BUILD YOUR OWN EKG
Keep tabs on your heart with R-E's electrocardiograph!

BUILD A COLOR-BAR TEST GENERATOR
Test and troubleshoot your video equipment.

D/A and A/D CONVERTERS
A look at the chips that bring the digital and analog worlds together.

BUILD A LOGIC ANALYZER
A 16-channel, 50-MHz digital troubleshooting tool.

TEST IC's WITH YOUR PC
And learn about computer-based test equipment.
Two displays. One great meter.

Dual displays provide two accurate measurements. Combined with 16 different measurement capabilities. The Fluke 45 is making people take a second look.

The Fluke 45 has the specs to get the job done right. 0.02% basic dc voltage accuracy and 100,000 count resolution on both displays. Basic dc current accuracy is 0.05%, making the 45 ideal for servicing 4-20 mA current loops. The Fluke 45 measures true-rms voltage and current, including ac+dc. Closed-case calibration simplifies the calibration process and increases uptime.

Twice as much information.

With the 5-digit, 100,000 count dual displays giving you more information in less time—and with less effort. For example, measure the VDC output of a power supply while measuring the VAC ripple. Or check the amplitude and frequency of an AC signal. From a single test connection!

More measurement combinations.

With the Fluke 45 complex measurements become simple, with standard features like a 1 MHz frequency counter, Min Max, limits testing (Hi/Lo/Pass), Touch Hold® and Relative modes. There are 21 different reference impedances for dB measurements; in the 2Ω to 16Ω ranges, audio power can be automatically displayed in watts. The variety of electrical parameters, measurement functions and display combinations is incredible.

Even an RS-232 interface is standard.

Connecting the Fluke 45 to PCs, RS-232 printers and modems is as easy as attaching the cable. An IEEE-488.2 interface and internal, rechargeable lead-acid batteries are available as options.

Get a great value.

Contact your local distributor today for complete information on the new Fluke 45. Or call toll-free 1-800-44-FLUKE, ext 33.

FLUKE 45 DUAL DISPLAY MULTIMETER

<table>
<thead>
<tr>
<th>$635*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual Display</td>
</tr>
<tr>
<td>0.02% basic dc voltage accuracy</td>
</tr>
<tr>
<td>1 MHz frequency counter</td>
</tr>
<tr>
<td>dB, with 21 reference impedances, and audio power calculations</td>
</tr>
<tr>
<td>Compare and Relative functions</td>
</tr>
<tr>
<td>Min Max and Touch Hold® functions</td>
</tr>
</tbody>
</table>

John Fluke Mfg. Co., Inc. P.O. Box 9909 M/S 250C Everett, WA 98206

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS

CIRCLE 121 ON FREE INFORMATION CARD
BUILD THIS

31 BUILD AN ELECTROCARDIOGRAPH
Learn about medical electronics while monitoring your heart.
H. Edwards Roberts, M.D.

41 COLOR BAR GENERATOR
Test and troubleshoot your video equipment.
Thomas Gould

47 LOGIC ANALYZER
Check digital circuits with our 16-channel, 50-MHz logic analyzer.
Gerard Robidoux and Robert Dmitroca

COMPUTERS

53 EXPERIMENTING WITH PC-BASED TEST EQUIPMENT
Build a PC-based IC tester for less than $100!
James J. Barbarello

TECHNOLOGY

58 DIGITAL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERTERS
An in-depth look at the chips that bridge the digital and analog worlds.
Stephen J. Bigelow

DEPARTMENTS

6 VIDEO NEWS
What's new in this fast-changing field.
David Lachenbruch

20 EQUIPMENT REPORTS
Fluke Model 79 DMM.

65 HARDWARE HACKER
Understanding transformers, and more.
Don Lancaster

72 AUDIO UPDATE
A distortion primer: Part 2.
Larry Klein

80 COMPUTER CONNECTIONS
A new beginning for this column.
Jeff Holtzman

AND MORE

94 Advertising and Sales Offices
94 Advertising Index
8 Ask R-E
10 Letters
84 Market Center
29 New Lit
22 New Products
4 What's News
ON THE COVER
If you’ve been having heart palpitations, see a doctor. But if you’ve simply been curious about medical electronics and like to keep tabs on your health, see our cover story, “Build an Electrocardiograph.” Our EKG can’t replace a cardiologist, but it can produce results that are virtually identical to those from commercial machines costing $10,000 or more. You’ll learn a lot about medical electronics while building and using the EKG, and you’ll have early warning of potential heart problems. Using a PC, you can display test results on a monitor or print out a hard copy. It doesn’t take years of study to learn how to detect problems such as high blood pressure and irregular heart beats—you can learn to interpret the test results yourself in a few hours. For all the details, turn to page 31.

COMING NEXT MONTH
THE AUGUST ISSUE GOES ON SALE JULY 2.

BUILD A SPECTRUM ANALYZER
Our PC-based analyzer operates from 0.1 to 800 MHz and costs about $300.

BUILD AN RS-232 TERMINAL/MONITOR
Based on the MC78HC705 microcontroller, this device can act as a dumb terminal or as a sophisticated serial bus analyzer.

AN INTUITIVE LOOK AT ELECTROMAGNETIC THEORY
We celebrate the 100th anniversary of Maxwell’s "A Treatise on Electricity and Magnetism" with an in-depth look at the electric field.

BUILD AN EKG: PART II
Construction and operating details.

As a service to readers, RADIO-ELECTRONICS publishes available plans or information relating to newsworthy products, techniques and scientific and technological developments. Because of possible variances in the quality and condition of materials and workmanship used by readers, RADIO-ELECTRONICS disclaims any responsibility for the safe and proper functioning of reader-built projects based upon or from plans or information published in this magazine.

Since some of the equipment and circuitry described in RADIO-ELECTRONICS may relate to or be covered by U.S. patents, RADIO-ELECTRONICS disclaims any liability for the infringement of such patents by the making, using, or selling of any such equipment or circuitry, and suggests that anyone interested in such projects consult a patent attorney.

POSTMASTER: Please send address changes to RADIO-ELECTRONICS. Subscription Dept. Box 55115, Boulder, CO 80321-5115.

A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs if their return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.

BUILD YOUR OWN EKG
BUILD A COLOR BAR TEST GENERATOR
D-A and A-D CONVERTING BUILD A LOGIC ANALYZER
TEST IC, WITH YOUR PC

BUILD A SPECTRUM ANALYZER
BUILD AN RS-232 TERMINAL/MONITOR
BUILD YOUR OWN EKG
BUILD A COLOR BAR TEST GENERATOR
D-A and A-D CONVERTING BUILD A LOGIC ANALYZER
TEST IC, WITH YOUR PC

THE AUGUST ISSUE GOES ON SALE JULY 2.

BUILD A SPECTRUM ANALYZER
Our PC-based analyzer operates from 0.1 to 800 MHz and costs about $300.

BUILD AN RS-232 TERMINAL/MONITOR
Based on the MC78HC705 microcontroller, this device can act as a dumb terminal or as a sophisticated serial bus analyzer.

AN INTUITIVE LOOK AT ELECTROMAGNETIC THEORY
We celebrate the 100th anniversary of Maxwell’s “A Treatise on Electricity and Magnetism” with an in-depth look at the electric field.

BUILD AN EKG: PART II
Construction and operating details.

As a service to readers, RADIO-ELECTRONICS publishes available plans or information relating to newsworthy products, techniques and scientific and technological developments. Because of possible variances in the quality and condition of materials and workmanship used by readers, RADIO-ELECTRONICS disclaims any responsibility for the safe and proper functioning of reader-built projects based upon or from plans or information published in this magazine.

Since some of the equipment and circuitry described in RADIO-ELECTRONICS may relate to or be covered by U.S. patents, RADIO-ELECTRONICS disclaims any liability for the infringement of such patents by the making, using, or selling of any such equipment or circuitry, and suggests that anyone interested in such projects consult a patent attorney.

POSTMASTER: Please send address changes to RADIO-ELECTRONICS. Subscription Dept. Box 55115, Boulder, CO 80321-5115.

A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs if their return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.
Five ways to look at 100 MHz. Starting at $2295!

Just check the choices in our line-up of five 100 MHz oscilloscopes:
- GPIB Programmability
- Hardcopy Documentation
- 100 MS/s Single-shot
- Automatic Measurements
Name your application, we'll provide the solution.

Tek gives you the perfect blend of modern analog real-time and digital technologies in 100 MHz oscilloscopes. Whether it's hardcopy output from a fully programmable real-time scope, automatic measurements specified to .001%, or 100 MHz, 100 MS/s single-shot performance, no one has the choices Tek does. To see it all, call your Tek rep or 1-800-426-2200. The closer you look, the more you'll appreciate Tek.

One company measures up.
Solid-state radioluminescent light sources

Radioluminescence—the emission of light stimulated by radioactive decay—is well known and widely used. Novel inorganic, organic, and hybrid radioluminescent (RL) light sources developed at Sandia National Laboratories (Albuquerque, NM) have a variety of possible applications in optical computing and photonics, as airport runway emergency lighting, or even as a long-term power source. To create the RL lights, tritium is chemically bound in a solid; the ingredients that create the light are dissolved or suspended on a molecular scale and within atomic distances of each other. All three types are solid-state (they contain no liquid or gases). The resultant light source is a “light stick” or “light cube”—a glowing piece of plastic or aerogel that requires no electrical power, can be made in various shapes and sizes, and can produce almost any color. The inorganic sources provide the advantages of long lifetime without degradation and brightness. At about 10 times brighter than standard, gas-filled RL lights, the Sandia inorganic lights are a good candidate for a power source. The basic idea is to create a very bright light and then surround it with a photovoltaic (solar cell) light converter to make electricity. The result is a “glowing sugar cube” that requires only a few square centimeters of semiconductor converter material. Sandia researchers believe it will be possible to create a “20-plus years” power source that is considerably smaller than a long-life lithium battery.

The post-laser printer?

In a joint venture between Westinghouse Electric Corporation and Tokyo Electric Company, Ltd., the Edge Emitter light source will be marketed to printer manufacturers as an alternative to conventional laser-printer technology. Developed by scientists at Westinghouse’s Science and Technology Center in Pittsburgh, the device is based on a patented process that uses light emitted from the edge of a thin film of zinc sulfide—which is up to 100 times brighter than light coming from the face of the film. The Edge Emitter is smaller and lighter than its laser counterpart, and may offer higher speed, better resolution, and better gray-scale printing capability. Because it includes no scanning mirrors or other moving parts, the Edge Emitter light source is projected to have an operating life three to five times longer than that of traditional printer light sources.

The new company, to be known as Edge Emitter Technology, Inc., will have its manufacturing operation located in Fremont, CA.

IEEE survey results

According to a survey of selected members of The Institute of Electrical and Electronics Engineers, Inc. (IEEE), worldwide compatible HDTV and simultaneous translation of human speech from one language to another will become realities in just 20 years. The survey, conducted by The Gallup Organization (Princeton, NJ), was conducted using a sample of 150 IEEE members—50 each from industry, government, and academia. There is more than a 50% chance that worldwide, compatible HDTV will be implemented by the year 2010, according to 70% of those surveyed. In the computer field, 58% of the IEEE respondents agreed that by the year 2010 a computer will provide simultaneous language translation.

More than 95% of the respondents agreed that “over the next 20 years, engineering and technology will have a positive effect on the global environment.” The engineers were almost unanimous in supporting a more assertive role for themselves in ensuring the constructive application of technologies, with 94% agreeing that they should address the costs, benefits, and risks associated with their contributions for the benefit of legislators and the public.

The response to questions about practical applications of superconductivity in transportation and power was less optimistic, with only 40 percent of those in government and 28% of those in academia believing such applications would be possible by the year 2010. Electrical engineers were even more pessimistic about the near-term development of large-scale power generation using controlled hydrogen fusion. Only 13% of the IEEE respondents agreed that there is a greater than 50% chance that such advances will occur by 2010.

First U.S. LCD production plant

The first U.S.-based mass-production plant for high information, dot-matrix, liquid-crystal displays (LCD's) for large-scale commercial use is scheduled to open in Camas, WA, this December. The company will be a part of Sharp Microelectronics Technology (a subsidiary of Japan's Sharp Corporation), but will operate as a separate company under the name Sharp Flat Display Manufacturing Co. The facility, which will produce LCD panels for use in laptop and notebook computers and other business products, is expected to result in 250 new jobs by the end of 1993.
Why take chances in today's job market?

Graduate as a fully trained electronics professional.

To get ahead and stay ahead in today's economy, you need the electronics training CIE has been providing its 150,000-plus successful graduates with for nearly 60 years.

Meet the Electronics Specialists.

When you pick an electronics school, you're getting ready to invest time and money. And your whole future depends on the education you receive in return.

That's why it makes so much sense to go with number one... with the specialists... with CIE!

There's no such thing as a bargain education.

If you talk to some of our graduates, and we recommend you do, chances are you'd find a lot of them shopped around for their training. Not for the lowest priced, but for the best training available.

They pretty much knew what was available when they picked CIE as number one.

Because we're specialists we have to stay ahead.

At CIE we have a position of leadership to maintain. Here are just a few of the ways we hang onto it...

Programmed Learning.

That's exactly what happens with CIE's Auto-Programmed Lessons*. Each lesson uses famous "programmed learning" methods to teach you important electronics principles. You explore them, master them completely, before you start to apply them. You thoroughly understand each step before you go on to the next. You learn at your own pace.

And, beyond theory, some courses come fully equipped with electronics equipment to actually let you perform hundreds of hands-on experiments.

Experienced specialists work closely with you.

Even though you study at home, CIE's faculty and staff stand ready to assist via CIE's toll free number. And, each time you return a completed exam you can be sure it will be reviewed, graded and returned with the appropriate instructional help, you get it fast and in writing from the faculty technical specialist best qualified to answer your question in terms you can understand.

Pick the pace that's right for you.

CIE understands people need to learn at their own pace. There's no pressure to keep up...no slow learners hold you back. If you're a beginner, you start with the basics. If you already know some electronics, you move ahead to your own level.

"Same Day" grading cycle.

When we receive your lesson, we grade it and mail it back the same day. You find out quickly how well you're doing!

State-of-the-art laboratory equipment.

Some courses feature the CIE Microprocessor Training Laboratory. An integral part of computers, microprocessor technology is used in many phases of business, including service and manufacturing industries. The MTL gives you the opportunity to program it and interface it with LED displays, memory devices and switches. You'll gain all the experience needed to work with state-of-the-art equipment of today and tomorrow.

New Courses!

CIE now offers two new career courses: Automotive Electronics and Computer Operation and Programming.

CIE offers you an Associate Degree.

One of the best credentials you can have in electronics — or any other career field — is a college degree. That's why CIE offers an Associate in Applied Science in Electronics Engineering Technology. And all CIE career courses earn credit toward your degree.

Which CIE training fits you?

Beginner? Intermediate? Advanced? CIE home study courses are designed for ambitious people at all entry levels. People who have: No previous electronics knowledge, but do have an interest in it; Some basic knowledge or experience in electronics; In-depth working experience or prior training in electronics.

At CIE you start where you fit and feel comfortable where you start, then go on from there to your Diploma, Associate Degree and career!

Today is the day. Send now.

Fill in and return the postage-paid card attached. If some ambitious person has already removed it, cut out and mail the coupon below. You'll get a FREE CIE school catalog, plus complete information on independent home study. Mail the coupon below or, if you prefer, call toll-free 1-800-321-2155 (in Ohio, 1-800-623-9109).

Print Name ________________________________
Address ____________________________________ Apt. __________
City ___________________ State ___________ Zip __________
Age ________ Area Code/Phone No. (_____) __________

Check box for G.I. Bulletin on Educational Benefits □ Veteran □ Active Duty

YES! I want to get started. Send me my CIE school catalog including details about the Associate Degree program. (For your convenience, CIE will have a representative contact you — there is no obligation.)

Cleveland Institute of Electronics, Inc.
1770 East 17th Street - Cleveland, Ohio 44114 - (216) 781-9400

A school of thousands.
A class of one.
Since 1934.
VIDEO NEWS
What's new in the fast-changing video industry.

DAVID LACHENBRUCH

• Multimedia hits the market. The first interactive multimedia system for consumers is now on the market. Starting in California in April, and now gradually scheduled to spread out across the rest of the United States, Europe, and Japan, is CDTV (which stands for Commodore Dynamic Total Video), a CD-ROM-based system derived from Commodore’s versatile Amiga computer. Although CDTV doesn’t yet provide full motion, it came to market at a $999 suggested list price with a limited set of combined functions. Starting in California in April, and now gradually scheduled to spread out across the rest of the United States, Europe, and Japan, is CDTV (which stands for Commodore Dynamic Total Video), a CD-ROM-based system derived from Commodore’s versatile Amiga computer. Although CDTV doesn’t yet provide full motion, it came to market at a $999 suggested list price with a library of some 50 titles available. The first interactive multimedia system for consumers is now on the market. Starting in California in April, and now gradually scheduled to spread out across the rest of the United States, Europe, and Japan, is CDTV (which stands for Commodore Dynamic Total Video), a CD-ROM-based system derived from Commodore’s versatile Amiga computer. Although CDTV doesn’t yet provide full motion, it came to market at a $999 suggested list price with a library of some 50 titles available.

• Compressed cable. Digital compression is the hot topic in the cable TV business these days, with a number of systems due to be tested on the consumer market soon. Cable TV Laboratories, supported by cable operators, has formed a digital-compression consortium with General Instrument and Scientific-Atlanta to speed the introduction of compressed-signal systems. These systems will use compression to squeeze a number of programs onto a single channel, first for satellite delivery and later for delivery to private homes.

• Still plus motion. Although several manufacturers have introduced digital electronic snapshot cameras, they haven’t gained widespread popularity, presumably because of high price and somewhat limited utility. Perhaps the answer to the problem is, as Hitachi believes, to combine the electronic still camera with the camcorder. As demonstrated at a recent technology exhibition in Tokyo, the Hitachi camera can make a standard analog 8mm videotape. However, it also has a “snapshot” button, which, when pressed, can record a still, high-definition, digital picture on the 8mm tape’s audio track. The still snapshot may be made at the same time audio videotape is being shot, at the rate of one snapshot every 12 seconds. In the prototype, six one-megabit DRAM’s are used for digital still recording. While the conventional Hi8 analog tape recording has a bandwidth of 500 kHz, the still picture recording made with the same camera has a bandwidth of 2 MHz. The still picture has resolution of 768 lines vertically and 512 horizontally, Hitachi says. The prototype camcorder used two 410,000-pixel CCD’s. Hitachi says the digital still feature will add about $150 to $220 to the cost of a Hi8 camcorder, but it will eliminate the need for a separate still camera. A simpler still-motion camcorder system is already on the market in Europe, where a Philips Super VHS camcorder is designed to make a full-frame analog still recording or a standard S-VHS moving tape at the option of the operator. You’ll have to choose one format at a time; the two can’t be made at the same time.

• Old names for new. Hey, you TV nostalgia buffs—Admiral is back, and so is Crosley, but Majestic died again. The famous-name revival continues in TV brands. Although the Majestic brand was revived for a short time, that old devil recession did it in; products with that brand name have been suspended. However, Montgomery Ward paid some money to an appliance manufacturer and revived the brand name of Admiral, a pioneer once known for its cheap TV sets. “Monkey Ward” also plans to field a line of TV’s under the Bell & Howell label—a name that sounds like it once was a high-end TV but never really was (it was applied to slide and movie projectors and audio tape recorders). Another old-timer, Crosley, is doing quite well as a private brand for smaller dealers. And, of course, there’s Emerson, which in the last 10 years has made an impressive comeback, although it’s not related to the original Emerson Radio, which pioneered table model radios and smaller TV’s. In fact, none of these brands are related to their original ancestor. But then, RCA and GE, as well as Magnavox, Sylvania, and Philco, are now made by new owners, although they do happen to have some direct lineage from TV’s pioneering days.

RADIO-ELECTRONICS
SELECT 5 BOOKS
for only $4.95
(values to $102.75)

Your most complete source for electronics books for over 25 years.

Membership Benefits • Big Savings. In addition to this introductory offer, you keep saving substantially with members' prices of up to 50% off the publishers' prices. • Bonus Books. Starting immediately, you will be eligible for our Bonus Book Plan, with savings of up to 80% off publishers' prices. • Club News Bulletins. 15 times per year you will receive the Book Club News, describing all the current selections—mains, alternates, extras—as well as bonus offers and special sales, with scores of titles to choose from. • Automatic Order. If you want the Main Selection, do nothing and it will be sent to you automatically. If you prefer another selection, or no book at all, simply indicate your choice on the reply form provided. You will have at least 10 days to decide. As a member, you agree to purchase at least 3 books within the next 12 months and may resign at any time thereafter. • Ironclad No-Risk Guarantee. If not satisfied with your books, return them within 10 days without obligation! • Exceptional Quality. All books are quality publishers' editions especially selected by our Editorial Board.

Please accept my membership in the Electronics Book Club and send the 5 volumes listed below, billing me $4.95. If not satisfied, I may return the books within ten days without obligation and have my membership cancelled. I agree to purchase at least 3 books at regular Club prices during the next 12 months and may resign any time thereafter. A shipping/handling charge and sales tax will be added to all orders.

Name
Address
City
State Zip Phone

Valid for new members only. Foreign applicants will receive special ordering instructions. Canada must remit in U.S. currency. This order subject to acceptance by the Electronics Book Club.
Audiophile Attitudes

My thanks to Radio-Electronics, and especially to Larry Klein, for his excellent series of articles about audiophile attitudes and equipment. His well-reasoned and fully documented data are long overdue.

The level of foolishness in the consumer-audio and audiophile markets should be an embarrassment to all professionals in the electronics field. Beliefs in things ranging from absurd speaker cables to “greening” of CD’s are no more legitimate than Creation Science, and the audio faithful who are willing to part with $10,000 or more for an antiquated tube amplifier must surely qualify as the all-time champions of gullibility. Thanks again.

Paul J. Carlson
Pittsburgh, PA

Magnetic Field Meter Queries

I really enjoyed Reinhard Metz’s article, “Build this Magnetic Field Meter” (Radio-Electronics, April 1991). I thought the issues of possible health risks, magnetic field theory, and the pictures of sources of magnetic-field exposure were presented very well.

For the last year I have been involved in evaluating problems concerning ELF magnetic fields and remedial solutions. Part of my work was directed to evaluating Gauss meters and magnetic-field measurement systems.

I have three questions about the meter. First, I wonder if the unshielded coil on the PC board might be sensitive to the electric as well as the magnetic fields, and because of the differing vectors, give ambiguous readings? Second, the article stated that the meter is usable in a frequency range from 50 Hz to 20 kHz. Is the meter reasonably flat with frequency over its entire dynamic range? I know that this can be a serious problem and can lead to substantial errors in measurement. Third, I worry that the relative insensitivity (0.1 μF) of this meter, along with its high (20 mT) range, might cause people to expose themselves to those 10–20 mT fields while making measurements. Perhaps a note cautioning against that would have been wise. If the meter range had been 0.001–20 μT, over-ranging would tend to prevent possibly hazardous exposure.

I hope I’m not being overcritical of the meter. Again, I’d like to thank Mr. Metz and Radio-Electronics for presenting this important information to the public.

John Mills
Ben Lomond, CA

Thank you for your kind comments about my article. In response to your questions: First, while the magnetic field pickup coil might be considered an antenna for the electric fields, its small size would make it efficient as such only at relatively high frequencies, where the op-amps are ineffective. At lower frequencies, the electric field pickup appears primarily as common-mode voltage, and should not get amplified. Tests of the unit have been successfully conducted in RF fields up to 20 volts/meter.

Second, in regard to frequency range and flatness of response, while it was stated that the response was from 50 Hz to 20 kHz, it was in fact optimized for power-line frequencies and their third harmonics. If you are interested in optimal flatness to 20 kHz, I would suggest changing the following component values: R3 becomes 16K and R12 becomes 80 ohms (or C7 becomes 800 pF).

Finally, I’m not sure how the 20-mT range of the meter would “cause” a person to expose themselves to fields in that range, unless they deliberately set out to create them for the sake of a meter deflection. That certainly would not be advised. However, to the extent that they may exist in some places and are detected by the meter, I agree that people should use that information to avoid further potentially hazardous exposure.

Reinhard Metz

Electronics Behind Bars

I’d like to thank Radio-Electronics for keeping alive my interest in electronics for the last eleven years. Without your magazine, I would not have been able to keep abreast of the massive changes in the industry. You see, I am a prisoner serving 15 years for committing a crime of passion. Since I entered prison in 1980, I have relied on your magazine to keep me informed of the changes. Had I not received a monthly issue, I would find myself upon release to be totally out of touch. All this time, without so much as seeing a soldering iron, your magazine has helped me to keep the faith.

In two years, I will be returning to a new life. Before leaving here, I hope to impart an enthusiasm for electronics to other prisoners. For five years, I have struggled to establish an electronics hobby club. Last week I was given permission. Most of the people I met in prison have not had the advantages I’ve had in my life. I know in my heart that fostering an interest in electronics and giving some of the other prisoners the basics of electronics will lead to a confidence in their abilities that will aid in reformation.

I’m asking for help from any of your readers who might have old copies of Radio-Electronics, Popular Electronics, Hands-on Electronics, or other electronic publications to send them to me. We’d also appreciate any plans or projects that they’d like to share, as well as old books, specification sheets, or helpful hints. Perhaps the most important thing I hope your readers can send is support—support in the form of let-
letters to club members. If anyone can write a letter a month to answer some basic electronics questions from prisoners, please contact me. Thank you.

ED MOORE
C/o Chapel
Kingston Penitentiary
Kingston, Ontario
Canada, K7L 4V7

IN FAVOR OF AMIGA

Congratulations, Mr. Holtzman.

You really had me going there, with your reply to Mr. Cheng in the April issue of Radio-Electronics. "Why doesn't Commodore build a low-cost MS-DOS multimedia machine?" Don't be ridiculous! Perhaps if I'd received my issue on April 1, instead of in mid-March, I would have caught on sooner.

Unfortunately, I believe that some of Mr. Holtzman's other statements and observations are sincere. He claims that the Amiga has had little influence on the personal-computer industry. How does he define "influence?" By counting sheer numbers, or by cloning to the point of becoming a commodity? I hope not; that is a rather crude by Amiga standards.

Perhaps his view of the personal computer industry is just narrow and biased. I admit, the Amiga has broken no ground in the big three of applications: word processing, spreadsheets, and databases. However, if you consider the growing market for personal-computer graphics, the Amiga is a technological leader. I can't begin to list all the paint programs, 3-D modelling, rendering, and animation applications that exist for the Amiga. The simple fact is that what is considered "state of the art" in MS-DOS graphics software is rather crude by Amiga standards.

I believe that Mr. Holtzman is "not anti-Amiga." Unfortunately, he is far worse—he is indifferent. Radio-Electronics and the majority of other "general interest" magazines continue to ignore the Amiga and help perpetuate the myth that it is not a "serious computer."

Finally, I do have to agree with Mr. Holtzman concerning things like data interchange standards. We in the Amiga community are blessed with the IFF data standards; I wish it was just as easy to work across other platforms.

I, like millions of others, prefer being on the leading edge of personal-computer technology. In your zeal for standards, please don't expect everyone to descend to the level of IBM/MS-DOS. There is more than one way to process bits!

TOM HUTCHINSON
Pilot Rock, OR

APRIL SPIRIT

I loved your "Poor Man's Laser Printer" article (Radio-Electronics, April 1991). Let me tell you, the idea was great!

I have attached a Panasonic 1991 Multisynch color monitor to a Panasonic FP-C1XE Digital Color Copier using your method. The results in Super VGA were, to say the least, incredible!

Two things are troubling me though. One is the dither moire I am getting, and the other is the cost: $20,000 is a lot for color printing.

JESS KIDDING
Tongwen Cheek, NJ

Be an FCC LICENSED ELECTRONIC TECHNICIAN!

No costly school. No commuting to class. The Original Home-Study course prepares you for the "FCC Commercial Radio-telephone License." This valuable license is your professional "ticket" to thousands of exciting jobs in Communications, Radio-TV, Microwave, Maritime, Radar, Avionics and more—even start your own business! You don't need a college degree to qualify, but you do need an FCC License.

No Need to Quit Your Job or Go To School

This proven course is easy, fast and low cost! GUARANTEED PASS—You get your FCC License or money refunded. Send for FREE facts now. MAIL COUPON TODAY!

NAME
ADDRESS
CITY, STATE ZIP

FCC LICENSE TRAINING, Dept. 90
P.O. Box 2824, San Francisco, CA 94126
Please rush FREE details immediately!

CIRCLE 98 ON FREE INFORMATION CARD

Building the best DMM for the money is no accident. The new RMS225 was carefully designed to give you what you wanted at a price you could afford. Visit your local distributor today and you'll agree the choice is obvious.
COMPUTER CLASHES CONTINUED

I really do think that Mr. Cheng's comments in the April "Letters" column went a bit far—and so did Mr. Holtzman's reply. The entire exchange brings to mind the old tale about the blind man and the elephant; it really is tough to discern the big picture through all the fog. As one who has programmed extensively for 80X86 PCs, Amigas, and other computers, I have more comments than I can fit in a reasonably sized letter. A few will have to do.

First, on standardization: As Mr. Holtzman pointed out, the desirable part about standardization is that it facilitates communication. There are two flip sides. One is that many software (as well as hardware) suppliers don't want communication. Suppliers of programs for CAD and music scoring are especially notorious—they want you locked in tight. The second is that standards are often ages out of date—witness the NTSC television standard—to the point of stifling innovation.

The niche machines are a paradox. They owe their existence to the fact that in one important sense they are more standardized than PCs. No two PCs are alike, even in such fundamentals as memory organization, video graphics layout, and interrupt organization. As we all know, that causes no end of problems. Within the CPU itself, the instruction set is an unstandardized chaos, having on the order of a thousand individual quirks. Even the largest, best-capitalized organizations have been able to cope with that, so that compiled code tends to be a wretchedly suboptimal joke. The lessons of the old mainframes have yet to be learned.

The upshot is that things that aren't done often enough to support multi-billion-dollar software companies are often best done on niche machines, especially if speed, large memory, or a GUI is desired, or interrupts are needed. Sure, a Lotus or a Microsoft can handle the problems caused by dozens of graphics drivers, dozens of extended memory drivers, more than 500 printer drivers, dozens of slightly different serial and parallel ports, hundreds of quirky BIOS variants, and hundreds or maybe thousands of hard-disk variants. The person who writes a specialized program for filter analysis and sells a few hundred copies probably can't make it multi-compatibile, except by resorting to lowest-common-denominator user interfaces and sticking by a 640K memory model. Even then, it's never really certain that the program that runs on my PC will run on the PC next door—and getting it to print properly on the system next door is well nigh out of the question.

So, what will become of those 60 million PCs, plus the Macs, Amigas, Ataris, and so on? It's sad, but humanity has been down this road before, and we find that horse cars, though they were once as abundant proportionally, simply aren't permitted on the freeway. Those computers aren't going to make it either, though some, notably the DOS PC, may well hang on for a long while as windows in some POSIX-OS/2-Window-DOS-Sparc-Mac-PC-Amiga machine of the future. (After all, if it were worth the trouble, it wouldn't be all that hard to simulate an Apple or Commodore 64 of seven years ago on a 486 PC, high-end Mac, or high-end Amiga—faster than real time!)

And that raises what should be the hottest issue of all, something far more important than ranting and raving over doomed PC's versus doomed Macs versus doomed Amigas. The issue is our own data, which we must somehow get out of that DOS window and onto that machine of the future—to say nothing of moving it from one application to another or to a supercomputer. We have allowed much of our data, entered laboriously and at tremendous expense, to become embodied in files that are formatted in obtuse, secret, and unstandardized ways.

It is high time that the software manufacturers who practice this are forced to change. They are in effect thieves who have stolen from us what is rightfully our property. It is time to insist that all software that we buy have the capability to disgorge our data in full, including such things as the coordinates of graphical objects, in an open, published-data-interchange format. As a symbolic discouragement to theft and extortion by software manufacturers, and to allow third parties to assist in retrieving the stolen property without fear of litigation, it is time to amend the copyright law to explicitly permit reverse engineering in any program that stores output but won't provide it in an open format, irrespective of any
Type cleaners are actually type of video-head cleaning cassette. do not recommend the use of any
(March 1989) also supports Ms. Abbot's letter and Larry Klein's response in the October issue, as an audio/video repair techni-
cian who has attended mandatory factory-service seminars and who subscribes to several electronic mag-
azines, I must agree with Ms. Abbot. Although service centers in my area charge a lower price for cleaning,
they charge a lower price for cleaning, they use head-cleaning tapes at that low price. For a more thorough, prop-
er cleaning, they charge more.

Regarding Ms. Abbot's letter and Larry Klein's response in the October issue, as an audio/video repair tech-
ician who has attended mandatory factory-service seminars and who subscribes to several electronic mag-
azines, I must agree with Ms. Abbot. Although service centers in my area charge a lower price for cleaning,
they use head-cleaning tapes at that low price. For a more thorough, proper cleaning, they charge more.

