CIRCUIT COOKBOOK
We de-mystify phase-locked loops with plenty of practical examples

BUILD A PC-BOARD ETCHING SYSTEM
A must for making your own printed-circuit boards at home

WORKING WITH RELAYS
How to select solid-state relays and how to design your own

BUILD A VIDEO SCENE SWITCHER
Add professional wipes and fades to your home video movies

COMPUTER DIGEST
Build an RGB to NTSC converter

BUILD THIS PROGRAMMABLE PHASOR PROPERTY GUARD
This high-tech deterrent produces a painful blast of disorientating shock waves

Plus: ★ Audio Update
★ Video News
★ Hardware Hacker
★ And Lots More!

www.americanradiohistory.com
Put a test lab in your tool pouch.

The Fluke 8060A 4½-digit handheld multimeter.

It's the best tool you could add to your tool pouch, because it lets you troubleshoot more... with less.

This portable, powerful instrument has a unique combination of features not available in any other handheld DMM. It lets you reach beyond traditional DMM applications, tackling jobs that often require more equipment than you can carry.

A simple push of a button on the Fluke 8060A lets you measure frequencies to 200 kHz, make relative offset measurements, convert voltages to direct reading decibels, or conduct audible continuity tests. Plus the 8060A offers wideband True RMS ac measurement capability to 100 kHz.

So say goodbye to your part-time counters, oscilloscopes, continuity testers, calculators and power supplies. And welcome a full-time professional that'll be there when you need it.

You'll find that for troubleshooting everything from motor controls to data communications equipment, the Fluke 8060A is the best multimeter value going.

Find out more by calling our toll-free hotline 1-800-44-FLUKE, ext. 33.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

<table>
<thead>
<tr>
<th>Fluke 8062A</th>
<th>Fluke 8060A</th>
</tr>
</thead>
<tbody>
<tr>
<td>$329</td>
<td>$389</td>
</tr>
<tr>
<td>0.05% basic accuracy</td>
<td>0.04% basic accuracy</td>
</tr>
<tr>
<td>19999 count display</td>
<td>19999 count display</td>
</tr>
<tr>
<td>True-rms ac voltage and current</td>
<td>True-rms ac voltage and current</td>
</tr>
<tr>
<td>Continuity and diode test</td>
<td>Continuity and diode test</td>
</tr>
<tr>
<td>Relative reference</td>
<td>Relative reference</td>
</tr>
<tr>
<td>1-year calibration cycle and warranty</td>
<td>1-year calibration cycle and warranty</td>
</tr>
</tbody>
</table>

*Suggested U.S. list price, effective October 1, 1988.

John Fluke Mfg. Co., Inc., P.O. Box 9900, M/S 2500, Everett, WA 98206, Sales: (206) 356-5400, Other: (206) 347-6800

Copyright 1988 John Fluke Mfg. Co., Inc. All rights reserved. Ad No. 1181-F8060

CIRCLE 121 ON FREE INFORMATION CARD
BUILD THIS

37 PROGRAMMABLE PHASOR PROPERTY GUARD
Keep burglars away with shock waves of sound.
Robert Iannini

42 VIDEO SCENE SWITCHER
Give your videos a professional look.
William Sheets and Rudolf F. Graf

45 MAKE YOUR OWN ETCHING TANK
Home-made etch gives professional results.
Tony Lewis

TECHNOLOGY

51 HOLIDAY GIFT GUIDE
A sampling of electronics gifts for giving—or for receiving!

COMPUTERS

81 RGB-TO-NTSC CONVERTER
Get high-quality computer video on your television!
Robin Bek

CIRCUITS

55 CMOS PLL's
Practical applications for the versatile 4046B micro-power phase-locked loop IC.
Ray Marston

59 ALL ABOUT RELAYS
Put solid-state relays to work in your projects.
Harry L. Trietley

DEPARTMENTS

6 VIDEO NEWS
What's new in this fast-changing field.
David Lachenbruch

22 EQUIPMENT REPORTS
Precision Motion Logic Analyzer and B+K-Precision Model 1249 NTSC Generator.

67 AUDIO UPDATE
The sound of CD: Part II.
Larry Klein

68 HARDWARE HACKER
PC-board breakthrough.
Don Lancaster

77 DRAWING BOARD
PC-board Photography
Robert Grossblatt

81 EDITOR'S WORKBENCH
Software reviews.
Jeff Holtzman

AND MORE

104 Advertising and Sales Offices
104 Advertising Index
8 Ask R-E
105 Free Information Card
14 Letters
89 Market Center
35 New Literature
28 New Products
80 PC Service
4 What's News
ON THE COVER

Have you ever wished for a more effective way to combat thieves? If you worry about your car or your home being burglarized, you can turn to electronics for some peace of mind. While most people are willing to settle for a simple noise maker to scare off a burglar, most burglars work quickly enough so that an alarm is not too much of a threat—but not our alarm.

Our alarm generates painful and disorienting blasts of high-pitched—and even ultrasonic—sound that are sure to send most burglars running. The frequency and range of the sound are user-programmable, and the entire circuit is easy to build. For more details, turn to page 37.

COMING NEXT MONTH

THE JANUARY ISSUE GOES ON SALE DECEMBER 5.

BUILD R-E's ACOUSTICAL FIELD GENERATOR
Turn your living room into an expansive sound environment!

BUILD A PHONE-ACTIVATED AUDIO-MUTING CIRCUIT
Never miss a phone call again—no matter how loud you play your stereo!

BUILD A SIMPLE LOGIC ANALYZER
An easy 3-chip circuit will get you started!

A REVIEW OF THE BERLIN AUDIO FAIR
A sneak preview of what we can expect to see at the Consumer Electronics Show.

COMPUTER DIGEST
Build the Port-A-Matic—a new troubleshooting tool lets you keep track of what ports your computer accesses.

As a service to readers, RADIO-ELECTRONICS publishes available plans or information relating to newsworthy products, techniques and scientific and technological developments. Because of possible variances in the quality and condition of materials and workmanship used by readers, RADIO-ELECTRONICS disclaims any responsibility for the safe and proper functioning of reader-built projects based upon or from plans or information published in this magazine.

Since some of the equipment and circuitry described in RADIO-ELECTRONICS may relate to or be covered by U.S. patents, RADIO-ELECTRONICS disclaims any liability for the infringement of such patents by the making, using, or selling of any such environment or circuitry, and suggests that anyone interested in such projects consult a patent attorney.

Advertising Sales Offices listed on page 104.
READY-TO-USE
INSTRUMENTS FROM HEATH
Backed by the expertise that makes our instruments famous

- An engineering department that insists on honest value in every product.
- Rigorous quality assurance inspection.
- Full one year warranty.

A POWER SUPPLY FOR EVERY WORKBENCH

Here's an excellent value in an all-around bench power supply. Dual meters let you continuously monitor voltage and current, and 0-30 volt 3-amp output fills most common power supply needs. Use the constant current mode to charge rechargeable batteries, limit power to circuits under test, and operate devices that are current dependent.

SP-2762 $169.95
Specifications: Output voltage: 0-30 VDC continuously variable. Course and fine controls. Output load: 0-3 A continuous. Output impedance: Typically less than 0.24Ω to 10 kHz. Ripple: To 10 kHz, less than 3 mV p-p (0.5 mV rms typical). Load regulation: ±0.25% ±5 mV, 1-100% of rated current. Line regulation: ±0.25% ±2 mV for ±10% line variation. Current limiting: 0-3 A, variable. Power: 120 VAC 240 VAC, ±10%, 50-60 Hz, 180 watts.

HANDY BNC CABLE SET

Our new BNC cable set provides you with 10 handy coax cables for connections to instruments and other equipment. Included are two 3 ft. BNC male/dual E-Z hook connectors, three 1-1/2 ft. BNC male/BNC male connectors, two 2 ft. BNC male/BNC male connectors, and a rack that you can mount on your workshop wall for convenient cable storage. An outstanding value at less than $3.00 a cable.
HCA-5002 $29.95

PREMIUM QUALITY COAX CONNECTORS

Make different types of coaxial connector adapters with gold plated pins and Teflon insulation. Just screw the required connector onto one of the interfaces — no crimping or soldering is needed. In just seconds, you'll have that special coaxial connection you require. Kit contains male and female N, F, RCA, BNC, UHF, SMA, TNC, and mini UHF connectors. A handsome, padded, zippered case is included with your deluxe kit to protect your connectors and to keep them looking new after years of service.
HCA-3001 $79.95

DELUXE SCOPES ARE A PLEASURE TO USE

These oscilloscopes offer the measurement capability you need, plus luxury features that make them a joy to own. TV triggers, 1 mV/div sensitivity, differential and X-Y measurements, plus beam finder, component tester, graticule illumination, and other features many manufacturers omit. Enjoy a top-quality 25 or 40 MHz scope backed by a reliable name, full warranty, and complete specifications.

25 MHz: SO-4552 $399.95
40 MHz: SO-4554 $599.95
Specifications: Vertical: 1 mV/div-5 V/div, Bandwidth less than 1 mV/div. Accuracy 5% ±1 kHz, ±5% at 1 mV/div. Overshoot: less than 5%. Max input: 500 V. Modes: CHA, CHB, dual, add. Horizontal: ±5 ±10 kHz, ±20 kHz, ±50 kHz, ±100 kHz, ±200 kHz, ±500 kHz, ±1000 kHz, ±2 MHz, ±5 MHz. Trigger: CHA, CHB, Line, Ext, Auto, Norm, TV-V, TV-H, ±. Power: 90-132/200-264 VAC, 50/60 Hz, 45 W. Weight: 16.7 lbs.

HALF PRICE SPECIAL!

Order any product from this ad and get our popular shirt pocket miniature DMM, Model SM-2300-A, for only $12.47 — half our regular price.

