attention-grabbing sparks, but they are often missing the “magic and mystery” of the physics of the resonant line that makes it a true Tesla coil.

MATTHEW KLEJWA
Schaumburg, IL

HERE’S TO HOW-TO ARTICLES

I’m writing in response to Alex Funk’s letter (Radio-Electronics, April 1991) titled “Mac-Hack Attack.” It might be true that if you add up all the components required for a home-built computer system, the final price tag will come close to a dealer-bought system. However, there are quite a few people in this world who cannot afford to shell out over $1000 at one time, but who can afford to do it piece by piece. It’s a lot easier to spend $25 or $50 at a time than it is to spend $1000.

And how can you put a price on your time when you are learning how to build something as useful as a computer system? How much is your time worth when you sit and watch television?

Please keep publishing those how-to articles!

JOHN CULLIVAN
Niles, OH
The world's smallest 12-band receiver.

Includes digital clock, travel alarm, headphones, deluxe travel pouch, and Grundig guide book. Measures approximately 3 1/2" x 5 1/2" x 1 1/4" and weighs a mere 14 ounces.

The world is at your fingertips with...

The Grundig World Band Receiver

Announcing a revolutionary breakthrough in world-band radios...from Grundig, the leader in German shortwave electronics. This miracle of miniaturization is not sold in U.S. stores or catalogs—only Willabee & Ward has it!

Tune in to events around the globe. The RK-709 is the world's smallest 12-band receiver—AM, FM, FM Stereo (with headphones, included), and all 9 major shortwave bands. Small enough to fit into a pocket, briefcase, or purse, yet big on features. Telescoping antenna pulls signals from anywhere in the world. Listen to legendary BBC newscasts—the best in the world. Hear what Radio Moscow is saying about Gorbachev, Yeltsin, and President Bush. Listen to the Voice of America when you travel abroad. Follow a crisis or breaking story wherever you are and no matter where it's happening: Baghdad, Panama, Beijing or Tokyo.

You don't have to pack a travel alarm, either. You won't need it—this is better. The RK-709 wakes you with the radio or its ingenious "Humane Wake System"—the tone begins softly and gathers volume until you wake up! The digital alarm clock features a sleep timer that turns off the radio 10 to 60 minutes after you turn it in!

Only $159!

Payable in monthly installments.

The Grundig RK-709 is only $159 (plus $7.50 shipping/handling), payable in convenient monthly credit card installments. Includes deluxe carrying pouch and stereo headphones. One year warranty, 30 day money back guarantee. Order today.

Don't be confused by other 4, 5, 7, or 9 band radios. Grundig's RK-709 is today's best buy on a real 12 band receiver.

CALL TOLL-FREE: 1-800-367-4534 Ext. 623-165

Willabee & Ward
47 Richards Avenue
Norwalk, Conn. 06857

CALL TOLL-FREE: 1-800-367-4534 Ext. 623-165

Please send me _____ Grundig RK-709 World Band Receiver(s). For each receiver, charge 4 installments of $41.63* to my credit card:

☐ MasterCard ☐ VISA ☐ Discover ☐ Am. Ex.

Please Print Clearly

Credit Card # Exp. Date

Address

City/State/Zip

Signature

(All orders subject to acceptance.)

☐ I prefer not to pay by credit card and will pay by check. Enclosed is my check for $159* plus $7.50 shipping/handling, a total of $166.50 for each receiver.

* Any applicable sales tax will be billed with shipment.

Phone orders normally shipped next business day.

[Image of Grundig World Band Receiver]
Most multimeters are ready to use right out of the box—but not the Kelvin 100K.

If we were to tell you that this review is about an inexpensive multimeter, you’d probably be inclined to turn to the next page. After all, multimeters are as common today as silicon chips, and the features found on inexpensive ones have been around for years. So what can we tell you about the Kelvin 100K digital multimeter that you couldn’t already guess? The answer is that it’s available as a kit. The Kelvin 100K (Kelvin Electronics, 7 Fairchild Ave., Plainview, NY 11803) comes with a PC board and all parts that mount on it, a case with a backstand (that’s always handy), a pair of test leads, an owner’s manual, an assembly manual, an extra fuse, and even a 9-volt battery, all for $29.95. The 100K’s features include a 3½-digit LCD; DC ranges of 2, 20, 200, and 1000 volts; AC ranges of 200 and 500 volts; resistance ranges of 200 ohms, 2K, 20K, 200K, and 2 megohms; and DC current ranges of 2 mA, 20 mA, 200 mA, and 10 amps. There’s no provision for measuring AC current.

The 100K also hosts a diode test, a low-battery indicator, and a battery test—a handy feature for a general-purpose multimeter. In the “battery test” mode, the meter will display the voltage of any 1.5-volt battery under a 100-mA load or the voltage of any 9-volt battery under a 6-mA load. It’s likely that not too many experienced kit builders will be interested in building the 100K, mainly because they almost certainly already own a multimeter. However, the 100K kit is perfect for any beginner in electronics or a child who’s old enough to attempt soldering—especially a kid who’s always playing with his dad’s multimeter!

The assembly manual is particularly well-suited for a classroom environment, as it reads like an electronics lab manual; parts are installed in a small group at a time, alternating with precautionary circuit checks, explanations of how each section of the circuit works, troubleshooting tips, and various quizzes on what has been covered so far.

 Experienced kit builders may actually find the assembly manual somewhat irritating, because the sections in which components are installed are scattered throughout a lot of other explanatory paperwork. Remember though, that the kit is aimed at beginners. But this is where the kit’s one flaw emerges: the assembly manual contains more than just a few typographical errors. A seasoned kit builder should be able to overcome these problems but they may be very confusing to the beginner. Let’s go over the assembly manual and point out any problems we encountered.

The manual starts out with an introduction to the meter and a table listing all of its specifications. A schematic of the meter’s circuitry and a parts list follows. Diagrams of all of the parts are provided to help you quickly identify everything. A parts-placement diagram is next, although the PC board is silkscreened with all of the component designations as well. Also included are charts to help you identify resistor values by their color codes and capacitor values by their numbering. Pinout diagrams are provided, of the 3½-digit LCD, the 7106 A/D converter, and the quad XOR gate used in the meter. There’s a brief discussion on proper soldering techniques and the proper handling of IC’s. A list of all tools needed to build the meter is also given. Circuit theory is the last thing to be covered before the actual assembly of the board begins.

In the first assembly procedure, certain resistors and capacitors must be soldered to the PC board, and some might find this step confusing. You are instructed to install C14, 10 nF, and C16, 0.01 µF—but the two capacitors are actually the same value. And the fact that the parts list shows capacitors C14 and C16 to be “0.0 µF” only adds to the confusion.

Next you have to install the 40-pin 7106 IC so that the A/D circuitry can be tested out, which also requires the temporary installation of the battery clip, the LCD, and the rotary knob. The LCD and knob require a bit of sub-assembling before attaching them to the meter, and for some reason the sub-assembly instructions are found much farther on in the manual. The assembly diagram shows the back of the rotary knob as having six plastic tabs over which you are to snap on six metal contact clips—but the knob that came with our kit had seven tabs. After putting the clips on the six outermost tabs, the A/D section seemed to work just fine.

For the voltage-reference circuit, continued on page 90
HASTA LA VISTA BABY!

Terminate your Search for a Handi-Counter™. $159.

We're going to blow you away with this offer!
*100. off our full range Model 2810.

*Limited time only, no discounts and no trade ins. Made in the U.S.A.

- Full range -10Hz to 3GHz.
- LCD display (daylight visibility).
- True state-of-the-art technology with the high speed ASIC.
- NiCads & Charger included.
- Ultra-nigh sensitivity.
- Extruded metal case.
- 4 gate times.

Suggested options

TA100S: Telescoping Whip Antenna	$12.
CC30: Vinyl Carry Case	$14.
BL10: LED Backlight	$15.
BL28: EL Backlight for use in roomlight and low light	$45.
BG28: Bargraph Signal Level Indicator	$100.
TCXO 30: Precision ±0.2ppm 20 to 40°C temp. compensated time base	$100.

Universal
Handi-Counter™
Model 3600, $375. and
Bench Model 8030, $579.
Both offer frequency, period, ratio and time interval.

Call for free catalog - Factory Direct Order Line:
1-800-327-5912

FL (305)771-2050 • FAX (305)771-2052

CIRCLE 195 ON FREE INFORMATION CARD
If You're Serious About a Future in Electronics, Ensure that Future with the Best Educational Training Available.

FREE!
SEND FOR YOUR CIE HOME STUDY COURSE CATALOG AND RECEIVE A FREE 24 PAGE CIE ELECTRONICS SYMBOL HANDBOOK!

Includes hundreds of the most frequently used electronic symbols. Published by CIE exclusively for our students and alumni. Yours free when you request a CIE Course Catalog.
If you want to learn about electronics, and earn a good income with that knowledge then CIE is your best educational value.

CIE's reputation as the world leader in home study electronics is based solely on the success of our graduates. And we've earned that reputation with an unconditional commitment to provide our students with the very best electronics training.

Just ask any of the 150,000-plus graduates of the Cleveland Institute of Electronics who are working in high-paying positions with aerospace, computer, medical, automotive and communication firms throughout the world.

They'll tell you success didn't come easy...but, it did come...thanks to CIE. And today, a career in electronics offers more opportunities and greater rewards than ever before.

CIE PROVIDES YOU WITH A LEARNING METHOD SO GOOD, IT'S PATENTED.
CIE's Auto-programmed lessons are a proven learning method for building valuable electronics career skills. Each lesson is designed to take you step-by-step and principle-by-principle. And while all CIE lessons are designed for independent study, CIE's instructors are personally available to assist you with just a toll-free call. The result is practical training...the kind of experience you can put to work in today's marketplace.

LEARN BY DOING...WITH STATE-OF-THE-ART FACILITIES AND EQUIPMENT.
In 1969, CIE pioneered the first Electronics Laboratory course and in 1984, the first Microprocessor Laboratory course. Today, no other home study school can match CIE's state-of-the-art equipment and training. And all your laboratory equipment, books, and lessons are included in your tuition. It's all yours to use while you study at home and for on-the-job after graduation.

PERSONALIZED TRAINING....TO MATCH YOUR BACKGROUND.
While some of our students have a working knowledge of electronics others are just starting out. That's why we've developed twelve career courses and an A.A.S. Degree program to choose from. So, even if your not sure which electronics career is best for you, CIE can get you started with core lessons applicable to all areas of electronics. And every CIE course you take earns you credit towards completion of your Associate in Applied Science Degree. So you can work toward your degree in stages or as fast as you wish. In fact, CIE is the only school that actually rewards you for fast study, which can save you thousands of dollars.

SEND TODAY FOR YOUR CIE COURSE CATALOG AND WE'LL SEND YOU A FREE 24 PAGE CIE ELECTRONICS SYMBOL HANDBOOK!

FINANCIAL AID AVAILABLE TO QUALIFIED INDIVIDUALS.

WHY CHOOSE CIE FOR YOUR TRAINING?
• 150,000 successful graduates from every country around the world.
• Only CIE rewards you for fast study. CIE offers an Associate Degree program based on actual study time used. The faster you complete your degree the less your overall tuition.
• State-of-the-art laboratory equipment is yours to keep and it comes assembled, ready for hands-on experiments.
• Approved for educational benefits under the G.I. Bill for veterans and other eligible persons.
• Upon graduation, CIE offers free preparation to pass the Certified Electronics Technician Exams.

Pioneer the first Electronics Laboratory course and in 1984, the first Microprocessor Laboratory course. Today, no other home study school can match CIE's state-of-the-art equipment and training. And all your laboratory equipment, books, and lessons are included in your tuition. It's all yours to use while you study at home and for on-the-job after graduation.

CIE PROVIDES YOU WITH A LEARNING METHOD SO GOOD, IT'S PATENTED.
CIE's Auto-programmed lessons are a proven learning method for building valuable electronics career skills. Each lesson is designed to take you step-by-step and principle-by-principle. And while all CIE lessons are designed for independent study, CIE's instructors are personally available to assist you with just a toll-free call. The result is practical training...the kind of experience you can put to work in today's marketplace.

LEARN BY DOING...WITH STATE-OF-THE-ART FACILITIES AND EQUIPMENT.
In 1969, CIE pioneered the first Electronics Laboratory course and in 1984, the first Microprocessor Laboratory course. Today, no other home study school can match CIE's state-of-the-art equipment and training. And all your laboratory equipment, books, and lessons are included in your tuition. It's all yours to use while you study at home and for on-the-job after graduation.

PERSONALIZED TRAINING....TO MATCH YOUR BACKGROUND.
While some of our students have a working knowledge of electronics others are just starting out. That's why we've developed twelve career courses and an A.A.S. Degree program to choose from. So, even if your not sure which electronics career is best for you, CIE can get you started with core lessons applicable to all areas of electronics. And every CIE course you take earns you credit towards completion of your Associate in Applied Science Degree. So you can work toward your degree in stages or as fast as you wish. In fact, CIE is the only school that actually rewards you for fast study, which can save you thousands of dollars.

SEND TODAY FOR YOUR CIE COURSE CATALOG AND WE'LL SEND YOU A FREE 24 PAGE CIE ELECTRONICS SYMBOL HANDBOOK!

FINANCIAL AID AVAILABLE TO QUALIFIED INDIVIDUALS.

WHY CHOOSE CIE FOR YOUR TRAINING?
• 150,000 successful graduates from every country around the world.
• Only CIE rewards you for fast study. CIE offers an Associate Degree program based on actual study time used. The faster you complete your degree the less your overall tuition.
• State-of-the-art laboratory equipment is yours to keep and it comes assembled, ready for hands-on experiments.
• Approved for educational benefits under the G.I. Bill for veterans and other eligible persons.
• Upon graduation, CIE offers free preparation to pass the Certified Electronics Technician Exams.
DIGITAL MULTIMETER. The latest edition to Hewlett-Packard’s line of digital multimeters is capable of measuring up to 1000 volts with 6½ digits of resolution and 1000 readings per second. By providing the capacity to go through 50-range/function changes per second, the HP 34401A has ten times the throughput of other digital multimeters in its class. The instrument offers basic 24-hour DC accuracy of 0.0015 percent, and the best AC accuracy and widest AC bandwidth in its class, according to Hewlett-Packard.

Designed for system and bench applications, the HP34401A can be incorporated into existing systems with no changes in software, and includes such system DMM features as dB, null, diode test, and continuity. HP-IB and RS-232C interfaces are standard. In addition, it provides limit test, minimum/maximum testing results, storage of 512 readings, automatic-reading hold, auto-ranging, display updating, and almost instantaneous continuity readings.

The easy-to-use front panel was designed in response to extensive user testing, and a menu feature allows the user to easily modify secondary functions. An optional strap-on pouch can carry the power cord, interface cables, test probes, user and service manuals, and other accessories. The carrying handle and bumpers can be removed for rack installation.

The HP 34401A digital multimeter has a U.S. list price of $995.—Hewlett-Packard Company, Loveland Instrument Division, P.O. Box 301, Loveland, CO 80539; Phone: 1-800-538-8787.

CABLE/TV SIGNAL LEVEL METER. Designed for measuring performance levels during system construction, installation, and maintenance, Leader Instruments’ Model 951 CATV signal-level meter can be used by the broadcast-TV, FM, MATV, and CATV industries. It has an auto-scanning feature that selects 32 channels encountered and displays measurement results that are auto-ranged and auto-scaled for storage to (or recall from) four groups of eight channel-bargraph data registers. Users can also select and store four memory-scans of picture and/or sound carriers, and measured results. Single- or multi-channel displays can be selected, using digital readouts and analog bargraph indications on a large, backlit, supertwisted LCD readout. The Model 951 provides continuous frequency coverage from 48 to 870 MHz. It features EEPROM look-up tables for picture and sound carriers in broadcast VHF, UHF, and CATV standards of 16 countries. The battery-powered (8 “D”-size cells) unit measures 8.4 x 4.75 x 7.9 inches and weighs just 10.5 pounds. An optional RS-232 interface allows data to be downloaded to a printer or computer.

The Model 951 Cable/TV signal-level meter costs $1695.—Leader Instruments Corporation, 380 Oser Avenue, Hauppauge, NY 11788; Phone: 1-800-645-5104 (in NY, 516-231-69000).

SCHEMATIC DRAWING SOFTWARE. Developed to help engineers, technicians, and hobbyists design and draw electronic circuits on-screen, AutoSkem CAD Version 1.4 produces a high-quality printout, eliminating the rough hand-drawn sketch.

Drawings can be constructed using lines, text, and symbols. A software library of more than 50 pre-defined electronic symbols, logic gates, op-amps, transistors, diodes, coils, etc., is included. Users can create their own symbols and organize them into an unlimited number of libraries of up to 100 symbols each. Text can be rotated and scaled to five sizes before being placed in a drawing. Version 1.4 features improved graphics and drawing features for EGA and VGA systems; “rubber-banding” for drawing...
GF-8015 without Freq. Meter $179
($3 Min $10 Max) Shipping
UPS Shipping: 48 States 5%
IL Res., 7.5% Tax
FAX: 708-520-0085

25MHz Elenco Oscilloscope
$349
S-1325
• Dual Trace
• 1mV Sensitivity
• 6" CRT
• X-Y Operation
• TV Sync
• (2) 1x, 10x Probes included

Quad Power Supply XP-580
$59.95
2-20V @ 2A
12V @ 1A
5V @ 1A
-5V @ 1A

Learn to Build and Program Computers with this Kit
Includes: All Parts, Assembly and Lesson Manual
Model MM-8000
$129.00

Starting from scratch you build a complete system. Our
Micro-Model trainer kit takes you to write into RAMs, ROMs
and run a 8085 microprocessor, which uses
similar machine language as IBM PC.

All scopes include probes, schematics, operators manual
and 3 year (2 yrs for Elenco scopes) world wide warranty
on parts & labor. Many accessories available

WE WILL NOT BE UNDERSOLD!

48 HOUR SHIPMENT

For pricing and availability, call our sales
department at 1-800-292-7711

C & S SALES INC.
1245 Rosewood, Deerfield, IL 60015
(800) 292-7711 (708) 541-0710

CIRCLE 109 ON FREE INFORMATION CARD
straight or diagonal lines; the ability to save the drawing configuration file with all current program drawing configurations; improved mouse support; and internal high-resolution printer drivers for 9- and 24-pin dot matrix and HP LaserJet printers, and HP Pen Plotters. Parallel as well as serial interfaces are supported. The program requires an IBM PC, XT, AT, PS/2, or compatible computer running DOS 2.1 or higher; 384K RAM; and CGA, EGA, VGA, or Hercules graphics.

AutoSkem CAD Version 1.4 costs $49.—BSOFT Software, Inc., 444 Colton Road, Columbus, OH 43207; Phone: 1-800-728-3805.

Cartoon-A-Day Program. A PC-calendar program with a twist, the Cartoon-A-Day Calendar Plus from Individual Software offers DOS and Windows users a daily dose of whimsical humor in the form of the farcical drawing of nationally syndicated "Inside Out" cartoonist Kevin Pope. The daily cartoon can be added to personal calendars, printed correspondence, daily to-do lists, or schedules. The program displays (and prints) personal schedule information by the day, week, month, or year, and even keeps track of vacation time, personal plans, travel time, and holidays. It can also be used to create or update to-do lists. Both versions feature digital and analog clocks; the Windows version also features time-saving "Quick Memo" and "Quick Fax" functions that generate a memo or fax cover sheet that incorporates the daily computer right from their computer. The DOS version runs on any IBM-compatible PC with DOS 3.3 or higher and 512K of memory. The Windows version requires Windows 3.0 software.

The Cartoon-A-Day Calendar Plus program (for DOS or Windows) costs $29.95.—Individual Software, 5870 Stoneridge Drive, #1, Pleasanton, CA 94588; Phone: 1-800-822-3522.

Robotic Probe. Aimed at the electronic service industry, where low-volume boards, varying device technologies, and a wide range of repair problems exist, the Prober RP388 is a computer-controlled, electro-mechanical probe that automates the testing process for components of various sizes and packaging, including surface mount technologies; improved all current program drawing the ability to save the draw-
mount devices. According to Huntron Instruments, the robotic probe can set up and test any kind of component on a printed-circuit board faster than using a conventional "bed of nails" test system.

The Prober RP388, which requires the 5100DS troubleshooting system for operation, consists of a precision electro-mechanical probe and a software-controlled video-imaging system. The probe can be driven to the test point with approximately ±4-mils accuracy, and the imaging system shows a detailed, real-time image of the board on the PC monitor. Establishing a test routine and troubleshooting is a three-step process using the combination of the 5100DS and the Prober RP388. Teach the Prober the test-point locations, learn and store signatures of good components, and find faulty components by automatically comparing their signatures to the signatures stored on the PC hard drive. On average, a PCB with 39 surface-mount devices (14 to 20 pins per component) can be tested in less than 10 minutes.

The Prober RP388 costs $23,000, the 5100DS system required to operate it starts at $10,000. — Huntron Instruments Inc., 15720 Mill Creek Blvd., Mill Creek, WA 98012; Phone: 800-426-2965 or 206-743-3171; Fax: 206-743-1360.

Digital Voice Chip Set. Electech Electronics' VCS-1870 allows circuit designers to easily add digitized voice to their designs. The set consists of the 40-pin DIP VP-1870 voice-processing chip and the 21-pin SF-700 filter module board. The chip features CVSD encoding at variable sampling rates for natural-sounding voice digitization. Its 8-bit bi-directional interfaces are compatible with most microprocessors. Digitized voice data is stored in external RAM or ROM. The SF-700 is an active band-pass (300-Hz to 3.4-kHz) filter module with pre-amp for microphone or line input signals. Specially designed to work with the VP-1870, it provides good voice quality and high reliability with greatly reduced components count, board space, and power consumption. Operation requires a single 3- to 6-volt DC power supply.

The VCS-1870 digital voice chip set costs $16 in quantities of 1000.— Electech Electronics, 1262 East Katella Avenue, Anaheim, CA 92805; Phone: 714-385-1707; Fax: 714-385-1708.

Digital Multimeters. An enhanced line of low-cost, pocket-sized digital multimeters from Beckman Industrial include features ordinarily found only in more expensive units. For instance, Models DM5XL.
DM10XL and DM10XL each offer 10-amp current fusing to protect both the user and the meter, safety test leads with shrouded input plugs and text points, a warning beeper when the test leads are placed in the wrong input jacks, large LCD numerals, and increased battery life. All three meters measure DC voltage to 1000 volts, AC voltage (to 500 volts for the DM5XL and to 750 volts for the other two), resistance, and diode test, and have a continuity beeper. Model DM15XL adds a feature called the “Safety Tester,” which detects and displays commonly encountered AC and DC voltage levels from 6 to 220 volts. This feature works even when the DMM battery is dead, ensuring that the user can always safely detect the presence of live voltage levels. Model DM15XL also adds a logic-measurement function that indicates the presence and polarity of TTL pulses up to 20 MHz.

Models DM5XL, DM10XL, and DM15XL digital multimeters cost $34.95, $44.95, and $59.95, respectively.—Beckman Industrial Corporation, 3883 Ruffin Road, San Diego, CA 92123-1898; Phone: 619-495-3218.

The EDS-59C Semianalyzer II from Electronic Design Specialists allows the technician to trace audio, video, digital, or FG signals to the problem area, while simultaneously monitoring DC voltages along the way on its 3½-digit voltmeter. Once the technician is in the suspected area, the instrument will check semiconductor devices in circuit and display the type, polarity, and condition of the device in plain English. Different tones beep to indicate various problems. The Semianalyzer II also checks Zener diodes for their proper voltages, as well as neons, LEDs, and capacitors for leakage, noise, and voltage breakdown up to 175 volts DC using a built-in “Hi-Pot” tester. For repairing remote controls, an optional infrared detector probe is available. The Semianalyzer II comes with a three-year limited warranty and a 60-day money-back trial period. It is also available in kit form, without the 60-day trial period.

The Semianalyzer II costs $399 fully assembled, and $299 in kit form, with cabinet.—Electronic Design Specialists, Inc., 275 Rock Island Road, North Lauderdale, FL 33068; Phone or Fax: 305-720-4497.

Solid Gold Protection for Audio, Video & Computer Equipment

- Protects Gold Surfaces & Base Metals!
- Improves Conductivity!
- Reduces Intermittent Connection Failures!
- Forms Protective Coating!
- Reduces Wear & Abrasion!
- Reduces Arcing & RFI!

CAIG LABORATORIES INC.
16744 West Bernardo Dr.
Rancho Bernardo, CA 92127-1904
(619) 451-1799
FAX: (619) 451-2799

CAIG LABORATORIES INC.
16744 West Bernardo Dr.
Rancho Bernardo, CA 92127-1904
(619) 451-1799
FAX: (619) 451-2799

An ETCHED circuit board from a Printed PAGE in just 3 Hours

The ER-4 PHOTO ETCH™ KIT gives you the tools, materials and chemicals to make your own circuit boards from the artwork printed in magazines like this one. You can also do original 1X art using the enclosed patterns, tapes and drafting film. Or try the DIRECT ETCH™ system (also included) to make single circuit boards without artwork. You'll need a reflector photoflood and a UV light source (or sunlight). Why search? Get an ER-19 bulb set with your ER-4. Bulbs use an ordinary 120V socket. The ER-4 and ER-19 are stocked by electronic parts distributors or order direct. Add $4.50 for shipping. NV and CA residents must add sales tax.

ER-4 PHOTO ETCH SET .. $38.00
ER-19 LIGHT BULB SET ... 16.45

DATAK Corporation • 55 Freeport Blvd. • Sparks, NV 89431
YOUR NATURAL RESOURCE: 1992 ANNUAL CATALOG; from Jameco Electronic Components and Computer Products, 1355 Shoreway Road, Belmont, CA 94002; Phone: 800-831-4242; Fax: 800-237-6948; free.

This year's catalog from Jameco, printed on recycled paper, carries the theme "Your Natural Resource." Intended as a complete source book for electronics hobbyists and computer enthusiasts, the 90-page, full-color catalog includes descriptions of more than 3000 products, from electronic components to test and measurement equipment, from cables to complete computer systems. Other features of the catalog include educational information and a RAM cross-reference guide. To further assist customers in making purchasing decisions, Jameco offers 24-hour toll-free order placement and toll-free fax and BBS service.

TECHNI-TOOL CATALOG 41; from Techni-Tool Inc., 5 Apollo Road, P.O. Box 368, Plymouth Meeting, PA 19462; Phone: 215-941-2400; Fax: 215-828-5623; free.

The 240 pages of this catalog are filled with an assortment of tools, tool kits, and test equipment that includes more than 18,000 items from 850 manufacturers. Electronics professionals and hobbyists will find items ranging from electro-mechanical and assembly devices to electronic, telecommunication, and field-service tool kits. Also featured are full lines of tools, equipment, and accessories for computer maintenance and for the fast-growing field of surface-mount technology. Static control and clean-room items are included. Several new items are highlighted, including 100-MHz monolithic oscilloscope probes, the ESD heat gun, the Fluke 88 Automotive Meter, and the kit bag with conductive plastic cabinets for easy carrying of small electronic parts.

TEST INSTRUMENTS ANALOG & DIGITAL; from Simpson Electric Company, 853 Dundee Avenue, Elgin, IL 60120-3090; Phone: 708-697-2260; Fax: 708-697-2272; free.

This 44-page, four-color catalog features Simpson's lines of hand-held and benchtop multimeters, special function meters, clamp-on testers, and other specialized testers for electrical, electronic, and environmental applications. In addition to that equipment, the catalog covers special-function ohmmeters, voltmeters, and ammeters; insulation and temperature testers; testers for microwave and AC current leakage; and sound- and noise-measurement instruments and telephone-industry test sets. Capsule descriptions of each item, along with lists of features, ordering information continued on page 87

GET YOUR AMATEUR HAM RADIO LICENSE!
The New Code-Free Technician License Is Here!

When you pass a 55 question multiple-choice test you can:

★ Transmit over hundreds of miles with handheld two-way radios. Why pay cellular charges for your personal or emergency communications.

★ Enjoy all Amateur privileges above 30 MHz all the way up to the uncharted frontiers of microwave and amateur television!

★ Access satellite communication—talk to astronauts in orbit . . . make friends through a fleet of amateur satellites.

★ Talk to friends nearby and in faraway places using FM voice repeaters.

★ Use your personal computer and radio modem to talk to other hams or exchange computer data and much more!

Send for FREE details on how you can pass the Amateur Radio exam ... fast!

Write for FREE information today.

Amateur Radio License Training
PO Box 26348
San Francisco
CA 94126

NAME
ADDRESS
CITY
STATE
ZIP

February 1992, Radio-Electronics
Take any 3 PROFESSIONAL BOOKS for $9.95
when you join the ELECTRONICS ENGINEERS' BOOK CLUB

3258 $28.95
This book offers up-to-date instructions for troubleshooting and repairing all major brands of equipment, with hundreds of diagrams, specs, and schematics. Covers TVs, VCRs, CD players, and much more. 310 pp.

3313 $22.95
With this guide in hand, readers can produce crisp, concise papers that will leave their intended mark on committees, panels, boards of directors, and customers. Instructions on reports, proposals, books, and oral presentations. 144 pp., 37 illus.

9255 $97.50
"Outstanding, extensive reference to current technology of electronics. Covers everything from principles to applications."
—Computer Book Review
2,528 pp., 1,800 illus. Counts as 3

10016 $39.95
Design tighter, more complex circuits, on time and on budget with this book, one of the first to provide a thorough coverage of all aspects of PCB design, including CAD. 320 pp. Counts as 2

3138 $60.00
A GIANT 'Circuit Book' of over 700 of the most widely used, state-of-the-art electronic and integrated circuits ever compiled in a single source! The perfect sourcebook for all levels of electronics practitioners. 738 pp. Counts as 2

3147 $38.95
Provides a ready source of basic information on using programmable controllers to achieve a wide variety of manufacturing goals. You'll find flowcharts and step-by-step explanations to develop, improve, and monitor process control. 304 pp., 187 illus. Counts as 2

3557 $29.95
A detailed study of signal analysis as it applies to the operation and signal-generating capabilities of today's devices. Explains the composition and use of test instruments, transmission media, satellite systems, broadcast and reception facilities, and more. 272 pp.

3837 $27.95
Focuses on the specific digital circuits used in electronic power applications. Presents state-of-the-art approaches to analysis, troubleshooting, and implementation of new solid-state devices. An excellent sourcebook and a valuable edition to an engineer's library. 272 pp.