A Radio-Electronics article entitled "Keep Your VCR Healthy" (March 1989) also supports Ms. Abbot's view and states, "We definitely do not recommend the use of any type of video-head cleaning cassette. It has been found that some of the cassette-type cleaners are actually abrasive to the video heads."

While attending service seminars sponsored by Panasonic, RCA, and Samsung, the instructors stated that those companies void any warranties if head-cleaning cassettes have been used. The representative from Samsung mentioned the ability to use a high-grade tape with its built-in "chemical" cleaning (but not necessarily the recording part, just play it through).

I, too, have found the older mechanical VCR's to be more durable. The user can "punch" the keys and the machines can handle it, where the plastic inlays of the newer ones would snap apart and break. The newer electronic units also appear to be more susceptible to lightning strikes, power surges, and static discharge while just turning them on.

Mr. Klein has presented a lot of good ideas and covered some interesting subjects in his column, and I won't stop reading him because of his reply to Ms. Abbot. Thanks for the opportunity to express my opinion and experiences.

DAVE LEE
Anoka, MN

"Plant a tree today for all the world to share" You can make life better for your children and for the future. Join me and plant a tree today for all the world to share.

For your free brochure, write: Trees for America, The National Arbor Day Foundation, Nebraska City, NE 68410.

John Denver for The National Arbor Day Foundation

"Plant a tree today for all the world to share" You can make life better for your children and for the future. Join me and plant a tree today for all the world to share.

For your free brochure, write: Trees for America, The National Arbor Day Foundation, Nebraska City, NE 68410.

John Denver for The National Arbor Day Foundation
No other training—anywhere—shows you service computers

Only NRI walks you through the step-by-step assembly of a powerful AT-compatible computer system you keep—giving you the hands-on experience you need to work, troubleshoot, and service all of today's most widely used computer systems. With NRI at-home training, you get everything you need to start a money-making career, even a computer service business of your own.

No doubt about it. The best way to learn to service computers is to actually build a state-of-the-art computer from the keyboard on up. And that's just what you do when you train with NRI. As you perform key tests and demonstrations at each stage of assembly, you see for yourself how each part of your computer works, what can go wrong, and how you can fix it.

Only NRI, the leader in career-building electronics training for more than 75 years, gives you such practical, real-world computer servicing experience. Indeed, no other training—in school, on the job, anywhere—shows you how to troubleshoot and service computers like NRI.

You get in-demand computer skills as you train with a powerful AT-compatible computer system—now with 1 meg RAM and 20 meg hard drive

With NRI's exclusive hands-on training, you actually build and keep the powerful new AT-compatible West Coast 1010ES computer, complete with 1 meg RAM and 20 meg hard disk drive.

You start by assembling and testing the "intelligent" keyboard, move on to test the circuitry on the main logic board, install the power supply and 5-1/4" high-density floppy drive, then interface your high-resolution monitor. But that's not all.

Your NRI hands-on training continues as you install a powerful 20 megabyte hard disk drive—today's most-wanted computer peripheral—included in your course to dramatically increase your computer's data storage capacity while giving you lightning-quick data access.

New! Training now includes Ultra-X diagnostic hardware and software for quick, accurate troubleshooting!

Now NRI takes your hands-on computer servicing experience an important step further. Now you train with and keep the remarkable R.A.C.E.R. plug-in diagnostic card and QuickTech diagnostic software from Ultra-X—professional diagnostic tools that make computer troubleshooting fast and accurate.

Using these state-of-the-art tools, you learn to quickly identify and service virtually any computer.
in school, on the job, how to troubleshoot and like NRI

No experience needed... NRI builds it in

You need no previous experience in computers or electronics to succeed with NRI. You start with the basics, following easy-to-read instructions and diagrams, moving step by step from the fundamentals of electronics to sophisticated computer servicing techniques.

With NRI’s unique Discovery Learning Method, you’re sure to get the kind of practical, hands-on experience that will make you fully prepared to take advantage of every opportunity in today’s top-growth computer service field.

You learn at your own convenience, in your own home. No classroom pressures, no night school, no need to quit your present job until you’re ready to make your move. And all throughout your training you’ve got the full support of your personal NRI instructor and the entire NRI technical staff, always ready to answer your questions and help you achieve your training goals.

Your FREE NRI catalog tells more

Send today for your free, full-color catalog describing every aspect of NRI’s innovative computer training, as well as hands-on training in video/audio servicing, telecommunications, industrial electronics, and other growing, high-tech career fields.

If the coupon is missing, write to NRI School of Electronics, McGraw-Hill Continuing Education Center, 4401 Connecticut Avenue, NW, Washington, DC 20008.

AT is a registered trademark of International Business Machines Corporation. R.A.C.E.R. and QuickTech are registered trademarks of Ultra-X, Inc.

problem on XT, AT 80286/80386, and compatible machines. You discover how to use the R.A.C.E.R. card to identify individual defective RAM chips, locate interfacing problems, and pinpoint defective support chips. Plus you learn to use your QuickTech diagnostic software to test the system RAM and such peripheral adapters as parallel printer ports, serial communications ports, video display memory, and floppy and hard disk drives.

Only NRI gives you such confidence-building, real-world experience. Only NRI gives you both the knowledge and the professional tools to succeed as today’s in-demand computer service technician.
DIGITAL VIDEO STABILIZER ELIMINATES ALL VIDEO COPY PROTECTIONS

While watching rental movies, you will notice annoying periodic color distortion or color shift, unwanted lines, flashing or jagged edges. This is caused by the copy protection jamming signals embedded in the video tape, such as Macrovision copy protection. Digital Video Stabilizer RXII completely eliminates all copy protections and jamming problems and brings you crystal clear picture quality.

FEATURES:
- Easy to use and a snap to install
- State-of-the-art integrated circuit technology
- 100% automatic - no need for any troublesome adjustments
- Compatible to all types of VCRs and TVs
- The best and most exciting Video Stabilizer in the market
- Light weight (8 ounces) and Compact (13.5"x5.5")
- Beautiful deluxe gift box
- Uses a standard 9 Volt battery which will last 1-2 years.

FOILED BY COILS

The project entitled “Build This Magnetic Field Meter” (Radio-Electronics, April 1991) brought to mind a difficulty I have always had with the archaic “art” of coil winding. Factory-made coils are constructed using highly specialized jigs and fixtures, so that their specified values are usually reliable. Since the average hobbyist is equipped with a maximum of two hands, it is not illogical to presume that a fairly complex home-built device is required to lay down magnetic wire on a coil form with acceptable results. (Acceptable, to me, means rigidly anchored, evenly spaced windings that conform to 95% of a comparable factory standard. In other words, why stuff a circuit board with high quality silicon if the interfacing discrete components are not approximately equal in quality reliability?)

The one-meter-long coil shown in Fig. 6 of the article raised my coil-winding hackles to a fever pitch! The extremely wide variations in tolerance that would result from fabricating that elephantine coil makes me wonder about using that circuit to calibrate the Gaussmeter.

At the same time, I understand that hand-wound coils have been used for several decades by countless electronics enthusiasts with satisfactory results. Maybe I’m looking for precision in every aspect of my work, even when it’s not required.

DAVID KATZNELSON

Willingboro, NJ

I appreciate and agree with your concern over the difficulties of winding the large calibration coil. I offer the following suggestions. Wind the coil concentrically first on a fixed form, and then stretch it out to the one meter length, or use an alternative non-solenoid design, such as two separate coils in a Helmholtz-type arrangement. Please note that, in recognition of exactly your kind of concern, the meter’s pickup coil is integrated in the PC board.

REINHARD METZ

BATTERY TESTERS

Thank you for the “Battery Testers” section in Hardware Hacker (Radio-Electronics, April 1991). It was short, yet provided a lot of useful information. However, I would like to point out that the tester included with Duracell’s AA-type cells measures 500 mA only when 1.5 volts are being tested. Since power (and a resistor’s heat) is measured in watts, not amperes, the “milliammeter” is actually a wattmeter. It should show 0.75 watts full-scale (1.5 volts times 0.5 amps).

DARREN HOM

Walnut Creek, CA

GOTMCHA!

Regarding the “Poor Man’s Laser Printer” (Radio-Electronics, April 1991): First, most of today’s copiers would detect the exposure lamp (light bulb) not illuminating and would generate a fault code. Lamp illumination is detected by a CDS cell pointed at the lamp or on the lamp regulator board. Second, it would be simpler to pull a lead off the lamp rather than to remove the lamp, if you have a copier that does not detect the lamp illumination. Lamp removal is not usually a DIY project. Finally, the focal plane of copiers is at the surface of the original glass, so resolution might be a problem due to the monitor’s curvature.

MIKE ZYCH

Elk Grove, IL

CABLE TV DESCRAMBLER

How You Can Save Money on Cable Rental Fees

Cable TV Rental Fees

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jerrid 7011</td>
<td>$99.99</td>
</tr>
<tr>
<td>Jerrid 7012</td>
<td>$199.99</td>
</tr>
<tr>
<td>Jerrid 7013</td>
<td>$299.99</td>
</tr>
</tbody>
</table>

Special Offer: $65.00 off any cable TV rental fee.

ATTENTION! ELECTRONICS TECHNICIANS

EARN YOUR B.S.E.E. DEGREE

Our New and Highly Advanced Placement Program for Experienced Electronic Technicians grants you credit for previous Schooling and Professional Experience, and can greatly reduce the time required to complete Program and reach graduation. Schooling required: 1-year degree. Up to 1-year degree. Up to 2 years. Your B.S.E.E. Degree is personalized to suit your age, your experience, and your earnings potential.

COOK’S INSTITUTE OF ELECTRONICS ENGINEERING

2425 Cynthia Drive, Jackson, Mississippi 36092

(280-445-9285)

DIR. DS E7

PROTECTIONS

DIGITAL VIDEO STABILIZER

Digital Video Stabilizer RXII completely eliminates all copy protections and jamming problems and brings you crystal clear picture quality.

FEATURES:
- Easy to use and a snap to install
- State-of-the-art integrated circuit technology
- 100% automatic - no need for any troublesome adjustments
- Compatible to all types of VCRs and TVs
- The best and most exciting Video Stabilizer in the market
- Light weight (8 ounces) and Compact (13.5"x5.5")
- Beautiful deluxe gift box
- Uses a standard 9 Volt battery which will last 1-2 years.

ToOrder: $49.95 ea + $4 for FAST UPS SHIPPING

DEPT CR F 7 581 W. Merrick Rd. Valley Stream, NY 11580

M -F: 9-6

CIRCLE 185 ON FREE INFORMATION CARD

CABLE TV

DESCRAMBLER

How You Can Save Money on Cable Rental Fees

Cable TV Rental Fees

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jerrid 7011</td>
<td>$99.99</td>
</tr>
<tr>
<td>Jerrid 7012</td>
<td>$199.99</td>
</tr>
<tr>
<td>Jerrid 7013</td>
<td>$299.99</td>
</tr>
</tbody>
</table>

Special Offer: $65.00 off any cable TV rental fee.

ATTENTION! ELECTRONICS TECHNICIANS

EARN YOUR B.S.E.E. DEGREE

Our New and Highly Advanced Placement Program for Experienced Electronic Technicians grants you credit for previous Schooling and Professional Experience, and can greatly reduce the time required to complete Program and reach graduation. Schooling required: 1-year degree. Up to 1-year degree. Up to 2 years. Your B.S.E.E. Degree is personalized to suit your age, your experience, and your earnings potential.

COOK’S INSTITUTE OF ELECTRONICS ENGINEERING

2425 Cynthia Drive, Jackson, Mississippi 36092

(280-445-9285)

DIR. DS E7

PROTECTIONS

DIGITAL VIDEO STABILIZER

Digital Video Stabilizer RXII completely eliminates all copy protections and jamming problems and brings you crystal clear picture quality.

FEATURES:
- Easy to use and a snap to install
- State-of-the-art integrated circuit technology
- 100% automatic - no need for any troublesome adjustments
- Compatible to all types of VCRs and TVs
- The best and most exciting Video Stabilizer in the market
- Light weight (8 ounces) and Compact (13.5"x5.5")
- Beautiful deluxe gift box
- Uses a standard 9 Volt battery which will last 1-2 years.

ToOrder: $49.95 ea + $4 for FAST UPS SHIPPING

DEPT CR F 7 581 W. Merrick Rd. Valley Stream, NY 11580

M -F: 9-6

CIRCLE 185 ON FREE INFORMATION CARD

CABLE TV

DESCRAMBLER

How You Can Save Money on Cable Rental Fees

Cable TV Rental Fees

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jerrid 7011</td>
<td>$99.99</td>
</tr>
<tr>
<td>Jerrid 7012</td>
<td>$199.99</td>
</tr>
<tr>
<td>Jerrid 7013</td>
<td>$299.99</td>
</tr>
</tbody>
</table>

Special Offer: $65.00 off any cable TV rental fee.

ATTENTION! ELECTRONICS TECHNICIANS

EARN YOUR B.S.E.E. DEGREE

Our New and Highly Advanced Placement Program for Experienced Electronic Technicians grants you credit for previous Schooling and Professional Experience, and can greatly reduce the time required to complete Program and reach graduation. Schooling required: 1-year degree. Up to 1-year degree. Up to 2 years. Your B.S.E.E. Degree is personalized to suit your age, your experience, and your earnings potential.

COOK’S INSTITUTE OF ELECTRONICS ENGINEERING

2425 Cynthia Drive, Jackson, Mississippi 36092

(280-445-9285)

DIR. DS E7

PROTECTIONS

DIGITAL VIDEO STABILIZER

Digital Video Stabilizer RXII completely eliminates all copy protections and jamming problems and brings you crystal clear picture quality.

FEATURES:
- Easy to use and a snap to install
- State-of-the-art integrated circuit technology
- 100% automatic - no need for any troublesome adjustments
- Compatible to all types of VCRs and TVs
- The best and most exciting Video Stabilizer in the market
- Light weight (8 ounces) and Compact (13.5"x5.5")
- Beautiful deluxe gift box
- Uses a standard 9 Volt battery which will last 1-2 years.

ToOrder: $49.95 ea + $4 for FAST UPS SHIPPING

DEPT CR F 7 581 W. Merrick Rd. Valley Stream, NY 11580

M -F: 9-6

CIRCLE 185 ON FREE INFORMATION CARD
GF-8015 without Freq. Meter $179
IL Res., 7% Tax
Robotics Kit for above (MM8010) 71.95

scopes Call or write for complete specifications on these and many other fine oscilloscopes.

A complete mini-lab for building, testing, prototyping analog and digital circuits.

ELENCO & HITACHI PRODUCTS AT DISCOUNT PRICES

LEASING AVAILABLE
For all Hitachi Scopes - Call for details
* Based on 24 months except V-1150, VC-4045, VC-6148 (36 months)

Hi 22Mhz Oscilloscope
$375

B & K
TEST EQUIPMENT
All Models Available
Call for special price

Quad Power Supply XP-580
$59.95
20V @ 2A
12V @ 1A
5V @ 3A
2x @ 5A

Function Generator
with Freq. Counter
$249
Sine, Square, Triangle
Pulse, Square, 2-2MHz
Freq Counter 1-10MHz

GF-8016 Function Generator $129.00

Learn to Build and Program Computers with this Kit
Includes: All Parts, Assembly and Lesson Manual
Model MM-8000

Wide Band Signal Generators

SG-9000 $129
RF Freq 100K-450MHz AM Modulation 1KHz Variable RF output

C & S SALES INC.
1245 Rosewood, Deerfield, IL 60015
(800) 292-7711 (708) 541-0710

15 Day Money Back Guarantee
2 Year Warranty
Prices Subject to Change
WRITE FOR FREE CATALOG

CIRCLE 109 ON FREE INFORMATION CARD
AOR Scanners.

Free Freight
25-Day Money-Back Guarantee
Toll-Free Service and Support
No Credit Card Surcharge
One Year Warranty

AR1000 $399

1000 Channels. 8-600MHz, 805-1300MHz

Standard Features:
- Extremely compact size.
- Continuous coverage (except UHF TV 600-805)
- Antenna attenuator switch, 10db.
- Manual tuning knob.
- Earphone jack, 3.5mm.
- AM, FM and wide band FM tuning modes.
- Backlighted LCD display.
- 10 Scan Banks, 10 Search Banks.
- Selectable Priority Channel.
- Delay, Hold Features.
- Selectable Search Increments, 5-955KHz.
- Permanent memory backup.
- 4 AA Ni Cad batteries included.
- AC adaptor/charger.
- Carry Case.
- Cigarette Lighter Charger.
- Belt Clip.
- Earphone.

Options:
- External Speaker. Mobile Mount. MSI90 $19.50
- Extended Warranty. 2/3 yrs $45/$55

Specifications:
- Coverage: 8-600, 805,1300MHz
- Sensitivity: .35uV NFM, 1.0uV WFM, 1.0AM
- Speed: 20 ch/sec. scan. 40 ch/sec. search
- IF: 561.225, 58.075, 455KHz or 10.7MHz
- Increments: 5 to 955KHz selectable/ 5 or 12.5 steps.
- Audio: .4 Watts
- Power: Input 9 - 13.8 V. DC
- Antenna: BNC
- Display: LCD
- Dimensions: 6 7/8H x 1 3/4D x 2 1/2W. 12oz wt.

AR950 $239

100 Channels. Low, Air, High, UHF & 800MHz.

Standard Features:
- Extremely compact size.
- Unrestricted 800MHz coverage.
- 100 channels permanent memory.
- Earphone Jack & Attenuator.
- Delay, Hold features.
- Channel 1 Priority.
- 5 Scan Banks, 5 Search Banks.
- Telescopic and Flexible Antennas w/ BNC connector.
- AC & DC Power cords w/ mtng hardware.
- One Year Limited Warranty.

Options:
- Base type antenna 25 to 1000MHz w 50'coax. AS300 $59.95
- Mag Mnt Mobile Antenna, 15' coax. MA100 $25.00
- Cigarette Lighter power adaptor. CP100 $4.00
- External Speaker with mobile mount. MSI100 $19.50
- Extended Warranty. 2/3 yrs $40/$55

Specifications:
- Sensitivity: .4uV Lo,Hi, .8uV Air .5uV
- UHF. 1.0uV 800
- Scan Speed: 15 ch/sec.
- IF: 21.4MHz, 455KHz
- Increments: 10,12.5,25,30
- Audio: 1W
- Power: 12.8VDC, 200MA
- Antenna: BNC
- Display: LCD w/backlight
- Dimensions: 2 1/4H x 5 5/8W x 6 1/2D. 14oz wt.

We offer 100's of communications products.
AR2500 $499

2016 Channels. 1 MHz to 1500 MHz

Standard Features
• Continuous coverage
• AM, FM, wide band FM, & BFO for SSB, CW.
• 64 Scan Banks.
• 16 Search Banks.
• RS232 port built in.
• Includes AC/DC pwr crd. Antenna, Mntng Brckt.
• One Year Limited Warranty.

Options:
Earphone. EP200 $2.00
External Speaker. Mobile Mount. MS190 $19.50
Extended Warranty. 2/3 yrs. $65/75
Mobile Mounting Bracket. MM1 $14.90
RS232 Control Package SCS2 $295.00

Specifications:
Coverage: 1 MHz - 1500MHz
Sensitivity: .35uV NFM, 1.0uV WFM, 1.0AM/SSB/CW
Speed: 38 ch/sec scan, 38 ch/sec search
IF: 750.00, 45.0275, 5.5MHz 455KHz
Increments: 5,12,5,25 kHz
Audio: 1.2 Watts at 4 ohms
Power: Input 13.8 V. DC 300mA
Antenna: BNC
Display: LCD, backlit.
Dimensions: 2 1/4H x 5 5/8W x 6 1/2D Wt. 1 lb.

To Order Call 1 • 800 • 445 • 7717

In All 50 States and Canada. 24 Hours a Day. Fax Orders: 1-800-448-1084, 24 Hours a Day.
ACE Communications Monitor Division 10707 E. 106th Street, Fishers, IN 46038
Service and Support Lines: Mon-Fri 9a.m. to 9p.m., Saturday 10-4. EST
MasterCard, Visa, American Express, Checks, Approved P.O.'s. & C.O.D. (add 5.00)
Prices and specifications subject to change.

CIRCLE 181 ON FREE INFORMATION CARD
As technology advances, it's easy to become accustomed to (read: spoiled by) the new features and capabilities that become possible in test equipment. Take, for example, the digital multimeter. We've become so used to having our 4-digit DMM stuffed in our hip pocket that we don't always appreciate how much things have changed in the last 15 years or so.

Back then, DMM's were still considered somewhat exotic. If you were lucky enough to have access to one, it was on a test bench somewhere. The handheld multimeter didn't make an appearance until Fluke (John Fluke Manufacturing Company, Inc. P.O. Box 9090, Everett, WA 98206-9090; 206-347-6100) introduced their model in 1976. Although we're sure that some of our younger readers never knew a world without DMM's, most of us can remember the excitement with each new introduction and improvement. Of course, we also remember the analog vs. digital battles that are, in some quarters, still going on between the respective proponents.

In 1983, Fluke introduced their 70 Series handheld DMM's. Since then, they've sold some 2 million units. (According to the manufacturer, Fluke sells a 70-Series meter "every minute of every day.") What do you do when you have a family of DMM's that are obviously well liked, but that are almost ten years old?

If you're Fluke, you introduce a "new-and-improved" 70 Series, and call it the 70 Series II. The new series consists of enhanced versions of five models in the original 70 Series, and three new models. The meters retain the well-known styling of the originals, especially the single off-center rotary selector that makes one-hand operation comfortable.

The model 79

We examined one of the all-new meters, the model 79. As the high-end meter in the series, the 79 also has the highest price: $185. (The lowest priced meter in the series, which is also the lowest-priced meter Fluke has ever sold, is the model 70, for $69.)

The model 79 features a 4-digit, 4000-count display, and a 63-segment analog bargraph. DC voltage is measured over six ranges (40 mV–4000 V), with a basic accuracy of 0.3%. As with all other modes, the ranges can be manually or automatically selected. AC voltage is measured over five ranges (400 mV–4000 V), with a basic accuracy of 1.0%.

AC and DC current are measured over four ranges up to a high limit of 10 amperes. Basic accuracy is 0.5% DC, and 1.5% AC. Resistance is measured over seven ranges (400 ohms–40 megohms) with a basic accuracy of 0.4%.

The model 79 also offers a frequency-counter mode that is capable of measuring from 1 Hz to more than 20 kHz with an accuracy of 0.01%. Interestingly, the meter offers a 9999-count display in the frequency mode. Even more interesting is that the bargraph portion of the display will show the AC voltage whose frequency is being measured while the digital display shows the frequency.

Capacitance measurements are also possible, from 10 pF to 999.9 µF with an accuracy of 1.9%, and from 999.9 µF to 9999 µF with an accuracy of 10%.

A diode-test feature, audible continuity beeper, and automatic sleep mode are standard on all meters in the 70 Series II, as is Touch Hold. Fluke's method of capturing stable signals and holding the display so that you can keep your eyes on your test points instead of on the meter. Each new reading automatically resets the Touch Hold "memory" so that you don't have to take your hands off your probes, either.

Another feature featured on the model 79 is "Smoothing," which displays a running average of eight readings so that even unstable signals can produce stable displays. (The bargraph, however, will show that the signals are unstable.)

The model 79 also offers a low-ohms range, which provides 0.01-ohm resolution. Zero calibration is also available.

The meter has an elegant design. Aside from the eight-position function selector, there is only one other control: a push button in the center of the rotary switch. The push button takes on different functions depending on how long it's held down. Tap it lightly, and you put the meter in the manual-ranging mode. Tap it again quickly, and you change the meter's range.

If you hold the button down for one second, you put the meter back in the autorange mode. If you're in the continuity position, holding the button for one second puts the meter in the low-ohms mode.

If you hold the center button for two seconds, the meter is put in the Touch-Hold mode, or, if you're in the continuity position, you put the meter in the diode test mode. Alternatively, in the resistance mode, the meter enters the capacitance mode.

On paper, that might sound confusing. In use, however, it's quite simple. And, even if you forget how it works, a well-designed front-panel makes it obvious.

Overall, we're quite impressed with the 70 Series II multimeters. Judging from these new-and-improved models, we can hardly wait for Fluke's 80 Series to get a little older!
THE MODEL WTT-20 IS ONLY THE SIZE OF A DIME, yet transmits both sides of a telephone conversation to any FM radio with crystal clarity. Telephone line powered - never needs a battery! Up to 1/4 mile range. Adjustable from 70-130 MHz. Complete kit $29.95 + $1.50 S + H. Free Shipping on 2 or more! COD add $4. Call or send VISA, MC, MO. DECO INDUSTRIES, Box 607, Bedford Hills, NY 10507. (914) 232-3878.

CIRCLE 127 ON FREE INFORMATION CARD

COMPUTER KITS, BOARDS & COMPONENT PARTS. Designed to the highest degree of quality and reliability available today. They're fun, easy to build, educational, IBM compatible, very powerful, and at great prices. All items are pre-tested, include a full year warranty, step by step assembly manual, and free tech support. Assembly available at no extra charge. For free catalog contact: GENERAL TECHNICS, P.O. BOX 2676, LAKE RONKONKOMA, NY 11779. or call (516) 981-9473. VISA, MasterCharge, American Express. COD.

CIRCLE 183 ON FREE INFORMATION CARD

FREE CATALOG! ELECTRONIC TOOLS & TEST EQUIPMENT. Jensen's new Master Catalog, available free, presents major brand name electronics tools, tool kits, and test instruments, plus unique, hard-to-find products for assembly and repair and custom field service kits available only from Jensen. All fully described and illustrated. Enjoy free technical support and rapid, post-paid delivery anywhere in the Continental USA. JENSEN TOOLS INC., 7815 S. 46th St., Phoenix, AZ 85044. Phone: 602-968-6231; FAX: 1-800-366-9662.

CIRCLE 115 ON FREE INFORMATION CARD

ELEVEN-PIECE RACHET TOOL KIT. Includes reversible ratchet handle, extension bar, six bits, two precision screwdrivers, and a cutter. Comes in fitted case. Get one for your shop, another for your car, another for your tool kit. To order send $11.75 USA shipping only. ELECTRONIC TECHNOLOGY TODAY INC., PO Box 240, Massapequa Park, NY 11762-0240.

CIRCLE 75 ON FREE INFORMATION CARD

CABLE TV CONVERTERS AND DE-SCRAMBLERS SB-3 $79.00 TRI-BI $95.00 MLD-$79.00 M35B $69.00 DRZ-DIC $149.00. Special combos available. We ship COD. Quantity discounts. Call for pricing on other products. Dealers wanted. FREE CATALOG. We stand behind our products where others fail. One year warranty. ACE PRODUCTS. P.O. Box 582, Saco, ME 04072 1 (800) 234-0726.

CIRCLE 84 ON FREE INFORMATION CARD

APPLIANCE REPAIR HANDBOOKS—13 volumes by service experts, easy-to-understand diagrams, illustrations. For major appliances (air conditioners, refrigerators, washers, dryers, microwaves, etc.), elec. housewares, personal-care appliances. Basics of solid state, setting up shop, test instruments. $2.65 to $7.90 each. Free brochure. APPLIANCE SERVICE, P.O. Box 789, Lombard, IL 60148. (708) 932-9550.

CIRCLE 84 ON FREE INFORMATION CARD

SIMPLY SNAP THE WAT-50 MINIATURE FM TRANSMITTER on top of a 9v battery and hear every sound in an entire house up to 1 mile away! Adjustable from 70-130 MHz. Use with any FM radio. Complete kit $29.95 + $1.50 S + H. Free shipping on 2 or more! COD add $4. Call or send VISA, MC, MO. DECO INDUSTRIES, Box 607, Bedford Hills, NY 10507. (914) 232-3878.

CIRCLE 127 ON FREE INFORMATION CARD
NEW PRODUCTS

Use the Free Information Card for more details on these products.

FUNCTION GENERATOR. For engineers who occasionally need to create their own waveforms, the Philips PM 5139 function generator from John Fluke offers both an arbitrary waveform-programming facility via IEEE-488 bus and general-purpose functions in a single instrument. The instrument allows the engineer to create servo drive waveforms, acoustic and sonar bursts, mechanical waveforms for bump testing and simulation, and brain and heart waves, among others. Its arbitrary waveform facility allows the PM 5139 to play back a custom-designed waveform when and where it is needed and, if required, subject it to any of the modulation modes: AM, FM, gating, bursts, phase shift keying, and linear or logarithmic frequency sweeps. Six different arbitrary waves can be loaded into memory and individually selected; within about 70 ms, the new arbitrary wave is available at the generator output.

Instead of the standard rotary switches, knobs, and pushbuttons found in classic benchtop function generators, the PM 5139 offers a logical array of parameter-selection and control keys along with one rotary knob. To make a numerical setting, the user touches the relevant key and actuates the rotary knob to dial in the correct readings. All manual settings can also be achieved by remote control across the IEEE-488 bus. All parameters—frequency, waveform, amplitude, offset, and modulation—are shown on a single, large, backlit LCD readout.

The PM 5139 features a very flat amplitude response and an accuracy to within ± 2 ppm over the complete 0.1-MHz to 20-MHz frequency range. In the low-frequency range, five of the ten standard waveforms can be varied in duty cycle from 1% to 99% with a 1% resolution and ±0.1°/° accuracy.

The PM 5139 has a base U.S. list price of $4190, or $4690 with a GPIB.

John Fluke Mfg. Co., Inc., P.O. Box 9090, Everett, WA 98206; 800-FLUKE.

386 SINGLE-BOARD COMPUTER. Rapid Systems' PX1260 is a high-speed, high-performance, 33-MHz, 386-based CPU module for the PCXI "PC Extended for Industry" EISA "Extended Industry Standard Architecture" passive backplane. Intended for applications in EISA workstations, production tests, modular rugged PCs, factory automation, and networks, the PCXI is a modular, industrial PC based on a 13-slot passive backplane. The plug-in CPU module features a 3½-inch floppy drive: an optional integrated 40-megabyte hard-disk drive is available. The PX1260 is based on a single-board computer and is completely enclosed in a metal chassis to shield EMI/RFI emissions. Two serial communication ports, one parallel port, and the 3½-inch floppy drive, along with the keyboard connector and reset button, are located on the front of the module for easy access.

The PX1260 costs $5995.—Rapid Systems, Inc., 433 North 34th Street, Seattle, WA 98103; Phone: 206-547-8311; Fax: 206-548-0322.

INDICATING FUSE. An innovation in fuse technology used in the 2AG Indicating Slo-Blo fuse from LittleFuse, Inc. provides instant identification of an open (blown) fuse. Under normal operating conditions, the fuse's glass body is transparent; when the fuse blows, the body dramatically darkens to a yellow/brown color, taking the guesswork out of blown-fuse identification and eliminating time-consuming circuit testing. The 2AG Indicating Slo-Blow can also be used to aid in design testing by showing a slight discoloration of the glass body if the current rating of the selected fuse is too low. The fuse provides the same quality and performance characteristics as the standard 2AG fuse. It is available with axial leads or in the cartridge style. A complete assortment of mounting accessories, including fuse blocks, panel mount, or in-
Learn to Use Your Computer's Full Potential.

If you've been hesitating about upgrading your computer skills because you couldn't find the time or locate the right program to teach you everything you need to know to be successful in today's world of computers, you'll be happy to hear that CIE's new career course can provide you with the computer technology curriculum you seek in an independent study program you can afford to invest your time in.

CIE's COMPUTER OPERATION and PROGRAMMING course was designed and developed by CIE to provide a complete overall understanding of the unlimited potential today's computers offer, once you learn and discover their full capabilities, in today's high tech environment. CIE's new computer course quickly provides you with the electronics fundamentals essential to fully understand and master the computer's technological potentials for your personal and professional advancement. Upon mastering the fundamentals you will move into high level language programming such as BASIC and C-Language and then use that programming in order to relate the interfacing of electronic hardware circuitry to programming software. As a graduate of the Computer Operation and Programming course, you will be able to successfully understand, analyze, install, troubleshoot, program and maintain the various types of electronic equipment used in business, manufacturing, and service industries.

Since 1934, CIE has been the world leader in home study electronics by providing our 150,000-plus graduates with the curriculum and hands-on training they've needed to become successful in today's highly competitive and computer oriented society. As a CIE student you'll receive a first rate education from a faculty and staff with only one desire. Your future success!

We encourage you to look, but you won't find a more comprehensive computer course anywhere! And it's a course designed to fit around your lifestyle and commitments today, so you can be assured of professional successes and financial gains tomorrow.

Please, do yourself a favor and send the attached card or fill out and mail the coupon below for more information about CIE's Computer Operation and Programming course. Do It Today!

Computer not included with course

YES! I want to get started. Send me my CIE school catalog including details about the Associate Degree program (for your convenience, CIE will have a representative contact you - there is no obligation)

Print Name ____________________________
Address ________________________________ Apt. ____________________________
City ____________________________ State _____ Zip _____________
Age ____ Area Code/Phone No. ________
Check box for G.I. Bulletin on Educational Benefits ☐ Veteran ☐ Active Duty

Cleveland Institute of Electronics
1776 East 17th Street
Cleveland, Ohio 44114
(216) 781-9400

A school of thousands. A class of one. Since 1934.
line fuse holders and surface-mount clips are also available.