Specifications: Autoranging 3-1/2 digit DMM. DC volts: 2000 mV to 450 V, ±1.3% ±1 count. AC volts: 2000 mV to 450 V, ±2.3% ±8 counts. Approx. 11 Hz input resistance. Max input, 450 VDC. AC volts: 2000 mV to 450 V, ±20% ±20 counts. Approx. 11 Hz input resistance. Max input, 450 V. Reluctance: 2000 Ω to 2 MΩ ±2% ±4 counts.

To order, call TOLL FREE 1-800-253-0570
Use order code 217-320

We guarantee every specification we publish on every product we sell.
Magnetic resonance images take place of X-rays

Reports on trials of a new experimental approach to imaging three-dimensional areas of the human body without X-rays were made by General Electric scientists at the recent Society of Magnetic Resonance in Medicine (SMRM) conference in the Netherlands.

The new technique, known as “phase contrast magnetic resonance angiography,” produces images of flowing blood that outline the veins and arteries through which the blood is flowing. The faster the blood flows, the brighter the image that appears on the Magnetic Resonance (MR) scanner’s display screen. Because the image changes due to volume of blood flow, the MR method requires no injections of X-ray-absorbing fluids to highlight the vessels—often an uncomfortable process for the patient.

With the noninvasive GE MR approach, it is possible to acquire data representing all points within a three-dimensional area—commonly termed volume—the head, neck, or whatever. All blood vessels within that area can be seen from any orientation, and the volume can then be rotated to give views from front, back, top, bottom, or oblique angles.

One of the papers presented at the SMRM meeting in the Netherlands dramatized the advantage of MR angiography’s 3-D capability. A patient with multiple intracranial aneurysms was evaluated both with X-rays and MR. The resulting MR images clearly showed the aneurysms that were visible on the X-ray screen and also an extra one not discovered by X-rays. The additional aneurysm was found by rotating the 3-D image to an orientation that provided an unobstructed view.

Smart cards will respond to owner’s voice

Based on the premise that no two voices are alike, Bellcore has devised a technology for personalized “smart cards” that work with spoken commands. The owner would “train” such a card—which contains integrated circuits and software—to recognize only his or her voice.

Bellcore’s recently patented experimental system behind the “speaker-verification” concept could provide increased credit-card security and expedite other transactions involving an access card.

Bellcore’s prototype speaker-verification system uses an integrated circuit card to store data about its owner’s unique speech patterns (speech templates) and other pertinent information. Data is loaded into the card when its owner “trains” the speaker-verification software to recognize his or her voice before using the card for the first time.

The system works with special voice-recognition software that could be built into equipment that it’s used in, including telephones, or bank terminals equipped with a microphone. The software could also be stored in a centralized computer in a remote location such as a telephone company central office.

A speaker-verification system would be exceptionally easy to use since most commands are simply spoken. Commands range from securing access to the system to dialing pre-programmed telephone numbers.

For example, Once a smart card is programmed with its user’s voice, a speaker-verification telephone call could proceed as follows:

The user would first insert the card into any speaker-verification terminal, which would extract the user’s name, speech templates, and any special commands and billing information. When prompted, the users would speak the verification password. The password would be translated into digital form, and verified by the computer which would compare the voice against the pre-programmed speech templates.

Once verified as the proper user, you would be able to simply speak a command to initiate a sequence of events. For example, the command “Call Mom” could instruct the phone to generate the call, assuming the command and corresponding telephone number were stored in the smart card.

Bellcore plans to make the technology available for licensing, and believes that it will be quickly developed for many consumer and commercial uses.

R-E
How to build a high-paying career, even a business of your own, in computer programming.

Start with training that gives you hands-on programming experience—at home and at your own pace. Training that begins with BASIC, then continues with Pascal, C, and COBOL—today's hottest computer languages. Training that even includes a powerful IBM-compatible computer, modem, and programming software you keep.

The kind of training only NRI provides.

Now with NRI's new-at-home training in Computer Programming, you can be one of today's highly paid, creative team of computer wizards who give computers the power to carry out an astonishing range of business, professional, and personal applications. Now, with NRI, you can be a computer programmer, ready to build a high-paying career—even a business of your own—making computers do anything you want them to do.

The only programming course that includes a powerful computer system and software you keep.

Unlike any other school, NRI gives you hands-on programming experience with a powerful IBM-compatible Packard Bell computer system, including 2400 baud internal modem, 512K RAM, disk drive, monitor, and invaluable programming software—BASIC, Pascal, C, and COBOL—all yours to keep.

You get the experience and the know-how, the computer and the software to get to the heart of every programming problem, design imaginative solutions, then use your choice of four key computer languages to build original, working programs.

No matter what your background, NRI gives you everything you need to succeed in programming, today's top-growth computer career field.

You need no previous experience to build a successful programming career with NRI training. Indeed, your NRI lessons start by walking you step by step through the fundamentals, giving you an expert understanding of the programming design techniques used every day by successful micro and mainframe programmers. And then the fun really begins.

You master today's hottest computer languages, gaining the skills you need to build programs for a wide variety of real-world applications.

With your personal NRI instructor on call and ready to help, you use your computer and software to actually design, code, run, debug, and document programs in BASIC, Pascal, C, and COBOL. Then, rounding out your training, you use your modem to "talk" to your instructor, meet other NRI students, even download programs through NRI's exclusive programmers network, PRONET.

Your career in computer programming begins with your FREE catalog from NRI.

For all the details about NRI's at-home training in Computer Programming, send the coupon today. Soon you'll receive NRI's fascinating, information-packed, full-color catalog.

Open it up and you'll find vivid descriptions of every aspect of your NRI training. You'll see the computer system included in your course up close in a special, poster-sized foldout section. And, best of all, you'll find out how your NRI training will make it easy for you to build that high-paying career—even a business of your own—in computer programming.

Send for your NRI catalog today. It's yours, free.

If the coupon is missing, write to us at the NRI School of Computer Programming, McGraw-Hill Continuing Education Center, 4401 Connecticut Avenue, NW, Washington, DC 20008.

IBM is a Registered Trademark of the IBM Corporation
Widescreen TV. In a major move toward the implementation of high-definition TV, Thomson Consumer Electronics announced at the recent Berlin Audio-Video Fair that it would introduce TV sets with widescreen proportions next fall. Thomson is Europe's second largest manufacturer of TV sets (after Philips). Its brands include Thomson in France, Telefunken, Saba, and Normende in Germany, and Ferguson in England. Thomson also sells RCA and GE TV sets in the United States, but says that its introduction of widescreen sets here will depend upon the American consumers' demand.

Widescreen TV's have an aspect ratio of 16:9, close to the proportions of Cinemascope movies, as compared with 4:3 for standard TV sets. HDTV broadcasting is expected to use widescreen proportions, and the European satellite broadcasts in the extended-definition D2-MAC system are expected to include some widescreen pictures as well as standard-aspect transmissions.

Thomson's first widescreen sets will use a new picture tube, now in pilot production, measuring 34 inches diagonally. In height, the 34-inch tube is the equivalent of a standard 28-inch type. The new set, which will sell for about $5,000, will be a "multi-format multi-standard" model, which can receive broadcasts in all of the world's TV-transmission standards—those are PAL, SECAM, and NTSC.

In addition, the set will be able to tune directly to D2-MAC satellite programs, displaying widescreen pictures when transmitted, or standard-dimension programs from any source. When tuning regular, standard European broadcasts, it will be capable of doubling the number of fields from 50 to 100, eliminating flicker. At the touch of the remote control, it can enlarge a standard-aspect TV picture to display a "cinema" version, filling the widescreen tube by cutting off a portion of the picture's top and bottom. Alternatively, it can show a standard 4:3 picture at the left of the wide screen, with three smaller pictures from other channels (or a VCR) vertically in the space to the right of the main picture ("picture-outside-picture"). The new set also can enlarge to full-screen "letterbox" TV transmissions and recordings (which normally have black bands at the top and bottom of the screen to show all of the original movie's dimensions).

Europe's D2-MAC transmissions, which started this year, are designed to be the forerunners of the true HDTV. They achieve improvement in the picture by transmitting brightness and color signals separately. The goal of the combined European "Eureka" project is to start compatible HD-MAC 1,250-line widescreen service in 1992. A preliminary version of HD-MAC was being transmitted from satellite and distributed by fiber optics and cable at the Berlin show for demonstration purposes.

Audio-video CD's. Two interactive audio-video compact-disc formats are racing toward the consumer market, both with products tentatively scheduled for 1990 or 1991. Compact Disc Interactive (CD-I), championed by Philips, can squeeze a whole dictionary of audio and still- or limited-action video on a 5-inch CD. Digital Video Interactive (DVI), developed by GE and being readied for the market by Intel, claims up to 72 minutes of full-motion digital video, in addition to audio, on the same size disc. Both companies are aiming for $1,000 players at first, coming down rather quickly to somewhere round the $500 price level.

DAVID LACHENBRUCH, CONTRIBUTING EDITOR

R-E
THINK OF IT AS AN ELECTRONIC SWISS ARMY KNIFE.

What an idea the Swiss had... a hand-held device combining many different tools in one unit. The same inspiration is behind B&K-PRECISION's new Model 388HD Test Bench. It offers the capabilities of five popular instruments in one hand-held package.

This 4½ range digital voltmeter, ammeter, ohmmeter, frequency counter, capacitance meter, logic probe, transistor and diode tester features an extra-large LCD display, rugged drop-resistant case and high-energy fusing.

While you won’t flip-out forks or knives, you will flip for the versatility of this low-priced wonder. For immediate delivery, see your local B&K-PRECISION distributor.

B&K-PRECISION TEST BENCH

$129

DECEMBER 1989
BROKEN IC PIN
I bought an 80287 Math Coprocessor for my PC/AT and broke pin 1 flush with the DIP surface while installing it, so there's nothing to connect to. I've written the manufacturer, but no answer. Do you have any ideas?—J. Dunbar, Camden, TN

There's always a way to fix anything; let's talk about repairing IC legs in general, and then we'll deal with your 80287. Some methods will make a manufacturer cringe, some may make them cross the street and walk the other way when they see you, and others may just void your warranty. Putting a crutch on an IC is something that every hardware junkie does eventually. The best way is to replace the IC; however, trying to get a "recommended method" is like asking a car company how to repair a gas tank leak with bubble gum.

