DSP: THE NEW BUZZ WORD IN CONSUMER ELECTRONICS

BUILD THIS 16-CHANNEL, 50-MHZ LOGIC ANALYZER
A full-featured stand-alone analyzer

BUILD A SOLID-STATE COMPASS
Hall-effect sensors keep you on the right track

FUEL CELLS
A look at the technology behind tomorrow's energy source

PC-BASED TEST EQUIPMENT
Measuring voltage and resistance with your PC

V/F CONVERTERS
How Voltage-to-frequency converters can provide a low-cost alternative to ADC's.

BUILD A SOLID-STATE COMPASS
Hall-effect sensors keep you on the right track

FUEL CELLS
A look at the technology behind tomorrow's energy source

V/F CONVERTERS
How Voltage-to-frequency converters can provide a low-cost alternative to ADC's.
FLUKE AND PHILIPS - THE GLOBAL ALLIANCE IN TEST & MEASUREMENT

FLUKE

High Resolution Digital Meter:
- 4000 count digital readout, 20,000 count mode (Fluke 87) for 4½ digit resolution
- Backlit display: Makes it easy to read the DMM in dark, cramped quarters. Automatically shuts off after 68 seconds to save the battery
- Recorder: records minimums and maximums, plus true arithmetic average, audible Min Max Alert; selectable response times -1 second and 100 ms (all models) plus 1 ms Peak Min Max (Fluke 87)
- Holster with Flex Stand**: Protects meter and provides test lead storage. Flexible leg allows meter to be hung from peg, bent around a pipe, or used almost anywhere

FLUKE 83FLUKE 85FLUKE 87

amps, diode test, audible continuity, relative, protective holster with Flex Stand**

Analog Meter: High-speed analog display updates 40 times/second - as fast as the eye can follow. X10 Zoom bargraph mode (Fluke 83 and 85) makes high resolution offset measurements a snap.

Frequency counter: Accurate down to 0.5 Hz. Also measures duty cycle

Capacitance meter:
- Autoranging, with manual ranging at the touch of a button

Holster with Flex Stand**: Protects meter and provides test lead storage. Flexible leg allows meter to be hung from peg, bent around a pipe, or used almost anywhere

Meet the meter that brings an entire test bench to your job. The versatile Fluke 80 Series do-just-about-everything "Multi" Meter.

It offers everything you'd expect from an advanced handheld DMM, plus a lot you'd find only in dedicated instruments. Plus Fluke-exclusive features you can't buy anywhere else. All built with the most advanced surface mount design and single-chip ASIC technology for a thinner, tougher, more reliable package.

There's a fully annunciated display for clear operation. Duty cycle function. High-speed analog indicator. A protective holster with innovative Flex-Stand** for easy, adaptable operation. Audible Input Alert** to reduce the risk of damage to the meter, the user, and the unit being tested. Plus the strongest warranty in the business.

All good reasons to move up to the truly-multipurpose Fluke 80 Series today. You'll find 80 Series DMMs at your Fluke distributor. For immediate, off-the-shelf delivery. Call 1-800-44-FLUKE, ext. 33 for the name of your nearest distributor.

John Fluke Mfg. Co., Inc. P.O. Box 9090 M/S 250C. Everett, WA 98206 U.S. (206) 347-5400 CANADA 416-890-7600 OTHER COUNTRIES: (301) 356-5500

© Copyright 1989, 1990 John Fluke Mfg. Co. Inc. All rights reserved. Prices and specifications subject to change without notice.

Ad no. 00010

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

FLUKE

CIRCLE 121 ON FREE INFORMATION CARD
BUILD THIS

31 LOGIC ANALYZER
This 16-channel, 50-MHz logic analyzer makes troubleshooting digital circuits a breeze!
Gerard Robidoux and Robert Dmitroca

39 BUILD AN ELECTRONIC COMPASS
This solid-state compass uses Hall-effect sensors to point you in the right direction.
Anthony J. Caristi

49 EXPERIMENTING WITH PC-BASED TEST EQUIPMENT
Build a low-cost, PC-based voltage/resistance/capacitance meter.
James J. Barbarello

TECHNOLOGY

43 THE NEW WORLD OF DSP
Learn about digital signal processing and the impact it will have in the 1990's.
Josef Bernard

54 V/F CONVERTERS
Voltage-to-frequency converters can be a money-saving alternative to A/D and D/A converters.
Harry L. Trietley

61 FUEL CELLS
A look at the "energy source of tomorrow?"
Ralph Hubscher

DEPARTMENTS

6 VIDEO NEWS
What's new in this fast-changing field.
David Lachenbruch

22 EQUIPMENT REPORTS
Fieldpiece HS25 "Stick" DMM

65 HARDWARE HACKER
Electronic tuning diodes, and more.
Don Lancaster

72 AUDIO UPDATE
A distortion primer: Part 1
Larry Klein

74 DRAWING BOARD
Let's add an audible indicator to our logic probe.
Robert Grossblatt

80 COMPUTER CONNECTIONS
Windows watch.
Jeff Holtzman

AND MORE

94 Advertising and Sales Offices
94 Advertising Index
8 Ask R-E
14 Letters
83 Market Center
28 New Lit
24 New Products
4 What's News
Anyone who has spent time debugging complex digital circuits knows that a logic analyzer is an essential tool for the job. Besides the ability to sample and store the state of many digital signals, a logic analyzer can—as its name suggests—perform complex analyses on those signals to determine their timing and state relationships. You can view the acquired data on either a waveform screen or a state screen, and pull-down menus put all the controls at your fingertips. Of course, there’s a big price to pay for all that convenience: most commercial logic analyzers cost well over $1000. Our alternative, is a 16-channel, 50-MHz analyzer that you can build for less than $700. For all the details, turn to page 31.

BUILD AN ECG
Our electrocardiograph can’t replace a doctor and a hospital, but it will help you learn about medical instrumentation and interpreting ECG’s.

BUILD A PROXIMITY SWITCH
Detect the presence and absence of metallic objects—it’s perfect for actuator circuits!

BUILD A COLOR-BAR TEST GENERATOR
Test and troubleshoot your video equipment.

D/A AND A/D CONVERTERS
An in-depth look at the chips that bridge the digital and analog worlds.

As a service to readers, RADIO-ELECTRONICS publishes available plans or information relating to newsworthy products, techniques and scientific and technological developments. Because of possible variances in the quality and condition of materials and workmanship used by readers, RADIO-ELECTRONICS disclaims any responsibility for the safe and proper functioning of reader-built projects based upon or from plans or information published in this magazine.

Since some of the equipment and circuitry described in RADIO-ELECTRONICS may relate to or be covered by U.S. patents, RADIO-ELECTRONICS disclaims any liability for the infringement of such patents by the making, using, or selling of any such equipment or circuitry, and suggests that anyone interested in such projects consult a patent attorney.

RADIO-ELECTRONICS (ISSN 0033-7862) June 1991. Published monthly by Gemsback Publications, Inc., 500-B Bi-County Boulevard, Farmingdale, NY 11735. Second-Class Postage paid at Farmingdale, NY and additional mailing offices. Second-Class mail registration No. R125166280, authorized at Toronto, Canada. One-year subscription rate $17.97, Canada $25.65 (includes G.S.T. Canadian Goods and Services Tax Registration No. R125166280), all other countries $26.97. All subscriptions are payable in U.S.A. funds only, via international postal money order or check drawn on a U.S.A. bank. Single copies $2.95. © 1991 by Gemsback Publications, Inc. All rights reserved. Printed in U.S.A.

POSTMASTER: Please send address changes to RADIO-ELECTRONICS, Subscription Dept., Box 55115, Boulder, CO 80321-5115.
AT $299.95, NO OTHER DESIGN WORKSTATION GIVES YOU SO MUCH FOR SO LITTLE.

Large Breadboarding area holds 24 ICS ...2,500 tie points

Function Generator ...sine/square/triangle ...plus TTL

Two Digital Pulsers

Two BNC Connectors for oscilloscopes and counters

Triple Power Supply ...+5V fixed, plus two variable 5-15V

8 TTL Logic Probe Indicators

Audio Speaker

And a Triple Power Supply with fixed 5VDC, plus two variable outputs (+5 to 15VDC and -5 to 15VDC). Throw-in 8 TTL compatible LED indicators, switches, pulsers, potentiometers, audio experimentation speaker...plus a lifetime guarantee on all breadboarding sockets! You have everything you need right there in front of you! PB-503—one super test station for under $300! Order yours today!!

GLOBAL SPECIALTIES

Call toll-free for details 1-800-572-1028

CIRCLE 184 ON FREE INFORMATION CARD
Base-3 logic system

A new family of digital logic, based upon the trinary ("base 3") system, has been developed by Edinboro Computer Instruments (Edinboro, PA). It is based on a new circuit, dubbed the "Tri-Flop"—a trinary version of the commonly used flip-flop. The Tri-Flop, with three output connections, can exist in any one of 27 states, compared to the Flip-Flop, which has only two output connections, and can exist in any of four states. The Tri-Flop allows significantly more data to be contained in the same size data registers that are presently used in binary systems. It could pave the way to fax and modem transmission speeds at least ten times faster than those available in binary systems. It could also pave the way to miniaturization in all kinds of electronics.

According to the device's developer and Edinboro Computer president, Tom Scarpa, the Tri-Flop has been in existence for more than 20 years. However, because there never was a practical way to interface the trinary device to existing binary-based electronic equipment, the trinary system had no practical or commercial value.

Recent developments in semiconductor theory have allowed the development of the circuitry required for such an interface. It includes a "Bi-Tri" binary-to-trinary translator that performs the conversion in hardware in nanoseconds; a "Tri-Bi" trinary-to-binary translator for getting the results of a trinary operation back into the world of conventional binary computers and digital logic; and a "Quad State Interface," which is similar to the three-state interface presently used in binary systems but which adds a fourth (high impedance) state that provides connection circuitry that can be switched open or closed, enabling only selected units to be connected to a common bus pathway, thus avoiding bus contention.

A 16-bit trinary memory register has been built that holds more than 43 million bits of data, which represents an increase of more than 650 times that of conventional binary registers. A 32-bit trinary memory register, which holds more than 470,000 times the data contained in that of conventional binary units, has also been designed but not tested, according to Scarpa.

Initially, the company plans to apply the new circuitry to the field of telecommunications. The new system, which, according to the company, promises to increase the speed of fax and modem communications tenfold, consists of an interface box at each end that will plug into the serial port of a conventional computer system.

Edinboro Computer plans to lease the equipment to high-volume communications users. Future applications of the trinary system are expected to be in medicine, industrial control, and military systems. By reducing the number of interconnections required in solid-state modules for equivalent functions, the Trinary system has the potential to enhance miniaturization and improve reliability. Medically implantable miniature computers for control of artificial organs and prosthetic devices are another possibility being considered.

16,000,000-bit memory chip

IBM has fabricated a 16-million-bit computer memory chip—four times the storage capacity of today's most advanced memory chips. The chip was at their existing semiconductor production line in Essex Junction, VT to demonstrate its manufacturing feasibility. The dynamic random access memory (DRAM) chip operates at a very high speed, accessing the first bit of data from one of its storage cells in 50 nanoseconds (ns) and subsequent bits at a sustained data serial rate of just 10 ns per bit. At that speed, almost all of the chip's 16,777,216 bits could be "read" in 1/25 of a second—several times faster than the blink of an eye.

The chip, which measures about \(\frac{1}{8} \times \frac{1}{4} \) inch, is fabricated using an advanced version of CMOS (complementary metal-oxide-semiconductor) technology that allows for circuit patterns with dimensions as small as 0.5 micrometers wide. CMOS technology produces chips that are denser and use less power than those made using other semiconductor manufacturing techniques.

The greater density is achieved through the use of a memory cell (the area of the chip that stores one bit of data) that is only 4 micrometers square, which is approximately one-third the size of the memory cell in IBM's four-megabit chip. The memory cell uses a three-dimensional "trench" structure that is dug into the silicon to store the chip's bits, instead of placing the cell on the surface of the silicon as is done with other chips. Using the trench allows for greater memory capacity without significantly increasing the size of the chip.

The new chip's reliability is enhanced through the use of error correcting and checking (ECC) code during operation. Use of ECC provides a five-fold improvement against failures compared to previous generations of chips. IBM made no statement regarding planned availability, but our computers could use them now!

A 16-bit trinary memory register, on a postage stamp, can read all of its 16,777,216 bits of information in 1/25 of a second, which is several times faster than the blink of an eye.
THE ORIGINAL HANDI-COUNTER
IMITATED BUT NEVER DUPLICATED

OPTOELECTRONICS brings you the latest in a long line of quality LED Handi-Counters™ - the NEW 2300. The 2300 has inherited the outstanding features of the 1200H, 1300H, 2400H & 1300HA. No other counter can match this family history. Additional new features include:

- Finds frequencies from 1MHz to 2.4GHz.
- Display Hold Switch.
- Dual MMIC Amplifiers for maximum possible sensitivity.
- Continuous Range. No cumbersome range switch.
- Hi-Tech Painted Finish. More rugged than anodized cases.
- 600 mA Hr. Batteries. Not the cheapest but the best!
- 17 years of quality and dependability to back our products.

Model 2300

- 1MHz - 2.4GHz
- Frequency Counter

Price $99

Options

- NiCad 23 Custom internal NiCad Pack (installed) $20
- AC90 110VAC - 9VDC Charger/Adapter $9
- Complete Package Model 2300, Internal NiCads & A/C Adapter $128

Specifications

- Display: 10 Digit LCD
- RF Signal: 16 Segment Adjustable
- Sensitivity: <1 to <10mV typical

Order Line

1-800-327-5912

Fl(305)771-2050 FAX(305)771-2052

5821 NE 14th Avenue • Fort Lauderdale, FL 33334
3 Weeks, 5% Shipping Handling (Maximum $10) U.S. & Canada, 15% outside continental U.S.A. Visa and MasterCard accepted.

CIRCLE 185 ON FREE INFORMATION CARD
HDTV uncertainty. Wide-screen TV sets with HDTV monitor capability are now on the market in Europe, but there is increasing uncertainty about the future of widescreen and HDTV broadcasting there. As reported in the U.S., manufacturer Thomson (which owns the RCA and GE brands here) now has TV sets on the market with 16:9 ratio picture tubes, designed to receive all TV standards, but specifically aimed at the satellite-transmitted European D2MAC system and the eventual transition to the high-definition HD-MAC version. However, after a fiasco in MAX broadcasting by satellite to England (Radio-Electronics, February 1991), powerful European forces are fighting to end Europe’s commitment to MAC and HD-MAC. Those forces, some of them obviously aiming at keeping the entrenched conventional PAL and SECAM broadcasting systems, point to work being done in the United States on digital HDTV systems and are urging that the European community reconsider its commitment to analog HDTV. Thomson, although committed to pushing the MAC system, points out that its current widescreen TV sets have the ability to receive PAL and pick up transmission in any HDTV system with the use of a decoder.

Hughes projection TV. Hughes Aircraft, which had been talking with Korea’s Samsung about partnership on a unique new system of projection TV (Radio-Electronics, December 1990), now is discussing possible arrangements with the Japanese. Hughes would like to hook up with a company experienced in manufacturing and selling consumer electronics to exploit the consumer version of its lightvalve projection system, which has been widely used in military and commercial applications for computer displays. Hughes now has developed the system to the point where it can accommodate video’s high speed, and the company feels that the system is ideally suited to HDTV.

Very little is known about the Hughes projection system as it applies to TV, except that it employs three LCD’s as lightvalves and uses a cathode ray tube as the picture source. A high-intensity light shines into polarizing mirrors, in effect amplifying the picture from the high-resolution CRT, according to those who have seen the system. The projection system is Hughes’ second recent venture in the field of consumer TV. The first is the Sound Retrieval System (SRS), which has been licensed to Sony and Thomson Consumer Electronics as an audio system for TV. However, Hughes has no plans to license its lightvalve projection system to all comers. Instead, it would rather have an exclusive partner to share in the development of the consumer version.

A victory for 8mm. Sony, which lost the battle of VCR formats when its Beta system was eclipsed by VHS, has won the war of the camcorder formats. While the outcome was never in serious doubt in Japan or Europe, in the U.S. the full-size VHS format held a strong lead for several years, and in the compact field JVC pushed its VHS-C variation. The full-size VHS format has held a commanding lead in the U.S. over both mini formats—VHS-C and 8mm. However, in 1990, for the first time, the American public chose minis, with 51.3% buying the smaller formats, according to the Electronic Industries Association. Although the EIA doesn’t break down its figures between 8mm and VHS-C, U.S. government import data indicate that some 70% of those compact video-cassette recorders are in the 8mm format.

Two more important brand names have jumped aboard the 8mm bandwagon. Following RCA, Zenith, and Hitachi, the latest brands to offer 8mm camcorders in the United States are GE and Fuji. The GE brand, fielded by Thomson, also offers VHS and VHS-C formats. Fuji is offering camcorders on the U.S. market for the first time, and its products are exclusively in the 8mm format. More converts are expected, and virtually all brands could soon offer 8mm video equipment in addition to full-size VHS.

New 8mm sound. When the 8mm format was introduced, it was equipped with two separate sound systems—stereo AFM and an 8-bit digital mono system. The digital system has since evolved into stereo. In the meantime, the VHS group has announced the development of a 16-bit stereo audio system as an option for Super VHS. Now the 8mm group, not to be outdone, has developed a 16-bit soundtrack for H8, the high-band equivalent of Super VHS. Like the S-VHS optional audio track, the H8 version uses sampling frequencies of 48 and 32 kHz, the latter designed to record from direct broadcasts of Japan’s TV satellites with digital sound. Neither system is capable of direct recording from the compact disc’s 44.1-kHz sampling frequency, presumably because of Japanese reluctance to antagonize recording companies, which fear copyright violation. Although it was announced more than a year ago, the S-VHS sound system wasn’t available in any recorders at our press time. And the eleven 8mm manufacturers announcing the new H8 audio didn’t set any specific time schedule for its availability, either. So far, the battle is between high-decibel digital press releases.

One-pound projection TV. We haven’t seen Fuji Photo’s projection TV set, but the description from Japan sounds as if it could double as a pretty good flashlight. It weighs just one pound, and its dimensions are about the equivalent of two VHS cassettes stacked together. It operates on a rechargeable battery and can project a picture up to 40 inches diagonally. However, it has one thing that a flashlight doesn’t have—stereo speakers.
SELECT 5 BOOKS for only $4.95
(values to $123.75)

Your most complete source for electronics books for over 25 years.

Membership Benefits
• Big Savings. In addition to this introductory offer, you keep saving substantially with members’ prices of up to 50% off the publishers’ prices.
• Bonus Books. Starting immediately, you will be eligible for our Bonus Book Plan, with savings of up to 80% off publishers’ prices.
• Club News Bulletins. 15 times per year you will receive the Book Club News, describing all the current selections—mains, alternates, extras—plus bonus offers and special sales, with scores of titles to choose from.
• Automatic Order. If you want the Main Selection, do nothing and it will be sent to you automatically. If you prefer another selection, or no book at all, simply indicate your choice on the reply form provided. You will have at least 10 days to decide. As a member, you agree to purchase at least 3 books within the next 12 months and may resign at any time thereafter.
• Ironclad No-Risk Guarantee. If not satisfied, return your books within 10 days without obligation!
• Exceptional Quality. All books are quality publishers’ editions especially selected by our Editorial Board.

Please accept my membership in the Electronics Book Club and send the 5 volumes listed below, billing me $4.95. If not satisfied, I may return the books within 10 days without obligation. A shipping/handling charge and sales tax will be added to all orders.

Name
Address
City
State Zip Phone
Signature

Valid for new members only. Foreign applicants will receive special ordering instructions. Canada must remit in U.S. currency. This order subject to acceptance by The Electronics Book Club BRI8591.

Electronics Book Club
Blue Ridge Summit, PA 17294-0810

All books are hardcover unless number is followed by a "P" for paperback.
SAFE CHARGING

I am using 12-volt 4-amp/hour rechargeable batteries for my camcorder and need a good charger for them. I've been using a transformer but I can never tell if I'm overcharging them. Do you have a circuit that can safely charge the batteries? — L. Shedler, Folsom, CA

When you consider all the brain damage you have to deal with if you want to use Ni-Cd's, it's amazing that anyone still uses them. That probably says more about the state of rechargeable battery technology than anything else. Despite internal shorting and recharging hassles, they're more popular now than they ever were.

The key to success with Ni-Cd's is knowing how to recharge them without damaging the cells and there have been zillions of words published in this magazine and others (our words, of course, are much better) about how to take care of Ni-Cd batteries. A quick trip to your library will result in your finding out more than you ever wanted to know about the use and abuse of Ni-Cd's.

The rate of charge that can be used on a particular Ni-Cd cell depends on how it's constructed and its capacity. Most cells can't be rapidly charged without circuitry that monitors either their internal temperature or pressure, or both. That's because a Ni-Cd generates oxygen as it charges and, if the rate of charge is too high, the gas will be produced faster than it can be absorbed in the cell. As you can guess, the result of the overcharging is a rupture of the cell seals — and if that happens, the battery is history.

The safest charge rate for any cell is the so-called C10 rate. That refers to the time it would take a battery with a voltage of one volt per cell to reach full charge in ten hours. In more practical terms, the number is one tenth the rated amp hours of the battery. In the case of the cells you're using, that translates to a charging rate of 400 mA.

You can use any circuit you want to charge the battery as long as you calculate the correct resistor value to keep the charging current at 400 mA. Even the voltage you apply to charge the batteries isn't as important as keeping the charging current from exceeding the C10 limit.

LACK OF TACH

I have a digital tachometer that I used successfully for years on an older car where it was connected to the ignition system's distributor points. I now own a 1985 Chevy with an electronic ignition system that I know nothing about. How can I pick up a suitable signal to use the tach, and do I have to modify the digital input? — T. Ulijasz, Brookfield, WI

A friend of mine had a similar problem a few years ago when he traded in his old car and got a new one. I had built a digital tach for him and he'd been using it on his old car for years. When we went to put it on his new car I opened the hood and discovered that he'd bought a diesel. And you think you have a problem!

I can't speak with authority on every car there is — I'll take them as they come. Since your car, unlike my friend's, has a "real" ignition system, there's always someplace to pick up an input for the tach.

Although you haven't mentioned it in your letter, I'm assuming that the electronic ignition in your Chevy is factory-installed. If that's the case, there are loads of books (like the Chilton manuals) that tell you everything you could want to know about the inner workings of your car. You might even be able to get information about the system from GM. What you really need is the schematic for the car's electrical system.

If it turns out to be absolutely impossible for you to find out how things are wired up in your car, you can always take the signal from the most obvious place of all: right off the spark plugs. Since you didn't tell me exactly how the tach was working in your old car, I'll have to do a bit of guessing.

The input conditioning you have should be good no matter where you pick up the signal in your car. You may have to change the value of the current-limiting resistor depending on the voltages you find in the car but that's about it. The digital tach I've been using in my car for about five
Why take chances in today's job market?

Graduate as a fully trained electronics professional.

To get ahead and stay ahead in today's economy, you need the electronics training CIE has been providing its 150,000-plus successful graduates with for nearly 60 years.

Meet the Electronics Specialists.

When you pick an electronics school, you're getting ready to invest time and money. And your whole future depends on the education you receive in return. That's why it makes so much sense to go with number one... with the specialists... with CIE!

There's no such thing as a bargain education.

If you talk to some of our graduates, and we recommend you do, chances are you'd find a lot of them shopped around for their training. Not for the lowest priced, but for the best training available. They pretty much knew what was available when they picked CIE as number one.

Because we're specialists we have to stay ahead.

At CIE we have a position of leadership to maintain. Here are just a few of the ways we hang onto it...

Programmed Learning.

That's exactly what happens with CIE's Auto-Programmed Lessons®. Each lesson uses famous "programmed learning" methods to teach you important electronics principles. You explore them, master them completely, before you start to apply them. You thoroughly understand each step before you go on to the next. You learn at your own pace.

And, beyond theory, some courses come fully equipped with electronics equipment to actually let you perform hundreds of hands-on experiments.

Experienced specialists work closely with you.

Even though you study at home, CIE's faculty and staff stand ready to assist via CIE's toll free number. And, each time you return a completed exam you can be sure it will be reviewed, graded and returned with the appropriate instructional help, you get it fast and in writing from the faculty technical specialist best qualified to answer your question in terms you can understand.

Pick the pace that's right for you.

CIE understands people need to learn at their own pace. There's no pressure to keep up...no slow learners hold you back. If you're a beginner, you start with the basics. If you already know some electronics, you move ahead to your own level.

"Same Day" grading cycle.

When we receive your lesson, we grade it and mail it back the same day. You find out quickly how well you're doing!

State-of-the-art laboratory equipment.

Some courses feature the CIE Microprocessor Training Laboratory. An integral part of computers, microprocessor technology is used in many phases of business, including service and manufacturing industries. The MTL gives you the opportunity to program it and interface it with LED displays, memory devices and switches. You'll gain all the experience needed to work with state-of-the-art equipment of today and tomorrow.

New Courses!

CIE now offers two new career courses: Automotive Electronics and Computer Operation and Programming.

CIE offers you an Associate Degree.

One of the best credentials you can have in electronics — or any other career field — is a college degree. That's why CIE offers an Associate in Applied Science in Electronics Engineering Technology. And all CIE career courses earn credit toward your degree.

Which CIE training fits you?

Beginner? Intermediate? Advanced? CIE home study courses are designed for ambitious people at all entry levels. People who have no previous electronics knowledge, but do have an interest in it; Some basic knowledge or experience in electronics; In-depth working experience or prior training in electronics.

Today is the day. Send now.

Fill in and return the postage-paid card attached. If some ambitious person has already removed it, cut out and mail the coupon below. You'll get a FREE CIE school catalog, plus complete information on independent home study. Mail in the coupon below or, if you prefer, call toll-free 1-800-321-2155 (in Ohio, 1-800-623-9109).
years takes its input from one of the plugs with no problems at all. I use a 1K resistor as a current limiter but you may find that you have to change that in your car.

It’s always possible to pick up an input signal for your tach right from a spark plug. It can be done inductively by wrapping a few turns of wire around the ignition cable or by running a lead into the cap of the spark plug. Try an inductive pickup first because it’s the safest way to go. You may have to experiment with the number of turns but, since such a huge spike is generated when the plug fires, you shouldn’t have any trouble getting a pulse that can be fed to your tachometer.

If, for some reason, inductive coupling is impossible, you can get the pulse from the cap of the plug but you have to be careful when you do this. Don’t, under any circumstances, cut into the ignition wire leading to the plug. The cables are designed to properly isolate the high voltages and messing with the insulation can cause problems from moisture or arcing and lead to misfiring or a substantial decrease in engine efficiency. And be sure to use cable that can safely handle the high voltage at the plugs. If you have problems with arcing, get yourself a good supply of RTV putty to insulate the cable.

You may also have to make some changes to the logic in your tach because the number of sparks per second at the plug may be different than the number you were getting from the distributor. Remember that you’re getting one spark for each two revolutions of the engine.

MULTILAYER WOES

The keyboard connector on my AT motherboard broke so I unsoldered it from the board and replaced it with a new one. The problem I have now is that the board is a multilayer one and I think one of the traces in a middle layer has broken. Do you know of any way to repair a trace on an inner layer of a multilayer board?—V. Deeoh, New York, NY

You’ve got a big problem. I’ve been faced with shorts on inner layers and the only way I’ve been able to repair the board was to lift all the legs that sat on the trace and connect them to a totem-pole wire that I ran above the board.

If, as you suggested, you’ve broken a trace on one of the middle layers of the board, the only way I know to repair it is to make the connections with new wire on top of the board. I’ve never found a way to do anything to the copper buried inside the board.

That technique may not sound too difficult but it presupposes that you know which trace is broken, and which pins on which components are supposed to be connected together—You need the schematic.

If you don’t have the schematic, I don’t know if a repair is even possible. The internal copper is buried in the board and you can’t usually hold to board up to the light and follow the traces. I’m sorry to tell you that I think your chances of making a repair to a buried trace on an undocumented mother board are only slightly better than your chances of getting a quick answer from a government official. It’s theoretically possible but I wouldn’t count on it.
LEASING AVAILABLE

For all Hitachi Scopes - Call for details

* Based on 24 months except V-1150. VC-6045, VC-6145 (36 months)

Hitachi Portable Scopes

DC to 50MHz, 2-Channel, DC offset function, Alternate magnification function

V-525 - CRT Readout, Cursor Meas. $1,025
V-523 - Delayed Sweep $995
V-522 - Basic Model $895
V-422 - 40MHz $795
V-223 - 20MHz delayed sweep $695
V-212 - 20MHz $425

Hitachi Compact Series Scopes

This series provides many new functions such as CRT Readout, Cursor measurements (V-1005/1065/665), Frequency Ctr (V-1085), Sweeptime Autoring, Delayed sweep and Tripper Lock using a 6-inch CRT. You don’t feel the compactness in terms of performance and operation

V-560 - 50MHz, Dual Trace $1,195
V-665 - 80MHz, DT, w/cursor $1,345
V-1060 100MHz, Dual Trace $1,425
V-1065 100MHz, DT, w/cursor $1,050/mo
V-1085 100MHz, QT, w/cursor $1,250/mo
V-1100A - 100MHz, Quad Trace $1,250/mo
V-1150 - 150MHz, Quad Trace $1,150/mo

20MHz Elenco Oscilloscope

$375
MO-1251
- Dual Trace
- Component Tester
- 6" CRT
- X-Y Operation
- TV Sync
- 2 P-1 Probes

Elenco 35MHz Dual Trace

Good to 50MHz $495
MO-1252
- High luminance 6" CRT
- 1nV Sensitivity
- 6KV Acceleration Voltage
- 10Hz Rise Time
- X-Y Operation / Z Axis
- Delayed Triggering Sweep
- Includes 2 P-1 Probes

Test Equipment

We will not be undersold!

ELENCO & HITACHI PRODUCTS

At Discount Prices

48 Hour Shipping

Fluke MULTIMETERS

All Models Available

Call for special price

True RMS 4 1/2 Digit Multimeter

M-7000 $135
0.05% DC Accuracy
1% Resistance
with Freq. Counter and Deluxe Case

Beckman TEST EQUIPMENT

All Models Available

Call for special price

Digital Capacitance Meter

CM-1550B $58.95
9 Ranges
1pf-20,000pfd
5% basic accuracy
Zero control w/ Case
Big 1" Display

Digital LCR Meter

LC-1801 $125
Measures
Cap, Ind, Res
0.1-100uF, 0.1-100H, 0.1-100M
0.01-10M
0.1% Basic accuracy
10kHz
100kHz
3.5" Display

Multimeter with Capacitance & Transistor Tester

Big 1" Display

CM-1500B $55
Reads Volts, Ohms, Current, Capacitors, Transistors and Diodes / with case

Beckman

All the desired features for doing experiments. Features short circuit protection, all supplies

GM-108 $26.95
14 Transistors / 5 Diodes
Makes a great school project

Elmo 35MHz Dual Trace

$495
MO-1252
- High luminance 6" CRT
- 1nV Sensitivity
- 6KV Acceleration Voltage
- 10Hz Rise Time
- X-Y Operation / Z Axis
- Delayed Triggering Sweep
- Includes 2 P-1 Probes

Elmo 35MHz Dual Trace

$495
MO-1252
- High luminance 6" CRT
- 1nV Sensitivity
- 6KV Acceleration Voltage
- 10Hz Rise Time
- X-Y Operation / Z Axis
- Delayed Triggering Sweep
- Includes 2 P-1 Probes

90 Series

VC-6023 - 20MHz, 20MS/s $135/mo
VC-6024 - 50MHz, 20MS/s $120/mo
VC-6025 - 50MHz, 20MS/s $135/mo
VC-6045 - 100MHz, 40MS/s $125/mo
VC-6145 - 100MHz, 100MS/s $200/mo

RSC from Hitachi feature roll mode, averaging, save memory, smoothing, interpolation, pretriggering, cursor measurements. These scopes enable more accurate, simpler observation of complex waveforms, in addition to such functions as hardcopy via a plotter interface and waveform transfer via the RS-232C interface. Enjoy the comfort of analog and the power of digital

TRITISIA

All scopes include probes, schematics, operators manual and 3 year (2 yrs for Elenco scopes) worldwide warranty on parts & labor. Many accessories available for all Hitachi scopes. Call or write for complete specifications on these and many other fine oscilloscopes.