029975-8 $99.50
The essential reference for all electrical engineers. Completely revised and updated, this classic handbook covers the generation, transmission, distribution, control, conservation, and application of electrical power. 2,416 pp., 1,388 illus., 430 tables. Counts as 3

3640 $26.95
This guide brings you up-to-date on today's most advanced power supplies circuits, components, and measurement procedures. Covers switching rates up to 2-MHz and higher as well as the 20-kHz standard. 176 pp.

044847-7 $39.95
Learn about the function and design of wiring systems in a clear, structured fashion as you understand wiring components, vendor wiring diagrams, design principles, cable management, systems integration, and standards. 250 pp., 40 illus. Counts as 2

003957-7 $49.95
Written for technical personnel, engineers, managers, and operators, this is a practical guide to design, implementation, and maintenance of cable TV systems, includes an overall introduction to standard NTSC and HDTV systems. 400 pp. Counts as 2

3589 $27.95
A practical toolbox reference for anyone in the electronics field. Phagan guides you through the practical calculations needed to design and troubleshoot circuits and components. 352 pp., 270 illus.

SUPPLIES

POWER
ELECTRONIC

DESIGN & BUILD ELECTRONIC POWER SUPPLIES

COMMUNICATIONS WIRING AND INTERCONNECTION

CABLE TELEVISION & OPERATIONS

ELECTRONICS MATH

3522 POWER CONTROL
CIRCUITS, DEVICES & TECHNIQUES

3507 ELECTRONIC POWER CONTROL
CIRCUITS, DEVICES & TECHNIQUES

10111.1111 ELECTRONIC CIRCUITS

311.1111 ELECTRONIC CIRCUITS

149 - kHz standard. 176 pp.

5 - MHz and higher as well as the 20-kHz standard. 176 pp.

Instruction on standard NTSC and HDTV systems. 400 pp. Counts as 2

This one-stop sourcebook bridges the gap between data books and the designer's search for the right component. Covers how linear ICs are fabricated, how they work, what types are available, and techniques for designing. 624 pp.
How the Club Works:
The Electronics Engineers and Designers Book Club and the Electronics and Control Engineers' Book Club have joined forces to bring you all the best titles from the most prominent electronics publishers.

YOUR BENEFITS: You get 3 books for $9.95 plus shipping and handling when you join. You keep on saving with discounts of up to 50% off as a member.

YOUR PROFESSIONAL BOOKSTORE BY MAIL: Every 3-4 weeks, you will receive the ELECTRONICS ENGINEERS' BOOK CLUB News describing the Main Selection and Alternates, as well as bonus offers and special sales, with scores of titles to choose from.

CLUB CONVENIENCE & EASY RISK-FREE TERMS: If you want the Main Selection, do nothing and it will be sent to you automatically. If you prefer another selection, or no selection at all, simply indicate your choice on the reply form provided. You will have at least 10 days to return them within 10 days without obligation.

BONUS BOOKS: Starting immediately, you will be eligible for our Bonus Book Plan, with savings of up to 80% off publishers' prices.

EXCEPTIONAL QUALITY: All books are quality publishers' editions from ALL the publishers in the field especially selected by our Editorial Board to ensure the information is reliable and specific enough to meet your needs.

All books are hardcover unless number is followed by a "P" for paperback. (Publishers' Prices Shown) ©1992 EEBC, Blue Ridge Summit, PA 17294-0861
NEW! Now You're Talking!
This book will help you earn your first Amateur Radio license and get on the air. It includes all the questions on the new codeless Technician class exam and the Novice written exam. The book also provides helpful tips on equipment and antennas. Illustrated. Over 300 pages. #62-2414...16.95

Special-Order Hotline. Your local Radio Shack stocks over 1000 popular electronic components. Plus, we can special-order over 10,000 items from our main warehouse—ICs, semiconductors, tubes, crystals, even SAMS® manuals. No postage charges or minimum requirements for this service. Come in for details!

NEW! PC/XT Experimenter's Circuit Card. This premium-quality prototyping board fits a computer's XT expansion bus connector. Features durable epoxy glass construction and plated-through holes on standard 1/10" centers. Accepts D-sub connector shown at right. 3/4" x 10 1/2" x 1/16". #276-1988....29.95

Mercury Bulb Switch. Just the thing for motion detectors, alarms, experiments and school science projects. Rated 2 amps at 12VDC. Compact 1 1/2 x 1 1/2 size envelope. #275-040...1.29

(1) Two-Tone Piezo Buzzer. Extra-loud. Operates from 8 to 16VDC. #273-070...10.95
(2) Electromechanical Buzzer. Loud 12VDC buzzer in a sturdy metal case is great for alarms. #273-051...2.49
(1) Stackable Banana Plugs. Jack permits "chain" hook-ups. #274-734...2.99
(2) Nylon Binding Posts. #274-662...Set of 2/1.59
(3) Micro-Clip Jumpers. 20" long. #278-017...Pair/3.49

Super-Bright Strobe Tube. Perfect for photo replacement, hobby projects and experiments. Trigger: 4 kV. Anode: 200V min. Bulb is about 1 1/2" long and has 1/4" leads. #272-1145...3.29

(1) High-Speed 12VDC Motor. Up to 15,500 RPM! About 2" long. #273-255...2.99
(2) Low-Voltage Motor. For science projects and solar power demos. Requires 1 1/4 to 3VDC. #273-223...99¢
(1) Lead-Free Solder. 96% tin, 4% silver. 0.032" size. 0.25 oz. #64-025...1.99
(2) Rosin Soldering Paste Flux. 1 oz. #64-021...1.79
Over 100 soldering items and tools for electronics are in stock now at Radio Shack!

(1) Hi-Precision Thermistor. Resistance changes in proportion to temperature. #271-110...1.99
(2) 500-Piece Resistor Set. 1/2-watt, 5% tolerance. Includes 54 popular values. #271-312...Set 7.95

Car Electrical System Tester. Spot problems before you're stranded! Plug this analyzer into your vehicle's lighter socket. Color-coded LEDs pinpoint problems in your battery, alternator and regulator. #22-1635...5.95

Since 1921 Radio Shack has been the place to obtain up-to-date electronic parts as well as quality tools, test equipment and accessories at low prices. Our nearly 7000 locations are ready to serve you—NOBODY COMPARES Prices apply at participating Radio Shack stores and dealers. Radio Shack is a division of Tandy Corporation CIRCLE 78 ON FREE INFORMATION CARD
THE TECHNOLOGY TO PRODUCE low-cost digital clocks has existed for years. Unfortunately, the style in which these clocks have displayed the time has been mostly limited to four digits (representing hours and minutes). Few digital clocks, if any, have taken full advantage of the great capabilities of today's microprocessors to provide a more novel display... that is until the HyperClock.

The HyperClock has a custom-programmed microcontroller that generates all the signals necessary to display time in eight eye-catching (yet easily readable) modes. Among its features are the ability to simulate a sweep second hand with a ring of 60 LED's; it can graphically display the level of ocean tides; it has a "fading" display mode that causes the LED's to gradually change when updated; it has a hourly chime/alarm output; supports 50- or 60-Hz powerline operation; it has a battery backup; and an intelligent date display that knows the last day of each month. Let's take a look at those features in greater depth.

The digital display

In four of the HyperClock's eight modes it can display time with a clever twist that those of you that grew up before the "digital-clock revolution" will appreciate. You may recall that it was fairly common for folks to speak of how many minutes it was till the next hour. For example, people would say "it's ten before five" rather than "it's four-fifty." Well, the HyperClock can actually "display" the time in that manner.

To help explain how that is done, take a look at Fig. 1-a; it shows the six seven-segment LED displays that are used to form the clock's digital display. During the first 30 minutes of each hour, the two middle digits signify the hour and the rightmost digits indicate minutes past the hour (like most digital clocks), and the two digits on the left are blank. Figure 1-b shows how eleven fourteen (or literally "fourteen after eleven") would look in this mode.

However, once the clock advances to beyond half-past the hour, the right digits go blank, the middle display would increment to display the next hour, and the left two digits would indicate how many minutes are left until that hour. For example, if it was thirteen minutes to twelve (or 11:47), the display would look like Fig. 1-c. You could read that literally as "thirteen before twelve."

On the hour, the clock just displays the hour so the left and right minute displays remain blank (see the display for 12 o'clock shown in Fig. 1-d).

As mentioned earlier, there are 60 LED's arranged in a circle to display seconds or an approximation of the current tide level in your locale. The LED's act as a light chaser sweeping through the seconds of a minute. They can also show the relative tide level by moving from the 12 o'clock position at high tide to...
the 6 o'clock position at low tide. The timing of the tide-indicator mode is set to display two complete tide cycles in 24.51 hours just as it should. (For more on this subject see the sidebar entitled "A Bit About Tides.")

Fading-out the digits

The HyperClock also differs from other clocks in how it updates its display. In typical clocks, the display digits abruptly change as time passes. However, in four of HyperClock's eight modes when a digit must be updated, the LED segments representing its old value are dimmed as the segments for the new value become brighter. Likewise, each LED in the light chaser fades off rather than turns off. This animation is rather relaxing to watch.

These display effects are accomplished by a mixture of multiplexing and duty-cycle modulation. The seven-segment displays are all common-anode types, so each digit has its own anode-driver transistor. In typical multiplexed-display fashion, the cathodes of corresponding segments of each digit are connected together and share a common driver.

Like any other multiplexed display when the segment data for a digit is placed on the segment data lines, the anode driver for that digit is activated, and the seven-segment display lights to exhibit the appropriate digit. All the other digits are off at this time. After a short period of time (1.83 ms) the segments are turned off via the segment lines and the anode driver is deactivated. The anode driver for the next digit is then activated, the segment data for that digit is placed on the segment lines, and the process continues until all the digits have been lit. Since the human eye is too slow to see the digits turn on and off, it appears as though they are all on simultaneously. Multiplexing the digits in this fashion reduces the number of pins on the microcontroller needed to control the LED displays.

HyperClock's fading effect is created by modulating the duty cycle of the segment enable signals. When a seven-segment display is enabled, the segment data lines spend part of the time in states corresponding to the current digit to be displayed, and the rest of the time in states corresponding to the next or "future" digit that will be displayed. Each time the digit is enabled, the duty cycle will favor the future-digit data more and more, until only the new digit is displayed, and the process repeats each time the display must be updated.

The microcontroller

At the heart of the HyperClock is an Intel 8749 microcontroller. It is programmed to perform a variety of functions, namely: display multiplexing, time-keeping, receiving switch input, coordinating the hour and alarm chime, and initiating a power-fail mode that permits the time-keeping functions to continue while blanking the display to conserve backup-battery power.

The 8749 has 2K of EPROM, 128 bytes of RAM, 24 I/O pins, a programmable 8-bit timer, and an interrupt-control structure. The custom-program placed in the processor to create HyperClock's special effects extensively exercises all of the chip's features; Fig. 2 contains a simplified flow chart for the HyperClock program. The program is shown divided into two sections: an interrupt routine and a main loop.

The interrupt routine is mainly responsible for taking the segment data from the segment-data buffer in the microcontroller and placing it on the display-control lines in a multiplexed fashion. The interrupt that initiates the routine comes from the 8749's internal timer, which has been programmed to execute the interrupt every 1.83
ms. Using an interrupt-program segment in this way allows the display's fading effect to appear gradual because the process of updating the display occurs at regular intervals. This routine is also responsible for checking a powerline-frequency input on the microcontroller to determine if a powerline cycle has passed. If so, it informs the main loop of the program.

The main loop keeps track of the number of cycles that pass so it knows when to update the segment-data buffer or initiate the alarm or chime. If no powerline cycles are detected, the main loop assumes AC power has been terminated and puts the clock in power-fail mode. In that mode it shuts off the display and allows the microcontroller to "invisibly" keep track of time via a 6-MHz crystal. The main loop also processes input from the clock's switches (we'll talk more about that later).

For all that goes on inside the microcontroller, the functions assigned to its pins by the HyperClock program (see Fig. 3) are relatively easy to understand. Let's take them one group at a time.

The pins labeled A through G and DP (pins 12–19 in Fig. 3) are the outputs for the display-segment data. They indirectly control the cathode drivers for the multiplexed display. Similarly, the outputs labeled DE0–DE4 (pins 21–24 and 35) control the anode drivers for the display via demultiplexer chips, which we'll discuss later.

The pins labeled S1–S7 (pins 27–34) are used as function-switch inputs. The switches connected to those inputs (DISPLAY MODE, DISPLAY DATE, DISPLAY ALARM, INCREMENT HOUR/MONTH/MODE, INCREMENT MINUTE/DAY, SNOOZE/TIDE ADVANCE, and ALARM TOGGLE, respectively) activate various chip functions by grounding those pins. A complete explanation of the switches' functions will be presented later.

Low-going pulses from the pin labeled CHIME (pin 34) activate the chime circuit, which is composed of discrete components. The microcontroller triggers the chime circuit with a 12.8-ms wide low-going pulse at one-second intervals. When not in alarm mode, the chime signals the hour by chiming an appropriate number of times, and signals each half-hour by chiming once.

When the microcontroller is in the "alarm" mode, the chime circuitry is used as an alarm annunciator. In this mode the clock does not chime on the hour and half hour. That permits you to use the HyperClock as an alarm clock without the chimes disturbing you until the appointed time.
FIG. 4—THE HYPERCLOCK DISPLAY is controlled by only 13 data lines from the microcontroller.

The line input (pin 6) is used by the IC to accept a 50- or 60-Hz square wave. The square wave is used for time keeping and to detect AC-power failure as mentioned earlier. The 50Hz/60Hz input (pin 1), tells the 8749 what frequency to expect at the line input. If pin 6 is low, the 8749 assumes the signal is at 60 Hz, but if that pin is high the 8749 prepares for 50-Hz operation.

As its name implies, the reset input (pin 4) initializes the microcontroller. A low at that input will erase all modes and settings previously entered.

The x1 and x2 inputs (pins 2 and 3) need to be connected to the 6-MHz crystal, XTAL1, mentioned previously. Last, but certainly not least, are the 5-volt power inputs (pins 5, 26, and 40) and the grounds (pins 7 and 20). Those inputs of course, are self explanatory.

The display circuit

While the microcontroller does a great deal, the HyperClock requires some additional circuitry to make it a complete timepiece. For example, the microcontroller cannot provide nearly enough current to drive the LED display. For that reason additional anode and cathode drivers were included in the design. They are shown along with the other display components in Fig. 4.

The control signals for the LED cathodes originate from the A–G and DP pins of the microcontroller. The A–G signals are sent to a ULN2003 buffer/driver (IC7) which contains seven high-current drivers. Each output is capable of providing 500 mA of peak drive current. Since the ULN2003 contains only seven of the eight cathode drivers required, a Darlington driver was made out of two 2N2222 transistors to drive the DP line.

The DEC through DE4 outputs generated by the microcontroller are decoded by two 74LS145 decoder/driver IC's (IC5 and IC6). Only one decoder output is driven low at any time. Each 74LS145 output supplies current to a 2N2907 drive transistor that sources current for the anodes of a group of LEDs or a display digit.

Note that there are additional LEDs to provide an AM/PM in-
The most noteworthy of the clock's remaining circuitry (shown in Fig. 5) is the chime circuit. When the microcontroller generates a low-going pulse on pin 34, it activates Q19. That transistor then provides sufficient current to drive Q1 into saturation.

With Q1 on, the negative side of C13 is effectively grounded, which causes it to charge. When Q1 is turned off, C13 discharges through a 470K resistor (R13). The resistor/capacitor combination has a time constant of 0.47 seconds. The exponentially decaying signal produced by the discharge is buffered through a unity-gain amplifier (IC3-a) to a 1N914 diode (D3).

The cathode of D3 is connected to the output of a 50% duty cycle 5-kHz square-wave oscillator consisting of IC2-a, R7, C10, and Q2. Transistor Q2 serves to provide a dynamic pull-up for that oscillator since the LM393 is an open-collector type comparator. The 5-kHz
square wave present at the emitter of Q2 is clamped in amplitude by the buffered exponential waveform from IC3-a, so the 5-kHz signal decays in amplitude in step with the discharge of C13.

The decaying 5-kHz signal is fed through C14 to a second-order low-pass filter tuned to approximately 5 kHz. The filter is composed of a LM324 op-amp (IC3-d), C11, C12, C14, R10, and R11. It removes the high-frequency components contained in the decaying square wave to smooth it out. From there the signal is passed to two more op-amps (IC3-b and IC3-c) that form a push-pull amplifier, which provides the piezo transducer with a 10-volt peak-to-peak drive signal.

While the output signal is not exactly a pure sine wave, the audible result sounds pretty much like a small bell. If you feel the chime is too loud, you can eliminate half of the push-pull amplifier by jumpering one side of the transducer to the 5-volt supply, which is available via JU2.

The entire circuit receives power from a 9-VAC wall-mount transformer. The 9-VAC supply is fed to a full-wave bridge rectifier and filtered by C3 to act as an unregulated 12-volt DC supply. The 12-volt supply powers the display circuitry, op-amps, the comparators, and an LM340-5 (IC1) 5-volt regulator. The regulator in turn powers the 5-volt supply line.

If AC power is interrupted, a 9-volt battery connected to J1 sources current to the regulator to keep the HyperClock functioning. If you plan to unplug the clock for any length of time, the battery should be disconnected to conserve its life.

A BIT ABOUT TIDES

Predicting the tides in any given locale is not a simple job. Tides are affected by many cyclic astronomical forces: the declination in the orbits of the moon and sun relative to a point on the Earth, and the local geography of the coast line in the area in which you live, to name a few. HyperClock predicts the tidal levels from your area from your newspaper or library. The information can be used to initially set the tide indication on your HyperClock to a low or high point. From then on the graphic display will be an aid in the determination of the relative level of the tides in your locality.

The line input (pin 6) of the microcontroller cannot be driven directly from the 12-VAC wall transformer. So the transformer signal is conditioned by a Schmitt-trigger circuit to generate a suitable square wave. First the signal’s amplitude is reduced by a voltage divider consisting of R1 and R58, and its positive excursions are limited to about 5 volts by D1. The limited signal is then sent to the inverting input of the LM393 comparator. Positive feedback is applied to the comparator’s non-inverting input by R4 to prevent it from generating false signals. The comparator drives the microcontroller’s line input with the resulting square wave.

Construction

In order to build a HyperClock, you’ll need a pre-programmed 8749 microcontroller. A preprogrammed and tested microcontroller is available from the supplier mentioned in the parts list. The executable code to program an 8749 microcontroller is available from SkiTronix, P.O. 9685, Spokane, WA 99209:

- A pre-programmed HyperClock 8749 microcontroller with firmware license—$100.
- An etched and drilled PC board—$25.
- The foil pattern artwork suitable for conversion to film—$3.
- Software on floppy disk—$5.00 postpaid
- A complete kit of parts including the PC board, programmed 8749 IC, LED’s, displays, electronic components, and the wall-mount transformer—$70.00.

A detailed drawing of the HyperClock wood case will be supplied with all orders. Please include $3.00 for shipping and handling. Washington residents must include an additional 7.9% sales tax.

PARTS LIST

<table>
<thead>
<tr>
<th>IC3—LM324 quad-op-amp</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC4—8749 microcontroller with HyperClock program</td>
</tr>
<tr>
<td>IC5—LM393 dual-comparator</td>
</tr>
<tr>
<td>IC6—74LS145 1-of-8 decoder/driver</td>
</tr>
<tr>
<td>IC7—ICL203 high-current driver</td>
</tr>
<tr>
<td>D1, D3—1N914A diode</td>
</tr>
<tr>
<td>D2—1N4001 diode</td>
</tr>
<tr>
<td>Q1, Q2—1N914A diode</td>
</tr>
<tr>
<td>Q18—2N2222 NPN transistor</td>
</tr>
<tr>
<td>Q19—2N2907 PNP transistor</td>
</tr>
<tr>
<td>BR1—1-amp, 50 volts PIV bridge rectifier</td>
</tr>
<tr>
<td>DISP1, DISP3—Panasonic L526RA or similar 7-segment display (for the smaller digits)</td>
</tr>
<tr>
<td>DISP2—Panasonic L526RA or similar 7-segment display (for the larger digit)</td>
</tr>
<tr>
<td>LED1—LED66—light-emitting diodes</td>
</tr>
<tr>
<td>XTAL1—6-MHz crystal</td>
</tr>
<tr>
<td>T1—9-VAC 500-mA wall-mount transformer</td>
</tr>
<tr>
<td>BZ1—piezo transducer</td>
</tr>
<tr>
<td>S1—S7—miniature momentary-contact pushbutton switch</td>
</tr>
<tr>
<td>B1—9-volt battery</td>
</tr>
</tbody>
</table>

Miscellaneous:
- T-220 style heatsink, PC board or perforated construction board, battery clip, shorting blocks, solder, etc.
- Note: The following items are available from SkiTronix, P.O. 9685, Spokane, WA 99209:
 - A pre-programmed HyperClock 8749 microcontroller with firmware license—$100.
 - An etched and drilled PC board—$25.
 - The foil pattern artwork suitable for conversion to film—$3.
 - Software on floppy disk—$5.00 postpaid
 - A complete kit of parts including the PC board, programmed 8749 IC, LED’s, displays, electronic components, and the wall-mount transformer—$70.00.

The HyperClock to a low or high point. From initially set the tide indication on your newspaper or library. The information can be used to set the tide indication on your HyperClock to a low or high point. From then on the graphic display will be an aid in the determination of the relative level of the tides in your locality.

The entire circuit receives power directly from the 12-VAC wall transformer. The 12-volt supply powers the microcontroller’s line input with the resulting square wave. The square wave present at the emitter of Q2 is clamped in amplitude by the buffered exponential waveform from IC3-a, so the 5-kHz signal decays in amplitude in step with the discharge of C13.

The decaying 5-kHz signal is fed through C14 to a second-order low-pass filter tuned to approximately 5 kHz. The filter is composed of a LM324 op-amp (IC3-d), C11, C12, C14, R10, and R11. It removes the high-frequency components contained in the decaying square wave to smooth it out. From there the signal is passed to two more op-amps (IC3-b and IC3-c) that form a push-pull amplifier, which provides the piezo transducer with a 10-volt peak-to-peak drive signal.

While the output signal is not exactly a pure sine wave, the audible result sounds pretty much like a small bell. If you feel the chime is too loud, you can eliminate half of the push-pull amplifier by jumpering one side of the transducer to the 5-volt supply, which is available via JU2.

The entire circuit receives power from a 9-VAC wall-mount transformer. The 9-VAC supply is fed to a full-wave bridge rectifier and filtered by C3 to act as an unregulated 12-volt DC supply. The 12-volt supply powers the display circuitry, op-amps, the comparators, and an LM340-5 (IC1) 5-volt regulator. The regulator in turn powers the 5-volt supply line.

If AC power is interrupted, a 9-volt battery connected to J1 sources current to the regulator to keep the HyperClock functioning. If you plan to unplug the clock for any length of time, the battery should be disconnected to conserve its life.

A BIT ABOUT TIDES

Predicting the tides in any given locale is not a simple job. Tides are affected by many cyclic astronomical forces: the declination in the orbits of the moon and sun relative to a point on the Earth, and the local geography of the coast line in the area in which you live, to name a few. HyperClock predicts the tidal levels from your area from your newspaper or library. The information can be used to initially set the tide indication on your HyperClock to a low or high point. From then on the graphic display will be an aid in the determination of the relative level of the tides in your locality.

The line input (pin 6) of the microcontroller cannot be driven directly from the 12-VAC wall transformer. So the transformer signal is conditioned by a Schmitt-trigger circuit to generate a suitable square wave. First the signal’s amplitude is reduced by a voltage divider consisting of R1 and R58, and its positive excursions are limited to about 5 volts by D1. The limited signal is then sent to the inverting input of the LM393 comparator. Positive feedback is applied to the comparator’s non-inverting input by R4 to prevent it from generating false signals. The comparator drives the microcontroller’s line input with the resulting square wave.
FIG. 6—DISPLAY-SIDE PARTS-PLACEMENT diagram can be used to locate most of the HyperClock's components.

ers. The software is also available on floppy disk from the source mentioned in the parts list.

A 6.5- x 6.5-inch octagon-shaped PC board is also available from that supplier to help you assemble a HyperClock of your own. If you wish, you can make your own double-sided printed-circuit board from the foil patterns included in this article or using artwork from the supplier listed in the parts list. Of course, you could even use a point-to-point wiring technique, so we'll discuss that briefly later on.

Figures 6 and 7 show the parts-placement diagrams for the HyperClock (6 shows the display side and 7 shows the solder side) for those of you that will use a PC board. All components, except for the wall-mount transformer, are shown mounted on the circuit board. Note that the switches can be placed on either side of the board, depending on the cabinet you wish to place the clock in. There are some additional connector pads on the board so you can run wires to the switches should your cabinet design require that they be located off the PC board. Figure 8 shows a completed HyperClock board. The design readily lends itself to many different project cases. However, make sure that the cabinet you choose has some openings in the back to allow a little cool air to flow around the clock's 5-volt regulator and heat sink. If you like the case used for the prototype, you can build one out of a length of wood molding as the author did.
The PC board was designed to work with many different dual-digit displays, so you don't necessarily have to restrict yourself to the Panasonic units mentioned in the parts list. Just make sure that whatever you use is a pin-for-pin same-size replacement. If you do use the recommended units, be sure to raise the two minute displays up from the board so that their viewing surfaces are flush with that of the hour display.

Lastly, the PC board provides some holes for wire ties to hold the 9-volt battery and the wall-mount transformer leads. You should take advantage of them. Remember to install the 9-volt backup battery and connect JU1 and JU2 to select 50- or 60-Hz operation and the volume of the chime, respectively.

When you connect the clock to power it should come up at 12:30 AM and will be ready to accept the current time, alarm time, date, and the tide level if desired. If you run into any difficulty, you may find some of the troubleshooting tips provided in the following section useful. However, if all is well, you can proceed to the "operating" section to prepare the clock for use.

Point-to-point wiring

Working with perforated construction board and point-to-point wiring gives you the freedom to design your own display layout. One nice alternate design would be to place the 60 LED's in the form of a full cycle of a sine wave, especially if you set the clock to display the tide level.

An early prototype of the clock was built using wire wrap. Regardless of the wiring technique, you should invest in a large enough piece of perforated construction board (at least 6 x 6 inches) so that you can make your custom display with plenty of room to spare for all the support electronics.

Furthermore, when you are shopping for the hour and minute displays, select minute displays that are somehow distinctly different than the hour display. That will make the display more easily readable in the "minutes before the hour" mode.

It is also suggested that you don't place the display components on the same side of the board as the heatsink/regulator assembly, C3, and the 9-volt battery. Doing so would increase the profile of the display side of the board, forcing you to place the LED lens at an undesirable distance from the display components.

Aside from those suggestions, layout is not critical, so if you observe good construction and wiring techniques you should not have any problem getting the clock to function. However, if you should encounter some difficulty, the following hints ought to help:

- If no LED's are illuminated when you apply power, first check the unregulated supply for a minimum of 10 volts DC. While only 2 to 3 volts overhead are required to operate the 5-volt regulator, at least 10 volts is required to drive the LED's sufficiently.
- If the power-supply circuitry is okay, check the wiring around the LM393 (IC2) from the bridge rectifier and going to IC4 pin 6; the microcontroller looks at that line and if there is no line frequency at that input, the clock will shut down the LED drivers (as we explained earlier).

Since most of the wiring in the clock runs between the LED drivers and the LED's, it is likely that you could have made an error in one or more of those connections. If you observe that any active LED segments do not form numbers, then you should check the connections from IC4 to IC7 and the corresponding connections to the cathodes of the LED displays. A mistake between IC4 to IC5 and IC6 will make the displayed digits and/or seconds appear out of order. An error in wiring from the outputs of the 74LS145's to the
FIG. 8—A FINISHED HYPERCLOCK. The
PC board makes assembly neat and
straightforward.

TABLE 1—MODES AND THEIR FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fading Updates</td>
<td>0</td>
</tr>
<tr>
<td>Plain Updates</td>
<td>1</td>
</tr>
<tr>
<td>Before-The-Hour Display</td>
<td>2</td>
</tr>
<tr>
<td>Plain Display</td>
<td>3</td>
</tr>
<tr>
<td>Tide Light Chaser</td>
<td>4</td>
</tr>
<tr>
<td>Seconds Light Chaser</td>
<td>5</td>
</tr>
</tbody>
</table>

THE DISPLAY-SIDE FOIL PATTERN can be used to generate one side of the clock's PC board.

THE DISPLAY-SIDE FOIL PATTERN can be used to generate the solder side of the clock's PC board.

driver transistors, which connect to the LED anodes, will cause the same effect.

Operation

The functions performed by S4 and S5 in the HyperClock depend on the state of the three display switches (S1 through S3). If none of the display switches are depressed, pressing S4 advances the current hour displayed and pressing S5 advances the minute display. That is how you set the time.

Pressing and holding down S1 (the Display-Mode button) causes the clock to display the number of the current operating mode, which can be altered by pressing S4 (S5 will do nothing). The various operating modes and the features they support are listed in Table 1.

If you depress and hold switch S2 (the Display-Date button) the current month and day are displayed. With that switch depressed, the month and day can be advanced by pressing S4 and S5, respectively.

Activating switch S3 will cause the clock to display the time the alarm is set for. By pressing S3 along with S4 you can alter the hour setting, and by pressing S3 and S5 simultaneously you can change the minute setting.

Moving on to the last two switches, the Alarm Toggle switch (S7) determines the state of the alarm and the hour chime of the clock. For example, on power-up the hour chime is enabled and the alarm is disabled. If S7 is pressed once, the alarm is turned on and the hour chime is disabled. Depressing the switch again will turn off both the alarm and the hourly chime.

The Snooze/Tide Switch (S6) has a dual purpose. If the HyperClock’s alarm was armed and goes off, that button will silence the alarm for an additional ten minutes. You can forestall the alarm in this way as many times as you like. If the alarm is disabled, and the clock is in a mode that supports the tide-level display (modes 4 through 7), pressing S6 will advance the tide indication on the 60-LED display to set its position.
WARNING!

Please note that unauthorized wire and electronic communications interception and interception of oral communications is illegal under Federal and State Law. In addition Federal Law renders illegal the intentional manufacturing, assembling, possessing, or selling any electronic, mechanical, or other device knowing or having reason to know that the design of such device renders it primarily useful for the purpose of surreptitious interception or wire, oral, or electronic communications. Federal law imposes both civil and criminal penalties for violations of the applicable statutes. Thus, the use of the Scanner Converter described in this article is intended for and should be restricted to educational, scientific, and/or informational purposes. This is not intended to constitute legal advice and readers are advised to obtain independent advice as to the propriety of their use thereof based upon their individual circumstances and jurisdictions.