One of the staples of any electronics bench should be a collection of dead IC's, since the best replacement for one broken IC leg is another. Break the leg off a dead IC flush with the body of the DIP, and tin the end that was near the DIP. You neither need nor want much solder because the more you have, the more heat you'll need to melt it, and heat is the IC's deadly enemy.

Any electronics bench should have a collection of dead IC's, since the best replacement for one broken IC pin is another. Break off a dead IC pin flush with the package, and tin the package end. Don't use much solder; the more you have, the more heat you'll need, which may damage whatever IC you're trying to fix. Obviously, the best thing to do is replace it. Failing that, there are only two instances when you should fix it:
- It's three o'clock in the morning and you need it NOW!
- It's expensive.

If there's a stub left, just tin it and solder the new pin on. This can be tricky, since the new pin is small and will stick to the iron. You'll need a pair of tweezers and steady hands. Don't insist on perfect alignment with the rest of the pins, just get it close enough to fit in a socket. Align it after soldering, to minimize heat.

If the stub is flush with the DIP, first expose more metal; this can be done, but takes great care and very steady hands. Lock the IC lightly an alligator clip fixture for PC boards. If you don't have one, use an alligator clip held in a vise. Then, take a Dremel or X-acto Moto-Tool or similar motorized handtool with a fine, pointed, grinding wheel, and remove some of the case, exposing some of the internal continuation metal, as in Fig. 1. It's not aesthetic, but it works.

Although you can work either on the top or bottom of the DIP, the top presents less risk of damaging other pins. Keep the chip cool with freeze spray or a napkin soaked in ice water. Remember, grinding also generates heat. Limit the area you're grinding to the width of the pin, about \(\frac{1}{32} \) inch of metal, but don't bear down. Whatever the case material, grind a few seconds, and stop to both examine the DIP and cool it off. How much you'll have to do depends on the case.
START WITH CIE.

Microprocessor Technology. Satellite Communications. Robotics. Wherever you want to go in electronics... start first with CIE.

Why CIE? Because we're the leader in teaching electronics through independent study. Consider this. We teach over 25,000 students from all over the United States and in over 70 foreign countries. And we've been doing it for over 50 years, helping thousands of men and women get started in electronics careers.

We offer flexible training to meet your needs. You can start at the beginner level or, if you already know something about electronics, you may want to start at a higher level. But wherever you start, you can go as far as you like. You can even earn your Associate in Applied Science Degree in Electronics.

Let us get you started today. Just call toll-free 1-800-321-2155 (in Ohio, 1-800-362-2105) or mail in CIRCLE 60 ON FREE INFORMATION CARD.
Ceramic is more resistant than plastic, but they leave no residue; plastic grinds quickly, but melts. Once you've got the metal exposed as in Fig. 2, tin it and solder to it.

For the 80287, when you break an IC pin, check whether it's used. Those for the 80287 are in Fig. 3, and you're lucky because pin #1 is labelled "N/C" (No Connection), so repairing it is pointless, all the more so since you might very well damage or overheat it needlessly. Even the slowest 80287 costs over $150. Since the only benefit is aesthetic, leave it alone. Besides, asymmetry is in vogue.

MIKE INPUT ATTENUATOR

I have a small cassette recorder to listen to tapes at work. I spent the extra money for record as well as play, since I'd like to use it for making the tapes I listen at work. The problem is, the machine only has a mike input, and the copies are garbled. I've tried using series resistors to cut the level, but they don't. I know there's some way, but I'm out of ideas.—D. Conklin, Princeton, NJ.

You haven't sent in any specs on the recorder, but most have similar inputs. You're having a problem, since a series resistor only cuts current. To match signal line level to input mike level, cut the power of the input by dropping both voltage and current. The mike input needs about 200 µV at -72 dB, whereas standard outputs deliver about 300 mV, at a 10:1 mismatch. The problem is compounded if you've got low impedance 200-ohm mike inputs, not high impedance 50K inputs. Use one resistor for the signal current, and the other on the mike input voltage. You can use a transformer, but an resistive attenuator pad is easier. It does the same thing and might even fit inside the recorder.

Since I don't have the numbers on your mike input, you'll have to experiment. I used those in Fig. 4 to pad the mike input in my recorder, an old Sony TC-55 with low impedance mike input having 200 µV sensitivity at -72 dB.

If there's enough room, use a DPDT switch as in Fig. 4. With the switch in the "Mike" position, the input is in its original condition. When you put the switch to "Line," the signal is first routed through R1 and then R2. Mount the resistors on the switch terminals to save space and keep the signal path short. Standard 1/4- or 1/8-watt resistors are fine.

I.C.

For over 35 years POMONA has proven its leadership position on the cutting edge of test technology. For example, we have created innovative solutions to the challenge of advanced ultra-miniaturized electronic components such as surface-mount devices. This sort of inspired dedication is another reason why the industry depends on POMONA.

For your FREE 1989 Catalog, CALL: 714-623-3463 or FAX: 714-629-3317

![POMONA still leads the way in test technology.](image)
ONCE YOU’VE GOTTEN IT DESIGNED, YOU’VE GOTTEN IT MADE.

Now you can take those hot, new logic or block design diagrams, and quickly, easily bring them up to reality...in minutes...without solder!

Build circuits as fast as you can think. Test. Modify. Expand. Without burned-out parts or burnt fingers. Save time, money...and prove that you know that you’re talking about...before you use your CAD.

Specify PROTO BOARD Brand, Today’s recognized Standard for Quality in breadboarding. Here are five expandable breadboards, offering countless arrays of solderless sockets and bus strips that emulate pc board layouts. Pop in components. Pop them out again. Microprocessors. Memory. Large DIPs. Tiny discretes. Makes no difference. The patented aluminum backplane lets you work at frequencies from DC to half-a-GigaHertz or 500MHz.

Need power? A powered PROTO BOARD Brand offers up to triple voltage power supplies, + 5V, + 12V, – 12V, with regulated/current limited DC power. Over 2,250 tie points with 24 IC capacity and 14 pin DIPs. Super for TTL, CMOS, Op-Amps and microprocessor circuits. And lots more.

Best of all, your hassle-free American-made PROTO BOARD Brand comes with an unlimited lifetime guarantee on all the breadboard sockets. Prices are so modest, you’ll wonder why you waited this long to specify PROTO BOARD Brand. Order today.

Call toll-free for details 1-800-572-1028
SPECTRUM MONITOR CORRECTIONS

There are a few corrections and clarifications to “Build this Spectrum Monitor,” which appeared in the September and October 1989 issues of Radio-Electronics. The tuner is a Zenith part No. 175-02292A. You can buy it from PTS Corp., 5233 S. Hwy 37, Bloomington, IN 47401, (800) 333-7871. Cost from PTS is $33.45 including shipping and handling.

In the tuner diagram (Fig. 2 in the September issue), some of the nomenclature is not consistent with the schematic: PL5 is incorrectly labeled as PL1, PL6 as PL2, C41 as C1, and L3 as L1. In Fig. 4, the unlabeled electrolytic beneath R20 is C35.

Several performance aspects were unclear: Maximum frequency resolution is about 5 kHz. Rotating the center tune clockwise (CW) increases the center frequency, and vice-versa. The sweep controls horizontal scale; fully CW, it’s about 10 MHz/div, if the center frequency isn’t near the tuner extremes. Rotating it counterclockwise (CCW) expands the scale to about 5 MHz/div at midrange, but it’s not calibrated. Setting the sweep fully CCW exceeds the monitor’s capability.—Editor

ASK RE AGAIN

There is a mistake in “Ask RE,” Radio-Electronics, October, 1989. In the “I Need Values” letter, a schematic was given for a device that turns on a tape recorder when a telephone handset is taken off-hook. The bridge rectifier, which makes the device polarity-independent, should be “rotated” 90 degrees with respect to the rest of the circuit. In other words, the inputs and outputs of the bridge should be transposed.—Editor

ONE READER’S OPINION

I would like to respond to your recent request (Radio-Electronics, July 1989) for reader’s votes on the “PC Service” section, and to voice my opinion on HDTV.

First, I vote to go back to putting artwork for the PC boards on pages with nothing printed on the other side. The way that it is presented now is worthless in most cases. I would also like to comment about your artwork for large (usually digital) PC boards. Because they are so complex and must be reduced to fit the page, they are usually unusable because tracks run together. As an alternative, perhaps you could make full-size, clean artwork available to readers by mail, at a small cost.

Now...HDTV. I think the whole idea of HDTV is a valiant effort for a needless cause. If equipment costs as much as is predicted, I certainly will not buy any. Why do you need more resolution on television, anyway—for sports nuts to see the lines on the football field clearer? I see no need to upset the whole industry for the relatively few who will go to big-screen TV (that, admittedly, requires better resolution). It seems that there is always a desire for companies to make more money, hidden behind so-called better products for the average consumer, and it winds up

MISTAKEN IDENTITY

In the August 1989 “New Products” column, we featured a television and a speaker system from Sony and mistakenly described both as incorporating Sony’s Sound Retrieval System (SRS) technology. Actually, SRS is used only in the Sony XBR line of television sets and in several high-end Trinitron sets; their SRS speaker systems do not incorporate SRS technology. The SRS-D3K speaker system, shown here and in the original “New Products” column, costs $299.95; the correct price for the SRS-77G system is $199.95. Our apologies for the confusion.—Editor
Over 200,000 Substitutions

High-Quality Cables and Connectors

NEW!