Quad Power Supply

XP-580 $59.95
2-20V @ 2A
12V @ 1A
5V @ 3A
-5V @ 5A

Fully regulated and short circuit protected

Triple Power Supply

XP-620 $65
Assembled Kit $45
2 to 15V @ 1A
-2 to -15V @ 1A

All the desired features for doing experiments. Features short circuit protection, all supplies

Elenco & Hitachi Products

$129.00

MIR

MV-912 Avoider infra-red
$45.95
MV-939 Medusa Sound Sensor
$35.95
MV-965 Marita Sound/Touch
$29.95

MOVIT Educational Electronic Robot Kits

The MOVIT line is a series of computerized (and logic controlled) battery robot kits that can teach the basic principles of robotic sensing and locomotion. Each of the kits features pre-assembled PC boards, hardware and mechanical-drive systems that can be handled by almost anyone from ages 10 and up. Only basic hand tools are required for assembly. These fascinating robots allow you to experience and learn any one of the following features: sound sensor, remote control, infra-red sensor, wired control and/or programmable memory. The MOVIT line has provided the future with an innovative educational electronic kit. They are affordable robots that can entertain as well as educate. Now meet the family!

MOVIT Educational Electronic Robot Kits

Model AM-FM 108 $26.95
14 Transistors / 5 Diodes
Makes a great school project

Learn to Build and Program Computers with this Kit

Includes: All Parts, Assembly and Lesson Manual

Model MM-8000 $129.00

Wide Band Signal Generators

GF-8016 Function Generator

with Freq. Counter $249
Sine, Square, Triangle
Pulse, Ramp, 2 to 2MHz
Freq Counter 1 - 10MHz

GF-8015 without Freq. Meter $179

Starting from scratch you build a complete system. Our Micro-Master trainer teaches you to write into RAM, ROMs and run a 8085 microprocessor, which uses similar machine language as IBM PC. Robotics Kit for above (MM8010) $71.95

We will not be undersold!

UPS Shipping: 48 States $5
($3 Min $10 Max) Shipping
IL Res., 7% Tax
FAX: 708-520-0085

C & S SALES INC.
1245 Rosewood, Deerfield, IL 60015
(800) 292-7711 (708) 541-0710

Circle 109 on Free Information Card

15 Day Money Back Guarantee
2 Year Warranty
Prices Subject to Change
WRITE FOR FREE CATALOG

JUNE 1981
PARTS DILEMMA
I hope that my letter is just one of many that you receive saying that Radio-Electronics has let its readers down by featuring a construction project for which no parts kits are available. I refer to the "Sweep-Marker Generator" article, by John Wannamaker, that appeared in the February and March 1991 issues. Accumulating the necessary parts—some of which are a bit exotic—might not be difficult for engineers, but it is no easy task for hobbyists. While such articles are of academic interest, without a parts kit the ultimate interest is little more than academic.

SIMON L. SCHEINER
Cherry Hill, NJ

Your frustration about not having a parts kit available is understandable. My frustration at not being able to afford to make such a kit available is even greater. As you might have noticed, I do supply the one item that cannot be purchased elsewhere: the printed-circuit board. Along with the boards, I provide a list of parts suppliers with addresses and telephone numbers. Unfortunately, I neglected to mention in the article that I also offer (at my cost, $2.00) an information sheet that contains additional information that did not appear in the article that readers might want as they build the generator.

I order components just as any hobbyist would, and occasionally pay a penalty for not meeting minimum-order requirements. There are a great many people who order the PC boards and do everything necessary for the satisfaction they get from building from scratch. In the case of the sweep generator, the satisfaction seems to be not so much in the construction as in having such a unique device at their disposal—so that the gathering of components and the actual construction seem to be worth the inconvenience.

Should the article not have been published? Let me indicate the enthusiasm I've heard thus far from some of the orders for boards:

"...this new generator looks fabulous and I can't wait to get started.
"I've been looking for a long time for such a generator..."
"Your project is perfect for my needs..."
"...anxiously awaiting the next issue of Radio-Electronics so that I can get the artwork to make the boards. Thanks..."

In addition to the above, as a school teacher I believe that academic interest alone makes the publication of many such articles worthwhile.

JOHN WANNAMAKER

STANDING UP FOR MACINTOSH
I was slightly amused by Jeff Holtzman's rebuttal to Raymond Cheng's letter in the April 1991 issue of Radio-Electronics, but when he brought up Apple Computer's Macintosh, I had to write this letter.

He mentioned that "Windows has done more for promoting advanced computing environments than everything done by all the Amigas (and all the Macintoshes)..." Give me a break! Windows on MS-DOS machines are nothing more than feeble attempts to turn them into a Macintosh. However, you encounter fewer problems on a Mac than you do with any version of Windows. The Mac is far more consistent, easier to use, and overall better to use than a cheap IBM clone using Windows.

Mr. Holtzman also stated that "Apple continues its steady decline in the marketplace." Wrong again. There may be more dime-a-dozen MS-DOS clones than there are Macs, but the facts are: Macs are out there. In fact, Apple has lowered its prices on them, introduced new ones, and just about sold more Mac Classics than they can make. Apple computers still dominate the educational market, ever since the introduction of the Apple IIe. The new Macintosh LC will bridge the gap between Apple IIe computer labs and Mac labs. People should consider it a blessing that there are other computers available, without having to resort to the MS-DOS world. Radio-Electronics should be more courteous to people who use computers other than your favorite.

As long as there is a choice in selecting a computer other than an MS-DOS clone, there will definitely be "advanced computing environments" in the near future.

WESLEY FITZPATRICK
Tuscaloosa, AL

APRIL FOOLS
I just received by April 1991 issue of Radio-Electronics and couldn't believe the article "Poor Man's Laser Printer." Has anyone really tried to do this? I have to be honest—I read the article fully expecting it to be a gag.

The author, Paul Rention, made it sound so simple. I've been in the copier business for over ten years and I can tell you flat out, it's not that easy. First off, the copier is designed with a focal length based on the "original" being flat on the glass. A monitor is curved, and because of the case, it will be an inch or more off the glass. Second, the author says you need to remove the exposure lamp. That's right, you would—except for the fact that any copier I've worked on will give you an error message when the lamp circuit is open. The copier won't ever run with the lamp out. Third, what do you do with a copier that has a moving top? The drive system won't handle the weight of a monitor sliding back and forth. Fourth, why does the author not have a laser printer? He has an $8000 copier in the photo. I'd like to think he could afford a $900 laser printer.

You folks have some fine articles in your magazine but, come on guys, get real! (By the way, the "C" clamps were a nice touch.)

JEFFREY J. WILLARD
New Cumberland, PA

AN ELEGANT SOLUTION
I enjoyed your article, "Poor Man's Laser Printer" (April 1991), but I think that the "C" clamps and Bungee cords are an inelegant solution somewhat below Radio-Electronics usual above-average standards. Here is my suggestion:
Cable TV Descrambler Article Parts

We stock the exact Parts for several articles published in Radio-Electronics magazine on building your own Cable TV Descrambler.

<table>
<thead>
<tr>
<th>February 1984 SB-3 Type</th>
<th>February 1987 Tri-Mode</th>
<th>May 1990 Universal</th>
</tr>
</thead>
<tbody>
<tr>
<td>701 Parts Pkg....$19.00</td>
<td>301 Parts Pkg....$29.00</td>
<td>901 Parts Pkg....$49.00</td>
</tr>
<tr>
<td>Includes all original parts.</td>
<td>Includes all original parts.</td>
<td>Includes all original parts.</td>
</tr>
<tr>
<td>702 PC Board........$7.95</td>
<td>302 PC Board........$7.95</td>
<td>902 PC Board........$7.95</td>
</tr>
<tr>
<td>Original 3X4 etched, drilled and Silk-Screen pc board.</td>
<td>Original 5X8 etched, drilled and Silk-Screen pc board.</td>
<td>Improved 4X7 etched, drilled and Silk-Screened pc board.</td>
</tr>
<tr>
<td>704 AC Adaptor........$7.95</td>
<td>304 AC Adaptor........$7.95</td>
<td>904 AC Adaptor........$8.95</td>
</tr>
<tr>
<td>12 to 18 Volt DC @ 200ma.</td>
<td>12 to 18 Volt DC @ 200ma.</td>
<td>12 to 18 Volts AC @ 350ma.</td>
</tr>
<tr>
<td>701, 702 & 704.....$29.00</td>
<td>301, 302 & 304.....$39.00</td>
<td>901, 902 & 904.....$59.00</td>
</tr>
<tr>
<td>All three for special saving.</td>
<td>All three for special savings.</td>
<td>All three for special savings.</td>
</tr>
</tbody>
</table>

Tri-Mode Tutorial..$7.95
26 pages of in-depth info.

Snooper Stopper...$39.00
Prevent Descrambler detection with snooper stopper/data blocker and protect your privacy. Includes free article on Cable Snooping.

Macrovision Kit...$29.00
Macrovision...now you see it, now you don't with our macro-scrubber kit. Originally Published in Radio-Electronics.

Signal Eliminator (tunable notch filters)..................$29.95
- Model number & channel;
 - #23 (channel 2 & 3)
 - #713 (channel 7 to 13)
 - #1417 (channel 14 to 17)
 - #1822 (channel 18 to 22)

1 remote replaces 3...
The MAC 20 wireless remotes replaces any three combinations; TV, VCR, Cable Converter, Stereo, CD or other entertainment system.

MAC 20..............$59.95

A VCR in every room..
with the first FCC approved wireless home broadcast system. 120 ft. range.

VC2000..............$99.95

70 Channel Cable TV Converter..................$89.95
- * 6 Function Infra-Red remote.
- * Fine Tuning.
- * Memory & Recall.
- * Compatible with all External Descramblers.
- * Channel 3 or 4 switchable output.
- * STD, HRC & IRC compatible.

CALL TOLL FREE 1-800-332-3557
Outside USA Call 1-508-699-6935
Visa, MasterCard and COD.
Add $4.00 S&H, $6.50 Outside USA.
D & D Electronics, Inc. PO Box 3310, N. Attleboro, Ma. 02761

CIRCLE 191 ON FREE INFORMATION CARD
Build a sturdy, reinforced wooden mold around the entire project, excluding access areas for the copier's paper tray, output bin, and controls. After covering any openings on the monitor and copier cases with masking tape, carefully align the monitor on the copier glass, and fill the mold with ready-mix concrete (one or two cubic yards should be enough). Before the concrete sets, embed part of a length of heavy chain in it. Allow the concrete to cure for a couple of days.

I believe you will find that this improvement will hold the monitor and copier very securely together. It has other advantages, too. The printer's serviceability will be improved, by reducing the number of "Field Replaceable Units" (FRU's) to just one. After retirement from original service, the FRU's can be reused as off-shore moorings for yachts. In this time of concern about overloaded landfills, it is good design practice to provide for reuse of FRU's.

ROBERT BARNHILL
Boca Raton, FL

CAN'T BE FOOLED AGAIN!
You're right, I was able to save a bundle with the "Poor Man's Laser Printer" (April 1991). Since I have a copier that has a plater that moves, I found it difficult to keep the monitor in place. The C-clamps were too expensive, so I opted for a 2-by-3 and some threaded rod to bolt the monitor to the plater. (I got those for nothing; I'm in the home-remodeling business.) The lamp on the copier was already burned out. I think. Well, let's put it this way: When I opened the case and pulled out some wires, the lamp stopped working. Who said you need an electronics degree!

Copies came out great, after a little contrast. The only thing I haven't figured out is how to use the monitor while it's still bolted down.

P.S. I wrote to you on my typewriter—you know, the old Smith Corona Portable. The plans you printed in last year's April issue on how to add a monitor to that typewriter were wonderful. The typewriter and the car battery make this better than any portable on the market today. It's true QWERTY, too, and has non-volatile memory (me!). I can't wait for next year's April issue!

LANCE HAVILLARD
Gaithersburg, MD

PC REALITIES
I am a 70-year-old retired missile engineer with not enough time in the day for my hobbies and life's necessities. Two of my hobbies, amateur radio (K6SAR) and computer hacking, drew me to Radio-Electronics. Your magazine's composition just about fulfills my needs. The elementary electronics articles are good fundamental reviews that refresh—and in some cases, instruct—my dwindling memory regarding basics. Information on projects and advanced equipment is food for thought and personal planning.

I chuckled and nodded my head as I scanned Raymond Cheng's letter "Amiga Amigo" in the April issue. I, too, feel that my favorite computer is being short-changed by the media. In my situation, my computer chronology took the following steps: a Commodore 64; an Atari 1040ST (30MB hard disk, etc.); and an IBM clone (386SX) package including CD ROM, sold by DAK Corp. I use the computers according to their specialties—the Commodore for packet radio, the Atari for graphics and DTP, and the IBM clone for the rest of my needs.

I love them all, and wouldn't part with any of them. I decided to buy the IBM clone because I could see the handwriting on the wall. Popular interest in, and factory support for, the other two machines that I have are dropping off. Programmers are leaving those computers in droves. Even technical magazines that once supported them are disappearing from the newsstands.

One other indication of that trend is that the local Commodore and Atari clubs no longer exist, whereas the IBM-user club is bursting at the seam with members. Of course, another problem is the lack of standardized operating systems for those machines. I agree with Mr. Cheng that the Atari is far superior to the IBM clone but, unfortunately, it is a dying breed. Once again, the consumer has been led down the primrose path, only to be left—expensively—high and dry.

While, in essence, I agree with Jeff Holtzman's reply, I take him to task for using sarcasm and getting into mud-slinging. That should be a no-no for Radio-Electronics editors.

ED GLEMBOTSKI
San Luis Obispo, CA
THE MODEL WTT-20 IS ONLY THE SIZE OF A DIME, yet transmits both sides of a telephone conversation to any FM radio with crystal clarity. Telephone line powered - never needs a battery! Up to 1/4 mile range. Adjustable from 70-130 MHZ. Complete kit $29.95 + $1.50 S + H. Free Shipping on 2 or more! COD add $4. Call or send VISA, MC, MO. DECO INDUSTRIES, Box 607, Bedford Hills, NY 10507. (914) 232-3878.

CIRCLE 127 ON FREE INFORMATION CARD

NEW XST500 SUPER-MINIATURE FM transmitter uses Surface Mount Technology (SMT)! Own the smallest high performance FM transmitter available. Transmits whispers to any FM receiver up to a mile away. Uses 9V battery. Complete, easy to assemble kit, with SMT components already assembled to circuit board. $39.95 Cash, VISA, MC. COD add $5. XANDII ELECTRONICS, 201 E. Southern Ave., Suite 114, Tempe, AZ 85282, 1-602-829-8152, (1-800-981-9473. VISA, MasterCharge, American Express, COD.

CIRCLE 180 ON FREE INFORMATION CARD

FREE CATALOG OF TEST INSTRUMENTS & TOOLS is packed with thousands of products for testing, repairing, and assembling electronic equipment. Featured are brand name instruments such as Fluke, Tektronix, Leader, Weller, 3M plus many more. Also included are DMM's, hand tools, power supplies, tool kits, test equipment, static supplies plus many other new products. Orders placed by 4 PM are shipped before we go home! CONTACT EAST, 335 Willow St., No. Andover, MA 01845, (508) 682-2000, Fax: (508) 688-7829.

CIRCLE 188 ON FREE INFORMATION CARD

SIMPLY SNAP THE WAT-50 MINIATURE FM TRANSMITTER on top of a 9V battery and hear every sound in an entire house up to 1 mile away! Adjustable from 70-130 MHZ. Use with any FM radio. Complete kit $29.95 + $1.50 S + H. Free Shipping on 2 or more! COD add $4. Call or send VISA, MC, MO. DECO INDUSTRIES, Box 607, Bedford Hills, NY 10507. (914) 232-3878.

CIRCLE 127 ON FREE INFORMATION CARD
The two most comprehensive electronics

Take any 3 books for only $9.95

as your introduction to the new ELECTRONICS ENGINEERS' BOOK CLUB

500 ELECTRONIC IC CIRCUITS WITH PRACTICAL APPLICATIONS

James A. Whitson

$29.95

3100

INTERNATIONAL ENCYCLOPEDIA OF ELECTRONIC COMPONENTS

$75.00

This quick-reference provides pin-out diagrams, internal block diagrams and schematics, characteristic curves, descriptions and applications—for foreign and domestic ICs! 1088 pp. Counts as 3

2920

ENGINEERING MATHEMATICS HANDBOOK

$57.50

This best-selling handbook gives you the essential mathematical tools—formulas, definitions, theorems, tables, and models for computer programming. 512 pp., illus. Counts as 2

3321P

BASIC

$16.95

Tested programs for most mathematical computing needs. 233 pp.

02672

LINEAR IC HANDBOOK

$49.50

Linear integrated circuits—specifications, prices & data. 614 pp.

020975-8

ELECTRONIC ENGINEERS' HANDBOOK

$99.50

The essential reference for all electrical engineers. Covers basic circuits and measurements to advanced topics. 2416 pp., 1388 illus., 430 tables. Counts as 3

012697-7

ENGINEERING MATHEMATICS HANDBOOK

$64.95

All the information you need to design, manufacture, test, and repair printed wiring boards and assemblies. 960 pp., 556 illus. Counts as 2

02825P

BASIC

$19.95

Tested programs for most mathematical computing needs. 233 pp.
How the Club Works:
The Electronics Engineers and Designers Book Club and the Electronics and Control Engineers' Book Club have joined forces to bring you all the best titles from the most prominent electronics publishers.

YOUR BENEFITS: You get 3 books for $9.95 plus shipping and handling when you join. You keep on saving with discounts of up to 50% off as a member.

YOUR PROFESSIONAL BOOKSTORE BY MAIL: Every 3-4 weeks, you will receive the Electronics Engineers Book Club News describing the Main Selection and Alternates, as well as bonus offers and special sales, with scores of titles to choose from.

CLUB CONVENIENCE & EASY RISK-FREE TERMS: If you want the Main Selection, do nothing and it will be sent to you automatically. If you prefer another selection, or no selection at all, simply indicate your choice on the reply form provided. You will have at least 10 days to decide. As a member, you agree to purchase at least 3 books within the next 2 years and may resign at any time thereafter. If not satisfied with your books, return them within 10 days without obligation!

BONUS BOOKS: Starting immediately, you will be eligible for our Bonus Book Plan, with savings of up to 80% off publishers' prices.

EXCEPTIONAL QUALITY: All books are top-quality editions from ALL the publishers in the field especially selected by our Editorial Board to ensure the information provided is reliable and specific enough to meet your needs.

All books are hardcover unless number is followed by a "P" for paperback.

(Publishers' Prices Shown) ©1991 EEBC, Blue Ridge Summit, PA 17294-0860
PORTABLE MULTIMETERS have been around for a long time—and with good reason. Technicians and engineers need portability, and handheld operation is required for many testing jobs. DMM manufacturers have known this for years, of course, and they've been trying year after year to come up with the perfect multimeter for field service. It seems, though, that it's taken a new company to come up with the answer. At least that's the impression we got after trying the HS25 multimeter from Fieldpiece (8322B Artesia Blvd., Buena Park, CA 90621).

The obvious difference between the HS25 and other multimeters is its shape. The meter is less than 1-3/4 inches wide, less than an inch thick, and about 7-1/4 inches tall. The probe jacks are at the top of the meter rather than being on the front face. Although they will accept any standard sleeved multimeter probe, we liked the set of probes that are supplied with the meter. The common probe is reasonably standard, and has a lead length of about 3 feet. The hot lead, however, is quite different. It's about an inch long!

A feature that adds both safety and convenience is a dangerous-voltage warning. When the voltage on the test probe is higher than 28 volts, a warning beep sounds and the front-panel LED blinks. While that can "wake you up" if you encounter a voltage higher than expected, it also makes the meter ideal to quickly test for the presence of, for example, 120 volts AC.

A diode test function is offered on the meter, as is a logic-probe function. A feature that adds both safety and convenience is a dangerous-voltage warning. When the voltage on the test leads is higher than 28 volts, a warning beep sounds and the front-panel LED blinks. While that can "wake you up" if you encounter a voltage higher than expected, it also makes the meter ideal to quickly test for the presence of, for example, 120 volts AC.

A new multimeter from a new company

A diode test function is offered on the meter, as is a logic-probe function.

A feature that adds both safety and convenience is a dangerous-voltage warning. When the voltage on the test leads is higher than 28 volts, a warning beep sounds and the front-panel LED blinks. While that can "wake you up" if you encounter a voltage higher than expected, it also makes the meter ideal to quickly test for the presence of, for example, 120 volts AC.

A new multimeter from a new company

A diode test function is offered on the meter, as is a logic-probe function.

A feature that adds both safety and convenience is a dangerous-voltage warning. When the voltage on the test leads is higher than 28 volts, a warning beep sounds and the front-panel LED blinks. While that can "wake you up" if you encounter a voltage higher than expected, it also makes the meter ideal to quickly test for the presence of, for example, 120 volts AC.

A new multimeter from a new company

A diode test function is offered on the meter, as is a logic-probe function.

A feature that adds both safety and convenience is a dangerous-voltage warning. When the voltage on the test leads is higher than 28 volts, a warning beep sounds and the front-panel LED blinks. While that can "wake you up" if you encounter a voltage higher than expected, it also makes the meter ideal to quickly test for the presence of, for example, 120 volts AC.

A new multimeter from a new company

A diode test function is offered on the meter, as is a logic-probe function.

A feature that adds both safety and convenience is a dangerous-voltage warning. When the voltage on the test leads is higher than 28 volts, a warning beep sounds and the front-panel LED blinks. While that can "wake you up" if you encounter a voltage higher than expected, it also makes the meter ideal to quickly test for the presence of, for example, 120 volts AC.

A new multimeter from a new company

A diode test function is offered on the meter, as is a logic-probe function.

A feature that adds both safety and convenience is a dangerous-voltage warning. When the voltage on the test leads is higher than 28 volts, a warning beep sounds and the front-panel LED blinks. While that can "wake you up" if you encounter a voltage higher than expected, it also makes the meter ideal to quickly test for the presence of, for example, 120 volts AC.
A Shocking Offer!

Now for the first time in CIE's 56 year history you do not have to be enrolled at CIE to receive our introductory Electronic and Electricity Lesson Modules. Available for a limited time to non-students for the shockingly low price of only $99.50.

With CIE's patented AUTO-PROGRAMMED method of learning you'll quickly learn and then master the basics of electronics and electricity and then move on to... DC/AC circuit theories, fundamentals of bi-polar junction transistors (BJT), field effect transistors (FET), wiring, diagram and schematic readings, component identification, soldering techniques... and much, much, more.

Your commitment to CIE ends with your payment, but CIE's commitment to your success just begins when you receive your

39 lessons, exams, binders and equipment. This special introductory price includes all the benefits and assistance CIE normally extends to its students and graduates. You'll be entitled to unlimited access to CIE's faculty and staff to assist you in your studies via a toll free 800 number six days a week, 24-hour turnaround on grading your submitted exams, CIE Bookstore privileges, a patented learning method, reference library, a student, faculty and alumni electronic bulletin board and a free issue of CIE's school newspaper The Electron. All this knowledge and support will put you on the road to understanding digital electronics, microprocessing principles, computer systems, telecommunications, and much, much, more.

All This and Much More For ONLY!

$99.50

- Free Issue of The Electron
- Build your personal burglar alarm
- Instructors available 6 days a week
- 20 lesson books containing 39 theory and hands-on training lessons and exams.

Yes, send me CIE's 39 Introductory Electronic and Electricity Lessons and Equipment.

Name: ____________________________
Address: ____________________________
City: ____________ Apt. #: ____________
State: ______________ Zip: ____________
Age: _______ Phone (___) _________

BOOKSTORE
1776 East 117th Street
Cleveland, Ohio 44111
(216) 581-9000

Total Merchandise: $99.50
Ohio Residents add 7% Sales Tax:
California Residents add 6-1/2% Sales Tax:
Total this order: ____________________________
Method of Payment: Amount Enclosed $__________
☐ Personal Check or Money Order
☐ Master Card ☐ Visa
Card Expiration Date: ____________________________
Signature: ____________________________

CHARGE BY PHONE!
9 AM to 4:30 PM Eastern Time; from Ohio 1-800-523-9109
from all other states 1-800-321-2155

BKN01
NEW PRODUCTS

Use the Free Information Card for more details on these products.

SERVICE VACUUM. Specifically designed to make the customer-service job safer and easier, the 3M Service Vacuum features parts made of a material that dramatically reduces the potential for electric shock, a replaceable one-horsepower motor that provides more cleaning power than most vacuums, and three highly effective filters.

The Service Vacuum's hose assembly, wand, and crevice tool are all made from a material that slows the flow of electricity and drains away static charge. That protects the technician from shock and protects sensitive electronic parts from electrostatic discharge (ESD).

The disposable filters are encased in a durable, spill-proof plastic cartridge that is easier to remove and safer to dispose of than conventional vacuum bags. When the filter is full, the user simply replaces the entire cartridge. Three types of filters are available. The fine-particle filter traps extremely fine particles, such as color laser printer toner or particles from equipment requiring clean-room conditioners. The toner/dirt filter traps unwanted toner from most copiers and laser printers, and can be used for cleaning typewriters and data processing equipment. The dust/dirt filter traps dust and larger particles such as lint and cotton fibers, and is intended for cleaning computers, paper shredders, card punches, and collating machines.

The 3M Service Vacuum costs $209.—3M Electronic Products Division, P.O. Box 2963, Austin, TX 78769-2963; Phone: 800-321-9668.

BATTERY-CONDITIONING SYSTEM. Designed for use with the Motorola 8000, 950, Ultra-classic, and other compatible cellular phones, the MC-01 is the first in a series of consumer-targeted conditioner/rapid chargers introduced by Surecharge. It uses the patented Discovery Battery Conditioning System circuitry, which automatically conditions and rapid-charges Ni-Cd batteries. The conditioning process increases the life expectancy of Ni-Cd batteries by at least five times as compared to conventional charging methods. The Discover System also ensures delivery of 100% of the rated energy every time the battery is conditioned—even batteries with reduced capacity can be automatically rejuvenated. An environmental bonus is that the system prevents users from prematurely discarding rechargeable batteries.

The MC-01 cellular telephone battery conditioner/charger has a suggested retail price of $220.—**Surecharge Industries Inc.**, 278 East 1st Avenue, Vancouver, B.C., Canada V5T 1A6; Phone: 800-661-4405 or 604-876-6710; Fax: 604-876-9229.

PROGRAMMABLE CONTROLLER. Measuring only 1.89 x 2.25 inches, the Micro-440 from Blue Earth Research is a single-board controller designed for industrial control, data acquisition, home automation, and OEM applications. Based on a 12-MHz Intel 83C51FB microcontroller, the unit can be programmed for remote stand-alone or local interactive operation from a terminal or PC. On-chip software allows the Micro-440 to be programmed in either BASIC or 8051 assembly language. A real-time clock/calendar module allows event recording or other date-and-time-based operations, and can generate interrupts for precise event timing in periods ranging from 1/6 second to one hour.

The controller offers 32K bytes of battery-backed CMOS SRAM in addition to its 16 bytes of ROM. The RAM can be used to store user programs, operating parameters, and collected data. A RAM-write protect feature can be used with BASIC file commands to "lock in" user programs for automatic execution.

A total of 14 digital I/O lines can be used to monitor switches and contacts or to drive transistors, relays, etc. Dual RS-232C serial ports allow simultaneous communication with a PC and printer.
An expansion port can be used to add memory or I/O to the base unit. Up to eight analog inputs can be used to read temperature, pressure, or other 0–5-volt sensors. One channel is used to monitor the controller’s input supply voltage for power-fail detection in battery-powered applications. The unit can be powered from almost any 6- to 16-volt DC source. A lithium backup battery maintains the RAM and clock for more than 10 years.

The Micro-440 programmable controller costs $199 in single quantities. It includes 'Environmentally Conscious' (OEM versions start at $99 in 1,000's). A complete system design package costs $379.00.—Blue Earth Research, 310 Belle Avenue, Mankato, MN 56001: Phone: 507-387-4001; Fax: 507-387-4008.

PC-BOARD HOLDER. The low-profile design of Production Devices’ model PC502 increases productivity by allowing fast, comfortable loading and soldering of PC boards. The spring-loaded rails provide a firm grip on each board. Once adjusted, board changing is fast and efficient. For multi-board assembly, extra rails are available optionally. The unit’s skid-resistant, adjustable legs allow the steel frame to be changed from a one-inch low-profile position to a three-inch-high sloping position. After component stuffing, the holder can be flipped over for cutting and soldering. The PC-board holder rests on four non-skid bumpers and has a cover that is adjustable for component tension. Standard memory foam and conductive foam are available. The holder can reasonably accommodate boards with measurements as large as 19.6 × 9.0 inches.

The model PC502 PC-board holder costs $85.00.—Production Devices, 356 North Marshall Avenue, El Cajon, CA 92020; Phone: 600-824-4226.

DEOXIDIZER PEN. Now available in convenient, pen-style applicators. Caig’s Cramolin Deoxidizer is a fast-acting solution that improves conductivity on connectors and contacts by dissolving resistive oxides from metal surfaces. Effective on all metal surfaces, Cramolin also provides protection from future oxidation. The pen applicator provides precise application of Cramolin non-flammable, non-corrosive, non-toxic, ozone-safe deoxidizer. The pen in-
B&K Precision, Division of Maxtec International Corporation, 6470 West Cortland Avenue, Chicago, IL 60635; Phone: 312-889-1448.

SURFACE-MOUNT COMPONENTS. Communications Specialists is offering surface-mount resistors and capacitors in small quantities and in individual values. The components are sold in strips of either 10 resistors or five capacitors. Each strip of 10 surface-mount resistors costs $2.50; each strip of five capacitors costs $1.25 (minimum order $10.00).—Communications Specialists Inc., 426 West Taft Avenue, Orange, CA 92665-4296; Phone: 714-998-3021; Fax: 714-974-3420.

SOLDERING-IRON ANALYZER. Electrical engineers, quality-control personnel, and electronic reworkers can use the Weller WA2000 soldering-iron analyzer to determine whether their soldering stations are in compliance with the DOD-2000 specification. The analyzer can accurately test tip temperature, tip-to-ground resistance, and tip-to-ground noise (mVRMS). Test results are easy to read on the large LCD readout in degrees Fahrenheit or Centigrade. The portable unit has a battery life of 50 hours and comes with a zippered carrying case and accessories.

The WA2000 soldering-iron analyzer has a suggested retail price of $450.—Weller, P.O. Box 728, Apex, NC 27502.

UNITS CONVERSION SOFTWARE. Designed to free students, engineers, architects, scientists, and manufacturers from the drudgery of searching through numerous tables of conversion factors for the one conversion factor needed, David Taylor's Units + Conversion Factors applications software comes complete with a disk library containing units and conversion factors that enable conversions between billions of units. Users can also add their own items to the disk library if they wish.

The program also does conversion between a unit and a transplanted unit. The software can also display the SI dimensional form of most common quantities.

Units + Conversion Factors costs $89.95.—David F. Taylor, Jr., P.O. Box 562, Commerce, TX 75429; Phone: 903-886-7301.