SCANNER CONVERTER

Upgrade your scanner to receive signals in the 800–900 or 900–1000 MHz bands!

WILLIAM SHEETS and RUDOLF F. GRAF

THE 800–1000 MHz BAND OF FREQUENCIES, lying in the portion of the radio spectrum known as the UHF band, has recently become populated with many signals of interest to the shortwave listener (SWL) and scanner hobbyist. Originally, the 800–890 MHz portion was allocated to UHF TV broadcasting. Lack of interest in these frequencies (formerly TV channels 70–83) and a pressing need for spectrum space was largely responsible for re-allocation. The portion of spectrum now includes business radio, public safety (police, fire, etc.) and general-purpose two-way radio. The lower portion is largely used by cellular mobile radio telephone services. The upper portion (above 900 MHz) is used for two-way radio, industrial radio, amateur radio, and miscellaneous purposes, such as wireless video and audio links, studio to transmitter (STL) links, and various Part 15 applications (low-power license-free uses), and even more! Figure 1 summarizes the current frequency allocations.

The frequencies are almost in the microwave region. Until recently receivers for this band were scarce and usually special-purpose types. In the past few years, a number of communications receivers have been made available, covering from around 25 MHz or so up to over 1000 MHz. Some of the more expensive scanners cover portions of the 800–1000 MHz range, while others block out the bands.

Now you can build a converter that will allow the reception of signals from 800–1000 MHz on any scanner that covers frequencies in the 400–500 MHz range. The availability of high-performance transistors and Monolithic Microwave Integrated Circuits (MMIC’s), together with very small components such as chip capacitors and prepackaged mixer assemblies, have made this feasible.

The antenna shown in the opening photograph is cut specifically for the 800-MHz band. It's available from the Cellular Security Group, 4 Gerring Road, Gloucester, MA 01930. Contact them directly for infor-
FIG. 1—THE 800–1000 MHz UHF BAND has many signals of interest to the shortwave listener. Here is a summary of the current frequency allocations.

FIG. 2—BLOCK DIAGRAM. A GaAsFET feeds a double-tuned filter and a MMIC RF amplifier that feeds a second double-tuned filter. That feeds a double-balanced mixer, or DBM. The DBM is also fed with a local oscillator signal of either 400-MHz or 500-MHz range. By simple tuning adjustment it can be set up for 800–900 or 900–1000 MHz ranges and optimized for any 30–40 MHz segment in the range. It will work well over the entire 100-MHz range if circuits are stagger-tuned, with only slightly reduced sensitivity. Applications of the converter are as follows:

1. Monitoring 800–900 or 900–1000 MHz ranges.
2. Amateur use for reception of 900–1000 MHz range.
3. Reception of 902–928 MHz Amateur TV, using a standard TV receiver that covers UHF channels 20–23, and reception of wireless TV links operating in the 900-MHz range.
4. in conjunction with a 500-MHz counter, the measurement of frequencies in the 800–1000 MHz range.

Referring to the block diagram (Fig. 2), the converter uses a low-noise dual-gate...
GaAsFET (gallium-arsenide field-effect transistor) as an RF preamplifier. That feeds a double-tuned filter and a second RF amplifier using a MMIC. The MMIC feeds a second double-tuned filter. The overall RF gain is about +27 to 30 dB and the bandwidth is around 30 MHz. That provides good rejection of out-of-band signals and helps minimize the feedthrough of unwanted signals in the 400–500 MHz range. The RF amplifier feeds a double balanced mixer, or DBM. The DBM is also fed with a local-oscillator signal of either 400-MHz (for 800–900 MHz conversion) or 500-MHz (for 900–1000 MHz conversion). The mixer output is therefore kept in the 400–500 MHz range covered by most scanners. The receiver should be suitable for the type of transmission to be received. A scanner is generally set to receive the center position. That provides good rejection of narrowband frequency modulation (NBFM) signals commonly used in this range in steps of 12.5 kHz, 25 kHz, etc. A TV receiver tuned to the lower UHF channels (14–23) can be used to receive TV signals in the 900-MHz range, such as amateur TV (ATV) and the new 900-MHz wireless video links. Converter output is at 50–75 ohms.

The local oscillator (LO) is a 50-MHz crystal-based overtone oscillator. The second harmonic of the oscillator circuit (at 100 MHz) is used. A fine-tuning control is provided to compensate for any 800–1000 MHz signals not fitting the popular 12.5-kHz channel spacing used by many scanners. The LO can be shifted at least ±6 kHz to act as a fine-tuning control, if needed. Normally, the fine tuning is left set to center position.

The 100-MHz oscillator signal is fed to a multiplier stage using a UHF large-signal transistor as a quadrupler (×4) or a quintupler (×5) stage. The appropriate harmonic (4th or 5th) is selected by a triple tuned filter and the signal at 400 or 500 MHz is delivered to the mixer. The filter can select either signal depending on the setting of three variable capacitors. A diode detector samples the output of the filter so that a VOM can be used to align the filter simply by “peaking” the trimmer capacitors for maximum output.

It is possible to just use the 400-MHz signal. However, for reception of 900–1000 MHz, a receiver capable of tuning 500–600 MHz would be needed. Most scanners cover only up to 512 MHz or thereabouts. Therefore, the 500-MHz signal is necessary with these scanners for reception of frequencies over 912 MHz.

The converter board contains a switching network for switching the converter in or out. In the "out" position, the input jack, J1, simply connects to the output jack, J2, and all frequencies from DC to 550 MHz are passed. In this position, the DC line to the converter circuitry is also opened, thus disabling the converter.

Referring to Fig. 3, let's go over a detailed description of the circuit. Signals enter J1 from the antenna and are routed to S1, a DPDT switch with only one side used. With S1 in the "off" position (converter off), signals from S1 are routed to S2-a, another DPDT switch. (Slide switches S1 and S2, although mounted at different locations on the PC board, are mechanically linked by an actuator rod assembly, so that correct switching is maintained.) Next, signals are routed through S2-a to low-pass filter L16-C15, and then to J2. The low-pass filter rejects signals above 600 MHz. A 50-ohm im-

TABLE 1—800 TO 100-MHz CONVERTER SPECIFICATION

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freq Range</td>
<td>400-500 MHz</td>
</tr>
<tr>
<td>RF Input</td>
<td>800-900 or 900-1000 MHz</td>
</tr>
<tr>
<td>IF Output</td>
<td>400 or 500 MHz, internally selectable</td>
</tr>
<tr>
<td>LO Freq</td>
<td>400 or 500 MHz, internally selectable</td>
</tr>
<tr>
<td>Noise Figure</td>
<td><2dB typical</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>gives 0.15 μA/12dB SINAD, 5 kHz deviation with typical scanner</td>
</tr>
<tr>
<td>Power Gain, RF to IF</td>
<td>+22 dB typical</td>
</tr>
<tr>
<td>(f_n = 900)</td>
<td>(f_{out} = 500) MHz</td>
</tr>
<tr>
<td>(R_S = R_L = 50) Ω</td>
<td></td>
</tr>
<tr>
<td>RF Bandwidth</td>
<td>40 MHz @ 3dB typical @ 900 MHz</td>
</tr>
<tr>
<td>Maximum Input Level</td>
<td>-40 dbm @ 1dB compression</td>
</tr>
<tr>
<td>Tuning Range</td>
<td>800-1000 MHz</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>Approx 90 dB (0.1 μc to 3000 μc)</td>
</tr>
<tr>
<td>Voltage and Current</td>
<td>+15-25 VDC @ 100mA, Neg ground or 12-16 VAC @ 300 mA peak, can be modified for +12 VDC regulated</td>
</tr>
<tr>
<td>Freq Control of LO</td>
<td>XTAL controlled .005%</td>
</tr>
<tr>
<td>Fine Tuning Range</td>
<td>±7 kHz typical</td>
</tr>
<tr>
<td>PC Board (finished) size</td>
<td>3½" × 5" × 1" high</td>
</tr>
<tr>
<td>RF to IF Feedthrough</td>
<td>>60 dB @ 400 MHz</td>
</tr>
<tr>
<td>Isolation (IN-OUT) DB</td>
<td></td>
</tr>
<tr>
<td>Insertion Loss in dB with converter off</td>
<td>-1dB typical @ 400 MHz</td>
</tr>
<tr>
<td></td>
<td>-0.3 dB typical @ 30 MHz</td>
</tr>
<tr>
<td>Switching</td>
<td>Built-in</td>
</tr>
</tbody>
</table>

For more detailed information, refer to the technical documentation provided.
PARTS LIST

All resistors are 1/4-watt, 5%, unless otherwise noted.
R1—100,000 ohms, 1/4-watt
R2—470,000 ohms, 1/4-watt
R3—180 ohms, 1/4-watt
R4—180 ohms
R5—390 ohms, 1/4-watt
R6—1000 ohms
R7—10,000 ohms, trimmer potentiometer with shaft
R8—10,000 ohms
R9—15,000 ohms
R10—3900 ohms
R11—330 ohms
R12—100 ohms
R13—15,000 ohms
R14—2200 ohms
R15—10 ohms, 1/4-watt
R16—47 ohms
R17—1 megohm
R18—15 ohms, 1/2-watt
R19—390 ohms
R20—1000 ohms
R21—390 ohms, 1/8-watt
R22—15000 ohms
R23—180 ohms
R24—180 ohms, 1/2-watt
R25—100,000 ohms, 1/4-watt

All capacitors are 1/4-watt, 5%, unless otherwise noted.
C1, C8, C9, C13, C14—1-5 pF trimmer
C2—C7, C10—C12, C16, C28, C31—100 pF, 50 volts, chip
C15—5.6 pF NPO ± 0.25 pF
C17—100 pF NPO, 5%
C18—39 pF NPO, 5%
C19—22 pF NPO, 5%
C20—2.2 pF NPO, ± 0.25 pF
C21, C29—470 pF ± 20%, disc
C22, C30, C32, C35, C36—0.01 µF, 50 volts, GMV disc
C23—33 pF NPO ± 5%
C24—56 pF NPO ± 5%
C25—C27—2-10 pF trimmer
C33—10 µF/16 volts, electrolytic
C34—470 µF/25 volts, electrolytic

Inductors
L1-L5, L16—L12—part of PC-board etching
L6, L15—ferrite bead
L7—0.2-0.32 µH (9 1/2 turns #22 enamelled wire)
L8—0.05-0.1 µH (3 1/2 turns #22 enamelled wire)
L9—0.05-0.1 µH (3 1/2 turns #22 enamelled wire)
L13—1.0 µH RF choke
L14—ferrite bead on R20
L16—½-turn #22 enamelled wire, ¼-inch diameter (see text)

Other components
J1, J2—Female BNC connector
MOD1—MCL SBL-IX mixer module
S1, S2—DPDT PC-mount slide switch
XTAL1—50-MHz 3rd overtone crystal
Miscellaneous: PC board, small-diameter 50-ohm coaxial cable, 1/4-inch diameter (see text), hardware as required, brass rod or wire, 24-41 nickel grommets, line cord if required, solde; etc.

Note: The following items are available from North Country Radio, PO Box 53, Wykagyl Station, New Rochelle, NY 10804:

- Converter kit including all parts except case and transformer —$67.50 + $3.50 S&H
- PC board only —$13.50 + $3.50 S&H
- Transformer—$9.50 + $3.50 S&H

New York State residents must add appropriate sales tax.

The drain of Q1 feeds double-tuned filter C8-L2 and C9-L3, and R4 feeds bias to the drain of Q1. Typically, the tuned circuits in this RF amplifier are tuned to 900 MHz with about 2.5-pF capacitance, and L1-L5 have an equivalent inductance of 0.012 microhenry, although these values are typical and cannot really be isolated or measured. Inductors L2 and L3 are printed on the PC board and are proportioned to give the desired coupling and inductance. Their layout is critical and cannot be changed.

For matching purposes, at 900 MHz, C1 and L1 must form a resonant circuit as well as an impedance transformer to step up the 50-ohm impedance to somewhere between 800 and 1000 ohms. The input impedance of the gate of RF amplifier Q1 is about 1 to 2K or higher, and shunted by about 1 pF capacitance. The output impedance of Q1 is between 1000 and 2000 ohms with 0.5-1 pF shunt capacitance. The voltage gain of Q1 is about 7.5 from gate 1 to drain, or about 17.5 dB.

There is about 1.5 dB loss in the output-coupling network and about 0.5 dB loss in L1, so that a total of about 15 dB gain is observed. The device is rated at 1.1 dB noise figure, but allowing 1 dB (approximate) loss in L1 and S1, an actual NF of about 2 dB will be obtained. That is adequate since cable losses in the typical antenna system will be around 6 dB anyway.

Transistor Q1 is a dual-gate gallium arsenide field effect transistor (GaAsFET) biased to about 5-10 mA drain current; R3 provides a self bias for Q1. Chip capacitors C4 and C5 are RF-bypass capacitors soldered directly to the solder side of the PC board for low inductance. They are the only type of capacitor that provides reliable bypassing at 900 MHz. Resistors R1 and R2 bias gate 2 of Q1.

The signal from L3 is coupled to L4-L5 by the parasitic capacitance at S1, which is about 1 dB (approximate) loss in L1, and about 0.5 dB loss in L5, and about 0.5 dB loss in L1, so that a total of about 15 dB gain is observed. The device is rated at 1.1 dB noise figure, but allowing 1 dB (approximate) loss in L1 and S1, an actual NF of about 2 dB will be obtained. That is adequate since cable losses in the typical antenna system will be around 6 dB anyway.

The signal from L3 is coupled through chip-capacitor C10 to IC1, a monolithic microwave IC (MMIC) amplifier with 50-ohm input and output. Resistor R5 provides about 17 mA operating bias for IC1, which gives about 13 to 15 dB gain at 900 MHz. The output of IC1 is coupled via C12 to filter L4-L13 and L5-L14. The five tuned circuits in this
The converter yield an overall RF bandwidth of 40 MHz at the 3 dB points. The signal from L5, about 28 to 30 dB stronger than the signal at J1, is applied to a mixer module (MOD1), an MCL SBL-IX, where it is mixed with the LO signal at 400–500 MHz. The IF output is then fed to S2-a, where it is connected to J2 via low-pass filter L16–C15.

An LO signal of either 400 or 500 MHz is required by mixer MOD1. It is generated as follows: Q2, a 2N3563, is configured as an overtone crystal oscillator. Emitter stabilization is provided by R11, and R9-R10 provide base bias. Resistor R12 supplies the collector voltage for Q2 through L7 and L8. Components L7 and C18 are normally tuned to 50 MHz, the frequency of XTAL1. Components C19 and L8 form a resonant circuit at 100 MHz and therefore have a low impedance to 50-MHz signals. Bypass capacitor C21 RF grounds the bottom (cold end) of L8.

There exists a feedback capacitance (about 3 pF) between the collector and emitter of Q2. That, in conjunction with C17, forms an oscillator; the oscillation of Q2 would tend to take place at the resonant frequency of C18 (plus strays) and L7 (L7 is variable by means of a ferrite slug). The base of Q2 must be RF grounded, which can only occur at the series-resonant frequency of XTAL1, L13, and varactor-diode D1; D1 acts as a capacitor whose value can be varied via the applied DC voltage from potentiometer R7. Resistor R6 limits the lowest voltage to about 1 volt, and R8 provides RF isolation for D1. Varying R7 has the effect of varying the effective frequency of the crystal plus and minus 1000 Hz. When L7 is nominally tuned to 50 MHz, the crystal oscillator circuit produces a signal of 50.000 MHz. However, we need 100 MHz.

Since Q2 operates as class-C and produces harmonics, filter L8–C19 is tuned to 100 MHz. That transfers 2nd harmonic energy (6–10 dB below the fundamental 50 MHz) via coupling capacitor C20 to a second 100-
MHz tuned circuit (C23, C24, and L9). Capacitors C23 and C24 are chosen so as to match the oscillator to the base of frequency multiplier Q3, an MPS3866. That generates harmonics of 100 MHz in the base circuit of Q3. Capacitor C24 is chosen to have a low impedance at higher frequencies to encourage the flow of harmonic currents in the base circuit of Q3.

Inductors L10, L11, and L12 form a filter tuned to either 400 or 500 MHz by adjustment of C25, C26, and C27. There is sufficient tuning range to cover either 400 or 500 MHz. The filter is triple-tuned and L10, L11, L12, and their coupling coefficients are determined by the PC board layout which they are part of. RF energy at 400 (or 500) MHz is taken from a tap on L12 and fed to mixer MOD1.

Without the right test equipment, it would be difficult to align C25, C26, and C27. However, the problem is solved by diode detector D2, C31, and R17. Resistor R17 slightly forward biases D2 to produce about +0.2V at test point TP2.

When RF drive is applied from L12, a negative voltage is produced at TP2. When the triple-tuned filter is correctly tuned and Q3 is operating properly, about −0.3 volts is produced by D2, since about 300 millivolts of RF is present from L12. This, when added to the +0.2V bias on D2, produces −0.1V at TP2. Diode D2 is forward-biased to improve its sensitivity at low RF levels. Tuning of C25, C26, and C27 simply consists of monitoring the DC voltage at TP2, and obtaining the most negative voltage possible by peaking C25, C26, and C27.

Regulator IC2, a 7812, provides 12-volts DC power to the circuit; C32 and C33 and C34, C35 help stabilize IC2. Rectifier D3 acts as a protection device in case a negative DC voltage is applied to the circuit, and C36 reduces 60-Hz buzz caused by switching transients in D3. At least 14-volts DC is required across C34 for IC2 to function.

When we continue next time, we'll build the converter and show you how to align it.
Will new standards bring of AM radio?

IT MAY COME AS SOMETHING OF A SURPRISE TO THOSE OF us who pay little attention to AM radio that this oldest of all broadcast services is due for some upgrading. After all, the FM radio service has been the preferred form of radio broadcasting in this country for at least two decades, now, and even FM radio may some day be obsoleted by digital audio broadcasting, or DAB. In fact, more than a dozen proposals for DAB are currently either on the drawing boards or have been demonstrated in prototypes. So why bother with AM radio at this late date?

The AM stereo debacle

Back in the mid-1980's, the Federal Communications Commission considered several systems for AM stereo broadcasting. Many AM broadcasters felt then that the reason for the decline of AM radio audience was the fact that FM could offer stereo whereas AM could not. Initially, the FCC selected one of some six systems, the Magnavox proposal, as a “standard.” Faced with all sorts of threats of litigation by other proponents, the FCC reversed itself shortly thereafter and in effect, said, “let the marketplace decide.” Since then, the field of proponents has narrowed down to two—the Motorola C-Quam system (by far the most popular) and the Kahn-Hazeltine system. Many experts maintain that by not coming down in favor of a specific system, the FCC has discouraged both manufacturers of receivers and AM radio broadcasters from moving to stereo.

With AM broadcasting audience on the decline for many years, manufacturers of high quality AM/ FM tuners and receivers have paid little attention to the AM circuitry that they incorporate in their products. Figure 1 shows the actual frequency response measured for the AM section of a highly reputed AM/FM stereo receiver. No wonder listeners accustomed to playing digital compact discs and FM radios are “turned off” by this kind of AM reception! This “afterthought” approach by receiver manufacturers further exacerbated the problem. Another problem of AM has been adjacent channel interference—a problem that is particularly intense during evening listening. Many professionals blame the FCC for that problem as well, maintaining that the granting of broadcast licenses by the FCC has been a poorly administered “pork barrel” affair with little
attention paid to the technical problems that have inevitably resulted from an overcrowding of the broadcast band.

NRSC to the rescue!
As the AM broadcasters situation became worse and worse, the National Association of Broadcasters (NAB) and the Electronic Industries Association (EIA) finally decided to address some of the problems in what amounted to a major cooperative effort between organizations that, up until that time, had pretty well ignored each other. The two organizations formed a separate committee known as the National Radio Systems Committee, or NRSC. In a series of meetings, the NRSC came up with two standards recommendations, known as NRSC-1 and NRSC-2. A proposal to make NRSC-1 a national voluntary standard was issued in January 1990, and in March 1991, the EIA published the contents of NRSC-1 as an interim standard (EIA/IS-80) entitled “Audio Bandwidth and Distortion Recommendations for AM Broadcast Receivers.” On a parallel track, the FCC issued a report and order on April 27, 1989 in which compliance with NRSC-1 was made mandatory as of June 30, 1990, while measurement of compliance with NRSC-2 was postponed until June 30, 1994. Both NRSC-1 and NRSC-2 were designed to address the problems of audio fidelity and interference mentioned above.

NRSC-1 and EIA/IS80
Let’s take a look at the EIA Standard developed for receiver manufacturers first. Radio receivers that satisfy the technical requirements of this specification must have a frequency response of not less than 50 Hz to 7500 Hz, with limits of +1.5 dB and –3.0 dB, referred to 0 dB at 400 Hz. Since “opening up” the bandwidth to this extent might well increase interference from adjacent channels—especially in crowded metropolitan areas and during nighttime listening—receiver manufacturers may choose to offer a switch on their products that would, at the user’s option, reduce bandwidth. As long as at least one of those switch positions results in the frequency response just stated, the receiver will be considered to com-
ply with the new standard.

The second part of the NRSC standard deals with harmonic distortion. It states that receivers designed to satisfy the standard shall not exhibit more than two percent (2.0%) total harmonic distortion plus noise (THD + N) at all measured frequencies between 50 Hz and 7500 Hz. Two percent distortion may sound like a high number to those of us accustomed to the distortion levels of modern audio amplifiers and FM tuners, but, in fact, many current non-conforming AM tuners exhibit far higher distortion levels than that!—particularly at higher audio frequencies.

A third recommendation of the standard involves the incorporation of circuitry into AM receivers that attenuates 10.0-kHz adjacent-channel carrier frequencies by 30 dB, or 20 dB when the measurements are made with preemphasis characteristics inserted at the AM input of the RF test signal generator. To clarify that last point, we should note that in recent times, recognizing that AM radios had very poor high-frequency response, broadcasters began boosting the audio treble response of their transmission chains in an attempt to overcome the high frequency attenuation present in nearly all AM radios and tuners. Unfortunately, no two stations used the same boost of preemphasis characteristic. Furthermore, an overly extreme use of high-frequency preemphasis made the problems of interference between adjacent channels even worse. So, included in the NRSC-1 recommendation is a fixed preemphasis characteristic that AM radio broadcasters are required to use. The preemphasis characteristic, not unlike the one used by FM broadcasters in the U.S., is shown in Fig. 2.

Assuming that broadcasters conform (and as of this writing, well over half the AM broadcasters in the United States have embraced NRSC-1 standards), manufacturers of AM radios are expected to voluntarily incorporate standard, fixed deemphasis networks. In measuring the frequency response of an AM radio conforming to the new standards, a laboratory would expect to obtain a frequency response such as that shown by the dashed line in Fig. 3. The solid lines represent the allowable deviation or tolerance over the range from 50 Hz to 7.5 kHz. Results shown in Fig. 3 presuppose that the appropriate preemphasis network is installed between the audio generator and the amplitude modulation input terminals of the RF signal generator. If such a preemphasis network is not used in the test, results should be as shown in Fig. 4.
FIG. 3—FREQUENCY RESPONSE of AM circuitry that is required to conform to the NRSC-1 standard. The dashed line represents an ideal response, with the solid lines representing the tolerance limits. (Presumes preemphasis in the RF test generator.)

FIG. 4—FREQUENCY RESPONSE of AM circuitry that is required to conform to NRSC-1, with no preemphasis in the RF test generator.

FIG. 5—AMAX LOGOS will identify AM radios that meet the NRSC requirements.

NRSC-2 by 1994

During the interim period from June 1990 to June 1994, the FCC is going to assume that if a station conforms to NRSC-1, it is also in compliance with NRSC-2. The chief reason for the delay is the lack of appropriate, inexpensive test equipment needed to confirm compliance with all the provisions of NRSC-2. Those provisions mandate that NRSC-2 deals primarily with attenuation of carrier emissions rather than indirectly with audio response and performance. According to the NRSC-2 rules, emissions between 10.2 kHz and 20 kHz removed from the carrier's fundamental RF frequency must be attenuated at least 25 dB below the unmodulated carrier level. Emissions between 20 kHz and 30 kHz away from the carrier frequency must be attenuated by at least 35 dB below the unmodulated carrier level. Emissions that are between 30 kHz and 60 kHz away from the carrier frequency must be attenuated by at least 5 + 1 dB/kHz below the unmodulated carrier level. (For example, emissions that are 50 kHz away from the carrier frequency would have to be attenuated by 5 + 50, or 55 dB relative to the level of the unmodulated carrier). Finally, emissions between 60 kHz and 75 kHz must be attenuated by at least 65 dB.

More breathing room

While the NRSC-1 and NRSC-2 provisions will certainly help alleviate some of the problems of interference between stations, it cannot do the whole job in view of the congestion of the AM band that now exists in some geographical areas. Accordingly, as of July 1, 1991, the FCC officially expanded the AM band by an additional 100 kHz. The band now extends from 535 kHz to 1705 kHz.

This additional spectrum space is expected to accommodate at least 200 AM stations, nationally. Rather than increase the number of licenses to broadcasters, however, it is expected that those stations causing the
most severe interference will be asked to move up into the new frequencies. In order to retain their audiences, however, it is likely that those stations whose frequencies are reallocated to this new portion of the band will be allowed to "simulcast" on their existing frequencies for some time until a sufficient number of new AM radios are purchased by the listening public. Manufacturers (and particularly makers of car audio systems) have already incorporated the new swath of frequencies in their products and it turns out that the cost of doing so is minimal.

A new symbol of excellence
As these attempts to improve AM transmission and reception were being formulated, the NAB and the EIA came up with the idea that it would be nice to have some visible means of identification displayed on radios that meet the requirements of the new standards. After nearly two years of agonizing over the design of a symbol, the organizations have come up with a decal to be called the "AMAX" symbol, which stands for "AM Radio at its maximum potential." The certification logo could be affixed to radios that meet basic eligibility criteria including the equalization standards, variable bandwidth and other requirements described earlier. Two types of logos will be available. The second one, reading "AMAX Stereo," will be applied to improved AM radios that also have stereo capability. Illustrations of both logos appear in Fig. 5.

The "AMAX" program does not mandate a particular stereo AM format—only that the radio be capable of receiving and decoding some kind of AM stereo transmission. Of course, the decision to market AMAX certified radios is at the discretion of individual manufacturers, as is the decision to apply the "AMAX" or "AMAX Stereo" logo to the sets themselves. Interestingly, we recently learned that the latest Delco/Bose car audio radios, as installed in some 1992 model General Motors automobiles, do in fact meet the AMAX criteria but for reasons of aesthetics, the car maker elected not to apply the logo to the radios, at least for the present.

The NAB plans to publicize the logo through its member stations, who will be encouraged to develop promotional tie-ins with local audio retailers. NAB is also expected to unveil a major campaign by the time you read this, promoting enhanced AM radio to consumers. In addition to the improvements that we have already mentioned, eligibility of a radio to bear the AMAX symbol must also include provision for an external antenna, noise blanking for pulse-type interference and the expanded AM band.

Will improvements help?
While both the EIA and the NAB are enthusiastic about these attempts to improve AM, the question that remains is whether or not AM can attract enough of an audience to remain a major broadcasting format in the years ahead. Even though it is still uncertain whether or not the improvements in AM broadcasting and reception will attract new listeners to the band, the many improvements are certain to be welcomed with open arms by those who have been listening to AM for quite some time. While many AM broadcasters speak of a "level playing field" (against FM), the fact is that even with response extending to 7.5 kHz, sound quality cannot compare with the quality of FM, to which so many listeners have become accustomed.

Still, when you hear an AM broadcast that has extended frequency response of this kind, it's amazing how good it does sound when compared with the "typical" AM radio sound we have endured for many years. Perhaps AM radio can be given a new lease on life—even if it's only a temporary reprieve until digital audio broadcasting (which some now prefer to call digital audio radio, or DAR) replaces both of our current modes of radio.
LAST MONTH WE INTRODUCED YOU to our professional-quality 2.5-MHz function generator and frequency counter that can read up to 150 MHz. This month we'll show you how to build, test, and properly use this essential test instrument.

Construction

The function generator circuitry is mounted on three PC boards: the mother board, daughter board, and LED display board. The PC boards are available from the source mentioned in the parts list. Full patterns are provided here if you wish to make your own boards, however the artwork was designed for nonplated holes. In places where it is impossible to solder both sides of a component, such as in the switch arrays, vias are provided for wire connections from one side of the board to the other. If you do make your own board you'll have to solder some wires from the top of the switch arrays to points on the board. That is not necessary if you use the boards supplied with the kit.

Figures 6 and 7 show internal photographs of the author's prototype. Solder all diodes and resistors first, followed by the capacitors and then the ICs. IC sockets are not required, but they may make life a lot easier in the event of trouble.

It's best to build and test functional blocks as you go rather than building the whole unit all at once. First, start by constructing all the cable assemblies as indicated in Fig. 8. Start with the power-supply section, and verify that the output voltages are correct. The AC power cord routes through a strain relief in the back panel and one side is soldered to the top of switch S15 (pole a). The other AC lead is soldered to the pad connected to fuse F1.

Next, build the triangle and square-wave generator sections. Those sections consist of components with the IX and 2XX component numbering scheme. A parts placement diagram of those sections, located on the main board, is shown in Fig. 9. You will need an oscilloscope to verify that a triangle wave of about two volts peak-to-peak is present at the gate of Q5, and a one-volt peak-to-peak square wave is present at the collector of Q6. If those two waveforms are not present, go back and check your solder joints and component orientations.

Potentiometers R125 and R126 set the symmetry of the waveform and should be adjusted to give a triangle wave with equal slopes. R125 sets the upper frequency limit and should be adjusted to give your desired high frequency for a given range. That is done with the course frequency-adjust potentiometer S101 in its maximum position. As a general guide set R129 for a maximum frequency of 2.5 MHz, with the 1-MHz range switch engaged. Potentiometer R223 sets the zero balance of the triangle wave and is adjusted to give a centered signal. Square-wave balance is achieved through potentiometers R224 and R225. You can now check the pulse output for TTL levels and a variable CMOS level. With the basic gen-
Generator now functioning, build the sine-shaper circuit (component numbers 3XX) and verify a sine wave at the output of IC9.