1. Oxygen-Free Copper A/V Cable, 6mm dia., 6 ft. #278-1271 5.95
2. Oxygen-Free Copper Cable, 8mm dia., 6 ft. #278-1272 7.59
3. Speaker MEGACABLE* 12-gauge copper #278-1288, Per Foot 99c
4. Terminal Knobs for MEGACABLE #274-619, Set of 2 5.95
5. Crimp Terminals for MEGACABLE #64-401, Set of 8 4.99

LED and IR Module

NEW!

1. NEW! Jumbo Bright LED. 5000 cd! #276-086 4.99
2. IR Detector Module. Combines detector, amp, demodulator, limiter filter, integrator, comparator. Requires 5VDC. #276-137 3.45

Electronics Books

NEW!

1. Getting Started in Electronics. #276-4013 2.49
2. NEW! Semicon Ref Guide. 1990 edition! Lists over 60,000 types and their Radio Shack equivalents. #276-4013 3.99

DVM / Capacitance Meter

NEW!

79.95

This single time-saving tool combines a 30-range DVM with capacitance and transistor gain meter! Measures to 1000VDC and 750VAC, 10 amps AC/DC, 20 megohms resistance, 20 µF capacitance and transistor DC gain. #276-169

Breadboard & Jumpers

NEW!

1. Universal Solderless Breadboard. Accepts DIPs, components and jumper wires (Kit below recommended). #276-169 39.95
2. Jumper Wire Kit. 140 insulated, prestripped wires. Case included. #276-173 Set 4.95

Radio Shack Parts Place

GET YOUR HOLIDAY PROJECT STARTED TODAY!
VISIT RADIO SHACK FOR ONE-STOP SHOPPING

Save With Our Hotline Order Service

Your Radio Shack store manager can phone in a special order for a wide variety of parts and accessories not in your catalog—tubes, linear and digital ICs, diodes, popular TV modules and much more. You can even order any of the SAMS Manuals! No postage or handling charges, no minimum order. We'll call you when your order arrives, in about a week.

New! Special Battery “Hotline”

Your nearby Radio Shack is now your source for everything in consumer batteries—cordless telephone packs, special communications batteries used in police, fire and emergency walkie-talkies, to name just a few. We will place your order on our phone “Hotline”, and your batteries will be shipped directly to your Radio Shack from our main warehouse. We'll notify you when your order arrives. No shipping or handling charges for this convenient service.

Word-Recognizer on a Chip

Cut 31%

VCP200. Great experimenter's item—control circuits with your voice, or conduct research in robotics and computer technology. Recognizes spoken orders, even when different people give the commands. Five motion and two on/off or yes/no commands. Clipped analog input so A-to-D conversion circuit is not required. Few external parts needed. 20-pin DIP. #276-1308

Builder's Helpers

1. Panel DC Voltmeter. 0-15VDC #270-1754 7.95
2. 10A Relay. #275-217 5.99
3. Fuse Holder. #270-364, 1.29
4. SPDT Lighted Switch. 3 amps at 120VAC #278-676 6.49

Chime and Buzzer

2. Pulsing Buzzer. Commanding 60dB output at 2 Hz pulse rate. 12VDC, 20mA. #273-968 3.49

Supply Parts

2. Electrolytic Capacitor. 4700 µF #272-1022 3.59
3. Full-Wave Bridge Rectifier. 450 PIV, 4A. #274-1173 1.95

Parts-Pourri

1. Thermistor. #271-110 1.99
2. 15-Turn Trimmer Pot. PC mount. 1/2W. #271-342, 10k #271-343, 20k #271-344. Each 1.49
3. Pkg. 2 Trimmer Caps. 6-50 pF PC-mount. #272-1340 21/7 59
4. Pkg. 50 PicoFarad Caps. 1-33 pF. #272-806 6.95

Electronics Calculator

39.95

Radio Shack EC-4035. Accepts input and displays output using popular electrical symbols. 10000 x 5A = 500V. Has 110 functions including trig and statistics. Alphanumeric display with contrast control. Engineering keys. Includes batteries and case. #65-963

Prices apply at participating Radio Shack Stores and dealers.
making all products cost more.

I love Radio-Electronics! Keep up the good work.

NORMAN STOBERT
Berrien Springs, MI

WORKING LIKE NEW

Thanks so much for the articles, "New Radios, New Problems, New Solutions," by Gary McClellan (Radio-Electronics, July and August 1989). By using some of the suggestions in those articles, I was able to fix a Delco radio that I couldn't find parts for and a Sansui car stereo that had been "butchered" by some other technician. You saved my neck! Let's have more articles like those.

JIM PRIOR
St. Paul, MN

RADIATION RISKS

Like Roy Norman, whose letter appeared in the November issue of Radio-Electronics, I was impressed with the series of articles called the "Annals of Radiation" that appeared in three consecutive issues of The New Yorker ("Power Lines," June 12; "Radar," June 19; and "Video Displays," June 26). As an artist who works with electronics, a repair technician, a teacher, and a hobbyist, I found the series to be extremely sobering. I think the material is a "must read" for all of us involved in electronics—as well as those who aren't.

Those articles carefully documented research showing at least a doubling of the incidence of leukemia in people living two houses or less from utility-pole-mounted step-down transformers. The dangers seem to be caused by the magnetic fields and I want very much to build some sort of device that can accurately measure those fields. The important frequencies are 60 Hz, 120 Hz, and 15.7 kHz. I would like the meter to read directly in Milli-Gauss units.

I think that this is also important in light of Radio-Electronics' recent articles on brain-wave experimentation both with computers (September, October, and November 1988) and with meditation goggles (April 1989). The New Yorker series discussed research in which cats were exposed to 147-MHz radio waves. They found that unmodulated radio waves of 1 mW/cm² didn't cause any problems, but when they were modulated at brain-wave frequencies, significant electrical disturbances in the cats' brains were observed. The experiment was repeated on chicks and was definitely shown to cause serious calcium-ion and immune-system problems in their brain tissue.

I know that the knee-jerk response to that sort of stuff is to ignore it—after all, it is very harrowing news. But it would be sad if that happened.

FRED WOLFLINK
Brookline, MA 02146

THE GREAT WIRE DEBATE

Concerning the "great wire debate." I conducted experiments similar to those done by Mr. Kiley (Radio-Electronics, "Letters," August 1989). In my case, I compared the performance of both 18-SEG

With Just One Probe Connection, You Can Confidently Analyze Any Waveform To 100 MHz, 10 Times Faster, 10 Times More Accurately, Absolutely Error Free, Guaranteed — Or Your Money Back!

SC61 Waveform Analyzer™ Patented $3295

There are other digital readout oscilloscopes, but none of them completely eliminate graticule counting and calculations like the SC61 Waveform Analyzer. The innovative, time-saving AUTO-TRACKING™ digital readout automatically gives you every waveform parameter you need for fast troubleshooting.

The SC61 Waveform Analyzer is a triple patented high performance scope that provides you with a digital LCD read-out of all key waveform parameters (DC volts, peak-to-peak volts, and frequency) at the push of a button, and all with one probe connection.

Other time-saving features include exclusive ECL sync circuits that allow you to lock quickly onto waveforms up to 100 MHz. Plus, with 3000 volts of input protection, you never have to worry about an expensive front end repair job.

Call 1-800-SENCORE to find out more about what the SC61 can do for your service business. In Canada call 1-800-851-8866.

SENCORE
3200 Sencore Drive, Sioux Falls, SD 57107 100% American Made

CIRCLE 151 ON FREE INFORMATION CARD
twin cable and that of standard 5-A PVC line cord 20 feet in length. I also compared performance between working into an actual commercial loudspeaker and a purely resistive load, as well as making direct measurements at the output of the amplifier. Extrapolating for the difference between Mr. Kiley's tests and mine, I arrived at exactly the same conclusions as Mr. Kiley did.

I did, however, find that there was some contact resistance in the speaker connections that far outweighed the resistance of the wire. Checking for the cause I found that, although the external connections to the speaker used standard binding posts, the connections to the driver itself were made via inexpensive slide-on lugs, and that merely jiggling them slightly resulted in variations in the overall resistance of the setup. That was in line with my general experience that poor-quality connectors are far more often the cause of signal degeneration than wire characteristics per se.

No "premium-wire pusher" has ever presented any evidence for his claims, and to my knowledge, no blind group-listening-test results have ever been published (certainly not by the wire pushers!). Fortunately, there are signs that professional audio engineers are increasingly debunking the wire manufacturers' absurd claims.

I would like to express my appreciation for Larry Klein's many contributions to common sense in those matters and for Radio-Electronics' consistent objectivity and independent stance in all of the subjects it tackles—which is a tribute to its faithfulness to the principles of its founder, the late Hugo Gernsback. In these days of blatant scams, it is one of the few publications I know that I can always trust.

JOHN COX
Vancouver, B.C., Canada

BEHIND THE TIMES?
I've read Radio-Electronics for more than 20 years, and you've had quite a few interesting articles in that time.

Lately quality has gone down, and I think your magazine should adapt itself to today's and tomorrow's technology and stop looking only at the technology of 5 or 10 years ago. Hobbyists used to be innovators, inventors of new electronic toys. Most hobbyists have only magazines like yours to inform them of new microchips, and you don't seem to do your job very well.

It seems to me, by your articles on microprocessors, that the news takes a long time to reach your magazine. Take the 68705 for instance. I've used that chip for seven years, and first noticed an article on it in your magazine this year. What about the 8096, 8098, TMS370, uPD7810, uPD7810, uPD7811, HD64180, HD647180, HD64180S, V25, H8, HPC, 68701, 68HC11, 8051, 8751, and 8031, to name a few?

The most amusing article I've seen in years is the one on PLC in the September issue. ("Programmable Architectures: The Next Breakthrough?") What are GAL's, PEEL's, or EPLD's, might I ask? It sounds like an article that must have been written in the early 1970's. I can understand that EPLD's are rather new, but I've used them for three years and their EEPROM counterparts for two years, and I've yet to see Radio-Electronics write anything about them.