SINGLE-CHIP SURROUND-SOUND DECODER. With a fully integrated auto-balance function along with active decoding matrix, center mode control, and noise generator, Analog Devices' SSM-2125 combines all the core functions of a complete Dolby Pro Logic surround-sound system on a single IC. Auto-balance provides dynamic correction of left-right input signal-level imbalances, eliminating the need for manual user adjustments and improving center-channel dialogue separation—replacing a cumbersome discrete circuit composed of up to 24 active and passive components. With over 100-dB dynamic range and 0.015% THD, the SSM-2125's 18-bit equivalent audio performance rivals that of compact discs and digital audio tape.

The complete SSM-2125 integrates up to thirty operational amplifiers, ten voltage-controlled amplifiers (VCA's), a proprietary operational conveyor amplifier that provides a current-input summing block, two dual-output rectifiers, two low-difference amplifiers, comparators, random logic, and a digital noise source. A user-selectable Pro Logic bypass mode provides a high-fidelity two-channel signal path without the need for external relays, while thin-film resistors and laser trimming eliminates the need for external gain.
and offset trimming circuitry. A unique VCA cell combines transparent audio performance with minimum die area. The SSM-2125 is available in a 48-pin plastic DIP.

The SSM-2125 surround-sound IC is priced beginning at $15 in hundreds. The IC is available to Dolby licensees only.—Analog Devices, Precision Monolithics Division, Attention: Dan Parks, 1500 Space Park Drive, Santa Clara, CA 95052; Phone: 408-562-7513.

NO-CLEAN SOLDER CREAM EVALUATION

Sn63 and Sn62 with off-fillet no-clean residue. The kit includes a reusable hand dispenser for precise deposits of solder cream, and ten molded smooth-flow dispensing tips.

The Kit-9 solder-cream evaluation kit costs $89.—ESP Solder Plus, 14 Blackstone Valley Place, Lincoln, RI 02865-1145; Phone: 800-338-4353 or 401-333-3800; Fax: 401-333-4954.

DIGITAL STORAGE SCOPES. Two real-time digital storage oscilloscopes from Protek feature 20-MS/second sampling and “Vu-Write” cursor CRT readouts. The 40-MHz model P2849 (pictured) and the 20-MHz model P2820 also deliver a vertical resolution of 256 dots, a 1024-dot horizontal resolution, indicating memory of 2048 words, reference memory with storage of up to four signals, and an 8-MHz effective storage frequency. Analog functions include dual-time base on the P2840, push-button switch selection with vertical and horizontal mode select for fast setup and readout, and a front-panel layout designed for easy operation. In addition, the scopes offer a memory function, plus cursor readouts to indicate time, amplitude, frequency, duty cycle, and phase shift.

The models P2840 and P2820 digital storage oscilloscopes cost $1630 and $1450, respectively.—Protek, P.O. Box 59, Norwood, NJ 07648; Phone: 201-767-7242; Fax: 201-767-7343.
GORDON McCOMB'S GADGETEER'S GOLDMINE! 55 SPACE AGE PROJECTS; by Gordon McComb. Published by TAB Books Inc., Blue Ridge Summit, PA 17294-0850; Phone: 1-800-233-1128; $18.95.

Although some of the projects in this book are decades old and others are brand new, they all share a common thread: They are intended to spark the builder's spirit of invention. The classic designs serve to give the reader a solid foothold in the techniques of "gadgets." While some of the unique new ideas serve as a jumping point from which readers can create their own designs. The projects range in complexity from a simple Jacob's Ladder to a complete laser light show, and include a plasma sphere, a Tesla coil, a Kirlian camera, a superconductor disc, a radiation detector, a fiber-optic communication disc, a laser alarm system, a computer control interface, a holography darkroom, and a seismograph.

The book is divided into 26 chapters, each of which presents one or more hands-on projects that readers can duplicate in their home workshops. Several chapters also include information vital to the understanding of one or more of the projects. The book explores the science of lasers, how fiber optics work, the nature and dangers of high-voltage devices, what radioactivity is and how it is measured, the history of holography, light-wave communications, and piezoelectricity. The projects are fully illustrated, and a list of parts sources appears in the appendix.

ELECTRONIC TEST ACCESSORIES; from ITT Pomona Electronics, 1500 East Ninth Street, P.O. Box 2767, Pomona, CA 91769; Phone: 714-623-3463; Fax: 714-629-3317; free.

Highlighted in this 140-page catalog are a new 32-pin PLCC (0.05 pin spacing) clip for popular EEPROM devices, and 100- and 132-pin SMT test clips for Motorola 68020/68030 and Intel 80386SX microprocessors. Additional accessories included in the brochure are intended to make testing SMT devices easier and more reliable. The catalog also features new IC clip kits, coaxial/BNC universal adapter kits, digital-multimeter test-lead kits, cable and patch accessories, and jumper kits. Ten major product categories, which are presented in an easy-to-use index, include a selection of jumpers and cables, boxes, plugs and jacks, connectors, adaptors, single-point test clips, and static-control devices.

OPTOELECTRONIC DEVICES (Catalog 86-1, Issue IV); from Lumex Opto/Components Inc., 292 East Helen Road, Palatine, IL 60067; Phone: 708-359-2790; Fax: 708-359-8904; free.

This 52-page catalog contains detailed descriptions, dimensions, and specifications for hundreds of state-of-the-art optoelectronic components. Included are emitters, detectors, laser detectors, photo-transistors, photodiodes, optoisolators, phototransistors, photo-transistors, photo-reflectors, emitter-detector assemblies, choppers, photo interrupters, custom assemblies with IC controllers, chips, and remote-control receiver modules. Those items have practical applications in a wide variety of consumer, industrial, and business products and systems, including audio and visual equipment, computer drives, copy machines, word processors, phones, fax machines, controllers, spectrum analyzers, medical equipment, alarms, and meters. The catalog also contains a chart that cross references part numbers for 15 manufacturers such as Sharp, Honeywell, NEC, and Siemens; a two-page applications chart; and sections on characteristics, circuitry, package outlines, and specific selection guides.

THE CAPACITOR HANDBOOK; by Cletus J. Kaiser. Published by CJ Publishing, 2851 West 127th Street, Olathe, KS 66061.

Although capacitors are in common use, they are frequently misused due to misunderstanding their characteristics. This book aims to clear up the confusion by providing practical guidance in understanding the construction and application of capacitors. It combines theory with circuit application advice to help readers understand what goes on in each component and in the final design. An opening chapter covering the fundamentals of capacitors as a general category is followed by chapters on spe-
specific types of capacitors, including ceramic, plastic-film, aluminum-electrolytic, tantalum, glass, and mica.

SELECTION AND USE OF PANDUIT ADHESIVE MOUNTS (Technical/Application Data Sheet TADS-WA-14B); from Panduit Corporation, Attention: Product Manager, Wiring Accessories, 17301 Ridgeland Avenue, Tinley Park, IL 60477-0981; Phone: 1-800-777-3300, ext. 7346; free.

Designed to explain how to choose and use adhesive mounts for wire and cable, this eight-page bulletin provides information on types of adhesive that are available, guidelines for surface preparation, and short listings of applications and markets. A table includes dimensions, temperature ranges, adhesive type, maximum loads, and cable ties.

Coax It Your Way.

Pomona's Universal Adapter Kit lets you make your own connections on the spot. You get two each of industry's most popular styles; BNC, TNC, SMA, plus "N" males and females. Plus, a special Double Banana Plug and Double Binding Post. And, four intermediate couplers to make it your way.

A Case For Reliable Connections.

There's quality in every piece, with gold plated center pins and silver plated bodies. And everything's in a hinged, plastic case for years of dependable use. You'll find the best selection of coaxial adapters in the pages of the new Pomona Catalog. See your nearest Authorized Pomona Distributor.

POMONA ELECTRONICS,
1500 E. Ninth St.,
Pomona, CA 91769
(714) 623-3463
FAX (714) 629-3317

FREE 1991 POMONA CATALOG!
140 pages of newest products and thousands of test solutions.
PARTS SPECIAL-ORDER HOTLINE. Your local Radio Shack offers a huge selection of electronic components. Plus, we can special-order over 10,000 items from our warehouse—ICs, tubes, semiconductors, crystals, photo cartridges and styli, even SAMS manuals. Delivery time for most items is one week. And there are no postage charges or minimum order requirements.

Prices apply at participating Radio Shack stores and dealers. Radio Shack is a division of Tandy Corporation.

(1) Three-Pin Plug. (11) Mini Piezo Speaker. Only 1 3/8" diameter. #273-091 ... 2.49
(2) Hobby Motor. For robotics and projects. 1/8" to 3VDC. About 1/8" long. #273-223 ... 99c
(12) Heavy-Duty Plug-In DPDT Relays. Contacts rated 10 am at 125VAC. Size: 1/4" x 1/4" x 3/4". #275-218 ... 5.99
(2) 12VDC Coll. #275-217 ... 5.99
(3) 125VAC Coll. #275-220 ... 1.79

PARTS PLACE

RADIO SHACK AMERICA'S TECHNOLOGY STORE

Since 1921 Radio Shack has been the place to obtain up-to-date electronic parts as well as quality tools, test equipment and accessories at low prices. Over 7000 locations to serve you—NOBODY COMPARES

CIRCLE 76 ON FREE INFORMATION CARD
GERARD ROBIDOUX AND
ROBERT DMITROCA*

A LOGIC ANALYZER IS AN INVALUABLE tool for debugging complex digital circuits. Not only can it sample and store the state of a large number of digital signals, it can perform complex analysis on the signals to determine their timing and state relationships. The acquired data can be displayed on either a waveform screen or a state screen. With four different pull-down menus available, all the controls are right at your fingertips!

The essence of all digital logic circuits is the simultaneous operation of many signal paths. As an example, consider a typical desktop personal computer, such as the IBM PC. In order for the microprocessor to write to a single byte of memory, it must assert 20 address lines, 8 data lines, and over a half-dozen control lines. In total, over 34 signal paths must operate correctly and simultaneously for the computer to function properly.

When a digital circuit fails, it becomes very difficult to debug. Traditional diagnostic tools, such as the oscilloscope, can usually monitor 4 channels at the most. Other tools, such as logic probes, can only display the current state of a signal and cannot be used to analyze how the signal varies with time.

Those problems led to the development of the logic analyzer. At its most primitive level, the logic analyzer may be considered to be an oscilloscope with a large number of channels, except that only the high-low state of a signal may be seen rather than a continuous analog waveform. Commercial logic analyzers typically have 16 to 300 channels.

Until now, most logic analyzers have cost well over $1000, which has severely limited their use. Currently, most low-cost logic analyzers consist of cards which plug into personal computers. Those devices require a personal computer to operate and, therefore, are not very portable and tie up the resources of the computer.

Recent advances in CMOS and bipolar technologies, however, make it possible to build a practical, low-cost, self-contained logic analyzer. We will show you how you can build a portable, 16-channel, 50-MHz logic analyzer, all for under $700!

Theory

Figure 1 shows a block diagram of the logic analyzer. Connection to the circuit under test is made through an acquisition "pod," or connector array, which contains a set of wires terminated with test clips. The clips are used to attach to the various points in the circuit being tested.

All of the lines contained in the acquisition pod are inputs: the logic analyzer never sends a signal to the device it is connected to. The pod also contains clock and ground inputs as well as data-input lines. More sophisticated units may also contain inputs that qualify the clock, inhibit triggering until certain conditions are met, and so on.

Signals coming in from the acquisition lines enter voltage comparators, which are used to periodically sample the input sig-
FIG. 1—A BLOCK DIAGRAM OF THE LOGIC ANALYZER. Signals from the acquisition lines enter the voltage comparators and are sampled by the input latches; they then flow into the high-speed RAM and the trigger logic. The final stage is the user interface.

V, C
10K
+9V

PD2
PO(0 2
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

POD CLK > I
AO CLK
FO OC

PD(0 2
19
ADO
AD1
AD2
AD3
AD4
AD5
AD6
AD7

IC1 7A4CT00
IC2 74ACT00
IC3 74ACT00
IC4 74ACT00

INPUT POD

ROM RAM KEYBOARD DISPLAY
MICROPROCESSOR INTERFACES SAMPLE-CLOCK GENERATOR
EXTERNAL CLOCK VOLTAGE COMPARATORS 16 CHANNELS BUFFER SAMPLE- CLOCK TRIGGER LOGIC HIGH SPEED RAM ADDRESS
DATA
WE+ DE+
CONTROL CIRCUITS

FIG. 2—A SCHEMATIC FOR THE LOGIC ANALYZER. This diagram shows the connections and components used in the analyzer. The various blocks and components are interconnected to perform the necessary functions.
Signals and determine their logic level. All logic families have a defined high and low level. For example, the TTL logic family defines a low as a voltage between 0 and 0.8 volts, and a high between 2.4 and 5.0 volts. Some logic analyzers have a variable voltage threshold, which allows you to define the high and low voltage levels depending on your particular application.

The logic analyzer that we present here recognizes only TTL and 5-volt CMOS. Since the vast majority of digital logic is designed with those two families, that's not a serious limitation, and it also eliminates the need for expensive high-speed voltage comparators.

After voltage comparison, the signals entering the logic analyzer are sampled by the input latches. Digital storage scopes (DSOs) use the same sampling technique. The sampling rate is determined by an internal time-base, or from an external clock input. The sampling rate is usually adjustable in a 1-2-5 sequence from a very high frequency to a very low frequency (a few hundred MHz to less than 100 Hz).

With a very fast clock, you can see the operation of the circuit in great detail for a very short period of time. With a slow clock you can see the operation of a circuit for a longer time, but with less accuracy. If you were debugging a high speed digital circuit, such as a microprocessor, you would use a very fast clock. A slower clock would be used to troubleshoot a very slow circuit, such as a 1200-baud serial interface.

The external clock input is used when you want the sampling rate to be controlled by an external circuit. A good example of that is when you attach a logic analyzer to the data and address lines of a microprocessor to trace program execution. The logic analyzer's external clock line is connected to a memory strobe line, such as A5 (68000 family) or A5F (8088 family). The logic analyzer would then capture the status of the processor at each bus cycle.

After being captured by the input latches, the input signal data flows to two places: the high speed RAM and the trigger logic. Let's take a close look at the trigger logic first.

In most digital designs, we're interested in the operation of the circuit at a very specific point. The action of the trigger logic allows us to obtain only that range of data in which we are interested. For each of the signals being monitored, we can specify a trigger pattern of high, low, or "don't care" (either high or low). When the logic analyzer is enabled, it will continuously sample the input data lines until a trigger pattern is recognized. At that point, sampling will either stop, or continue for a preset number of samples. That feature lets us see the state of the signals occurring before, or, perhaps, both after the trigger point.

The high speed static RAM stores the values of the input channels being monitored. That RAM is often known as the acquisition data buffer, since it provides a storage space for the data being acquired from the input data lines.

Notice that a logic analyzer, unlike an oscilloscope, is not a "real-time" device. An oscilloscope can immediately and continuously show the voltage at the probe. The logic analyzer, on the other hand, stores the signal data until a trigger pattern is recognized. The

FIG. 2—INPUT BUFFERS AND TRIGGER LOGIC. The input pod contains 16 data-channel inputs, an external clock input and a ground connection. The input data enters resistor arrays RA1 and RA2, and into latches IC1 and IC11. The acquired data is routed into the trigger logic and to the high-speed RAM.
FIG. 3—THE ACQUISITION SECTION, consisting of high-speed RAM storage and control logic, is the heart of the logic analyzer.
signal data is shown only after that has occurred.

The last section of the logic analyzer is the user interface, which consists of a keyboard and display that are built right into the unit.

Circuit description

Now that we've looked at the block diagram of the logic analyzer, we'll turn our attention to how the unit operates. The schematic in Fig. 2 shows the input pod and trigger logic. The input pod connector, J1, contains 16 data-channel inputs, the external clock input and the ground lead connection. It also carries other signals that can be used by external pods.

The data to be sampled goes into J1, through resistor arrays RA1 and RA2, and into latches IC1 and IC11. The level of each channel is latched using the AQ-CLK signal (the sampling clock). Pull-up resistors RA1 and RA2, and into latches external pods.

The level of each RA1 and RA2, and into latches data -channel inputs, the exter-

nal clock input and the ground lead connection. It also carries other signals that can be used by external pods.

The trigger condition of the input data may be set to high, low, or “don’t care.” The “don’t care” circuits for the first eight inputs are formed from IC2, IC3, and IC7, and the last eight inputs from IC12, IC13, and IC17. If an input is set to a “don’t care” condition, the input of the corre-

sponding NAND gate is set low. That forces the output to be high regardless of the input from the data latch. If the NAND input is set low, the data is simply inverted.

The outputs from the NAND gates are presented to the eight-bit comparators. IC4 and IC14. The output of those IC's (pin 19) goes low whenever the P and Q inputs match.

Masking of IC8 and IC18 latches is performed by the fol-

lowing technique. If the trigger bit to either IC is low, a high is written to the latch. Similarly, if the trigger bit is high, a low is written. For “don’t care” condi-

tions, a high value must be written, since we have forced the P input to high (by disabling the NAND gate). The upper and lower trigger outputs of IC29-8 forms an active-high trigger output.

The minimum trigger-duration circuit is made from IC9, IC19, and IC10. That circuit en-

sures that the trigger is present for a minimum amount of time before the trigger pattern is act-

ually recognized, which prevents glitches from causing a false trig-

ger occurring.

The desired trigger-duration count is contained in the latch of IC9. Whenever the trigger pat-

tern occurs, the 4-bit counter IC19 is enabled. That counter runs at 50 MHz (20 ns per count). When the desired duration count and the counter value match, the TRIGGER output (pin 6 of IC10) will go high, indicating that a valid trigger pattern has been recognized.

If the trigger disappears before the desired duration count has been reached, the counter is cleared. It will start over when the trigger becomes valid again.

The circuit shown in Fig. 3 contains the heart of the logic analyzer: the high speed RAM storage and the control logic. Data for the lower eight channels is stored in IC5, while IC15 stores the data for the upper eight channels. Both IC5 and IC15 are 2K x 8 15-ns SRAM.

An 11-bit binary counter is formed from IC25, IC26 and IC27. That counter drives the ad-

dress inputs of the RAM IC's. The
address is incremented by 1 for each cycle of the AQ–CLOCK (acquisition clock) signal.

The TRIG function lets you specify the position of the trigger position within the acquisition data buffer. When PRE is selected, the trigger is set at the start of the buffer. When the trigger condition is met, data is sampled until the entire acquisition buffer is filled. When the trigger is set at the start of the data buffer, when PRE is selected, portions of the data buffer are kept. The first half of the data buffer may or may not contain data that was sampled before the trigger point. In the POST trigger mode, storage of data will stop immediately after the trigger condition is recognized.

An 11-bit binary counter is formed from IC22, IC23, and IC24. That counter holds the current position within the acquisition data buffer. The position counter is reset whenever the trigger condition is recognized, after which it is incremented by 1 for each cycle of the AQ–CLOCK signal.

The acquisition section control is formed by IC45, IC29, and portions of IC28 and IC31. The TRIGGER output from IC10 to a constant high level (sTRIG) is converted by IC28-b. A finite state machine, IC45, coordinates the signals coming in from the microprocessor, trigger logic, and position counters, and generates the appropriate outputs to control the acquisition cycle.

An internal frequency ranging from 50 MHz to 5 Hz is used to inform the state machine where the trigger should be positioned in the acquisition buffer (for example, they set the PRE, MID, or POST mode). AQSTART tells the logic analyzer to begin looking for the trigger condition, and to start storing data into the acquisition buffer. The MIDWAY and END signals from the position counters tell the state machine how much buffer has been filled since the trigger.

When a trigger has been recognized and the acquisition buffer filled up, the state machine will assert the INTO line, informing the microprocessor that acquisition data is now available.

The STEP, CCLR, and DDIR—EN are used to inform the state machine where the trigger should be positioned in the acquisition buffer (for example, they set the PRE, MID, or POST mode). AQSTART tells the logic analyzer to begin looking for the trigger condition, and to start storing data into the acquisition buffer. The MIDWAY and END signals from the position counters tell the state machine how much buffer has been filled since the trigger.

When a trigger has been recognized and the acquisition buffer filled up, the state machine will assert the INTO line, informing the microprocessor that acquisition data is now available.

The STEP, CCLR, and DDIR—EN are used to inform the state machine where the trigger should be positioned in the acquisition buffer (for example, they set the PRE, MID, or POST mode). AQSTART tells the logic analyzer to begin looking for the trigger condition, and to start storing data into the acquisition buffer. The MIDWAY and END signals from the position counters tell the state machine how much buffer has been filled since the trigger.

When a trigger has been recognized and the acquisition buffer filled up, the state machine will assert the INTO line, informing the microprocessor that acquisition data is now available.

The STEP, CCLR, and DDIR—EN are used to inform the state machine where the trigger should be positioned in the acquisition buffer (for example, they set the PRE, MID, or POST mode). AQSTART tells the logic analyzer to begin looking for the trigger condition, and to start storing data into the acquisition buffer. The MIDWAY and END signals from the position counters tell the state machine how much buffer has been filled since the trigger.

When a trigger has been recognized and the acquisition buffer filled up, the state machine will assert the INTO line, informing the microprocessor that acquisition data is now available.

The STEP, CCLR, and DDIR—EN are used to inform the state machine where the trigger should be positioned in the acquisition buffer (for example, they set the PRE, MID, or POST mode). AQSTART tells the logic analyzer to begin looking for the trigger condition, and to start storing data into the acquisition buffer. The MIDWAY and END signals from the position counters tell the state machine how much buffer has been filled since the trigger.

When a trigger has been recognized and the acquisition buffer filled up, the state machine will assert the INTO line, informing the microprocessor that acquisition data is now available.

The STEP, CCLR, and DDIR—EN are used to inform the state machine where the trigger should be positioned in the acquisition buffer (for example, they set the PRE, MID, or POST mode). AQSTART tells the logic analyzer to begin looking for the trigger condition, and to start storing data into the acquisition buffer. The MIDWAY and END signals from the position counters tell the state machine how much buffer has been filled since the trigger.

When a trigger has been recognized and the acquisition buffer filled up, the state machine will assert the INTO line, informing the microprocessor that acquisition data is now available.

The STEP, CCLR, and DDIR—EN are used to inform the state machine where the trigger should be positioned in the acquisition buffer (for example, they set the PRE, MID, or POST mode). AQSTART tells the logic analyzer to begin looking for the trigger condition, and to start storing data into the acquisition buffer. The MIDWAY and END signals from the position counters tell the state machine how much buffer has been filled since the trigger.

When a trigger has been recognized and the acquisition buffer filled up, the state machine will assert the INTO line, informing the microprocessor that acquisition data is now available.

The STEP, CCLR, and DDIR—EN are used to inform the state machine where the trigger should be positioned in the acquisition buffer (for example, they set the PRE, MID, or POST mode). AQSTART tells the logic analyzer to begin looking for the trigger condition, and to start storing data into the acquisition buffer. The MIDWAY and END signals from the position counters tell the state machine how much buffer has been filled since the trigger.

When a trigger has been recognized and the acquisition buffer filled up, the state machine will assert the INTO line, informing the microprocessor that acquisition data is now available.

The STEP, CCLR, and DDIR—EN are used to inform the state machine where the trigger should be positioned in the acquisition buffer (for example, they set the PRE, MID, or POST mode). AQSTART tells the logic analyzer to begin looking for the trigger condition, and to start storing data into the acquisition buffer. The MIDWAY and END signals from the position counters tell the state machine how much buffer has been filled since the trigger.

When a trigger has been recognized and the acquisition buffer filled up, the state machine will assert the INTO line, informing the microprocessor that acquisition data is now available.

The STEP, CCLR, and DDIR—EN are used to inform the state machine where the trigger should be positioned in the acquisition buffer (for example, they set the PRE, MID, or POST mode). AQSTART tells the logic analyzer to begin looking for the trigger condition, and to start storing data into the acquisition buffer. The MIDWAY and END signals from the position counters tell the state machine how much buffer has been filled since the trigger.

When a trigger has been recognized and the acquisition buffer filled up, the state machine will assert the INTO line, informing the microprocessor that acquisition data is now available.
FIG. 5—THE PROCESSOR SECTION contains the microprocessor, keyboard interface, LCD panel interface, serial interface, RAM, and ROM.
The 50-MHz oscillator produces a pulse width at least 13 ns long. A R-C network. The timing requirements are met by a 50-MHz waveform is adjusted by waves. The duty cycle of the 50-MHz and 20-MHz square wave is 35% (13 ns low, 7 ns high).

The signal is used to drive the clock (state STCLK) signal is produced by IC38. Multiplexer IC34 selects the 50-MHz or 20-MHz oscillators, the 25-MHz or 5-MHz signals from IC33, or the external clock line. A bi-quinary divider chain is formed by IC33, IC35, IC36, and IC37. IC33, a 74ACT160, is similar in function to IC35-IC37, which are 74LS390 dual-decade counters. It is used at the beginning of the chain because the 74LS390 can handle a maximum frequency of only 20 MHz.

The various clock sources are multiplexed into IC38, an 8-to-1 multiplexer. The STCLK (state clock) signal is produced by IC38. That signal is used to drive the acquisition state machine and to sample the input data lines. Eight-bit latch, IC39, is used to select the source and/or frequency of the STCLK signal.

The external clock enters pin 4 of IC32-b, an xor gate. By setting pin 5 to a high level, the clock signal can be inverted before being presented to the multiplexer. To sample on the falling edge of the external clock, pin 5 is set to 0. To sample on the rising edge, pin 5 is set to 1.

The microprocessor, keyboard interface, LCD panel interface, serial interface, RAM and ROM is shown in Fig. 5. The microprocessor used is the V25 (IC30) from NEC electronics, which is 100% code compatible with the Intel 8088 microprocessor (used in the IBM XT class of computers). The V25 includes two serial interfaces, a DMA controller, and parallel I/O ports. Using this part allowed us to implement the entire microprocessor section using only seven ICs!

There is one ROM site, IC46, and one RAM site, IC40. The ROM site is a 32-pin JEDEC socket which will accept 1-, 2-, or 4-Mbit EPROMS. The logic analyzer software currently fits in a 1 Mbit part (128K x 8). The RAM site accepts either 32K or 128K static RAM ICs. In order to permanently store the configuration of the logic analyzer, the RAM site uses a Dallas semiconductor component called a SmartSocket. That device consists of a standard socket, along with a 3-volt lithium battery.

FIG. 6—POWER CIRCUIT AND DECOUPLING CAPACITORS. Each IC is decoupled by a 0.1 μF capacitor.

ORDERING INFORMATION

Note: The following items are available from Convention Systems, 1214-315 Southampton Dr. SW, Calgary AB, Canada T2W 2T6, (403) 253-4427. Send check or money order. Shipping is by ground delivery. Contact Convention Systems for additional charges if overnight delivery is desired. All items are postpaid, except as noted.

- Etched, drilled and plated main and keyboard PC boards—$39.00
- Preprogrammed EPROM, GAL16V8-15LP, and GAL16V8-10LP (IC44-IC46)—$99.00
- Milled-out case with plastic overlay—$79.00
- Probe assembly—$99.00
- AC adapter—$15.00
- LCD panel—$150.00
- IC30 V25 microprocessor—$29.00
- Manual—$32.00
- Complete kit, including probe assembly and AC adapter—$695.00 plus $20.00 S & H.
- A complete assembled unit, including probe assembly and AC adapter—$695.00 plus $20.00 shipping and handling.

A divider chain, which produces the 22 clock frequencies, is formed by IC33, IC34, IC35, IC36, and IC37. Multiplexer IC34 selects the 50-MHz or 20-MHz oscillators, the 25-MHz or 5-MHz signals from IC33, or the external clock line. A bi-quinary divider chain is formed by IC33, IC35, IC36, and IC37. IC33, a 74ACT160, is similar in function to IC35-IC37, which are 74LS390 dual-decade counters. It is used at the beginning of the chain because the 74LS390 can handle a maximum frequency of only 20 MHz.

The various clock sources are multiplexed into IC38, an 8-to-1 multiplexer. The STCLK (state clock) signal is produced by IC38. That signal is used to drive the acquisition state machine and to sample the input data lines. Eight-bit latch, IC39, is used to select the source and/or frequency of the STCLK signal.

The external clock enters pin 4 of IC32-b, an xor gate. By setting pin 5 to a high level, the clock signal can be inverted before being presented to the multiplexers. To sample on the falling edge of the external clock, pin 5 is set to 0. To sample on the rising edge, pin 5 is set to 1.

The microprocessor, keyboard interface, LCD panel interface, serial interface, RAM and ROM is shown in Fig. 5. The microprocessor used is the V25 (IC30) from NEC electronics, which is 100% code compatible with the Intel 8088 microprocessor (used in the IBM XT class of computers). The V25 includes two serial interfaces, a DMA controller, and parallel I/O ports. Using this part allowed us to implement the entire microprocessor section using only seven ICs!

A divider chain, which produces the 22 clock frequencies, is formed by IC33, IC34, IC35, IC36, and IC37. Multiplexer IC34 selects the 50-MHz or 20-MHz oscillators, the 25-MHz or 5-MHz signals from IC33, or the external clock line. A bi-quinary divider chain is formed by IC33, IC35, IC36, and IC37. IC33, a 74ACT160, is similar in function to IC35-IC37, which are 74LS390 dual-decade counters. It is used at the beginning of the chain because the 74LS390 can handle a maximum frequency of only 20 MHz.

The various clock sources are multiplexed into IC38, an 8-to-1 multiplexer. The STCLK (state clock) signal is produced by IC38. That signal is used to drive the acquisition state machine and to sample the input data lines. Eight-bit latch, IC39, is used to select the source and/or frequency of the STCLK signal.

The external clock enters pin 4 of IC32-b, an xor gate. By setting pin 5 to a high level, the clock signal can be inverted before being presented to the multiplexers. To sample on the falling edge of the external clock, pin 5 is set to 0. To sample on the rising edge, pin 5 is set to 1.

The microprocessor, keyboard interface, LCD panel interface, serial interface, RAM and ROM is shown in Fig. 5. The microprocessor used is the V25 (IC30) from NEC electronics, which is 100% code compatible with the Intel 8088 microprocessor (used in the IBM XT class of computers). The V25 includes two serial interfaces, a DMA controller, and parallel I/O ports. Using this part allowed us to implement the entire microprocessor section using only seven ICs!

There is one ROM site, IC46, and one RAM site, IC40. The ROM site is a 32-pin JEDEC socket which will accept 1-, 2-, or 4-Mbit EPROMS. The logic analyzer software currently fits in a 1 Mbit part (128K x 8). The RAM site accepts either 32K or 128K static RAM ICs. In order to permanently store the configuration of the logic analyzer, the RAM site uses a Dallas semiconductor component called a SmartSocket. That device consists of a standard socket, along with a 3-volt lithium battery, and

continued on page 87
This solid-state electronic compass uses Hall-effect sensors to keep you heading in the right direction.

ANTHONY J. CARISTI

Most of us have at one time or another used a common magnetic compass, which often consists of a lightweight balanced magnet suspended on a pivot. The magnet, free to rotate, is affected by Earth's magnetic field, and assumes a position in which its north-seeking pole points to Earth's magnetic north pole. The geographical north pole of Earth is offset from the magnetic north pole by about 10 or 15 degrees in most areas of the United States.

Many low-cost compasses leave something to be desired in their performance, which can be affected by any tilt of the case or friction in the pivot. However, with the development of solid-state magnetic detecting devices, called Hall-effect generators, it is possible to construct a low-cost, reliable magnetic compass which has no moving parts and eliminates the disadvantages of inexpensive mechanical types. Because the project contains no moving or mechanically sensitive parts, it is an extremely rugged device that can tolerate all potential stresses encountered when hiking or traveling through rough terrain. Taking a reading on the compass is quick, easy, and very reliable.