Adjust R323 for a two-volt peak-to-peak sine-wave output at IC9 pin 12. The amplitude of the square wave is controlled by R324, which should be set to give a clean square wave without any overshoot or rounding on the edges.

The output amplifier should be built next. That section uses the 4XX numbering scheme. Set to R423 to its center position and adjust it only if there is no output. Next, put your oscilloscope on DC coupling and observe the DC level of the output, adjust R422 until the output waveform is centered around zero. Verify the open-circuit signal swing of 20 volts peak-to-peak and the -20-dB attenuator switch.

The last work on the motherboard is to build the frequency-counting section and to mount the display board. The six display LEDs are soldered to the display board, which is connected to the motherboard by a 90-degree, 14-pin strip header. With the display and components in place, observe the display. Select the MHz range and make sure that all the digits are functioning. If not, go back and double check the circuit. Use a frequency counter or scope to calibrate the counter by adjusting C504 so that the display reading is the correct frequency selected.

The daughter board, which holds the counter input amplifier and sweep generator is as-
FIG. 8—CABLE ASSEMBLIES show the potentiometers that are connected to each of the function switches.

Assembled next. That parts-placement diagram is shown in Fig. 10. The frequency-counter input circuit must be tested with an external signal or by selecting the external-signal source function and jumping the generator output to the counter input. Testing consists of verifying the operation of the switches, S11-S14 and the input amplifier.

The input amplifier can be tested by varying the amplitude of an input signal from about 25 millivolts to 50 volts peak-to-peak (if no test signal is available, use the generator itself) and observing the frequency reading on the display. The frequency should remain the same for all amplitude conditions. When selecting the prescale function, the display should shift two decimal places to the right if working correctly.

All the boards were designed to use transistors with an emitter-collector-base pin arrangement, and the rectangular pads are configured to accept that. If you choose to use the alternate transistors indicated in the parts list, they are American made, and use an emitter-base-collector pin arrangement. When the substitutes are used, a small circular pad is placed between the emitter and collector of the rectangular pads. This circular pad is used for the base pin and the collectors and emitters remain connected to the rectangular pads.
All resistors are 1/4-watt, 5% unless otherwise indicated.

R101—2700 ohms, 1%
R102, R104, R105, R109, R111—10,000 ohms, 1%
R106—33,200 ohms, 1%
R107, R108, R110—1000 ohms, 1%
R112, R114—3010 ohms, 1%
R113—49,900 ohms, 1%
R115, R120—4990 ohms, 1%
R116, R117—2150 ohms, 1%
R117, R118—348 ohms, 1%
R118, R123—75,000 ohms, 1%
R119, R124—750,000 ohms, 1%
R125, R126, R826, R827—10,000 ohms, potentiometer
R127, R128—5000 ohms, potentiometer (part of S101 and S102, respectively)
R129, R825—20,000 ohms, potentiometer
R201, R210, R220—10,000 ohms
R202, R222—470 ohms
R203—390 ohms
R204, R206, R219—1000 ohms
R205, R216, R217—2700 ohms, 1%
R207, R208—4020 ohms, 1%
R209—511 ohms
R211—30,000 ohms
R212—2000 ohms
R213, R214—13,000 ohms
R215—910 ohms, 1%
R218—7500 ohms
R221—47 ohms
R223, R828—5000 ohms, potentiometer
R224, R225, R228, R229—2000 ohms, potentiometer
R226—10,000 ohms, potentiometer (part of S201)
R227—4700 ohms, potentiometer
R301—49,900 ohms, 1%
R302, R303—11,300 ohms, 1%
R304, R306—12,100 ohms, 1%
R305—309 ohms, 1%
R307—200 ohms, 1%
R308, R309—24,900 ohms, 1%
R310—127 ohms, 1%
R311—63.4 ohms, 1%
R312, R313, R320—1000 ohms
R314—5100 ohms
R315—680 ohms
R316—150 ohms
R317—680 ohms
R318, R319—10,500 ohms, 1%
R321—2000 ohms
R322—12 ohms
R323, R324—1000 ohms, potentiometer
R325—5000 ohms, potentiometer (part of S301)
R401, R402, R503, R504—10,000 ohms
R403, R404—22,000 ohms
R405—170 ohms, 1%
R406—12,000 ohms
R407—1200 ohms
R408—2000
R409—18,200 ohms 1%
R410—270 ohms, 1%
R411—100 ohms, 1%
R412, R414, R502—3000 ohms
R413—24,300 ohms, 1%
R415, R418—47 ohms, 1W
R416, R417—7.5 ohms
R419—50 ohms, ½W
R420—499 ohms, ½W
R421—56.2 ohms, 1%
R422, R424—10,000 ohms, potentiometer (R424 is part of S401)
R423—200 ohms, potentiometer
R501—100,000
R505—10 megohms
R701—1,000 ohms
R702—100,000 ohms
R703—1 megohm
R704—50 ohms
R705, R718—150 ohms
R706, R712—220 ohms
R707—470 ohms
R708, R715—51 ohms
R709—711, R713, R714, R716, R717—510 ohms
R719—36 ohms
R720—1000 ohms
R801—7500 ohms, 1%
R802—33,000 ohms, 1%
R803—33 ohms, 1%
R804, R805, R807—5100 ohms, 1%
R806, R810, R816, R817, R819, R820, R822—10,000 ohms, 1%
R808—51,000 ohms, 1%
R809—2200 ohms, 1%
R811—22,000 ohms, 1%
R812—2400 ohms, 1%
R813—100 ohms, 1%
R815—150,000 ohms, 1%
R816—15,500 ohms, 1%
R817—2000 ohms, 1%
R823—15,000 ohms, 1%
R824—18,000 ohms, 1%
R830, R831—5000 ohms, potentiometer (part of S801 and S802, respectively)

Capacitors
C101, C102, C204, C205—0.1 µF ceramic
C103, C203—100 pF, ceramic
C104—0.001 µF, Mylar
C105—0.01 µF, Mylar
C106—0.1 µF, Mylar
C107—1 µF, Mylar
C108, C504—15—60 pF, variable capacitor
C201—68 pF, ceramic
C202—0.047 µF, ceramic
C301, C303—0.1 µF, ceramic
C302, C304, C502—39 pF, ceramic

PARTS LIST

C305, C401—4.7 pF, ceramic
C307—15 pF, ceramic
C308, C408—5—35 pF, variable capacitor
C402—120 pF, ceramic
C403—2.2 pF, ceramic
C404, C406—6.8 µF, tantalum, 20 volts
C405, C407—0.047 µF, ceramic
C501—33 pF, ceramic
C503—10 pF, ceramic
C601, C602—1000 µF, electrolytic, 50 volts
C603, C604—100 µF, electrolytic, 50 volts
C605—1 µF, tantalum, 20 volts
C701, C704—C706—0.1 µF, ceramic
C702, C707—100 pF, ceramic
C703—10u tantalum 16 volts C801—22 µF, tantalum, 16 volts
C802, C803—220 pF, ceramic
C804, C805—100 pF, ceramic
C806—500 pF, ceramic

Semiconductors
D101—D108, D201—D204, D206—D226, D301—D312, D315—D318, D401, D402, D701, D702, D801—1N4148 diode
D205—1N751, 5.1-volt Zener diode
D313, D314—1N746, 3.3-volt Zener diode
BRI—W02M bridge diode
Q1, Q4, Q12, Q13, Q21—2SC1815 or MPSA05 NPN transistor
Q2, Q3, Q6, Q7, Q11, Q19, Q20—2SA1015 or 2N4403 PNP transistor
Q5, Q17—2N4416, N-channel FET
Q8—2N3904, NPN transistor
Q9, Q10, Q14—2SC1923 or MPSH34, NPN transistor
Q15—2N2219, NPN transistor
Q16—2N2905, NPN transistor
Q18—PN5139, NPN transistor
IC1, IC2—LM741, op-amp
IC3, IC4—LM308, op-amp
IC5, IC6, IC20—CA3086, NPN transistor (Harris)
IC7—7420, 7414, 7416, 7420, 7424, 7426, 7474, 7475 quad input and gate
IC8—4011, quad NAND gate
IC9—CA3030, op-amp
IC10—4066, CMOS quad bilateral switch
IC11—7216B, frequency counter and LED driver (Intersil)
IC12—7815, +15-volt voltage regulator
IC13—7805, +5-volt voltage regulator
IC14—7915, −15-volt voltage regulator
IC15—MC10116, ECL triple-line receiver with Schmitt trigger (Motorola)
The sweep generator is built next. If you’re using the boards supplied with the kit, mount potentiometers R825–R828 to the solder side of the board. That will make adjustments easier when the unit is assembled. If you’re making your own boards, place the potentiometers on the component side and make your adjustments before the board is connected to the mother board.

Once again you’ll need an oscilloscope to verify proper alignment. Set R828 to its midpoint.
Using your unit
Table 1 shows a complete list

Center position and adjustments can be made by observing the LED display with the counter set to the internal-count mode.

If everything is working properly, you can install the completed boards into the case. The top of the case uses four 2-inch standoffs. The front and back panels supplied with the case are of 0.065-inch aluminum and are not recommended for use as a front panel. A complete cut and silk-screened panel is available from the source mentioned in the parts list, or you can make your own using transparent red acrylic. Secure the mother board in place (top half of case) and finally install the daughter board uses three 1¼-inch standoffs. You're now ready to power up and use your combination function generator and frequency counter.
<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>MIN</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sine Wave</td>
<td>0.1</td>
<td>2.5 Mega</td>
<td>Hz</td>
</tr>
<tr>
<td>Triangle Wave</td>
<td>0.1</td>
<td>2.5 Mega</td>
<td>Hz</td>
</tr>
<tr>
<td>Square Wave</td>
<td>0.1</td>
<td>2.5 Mega</td>
<td>Hz</td>
</tr>
<tr>
<td>Pulse</td>
<td>0.1</td>
<td>2.5 Mega</td>
<td>Hz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amplitude</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Output</td>
<td>3.0</td>
<td>20</td>
<td>Vp-p</td>
</tr>
<tr>
<td>- 20dB</td>
<td>0.5</td>
<td>6</td>
<td>Vp-p</td>
</tr>
<tr>
<td>TTL Pulse</td>
<td>50</td>
<td>5</td>
<td>Vp</td>
</tr>
<tr>
<td>CMOS Pulse</td>
<td>0.5</td>
<td>15</td>
<td>Vp</td>
</tr>
</tbody>
</table>

| Duty Cycle | 10 | 90 | % |
| DC Offset | -10 | +10 | VDC |

<table>
<thead>
<tr>
<th>Sweep Generator</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweep Width</td>
<td>1</td>
<td>1000</td>
<td>X Initial Freq.</td>
</tr>
<tr>
<td>Sweep Time</td>
<td>1</td>
<td>20</td>
<td>Seconds</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency Counter</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Sensitivity</td>
<td>20</td>
<td>100</td>
<td>Vp-p</td>
</tr>
<tr>
<td>Input Range</td>
<td>0.1</td>
<td>150 Mega</td>
<td>Hz</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>50</td>
<td>1 Mega</td>
<td>Ohms</td>
</tr>
<tr>
<td>Gates Times</td>
<td>.01</td>
<td>10</td>
<td>Seconds</td>
</tr>
<tr>
<td>Error</td>
<td>± LSD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stability</td>
<td>50ppm°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The square wave output is in phase with the sine wave and the triangle wave, but is 180 degrees out phase with the TTL and CMOS pulse outputs. That feature is useful for creating a two-phase clocking system if you happen to be working with digital equipment. The unit is calibrated to give a frequency range of 0.1 Hz to 2.5 MHz. The upper frequency limit can be extended by adjusting variable capacitor C108 and/or R129. With the component values that we have given, the upper frequency limit can reach as high as 4 MHz.

Changing the values of the timing resistors R115–R119 and R120–R124 will produce output frequencies as determined by the formula 1/RC. That method will achieve a maximum sine wave output of 10 MHz with an amplitude of 1 volt peak-to-peak above 2 MHz.

GET THE LATEST ADVANCES IN ELECTRONICS

WITH A SUBSCRIPTION TO

Radio Electronics

ENJOY THE WORLD OF ELECTRONICS EACH MONTH!

Now you can subscribe to the best electronics magazine. The only one that brings you articles on—electronics projects, technology, circuit design, communications, new products and much more.

Radio-Electronics looks to the future and shows you what new video, audio and computer products are on the horizon. What's more you'll find helpful, monthly departments such as Video News, Equipment Reports, Hardware Hacker, Audio Update, Drawing Board, Communications Corner. All designed to give you instruction, tips, and fun.

SUBSCRIBE TODAY

Just fill out the order card in this magazine and mail it in today.
Countersurveillance

Never before has so much professional information on the art of detecting and eliminating electronic snooping devices—and how to defend against experienced information thieves—been placed in one VHS video. If you are a Fortune 500 CEO, an executive in any hi-tech industry, or a novice seeking entry into an honorable, rewarding field of work in countersurveillance, you must view this video presentation again and again.

Wake up! You may be the victim of stolen words—precious ideas that would have made you very wealthy! Yes, professionals, even rank amateurs, may be listening to your most private conversations.

Wake up! If you are not the victim, then you are surrounded by countless victims who need your help if you know how to discover telephone taps, locate bugs, or "sweep" a room clean.

There is a thriving professional service steeped in high-tech techniques that you can become a part of! But first, you must know and understand Countersurveillance Technology. Your very first insight into this highly rewarding field is made possible by a video VHS presentation that you cannot view on broadcast television, satellite, or cable. It presents an informative program prepared by professionals in the field who know their industry, its techniques, kinks and loopholes. Men who can tell you more in 45 minutes in a straightforward, exclusive talk than was ever attempted before.

Foil Information Thieves

Discover the targets professional snoopers seek out! The prey are stock brokers, arbitration firms, manufacturers, high-tech companies, any competitive industry, or even small businesses in the same community. The valuable information they filch may be marketing strategies, customer lists, product formulas, manufacturing techniques, even advertising plans. Information thieves cavedrop on court decisions, bidding information, financial data. The list is unlimited in the mind of man—especially if he is a thief!

You know that the Russians secretly installed countless microphones in the concrete work of the American Embassy building in Moscow. They converted

The professional discussions seen on the TV screen in your home reveals how to detect and disable wiretaps, midget radio-frequency transmitters, and other bugs, plus when to use disinformation to confuse the unwanted listener, and the technique of voice scrambling telephone communications. In fact, do you know how to look for a bug, where to look for a bug, and what to do when you find it?

Bugs of a very small size are easy to build and they can be placed quickly in a matter of seconds, in any object or room. Today you may have used a telephone handset that was bugged. It probably contained three bugs. One was a phony bug to fool you into believing you found a bug and secured the telephone. The second bug placates the investigator when he finds the real thing! And the third bug is found only by the professional, who continued to search just in case there were more bugs.

The professional is not without tools. Special equipment has been designed so that the professional can sweep a room so that he can detect voice-activated (VOX) and remote-activated bugs. Some of this equipment can be operated by novices, others require a trained countersurveillance professional.

The professionals viewed on your television screen reveal information on the latest technological advances like laser-beam snooper that are installed hundreds of feet away from the room they snoop on. The professionals disclose that computers yield information too easily.

This advertisement was not written by a countersurveillance professional, but by a beginner whose only experience came from viewing the video tape in the privacy of his home. After you review the video carefully and understand its contents, you have taken the first important step in either acquiring professional help with your surveillance problems, or you may very well consider a career as a countersurveillance professional.

The Dollars You Save

To obtain the information contained in the video VHS cassette, you would attend a professional seminar costing $350-750 and possibly pay hundreds of dollars more if you had to travel to a distant city to attend. Now, for only $49.95 (plus $4.00 P&H) you can view Counter-surveillance Techniques at home and take refresher views often. To obtain your copy, complete the coupon below or call toll free.
EXPERIMENTING WITH ADC FOR YOUR PC

Add a variety of analog inputs to the PC-based analog-to-digital converter.

PC-BASED TEST INSTRUMENTATION has turned out to be a popular topic among readers. We continue this ongoing series by interfacing new sensing devices (a linear displacement transducer, a piezoelectric transducer, and a microphone) to the analog-to-digital converter (ADC) discussed in the January 1992 issue. If you're just getting started with this series, here's a brief review of progress thus far.

Quick review
The heart of the system is a PC I/O expander called the PC10 that adds 24 lines of digital I/O by means of an 8255 Parallel Input/Output (PIO), all on a single 8-bit expansion card. In the January 1992 installment, we added an outboard analog-to-digital converter (ADC), based on an ADC0804. The ADC allows you to measure and capture any 0–5 volt analog signal (e.g., temperature, displacement, and audio). The circuit includes a variable-gain amplifier for low-level inputs, and a DC-offset adjustment for inputs with unwanted DC components. A temperature probe shown in that article was built around the base-collector junction of a silicon transistor. With the proper settings for amplification and DC offset, a several-hundred millivolt change over a 100°reeC temperature range produced a digital output spread over the full input range of the ADC0804.

In general, an A/D converter and a PC can provide very low-cost solutions to measurement problems that would ordinarily require costly test equipment. Following are some ideas, practical circuits, and software for interfacing other types of devices. These ideas cover the three most common types of sensing: mechanical, electrical, and acoustic.

Mechanical sensing
As an example of mechanical sensing, the author and a friend were contracted to measure the displacement, impact force, and velocity of electromechanical rappers used in the pollution-control industry. Factory smokestacks have environmental controls that contain huge, electrostatically charged metal plates. As the smoke goes up the smokestack, it passes by those plates; the plates "pull" the suspended particles to them, removing pollution that would otherwise be released to the outside air. Particles accumulate on the plates, and eventually have to be removed. To "clean" the plates, rappers (like giant solenoids) provide quick, hard jolts to the plates, breaking trapped particles free in huge sheets that fall to the bottom of the smokestack. Our task was to determine the characteristics of existing commercial rappers, and then determine whether our customer's rapper could be made better than the competition.

Our test instrumentation consisted of an 8-bit A/D converter hooked up to a computer, and fed by a rectilinear potenti-
If you use this type of arrangement, be sure to disconnect the op-amp's output (pin 7) from the ADC's input (pin 6). In addition, make sure the potentiometer has a resistance of at least 1K, so as not to draw too much current from your PC's power supply. Also, the mechanical linkage between the LDT and the rapper must be firm so there is little or no slippage at the speeds encountered. Otherwise, the potentiometer will not give a true indication of displacement. This type of setup would also be useful for measuring the movement of solenoids, pistons, cams, and similar devices.

Using that circuit, we obtained a series of outputs that showed exactly how the rapper's plunger moved a quarter of a second after it triggered. Eight bits of digital data made it easy to calculate the rate of change of displacement (velocity), as well as the maximum displacement. We determined impact force using strain gages.

The only problem we had was in determining just when to read the LDT's resistance. The solution turned out to be straightforward, as we'll see momentarily.

Electrical sensing

The temperature probe developed last time is one example of electrical sensing. Another good sensing device is piezoelectric material, available in both film and crystal form. An inexpensive source of piezoelectric crystal is Radio Shack's Piezo Transducer (273-073). Simply break open the plastic case, and you have a circular piezoelectric transducer with red and black leads. When flexed in any way, the transducer produces a voltage that varies proportionally to the amount of flexing.

A piezo transducer can be used to measure force of impact, or the amount of bending and flexing. Figure 2 shows how to connect a piezo transducer to
our circuit. We want only the voltage generated by the piezo sensor, so disconnect the J1 end of R1, shown in Fig. 2 last time (R1 provided +5-volts DC to the temperature probe). With no input signal, adjust R11 for maximum gain, and R12 so output is about 2.5-volts DC. (The latter setting allows the piezo voltage to vary from that quiescent level.) You might also want to adjust the value of R3 so that the piezo sensor produces maximum indication at its maximum output.

To test the circuit, use a piece of masking tape to secure the piezo sensor to a flat surface, making sure you aren’t flexing it. Tap the surface firmly and note the response. In actual use, you would mount the sensor using a clamping device or flexible adhesive. This type of device is useful for measuring applied impact, oscillation after impact, or amount of flex or bend.

Acoustic sensing

You’ve probably seen audio signals displayed on an oscilloscope. Now imagine “freezing” those signals—i.e., storing them in digital form. Scientists capture digitized audio in this way to study the sounds that whales, birds, and other animals make. In digitized form, it’s easy to compare and contrast different sounds to determine which have similar characteristics, or to look at other factors that wouldn’t otherwise be obvious.

To accommodate a microphone input, we modified the ADC circuit as shown in Fig. 3. The changes allow us to increase the gain of IC1-a to a maximum of 100, and to attenuate high-level inputs. Gain is determined by the ratio R14/R6 = 10^5/10^4 = 10^2 = 100. If the part numbering in Fig. 3 seems strange, it’s because we tried to stay consistent with the main circuit shown in Fig. 2 in January. Note that in the January version, R6 was 100K; here we decreased its value to 10K. Also, we no longer use R1–R4.

In operation, first set R12 to mid-value. Then adjust R14 for maximum range, as described last time. Last, readjust R12 as necessary to set the quiescent level to about 2.5-volts DC. For example, a microphone might provide a maximum output of about 2.5-volts DC. (The latter setting allows the piezo voltage to vary from that quiescent level.) You might also want to adjust the value of R3 so that the piezo sensor produces maximum indication at its maximum output.
voltage of 0.5. Adjust R14 so the maximum is about 4.0 volts. Then readjust R12 so the no-signal (quiescent) value is about 2.5-volts DC. Now you'll get the best resolution from the circuit.

Software

We wrote two programs for data capture and display. Listing 1 shows the capture program (ADC.BAS), and Listing 2 the display program (GRAFDATA.BAS)—both are available on the RE-BBS (516-293-3000, 1200/2400, 8N1) as a file called PCADMAT2.LST. Figure 4 shows sample output from GRAFDATA. Enhanced versions of both programs are available on disk from the author for a nominal fee; see the sidebar for details.

ADC.BAS is a general-purpose data capture and storage utility. To use it, you must create a data file called HWADRES.DAT in the same directory as the program. The file contains the decimal address of the PC IO card. You can create the file with any text editor or word processor capable of storing text in ASCII format. Assuming your card is set to the default address (640), create a one-line file that contains "640D" (without the quotes) followed by a carriage return.

Connect the ADC circuit to your PC and run ADC.BAS. It initializes the PC IO card, then asks you for the interval (in seconds) to wait between samples. If you want continuous samples (with no delay), enter 0. Otherwise, you can enter any number between 1 and 3600 (one hour). When you press Enter, sampling begins.

The program displays three pieces of information: current data (line 100), time between samples (line 110), and current sample number (line 120). Press Esc at any time to end sampling (line 130).

Lines 150–200 take care of interval timing. The sampling program showed last time used a timing loop that was system-dependent; the current version reads the system clock, hence is system-independent. Sampling takes place in lines 210–250; as many as 1000 samples are saved in array A.

When you press Esc to end sampling, execution continues at line 270. If you press Esc again, data is abandoned and the program ends. If you press Enter, the program requests a file name for storing the data. Specify the complete file name, including any path and extension (e.g., C:\SUBl\TESTOLADD). If you don't specify a complete path, the file will be stored in the current directory. If the file already exists, current data will be appended to the end of the file.

GRAFDATA.BAS allows you to plot your data on-screen. When you run the program, it asks you to specify a data file. As with ADC.BAS, specify the full file path if the file is not in the current directory (Continued on page 76)
We continue our survey of optoelectronic principles and systems, with an in-depth look at practical LED chaser and bar-graph displays.

RAY MARSTON

LAST MONTH, WE BEGAN INTRODUCING the general subject of optoelectronics, and we examined light-emitting diodes (LED's) and several practical LED flashers in detail. In this article, we'll examine several practical LED chaser (or sequencer) and dot, and bar-graph displays.

Chaser principles

One of the most popular LED displays is known as a chaser, also called a sequencer. That is, when an IC drives an LED array, so that each LED (or small groups thereof) turns on and off in a fixed, periodic sequence, that appears as a ripple of light running along a chain. The LED's don't necessarily have to be arranged linearly, and can be placed in any desired geometric pattern, to alter the visual effect.

The most popular CMOS IC which is used for that purpose is the CD4017B, which is a decade counter/divider IC with 10 decoded outputs, each capable of directly driving an LED display. If desired, the outputs can be coupled back to the IC control terminals to make the device count to (or divide by) any number from 2-9, and either stop or recycle.

The CD4017B is easily cascaded for use in multi-decade frequency division, or for use in counters with any number of decoded outputs. It's extremely versatile, and it can easily be used in a chaser or sequencer LED display of any desired length.

Figure 1 shows the pinouts of a CD4017B, with decoded outputs in arithmetic order. Figure 2 is its timing diagram: the CD4017B is a 5-stage Johnson counter with clock, reset, and clock inhibit inputs. The counters are advanced with each positive-going clock pulse, when the clock inhibit and reset inputs are low. At any time, nine of the 10 decoded outputs are low, while the remaining one is high.

The 10 outputs go high sequentially in step with the clock, with the selected output staying high for one full clock cycle. The carry out goes high for one clock cycle out of every 10 clock cycles, and it can be used to ripple-count more CD4017B's in a multi-decade counting application. The counting cycle is inhibited by setting clock inhibit high. A high on the reset input clears the counter, and sets the "0" output high.

CD4017B chaser circuits

Figure 3 shows a practical CD4017B 10-LED chaser, with ICl, a 555 astable multivibrator, which is used as a variable-speed clock generator. The CD4017B becomes a decade counter by grounding pins 13 (clock inhibit) and 15 (reset). The visual display will appear as a moving dot sweeping from left to right (or from LED's "0"-"9") in 10 steps, as the outputs go high and turn the LEDs on sequentially. They can either be arranged in a straight line, or configured circularly, so that the dot appears to rotate.

The LED's shown in Fig. 3 aren't current-limited. Manufacturers don't give a maximum short-circuit current for the CD4017B, but practical experience dictates a value somewhere between 10-15 milliamps. The maximum dissipation per output on some data sheets is 50 milliwatts, so up to 7 volts DC can be developed safely across a CD4017B output stage at maximum current.

Each LED is connected between output and ground, and can have a maximum supply of 9 volts DC, for a 2-volt DC drop across each LED that's lit. Above 9 volts DC, use the version shown in Fig. 4, which contains a current-limiting resistor, and is capable of being used with supplies up to 12 volts DC.

Figure 5 shows a possible equivalent of the circuit in Fig. 4, that uses a 15-volt DC supply, that also illustrates a major design flaw. When one LED is on, the anodes of the others are grounded, so R1 reverse-biases them. Due to low LED reverse-voltage ratings, you'll often find that an LED that's off will act like a Zener diode at about 5...
FIG. 2—WAVEFORM TIMING DIAGRAM OF THE CD4017B, with its RESET and CLOCK INHIBIT terminals (pins 13 and 15) grounded.

FIG. 3—A 10-LED CHASER OR SEQUENCER that can be used with supply voltages up to only 9 volts DC, and which produces a "moving-dot" display.

FIG. 4—A 10-LED CHASER, WHICH USES up to a 12-volt DC supply.

FIG. 5—A POSSIBLE EQUIVALENT to Fig. 4, which uses up to a 15-volt DC supply.

volts DC, and possibly destroying a CD4017B output stage.

When a CD4017B drives LED's in moving-dot mode, they can be connected directly to the IC outputs if supply values are no more than 9 volts DC. For higher supplies, you'll need current-limiting resistors. Several such display circuits are shown in Figs. 6–12.

Alternative LED displays

The output stages of the CD4017B can either source or sink currents equally well. Fig 6 shows IC2 used in sink-mode in a moving-hole LED display; nine of the 10 LED's are on at any given time, while one turns off sequentially. If the LED's are arranged circularly, they seem to rotate. Since all LED's except one are on at a time, they all need current-limiting resistors.

Moving-dot displays are much more popular than the moving-hole variety. The type shown in Fig. 3 can be designed to use fewer LED's just by omitting the unwanted ones, but then the dot moves intermittently or scans, since IC2 takes 10 clock steps per sequence, and all the LED's will be off during the unwanted steps.

If a continuously-moving display with fewer than 10 LED's is needed, connect the first unused CD4017B output to pin 15 (RESET), as indicated in the 4-LED version shown in Fig. 7. To achieve an intermittent display using a controlled number of off steps, just connect the desired unwanted output to pin 15 (RESET). Or, in other words, move the connection going to pin 10...
of IC2 to pin 9. In that type of an intermittent display, the LEDs will light for four cycles, go blank for four cycles, and the sequence then repeats.

Figure 8 shows a visually attractive 4-LED, 5-step sequencer. Initially, all four LEDs are on, and then turn off sequentially until they're all off in the fifth step, as shown in the accompanying table. The LEDs are effectively in series, and the basic circuit can't drive over four LEDs.

Figure 9 shows another version; here, the CD4017B does a 10-step sequence, with LED 1 on from steps "0"-"3," LED 2 on for "4"-"6," LED 3 on for "7" and "8," and LED 4 on for step "9." The display will accelerate from LED 1-LED 4, not just sweeping smoothly from one LED to the next, and the cycle then repeats ad infinitum.

Figure 10 shows such a circuit modified to produce an intermittent display, where the visual acceleration occurs for 10 clock cycles, the LEDs all blank for 20 cycles, and then the counting cycle repeats. When IC2 is in a ±10 mode as shown in Figs. 9 and 10, pin 12 (CARRY OUT) produces an output each time IC2 does a decade count, which is used to clock IC3 (which is connected in ±3 mode), with its "0" output fed to Q1.

For the first 10 cycles of a sequence, the "0" output of IC3 is high, and Q1 is biased on, so IC2 acts as shown in Fig. 9, with the LEDs turning on sequentially through Q1. After the 10th clock pulse, the "0" output of IC3 goes low, turning Q1 off; the LEDs can no longer light, but IC2 keeps counting. After the 30th clock pulse, the "0" output of IC3 again goes high and turns Q1 on, reenabling the display.

Figure 11 is a simple multiplexed display, where IC3 and Q3 enable or disable a bank of LEDs. Figure 11 is yet another example of a multiplexed display, which uses three lines of six intermittently-sequenced LEDs. They're each sequentially enabled via IC3 and individual gating transistors, only one line at a time; if you want, you can expand this version still further to control a 10-line, 100-LED, matrix display.

Figure 12 shows a 4-bank, 5-step, 20-LED chaser; the four LEDs are in series in each of the five CD4017B outputs, so four LEDs are lit at any one time. Each lit LED drops about 2 volts
FIG. 9—A 4-LED CONTINUOUS "ACCELERATOR" DISPLAY, where the pattern of the dots appears to accelerate from left to right.