I was rather surprised to see that the EPROM used most often in your articles appears to be the 2716. Don't you know that the 2716 is an obsolete part? The king in the electronic world nowadays is the 27C256. If I were to design anything with a 2716 my boss would think that I was nuts.

MICHAEL CATUDAL
Silver Creek, NY

We try to keep our construction projects buildable. That often precludes using the latest and greatest parts in a project. If a 2716V (which costs about $4.00) will do the job, why would you use a 27C512 that costs three times as much?

Your point on covering new technology is well taken. We hope that some of the articles we have planned for the coming year answer at least a few of your complaints.—Editor

Put Professional Knowledge and a COLLEGE DEGREE in your Technical Career through HOME STUDY

Add prestige and earning power to your technical career by earning your Associate or Bachelor degree through directed home study.

Grantham College of Engineering awards accredited degrees in electronics and computers.

An important part of being prepared to move up is holding the right college degree, and the absolutely necessary part is knowing your field. Grantham can help you both ways—to learn more and to earn your degree in the process.

Grantham offers two degree programs—one with major emphasis in electronics, the other with major emphasis in computers. Associate and bachelor degrees are awarded in each program, and both programs are available completely by correspondence.

No commuting to class. Study at your own pace, while continuing on your present job. Learn from easy-to-understand lessons, with help from your Grantham instructors when you need it.

Write for our free catalog (see address below), or phone us at toll-free 1-800-955-2527 (for catalog requests only) and ask for our "degree catalog."

Accredited by the Accrediting Commission of the National Home Study Council

GRANTHAM College of Engineering
10570 Humboldt Street
Los Alamitos, CA 90720
Tektronix 2211 DIGITAL STORAGE OSCILLOSCOPE

Tek's new 50 MHz 2211 gives you more measurement power for the money than any scope in its class. If you want the performance of an expensive digital scope, but not the cost, our new 2211 is the perfect solution. It represents Tek know-how and quality at its affordable best.

It combines powerful 20 MS/s digital sampling with the familiar operation of an analog scope. In digital storage mode you can capture and display single-shot events, see what happened before a trigger event, or compare newly-acquired signals to a stored waveform.

And if you need to analyze fast or complex signals in real time, simply switch to analog mode with the push of a button.

Productivity-enhancing features are in abundant supply. For instance, all measurements and front-panel scale factors appear on the CRT. Waveform cursors automatically calculate time and voltage. A 4K record length and X50 magnification give you excellent timing resolution, plus analog-quality displays. And trigger levels can be read directly on the screen.

Copyright © Tektronix, Inc. 1989 *Prices subject to change and valid in U.S. only. Educational discounts available on request.

www.americanradiohistory.com
There's even a standard hardcopy interface that lets you connect the 2211 to Epson printers or HPGL-compatible plotters, such as the Tek HC100, for convenient automatic 4-color documentation.

Of course, the true indication of why the 2211 is "best for low-cost test" is price: it's only $2495. A sum that includes Tek's remarkable 3-year warranty on all parts and labor — even the CRT.

Three value-packed companions starting at $695.

<table>
<thead>
<tr>
<th>Model Number</th>
<th>2211</th>
<th>2201</th>
<th>2225</th>
<th>2205</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>50 MHz</td>
<td>20 MHz</td>
<td>50 MHz</td>
<td>20 MHz</td>
</tr>
<tr>
<td>Storage Bandwidth</td>
<td>1 MHz</td>
<td>1 MHz</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Sample Rate</td>
<td>20 MS/s/ch</td>
<td>10 MS/s/ch</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Vert. Sensitivity</td>
<td>500 µV/div</td>
<td>5 mV/div</td>
<td>500 µV/div</td>
<td>5 mV/div</td>
</tr>
<tr>
<td>Cursors/Readout</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Hardcopy Interface</td>
<td>Yes</td>
<td>Option</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Record Length</td>
<td>4K/ch</td>
<td>2K/ch</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Vertical Resolution</td>
<td>8 bit</td>
<td>8 bit</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Price*</td>
<td>$2495</td>
<td>$1495</td>
<td>$1095</td>
<td>$695</td>
</tr>
</tbody>
</table>

For low-cost testing from 20 to 50 MHz, Tek has the best line-up in the business.

There's the 50 MHz 2225, which offers superb vertical sensitivity, delay, and horizontal magnification up to X50 for only $1095. The 20 MHz, 10 MS/s 2201 is an economical introduction to digital storage at $1495. And for reliable, ultra low-cost analog measurement, get the 20 MHz 2205 for an incredible $695.

It's easy to get the best. To order your low-cost Tek oscilloscope or get more information, contact your local Tek representative. Or call Tek direct at: 1-800-426-2200

[Tektronix](www.americanradiohistory.com)
Precision Motion 20-MHz Logic Analyzer

A 16-channel, 20-MHz logic analyzer that fits in the palm of your hand!

YOU CAN NOW ADD LOGIC ANALYZERS to the list of electronics test equipment that has made the transition from being esoteric and expensive to being rudimentary and relatively inexpensive. As microprocessor-based equipment became ubiquitous, having the proper tools to service them became essential to technicians. Helping to fill that need was a handheld, 16-channel, 20 MHz logic analyzer from Precision Motion (3563 Sueldo Building J, San Luis Obispo, Ca 93401).

Precision Motion's logic analyzer is optimized for—but not limited to—debugging ROM-based hexadecimal code. It features true 20-MHz data acquisition capability, a data-storage memory for 1023 samples both before and

CABLE TV

TB-3 (Tri-Bi) or SA-3

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>$48.</td>
</tr>
<tr>
<td>20</td>
<td>$43.</td>
</tr>
<tr>
<td>50</td>
<td>$39.</td>
</tr>
<tr>
<td>100</td>
<td>$35.</td>
</tr>
</tbody>
</table>

King Wholesale

1-800-729-0036

"No one beats the King's prices!"

DESCRAMBLERS
WITH CIE, THE WORLD OF ELECTRONICS CAN BE YOUR WORLD, TOO.

Look at the world as it was 20 years ago and as it is today. Now, try to name another field that’s grown faster in those 20 years than electronics. Everywhere you look, you’ll find electronics in action. In industry, aerospace, business, medicine, science, government, communications—you name it. And as high technology grows, electronics will grow. Which means few other fields, if any, offer more career opportunities, more job security, more room for advancement—if you have the right skills.

SPECIALISTS NEED SPECIALIZED TRAINING.

It stands to reason that you learn anything best from a specialist, and CIE is the largest independent home study school specializing exclusively in electronics, with a record that speaks for itself. According to a recent survey, 92% of CIE graduates are employed in electronics or closely related field. When you’re investing your time and money, you deserve results like that.

INDEPENDENT STUDY BACKED BY PERSONAL ATTENTION.

We believe in independent study because it puts you in a classroom of one. So you can study where and when you want. At your pace, no somebody else’s. And with over 50 years of experience, we’ve developed proven programs to give you the support such study demands. Programs that give you the theory you need backed with practical experience using some of the most sophisticated electronics tools available anywhere, including our Microprocessor Training Laboratory with 4K of random access memory. Of course, if you ever have a question or problem, our instructors are only a phone call away.

START WHERE YOU WANT, GO AS FAR AS YOU WANT.

CIE’s broad range of entry, intermediate, and advanced level courses in a variety of career areas gives you many options. Start with the Career Course that best suits your interests and interests and go as far as you want—all the way, if you wish, to your Associate in Applied Science Degree in Electronics Engineering Technology. But wherever you start, the time to start is now. Simply use the coupon below to send for your FREE CIE catalog and complete package of career information. Or phone us, toll-free, at 1-800-321-2155 (in Ohio, 1-800-523-9109). Don’t wait, ask for your free catalog now. After all, there’s a whole world of electronics out there waiting for you.

CIE

Cleveland Institute of Electronics, Inc.
1776 East 17th Street, Cleveland, Ohio 44114
Member NHSC
Accredited Member National Home Study Council

YES... I want to learn from the specialists in electronics—CIE. Please send me my FREE CIE school catalog, including details about CIE’s Associate Degree program, plus my FREE package of home study information.

Name (print):
Address:
City: ___________ State: ___________ Zip:
Age: ________ Area Code/Phone No: ________

Check box for G.I. Bill bulletin on educational benefits:
[] Veteran [] Active Duty

MAIL TODAY!
after the trigger, a Centronics-compatible printer interface, and data-management functions.

The analyzer is housed in a gray plastic case that measures roughly 7 x 4 x 1 inches. The front panel is dominated by a 24-key membrane keypad, a 2-line by 16-character LCD readout, and 6 terminals for inputs and outputs. A DB-25 parallel printer port is provided at the side of the analyzer, while the top edge of the unit offers a test-cable connector and power-supply input. A 5-volt regulated wall-transformer power supply is provided with the analyzer.

The 28-pin IC test clip is well suited for connection to either 24- or 28-pin EPROM’s. The test clip can connect up to 14 of the EPROM’s address lines to the analyzer. The data on those lines (0–13) form the hexadecimal data words that are shown on the display. Two additional inputs are provided on the front panel for lines 14 and 15. Those data are displayed separately, unless specifically appended to the data word. The analyzer directly supports 2758, 2716, 2732, 2764, 27128, and 27256 EPROM’s. Some earlier EPROM’s, specifically those that use –5 and +12 volts, cannot be hooked up directly to the analyzer.

Once the analyzer is connected to the circuit under test, and the proper ROM is selected and the clock is properly selected, then the analyzer is ready to do its job taking data. Once started, the analyzer continuously loads hexadecimal data words into its memory. The memory will hold the 1023 most recent words, writing over any old data. Once the selected trigger word is stored, the following 1023 data words are stored. The total memory of the analyzer is 2047 words.

Once the data words are stored, they data words can be easily viewed. The analyzer display will start from the trigger position. Left and right arrow keys can be used to scroll through the memory. Shortcuts are provided to move through the memory more quickly, and a search function is provided for finding a particular data word.