This solid-state compass uses a unique detection system that produces two sharply defined points centered on the direction of magnetic north, as indicated by an LED. That permits a quick, accurate reading. The project, housed in a plastic enclosure, is small and lightweight, and is powered by a common 9-volt battery. Since the compass circuit is energized only when it is used to take a reading, the battery's useful life approaches that of its shelf life.

BUILD AN ELECTRONIC COMPASS

About the circuit
Development of a magnetically sensitive solid-state compass is made possible through a phenomenon called Hall effect, which was discovered in 1879 by Edwin Hall; he observed that a small voltage was developed at the edges of a current-carrying gold foil when the foil was exposed to a magnetic field. Solid-state technology now provides small, low-cost Hall-effect devices, which are very sensitive and able to detect Earth's extremely weak magnetic field.

The basic Hall-effect sensor, shown in Fig. 1, is a small sheet of semiconductor material in which a bias current flows. The Hall-effect output of the sensor takes the form of a voltage measured...
The Hall-effect sensor is further enhanced by using integrated-circuit technology to add a stable high-quality DC amplifier to the device. It then provides a usable linear output voltage which is sensitive enough to react to Earth's magnetic field (about 1/2 Gauss).

Referring to the schematic in Fig. 2. The Hall-effect generators (IC3 and IC4) are three-terminal linear devices which are driven by a regulated 5-volt supply provided by fixed-voltage regulator IC1. The output of each of the sensors is a DC voltage that varies linearly from a quiescent value of 2.5 volts as their position with respect to the lines of force of the magnetic field changes. A typical sensor has an output-voltage sensitivity of about 1.3 millivolts per Gauss.

Two Hall-effect generators are used in the circuit to provide twice the sensitivity of a single sensor. The two devices are oriented in opposite directions so that the change in output voltage of one sensor will be positive while that of the other will be negative as the compass is rotated.

The voltage differential between the two output terminals of the sensors is a representation of the magnetic field intensity and direction. The voltage differential produced by the Hall generators is fed to a differential amplifier, IC2-a. As a result, the output of IC2-a (pin 1) will be a minimum (null) when the compass is facing the magnetic north pole, and a maximum when it faces the south pole.

The change in output voltage of IC2-a is too small to allow a simple method of determining the null voltage as the compass is rotated. Therefore, IC2-b is used as an inverting amplifier with a gain of 100 to further increase the change in voltage. A DC offset, provided by sensitivity-adjust potentiometer R9 and voltage follower IC2-c, permits the DC output voltage of IC2-b to be set to a usable level to drive the next stage.

Op-amp IC2-d is used as a voltage comparator with a fixed reference of about 3.4 volts fed to its negative input. Thus, when the output of IC2-b fed to the positive input of the comparator exceeds the 3.4-volt reference level, the output of IC2-d (pin 14) goes high, applying forward bias to Q1. That in turn illuminates LED1 to indicate that a voltage exceeding the reference exists at IC2-b pin 7. The use of a voltage comparator to detect the change in output voltage of IC2-b (pin 7) produces two sharply defined points and allows a more accurate determination of the magnetic north pole.

As shown in Fig. 3, the LED will be illuminated over a small arc as the compass is rotated full circle, and will remain off over the rest of the 360-degree span. The sensitivity control (R9) allows adjustment of the width of the arc.
the arc. Once the two LED switching points are determined, true magnetic north is then the position at the center of the arc.

Power is provided by a common 9-volt battery. The circuit draws about 25 mA and, since it's usually powered for only a few seconds at a time, battery life is extremely long; several hours of continuous compass operation is also possible. Circuit stability with a falling battery voltage is ensured by the 5-volt regulator, IC5. When the battery is exhausted and cannot deliver sufficient current to operate the circuit, the LED will appear dim or will not illuminate at all.

Construction

The circuit, when built on the printed circuit board (for which we have provided the foil pattern), is very compact; the prototype is housed in a 2 1/2-inch square by 1-inch high plastic enclosure, that has sufficient room to accommodate both the board and the 9-volt battery. A metal enclosure must not be used for this project—it can attenuate or distort Earth's weak magnetic field. The power switch and sensitivity control are mounted on the side of the enclosure to allow easy operation of the compass.

Figure 4 shows the parts layout. The position of all polarized components (especially the Hall sensors) must be followed exactly as shown. The operation of the project depends upon the Hall generators being placed in opposite directions and exactly parallel as indicated in Fig. 4. Note that the orientation of the sensors is determined by the marked face of the device, with pin 1 being on the left side when looking at the markings. The sensors must be positioned so that they are aligned square with the rectangular shape of the printed circuit board. That way the compass direction will be accurate when the project is assembled into the enclosure. (Use the "north" indication of Fig. 4 to determine the relationship between the PC board and compass scale when final assembly is done.)

Many of the resistors specified in the parts list are metal-film types. The use of such components ensures maximum stability of the circuit with varying ambient temperature changes, and reduces the need to periodically adjust the sensitivity control. Ordinary carbon resistors are not temperature-stable and should not be used in place of metal-film types. Also, it's a good idea to use a socket for IC2.

It is recommended that you use a miniature momentary pushbutton switch for S1. That will ensure that battery power will never be inadvertently left on when the project is not in use. The sensitivity control, R9, may be placed on the side of the enclosure to allow circuit adjustment when necessary. You should use a battery clip for B1. If desired, a suitable clip can be obtained from a discarded 9-volt battery (just peel away the metal case and rip the top off). Be very careful to wire the battery clip with the correct polarity.

When the circuit board is completed, examine it very carefully for shorts, opens, and cold solder joints. It is much easier to correct problems at this stage rather than later on if you discover that your project does not operate. A photo of the finished board is shown in Fig. 5.

Use a photocopy of the artwork in Fig. 6 for the top of the compass; you can simply glue it in place. Indicator LED1 is placed at the north indications of the compass by drilling a suitable size hole in the plastic top where the letter N would be. Be very careful when drilling; some plastics will shatter if subjected to excessive stress. Be sure to properly orient the top of the enclosure in accordance with the final position of the PC board.

Checkout

When you are satisfied that all wiring is complete and correct,
the checkout procedure must be performed, and be sure to use a fresh 9-volt battery. Checkout requires a DC voltmeter connected to ground and the output terminal of IC1. Apply power to the circuit check for +4.75 to +5.25 volts. Measure the resistance between the 5-volt bus and ground: a normal reading is about 600 ohms. Measure the terminal voltage of the battery to be sure that it is delivering at least 7 volts under load to IC1. Replace a weak battery if necessary.

Next, measure the output voltage of IC2 pin 1, and verify the voltage range of potentiometer R9. (Compass orientation is not important at this time.) The voltage should be about 2 to 3 volts DC. Measure and record the DC voltage that you observe at IC2-a pin 1.

Measure the voltage change at IC2-c pin 8 as the sensitivity control is rotated over its entire range. The difference between the highest and lowest readings should be about 0.45 volts. Ideally, the center of the measured voltage range should be close to the voltage recorded earlier at IC2 pin 1.

If necessary, change the value of R8 and/or R10 so that the voltage range obtained at IC2-c pin 8 is somewhat centered about the voltage reading at IC2-a pin 1. This ensures proper adjustment range of the sensitivity control for the particular pair of Hall generators that are used in your compass project.

Once the sensitivity range is correct, rotate R9 over its range while observing the LED. At one end of the setting, the LED should be extinguished, and at the other end it should be illuminated; if not, check the polarity of LED1 and the orientation of Q1. Check pin 14 of IC2-d to be certain it swings from about zero to battery voltage as R9 is rotated over its range. Check pin 13 of IC2-d for a voltage of about 3.4 volts as set by R11 and R12. Problems in this area may warrant replacing IC2 if everything else checks out alright—check your soldering before changing the IC.

When the LED operates as described, the project is ready to be tested under actual operating conditions. Before you start, make sure that there are no magnetic fields nearby, and the project is not shielded by a large mass of iron or steel.

While holding the unit horizontally in any direction, apply power and carefully adjust R9 so that the LED is at the switch-over point between on and off; allow at least 10 seconds for the circuit to stabilize. Flicker of the LED is normal as the circuit switches back and forth. Once R9 is set, rotate the compass over a 360-degree arc (full circle) and note that the LED will be on over part of the arc, and off over the rest. If necessary, readjust potentiometer R9 very slightly to obtain this result. The optimum setting for R9 will be at the point where the arc of illumination is as small as possible.

As the compass is rotated over the illuminated arc, note the two on/off points. When the compass is positioned halfway between those points, it is facing the magnetic north pole, and the scale indications on its face indicate all other directions.

Using the compass
Always be sure that the battery is reasonably fresh, and take along an extra one before starting out on an excursion with the compass. (A weak battery will be indicated by a dim or totally unlit LED.) Avoid taking a compass reading in any area where there may be a magnetic field from a nearby device, or where Earth’s magnetic field is shielded by a large mass of metal.

Hold the compass in a horizontal position and rotate it full circle while observing the LED. Adjustment of the sensitivity control is indicated if the LED is totally on or totally off as the compass is rotated. Always allow at least 10 seconds operating time for the circuit to stabilize. Once the sensitivity control is adjusted, it should not require readjustment unless the project is subjected to an extreme change in temperature.

Don’t forget that the electronic-compass circuit can be used for things other than a simple direction finder. It provides an electronic means of finding north, so it should be easy to interface the compass to other devices that may need to know where north is—a robot, for example.
WHAT MICROPROCESSORS WERE IN the 1980's, digital signal processing (DSP) will be in the '90s. It is already being used in consumer audio, video, and communications equipment, and will show up in many more products within the next few years. With the ability to design and manufacture fast and accurate analog-to-digital (A/D) and digital-to-analog (D/A) converters, and to process and manipulate digital information at blinding speed, today's technology has made it as cost-effective to manipulate signals in the digital realm as it is to do so in the analog, and the results are better and more spectacular.
Before we can appreciate some of the devices in which DSP is being, and will be used, we should have an understanding of what it is, and how it works.

Analog signal processing

Signal processing can take many forms. Sometimes it involves changes in signal levels such as the type used in an audio graphic equalizer. In that type of device, the audio-frequency spectrum is divided into frequency bands by a series of analog filter networks. The gain of each filter circuit can be adjusted upward or downward around a center point to emphasize or de-emphasize the audio frequencies for which it is responsible, and therefore tailor the sound of an audio system to fit the requirements of a room or the ear of a listener. We'll return to the example of an audio equalizer later to show some of the effects that can be accomplished with DSP.

Analog filters—either in the form of L-C networks (Fig. 1-a) or simple op-amp circuits (Fig. 1-b)—are used in other numerous signal processing applications. They can, for example, be used to “peak up” audio or RF signals at certain frequencies or, in the form of high-pass, low-pass, and bandpass or notch filters, to allow the passage of signals of certain frequencies while blocking those of others.

Signal processing can also be used to modify the phase relationships in a complex signal, as is the case in the tint control found on NTSC TV receivers—although that's not being done digitally, at least not yet. In audio, on a gross scale, phase shifting shows up in the form of “phlanging,” a technique used in recording studios to add a rather weird-sounding effect to material. (The technique got its name from the fact that, initially, it was produced by playing two identical tapes and varying their speeds ever so slightly by applying pressure to the flanges of the tape reels. Now, of course, it's done digitally.) And, since the ear is extremely sensitive to the phase relationships of the sounds reaching it and uses them to help establish the location of sound sources, changing those relationships in recorded material can greatly affect the way the sound is perceived (see All About Surround Sound, June 1990 *Radio Electronics*).

Signals can also be summed, or subtracted from one other, to achieve particular results. Both summation and subtractive techniques are used, for instance, in various audio and video noise-reduction schemes.

Until recently, all the signal processing schemes described above, and a number of others not mentioned here, were carried out in the analog domain. Depending on the degree of precision required, the circuits could get very complex and very expensive. Also, a particular circuit could generally serve only a single purpose; if you wanted both frequency-selective processing, for example, and noise reduction, you had to design and build two completely different processing stages. Also adding to its inconvenience was analog signal-processing's dependence on analog components. As analog components heated and cooled, and as they aged, their values drifted and the characteristics of the circuits in which they were used changed. Precision in the analog world can be extremely difficult and costly to come by. Digital signal processing, however, is entirely different.

Digital signal processing

Once you have converted an analog signal to digital form—to a string of binary numbers representing the voltage levels of the signal as it varies over time—you can very easily perform all sorts of operations on those numbers that will affect the signal they represent when they're reconverted to analog form.

Let's take a very simple example. Suppose you wanted a digital volume control, which might, under certain primitive circumstances, be construed as a kind of DSP. To cut the volume of a signal in one third, all you would have to do would be to divide every binary number in its digital representation by three (Fig. 2). The voltages represented by the resulting numbers would be one third their original value, and the amplitude of the reconstructed analog signal would be one third that of what you started with. By changing the divisor, you could vary the amplitude accordingly in either direction.

Taking the process a step further, if you were to multiply all the
numbers by one (the equivalent of a unity-gain amplifier) except for those representing frequencies between X and Y, which it would divide by, say, 8, you would have a notch filter. That particular filter would, admittedly, have extremely steep sides, but its slope could be modified by using an expression of some complexity to determine the divisor at each point.

As another example of digital signal processing, consider a signal that's stored briefly in RAM as it passes through a system. By reading out that signal a couple of milliseconds after it's been read in, or by shifting it slowly through the RAM's addresses, and then adding it back at a lower level (smaller numbers) than the original as it was read out, you'd develop a reverberation effect. Note, by the way, that in that application there are two DSP processes going on at once: time delay and level control.

Digital signal processing of the sort we've just described has been with us for a few years, at least in simple form. For example, digital delay lines have long been used in recording studios. Perhaps the most sophisticated "non-DSP" DSP circuitry is that found in the oversampling digital filters used in CD players (Fig. 3), where every binary number passing through is multiplied by a fixed coefficient. The problem with such DSP devices to date—both single-chip ones and the ones requiring an entire boxful of components—is that they have been dedicated to a single-purpose. They've not been very flexible, which has limited their usefulness. Speed, too, has frequently been a limiting factor. The DSP processes used to enhance satellite photographs, for example, do not take place in real time; it is sometimes weeks before the results are available. (Although much of that delay is no doubt due to the bureaucratic process and long periods of "standing on line.")

Even so, as you've read this description of the principles of DSP, you may have said to yourself, "Hey, I'll bet I could teach my computer to do that! Then I could do anything I wanted!" And you could, but there would be a hitch. Even today's '386 and '486 desktop systems operating at 30 MHz or more are not fast enough to keep up with the heavy computational overhead demanded by good DSP. DSP, as the term is generally used today, requires that information appear at the output at the same rate it is supplied to the input. Today's small computers would need a lot of help to meet that criterion.

50 megaFLOPS

Fortunately, that sort of help is available. Just as numeric coprocessors, such as the 80387, have lifted a lot of the number-crunching burden from their associated microprocessors (and speeded things up enormously in the process) there are now special number-crunching processors for DSP. Those processors make DSP a real-time process—the modified signal comes out as quickly as it goes in. The difference between the "old" DSP and the new is rather like that between taking your pictures down to the drugstore to be developed and picking them up a week later, and owning a Polaroid 60-second camera.

What makes real-time DSP possible is a new class of IC's from companies such as Intel, Motorola, and Texas Instruments, not to mention a number of coprocessors, such as the 80387.
of offshore manufacturers. Just as the architecture and instruction sets of math coprocessors are created with a specific purpose in mind, these special purpose devices are tailored to the high-speed processing of the digital equivalents of audible and visible information. While each manufacturer has his own idea of what a DSP device should do, and how it should do it, the general principles are the same—real-time manipulation of digital data representing analog phenomena. We'll look at two DSP ICs from Motorola representing the group.

Motorola's DSP56001 is a "general purpose" fixed-point-math DSP IC that's found applications in a number of different types of devices. For example, it is an integral part of Steve Jobs' NeXT computer, that literal "black box," serving to provide on-board data communications (modem and fax) and sound synthesis for such purposes as voice mail, voice-interactive programs, and high-fidelity, CD-quality audio. The 56001 is also incorporated in Cincinnati Microwave's Escort radar detector where it differentiates between radar signals and other, unwanted, types of noise. At a price of $56, even in single-unit evaluation quantities, and maybe less by the time you read this, the DSP56001 is affordable enough to show up in a number of mass-produced general-market devices.

Speed is essential to real-time signal processing, and the DSP56001's specifications demonstrate how it performs in that area. For instance, the processor runs at a speed of 27 MHz, with an instruction-cycle time of 74.1 nanoseconds (0.0000000741 seconds). In the time it takes to execute one of those cycles, a beam of light would travel about 73 feet!

Other 56001 specs include
- Word length of 24 bits, providing a 144-DB dynamic range.
- Capability to execute at 94.5 million instructions per second (MIPS).
- Three complete and independent execution units capable of operating simultaneously and in parallel.
- Triple-bus Harvard architecture. (Harvard architecture, used in some RISC processors, involves two separate buses; the 65001 has three.)
- The ability to perform six separate operations simultaneously.

The physical and electrical specifications of this Motorola DSP device are impressive, both in terms of large and small numbers as well. The DSP56001:
- Comes in an 88-pin package.
- Operates from a single 5-volt supply.
- Has five 5-volt and seven ground pins to ensure even power distribution and glitch-free operation.
- Consumes less than half a watt of power.

An even more powerful, although somewhat more specialized, DSP device is Motorola's DSP96002 "Media Engine." This 32-bit device, whose internal accumulators can store numbers 96 bits long, comes in a 223-pin PGA (pin grid array) package, 1.845 inches square, and uses a one-micron architecture to accommodate some 850,000 transistors. It operates at a clock speed of 33.3 MHz, although a "slow" 27-MHz version is also available. The processor can perform at the rate of 50 megaFLOP's (see box copy), and even has tables of sine and cosine values built into it, which can be used in areas such as graphics generation and manipulation. The 96002 processor is capable of addressing an incredible 12 gigabytes (12 trillion bytes) of memory.

The DSP96002 is expected to find use in the new generation of entertainment and information-processing systems to provide high-resolution graphics and synthesized stereo sound. It has the capability to do both at the same time (hence the reference to it as a "multi media" product), switching back and forth between the two tasks so quickly that no interruption is apparent. In medical, and other, imaging technologies DSP will prove itself invaluable in enhancing and manipulating visual data. The Motorola IC is also expected to find application in color laser printers where it will convert page-description-language commands into the fonts and graphics that appear as output, and as controllers in huge high-end computer disk drives that require constant compensation for the effects of thermal expansion and vibration. The science of robotics, too, will benefit from the ability of a processor such as the 96002 to perform powerful floating-point calculations in real time. For large and complex tasks, several 96002's can easily be configured to operate in tandem and divide the work into more manageable slices, apportioning it among them.

Motorola has plans to introduce an entire family of DSP products. One of the first is the 56ADC single-chip analog-to-digital converter. It can process signals at the rate of 6.4 million samples per second (Ms/s) (CD's, in comparison, use a sampling rate of 44.1 thousand samples per second), eliminating the need for complex sample-and-hold circuitry. Also in the works is a "sawed off" 16-bit DSP device, as well as a 40-MHz version of the 32-bit 96002.

Some real DSP products
A very good example of some of the ways DSP will be showing up...
in consumer electronics equipment is Sony's STR-D2010 stereo receiver. In it, many analog functions have been replaced by their digital equivalents, and in implementing those Sony has added an extra degree of flexibility to the features available to the user. A proprietary DSP IC, coupled with 16-bit A/D and 18-bit D/A circuitry and an 8 × oversampling digital filter (which, as we've pointed out, in itself provides a form of DSP) is firmware-programmed for a number of useful operations.

The receiver has no treble or bass controls. Instead, it contains a parametric equalizer to tailor frequency response. Parametric equalizers used to be pretty tricky to design and use. They differ from "ordinary", graphic-style equalizers in that the frequency bands on which they operate, and their response curves within those bands, are adjustable to suit the needs of the user. The device's parameters of operation can be changed by the user. With its DSP IC (and 256K of on-chip RAM) the STR-D2010 allows you to define three separate frequency bands (a vacuum-fluorescent display allows you see the response curves, and also functions as a spectrum-monitor display), each with its own degree of boost or cut, and with one of several slopes. There's no "loudness" control either. Instead, a digital signal-compression technique is used to compensate for the way the ear perceives sound at low volume levels.

The Sony unit also has surround-sound capabilities, and uses DSP techniques to provide the various signal delays used to manufacture ambience through artificial echo and reverberation. There's Dolby Surround processing too, using digital techniques to extract the matrixed surround information from the left and right-channel audio signals.

An autosound receiver from Eclipse includes DSP technology to provide ambience and other effects. Video, too, can benefit from DSP, although the term is generally not yet applied to the processes being used. Video noise reduction, for example, can be accomplished by digitizing the video and comparing successive pixels or adjacent lines. By pixel or line averaging, or even replacing a "bad" pixel with a "good" one, picture quality can be improved. It is even possible to average two or more successive fields of video to smooth things out.

Amateur radio is getting into the DSP act, too. Kenwood's top-of-the-line amateur transceiver, the TS-950SD, uses DSP in a number of ways to enhance incoming and outgoing signals. The receiver section, for instance, includes such DSP features as a digital AF filter with user-variable characteristics. The transmitter uses digital techniques for speech compression that increase average output power while keeping peak power output the same. It is also possible for the waveshape of the signal to be manipulated using DSP techniques to increase intelligibility.

FIG. 4—A DIGITAL MICROPHONE, known as the DM-N from Ariel Corporation uses two Motorola A/D converters to provide two channels of digital input to the NeXT computer system. It operates at the rate of 6.5 Ms/s, eliminating the need for sample-and-hold and anti-aliasing-filter functions.

FIG. 5—USING DSP NOISE-CANCELLATION, this "stealth" muffler not only quiets engine noise, but improves performance up to fifteen percent by doing away with conventional baffle systems.

IC SOURCES

The Motorola DSP96002 digital signal processing IC currently sells for about $750 in single-unit evaluation quantities, $650 for the "slow" 27-MHz version. More information on this and the company's other DSP products is available from:

Motorola Microprocessor Products Group
DSP Marketing
6501 William Cannon Drive West
Austin, TX 78735-8598

One supplier of complete sets of pre-programmed DSP IC's is:
The DSP Group, Inc.
3811 E. Wier Avenue
Phoenix, AZ 85040

The manufacturer of the DM-N digital microphone and MM-96 multimedia board for MS-DOS computers, can be reached at:

Ariel Corporation
433 River Road
Highland Park, NJ 08904

Finally, the company that has developed the DSP "stealth" muffler is:

Active Noise & Vibration Technology
3811 E. Wier Avenue
Phoenix, AZ 85040

On the cutting edge

Besides the applications we've already mentioned. DSP is now being used commercially in such devices as cellular telephones for compression; in phone-answering and cordless-phone equipment for speech digitization, synthesis, and storage; in transcription and dictation units for variable-speed playback; and in facsimile machines and other de- continued on page 53
We are in the process of building an automated component inspection system (CIS). Last time we built a PC-based capacitance meter. Now we will combine the capacitance meter with a voltm/ohmmeter on a single PC board. The result will be an accurate, low cost, computer-assisted test instrument that interfaces through a standard PC parallel port.

Our CIS meter measures three basic quantities: resistance, voltage, and capacitance. Resistance may vary from 0 to 20 megohms. Voltage may vary from 0 to 2 volts DC, but simple peripheral circuitry can be added to increase range. Capacitance may vary from 20 pF to 20 μF.

Multimeter basics

The preferred instrument for measuring resistance and voltage is a digital multimeter, or DMM. All DMM's are based on a simple, single-range voltmeter. The nice thing is that converting a humble DMM into a measurement powerhouse requires only a handful of resistors and some switches.

Intersil's 7106 is the basic building block of many meters. The 7106 contains an analog-to-digital converter (ADC) and it provides a three-digit output capable of driving an LCD directly.

A basic 7106 voltmeter that requires only three resistors and five capacitors is shown in Fig. 1. To calibrate the circuit, you must set the reference voltage at the wiper of R2 to 1,000 volt. That setting results in an overall range of 0.0 to 2,000 volts.

Increasing range

What if we want to measure a voltage greater than 2,000? To do so, we use a simple voltage divider, as shown in Fig. 2. With that simple addition, the incoming voltage is divided by the ratio of the two resistors to produce a voltage with a corresponding value. In this case, the resistance ratio is 10:1, so the maximum voltage increases by a factor of ten, giving a total range of 0–20 volts.

Measuring resistance

The 7106 compares the incoming voltage to the reference voltage between pins 35 and 36. By altering the circuit slightly, we can create an ohmmeter, as shown in Fig. 3. That circuit gives us another voltage divider. If the unknown resistance (R IN) equals R REF the same voltage will appear across both the reference and the measurement inputs, resulting in a reading of 1,000. As the value of R IN varies, the reading will vary accordingly. As for range, if the value of R REF were 1K, the range would be 0 to 2K. For a range of 200K, R REF should have a value of 100K.

Computer interfacing

By now you're probably thinking, "That's all well and good, but how do you hook up a 7106 to a PC? The output lines only drive an LCD!" Actually, what may at first seem like an odd approach is both simple and practical. To see why, let's look at a standard LCD readout.

As shown in Fig. 4-a, the LCD consists of three seven-segment digits and a single leading "1," making a total of 22 segments. Figure 4-b shows which segments are used to display each integer from zero to nine: Fig. 4-c shows the same values, but without the use of segments c and d. The 4-c versions aren't pretty, but each one is unique, so a computer could read the 7106 segment outputs and translate the values into a more comprehensible form. By ignoring two segments from each digit, sixteen lines are required: five for each digit plus one for the leading digit. Reducing the number of lines in that way is significant because it allows us to use a simple scheme to read each display segment into the computer and then determine what the composite reading was.

A pair of 4051 analog multiplexers does the trick. The 4051 connects one of eight inputs to a single output according to the binary value at three control inputs (A, B, and C). Using two 4051's with common control lines, we can monitor the status of sixteen inputs using only three output and two input lines from the computer. As shown in Table 1, when A, B, and C are all low, input 0 is connected to the output: when A, B, and C are all high, input 7 is connected to the output.

In our circuit, we connect the sixteen signal inputs of the two 4051's to the segment-drive outputs of the 7106, and use the computer to control the A, B, and C control inputs. We also use the computer to monitor the pin-3 outputs of the 4051's.

The circuit

The complete circuit is shown in Fig. 5. The circuit is slightly different from the basic circuit in that the reference and voltage inputs are routed to a three-pole, double-throw switch (S1), which selects ohms or volts. In the "volts" position, the CALIBRATE potentiometer (R10) is connected to the reference inputs of the 7106. In the "ohms" position, the reference inputs are connected to one of several reference resistors, as selected by analog-switch IC7.

A 4030 EXCLUSIVE-OR gate (IC2) converts the segment-drive signals to DC levels. The 7106 provides segment drive and BP (backplane) signals, both of which are square waves. When a segment is to be illuminated, the phase of the segment output is shifted 180 degrees with respect to BP. By sending the BP and segment signals through an EXCLUSIVE-OR gate, a steady low is obtained when a segment is off, and a high when it is on. That steady-state level can then be read by the PC through the PE and SLCT inputs.

A normally-open pushbutton switch (S2) allows a diode or
transistor junction to be forward-biased, thereby allowing measurement of the voltage drop across the junction. We incorporated the capacitance meter (discussed in the May 1991 issue of Radio-Electronics) in IC4 and IC6.

In the schematic, note that there are two ground circuits. The reason is that the 7106 requires a supply greater than 6.5 volts, but the PC needs standard TTL levels. In addition, the meter inputs are referenced to the 7106's INLO input, which differs from the digital ground. We use a 9-volt DC wall transformer to power the 7106 and associated IC's, and Zener diode D1 to generate the required TTL levels for the PC interface.

Construction

We recommend PC-board construction for this project. Foil patterns are provided if you wish to make your own board.

Begin construction by installing the 12 jumpers, as shown in Fig. 6. Next, install sockets for all seven IC's. Except for IC4, all IC's are static-sensitive—especially IC1—so use standard precautions when handling those devices. Install the remaining components.

There are 13 connections to P1, two connections for power, and 11 other connections. Prepare 24 lengths of wire, stripping \(\frac{1}{8} \)" of insulation from both ends of each wire. Connect the designated wires to P1 and S1.

If there is a plug on the lead from the power cube, remove it and strip \(\frac{1}{8} \)" of insulation from the two leads. Using a voltmeter, determine which is positive and which is negative, and attach each to the appropriate pad on the PC board. Don't mix them up!

You can use whatever you like for input terminals. The author found it convenient to use a solderless breadboard strip with four rows of connection points. He ran leads from the ± resistance/voltage inputs to one pair of rows, and from the ± capacitance inputs to the other. That scheme allows quick insertion and removal of test components.

A separate set of terminals provides a quick connection for diode/transistor testing.

Check your work carefully, making sure all semiconductors and the power leads were installed correctly, and that there are no solder bridges or opens on the PC board. If you have an oscilloscope handy, apply power and check for a square wave between pins 38 and 40 of IC1; the frequency should be between 40
FIG. 1—A BASIC DMM can be built around Intersil's versatile 7106 and a few resistors and capacitors.

FIG. 2—INCREASE INPUT-VOLTAGE range by adding a voltage divider. In this circuit, range increases by a factor of ten.

FIG. 3—MEASURE RESISTANCE with the 7106 as shown here.

and 50 kHz. That measurement is not strictly necessary, but making it confirms that the circuit is operating.

Software
The software consists of several independent QuickBASIC programs for calibrating the device and making different measurements. Unfortunately, there is not enough space to publish all of the programs. However, the software is available from the REBBS (file: PCTEST2.ZIP, 516-293-2283, 1200/2400, 8N1)

TABLE 1—4051 DECODING

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>"0"</th>
<th>"1"</th>
<th>"2"</th>
<th>"3"</th>
<th>"4"</th>
<th>"5"</th>
<th>"6"</th>
<th>"7"</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

All resistors are ¼-watt, 5%, unless otherwise noted.
R1, R4, R7—100,000 ohms
R2—470,000 ohms
R3, R9—10 megoohms
R5, R11, R12—1000 ohms
R6—1 megoohm
R8—10,000 ohms
R10—100,000 ohms

Capacitors
C1—100 pF, 5%
C2—0.1 μF, 10%
C4—0.047 μF, 10%
C5—0.47 μF, 10%

Semiconductors
IC1—7106CPL 3½-digit LCD A/D converter
IC2—CD4030 quad XOR gate
IC3, IC5—CD4051 8-channel multiplexer
IC4—555 timer
IC6, IC7—CD4066 quad bilateral switch

D1—1N4734 5.6-volt Zener diode

Other components
P1—DB25 male connector
S1—3-pole, double-throw slide switch
S2—normally-open SPST pushbutton switch

Miscellaneous: 9-volt DC, ½-amp wall transformer; case; solderless breadboard strip; PC board.

Note: A compiled version of the software that also contains data-logging capability is available on 5½" double-density PC diskette for $12.00 from JJ Barbarelo, RD#3, Box 241H, Tennent Road, Manalapan, NJ 07726. The author will be happy to answer any questions. Please include a self-addressed stamped envelope for reply.
FIG. 5—COMPLETE SCHEMATIC. Data lines D0-D3 select one of eight segment-output lines through the 4051's (IC5, IC6). Range selection is accomplished by data lines D3-D6, which select one of four resistors through analog-switch IC7. The selected resistor, if any, is paralleled with R9, thereby decreasing effective resistance.

FIG. 6—MOUNT ALL COMPONENTS as shown here, installing the twelve jumpers first.

and from the author, as mentioned in the parts list. Listing 1 shows the resistance-measurement program.