FIG. 10—A 4-LED INTERMITTENT "ACCELERATOR" DISPLAY, where the "acceleration" occurs for 10 out of every 30 clock steps.

FIG. 11—A MULTIPLEXED 6-LED x 3-LINE MOVING-DOT DISPLAY, in which the dot moves intermittently along the lines.

DC; that's 8 volts DC for each LED bank that's on, so the supply voltage must be greater than that for the circuit to work. A greater number of LED's can be used in each LED bank if the supply voltage is correspondingly increased to handle the added load.

Bar-graph displays
Another multi-LED indicator circuit is the analog version, which drives a chain of linearly-spaced LED's. The number of LED's that are lit is proportional to the voltage applied to the LED-driver, so the circuit acts like an analog voltmeter. You can use the LED's as either a bar- or dot-graph display. In a bar-graph display, the input value is indicated by the total number of LEDs that are lit. In the dot display, the input value is indicated by the relative position of just one lit LED.

Special IC's are available for building LED analog displays, the most useful examples being the U2X7B family from AEG, and the LM3914 family from National Semiconductors. The U2X7B family consists of simple, dedicated devices, which...

...can be usefully cascaded to drive up to 10 LED's in bar-graph mode only, the members being the U237B, U247B, U257B, and U267B. The LM3914 family is more complex and versatile by comparison, and are easily cascaded to drive up to 100 LED's in either bar-graph or dot-graph mode. Both varieties of IC's are considered to be bar-graph drivers.
IC-driven bar-graph displays are inexpensive, superior alternatives to analog meters. They don’t stick, they’re fast, and they’re unaffected by both vibration and attitude. Their scales can have any desired shape, they can have mixed LED colors to highlight special sections, and they can be equipped with over-range detectors that are activated by the drivers to either sound an alarm, flash the display, or both.

The linearity of such a bar- or dot-graph meter is considerably better than that of most analog meters, and is generally about 0.5%. The resolution depends on the number of LED’s that are used: a 10-LED version has adequate resolution for most hobbyist purposes.

Basics of the U2X7B IC family

The AEG U2X7B IC family is composed of four different 8-pin DIP’s, each capable of driving five LED’s. The U237B and U247B pair produce a linear display, and are used together when driving 10 LED’s. The U257B and U267B pair produce a logarithmic display, and are also used together when driving 10 LED’s. All four IC’s in the family use the same internal circuitry, in block diagram form, as shown in Fig. 13.

All four IC’s contain five Schmitt voltage comparators with unique thresholds feeding into transistor switches. The thresholds are fixed by the tapping points on voltage divider R1-R6, which is powered using a built-in voltage regulator: each comparator input is connected to pin 7. All four IC’s also contain an internal 20-milliamp constant-current source, and the five external LED’s go in series between it and ground (pin 1), as shown. Groups of LED’s are turned on or off using the individual switching transistors. If Q3 is turned on, it sinks 20 milliamps via LED’s 1 and 2, so they turn on, and LED’s 3-5 turn off.

The U2X7B family has step voltages spaced at 200-millivolt DC intervals, and Table 1 lists the states of its five internal transistors at various input voltages. At 0 volts DC input, all five transistors are switched on, so Q1 sinks the full 20 milliamps, and all five LED’s are off. At 200 millivolts DC, Q1 turns off but all other transistors are on, so Q2 sinks the 20 milliamps via LED 1, driving LED 1 on and turning all others off.

TABLE 1—U2X7B INTERNAL TRANSISTOR STATES AT VARIOUS INPUT VOLTAGES

<table>
<thead>
<tr>
<th>V<sub>IN</sub>[V]</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>0.8</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>0.6</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>0.4</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>0.2</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>0.0</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
</tr>
</tbody>
</table>

TABLE 2—U237B INTERNAL STEP VOLTAGES

<table>
<thead>
<tr>
<th>Device</th>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
<th>Step 4</th>
<th>Step 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>U237B</td>
<td>200 mV</td>
<td>400 mV</td>
<td>600 mV</td>
<td>800 mV</td>
<td>1.00 V</td>
</tr>
<tr>
<td>U247B</td>
<td>100 mV</td>
<td>300 mV</td>
<td>500 mV</td>
<td>700 mV</td>
<td>900 mV</td>
</tr>
<tr>
<td>U257B</td>
<td>0.18V/ -15 dBW</td>
<td>0.53V/ -6 dBW</td>
<td>0.84V/ -1.5 dBW</td>
<td>1.19V/+1.5 dBW</td>
<td>2.0V/+6 dBW</td>
</tr>
<tr>
<td>U267B</td>
<td>0.1V/ -20 dBW</td>
<td>0.32V/ -10 dBW</td>
<td>0.71V/ -3 dBW</td>
<td>1.0V/ 0 dBW</td>
<td>1.41V/+3 dBW</td>
</tr>
</tbody>
</table>

can be used to make a 10-LED, 1-volt DC linear meter. The logarithmic-scale U257B and U267B pair of ICs can be used to make a 10-LED logarithmic meter with a full-scale value of 2.0 volts DC, or +6 dBW.

The reason for the correspondence between those two values is justified as follows. Since

\[P = \frac{E^2}{R}, \]

where \(P \) is power, \(E \) is voltage, and \(R \) is resistance, then the assumption, for purposes of convenience, is that:

\[R = 1 \text{ ohm}. \]

If so, then to convert voltages on the logarithmic-scale meter into a quantity proportional to power (and not into power itself), just square the voltage indicated, take the \(\log_{10} \) of the result, and multiply by 10. If \(E \) has the unit of volts (as opposed to some fractional or multiple unit, like millivolts, for example), then \(P \) has the units of watts, and the units in dB are called dBW, since they're expressed relative to a fixed value of potential.

Likewise, if you wanted to express dB in terms of power, then the proper terminology would be dBW, or a similar unit for any fractional unit of power. The number of dBV is always double the number of dBW, since taking the \(\log_{10} \) of both sides of the power relation gives

\[\log(P) = \log\left(\frac{E^2}{R}\right), \]

\[= 2 \times \log(E) + \log(R), \]

\[= 2 \times \log(E) + \log(1), \]

\[= 2 \times \log(E). \]

For that reason,

\[1 \text{ dBW} = 2 \text{ dBV}. \]

For example, in Table 2, for the U267B and step 5, the entry given is 1.41 volts DC, or +3 dBW. On squaring that, you get...
2 volts², so 10 times its log₁₀ is +3 dBW, and doubling that gives +6 dBW. Of course, when ever you take the logarithm of a quantity like voltage or power, you always operate on the numerical part alone, and ignore the units. If you ever hear of an audio or noise level that’s expressed in dB alone, with no unit appended to indicate “dB with comparison to what,” such a specification is nonsense.

To express an amplitude in dB relative to a unit of potential or power with a multi-letter abbreviation, just append the whole unit, like dBmV for dB relative to a unit of potential or power with comparison to what,” such a specification is nonsense.

DC, but you’ll have to remember the constraints previously mentioned. Figure 14 shows a 0–1-volt DC, 5-LED, linear-scale meter using a U2X7B, and Fig. 15 shows a U237B and U247B pair used in a 0–1-volt DC, 10-LED, linear-scale meter. The latter circuit operates each IC as shown in Fig. 14, with supply voltages that are appropriate to five LED’s, but their input terminals are tied together, and the LED’s are alternated, to achieve a 10-LED display.

Figure 16 shows how the full-scale sensitivity of the meter is reduced by feeding the input to IC1 via R1-R2-R3, using a ratio of 15:1, and giving full-scale sensitivity of 15 volts DC. Figures 17 and 18 show how the circuit shown in Fig. 14 can be used to display a physical quantity like light intensity or heat, as represented by the analog resistance R3 of a transducer. In both, the transducer is fed by a constant-current source, so the input voltage to IC1 is directly proportional to the transducer resistance.

As shown in Fig. 17, constant transducer current is derived from regulated supply via R1-R2, since regulated supply voltage is large relative to the 1-volt DC full-scale meter sensitivity. By contrast, as shown in Fig. 18, constant current is ensured via D1-Q1. Finally, Fig. 19 shows the U267B used in a 5-LED logarithmic audio-level meter. A 10-LED meter can be made using a U257B and U267B pair as shown in Fig. 15.

Practical U2X7B circuits

Figures 14–19 show practical U2X7B-family circuits: in all of them, the supply is 12–25 volts DC, but you’ll have to remember the constraints previously mentioned. Figure 14 shows a 0–1-volt DC, 5-LED, linear-scale meter using a U2X7B, and Fig. 15 shows a U237B and U247B pair used in a 0–1-volt DC, 10-LED, linear-scale meter. The latter circuit operates each IC as shown in Fig. 14, with supply voltages that are appropriate to five LED’s, but their input terminals are tied together, and the LED’s are alternated, to achieve a 10-LED display.

Figure 16 shows how the full-scale sensitivity of the meter is reduced by feeding the input to IC1 via R1-R2-R3, using a ratio of 15:1, and giving full-scale sensitivity of 15 volts DC. Figures 17 and 18 show how the circuit shown in Fig. 14 can be used to display a physical quantity like light intensity or heat, as represented by the analog resistance R3 of a transducer. In both, the transducer is fed by a constant-current source, so the input voltage to IC1 is directly proportional to the transducer resistance.

As shown in Fig. 17, constant transducer current is derived from regulated supply via R1-R2, since regulated supply voltage is large relative to the 1-volt DC full-scale meter sensitivity. By contrast, as shown in Fig. 18, constant current is ensured via D1-Q1. Finally, Fig. 19 shows the U267B used in a 5-LED logarithmic audio-level meter. A 10-LED meter can be made using a U257B and U267B pair as shown in Fig. 15.
rent directory. If the file exists, the program then tells you how many samples it contains, and asks start and stop points for the plot; the maximum number is 1000.

The program (line 170) scales the graph to produce the widest possible graph; lines 220–270 graph the data. Press Esc to terminate the program. To “magnify” a limited portion of the data set, run the program again, and enter appropriate start and end values (e.g., 350 and 450). You can print your graphs by running the DOS program GRAPHICS.COM before GRAFDATA.BAS. When the desired graph appears on the screen, press PrintScrn. (You must have a compatible printer in order to print out any of the graphs.)

Triggered sampling

Now with the software under our belt, it’s time to finish the “rapper” story begun earlier. The rapper was triggered by an electronic control circuit. We tried to trigger sampling by hand, but it was impossible to tell when the rapper was about to energize, and reaction time was too slow and unsure for accurate triggering. Our solution was to create a trigger input. We tapped a digital signal from the control circuit that changed just before the rapper triggered.

The ADC circuit uses only 8 of the 24 input lines on the PC IO. What we did is use bit 0 of port B as a trigger input. Then by adding a single line of code, we could trip on either a low-to-high signal:

```
145 IF (INP(ADD + 1) AND 1) = 0 THEN GOTO 145
```

or a high-to-low signal:

```
145 IF (INP(ADD + 1) AND 1) = 1 THEN GOTO 145
```

If you want to add a slight delay between the trigger and the start of sampling:

```
146 FOR I = 1 TO DELAYTIME : NEXT
```

However, the delay time in this case would vary with the speed of your PC. In addition, make sure the trigger signal is TTL-compatible (logic low = 0V, and logic high = 5V). If it isn’t, or you want to buffer the trigger signal from your system, you can use the circuit of Figure 5. Remember, this circuit inverts the incoming trigger signal, so a positive-going trigger will be negative-going when it exits the buffer circuit. Adjust added line 145 accordingly.

Conclusions

The analog world of nature is not so distant from the digital world of computers. Simple circuitry can allow your PC to function as a digital eye, ear, or hand on the external world. The circuits and software shown here are only the beginning.
Wavelets. We have got lots of wavelets. You getcher wavelets here. As we've discovered a number of times before, wavelets are a stunning new math concept that is profoundly changing virtually all the advanced electronic topics. A failure to learn wavelets now is the same as volunteering for early retirement.

We've already seen that Jones and Bartlett has published THE great new wavelets book, and that the Ultrawave Explorer from the Aware folks is definitely one fine commercial wavelet study and development program.

But the big news is that I've just posted full working PC shareware copies of the Wavelet Packet Library from Digital Diagnostics on GENie PSRT as #365 WAVE-LET-PS.

Those of you into satellite dishes and microwave electronics are now probably familiar with Smith Charts, a handy graphical method of doing things like impedance matching and tuning. I have written a PostScript Smith Chart generator that lets you instantly create all your own Smith charts in any quantity, any size, any resolution, and any where in your publication. Check GENie PSRT #367 SMITHCHT.PS for several freeware samples. Your downloading cost on this is around twenty one cents.

Perpetual motion again
I get an average of three to five helpline calls a week on "free energy" and other perpetual-motion topics. As we have seen in the past, perpetual motion is definitely real as a historic and ongoing societal phenomenon. We have also seen that two ongoing sources of perpetual-motion books, videos, and papers are High Energy Research and Lindsay Publications.

Now, I personally feel that looking for any free-energy systems is rather dumb. First, because the desirability of any free energy ranks somewhere between Herpes and AIDS. Why? Because this would obviously hasten the already ongoing entropic heat death of the planet. If someone does in fact find a free-energy system, they should be spanked and sent to bed without any supper. Or, better yet, chopped up and fed to the cows.

Second, because the odds of your accomplishing anything that's even remotely useful involving free energy are stupendously low. Third, because your credibility starts out as less than zero and quickly plummets. Owing to previous scams, the "not even wrong" research, and the "few-chips-shy-of-a-full-board" guilt by association.

And, finally, because there's so much better to be doing. We're sitting on the greatest mountain of new hardware hacking chips, tools, info, and concepts anywhere ever. Stuff that's crying for hacker use, and stuff that is nearly certain to result in lots of interesting and profitable things. Why should you ignore the obvious?

Several of the recent callers were making measurements that were just plain wrong. Since I am one of the world's foremost experts in gathering incorrect, misleading, or meaningless lab data, I thought we might briefly focus on a few of the ways that casual measurements may not end up what they appear to be.

In general, you'll always want to assume that all meter pointers and, especially, all of your digital numeric displays are lying through their teeth. Or, if they are giving you a correct reading, the odds are overwhelming that the meaning and the underlying reasons for that reading are not at all what you had in mind.

Oscilloscopes do a far better job than the meters or digital displays at showing you what is really coming down. Even here, an uncompensated probe, the wrong setting, improper sync, an invisible glitch, any outband signals, or just a ground clip that is slightly too long can cause you wildly incorrect results.

It is only when the same tests are run over and over again by different people under different circumstances that you can even remotely begin to trust your instruments. Even when repeated, that trust should only apply to the exact measuring conditions.

Aferinstance: Figure 1 shows you a seemingly simple method to measure AC power. You connect your new motors-and-magnets perpetual motion machine load to the AC power line through an ammeter and then separately measure the line voltage. Since power equals volts times amps, you just multiply your two readings together and you'll have the input power. Right?

Wrong. Dead wrong.

Let's temporarily forget about any noise, spikes, back-EMF effects, harmonics, and nonlinearities that are certain to be present with your new motors-and-magnets load. Assume a pure sine-wave voltage and a similar current waveform. You have to take the phase of the current into account. You would get a zero phase shift.
with a purely resistive load. In a purely inductive load the voltage would lead the current by 90 degrees. In a purely capacitive load, the voltage would lag the current by 90 degrees.

Good old ELI THE ICE MAN. The voltage is ahead of the current in the ELi’s L inductor; the current is ahead of the voltage in his IC capacitor.

And if you have any purely active load such as another generator, your current could end up phased by 180 degrees. Sourcing, not sinking.

Your actual power will end up as the voltage times the current times the cosine of the phase angle between the two. If your voltmeter reads 110 and your ammeter reads 4, your actual circuit power will be 440 watts to a purely resistive load, zero to any purely active load, and minus 440 watts to any purely capacitive load. When the two are equal and negative current. And anything between, depending upon your phase angle.

Why is the power zero to a purely inductive load? Because of the phase angle. A math freak will tell you the full cycle cross product of a sine and its cosine is zero. Intuitively, on the first quarter cycle, you have positive voltage and current. On your next quarter cycle, you will have negative current and negative voltage. On the next, negative voltage and negative current. And finally, negative voltage and positive current. Add them all up and average them all out and you end up with zero real power.

Yes, you will get lots of back-and-forth reactive power that can give you real fits. And hack off your electric utility. But your net real power into a pure inductive or capacitive load is precisely zero.

Thus, as far as power goes, all the voltmeter and ammeter readings are totally meaningless. And they are even less so in the presence of noise, back EMFs, sparking, or harmonics.

Measuring real power

So how do you measure real and reactive power? The trick is that you have to multiply the instantaneous voltage and current together. Then you sum to find the total power.

The power of any arbitrary waveform is equal to the DC continuous power that would give you exactly the same amount of total heating in a purely resistive load.

You can do this measurement with a real wattmeter, or by multiplying the rotational speed and direction of a watthour meter. The wattmeters and watthour meters are often available through Sales or Herbach and Rademan. Electronically, you can use a multiplier chip or a special RMS power calculating circuit. Analog Devices is one leader in low-cost power chips of this type.

Or graphically, you can take plots of all the exact voltage and current waveforms, split them up into time slices so narrow that the voltage or current does not change much, multiply the results of those slices and then sum the results.

Note that you must multiply first and then add. Never vice versa.

But you still do have to be careful. Nonlinearities, pulses, harmonics, motor back-EMFs, effects, and noise require special treatment. And most power measurement schemes have a crest factor limit which ruins their accuracy on strong but narrow pulses. Especially things like spikes and glitches.

For these reasons, it is extremely difficult to accurately measure your input power to a motors-and-mag...
circuit energy will vanish without a trace. Where did the energy go?

FIG. 3—QUICKLY CLOSE THE PERFECT AND LOSSLESS SWITCH. And half of your circuit energy will vanish without a trace. Where did the energy go?

nets perpetual motion machine. If you do not know exactly what you are doing, all your results are guaranteed to be wildly wrong. And so, of course, will be all of your conclusions.

Figure 2 shows you a second measurement pitfall that the recent callers have all decided to ignore. A voltage regulator is always a voltage regulator, right?

Wrong. Dead wrong.

Most popular voltage regulators are only capable of sourcing current. If the load starts sourcing any power even briefly, there is no place for the current to go, and the regulator either shuts down or starts oscillating.

Thus, if you have a motors-and-magnets load, there could be times when the back-EMF effects, spikes, commutator noise, or whatever, will try to source power back into your supposed power source.

Put in another way, typical power supplies and most regulators have wildly different impedances between when they source and sink power.

Note that any normally connected Zener diode will behave precisely the opposite—they are great power sinks but poor sources.

An output filter capacitor on your regulator is essential for grabbing and smoothing out high-frequency load sourcing variations.

Beyond proper output filtering, two ways around load sourcing effects are to hang enough of a resistive load on your regulator that the regulator will always output a net sourcing current. Most batteries are usually capable of sourcing and sinking any reasonable amount of current.

Figure 3 shows you yet another way to go astray. All bets are off if there is any sparking or arcing. It is physically impossible to instantly change the voltage across a circuit capacitor or the current through an inductor. The usual result when you try this is sparking or arcing.

Take a 100-microfarad capacitor and charge it up to 100 volts. Your energy in any capacitor is...

$E = \frac{1}{2}CV^2$

or, in this case, 0.5 Joules of stored energy. Now, you close your lossless switch so you have two capacitors in parallel. The voltage must, of course, drop in half, since the same charge is now spread across twice your plate area. And by the same formula, you now have only 0.25 Joules of stored energy.

Question: Where did the rest of your energy go? If you have a non-lossless switch of resistance R, the answer is easy. In the process of charging the second capacitor, the extra energy got burned up in your resistor as heat during charging. But go through the charging math, and you’ll find that the loss of half the stored energy is a constant which is totally independent of the value of R!

If R equals zero, then you have to get a spark and radiated energy. But you still lose half of it, regardless of how good the switch is.

Thus, if there is any sparking or arcing whatsoever in your machine, your readings are once again absolutely certain to be wrong.

Always think carefully about your measurements and how they could be wrong or misleading.

Lumeloid and Lepon films

We sure had a bunch of helpline calls over the new materials stuff I announced a column or two back and in our Hardware Hacker Ill reprints. I’ve picked up some more

By Studying at Home

Grantham College of Engineering, now in our 41st year, is highly experienced in “distance education”—teaching by correspondence—through printed materials, computer materials, fax, and phone.

No commuting to class. Study at your own pace, while continuing on your present job. Learn from easy-to-understand but complete and thorough lesson materials, with additional help from our instructors.

Our Computer B.S. Degree Program includes courses in BASIC, PASCAL and C languages—as well as Assembly Language, MS DOS, CADD, Robotics, and much more.

Our Electronics B.S. Degree Program includes courses in Solid-State Circuit Analysis and Design, Control Systems, Analog/Digital Communications, Microwave Engr, and much more.

An important part of being prepared to move up is holding the right college degree, and the absolutely necessary part is knowing your field. Grantham can help you both ways—to learn more and to earn your degree in the process.

Write or phone for our free catalog. Toll free, 1-800-955-2527, or see mailing address below.

* Accredited by the Accrediting Commission of the National Home Study Council

GRANTHAM College of Engineering

Grantham College Road

Slidell, LA 70460
Electronics Paperback Books

GREAT PAPERBACKS AT SPECIAL PRICES

- **BP243—TEST EQUIPMENT CONSTRUCTION**
 - $5.95. Details construction of simple, inexpensive, but extremely useful test equipment. AF Gen, Test Bench Ampl, Audio Millivoltmeter, Transistor Tester and six more.

- **BP267—HOW TO USE OSCILLOSCOPES AND OTHER TEST EQUIPMENT**
 - $6.95. Mastering the oscilloscope is not really too difficult. This book explains all the standard controls and functions. Other equipment is also described.

- **BP265—MORE ADVANCED USES OF THE MULTIMETER**
 - $6.95. Use these techniques to test and analyze the performance of a variety of components. Also see how to build ad-ions to extend multimeter capabilities.

- **BP249—MORE ADVANCED TEST EQUIPMENT CONSTRUCTION**
 - $6.95. Eleven more test equipment construction projects. They include a digital voltmeter, capacitance meter, current tracer and six more.

- **BP260—CONCISE INTRO TO OS/2**
 - $6.95. If you are a multi-tasking PC user and want to get the most out of your computer, you must learn OS/2 operating system. This book shows you just how to do that quickly and easily.

- **BP245—DIGITAL AUDIO PROJECTS**
 - $5.95. Practical circuits to build and experiment with. Includes A/D converter, input amplifier, digital delay line, comparator, echo effect and more.

- **BP247—MORE ADVANCED MIDI PROJECTS**
 - $5.95. Circuits included are a MIDI indicator, THRU box, merge unit, code generator, pedal, programmer, channelizer, and analyzer.

- **BP257—INTRO TO AMATEUR RADIO**
 - $6.95. Amateur is a unique and fascinating hobby. This book gives the newcomer a comprehensive and easy to understand guide to the subject.

- **PCP102—INTRO TO COMPUTERS AND MUSIC**
 - $5.95. Everything you need to know to set up your own personal computer music studio.

- **BP256—INTRO TO SATELLITE TV**
 - $9.95. A definitive introduction to the subject written for the professional engineer, electronics enthusiast, or others who want to know more before they buy. 8 x 10 in.

- **BP190—ADVANCED ELECTRONIC SECURITY PROJECTS**
 - $5.95. Includes a passive infra-red detector, a fiber-optic loop alarm, computer-based alarms and an unusual form of ultrasonic intruder detector.
The transformer is 1:1 600 Ohms, with a 1500 volt breakdown rating.

The zener diodes are 3.9 volt devices, such as a type 1N5228.

FIG. 4—A FCC PART 68 INTERFACE is required any time you connect any circuit of your own to the phone line. While this interface can be both simple and cheap, the required submission and approval process is not.

FIG. 5—PRE-APPROVED PART 68 INTERFACE HYBRIDS are available, but they are rather expensive. Here is a caller-ID circuit that uses the Cermetek CH1845 DAA interface and the Sierra SC11211 caller ID chip.

info, and have summarized where to go for more in our Lumeloid and Lepcon Solar Resources sidebar.

Let’s start off with the bottom line. Yes, this looks like it someday could be real. Maybe. At least in the lab. No, you cannot yet buy the stuff by the yard through your local K-Mart fabric department and staple it to your roof. Yes, this is a great topic for a school paper or a science fair. And an incredible emerging research area.

On the other hand, working prototypes do not yet exist. And there are just enough “penny stock” and “media hype” aspects to all this that I have lowered my rating from “solar breakthrough” to “an interesting potential solar development.” But you could judge for yourself, just by picking up on the resources in our sidebar.

The key individual behind all this

DIGITAL VIDEO STABILIZER
ELIMINATES ALL VIDEO COPYGUARDS

While watching rental movies, you will notice annoying periodic color darkening, color shift, unwanted lines, flashing or jagged edges. This is caused by the copy protection jamming signals embedded in the video tape, such as Macrovision copy protection. THE DIGITAL VIDEO STABILIZER: COMPLETELY ELIMINATES ALL COPY PROTECTIONS AND JAMMING SIGNALS AND BRINGS YOU CRYSTAL CLEAR PICTURES.

WARNING
THE DIGITAL VIDEO STABILIZER IS INTENDED FOR PRIVATE HOME USE ONLY. IT IS NOT INTENDED TO COPY RENTAL MOVIES OR COPYRIGHTED VIDEO TAPES THAT MAY CONSTITUTE COPYRIGHT INFRINGEMENT.

FEATURES
- Easy to use and a snap to install
- State-of-the-art Microchip technology
- 100% automatic
- Compatible to all types of VCRs and TVs
- The best and most exciting Video Stabilizer in the market
- Light weight (8 ounces) and compact (1x3.5x5"
- Uses a standard 9 Volt battery (last 1-2 years)
- Fast UPS delivery
- Air shipping available
- UNCONDITIONAL 30 day money back guarantee
- 1 year warranty
(Dealers Welcome)
FREE 20P Catalog

To Order: $59.95 ea +$4 for p & h
Visa, M/C, COD Mon-Fri: 9-6 EST
1-800-445-9285 ext. 63802
SCO Electronics Inc. Dept. 63802
581 W. MERRICK RD. VALLEY STREAM, NY 11580

CABLE TV DESCRAMBLERS
How You Can Save Money on Cable Rental Fees
Bullet Proof

US Cable’ll Beat Anyone’s Price Advertised in this Magazine!

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Super Tri-Bi Auto/Var Gain Adjustment</td>
<td>$119.95</td>
</tr>
<tr>
<td>Jerrold Super Tri-Bi</td>
<td>$199.95</td>
</tr>
<tr>
<td>Scientific Atlanta</td>
<td>$199.95</td>
</tr>
<tr>
<td>Panasonic T22C150</td>
<td>$299.95</td>
</tr>
<tr>
<td>Sanyo Super Tri-Bi</td>
<td>$199.95</td>
</tr>
<tr>
<td>Pioneer</td>
<td>$199.95</td>
</tr>
<tr>
<td>Digital Video Stabilizer</td>
<td>$59.95</td>
</tr>
<tr>
<td>Wireless Video Sender</td>
<td>$59.95</td>
</tr>
</tbody>
</table>

30 Day Money Back Guarantee
FREE 20 page Catalog
Visa, M/C, COD or send money order to:
U.S. Cable TV Inc. Dept. 53802
4100 N, Powerline Rd., Bldg. F-4
Pompano Beach, FL 33073
1-800-772-6244 ext. 53802

For Our Record
I, the undersigned, do hereby declare under penalty of perjury that all products purchased, now and in the future, will only be used on Cable TV systems with proper authorization from local officials or cable company officials in accordance with all applicable federal and state laws. FEDERAL AND VARIOUS STATE LAWS PROVIDE FOR SUBSTANTIAL CRIMINAL AND CIVIL PENALTIES FOR UNAUTHORIZED USE.

Date: __________________________
Signed: ________________________

No Florida Sales!

CIRCLE 177 ON FREE INFORMATION CARD
is one Alvin Marks and his company of Advanced Research Development. Their OTC pink sheet stock is traded under the name Phototherm. This is strictly an unregistered blue sky security, and trading remains illegal in Massachusetts, the issuing state.

Marks is a credible, experienced, and independent researcher with a long history of successful energy, optical-film, and pollution-control developments. Among other things, he developed the cheap glasses once used for 3-D movies.

And EPRI, that ultra-conservative Electric Power Research Institute electric utility consortium has seen fit to fund Marks with a modest research grant. Albeit a paltry one by EPRI standards. Coffee money.

The two key patents that are involved in this are #4,445,050 Device for Conversion of Light Power into Electric Power, and #4,574,161 An Ordered Dipolar Light-Electric Power Converter.

There is very little published to date. And all of it is single sourced. None appears to be peer reviewed or critiqued. A collection of reprints is now available free on request from Advanced Research Development. One original paper has shown up as Lumeloid Solar Plastic Films and Lepecon Submicron Dipolar Antennae on Glass, from the 1990 International New Energy Technology symposium published by the Planetary Association for Clean Energy, located in Ottawa, Canada.

As we've seen a number of times in the past, you can quickly research any technical topic by using the Dialog Information Service at your local library, and then can get any reprint by using either interlibrary loan or the UMI reprint service.

So what is the big deal here and how does it work? Your traditional loan or the UMI reprint service.

#4,574,161 An Ordered Dipolar Light-Electric Power Converter.

#4,445,050 Device for Conversion of Light Power into Electric Power.

Efficiency is everything in solar power. On a good day, you have one incoming kilowatt per square meter to work with. Say a nickel an hour "avoided cost" income for a perfect conversion. Or two cents a day allowing for night and weather. Naturally, your bottom-line efficiency will usually be much less than your theoretical. Let your efficiency drop too low and there's no way that solar can be competitive. Get under the bottom-line efficiency of seven percent or so, and you will never be able to pay for your installation and land, owing to the time value of money. The longer it runs, the more it costs you for the financing.