The 2AG Indicating Slo-Blo fuse costs 38c in 5-piece quantities for cartridge types, 54c in 100-piece quantities for the axial lead style.—Lit-telfuse, Inc., 800 East Northwest Highway, Des Plaines, IL 60016; Phone: 708-824-1188.

VIDEO FRAME GRABBER. Two video digitizing systems for IBM-compatible computers are available from IDEC Inc. The Supervision/8 is a 1/30-second image-capture system that lets users acquire a black-and-white image in 256 gray-scale levels using simple software controls. It consists of a half-size card that plugs into any slot and menu-driven software. The image is captured with a resolution of 256 pixels by 244 lines, and can be displayed on any HGC, CGA, EGA, and VGA monitors. The Supervision/8 is compatible with IBM-compatible PC/XT/AT or 386 systems.

The Supervision/16 (pictured), compatible with AT-compatible computers, has picture resolution of 512 pixels by 488 lines, with 256 shades of gray, and captures images in 1/30 second. With a super-VGA display, the picture rivals black-and-white TV-broadcast quality. The choice of display has no effect on the print quality, since the printed image is printed directly from the disk file image, not from the screen. Its high resolution makes the Supervision/16 suitable for scientific and engineering applications such as machine vision, inspection, medical imaging, and security.

Both video-frame grabbers provide automatic calibration of brightness and contrast, adjustable by the user. Images can be saved and recalled, printed out, or incorporated into documents using Pagemaker, Ventura Publisher, or any other compatible Gray Scale Graphics Program. Both packages contain the interface card, software on disk, owner's manual, and a one-year warranty.

The Supervision/8 is available in kit form for $169.95 (plus shipping and handling) and $269.95 fully assembled; the Supervision/16 costs $369.95. (Shipping and handling, and 6% sales tax in Pennsylvania, are additional)—IDEC, Inc., 1195 Doylestown Pike, Quakertown, PA 18951; Phone: 215-538-2600; Fax: 215-538-2665.

BENCHTOP DC POWER SUPPLIES. Understanding that not all engineers require high-end instruments on their benches, Hewlett-Packard has introduced two affordable, general-purpose benchtop DC power supplies. Models E3610A (pictured) and E3611A both feature a high-performance linear design with ripple and noise less than 200 mV rms. The 30-watt power supplies feature dual-range outputs and CV/CC operation: CV mode for devices requiring a constant voltage and CC for those requiring a constant current. Mode crossover occurs automatically. On the HP E3610A, range 1 is 8V/3A and range 2 is 15V/2A. The HP E3611A's range 1 is 20V/1.5A and range 2 is 35V/0.85A.

For ease of use, the power supplies have separate digital displays for voltage and current readout, a CC-set button for setting the current level of the supply without having to short the output, and mode-indicator LED's to show whether the supply is in CV or CC mode.

The HP E3610A and HP E3611A each cost $300.—Hewlett-Packard Company, 150 Green Pond Road, Rockaway, NJ 07866; Phone: 1-800-538-8787.

THERMAL-PRINTER CONTROLLER. Designed for anyone who needs a small-printing format. Computer Advice has introduced a 5-volt, 2¼-inch-format high-speed thermal-printer controller. The device interfaces with the Seiko STP 211-192 Thermal Printhead and operates on five volts at less than one amp with serial interface active. The controller prints bi-directionally and includes either vertical or horizontal formats. The controller can be customized for each individual's use. In certain applications, it is capable of 250 words per minute.

The complete package consists of an 80C31 processor board, the printer controller board, a DB-25 serial-interface connector, and one package of thermal fanfold paper. The thermal printer is sold unassembled for versatility, and can be purchased with options such as a wall-mounted power supply and the Seiko Thermal Printhead.

The thermal printer controller costs $145.—Computer Advice, 515 Calle San Pablo, Camarillo, CA 93012.

PIEZO SOUNDER. A high-output piezo sounder from International Components Corporation is intended for use in automotive, marine, and other applications where there might be exposure to high temperatures. The model BRP-4629P9-CS has an operating range of -40° to +120°C. It provides a continuous tone with trigger and its sound output rate at one meter is 2.8-kHz at 105 dB, for a clear warning sound. Its resonant frequency is 2500 ± 500 Hz, and its rated voltage is 9VDC.

The model BRP-4629P9-CS is priced starting at $3.60 in production quantities.—International Components Corporation, 105 Maxxess Road, Melville, NY 11747; Phone: 516-293-1500.
12-FUNCTION DIGITAL MULTIMETERS. The combination of large LCD readout, annunciators for all available ranges, and the number of available ranges make the DM25XL and DM27XL digital multimeters easy to use for most jobs, eliminating the need to carry around a case full of test instruments for different jobs. The two meters, from Beckman Industrial Corporation, provide 12 functions in one unit, and the annunciators lessen the chance of using the wrong range. Both units are 3½-digit.

0.8% accuracy DMM’s that feature 37 ranges, an audible continuity beeper, diode test, logic functions, and transistor hFE measurements. To conserve battery life, auto-off is also standard. The DM27XL adds to those functions a go/no-go test on LED’s and includes the ability to measure frequency to 20 MHz, which is needed for servicing both telecommunications and computer equipment.

Both models include a built-in TTL logic probe that detects 20-ns pulses (2.4 volts high and 0.7 volts low). The two DMM’s each have seven resistance ranges to 2000 megohms, five capacitance ranges to 20 μF, AC and DC current measurement to 10 amps, five VAC and five VDC ranges, and the ability to test diodes and measure transistor gain. The input impedance is 10 megohms. The DM25XL and the DM27XL digital multimeters have suggested retail prices of $109 and $129, respectively.

Beckman Industrial Corporation, 3883 Ruffin Road, San Diego, CA 92123-1898; Phone: 619-495-3200.

PROTOTYPING SYSTEM. Providing a complete system for the development of embedded control applications, the R-535 prototyping board with R-Ware from Rigel Corporation features efficient software and on-board prototyping components in a single integrated unit that is designed to communicate with a PC acting as host. The R-535 uses the 80535 microcontroller, an enhanced version of the popular Intel 8032 controller, and can be used to develop programs for the entire 8031 family of microcontrollers.

The on-board ROM-based software includes an operating system, a monitor system, EPROM burner software, and user-accessible system calls for control and communication support. The host-based software is a menu-driven integrated environment with an editor, assembler, debugger, and PC-to-board communications.

The hardware consists of pushbuttons, dip switch-
CABLE - TV

SIGNAL REMOVERS

• FOR ELIMINATION OF SEVERE INTERFERENCE
• FOR “CENSORING” OF ADULT BROADCASTS

ATTENUATION - 45 dB TYPICAL
BANDWIDTH - 4 MHz AT 5 dB POINTS
INSERTION LOSS - 2 dB

MODEL TUNING RANGE FOR CHANNELS PASSBAND PRICE SHIPPMG
23H 50-66 MHz 23 (or 6 meter ham) 50-300 MHz $20 NO SHIPPING
46FM 66-108 MHz 45 & 5 (or any FM) 50-200 MHz $20
1417 105-146 MHz 144, 145, 146, 148, 149 50-400 MHz $20
1822 144-174 MHz 1825, 197, 200, 21 (21) 50-400 MHz $20
713 174-216 MHz 7 8 9 10 11 12 13 50-400 MHz $20

3 for $75 - 10 for $200 - mix or match

CALL TOLL FREE FOR C.O.D. OR SEND CHECK TO ORDER
30 DAY MONEY BACK GUARANTEE (3 FILTER LIMIT)

Star Circuits
P. O. Box 94917
Las Vegas, NV 89193-4917
1-800-433-6319

PORTABLE AUDIO GENERATOR. Designed for the audio professional, Forward Innovations.

DIGITAL STORAGE OSCILLOSCOPE. Featured functions in the Protek Model P2840 DSO are 20-megahertz per second (Ms/s) sampling and "Vu-Write" cursor CRT readouts. In addition, the 40-MHz real-time DSO delivers a vertical resolution of 256 dots, a horizontal resolution of 1024 dots, indicating memory of 2048 words, reference memory with storage of up to four signals, and an 8-MHz effective storage frequency. Pre/post trigger is at 25% and 75%, and there are a variety of rear panel interconnects for extended use. Key analog functions include dual time base, push-button switch selection with vertical and horizontal mode "select" for fast setup and readout, and an easy-to-read front-panel layout. In addition, the P2840 offers a memory function and cursor readouts to indicate time, amplitude, frequency, duty cycle, and phase shift.

The P2840 digital storage oscilloscope costs $1630.—Protek, P.O. Box 59, Norwood, NJ 07648; Phone: 201-767-7242; Fax: 201-767-7343.

CIRCLE 176 ON FREE INFORMATION CARD
RF DEVICE DATA: VOLUMES I AND II; from Motorola, Inc., Literature distribution Center, P.O. Box 20924, Phoenix, AZ 85063; Phone: 602-994-6561.

This two-volume set represents the latest and most complete listing of standard products offered by the RF Products Division of Motorola Semiconductor. The set lists complete data for all RF products in Motorola’s portfolio, including power FET’s, power bipolar, small-signal, and modules. Data sheets on 84 new products are included, as well as additional items in the applications section.

HOMEWORKS BY HEALTHKIT; from Heath Company, Department 350-055, Benton Harbor, MI 49022; Phone: 1-800-44-HEATH; free.

The cover story of Heathkit’s Spring 1991 catalog is an 8-bit microprocessor trainer in kit form. The practical learning tool, used to perform experiments for Heath courses, is specially designed to improve understanding of 8-bit microprocessor operation, programming, and applications. The trainer can be used with many of the

Phone: 303-42206725; $12.95.

We’ll assume, since you’re reading Radio-Electronics, that you understand electricity. (But then, we thought we did too, until we began reading this book.) A bizarre cross between Grimm’s Fairy Tales and Richard Brautigan’s Trout Fishing in America, with a hefty dose of 1960’s imagery and slang thrown in, the book takes a totally irrelevant look at some pretty serious stuff. If your career revolves around the understanding of electricity, and you have years of higher education in that field, you might have little patience for this book. But if you believe that one prerequisite to a happy, healthy life is the ability to laugh at yourself, read it. And if any of you have ever tried to explain electricity to spouses, children, friends, or parents, only to see their eyes glaze over after a minute or two, this book could do the trick.

CASE CATALOG: from Jensen Tools, Inc., 7815 South 46th Street, Phoenix, AZ 85044; Phone: 602-968-6231; free.

The 32 illustrated pages in this catalog describe transport products for electronic engineers and field-service technicians. Included are hard- and soft-sided, rugged-duty, and attachable-style cases in all sizes for carrying tools, PC boards, test instruments, and other electronic service equipment. The color catalog also features airline shipping containers, and describes Jensen’s custom-case and custom-tool-kit design services.
(1) Talking Multimeter. Timesaving speech output! Press a button on the probe and this meter calls out the reading in clear English while displaying it. Features include full autoranging, liquid crystal display with low-battery and over-range indicators, continuity beeper, diode-check mode. #22-164...99.99

(2) NEW! Building Power Supplies. Easy-to-understand, 96-page book explains linear and switching supplies. Includes complete plans for building five useful supplies with Radio Shack parts. #276-2056, 4.95

(3) Mini Audio Amplifier. Great for computer voice/music synthesis, signal tracing and more. Has a built-in speaker, 1/8" headphone jack, 1/8" input jack and volume control. #277-1008.................................11.95

(4) Digital Logic Probe. LEDs and tone outputs reveal logic states instantly. It's the last way to check operation and pinpoint problems in all types of digital circuits. #22-363..............................16.95

(5) Surface-Mount Resistors. 200-piece assortment of 15 popular values. Rated 1/8 watt, 5%. #271-313....................................Set 4.99

(6) Metal Project Cabinet. An attractive, easy-to-drill housing at a low price. 3 x 5 1/4 x 5 1/4". #270-253..6.79

(7) Project Labels. Four sheets of rub-on letters, numerals and calibrations. #270-201..2.99

(8) Power Supply Case. Vented 2 1/2 x 4 3/4 x 3 1/4" molded case. #270-287..3.99

(9) 0 to 15 DC Voltmeter. Panel-mount #270-1764, 7.95

(10) Box/Board Combo. Molded enclosure plus predrilled 2 x 3 1/4" board, labels and more. #270-291...4.99

(11) Eight-Position Phono Jack Board. #274-370.................................1.39

(12) 1 x Audio Transformer. 2. 600-900Ω. #273-1374..........................3.59

(13) Three-Pin XLR Male Plug. #274-010......................................2.99

(14) Three-Pin XLR Male In-line Socket. #274-011..............................2.99

(15) Three-Pin XLR Male Panel Socket. #274-013..............................3.69

Parts Special-Order Hotline. Your local Radio Shack store stocks over 1000 popular electronic components. Plus, we can special-order over 10,000 items from our warehouse—linear and digital ICs, transistors and diodes, vacuum tubes, crystals, photo-cartridges and styli, even SAMS service manuals. Your order is sent directly to your Radio Shack store and we notify you when it arrives. Delivery time for most items is one week and there are no postage charges or minimum order requirements.

(1) Shielded RS-232 Jumper Box. Top-quality inline D-sub 25 adapter. Wire the included jumper wires and board to suit your need. #276-1403.................................9.95

(2) RS-232 Tester. Dual-color LEDs monitor seven data/control lines to help you spot problems quickly. D-sub 25. Connects inline. #276-1401.................................14.95

(3) Grounded-Tip Soldering Iron. 15W. #64-2051..............................7.49

(4) Vacuum-Type Desoldering Tool. #64-2120.................................6.95

(5) Locking Forceps. 6" long. Stainless. #64-1866..............................4.95

(6) Rosin Soldering Paste Flux. #64-021.................................1.79

(7) Lead-Free Solder. 0.25 oz. #64-025.................................1.99

Over 100 soldering items and tools for electronics work are in stock at Radio Shack!

(8) 10A Microwave Oven Fuses. #270-1256.................................Pkg. of 2/1.29

(9) 2-Amp Fast-Acting Fuses. #270-1275, Pkg. of 5/75e

(10) 5-Amp "Blade" Car Fuses. #270-1205, Pkg. of 2/89e

Big selection of fuses, holders and accessories in stock!

(11) Extension. #276-1259...4.99

(12) With Space-Saving 90° CEE Connector. #278-1260..........................5.99

(13) With Straight CEE Connector. #278-1257..................................3.99

(14) "Ding-Dong" Chime. This IC and mini-speaker combo is ideal for a customer-entry alert or doorbell. Produces 80 dB sound pressure at 12 VDC. Operates 6 to 18 VDC. #273-073.................................8.99

(16) Voltage Regulator ICs. Feature built-in overload protection and thermal shutdown. Maximum input: 35VDC. #270-1770, 1.19

(17) 12V. #276-1771, 1.19

(18) 5V. #276-1770, 1.19

(19) 35VDC. #276-1771, 1.19

(20) Three-Pin XLR Inline Socket. #274-011..............................2.99

(21) Three-Pin XLR Male Panel Socket. #274-013..............................3.69

Since 1921 Radio Shack has been the place to obtain up-to-date electronic parts as well as quality tools, test equipment and accessories at low prices. Over 7000 locations to serve you—NOBODY COMPARES Prices apply at participating Radio Shack stores and dealers. Radio Shack is a division of Tandy Corporation.
IF YOU'RE INTERESTED IN MEDICAL ELECTRONICS, OR just concerned about your family’s health, then you should build the Radio-Electronics electrocardiograph. The electrocardiograms (ECG’s or EKG’s) it will produce can be analyzed by yourself or your doctor. We are not suggesting that you practice medicine using this device, but you should find it interesting and educational in monitoring your health. You will see some of the unique techniques used in medical electronics and you may be surprised to see how similar medical electronic equipment is to most other types of electronic equipment.

The electrocardiograph that we will build produces ECG’s that are essentially identical to those produced by commercial machines costing $10,000 dollars or more. In order to keep our cost to a minimum we use a standard PC as an operator interface and output device. That way you can print out a hard copy of your ECG or just display it on your monitor.

Biological theory

In order to understand the electronic operation of an electrocardiograph, we need to understand some basic biological principles. As shown in Fig. 1, the heart consists of four chambers which are organized as two pumps—the so-called right and left heart. The right heart collects the blood returning from the body and pumps it to the lungs, while the left heart collects blood from the lungs and pumps it to the body.

Each pump has two parts: the upper chamber known as the atrium and the lower chamber known as the ventricle. The atrium collects blood between cycles and at the appropriate time contracts, filling the lower ventricles. The ventricles then contract and pump blood to the lungs or body.

The heart is controlled by a pulse generator, known as the pacemaker, located in the right atrium, which initiates cardiac action. It is analogous to the clock in a digital system. The pulse it generates is first sent to both atria which causes them to contract, filling the ventricles. After a delay of approximately 150 milliseconds, the ventricles are then triggered by the same pulse, which causes them to contract. As in a digital system, the timing relationships are quite important and much of the disease associated with the heart is related to timing defects.

Figure 2 shows a typical signal as seen on an ECG. The first pulse, called the “P” wave, is generated by the pacemaker. The next pulse, called the “QRS complex,” represents the electrical signal generated by the ventricles contracting. The “T wave” which follows the QRS complex is generated as the muscles of the ventricles relax, or repolarize.

A standard ECG consist of 12 channels: each channel “looks” at the heart from a different electrical axis. The different “views” allow us to interpret the activity of different parts of the heart. The timing relationships between different components of the heart will identify defects in the conduction pathways.

How ECG’s are used

In patients with high blood pressure, the left ventricle will become quite large due to its in-
FIG. 1—THE HEART CONSISTS OF FOUR CHAMBERS which are organized as two pumps, known as the right and left heart. The right heart collects the blood returning from the body and pumps it to the lungs, while the left heart collects blood from the lungs and pumps it to the body.

TABLE 1—I/O PORT ADDRESS FUNCTIONS

<table>
<thead>
<tr>
<th>Port Address</th>
<th>Control Pulse Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>Generates Clock for Multiplexer Sequencer</td>
</tr>
<tr>
<td>53</td>
<td>Generates Clear for Multiplexer Sequencer</td>
</tr>
<tr>
<td>54</td>
<td>Latches ECG Control Signal Byte in IC16</td>
</tr>
<tr>
<td>55</td>
<td>Latches Lead Offset Data in IC17</td>
</tr>
</tbody>
</table>

increased work load. That is seen as a significant increase in the amplitude of the QRS complex. Treatment of the high blood pressure will allow the left ventricle to return to normal size, which significantly decreases the chance of a heart attack.

Since the amplitude of the electrical signals in the heart are a function of chemicals in the body, it is possible to predict abnormalities. For example, an elevated potassium level will produce a tall peaked T wave.

If a portion of the ventricle is damaged, a so-called “Q wave” is formed which is simply a negative-going QRS complex. The location of the damage can be determined by noting which leads contain the Q wave. That’s how a doctor can tell where you have had a heart attack.

Most normal individuals produce an extra, or irregular heart beat every now and then, which may occur in the top or bottom of the heart. It is a condition known as arrhythmias. The irregular beats can be quite dangerous if they occur frequently or if they occur during certain intervals in the normal cardiac cycle. Many researchers believe that the most common cause of death in males is due to irregular beats occurring at a time such that they “scramble” the normal electrical timing in the heart—the situation is known as fibrillation.

Special ECG systems, known as Holter monitors, can detect these irregular beats. They are simply ECG’s with one or more channels that store each of the 80,000 or so beats in one day. The data from the Holter is then fed into a computer which analyzes it for arrhythmias. Similar monitoring equipment is used in ambulances and intensive care units for instantaneous analysis of irregular beats. Often this analysis is performed automatically by arrhythmia detectors.

Another area of particular interest in ECG’s is the “ST segment.” That is the area between the QRS and the T wave. It is very predictive of obstructed arteries before any damage occurs to the heart. Obstruction of an artery will result in a depressed ST segment of the ECG—it will fall below the base line in the affected leads. The exercise cardiogram, or stress test, looks primarily at the ST portion of the ECG to predict if any of the heart’s arteries are becoming clogged.

It is possible to become quite
FIG. 4—BLOCK DIAGRAM OF THE COMPLETE ECG SYSTEM. The system logically divides into the front-end electronics and the controller. Data communication between the analog and digital portion of the ECG is accomplished through optical isolators, which helps keep the patient isolated.

PARTS LIST—CONTROLLER

- **IC14**—74HC138 1-of-8 decoder
- **IC15**—82C52 UART
- **IC16, IC17**—74HC573 octal latch
- **IC18**—74HC74 dual D flip-flop
- **IC19**—MC145406 RS232 transceiver
- **IC20**—AD0829 A/D converter
- **IC21, IC22**—DAC0830 D/A converter
- **IC23**—IC24—NE5532A op-amp
- **IC25**—74HC14 hex Schmitt inverter
- **IC26**—74HC00 quad NAND gate
- **IC27**—FS2501A-2 optoisolator
- **IC28, IC31**—not used
- **IC29**—ICL7660 DC-DC converter
- **IC30**—78L05 voltage regulator
- **IC32**—7805 voltage regulator
- **IC36, IC37, IC38, IC39**—10 volts, 10 volts, tantalum
- **IC32, IC37, IC38, IC39**—10 volts, tantalum
- **IC36, IC37, IC38, IC39**—10 volts, tantalum
- **IC36, IC37, IC38, IC39**—10 volts, tantalum
- **Semiconductors**
 - **IC1**—Z80 CPU
 - **IC2, IC5, IC12**—74HC245 bus transceiver
 - **IC6, IC8**—Altera EP320 PAL
 - **IC7**—Altera EP600 PAL
 - **IC9, IC13**—74HC688 equality comparator
 - **IC10, IC11**—27C256 EPROM
 - **IC13**—55257 static RAM
 - **IC14**—74HC748 equality comparator

All resistors are 1/4-watt, 5%, unless otherwise noted.

- R1—10 ohms
- R2, R7—10,000 ohms
- R3—R5, R15—1000 ohms
- R11—7500 ohms
- R12—24,000 ohms
- R13—30,000 ohms
- R14—10,000 ohms x 8, SIP

Capacitors

- C1—C22, C25, C26, C28, C29, C33, C34, C42—0.47 µF, ceramic disk
- C23—22 pF, ceramic disk
- C27—330—0.001 µF, metal film
- C31—220 pF, ceramic disk
- C32—10 volts, 10 volts, electrolytic
- C35—C36—1000 ohms
- C37—C41—1 µF, 10 volts, tantalum
- C36—C37—C40

Semiconductors

- **IC1**—Z80 CPU
- **IC2, IC5, IC12**—74HC245 bus transceiver
- **IC6, IC8**—Altera EP320 PAL
- **IC7**—Altera EP600 PAL
- **IC9, IC13**—74HC688 equality comparator

Note: The following items are available from DataBlocks, Inc., Glenwood, GA 30428, (912) 568-7101.

- **Design package including schematics, assembly instructions, and checkout- and plot-software design specifications (ECG-DP):** $27.00.
- **Front-end PC board, controller PC board, and design package from above (ECG-PC):** $74.00.
- **Complete kit of parts, including both PC boards, IC's, sockets, passive components, design package, ECG software, and checkout software (ECG-KIT):** $289.00.
- **Lead kit consisting of 50 feet of 29-gauge shielded cable, 10 alligator clips, heat-shrink tubing, and instructions (ECG-LD):** $53.00.
- **EPROM containing ECG software, ECG resident portion of checkout software (ECG-PROG):** $45.00.
- **Set of four programmed PAL's (ECG-PAL):** $67.00.
- **Case as shown with mounting hardware (ECG-CASE):** $29.00.
- **Package of 100 self-adhesive electrodes (ECG-EL):** $20.00.

Please include $5.00 shipping and handling for design package and electrodes, $10.00 shipping and handling for all other products. Georgia residents must add sales tax.
FIG. 5—THE FRONT-END ELECTRONICS takes in the signals from the 9 input leads located on the patient. The small signal from each of the leads is fed into the quad op amps IC1, IC2, and IC3-a.
PARTS LIST—FRONT-END

All resistors are 1/4-watt, 5%, unless otherwise noted.
R1-R9, R10-20,000 ohms
R10, R24, R60, R63-30,000 ohms
R11-1800 ohms
R12, R25, R44-10,000 ohms, potentiometer
R14, R18, R26-4700 ohms
R15, R17-19,200 ohms
R16-39.2 ohms, 1%
R19-200,000 ohms
R20-R22, R41-100,000 ohms
R23-1500 ohms
R27-910 ohms
R28, R39, R40, R55, R62, R67-10,000 ohms
R29, R46, R48-15,000 ohms
R30-200,000 ohms, potentiometer
R31, R36-680,000 ohms, 1%
R32-500,000 ohms
R33-68 ohms
R34-15,000 ohms, potentiometer
R35-100 ohms
R37, R38, R40, R61-470 ohms
R42, R64-1000 ohms
R45, R51-680,000 ohms
R47-5000 ohms, potentiometer
R49-330,000 ohms
R50, R58-2200 ohms
R52, R56-1.5 megohm
R53-150,000 ohms
R54-150,000 ohms
R57-12,200 ohms
R65-3300 ohms
R66-1000 ohms, potentiometer

Capacitors
C1-C10-220 pF, 1000 volts, ceramic disk
C11, C19, C20-10 µF, tantalum
C12, C13—not used
C14, C23, C24-1 µF, ceramic
C15-0.001 µF, metal film
C16-39 pF, ceramic disk
C17-120 pF, ceramic disk
C18-0.01 µF, metal film
C21, C22, C51-C47-0.47 µF, ceramic disk
C25-C30-1 µF, tantalum
C48, C49-47 µF, 16 volts, electrolytic

Semiconductors
IC1-IC3, IC9, IC10-1M348 op-amp
IC4-AD625 instrumentation amplifier
IC5-TL431C precision voltage reference
IC6-4051 analog switch
IC7-4052 analog switch
IC8-Altera EP320 PAL
IC14, IC15-OP18012 optoisolator
IC16, IC17-PS2501A optoisolator
IC18, IC20-78L06AC voltage regulator
IC19-78L05AC voltage regulator
D1-D20—1N914 diode
Q1, Q2—IRFD123 N-channel HEXFET
Other components
B1-B3-9-volt battery

skilled at reading the ECG without being a medical expert, and there are a number of texts on the subject that you will find interesting. In particular, try Duben's Rapid Interpretation of EKGs—with it, you can become fairly knowledgeable of ECGs in a matter of a few hours. A more sophisticated text written by Marriott is entitled Practical Electrocardiography. Sources for these texts are listed in the Sources Box of this article.

Biological interface

The patient is connected to the electrocardiogram via 3-12 leads in a typical system. The 3-lead systems are used when only the cardiac rhythm is to be studied—in an ambulance, monitoring an athlete, etc. If a detailed analysis of the heart is required, a 12-lead system is normally used. The system that we will build will generate a full 12-channel readout.

Ten leads are connected to the patient in a 12-channel system: they are right arm, left arm, left leg, and 6 chest leads called the V leads (see Fig. 3). The right leg is used as a ground and as an input to reduce system noise.

You might well ask how we get a 12-channel system only using 9 active leads. That is accomplished by combining different leads together. For example, lead "aVR" is equal to the voltage at the right arm minus the sum of the voltages at the left leg and left arm. Table 1 shows how the signals are combined. Our system will collect the data in each lead, digitize them, and then digitally combine the signals within the host computer. More on this later.

A typical QRS will have a peak amplitude of 1 to 2 millivolts. That may mix with noise (60-Hz hum, for example) with much higher amplitudes. The problem, then, is to distinguish the cardiac signal from the unwanted signal. That is accomplished in biological instrumentation in much the same way as industrial instrumentation: by the use of differential amplifiers. These circuits can attenuate the unwanted signal by 100 dB or more.

The electrode that connects the ECG to the patient must make a low-impedance connection between the system and the patient's skin. That is typically accomplished by the use of disposable silver electrodes, which we will use in our system. The electrodes are made of a silver-chloride gel that provides low impedance and a minimum amount of electrical noise with the skin.

One of the fundamental principles that medicine is based on is from the Hypocrites Oath, "do no harm." That means under no circumstances should there ever be a possibility of doing any harm using medical instrumentation. In the case of an ECG, the main concern would be the shock potential through the electrodes. In our system we optically isolate the patient from the rest of the electronics. Therefore, even if all the safeguards in the computer's power supply were to fail, the patient would still be protected from shock.

One other concern is to prevent the patient from doing harm to our equipment. In our ECG we provide a resistor-diode network on each lead which prevents a high voltage from entering the
front-end amplifiers. An example where this might be significant would be in the case where a patient is “shocked,” or defibrillated, after a cardiac arrest. In that case up to 400 volts could appear across the electrodes coming from the patient.

Now that we have a basic understanding of the underlying biological principles associated with the ECG, let’s look at some of the technical details of the machine which we will construct. Then let’s build one!

System Theory of Operation

A block diagram of the complete ECG system is shown in Fig. 4. The system can be divided into the front-end electronics and the controller. The analog portion attaches to the patient with 10 lead wires: 9 input leads, and 1 output, or reference lead. The analog portion of the ECG is powered by two 9-volt batteries to isolate the patient from any potentially dangerous power circuitry. In addition, data communication between the analog and digital portion of the ECG is accomplished through optical isolators, which also helps keep the patient isolated.

The controller section of the system contains a Z-80 based computer with 32K of RAM and 32K of EPROM. The controller section of the ECG also contains the analog-to-digital (A/D) conversion circuitry to convert the patient’s analog ECG signals to the digital data required for computer processing. In addition, this section generates control signals to sequence the A/D conversion, compensate for input channel offset, and control the

<table>
<thead>
<tr>
<th>ADDRESS FROM PAL</th>
<th>CONTROL FROM PAL</th>
<th>MULTIPLEXER STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3</td>
<td>C2</td>
<td>C1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTE: Z = OUTPUT IN HIGH IMPEDANCE STATE

FIG. 7—MULTIPLEXER TRUTH TABLE shows how the signals from the PAL are used to control the sequencing of the input signals to the input of the instrumentation amplifier.

input-lead multiplexer.

Notice that we have included a personal computer and printer in the diagram. Although not a part of this construction article, they are an integral part of the system since they provide the display for the ECG traces.

Front-end electronics

As previously discussed, the 12-trace ECG is derived from 9 input leads located on the patient. The small (approximately 1 millivolt) signal from each of the leads is fed into the quad op-amps IC1, IC2, and IC3-a, as shown in the schematic of Fig. 5. The op-amps are configured as non-inverting, unity-gain amplifiers. They provide a very high input impedance that prevents the signals from the body electrodes from being loaded down. Notice also that the input to each amplifier circuit is shunted to ground by a 220-pF capacitor (C1–C10) and two diodes (D1–D20) in parallel. Those components are used to protect the input of the amplifier from the high voltages present during cardiac defibrillation, and to provide patient protection in the unlikely event that high voltage should feed back through the amplifier.

The output of the three limb leads from IC1-a, IC1-b and IC1-c are summed into op-amp IC3-b, inverted, and fed back to the patient through the 10th lead which is attached to the patient’s right leg. The composite signal from the three limb leads is called the Wilson Electrode. The Wilson Electrode signal significantly reduces the common-mode noise in the system, since unwanted signals common to the three limb leads are fed back to the patient 180 degrees out of phase with the original noise. The signal from the Wilson Electrode is again inverted in op-amp IC3-c and routed to the multiplexer to eventually form the reference against which the nine input signals are compared.

The multiplexer is made up of two integrated circuits, IC6 and IC7, in conjunction with the multiplexer-controller IC8. Analog-switch IC6 has 8 inputs (X0–X7). One of the eight inputs is connected through a very-low-impedance path to the output (X) according to the 3-bit address appearing on the control inputs C0–C2. For example, X0 is connected to X when the control address is 000. X1 is connected to the output when the control address is 001, and so on. The additional control address C3, is an inhibit which, when high, causes the output X to be a high impedance, effectively turning off the eight input signals to the multiplexer chip. The output of IC6 is routed to one of the inputs to IC7.

Another analog switch, IC7, has 2 outputs and 4 X-Y input pairs (X0–X3 and Y0–Y3). The X0 input is the output from IC6. The corresponding input Y0 comes from the Wilson Electrode, IC3-c. The signal from IC3-c (input 9) is the input to X1. The Wilson Electrode signal is also paired with input 9 on Y1. In addition to the nine signal inputs from the patient, a 1-mV test signal and a ground input are routed to the X2 and X3 inputs respectively. Ground is the Y2 input for the corresponding 1-mV signal pair as well as for the X3 ground input on Y3.

Two address lines, CTLA and CTLB control which input pair is switched to the outputs. That is, when the control address is 0, inputs X0 and Y0 are switched to outputs X and Y respectively. These control lines as well as the control signals for IC6 are derived from the outputs of IC8.