Calibration and use
Both the hardware and the software must be calibrated. Begin hardware calibration by connecting a DMM across the wiper and the lower end of R10, and set S1 to the “volts” position. Apply power and adjust R10 until the DMM reads 1.000 volt.

Begin software calibration by executing the OHMFAX program. The screen will initially show null calibration factors for the five resistance ranges, R1-R5. The program asks whether you want to revise those values; press Y and enter the following initial values: R1, 10000; R2, 1000; R3, 100; R4, 10; R5, 1. The Revise question will appear again; press N this time. Then the program asks whether to save the values you just entered; press Y. Now the
REM**** STEADY STATE READING - DISPLAY
REM**** VALUE CALCULATED - DETERMINE IF STEADY STATE READING
IF huns = a(i) THEN huns = a(i) GOTO JUMP1
IF tens = a(i) THEN tens = a(i) GOTO JUMP2
IF ones = a(i) THEN ones = a(i) GOTO JUMP1

REM**** MEASUREMENT LOOP ENDS - CALCULATE VALUE
ii(i) = INP(889) AND 16: j(i) = j(i) / 16

REM**** SETUP COMPLETED - MEASUREMENT LOOP BEGINS
imsk = 5: imskold = imsk: OUT a, m(imsk)
LOCATE 20, 4
COLOR 0, 7: PRINT " MANUFACTURING TECHNOLOGY FACILITY
V900518
"ohmfax.dat., 50

REM
REM**
REM
COLOR 0, 7: PRINT " Manuf. Tech. Facility - OHMFOX Program"
COLOR 7, 0: PRINT " "
COLOR 0, 7: PRINT " A program to provide an easy way of measuring..."
COLOR 7, 0: PRINT " Volts and Ohms using a 10K DMM and a simple voltage divider.
COLOR 0, 7: PRINT " To measure resistance, power up your computer and connect
COLOR 7, 0: PRINT " PI to your computer's LPT1 port. Plug in the power cube and execute
COLOR 0, 7: PRINT " the OHMS program. Note that you have five ranges (Range 1-
COLOR 7, 0: PRINT " Range 5) to choose from; Range 5 is the default. To change
COLOR 0, 7: PRINT " ranges, simply press the corresponding number on the keyboard.
COLOR 7, 0: PRINT " and the selected range will be highlighted on the screen.
COLOR 0, 7: PRINT " Place S1 in the "ohms" position and connect a test resistor to the
COLOR 7, 0: PRINT " R+ and R- terminals. Press M on the keyboard to make a measurement.
COLOR 0, 7: PRINT " As with many DMMs, readings on the higher resistance ranges take somewhat longer
COLOR 7, 0: PRINT " than on the lower ranges.
COLOR 0, 7: PRINT " To refine calibration you'll need a DMM. Select Range 5 and measure a 1K resistor. Remove the resistor
COLOR 7, 0: PRINT " and measure it with the digital multimeter. If the readings are not the same, use the following formula to calculate a
COLOR 0, 7: PRINT " new calibration factor for Range 5:
COLOR 7, 0: PRINT " R5 = 1 + (R_DMM - R_CIS) x 2
COLOR 0, 7: PRINT " where R_DMM is the DMM reading and R_CIS is the reading with our meter.
COLOR 7, 0: PRINT " Repeat that procedure with a 10K resistor for Range 4, a 100K resistor for Range 3, a 1megohm resistor for Range 2, and a 10-
COLOR 0, 7: PRINT " megohm resistor for Range 1. Calculate approximate new factors using the following formulas:
COLOR 7, 0: PRINT " R4 = 10 + (R_DMM - R_CIS) x 2
COLOR 0, 7: PRINT " R3 = 100 + (R_DMM - R_CIS) x 2
COLOR 7, 0: PRINT " R2 = 1000 + (R_DMM - R_CIS) x 2
COLOR 0, 7: PRINT " R1 = 10000 + (R_DMM - R_CIS) x 2
COLOR 7, 0: PRINT " End the program by pressing E on the keyboard. Recalculate using OHMFOX, entering the calculated factors. Repeat the entire process several times until the CIS and DMM readings match each other.
COLOR 0, 7: PRINT " As for voltage, you can measure an input between 0 and 1.999 volts DC. To extend the range, use a simple voltage divider, as shown back in Fig. 2.
COLOR 7, 0: PRINT " To measure voltage, place S1 in the "volts" position and execute the DIODE program. When ready to measure, press M on the keyboard. To measure the forward voltage drop across a diode or the
1.41 33/4 INCHES

FOIL PATTERN shown actual size.

base-emitter junction of a transistor, insert the device into the appropriate terminals and press S2; doing so forward biases the junction and thereby allows you to measure the voltage drop across it.

Capacitance measurement works as described in May. Place the capacitor to be measured in the C+ and C- terminals; the position of S1 is irrelevant. Execute the CAP program. When ready to measure, press M on the keyboard. Note: The capacitance meter described last time used parallel port line D6 to switch the low range resistor in, but the current version uses line D7. Hence there is a minor change to the CAP program. The line immediately below the RESTART: label must be changed from OUT A.64 to OUT A.128.

Conclusion

This project is a versatile computer-assisted test instrument. You can increase its versatility by modifying the software. For example, you could include data logging or the ability to specify pass/fail criteria for different components. In that way data could be analyzed to determine the quality of components supplied by different vendors. In the final installment of this three-part series, we'll build an IC tester to round out our computer-controlled component inspection system.

services with modems for data compression. At least one company specializes in the preparation of entire sets of DSP ICs to meet particular signal-processing requirements.

Two Motorola 56ADCs are at the heart of Ariel Corp.'s DM-N digital microphone (Fig. 4), which is designed for direct connection to the NeXT computer system, and the same company already has designed an IBM/AT-compatible plug-in board that contains a pair of DSP96002's. This board, the MM-96, can provide a microcomputer with mainframe-class multimedia performance for scientific, industrial or artistic applications.

And a company in Phoenix is working on a DSP-controlled muffler that is said to improve automobile performance by between eight and fifteen percent! Using electronic noise cancellation techniques, this "stealth" muffler (Fig. 5) does away with baffles and other obstructions, allowing exhaust gases, but not the noise that usually accompanies them, to pass straight through. A fringe benefit of a DSP muffler would allow you not only to silence your engine, but perhaps also to tailor the muffler's output to make your Chevy Nova sound like a Ferrari. Work is also being done on silencers for such notorious noisemakers as helicopters. Shades of Blue Thunder!

The DSP technology and applications we are seeing now are just the beginning of what will prove to be a significant era in electronics. Consumer products that include DSP circuits are soon going to be popping up like flowers blossoming after a desert rain. Some applications are ripe for DSP now, but some of the devices that we will soon see will perform functions of which we have not yet even conceived. Some of the uses to which DSP will be put will be ingenious, and some of them absurd. And a few of the applications will have a significant and long-term effect on the way we conceive of and use electronics.
Voltage-to-frequency converters can often be an inexpensive alternative to A/D and D/A converters.

HARRY L. TRIENTLEY

IN TODAY'S WORLD OF HIGH-PERFORMANCE single-chip analog-to-digital converters, the simple voltage-to-frequency (V/F) converter is sometimes overlooked. However, V/F converters offer the best combination of resolution, performance, simplicity, and cost in analog-to-digital (A/D) conversion when speed is not important. They can be used for isolation, and to eliminate ground loops and shock hazards, especially in patient-attached medical instruments. Their serial outputs make them ideal for two-wire or fiberoptic data transmission. Long-term data (flow, kilowatt hours, and so on) may be totaled or integrated by counting their output pulses.

The performance and features available in today's V/F converter ICs make it easy for you to design your own applications. V/F converter ICs may also be used to build frequency-to-voltage (F/V) converters, which can act as an interface with TTL logic. In this article we'll look at a number of ICs used in several applications.

Charge-balance conversion

Figure 1 shows a basic V/F converter using Burr-Brown's VFC32 IC, along with typical circuit values. The VFC32 operates up to 500 kHz. Typical linearity is 0.005% to 10 kHz, 0.025% to 100 kHz, and 0.05% to 500 kHz. Linearity is a measure of the V/F converter's performance, and is a function of the full-scale frequency, fFS. It is the maximum deviation of the actual transfer function from a straight line drawn between 90% and 0.1% of fFS. For a particular fFS, the linearity error decreases with decreasing operating frequency.

The input amplifier is connected as an inverting integrator. Negative feedback holds pin 1 to zero volts. Optional components...
R3 and R4 allow the offset to be precisely adjusted so that C2 neither charges nor discharges when \(V_{IN} \) is zero.

If \(V_{IN} \) is zero, C2's charge holds steady and nothing happens. When a positive input is applied, the input current

\[
I = \frac{V_{IN}(R_1 + R_2)}{R_2}
\]

charges C2 so that pin 13 ramps downward. When C2's voltage crosses zero, the comparator triggers the one-shot, closing S1 and momentarily applying the 1-mA reference current to the integrator's input. That charges C2 in the opposite direction, resetting the voltage on pin 13 positive and allowing the cycle to start over.

If \(V_{IN} \) is increased, the downward ramp occurs faster, raising the pulse frequency proportionally. The full-scale input current must be less than 1 mA; the specification sheets recommend 0.25 mA full scale for best linearity. (Above 200 kHz the input may be increased to 0.5 mA for improved temperature stability.) If the input voltage drops to zero, the capacitor's charge once again holds steady and the pulses stop.

That operation is known as "charge balance" conversion—the positive charge from the 1-mA balances the negative charge from the input. Over one complete cycle the net charge on C2 does not change. The charge removed by the input current during a complete cycle is equal to the charge added by the timed 1-mA reference. If \(T \) is the period of one cycle, and \(T_{OS} \) is the one-shot period, then

\[
Q = \frac{V_{IN}(R_1 + R_2)}{1 \text{ mA} \times T_{OS}}
\]

or,

\[
T = \frac{[1 \text{ mA}(R_1 + R_2)] \times T_{OS}}{V_{IN}}
\]

The frequency is therefore

\[
f = \frac{1}{T} = \frac{V_{IN}}{[1 \text{ mA}(R_1 + R_2)] \times T_{OS}}
\]

and \(T_{OS} \) is equal to

\[
T_{OS} = \frac{3.3 \text{ pF}}{7.5 \text{ V}} \times \frac{7.5 \text{ V} - (C_1 + 30 \text{ pF})}{1 \text{ mA}}
\]

where 3.3 pF represents the internal capacitance of the IC, and 7.5 V is the internal voltage reference. A 25% duty cycle or less is recommended to achieve best linearity. That corresponds to a maximum input current of 0.25 mA.

The external one-shot capacitor C1 determines the duration of the output pulse, and is dependent on the full-scale frequency, \(f_{FS} \), according to the equation

\[
C_1 (\text{pF}) = 33 \times 10^6 (f_{FS} - 30)
\]

Resistor R1 is used to trim the tolerances of C1 and C1. A low-temperature type capacitor should be used for C1, an NPO ceramic is best for this type of application.

Notice that C2's value does not affect the frequency. The only requirement is that it be large enough to keep the voltage swing at pin 13 within the limits of the input amplifier. The manufacturer's recommendation is (100/\(f_{MAX} \)) microfarads below 100 kHz, or 0.001 \(\mu F \) above 100 kHz. Low-leakage is important, therefore, a mylar capacitor is recommended. Waveforms of the Fig. 1 circuit are shown in Fig. 2.
A low-cost optocoupled output

Raytheon introduced the first V/F converter IC, the RC4151, now also second-sourced by Exar as the XR4151. Also available are the RC4152 with better specifications and National Semiconductor’s pin-compatible LM131. The LM131 is similar to the VFC32 except that it lacks the input op-

amp. By using an external op-amp it can be applied similarly to the VFC32. In fact, in low-level applications it may be advantageous to choose a high-grade external amplifier.

Figure 3 shows the RC4151’s basic operation. Typical circuit values are also shown in this figure. The current source is pulsed by the one-shot, which applies a fixed charge (Q = 1 x T) on C1. Between pulses, C1 discharges through R1. Each time C1’s voltage drops below V_{IN}, the one-shot is retriggered. As V_{IN} goes higher, to so does the retrigger point and, therefore, the voltage on C1. As C1’s voltage doubles so does the rate of discharge through R1. It takes twice the pulse rate to keep C1 charged. The output pulse rate, therefore, increases in proportion to V_{IN}.

In this application, the output is fed to an optocoupler for input/output isolation. The same circuit can be used to pulse an LED input into a fiberoptic cable.

In Fig. 4, the AC or pulsed input is applied to the comparator. Each time it drops below -0.6 volts, the one-shot is triggered, switching S1 to the op-amp’s in-
RI and R2 between pulses. The capacitor C2 discharges through current pulse raises C2's output; connected as a low-pass filter. Each width, and T is the input period where T1 is the one-shot's pulse duration. The average current represented by the on-off pulses is

\[I_{\text{avg}} = \frac{1}{T} \times (R1 + R2) \times I_{\text{IN}} \]

where T is the one-shot's pulse width, and T is the input period (\(f_{\text{IN}} = 1/T \)). The op-amp is connected as a low-pass filter. Each current pulse raises C2's output: capacitor C2 discharges through R1 and R2 between pulses. The output is proportional to frequency, with the conversion factor determined by the value of R1 + R2 and by T1 which, in turn, is determined by C1. Capacitor C2 does not affect the conversion, it only filters the ripple.

\[T1 (\text{ms}) = 6.8 \times C1 (\mu\text{F}) + 0.0003 \]

The output becomes

\[V_{\text{OUT}} = [R1 + R2 (\text{Kohms}) \times 6.8C1 (\mu\text{F})] + 0.0003 \times f_{\text{IN}} (\text{kHz}) \]

Typical component values are shown in Fig. 4.

The values of C5 and R5 are for TTL or other fast-risetime inputs, such as the optional optocoupler shown. Sine waves or other slow waveforms may need to be "squared up" by a comparator or amplifier before being fed to this circuit. The input pulse is differentiated by the high-pass R-C filter so that it does not spend much time below -0.6 volts. If pin 9 were below -0.6 volts at the end of T1, the one-shot would retrigger, producing an incorrect output.

Synchronized V/F conversion

The circuits we have seen so far depend on a one-shot circuit and capacitor for the charge-balance pulse width. If the one-shot period changes with temperature, time, or line voltage, so will the conversion factor.

Let's now look at an IC that's synchronized to an external clock. If the clock is crystal-controlled, the circuit's drift will be determined by the input resistor and the 1-mA source. Figure 5 shows Analog Devices' AD652 in a potentiometer input application. Figure 6 shows the waveforms. (Burr-Brown makes a similar IC, the VFC-100, lacking only in the optional offset trim capability.) The best grade of AD652 provides guaranteed temperature stability of 25 ppm per °C at 1 MHz. 50 ppm per °C at 4 MHz, with linearity of 0.02% or better at 4 MHz.

The IC's circuitry looks much like the others we've seen, but with added logic circuitry between the comparator and the one-shot. If the comparator's output goes high and flip-flop #2's output is high, then the gate output also goes high. Flip-flop #1's output will be clocked high by the next negative clock transition.

On the following positive clock transition, flip-flop #1's output will be clocked through flip-flop #2, bringing both Q and the AND gate output low. The following two clock transitions transfer this low data first to flip-flop #1's output, then to flip-flop #2. The end result is that each time the comparator goes low, a one-clock-period pulse will be produced. That pulse determines the amount of time that the 1-mA source is connected to the input.

The one-shot is used only to control the length of the output transistor's pulse. It has nothing
to do with the conversion factor. Bringing pin 9 high disables the one-shot, in which case the output pulse width will equal the clock's period.

The input from potentiometer R7 is useful for many types of measurements. In addition to rotary or linear position, the potentiometer can be attached to mechanisms such as floats, pressure, or weight gauges.

The inverting input and R7 are both connected to the IC's built-in 5-volt reference. As the wiper goes clockwise, the input amplifier integrates the difference between the 5-volt reference and the wiper voltage, so decreasing the wiper voltage increases the output frequency.

The AD652 is scaled so that, at 10 volts, the output is half the clock frequency. In fact, both the conversion rate and the 5-volt reference are laser-trimmed to better than 1%, so that it can be used without trimmer potentiometers if ultimate accuracy is not needed. In that circuit, R4 (null) and R1 (full scale) allow fine calibration to better than 0.1%.

Since the input is 0-5 volts, full-scale output will be 1/4 the clock frequency.

Synchronized conversion is great for long-count accuracy but poor for pulse-to-pulse stability. That's because the 1-mA "reset" is not synchronized with the integrator's zero crossing, but is tied to the clock. Notice in Fig. 6 the first reset begins ¾ clock period after the integrator crosses zero and lasts one clock cycle. On the next cycle, because of the relative timing of the zero crossing, reset does not begin until 1-1/4 periods later. That means the integrator has time to go further negative before reset begins and it will be less positive after reset.

The third discharge gets to zero faster. In this example it also requires only ¾ period before reset begins. Overall, the output period jitters back and forth between three and four clock pulses. If you count the average period or frequency over 1000 pulses, for example, you will get a very accurate result. But if you try to measure individual pulses, the results will be meaningless. Use synchronized conversion for high-resolution (long-term counting) A/D conversion, or data telemetry, but not for applications which count the time between individual pulses.

Multivibrator application

We'll now examine Analog Devices' AD537, which operates on a different principle. Figure 7 shows a unique two-wire temperature transmission system.

Let's look at how conversion is accomplished first, then we'll examine the temperature input and two-wire output. Conversion
is provided by a precision multivibrator. The input amplifier controls three transistors in a "current-mirror" circuit. Two of the transistors provide charging current to the multivibrator's capacitor while the third controls bias levels in its circuitry. The result is linear current-to-frequency conversion from 0.1 µA to 2 mA. Best performance is achieved when the circuit is scaled for 1 mA full scale. The IC is specified to 100 kHz with worst-case nonlinearity of 0.25% or 0.1%, depending on the grade ordered.

Because the circuit is a multivibrator instead of a charge-discharge integrator, its output is automatically a square wave (50% duty cycle). At 1 mA the output is f = 0.1/C, where f is in kilohertz and C is in microfarads.

The AD537 provides two reference outputs: one fixed at 1 volt and a second which varies with temperature (1 mV per K, where K = Kelvins, which is equal to °C + 273.15). The circuit in Fig. 7 makes use of both references to scale the output to 10 Hz per °C. At 0°C, the divided-down voltage from the 1-volt reference will balance the 273-mV temperature signal. The current in R4 and R5 will be zero, resulting in zero output. As temperature rises, the current increases about 0.4 mA per °C, producing a frequency output of 10 Hz per °C.

The "two-wire" output indicates that only two wires are needed to carry both the power and the output. Each output pulse modulates the supply current by drawing 5 mA through R7. The pulses are received at the other end of the twisted pair as 0.5 volts pulses across R8. The pulses are coupled through C2 to a frequency counter, or perhaps an F/V converter similar to the circuit in Fig. 4. The two-wire principle can be used with any V/F converter, not just the AD537.

Now we'll show you how to calibrate the circuit. Measure the room temperature (T) and the voltage at pin 6 (V6). The offset voltage (VOS) can be computed by

$$V_{OS} = V_6 \times \frac{273.15}{T°C + 273.15}$$

Temporarily disconnect R5 and adjust R1 until the voltage across R3 equals VOS. Reconnect R5 and adjust R4 for the correct output frequency at 10 Hz/°C (for example, 250 Hz at 25°C).

Charge-balance

Teledyne's TSC9400 family of IC's illustrates a different type of charge-balance circuit using capacitance discharge. Instead of gating a current for a fixed period of time, reset is accomplished by charging a small capacitance via the input amplifier's summing junction.

Figure 8 shows the TSC9402 in a single-supply F/V converter. Other than its reset, operation is similar to the F/V converter of Fig. 4. We will not analyze Fig. 8 in detail but will just point out the differences.

The SPDT switch inside the IC normally shorts C2 and the internal 12 pF capacitance. When the comparator trips, the switch connects C2 to –ref for at least 3 µs. Capacitor C2 charges to the reference voltage of –6.2 V, causing a net charge flow of Q = C x V. That charge is transferred to C1 (plus its internal 60 pF shunt), raising the output. Between pulses the output decays through R5. The faster the pulses, the higher the average output. As with Fig. 4, C1 does not affect the output scaling but simply determines the amount of filtering.

The TSC9402's self-start circuit insures proper startup. Depending on how power comes up it's possible that C1 may begin with a negative charge. If the IC is used in a V/F converter similar to the circuit in Fig. 1, the comparator will already have switched and no further reset pulse will occur. If C1's output ramps below –2.5 V, the self-start comparator momentarily closes the switch, discharging C1 and resetting the output to zero.
A do-it-yourself circuit

Let’s look at a simple circuit that you can build yourself without any specialized IC’s. Although lower in performance than the IC’s we’ve seen, it works well in low-speed applications.

The circuit of Fig. 9 charges C1 to a fixed reference level, instantly discharges it and then repeats the cycle. Op-amp IC1 is configured as an integrator. With a positive input, C1 charges until IC1’s output reaches -6.2 V, at which point comparator IC2’s output goes low. That turns on Q1, a P-channel JFET, and triggers the input half of IC3, a dual monostable multivibrator.

Pin 7 of IC3 is pulled low for 470 µs, keeping Q1 on long enough to insure that C1 is completely discharged. Once Q1 turns off, the cycle starts over. The output section of IC3 produces a longer output pulse, 47 ms in this circuit.

Component values for R1, R2, and C1 are chosen so that, at 1 V input, it takes 100 ms for C1 to charge to -6.2 V. The cycle repeats at a rate proportional to the input, 10 Hz at full scale. For lower output pulse rates a counter or frequency divider IC may be inserted between the two sections of IC3.

Low output frequencies are useful when totalizing measurements over long periods of time. For instance, if the input comes from a circuit which measures kilowatts the output pulses can drive a mechanical or electronic counter to indicate kilowatt-hours. Or, the input could come from a flow rate meter, in which case the totalized count would represent total flow (gallons, liters, barrels, and so on). Another application involves measuring conveyor belt feed. If the belt moves at a constant speed, a signal from a weight transducer may be totaled to give the quantity of mass delivered over a period of time.

We should point out that C1 does not integrate while Q1 is on. That represents an error in the output period, and must be kept short. Because of that, this type of circuit is not suitable for high output frequencies.

Other applications

We’ll finish this article with four application ideas. In Fig. 10 a V/F and F/V converter are optically coupled to provide analog signal isolation. That system isolates ground loops and provides noise immunity in industrial measurement applications. Fiberoptic communication also provides inherently safe data transmission through areas containing explosive gases.

In patient monitoring systems, optical isolation eliminates the shock hazard, especially if the front end is battery-powered. Operation up to 100 kHz and beyond allows transient signals such as electrocardiograms to be isolated as well as steady signals such as temperature.

Figure 11 shows how a V/F converter can be used to create a high-resolution A/D converter. Its output pulses are counted for a period of time determined by the clock. The longer the count, the higher the resolution.

The tradeoff, however, is conversion speed. Successive-approximation and “flash” converters (see Radio Electronics February 1987) require extremely precise (and expensive) components as resolution increases, but they can convert in microseconds. Counter-based converters are great for high-resolution conversion of DC data, but you wouldn’t use one to digitize audio or video!

In some systems the counter and latch can be replaced by microprocessor software. Some microprocessors include an event counter, making the electrical interconnection very simple (Fig. 12). Others may require the use of an interrupt port and carefully thought out software. Keep the microprocessor’s clock speed and instruction set in mind when setting the V/F converter’s output frequency range. Maximum pulse rates of 100 kHz are probably safe with most systems.

Once again, the tradeoff is speed. Counting ties up the microprocessor’s central processing unit (CPU), limiting its availability for other functions. Such systems are best for simple, low-speed applications where resolution and low cost are important parameters.

Finally, Fig. 13 uses two V/F converters to perform analog multiplication. Converter number 1 produces an output, F1, proportional to input number 1. A synchronous converter is used to convert input number 2. Since the synchronous converter’s full-scale output is set by its clock (F1), frequency F2 is proportional to input number 2 multiplied by F1. If a DC output is required, an F/V converter performs the conversion.

One of the things that makes electronics fun is the ability to use basic circuits to solve unique problems. Now that we’ve gotten you started, let’s see how many V/F converter applications you can think up!
FUEL CELLS COULD POTENTIALLY BE the most efficient and environmentally clean source of power ever developed. Fuel cells are an attractive alternative to conventional power generation because they are highly efficient, and produce drinking water as an added by-product. What more could you ask for in an energy source? The principle of fuel cell operation was discovered by Sir William Grove in 1839. He found that electricity could be generated by supplying hydrogen and oxygen to two separate electrodes immersed in sulfuric acid. For more than a century, however, fuel cells remained a mere curiosity.

The theory of fuel cell operation defied commercial applications for so long because of technical and financial obstacles. It wasn’t until the 1960’s, during the growth of the space program, that there was a renewed interest in developing fuel cell technology into a viable energy alternative to standard power generation.

There are two important concerns in conventional power generation: efficiency and pollution. Most of the power in the world is generated from heat engines using the heat from combustion of fossil fuels. Mechanical systems involve many energy conversion steps, and their efficiencies are limited by the laws of thermodynamics. That results in considerable power losses.

A fuel cell, on the other hand, converts potential chemical energy of fuel into electricity. It operates at a constant-temperature during the electrochemical process, therefore it’s efficiency is not limited by thermodynamic laws governing heat engines.

Pollution is a result of combustion, industrial processing, and vehicle exhaust. Those pollutants consist of unburned fuel, partially burned fuel, carbon, carbon monoxide, carbon dioxide, dust, sulfur dioxide, nitrous oxides and so on. Waste heat from power plants warms up the rivers, causing havoc to the natural balance of fish and wildlife. And we all know of the devastating effects of acid rain, which results from man-made emissions of sulfur and nitrogen in the air. The by-product of a fuel-cell reaction, however, is water. Who would object to that?

Fuel-cell chemistry

Fuel cells operate by converting the potential energy of certain chemical reactions directly into electrical current in a flameless catalyzed reaction. Some types of fuel cells work very well at room temperature.

A basic fuel cell consists of an anode (++) and cathode (--) separated by a conducting electrolyte such as a solution of potassium hydroxide. A fuel, such as hydrogen gas, or hydrazine, is introduced to the negative electrode where it is oxidized, releasing electrons to the load. Oxidation is the process of removing one or more electrons from an ion or molecule. In fuel cells, hydrogen ions are formed at the electrode by electrochemical oxidation of the fuel. If the fuel is hydrogen, hydrogen ions are created by the following ionization reaction:

$$H_2 \rightarrow 2H^+ + 2e^-$$

Oxygen, air, or hydrogen peroxide (a source of oxygen) is fed to the cathode, where it is reduced, whereby the O_2 oxygen molecule splits apart. Ionic conduction completes the circuit through the electrolyte. Hydrogen and oxygen react to form water, as this chemical equation shows:

$$2H_2 + O_2 \rightarrow 2H_2O, \text{ or } \quad \text{Hydrogen + Oxygen + water}$$

If hydrazine is oxidized, additional nitrogen is formed which is a normal constituent of air, and also safe:

$$3H_2 + N_2 \rightarrow 3H_2O + N_2$$
N_2H_4 + O_2 → 2H_2O + N_2, or

You may be tempted to say that if hydrogen is such a "clean" fuel, we can just burn hydrogen in air and get pure water as the combustion product plus power. Burning hydrogen would indeed be a considerable improvement over burning coal, oil, or gasoline. However, when air is burned, a large amount of nitrogen is drawn into the combustion chamber and heated to roughly 1000°C. At that temperature, it partially reacts with oxygen and forms oxides of nitrogen. So, even though the reaction product of the main reaction is pure drinking water, the side reaction spoils it all by making the resulting water unsuitable to drink. If hydrogen and oxygen react in a fuel cell at room temperature, that problem is eliminated.

Space-age power

The desirable characteristics of fuel cells led to the development of various systems ranging in size from 5-watt portable units, to the kilowatt (kW) power level for military applications, on up to large stationary plants delivering megawatts of power. The lower-power fuel cells were designed primarily for the space program and front-line military use where ease of operation, low maintenance, and low noise are important.

Fuel cells are used solely for power generation of space crafts because of one chief advantage: when power is required for more than a few hours, the battery weight per kilowatt-hour as a function of its operational life is far superior to that of conventional battery cells. A relatively light-weight fuel cell can have a lifespan of five to ten times that of a primary battery.

Fuel cells built between 1960 and 1970 for the Gemini and Apollo space missions and in 1980 for the Space Shuttle Orbiter are among the most successful fuel cells to date. They were needed because of their chief advantages over batteries—weight and lifespan. Those fuel cells used cryogenic reactants of hydrogen and oxygen.

Some space-craft power generation systems use solid polymer electrolyte (SPE) technology in the construction of their fuel cells. That type of fuel-cell assembly consists of an ion-exchange membrane-electrode system with gas distribution, current collection, heat removal, and water management. Many of those assemblies are bolted together between end plates to form an SPE stack assembly.

The Gemini system used three 1-kW SPE fuel-cell stacks. The Apollo system used a larger 1.5-kW fuel-cell stack based on a concentrated 45% potassium-hydroxide electrolyte. The Apollo power plant was designed to operate for over 400 hours. The fuel cell in Apollo 8 lasted for 440 hours, the system produced 292 kWh of power, and 100 liters of water.
The Space Shuttle system was more advanced in design than either the Gemini or Apollo fuel cells. The Space Shuttle fuel cells are 20 kilograms lighter and deliver six to eight times as much power. Each fuel cell power plant consists of a power section where the chemical reaction occurs, and a compact accessory section connected to the power section, which controls and monitors the power section's performance. The three fuel-cell power plants are coupled to the hydrogen and oxygen reactant subsystem and the power distribution subsystem. The fuel cells generate heat and water as by-products of electrical power generation. The excess heat is directed to Freon coolant loops, and the water to a potable water storage subsystem.

Some power specifications of each fuel-cell power plant are:
- 2 kilowatts at 32.5 VDC.
- 12 kilowatts at 27.5 VDC.
- 7 kilowatts continuous power.
- 12 kilowatts peak.
- All three fuel cell power plants are capable of supplying a maximum continuous output of 21,000 watts with 15 minute peaks of 36,000 watts.

Some experimental fuel cells have been considered for use with vehicles. The major prohibiting factor in their use is the difficulty in reliably containing hydrogen gas, and the possibility of an explosion. Also, special fuels such as hydrogen, methanol, and hydrazine are more expensive than hydrocarbon fuels.

Many advanced fuel-cell designs have been developed for power utility applications, but because of the typical problems of fuel storage and cost effectiveness, they have not been widely used.

An experimental fuel cell

The author was able to build a successful experimental fuel cell by the technique described below. We must, however, issue this word of caution: This product should **NOT** be built or experimented with in any way except under the direct supervision of someone who is highly qualified in the fields of chemistry or chemical engineering. Some chemicals and gaseous by-products in a fuel cell could be toxic and/or explosive! All dangerous chemicals are listed in the sidebar. You must be familiar with proper handling and disposal of any chemicals used.

The author's experimental fuel cell uses two adjoining chambers separated by a membrane, as shown in Fig. 1. An electrode with catalytic properties is placed into each chamber. Both chambers are filled with a liquid electrolyte. One electrode is then purged with hydrogen gas, the other with oxygen or air, and a voltmeter is connected across the electrodes.

In order to be able to build a fuel cell you should be familiar with semipermeable membranes and catalysts. Semipermeable means that only some ions can pass through it but other matter is retained. In actual applications, separation of ions is not perfect, and some leakage usually occurs, and is permissible. Total blockage on the other hand would inhibit a reaction. The following materials could be used as semipermeable membranes:
- Unglazed discs of baked clay (an old clay flower pot).
- Fine glass frits (the partly fused mixture of sand and fluxes which glass is made of).
- Cellophane.
- Wet plaster.
- Moist, or hardened cement.
- Zinc oxide or zinc chloride cement.
- Certain types of plastic foam.
- Silicic acid gel, prepared by slowly acidifying sodium silicate solution.
- Gelatin saturated with salt.