But, alternatively, the nickel-per-kilowatt-hour incoming solar energy on a 2200 square foot house roof

NAMES AND NUMBERS

Analog Devices
One Technology Way
Norwood, MA 02062
(617) 329-4700
CIRCLE 301 ON FREE INFORMATION CARD

Aware
One Memorial Drive
Cambridge, MA 02142
(617) 577-1700
CIRCLE 302 ON FREE INFORMATION CARD

Bennet LaserBrite
720 Fourth Street, SW
Rochester, MN 55902
(507) 280-9101
CIRCLE 303 ON FREE INFORMATION CARD

Cermetek
1308 Borregas Avenue
Sunnyvale, CA 94089
(408) 752-5000
CIRCLE 304 ON FREE INFORMATION CARD

Dallas Semiconductor
4401 Beltwood Parkway South
Dallas, TX 75244
(214) 450-0400
CIRCLE 305 ON FREE INFORMATION CARD

Digital Diagnostics
1025 Sherman Avenue
Hamden, CT 06514
(203) 288-9444
CIRCLE 306 ON FREE INFORMATION CARD

Direct Imaging
2 Technology Drive
West Lebanon, NH 03784
(603) 298-8383
CIRCLE 307 ON FREE INFORMATION CARD

GENie
401 North Washington Street
Rockville, MD 20850
(800) 638-9636
CIRCLE 308 ON FREE INFORMATION CARD

Hello Direct
140 Great Oaks Blvd
San Jose, CA 95119
(800) 444-3556
CIRCLE 309 ON FREE INFORMATION CARD

High Energy Enterprises
PO Box 5636
Security, CO 80931
(719) 475-0918
CIRCLE 310 ON FREE INFORMATION CARD

Hughes
500 Superior Avenue
Newport Beach, CA 92658
(714) 759-2665
CIRCLE 311 ON FREE INFORMATION CARD

Jones & Bartlett
20 Park Plaza
Boston, MA 02116
(617) 482-3900
CIRCLE 312 ON FREE INFORMATION CARD

Lindsay Publications
PO Box 538
Bradley, IL 60915
(815) 935-5353
CIRCLE 313 ON FREE INFORMATION CARD

Motorola
PO Box 1466
Austin, TX 78767
(800) 521-6274
CIRCLE 314 ON FREE INFORMATION CARD

Newtek
215 SE 8th Avenue
Topeka, KS 66603
(800) 765-3406
CIRCLE 315 ON FREE INFORMATION CARD

Serpac
612 Commercial Avenue
Covina, CA 91723
(818) 331-0517
CIRCLE 316 ON FREE INFORMATION CARD

Sierra Semiconductor
2075 North Capitol Avenue
San Jose, CA 95132
(408) 263-9300
CIRCLE 317 ON FREE INFORMATION CARD

Sony
10833 Valley View Street
Cypress, CA 90630
(714) 229-4175
CIRCLE 318 ON FREE INFORMATION CARD
adds up to over $3000 a year. Which is lots more than usually gets used underneath as electricity. So efficient solar electric conversion could completely blow away coal, nuclear, and even most hydro.

Marks has developed two different solar-to-electric systems that seem to have rather high theoretical efficiencies.

Radio waves are electromagnetic. Solar energy is electromagnetic. The main difference between orange light (at 600 nanometers) and television channel two (6 meters) is a 10,000:1 size factor. Those light wavelengths may seem tiny, but we are starting to routinely handle submicron distances in integrated-circuit manufacturing.

There’s this thing called a crystal set that you might have heard of. Just shove some electromagnetic energy into an antenna, rectify it somehow, and out comes DC power. These days, we call the same thing a rectenna. So why not use light waves instead of radio waves?

An antenna is any subsystem for converting radiated electromagnetic energy into conducted wire electromagnetic energy. Or vice versa. As a transmitter, if your antenna is now properly matched to the rest of your circuit, nearly all of your input energy will get radiated. And, since most antennas are linear and reciprocal devices, if you input any electromagnetic energy well inside of the antenna’s effective area, nearly all of it will get converted into conducted electricity. So, a properly matched antenna can be 100 percent efficient. And a rectifier nearly so.

Now, an optical antenna is trivial. Just make it any old color so long as it is black. Even a black felt tip pen will do. The trick lies in rectifying and gathering all the received solar electromagnetic electricity, rather than burning it up as heat.

The Lepcon panel is the older of Marks’ two new developments. In a Lepcon panel, tiny rectenna elements are created on glass using more or less conventional but very advanced microlithography. These are basically a conductive channel ending with a metal barrier diode. The photons in the incoming solar

LUMEOID & LEPCON SOLAR RESOURCES

Key Patents:
- #4,445,350—Device for conversion of Light Power into Electric Power.
- #4,574,61—An ordered Dipolar Light-Electric Power Converter.

Key Paper:

Key Info Packet:
- From Advanced Research Development below.

Key Players:
- Advanced Research Development
 - 359R Main Street
 - Athol, MA 01331
 - (508) 249-4696
 - CIRCLE 319 ON FREE INFORMATION CARD

NO COMPLICATED ELECTRONICS, NO EXPENSIVE INSTRUMENTS:

Home study course shows you how to make good money in VCR repair.

An amazing fact: you can do more than four out of five VCR repairs with ordinary tools and basic fix-it procedures. Our home study program shows you how. Learn all of the systems, mechanisms, and parts of almost all brands of VCRs. With no expensive instruments. No complicated electronics. No fancy workshop. The step-by-step texts and close personal attention from your instructor make learning easy. Texts, course materials, and tool kit are sent to your home. Graduate ready to make up to $50.00 or more per hour in your own spare-time or full-time business.

Send today for your free career booklet. Or call 800-223-4542

The School of VCR Repair
- 2245 Perimeter Park, Dept. VB 342, Atlanta, Georgia 30341
energy are used to accelerate electrons, which jump the barrier diode to become a DC current. Unlike a traditional solar cell, there are no "whole lumps only" quantum effects involved, and nearly all of the available energy gets converted.

The antenna/rectifier combination only works with one polarization of light. It converts the one polarization with up to a theoretical 80 percent efficiency, and passes the remainder on through. You could put a second Lumeloid panel underneath that is oriented 90 degrees from the first to convert the other polarization.

Or, you could use a sneaky trick consisting of a quarter wave plate and a mirror to rotate your rejected polarization by 90 degrees and shove it back up through the original film. Your combined efficiency ends up around a theoretical 72 percent.

The projected costs of the Lepcon process is around $250 per panel, and the panels should last 25 years.

The Lumeloid film process uses chemicals instead of very expensive microlithography. The chemical techniques in theory lend themselves to low-cost and high-volume production. The chemicals attempt to mimic the first half of the long photosynthesis process. A rather long chain carbon molecule, such as polyacetylene, is attached to some electron donor acceptor complex, such as porphyrin and quinone.

The long chain molecule acts as a conductive antenna, changing the input optical energy into electron energy. The tunneling gap effect between the large donor and small acceptor rings acts as a rectifying diode for DC conversion.

For all this to work, the molecules have to be carefully oriented while the sheet is being created. Mark's work has centered on suitable bulk processes to do the orientation in a low-cost and high-volume process. Projected costs are five dollars per meter and three cents per watt.

At present, the Lumeloid films are only expected to last a year in strong sunlight. Once again, Lepcon panels use conventional microlithography on glass, while Lumeloid use oriented films that mimic photosynthesis.

Interestingly, the Lumeloid process is totally reversible. You can input electricity and get light out as well. Which could lead to new lighting and display technologies.

For any of this to become real, we will need working prototype panels, credible third party research, and the proper peer review. My "usual suspects" of Science, Nature, Science News, and the technology page of the Wall Street Journal have been suspiciously silent to date.

My own feelings are that short and open circuits in production panels are going to lead to the very same type of yield problems that have held back and restricted development of large area flat-panel TV displays.

Because of the lack of even lab prototypes, their efficiency and cost projections at this time would appear totally meaningless.

Caller ID update

Time sure does fly when you are having fun. As a result, I've gotten hopelessly far behind on a bunch of potentially great projects here. So my caller-ID project may take a while.

Caller ID should be available in most parts of the country very soon. The controversy is dying down, since the benefits so totally and ludicrously outweigh any potential problems. To see what dozens of others are now thinking about caller ID, you might want to check #2239 CALLERID.CAP on the GENIE RADIO RoundTable.

If for no other use, the convenience of having a no-charge, no-hassle list of everyone that called you while you were out is just flat out wonderful.

Motorola has just announced a brand new MC145447 caller ID chip. Free sample kits are available. This one is supposed to include internal ring detection. But, as near as I can tell so far, the chip of choice remains the Sierra SC11211.

An FCC Part 68 interface is shown in Fig. 4. Which is what normally has to go between you and the phone company. Key points include an exceptionally well-balanced transformer with a 1500-volt isolation capability. While such an interface is fairly cheap and simple, getting the needed approval is not.

Several companies now offer some ready-to-go Part 68 interfaces. These are priced well above what you could build your own for. But they come pre-approved, eliminating most legal hassles. Dallas Semiconductor and Cermetek are two typical sources. An interface between the new Cermetek CH1845 and the Sierra SC11211 caller ID chip is shown in Fig. 5.

Both Cermetek and Sierra have free caller-ID ap notes available.

As we've seen before, a number of ready-to-use caller-ID products are available from Hello Direct.

New tech lit

From Sony, a new Laser Diode Guidebook. And from Hughes, a free brochure on their Nonvolatile Serial Programmable Devices.

The Best of Analog Dialogue is a three decade compilation of the very best in analog linear integrated circuit design info. From the company Analog Devices.

In a startling development, real thermography is now available for computer-based desktop publishing. One new source is Bennet LaserBrite. You spray on chemical A to soften your toner, dust on powder B, and then apply heat from desklamp C. Presto. Instant raised letters. Even Braille.

Free stuff this month: A video on a high-end printed circuit prototyping system from Direct Imaging. A free video on the Toaster, the low-cost broadcast-quality video production system from NewTek. And a great new sample A-42 plastic electronic case from Serpac.

A reminder that I do have a full collection of reprints available. These include Hardware Hacker II & III, my Ask the Guru I & II & III, the Blatant Opportunist I, LaserWriter Secrets, and our brand new Book-on-Demand Resource Kit. Just give me a call on our no-charge tech helpline (per the box) for more details. Or call me at my Synergetics.

You can also reach me via GENIE PSRT (800) 638-9636. Besides that wavelet freeware and the Smith Chart package, you'll find lots of Hardware Hacker and Midnight Engineering hard-to-find resource stuff.
AUDIO UPDATE

More from the mail bag

LARRY KLEIN

Last month, I answered several hi-fi questions from readers, but ran out of room before getting to them all. This month, we'll get to the bottom of the mail bag.

Overpriced signals?

I'm appalled by the proliferation of signal processors—particularly equalizers—in the audio marketplace. What ever happened to the notion that a hi-fi system should be a "straight wire with gain"? A.T.

McAlester, OK

The idea is alive and well, but beset by philosophical confusions. While the concept has validity for, say, power amplifiers, it really can't be applied to the entire recording-reproduction chain. Straight wire-with-gain audiophiles—for whom tone controls of any kind are anathema—appear to assume that whatever signal comes out of their carefully chosen disc player or tape machine somehow perfectly embodies an original performance. Anyone naive enough to harbor such a belief has, at best, a very unclear notion as to how sound is recorded and reproduced.

Assuming that you had a perfect stereo recording of the sound field (at a specific location) of a live musical event—and all the electromechanical and electronic elements in your playback system were perfect—your speakers would still have the task of replicating the acoustics of a concert hall within the comparatively cramped space of a conventional listening room. In short, the chances of exactly duplicating an original live sound field in your listening room are about zero.

Given the aberrations in frequency balance, noise level, and dynamic range likely to be introduced, plus the loss of rear ambience and reflections, I see nothing wrong with using signal processors to help minimize, ameliorate, or eliminate the various ill effects. I've long since given up any hope of reproducing the precise sound of any original musical performance in my home. But when I achieve plausible reproduction, then I'm satisfied that I've achieved high, if not absolute, fidelity.

System imbalance

After a long struggle to find the reason for my having to operate the balance control on my preamplifier at the 3-o'clock position, I traced the difficulty to my speakers. What would account for the fact that a readjustment of the midrange control on one of my speakers cured the problem? J.W.

Freeport, TX

The frequencies that contribute to the perception of "loudness" are mostly in the midrange. (You can confirm this for yourself by noting the small effect on the overall loudness of music produced by the outermost controls of a ten-band equalizer.) Hence, any control that boosts or cuts the mid-frequencies in a speaker system will also necessarily influence its relative "efficiency" or loudness.

Alcoholic anxiety

Some tape-cleaner ads seem to say that alcohol may be injurious to the insides of recorders. But magazines seem to recommend alcohol as a cleanser. Which information is correct? N.W.

Covington, LA

You should avoid solutions sold as "rubbing alcohols" because they are likely to include a skin lubricant (usually glycerin) that could be transferred to the tape and the pinch roller. Ask your pharmacy for isopropyl alcohol in "NF" purity; that will work fine for heads, pinch rollers, and for general internal cleaning of your machine.

Costly repairs

My receiver recently went dead in one channel, and I brought it to a local authorized service center. They charged me $75 to repair a unit that cost $300 when new. My friends have had similar experiences. Are the repair-shop owners trying to get rich at our expense—and why don't the manufacturers do something about it? K.U.

Boston, MA

We live in a time when very complex electronic devices are manufactured by automated machinery controlled by computers. That is the reason why you can buy a digital watch or a pocket AM/FM radio for well under $10. But the elimination or reduction of the expensive hand-labor element in many of today's electronic devices is of no help when the device needs repair. The repair process continues to be labor intensive, and it involves skilled, expensive labor at that. In short, although electronic products are built by the most sophisticated automated techniques available to the 20th century, they are repaired one at a time by the equivalent of an 18th-century handicraft approach. As you have found, that's not cheap!

Slam damage

I've noticed that when I close the trunk lid the cones of the woofers installed in my car's rear deck seem to jump forward. Can the woofers be damaged by my slamming the trunk shut? E.C.

Chicago, IL

Possibly, but not probably. The variables in the situation are the rug-
FREE CATALOG OF TEST INSTRUMENTS & TOOLS is packed with thousands of products for testing, repairing, and assembling electronic equipment. Featured are brand name instruments such as Fluke, Tektronix, Leader, Weller, 3M plus many more. Also included are DMMs, hand tools, power supplies, tool kits, test equipment, static supplies plus many other new products. Orders placed by 4 PM are shipped before we go home! CONTACT EAST, 335 Willow St., No. Andover, MA 01845. (508) 682-2000, Fax: (508) 688-7829.

CIRCLE 55 ON FREE INFORMATION CARD

GET YOUR RECHARGE CATALOG FREE...EARN BIG $S IN YOUR SPARE TIME—All supplies and Do-It-Yourself kits with complete instructions available. Supplies cost from $9.95 in qty and you can sell recharged toner cartridges for $40.00 to $55.00 each. Printers include HP LaserJet and Series II, Apple LaserWriter, QMS, etc. Canon PC-25 Copier also. CHENESKO PRODUCTS, 2221 Fifth Ave., Suite #4, Ronkonkoma, NY 11779, 516-467-3205. FAX 516-467-3223, 1-800-221-3516

CIRCLE 179 ON FREE INFORMATION CARD

CABLE TV CONVERTERS AND DE-SCRAMBLERS SB-3 $79.00 TRI-BI $90.00 MLD-$79.00 M356 $69.00 DRZ-DIC $149.00 Special combos available. We ship COD. Quantity discounts. Call for pricing on other products. Dealers wanted. FREE CATALOG. We stand behind our products where others fail. One year warranty. ACE PRODUCTS, P.O. Box 582, Saco, ME 04072 1 (800) 234-0726.

CIRCLE 75 ON FREE INFORMATION CARD

TWO FOR THE PRICE OF ONE! 5 MINUTE ASSEMBLY! MONEYBACK GUARANTEE! Attach any 3V-12V battery and have the most stable, sensitive, powerful room transmitter you can buy. Or attach to telephone line. Hear all telephone conversations—crystal clear—over 1 mile away without batteries! Use any FM radio or wideband scanner. 80-130 MHz. 100mW output! VT-75 microtransmitter chip $49.94 + 1.50 S&H. VISA, MC, MO. COD add $4.00. DECO INDUSTRIES, Box 607, Bedford Hills, NY 10507. 1-800-759-5553.

CIRCLE 127 ON FREE INFORMATION CARD

OFF-FREQUENCY FM

Many of the rock stations in my area advertise themselves as being located at, for example, "100 on the FM dial." But my digital tuner won't tune to even numbers; it sets itself for 99.9 or 100.1. Does something need adjustment?

R.P.
San Diego, CA

Yes—the thinking of those who like to reduce all communication to the short, punchy, and simple-minded. In the U.S., all broadcast stations are assigned odd-numbered operating frequencies, 2-megahertz apart. Even if you could tune to 100 MHz, you wouldn't find anything there but a lot of noise and distortion. But, come to think of it, that may be pretty close to what some stations are really broadcasting!
NEW LITERATURE

continued from page 27

This expanding side of the satellite business. Beginning
with an explanation of the transmission and re-
ception of satellite signals, the book goes on to pro-
vide details about each of the systems transmitting
hidden signals. It describes each system and how it
works, explaining who uses it and how the reader
can receive it. The book also includes glossaries of
data-communications and satellite-system terms.

THE HIDDEN SIGNALS ON SATELLITE TV: THIRD EDI-
tion; by Thomas P. Harrington. Universal Elec-
tronics, Inc., 4555 Groves Road, Suite 13, Columbus,
OH 43232; Phone: 614-866-4605; $19.95, plus
$3.00 shipping and han-
dling.

Everyone knows that you can pick up video signals
with a satellite dish, and most satellite owners know
that they can also receive audio channels on re-
ceivers equipped with tunable audio subcarrier
sections. However, not many people are aware of
the variety of non-video and data services that are
also carried on satellites. Those services include au-
dio news, stereo subcar-
riers, telephone systems,
world news and press ser-
vices, teletext, single-
channel-per-carrier
(SCPC) systems, stock
market reports, financial
news services, and busi-
ness data channels. This
book covers all phases of
fundamentals, the techniques and terminology of radio
design, and the basics of solid-state and vacuum-
tube sets. A comprehen-
sive section on radio princi-
ples covers power sup-
plies, audio and video
communications, digital
basics, modulation and de-
modulation, RF oscillators
and synthesizers, princi-
ples of radio transmitting
and receiving, trans-
ceivers, repeaters, ampli-
fiers, antennas, and trans-
mision lines. Modulation
methods for voice, digital,
and image communica-

CIRCLE 196 ON FREE INFORMATION CARD

CIRCLE 37 ON FREE INFORMATION CARD

CIRCLE 36 ON FREE INFORMATION CARD

CIRCLE 185 ON FREE INFORMATION CARD
Well, it’s been a while coming but, at long last, we’re finally back to talking about digital scopes. There have been some interruptions in the meantime but that’s the way life is—it sometimes interferes with living. This subject got put on hold for a bit because of the business of voltage regulators. Sorry about that but, even if you don’t have any particular interest in cars or motorcycles, all that information should be put away for future reference. You never know.

Just to refresh all our memories, we had been talking about the things to be considered in designing a circuit that would serve as the beginnings of a digital scope. All scopes, even the one we’re going to design, have certain basic things in common and any project you have in mind that involves scope design has to start out life around these fundamentals. Your ultimate goal may be to construct something that’s bigger, faster, or (to use my favorite phrase), “feature rich,” but no matter what you have in mind, when you’re just getting started it makes sense to approach things from the beginning.

The design criteria for the scope we are going to be putting together are the following:
1. The scope will have a maximum bandwidth of at least 1 MHz.
2. There will be eight selectable sweep speeds.
3. There will be eight selectable gain levels.
4. There will also be a variable gain control.
5. The display will be in a twenty-by-twenty matrix.

The block diagram of the scope we’re talking about is shown in Fig. 1. While you’re looking at it keep in mind that, even though we’re only talking about a demonstration circuit, the basic structure is the same for every scope there is. Once you go through the design of a simple scope, it’ll be much easier to understand the workings of more complex ones.

There are all sorts of interesting things that can be done with the scope we’re building and there’s no reason whatsoever why you can’t take the basic circuit and add anything you want to it. But we’re getting ahead of ourselves.

One of the major players in the accuracy of a digital scope is the timebase. Ordinarily, in a simple scope such as ours, the timebase is an RC-type circuit that gives you... well, RC-type accuracy. But just because we’re not building the world’s most complex scope, there’s no reason why we have to settle for so-so accuracy. Whenever you want accurate timekeeping, the answer is a crystal-based circuit, and that’s what we’ll use here.

There’s no shortage of circuits when it comes to building a crystal oscillator, and the schematic shown in Fig. 2 is as good as any. If you need frequencies up in the many megahertz or even the gigahertz range, you’d have to devote a lot of time to this part of the scope, but since we’re keeping everything to under one measly megahertz, this schematic is a simple answer to the problem.

I’ve picked one megahertz for the basic crystal frequency because it’s a nice even number to work with and 1-MHz crystals are readily available. You shouldn’t have any trouble getting the 4049’s to work at 1 MHz—even if you’re only operating the circuit at 5 volts. If you have any problems, up the voltage to 9 volts or so (working with CMOS stuff is great!), and that should take care of the problem.

Should you want or need to stay down at 5 volts and you find that the
oscillator isn't self-starting at that voltage, use an equivalent high-speed CMOS part like the 74HCT4049. Most of the mail-order houses carry the 74HCT family and you'll find that they're all faster than the 4000 series and just as reliable. Just about the only restriction you'll have is that 74HCT parts have the same voltage restrictions as TTL. They want a supply voltage of 5 volts and going any higher than that is a sure way to cook the chip.

Once we have the timebase circuit working properly, the next step is to do some straightforward frequency division to generate all the sweep speeds we need. First, however, we should decide what those sweep speeds are going to be and, even before that, we have to work out how the horizontal part of the display is going to be conceptually organized.

Our display is going to be, as we specified, a twenty-by-twenty LED matrix. There are twenty columns of LED’s and each column is going to be enabled in turn for a particular length of time. When we refer to the sweep speed, we have to distinguish whether we're talking about how long it takes to sweep across the entire twenty columns or how long each of the twenty columns is enabled.

If you look at the sweep-speed settings on a standard oscilloscope, you'll see that it's marked in seconds/division. Since our display is made up of separate columns, we can translate that into seconds per column. Therefore, we'll arrange our sweep speeds around the time each column is enabled, and not how long it takes to cycle through all the columns. That is important to keep in mind because we want to be able to get a rough idea of frequency when we're viewing a waveform on the scope, and the standard way of doing that is to count the number of divisions covered by a complete cycle. Since each division relates to a particular amount of time, you can estimate the period and calculate the frequency of whatever waveform is being displayed.

Standard oscilloscopes use a 5-2-1 counting sequence for dividing the sweep frequency. That means, at a basic level, that it takes the trace five, two, or one second (or some fraction of a second) to cover each division. The maximum sweep speed we can reasonably expect to have is about 10 microseconds since there are certain limitations to LED intensity, construction methods, and so on. It's possible to do a lot better, but the stuff you have to worry about has nothing to do with the basic design of the scope itself.

The lowest sweep speed that makes sense for the scope we're working on is about a tenth of a second per column. The major factor here is that when you get much slower than this, it gets increasingly hard to visualize the waveform on LED's. Remember that the scope will be enabling one column at a time and only one LED in each column will be lit. If the sweep speed is too slow, the eye won't be fooled into seeing several of the columns lit at the same time.

Once we get the circuit working, you can experiment with the range of sweep speeds and see what the outside limits are. The top limit is a function of electronics but the bottom is determined by considering the persistence of the retina and other biological factors. If you want to drop the sweep speed to one second per division because you have a particular need to do that it's relatively simple to set the elec-
tronics to do it. The best way to get an idea of what it would be like is to sit in front of a real scope and play with the sweep-speed control.

Now that we know the sweep-speed range—from a low of a tenth of a second (10 Hz) to a top of 10 microseconds (100 kHz) per division—we can decide what the remaining six sweep speeds should be. Generating divisions in the standard 1-2-5 sequence is certainly possible but it’s also a pain in the neck to do.

We can cut this part of the design way down and reduce the needed parts to a bare minimum if we let the relationship between the sweep speeds follow the standard 1-2-4-8 binary sequence. By doing that, we can choose from a wide variety of standard binary counters and as you can see in Fig. 3, that’s exactly what I’ve done. The 4520 is a dual synchronous binary counter and will provide us with a series of frequencies that, while not exactly whole numbers, are close enough for the kind of circuit we’re designing.

Remember that the resolution of the scope we’re building isn’t all that great in the first place.

Feeding a standard CMOS part like the 4520 with a clock as high as 1-MHz is an iffy business—especially, as we discussed a while ago, if you’re running off a supply that’s down in the range of only five volts or so. If you have such a problem, the ways to get around it are the same as the ones we talked about earlier; you can either raise the supply voltage or use 74HCT4520’s instead of the standard 4520.

The two 4520’s in the circuit give you a choice of sixteen clock frequencies (seventeen if you count the basic crystal frequency), so you have lots of sweep-speed choices. When we get together next time, we’ll finish the horizontal circuit and go through the design of the vertical amps and driver circuit as well. R-E
Pen-based computing is one of this year’s hot topics. At first glance, this new class of device seems to be more gadget than computer. On closer examination, however, it looks more like a glimpse of the future.

As with many hot topics in today’s computer world, pen-based computing got its start at Xerox PARC (Palo Alto Research Center), a research division of the corporation mostly famous for photocopying, but whose basic research has fueled much of the personal computer revolution—but that’s another story.

In 1968, a fellow by the name of Alan Kay, now a researcher at Apple, put together a cardboard model of something he called the Dynabook. Kay didn’t call it a computer; he intended to suggest something far larger, more grandiose, more connected, and more accessible than any mere data-processing machine. The original design called for a notebook with a megapixel screen, multiple CPU’s, and wired and wireless networking. Since then Kay realized that the hardware alone was not enough; a user-friendly (Macintosh-like) user interface would also be required. Even more important, a cooperating system of software “agents” would assist the user in gathering information and performing routine tasks. Agents are not yet ready for prime-time.

User interfaces have evolved considerably since 1968, but still have a long way to go. Perhaps not surprisingly, as in most areas of the computer business, the greatest strides have been made in hardware.

Since portable computers, laptop computers, and notebook computers first started to appear, several companies have released suboptimal designs bearing the title Dynabook; however, it is only the very latest generation of pen-based machines that even dignify the concept. NCR released the first of this new breed in the spring of 1991; fall COMDEX in Las Vegas saw the release of a spate of new machines by other vendors. This first generation of commercial machines illustrates several points: (1) The Dynabook concept is valid, but (2) current hardware and software have not fully achieved the vision; even so (3) there is a light at the end of the tunnel.

Hardware and software

The typical pen-based machine is about the same size as a notebook PC (8.5” x 11” x 2”, less than five pounds). The current generation typically has a 286 or 386SX processor, a few megabytes of memory, a floppy drive, possibly a hard drive, and a slot or two for special credit-card sized memory cards (these cards have now been standardized; more in a future installment). Usually there’s no keyboard, although there are “convertible” units that allow both keyboard and pen input. Some units, such as Grid’s GridPad RF (shown in Fig. 1), allow wireless connection to standard networks. Overall, the most interesting thing about pen-based machines is that the screen is used for both input and output. Using a special stylus, you draw, write, and edit directly on the display surface—it’s like an intelligent Etch-A-Sketch, one that allows you to store and recall text and graphics. It’s what some call a direct-manipulation environment (DME).

If there’s no keyboard, how do you use the thing? There are three basic approaches. The first simply glues a pen-input interface on familiar operating environments (DOS or Windows). The second creates a rich new environment (GO’s PenPoint operating system). The third creates a limited new environment, one that restrains cost and power in service of specialized applications.

Microsoft, as might be expected,
has adopted the first course. The company has defined a set of pen-oriented extensions to the Windows environment, called Windows for Pen Computing (WPC). This environment is scheduled to be released in the first quarter of 1992, right after Windows 3.1. WPC has already garnered support from some three dozen hardware vendors, including AST, Dell, Grid/Tandy, NCR, Zenith, Sharp, Sony, Toshiba, Tusk, Momenta, NEC, Samsung, Sanyo, and many more. Currently Grid owns more than 50% of the market, but in five years that’s expected to drop to about 10% of the current level, with Sony, Toshiba, and Sharp accounting for about 36%, and IBM and Apple together for about 30%. Hundreds of software developers have also shown support for WPC.

A company called GO Corporation has pursued the second option with a product called PenPoint, the chief competitor to WPC. PenPoint has not achieved as much support as WPC (yet), but the support it has achieved is quite meaningful. IBM, for instance, has licensed PenPoint, and has shown it running on a to-be-released pen machine. Apple is evaluating use of PenPoint versus its own internally developed pen-based operating system for a soon-to-be-released pen machine.

Although extending an already popular environment has some advantages, some feel that a whole new way of looking at things is required. This new paradigm returns to square one in the process of thinking about how people can best interact with a computer. For example, the select-do paradigm (e.g., select text, press Delete) of Windows may not make sense in a direct-manipulation environment. In a DME you might simply draw a line through unwanted text. It’s more direct, more natural, more efficient, more comprehensible by computer novices. This is the tack taken by PenPoint.

A related area is compound documents, documents that include text, graphics, possibly other media. Windows is just about to the point where building compound documents is reliable and efficient. By contrast, PenPoint has been built from the ground up to support Embedded Document Architecture (EDA). With EDA, you just grab something and start working on it. If it’s text, a text-editing window pops up; if it’s graphics, sizing/shaping handles appear. This focus on the document, rather than the applications used to produce it, is what will make pen PC’s attractive to novices, and to the those of us tired of fighting the battle for integration.

Deferred I/O is another interesting capability of PenPoint. It allows you to “send” documents to other people, regardless whether you’re plugged into the company network or riding a camel in Riyadh. If the hardware can’t physically send the file when you make your request, it adds it to a queue and sends it when the required resources become available. Likewise with modem output, fax output, and printer output.

FIG. 2—PEN-BASED GESTURES differ between Microsoft’s Windows for Pen Computing (a) and GO Corp.’s PenPoint (b).
Gestures

Both PenPoint and WPC make use of gestures, pen motions that signal an intent to do something, and depending on the operation, the data to which it is done (e.g., striking a line of text). Gestures come in several sizes and shapes, depending on the system; and specific gestures tend to be inconsistent from system to system, as shown in Fig. 2-a (WPC) and Fig. 2-b (PenPoint). (This is equivalent to the once-heated argument about whether the Delete key should work on characters to the right or left of the cursor. The vast majority of users simply didn’t care, as long as usage was consistent from program to program.)