IC8 is a programmable array logic (PAL) IC which sequences the multiplexer address lines so that each input signal is sequentially passed to the multiplexer output for processing. The PAL is programmed to advance the address on control lines C0 through
FIG. 8—THE CONTROLLER CONTAINS A Z80-BASED COMPUTER and a digital control section which combine to provide all the sequencing, timing, and control signals for the ECG.
1-0 74HCOO MK 1/2 P5250142 10 IC28-4 R16 S II 1C20 NC CAP. OSC I SRO Lv COBCAP you, 80 luF C36 10uF ICI_ fags 1C22 -C 2/A 74HC00 T Fil Vcc C28 -b 1/4 7414000 f 12121 DO 02 OA ETA" c, 2.46 mHz CP4 22 PF IC27, 3irK 1/2 P012601A2 A 6 IC10 111.1.1o0Uii 482x707 Da a Volt 460x653 IC32 .001 7606 3 w --001M1 El""TOUTS TOUTS 4.21V -12V A A A POO I4C148406 491x612 01 ICIa ;:MC57 1417 0101 a: a: 04 04 0806OS 043 07 07 OS OS A A A A A A A A VCC E0022 tgIC 74HC573 -a- IC213- 1/6 7402 4 IC10-0 A. 1/2 741..74 0 ; CLK E a- IC10-8 /2 740074 o P0 9 CLK E R11 7 OK 282x323 IC21 00 iFi 04 ONO 06 OND 00 VCC 07 VREF 101 A CO 1 6V 4C26 229x204 IC23-11 1/2 NE66324 7 IC22 00 01 X1 ILE 04 ONO 06 C840 Vcc N/F 201 OPERAPS 0020830 352x994 4 11:;13 492x529 0V15.47 (15" SWEAT RTN tft VOLTS -6 VOLTS (n2 (OfSILTS. 507x487 04720M U COOATA 384x399 ;',/014 334x282 2->/2 ENE60320 11P4's, .6V R6 114 I 8 21V RS 1C24-0 1/2 NE56324 231 220 6F C24-0 1/2 NE66324 11V 511x318 010 554x57 QD QD 39
C3 one count each time a pulse is received on the clock input. Additionally, a decode function is programmed in the PAL to control the state of the control lines CTLA and CTLB and, hence, which signal pairs from the multiplexer are fed to the differential inputs of the instrumentation amplifier. The PAL timing diagram in Fig. 6 shows the timing relationships of the input, output, and control signals from the PAL. The multiplexer truth table in Fig. 7 shows how the signals from the PAL are used to control the sequencing of the input signals to the input of the instrumentation amplifier.

The instrumentation amplifier (IC4 and IC9-b back in Fig. 5) is one of the key signal-processing elements in the ECG design. It is a differential amplifier so its output is equal to the difference between its two inputs multiplied by a gain. In this application, the gain is approximately 1000.

The amplifier also has an input offset adjustment, R12, to compensate for minute differences in the input voltages, as well as an output offset capability at pin 7. In this design, the output offset at pin 7 is biased by IC5, a precision voltage reference, to a constant voltage near 2.5 volts. When the difference between the inputs of the instrumentation amplifier is zero, the output will be 2.5 volts. As the differential input voltage changes from zero, the output of the amplifier will change from 2.5 volts by an amount equal to the input difference times the gain.

The final stage in the analog signal path is the isolation circuitry to the A/D converter. It consists of IC9-a, IC16-c, and IC10-d. As the voltage into IC9-a changes, the current through the LED portion of optoisolator IC16-c changes, which modulates the base of the light-sensitive transistor in the optoisolator. That causes the collector current to change, developing a voltage change across the emitter resistor. That voltage follows the original voltage signal at the input of IC9-a with a 180-degree phase difference. To correct the phase reversal and to compensate for bias and gain errors, the signal is fed through amplifier IC10-d prior to going to the controller board for A/D conversion. In addition to its gain function, IC1-d is also an active low-pass filter, with a cutoff frequency of about 100 Hz.

A high pass filter is also implemented in the final stage by feeding the ECG signal from the emitter of IC16-c through an active low-pass filter consisting of IC10-a and its associated components. The cutoff frequency for the low-pass filter is about 0.1 Hz, and the output is fed back through IC16-d to the positive input of IC9-a where it is used to cancel frequency components of the original signal below 0.1 Hz. As a result, the frequency components of the ECG signal are limited to a band between 0.1 Hz and 100 Hz.

Controller operation

The controller contains a Z80-based computer and a digital control section which combine to provide all the sequencing, timing, and control signals for the ECG (see Fig. 8). The Z80 microprocessor (IC1) is clocked by an 8-MHz oscillator, XTAL2. Octal bus transceivers IC2-IC5 buffer the microprocessor control, address, and data buses, and, in the case of IC5, provide bi-directional capability on the data bus. Programmable logic devices (PLDs) IC6, IC7, and IC8 generate various bus-control and chip-select signals to select the appropriate memory and I/O chips. The 32K × 8 EPROM (IC9) stores the CPU operating system and the ECG control program. Two 32K × 8 static RAMs, IC10 and IC11, provide the CPU with 64K of RAM. Communication with the outside world is provided through a universal asynchronous receiver/transmitter (UART), IC15, and its associated line transceiver IC19.

Power for most of the circuitry on the controller board is provided by a 9-volt battery (B1) located on the front-end board. To extend battery life, the system is powered only during the time required for a single ECG, with each ECG sequence initiated by depressing the reset switch. That is accomplished by powering the start-up circuitry from the RS-232 port on the PC. VCC for the power-on latch, IC26, is provided by the 5-volt Zener-diode regulator, D5.

When the reset switch is depressed, the power-on latch changes state, turning Q1 on and completing the return path for B1. Power for the controller board is provided by the 5-volt regulator, IC32. A +6-volt supply for the analog circuits on the controller board is provided by IC30. The -6-volt supply for the analog circuitry is provided by IC29, a DC-DC converter. The two 6-volt supplies are also used to power portions of the front-end that don't require patient isolation.

The remaining ICs on the controller board are used to generate the control signals and to digitize the ECG data from the nine patient leads. Components IC13 and IC14 decode I/O instructions from the controller to produce control pulses that sequence the acquisition of the ECG data. Table 1 lists the control pulse generated by each I/O port address.

Each time I/O port 52 is addressed, the resulting pulse clocks IC18-a, a D-type flip-flop wired to divide by two. Two outputs to the I/O port produce a single pulse at the output of IC18-a. The pulse is passed to the clock input of IC8 on the front-end board through IC14, an optoisolator also on the front-end board. In a similar manner, a clears pulse is developed at the clear input to IC8 on the front-end board when the controller board

<table>
<thead>
<tr>
<th>TABLE 2—CONTROL SIGNAL DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Batteries On</td>
</tr>
<tr>
<td>IC21WR</td>
</tr>
<tr>
<td>IC21CS</td>
</tr>
<tr>
<td>IC22WR</td>
</tr>
<tr>
<td>IC22CS</td>
</tr>
<tr>
<td>IC20CS</td>
</tr>
<tr>
<td>IC20RD</td>
</tr>
</tbody>
</table>

RADIO/ELECTRONICS

40
Build this inexpensive color-bar test generator and brush up on your video skills.

THOMAS GOULD WB6P

IF YOU'RE INVOLVED IN TV SERVICING and repair, or just enjoy tinkering around with video or amateur television, you'll be interested in this color-bar test generator. This convenient device produces an NTSC color-bar pattern that can be used for video performance testing and monitor adjustments. For added flexibility, just the encoder section can be used to generate composite video from your computer's RGB and sync outputs. With a dedicated color-bar generator, you can eliminate the need for a test tape or your camera—all for under $70!

Before we delve into the theory behind the color-bar generator, let's briefly discuss the various components that make up the composite NTSC video signal: synchronization, luminance, and chrominance information.

The NTSC signal
A typical NTSC composite color video signal is shown in Fig. 1-a. (NTSC is the National Television Systems Committee, who has set the standards for color encoding and decoding systems in the U.S. since 1953.) The picture on a color TV is formed by three electron beams of varying amplitudes and phases: red, blue, and green. Each of these beams are scanned horizontally and vertically over the screen. As the beams scan, their currents and amplitudes change to create the light and dark areas on the picture-tube face and form the image that you see displayed on the screen.

The composite video signal is made up of three basic components: the scan control information called the synchronizing pulses (Fig. 1-b), the luminance signal, which is the brightness information and is often referred to as the Y signal (Fig. 1-c), and the color information called the chrominance signal (Fig. 1-d). Let's briefly discuss each type of video information.
Fig. 1—A COMPOSITE VIDEO SIGNAL (a) includes sync pulses (b), black-and-white information (c), and the colorburst signal (d).

Synchronizing components

In order for a picture to be reproduced properly, the TV receiver must scan its screen exactly in step with the camera in the studio. To make sure the camera and the receiver are synchronized, a series of pulses are sent to the camera telling it when to start at the top of the screen and when to begin a new line at the left of the screen. Those same pulses are sent to the receiver along with the video information. The signals that tell the camera and receiver when to start at the top are called vertical sync pulses, while those that start scanning each line at the left are known as horizontal sync pulses.

In the NTSC system, each frame of complete video image contains 525 lines. That is accomplished by horizontally scanning at approximately 15,750 lines per second, and vertically scanning at 30 frames per second. (The vertical scan rate is actually 60 Hz, but it takes two trips, or fields, down the screen to complete one frame.) The process of returning to start a new scan is called retrace or flyback.

Luminance

Black and white information is contained in the Y or luminance signal, which determines the instantaneous brightness of the electron beams as they scan over the screen. In fact, it is all that is used for the single electron beam in a black-and-white TV set. A negative-going video detector detects a luminance signal in which the negative signal extremes correspond to bright areas of the picture. The waveform shown in Fig. 1-c would, therefore, produce vertical bars of decreasing brightness from left to right. Note that the output is black during retrace so the electron beams will not be seen.

In the NTSC color system, the Y signal is made from the red, green, and blue cameras by an additive technique: 30% of the red signal, 59% of the green signal, and 11% of the blue signal are added together to form the Y signal. The luminance signal can also be expressed as

\[E_Y = 0.30E_R + 0.59E_G + 0.11E_B \]

where \(E_R \), \(E_G \), and \(E_B \) are the voltages of the red, blue, and green signals, respectively.

The combination of different amplitudes of color signals is what determines the various shades of gray in a monochrome receiver—white having a luminance of one, black a luminance of zero. The ability of a receiver to determine a corresponding level of gray from color levels is an important feature in the compatibility of color and monochrome TVs because the black-and-white signals can be obtained from the three primary color signals.
video signals and composite sync to generate the composite video signal.

The composite-sync timing signals, color encoder IC6 takes the separate red, green, and blue video signals and composite sync to generate the composite video signal.

FIG. 3—SCHEMATIC OF THE COLOR-BAR GENERATOR. Sync generator IC5 provides the composite-sync timing signals, color encoder IC6 takes the separate red, green, and blue video signals and composite sync to generate the composite video signal.

All resistors are 1/4-watt, 5%, unless otherwise indicated.

R1, R14, R15—4700 ohms
R2—6800 ohms
R3—820 ohms
R4, R5—1200 ohms
R6—220 ohms
R7—75 ohms
R8—R10—5000-ohm potentiometer
R16—1 megohm

Capacitors
C1—C4, C10, C20, C24, C25—0.1 µF, bipolar electrolytic
C5, C6—1000-µF, mica
C7—0.01 µF, bi-polar electrolytic
C9, C18, C19—100-µF, mica
C11—47 µF, mica
C12—2-12-µF variable ceramic capacitor
C26—10 µF, mica
C13, C14—220 µF, mica
C15—17-µF, electrolytic capacitor

Semiconductors
IC1—74LS163 counter
IC2—74L02 quad non gate
IC3—74LS74 flip-flop
IC4—not used
IC5—CD22402 sync generator, RCA
IC6—MC1377 color encoder.

Motorola
Other components
L1—400-ns delay line (TK1001)
L2—30-µH, 2.52-MHz transformer (TK1603)
XTAL1—3.58-MHz colorburst crystal
XTAL2—503-kHz ceramic resonator

Miscellaneous:
enclosure, standoffs for mounting circuit board, 4-pin friction-lock connector for J1, straight-header connector for J2, 2-pin friction-lock connector for J3, four shorting jumpers, wire, solder, etc.

Note: The following items are available from Geko Labs, 13019 250th Place SE., Issaquah, WA 98027-6730, (206) 392-0638: etched, drilled and plated-through PC board $30.00; a complete kit including all parts, PC board, and assembly instructions $80.00; a complete assembled and tested unit $125. Add $5.00 S & H with any order. Washington residents add 8.1% sales tax.

Chrominance
The color information, or chrominance, (which is ignored in a black-and-white TV) is made up of red, blue, and green signals required to drive the picture tube, minus the luminance signal. Those "color-difference" signals are designated as R—Y (red minus Y), and B—Y (blue minus Y). Color-difference signals are used solely for color reproduction. A special matrix circuit in the receiver can extract a G—Y (green minus Y) signal from the B—Y and R—Y signals. The advantage of changing the color signals into color-difference signals is the reduction of three color signals into two.

The R—Y, B—Y, and G—Y signals are decoded at the receiver by adding the Y signal back to each of the difference signals. A 3.58-MHz subcarrier is sent by the transmitter and used in the receiver to restore the original color information.

The frequency and phase angle of the 3.58-MHz subcarrier in the receiver must be the same as that
in the transmitter for proper color reproduction. Synchronization is performed by transmitting a small sample of the 3.58-MHz subcarrier during the horizontal sync pulse. That color sync interval is also known as the colorburst. The colorburst signal is used as a reference to synchronize the phase and amplitude of the color subcarrier. The colorburst also determines the tint and saturation of the color that is displayed.

Theory of operation
Figure 2 shows a block diagram, and Fig. 3 a schematic of our video generator. Sync generator IC5 is used to provide the composite-sync timing signals. The outputs are composite sync, composite blanking, and a buffered output of the sync oscillator. The sync generator uses a 503-kHz ceramic resonator (XTAL2) as a base oscillator. The 503-kHz frequency is divided by 32 for the horizontal sync, and is further divided to derive the vertical sync-timing signals. Those signals are all combined into the composite-sync signal which is sent to the MC131377 color encoder (IC6). The color encoder takes the separate red, green, and blue video signals and composite sync to generate the composite-video signal.

The 3.58-MHz colorburst crystal, XTAL1, is the reference oscillator for the chroma information. Capacitor C12 allows fine tuning of the reference oscillator to be exactly 3.579545 MHz. The combination of R2 and C5 set the burst timing to approximately 0.4 µs after sync, and a burst width of 0.6 µs. The network of L2, C9, R6, C8, C11, and R3 provide bandpass filtering for the chroma component. A delay for the luminance channel (−Y) is provided by R4, L1, and R5 to compensate for the internal delay of the chroma signal.

RGB generators IC1, IC2, and IC3 make up the red, green, and blue video signals that drive the video encoder section to make the color bars. One half of IC1 is used as a divide-by-2 counter, which generates the 252-kHz clock for the four-bit counter IC1. The non-inverted blue, red, and green signals are the divide-by-4, -8, and -16 outputs of IC1, respectively. The blue, red, and green signals are inverted, and blanking is added by IC2. The TTL level is reduced to 1 volt p-p by R8, R9, and R10, as shown in Fig. 4.

Construction
The video generator uses a double-sided PC board that is available from the source mentioned in the parts list. We recommend that you use a PC board for this project because the frequencies involved require a large ground plane. Both the component and the solder side of the PC board are shown in the article if you wish to make it yourself.

Construction is fairly straightforward. Install all components according to the parts placement diagram shown in Fig. 5. Make sure C15-C17 are inserted into the board with correct polarities. Install all IC's last, observing correct orientation. Since the IC's are static sensitive, make sure you follow the manufacturer's recommendations for proper handling.

Checkout
The measurements listed in this section will help to make sure the video generator is working properly. The power on tests should be made with the +12- and +5-V power sources on. Set R8, R9, and R10 to mid range. If you are the impatient type you can go right to the video output test point TP12 and see what you get. If you're lucky you'll have a video signal that probably needs some adjustments. If that's the case you can proceed directly to the video adjustments section. If not, proceed slowly through the following steps to isolate the problem and verify each of the listed voltages, frequencies and waveforms. Keep in mind that you will need an oscilloscope for the video level adjustments.

- Pin 2 of J1 and +5 V → 2000 ohms (power off)
- Pin 4 of J1 and +12 V → 1 megohm (power off)

Power-on Tests
- +12-V supply → 57 mA
- +5-V supply → 29 mA
- IC1 pin 16 → +5 V
- IC2 pin 14 → +5 V
- IC3 pin 14 → +5 V
FOIL PATTERN OF THE COMPONENT side of the double-sided PC board.

- IC5 pin 19—+5 V
- IC5 pin 6 (TP2)—2.504-kHz, 5-V p-p (TTL level) square wave
- IC5 pin 5 (TP1)—TTL-level composite-sync signal
- IC5 pin 13 (TP4)—TTL-level blanking signal
- IC3 pin 5 (TP5)—252-kHz signal
- IC1 pins 11–13 (TP6, 7 and 8)—Divided down signals as shown in Fig. 4

Sync Generator
- IC5 pin 19—+5 V
- IC5 pin 5 (TP1)—TTL-level composite-sync signal
- IC5 pin 6 (TP2)—504-kHz, 5-V p-p TTL-level square wave
- IC5 pin 13 (TP4)—TTL-level blanking signal

RGB Generator
- IC1 pin 16—+5 V
- IC2 pin 14—+5 V
- IC3 pin 14—+5 V
- IC3 pin 5 (TP5)—252-kHz signal
- IC6 pin 3–5—1 V p-p signal
- IC6 pins 17 and 18—3.58-MHz oscillator signal
- IC6 pin 16—8.2 VDC
- IC6 pin 1—Ramp signal
- IC6 pins 10 and 13—Chroma signal (Fig. 1-d)
- IC6 pins 6 and 8—Luminance signal (Fig. 1-c)
- IC6 pin 9—2 V p-p (Fig. 1-a signal)

Color Encoder
- IC6 pin 14—+12 V
- IC6 pin 2—TTL-level composite-sync signal (Fig. 1-b)

Video Level Adjustments
- IC6 pin 4 (J2C)—Adjust R8 to 1 V p-p
- IC6 pin 3 (J2B)—Adjust R10 to 1 V p-p
- IC6 pin 5 (J2D)—Adjust R9 to 1 V p-p
- J3 pin 1—Terminate into a 75-ohm connector

Video Output (TP12)—Composite 1-V p-p signal. If you can’t get this signal, adjust R8 for the proper peak level and null out the continued on page 79
The World’s Most Popular Probe

ECG

continued from page 40

drop table data into octal latches IC16 and IC17.

Data latch IC17 stores data for the D/A converters IC21 and IC22. Latch IC16 is used to derive additional control signals.

Table 2 shows that to turn both batteries on and to place the other control signals in an inactive state, all output bits of IC16 must be 1. To achieve that, the CPU must output 255 to I/O port 54. To subsequently activate, or lower, any of the control bits without disturbing the other bits or turning off the battery power, all bits must be high except for the one corresponding to the activated control signal. After the appropriate bits in IC24 have been activated, the CPU must return them to their inactive state by sending 255 to I/O port 54. The same logic applies to the other signals in Table 2.

To see how this all works together in the circuit, let’s assume we need to turn on both the positive and negative battery-powered supplies on the front-end board, and write a 127 to IC21 on the controller board. First, the CPU outputs a 255 to I/O port 54. That places a “1” at all outputs of IC16. The “1” on Q8 of IC16 produces a current flow in the LED of optoisolator IC16-a, causing current to flow through its associated transistor. The ensuing voltage drop across R60 turns FET Q1 on, completing the battery input circuit to the -6-volt regulator, IC11. The negative supply is now on. The positive supplies are turned on by the “1” on Q7 of IC16.

Now the CPU must place our arbitrarily chosen value, 127, into the octal latch. IC17 on the controller board. As shown in Table 1, that is accomplished by writing 127 to I/O port 55. Once the correct number is in the latch, the CPU must write it to the D/A converter. Notice that the outputs of the octal latch, IC17, continue on page 88
LAST MONTH WE INTRODUCED THE 16-CHANNEL, 50-MHZ LOGIC ANALYZER. WE DISCUSSED ALL THE CAPABILITIES OF THIS DIGITAL-TEST INSTRUMENT, AND THE THEORY BEHIND ITS OPERATION. THIS MONTH WE'LL SHOW YOU HOW TO BUILD IT.

CONSTRUCTION

The logic analyzer consists of two PC boards, a case, and an overlay. Due to the extremely high-speed logic used in this design, it is critical that PCB's be used. Wire-wrap and point-to-point construction techniques will not work!

A photo of the inside of an assembled unit is shown in Fig. 7. The main logic board has four circuit layers: two signal layers, one power, and one ground plane. The PC board can only be fabricated by a fairly sophisticated board vendor. Because of that, foil patterns have not been provided in this article. A finished board and all the required parts, however, are available from the source mentioned in the Parts List.

Figure 8 shows an internal photo of the unit with the LCD panel removed.

Figure 9 shows the parts-placement diagram. Make sure you observe the correct component orientation and capacitor polarities when soldering the components. Assemble the keyboard first, because it is the simplest circuit. Note how the keys are placed on the component side of the circuit board, as shown in Fig. 9. The keyboard connector, P1, must be placed on the solder side, in the position that is shown.

When soldering the keys, S1-S12, pay particular attention to their alignment. They must be straight with respect to the edge of the board and to each other. Otherwise, the cutouts in the case will not fit over them.

When you've finished soldering the components, all flux must be removed from the circuit boards. We recommend that solder with a water-soluble flux be used, rather than the standard rosin core. Rosin-core flux must be removed with a freon-based solvent, which is quite expensive. Water-soluble flux, however, can be cleaned off with warm tap water and a small brush (a toothbrush is remarkably effective). Kester solder with type 351 flux is a good one to use.

Assembling the main circuit board is also straightforward. Install all mechanical components as shown in Fig. 10. Most of the components on the main board are CMOS, therefore they're quite sensitive to static electricity. Make sure you follow adequate precautions when handling these IC's. When assembling the main board, it is critical that you use a properly grounded three-wire soldering iron, and that your workbench is covered with an anti-static mat to avoid damage to the CMOS IC's.

Solder in all of the IC's and sockets first. Notice that IC1, IC2, IC30, IC32, IC40, IC44, IC45, and IC46 are socketed. The socket for IC30 has pin 1 facing to the left. The socket for IC50 is a Dallas Semiconductor Smart Socket. It does not use all of the...
hoses provided for IC40. Align that part in the lower part of the socket.

The capacitors and resistors should then be added, followed by connectors J1—J4. P1, and the header blocks P2—P4. Attach the heatsink to the voltage regulator, IC43, using a thin layer of conductive heat-sink cream. Secure that assembly to the board using 1/2-inch 4-40 screws, washers, and nuts.

The circuit board must be jumpered to work properly with the size of SRAM and ROM being used. To accomplish that place shorting blocks between P2 (pins 1-2), P3 (pins 2-3), and P4 (pins 2-3).

That completes the assembly of the main logic board. After cleaning the board of flux, carefully inspect it for good solder connections and make sure there are no solder bridges present. Touch up any cold or questionable solder joints.

Carefully inspect the alignment of all of the components. Insert the V25 microprocessor (IC30) into its socket. Make sure that pin 1 is aligned correctly. It's very difficult to remove a PLCC device from the socket once it's been inserted. Insert components IC1, IC11, IC44, IC45, and IC46. IC44 and IC45 are programmable logic devices (PLD's).

Acquisition connector
The acquisition clip assembly consists of a DB-37 connector shell containing eighteen wires terminating in small micro-clips. It is supplied in a pre-assembled format.

There are three separate parts to each micro-clip assembly: the wire, the body, and the plunger. Each part can have a different color. The color coding is used to separate the function of the input lines: all data input channels have a white wire, the clock wire is green, the ground wire is black.

The plunger and body are used to distinguish the input channel numbers. Channel 0 has a black plunger and a black body; channel 1 has a brown plunger and a black body; channel 2 has a red plunger and a black body; and so on. Table 1 lists the cap, plunger, and wire color coding of the probe assembly.

Final assembly
We're now ready for final assembly. To connect the LCD panel to the main logic board, connector P4 must be soldered onto the display. Connect P4 to the bottom side of the LCD panel (away from the LCD panel itself).

To complete the mechanical assembly, attach four ¼-inch and four ⅜-inch standoffs to the circuit board as shown in Fig. 10. The shorter standoffs are used for the keyboard. Align the keyboard connector and attach it to the main circuit board. Do the same for the LCD panel.

Checkout
At this point we're ready to test the logic analyzer. Measure the resistance between pin 20 and pin 10 of IC1 (the power pins). The resistance should be above 20 ohms. If it's below that value, there's a short somewhere on the board. Do not power the unit up until you find it!

Plug the AC adapter into the wall outlet then plug it into J2. The LCD panel should display a brief title-page before running the software. (You can become familiar with the software running on the logic analyzer by reviewing the introductory sections in the manual provided with the kit or with the ROM). If you don't see the title page, then there's a problem with the microprocessor section (IC30, IC40, IC42, IC44, and IC46). The LCD contrast voltage at R10 should be around -10 volts. The voltage at IC1 pin 20 (+5-volt power supply) should be between 4.75 and 5.1 volts.

We will now test the internal clock generator circuits. For that test, you'll need a 100-MHz counter. Connect the counter to pin 5 of IC38. Go to the system screen and select an internal clock. Then select each clock speed in turn. For each clock speed, make sure the counter shows the same speed on the display (for example, if a 10-MHz clock has been selected, the counter should show 10 MHz).

You can check the external clock signal input by selecting the external clock function. Using a function generator, place a TTL-level signal of a known frequency into the CLK pod. The counter should show the function generator's frequency.
FIG. 9—PARTS-PLACEMENT DIAGRAM.

FIG. 10—THE ASSEMBLY DRAWING SHOWS how the case is secured together.
Go to the search field on the setup screen. Select it using the sel key, and change it to the input item. Make sure the acquisition clip assembly is connected to the logic analyzer. Briefly touch each input channel clip to the ground clip. That grounds the channel. Verify the display shows a low symbol, when the clip is touching the ground clip, and a high symbol, when the clip is not touching. That verification tests the input buffers, acquisition RAM, and microprocessor interface.

All we have left to test is the trigger logic. First set the trigger word to all “1’s” (for example, $\text{TRIGGER = "1111111111111"}$). Press the run key. Two messages should flash briefly on the screen, and the logic analyzer should return to you immediately. Now set the trigger to "1111111111111" (trigger when channel 1 is low and all others are high). Press run. The “Waiting for trigger condition” message should remain on the screen until the channel 0 clip is touched to the ground clip. Repeat that procedure for all sixteen channels. All of the circuits have now been tested.

Now it's time to put the circuit boards into a case, which comes in four pieces: the top, bottom, and side panels. The top and bottom halves of the case contain grooves on the front and back. It is important that the boards be placed with the keyboard closest to the side with the raised groove of the bottom piece. The main circuit board will fit tightly over four plastic standoffs which have been molded into the bottom of the case. It may be necessary to press firmly on the circuit board to force the holes over the standoffs. The two side pieces can then be slipped over the connectors on the appropriate ends. After that's been done, the top piece is slipped over the keyboard and attached to the bottom piece using four self-tapping screws.

At this point, make sure the keyboard and display are straight with respect to the edges of their cutouts. The overlay must now be applied to the top piece. The wax paper sheet on the back of the overlay must be removed to reveal the pressure-sensitive backing.

A word of caution regarding the glue used: once it's been pressed down on the case the overlay, it cannot be moved without destroying the overlay and the case. This glue has no respect for mistakes! Peel the entire wax paper sheet off. Use great care in positioning the overlay over the keys of the keyboard. Make certain that the overlay is true to the edge of the case. Gently press the overlay down. At this point it's still possible to move the overlay, but once pressure is applied, however, the overlay cannot be moved. Working from the center of the overlay out, smooth the overlay down, being careful not to catch air bubbles.
TABLE 1—PROBE ASSEMBLY

<table>
<thead>
<tr>
<th>Connector Pin No.</th>
<th>Cap Color</th>
<th>Plunger Color</th>
<th>Wire Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (GND)</td>
<td>Black</td>
<td>Black</td>
<td>Black</td>
</tr>
<tr>
<td>4 (AQ14)</td>
<td>Brown</td>
<td>Yellow</td>
<td>White</td>
</tr>
<tr>
<td>5 (AQ13)</td>
<td>Brown</td>
<td>Orange</td>
<td>White</td>
</tr>
<tr>
<td>7 (AQ10)</td>
<td>Black</td>
<td>White</td>
<td>White</td>
</tr>
<tr>
<td>8 (AQ09)</td>
<td>Black</td>
<td>Blue</td>
<td>White</td>
</tr>
<tr>
<td>10 (AQ06)</td>
<td>Black</td>
<td>Blue</td>
<td>White</td>
</tr>
<tr>
<td>11 (AQ05)</td>
<td>Black</td>
<td>Green</td>
<td>White</td>
</tr>
<tr>
<td>13 (AQ02)</td>
<td>Black</td>
<td>Red</td>
<td>White</td>
</tr>
<tr>
<td>14 (AQ01)</td>
<td>Black</td>
<td>Brown</td>
<td>White</td>
</tr>
<tr>
<td>21 (CLK)</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>22 (AQ15)</td>
<td>Brown</td>
<td>Green</td>
<td>White</td>
</tr>
<tr>
<td>24 (AQ12)</td>
<td>Brown</td>
<td>Red</td>
<td>White</td>
</tr>
<tr>
<td>25 (AQ11)</td>
<td>Brown</td>
<td>Brown</td>
<td>White</td>
</tr>
<tr>
<td>27 (AQ08)</td>
<td>Black</td>
<td>Grey</td>
<td>White</td>
</tr>
<tr>
<td>28 (AQ07)</td>
<td>Black</td>
<td>Purple</td>
<td>White</td>
</tr>
<tr>
<td>30 (AQ04)</td>
<td>Black</td>
<td>Yellow</td>
<td>White</td>
</tr>
<tr>
<td>31 (AQ03)</td>
<td>Black</td>
<td>Orange</td>
<td>White</td>
</tr>
<tr>
<td>33 (AQ0)</td>
<td>Black</td>
<td>Black</td>
<td>White</td>
</tr>
</tbody>
</table>

*Pins not listed are unused.

Software

The software which controls the logic analyzer is quite sophisticated and very complex. Since a thorough examination of it is beyond the scope of this article, we'll only present the highlights of the software interface. The software listing is, however, available on the RE-BBS (516-293-2283, modem settings: 1200/2400, 8N1, file name: LA150.ARC). More information on the operation of the analyzer can be found in the user's guide. That documentation is provided with every kit or assembled unit, as well as with the separate ROMs, from the source in the Parts List.

Here are some of the special features that the software offers:

- **User Interface**—The logic analyzer has a friendly, consistent user interface. Pull-down and pop-up menus, form menus, and selection boxes enable you to easily configure the analyzer. Four distinct screens allow you to interact with the logic analyzer. Each portion of the screen is associated with one of the system setup, wave, and state keys.
- **System Screen**—Most system-wide parameters are set up using this screen. The configuration name, clock type, clock speed, trigger position, and threshold level are always displayed. A pull-down menu is provided which allows you to change communication and printer parameters.
- **Setup Screen**—The trigger word, search word, and acquisition line groups are defined in this screen. An input-line monitor allows you to view the current state of the input lines without having to start the acquisition cycle again.
- **Waveform Screen**—Displays the contents of the acquisition data buffer in tabular format. Two cursors are provided which let you quickly determine the time relationships between signals. A pull-down menu is provided which allows you to jump to a particular location within the data, search for a pattern, or print out a continuous range of data.
- **State Screen**—Displays the contents of the acquisition data buffer in graphical format. Two cursors are provided which let you determine the time relationships between signals. A pull-down menu, identical to that of the waveform screen, is also provided.
- **On-Line Help**—The logic analyzer contains a true context-sensitive on-line help system. Help is always available at the touch of the HELP key. Help is always given about the item that is currently highlighted.
- **RS-232 Interface**—The logic analyzer contains a serial RS-232 interface for connecting with external devices. The baud rate, data bits, stop bits, parity, and protocol can all be configured using this interface.
- **Printer Support**—A serial printer can be connected directly to the analyzer. All or part of the acquisition data may be printed out in waveform or state format. All formatting of the output is handled by the logic analyzer.
- **Slave-Mode Operation**—The logic analyzer can be controlled by a host or remote computer, therefore, it can be used in an automated test environment. Acquisition data and configuration settings can be downloaded to the host computer for storage and further manipulation. A library of IBM-PC based interface routines is provided with the logic analyzer.

The next time you find a problem with one of your digital designs, use the logic analyzer to quickly and effectively find the problem. You'll wonder how you ever did without it!
In previous installments we built computer-assisted test instruments to measure voltage, resistance, and capacitance. In this final installment, we’ll round out our component inspection system (CIS) with a PC-based IC tester. Our tester can test all 14- and 16-pin CMOS and TTL IC’s. It can also be modified to test any IC that requires digital inputs and provides digital outputs.

Testing methods
There are two common ways of testing digital circuits and IC’s: transition and state testing. In transition testing, you provide a series of signals to the circuit and note the output transitions. Transition testing is beneficial when you are interested in the AC characteristics (slew rate, propagation time, etc.) of a circuit. Transition testing is, however, expensive and time-consuming.