Outputting the contents of the data memory to a printer is simply a matter of setting the cursor to the memory position where you want the output to start, and then issuing the print command. The next 500 hexadecimal data words will be output to a Centronics-compatible printer in a format of 10 columns of 50 words each. A timing-diagram format can also be printed. If that option is chosen, a 16-channel graphic diagram for 101 clock periods will be output. The contents of channels 14 and 15 can be output separately. Turning the analyzer into a handheld two-trace, two state storage scope.

Other features of the analyzer include a hexadecimal/decimal calculator/converter, a pre-trigger arm function, and a stopwatch.

We’ve only scratched the surface of the capabilities that the Precision Motion logic analyzer delivers. We found the features, the small package, and the $1495 price of the analyzer impressive, and we’re almost looking forward to having a microprocessor-based system break down so we can put it back to work.

ATTENTION! ELECTRONICS TECHNICIANS

EARN YOUR B.S.E.E. DEGREE THROUGH HOME STUDY

Our New and Highly Effective Advanced Placement Program for experienced Electronic Technicians grants credit for previous Schooling and Professional Experience, and can greatly reduce the time required to complete Program and reach graduation. No residence schooling required for qualified Electronic Technicians. Through this Special Program you can pull all of the loose ends of your electronics background together and earn your B.S.E.E. Degree. Upgrade your status and pay to the Engineering Level. Advance Rapidly! Many finish in 12 months or less. Students and graduates in all 50 States and throughout the World. Established Over 40 Years! Write for our free Descriptive Literature.

COOK’S INSTITUTE OF ELECTRONICS ENGINEERING

4251 CYPRESS DRIVE
JACKSON, MISSISSIPPI 39212

CIRCLE 58 ON FREE INFORMATION CARD
TELEVISION HAS COME A LONG WAY IN a short time. Somewhere in the past couple of years the television business was transformed into the video industry. And where once business was a bigger and more expensive than the televisions themselves.

The increased sophistication of video monitors has led to the need for more sophisticated diagnostic tools to maintain them. Once upon a time the instruments needed to service televisions were often bigger and more expensive with a quarter a pop to stock quotes at considerably higher prices.

Their model 1249 is their low-end video-signal generator. Despite a relatively low cost, it can produce just about every signal needed to test, service, and adjust a wide variety of NTSC compatible monitors and television sets. The instrument can generate standard NTSC color bars, split image bars, staircase, and an assortment of line and dot patterns useful for set-ups and convergence.

All the patterns the 1249 can generate are available on several outputs, from composite video, to 45.75 MHz IF, to modulated RF on either channel three or four. This is a great convenience for tracing problems since the same signal can be injected at different points in the video chain. Being able to single-step your way from the antenna input to the final video amplifier makes it much easier to pinpoint problem areas in tuners and video circuits. Since all the outputs are buffered, they can all be used simultaneously. This means you don’t have the hassle of plugging and unplugging cables as you work your way through video circuitry.

To make the instrument as versatile as possible, all the important frequencies are generated from a single master clock and the individual components of the video signal are brought out to separate front panel BNC connectors. This is really convenient if you’re using an oscilloscope because, for example, you can trigger off H while snooping around a suspect monitor and you can be fairly sure of stable traces.

OPTOELECTRONICS

B & K Precision Model
1249 NTSC Generator
A reliable, easy-to-use servicing tool.

You have counted on OPTOELECTRONICS Hand Held Frequency Counters to be the best quality, to be affordable and reliable. We have been there for you with Frequency Counters that are compact and ultra-sensitive.

And more and more of you are counting on us, technicians, engineers, law enforcement officers, private investigators, two-way radio operators, scanner hobbyists, and amateur radio operators, just to name a few.

<table>
<thead>
<tr>
<th>Hand Held Series Frequency Counters and Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODEL</td>
</tr>
<tr>
<td>RANGE: FROM TO</td>
</tr>
<tr>
<td>1 KHz</td>
</tr>
<tr>
<td>100 MHz</td>
</tr>
<tr>
<td>APPLICATIONS</td>
</tr>
<tr>
<td>PRICE</td>
</tr>
<tr>
<td>SENSITIVITY</td>
</tr>
<tr>
<td>1 KHz</td>
</tr>
<tr>
<td>100 MHz</td>
</tr>
<tr>
<td>450 MHz</td>
</tr>
<tr>
<td>1.3 GHz</td>
</tr>
<tr>
<td>2.2 GHz</td>
</tr>
<tr>
<td>ACCURACY ALL HAVE</td>
</tr>
</tbody>
</table>

All counters have 8-digit red, 28" LED displays. Aluminum cabinet is 3.8" H x 3.5" x 1.1". Internal Ni-Cad batteries provide 2-5 hour unattended operation with continuous operation from AC line charger/power supply supplied. Model CCB uses a 9 volt alkaline battery. One year parts and labor guarantee. A full line of probes, antennas, and accessories is available. Orders to U.S. and Canada add 5% to total ($2 min. $10 max). Florida residents, add 6% sales tax. COD fee $3. Foreign orders add 15%. MasterCard and VISA accepted.

Orders to U.S. and Canada add 5% to total ($2 min. $10 max). Florida residents, add 6% sales tax. COD fee $3. Foreign orders add 15%. MasterCard and VISA accepted.

OPTOELECTRONICS INC.
5821 N.E. 14th Avenue • Fort Lauderdale, Florida 33334
1-800-327-5912 FL (305) 771-2050 FAX (305) 771-2052

CIRCLE 158 ON FREE INFORMATION CARD
Besides producing NTSC signals, the 1249 also generates a 30 Hz TTL level signal, (useful for servicing VCR's), and a 4.5 MHz signal which is exactly what's needed for locating audio isolation problems in a TV tuner. The 1249 has a DB9 connector on the front panel with pinouts identical to IBM color cards and, since there's a front panel switch to choose either TTL level or .8 volt signals, the instrument can be used to service some computer color monitors.

There are some computers that produce RGB video that's reasonably close to NTSC, so if you service a lot of these monitors, the 1249 can make your bench time more efficient. Even though this instrument is sold as an standard NTSC generator (PAL is a factory option), the fact that someone at B+K decided to add a PC-compatible video output means they had an eye on the field of computer monitors. That's commendable, but if you're looking for an instrument strictly to help service computer monitors, the 1249 is a poor choice.

Most of the computer video being generated today is far from being NTSC compatible. Horizontal scan frequencies vary all over the place and the NTSC standard produced by the 1249 is just too low if you're trying to troubleshoot anything other than a small handful of computer monitors. Even something as common as a PC monochrome monitor needs a signal with a horizontal scan frequency of about 18 kHz and the newer high resolution color monitors are up beyond 35 kHz.

To be fair about it, the 1249 was designed around the NTSC standard so it's hitting below the belt to criticize it for doing only the job it was designed to do. The RGB outputs are a convenience that come in handy for occasional servicing—and, I suppose that if they save you the hassle of having to make a special cable, they're worth the front panel space they occupy.

The documentation that comes with the meter is terrific. Packed in the small instruction booklet is a lot more than just switch details and setup procedures. Several pages have been devoted to a history of NTSC video, an extremely detailed analysis of the signal itself, and a complete glossary of video terms. The manual has clear instructions on everything from turning the unit on to how to adjust the output by tweaking the trimmers inside the case. You also get an oversized schematic of the unit - something most companies don't provide - and a complete parts list. Just about the only complaint I have with the paperwork is that B + K doesn't put the IC values on the schematic, only the part designations (IC1, IC2, etc.). They are, of course, in the parts list but it's always more convenient to have them right there on the schematic.

The bottom line is that the 1249 is a good value for its $517 list price. The unit is easy to use, reliable, generates rock steady signals, and you don't need a second mortgage on your home to buy one. If you're in the market for an NTSC generator, the 1249 is well worth taking a look at.

R-E
DELUXE TEST LEAD KIT

TEST PROBES INC. Call toll-free for catalog: 1-800-368-5719.

CIRCLE 250 ON FREE INFORMATION CARD

COAX ADAPTER KIT

- Create any adapter in seconds
- Make all combinations of BNC, TNC, SMA, N, UHF, Mini-UHF, F and RCA

The TPI 3000A kit contains male and female connectors of all 8 types, and 6 universal interfaces. Simply screw any combination of 24 connectors to one of the interfaces to create the desired adapter. $150.

CIRCLE 251 ON FREE INFORMATION CARD

New

No Better Probe Ever at This Price!

Shown here
Model SP150
Switchable 1x-10x $49

CIRCLE 254 ON FREE INFORMATION CARD

Risetime less than 1.5 nsec.

- Universal - works with all oscilloscopes
- Removable Ground Lead
- Excludes External Interference - even on scope’s most sensitive range
- Rugged - withstands harsh environments including high temperature and humidity
- Advanced Strain Relief - cables last longer
- Available in 10x, 1x and switchable 1x-10x

TEST PROBES, INC. TPI

9178 Brown Deer Road
San Diego, CA 92121
Toll Free 1-800-368-5719
1-800-643-8382 in CA

Call for free catalog and Distributor in your area

CIRCLE 123 ON FREE INFORMATION CARD
NEW PRODUCTS

PACKAGING SYSTEM. For anyone who’s looking for a way to speed up breadboard assembly, or is building a limited-run production device, or simply doesn’t have the time or resources for PC boards, the E-Z Buss system might provide the solution. The modular electronic-packaging system from National System, Inc. offers everything needed to quickly and easily build a reliable, reproducible electronic assembly, including module cards for commonly used analog and digital electronic functions, a mounting connector base, “fill-in-the-blank” documentation forms, and a heavy-duty aluminum enclosure that makes for a professional-looking package.

The module cards can be ordered separately on an “as-needed” basis. They come in three sizes (depending on the size and complexity of your circuit’s design). Universal logic and component cards are available, as well as dedicated amplifier, timer, resistor, and power-supply cards. The cards each come with a schematic diagram, top-view layout drawing, and a blank parts list. A connector assignment chart and a blank wire-run list simplify base wiring.