PenPoint demonstrations are extremely compelling. But Microsoft is Microsoft, and Windows is Windows. Does PenPoint have a chance? It’s simply too soon to tell. The Windows juggernaut is rapidly crushing everything in its path; GO is working hard on data portability, so there’s a good chance it will at least survive. In any case, most hardware vendors are playing it safe and supporting both operating systems. Phoenix has even released a dual-mode BIOS that provides low-level support for both.

Theoretically, anything that runs under Windows should run under WPC. PenPoint is in a more precarious position regarding applications; however, WordPerfect and Lotus are converting and developing applications, and several other companies are developing new applications, including telecommunication, word processor, spreadsheet, network interface, outline, PIM, and more.

Some developers are targeting applications for both environments. Slate is one interesting example. The company has introduced a product called PenBook that allows you to take any file in PostScript format and convert it for use in a pen environment. The software allows you to build a table of contents and link specific pages to it. It also indexes the text. Rather than 45 pounds of manuals, imagine being able to take a notebook with all relevant service information on a house call, and instantly locate the desired information with a few taps and flicks of the pen. There’s potential here.

Who cares?

Companies marketing pen products see two initial foci: highly mobile personnel (e.g., doctors and nurses, delivery people, sales people, insurance sales people and adjusters, etc.) and professionals who travel a lot.

Mobile usage is already happening. For example, a major pharmaceutical company recently purchased 1000 pen units from Grid for on-site sales; the San Jose Police Department is evaluating use of Grid machines to reduce paperwork.

Some industry veterans feel that pen computing is just another overhyped technology, with little mainstream application. More informed sources, those with a little historical perspective, see the potential. It will take a few years, but by the end of the decade, most of us will be carrying “pentops” and wondering how we ever got along without them.

News bits

Last time I talked about the significant effect that multimedia will be having on the computer industry, the publishing industry, and society in general. At the time, I wondered how IBM planned to get involved. Shortly after my deadline, Big Blue announced a wide variety of products and services under the banner “Ultimedia.” The software (discussed last time) is in some ways the most interesting part of the announcement; however, there are some interesting hardware goodies as well, including a device that lets you broadcast and receive television signals across a token-ring network simultaneously with normal network traffic, thereby setting the stage for real-time video-conferencing. IBM also co-released with Intel a $2000 NTSC video board, called the ActionMedia II, that allows playback of digitally recorded video. (A $900 add-on allows digital recording.) The basic technology is Intel’s DVI (Digital Video Interactive); the board, though it may sound expensive, is about half the cost of the previous version, occupies half as much space, and reportedly provides about twice the performance. In addition, the company released a rather weird multimedia PC (the M57SLC) that includes a high-performance CD-ROM drive, XGA graphics, 16-bit audio capture/playback, and a souped-up 386SX processor that sounds like a 486SX crammed into a 16-bit package.

After years of promises, Philips finally unleashed its CD-I (Compact Disc Interactive) technology on the consumer market under the name Imagination Machine. It costs in the neighborhood of $800, but does only one thing. Conversely, you can upgrade your PC with a CD-ROM drive and a slew of useful software for that amount of money, have change in your pocket, and have a general-purpose tool that’s truly only limited by your imagination. I think Philips’ marketeers inadvertently hit on the right name, but for the wrong reason. The only imagination is in the amount of sales CD-I will generate.

On the software front, IBM has delayed release of a fully functional (i.e., Windows compatible) version of OS/2 2.0 until the end of the first quarter of 1992. In the meantime, Microsoft will sell another couple million copies of Windows. However, Microsoft also slipped its ship date for Windows 3.1 until the first quarter of 1992, but has publicly shown a fairly robust version of Windows NT (New Technology), betas of which will be shipping to developers by the time you read this. Digital Research released DR-DOS 6.0, the major addition to which is RAM-based task switching and some utilities. It seems like a good product, and three or four years ago would have been a great competitor to DESQview.

R-E

Nifty, huh? . . . I built this new drive out of a toaster.
CLASSIFIED AD ORDER FORM

To run your own classified ad, put one word on each of the lines below and send this form along with your check to:

Radio-Electronics Classified Ads, 500-B Bl-County Boulevard, Farmingdale, NY 11735

PLEASE INCLUDE in which category of classified advertising you wish your ad to appear. For special headings, there is a surcharge of $25.00.

() Plans/Kit
() Business Opportunities
() Wanted
() Wanted
() For Sale
() Education/Instruction
() Satellite Television

Special Category: $25.00

PLEASE PRINT EACH WORD SEPARATELY, IN BLOCK LETTERS.

No refunds or credits for typsetting errors can be made unless you clearly print or type your copy. Rates indicated are for standard style classified ads only. See below for additional charges for special ads. Minimum: 15 words.

<table>
<thead>
<tr>
<th>Words</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1.00</td>
</tr>
<tr>
<td>2</td>
<td>$1.10</td>
</tr>
<tr>
<td>3</td>
<td>$1.20</td>
</tr>
<tr>
<td>4</td>
<td>$1.30</td>
</tr>
<tr>
<td>5</td>
<td>$1.40</td>
</tr>
<tr>
<td>6</td>
<td>$1.60</td>
</tr>
<tr>
<td>7</td>
<td>$1.80</td>
</tr>
<tr>
<td>8</td>
<td>$2.00</td>
</tr>
<tr>
<td>9</td>
<td>$2.20</td>
</tr>
<tr>
<td>10</td>
<td>$2.40</td>
</tr>
<tr>
<td>11</td>
<td>$2.60</td>
</tr>
<tr>
<td>12</td>
<td>$2.80</td>
</tr>
<tr>
<td>13</td>
<td>$3.00</td>
</tr>
<tr>
<td>14</td>
<td>$3.20</td>
</tr>
<tr>
<td>15</td>
<td>$3.40</td>
</tr>
<tr>
<td>16</td>
<td>$3.60</td>
</tr>
<tr>
<td>17</td>
<td>$3.80</td>
</tr>
<tr>
<td>18</td>
<td>$4.00</td>
</tr>
<tr>
<td>19</td>
<td>$4.20</td>
</tr>
<tr>
<td>20</td>
<td>$4.40</td>
</tr>
<tr>
<td>21</td>
<td>$4.60</td>
</tr>
<tr>
<td>22</td>
<td>$4.80</td>
</tr>
<tr>
<td>23</td>
<td>$5.00</td>
</tr>
<tr>
<td>24</td>
<td>$5.20</td>
</tr>
<tr>
<td>25</td>
<td>$5.40</td>
</tr>
<tr>
<td>26</td>
<td>$5.60</td>
</tr>
<tr>
<td>27</td>
<td>$5.80</td>
</tr>
<tr>
<td>28</td>
<td>$6.00</td>
</tr>
<tr>
<td>29</td>
<td>$6.20</td>
</tr>
<tr>
<td>30</td>
<td>$6.40</td>
</tr>
<tr>
<td>31</td>
<td>$6.60</td>
</tr>
<tr>
<td>32</td>
<td>$6.80</td>
</tr>
<tr>
<td>33</td>
<td>$7.00</td>
</tr>
<tr>
<td>34</td>
<td>$7.20</td>
</tr>
<tr>
<td>35</td>
<td>$7.40</td>
</tr>
<tr>
<td>36</td>
<td>$7.60</td>
</tr>
</tbody>
</table>

We accept MasterCard and Visa for payment of orders. If you wish to use your credit card to pay for your ad fill in the following additional information (Sorry, no telephone orders can be accepted):

Card Number
Expiration Date

Please Print Name
Signature

IF YOU USE A BOX NUMBER YOU MUST INCLUDE YOUR PERMANENT ADDRESS AND PHONE NUMBER FOR OUR FILES. ADS SUBMITTED WITHOUT THIS INFORMATION WILL NOT BE ACCEPTED.

CLASSIFIED COMMERCIAL RATE: (for firms or individuals offering commercial products or services)
$3.10 per word prepaid (no charge for zip codes). MINIMUM 15 WORDS. 5% discount for same ad in 6 issues; 10% discount for same ad in 12 issues within one year; if prepaid.

NON-COMMERCIAL RATE: (for individuals who want to buy or sell a personal item) $2.50 per word, prepaid...no minimum. ONLY FIRST 15 WORDS COUNT.

FREE catalog. Books, periodicals on technology in, out of print. BRIAN MCMLLANN, BOOKS, (319) 478-2360.

ELECTRONIC supermarket surplus prices! Transformer specials, railroaders, builders, engineers, experimenters, LSUSE, FERTIK'S, 143 Wilk, Phila., PA 19120.

Circuits -- Complete printed circuit fabrication service available. Twenty-four hour turnaround available. CIRCUIT CENTER, PO Box 128, Addison, IL 60101. (708) 543-0671.

Inexpensive Golden Counter. The best priced pocket counter with 10 digit LED readout. Odorless, non-toxic ink. Makes counting a joy! C6441 $5.95

THE ELECTRONIC GOLDMINE

C6655 $5.00

Over 90% off, SASE. KIRBY, 298 West Carmel Drive, Carmel, IN 46032.
FREE CATALOG

FAMOUS "FIRESTIK" BRAND CB ANTENNAS AND ACCESSORIES. FOR THE SERIOUS CB'er. SINCE 1962

FIRESTIK ANTENNA COMPANY

2614 EAST ADAMS

PHOENIX, ARIZONA 85034

OUR monthly picture flyer lists quality surplus parts at low prices. Swap meet every month:

STARR-TRONICS, Box 683, McMinnville, OR 97128

PHOTOFACT folders under #1400 $5.00. Others $7.00. Postpaid. LOEB, 414 Chestnut Lane, East Meadow, NY 11554. (516) 491-4390

ATLANTA AUDIO LABS, 1 (800) 568-6971

ENGINEERING software and hardware, PC/MSDOS. Circuit design and drawing, PCB layout, FFT analysis, Mathematics, Circuit analysis, etc. Data acquisition, generation, I/O PCB's, etc. Call or write for free catalog.

PB&JSOFTWARE, INC., 444 Colton Rd., Columbus, OH 43207

PREVENT descrambler detection & damage! Order Tech-Block today! Simple in-line connection. Only $19.95 P.P.D. THE STAGE DOOR VIDEO, PO Box 518, Belleview, FL 32620. For C.O.D.s (800) 385-4557

DESCRAMBLERS: cable TV converters, lowest prices, guaranteed, best quality, all types available. CBC CONCEPTS, INC., Box 34503, Minneapolis, MN 55434. (602) 123-4567

CBC INTERNATIONAL

P.O. BOX 31500RE, PHOENIX, AZ 85046

DESCRAMBLERS: Oak Sigma, VariSync, Hamlin, Scientific Atlanta, Jerrold, Pioneer, Sylvania. Catalog $5.00 moneyorder (credited first order), service manuals, schematics, SURPLUS ELECTRONICS, PO Box 10009, Colorado Springs, CO 80932

WIRELESS CABLE RECEIVERS 1.9 TO 2.7 GHz

30 CH PARABOLIC DISH SYSTEM $125.90
30 CH 1000 ANTENNA SYSTEM $199.00
30 CH CRYSTAL CONTROLLED SYSTEM $219.95
SUN MICROWAVE INT'L, INC. SEND $1.00 FOR CATALOG ON THESE PHOENIX, AZ. 85007

and other fine VIDEO PRODUCTS

QUANTITY DISCOUNTS

ORDERS ONLY (602) 250-0107

Call Today For Your FREE Catalog Subscription!

1-800-543-4330

FAX 1-513-434-6959

Because needs in the electronics industry are constantly changing, MCM Electronics continually researches the market and reacts to the market's changing needs.

MCM is constantly in touch with national and international manufacturers to bring both commonly used and hard-to-find products to its customers.

There are over 17,000 items stocked and ready for next day delivery, including: semiconductors, connectors, audio and VCR parts and accessories, television parts, hardware, test equipment, chemicals, tools and many name brand items.

ALL THE PARTS YOU'LL EVER NEED...
Ferro Fluid

Pro-Tech ferro fluid is commonly used on voice coils to substantially improve frequency response. It increases transient and continuous power handling capabilities and reduces second and third-order harmonic distortion. The 0.25 micron particles of ferro fluid can be dispersed without a significant reduction in SPL. General purpose fluid for tweeters and midranges only. 5 cc bottle.

#RC-340-431 $10.95 Each

Light Oak Speaker Cabinet

Premium ported speaker cabinet made of acoustical grade particle board and covered with a light oak vinyl laminate. Precut with an 11-1/4" hole for use with most 12" woofers. The baffled box has no tweeter or midrange holes for design flexibility. The 3/4" thick particle board ensures low panel resonance. Dimensions: 11" x 15" x 27". Volume: 2.5 cu ft. Grillex and terminal included. Sold individually.

#RC-262-100 $49.00 Each (2-up)

12 Gauge Neon Wire

The competition in today's auto sound market is so fierce that good sound alone is not enough to win. More and more installers are striving to make their installation more pleasing to the eye. Parts Express now stocks 12 gauge speaker wire in vibrant neon colors. This wire is the same high quality, made in the U.S. wire you have used before, but now it has flashy, neon colored insulating jackets. Available in neon pink, neon green, and neon orange. Sold by the foot or 50 ft. spools.

#RC-100-162 (Neon pink) $49.95/Fl.
#RC-100-166 (Neon orange) $49.95/Fl.
#RC-100-170 (Neon green) $49.95/Fl.

Tuned Port Tubes

These attractive, preformed tuned ports allow the bass pressure to radiate from the rear of the woofer to reinforce the sound level in front. Made of black plastic.

<table>
<thead>
<tr>
<th>Part #</th>
<th>Length (in)</th>
<th>Diameter (in)</th>
<th>Price (1-up)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#RC-250-320</td>
<td>3-1/8'</td>
<td>5-1/2'</td>
<td>0.37</td>
</tr>
<tr>
<td>#RC-250-321</td>
<td>4'</td>
<td>7/8'</td>
<td>0.37</td>
</tr>
<tr>
<td>#RC-250-322</td>
<td>5'</td>
<td>2'</td>
<td>0.37</td>
</tr>
<tr>
<td>#RC-250-323</td>
<td>1'</td>
<td>7/8'</td>
<td>0.37</td>
</tr>
<tr>
<td>#RC-250-324</td>
<td>5'</td>
<td>2'</td>
<td>0.37</td>
</tr>
<tr>
<td>#RC-250-325</td>
<td>3'</td>
<td>7/8'</td>
<td>0.37</td>
</tr>
<tr>
<td>#RC-250-326</td>
<td>2-1/2'</td>
<td>5/8'</td>
<td>0.37</td>
</tr>
<tr>
<td>#RC-250-327</td>
<td>2-1/2'</td>
<td>7/8'</td>
<td>0.37</td>
</tr>
</tbody>
</table>

No mixing for quantity pricing.

Famous Maker 3-1/2" Speaker Pair

Dual cone 3-1/2" speaker pairs have a graphite fiber composite cone providing a smooth extended response at all power levels. The high frequency radiator (whizzer) takes over from the woofer at 6000 Hz and greatly extends the response to 20 kHz. 3/4" high temperature voice coil. Impedance: 4 ohm. Power handling capability: 25 watts continuous. Dimensions: 7-1/4" x 8-1/2" x 3-1/2". Sold individually.

#RC-255-275 $19.95/Pair

Subwoofer Input/Output Terminal

This recessed terminal panel has inputs for right and left channels as well as outputs for right and left channels to route to your satellite speakers. Greatly simplifies subwoofer hook-up. Outside dimensions: 3-7/8" x 5-3/8".

#RC-260-308 $3.95 (1-9) $3.50 (10-up)

No mixing for quantity pricing.

CALL TOLL FREE 1-800-338-0531

CIRCLE 56 ON FREE INFORMATION CARD
Cable TV Descramblers Kits

Universal Kit $55.00
Includes all parts and PC Board. Not included is the ac adapter or enclosure.

Tri-Mode Kit $39.00
Includes all parts, PC Board and AC Adaptor. Not included is the enclosure.

SB-3 Kit $29.00
Includes all parts, PC Board and AC Adaptor. Not included is the enclosure.

Universal Tutorial $9.95
Includes an in-depth study of the technology used and has troubleshooting hints.

Tri-Mode Tutorial $9.95
Includes a gate-by-gate study of the circuit and has troubleshooting hints.

Call Toll Free 1-800-258-1134
COD Only
M & G Electronics, Inc.
72 Orange St., Suite 216
Providence, RI 02903

Be a TV/VCR Repair Specialist

Now you can train at home in spare time for a money-making career as a TV/VCR Repair Specialist. No previous experience necessary. No need to quit your job or school. Everything is explained in easy-to-understand language with plenty of drawings, diagrams, and photos. We show you how to troubleshoot and repair video-cassette recorders and TV sets, how to handle house calls and shop repairs for almost any make of television or VCR. Tools are included with your course so you can get "hands-on" practice as you follow your lessons step by step. Send for free facts about the exciting opportunities in TV/VCR Repair and find out how you can start making money in this great career.

M A U N C P O I N T T O D A Y

BUSINESS OPPORTUNITIES

YOUR own radio station! Licensed/unlicensed AM, FM, TV, cable. Information $1.00. BROADCASTING, Box 130-F2, Paradise, CA 95967.

LET the government finance your small business. Grants/loans to $500,000. Free recorded message: (707) 449-8600. (KSI).

EASY work! Excellent pays! Assembly products at home. Call toll free 1 (800) 467-5566. Ext. 5192.

MAKE $$$! Become an American electronics dealer! Profit opportunities since 1965. Call SCOTT PRUETT, 1 (800) 872-1373.

HOME assembly work available! Guaranteed easy money! Free details! HOMEWORK-R, Box 520, Danville, NH 03831.

SNOW? Thriving, fully equipped, audio-video repair shop. $130K + this year! Proven 40% gross last three years. $70,000.00 cash. AUDIOTECH, 256-B North Highway 101, Encinitas, CA 92024. FAX (619) 944-0345, Phone (619) 944-9048.

MONEYMAKERS! Easy! One man CRT rebuild-rebuilding machinery $5,900.00 rebuilt. $15,900.00 new. CRT, 1909 Louise, Crystalle, IL 60014. (815) 459-0686. Fax (815) 477-7014.

LEGAL! Make a living... Study Industrial Design Technology and bring your ideas to life. Learn to problem-solve, sketch, render and design. Develop models, create prosthetic applications. Build your future in movies and theater, special effects, toy and product, exhibit, transportation, furniture/fixture, architectural and amusement design for The Art Institutes of Pittsburgh, Fort Lauderdale, Seattle or The Colorado Institute of Art. For information write M.22 Plaza Avenue, Dept. 61, Pittsburgh, PA 15222. Or call 1 (800) 525-1000.

BIOMEDICAL letter covers medical electronics, anatomy, equipment function, electrical safety, environmental design at The Art Institutes of Pittsburgh, Fort Lauderdale, Seattle or The Art Institute of Chicago. $6,900.00 rebuilt. $15,900.00 new. AUDIOTECH, 256-B North Highway 101, Encinitas, CA 92024. FAX (619) 944-0345, Phone (619) 944-9048.

PAY TV AND SATELLITE DESCRAMBLING

ALL TYPES 800-582-1114
FREE CATALOG
M.K. ELECTRONICS 7958 Pines Blvd Suite 278 Pembroke Pines, FL 33024

HOME assembly work available! Guaranteed easy money! Free details! HOMEWORK-R, Box 520, Danville, NH 03831.

SCHOOL OF TV/VCR REPAIR, Dept. AD0725
1095 Hertel Ave., Buffalo, NY 14215

Please send the full information and color brochure on how I can earn TV/VCR Repair at home in my spare time. I understand there is no obligation and no salesman will visit me.

Name:
Address:
City/State:
Phone:

Radio-Electronics, February 1992
TRIPP LITE – PRECISION REGULATED DC POWER SUPPLIES

Complete Line of DC Power Supplies to Convert 120V AC to 13.8V DC ±0.5V DC.

Standard Features Include:
- Solid state integrated circuit provides excellent regulation
- Output voltage maintained up to 95% of no load value
- High-quality filtering for low noise operation
- Heavy-duty power transformer for complete line isolation
- On/Off indicator light and rugged on/off switch on faceplate
- 3 conductor grounded cord on 10 Amp and larger models
- Current limiting electronic foldback for auto overcurrent protection

Tripp Lite DC Power Supplies Are Designed For Reliability and Superior Performance.

Z80 CPU Technical Manual

This 338 page manual contains the architecture, pin description, timing, instruction set, instruction description, interrupt response and hardware/software implementation examples of the Z80 CPU.

Intelligent Peripheral Controllers

Over 700 pages of data sheets, application notes and technical information on Zilog's intelligent peripheral controllers. The part numbers contained in this book are Z8400, Z84C00, Z84C01, Z8410C/10, Z8420C/20, Z8430C/30, Z8440/1/2/4, Z84C40/1/2/3/4, Z8450, Z8470, Z8490, Z84901/2/3, Z84903/4/5, Z84906/7/8, Z8101, Z8102, Z8103 and Z8109.

Datacom ICs

Over 700 pages of data sheets and technical information on Zilog's Data Communications ICs.

Microcontrollers

Over 1300 pages of data sheets, application notes and technical information on Zilog's microcontrollers.

Easy Order 1-800-582-4044
Easy Fax 1-800-582-1255

Microcomponents

DRAMS

Order #	**Price**	**Order #**	**Price**	**Desc.**
6242 | 8.95 | MK-4027N | .75 | 4x1
6502 | 2.95 | 4116-20 | .85 | 16x1
6522A | 3.75 | 4416-12 | 2.95 | 16x4
6821 | 1.75 | 4116-10 | 1.95 | 64x1
6845 | 2.45 | 4116-15 | 1.55 | 64x1
8080A | 2.75 | 4116-20 | 1.25 | 64x1
8085A | 2.95 | 4146-12 | 2.75 | 64x4
8096 | 4.45 | 4146-80 | 2.75 | 256x1
8080 | 4.25 | 4146-12 | 2.15 | 256x1
8237A3 | 4.15 | 5128-50 | 4.95 | 256x1
8250 | 5.75 | 514256-10 | 6.95 | 256x4
8251A | 2.25 | 514256-80 | 9.95 | 256x4
8253-3 | 2.25 | 51100-00 | 7.25 | 1Mx1
8255A5 | 2.75 | 51100-10 | 6.95 | 1Mx1
8275 | 18.95 | 51100-80 | 8.25 | 1Mx1

IEEE 488

Order #	**Price**	**Order #**	**Price**	**Desc.**
2001 | 1.65 | 274B | 4.75 | 25V
2141L25 | 1.39 | 2716 | 3.45 | 25V
2147-3 | 3.75 | 2732 | 3.95 | 25V
6116LPC3 | 2.75 | 27312A5 | 3.45 | 21V
6805 | 1.25 | 27328A5 | 4.25 | 12V
6264LP10 | 4.95 | 2764-25 | 3.75 | 21V
6264LP15 | 3.95 | 2764A25 | 3.25 | 12.5V
6264-10 | 4.75 | 2764A515 | 3.95 | 12.5V
6264-15 | 6.25 | 2764B5A5 | 3.95 | 12.5V
6256LP10 | 6.75 | 2765-25 | 4.75 | 12.5V
6266LP15 | 6.25 | 2765-12 | 6.95 | 12.5V
6281LB1P8 | 34.95 | 278010-15 | 9.95 | 12.5V
6281LB2LP | 32.95 | 2820-10 | 24.95 | 12.5V

LINEAR

Order #	**Price**	**Order #**	**Price**	**Desc.**
LM311N | .49 | CA31611-2E | 3.95 | 25V
LM321N | .39 | 782605 | 5.25 | 25V
LM322N | .39 | 782606 | 4.5 | 25V
LM355CN | .29 | 782505 | 5.5 | 25V
LM741CN | .29 | 78212T | 4.5 | 25V
LM1488N | .45 | 785015 | .5 | 25V
LM1489N | .45 | 785015 | .5 | 5V

EMULATION MODULES-SIMMS

Order #	**Price**	**Organization**	**Speed**
526x9-80 | 19.95 | 262,144/9x | 80ns
1x9-60 | 57.00 | 1,048,576x | 80ns
4x9-80 | 210.00 | 1,494,304x | 80ns
Jameco Solderless Breadboards

Jameco's long-lasting breadboards feature screen-printed color coordinates and are suitable for many kinds of prototyping and circuit design. Larger models feature a heavy-duty aluminum backing with voltage and grounding posts.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Dim. L" x W"</th>
<th>Contact Points</th>
<th>Contact Binding Dim.</th>
<th>Post Binding</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>JE21</td>
<td>3.25 x 2.125</td>
<td>400</td>
<td>0</td>
<td>4.95</td>
<td></td>
</tr>
<tr>
<td>JE23</td>
<td>6.50 x 2.125</td>
<td>830</td>
<td>0</td>
<td>6.95</td>
<td></td>
</tr>
<tr>
<td>JE24</td>
<td>6.50 x 3.125</td>
<td>1,360</td>
<td>2</td>
<td>12.95</td>
<td></td>
</tr>
<tr>
<td>JE25</td>
<td>6.50 x 4.25</td>
<td>1,660</td>
<td>3</td>
<td>22.95</td>
<td></td>
</tr>
<tr>
<td>JE26</td>
<td>6.00 x 3.75</td>
<td>2,300</td>
<td>4</td>
<td>31.95</td>
<td></td>
</tr>
<tr>
<td>JE27</td>
<td>7.250 x 7.50</td>
<td>3,220</td>
<td>4</td>
<td>31.95</td>
<td></td>
</tr>
</tbody>
</table>

GoldStar 20MHz Dual Trace Oscilloscope

The perfect unit for today's testing and measurement needs! Features include a 6" CRT display, and bandwidth from DC to 20 MHz. The GoldStar Oscilloscope comes with two 40MHz probes, two fuses, power cord, operation manual, schematics and block and wiring diagram. It's lightweight and portable with a two-year warranty.

GS7020.............$399.95

BNC Cable Assemblies for GS7020

<table>
<thead>
<tr>
<th>BNC1</th>
<th>BNC(M) to BNC(M) RG58 A/U (97")$3.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNC2</td>
<td>BNC(M) to Micro Hook RG174 39"L3.95</td>
</tr>
<tr>
<td>BNC3</td>
<td>BNC(M) to Macro Hook RG174 39"L3.95</td>
</tr>
</tbody>
</table>

Weller Soldering and Desoldering Stations

- Temperature adjustable from 350° to 850°F
- Zero voltage circuit protects sensitive components from damage
- Lighted on/off switch

WCC100 Soldering Station.............$89.95

Promo Digital Multimeters

- Handheld, high accuracy • AC/DC voltage, AC/DC current, resistance, diodes, continuity, transistor hi/E (except M9300)
- Manual ranging w/ overload protection
- Comes with probes, batteries, case and manual

M3650 & M4650 only:
- Also measures frequency and capacitance

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3800</td>
<td>3.5 Digit Multimeter$39.95</td>
</tr>
<tr>
<td>M3610</td>
<td>3.5 Digit Multimeter$59.95</td>
</tr>
<tr>
<td>M3900</td>
<td>3.5 Digit Multimeter w/Tach/Dwell$59.95</td>
</tr>
<tr>
<td>M3650</td>
<td>3.5 Digit Multimeter w/Frequency & Capacitance$74.95</td>
</tr>
<tr>
<td>M4650</td>
<td>4.5 Digit w/Frequency & Capacitance & Data Hold Switch$99.95</td>
</tr>
</tbody>
</table>

Jameco Logic Pulser

- Compatible with TTL, DTL, RTL, HTL, HNIL, MOS and CMOS ICs
- IMS1 Sync input impedance Pulser mode output current: 1mA
- Square wave current output: 5mA
- Audible tone

LP540.............$16.95

A.R.T. EPROM Programmer

- Program old current EPROMs in the 2716 to 27512 range plus the X2864 EEPROM
- RS232 port + Software included

EPP.............$199.95

UVP EPROM Eraser

- Erases all EPROM's
- Erases 1 chip in 15 minutes and 8 chips in 21 min
- UV intensity: 6800 UW/CM2

UVP.............$249.95

EPROMs - for your programming needs

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMS2516</td>
<td>$4.25</td>
</tr>
<tr>
<td>TMS2532A</td>
<td>$6.95</td>
</tr>
<tr>
<td>TMS2564</td>
<td>$5.95</td>
</tr>
<tr>
<td>TMS2716</td>
<td>$5.95</td>
</tr>
<tr>
<td>1702A</td>
<td>$3.95</td>
</tr>
<tr>
<td>2708</td>
<td>$4.75</td>
</tr>
<tr>
<td>2716</td>
<td>$3.39</td>
</tr>
<tr>
<td>2716-1</td>
<td>$3.75</td>
</tr>
<tr>
<td>2716C</td>
<td>$4.25</td>
</tr>
<tr>
<td>2716-25</td>
<td>$7.75</td>
</tr>
<tr>
<td>2732</td>
<td>$4.95</td>
</tr>
<tr>
<td>2732A-20</td>
<td>$4.49</td>
</tr>
<tr>
<td>2732A-25</td>
<td>$4.95</td>
</tr>
<tr>
<td>2734A-45</td>
<td>$2.95</td>
</tr>
<tr>
<td>27C32</td>
<td>$4.75</td>
</tr>
</tbody>
</table>

Jameco Logic Probe

- Max Frequency 80MHz • Minimum detectable pulse: 30ns • 120K input impedance • TTL threshold: (Lo)+0.8V ±0.1V, (Hi) +2.3V ±0.2V • CMOS threshold: (Lo) 30% VCC ±10%, (Hi) 70%VCC ±10%

Jameco Logic Probe

- Programs all current EPROMs in the 2716 to 27512 range plus the X2864 EEPROM
- RS232 port + Software included

EPP.............$199.95

EPROMs - for your programming needs

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMS2516</td>
<td>$4.25</td>
</tr>
<tr>
<td>TMS2532A</td>
<td>$6.95</td>
</tr>
<tr>
<td>TMS2564</td>
<td>$5.95</td>
</tr>
<tr>
<td>TMS2716</td>
<td>$5.95</td>
</tr>
<tr>
<td>1702A</td>
<td>$3.95</td>
</tr>
<tr>
<td>2708</td>
<td>$4.75</td>
</tr>
<tr>
<td>2716</td>
<td>$3.39</td>
</tr>
<tr>
<td>2716-1</td>
<td>$3.75</td>
</tr>
<tr>
<td>2716C</td>
<td>$4.25</td>
</tr>
<tr>
<td>2716-25</td>
<td>$7.75</td>
</tr>
<tr>
<td>2732</td>
<td>$4.95</td>
</tr>
<tr>
<td>2732A-20</td>
<td>$4.49</td>
</tr>
<tr>
<td>2732A-25</td>
<td>$4.95</td>
</tr>
<tr>
<td>2734A-45</td>
<td>$2.95</td>
</tr>
<tr>
<td>27C32</td>
<td>$4.75</td>
</tr>
</tbody>
</table>

UVP EPROM Eraser

- Erases all EPROM's
- Erases 1 chip in 15 minutes and 8 chips in 21 min
- UV intensity: 6800 UW/CM2

DE4.............$89.95

* Partial Listing • Over 4000 Electronic and Computer Components in Stock!
Selection & Competitive Prices

Computer Upgrade Products and Electronic Components

Upgrade your existing computer system! Jameco will help you upgrade easily and economically.