With state testing, you change one input at a time and note any changes in the outputs. State testing can’t check the high-speed response of an IC, but it does allow you to exercise an IC and determine whether it’s good or bad. Our tester uses the technique of state-testing.

Specifications
An IC may be fully specified by a connection diagram, a block (or function) diagram, and a truth table. The connection diagram shows the physical layout and name of each pin. The block diagram shows the internal functions of the IC. The truth table lists outputs provided by various input combinations.

For example, Fig. 1 shows a connection diagram (a), function diagram (b), and truth table (c) for a 4011 CMOS quad two-input NAND gate. The connection diagram shows the 4011 is a 14-pin IC with ground (VS) at pin 7 and +V (VDD) at pin 14.

The other pins are labelled as well, but to find out what the labels mean, we must refer to the functional diagram (Fig. 1-b). Here, we see four NAND gates, each with two inputs (A and B) and one output (Y). To find out how each gate works, we must examine the truth table (Fig. 1-c). For each gate, the output is high unless both inputs are high. In which case, the output is low.

Testing steps
Using the connection and functional diagrams, as well as the truth table, we must follow four steps to test an IC.
1. Determine its pinout, its logic functions, and its truth table.
2. Specify a series of inputs to exercise all of the functions.
3. Determine the proper outputs for each input combination.
4. Perform physical testing.

You get pinout, functional, and truth-table information from data books, which can be purchased from IC distributors. (They are also available at larger local libraries). Using that information, you then plan a series of inputs. Using the truth table as a guide, step through each of the possible inputs (or as many as necessary to determine proper function) and determine the proper outputs. A programming form (like that shown in Fig. 2) can be helpful in setting up a test program.

After setting up a test program, it’s time to perform a physical test. Physical testing includes these four steps:
1. Initialize the IC to a predetermined state.
2. Apply inputs.
4. Compare to what should occur: determine pass or fail.

For example, Fig. 2 shows a test program for the 4011. That program first initializes all inputs high. Actually, any initialization is fine (all inputs low, for example) as long as testing begins in a known, repeatable state. The actual test begins at step 9. One input on each gate is brought low, changing that gate’s output from low to high. Then the input is returned low, making the output also return low.

The tester
For maximum flexibility, we designed a simple interface card, shown in Fig. 3. The heart of our card is a standard 8255 (IC2); the only other active component is a 74LS138 decoder (IC1) that allows you to choose an I/O port for communicating with the card. To avoid conflicts with other hardware devices, DIP switch S1 allows you to choose one of several different ports, ranging from 512 through 736 decimal.

The 8255 can function in several modes: we use Mode 0, in which each eight-bit register (PA, PB, and PC) can be programmed for input or output. A separate control register specifies how the data registers work.

If we program PA and PC as outputs and PB as input, we have eight inputs and 14 outputs. Conversely, programming PA and PC as inputs and PB as outputs gives us eight outputs and 14 inputs. With these two possibilities, we can test any 14- or 16-pin IC with any combination of inputs and outputs.

A standard 25-pin cable connects J2 on the I/O board in the PC to the test fixture, shown in Fig. 4, which consists of J1, two solderless breadboards, and SO1, a 16-pin zero-insertion-force (ZIF) socket. That arrangement allows any of the 24 lines from J1 to be connected to any of the 16 pins on SO1 with jumper wires.

Software
All our test and control programs are written in BASIC. Unfortunately, there is not enough space to present complete listings, but we will provide enough sample code so that you can understand the principles involved. In addition, we’ll post compiled programs on the RE-BBS (516-293-2283, 1200/2400, 8N1; look for file PCTEST3.ZIP); software is also available on disk directly from the author, as discussed in the parts list.
The software needs to know the port address of the tester. If we define A as the address of PA (the decimal address selected by S1), then B = A + 1, C = B + 1, and D = C + 1, where B is PB, C is PC, and D is the control register. For example, if S1 is set for address 640, then:

10 A = 640; B = 641; C = 642; D = 643

Now, to set up the 8255 PPI, we must send an appropriate value to the control register. For PA = output, PB = input, and PC = output, that value is 130. For PA = input, PB = output, PC = input, the value is 153. For example, to set PA and PC as outputs, and PB as input, then:

20 OUT D, 130

After setting up the 8255, we can send and receive information to and from the registers. For example, to bring PA lines PA0 and PA2 high, and then sense those lines to make sure everything is working correctly:

30 OUT A, 5
40 IF INP(A) = 5 THEN PRINT "There's a Problem With PA" END
50 IF INP(A) = 0 THEN PRINT "Peripheral Register A is OK" END

To sense the status of the input register, PB, use the same approach as in lines 40 and 50. For example, to sense the status of PB5 (J2-14):

60 X = INP(B): X = X AND 8: PRINT "PB5 is";
70 IF X = 0 THEN PRINT "Low"
80 IF X = 8 THEN PRINT "High"

The value 8 is the decimal number associated with PB5. ANDing the result of the input (INP) isolates its value from the other PB bits. The value 8 is called a "mask." Mask values for bits 0 through 7, respectively, are 1, 2, 4, 8, 16, 32, 64, 128.

Combining ideas, we can create a small test program to tell us whether the tester is working at the selected address. Refer to Listing 1.

It's important to remember that outputs remain constant until you change them—in other words, outputs are latched. Inputs, on the other hand, are not latched. The value returned is what exists at the instant you sense it. If a signal changes a short time before you sense it, you would not see the change. If you want to check for a change in input, you can create a loop that continually senses until a change occurs, or until the program has gone through the loop a specified number of times. For example, the fragment in Listing 2 checks input status on PB5 until it finds a high or has looped 500 times.
FIG. 1—IC SPECIFICATIONS. It takes a pinout (a), functional diagram (b), and a truth table (c) to fully specify an IC.

Components
C1—0.1 µF, Mylar
IC1—8255 PPI
IC2—74LS138 3/8 decoder
J1—DB-25 female D connector, chassis mount
J2—DB-25 female D connector, right-angle PC mount
S1—8-position DIP switch
S01—16-pin ZIF socket
Miscellaneous: 16-pin and 40-pin low-profile IC sockets, solderless breadboard, case, DB-25 male/male 10-foot cable, PC proto card, wire, solder, etc.

Note: The following items are available from JJ Barbarello, RD3, Box 241H, Tennent Road, Manalapan, NJ 07726: Double Sided I/O PC Board (PCIO), $20.00; Complete kit with all parts (no programs or libraries), $85.00; Programs on 5¼” or 3½” PC disk, $10.00; Program and libraries on 5¼” or 3½” PC disk, $35.00; Complete Kit with all parts, programs, and libraries, $99.95. Programs include both BASIC and compiled versions of CHNGADR, ICSETUP, IC, and ICAUTO. Libraries include both .DEF and .DAT files for the most common TTL (74xx series) and CMOS (4xxx series) IC's. NJ residents must add 7% sales tax.

Tester programs
Four programs control the tester: CHNGADR, ICSETUP, IC, and ICAUTO. Starting with the simplest, CHNGADR is a short program that reads the file HWADRES.DAT, displays it on the screen, and then asks you for a new hardware address. It stores your answer in a four-character data file (three characters for the value of the address, and a trailing “D” to indicate that the address is in decimal). CHNGADR creates a file named 4011.DEF. You have to run CHNGADR only once for each type of IC; a library of definitions for common IC's is available from the author.

ICSETUP assigns the available input and output lines to appropriate pins on the ZIF in the test fixture, and displays an interconnect list, like that shown in Table 1, which specifies which connections from the solderless breadboard go to which ZIF pins.

The program then writes your definitions and the 8255 setup information to a definition file. For example, if you specify file “4011,” ICSETUP creates a file named 4011.DEF. You have to run ICSETUP only once for each type of IC: a library of definitions for common IC's is available from the author.

The program called IC uses the definition-file information to allow you to perform manual testing. You use the manual procedure to create a test file that ICAUTO can use to do all testing.
FIG. 3—THE I/O BOARD CONTAINS only two active components, an 8255 and a 74LS138. A bypass capacitor and a DIP switch round out the circuitry.

automatically. IC asks you for the name of the file, retrieves the definition information, displays an interconnect list, and then displays a graphical view of the IC under test.

Using the interconnect list, you make the connections and then insert the IC to be tested into the ZIF socket. Next you enter a pin number and a value (0 or 1). (For IC's that require a clock signal, you can specify a pulse by typing P instead of 0 or 1. A pulse reverses the state of a signal momentarily and then returns it to the original value. Only the IC’s response at the end of the pulse will be stored as relevant.) The program outputs the specified value to the specified pin, reads the IC’s outputs, saves the results, and displays the states of all pins on the screen.

Actually, the IC program has two phases, Initialize and Test. During Initialize, all outputs are stored as “256,” which indicates that the results are not to be considered in determining whether an IC is good or bad. When you finish initialization, you select the Test phase. Now both inputs and outputs are stored as they occur. When you finish the Test phase, you select End, at which point you can save the complete test procedure, along with the acceptable results, to a data file if you so desire. Examples of the data structure for the DEF and DAT files are shown in Tables 2 and 3, respectively.

The final program, ICAUTO, uses the DEF and DAT files to test an IC automatically. If a response is not what is specified in the DAT file, the program stops, indicates a failure, and identifies the pin where the failure occurred. Otherwise, after completing all the sequences in the DAT file, ICAUTO indicates Pass and requests the next IC.

Construction

The tester hardware consists of two major components: the PC-based I/O board and the test fixture. The two communicate via a standard ribbon cable with 25-pin male D connectors at both ends.

We'll begin with the I/O Board, which can be built with a prototyping PC “half-card,” such as Jameco’s JE417. This type of card contains an array of plated-through holes on a 0.1” grid, a mounting area for a DB-25 connector, and an edge-contact area suitable for an 8-bit PC expansion slot. Before beginning assembly, place the card in front of you with the DB-25 mounting area to your left, and the edge-contact area down. Note the 31 gold-plated edge contacts: the
right-most one is B1. Find contacts B5 through B10, and, using a hobby knife, remove them. Doing so is a safety measure to ensure that the +12, -12, and -5-volt supplies from the PC do not get into our +5-volt-only circuitry.

Next, flip the card over so that the DB-25 area is to your right. Install a low-profile 40-pin socket vertically about an inch from the DB-25 mounting area, as shown in the opening photos of this article, and solder it in place. Locate a 16-pin low-profile socket horizontally about an inch above the edge contacts: the left end of the socket should be above edge-contact A31. Solder the socket to the board. Then mount S1 horizontally above the 16-pin socket and solder in place.

Using 22-gauge wire or smaller, make all interconnections, as shown in Fig. 2. Check for shorts, opens, and solder bridges. Then mount the DB-25 connector. Now insert IC1 and IC2 into their sockets, and check the board once more. Set one (and only one!) element of S1 on, according to the addresses shown in Table 4. If you’re not sure which address to use, try address 544 for a standard PC, or 640 for an AT or 386). Next, power down your computer, insert the card in a free slot, and power back up. Never fiddle with the board while the PC is on.

Enter and run I/OTEST.BAS (shown in Listing 1) using GWBASIC or BASICA. Be sure to enter the correct address when the program prompts you. If you get the message "I/O BOARD TESTS OK AT ADDRESS XXX" (where "XXX" is the address you specified with S1), you’re ready to proceed. Otherwise, power down the PC, set S1 to another address, and try again.

The test fixture consists of a plastic box (any size or type will do), a DB-25 female connector, two chunks of a solderless breadboard, and a 16-pin ZIF socket for test ICs. See the opening photos of this article.

The solderless breadboard should have at least 42 rows of contacts and no power buses. Starting from one end, count down 26 rows and carefully cut the breadboard with a fine-tooth hack saw. File the end of the piece you just cut so that you end up

LISTING 1

```
1 REM** I/OTEST.BAS
10 CLS : PRINT : PRINT : PRINT : PRINT : DEF SEG = 64
20 INPUT "Address You've Selected (ex: 640)"; A
15 B = A+1: C = B+1: D = C+1
30 OUT D, 130
112 OUT A, 255
117 X1 = INP(A)
40 OUT A, 0
101 X2 = INP(A)
50 IF (X1 <> 255) OR (X2 <> 0) THEN PRINT "Problem With PA"
60 OUT C, 255
112 X1 = INP(C)
70 OUT C, 0
101 X2 = INP(C)
80 IF (X1 <> 255) OR (X2 <> 0) THEN PRINT "Problem With PC"
90 OUT D, 153 : REM** PA=Input, PB=Output, PC=Input
100 OUT D, 153 : REM** PA=Output, PB=Input, PC=Output
110 OUT B, 255 : X1 = INP(B)
120 OUT B, 0 : X2 = INP(B)
130 IF (X1 <> 255) OR (X2 <> 0) THEN PRINT "Problem With PB"
135 GOTO 150
140 PRINT : PRINT TAB(25); "I/O BOARD TESTS OK AT ADDRESS"; A
150 PRINT : PRINT : PRINT : END
```

LISTING 2

```
200 REM** This code checks for a high input on PB5 (J2-14)
210 REM** It assumes you've set up the 8255 by creating
215 REM** variables A,B,C,D and have performed an
220 REM** OUT D, 130 to set PB as an input register.
230 REM
240 IF (INP(B) AND 8)<> 8 THEN X=X+1 : GOTO 260
250 PRINT "High Sensed On PB5." : END
260 IF X < 500 THEN GOTO 240 : REM** Try 500 times.
270 PRINT "PB5 Remained Low During 500 Sensings." : END
```
with a piece with 25 clean rows of contacts.

Typical breadboards have two unconnected columns of contacts separated by a "valley." Cut along the valley to create a piece with just a single column of 25 rows of five contacts. This is the block into which the 24 wires from J1 will be inserted.

From the remaining piece (with the valley), cut a section that contains 22 rows. Do not cut down the valley, because this piece will accept the ZIF socket. File the ends smooth.

Now machine the box to accept J1 and the breadboards, and drill some holes on top to pass the J1 wires. Solder 6" lengths of #22 solid wire to J1 pins 1 through 23, and pin 25. Mount J1 in the box. Locate the J1 connecting block (the one without the valley) on the box and secure it with glue or double-sided tape. Beginning with pin 1, feed each wire up through the hole and insert in row 1. Continue through pin 23. Last, feed the wire from J1, pin 25 and insert it in row 25. Note: Nothing is connected to row 24. Check continuity between J1 and the block to ensure you've connected all the leads correctly. Locate the other block (with the valley) perpendicular to the J1 block and secure it to the box. Insert the ZIF into the block. Mark the block to indicate which row is pin 1, which is pin 2, etc. Cut sixteen 6" lengths of #22 solid wire and strip 3/8" of insulation from each end of each wire. These will serve to connect the J1 block to the ZIF block.

Use

At this point you should have a board (with verified address) and a HWADDR.DAT file indicating that address. You should also have a correctly-wired test fixture, and a cable to connect it to the board.

To create a data file for an IC, run ICSETUP. Identify the IC as either 14 or 16 pins. Then define each pin as an output or an input, and give each pin a name (six-character maximum length). Don't define the power pins yet. When finished, enter "99." Now you'll be asked to identify the GND and +V pins. When you're done, you'll be asked if you want to save this definition to a file.

Table 1: Sample Interconnect List

<table>
<thead>
<tr>
<th>Rec. No.</th>
<th>PortA</th>
<th>PortB</th>
<th>PortC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>256</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>256</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>256</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>256</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
<td>256</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>63</td>
<td>256</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>127</td>
<td>256</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>255</td>
<td>256</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>254</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>250</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>234</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>170</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>171</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>175</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>191</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>255</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>253</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>245</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>213</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>85</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>87</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>95</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>127</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>255</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLE 2—4011 DEF FILE

<table>
<thead>
<tr>
<th>Rec. No.</th>
<th>Data</th>
<th>Decoded</th>
<th>Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CD</td>
<td>4011, Quad</td>
<td>130</td>
</tr>
<tr>
<td>2</td>
<td>2-in NAND Gate</td>
<td>8 OUT1 IN-A</td>
<td>1 **</td>
</tr>
<tr>
<td>3</td>
<td>CMOS</td>
<td>OUT2 IN-A</td>
<td>2 **</td>
</tr>
<tr>
<td>4</td>
<td>Decoded</td>
<td>OUT3 IN-A B**</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Mask</td>
<td>OUT4 OUT-A B**</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>130</td>
<td>OUT5 OUT-B</td>
<td>4 **</td>
</tr>
<tr>
<td>7</td>
<td>N/A6 IN-B</td>
<td>OUT6 IN-B</td>
<td>8 **</td>
</tr>
<tr>
<td>8</td>
<td>N/A7</td>
<td>IN-C</td>
<td>0 **</td>
</tr>
<tr>
<td>9</td>
<td>IN-D</td>
<td>0 **</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>OUT8 IN-C</td>
<td>OUT9 IN-C</td>
<td>16 **</td>
</tr>
<tr>
<td>11</td>
<td>OUT10OUT-CB**</td>
<td>32 **</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>OUT10OUTD B**</td>
<td>4 **</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>OUT12IN-D A**</td>
<td>64 **</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>OUT13IN-D A**</td>
<td>128 **</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>N/A14V+</td>
<td>**</td>
<td></td>
</tr>
</tbody>
</table>

Note: Encoded mask value

Answer yes and enter a descriptive name (the number of the IC, maximum eight characters), and don’t include an extension.

Now get a clean programming sheet and create a test program for that IC. With the programming sheet in hand, run IC. Identify the previously specified file name. Connect the J1 and ZIF test blocks according to the interconnect list that appears on the screen. Insert a known good IC and press a key.

Execute the Initialize and Test procedures as outlined above. When done, select End, and in response to the Save question, specify Yes. You now have the files necessary to test IC's of this type.

To test an IC, run ICAUTO. Specify a file name, connect the test blocks, insert the IC to be tested, and press a key.

As the IC is tested, you will hear a short tone as each step is performed. The bottom of the screen will report the relevant information, and the graphical representation of the IC on the screen will show how the inputs and outputs are changing. If the IC fails, the test will stop and the pin where failure occurred will be highlighted. Otherwise, the test will end and “Pass” will be indicated. Insert the next IC to be tested and press any key to continue. After testing all IC's of that type press Esc to end.
WE LIVE IN A WORLD OF CONTINUALLY VARYING ANALOG DIMENSIONS, WHETHER WE'RE DEALING WITH SIGHT, SOUND, TEMPERATURE, VOLTAGE, OR CURRENT. MOST PHYSICAL AND ELECTRICAL PARAMETERS THAT WE PERCEIVE CHANGE IN A CONTINUOUS MANNER, TAKING ON AN INFINITE NUMBER OF VALUES. ALTHOUGH OUR REAL-WORLD CONSISTS MOSTLY OF ANALOG SIGNALS, THEY CAN BE DIFFICULT TO MANIPULATE. DIGITAL SIGNALS, ON THE OTHER HAND, CAN BE CONTROLLED BY SIMPLE LOGIC CIRCUITS, OR BY MICROPROCESSORS. COMPLEX OPERATIONS CAN BE MORE EASILY PERFORMED BY DIGITAL RATHER THAN ANALOG CIRCUITS. WHEN DIGITAL CIRCUITS NEED INPUTS FROM THE ANALOG WORLD OR MUST OUTPUT DATA TO IT, DIGITAL-TO-ANALOG (D/A) AND ANALOG-TO-DIGITAL (A/D) CONVERTERS BECOME AN ESSENTIAL INTERFACE.

WE WILL EXPLAIN SOME BASIC TECHNIQUES OF D/A AND A/D CONVERSION, AS WELL AS THE IMPORTANT CHARACTERISTICS OF CERTAIN TYPES OF APPROACHES. WE'LL ALSO SHOW YOU SOME SIMPLE CIRCUITS WITH INEXPENSIVE, OFF-THE-SHELF PARTS YOU CAN EASILY BUILD YOURSELF.

DIGITAL-TO-ANALOG CONVERTERS

Digital-to-analog converters (DAC's) translate binary words from computers or other discrete circuitry into proportional analog-voltage levels. D/A converters can be used to drive analog devices such as meters, motor controllers, or audio circuits. Perhaps the most dramatic example of D/A conversion is in a compact disk (CD) player. A DAC is used to convert the digital data recorded on the CD into the high-fidelity audio signal that you hear. Let's look at important D/A concepts.

The resolution of a D/A converter is the number of individual analog voltage levels that the output is capable of generating. That is directly related to the number of input bits that forms the binary word. A 4-bit DAC has 4 input bits with a resolution of 4. The number of distinct and different analog output levels the IC is capable of generating will be 2^n (2^4) or 16 levels. That means the analog output can be represented by up to 16 voltage levels. An 8-bit DAC can provide an analog output at up to 2^n or 256 discrete levels. A 12-bit DAC can represent a digital word in 2^{12} or 4096 levels. As you can see, the more bits an A/D converter provides, the more accurately it can generate an analog signal, as shown in Fig. 1.

Settling time is the term used for the time required for the ana-
log output to stabilize after the binary input changes. It is usually specified as the time taken for the output to stabilize within \(\pm \frac{1}{2} \) the least significant bit (LSB) of the expected value after the binary input changes. What that means in practical terms relates to the actual value of the LSB itself. If an 8-bit DAC has a 0 to 10-volt output range, then the LSB is worth \(\frac{10}{2^8} \) or 0.039 volts. Half of that value is 0.0195 volts. The settling time would be the time required for the output to reach 0.0195 volts of the expected value. Settling time is typically under 10 \(\mu \)s.

Accuracy is another important factor in D/A converters. In simplest terms, the accuracy of a DAC is usually specified as \(\pm \) anywhere from \(\pm \frac{1}{2} \) to 2 times the LSB. Let's consider that more closely. For a DAC with an accuracy of \(\pm \) one times the LSB, the voltage output can vary by as much as \(\pm \) the value of one bit. If the DAC has a 0- to 5-volt output with 12 bits of resolution, the LSB would be \(\frac{5}{2^{12}} \) or 0.00122 volts. For any binary input, the output voltage may be higher or lower than the expected value by 0.00122 volts. If that same DAC has \(\pm \frac{1}{2} \) times the LSB accuracy, an output could only deviate \(\pm \frac{0.00122}{2} \) or \(\pm 0.00061 \) volts. The smaller an accuracy value is, the more closely the output will match the expected output.

Several methods have been developed over the years to deal with digital-to-analog conversion. We will look at two generally accepted methods: binary weighted and binary ladder D/A.

Binary-weighted resistor D/A

The binary-weighted technique is the oldest and simplest method of converting digital bits into an analog signal. For the circuit in Fig. 2, a binary word is applied to a series of gates that drive analog switches. When a binary 0000 is applied to the gates, all analog switches are open so no voltage is applied to the op-amp. The output is then 0 volts. When a binary 0001 is applied, S1 closes and –10 volts is applied to R1. Since the op-amp input represents a virtual ground, there is effectively 10 volts across the 8K resistor. That causes 10 V/8000 \(\Omega \), or 1.25 mA, to flow through the 800-ohm feedback resistor, \(R_f \). By Ohm's law, the voltage across \(R_f \) would be 800 ohms \(\times \) 1.25 mA, or 1 volt.

When the binary word changes to 0010, S1 opens and S2 closes. That causes 2.5 mA (10 V/4000 \(\Omega \)) to flow through R2. The voltage across \(R_f \) is then 800 ohms \(\times \) 2.5 mA, or 2 volts. A binary 0100 would result in 4 volts at the output, and a binary 1000 would cause 8 volts...
Each switch can be closed in combination to generate an analog output from 0 to 15 volts (0000 = 0 V, 0111 = 7 V, and 1111 = 15 V) in 1 volt increments.

Although a binary-weighted resistor DAC is straightforward, it is not practical for applications requiring much more than 4 bits of resolution since the range of resistor values required would be tremendous. A ladder network needs only two values of resistance.

Ladder network D/A

The ladder-network technique is capable of producing binary weighted voltages with only two values of resistance arranged in a type of voltage-divider network known as a binary ladder, shown in Fig. 3. Although that circuit may appear intimidating at first glance, the ladder operates in much the same way as Fig. 2. A series of gates are used to drive analog switches. When a binary 0000 is sent to the gates, all analog switches are open so there is a 0-V output from the op-amp. A binary 1000 will activate the most significant bit (MSB). That closes S1 resulting in 5 volts at the output. An input of 0100 will close S2 and yield 2.5 volts at the output. A binary signal of 0010 will close S3 and place 1.25 volts at the output. And finally, an input of 0001 will close S4 to produce 0.625 volts at the output. Notice that each output is in a binary progression. That allows the output to vary from 0 to 10 volts in 0.625-volt increments (24 or 16 steps).

The primary advantage of the binary ladder design (and the reason for its tremendous popularity) is its use of only two resistor values. As a result, it is a very simple matter to add virtually any number of bits simply by adding additional resistor "rungs" to the ladder. The binary ladder has proven so successful that it can be found as the key segment of almost every DAC manufactured today.

Binary ladders also tend to be more accurate than binary weighted circuits since it's much easier to find precision resistors in two values (such as 10K and 20K) than the many diverse values that would be required in a binary weighted circuit. Conventional D/A converters integrate resistors and amplifiers onto a single IC, such as Precision Monolithic's DAC-08.

Now that we've discussed the basic approaches of DAC operation, we can examine a final important specification of monotonicity. As you know, the analog output voltage of a DAC will progress in steps as the binary input word increments, as shown in Fig. 4. Ideally, each increment in the binary input will cause an analog output step to stabilize after the digital input has changed.

TERMS AND DEFINITIONS

- **Accuracy**—A figure indicating how closely the converter's output represents the input information, usually expressed as a portion of the LSB.
- **Binary Coded Decimal (BCD)**—A binary numbering system using binary codes 0 through 9 only, instead of 0 through F. That allows a closer relationship between digital data and decimal numbers.
- **Comparator**—An op-amp circuit used in ADC's to compare the analog input signal to a reference voltage.
- **Conversion Time**—An ADC term used to indicate the amount of time required for the analog input voltage to be converted to a digital word.
- **Integrator**—An op-amp circuit used in some ADC's to provide stable voltage-ramp performance for slope conversion.
- **Least Significant Bit (LSB)**—A digital bit which carries the least binary weight in the digital word.
- **Monotonicity**—A DAC term used to indicate that each analog output step will be correct for every corresponding digital input word.
- **Most Significant Bit (MSB)**—A digital bit which carries the greatest binary weight in a digital word.
- **Quantizing Error**—Error introduced into an A/D conversion when the analog input changes during the conversion cycle. The amount of error depends on the rate of signal change and the conversion time.
- **Resolution**—The number of discrete digital states (usually expressed as 2^n bits) that are used to express an analog signal.
- **Settling Time**—A DAC term used to express the amount of time required for the analog output to stabilize after the digital input has changed.
not allow enough current to flow under all conditions. That can cause the DAC to “skip” steps at certain bit levels. While a monotonicity problem on a low-weight bit may have little impact on the output, the effects become more significant as the weight of the bit increases. A DAC is said to be monotonic if it does not miss any steps across the entire range of binary inputs. Now let’s look at more involved A/D converters.

Analog-to-digital converters

An analog-to-digital converter (ADC) is used to translate a continuous analog signal into a finite number of digital bits. The resulting digital “word” becomes the binary representation of the analog level at the moment it was converted.

The resolution of an ADC is very much like its DAC counterpart—it is the number of bits with which the ADC will represent the analog signal. An ADC with 4 bits will have a resolution of 4 bits, and can represent an analog signal with up to \(2^4\) or 16 binary words. An 8-bit ADC can represent an analog signal with up to \(2^8\) or 256 discrete words. A 12-bit ADC can represent an analog signal with as many as \(2^{12}\) or 4096 individual binary words. You probably get the picture. The more bits of resolution by now an A/D converter can provide, the more accurately it will represent the analog signal, as shown in Fig. 5.

Conversion time is another important aspect of A/D converters. As you will see, the conversion of an analog signal into a digital word is not an event, but a precise, deliberate process. As a result, it requires some finite amount of time to perform a conversion, there are only just so many samples of a signal a converter can digitize in any given time. For example, if an ADC makes one conversion in 1 ms, it could then theoretically make 1000 conversions in 1 second (1/0.001 s). The maximum conversion rate is equal to the reciprocal of the conversion time.

To digitize a faithful representation of the analog input, the converter takes samples at a minimum of twice the maximum frequency component of the analog input signal. That sampling rate is also known as the Nyquist rate. Consider an analog sine wave of 10 Hz applied to an ideal ADC in the flash converter of-...
FIG. 8—A RAMP GENERATOR, COMPARATOR, AND COUNTER are the key components of a single-slope A/D converter.

FIG. 9—A DUAL-SLOPE A/D CONVERTER provides much more stable operation than the single-slope converter.

the sharp peaks of the reconstructed signal.) If 10 Hz is the maximum frequency entering the ADC, the maximum allowable conversion time is 1/20 Hz, or 500 ms. If the maximum input frequency is raised to 10 kHz, the ADC needs to sample at 2f, or 20 kHz to maintain the same two data points per cycle. That means the converter has to perform conversions in 1/20,000 Hz, or 500 μs just to keep up with the input signal.

To improve the fidelity of the digitized signal, we could take more samples in the same period of time. A sample rate of 8 points per cycle requires a sample rate of 8 times the maximum frequency component of the input signal. An input of 10 Hz must be sampled at 80 Hz, so the converter would have to convert a point in 1/80 Hz or 12.5 ms. A 100-kHz signal needs to be sampled at 800 kHz. The ADC then converts a sample in 1/800,000 Hz, or 1.25 μs. That is extremely fast for most A/D converters, although there are some types which can approach 1-μs conversion times. If the ADC cannot sample fast enough to keep up with the signal, information contained in the analog input signal will be lost.

The relationship between input frequency, conversion time, and sample rate is a very important one. A variety of methods have been developed over the years to perform the digitizing of analog signals. Many are still in use today in one form or another. We will examine six of those techniques: flash, single slope, double slope, single counter, tracking counter, and successive approximation.

Flash conversion

The flash converter is the fastest type of A/D converter that is available (Fig. 7). It uses a bank of parallel comparators to process the analog input. Flash converters are also referred to as parallel converters. A series of resistors form a voltage-divider network across each comparator. The maximum input voltage that can be translated depends on the value of \(V_{CC} \). The output signal from each comparator is either on or off, and is compatible with digital logic.

With no input voltage, the output of each comparator is logic low. As the input voltage increases, the output of each comparator will cascade high as the input exceeds each reference
voltage set by the voltage-divider network. A network of digital gates is used to convert the array of comparator signals into a binary word which is made available at the converter's output.

Our example in Fig. 7 provides only two bits of resolution. A 2-bit ADC is not very practical for most applications, but it demonstrates the key concepts needed to build a flash converter. As you may have noticed from the circuit in Fig. 7, it takes \(2^n-1\) comparators to support the resolution of the converter. Our 2-bit ADC example requires \(2^2-1\), or 3 comparators; a 4-bit converter needs \(2^4-1\), or 15 comparators; an 8-bit flash ADC needs \(2^8-1\), or 255 comparators, and so on. This vastly increasing complexity is a great disadvantage in flash devices—not only in the need for additional comparators, but also in the unwieldy gating circuitry as well.

The main advantage to flash converters, of course, is simple speed. Since the analog input is applied to every comparator simultaneously, the conversion time is merely equal to the propagation delay of the comparators and gating circuitry. A flash conversion can be accomplished in just a few microseconds.

Single-slope ADC

A more efficient method of A/D conversion is the single-slope A/D, also known as the single-ramp A/D (Fig. 8). In the single-slope circuit, the cycle begins with the counter reset and the ramp voltage at zero. The comparator's output at that point is low, so no clock signals are allowed to reach the counter. When an input voltage is applied to the converter, the comparator's noninverting input (+) will exceed the voltage at the inverting (-) input, so its output will be high. That will enable the \(\text{AND} \) gate, which will allow clock pulses to reach the binary counter. At the same time, a timing circuit drives the voltage ramp up, which quickly increases the reference voltage on the comparator's inverting input. When the reference-ramp voltage just exceeds the input voltage, the comparator's output falls low again. The clock pulses stop and the timing circuit latches the count at the binary counter and resets the counter for the next conversion.

The single-ramp circuit is little more than a controlled counter with a voltage-feedback loop. The circuit is timed in such a way that when the reference-ramp voltage equals the applied input voltage, the binary count existing on the counter at that moment is the digitized value of the analog signal. Note that the speed of the clock and the rate of the voltage ramp must both be set correctly for the counter to function properly.

The time required to perform a conversion will depend upon the level of the analog input. Since the counter and reference ramp both start from zero at each conversion, it will take longer to match a higher level of analog input than a low level. The sequence of operations can take place very quickly. The reference-ramp voltage can change faster than 1 volt per ms to reach the input voltage. For example, if an input of 2 volts is applied to the circuit in Fig. 8, it would take 2 x 1 volt/ms, which equals 2 ms for the ramp voltage to equal the input. The actual binary count after 2 ms depends on the speed of the clock. A faster clock speed will yield a higher count, and vice versa.