Clay, cement or platter discs should be as thin as possible. The gels should be used to build ion bridges according to Fig. 2. Glass frits can be bought at lab supply houses and are best for this use. If glass frits are used, the gases move upward, and stay in the proper place. Any fair separation will do. The author used two square polyethylene bottles and a large fine glass frit which was glued into holes cut in the sides of the bottles (Fig. 3).

In order to get hydrogen and oxygen to react at room temperature they must be coaxed a little. Without the proper catalyst, nothing at all happens.

A catalyst is a compound that hastens reactions without actually taking part in the reaction. If you set up a H_2/O_2 fuel cell with sulfuric acid and carbon electrodes for instance, there will be no electrical energy generated. If platinum- or palladium-coated carbon electrodes are used, the reaction gets going. Union Carbide has used this method and supply such electrodes.

The method the author used to plate carbon was to wrap platinum wire and a platinum net around the carbon rods, which works very well. An easy and low-priced way of producing a large surface of palladium is to coat nickel netting with palladium. That can be done by immersing a...
netherlands amounts of it for storage in their crystal lattices. A platinum electrode saturated with hydrogen, therefore, is practically an electrode of solidified hydrogen. The pure metal is too expensive, so palladized nickel, platinized carbon or Raney nickel on a carrier matrix are the first choice.

Impinger-type glass tubes with frits or aquarium-type dispersion tubes are used as gas inlet tubes. The electrodes are wound around the tube in a coil. Copper wire leads are connected. The electrolyte is a 30% potassium hydroxide solution. Oxygen and hydrogen can be bought in small laboratory bottles with reasonably priced lab-reduction valves.

Hydrogen can also be produced from zinc and diluted hydrochloric acid. That leaves you with a solution of zinc chloride which is hazardous to the environment and must be disposed of in a manner prescribed by law.

The entire experiment was conducted in the open air in order to allow the flammable hydrogen to disperse. Rotameters were used to check gas flow. They can be replaced by bubble indicators if you prefer. Gas flow was 10-20 liters per hour (l/h) but can be varied. Oxygen flow should be about ½ that of hydrogen flow. The reaction is sluggish at the beginning as hydrogen has to saturate the platinum metal surface.

An indication of about 10 mV may occur for several minutes, which will then rise. There may be steps in this rise, therefore it may be necessary to put a little drain on the system by using a 100-ohm resistor connected across the 2 chambers. It can be removed again after a few minutes. That helps overcome polarization effects. The author measured 998 mV after about 10 minutes. To compensate for the slow start, the cell will generate a voltage for some time after the hydrogen is turned off.

After you finish, the potassium hydroxide solution should be poured into a well-capped plastic bottle. It can be used over again, but it will accumulate carbonate which makes it less effective. Some prefer diluted sulfuric acid for the same purpose because it keeps longer. Air can, in most cases, be substituted for oxygen. The amount must be raised, however, since only ¼ of air is oxygen. Hydrogen peroxide can be used in place of oxygen but it dilutes the electrolyte.

Hydrogen can be replaced with hydrogen-containing gases such as "city gas" produced from coal, containing hydrogen, methane, and carbon monoxide. Several variations of fuel cell components that react at room temperature are shown in Table 1. The fuel cell can also be used as a one-shot unit for liquid fuel, namely hydrazine, and 30% hydrogen peroxide. Both compounds are rocket fuels but can be controlled very well. They are, however, highly toxic and poisonous. Because hydrazine is known to be a carcinogen, one should not work with it unless you are familiar with handling very poisonous substances. Hydrogen peroxide at 30% concentration will bleach your hands and should also be handled very carefully.

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Oxidant</th>
<th>Electrode Material</th>
<th>Electrolyte</th>
<th>Catalyst</th>
<th>Recorded Voltage (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hydrogen 20 l/h</td>
<td>oxygen 10 l/h</td>
<td>carbon</td>
<td>5% sulfuric acid</td>
<td>none</td>
<td>No reaction</td>
</tr>
<tr>
<td>hydrogen 20 l/h</td>
<td>oxygen 10 l/h</td>
<td>carbon/platinum</td>
<td>5% sulfuric acid</td>
<td>platinum</td>
<td>533</td>
</tr>
<tr>
<td>hydrogen 20 l/h</td>
<td>air 40 l/h</td>
<td>carbon/platinum</td>
<td>5% sulfuric acid</td>
<td>platinum</td>
<td>469</td>
</tr>
<tr>
<td>hydrogen 20 l/h</td>
<td>oxygen 10 l/h</td>
<td>platinum</td>
<td>30% potassium hydroxide</td>
<td>platinum</td>
<td>988</td>
</tr>
<tr>
<td>hydrogen 20 l/h</td>
<td>oxygen 10 l/h</td>
<td>palladium on nickel</td>
<td>30% potassium hydroxide</td>
<td>palladium</td>
<td>*</td>
</tr>
<tr>
<td>2 ml 24% hydrazine hydrate</td>
<td>10 drops 30% hydrogen peroxide</td>
<td>palladium on nickel</td>
<td>30% potassium hydroxide</td>
<td>palladium</td>
<td>*</td>
</tr>
</tbody>
</table>

This reaction was not tried by the author, but works according to literature on the subject.

Fuel cells have been run with "steam reformed" methyl alcohol. At 200°C, methyl alcohol reacts with water to form hydrogen and carbon dioxide as shown in the following equation:

\[
\text{CH}_3\text{OH} + \text{H}_2\text{O} \rightarrow 3\text{H}_2 + \text{CO}_2 \text{ or methyl alcohol + water} \rightarrow \text{hydrogen + carbon dioxide}
\]

At temperatures higher than room temperature many other reactions are possible. Some of them allow a separation and collection of the water formed.

You're probably wondering why fuel cells are not more widely used. The first big drawback is cost, which is always a primary consideration in power generation. Hydrogen is an expensive fuel compared to other types of fuels, and the storage of hydrogen is still a problem. Perhaps in the future, we'll use solar energy on a large scale to decompose water into hydrogen and oxygen, which can then be stored. When energy is needed, the two gases can be recombined to water in a fuel cell.
We might start off with the reminder that we do have our technical helpline available for your use per the box below. That’s where you can go for tech help, referral to highly qualified consultants, for book and software purchases, and for general off-the-wall networking.

Your best calling times are weekdays 8-5, Mountain Standard time. Before you call, please re-read the entire column and especially the Names and Numbers and Resource boxes. Hardware Hackers calling without a pencil or pen handy will get chopped up and fed to the cows.

You could also reach me via my personal BBS, otherwise known as GENie PSRT. Call (800) 638-9636 for voice connect info.

But, please do note that I am an independent developer and author sitting here on my sand dune in the middle of the Upper Sonoran desert. I have very little input to any Radio-Electronics editorial policy and know next to nothing about projects by other authors. To leave comments for the editors, you may want to use the RE-BBS at (516) 293-2283.

Yeah, I sometimes do welcome any visitors that call in advance. But do note that Gurus are supposed to be hard to reach, because (A) it adds to the mystique, and (B) the Guru’s and Swami’s Union Local #415 rules demand it. At any rate, there is a seven-hour drive involved in reaching the nearest airport from here. I won’t even mention the deadly Gila Monsters or hostile Indians.

Every once in a while I’ll get a call that sounds reasonable at the time, but after thinking things over... For instance, one Hardware Hacker wanted to crystal control that low-cost BA1404 FM stereo broadcaster we’ve looked at in past issues. He wanted to do this so that several actors in a play could be on the same frequency.

Uh, whoops. You can’t get there from here. Sure, you can crystal control your BA1404. And you certainly can put as many of them as you want on the same frequency. But one of the key properties of FM reception is that you will receive only your strongest station, with virtually zero pickup of any of those others. That normally desirable action is known as the FM capture effect and is caused by the hard limiting present in virtually all FM receivers. As little as a fraction of a decibel can cause any one signal to utterly and totally dominate. Sorry about that. We return you to our column already in progress...

Electronic tuning

The traditional method of tuning a resonant circuit to your desired frequency is to use some adjustable or variable capacitor. While obvious and cheap, these capacitors are often large and sometimes expensive, could be sensitive to fields and vibration, and usually require human intervention for their use. These days, it is much better to go to one or more electronic tuning methods.

The simplest method of electronic tuning is to never do it. As much as possible, you purposely design out any need for a variable capacitor or a direct replacement. For instance, you use digitally synthesized frequencies instead of a local oscillator or BFO. You use switched-capacitor filters or active filters that are tunable by an input frequency or voltage. Or you use ceramic or SAW filters that are so precise and so repeatable that no adjustment is needed. You also tend to use a few higher-quality filters, rather than lots of individually tuned and cascaded LC circuits.

But after all of that, there remain times and places where you’ll still need a few electronically variable capacitors. Selecting a station on a radio or TV are obvious examples.

One very popular, well performing, and ultra-low-cost electronic tuning method is called a varactor diode, sometimes known by the trademarked name Varicap. Varactor diodes are diodes that have been optimized to look and behave like a high-quality electrically variable capacitor.

Most any diode conducts current in the forward direction and blocks it in the reverse direction. Specifically, when you reverse bias a diode, you create a depletion region containing neither electrons nor holes. As you increase your reverse bias, the depletion region gets thicker, and vice versa. Thus, any diode will behave as an electrically variable capacitor as you vary its reverse bias voltage.

For most diodes, this unavoidable depletion region capacitance is a flaw that restricts your maximum speed of operation. But in a varactor diode, the depletion-region capacitance is purposely made rather large, quite high quality, and very controllable.

Figure 1 shows you a typical circuit. From the electrical control side, you simply reverse bias your diode by way of a large series resistance or some other method that has a very high RF impedance. When you change the value of the voltage, you electrically change the capacitance of the varactor’s depletion region, and thus tune your circuit. Typically, you change your tuning voltage over a 3- to 30-volt reverse-bias range.

On the resonant circuit side, you do have to provide a DC return path to ground for the tuning voltage bias. You also have to provide a series blocking capacitor to keep any other...
DC path from shorting out your diode. Normally the series capacitor is very much larger than the varactor's capacitance, so it does not significantly alter any of your resonance calculations.

Sadly, the varactor's capacitance changes nonlinearly with the reverse voltage. Depending on the varactor, you might have 60 pF at 1 volt reverse bias, 45 pF at 2 volts, and 18 pF at 20 volts. Thus, your first couple of volts of reverse bias will by far give you the most variation. The plot of capacitance versus reverse voltage is roughly linear when plotted on semi-log paper.

Varactor capacitances can go from a fraction of a picofarad with exotic microwave devices on up to several hundred or more picofarads for use in audio filters or AM tuning. You can sometimes use giant silicon power diodes for lower frequency varactor experiments. But the Q will often be low when you try that, and the tuning range will be limited.

The capacitance range of a varactor is usually defined as the ratio between your 3- and 30-volt bias settings. An ordinary varactor will often have a capacitance range of roughly a million when swept between your 3- and 30-volt bias.

The varactor's capacitance times the applied voltage varies as the square root of the applied voltage, so at twice the voltage, you get only a root square of two roughly a 45% increase in capacitance. If the reverse saturation current were independent of voltage, this would be a roughly linear variation in capacitance with respect to voltage, but the current increases with exponential or hyperbolic relationship to voltage. This is why the capacitance cannot be linearized very well.

FIG. 1—ELECTRONIC TUNING using a varactor diode. The diode depletion-layer capacitance varies with the applied reverse bias. The large series capacitor serves as a DC block to prevent shorting the tuning voltage.

3:1.

But note that a frequency change varies with the square root of your capacitance change in any resonant circuit. So, this type of 3:1 varactor can shift a resonant frequency only by 1.73 or so.

One way to increase the range of a Varactor is to cheat and use a lower bias voltage. Your capacitance will increase dramatically for very low values of reverse bias. But at that point the diode will start to conduct and very much reduce the available Q or selectivity for your tuned circuit. Linearity will also be awful.

For wider tuning ranges, special varactors are obtainable which have different doping profiles. Varactors with a medium tuning range have an abrupt doping profile, while those with very high tuning ranges use a hyperabrupt profile.

The tradeoffs for a wider tuning range are more nonlinearity, somewhat higher cost, lower circuit Q, and harder tuning. It will also become vastly more sensitive to noise and the precision of your tuning voltage.

The AM broadcast frequencies of 550 to 1650 kilohertz have a 3:1 range. Thus, you should use a hyperabrupt varactor having at least a 9:1 and preferably a 10:1 tuning range here. The hyperabrupt Motorola MVAM108 is one good choice here, having an extreme 15:1 range.

Those television frequencies are spread out over a very wide range. To prevent having to tune them all at once, three varactor tuners are separately used in several individually selected circuits. One for the lower VHF channels 2-6, a second for the high VHF channels 7-13, and a third for the remaining UHF channels. And sometimes a fourth for special cable channels.

Sadly, the varactor's capacitance sometimes differ from their published values. VHF varactors can shift a resonant frequency only by 1.73 or so. One type changes to a 4:1 ratio.

Varactors work best with tuned signals in the microvolt range. Should your signals being tuned get above several millivolts, the signals themselves can add to or subtract from the tuning voltage. Thus, your positive signal excursions will increase the resonant frequency and vice versa—which can introduce moderate to severe second-harmonic distortion.

You might resolve that possible distortion problem by using a pair of varactor diodes as shown in Fig. 2. The two varactors are in parallel as far as the DC tuning voltage goes, but are in series with any signals being tuned. Thus, on a positive peak, the capacitance of one Varicap will increase as the other decreases, and largely cancel each other out.

Varactors in a single package are rather popular. The Motorola MV104 is one example. Note that two capacitors in series give you one half the total capacitance. Be sure to allow for that in your designs.

It is extremely important to have a very stable reference for your tuning voltage, since any drift at all could detune your circuit. If possible, you will also want to use some sort of feedback to keep your tuning locked on channel. Various types of automatic frequency control (AFC) can sometimes do that for you.

Varactors drift over temperature. Their values will increase with increasing temperature. One typical value is in the 200-parts-per-million range. On the other hand, a regular diode that is forward biased will have vastly more sensitive to noise and the precision of your tuning voltage.

FIG. 2—A PAIR OF BACK-TO-BACK varactor diodes can be used to prevent larger signals from detuning themselves. A positive signal swing raises the capacity of one varactor and lowers that of the other. The changes largely cancel out.
FIG. 3—A TEMPERATURE compensated varactor tuner. The forward drop temperature drift of the ordinary diode can be used to offset the capacitance drift of the reverse-biased tuning varactors. Resistor R1 has to be large enough to not load the tank circuit. Resistor R2 adjusts the temperature coefficient.

A current-dependent drift with a negative temperature coefficient.

Figure 3 shows how to add an ordinary diode in series with your tuning voltage to temperature-compensate a varactor diode. The load resistor of the diode is adjusted to give a minimum overall drift. Sometimes a parallel capacitor can also be added to the circuit having a chosen temperature coefficient.

A precise temperature compensation over a wide range could get tricky. At the least, everything has to be tightly heatsinked together. More details appear in the Motorola ap note AN551.

As we’ve just seen, Motorola is one leading supplier of a wide variety of low-cost and easy-to-get varactor diodes. Some cost under a dollar. See their RF Device Data II handbook for data sheets and ap notes.

Parametric amplifiers
Surprisingly, varactor diodes were not initially designed for electronic tuning. Instead, they were created for a unique beastie once known as a parametric amplifier. Back in the days of tube-style UHF TV tuners with 35 decibel noise figures, the idea of an ultra-low-noise, high-gain, high-frequency amplifier that used nothing but a diode sounded like a great idea.

Today, low-noise and high-gain microwave transistors are a buck each from such outfits as Mini-Circuits Lab and Avantek. Paramps are largely limited to esoteric ultra-microwave lab uses and for optical and infrared experiments. Although I do strongly suspect you’ll soon see a stunning resurgence of paramps in a brand-new application area.

Figure 4 shows you how the parametric amplifier works. This is exactly the same idea as pumping a swing on the playground. The local oscillator called the pump frequency causes the capacitance of a varactor to change in a time-varying manner. The “parameter” we are varying is the diode capacitance. A low-level input signal known as the input frequency is also routed to the same time-varying capacitor. A filter extracts an output signal that is called the idler frequency.

The net result can be a very strong and low-noise amplification and a possible frequency conversion for your input signals. Since a purely reactive capacitor is in use, there are theoretically none of those noise problems associated with resistance or traditional tube or semiconductor amplifier circuits. I once used a plain old three-cent 1N914 computer diode

FIG. 4—A VARACTOR DIODE PARAMETRIC AMPLIFIER in which a diode provides low-noise amplification. The pump frequency causes the varactor capacitance to vary in such a time-dependent “parametric” way that its interaction with the input frequency produces an amplified output at the idler frequency.

Safety, Security, Convenience, Entertainment and Energy Management

Home Automation from Heath, the catalog that has it all...

1-800-44-HEATH
(1-800-444-3284)
to produce 20 decibels of gain and a 2-decibel noise figure at 600 MHz. The diode was DC back-biased to −3 volts or so and a suitable pump frequency was capacitively superimposed. Long ago and far away.

Paramps can be designed as upconverters with gain, as downconverters with loss, or as negative-resistance devices with potentially high gain but possible instabilities.

The key math behind paramps is known as the Manley-Rowe relations. One horse's mouth classic on the subject is Blackwell and Kotzebue’s Semiconductor Diode Parametric Amplifiers, published by Prentice Hall, way back in 1961. Included is a good summary of Manley-Rowe and an extensive bibliography. For more modern info on paramps, check out the Dialog Information Service.

Professional society libraries

As we've seen a number of times in the past, that Uhrlieht's Periodicals Dictionary on the reference shelf at your local library is overwhelmingly your single most important hardware hacking resource, bar none. But there’s another set of books on the same shelf titled the Encyclopedia of Associations, that you might also find quite useful.

There are zillions of professional societies, most of which seem outrageously expensive and who simply do not deliver what they think they do. On the other hand, many of these groups have association bookstores that have outstanding tutorials, reprints, and information real hard to find elsewhere.

To get you started, our resource sidebar for this month lists a few of the professional organizations. Here is a brief rundown...

The American Association for the Advancement of Science publishes the “must have” Science magazine and provides outstanding book reviews. The Association of Energy Engineers carries dozens of books including a Small Power Production Manual and Efficient Electrical Systems Design.

That Institute of Electrical and Electronic Engineers is a very poor performer that is way overblown and far overrated to the point of being a ripoff. But their reference books do include Visual Communication Systems and Navigation: Land, Sea, Air, and Space.

The American Society of Materials has hundreds of books on just about anything mechanical. Their Metals Handbook series are classics.

The Society of Motion Picture and Television Engineers is big on time codes, on video production, and other hard-to-find resources. The Journal of the Audio Engineering Society is your foremost resource for any music synthesizer theory, and just about all other audio.

And we've already seen that the Society of Automotive Engineers has lots of great automotive electronics books. And finally, one real sleeper, that Society of Photo-Optical Instrumentation Engineers which publish a Milestone Series that includes such gems as Fiber Optic Gyroscopes, Digital Image Processing, and Ultrahigh Speed Photography.

Naturally, there are bunches more where those come from. For the first of our two contests this month, just tell me about any professional organization in any field that has book or publication resources of possible interest to hardware hackers. There will be all the usual Incredible Secret Money Machine book prizes, with an all-expense-paid (FOB Thatcher, AZ) tinaja quest for two going to the very best of all. As usual, send all your written entries directly to me at Synergetics, rather than on to Radio-Electronics editorial.

Teleprotection surprises

One of the ruder surprises you’ll discover when you first start using a modem extensively is that anyone picking up an extension phone can blast you off the air. That can get especially frustrating and infuriating just before the end of a long and costly upload or download.

Radio Shack offers a product called their 43-107 Teleprotector. It costs eight bucks and its only tiny problem is that it may end up working too good for you.

Any unused telephone line has around 48 volts of direct current on it. When the first phone is picked up, the working voltage drops down into the 6- to 8-volt range. So, if you simply put a plain old voltmeter right across the red and green wires on your extension phone, you can quickly tell if the phone line is in use by another extension.

Figure 5 shows you the circuit for their teleprotector, along with some possible modifications. An extension phone normally uses only the red and green wires. The teleprotector breaks the green wire and inserts a full-wave diode bridge. The purpose of the bridge is to make the current in the use-sensing circuit always go in
FIG. 5—CIRCUIT DIAGRAM for the Radio Shack 43-107 teleprotector, along with two possible modifications. Unmodified, the extension phone is allowed on the line only when no other phone or modem is in use. The bypass switch will defeat the teleprotector entirely; the me-first switch lets your extension remain active if another phone gets picked up during a call.

the same direction, even during the ringing or if the phone polarity somehow ends up backwards.

Initially, there is only a very high value 390K resistor inside the bridge. That is much too large a series value to let the phone work. When you pick up the phone, the full available line voltage initially appears across that resistor. Should you have at least 18.7 volts available (meaning that there is no other extension in use), the silicon controlled rectifier (SCR) turns on, stays on, and lets the extension operate. If another phone is being used, there will not be enough voltage to turn on the gate of the SCR, and the extension will remain off.

So far so good. Any SCR will stay on only so long as its main anode to cathode current drops to zero. This particular SCR can get turned off one of two ways. If you hang up your protected extension, the current in the green wire obviously drops to zero and resets you for the next call.

But there's also that mysterious 8.7-volt Zener diode in series with the SCR. Should some other phone get picked up, there won't be enough voltage left on the line to keep the Zener conducting, so the SCR turns off, as does the extension phone.

Thus, your protected extension phone will never turn on if another phone is off hook. Should you be using your protected extension phone and should another one get picked up, you will get unceremoniously cut off the line!

All of which means that their teleprotector works exactly as they advertise. There is no way to eavesdrop with a teleprotected extension phone. There is also no way to let the teleprotected extension blast your modem off the air. Or a FAX machine for that matter.

Another trick is to hook up their teleprotector up to your answering machine. When you pick up your remote extension, your answering machine drops off the line, stopping the now unwanted message. Which also can be handy.

One key point: Your teleprotector does not go on the modem phone. It goes on the interfering extension.

Now for the big problems. Your teleprotected extension can not be used for any conferencing! You also cannot have a receptionist answer by picking up with their teleprotected extension and then listening in long enough to verify the correct person picked up the call.

Two possible circuit modifications are also shown in Fig. 5 that might be more suited to you should you need conferencing, but your main goal is to eliminate any modem blasting. The BYPASS switch completely defeats the teleprotecting. Whenever any two phone conversations are wanted, you slide that switch into its "bypass" position, shorting the works out. You

Earn Your B.S. Degree in ELECTRONICS or COMPUTERS

By Studying at Home

Grantham College of Engineering, now in its 41st year, is highly experienced in "distance education"—teaching by correspondence—through printed materials, computer materials, fax, and phone.

No commuting to class. Study at your own pace, while continuing on your present job. Learn from easy-to-understand but complete and thorough lesson materials, with additional help from our instructors.

Our Computer B.S. Degree Program includes courses in the BASIC, PASCAL, and C languages—as well as Assembly Language, MS DOS, CADD, and more.

An important part of being prepared to move up is holding the right college degree, and the absolutely necessary part is knowing your field. Grantham can help you both ways—to learn more and to earn your degree in the process.

Write or phone for our free catalog. Toll free, 1-800-955-2527, or see mailing address below.

Grantham College of Engineering
Grantham College Road
Slidell, LA 70460

Earn Your B.S. Degree in ELECTRONICS or COMPUTERS

By Studying at Home

Grantham College of Engineering, now in its 41st year, is highly experienced in "distance education"—teaching by correspondence—through printed materials, computer materials, fax, and phone.

No commuting to class. Study at your own pace, while continuing on your present job. Learn from easy-to-understand but complete and thorough lesson materials, with additional help from our instructors.

Our Computer B.S. Degree Program includes courses in the BASIC, PASCAL, and C languages—as well as Assembly Language, MS DOS, CADD, and more.

An important part of being prepared to move up is holding the right college degree, and the absolutely necessary part is knowing your field. Grantham can help you both ways—to learn more and to earn your degree in the process.

Write or phone for our free catalog. Toll free, 1-800-955-2527, or see mailing address below.

Grantham College of Engineering
Grantham College Road
Slidell, LA 70460

Grantham College of Engineering
Grantham College Road
Slidell, LA 70460
do, of course, have to remember to flip the switch back after any two-phone conversations.

Closing the ME FIRST switch lets the protected phone initiate or receive a call so long as it is the first phone picked up. It will stay active should additional phones be picked up, so two-phone conferencing can still be done. But the protected phone still can no longer break in on a modem or fax in progress.

If you really want to get hairy, you can even let your protected phone purposely break in on an ongoing voice conversation when in the "me first" position. Just shout at the other person to pick up their phone. Once you are sure their phone is picked up, hang your phone up for half a second, and pick it up again. Both of you should now be in conference.

But my particular setup requires three phones, any-way conferencing, and no modem blasting. As a second test for this month, let's have your thoughts on how to elegantly handle this problem.

The Radio Shack teleprotector unit is cheap enough that you probably would not want to build one up from scratch. But should you decide to experiment completely on your own, that oddball 2N6565 sensitive-gate SCR is a Teccor product available by way of Mouser Electronics.

New tech literature

From Signetics/Philips, you should look into their outstanding new RF Communications data handbook. Included are full use details of their hot new NE602 active VHF mixers, info on cellular phone chips, and frequency synthesizers.

Also from Signetics/Philips, a new Telecom IC shortform catalog. And from Brooktree, a Product Databook on all their A/D, D/A, color palette, and video chips.

Our featured free software deal for this month is the High Performance Electronics Selection Guide offered by Burr-Brown.

One marketing firm aggressively seeking tested and developed low-end consumer electronics items for use on an ongoing royalty basis is Mark Gottlieb's DesignTech.

Two rather impressive "labor of love" high-quality newsletters are Don Parham's Homebuilt Rotorcraft for the Gyro Gearloose crowd; and Ed Zimmer's Inventor-Entrepreneur Network Newsletter, that's intended mostly for Michigan hackers.

A pair of interesting trade journals include Medical Electronic Products and Medical Equipment Designer. Yes, they have info on brain-wave electrodes. But make certain you know what you are doing before you make a decision to hotwire your neighbor's cat.

Turning to my own products, for the fundamentals of microprocessors and microcomputers, check into my Micro Cookbook I and Micro Cookbook II. Or to pick up all the "oldies but goodies" at once, do try out my Lancaster Classics Library.

We also now have the Hardware Hacker III reprints available, which have the latest and best of all these columns in them. All edited, revised, corrected, and indexed.

As always, this is your column and you can get technical help and off-the-wall networking per that Need Help? box. The best calling times are weekdays 9-5. Mountain Standard Time. Let's hear from you.
In any compilation of the real (and imaginary) problems troubling audio reproduction, distortion would rank right up there near the top of the list. Almost everyone agrees that distortion is not a good thing. But beyond that basic point, arguments start. Exactly what’s the problem? Simply this: Electronic audio distortion, while easy to measure in its various manifestations, is devilishly difficult to correlate with the perceptions of the human ear/brain apparatus. The situation is further complicated by some manufacturers of expensive audio equipment, accessories, and connecting wires, who are pleased to invent wonderfully esoteric distortion problems (with accompanying voodoo solutions) to satisfy the needs of the devout tweaks and techno-crazies.

Terminological confusion

My Illustrated Encyclopedia of Electronics tells me that “Distortion is any change in a signal that alters its basic waveform or the relationship between its various frequency components.” Some of the misunderstanding about standard distortions and their audibility arises from ambiguities in terminology. For example, sometimes the technical name for a distortion describes the way the afflicted waveform looks on a scope (e.g., clipping distortion when the tops and/or bottoms of a waveform are decapitated); other times the name refers to the electronic flaw in the amplifier that produces the problem (e.g., crossover distortion).

The terms harmonic distortion (HD) and intermodulation distortion (IMD) in effect describe kinds of test procedures rather than specific flaws in the equipment under test. If an amplifier has a problem, the same condition should show up on both HD and IMD distortion tests—and provide entirely different measurement numbers. Keep in mind that the numbers provided by distortion-testing instruments are somewhat arbitrary; they depend as much on the type of test and the specifics of the test signal used as on the magnitude of the flaw in the amplifier. And for perhaps the same reason, none of the distortion-measurement numbers correlate directly with audible unpleasantness—or with each other. In other words, 2% distortion does not necessarily sound twice as bad as 1%, or even necessarily worse than 0.5%.

Harmonic distortion

In any discussion of harmonic distortion, keep in mind the distinction between the natural harmonics that are a part of all tones produced by musical instruments and the undesired spurious harmonics that result from flawed amplification. It is the natural harmonic content that causes the same musical note played on a clarinet, a piano, and a flute to sound different—and to look different on an oscilloscope. Any complex waveform can be “discussed” by a mathematical process known as a Fourier analysis and shown to be composed of a large number of odd and even harmonics. Figure 1 shows a violin note and its second, third, fourth, fifth, sixth, and eighth harmonic components. With the proper instrumentation, it is possible to detect harmonics as high as the twentieth.

HD comes about not through distortion of the harmonics of a signal, nor does it result from spurious harmonic frequencies generated by an oscillating amplifier. What happens is that the amplifier, because of some technical inadequacy, changes (distorts) the original shape of the signal waveform. That change can be quantified by analyzing it in terms of the spurious harmonics added to the fundamental test signal—which is, in general, the way the ear hears it.

When testing an amplifier’s HD performance, you feed in as distortionless a sine wave as can be generated. The HD analyzer, which is connected across the amplifier’s output test load, operates by nulling out the input test signal and reading (as a percentage of it) whatever harmonics and noise are introduced by the amplifier. If, say, a 3-kHz test signal was used, amplifier nonlinearity might produce spurious harmonics at 6 kHz, 9 kHz, and so forth. The term THD indicates that the lumped total of all the harmonic components is included in the measurement. A more sophisticated instrument, called a spectrum analyzer, is capable of indicating the relative strengths of each of the spurious harmonics. It is recommended by the EIA Amplifier standard (RS-490) and is used by many test labs.

To illustrate the mechanisms involved, an exaggerated example of distortion is shown in Fig. 2. Let us say that a malfunction of the amplifier causes third-harmonic distortion of waveform (a), a 1000-Hz sine-wave input signal. The distorted output signal (c) would look as though a 3000-Hz tone (b) were combined with the 1000-Hz tone. Keep in mind that a distorting amplifier does not actually generate spurious harmonic waveforms and mix them with the original wave; what it does is distort the original waveform in such a way that the output waveform looks as it would if specific spurious harmonics were added. Of course, in real life we would have not only third-harmonic distortion but also an assortment of various odd and even harmonics of various strengths.
There's some evidence that the specific HD content of a distorted signal (meaning the relative strengths of the distortion components extending up to the tenth harmonic or higher) is more audibly significant than the absolute THD figure. In other words, depending upon the ways that two amplifiers are distorting a piece of music, a measured 3% THD from one might sound a lot worse than 3% from the other.

Intermodulation distortion

The same amplifier nonlinearities that produce THD also produce intermodulation distortion (IMD), but through a somewhat different mechanism. When two (or more) signals are fed through a nonlinear amplifier, the signals tend to intermodulate, meaning that they interact in a specific and undesirable way. If, for example, a low-frequency signal of 40 Hz was traveling through a nonlinear amplifier along with a higher frequency of, say, 2 kHz, spurious sum and difference frequencies that are known as IM products would be produced at 1920, 1960, 2040, 2080 Hz, and so on and so forth.