Jameco 80386SX Motherboard

- 16MHz processing speed
- Baby motherboard (8.5"x13")
- Zero or one wait state operation
- Supports up to 8MB of RAM
- Intel 80386SX/compatible math coprocessor socket
- AMI BIOS
- Six 16-bit and two 8-bit expansion bus slots
- One-year Warranty

JE3516SN.............$299.95

Conner IDE Hard Drives

This series of high-performance Conner disk drives is designed for large storage capacity.

CP3000 40MB 3.5" Low Profile.....$249.95
CP30084 80MB 3.5"Low Profile.....$399.95
CP30104 120MB 3.5" Low Profile.....$479.95
CP3204 200MB 3.5" HH..................$699.95

ADP20 16-bit Host Adapter$29.95

Integrated Circuits

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400</td>
<td>.............</td>
<td>$2.29</td>
</tr>
<tr>
<td>7402</td>
<td>.............</td>
<td>$2.19</td>
</tr>
<tr>
<td>7404</td>
<td>.............</td>
<td>$2.19</td>
</tr>
<tr>
<td>7406</td>
<td>.............</td>
<td>$2.19</td>
</tr>
<tr>
<td>7407</td>
<td>.............</td>
<td>$2.19</td>
</tr>
<tr>
<td>7410</td>
<td>.............</td>
<td>$2.19</td>
</tr>
<tr>
<td>7415</td>
<td>.............</td>
<td>$2.19</td>
</tr>
<tr>
<td>7420</td>
<td>.............</td>
<td>$2.19</td>
</tr>
<tr>
<td>7432</td>
<td>.............</td>
<td>$2.19</td>
</tr>
<tr>
<td>7447</td>
<td>.............</td>
<td>$2.19</td>
</tr>
<tr>
<td>7474</td>
<td>.............</td>
<td>$2.19</td>
</tr>
<tr>
<td>7476</td>
<td>.............</td>
<td>$2.19</td>
</tr>
<tr>
<td>7486</td>
<td>.............</td>
<td>$2.19</td>
</tr>
<tr>
<td>7489</td>
<td>.............</td>
<td>$2.19</td>
</tr>
<tr>
<td>7490</td>
<td>.............</td>
<td>$2.19</td>
</tr>
<tr>
<td>74121</td>
<td>.............</td>
<td>$2.19</td>
</tr>
<tr>
<td>74192</td>
<td>.............</td>
<td>$2.19</td>
</tr>
<tr>
<td>74193</td>
<td>.............</td>
<td>$2.19</td>
</tr>
</tbody>
</table>

Linear ICs

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL082CP</td>
<td>.............</td>
<td>$5.59</td>
</tr>
<tr>
<td>LM317T</td>
<td>.............</td>
<td>$0.55</td>
</tr>
<tr>
<td>LM324N</td>
<td>.............</td>
<td>$0.39</td>
</tr>
<tr>
<td>LM362Z</td>
<td>.............</td>
<td>$1.05</td>
</tr>
<tr>
<td>LM393N</td>
<td>.............</td>
<td>$0.39</td>
</tr>
<tr>
<td>NE555V</td>
<td>.............</td>
<td>$0.29</td>
</tr>
<tr>
<td>LM556N</td>
<td>.............</td>
<td>$0.49</td>
</tr>
<tr>
<td>LM723CN</td>
<td>.............</td>
<td>$0.29</td>
</tr>
<tr>
<td>LM741CN</td>
<td>.............</td>
<td>$0.29</td>
</tr>
<tr>
<td>LM1458N</td>
<td>.............</td>
<td>$0.29</td>
</tr>
<tr>
<td>LM1488N</td>
<td>.............</td>
<td>$0.45</td>
</tr>
<tr>
<td>LM1489N</td>
<td>.............</td>
<td>$0.39</td>
</tr>
<tr>
<td>ULN2003A</td>
<td>.............</td>
<td>$0.69</td>
</tr>
<tr>
<td>LM3914N</td>
<td>.............</td>
<td>$1.95</td>
</tr>
<tr>
<td>NE5532</td>
<td>.............</td>
<td>$1.19</td>
</tr>
<tr>
<td>7805T</td>
<td>.............</td>
<td>$0.45</td>
</tr>
<tr>
<td>7812T</td>
<td>.............</td>
<td>$0.45</td>
</tr>
</tbody>
</table>

Dynamic RAMs

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4164-100-100</td>
<td>100ns, 64K x 1</td>
<td>$1.89</td>
</tr>
<tr>
<td>4164-120-120</td>
<td>120ns, 64K x 1</td>
<td>$1.69</td>
</tr>
<tr>
<td>4164-150-150</td>
<td>150ns, 64K x 1</td>
<td>$1.49</td>
</tr>
<tr>
<td>41256-60-60</td>
<td>660ns, 256K x 1</td>
<td>$2.49</td>
</tr>
<tr>
<td>41256-80-80</td>
<td>80ns, 256K x 1</td>
<td>$2.19</td>
</tr>
<tr>
<td>41256-100-100</td>
<td>100ns, 256K x 1</td>
<td>$1.95</td>
</tr>
<tr>
<td>41256-120-120</td>
<td>120ns, 256K x 1</td>
<td>$1.79</td>
</tr>
<tr>
<td>41256-150-150</td>
<td>150ns, 256K x 1</td>
<td>$1.69</td>
</tr>
<tr>
<td>511000P-80</td>
<td>80ns, 1MB x 1</td>
<td>$5.99</td>
</tr>
<tr>
<td>511000P-10-10</td>
<td>100ns, 1MB x 1</td>
<td>$5.49</td>
</tr>
</tbody>
</table>

Miscellaneous Components

Potentiometers

Values available (insert ohms into space marked "XX"):

<table>
<thead>
<tr>
<th>Values available</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>500Ω 1K 5K 10K</td>
<td>$0.14</td>
</tr>
<tr>
<td>100K 250K 500K</td>
<td>$0.14</td>
</tr>
<tr>
<td>1MΩ 5MΩ 10MΩ</td>
<td>$0.14</td>
</tr>
</tbody>
</table>

IC Sockets

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB25P</td>
<td>Male, 25-pin</td>
<td>$0.65</td>
</tr>
<tr>
<td>DB25S</td>
<td>Female, 25-pin</td>
<td>$0.75</td>
</tr>
<tr>
<td>DB25H</td>
<td>Hood</td>
<td>$0.39</td>
</tr>
<tr>
<td>DB25MH</td>
<td>Metal Hood</td>
<td>$1.35</td>
</tr>
</tbody>
</table>

Transistors And Diodes

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PN222</td>
<td>.12</td>
<td>1N751</td>
</tr>
<tr>
<td>PN2907</td>
<td>.12</td>
<td>C06B1</td>
</tr>
<tr>
<td>1N4004</td>
<td>.10</td>
<td>2N4401</td>
</tr>
<tr>
<td>2N2222A</td>
<td>.25</td>
<td>2N1448</td>
</tr>
<tr>
<td>1N735</td>
<td>.25</td>
<td>2N3055</td>
</tr>
<tr>
<td>2N3904</td>
<td>.12</td>
<td>1N270</td>
</tr>
</tbody>
</table>

LEDs

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XC209R</td>
<td>T1, (Red)</td>
<td>$0.14</td>
</tr>
<tr>
<td>XC556G</td>
<td>T1 3/4, (Green)</td>
<td>$0.16</td>
</tr>
<tr>
<td>XC556R</td>
<td>T1 3/4, (Red)</td>
<td>$0.12</td>
</tr>
<tr>
<td>XC556Y</td>
<td>T1 3/4, (Yellow)</td>
<td>$0.16</td>
</tr>
</tbody>
</table>

Connectors

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB25P</td>
<td>Male, 25-pin</td>
<td>$0.65</td>
</tr>
<tr>
<td>DB25S</td>
<td>Female, 25-pin</td>
<td>$0.75</td>
</tr>
<tr>
<td>DB25H</td>
<td>Hood</td>
<td>$0.39</td>
</tr>
<tr>
<td>DB25MH</td>
<td>Metal Hood</td>
<td>$1.35</td>
</tr>
</tbody>
</table>

ICs and Headers

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>504 each</td>
<td>$30.00</td>
</tr>
<tr>
<td>256K x 1</td>
<td>$0.49</td>
</tr>
<tr>
<td>1MB x 1</td>
<td>$0.69</td>
</tr>
</tbody>
</table>

Toshiba 1.44MB 3.5" Internal Floppy Disk Drive

- IBM PC/XT/AT and compatible
- 1.44MB formatted high density mode
- 720KB formatted low density mode
- Size: 1.4" x 4" x 0.75" (actual drive size)
- One-year Manufacturer’s Warranty

Many more Upgrade Products available!

Fujitsu 1.44MB 3.5" Internal Floppy Disk Drive

- IBM PC/XT/AT and compatible
- 1.44MB formatted high density mode
- 720KB formatted low density mode
- Size: 1.4" x 4" x 0.75" (actual drive size)
- One-year Manufacturer’s Warranty

Jameco will help you upgrade your existing computer system easily and economically.

24-Hour Toll-Free Order Hotline: 1-800-831-4242

Call or Write for a FREE 90-Page 1992 Catalog!

$30.00 Minimum Order • Data Sheets - 50¢ each
Mystery Levitating Device
Objects float on air and move to the touch. Defies gravity! Amazing gift, conversation piece, magic trick or great scientific project.

ANT1K Easy-Assembly Kit $19.50

3 MILE FM Wireless Microphone!
Crystal clear, ultra-sensitive pickup transmits voices, sounds to any FM radio. For security, monitoring children, invalids. Be the local DJ!

MVP1K Easy-Assembly Kit $24.50

3 MILE Telephone Transmitter!
Automatically transmits 2 sides of phone conversation to any FM radio. For security, monitoring, calls by children, invalids. Be the local DJ! Other parts available separately.

INFORMATION UNLIMITED
Dept RE-4
Phone 603-673-4730

INVENTIONS:
New products/ideas wanted: call TLCI for free information kit. USA/CANADA: 1 (800) 468-7200 24 hours/day.

PATENTS & INVENTIONS
INVENTORS! Can you patent and profit from your idea? Call AMERICAN INVENTORS CORP. for free information. Serving inventors since 1975. 1 (800) 338-5656.

MILITARY SURPLUS
TELEVISION, radio, radar, fax, antenna, navigation and scope surplus equipment. Full sales catalogs. Send $6.00 VLSI, 4960 Jasper Avenue, Washington, DC, 1 (800) 458-0352.

NEW LITERATURE
continued from page 87

EQUIPMENT, TOOLS & SUPPLIES FOR ELECTRONIC MAINTENANCE & SERVICE 1991-1992; from Print Products International, 8931 Brookville Road, Silver Spring, MD 20910; Phone: 800-638-2020; Fax: 800-545-0058; $22.00.

The 64 pages of this catalog are filled with products and accessories. PC board patterns are included, as are parts lists. Tips are provided about how to assemble a station, monitoring and direction finding, and coping with interference.

From major manufacturers, including power-protection gear from Triplitt; test equipment from Beckman, Leader, B&K, Soar, Global Specialties, Hitachi, Kenwood, Simpson, and Vector Viz; Face soldering/ desoldering and surface-mount rework and repair equipment; programmers from Logical, C.S.T., and American Reliance; and Print’s own custom tool kits and cases. New to this catalog are service monitors and radio test equipment from Helper; Landmark PC-troubleshooting gear; AEMC test equipment and power-demand analyzers; Ungar soldering irons, Fieldpiece field-service equipment; static-detection meters from Staticide; and spectrum analyzers from Avcom, Penntek, and B&K.
LASER DIODES

<table>
<thead>
<tr>
<th>STOCK #</th>
<th>MFG</th>
<th>WAVE LENGTH</th>
<th>POWER</th>
<th>CURR.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS9220</td>
<td>TOSHIBA</td>
<td>660nm</td>
<td>3 mW</td>
<td>85 mA</td>
</tr>
<tr>
<td>LS9210</td>
<td>TOSHIBA</td>
<td>670nm</td>
<td>3 mW</td>
<td>85 mA</td>
</tr>
<tr>
<td>LS9211</td>
<td>TOSHIBA</td>
<td>670nm</td>
<td>5 mW</td>
<td>50 mA</td>
</tr>
<tr>
<td>LS9215</td>
<td>TOSHIBA</td>
<td>670nm</td>
<td>10 mW</td>
<td>45 mA</td>
</tr>
<tr>
<td>LS9220</td>
<td>SHARP</td>
<td>670nm</td>
<td>3 mW</td>
<td>85 mA</td>
</tr>
<tr>
<td>SB1054</td>
<td>PHILLIPS</td>
<td>780nm</td>
<td>5 mW</td>
<td>65 mA</td>
</tr>
</tbody>
</table>

STOCK If
LS9220 STOCK # '7401fill' 15.00 MINIMUM ORDER UPS BLUE, RED & FEDERAL EXPRESS SHIPPING AVAILABLE OPEN MON-FRI 3:00 AM - 6:00 PM, SAT 10:00 AM - 3:00 PM FAX ORDERS - (818) 998-7975 TECHNICAL SUPPORT - (818) 341-8833 SINCE 1983 - YOUR I.C. SOURCE - AND MUCH MORE!! 1-9 QUANTITY DISCOUNTS CALL FOR FREE CATALOG (FOR 1ST CLASS DELIVERY OR FAX ORDERS - (818) 998-7975 TECHNICAL SUPPORT - (818) 341-8833 CIRCLE 194 ON FREE INFORMATION CARD

WAO II PROGRAMMABLE ROBOTIC KIT

The pen mechanism is included with the robot allows it to draw. In addition to drawing straight lines, it can also accurately draw circles, and even draw words and short phrases. WAO II comes with 125 x 6 bits RAM and 2K ROM, and is programmed directly via the keypad attached to it. With its built-in connector port, WAO II is ready to communicate with your computer. With the optional interface kit, you can connect WAO II to an Apple IIe, III, or IIIPlus. Editing and transferring of any movement program, as well as saving and loading a program can be performed by the interface kit. The kit includes software, a cable, and instructions. The programming language is BASIC.

<table>
<thead>
<tr>
<th>STOCK #</th>
<th>DESCRIPTION</th>
<th>1-9</th>
<th>10-25+</th>
</tr>
</thead>
<tbody>
<tr>
<td>MY961</td>
<td>WAO II Programmable Robotic Kit</td>
<td>79.99</td>
<td>69.39</td>
</tr>
<tr>
<td>WRAP</td>
<td>WAO II Interface Kit For Apple IIe, IIe, III, III+</td>
<td>99.99</td>
<td>89.99</td>
</tr>
</tbody>
</table>

IDC BENCH ASSEMBLY PRESS

The Panavise PV505 1/4-ton manual IDC bench assembly press is a rugged practical installation tool designed for the volume mass termination of various IDC connections on flat ribbon cable. Assembly is by removal of standard press guide only. Basic press guide plate may be rotated 90° for maximum versatility. Basic picks & pulling access are quickly changed without any tool required. Additional accessories are listed below.

<table>
<thead>
<tr>
<th>STOCK #</th>
<th>DESCRIPTION</th>
<th>1-9</th>
<th>10-25+</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV505</td>
<td>Panavise Bench Assembly Press</td>
<td>199.99</td>
<td>179.99</td>
</tr>
<tr>
<td>SB1602</td>
<td>Infrared Colimator Pen</td>
<td>49.99</td>
<td>47.49</td>
</tr>
</tbody>
</table>

COLLIMATING PEN

This high power collimator pen containing a MINI probe and a laser diode is a small and compact housing. Produces a bright red dot at 660-685 nm It is housed in a compact tubular LED diode with a ferrule laser module. Produces a clear, sharply defined laser beam. The lens system collimates the diverging light beam. The collimator quality is diffraction limited. The housing is circular and possesses a 10.5 mm diameter x 3.8 long. A variety of apertures is available.

<table>
<thead>
<tr>
<th>STOCK #</th>
<th>DESCRIPTION</th>
<th>1-9</th>
<th>10-25+</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDM135-1</td>
<td>5 mW Laser Diode Module</td>
<td>197.99</td>
<td>179.99</td>
</tr>
<tr>
<td>LDM135-2</td>
<td>5 mW Laser Diode Module</td>
<td>197.99</td>
<td>179.99</td>
</tr>
<tr>
<td>LDM135-3</td>
<td>5 mW Laser Diode Module</td>
<td>197.99</td>
<td>179.99</td>
</tr>
</tbody>
</table>

COLLIMATING LENS

This high performance collimating lens assembly consists of a black anodized aluminum barrel that acts as a heat sink and a glass lens with a focal length of 1.5mm. Designation 890-15A standard 9mm laser diodes the assembly will fit all of the above laser diodes. Simple slip Collimating lens assembly can be adjusted to focus laser diode beam. The lens can be used with a variety of apertures. A single aperture is available.

<table>
<thead>
<tr>
<th>STOCK #</th>
<th>DESCRIPTION</th>
<th>1-9</th>
<th>10-25+</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSL190</td>
<td>Collimating Lens Assembly</td>
<td>19.99</td>
<td>17.99</td>
</tr>
</tbody>
</table>

POWER SUPPLY

Input: 115-200V
Output: 5v 0.3A 12v 0.5A 15V 0.5A
Size: 7 x 3.5 x 2.1 x 2.7

ROBOTIC ARM KIT

Robotic Arm kit contains all necessary robots. Today, they're performing dangerous tasks or picking up complex products. Robots are finding their way into more and more industries. The Robotic Arm kit is an excellent kit that teaches basic robotic arm fundamentals as well as setting your own skill level. Command to perform simple tasks.

<table>
<thead>
<tr>
<th>STOCK #</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y01</td>
<td>PRICE</td>
<td>431.99</td>
</tr>
</tbody>
</table>

PROTBOARD DESIGN STATION

- Variable DC output
 - 5-15 VDC @ 0.5 amp, ripple - 5 mA
- Frequency generator
 - frequency range 0-100 KHz in 6 ranges
- Output voltage 0 to ±10V (20 Vp-p) output impedance: 100K (except TTL) output current: 10mA, max. short circuit protected
- Output waveforms: sine, square, triangle, TTL
- sine wave distortion: 3% (10 Hz to 100 KHz)
- TTL pulse, rise and fall time: 25ns
- Square wave rise and fall time: ±1.5 %
- Logical indicators
 - LED's, indicators, 1.4 volt (normal) threshold, inputs protected to ±20 volts
- Debounced pushbuttons (pushers)
 - 2 pushbutton, control output pushers, each with 1 normally-open, 1 normally-closed output. Each output can sink up to 250 MA
- Potentiometers
 - 10K, 1K, 1K, 1K, all leads available and uncommitted
- BNC connector
 - 2 BNC connectors pin available and uncommitted shell connected to ground
- Speaker
 - 0.5 W, 8 ohms
- Enclosure
 - 2520 uncommitted tie points
- Dimensions
 - 11.51 x 16" wide x 6.5" high
- Input
 - 3 wire AC line input (117 V, 60 Hz)
- Weight
 - 7 lbs.

<table>
<thead>
<tr>
<th>STOCK #</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB003</td>
<td>Protoboard Design Station</td>
<td>299.99</td>
</tr>
</tbody>
</table>

AVOIDER ROBOT KIT

An intelligent robot that knows how to avoid obstacles and reacts to light. The robot emits an infrared beam which detects and avoids obstacles and then automatically turns left and continues on.

<table>
<thead>
<tr>
<th>STOCK #</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MY812</td>
<td>PRICE</td>
<td>543.99</td>
</tr>
</tbody>
</table>

ORDER LINE—(800) 824-3432 • INTERNATIONAL ORDERS—(818) 341-8833 • FAX ORDERS—(818) 998-7975 • TECHNICAL SUPPORT—(818) 341-8833

10-24 x 103 1-9 QUANTITY DISCOUNTS • CALL FOR FREE CATALOG (FOR 1ST CLASS DELIVERY OR CIRCLED DESTINATION ORDER)

NO SHIPPING CHARGES ON PRE-PAY ORDERS! NO CREDIT CARD SURCHARGE! SCHOOL P.O.'S WELCOME!
Wall Transformers

<table>
<thead>
<tr>
<th>Stock No.</th>
<th>Description</th>
<th>Type/Code</th>
<th>YR Warranty</th>
<th>Part No.</th>
<th>Cost per Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>220658</td>
<td>9V DC 500 mA</td>
<td>Basic</td>
<td>2</td>
<td>260038</td>
<td>$2.80</td>
</tr>
<tr>
<td>220658</td>
<td>12V DC 500 mA</td>
<td>Basic</td>
<td>2</td>
<td>260039</td>
<td>$2.80</td>
</tr>
<tr>
<td>220658</td>
<td>24V DC 500 mA</td>
<td>Basic</td>
<td>2</td>
<td>260040</td>
<td>$3.70</td>
</tr>
</tbody>
</table>

Male Jacks

<table>
<thead>
<tr>
<th>Stock No.</th>
<th>Description</th>
<th>Type/Code</th>
<th>Stock No.</th>
<th>Cost per Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>240022</td>
<td>Binding Jack</td>
<td>Type-1</td>
<td>260012</td>
<td>$0.12</td>
</tr>
<tr>
<td>240022</td>
<td>Miniature T</td>
<td>Type-2</td>
<td>260013</td>
<td>$0.12</td>
</tr>
</tbody>
</table>

LED Center

- **FLUKE 70 Series II**
- **FLUKE 87 3rd Edition**

Discounted Prices

<table>
<thead>
<tr>
<th>Stock No.</th>
<th>Description</th>
<th>Type/Code</th>
<th>Rating</th>
<th>Part No.</th>
<th>Cost per Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>260022</td>
<td>Red</td>
<td>1</td>
<td>100+ Qy</td>
<td>900010</td>
<td>$1.95</td>
</tr>
<tr>
<td>260023</td>
<td>Green</td>
<td>1</td>
<td>100+ Qy</td>
<td>900011</td>
<td>$1.95</td>
</tr>
<tr>
<td>260024</td>
<td>Yellow</td>
<td>1</td>
<td>100+ Qy</td>
<td>900012</td>
<td>$1.95</td>
</tr>
</tbody>
</table>

Batteries

- **9V Battery**
- **SNAP Holder**

- **9V Battery SNAP Holder**

Key Features

- Digital Trainer Manual for specific applications.
- Comprehensive teacher/student lab manual.

Authorizes

- Kelvin Electronics
- KELVIN
- BOG

Additional Information

- Call: 1(800) 645-9212
- Fax: 1(516) 756-1763

Disclaimer: The information provided is for educational and reference purposes only. Always consult the manufacturer’s manual before use.

MEMO:

- For Models 100, 150, 200...
 - Case For Model Pro 400...
All major brands carried
*JERROLD, *TOCOM, *ZENITH
*GENERAL INSTRUMENTS
*SCIENTIFIC ATLANTA, *OA
*HAMLIN, *EAGLE, *PIONEER
7th Year in business. Thank You
Member of Omaha Chamber of Commerce
1 Year warranty on new equipment
30 Day money back guarantee
Orders shipped from stock within 24 hours

CALL TODAY FOR A FREE CATALOG
1-800-624-1150 C.O.D.

CABLE BOXES
BELOW WHOLESALE
GUARANTEED STOCK - COD'S

- DESCRAMBLERS -
 (QTY)
 (10) (20) (50) (100)
 TB 2-3 45 40 36 33
 SA3-B 45 40 36 33
 XN12 43 38 34 29
 SB 2-3 43 38 34 30
 60 CH REMOTE CONV/DECODER
 DRX-DIC 90 75 70 65
 SYL DIC 75 60 50 45

- CONVERTERS W/REMOTES -
 PANASONIC TPC145
 5 YR. WAR. + PARENTAL + 86 CH
 TIMER + MEMORY + CH 2 OR 3 +
 NEW 70 65 61 57
 REFURB 60 CH WIREMOTE
 S-4040 38 36 34 31
 HAMLIN-ZENITH-TOCOM-CALL

IT IS NOT THE INTENT OF LAKE SYLVAN SALES TO DEFRAUD
ANY CABLE TELEVISION OPERATOR FEDERAL AND STATE
LAWS PROVIDE SUBSTANTIAL PENALTIES FOR THEFT OF CABLE
TELEVISION SERVICES

LAKE SYLVAN SALES, INC.
SORRY, NO MINNESOTA SALES

800-800-4582 DESCRAMBLERS PLUS!

CABLE TELEVISION SERVICES
LAWS PROVIDE SUBSTANTIAL PENALTIES FOR THEFT OF
ANY CABLE TELEVISION OPERATOR FEDERAL AND STATE
IT IS NOT THE INTENT OF LAKE SYLVAN SALES TO DEFRAUD
ANY CABLE TELEVISION OPERATOR FEDERAL AND STATE
LAWS PROVIDE SUBSTANTIAL PENALTIES FOR THEFT OF CABLE
TELEVISION SERVICES

LAKE SYLVAN SALES, INC.
SORRY, NO MINNESOTA SALES

800-800-4582 DESCRAMBLERS PLUS!

CIRCLE 188 ON FREE INFORMATION CARD

ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

Free Information Number Page
108 AMC Sales 90
75 Ace Products 86, 102
107 All Electronics 105
 — Amazing Concepts 102
77 B&K Precision 24
109 C & S Sales 23
 — CIE 3, 18
198 Cable Warehouse 76
50 Caig Laboratories 26
179 Chenesko Products 86
 — Command Productions 13, 27
181 Communications Specialists 87
55 Contact East 86
187 Datark Corporation 26
127 Deco Industries 86
182 EasyTech 99
183 Electronic Goldmine 94
 — Electronic Tech. Today 80
 — Electronics Book Club 28
121 Flake Manufacturing CV2
176 Global Specialties 7
 — Grantham College 79
86 Heathkit 75
 — HighText Publications, Inc. 24
 — ICS Computer Training 90
114 Jameco 100
180 Kelvin 104
199 Lake Sylvan Sales, Inc. 106
200 M&G Electronics 98
87 McM Electronics 95
184 MD Electronics 106
184 MJS Design 86
93 Mark V. Electronics 97
117 Mouser 76
 — NRI Schools 8
71 NTE Electronics CV3
195 Optoelectronics 17
56 Parts Express 96
197 People's College 25
78 Radio Shack 32
 — R-F Video Offer 64
177 S'CO Electronics 81
196 TECL 87
92, 190 Tektronix 5, CV4
 — The School of VCR Repair 83
194 Unicorn 103
178 U.S. Cable 81
192, 193 Viejo Publications 13, 76
185 WPT Publications 87
191 Worldwide Cable 98
186 Xandi Electronics 86

ADVERTISING SALES OFFICE
Gernsback Publications, Inc.
500-B Bi-County Blvd.
Farmingdale, NY 11735
1-516-293-3000
President: Larry Stockler
For Advertising ONLY
516-293-3000
Fax 1-516-293-3115
Larry Stockler
publisher
Christina Estrada
assistant to the President
Arline Fishman
advertising director
Denise Haven
advertising assistant
Kelly McCauley
credit manager
Subscriber Customer Service
1-800-288-0652
Order Entry for New Subscribers
1-800-999-7139
7:00 AM - 6:00 PM M-F MST
SALES OFFICES
EAST/SOUTHEAST
Stanley Lewitan, Eastern Sales Manager
Radio-Electronics
1 Overlook Ave.
Great Neck, NY 11021
1-516-487-9357, 1-516-293-3000
Fax 1-516-487-8402

MIDWEST/Texas/Arkansas/Okla.
Ralph Bergen, Midwest Sales Manager
Radio-Electronics
One Northfield Plaza, Suite 300
Northfield, IL 60093-1214
1-708-446-1444

PACIFIC COAST/Mountain States
Marvin Green, Pacific Sales Manager
Radio-Electronics
5430 Van Nuys Blvd. Suite 316
Sherman Oaks, CA 91401
1-818-986-2001
Fax 1-818-986-2009
RE Shopper
Joe Shere, National Representative
P.O. Box 169
Idywild, CA 92549
1-714-659-5743
Fax 1-714-659-2469
QUICK Cross™

"QUICK Cross" is the industry's first PC-based software cross-reference to NTE's highly successful line of semiconductor and relay parts. Just type in any of the over 4,750 industry device numbers — U.S., Japanese, and European — and you'll get the ideal replacement from our 2,750 NTE devices in about one second!

All NTE parts carry a one-year warranty and most are available off the shelf.

"QUICK Cross™" runs in MS-DOS on an IBM PC or compatible with 4 MB RAM, a small hard drive, and a 3 1/2" floppy drive. NTE's database occupies only 2.1 Mbytes of hard disk space when loaded. It's a public domain product. NTE's Software is a registered trademark of Microsoft Corporation. IBM is a registered trademark of International Business Machines.
WHAT YOUR TOOLS SAY ABOUT YOU.

“ULTIMATE PROFESSIONAL”
Here’s the newest family member: the 60 MHz Tek 224. It’s as rugged, reliable and easy to use as the rest of the 220 Series—and extended bandwidth makes it the logical choice for computer service professionals.

“ACE TROUBLESHOOTER”
The Tek 222 is everything a service scope ought to be. Lightweight. Rugged. Fully programmable. Floatable to ± 400 V. Two channels, 10 MHz. Auto Setup and Auto Trigger make it easy finding trouble—fast.

“RUGGED SURVIVALIST”
Tek’s 222PS Power Scout™ offers the field-proven performance of the 222, plus it’s rated 600 VAC, 850 VDC and 6 kV peak surge. Perfect for circuit measurements requiring extra protection—and a few added guts.

They’re just 4½ pounds. U.L. certified. And start at $2450. 220 Series handheld oscilloscopes—all with Tek’s exclusive IsolatedChannel™ architecture—are the service tools the professionals use. There’s one with you written all over it. To order, contact your Tek representative or distributor. Or just call Tek direct: 1-800-426-2200