Since the clock can operate independent of the voltage ramp, unique opportunities for other outputs besides straight binary become available. Some customized instrument IC's use single-slope techniques to convert an analog input directly to binary coded decimal (BCD) to drive 7-segment displays. That type of flexibility is a strong advantage. The primary disadvantage of using single-slope techniques is the tendency toward unstable operation over time. Without some form of synchronization between the clock and ramp generator, any drift in clock speed or ramp voltage performance will cause errors in the output word. That's why single-slope converters are not used in high precision applications.

Dual-slope ADC

The dual-slope conversion technique offers the advantage of conversion stability at the expense of conversion speed. The reference-ramp generator circuit eliminates the effects of component drift over time (Fig. 9).

The input signal of a dual-slope converter is fed into an integrator. When a positive input signal is applied, the integrator's output voltage ramps in the negative direction. The negative voltage forces the output of the comparator high. That in turn activates the clock input to the counter which will begin to incre-
After that fixed "input-time," the control circuit clears the counter and switches the converter's input to a fixed negative-reference voltage (\(-V_{REF}\)). With a negative voltage now applied to the integrator, its output ramps back in the positive direction. The counter begins a new series of counts until the integrator's output reaches zero. At that point, the comparator's output becomes low. That action shuts off the clock pulses to the counter. Control circuitry detects that change and latches the count to the output, then clears the counter. As with the single-slope converter, the final digital count represents the analog-input voltage.

The rate of integration depends on the magnitude of the input voltage, as well as the value of \(R_1\) and \(C_1\), so a low input voltage will reduce the integrator's output less than a high input voltage during the same fixed-input period of the conversion cycle. When a fixed negative reference voltage is applied (the values of \(R_1\) and \(C_1\) remaining constant), the time required for the integrator to return to zero is then directly proportional to the original magnitude of the input voltage. Any variations, therefore, in the integrator circuit due to time or temperature will automatically be canceled out. That allows the dual-slope converter much more stability for high-precision applications. Similar to the single-slope technique, dual-slope converters can be used to convert the input signal directly to BCD (or any other viable code) as well as regular binary. Most quality digital voltmeters use dual-slope conversion to translate the input directly to BCD.

The disadvantage of dual-slope conversion is the extended period of time needed to make a conversion. A dual-slope converter may require more than 100 ms to translate a high input voltage.

D/A feedback converters

D/A converters may also be used to provide the reference feedback signal to the comparator. There are two basic types that we will examine: single-counter and tracking-counter types. Let's take a brief look at each one.

The single-counter A/D converter is a variation of the single-slope approach. Its operation is identical in all aspects but one—a D/A converter is used to read the count from the binary counter and provide a feedback voltage to the comparator instead of an integrator or other voltage-ramp source (Fig. 10).

When an analog input is applied to the comparator, its output becomes high. That allows clock signals to reach a binary counter. As the counter increments, the voltage output of the DAC increases at the negative input to the comparator. When the DAC level just exceeds the input, the comparator shuts down. A control circuit latches the binary count to the output, as well as resets the counter for the next conversion.

Although single-counter conversion is a faster method than the dual-ramp approach, it does require the use of a high-precision DAC to provide a steady, accurate feedback signal to the comparator. It also requires the counter to start from zero at each conversion. That can waste a bit of time through each cycle, especially if the voltages to be converted are near their maximum levels.

The tracking-counter technique can yield conversions much faster than the single-counter. That is possible by the use of a binary up-down (U/D) counter instead of just an up-counter like the ones used in our previous examples. The counter can increment or decrement depending on the state of the comparator's output. That permits the binary word to literally track the changes in the analog signal (Fig. 11).

The cycle begins with an analog signal to the comparator. The count on the binary U/D counter may be at any value. That means that the DAC feedback voltage may be greater or less than the analog input. If the feedback voltage is greater than the analog input, the comparator's output will be low and the control circuits will gate the clock signals to the count-down input of the counter. That will decrement the binary counter's output and reduce the feedback voltage at the comparator. When feedback voltage drops below the analog input, the comparator's output will go high and control circuits will cause the binary count to latch to the output. Gating will send clock signals to the up input of the counter (which is not reset) and cause it to begin counting up.

FIG. 11—A BINARY UP/DOWN COUNTER enables the A/D converter to track changes in the analog input for the tracking-counter A/D.
succession. The process of conversion is a bit more involved than the counter techniques that we have discussed.

The heart of the SA converter is a device called the successive approximation register (SAR). This serves a very different purpose than the counters we have seen (Fig. 12).

The conversion cycle begins when an analog signal is applied to the converter and a start conversion pulse is placed on the SAR. The first clock pulse into the SAR turns on the MSB output. That in turn sets the DAC output to 50% of its voltage output. The SAR looks at the comparator's output to see if the DAC output is greater or less than the analog input. If the DAC voltage is greater, the comparator will be off, so the SAR will turn off the MSB and call it a zero. If the DAC voltage is less than the analog input, the comparator will remain on, so the SAR will leave the MSB on and call it a one. It does all of this in one clock pulse. On the next clock pulse, the SAR will turn on the second most significant bit and re-check the results from the comparator. Once again, if the new DAC signal is greater than the input voltage, the comparator output will be off, so the SAR will turn off the bit and call it zero. If the new DAC signal is less, the comparator will remain on, and the SAR will leave the bit on as a one.

The SAR will examine each bit in this fashion (MSB to LSB) until all bits have been examined. Since one bit is evaluated in one clock pulse, an 8-bit ADC will process the conversion in only 8 clock pulses. When the LSB is finally processed, the SAR will send out an end of conversion (EOC) signal which will latch the

again looking for another change of state. If the input signal remains constant, the output word will tend to oscillate by \(1 \times \text{LSB} \) as the converter tries to center itself. That potential oscillation problem is the greatest disadvantage of tracking-counter ADC's.

As you might imagine, this type of converter can be much faster than the single-counter technique, but it is best suited for digitizing fast-changing analog inputs. Signals which change quickly are less likely to allow the converter to oscillate.

Successive-approximation ADC

Of all the techniques that we have covered up to now, the successive approximation (SA) approach has become the technique of choice for low-cost, moderate-resolution, high-speed A/D converters. Successive approximation is a clever and powerful technique that can be used to digitize an analog signal quickly and efficiently with no oscillation. The process of conversion is a bit more involved than the counter techniques that we have discussed.

The heart of the SA converter is a device called the successive approximation register (SAR). This serves a very different purpose than the counters we have discussed. The conversion cycle begins when an analog signal is applied to the converter and a start conversion pulse is placed on the SAR. The first clock pulse into the SAR turns on the MSB output. That in turn sets the DAC output to 50% of its voltage output. The SAR looks at the comparator's output to see if the DAC output is greater or less than the analog input. If the DAC voltage is greater, the comparator will be off, so the SAR will turn off the MSB and call it a zero. If the DAC voltage is less than the analog input, the comparator will remain on, so the SAR will leave the MSB on and call it a one. It does all of this in one clock pulse. On the next clock pulse, the SAR will turn on the second most significant bit and re-check the results from the comparator. Once again, if the new DAC signal is greater than the input voltage, the comparator output will be off, so the SAR will turn off the bit and call it zero. If the new DAC signal is less, the comparator will remain on, and the SAR will leave the bit on as a one.

The SAR will examine each bit in this fashion (MSB to LSB) until all bits have been examined. Since one bit is evaluated in one clock pulse, an 8-bit ADC will process the conversion in only 8 clock pulses. When the LSB is finally processed, the SAR will send out an end of conversion (EOC) signal which will latch the

FIG. 12—A SUCCESSIVE APPROXIMATION REGISTER (SAR) speeds up the process of A/D conversion.

FIG. 13—QUANTIZING ERROR can enter the A/D conversion as the analog signal changes during the conversion cycle. No quantizing error exists for a DC voltage (a) because there is no change in voltage, some quantizing error occurs with low-frequency signals (b), and a higher degree of quantizing error is produced with high-frequency signals (c).

FIG. 14—A SIMPLE SAMPLE-AND-HOLD CIRCUIT can be used to eliminate the effects of quantizing error.
Successive approximation converters are perhaps the most efficient type of A/D converters available. They are capable of extremely fast conversions at high resolutions. Many converters of this type can process 12 bits of resolution in less than 10 μs.

Quantizing error

Now that you have a better idea of how A/D converters operate, we will discuss the characteristic of quantizing error. Quantizing error is caused by changes in the analog-input level during the conversion process.

Remember that the analog signal of an ADC is applied to a comparator. When a cycle is started, it requires some finite amount of time (microseconds to milliseconds) to produce a digital output. If the input voltage changes during the conversion, the final binary output will represent the voltage level at the end of the cycle instead of the beginning. When there is no change in input voltage, such as in a DC voltage, no quantizing error enters into the conversion, as shown in Fig. 13-a. The faster the signal change, or "slew rate," the greater the quantizing error will be (Figs. 13-b, 13-c).

One common way of avoiding quantizing error is to use a sample and hold circuit before the analog input to the comparator. Figure 14 shows such a circuit. An electronic switch is closed to take a rapid sample of the analog input signal. The sample capacitor C1 charges to the value of the input signal and the electronic switch will open. That eliminates the effects of quantizing error since the capacitor will retain the value of the analog sample regardless of how the overall analog signal may be changing. When it is time for another conversion, the circuit will take another sample. Now lets take a look at some actual circuit applications.

Basic D/A application

Figure 15 shows a simple D/A converter application using a Motorola MC1408 DAC. The operation of the circuit is very straightforward. A TTL-level 8-bit binary word is applied to the DAC inputs D0 through D7.

Since no clock or outside timing is required, the conversion takes only the settle time of the MC1408 (about 300 ns). The MC1408 uses a binary ladder to switch and translate the signal into a current output. An op-amp, such as the LM741, can be used to convert the current signal into voltage.

The resolution of that circuit is 8 bits, which means that the analog output can vary from 0 to 10 volts through 2^8 or 256 individual steps. A binary word of 00h (hexadecimal) causes an output of 0 volts. A half-scale input of 7Fh generates 5 volts at the output. A full-scale input of FFh causes 10 volts at the output.

That circuit can easily be used just about anywhere a basic DAC is needed to interface a digital signal to an analog circuit. The digital word may be provided from a conventional computer port, a digital counter, or any other discrete TTL circuit. The analog output may be conditioned to drive meters, indicators, amplifiers, or other analog circuits.

Bipolar D/A application

The previous example shown in Fig. 15 showed a unipolar circuit, meaning that the output is only in one polarity. If a bipolar output is needed (one that varies from a negative to a positive voltage) the circuit can be changed as shown in Fig. 16.

Connecting the input of the op-amp to the reference resistor R2...
TABLE 1—POPULAR 8-BIT CONVERTERS

<table>
<thead>
<tr>
<th>Component</th>
<th>Type</th>
<th>Description</th>
<th>Resolution</th>
<th>Conversion Time</th>
<th>Settling Time</th>
<th>Supply Voltages</th>
<th>Price*</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC14433P</td>
<td>A/D</td>
<td>Dual Slope</td>
<td>3½ Digits</td>
<td>40ms</td>
<td>—</td>
<td>+5, +8</td>
<td>$7.00</td>
</tr>
<tr>
<td>MC14443P</td>
<td>A/D</td>
<td>Single Slope</td>
<td>8 bits</td>
<td>300ms</td>
<td>—</td>
<td>+5, +8</td>
<td>$4.00</td>
</tr>
<tr>
<td>MC14447P</td>
<td>A/D</td>
<td>Single Slope</td>
<td>8 bits</td>
<td>300ms</td>
<td>—</td>
<td>−5, +8</td>
<td>$4.00</td>
</tr>
<tr>
<td>MC14559BCP</td>
<td>A/D</td>
<td>Successive Approximation</td>
<td>8 bits</td>
<td>—</td>
<td>±3 to ±18</td>
<td></td>
<td>$7.00</td>
</tr>
<tr>
<td>ADC0803</td>
<td>A/D</td>
<td>Successive Approximation ±½ LSB</td>
<td>8 bits</td>
<td>100μs</td>
<td>—</td>
<td>+5V</td>
<td>$5.00</td>
</tr>
<tr>
<td>ADC0808</td>
<td>A/D</td>
<td>Successive Approximation ±½ LSB</td>
<td>8 bits</td>
<td>100μs</td>
<td>—</td>
<td>+5V</td>
<td>$5.00</td>
</tr>
<tr>
<td>ADC0809</td>
<td>A/D</td>
<td>Successive Approximation ±1 LSB</td>
<td>8 bits</td>
<td>100μs</td>
<td>—</td>
<td>+5V</td>
<td>$4.00</td>
</tr>
<tr>
<td>ADC0817</td>
<td>A/D</td>
<td>Successive Approximation ±1 LSB, 16-Channel</td>
<td>8 bits</td>
<td>100μs</td>
<td>—</td>
<td>+5V</td>
<td>$8.00</td>
</tr>
<tr>
<td>ADC0820</td>
<td>A/D</td>
<td>Flash Conversion Track/Hold Function</td>
<td>1.18μs</td>
<td>—</td>
<td>+5V</td>
<td></td>
<td>$8.50</td>
</tr>
<tr>
<td>MC1408P8</td>
<td>D/A</td>
<td>Multiplying</td>
<td>8 bits</td>
<td>—</td>
<td>300ns</td>
<td>+5, −15</td>
<td>$1.50</td>
</tr>
<tr>
<td>MC1408</td>
<td>D/A</td>
<td>Multiplying</td>
<td>8 bits</td>
<td>—</td>
<td>300ns</td>
<td>+5, −5 to −15</td>
<td>$1.50</td>
</tr>
<tr>
<td>DAC08</td>
<td>D/A</td>
<td>High-Speed</td>
<td>8 bits</td>
<td>—</td>
<td>150ns</td>
<td>±4.5 to ±18</td>
<td>$3.00</td>
</tr>
<tr>
<td>DAC0800</td>
<td>D/A</td>
<td>High-Speed Current Output</td>
<td>8 bits</td>
<td>—</td>
<td>100ns</td>
<td>±4.5 to ±18</td>
<td>$3.00</td>
</tr>
<tr>
<td>DAC0808</td>
<td>D/A</td>
<td>High-Speed</td>
<td>8 bits</td>
<td>—</td>
<td>150ns</td>
<td>±4.5 to ±18</td>
<td>$1.50</td>
</tr>
<tr>
<td>DAC0830</td>
<td>D/A</td>
<td>Double-Buffered Multiplying</td>
<td>8 bits</td>
<td>—</td>
<td>1μs</td>
<td>+5 to +15</td>
<td>$5.00</td>
</tr>
</tbody>
</table>

*All prices listed are approximate. Contact your local distributor for current prices and product specifications.

FIG. 17—A 2-DIGIT BCD-to-analog converter circuit can be made using an array of DAC's.

changes the circuit's frame of reference so that the amplifier's output will swing from −10 volts to +10 volts. In order to do that, the values of R1, R2, and R3 must be chosen very carefully. When a 00h is sent to the MC1408, its current output will be 0 mA, but the biasing of the op-amp will make the voltage output −10 volts. As the binary input increments to 7Fh, the analog output will rise to 0 volts. A binary word of FFh will raise the output to +10 volts.

The circuit in Fig. 16 represents a basic D/A sub-circuit. It can be used in just about any situation where 8 bits of resolution and 300 ns of settling time are appropriate, and a bipolar output is required.

continued on page 76
do seem to get several helpline calls each day from those of you who just "can't find" a technical paper at your local library. It's getting so bad that I am thinking of starting up a special "Couldn't find a pig in a dishpan" contest.

Pretty near all libraries provide the Interlibrary Loan Services, through which you can get any copy of any paper from anywhere. All you have to do is ask. There's also the UMI folks that can very quickly ship you a copy of anything from anywhere. Finally, at extra cost, you can instantly get a copy of any paper through the Dialog Information Service at your local library, and zeroing in on their Inspec, Compendex, or Mathsci data bases. A monthly update of the latest key abstracts should cost you under $20. While you can get the actual papers through Dialog, they are much cheaper through UMI, and cheaper still through those usual Interlibrary Loan snailmail services.

More on research topics like these can be found in my Incredible Secret Money Machine and in my Hardware Hacker III reprints. By far the most popular helpline request these days is for...

More on wavelets

For those of you that came in late, there's a math revolution taking place that we are intently following as an ongoing subject here in Hardware Hacker. This involves wavelet theory, a profound and earth-shattering improvement on klunky old Fourier transformation which is certain to totally change just about any and all advanced electronic topics.

There's now a brand new book on wavelets that aims at becoming the "horses mouth" classic. It is known as Wavelets (a catchy title, eh what?), and authored by a long list of name-brand wavelet biggies that start with G. Beylkin. It is published by Jones and Bartlett. No, it is not easy reading. Nor is it cheap.

Meanwhile, a spunky new outfit by the name of Aware Incorporated is making a big splash in actual out-the-door wavelet products. They have some wavelet demo and nice simulation software that you can run on a PC, and they seem to be the first ones out the gate with new wavelet transform accelerater chips. Their initial chips are intended for video compression of 512 x 512 images to either eight- or eleven-bit accuracy.

There seems to be several dozen new wavelet papers being released per month now, so it really is a zoo out there. The new wavelet tool is so fundamental and so important that everybody from the oil exploration geologists to cardiologists appear to be showing intense interest.

Most of these wavelet papers are, of course, totally unreadable. But to tune yourself into them, you use the Dialog Information Service at your local library, and zeroing in on their Inspec, Compendex, or Mathsci data bases. A monthly update of the latest key abstracts should cost you under $20. While you can get the actual papers through Dialog, they are much cheaper through UMI, and cheaper still through those usual Interlibrary Loan snailmail services.

Wavelets operate by transforming arrays of numbers into other arrays of numbers. Unlike the classic Fourier transformations, you can simply and quickly zero in on specific portions of a transformation problem, and can do so both locally and globally. You also do not have to worry about any ugly windowing problems. To not get way ahead of ourselves, though, we should first ask how we go about...

Understanding transforms

Before we take a new look at video compression, which is one of hottest emerging new wavelet uses, let's ask an even more fundamental question:

Just what is a transform? Why are they so crucially important? And why are certain hardware hacking doors permanently closed to you if you do not learn to use and love transforms?

Well, a transform is simply finding a different way of looking at some problem. Done properly, a transform will let something "magic" happen. What kind of magic? That depends. Transforms may just change things so they appear differently; may break something down into its fundamental parts; may extract non-obvious stuff in non-obvious ways; could let you separate signals from noise; may let you do more with less; or can perform any of a number of other unique (and often unexpected) tasks.

For instance, you can either listen to music or else transform that music to notes-and-staff notation on a piece of paper. Aside from it being a compact way of representing a song, the sheet-music notation lets you know what is going to happen next. It also, for better or worse, standardizes the way the song is supposed to be played.

These days, most transforms are done digitally. As Fig. 1 shows us, to do a transform, you take a pile of numbers in a grouping called an array and then apply some rule or set of rules to these numbers. The rules will usually involve adding, shifting, multiplying, trig functions, and other math stuff. Your result is a second array that holds the "answers" to your transform.

You might call your first array the real world plane and the second array the transform plane. Think of them as two different worlds. If you can undo what you just attempted with your transform, the transform is said to be lossless, and your reverse process is called an inverse transform.

For instance, you might take a picture and transform it. You might then modify the new numbers in the transform plane to extract the edge information, to recognize patterns, count...
objects, look for differences, or deblur the image. A final inverse transformation could then give you a "new" picture which has changed in some way from the original.

One fairly simple yet extremely important transform is known as the linear graphical transform. The linear graphical transform is used to change the size, position, rotation, and shape factor of an image or other graphics object.

The PostScript computer language is especially adept at making both linear and nonlinear transforms. And, unlike other languages, PostScript automatically does so continuously, invisibly, and on the fly, maintaining a separate user space and a machine-dependent device space.

Figure 2 shows you a simple linear graphical transform that can convert plain lettering into isometric lettering. Let's look at some numbers. The linear and nonlinear transforms. And, unlike other languages, PostScript provides for a horizontal shift, while the final F value sets the vertical shift.

Values A through F are plain old constant numbers for any selected transformation. If we think of these as an array of \([ABCDEF]\), your A value determines the horizontal scale. The B value decides how much climb you are going to get. And C decides how much lean. The D value sets the vertical scale. The E value provides for a horizontal shift, while the final F value sets the vertical shift.

For instance, you might use A and D to separately change the width and height of a font character or message. A positive C value would make your message oblique or italic, while a negative C would provide a reverse italic effect. Similarly, a positive or negative E gives you a superscript or subscript.

And a sneaky trick involving sines and cosines lets you rotate an image, again just by altering A through F in just the right way. Specifically, if \(\theta\) is your angle of rotation, just use...

\[
\begin{align*}
x' &= Ax + Cy + E \\
y' &= Bx + Dy + F
\end{align*}
\]

It may look ugly but works like a champ. The linear graphics transform lets you translate, scale, or rotate any 2-D object any way you like.

The point here is that most other transforms work exactly the same way. You start off with some pile of numbers, apply some rules to them, and end up with a second pile of numbers. And some very good things can happen along the way.

The grandaddy transform of them all is called the Fourier transform, while its computer implementation is called a Fast Fourier Transform or one of its improved offspring. Fourier transforms move you from the real world frequency domain on over into the time domain.

As an example, if you use Fourier transforms to analyze a square wave, you will break the wave down into a fundamental sine wave and weaker third, fifth, seventh, and other odd higher harmonics. Similarly, you can take a pile of sine waves and add them together by using the inverse Fourier transform in order to get the actual square wave back.

Finding the frequencies is called analysis; building the waveform is known as synthesis. Fourier transformation and all its newer offspring get used for nearly all advanced electronic applications. These include detecting earthquakes and heart attacks, robotic vision, side-looking radar, video compression, picture deblurring, high-defini-

FIG. 1—A DIGITAL TRANSFORM takes an array of numbers that usually represents something from the real world. It then applies a math rule or rules to all those numbers to create a new but related array of numbers in an imaginary transform space. Certain "magic" things will happen in the transformation process that can give you elegant new ways of solving advanced electronic problems.

FIG. 2—THE LINEAR GRAPHICS TRANSFORM is both a simple and very important example of transform use. Here, ordinary graphics and lettering have gotten changed into isometric lettering by using the math shown.
tion television, music synthesizers, sonar, geophysical exploration, holograms, spectrum analysis, machinery testing, and scads more.

As we've seen, the real excitement behind wavelets is that it does all of the things that Fourier transformation already does. Only wavelets do it far faster, far better, and much cheaper. Wavelet transformations also seem adept at localizing certain features, such as the leading and trailing edges of a square wave. Which is something that gives Fourier fits. Probably the hottest example of wavelet mania today involves...

Video compression

We are smack in the midst of a multimedia revolution that will let you directly manipulate top-quality pictures, artwork, and even superb animation on a personal computer. The big problem is to squash the information content of a high-quality color image down into a manageable space without degrading the picture too much. The HDTV (high definition television) people are grappling with their version of the same problem—How can you get all of those pixels squashed down into an acceptable transmission bandwidth?

Wavelets promise an exciting new solution to video compression. One that is fast, cheap, easily implemented in hardware, massively parallel, low on artifacts, and can give you compressions as high as 100:1.

And, what is even more exciting, it seems that researchers in human and animal vision are freshly discovering that either the wavelets or something very much akin to them is involved in nature's way of resolving the same types of visual and aural problems. So, something really heavy seems to be coming down here.

What makes a picture different from completely random pixels? The usual answers are edges, patterns, and large areas where the colors and shading change little if at all. If a picture is nearly random and if you must have everything in that picture, then there isn't much you can do to squash it down to a smaller size. On the other hand, if there are lots of edges, patterns, and large areas, and if some amount of visual degradation is allowed, then you can often squash your picture down considerably, possibly as much as 100:1.

Figure 3 shows you a histogram of a typical image. In this case, there are 256 gray levels, and each level gets used by the height of its bar as shown. Despite your usual image having lots of edges, patterns, and big areas, the histogram looks more or less like random noise.

But, apply a wavelet transform to the same picture, and you get the surprising histogram of Fig. 4. Wavelets are chosen that zero in on extracting key edge, pattern, and area information. The amazing result is that most of the values in your new histogram are zero and thus can be safely ignored!

An array with lots of zeros in it is called a *sparse data set*. By going to a fancy Huffman or a similar coding scheme, sparse data sets can be stored or transmitted much more compactly than an array in which every value is equally important.

There is usually a two-step process involved in video compaction. You first try to concentrate your picture energy in as few array numbers as possible, zeroing out as many of the others as you can. Then you code the final results as densely as you can.

As a reminder, a wavelet transform works just like any other transform. You start off with the first pile of numbers, play several simple math games on them, and end up with the second pile of new numbers. In the wavelet case, your math games are simple additions, shifts, and rotations. Math that is far less hairy than the fancy trig needed with conventional Fourier or DCT Transforms.

There are many popular wavelets, and new ones are being discovered daily. A typical compression wavelet need act only on a very few adjacent values in your original array and can use only simple shifts and adds. The wavelets are usually applied to rows in the array, and then reapplied to the resultant columns.

So far, we have thrown nothing whatsoever away. With some sneaky coding, your exact picture can now be stored in one third or less the space as the original. Or modemed in one third the time or broadcast in one...
third the bandwidth. And you can reverse the process at any time to get your exact picture back. But, we can do much better.

The eye can resolve some things quite well, and others poorly. You simply do not see some details, and others are too subtle to worry about. By zeroing out several more of the remaining numbers, and by being crude about how accurately you code the rest, you can trade off picture quality for added compression.

And your changes in quality are progressive and subtle. Instead of picking up obvious "jaggies" as you reduce your picture’s information content, you simply add broadband noise to it. Which is a much more pleasant and far less noticeable form of image degradation.

There are two papers on wavelet video compression that I’ve found both readable and useful. The first is Application of Compactly Supported Wavelets to Image Compression from William Zettler and the rest of the crew at Aware. Free single copies are available from them on request.

Secondly, while nearly anything on wavelets by John Daugman is a good choice, his Entropy Reduction and Decorrelation in Visual Coding by Oriented Neural Receptive Fields, in the IEEE Transactions on Biomedical Engineering, volume 36, number 1, January 1989, is outstanding.

Don’t let the long title scare you away on this one. It is both a good intro to wavelet video compression and a look about how nature may be already using the wavelets to solve thorny visual problems.

Should you want to explore the concept of histograms further, check out my HISTOGRAM.PS, available on GEnie PSRT as file #146.

The compression shootout

All of this leads to an interesting dilemma. As we have seen in past issues and in the Hardware Hacker III reprints, the previous all-time champion video squasher is called the Discrete Cosine Transform. A crew known as the Joint Photographic Experts Group is in the final throes of making the DCT a standard.

You can get a free single copy of the JPEG Technical Standard, Rev. 8 through Adobe Systems if you want further details. This is a “must have” document if you are at all interested in video compression.

At any rate, an awful lot of people have spent an awful lot of time and money to make the DCT a major new video-compression standard. Even PostScript Level II now has built-in DCT filters, and dozens of firms are offering or about to offer DCT compression solutions.

The only little problem here is that the wavelet transforms pass the DCT like it was sitting up on blocks. It appears that anything that the DCT can handle, wavelets can do faster, cheaper, better, and with far fewer objectionable artifacts.

in particular, there are background...
"tiling" effects using the DCT, but none using wavelets. Your wavelet transform computations are quite simple, and much easier to realize in standard or near-standard hardware. Wavelets are also good at building up the "big lumps" first, followed by finer detail. That gets important in animation or a rapidly changing video scene.

So, I guess we are going to shortly see the answer to the question "What happens when a bunch of people spend lots of time and effort creating a new standard that is clearly and ludicrously obsolete before the ink on the final version is dry?" Stay tuned on this one.

Power electronics resources

WHERE can you go to pick up a refundable $15. counter or a rapidly changing video scene. That gets important in animation or a rapidly changing video scene.

So, I guess we are going to shortly see the answer to the question "What happens when a bunch of people spend lots of time and effort creating a new standard that is clearly and ludicrously obsolete before the ink on the final version is dry?" Stay tuned on this one.

Power electronics resources

Where can you go to pick up a replacement 3000 amp, 2000-volt SCR for your locomotive? The answers to questions like that one involve power electronics, a somewhat arcane and rather specialized backwater to the ongoing solid-state electronics revolution.

As our resource sidebar for this month, I've tried to gather together some sources for all the "Big Mutha" semiconductors and related parts. That's stuff you might be getting into if you are now experimenting with electric vehicles, machine-tool controls, AC variable-speed motor drives, welders, industrial controls, and similar high-power goodies.

An old line distributor by the name of Galco does seem to be the best one-stop source for power semiconductors. Their Galco Gazette is free, while their 1500-page main catalog is a refundable $15.

A few of the many insider trade journals addressing power electronics include PCIM, Motion, NASA Tech Briefs, and Motion Control.

Hacker surplus power electronics seems catch-as-catch-can. But you can try Fair Radio Sales, C&H Sales, Surplus Traders, or else Herbach and Rademan.

Several of the more important manufacturers of the higher power semiconductors and support products include Asea Brown Bovari, Siemens, Powerex, Power Semiconductor, SGS, Plessey, International Rectifier, Motorola, Teccor, and Semikron. Most of them have extensive data books and application notes available.

Once again, I have a hollow feeling that I missed something obvious or important on this list. For one of our usual contests, just tell me about it.

Dot and bar generator

Plessey Semiconductors has just revised a bunch of great data books, including their Power Control IC Handbook and their Satellite Cable and TV IC Handbook. That revised gem is chock full of all sorts of goodies ranging from infrared remote controls to teletext, synthesizers, and satellite downlink chips.

One of their other chips you may find of interest is their ZNA234E TV pattern generator. The chip generates monochrome video patterns including dots, vertical lines, horizontal lines, crosshatch, or gray scale, and runs off a single +5-volt DC supply.

Figure 5 shows a typical circuit. A crystal frequency of 2.520 MHz is required for a 525-line NTSC output. An external RF modulator could be added for antenna-driven test needs.
This appears to be an older bipolar chip, since the supply current is an appallingly high 135 milliamperes. Yes, full interface is provided. Let me know what new uses you can come up with for this chip.

New tech literature

One good source of Mac repair parts and service information is Soft Solutions, while Rolf Taylor offers Apple II repairs. Exchange parts for both families are available through Shreve Systems.

A new line of ultra-high-quality fully professional RF ground plane breadboards is available from RF Prototype Systems.

For a rather unusual mechanical resource, Kindt-Collins offers all sorts of industrial waxes you can use for machining, CAD/CAM, mold making, investment casting, protection, and similar needs. Even water-soluble waxes are offered.

A pair of wildly different ongoing hacker magazines that are going great guns are *Elector USA*, chock full of hands-on construction projects, many with a European or continental bent, and Jeff Duntemann's really great *PC Techniques*, an intense software and hardware computing resource.

Two newsletters of interest to any of you digital ham radio types include *Digital Digest* and *RTTY Journal*.

If you are at all interested in the PostScript language, do start out with my *LaserWriter Secrets* book/disk combo, Adobe's "blue" *PostScript Cookbook*, or their "red" *PostScript Reference Manual II*. All three are available through my Synergetics, or ordered via GEnie PSRT e-mail.

We also now have the Hardware Hacker III and Midnight Engineering I reprints available, which have the latest and best of all these columns in them. All edited, revised, corrected, and indexed.

Finally, I do have a new and free mailer for you which includes dozens of insider hardware-hacking secret resources. Write or call for info.

Our usual reminder here that most of the items that have been mentioned in this column appear either in the Names and Numbers or in the Power Electronics sidebars.

As always, this is your column and you can get technical help and off-the-wall networking per that Need Help? box. The best calling times are weekdays 8–5, Mountain Standard Time. Let's hear from you.
The most well-known of the "non-standard" distortions—transient intermodulation (TIM)—achieved prominence in the early 1970's, mostly through the work of Matti Otala, a Finnish engineering researcher. He rediscovered that under certain conditions, amplifiers using high levels of overall output to input (or global) negative feedback would experience input overload even though the applied signal was theoretically too small to cause such a problem. I say rediscovered, because the effect had been documented, discussed, and solutions outlined in the early 1950's.

In a nutshell, the TIM story is this: A rapidly changing audio signal—meaning one with high-frequency components—would overdrive a feedback amplifier's input stage, while a signal of the same amplitude, but without high frequencies, would go through without problems. The overload occurred because the amp's input stage parameters assumed operation with the gain reduction of negative feedback, but the feedback signal did not get back to the input fast enough to prevent overload. A basic solution to TIM is to design for sufficient amplifier bandwidth—before feedback—to ensure that high-frequency signals can slew (travel fast enough) through the amplifier to avoid problems. Today, competent engineers can easily achieve adequate slew rate—and thereby forestall TIM—without really straining very much of their design talents.

Marketing esoteric distortions
If, as I (and others) claim, the distortion problem is essentially trivial in today's amplifiers, why all the technical papers and amplifier advertisements touting recently invented/discovered varieties of distortions and their cures? As far as I can tell, TIM and other similar obscure amplifier problems appeal to two groups: engineering academics seeking scholarly publishing credits and, especially, manufacturers and their advertising agencies.

Audio manufacturers, in an annual effort to differentiate their new products from those of their competitors, regularly discover—and eliminate—previously unrecognized sources of distortion. That reflects the need to ascribe special audible virtues to products that are really very good but, in truth, are no better than those of their competitors. If sales of a manufacturer's latest models can be enhanced by incorporating a newly developed lateral-feedback circuit to eliminate recently discovered problems of side-slip distortion, why not go for it?