The E-Z Buss connector base provides a platform on which as many as 30 separate module cards can be installed. The gold-plated module-card connectors have wire-wrap tails that allow up to three wraps per connector. The base itself, which has provisions for input and output block connectors, is clearly numbered with tail positions to permit quick and easy interconnection wiring between modules.

The E-Z Buss connector base costs $150.00, module cards range in price from $10.00 to 20.00 (including documentation forms), and the enclosure costs $65.00. Part kits are also available for the power-supply card only.—National System, Inc., 17 Hammatt Street, Ipswich, MA 01938, 508-356-1011.

MICROPROCESSOR TRAINER KIT. If you’ve ever considered building a computer from scratch, but weren’t quite sure how to go about it, the Elenco model MM-8000 Micro Master Trainer kit could come in handy. Requiring no prior computer knowledge, the simple, easy-to-understand instructions teach you how to write in machine language. The kit demonstrates how to write into RAM’s and ROM’s and run an 8085 microprocessor that uses the same machine language as an IBM PC. It teaches you how to write the basic instructions to get the 8085 started, and how to store those instructions in permanent memory in a 2816E$2 PROM. The Micro Master Trainer explains the workings of input and output ports and computer timers.

You are shown how to build a keyboard and to scan a keyboard and display. The kit contains all parts, assembly, and also comes with a lesson manual.

The Micro Master Trainer kit costs $129.00.—Elenco Electronics, Inc., 150 West Carpenter Avenue, Wheeling, IL 60090.

BASE/MOBILE SCANNER. Offering 100 channels and complete public-service-band coverage, ACE Communications’ model AR950 can be conveniently mounted under an automobile’s dashboard with the supplied mounting bracket, or used in a fixed location with its AC wall-plug adapter. The scanning radio pro-
Now! Prepare for a money-making new future in telecommunications—today's high-growth electronics career field

With NRI training, you build a complete telecommunications system.

Now you can get a fast start in an exciting career as today's in-demand telecommunications technician with NRI's new at-home training. Experience firsthand the power and excitement of telecommunications electronics as you build your own telecommunications system and become part of NRI's exclusive operating network, interacting with your instructors, fellow students, and even industry experts.

Some of today's hottest jobs in electronics are in telecommunications, where the explosion of new technologies is transforming the worldwide computer and telephone network into a multibillion dollar high-tech hotline for new communications services.

Fax, fiber optics, satellites, microwaves, voice messaging, teleconferencing, electronic mail, and other futuristic communications services are making it possible for voice, video, and data messages to travel instantly across the country and around the world—and create unlimited opportunities for you as today's trained telecommunications technician.

NRI is ready to get you started with hands-on training built around an IBM XT-compatible computer, modem, breakout board, telephone, fiber optics lab, and communications software you train with and keep.

Complete coverage of the latest advances in telecommunications technology prepares you to succeed

Your training starts with an exciting hands-on introduction to the fundamental electronics at the heart of today's telecommunications technology. Using the specially selected equipment and test instruments included with your course, you actually build and experiment with the wide range of analog and digital circuits found in advanced telecommunications systems.

You move on to learn about satellite and cellular technologies, analog and digital switching systems, electronic telephone products and networks, voice, video, and data services, and more. From the inside out of a variety of residential telephones to the inner workings of central exchange and PBX products, from the widespread digital applications of today's local area networks (LANs) to the voice, video, and data services of tomorrow's integrated services digital networks (ISDNs), you cover the complete range of telecommunications technology. But your NRI training doesn't stop there.

Hands-on experience with your own telecommunications system gives you real-world, in-demand skills

At just the right moment in your training, you receive your Packard Bell computer—yours to train with and keep. Step-by-step, through a series of carefully planned demonstrations and experiments, you transform your computer into a state-of-the-art telecommunications device, complete with modem and dedicated communications software.

You use your system to go on line and "talk" to your instructor, take your final exam via computer link, correspond with other students, and access information services anywhere in the country for on-line news, weather, sports encyclopedias, newsletters, catalogs, and user groups.

In no time at all, you have a complete understanding of the telecommunications technology that's taking the world by storm. And better yet, you have a head start on a money-making new future as today's fully-trained telecommunications technician.

Send today for your FREE 100-page catalog

NRI's 100-page, full-color catalog describes every aspect of NRI's hands-on training in Telecommunications Technology, as well as at-home training in microcomputers, electronic music, security electronics, robotics, and other high-tech career fields. Send today for your FREE copy!

If the coupon is missing, write to NRI School of Electronics, McGraw-Hill Continuing Education Center, 4401 Connecticut Avenue, NW, Washington, DC 20008.

IBM is a registered trademark of International Business Machines Corporation.

Name (please print) Address City/State/Zip Accredited Member, National Home Study Council December 1989
used to store all information. The scanner's backlit LCD has 22 prompting annunciators to make it easier to use.

The AR950 also features first-channel priority, keyboard lockout, BNC-antenna connector, two antennas—a telescopic type and a flexible rubber one optimized for 800 MHz—are included, as are a fused DC power cord, an AC wall-plug adapter, and all mounting hardware.

The AR950 scanning receiver has a suggested retail price of $299.00.—ACE Communications, Monitor Division, 1070 East 106th Street, Indianapolis, IN 46256.

SYNTHESIZED FREQUENCY SOURCE. Teledata Systems' WAVEBOX 100 frequency source is easy enough to use for educational and production applications, and has exceptionally high accuracy and stability—10-ppm (0.001%) accuracy over a 1-Hz to 100-kHz frequency range—for an instrument in its price range. Foolproof thumbwheel switches are used to dial up the output frequency directly.

Intended for power, audio, telecommunications, and ultrasonic frequency testing, the WAVEBOX 100 has 1-Hz resolution over the entire range. The sinewave output is variable up to 20-volts peak-to-peak with a ±10-volt offset, and an auxiliary TTL/CMOS-level square-wave output is also provided. Total harmonic and non-harmonic distortion is better than 40 dB.

The WAVEBOX 100 synthesized frequency source has a suggested retail price of $325.00.—Teledata Systems, 68 Reservoir Road, New Milford, CT 06776.

COMPUTER TIME STANDARD. Providing reliable, traceable, and accurate time for IBM PC's and compatibles, Coordinated Time Link's CTS-10 computer time standard decodes time information from WWV/WWVH radio signals from the National Institute of Science and Technology (NIST). Those signals are synchronized to the NIST atomic clock. With the CTS-10 board installed, any application running on the PC automatically incorporates the correct time.

The time-standard device, which plugs directly into the PC, automatically accommodates daylight-saving time, leap years, leap seconds, and other time anomalies. Menu-driven software provides easy installation of user-defined port addresses and interrupt levels. The CTS-10 features time-zone selection, 12-/24-hour selection, adjustable on-screen display, and color selection. The correct time is maintained during power outages by on-board capacitive and battery backup. Remote diagnostics provide convenient evaluation and troubleshooting capabilities.

The CTS-10, including software, has a single-unit price of under $200.00.—Coordinated Time Link, 921 Bluebonnet Drive, Sunnyvale, CA 94086.

FREQUENCY COUNTER. Billed as an "affordable, general-purpose instrument with a high frequency resolution selection, 12-/24-hour selection, adjustable on-screen display, and color selection. The correct time is maintained during power outages by on-board capacitive and battery backup. Remote diagnostics provide convenient evaluation and troubleshooting capabilities.

range." B&K-PRECISION's model 1804 features measurement to 550 MHz, an 8-digit LED display, a low-pass filter, 1- and 0.1-second gates, and an overflow indicator. It has a direct range of 5 Hz to 100 MHz and a prescale range of 10 MHz to 550 MHz. Using the 1-second gate, it has resolution of 1 Hz in direct mode and 10 Hz in prescale mode; with the 0.1-second gate, direct and prescale resolutions are 10 and 100 Hz, respectively. Accuracy with the 1-second gate is ± time base accuracy ± 1 count; with the 0.1-second gate accuracy is ± time base accuracy ± 2 counts.

The counter's input impedance in the direct range is 1 megohm, shunted by less than 40 pF. For the prescale range, impedance is 50 ohms to match communications applications. Sinewave sensitivity for the direct range is 30-mV rms for 5 Hz–30 MHz; 50-mV rms for 30–80 MHz; and 100-mV rms for 80–100 MHz. Prescale-range sensitivity is 50-mV rms for 10–550 MHz. The input filter is a switch-selectable 100-kHz low-pass filter.

The model 1804 frequency counter has a suggested list price of $295.00.—B&K-PRECISION, Maxtec International Corporation, 6470 West Cortland Avenue, Chicago, IL 60635.

IC REMOVER. Using the IC Remover from Video Repair School, you can quickly salvage integrated circuits from surplus PC boards. With a little practice, a 40-pin IC and be de-soldered in as little as 8 seconds, and more than 300 IC's can be de-soldered in an hour.

The IC Remover is a set of eight special de-soldering tool bits that screw onto the tip of a Radio Shack or Ungar soldering iron. The tips fit 8- to 40-pin IC's, and can be used to remove IC's from double-sided and multilayered boards without damaging the board. Because the IC's are heated so briefly, they are not damaged either, and can then be reused in other applications.

The IC Remover set of eight IC-de-soldering bits (soldering iron not included) costs $89.95.—Video Repair School, P.O. Box 121, Glen, MS 38846.