There are two different IMD test techniques in current use, both employing a pair of test tones applied simultaneously. The older SMPTE (Society of Motion Picture and Television Engineers) IMD test uses a composite 60- and 7000-Hz test signal in a 4:1 ratio, while the IHF-IM test uses two equal-amplitude high-frequency tones. The description of the IHF test incorporated in the current EIA Standard (formerly IHF-A-201 1966) reads as follows: "The percentage of IHF intermodulation distortion (IHF-IM) of a composite signal composed primarily of two relatively high-frequency sinusoidal signals, one having a frequency of \(f_1 \) and the other having a frequency of \(f_2 \), of equal amplitude, is numerically equal to 100 times the square root of the sum of the squares of the second- through fifth-order distortion components divided by the square root of the sums of the squares of the amplitudes of the sums of the components at frequencies \(f_1 \) and \(f_2 \)." All of which, I think, helps explain the relative popularity of the SMPTE method over the IHF-IM method.

Unlike THD, IMD distortion components do not have a harmonic relationship with the music and, therefore, can't be heard as part of the music. For that reason, IMD is generally thought of as more audibly unpleasant. However, I would say that, given the very low distortion figures of all of today's better standard-brand audio amplifiers, neither THD nor IMD are likely to be audible, assuming that the amplifier is working properly and is never driven into overload. And, even under overload clipping conditions, with complex program material such as a loud symphonic work, it is well documented that distortion (of any flavor) has to reach approximately 6% before it becomes audible. That is true because the spurious distortion frequencies are overwhelmed (technically, "psychoacoustically masked") by music occurring at the same frequencies. However, when the test signal is a pure tone, distortion as low as 0.15% can be heard. Probably for all of the above reasons, it seems that few professional testers will bother with IM measurements.

In next month's wrap up on our distortion discussion, we will look at some of the popular "new" distortions and try to place the entire topic in a real-world context.
Let's add an audible indicator to our logic probe.

ROBERT GROSSBLATT

The probe we've been designing can indicate circuit highs and lows but there are things we can do to make it better. One of the first things that comes to mind is to work out some way for us to have an audible indication from the logic probe.

Doing something like this is a good exercise. Remember that we currently have points in the circuit (the comparator outputs) that indicate whether a high or low is detected in the circuit.

There are a few ways you could use the extra pair of comparators we have for the audible indicator, but the easiest thing to do is just piggyback their inputs on the inputs of the first pair. That is shown in Fig. 1.

By adding some extra wire to our design, we now have two independent outputs that signal high and low levels in the circuit under test. Our next job is to figure out a way to make them work as triggers for an audio circuit.

The first thing we have to do is add some resistors to the outputs of the second set of comparators. That has to be done because, if you go through the data sheet for the 339 (or any member of that family), you'll see that the comparator output is an uncommitted open collector of an internal transistor. The resistors have to be added in this case just as you would for any transistor-based design.

All that's left for us to do so we can add an audio indicator to the circuit is figure out how we're going to actually generate the audio.

It's no big deal to build a tone generator out of a 555 but this application adds a new wrinkle. We want it to generate two different sounds—one to indicate that a low has been detected and the other to indicate a high.

The frequency of a tone generator built from a 555 depends on three separate components as shown in Fig. 2. The trick to having the output frequency controlled by the two comparators is to have the high outputs of the comparators supply the charging current for the 555's internal timing capacitor. In normal 555 circuits, that current comes directly from the power supply, but in this case we can use a couple of steering diodes to put different resistors into the 555's timing chain and cause it to output two different frequencies.

The final version of the circuit is shown in Fig. 3. With the values shown in the schematic, the high frequency will be about 4 kHz and the low frequency will be about 500 Hz.

Since we've now got a circuit that can generate two different tones depending on whether a high or low is presented to the input, it would be a shame not to be able to set things up so the probe could be used as a tone source as well.

If you study the switch arrangement shown in Fig. 4, you'll see that S1 switches the circuit from a logic probe to a tone generator by force feeding either a high or low voltage (via S2) to the input and routing the speaker output to the probe tip. When you use the circuit as a tone generator, the speaker will be disconnected, but you'll be able to see
which frequency you've selected because the LED's still work.

The logic probe/tone generator we've been designing is a really good addition to your collection of test gear. I've been using it for years and have gone so far as to lay out a PC board for it. I'll clean up the artwork and put it in next month's column.

It's well worth building because, when you get familiar with the circuit, you'll find that it even gives you useful information when you connect the probe to clock lines. There's no way you'll be able to measure the frequency but the audio from the probe will bear a proportional relationship to the frequency and duty cycle.
Learn to troubleshoot and service today’s computer systems as you build a fully AT-compatible micro

Train the NRI way—and learn to service all computers as you build your own fully AT-compatible micro, now with 1 meg RAM, 20 meg hard drive, and exciting new diagnostic hardware and software!

Jobs for computer service technicians will almost double in the next 10 years according to Department of Labor statistics, making computer service one of the top 10 growth fields in the nation.

Now you can cash in on this exciting opportunity—either as a full-time industry technician or in a computer service business of your own—once you’ve mastered electronics and computers the NRI way.

NRI’s practical combination of “reason-why” theory and hands-on building skills starts you with the fundamentals of electronics, then guides you through more sophisticated circuitry all the way up to the latest advances in computer technology.

Train with and keep a powerful AT-compatible computer system plus popular Microsoft® Works software!

Only NRI gives you hands-on training with the finest example of state-of-the-art technology: the powerful West Coast 1010ES computer. As you assemble this fully IBM PC/AT-compatible computer from the keyboard up, you actually see for yourself how each section of your computer works.

You assemble and test your computer’s “intelligent” keyboard, install the power supply and 5-1/4" floppy disk drive, then interface the high-resolution monitor.

Your hands-on training continues as you install a powerful 20 megabyte hard disk drive—today's most-wanted computer peripheral—now included in your course to dramatically increase the data storage capacity of your computer while giving you lightning-quick data access.

Plus you now work with today's most popular integrated software package, Microsoft Works, learning to use its word processing, spreadsheet, database, and communications utilities for your own personal and professional applications. But that's not all.

Only NRI gives you hands-on training with the remarkable R.A.C.E.R. plug-in diagnostic card and QuickTech diagnostic software from Ultra-X—professional, state-of-the-art diagnostic tools that make computer troubleshooting fast and accurate.
Your NRI computer training includes all this: • NRI’s unique Discovery Lab® for circuit design and testing • Hand-held digital multimeter with “talk-you-through” instructions on audio cassette • Digital logic probe that lets you visually examine computer circuits • The new AT-compatible West Coast 1010ES computer with high-speed 80286 CPU, 101-key “intelligent” keyboard, 1.2 meg high-density floppy drive, 1 meg RAM (expandable to 4 meg), 64K ROM • 20 megabyte hard disk drive • MS-DOS, GW-BASIC, and Microsoft Works software • R.A.C.E.R. plug-in diagnostic card and QuickTech diagnostic software for fast, accurate troubleshooting • Reference manuals with guidelines and schematics

NEW! Training now includes Ultra-X diagnostic hardware and software for quick, accurate troubleshooting!

Now you train with and keep the latest in diagnostic hardware and software: the extraordinary R.A.C.E.R. plug-in diagnostic card and QuickTech diagnostic software, both from Ultra-X. Using these state-of-the-art tools, you learn to quickly identify and service virtually any computer problem on XT, AT 80286/80386, and compatible machines.

You discover how to use the R.A.C.E.R. diagnostic card to identify individual defective RAM chips, locate interfacing problems, and pinpoint defective support chips. Plus you learn to use your QuickTech diagnostic software to test the system RAM and such peripheral adapters as parallel printer ports, serial communications ports, video display memory, floppy drives, and hard disk drives.

Only NRI gives you such confidence-building, real-world experience. Only NRI gives you both the knowledge and the professional tools to succeed as today’s in-demand computer service technician.

No experience needed, NRI builds it in

NRI training gives you practical, hands-on experience that makes you uniquely prepared to take advantage of today’s opportunities in computer service. You learn at your own convenience in your own home. No classroom pressures, no night school, no need to quit your present job until you’re ready to make your move. NRI starts you with the basics, building on that foundation step by step until you have the knowledge and skills you need for success.

And all throughout your training you’ve got the full support of your personal NRI instructor and the entire NRI technical staff, always ready to answer your questions and help you achieve your training goals.

FREE catalog tells more

Send today for NRI’s big, free catalog that describes every aspect of NRI’s innovative computer training, as well as hands-on training in other growing high-tech career fields.

If the coupon is missing, write to: NRI School of Electronics, McGraw-Hill Continuing Education Center, 4401 Connecticut Avenue, NW, Washington, DC 20008.

IBM is a registered trademark of International Business Machines Corp. R.A.C.E.R. and QuickTech are registered trademarks of Ultra-X, Inc.

SEND TODAY FOR FREE CATALOG

NRI Schools

McGraw-Hill Continuing Education Center

4401 Connecticut Avenue, NW

Washington, DC 20008

CHECK ONE FREE CATALOG ONLY

Microcomputer Servicing

Automotive Servicing

PC Systems Analysis

Industrial Electronics & Robotics

PC Software Engineering Using C

Telecommunications

Small Engine Repair

Word Processing Home Business

Electronic Music Technology

Fiction/Nonfiction Writing

Air Conditioning, Heating, & Refrigeration

Computer Programming

Locksmithing

Paralegal

Electrician

Building Construction

Desktop Publishing & Design

Security Electronics

TV/Video/Audio Servicing

Bookkeeping & Accounting

Basic Electronics

For career courses approved under GI Bill, check for details.

Name (please print)

Age

Address

City/State/Zip

Accredited Member, National Home Study Council
Windows is really taking the PC world by storm. By the time you read this, it will have been a year since Windows 3.0 was released. What's happened in the interim? Where are things going?

Virtually all interesting software development is now focused on the Windows environment. The major computer magazines have sponsored special sections on Windows products, and the technical columns formerly associated with OS/2 now grudgingly include Windows information as well.

Hardly a day passes when a new, upgraded, or converted product does not appear for the Windows environment. In some cases, these new products are spectacular; in others, disastrous. The latter remind me of the early 80's, when the industry made the transition from CP/M to MS-DOS. The first applications were straight ports that worked worse under DOS than they did under CP/M. But gradually, the old applications improved, and new ones were introduced. In some cases, the old apps (e.g., WordStar, dBASE) remained mired in the bog of the past and, though they're still hanging on, have yet to capitalize on the unique strengths of the new environment. Of course new apps (e.g., 1-2-3) learned to stretch that environment to the limit—and beyond. For example, Lotus was a driving force behind Hercules graphics adapters and the EMS specification.

Now the industry is going through another tectonic shift. Highly influential companies (Borland, Lotus, Word Perfect, Software Publishing) that heretofore have ignored Windows are now scrambling to get something to market as soon as possible. And some companies (WordStar, Lotus again) are trying to buy their way in. Meanwhile, with control of the operating system (DOS) and the operating environment (Windows), serious applications (Word, Excel, Power-Point, Project) in all major categories except database and telecommunications, and a LAN operating system (LAN Manager) worthy of being taken seriously, Microsoft's dominance of the industry continues to increase.

Windows and OS/2

Why has Windows usurped the position many people once expected OS/2 to occupy? There's no good reason on technical grounds. Windows requires just as much in the way of system resources (CPU, RAM, hard disk) as OS/2. And with that same set of resources, Windows provides a less-stable, less-powerful environment for running programs than OS/2.

There's lots of grumbling in the developer community about Microsoft's seeming desertion of OS/2. People working in that environment have invested lots of time and effort learning the OS/2 API (Application Programming Interface). And now they're finding that the expected market for their products seems to have disappeared. Further, due to the large differences in API's, converting their OS/2 work to Windows is difficult.

For a while last fall, Microsoft was touting a so-called binary-compatibility layer (BCL) that would allow Windows programs to run unmodified under OS/2 2.0, the still-unreleased 386-specific version of the operating system. In practical terms, that amounts to adding a layer of software to translate Windows calls to OS/2 format. However, there were lots of questions about whether that type of kludge was even possible. In addition, given the lackluster performance of both environments on anything less than a 25-MHz 386, it's hard to believe that users would accept that type of performance-degrading solution.

Recently emphasis has shifted to OS/2 3.0, a "portable" operating system that will run on multiple hardware platforms, and will allow mixing and matching multiple API's (DOS, Windows, OS/2, POSIX), file systems (DOS, HPFS, POSIX), and graphical user interfaces (Windows, OS/2 PM, X Windows). However, OS/2 3.0 probably won't be seen before 1992. And when it does appear, it just might go by another name—Windows-32, perhaps. But will the industry become mired in the present API by then? According to some rumors, OS/2 3.0 will be able to run Windows, OS/2, and POSIX applications on screen in separate windows simultaneously. But what sort of system resources will be required to do so? Will we have 50-MHz CPU's and 16Mb DRAM's by then? If so, maybe performance won't matter, but if not...

Windows 3.1

A more immediate topic of speculation has been Windows 3.1, originally due around mid-year, but now third or fourth quarter. Expected features include smaller size and better speed, a built-in type-scaling/font-management system called TrueType, multimedia extensions, an improved File Manager, support for stylus-based input, and a Windowsspecific version of BASIC. To get a taste for the latter, check out Word-BASIC, the amazingly powerful "macro" language in Word for Windows. Borland should release a version of Turbo Pascal for Windows sometime this year as well.

Windows now

When Windows 3.0 first came out, I found it interesting and enjoyable—but somewhat impractical. However, gradually throughout the past year, I have migrated more and more of my activity there, so that now I spend 90% of my computer time running Windows. The other 10% is used almost entirely for two things: system backup (to an Irwin tape drive) and file management (with Lotus' Magellan).
In the past I've mentioned my big three Windows applications: Word for Windows, Corel Draw, and CrossTalk for Windows. Now I'd like to discuss some of the other applications and utilities, large and small, that have allowed me to make this migration.

Best spreadsheet: Excel 3.0 was built specifically for Win3, hence is better integrated than the current versions of Word For Windows and Project. Excel 3.0 has several irresistible new features including spreadsheet outlining, powerful drawing tools (something I expect to see in the next version of WinWord), much-improved charting (including 3D graphs), an autosoftware that intelligently figures out the correct horizontal or vertical sum function, and full support for different type faces, styles, and sizes. The program includes several add-on packages, including a goal-seeking function that works backward from results to modify an equation that generates said results, and a database query tool that allows you to query a local or networked database.

Most useful utility: I've mentioned it before, but Adobe's ATM (Adobe Type Manager) neatly and cleanly solves one of Windows' biggest problems: font management. ATM brings the ideal of WYSIWYG (what you see is what you get) closer to reality by an order of magnitude. With ATM, you can print text in any PostScript font on any dot-matrix, ink-jet, or laser printer and, regardless of the printer, see an accurate representation on-screen.

You can develop your document in your office with a PostScript laser printer, take the document on the road and print it on a portable ink-jet, work on it at home with a dot-matrix, and produce final copy on a Linotronic typesetting machine. In all cases, you can simply switch drivers and not worry about font availability on the target printer. And regardless of the output device, the document will print identically, within the physical limits of the device. For example, if you call for a 30-point headline in Helvetica.

XGA UPDATE

Last time I made some off-the-cuff remarks about IBM's XGA video adapter. It turns out that IBM really is serious about making XGA a new standard. Last month the company made two important announcements on this subject. (1) In addition to the Micro Channel (PS/2) bus version, there will be an AT-bus version of the XGA adapter. (2) IBM will sell XGA chip sets to OEMs who can then build it on their own boards and sell it. These are significant changes in IBM's marketing direction, and will ensure that XGA assumes VGA's current role as standard bearer. Look for XGA boards to appear in late 1991 or early 1992.

Whether you print it on a 9-pin Epson or a 2540 dpi Linotronic, you'll get 30-point Helvetica. Microsoft's own TrueType, developed in conjunction with Apple, will incorporate ATM-like features directly in Windows. ATM lists for $99 and is available through mail-order distributors for about $60. Highest recommendation.

Best file manager: Becker-Tools 2.0 is the best I've found. It's crammed with useful utilities (copy, delete, move, format, edit, etc.) and customization options (see Fig. 1). BT2 works better than Windows' own File manager, and it does so in a manner familiar to users of MS-DOS file managers. The program does not always follow Windows' user-interface guidelines, and is simply awkward in others. It has a "pack" function for compressing files, but does not use a standard format; the program should allow optional use of an external program (PKZIP or your favorite), and better control over compressed files. $129.95 from Abacus, 5370 52nd Street SE, Grand Rapids, MI 49502-8107. (800) 451-4319; (616) 698-0330.

Tutorial/games: Microsoft has released a Productivity Pack for Windows that contains a tutorial on using Windows. Novices to whom I've recommended it say that it's a big help. Microsoft has also released an Entertainment Pack that contains several games and one of the better screen blankers on the market.
The FCC recently passed Docket 90-55 which for the first time allows a new codeless entry ham radio license of technician grade. Privileges 30 MHz and above — All modes! (See R.E. article in April 1991 issue).

Get all the no-code license details, study & testing information plus a one-year subscription to one of ham radio's longest running specialty mode publications that will teach you all about the new modes you will be able to operate!

The SPEC-COM Journal
P.O. Box 1002,
Dubuque, IA 52004
(319) 557-8791
MC/Visa (5% added)

Public domain and shareware utilities: Pickings here are pretty slim at present (another parallel to 1981). However, I have located a few gems that I now load automatically via the LOAD = line in WIN.INI.

CHIPS AHOY!

Mention 386 and people think Intel. However, that may change and soon. AMD has demonstrated a 386 clone that may take some of the wind out of Intel's sails (pun intended), and thereby provide better prices and performance for end users. The AM386 is 100% compatible, but is built entirely from CMOS, so power consumption runs 33-66% less than an Intel 386. In addition, a "sleep" mode allows the clock to stop, dropping power consumption to about 1 mA. The AM386 will be released in 25- and 40-MHz versions; there are claims that the 40-MHz version runs as fast as a 33-MHz 486. If AMD can find the legal wherewithal to market its clone, it will bust the laptop/porta
dile market wide open. Real systems should be released this spring.

In retaliation, Intel will release several "crippled," lower-cost versions of the 486, one without the math coprocessor, one without the cache. In addition to fighting the clone, this gives Intel a chance to sell 486's that don't pass final inspection. R.E

They'll be posted on the RE-BBS (516-293-2283, 1200/2400, 8N1).

- WinExit: Exit quickly from Windows simply by double-clicking on an icon.
- Digital: Formatted display of time, date, available memory, disk space.
- WinClock: Time/date display, includes alarms, count-down timers.
- IconLib: 200 icons for various programs, stored in a single EXE file.
- Click: Adds keyboard click.
- ZM: ZIP File Manager. Functions as a shell for PKZIP, PKUNZIP, and several other compression schemes. Buggy and doesn't use the Windows interface effectively, but saves shell-
ing to DOS.

If you'd like to keep track of share-
ware/PD offerings but don't relish
the thought of scanning BBS's and
on-line services, check out the Public Software Library. The company maintains a well-organized collection of software for DOS, Windows, and OS/2 (and the Macintosh), which it distributes for $5/disk.

Every program in the library has been reviewed; descriptions are available in printed and electronic format. PSL publishes a monthly newsletter, the PSL News, describing new and updated programs. Subscriptions are
S24/year. For more information, con-
tact PSL at P.O. Box 35705, Houston, TX 77235-5705. (800) 2424-PSL, (713) 524-6394. R.E
MARKET CENTER

FOR SALE
TUBES: "oldest" "latest." Parts, and schematics. SASE for list. STEINMETZ, 7519 Maplewood Ave., RE, Hammond, IN 46324.

CLASSIFIED AD ORDER FORM
To run your own classified ad, put one word on each of the lines below and send this form along with your check to:
Radio-Electronics Classified Ads, 500-B Bi-County Boulevard, Farmingdale, NY 11735

PLEASE INDICATE in which category of classified advertising you wish your ad to appear. For special headings, there is a surcharge of $25.00.
() Plans/Kits () Business Opportunities () For Sale
() Education/Instruction () Wanted () Satellite Television

Special Category: $25.00

PLEASE PRINT EACH WORD SEPARATELY. IN BLOCK LETTERS.
(No refunds or credits for typesetting errors can be made unless you clearly print or type your copy.) Rates indicated are for standard style classified ads only. See below for additional charges for special ads. Minimum: 15 words.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15 ($46.50)</td>
</tr>
<tr>
<td>16 ($49.60)</td>
<td>17 ($52.70)</td>
<td>18 ($55.80)</td>
<td>19 ($58.90)</td>
<td>20 ($62.00)</td>
</tr>
<tr>
<td>21 ($65.10)</td>
<td>22 ($68.20)</td>
<td>23 ($71.30)</td>
<td>24 ($74.40)</td>
<td>25 ($77.50)</td>
</tr>
<tr>
<td>26 ($80.60)</td>
<td>27 ($83.70)</td>
<td>28 ($86.80)</td>
<td>29 ($89.90)</td>
<td>30 ($93.00)</td>
</tr>
<tr>
<td>31 ($96.10)</td>
<td>32 ($99.20)</td>
<td>33 ($102.30)</td>
<td>34 ($105.40)</td>
<td>35 ($108.50)</td>
</tr>
</tbody>
</table>

We accept MasterCard and Visa for payment of orders. If you wish to use your credit card to pay for your ad fill in the following additional information (Sorry, no telephone orders can be accepted):

Card Number / Expiration Date

IF YOU USE A BOX NUMBER YOU MUST INCLUDE YOUR PERMANENT ADDRESS AND PHONE NUMBER FOR OUR FILES. ADS SUBMITTED WITHOUT THIS INFORMATION WILL NOT BE ACCEPTED.

CLASSIFIED COMMERCIAL RATE: (for firms or individuals offering commercial products or services) $3.10 per word prepaid (no charge for zip code). MINIMUM 15 WORDS. 5% discount for same ad in 6 issues, 10% discount for same ad in 12 issues within one year; if prepaid. NON-COMMERCIAL RATE: (for individuals who want to buy or sell a personal item) $2.50 per word, prepaid...no minimum. ONLY FIRST WORD AND NAME set in bold caps at no extra charge. Additional bold face (not available as all caps) $5.50 per word additional. Entire ad in boldface $3.70 per word. TINT SCREEN BACK ENTIRE AD: $3.85 per word. TINT SCREEN BACK ENTIRE AD PLUS ALL BOLD FACE AD: $4.50 per word. EXPANDED TYPE AD: $4.70 per word prepaid. Entire ad in boldface, $5.50 per word. TINT SCREEN BACK ENTIRE EXPANDED TYPE AD: $5.90 per word. TINT SCREEN BACK ENTIRE EXPANDED TYPE AD PLUS ALL BOLD FACE AD: $6.80 per word. DISPLAY ADS: 1" x 2¼"—$410.00; 2" x 2¼"—$820.00; 3" x 2¼"—$1230.00. General Information: Frequency rates and prepayment discounts are available. ALL COPY SUBJECT TO PUBLISHERS APPROVAL. ADVERTISEMENTS USING P.O. BOX ADDRESS WILL NOT BE ACCEPTED UNLESS ADVERTISER SUPPLIES PUBLISHER WITH PERMANENT ADDRESS AND PHONE NUMBER. Copy to be in our hands on the 5th of the third month preceding the date of the issue. (i.e., Aug. issue copy must be received by May 5th). When normal closing date falls on Saturday, Sunday or Holiday, issue closes on preceding working day. Send for the classified brochure. Circle Number 49 on the Free Information Card.

CALL DOCTOR DESCRAMBLER
...for symptoms relating to scrambled cable T.V. signals. We have • JERROLD • TOCOM • ZENITH • HAMLIN • OAK • SCIENTIFIC • ATLANTA.

Six month warranty! We ship C.O.D.

TUE, new, up to 90% off. SASE, KIRBY, 298 West Carmel Drive, Carmel, IN 46032.

CALE-E TV converters and descramblers. We sell only the best. Lower prices. SB-3 $79.00. We ship C.O.D., Free catalog, ACE PRODUCTS, PO Box 582, Dept. E, Saco, ME 04072. 1 (800) 234-0726.

CALE-E TV converters and descramblers. We sell only the best. Lower prices. SB-3 $79.00. We ship C.O.D., Free catalog, ACE PRODUCTS, PO Box 582, Dept. E, Saco, ME 04072. 1 (800) 234-0726.

INFRARED remote controlled RF and A/V switches. Write or call to order or get additional information about Infracon's complete MediaMaster series of infrared controlled switches. MediaMaster RF-SX2 and MediaMaster AV-4X4. INFRACON, PO Box 1205, Richardson, TX 75085-1205. (214) 433-3366.

PHOTOFAX folders under $140.00. Others $7.00. Postpaid. LOEB, 414 Chestnut Lane, East Meadow, NY 11554.

RADIO tubes. Scarce new used. Extensive listings. Capacitors, etc. Illustrated flyer $1.00 (deductible). DIERS, 4276-67 North 50th Street, Milwaukee, WI 53216-1313.

ELECTRONIC supermarket great buys! Surplus prices! Railroaders, builders, engineers, experimenters, etc. FERTIK'S, 5400 Ella, Phila., PA 19120.

M35B $20.00, CRX-6600 $125.00, Super Tri-Bi - SA-3B $79.00, Sylvania 4040 replaces RCA-4040. All others in stock. MOUNT HOOD ELECTRONICS (503) 253-0459.

A defense against cancer can be cooked up in your kitchen.

There is evidence that diet and cancer are related. Follow these recommendations in your daily diet to reduce the chances of getting cancer:

1. Eat a variety of high fiber foods such as fruits and vegetables and whole grain cereals.
2. Include dark green and deep yellow fruits and vegetables in your diet.
3. Include cabbage, broccoli, Brussels sprouts, kohlrabi and cauliflower.
5. Cut down on total fat intake from animal sources and fats and oils.
6. Avoid obesity.
7. Be moderate in consumption of alcoholic beverages.

No one faces cancer alone. AMERICAN CANCER SOCIETY.
FREE catalog — Lowest prices worldwide, save 40—60%. Systems, upgrades, parts, all major brands factory fresh and warranted. SKYVISION, 2009 Collegeway, Fergus Falls, MN 56537. 1 (800) 334-6455.

I'LL HAVE MINE DESCRAMBLING

If you find a better deal, We'll beat it! JERROLD • TOCOM • HAMLIN • OAK • SCIENTIFIC ATLANTA • ZENITH • ask about our warranty program. C.O.D. Visa, M/C, AM, EX, welcome. FREE CATALOG when you order.

OPEN SATURDAYS

1 800 562-6884

VIDEO TECH

3704 S. Virginia St. Ste. 160-304
Reno, NV 89502

CABLE TV Secrets — the outlaw publication the cable companies tried to ban. HBO, Movie Channel, Showtime, descramblers, converters, etc. Suppliers list included; $9.95. CABLE FACTS, Box 711-R, Pataskala OH 43062.

DISTINCTIVE RING SWITCH

Add additional phone numbers to a single line with the new Distinctive Ringing service from the phone company. RingDirector detects ring patterns and routes calls to phones, answering machines, FAX’s or modems. 2-port $89, 4-port $149. S/H $5.

1-800-677-7969 FAX 516-876-9225

EXCELLENT TECHNOLOGY

69 Smith Street, Glen Head, NY 11545

SATELLITE TV

BUY BONDS

ROBOTICS! Engines! Inventions! Muscle wires contract with surprising strength when powered. Send business SASE for latest flyer. MONDO-TECHNOLOGIES Corp. RE 2478 Verna Ct., San Leandro, CA 94577.

FREE cable and satellite descrambler plans. Send self addressed stamped envelope. MJM INDUSTRIES, Box 531, Bronx, NY 10461-0208

KITS, games, sound & light effects. Send $1.00 JM ELECTRONICS, Box 150454, Altomont Springs, FL 32715-0454

FREE CATALOG! 1-800-648-7938
JERROLD HAMLIN OAK ETC CABLE TV DESCRAMBLERS
* Special Dealer Prices! * Compare our Low Retail Prices! * Guaranteed Parts & Warranties! * Orders Shipped Immediately!

REPUBLIC CABLE PRODUCTS, INC.
4080 Paradise Rd. #15, Dept RE691E
Las Vegas, NV 89109
For all other information (702) 562-9028

INFO CABLE TV DESCRAMBLER LIQUIDATION!
FREE CATALOG!
Hamlin Combos $44, Oak M358 $60 (min. 5), etc
the Perfect Cable Connection.
us today and let us prove to you why we are
free service and troubleshoot any situation. Call
to customer satisfaction. Our primary concern

MAKE $75,000 to $250,000 yearly or more fixing
IBM color monitors (and most brand models). No invest-
ment. Start doing it from your home. (A telephone
required.) Information, USA, Canada $1.00 cash.
US funds; other countries $8.00 RAND, and DIS-
PLAY, Box 2168-R, Van Nuys, CA 91404 USA.

EASY work! Excellent pay! Assemble products at
home. Call for information (504) 641-8003 Ext. 5192.

MAKE $$$! Become an American electronics dealer-
Profit opportunities since 1965. Call SCOTT
PRUETT, 1 (800) 472-1373.

CABLE TV
DESCRAMBLER LIQUIDATION!
FREE CATALOG!
Hamlin Combos $44, Oak M358 $60 (min. 5), etc

WE WILL MEET OR BEAT ANY ADVERTISED PRICE
IN THIS MAGAZINE.

PERFECT CABLE CONNECTION
702-358-2763
2209 Oddie Blvd., Suite 321
Spark, NV 89431

FREE CATALOG! 1-800-348-7659
ELECTRONIC COMPONENTS, AUDIO, VIDEO, TELEPHONE, ANTENNA & ACCESSORIES.

FREE CATALOG! 1-800-348-7659
ELECTRONIC COMPONENTS, AUDIO, VIDEO, TELEPHONE, ANTENNA & ACCESSORIES.

COMPLE ISSE
MOE ROOM WWI PICTURE PROBLEMS
DIGITAL VIDEO STABILIZER
RE-BBS

ELECTRONIC ASSEMBLY BUSINESS

BUYER choice free trial offer.

BUSINESS OPPORTUNITIES
MAKE $50/hr working evenings or weekends in
your own electronics business. Send for free facts.
MJME INDUSTRY, Box 531, Bronx, NY
10461-0208

YOUR own radio station! AM, FM, TV, cable. Li-
censed/unlicensed. BROADCASTING, Box 130-
F6, Paradise, CA 95967.

LET the government finance your small business.
Grants/loans to $500,000. Free recorded message:
(707) 449-8600, (KS1).

MAKE $$$! Become an American electronics deal-
home. Call for information (504) 641-8003 Ext. 5192.

ELECTRONICS bulletin board system
(RE-BBS)
516-293-2283

Try the

EDUCATION & INSTRUCTION
F.C.C. Commercial General Radiotelephone li-
cense. Electronics home study. Fast, inexpensive! "Free" details. COMMAND, D-176, Box 2824,
San Francisco, CA 94126.

MAGIC! Four illustrated lessons plus inside infor-
mation shows you how. We provide almost 50 tricks
including equipment for four professional effects. You
order the kits & materials to do up to two
year membership in the International Performing
Magicians with a plastic membership card that has
your name gold-embossed. You get a one-year sub-
scription to our quarterly newsletter "IT's MAGIC!"
Order now! $29.95 for each course + $3.50 postage
and handling. (New York residents add applicable
state and local sales tax). THE MAGIC COURSE,
500-B BiCounty Boulevard, Farmingdale, NY
11735.

LEARN IBM PC assembly language. 80 pro-
grams. Disk $5.00. Book $18.00. ZIPFAST, Box
12238, Lexington, KY 40581-2238.

BUILD VCR extender quickly. Construction guide
shows new, inexpensive method to transmit reliable
VCR pictures in home over existing telephone wires.
Easy, fun, practical. No complicated transmitters,
receivers. Complete, with technical description.
VCR Extender, $19.95. JZO RESEARCH, Box
28131, Minneapolis, MN 55428.