In regard to those dedicated listeners who continue to hear problems or special desirable qualities in certain amplifiers, I would be willing to bet an extremely expensive set of diamond-encrusted tweeter cones that what they are hearing, for better or worse, has far more to do with minor frequency-response deviations than with any kind of old, new, or yet-to-be-discovered amplifier distortion mechanism.

Loudspeaker distortion
No one argues that loudspeakers are anywhere as distortion-free as amplifiers. In essence, a loudspeaker system is required to convert the electrical audio waveform supplied by an amplifier into an analogous three-dimensional acoustic waveform. Considering that loudspeakers do their jobs using an assortment of driven diaphragms vibrating in special boxes, the wonder (as someone once said of a chess-playing dog) is not that it does it well, but that it can do it at all!

The basic loudspeaker problem is linearity of transduction. That means that the speaker cone (and the voice coil that drives it) must move in exact accord with the audio input signal. Voice-coil motion constrained by its suspension or operating in a magnetically nonlinear portion of the voice-coil gap will generate large amounts of second- and third-order harmonic distortion. And any voice-coil movement not coupled accurately to the cone, and any cone movement not directly controlled by the voice coil, will distort the sound in some way. It's clear from test data and careful listening that in the last 15 to 20 years driver design and performance have improved dramatically.

Assessing distortion
About 15 years ago, I found myself on a business trip in England visiting the Rank Hi-Fi speaker research and manufacturing facility. An unexpected bonus of my visit was a day-long meeting with Dr. Peter Fryer, who was then deep into an investigation of speaker distortion and all its ramifications. One of his primary objectives was to assess the audibility of the types and levels of distortion commonly produced by loudspeakers.

Since IM distortion, as mentioned last month, is generally thought of as one of the worst culprits in making things sound bad, Fryer tackled it first. A distortion generator was built that could be set to inject a calibrated amount of IM ranging from 0.1% to 10%. A virtually distortionless amplifier and speaker system were designed and built and served as the "test bed" for all of the subsequent experiments.

Much to everyone's surprise, it was necessary to crank up the IM level to 5% or 6% before it became audible on typical complex musical material, rock or classical. With simpler music, such as a solo piano, 2% IM was clearly audible. And, when sine waves were used as the test signals, IM levels of 0.1 percent could be detected under carefully controlled conditions. None of that surprised me, since the findings neatly replicated the results of some ampli-
fier IM tests that I had been involved in four years earlier.

Fryer’s next series of tests involved kinds of distortion not found in amplifiers. Delayed resonance was something that had concerned the British for years, but to my knowledge was never an issue among U.S. speaker designers. Simply described, it is the tendency of parts of a driver’s cone assembly to store energy and continue to release it for some milliseconds after the original signal has ceased. It was described to me (you’ll have to imagine the British accent) as “the speaker carrying on broadcasting long after the program has finished.”

Unlike IM tests, the delayed-resonance research results were not easily summarized in numerical form. A basic finding was that broad low-Q resonances were far more audible than sharper peaks covering narrower bands, probably because the low-Q resonances were activated for a greater proportion of the signal. When the peak is very broad and low (< Q of less than 1), the audible effect is simply an increase in level over the affected portion of the frequency band.

The primary finding of the research was that it behooves the speaker-driver (and speaker-system) designer to eliminate resonances whenever possible, a task that has been significantly facilitated in the past decade by laser analysis of cone movement and modal vibration analysis of speaker-cabinet walls.

Doppler distortion

A distortion that excites partisan bickering among speaker-system designers, Doppler distortion occurs when a cone is undergoing low-frequency excursions while simultaneously reproducing high frequencies. The theory is that the high frequencies reaching the listener’s ears will be alternately compressed and stretched by the low-frequency movements of the cone. There is no question that speakers do produce Doppler distortion. The real question is: How audible is it under normal playing conditions?

A Doppler distortion generator was developed using a delay line that could be varied at a rate determined by a low-frequency signal. A total voice-coil movement of more than two inches could be simulated, certainly more than enough to simulate any real-world condition. Fryer summarized the results of days of experiments by saying that, with the possible exception of small full-range speakers (such as are found in portable radios), normal loudspeaker systems used in the home will never produce enough Doppler distortion for it to be audible.

The bottom line

As with amplifiers, most of what we hear going wrong in hi-fi speakers is in the frequency domain. However, straightening out an amplifier’s frequency response is duck soup compared to the task facing a speaker designer. If an amplifier’s response has a bump or a dip, a few resistors and capacitors will usually flatten it nicely. Speaker frequency response, on the other hand, involves manipulating magnetic, mechanical, and acoustic variables, in addition to the electronics of the crossover network. But improved materials and know-how come to continue the task immeasurably easier. And anyone who has done any comparison listening in the past dozen years knows that speakers continue to improve.

Earn Your B.S. Degree in ELECTRONICS or COMPUTERS

By Studying at Home

Grantham College of Engineering, now in its 41st year, is highly experienced in “distance education”—teaching by correspondence—through printed materials, computer materials, fax, and phone.

No commuting to class. Study at your own pace, while continuing on your present job. Learn from easy-to-understand but complete and thorough lesson materials, with additional help from our instructors.

Our Computer B.S. Degree Program includes courses in the BASIC, PASCAL, and C languages—as well Assembly Language, MS DOS, CADD, and more.

An important part of being prepared to move up is holding the right college degree, and the absolutely necessary part is knowing your field. Grantham can help you both ways—to learn more and to earn your degree in the process.

Write or phone for our free catalog. Toll free, 1-800-955-2527, or see mailing address below.

Accredited by the Accrediting Commission of the National Home Study Council

GRANTHAM
College of Engineering
Grantham College Road Slidell, LA 70460
BCD-to-analog converter

The input signal to the MC1408 does not have to be pure binary. An array of D"A's can be configured to convert a 2-digit BCD input into a corresponding analog output voltage. Figure 17 shows a circuit that can be used as a BCD-to-analog converter.

Notice that only the lower four bits of each DAC are used to accept the BCD signal. The four most significant bits are grounded. The TTL signal can be provided through discrete sources (such as thumbwheel switches) as well as BCD counters or other binary circuits. The most significant digit DAC drives the op-amp directly. The output from the least significant digit DAC is divided by 10 through a resistor network and added to the signal from the most significant digit to produce the 0- to 10-volt output. The value of the feedback resistor \(R_f \) can be adjusted to vary the output range from 0 up to 10 volts.

A BCD input of 00 will yield 0 volts out. As the BCD input increases to 50, the output voltage will climb to 5 volts. An input of 99 will give an output of 10 volts. Since the input range is now only 100 steps (00 to 99), the analog output will travel from 0 to 10 volts over 100 steps instead of the 256 steps that all 8 bits would normally offer. Although a BCD to analog converter sacrifices some resolution, it can provide interesting advantages where special inputs are required.

Basic A/D application

A basic A/D converter can be built using a Texas Instruments ADC0808 as shown in Fig. 18. That is also a generic circuit which can be used to interface an analog voltage to a computer port or other digital circuit.

The ADC0808 uses the successive approximation method of A/D conversion. In normal operation, an analog voltage (from 0 to +5 volts) is applied to the IC at \(V_{IN} \). When a conversion is required, a TTL-level start conversion signal is applied to the converter. In that case, a momentary pushbutton is used to provide the pulse. Any other TTL logic pulse may be used to start the conversion as well. A fast square-wave clock source (of about 500 kHz) steps the ADC quickly through its conversion process. When the conversion is complete, the IC will latch the digital result onto the output pins and generate an end of conversion signal.

Since that is a 0 to +5-volt ADC, a 0-volt input will generate a binary 00h at the output. An input of 2.5 volts output 7Fh, and a full 5-volt input output FFh.
Amiga owners are a small but extremely vocal minority. As expected, my remarks in the April issue generated a fair amount of controversy. In fact, letters continue to arrive. Originally I planned a response for this month but, due to high reader interest, I will wait another month.

New directions
This month is special in other ways, however. It marks a new beginning for this column. For the past four or five years I have focused mostly under the hood, talking about products and technologies in some detail. If you follow the column, you’ve probably noticed a shift in the past few months to higher-level issues. Beginning this month, I will begin the process of formalizing the shift.

From now on, the column will consist of three major sections: reader interaction, products and technologies, and industry focus. The latter represents the biggest change in format. Each month I will examine what’s happening in industry in two broad areas: important new innovations and the movements toward standards and open systems. I will summarize what has happened, based on both published and unpublished reports, and then speculate on what it means. In addition, because at heart I’m really a hands-on kind of person, I’ll provide regular product cameos and occasional in-depth reviews. I hope you enjoy the new format; either way, your opinion is welcome.

Standards and integration
It’s a commonplace that the U.S. is slipping in several industries: computer systems (both large and small) and semiconductors, to mention a couple. What are the computer and chip companies doing about it, if anything? Large companies are slimming down by eliminating lots of jobs. IBM, for example, recently cut its ranks by 10,000; last year, DEC “downsized” by about 4000. Cutting the fat helps reduce overhead, but doesn’t help solve underlying problems, the single largest one of which is lack of responsiveness to real customer needs.

Detroit didn’t pay attention when the customer said I want small, efficient, quality-built cars. So Japan stepped in. Nobody in this country listened when the customer said I want small, sexy electronic devices. So Japan stepped in. And Korea. Ad nauseam.

So far the computer industry has been relatively immune to foreign invasion. Nonetheless, customers aren’t happy. One of the biggest bones of contention is proprietary standards: incompatible user-interface conventions, networks that won’t talk to each other, incompatible data formats among application programs that for all intents and purposes are functionally identical. Ad nauseam.

In some of those areas, the industry has made significant progress. For example, IBM’s System Application Architecture (SAA) includes a user-interface component, Common User Access (CUA) that is rapidly becoming the de-facto standard, with support by Windows, OS/2 PM, and OSF/Motif.

In the world of network standards, support for the seven-layer OSI reference model has been increasing steadily. Effective August 1990, the U.S. Government mandated that all future purchases must be compliant with GOSIP, the Government OSI Profile. Because the feds are among the largest market for data-processing equipment, that mandate has already had a calming effect on the industry.

As for cross-platform data incompatibility, that’s a problem that is only now beginning to be addressed. Sure, there are translator programs that convert among various database, graphics, and word-processing formats. But those are inelastic solutions, akin to asking a diner to prepare his own food. Customers want more.

We’ve seen limited, platform-specific solutions to this problem before. For example, integrated software (e.g., the Smart series, Microsoft Works), followed by data-exchange format standards (e.g., DDE under Windows and OS/2). Probably the most comprehensive approach to date is being developed by the Object Management Group, a consortium of major computer vendors. Microsoft recently joined the OMG, leaving IBM the only major holdout. OMG is defining a set of application program interfaces (API’s) for managing objects in a networked computer environment. If you know anything at all about the term, you know that an object consists of both data and code that acts on that data; the latter are called methods.

Under the OMG’s scheme, application programs will become dumber, because objects will become smarter. Applications will be dumber because they won’t have to try to interpret every type of data under the sun. Therefore, they will be more efficient, easier to develop, and more reliable. Data objects will be smarter, hence more useful, because they will know how to do things like print and display themselves. Watch for this type of technology to rapidly change the way we think about “data” and “programs.”

A related but perhaps even more ambitious effort is a group called Patriot Partners, composed of 75 assignees from IBM and Metaphor. Patriot Partners is attempting to define and build an object-oriented operating environment that will run on multiple operating systems (Windows, OS/2, OSF/Motif) and will provide a common interface to each. An application built for this environment will run on any underlying OS. Borland has announced support for
I'm not much of an artist, but I love PC-based drawing tools so much that I can't resist getting my hands dirty from time to time. In the PC world, the two premier general-purpose drawing packages are Corel Draw and Micrografx Designer. Designer came out first, and I fell in love with it. Then Corel Systems introduced its product, which is a model of user-interface design. Subsequently, the two programs continually leapfrog each other by increasing features and usability. Version 3.0 of Designer is Micrografx's latest entry; the package has improved tremendously since version 2.0. New features include Bezier curves, much improved text handling, much improved support for symbols (an area in which Corel is still struggling), tracing of bitmap files (PCX, TIFF, etc.), and much improved on-line help and printed documentation. Designer's support for layers and grids is like many CAD programs; Corel also lacks in that area. (Corel leads in 3-D effects, however.) Designer comes with thousands of pieces of clip-art, including many electronics symbols: op-amps, digital logic symbols, diodes, coils, resistors, capacitors, plugs, jacks, speakers, switches, transistors—most of what you need, and of course you can create your own. The program lists for $695. Micrografx, 1303 Arapaho, Richardson, TX 75081. (800) 733-3729. (214) 234-1769.

CIRCLE 41 ON FREE INFORMATION CARD

The notion of a "dictionary" on a PC used to be ludicrous. Now that virtually all PC's contain hard disks, the idea is much more appealing. Several companies have released PC-based dictionaries; the best is the American Heritage Electronic Dictionary. It runs as a RAM-resident program that you can pop up within your word processor (see Fig. 1). It contains the most complete definitions of any electronic dictionary I've seen, and includes etymologies (word histories). It also contains functions for searching with wildcards, for anagrams, boolean searches, and a thesaurus. For example, can you name any English word that contains all the vowels in order? Think before you read the answer below.

The AHED runs fine under Windows; in 386 Enhanced mode, you can pop the program up in a simulated text-mode screen. The program also comes with a basic word processor called Writer. Without Writer, the AHED occupies about 3.7 megabytes of disk space. The AHED lists for $89.95 comes in versions for both PC and Mac, and is available from Houghton Mifflin, One Memorial Drive, Cambridge, MA 02142. (800) 633-4514. (617) 252-3000.

Answers: abstemious, abstemiousness, abstemiously, adventitious, adventitiousness, adventitiously, arsenious, arsenicous, arsphenous, facetious, facetiousness, facetiously, have it out, sacrilegious, sacrilegiously, sacrilegiousness, sympathetic nervous system, take into account, take it out.

CIRCLE 42 ON FREE INFORMATION CARD

There are lots of menu programs for Windows 3.0 that provide a convenient way to organize and launch your applications. The simplest and most elegant I've seen is a little shareware program called Launch. With Launch installed, you click on the desktop background, and hold the left button down. A menu pops up that lists your favorite applications. Highlight your choice, release the mouse button, and you're off. The program includes several convenience items that you can add to the menu as well, including functions to arrange icons on the desktop and to exit Windows. The program reads the menu from an ASCII text file, so it's easy to create and update. As I write, the program is in version 1.5; 2.0 is due by the time you read this. If you feel overburdened by the fancy menu programs, you'll love Launch. I'll post a copy on the RE-BBS (516-293-2283, 1200/2400, 9N1). I'll also post a copy of ASO, a program for analyzing PC memory and hardware configuration. Qualitas (the 386Max people) wrote ASO and are distributing it at no cost. It's got some advertising hype, but includes a fair amount of system and tutorial information. Other companies charge $30 to $100 for this type of program.

At a recent trade show, I accidentally ran into a representative of the Canadian company that wrote and distributes the Electronics Workbench, a CAD-like program that allows you to simulate analog and digital circuits on a PC compatible. As reported here in the December 1990 column, the program is great for beginning and intermediate students, but at $650, much too expensive for individual purchase. My writeup generated a lot of reader interest; consequently, the company got together with a large U.S. publishing firm, and expects to release a "personal" version by next fall. Cost should be about $30, and will include some sort of workbook and a functional program. Stay tuned for details, or contact the company directly (and tell 'em we sent you). Interactive Image Technologies, 49 Bathurst St., Suite 401, Toronto, Ontario, Canada. M5V 2P2. (416) 361-0333.

FIG. 1-THE AMERICAN HERITAGE ELECTRONIC DICTIONARY shows pronunciation and word origin, and provides a thesaurus and extensive search capabilities.
How to Expand, Modernize and Repair PCs and Compatibles

BP271—Includes PC overview, memory upgrades, adding a hard disc, adding floppy drives, display adapters and monitors, installing a co-processor, preventive maintenance, repairs, do it yourself PCs and more. To order your copy send $7.75 plus $2.00 for shipping in the U.S. to Electronic Technology Today Inc., P.O. Box 240, Massapequa Park, NY 11762-0240.

Adjustment with Monitor

This environment, as the premier supplier of object-oriented programming tools, this is exciting news.

A related development is Unicode, a consortium of leading computer vendors (IBM, Apple, Microsoft, Sun, Next, Novell, and others) that has begun the process of defining the successor to the ASCII character set. ASCII is a seven-bit code, limited to 128 characters. By contrast, Unicode is a 16-bit code, allowing 64K characters, enough to represent all code is a 16-bit code, allowing 64K to 128 characters. By contrast, Unicode is a 16-bit code, allowing 64K characters, enough to represent all languages as well.

News bits

Recession? What recession? After hitting an all-time low in November of 1990, semiconductor sales are on the rise again. The first two months of 1991 set an all-time record, and the Semiconductor Industry Association is optimistic that the industry could grow by about 10% this year. **MacClones?** Apple’s continually shrinking market share has finally forced Sculley and crew to understand that they’re in business to sell computers, not religion. The company recently acknowledged interest in licensing the Mac operating system to vendors of other hardware platforms, most likely including some flavor of Intel chips. With the rapidly increasing popularity of the 386/486, technical problems should be few, as the advanced Intel processors overcome the limitations of earlier processors that used to make the Motorola family attractive. **PolyGlot PostScript.** Adobe Systems is expected to announce a PostScript-based utility that allows transparent data sharing across multiple platforms. **OS Soup.** IBM will try to ease skepticism about OS/2 with a marketing blitz designed to promote understanding of the operating system, applications for it, DOS and Windows compatibility, and futures. Watch for OS/2 2.0 to sweep the industry just like Windows 3.0 has.

Secrets of the Commodore 64

BP135—A beginners guide to the Commodore 64 presents masses of useful data and programming tips, as well as describing how to get the best from the powerful sound and graphics facilities. We look at how the memory is organized, random numbers and ways of generating them, graphics-color-and simple animation, and even a chapter on machine code. Get your copy today. Send $5.00 plus $1.25 for shipping in the U.S. to Electronic Technology Today Inc., P.O. Box 240, Massapequa Park, NY 11762-0240.

486 blues

Just when 386-based systems start to become affordable, the 486 moves in as the new high-end option. However, the 486 may penetrate the market much quicker than did the 386. Intel is poised to release several updated 486's, a 50-MHz unit, and a "crippled" or de-featured unit (variably called the P23 and the 486SX) that comes without the math coprocessor, and that runs slower (20 MHz) than a full 486. Remember that even running at the same clock speed, a 486 is about twice as fast as a 386. Several vendors have already announced P23 systems priced under $3000.

The P23 isn't stopping American Micro Devices, which is shipping 40-MHz versions of its 386 clone. Also, Chips & Technologies and Cyrix have introduced system logic and math coprocessors, respectively, that support the new device. Intel's not scared, however: the company has shown a 486 running at 100 MHz.
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Price</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2920</td>
<td>500 ELECTRONIC IC CIRCUITS & PRACTICAL APPLICATIONS</td>
<td>$29.95</td>
<td>A wealth of electronic circuits and information on building working devices</td>
</tr>
<tr>
<td>3100</td>
<td>INTERNATIONAL ENCYCLOPEDIA OF INTERGRATED CIRCUIT</td>
<td>$75.00</td>
<td>This quick-reference provides pin-out diagrams, internal block diagrams, and</td>
</tr>
<tr>
<td>3138</td>
<td>ELECTRONIC CIRCUITS VOLUME TWO</td>
<td>$60.00</td>
<td>Provides many never-before-published troubleshooting techniques and case</td>
</tr>
<tr>
<td>9225</td>
<td>10016 DESIGN TIGHTER, MORE COMPLEX CIRCUITS</td>
<td>$39.95</td>
<td>Design tighter, more complex circuits, on time and on budget with this book,</td>
</tr>
<tr>
<td>9290</td>
<td>3414 Completely updated with new sections on</td>
<td>$39.95</td>
<td>Completely updated with new sections on mathematics and digital electronics.</td>
</tr>
<tr>
<td>012609-7</td>
<td>PRINTED CIRCUITS HANDBOOK</td>
<td>$64.95</td>
<td>All the information you need to design, manufacture, test, and repair printed</td>
</tr>
<tr>
<td>065443-3</td>
<td>ENGINEERING MATHEMATICS HANDBOOK</td>
<td>$57.50</td>
<td>This best-selling handbook gives you the essential mathematical tools,</td>
</tr>
<tr>
<td>028735-X</td>
<td>STANDARD HANDBOOK OF ENGINEERING CALCULATIONS</td>
<td>$79.50</td>
<td>Puts more than 1,100 specific calculation procedures at your fingertips. Every</td>
</tr>
<tr>
<td>057537-1</td>
<td>SILICONIX INC REVISED BY ED DIERRE</td>
<td>$39.95</td>
<td>This on-the-job guide provides page after page of practical data, tables,</td>
</tr>
<tr>
<td>8225P</td>
<td>BASIC MATHEMATICAL PROGRAMS FOR ENGINEERS</td>
<td>$19.95</td>
<td>Tested programs for most mathematical computing needs.</td>
</tr>
</tbody>
</table>

Take any 3 books for only $9.95
as your introduction to the new ELECTRONICS ENGINEERS' BOOK CLUB

Values to $116.40
How the Club Works:
The Electronics Engineers and Designers Book Club and the Electronics and Control Engineers’ Book Club have joined forces to bring you all the best titles from the most prominent electronics publishers.

YOUR BENEFITS: You get 3 books for $9.95 plus shipping and handling when you join. You keep on saving with discounts of up to 50% off as a member.

YOUR PROFESSIONAL BOOKSTORE BY MAIL: Every 3-4 weeks, you will receive the Electronics Engineers Book Club News describing the Main Selection and Alternates, as well as bonus offers and special sales, with scores of titles to choose from.

CLUB CONVENIENCE & EASY RISK-FREE TERMS: If you want the Main Selection, do nothing and it will be sent to you automatically. If you prefer another selection, or no selection at all, simply indicate your choice on the reply form provided. You will have at least 10 days to decide. As a member, you agree to purchase at least 3 books within the next 2 years and may resign at any time thereafter. If not satisfied with your books, return them within 10 days without obligation!

BONUS BOOKS: Starting immediately, you will be eligible for our Bonus Book Plan, with savings of up to 80% off publishers’ prices.

EXCEPTIONAL QUALITY: All books are top-quality editions from ALL the publishers in the field especially selected by our Editorial Board to ensure the information provided is reliable and specific enough to meet your needs.

All books are hardcover unless number is followed by a “P” for paperback. (Publishers’ Prices Shown) ©1991 EEDC, Blue Ridge Summit, PA 17294-0860

...to bring you the largest selection of titles available anywhere else—at savings of up to 50% off publishers’ prices!

Electronics Engineers’ Book Club
Blue Ridge Summit, PA 17294-0860

YES! Please accept my membership in the ELECTRONICS ENGINEERS BOOK CLUB and send my 3 volumes listed below billing me $9.95. If not satisfied, I may return the books within 10 days and have my membership cancelled. I agree to purchase 3 or more books at regular Club Prices during the next 2 years, and may resign any time thereafter. A shipping/handling charge and sales tax will be added to all orders.

Name ____________________________
Address __________________________
City ____________________________ State ______ Zip ______
Phone __________________________

Valid for new members only. Foreign applicants will receive special ordering instructions. Canada must remit in U.S. currency. This order subject to acceptance by the Electronics Engineers Book Club.
FOR SALE

TUBES: “oldest,” “latest.” Parts, and schematics SASE for lists. STEINMETZ, 7519 Maplewood Ave. RE, Hammond, IN 46324

ENGINEERING software. PC/MSDOS. Circuit design and drawing, PCB layout, Logic simulation, FFT analysis, Mathematics, Circuit analysis. Call or write for free catalog. 1(800) 728-3805, BSOF SOFTWARE, INC., 444 Colton Rd., Columbus, OH 43207.

RESTRICTED technical information. Electronic surveillance, schematics, locksmithing, covert sciences. SASE for lists. STEINMETZ, 7519 Maplewood Ave., CLEVELAND, OH 44105.

TUBES, new, up to 90% off. SASE, KIRBY, 298 West Carmel Drive, Carmel, IN 46032.

CABLE TV converters and discriminators. We sell only the best. Low prices. SB-3 $79.00. We ship C.O.D. Free catalog. ACE PRODUCTS, PO Box 582, Dept. E, Saco, ME 04072. 1 (800) 234-0726. CABLE discriminators (Jerrold) from $40.00. Tocom VIP test chip. Fully activates unit. Also Zenith test chip. 1(800) 234-0726. TOCOM VIP converters w/remotes from $299.00. TOCOM VIP test chip. Fully activates unit. Also Zenith test board. Fully activates Z-2acs. $30.00. Call (513) 867-0081.

WELL established electronics repair business with great growth potential, large inventory, asking $125,000. Write to M. TRUPTMAN, Box 760, Brewer, ME 04414-0760.

CB RADIO OWNERS!

We specialize in a wide variety of technical information, parts and services for CB radios. 10-Meter and FM conversion kits, repair books, plans, high-performance accessories. Thousands of satisfied customers since 1972! Catalog $2.

CABLE INTERNATIONAL
P.O. BOX 31500RE, PHOENIX, AZ 85046

WARRANTY MasterCard Visa COD’s Ouantity Pricing LIFETIME1602) 947-7700 (43.00 Credit all phone orders)

FOR SALE

WELL established electronics repair business with great growth potential, large inventory, asking $125,000. Write to M. TRUPTMAN, Box 760, Brewer, ME 04414-0760.

CB RADIO OWNERS!

We specialize in a wide variety of technical information, parts and services for CB radios. 10-Meter and FM conversion kits, repair books, plans, high-performance accessories. Thousands of satisfied customers since 1972! Catalog $2.

CABLE INTERNATIONAL
P.O. BOX 31500RE, PHOENIX, AZ 85046

WARRANTY MasterCard Visa COD’s Ouantity Pricing LIFETIME1602) 947-7700 (43.00 Credit all phone orders)

FOR SALE

WELL established electronics repair business with great growth potential, large inventory, asking $125,000. Write to M. TRUPTMAN, Box 760, Brewer, ME 04414-0760.

CB RADIO OWNERS!

We specialize in a wide variety of technical information, parts and services for CB radios. 10-Meter and FM conversion kits, repair books, plans, high-performance accessories. Thousands of satisfied customers since 1972! Catalog $2.
WIRELESS CABLE RECEIVERS 1.9 TO 2.7 GHz
914-735-5505
203/731-1770
300+ ROGANTANTENNYS
$100.00
300+ CRYSTAL CONTROLLED SYSTEMS 59.95
300+ Pure DC Power Processors $3.50 each
#30 N $3.50 each
500+ New IEC components
$1.00 each
500+ Other
$1.00 each
QUANTITY DISCOUNTS

CABLE TV "BOXES"
Converters + Descramblers + Remote Controls + Accessories
FREE CATALOG!
1-800-437-4720
10% GUARANTEED BEST PRICES!
1 YEAR WAR. GY 1 YEAR WARRANTY!
BID SHIPMENTS! DECAL ELECTRONICS
4835 N. O'Connor Rd.
Dallas, TX 75234

HIGH-VOLTAGE plans. Create fork lighting 500.00V — 1,200.000V Catalog 1.00. SCIENTIFIC, Box 1054RF, Duvall, WA 98019.

MARK V ELECTRONICS, INC.
Order in California 800-521-3902.
Order Outside CA 800-423-4950.
FREE CATALOG & INFORMATION (213) 896-8988.
FAX (213) 896-8988.

AMPLIFIERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Kit</th>
<th>ASSEMB.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA-100A</td>
<td>15W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-2800</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-477</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-2800</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-477</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-2800</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-477</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-2800</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-477</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-2800</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-477</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-2800</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-477</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-2800</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-477</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-2800</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-477</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-2800</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-477</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-2800</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-477</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-2800</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-477</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-2800</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-477</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-2800</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-477</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-2800</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-477</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-2800</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-477</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-2800</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-477</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-2800</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-477</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-2800</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-477</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-2800</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-477</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-2800</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-477</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-2800</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-477</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-2800</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-477</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-2800</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-477</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
<tr>
<td>TA-2800</td>
<td>60W mono Power Amp</td>
<td>TA-1500</td>
<td>$150.00</td>
</tr>
</tbody>
</table>
ANNUONING:
AN END
TO HIGH MONTHLY CABLE FEES!

All Jerrold, Oak, Hamlin, Zenith, Scientific Atlanta, Magnavox and all specialized cable equipment available for shipment within 24 hours. CABLETRONICS, 14703 E Baltimore Ave., Suite 256, Laurel, MD 20707. No Maryland sales tax.

PLANs AND KITS

SMD How to use surface mount technology. Build ultra miniature projects. Plans include wire, infrared control, and an interesting light display. Send $15.00 to CHARLIE'S VIDEO, Dept: SRT, PO Box 7782, La Sierra, CA 92503.

WARNING!
CABLE BOX DEALERS
Consider the facts before you buy after-market cable equipment

An industry standard defines 25% of all after-market cable boxes do not work when first tested...

All wholesalers advertise low prices...but low prices are not enough. Any price is too high if you’re without technical support or quality control.

Now consider that your success as a dealer depends on the satisfaction of your customers.

Wholesale Cable Supply offers services that are near a defined science. And we guarantee 100% satisfaction.

Monthly Special

- Guaranteed Low Prices
- State-of-the-Art technical support
- Top Quality Tested Products
- Dealer Market Support

WHOLESALE CABLE SUPPLY
Low Price is only the beginning

1-800-926-6836
723 CAMINO PLAZA, STE. 108, SAN BRUNO, CA 94066

CABLETRONICS, INC.
1304 E. Algonquin Road Suite 501
Algonquin, Illinois 60001

CABLE equipment top quality, best prices, warranty, satisfaction guaranteed. Scientific Atlanta Jerrold. Deluxe combo $199.00. Standard combo $169.00, Check/money order/COD. (301) 829-1521.

SUPER low prices on computers, motherboards, hard and floppy drives, add-on cards. We have everything. Full line of test equipment at unbeatable prices. Call for free catalog. APPLIED ELECTRONIC RESEARCH, INC., Hollywood, FL (305) 987-9785.

WHOLESALE CABLE SUPPLY

CABLE equipment top quality, best prices, warranty, satisfaction guaranteed. Scientific Atlanta Jerrold, Oak, Hamlin, Zenith, Scientific Atlanta, Magnavox and all specialized cable equipment available for shipment within 24 hours. CABLETRONICS, 14703 E Baltimore Ave., Suite 256, Laurel, MD 20707. No Maryland sales tax.

PLANs AND KITS

SMD How to use surface mount technology. Build ultra miniature projects. Plans include wire, infrared control, and an interesting light display. Send $15.00 to CHARLIE'S VIDEO, Dept: SRT, PO Box 7782, La Sierra, CA 92503.

WARNING!
CABLE BOX DEALERS
Consider the facts before you buy after-market cable equipment

An industry standard defines 25% of all after-market cable boxes do not work when first tested...

All wholesalers advertise low prices...but low prices are not enough. Any price is too high if you’re without technical support or quality control.

Now consider that your success as a dealer depends on the satisfaction of your customers.

Wholesale Cable Supply offers services that are near a defined science. And we guarantee 100% satisfaction.

Monthly Special

- Guaranteed Low Prices
- State-of-the-Art technical support
- Top Quality Tested Products
- Dealer Market Support

WHOLESALE CABLE SUPPLY
Low Price is only the beginning

1-800-926-6836
723 CAMINO PLAZA, STE. 108, SAN BRUNO, CA 94066

CABLETRONICS, INC.
1304 E. Algonquin Road Suite 501
Algonquin, Illinois 60001

CABLE equipment top quality, best prices, warranty, satisfaction guaranteed. Scientific Atlanta Jerrold, Deluxe combo $199.00. Standard combo $169.00, Check/money order/COD. (301) 829-1521.

SUPER low prices on computers, motherboards, hard and floppy drives, add-on cards. We have everything. Full line of test equipment at unbeatable prices. Call for free catalog. APPLIED ELECTRONIC RESEARCH, INC., Hollywood, FL (305) 987-9785.

WHOLESALE CABLE SUPPLY

HYPNOTIZE or Relax electronically! Alpha meditation in 30 minutes. Complete kit $53.00. Free information.

MARK WORLEY, Box 21113, San Diego, CA 92196

SURVEILLANCE transmitter kits! Four models of each, telephone, remote, combination television/ remote transmitters tune from 65 to 305 MHz. Catalog with Popular Communications and Popular Electronics book reviews of "Electronic Dropping Equipment Design," $2.00.

SHIELDING ELECTRONICS, 7253 Stony Island Ave., Chicago, IL 60649-2806

DISTINCTIVE RING SWITCH
Additional phone numbers to a single line with the new Distinctive Ringing service from the phone company. RingDirector detects ring patterns and routes calls to phones, answering machines, FAX's or modems. 2-port $39. 4-port $149. 1-800-677-7969 FAX 516-676-9225

EXCELLENT TECHNOLOGY
69 Smith Street, Glen Head, NY 11545

BUILD from simple materials, phenomenal economy. Detailed plans for live versions. Good science project. Send $20.00 check or Visa to: VALLEY MICROWAVE, Station C, Bear River, Nova Scotia, Canada B0S 1B0 or phone (902) 467-3577.

SATISFAC TION GUARANTEED!

MCM Electronics OUTSHINES the rest...

For more information or a FREE subscription to our catalog call TOLL FREE

1-800-543-4330

Source No. RE-71

AMAZING
SCIENTIFIC & ELECTRONIC
PRODUCTS

LASERS AND SCIENTIFIC DEVICES

TUBES - 2000 TYPES

TUBE ELECTRONIC SUPPLY
6621 S. Maple Ave. • Temple, AZ 85233 • 602-820-5411

VTR KIT
300 W 12 Volt Laser Diode System Kit $199.50
VLR-10 Laser Beam Bouncer Light Kit $99.50
VLC20 Visible Simulated 3 Color Laser Kit $44.50
LC7 40 Watt Burning Cutting Laser Plans $70.00
RUR-E Hi-Powered Polishing Drilling Laser Plans $200.00
LQO40 1 to 20W 3580 Vis Red Laser Gun Assembled $199.50
LPS1 Laser-bi-ray - 2 Methods Plans $200.00
SSGK See in the Dark Kit $299.50
EMI-14 Electromagnetic Coil Gun Kit $69.50
MCP1 Hi-Velocity Coil Gun Plans $15.00
LEV1 Levitating Device Plans $10.00
EMI Electronic Hypnosis Techniques Plans $10.00

HIGH VOLTAGE AND PLASMA DISPLAY DEVICES

HVN-60 75,000 Volt DC Variable Output Lab Source Kit $119.50
IDS4 Ion Ray Gun Kit, project energy without wires $69.50
NCSM 12/115 VAC Hi-Buf Reg Ion Generator Kit $34.50
EM-4 Ridirectional Enhancer-Electric Man Assembled $59.50
LCS1 Lighting Display Globe Kit $34.50
BTCX Worlds Smallest Tesla Coil Kit $49.50
BTCX2 Tobacco Tesda Coil Kit $249.00
BTC3 1 Million Volts Tesla Coil Plans $20.00
JL3 Jacobs Ladder - 3 Models Plans $15.00
GRA1 Anti Gravity Generator Plans $10.00
PF20 Plasma Fist-4 Safety Assembled $89.50
DLP10 Dancing Plasma to Music and Sounds Assembled $78.50

SECURITY AND PROTECTION DEVICES

ITM10 100,000 Volt Intimidator up to 20' Assembled $129.50
IPG10 Invisible Pain Field Blast Wave Gun Assembled $74.50
PS-69b Photon Sound Blast Wave Pistol Kit $59.50
LE-10 Infinity Laser, Liesin in Via Phone Assembled $199.50
TAT 2D Automatic Tel Recording Device Assembled $24.50
VW/FRTR 10 MHz Auto Tel Transmitter Kit $49.50
FMUV-1 2 MHz Voice Transmitter Kit $39.50
HDB-1c Homing/Tracking Beeper Transmitter Kit $49.50

EASY ORDERING PROCEDURE TOLL FREE 1-800-221-1705

MCM ELECTRONICS OUTSHINES the rest...

For more information or a FREE subscription to our catalog call TOLL FREE

1-800-543-4330

Source No. RE-71
12" Subwoofer Box
The perfect high volume cabinet for dual voice coil subwoofers. Box comes with pre-cut woofer and port holes. Cabinet volume: 2 cu. ft. with dual ports. Charcoal carpet. Dimensions: 13" (H) x 13" (W) x 13" (D). Weight: 29 lbs.

- **Model**: #RJ-260-495
- **Price**: $59.90 each

12" Pioneer Subwoofer

- **Model**: #RJ-270-085
- **Price**: $25.30 (1-3) $23.95 (4-up)

12" Pyle Woofer
Original Sanyo high end system midrange. Large 5" paper cone with gold top dust cap. Heavy 12 oz. magnet. 1" teflon fluid cooled voice coil. 50 watts RMS, 75 watts max. Sanyo part #S126110

- **Model**: #RJ-292-050
- **Price**: $62.90 (1-5) $59.90 (6-up)

1203 Grant Avenue, Rockford, IL 61103.

CABLE TV SECRETS — the outlaw publication the cable companies tried to ban. HBO, Movie Channel, cable companies tried to ban. HBO, Movie Channel, CABLE TV Secrets — the outlaw publication the idea? Call AMERICAN INVENTORS CORPORATION for free information. Over a decade of service. 1-800-338-0531.

FOR Sale

- **Model**: #RJ-290-145
- **Price**: $288.00 $249.50 (1-3) $25.00 (4-up)

18" Eminence Woofer
Super duty 200 watt RMS. Power handling capability. Designed specially for dual voice coil subwoofer systems. 12 db per octave roll-off at 150 Hz into 8 ohms. Crossover also features a set of outputs for use with your existing speaker system. Network is totally passive, requiring no power source of its own.

- **Model**: #RJ-260-220
- **Price**: $28.80 (1-5) $24.95 (6-up)

CALL TOLL FREE
1-800-338-0531

EducatioN & Instruction

LEARN IBM PC assembly language. 80 programs. Disk $5.00. Book $18.00. ZIPFAST, Box 12238, Lexington, KY 40581-2238.

COMPLETE course in electronic engineering. Eight volumes. Includes all necessary math and physics. Free brochure. BANNER TECHNICAL BOOKS, 1203 Grant Avenue, Rockford, IL 61103.

INVENTORS

- Can you patent and profit from your idea? Call AMERICAN INVENTORS CORPORATION for free information. Over a decade of service. 1-800-338-0531.
- In Canada call (415) 968-3753.
FREE CATALOG!
1-800-648-7938
JERROLD, HAMLIN OAK ETC
CABLE TV DESCRAMBLERS
- Special Dealer Prices!
- Compare our Low Retail Prices!
- Guaranteed Prices & Warranties!
- Orders Shipped Immediately!

M.D. Electronics will match or beat any advertised wholesale or retail price. Enjoy top service, top quality. FREE SHIP-

M.D. ELECTRONICS
675 SQ. 72nd St.
Omaha, NE 68114
(800) 562-6884
FREE CALL
OPEN SATURDAYS
1 800 562-6884
VIDEO TECH
3702 S. Virginia St. Ste. 160-304
Reno, NV 89502

INVENTORS! Your first step is important. For free advice, call ADVANCED PATENT SERVICES, Washington, DC, 1 (800) 438-0332.

TRAVEL! High income! Radio officers wanted for shipboard employment. Must have FCC second telegraph license. Rae Echols, AMERICAN RADIO ASSOCIATION, 5700 Hammerds Ferry, Lithicum, MD 21090.

WIRELESS RCA FM mike, oldstyle, with dangling antenna, for parts. Collect (416) 499-6367 MD 21090.

LET the government finance your small business Grants loans to $500,000. Free recorded message: (707) 449-8600. (K51)

MAKE $75,000 to $250,000 yearly or more fixing IBM color monitors (and most brands). No invest-
ment. Start doing it from your home. (A telephone required) Information, USA, Canada $100 cash
US funds. other countries $8 00 RANDALL DISPLAY, Box 2168 R Van Nuys, CA 91404 USA

CABLE TV
BLOW OUT!!!
CHOOSE FROM THE FOLLOWING PACKAGES:

PKG. #1...
10 PANASONIC 1453G CONVERTERS $65 EA

PKG. #2...
8 SCIENTIFIC ATLANTA 8556+ COMBINATIONS $175 EA

PKG. #3...
5 SCIENTIFIC ATLANTA 8550 COMBINATIONS $215 EA

PKG. #4...
10 MIX AND MATCH ADD-ONS $45 EA

ALL EQUIPMENT IS BRAND NEW. FACTORY FRESH!!!
CALL (800) 234-1006 CABLE READY COMPANY

ELECTRONIC
ASSEMBLY BUSINESS
Start home spare time. Investment knowledge or experience unnecessary. BIG DEMAND assen-
FREE: Complete illustrated literature BARTA RE-00 Bux 248

FREE BOOKLET: 800.223.4542.

INVENTIONS/ new products/ideas wanted: call TLCI for free information 1 (800) 648-7200 24 hours-
day - USA/Canada

INVENTORS: We submit ideas to industry. Find out what we can do for you. 1 (800) 268-IDEA.

NEED help with your electronic project, PCB as-
sembled/unlicensed. BROADCASTING, Box 130-
10461-0208.

MJME INDUSTRY, Box 531, Bronx, NY
your own electronics business. Send for free facts.

ZENITH & TOCOM SPECIALS
SUPER Zenith (Z-TAG) converters (flashing), $179.00. Zenith "turn-on" module... $49.00. To-
com 5503(A) converters... $159.00. Tocom (add-on) descramblers... $79.00. Tocom (5503-VIP & S507) "turn-on" chips... $49.00. Tocom 5507 sec-
curity screw removal bits... $22.00. CINEPLEX VID-
EO GROUP, 1 (800) 726-4627.

M.D. ELECTRONICS
675 SQ. 72nd St.
Omaha, NE 68114
(800) 562-6884
FREE CALL
114-16.1:1kvi1:144 :1=

INVENTIONS/ new products/ideas wanted: call TLCI for free information 1 (800) 648-7200 24 hours-
day - USA/Canada

INVENTORS: We submit ideas to industry. Find out what we can do for you. 1 (800) 268-IDEA.

NEED help with your electronic project, PCB as-
sembled/unlicensed. BROADCASTING, Box 130-
10461-0208.

MJME INDUSTRY, Box 531, Bronx, NY
your own electronics business. Send for free facts.

ZENITH & TOCOM SPECIALS
SUPER Zenith (Z-TAG) converters (flashing), $179.00. Zenith "turn-on" module... $49.00. To-
com 5503(A) converters... $159.00. Tocom (add-on) descramblers... $79.00. Tocom (5503-VIP & S507) "turn-on" chips... $49.00. Tocom 5507 sec-
curity screw removal bits... $22.00. CINEPLEX VID-
EO GROUP, 1 (800) 726-4627.

INVENTIONS/ new products/ideas wanted: call TLCI for free information 1 (800) 648-7200 24 hours-
day - USA/Canada

INVENTORS: We submit ideas to industry. Find out what we can do for you. 1 (800) 268-IDEA.

NEED help with your electronic project, PCB as-
sembled/unlicensed. BROADCASTING, Box 130-
10461-0208.

MJME INDUSTRY, Box 531, Bronx, NY
your own electronics business. Send for free facts.
SOLDERLESS PROTOTYPING BOARDS

<table>
<thead>
<tr>
<th>EasyTech</th>
<th>Price Order #</th>
<th>Price</th>
<th>L x W x H</th>
<th>Dist. Strips</th>
<th>Dist. Terminals</th>
<th>Term. Points</th>
<th>Binding Posts</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB830</td>
<td>2.99</td>
<td>2.49</td>
<td>6.5 x 3.7 x 4</td>
<td>200 x 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SB400</td>
<td>4.80</td>
<td>4.39</td>
<td>3.3 x 2.2 x 4</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SB630</td>
<td>6.49</td>
<td>4.99</td>
<td>6.5 x 1.4 x 4</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SB830</td>
<td>6.49</td>
<td>4.99</td>
<td>6.5 x 2.2 x 4</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SB1360</td>
<td>12.49</td>
<td>11.99</td>
<td>8.5 x 3.9 x 1.2</td>
<td>100</td>
<td>2</td>
<td>1260</td>
<td>2</td>
</tr>
<tr>
<td>SB1660</td>
<td>17.49</td>
<td>16.99</td>
<td>8.5 x 5.1 x 1.2</td>
<td>400</td>
<td>2</td>
<td>1260</td>
<td>3</td>
</tr>
<tr>
<td>SB2300</td>
<td>22.49</td>
<td>21.99</td>
<td>9.1 x 6.9 x 1.2</td>
<td>500</td>
<td>3</td>
<td>1890</td>
<td>4</td>
</tr>
<tr>
<td>SB3220</td>
<td>31.49</td>
<td>30.99</td>
<td>9.5 x 8.3 x 1.2</td>
<td>700</td>
<td>4</td>
<td>2520</td>
<td>4</td>
</tr>
</tbody>
</table>

STEEL ENCLOSURE SERIES

<table>
<thead>
<tr>
<th>Order #</th>
<th>1-9</th>
<th>L x W x H</th>
<th>Dimensions (in.)</th>
<th>Dist. Strips</th>
<th>Dist. Terminals</th>
<th>Term. Points</th>
<th>Binding Posts</th>
</tr>
</thead>
<tbody>
<tr>
<td>E3119A</td>
<td>12.95</td>
<td>8 x 7 x 2.5</td>
</tr>
<tr>
<td>E3119B</td>
<td>15.95</td>
<td>12 x 7 x 2.5</td>
</tr>
<tr>
<td>E3119F</td>
<td>19.95</td>
<td>17 x 11 x 2.5</td>
</tr>
<tr>
<td>E3119G</td>
<td>13.95</td>
<td>8 x 7 x 3.5</td>
</tr>
<tr>
<td>E3119K</td>
<td>24.95</td>
<td>17 x 11 x 3.5</td>
</tr>
<tr>
<td>E3119P</td>
<td>29.95</td>
<td>28.95</td>
<td>17 x 11 x 3.5</td>
</tr>
</tbody>
</table>

ORDER DIRECT:
Call or Write for Catalog:
THE ELECTRONICS SOURCE
2917 Bayview Drive Fremont, CA 94538
Order Direct: 1-415-770-2345
Fax Direct: 1-415-770-2346
Monday-Friday, 7am - 5pm (PST) 10am - 6pm (EST)
Add 5% of total for shipping charges ($3.00 min.)
www.theelectronicssource.com/evtech
We Have QUALITY PARTS • We Have DISCOUNT PRICES • We SHIP FAST

ALL ELECTRONICS CORP.

GEAR MOTOR

Everest & Jennings
24 V series, high torque, permanent magnet gearhead motor with replaceable brushes. Rated for 24 Vdc; operates fine on 12 Vdc. We have these originally built for wheelez, 1/2" dual shaft on final drive. Ratings: 12 Vdc: 1.7 amps 220-230 rpm 24 Vdc: 2.0 amps 440-470 rpm 24 Vdc: 2.0 amps 440-470 rpm

TOUCH DIMMER

2 Dc power pack, 8 ft, 2 conductor power cord on input. 22" cord with stripped and tinned pigtail leads on output. 3.2" x 2.3" x 1.5". CAT # DCTX-121 $6.75 each

12 Vdc: 1 Amp power pack, 8 ft.

FLUORESCENT FIXTURE

Fluorescent lamp. Starter switch, sockets and ballast are mounted on 7 1/4" x 3 1/4" metal plate. Includes 8 foot power cord with strain relief. Use with standard fluorescent lamp for display lighting or with ultraviolet lamp for special effects or EPHOM erasure. U.L. listed. CAT # FLX-1 $4.50 each

SWITCHES

Dip P.C. Pushbutton
ITT Schidaw Digitast Series B8
S.P.D.T. momentary pushbutton. Mounts in 5/16" diameter hole. Can be used for low current switching applications. Grey keycap is 0.66" x 0.67. CAT # PB-28 $1.00 each 10 for $9.00 100 for $15.00

Pushbutton Switch
SMK Manufacturing
0.37" square black pushbutton. SPST normally open. 4 p.c. pins for mounting. Ideal for low current switching applications. CAT # PB-28 $1.00 each 10 for $9.00 100 for $15.00

Rotary BCD Switch
EDCO # 2310-DGG
10 position rotary switch. Dip configuration fits in standard 8 pin I.C. socket. Right angle style screwdriver actuation. 0.42" cube. CAT # RDIP-2 $1.75 each 10 for $16.00 100 for $145.00

Miniature Toggles
Radial: 3 amps @ 120 Vac
S.P.D.T. (ON-ON) P.C. mount CAT # MTS-4PC $1.00 each 10 for $9.00 100 for $80.00
S.P.D.T. (ON-ON) solder lugs CAT # MTS-4S $1.50 each 10 for $12.50 100 for $110.00
D.P.D.T. (ON-ON) solder lugs CAT # MTS-7S $2.00 each 10 for $15.00 100 for $130.00
D.P.D.T. (ON-ON) P.C. mount CAT # MTS-8PC $2.00 ea. 10 for $17.50

TELEPHONE KEYPAD

12 button telephone keypad. Very finish. 2.63" x 2.2" x 0.58" thick. Matrix encoded. Ideal for telephone or security keypad. CAT # KPT-1 $1.50 each. 10 for $9.00

OPTO-SENSOR

TRW/Cptron # OBRS447-2-7 A 7800 Series Opto-isolator with 300mA current. Rectangular package with 28 color coded leads. CAT # OSRA-2 for $1.00

PHOTOFLEX CAPACITOR

Rubicon CE
010 Mfd 320 Volt Photoflash capacitor. 0.079" dia. X 1.1" high. These new capacitors have been prepped with 1/4" black and red leads soldered to the terminals. CAT # PPC-310 $1.25 each 10 for $11.00 100 for $100.00

Rechargeable Batteries

6 Volt 1 Amp/Hour Japan Storage Battery Co. Portalong, Japan. 6 Volt 1 Ah rechargeable sealed lead-acid gel cell. 21" x 1 3/4" x 2". Batteries are prepped with red and black leads terminal and with 2 pin connector. CAT # GC-61 $4.75 each 10 for $42.50

Nickel-Cad

AA4 SIZE $1.50 each 1.25 volts 180 mAh CAT # NCA-AAA
AA SIZE $2.00 each 1.25 volts 500 mAh CAT # NCA-AA
AA SIZE $2.00 each 1.25 volts 1000 mAh CAT # NCA-A

L.E.C. POWER CORD

6 foot BLACK, SPH-386 jack to 3 prong molded A.C. plug. Fits most computers. CAT # LCAC-C6 $3.00 each

Audio Slide Pot

Dual 1K audio. 3 1/2" long. 2 1/2" wide. Red and black leads. CAT # ASP-1KD $1.00 each 10 for $9.00

L.E.D. Power Cord

Red $1.00 each CAT # LED-1 10 for $10.00 100 for $90.00
Green $1.00 each CAT # LED-2 10 for $10.00 100 for $90.00
Yellow $1.00 each CAT # LED-3 10 for $10.00 100 for $90.00
Flasher LED 3 volt flashing circuit CAT # LED-F $1.00 each 10 for $9.00

Flash Assembly

New compact flash assembly from a U.S. manufacturer of cameras. Operates fully on 3 Vdc and measures 2 1/2" x 1 3/4". Ideal for use as a strobe lighting or stroboflasher. Includes hook-up diagram. CAT # FSH-1 $3.75 each 10 for $35.00 100 for $325.00

Hall Effect Sensor

Microswitch #5541 Tiny solid state switch reacts instantly toroximity of magnetic field. Operates on high speeds, up to 100 kph. Case size: 0.12" x 0.17" x 0.06" thick. 4.5 Vdc to 24 Vdc supply voltage 10 volt sink type output. Operating gaunts: 15 to 40. P.C. leads CAT # HEWS-2 $1.50 each 10 for $14.00

P.C. Relays

The following relays all have p.c. pins for both input and output as well as quick-connect terminals. The following contacts are rated 10 amps. CAT # DRY-31 $2.50 each 10 for $22.50

CAT # DRY-32 $2.50 each 10 for $22.50

KITS

L.E.D. Flasher Kit

Two L.E.D. flashers in units when a 9 volt battery is attached. This kit includes a photo board, all the parts and instructions to make a simple flash or circuit. A quick and easy project for anyone with basic soldering skills. CAT # LEDKT $7.15 per kit

L.E.D. Chaser Kit

Build this variable speed ed chaser 10 leds flash sequentially at whatever speed you set them for. Easy to build kit includes pc board, parts and instructions. Ideal for special lighting effects, costumes, etc. Operates on 3 to 9 volts. PC board is 5" x 2.5". A great one hour project. CAT # ACS-PC $5.50 each

Stepping Motor Controller Kit

Learn about stepping motors while building this simple circuit. Includes circuit board, stepping motor and all parts except 12 Vdc power supply. CAT # SMKIT $18.00 each

Metronome Kit

This simple device can be set to click from 20 to 1,000 beats per minute. Easy to build, includes circuit board, all components and instructions. Operates on a 9 volt battery (not included). CAT # METRO $3.75 each

Photo Resistor

1,000 ohms bright light. 6'6" dark. Metal pin. 0.182" dia. X 0.88" high. 0.18" long leads CAT # PFR-2 $2.00 each 10 for $18.00 100 for $150.00

Order Toll Free 1-800-826-5432

FAX (818) 781-2653 • INFORMATION (818) 904-0524

Call or Write For Our Free 64 Page Catalog

Order now to receive our FREE 64 page catalog, which features thousands of the latest in electronics, home entertainment, computers, and more. Please note that minimum order is $10.00 and all orders can be charged to Visa, Mastercard, or Discover. Orders are shipped within 48 hours of receipt. All orders arrive with tracking number. Orders outside the contiguous United States and Canada are subject to additional postage costs. International orders are shipped via the U.S. Postal Service, International Priority Mail. Returns are accepted within 30 days of receipt. All returns must be in new condition and accompanied by a return merchandise authorization (RMA) number. Return shipping charges are the responsibility of the customer. Please visit our website for more details or call us at 818-781-2653.

Order Toll Free 1-800-826-5432

FAX (818) 781-2653 • INFORMATION (818) 904-0524
Perfectly Tuned for

Test/Measurement and Prototype Equipment

51-Piece Electronic Tool Kit

Tools Included in Kit:
- 10" measuring tape
- 5.25" needle nose pliers
- Electric tape
- Utility components box
- 6 piece precision screwdriver set
- 6" long tweezers
- 8 piece hex key wrench set
- 7" brush and scraper
- Digital Multimeter
- Brush
- 7" line point probe
- Round needle file
- 10 piece screwdriver set
- 6 Slotted & 4 Phillips
- 7" slotted probe
- Flat needle file
- 4.5" diagonal cutting pliers
- 6" adjustable wrench
- 30 Watt soldering iron
- 5.5" Stainless steel
- Soldering stand
- Rosin core solder
- 5.25" Flat nose pliers
- Utility knife with extra blade
- Desoldering pump
- 5.25" Bent needle nose pliers
- Carrying case
- 17.63"W x 12.5"D x 3.5"H

MS305

$119.95

Global Specialties Protoboard® Design Station

Features:
- Ideal for analog, digital and microprocessor circuits
- Triple DC regulated power supplies, +5V, +15V, -15V
- 8 logic indicators
- Function generator with sine, square, triangle and TTL waveforms
- Two debounced push-button switches
- Two SPDT slide switches, all leads available and uncommitted
- A total of 2520 uncommitted tie-points
- Potentiometers: one 1KΩ and one 10KΩ
- Includes power supply, instrumentation and breadboarding

PB503

$299.95

Soldering and Desoldering Stations

60 Watt Analog Display Soldering Station • Electronic temperature control from 200° to 878°F • Cartridge heating element for a longer life of the soldering tip

XY1683

$69.95

30 Watt Electronic Temperature Controlled Desoldering Station • Electronic temperature control from 212° to 842°F • Self contained high rotary vacuum pump

XY999

$299.95

JPEG Image
Assemble Your own Computer Kit!

Jameco 16MHz 80386SX Desktop Computer Kit

- Building your own computer provides you with a better understanding of components and their functions.
- In-depth assembly instructions included.
- Have your new computer assembled and running in an evening, using common tools.
- Software included.
- Purchase computer kits configured by Jameco or design your own.

Jameco 16MHz 80386SX Desktop Computer Kit

Includes:
- 80386SX Motherboard with 2MB RAM (expandable to 6MB)
- 101-key enhanced keyboard
- Multi I/O Card
- Toshiba 1.44MB, 3.5" DSHD floppy disk drive
- Baby sized desktop case
- 200 Watt power supply
- DR DOS 5.0 by Digital Research and AMI diagnostic software

$949.95
JE3816
minimum order apply

Integrated Circuits

<table>
<thead>
<tr>
<th>Part No.</th>
<th>1-9</th>
<th>10+</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400</td>
<td>.29</td>
<td>.19</td>
</tr>
<tr>
<td>7402</td>
<td>.29</td>
<td>.19</td>
</tr>
<tr>
<td>7404</td>
<td>.29</td>
<td>.19</td>
</tr>
<tr>
<td>7405</td>
<td>.35</td>
<td>.25</td>
</tr>
<tr>
<td>7406</td>
<td>.39</td>
<td>.29</td>
</tr>
<tr>
<td>7407</td>
<td>.39</td>
<td>.29</td>
</tr>
<tr>
<td>7408</td>
<td>.35</td>
<td>.25</td>
</tr>
<tr>
<td>7410</td>
<td>.29</td>
<td>.19</td>
</tr>
<tr>
<td>7411</td>
<td>.35</td>
<td>.25</td>
</tr>
<tr>
<td>7414</td>
<td>.35</td>
<td>.25</td>
</tr>
<tr>
<td>7417</td>
<td>.35</td>
<td>.25</td>
</tr>
<tr>
<td>7420</td>
<td>.29</td>
<td>.19</td>
</tr>
<tr>
<td>7422</td>
<td>.35</td>
<td>.25</td>
</tr>
<tr>
<td>7423</td>
<td>.35</td>
<td>.25</td>
</tr>
<tr>
<td>7430</td>
<td>.45</td>
<td>.35</td>
</tr>
<tr>
<td>7434</td>
<td>.49</td>
<td>.39</td>
</tr>
<tr>
<td>7445</td>
<td>.75</td>
<td>.65</td>
</tr>
<tr>
<td>7446</td>
<td>.89</td>
<td>.79</td>
</tr>
<tr>
<td>7447</td>
<td>.89</td>
<td>.79</td>
</tr>
<tr>
<td>7449</td>
<td>.89</td>
<td>.79</td>
</tr>
</tbody>
</table>

Miscellaneous Components

Potentiometers

Values available (insert ohms into space marked "XX"): 500, 1K, 5K, 10K, 20K, 50K, 100K, 1MEG

43PXX: 3/4 watt, 15 turn

43PXX: 1/2 watt, 1 turn

Transistors And Diodes

PN2222... $1.15
PN2907... $1.25

1N4004... $0.12
1N4148... $0.12
1N4148... $0.15
2N2222A... $0.50

Switches

JMT123... $1.25
205-8... $0.10

MP121... $1.25
MS102... $0.25

D-Sub Connectors and Hoods

DB37P... $0.75
DB25P... $0.75

XC209R... $0.14
XC556R... $0.12

XC556G... $0.16

IC Sockets

Low Profile

<table>
<thead>
<tr>
<th>Low</th>
<th>Wire Wrap (Gold) Level #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>8LP</td>
<td>$0.11</td>
</tr>
<tr>
<td>14LP</td>
<td>$0.49</td>
</tr>
<tr>
<td>16LP</td>
<td>$0.79</td>
</tr>
<tr>
<td>24LP</td>
<td>$1.15</td>
</tr>
<tr>
<td>28LP</td>
<td>$1.39</td>
</tr>
<tr>
<td>40LP</td>
<td>$1.89</td>
</tr>
</tbody>
</table>

SolderTab Standard & Header Plug Sockets Also Available

Additional items that Jameco offers:
- Tools
- Cables
- Connectors
- Data Books
- Motherboards
- Memory
- Math Coprocessors
- Computer Accessories
- Power Protection Equipment
- Much, much more!

Let us show you what we have to offer; call or write for the latest Jameco catalog!

$50.00 Minimum Order

Data Sheets - 50¢ each

For a FREE 90-Page catalog send $2.00 to cover First Class postage and handling
©1991 Jameco Electronics, Inc.
CA Residents Add 6.00%, 65% or 7.00% sales tax
Shipping, handling, and insurance are additional.
(All items may vary depending on weight and shipping method)
Terms: Prices subject to change without notice. Items subject to availability and prior sale.

Complete list of terms and conditions available upon request.

Please refer to Mail Key 2 when ordering.

Top Performance.

Computer Products and Electronic Components

JAMECO

24 Hour Order Hotline
(415) 592-8097
FAX: (415) 592-2503
(415) 595-2664
1355 Shoreway Road
Belmont, CA 94002

Look to Jameco.......
- Wide selection of integrated circuits and components
- Quality prototype and test equipment
- Computer kits and accessories

Customer Service · Technical Assistance · Credit Department · All Other Inquiries (415) 592-8097 · 7AM - 4PM P.S.T.

CIRCLE 114 ON FREE INFORMATION CARD
94

THE ELECTRONIC GOLDMINE

The Electronic Goldmine has one of the greatest selections of unique electronic kits available in the world. We have over 100 kits and over 1,400 catalog entries. We carry transistors, diodes, resistors, capacitors, ICs, LEDs,....

INFRADETECTORMAT

INFRADETECTORMAT
Countersurveillance

Never before has so much professional information on the art of detecting and eliminating electronic snoopers been placed in one VHS video. If you are a Fortune 500 CEO, an executive in any hi-tech industry, or a novice seeking entry into an honorable, rewarding field of work in countersurveillance, you must view this video presentation again and again.

Wake up! You may be the victim of stolen words—precious ideas that would have made you very wealthy! Yes, professionals, even rank amateurs, may be listening to your most private conversations.

Wake up! If you are not the victim, then you are surrounded by countless victims who need your help if you know how to discover telephone taps, locate bugs, or "sweep" a room clean.

There is a thriving professional service steeped in high-tech techniques that you can become a part of! But first, you must know and understand Countersurveillance Technology. Your very first insight into this highly rewarding field is made possible by a video VHS presentation that you cannot view on broadcast television, satellite, or cable. It presents an informative program prepared by professionals in the field who know their industry, its techniques, kinks and loopholes. Men who can tell you more in 45 minutes in a straightforward, exclusive talk than was ever attempted before.

Foiling Information Thieves

Discover the targets professional snoopers seek out! The prey are stock brokers, arbitrage firms, manufacturers, high-tech companies, any competitive industry, or even small businesses in the same community. The valuable information they filch may be marketing strategies, customer lists, product formulas, manufacturing techniques, even advertising plans. Information thieves eavesdropped on court decisions, bidding information, financial data. The list is unlimited in the mind of man—especially if he is a thief!

You know that the Russians secretly installed countless microphones in the concrete work of the American Embassy building in Moscow. They converted what was to be an embassy and private residence into the most sophisticated recording studio the world had ever known. The building had to be torn down in order to remove all the bugs.

Stolen Information

The open taps from where the information pours out may be from FAX's, computer communications, telephone calls, and everyday business meetings and lunchtime encounters. Businessmen need counseling on how to eliminate this information drain. Basic telephone use coupled with the users' understanding that someone may be listening or recording vital data and information greatly reduces the opportunity for others to purloin meaningful information.

The Dollars You Save

To obtain the information contained in the video VHS cassette, you would attend a professional seminar costing $350-750 and possibly pay hundreds of dollars more if you had to travel to a distant city to attend. Now, for only $49.95 (plus $4.00 P&H) you can view Countersurveillance Techniques at home and take refreshers views often. To obtain your copy complete the coupon below or call toll free.
Plus, Cut Your Video Troubleshooting Time By 54%* With The Patented VA62A Universal Video Analyzer!

Identify tuner problems with the only integrated all-channel, VHF, UHF, and cable RF generator. Standard TV, standard cable (2-99), and exclusive programmable cable channels eliminate the question "Is it the TV or is it the cable?"

Pinpoint IF troubles with modulated troubleshooting signals and exclusive programmable IF generator. How do you presently identify if the suspected defect is in the AGC, IF/Detector IC, or caused by the tuner? Wouldn't you like to know exactly where the defect is before you order the part or pull the tuner. With the VA62A you will!

Exclusive video patterns completely performance test TVs, VCRs, and monitors — without removing the cover. Is there a picture, is it locked in, is the bandwidth correct, is the brightness and contrast correct, and is the color tint and saturation correct? You'll know in less than 60 seconds using the VA62A’s exclusive video patterns.

Find defective stages, without disconnecting parts, with exclusive phase-locked drive signals. "Swamp out" the suspect signal and replace it with a known-good signal. You'll isolate the problem to a bad stage in minutes, guaranteed.

Test yokes and flybacks with the patented “Ringer”. Most shops are forced to substitute yokes and flybacks instead of analyzing circuits. The VA62A's patented "Ringer" and exclusive flyback drive tests allow you to completely analyze all yokes, flybacks, and IHVTs before you order a new one.

Measure signal levels with a fully autoranged PPV and DCV digital meter. The VA62A's built-in meter shows when you are driving into a shorted circuit and prevents you from overdriving critical stages. Plus, measure bias voltages and signal levels throughout the entire TV and VCR.

It's obsolete proof: update for new technology with exclusive phase-locked accessories. We'll provide new companion units as the manufacturers announce new formats, test patterns, etc. This makes your VA62A a protected investment.

* Based on a nationwide survey of users who reported an average time savings of 54% compared to their previous test equipment.

For More Details Call 1-800-SENCORE ext. 612

(736-2673)

CIRCLE 180 ON FREE INFORMATION CARD