MAKE $50/hr working evenings or weekends in
your own electronics business. Send for free facts.
MJME INDUSTRY, Box 531, Bronx, NY
10461-0208

YOUR own radio station! AM, FM, TV, cable. Li-
censed/unlicensed. BROADCASTING, Box 130-
F6, Paradise, CA 95967.

LET the government finance your small business.
Grants/loans to $500,000. Free recorded message:
(707) 449-8600, (KS1).

MAKE $$$! Become an American electronics deal-
home. Call for information (504) 641-8003 Ext. 5192.

ELECTRONICS bulletin board system
(RE-BBS)
516-293-2283

Try the

EDUCATION & INSTRUCTION
F.C.C. Commercial General Radiotelephone li-
cense. Electronics home study. Fast, inexpensive! "Free" details. COMMAND, D-176, Box 2824,
San Francisco, CA 94126.

MAGIC! Four illustrated lessons plus inside infor-
mation shows you how. We provide almost 50 tricks
including equipment for four professional effects. You
order the kits & materials to do up to two
year membership in the International Performing
Magicians with a plastic membership card that has
your name gold-embossed. You get a one-year sub-
scription to our quarterly newsletter "IT's MAGIC!"
Order now! $29.95 for each course + $3.50 postage
and handling. (New York residents add applicable
state and local sales tax). THE MAGIC COURSE,
500-B BiCounty Boulevard, Farmingdale, NY
11735.

LEARN IBM PC assembly language. 80 pro-
grams. Disk $5.00. Book $18.00. ZIPFAST, Box
12238, Lexington, KY 40581-2238.

BUILD VCR extender quickly. Construction guide
shows new, inexpensive method to transmit reliable
VCR pictures in home over existing telephone wires.
Easy, fun, practical. No complicated transmitters,
receivers. Complete, with technical description.
VCR Extender, $19.95. JZO RESEARCH, Box
28131, Minneapolis, MN 55428.
which control the logic analyzer chip selects for the registers, RAM, and ROM chip selects. The LCD panel. It also generates the IC44, a GAL16V8, produces the programmable logic device (PLD) from Lattice Semiconductor, for its future.

The TTL levels of the V25 are converted to RS-232 levels by IC41, a Maxim MAX232 RS-232 transceiver. The part requires only a +5-volt supply and has integral charge-pumps to create the necessary −10-volt and +10 volt RS-232 levels.

The negative contrast-voltage for the LCD panel is generated by IC42, also a MAX232 chip. The V25 address and control lines are decoded by IC44 and IC20 to produce the LCD, and control registers. A programmable logic device (PLD) from Lattice Semiconductor, IC44, a GAL16V8 produces the control signals required by the LCD panel. It also generates the RAM and ROM chip selects. The chip selects for the registers which control the logic analyzer section are produced by IC20. The LCD is a 240 × 64 pixel graphics display with built in RAM, controller, and microprocessor interface. That display allows the logic analyzer to run a true windowed graphics interface under the control of the V25. The TL7705 is a reset and power-supply monitor circuit. It produces a glitch-free reset signal on power up. It will also reset if the drops below 4.75 volts.

Each IC on the circuit board is de-coupled using a 0.1 μF capacitor. That is shown in the large capacitor array in Fig. 6. The power supply uses a standard three-terminal voltage regulator, IC43. Because the logic analyzer draws approximately 600 mA, a TO-3 type case and heat sink are used.

The analyzer is powered from a plug-in wall transformer which supplies an unregulated 9 volts DC. Note that the logic analyzer can also run off batteries. Six D-cell alkaline batteries will run the analyzer for over eight hours.

Next month when we continue, we'll show you how to build the logic analyzer and how to use it to troubleshoot circuits.

12" Subwoofer Box
The perfect high volume cabinet for dual voice coil subwoofers. Box comes with pre-cut woofer and port holes. Cabinet volume: 2 cu. ft. with dual ports. Charcoal carpet. Dimensions: 13" (H) x 13" (D) x 30" (W). Net weight: 39 lbs.

12" Pioneer Subwoofer
12" super duty, dual voice coil subwoofer. 30 oz. magnet, 2" voice coil. 100 watts RMS, 145 watts max power handling capability. 8 ohm impedance (4 and 8 ohm compatible). Sensitivity: 89 dB 1W/1M. Response: 25-700 Hz. QTS= 31, VAS= 10.3 cu ft. Net weight: 6 lbs. Pioneer #ADGU150-550

12" Pyle Woofer
12", 70 oz. magnet, 2.1/2" voice coil. 105 watts RMS, 155 watts max power handling capability. Pyle #PYLEST122-350

5-1/2" Cone Midrange
Original Sanyo high end system midrange. Large 5" paper cone with gold look dust cap. Heavy 12 oz. magnet. 100 watts RMS, 155 watts max. Sanyo part #S121H10. Net weight: 1-1/2 lbs.

Subwoofer Crossover Network
Super duty, 200 watt RMS power handling capability. Designed especially for dual voice coil subwoofer systems. 12 db per octave roll-off at 150 Hz into 8 ohms. Crossover also features a set of outputs for use with your existing speaker system. Network is totally passive, requiring no power source of its own.

Support America’s colleges. Because college is more than a place where young people are preparing for their future. It’s where America — and American business — is preparing for its future.

Give to the college of your choice.
When someone in your family gets cancer, everyone in your family needs help.

Naturally, we learn that we do not know much about the disease and all the things that are involved. However, our survival and rehabilitation programs emphasize the importance of self-help in order to take care of oneself. Among our regular services are: education and guidance to patients and families, transport patients to and from appointments, supply home care items and meals, and provide assistance in their return to everyday life.

Here is what concerns us. We do not always know what to do and may need more than the research organizations may be able to provide. However, we do offer the following:

WIRELESS CABLE SUPPLY

Low Price is only the beginning

1-800-926-6836

723 CAMINO PLAZA, STE. 108, SAN BRUNO, CA 94066

MARK V ELECTRONICS, INC.

Competitive Pricing * Fast Shipping

Since 1985

 aluno to everyday life.

All Jerrold, Oak, Hamlin, Zenith, Scientific Atlanta, Magnavox and all specialized cable equipment available for shipment within 24 hours. For fast service MC / Visa or C.C.D. telephone orders (800) 648-3030

60 Day Guarantee (Quantity Discounts)

telephone orders accepted (BOO) 648-3030

All wholesalers advertise low prices...but low prices are not enough. Any price is too high if you're without technical support or quality control.

Now consider that your success as a dealer depends on the satisfaction of your customers.

WHOLESALE CABLE SUPPLY

Low Price is only the beginning

1-800-926-6836

723 CAMINO PLAZA, STE. 108, SAN BRUNO, CA 94066

MARK V ELECTRONICS, INC.

Competitive Pricing * Fast Shipping

Since 1985

 aluno to everyday life.

All Jerrold, Oak, Hamlin, Zenith, Scientific Atlanta, Magnavox and all specialized cable equipment available for shipment within 24 hours. For fast service MC / Visa or C.C.D. telephone orders (800) 648-3030

60 Day Guarantee (Quantity Discounts)

telephone orders accepted (BOO) 648-3030

All wholesalers advertise low prices...but low prices are not enough. Any price is too high if you're without technical support or quality control.

Now consider that your success as a dealer depends on the satisfaction of your customers.

WHOLESALE CABLE SUPPLY

Low Price is only the beginning

1-800-926-6836

723 CAMINO PLAZA, STE. 108, SAN BRUNO, CA 94066

MARK V ELECTRONICS, INC.

Competitive Pricing * Fast Shipping

Since 1985

 aluno to everyday life.
Precision gear motor.
24 Vdc (4) 5 ma -168 RPM
Rating with no load:
when switch is tilted approx. 5 degrees.
0.2' diameter
Designed for low current switching appli-
cations.
Series SE
ITT Schadow Digitast
CATS MTS-8PC $2.00 ea. 10 for $17.50
CAT* MTS-8 $1.75 ea.
S.P.D.T. (ON -ON) P.C. mount
style. Screwdriver actuation. 0.42" ctbe.
BCD 10
Mercury Tilt Switch
14 pin DIP configuration.as
security keypad.
Ideal for telephone or
12 button telephone
D.P.D.T. (ON -ON) solder lugs
10 for $42.50
CATS LED-4Y 1,000 ohms bright light.
CATS LED-4 $1.00 each
CATS LED-1 22" cord with stripped and tinned pigtail leads on output. 3.2" X 2.3" X 1.9".
CATA DCTX-121 $5.75 each
12 Vdc 1 Amp, power pack. 8 ft, 2 conductor power cord on input.
22" cord with stripped and tinned pigtail leads on output. 3.2" X 2.3" X 1.9".
CATA DCTX-121 $5.75 each
Figure for single mini bi pin 6", 4 watt fluores-
cent lamp. Starter switch, sockets and ballast
are mounted on 7 1/4" X 3 1/4" metal plate.
Include 6 foot power cord with strain relief.
Use with standard fluorescent lamp for display
lighting or with ultraviolet lamp for special ef-
effets or Emitron subscribe. U.L. listed.
CATA FLX-1 $3.00 each

OPTO-SENSOR
TRW/Option # OP45447-2
IR emitter/sensor pair In
Racetrack, 20 mV out,
with 28" color coded leads.
CATa OSHR-4 2 tor $1.00

PHOTOFLASH CAPACITOR
Rubicon CE
210 Mfd 330 Volt flash photoflash
210 Mfd 330 Volt -----tits'Hr
CaS CE
10 ma. sink type digital output. Operating
gauss - 15 to 40. P.C. leads.
CATa HESVS-3 $1.00 each - 10 for $9.00
CATa PCC-210 $1.25 each - 10 for $11.50
100 for $100.00
Large quantities available.
Call for pricing.

HALL EFFECT SENSOR
Microswitch #SS41
Tiny, solid state switch reacts instantly to
proximity of magnetic field.
Operates at high speeds, up to
100 kHz. Case size: 0.12" X 0.17" X 0.066" thick. 4.5 Vdc to 24 Vdc supply voltage. 12 volt type output. Operating
gauss - 15 to 40. P.C. leads.
CATa HESVS-3 $1.00 each - 10 for $9.00
CATa PCC-210 $1.25 each - 10 for $11.50
100 for $100.00
Large quantities available.
Call for pricing.

PHOTOFLASH CAPACITOR
Rubicon CE
210 Mfd 330 Volt flash photoflash
capacitor. Operates at high speeds, up to
100 kHz. Case size: 0.12" X 0.17" X 0.066" thick. 4.5 Vdc to 24 Vdc supply voltage. 12 volt type output. Operating
gauss - 15 to 40. P.C. leads.
CATa HESWS-3 $1.00 each - 10 for $9.00
CATa PCC-210 $1.25 each - 10 for $11.50
100 for $100.00
Large quantities available.
Call for pricing.

RECHARGEABLE BATTERIES
6 Volt 1 Amp/Hour
Japan Storage Battery Co
Portable. # P6EV1
6 Volt 1 Ah
rechargeable sealed-lead acid (golf cell). 2" X 1.635" X 2" ht.
Batteries are prepped with
red wire leads soldered to the
terminals. CATa PCC-210
$1.25 each - 10 for $11.50
100 for $100.00

TELEPHONE KEYPAD
12 button teleph/one
keypad. Ivory finish.
2.03" X 2.25" X 0.55" thick.
Matrix anodized.
Ideal for telephone or
security keypad.
CATa KPT-1 $1.00 each - 10 for $8.00

KITS
L.E.D. FLASHER KIT
Two L.E.D.'s flash in
unison when 2 volt
battery is attached.
This kit includes a p.c board, parts and
tools to assemble a simple flash-
er circuit. A quick and easy project for
everyone. Operates on
2 cells 1.2 volt basic sodicking cells.
CATa LEDK $1.75 per kit
L.E.D. CHASER KIT
Build the variable
speed led chaser.
10 leds flash
sequentially at whatever speed
you set them for.
Easy to build kit includes p.c board,
parts and instructions. Ideal for special lighting effects, costume, etc. Oper-
one on 3 to 9 volts. PCB board is 5" X 2.25".
A great one hour project.
CATa MG2-85 each
STEEPING MOTOR CONTROLLER KIT
Learn about
stepping motors while
building this
simple circuit.
Includes circuit board, stepping motor
and all parts except 12 volt power
supply. CATa SMK $18.00 each
METRONOME KIT
This simple device can be set to flash
from 20 to 1,000 beats per minute.
Easy to build, includes circuit board, all
components and instructions. Oper-
one on a 9 volt battery (not included).
CATa METRO $3.75 each

PHOTO RESISTOR
1,000 ohms bright light.
160 ohms to 1 Ohm.
0.182" dia. X 0.059" height.
CATa PRE-7 2 tor $1.00
100 for $45.00 - 1000 for $400.00

-- THE END --
TRIPP LITE — PRECISION REGULATED DC POWER SUPPLIES

Complete Line of DC Power Supplies to Convert 120vAC to 13.8vDC ±0.5vDC.

Standard Features Include:
- Solid state integrated circuit provides excellent regulation.
- Output voltage maintained up to 95% of no load value.
- High quality filtering for low noise operation.
- Heavy duty power transformer for complete line isolation.
- On/Off indicator light and rugged on/off switch on faceplate.
- 3 conductor grounded cord on 10 amp and larger models.
- Current limiting electronic foldback for auto overcurrent protection.

Trip Lite DC Power Supplies Are Designed For Reliability and Superior Performance.

ORDER DIRECT 1-415-770-2345
FAX DIRECT 1-415-770-2346

ACTIVE COMPONENTS

Order #	Price	DRAMS
6821 | 1.75 | MK4027N2
6845 | 2.49 | 116-20
809A | 2.95 | 116A
808A | 2.95 | 164X
808 | 4.45 | 164-15
808 | 4.75 | 164-20
6237A5 | 4.25 | 1464-14
6250 | 5.75 | 14256-40
6251A | 2.25 | 14256-12
6253-5 | 2.25 | 14256-10
62SAA | 2.95 | 51000-8
6275 | 18.95 | 51000-10

STATICS DATABOOKS

Order #	Price
2191 | 1.65
2114L2S | 1.39
2137-3 | 3.75
6116L3P | 2.95
6116-3 | 2.95
6264L1P | 3.05
6264-10 | 3.75
6264-15 | 3.75
6256LP10 | 2.95
6256LP15 | 5.95

MEMORY MODULES-SIMMS

Order #	Price	Speed
25519-80 | 19.95 | 80ns
1x9-80 | 69.95 | 1048576x80ns

MICROPROCESSORS

Order #	Price	Description
AM29064DC | 2.95 | 9-Bit Buf. Latch - Non Inv.
D7220D | 12.95 | Graphics Display Cont.
D7251AD | 19.95 | Hard Disk Cont. (12Mhz)
FD1753PL2 | 8.95 | Disk Drive Controller
LM3435/6/5 | 8.95 | 5V Neg. Volt Reg. 3 Amp
N16450N | 6.25 | Asynch. Comm. Element
N80C286-8 | 4.95 | 16-Bit CPU (80080) Easy
WD1943 | 4.95 | Dual Baud Rate Gen.
Z0801010PSD | 15.90 | Segmented CPU (10Mhz)
Z0803000PSD | 6.50 | Serial Comm. Cont. (6Mhz)

DATABOOKS

Motorola RF Device Data – Vol. 1 & 2

This two volume set contains over 2200 pages of data on RF Power TMTOS FETs, RF Power Bipolar Transistors, RF Small Signal Transistors, Tuning and Switching Diodes, and RF Amplifiers. Also included are drawings, diagrams, dimensions and pin-outs on all packages. Weight: 4.25 lbs.

Order #: DL110 | 14.95

Motorola Memory Data

Over 500 pages on Dynamic RAMS, General and Fast Static RAMS, MOS EEPROM, MECL Memories, etc. Weight: 1.25 lbs.

Order #: DL113 | 8.95

Motorola MPU/MCU/Peripheral Data – Vol. 1 & 2

Over 2800 pages on Motorola’s Microcontroller and Microprocessor families such as the MC6800, MC6802, MC6821, MC6845, MC146818, MC68701, MC68705, etc. Weight: 4.0 lbs.

Order #: DL139 | 16.95

National General Purpose Devices Linear Databook

Over 1600 pages on voltage regulators, operational amplifiers, buffers, voltage comparators and instrumentation amplifiers. Weight: 3 lbs.

Order #: 400026 | 19.95

National Programmable Logic Devices Databook

Over 400 pages including data sheets, designing with PLDs, methodology and development tools. Also included is an introductory tutorial section. Weight: 1.0 lbs.

Order #: 400081 | 12.95

Extensive range of parts & components in stock.

CIRCLE 177 ON FREE INFORMATION CARD

TRIPP LITE

THE ELECTRONICS SOURCE

2917 Bayview Drive
Fremont, CA 94538

Order Direct: 1-415-770-2345
Fax Direct: 1-415-770-2346
Perfectly Tuned for
Test/Measurement and Prototype Equipment

51-Piece Electronic Tool Kit

Tools Included in Kit:

- 10" measuring tape
- 5.25" needle nose pliers
- Electric tape
- Utility components box
- 6 piece precision screwdriver set
- 6" long tweezers
- 8 piece hex key wrench set
- 7" brush and scraper
- Digital Multimeter
- Brush
- 7" fine point probe
- Round needle file
- 10 piece screwdriver set
- 6 Slotted & 4 Phillips screwdriver set

Jameco Solderless Breadboards

LP540: $16.95

PROTOTYPING PRODUCTS
Jameco Solderless Breadboards

Jameco Logic Pulser

- Compatible with TTL, DTL, HTL, HNRL, MOS and CMOS ICs
- 1MA Synic input impedance
- Pulse mode: output current: 10mA
- Square wave current output 5mA
- Audible tone

Jameco Logic Probe

- Max Frequency 80MHz
- Minimum detectable pulse: 10ns
- 100kΩ input impedance
- Max supply voltage: ±25V
- TTL threshold: (Lo)=0.8V
- (Hi)=2.3V
- ±0.2V CMOS threshold
- (Lo)=0.1V
- (Hi)=0.7V
- VCC=±10%
- 70%VCC
- ±0.1V

Metex Digital Multimeters

General Specs:

- Handheld, high accuracy
- AC/DC voltage, AC/DC current, resistance, diodes, continuity, capacitor, transistor beta, capacitance, frequency, and duty cycle
- All working range with overload protection

MS360 & M4650 only:

- Also measure frequency and capacitance

M4650 only: Data hold switch + 4.5 digit

- 35 digit Multimeter

MS360:

- 35 digit Multimeter + Frequency & Capacitance

- 4.5 digit Multimeter + Frequency & Capacitance

Metex Handheld Multimeter

- 3.5 digit LCD with automatic polarity indication
- AC/DC voltage measurement up to 500 volts
- AC/DC current measurement up to 20mA
- Resistance measurement up to 20Ω
- Continuity checker with audible tone
- Diode and logic tester
- Auto/manual range and data hold functions
- All range protection and function indications

MSMM905: $39.95

Global Specialties Protoboard® Design Station

Features:

- Two debounced push-button switches
- Two SPDT slide switches, all leads available and uncommitted
- A total of 2520 uncommitted tie-points
- Potentiometers: one 10KΩ and one 1KΩ
- Includes power supply, instrumentation and breadboarding

PB503: $299.95

A.R.T. EPROM Programmer

- Programs all current EPROM's in the 2716 to 27512 range plus the X2864 EEPROM
- RS232 port
- Software included

UVP EPROM Eraser

- Erases all EPROM's
- Erases 1 chip in 15 minutes and 8 chips in 21 minutes
- UV intensity: 6800 UW/CM²

EPP: $199.95

EPROMs - for your programming needs

Part No.	Price
TMS2516 | $4.25
TMS2532-35 | $9.95
TMS2532A | $7.95
TMS2564 | $5.95
TMS2276 | $5.95
1702A | $3.95
2078 | $6.95
216 | $3.49
216-1 | $3.95
27C16 | $4.25
2732 | $4.95
2732A-20 | $4.95
2732A-25 | $3.49
2732A-45 | $2.95
27C32 | $4.95

4.25 | $4.95
6.95 | $7.95
27512-15 | $6.95
27C512-15 | $6.95
27C512-25 | $5.95
27C512-25 | $5.95
27C512-15 | $6.95
27C512-15 | $6.95
27C512-15 | $5.95
27C512-25 | $6.95
27C512-25 | $5.95
27C512-25 | $6.95
27C512-15 | $11.95
27C512-15 | $9.95

Soldering and Desoldering Stations

60 Watt Analog Display Soldering Station
- Electronic temperature control from 200° to 878°F
- Cartridge heating element for a longer life of the soldering tip

XY1683: $69.95

30 Watt Electronic Temperature Controlled Desoldering Station
- Electronic temperature control from 212° to 842°F
- Self contained high rotary vacuum pump

XY999: $299.95

24 Hour Order Hotline
(415) 592-8097
Fax: (415) 592-2503
(415) 595-2664

CIRCLE 114 ON FREE INFORMATION CARD
Assemble Your own Computer Kit!
Jameco 16MHz 80386SX Desktop Computer Kit

- Building your own computer provides you with a better understanding of components and their functions.
- In-depth assembly instructions included.
- Have your new computer assembled and running in an evening, using common tools.
- Software included.
- Purchase computer kits configured by Jameco or design your own.

Jameco 16MHz 80386SX Desktop Computer Kit

Includes:
- 80386SX Motherboard with 2MB RAM (expandable to 8MB)
- 101-key enhanced keyboard
- Toshiba 1.44MB, 3.5" DSHD floppy disk drive
- Baby sized desktop case
- 200 Watt power supply
- DR DOS 5.0 by Digital Research and Diagsoft's QAPlus diagnostic software

Part No.
28 40WW
22 28WW
24LIP
22 28LIP
24LIP

Integrated Circuits

<table>
<thead>
<tr>
<th>Part No.</th>
<th>1-9</th>
<th>10+</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7401</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7402</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7403</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7404</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7405</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7406</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7407</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7408</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7409</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7410</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7411</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7412</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7413</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7414</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7415</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7416</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7417</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7418</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7419</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7420</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7421</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7422</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7423</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7424</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7425</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7426</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7427</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7428</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7429</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7430</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7431</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7432</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7433</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7434</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7435</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7436</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7437</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7438</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7439</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7440</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7441</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7442</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7443</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7444</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7445</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7446</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
<tr>
<td>7447</td>
<td>$2.29</td>
<td>$1.99</td>
</tr>
</tbody>
</table>

Jameco 16-bit VGA Card

- Supports VGA, EGA, CGA, MDA, and Hercules modes.
- Comes with 256KB video RAM upgradeable to 512KB (eight 41464-80).
- Capable of 640 x 480 with 256 colors, 800 x 600 with 16 colors.

Miscellaneous Components

Potentiometers

<table>
<thead>
<tr>
<th>Values available (insert ohms into space marked "XX"): 500Ω, 1K, 5K, 10K, 20K, 50K, 100K, 1MEG</th>
</tr>
</thead>
<tbody>
<tr>
<td>43PXX 3/4 Watt 15 Turn $0.99</td>
</tr>
<tr>
<td>63PXX 1/2 Watt 1 Turn $0.99</td>
</tr>
</tbody>
</table>

Transistors and Diodes

<table>
<thead>
<tr>
<th>PN2222 $1.19</th>
<th>1N4735 $1.19</th>
<th>2N4401 $1.19</th>
</tr>
</thead>
<tbody>
<tr>
<td>PN2907 $1.25</td>
<td>2N3004 $1.25</td>
<td>1N4148 $1.25</td>
</tr>
<tr>
<td>1N4004 $1.25</td>
<td>1N751 $1.25</td>
<td>1N2050 $1.25</td>
</tr>
<tr>
<td>2N2222A $1.25</td>
<td>1C068B $1.25</td>
<td>1N270 $1.25</td>
</tr>
</tbody>
</table>

Switches

| JMT123 SPDT, On-Off (Toggle) $1.25 |
|-------|---|
| 206-8 SPST, 16-pin (DIP) $1.25 |
| MPC12 SPDT, On-Off (Toggle) $1.19 |
| MS102 SPST, Momentary (Push-Button) $1.39 |

D-Sub Connectors and Hoods

| DB25P Male, 25-pin $0.65 |
|-------|---|
| DB25S Female, 25-pin $0.75 |

LEDs

| XC209R T1, (Red) .. $0.14 |
|-------|---|
| XC556R T17/4, (Green) $0.16 |
| XC556T T17/4, (Yellow) $0.16 |

IC Sockets

| Low Profile ... $0.11 |
| Wire Wrap (Gold) Level #2 $0.49 |

24 Hour Order Hotline
(415) 592-8097
FAX: (415) 592-2503
(415) 595-2664
1355 Shoreway Road
Belmont, CA 94002

Look to Jameco.....

- Wide selection of integrated circuits and components
- Quality prototype and test equipment
- Computer kits and accessories

Additional items that Jameco offers:
- Tools
- Cables
- Connectors
- Data Books
- Motherboards
- Memory
- Math Coprocessors
- Computer Accessories
- Power Protection Equipment
- Much, much more !

Let us show you what we have to offer; call or write for the latest Jameco catalog!

$50.00 Minimum Order

Data Sheets - 50c each

For a FREE 80-Page catalog send $2.00 to cover first Class Postage and Handling © 1991 Jameco Electronics 8/91

CA Residents Add 6.00%, 6.50% or 7.00% Sales Tax

Shipping, handling and insurance are additional. (Costs may vary according to weight and shipping method)

Terms: Price subject to change without notice. Items subject to availability and prior sale.

Complete list of terms/warranties is available upon request. IBM is a registered trademark of International Business Machines.

© 1991 Jameco Electronics 8/91
RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

<table>
<thead>
<tr>
<th>Free Information Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td>73</td>
</tr>
<tr>
<td>78</td>
<td>17</td>
</tr>
<tr>
<td>186</td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>16</td>
</tr>
<tr>
<td>107</td>
<td>90</td>
</tr>
<tr>
<td>109</td>
<td>13</td>
</tr>
<tr>
<td>183</td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>12</td>
</tr>
<tr>
<td>193</td>
<td>29</td>
</tr>
<tr>
<td>179</td>
<td>75</td>
</tr>
<tr>
<td>182</td>
<td>17</td>
</tr>
<tr>
<td>176</td>
<td>73</td>
</tr>
<tr>
<td>177</td>
<td>17</td>
</tr>
<tr>
<td>178</td>
<td></td>
</tr>
<tr>
<td>179</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>

Communications Specialists ... 75
Contact East ... 17
Cook's Institute ... 27
D&D Electronics ... 15
Deco Industries ... 17
EasyTech ... 91
Electronic Goldmine ... 94
Electronics Book Club ... 18, 7
Electronics Engineers B.C. ... 18
Fluke Manufacturing ... CV2
General Techniques ... 17
Global Cable Network ... 83
Global Specialties ... 3
Grantham College ... 69
Healthkit ... 67
ISCET ... 82
Jamesco ... 92, 93
Jan Crystals ... 16
Kelvin ... 71
King Wholesale ... 84
MD Electronics ... 85
Mark V. Electronics ... 89
Microprocessors Unltd. ... 81
NRI Schools ... 76
NTE Electronics ... CV3
Optoelectronics ... 5
Parts Express ... 87
Perfect Cable ... 86
Pomona Electronics ... 29
Protemaster ... 25
Radio Shack ... 30
SCO Electronics ... 12
Sencore ... CV4
Star Circuits ... 27
TECI ... 75
The SPEC-COM Journal ... 82
Unicorn ... 88
U.S. Cable ... 12
Viejo Publications ... 29
WPT Publications ... 75
Wholesale Cable ... 89
Xandl Electronics ... 17

ADVERTISING SALES OFFICE
Gernsback Publications, Inc.
500-B Bi-County Blvd.
Farmington, NY 17175
1-(516) 293-3000

Larry Steckler, President
Christina Estrada
assistant to the President
For Advertising ONLY
516-293-3000
Fax 1-516-293-3115

Airline Fishman
advertising director
Denise Haven
advertising assistant
Kelly McQuade
credit manager

Subscriber Customer Service
1-800-999-7139
7:00 AM - 6:00 PM M-F MST

SALES OFFICES
EAST/SOUTHEAST
Stanley Levitan, Eastern Sales Manager
Radio-Electronics
259-223 M6 Avenue
Little Neck, NY 11362
1-718-428-0307, 1-718-229-3000
Fax 1-718-255-8594

MIDWEST/Texas/Arkansas/Okla.
Ralph Bergen, Midwest Sales Manager
Radio-Electronics
540 Frontage Road—Suite 204
Northfield, Il 60093
1-708-446-1444
Fax 1-708-446-8451

PACIFIC COAST/Mountain States
Marvin Green, Pacific Sales Manager
Radio-Electronics
540 Van Nuys Blvd. Suite 316
Van Nuys, CA 91401
1-818-986-2001
Fax 1-818-986-2069

RE Shopper
Joe Shene, National Representative
P.O. Box 169
Idyllwild, CA 92349
1-714-659-9743
Fax 1-714-659-2469
NTE specializes in "replacetivity," the science of getting things up and running again—fast! After all, downtime is costly, so no one can wait weeks on end for an OEM part to come in. With NTE, no one has to! One call gives you access to 3,550 top of the line universal replacement semiconductors that are cross-referenced to more than 240,000 original devices!

Included in the NTE line are: bipolar transistors, integrated circuits, rectifiers, diodes, thyristors, optoelectronic devices, varistors, resistors, capacitors, and much, much more. All are backed by NTE's exclusive two-year warranty.

For your copy of the NTE Technical Guide contact your local NTE distributor, or simply fill in the coupon below and send it to us today with a check or money order for $3.25 each.

For the name of your nearest NTE distributor, call NTE: Toll Free: 1-800-631-1250 (incl. Canada)
Tel: (201) 748-5089 • FAX: (201) 748-6224
CIRCLE 71 ON FREE INFORMATION CARD
Identification of tuner problems is simplified with VA62A Universal Video Analyzer. The integral all-channel, VHF, UHF, and cable RF generator, standard TV, standard cable (2-99), and exclusive programmable cable channels eliminate the question "Is it the TV or is it the cable?"

Pinpoint IF troubles with modulated troubleshooting signals and exclusive programmable IF generator. How do you presently identify if the suspected defect is in the AGC, IF/Detector IC, or caused by the tuner? Wouldn't you like to know exactly where the defect is before you order the part or pull the tuner. With the VA62A you will!

Exclusive video patterns completely performance test TVs, VCRs, and monitors — without removing the cover. Is there a picture, is it locked in, is the bandwidth correct, is the brightness and contrast correct, and is the color tint and saturation correct? You'll know in less than 60 seconds using the VA62A's exclusive video patterns.

Find defective stages, without disconnecting parts, with exclusive phase-locked drive signals. "Swamp out" the suspect signal and replace it with a known-good signal. You'll isolate the problem to a bad stage in minutes, guaranteed.

Test yokes and flybacks with the patented "Ringer". Most shops are forced to substitute yokes and flybacks instead of analyzing circuits. The VA62A's patented "Ringer" and exclusive flyback drive tests allow you to completely analyze all yokes, flybacks, and IHVTs before you order a new one.

Measure signal levels with a fully autoranged PPV and DCV digital meter. The VA62A's built-in meter shows when you are driving into a shorted circuit and prevents you from overdriving critical stages. Plus, measure bias voltages and signal levels throughout the entire TV and VCR.

It's obsolete proof: update for new technology with exclusive phase-locked accessories. We'll provide new companion units as the manufacturers announce new formats, test patterns, etc. This makes your VA62A a protected investment.

* Based on a nationwide survey of users who reported an average time savings of 54% compared to their previous test equipment.

For More Details Call 1-800-SENCORE ext. 612

(736-26731)

CIRCLE 188 ON FREE INFORMATION CARD