SWR/WATTMETER. You can monitor SWR, forward, and reflected power at a single glance with the MFJ-815B lighted cross-needle SWR/wattmeter, which provides both peak- and average-reading functions. There are two user-selectable power ranges for forward and reflected power (2000 watts forward/500 watts reflected and 200 watts forward/50 watts reflected). The MFJ-815B shows SWR from 1:1 to 8:1, and covers 1.8 to 30 MHz with 10% accuracy. The instrument is

CIRCLE 15 ON FREE INFORMATION CARD

CIRCLE 17 ON FREE INFORMATION CARD

professional Tool case

Special
$49.95
Reg. $64.95

Model REIMS

• Two removable pallets hold over 60 tools
• Case top has built-in document holder
• Case bottom is partitioned into 3 areas

A handsome black case to organize and transport your valuable tools and instruments. This is the same quality case used by literally thousands of professional field engineers. Case is made of high impact polypropylene, and has snap-action key locks and a padded handle.

Size: 17" x 12½" x 6". Tools are not included.

To order call:
1-800-225-5370
In MA: (508) 682-2000

same day Shipment!
Money Back Guarantee!

Terms: Visa, MC, Amex, PO's from qualified firms accepted. Add $5.50 for packing and delivery.

Free contact east catalog

Contains thousands of products for testing, repairing & assembling electronic equipment. To get your free catalog, call (508)682-2000.

CIRCLE 55 ON FREE INFORMATION CARD

CIRCLE 16 ON FREE INFORMATION CARD

Contact East

no master • no camera • no film • no developer

Direct etch

DE-973 Master Assortment (59 pattern sheets) $34.95
(Add $2.00 shipping. NJ and CA residents also add sales tax)

Datak Corp. • 3117 Paterson Plank Rd. • N. Bergen, NJ 07047
CIRCLE 136 ON FREE INFORMATION CARD

December 1989

33

www.americanradiohistory.com
COVERED by MFI’s full one-year “No Matter What” guarantee.

The MFI-815B SWR/wattmeter costs $69.95.—MFJ Enterprises, Inc., P.O. Box 494, Mississippi State, MS 39762.

The BLX-10 hex-key set (Item No. 10138) has a suggested list price of $7.99.—Bondhus Corporation, 1400 East Broadway, P.O. Box 660, Monticello, MN 55362.

PROTOTYPING WORKSTATION. Offering flexibility for circuit design, Global Specialties’ PB-204 Proto-Board is a complete prototyping workstation housed in a metal case. Designers can quickly make alterations by re-routing connections, and circuit corrections can be performed in seconds.

The PB-204 offers a highly regulated, current-limited, triple-voltage power supply (+5, +12, and -12 volts) to safely handle op-amps, microprocessors, TTL, and CMOS design applications. The large board size has 2250 tie points, providing space for as many

There are four different sets available, each offering various bit combinations. Each set includes 26 interchangeable socket-bit tools to use with just two standard ¼" and ½-inch-square drive tools. For easy access, all bits and sockets snap-lock into place in a compact but rugged molded case.

The SOCKET SAVER sets have a suggested retail price of $37.00 each.—Bondhus Corporation, 1400 East Broadway, P.O. Box 660, Monticello, MN 55362.

CIRCLE 18 ON FREE INFORMATION CARD

CIRCLE 19 ON FREE INFORMATION CARD

CIRCLE 20 ON FREE INFORMATION CARD

www.americanradiohistory.com
MIDI PROJECTS

BP182—MIDI interfacing enables any sophisticated, regardless of the interface, to be easily connected together and used as a system with easy computer control of these music systems. Combine a computer and some MIDI instruments and you can have what is virtually a programmable orchestra. To get your copy send $6.95 plus $1.25 for shipping in the U.S. to Electronic Technology Today Inc., P.O. Box 240, Massapequa Park, NY 11762-0240.

CONTENTS

NEW LIT

1989-1990 MASTER CATALOG. Jensen Tools' full-line catalog is full of essentials for electronics technicians, servicemen, and hobbyists—tool kits and cases, power and hand tools, soldering and desoldering equipment, measuring devices, telecommunications products, computer and test equipment, vacuums and cleaners, and circuit board and static control equipment. The catalog contains 14 pages of new products. The Jensen 1989-90 Master Catalog is free upon request.—Jensen Tools Inc., 7815 South 46th Street, Phoenix, AZ 85044-5399; 602-968-6231.

I/O CONNECTOR CATALOG. The 12-page bulletin (No. EX-IO-1) titled Input/Output Data Communications Connectors describes Panduit's I/O D-subminiature and ribbon connectors, which allow reliable mass termination of 0.05-inch centerline spacing flat cable. The connectors, available in PCB or IDC types, are suitable for EIA RS-232-C and RS-449 applications. They are offered in various shell sizes and mounting styles, with either straight or right-angle pins. There is no charge for the catalog.—Panduit Corp., I/O Group, 17301 Ridgeland Avenue, Tinley Park, IL 60477-0981; 1-800-777-3300.

RF POWER MEASUREMENT. Bird Electronic's Quality Instruments for RF Power Measurement is a 60-page, full-line catalog that includes hundreds of photos along with detailed specifications, ordering information for thousands of products. In addition to their extensive line of wattmeters— including high-accuracy, peak-reading, high- and low-power, multipower-level, and low-frequency models—the brochure presents a wide selection of calibrators, plug-in elements, line sections, QC- connectors, RF loads, attenuators, switches, directional couplers, and accessories. The catalog is available at no charge to qualified service establishments, labs, engineers, and buyers.—Bird Electronic Corp., 30303 Aurora Road, Solon, OH 44139; 216-248-1200.

CATALOG OF CATALOGS. Eaton Corporation's Literature Review outlines 61 product catalogs and brochures that are being offered for Consolidated Controls, Cutler-Hammer, and MSC Products. Each catalog is described in detail, to simplify selection. They cover relays, sensors, instruments, switches, transducers, valves and actuators, and aircraft cockpit controls. The Literature Review is free.—Eaton Corporation, Aerospace & Commercial Controls Division, 4201 North 27th Street, Milwaukee, WI 53216; 414-449-7483.
HITACHI SCOPES AT DISCOUNT PRICES

V-212
$425
List $595
Save $170

20MHz Dual Trace Oscilloscope
All Hitachi scopes include probes, schematics and Hitachi's 3 year guaranty on parts and labor. Many accessories available for all scopes.

V-425
List $1,070
$849

V-1060
List $1,595
$1,359

ELENCO PRODUCTS AT DISCOUNT PRICES

20MHz Dual Trace Oscilloscope
$375
MO-1251

FREE DMM with purchase of MO-1251/1252 Scope

35MHz Dual Trace Oscilloscope
$495
MO-1252

PRICE BREAKTHRU on Auto Ranging DMMs
3 to choose from:
MDM-1180 $249
MDM-1181 $279
MDM-1182 $299

3.5/2 LCD Display
27 Functions
Auto Manual Ranges
Audible Continuity
Data Hold (MDM-1182)
1% Accuracy (MDM-1181)

Digital Capacitance Meter
CM-1500
$58.95
9 Ranges
1pf-20,000uf
5% basic accy
Zero control
with case

Digital LCR Meter
LC-1800
$125
Measures
Capacitance to 20GHz
Inductance up to 10MHz
Resists up to 200ohms

10MHz XT 100% IBM® Compatible
MODEL PC-1000
$595
5 Year Warranty

C & S SALES INC.
1245 Rosewood, Deerfield, IL 60015
(800) 292-7711 (312) 541-0710

BENCH DMMs

Soldering Station
Temperature Controlled
SL-30
$99
Digital display
Grounded tip
Overheat protect

Decade Blox
ST-265
$25
0-1000Hz AC
Works with most DMM

Solderless Breadboards
#9610 or #9620
$18.95

15 Day Money Back Guarantee
2 Year Warranty Prices subject to change
WRITE FOR FREE CATALOG

CIRCLE 109 ON FREE INFORMATION CARD

www.americanradiohistory.com
ROBERT IANNINI

LET'S FACE IT: MOST OF US HAVE BEEN THE victim of some form of theft at one time or another. The chances are that either you personally, your house, your car radio, or your whole car has at one time been robbed. And, while a car armed with an ordinary siren-type alarm is better-protected than if it had nothing at all, most people won't even look away from what they're doing when they hear a car alarm go off. And most thieves are not at all frightened by them either. More important, a thief can be out of the car so fast that by the time someone does something about it, it's too late.

That's where the Phasor Property Guard comes in. It's not just an alarm; it emits sound that is actually painful to listen to. It's sound output can be adjusted from an inaudible yet painful ultrasonic level, to an ordinary alarm-type sound, to a level that's so loud and irritating, that not even the world's best car thief could stand to listen to it as he tries to steal your car or car stereo. Be warned, though, that continued exposure to the sound can permanently damage your hearing.

Operation
The Property Guard is intended as a property- or home-protection device. It generates high-pressure ultrasonic sound that is triggered when an unauthorized intrusion is detected. The unit can be triggered by a trip wire or closed system such as taped glass windows and doors, where a break or open triggers the unit. The unit also contains a switch input that can be used with a pressure-sensitive switch activated when someone enters a room or building. A positive voltage from equipment such as an IR intrusion detector, motion detector, sound detector, etc., can also be used to trigger the unit.

The sound produced by the unit can cause certain adverse effects to the intruder. They may be paranoia, severe headaches, disorientation, nausea, cranial pain, upset stomach, or just plain irritating discomfort. Most people are affected in one way or the other, with younger women unfortunately being the more sensitive. External adjustments allow the user to select clearly audible sounds that serve as an alarm or the higher-frequency energy that produces the discomfort and other effects.

Sound-pressure level is less than 130 dB, and will not produce permanent damage if exposure is kept to a minimum. Therefore, prolonged exposure is not encouraged. A rule of thumb is to keep exposure down to less than 1 hour at any frequency below 20 kHz at a sound pressure of 105 dB or over.

The system consists of a central control unit that can power up to 6 remotely located transducers, which can be positioned to take advantage of potential entrance and intrusion areas. Be sure to take into consideration that each transducer can produce up to 118 dB at a distance of 1 meter. Sound-pressure levels are logarithmic, so every time the distance from a transducer is doubled, the sound pressure is attenuated by 6 dB.

Circuitry
If you look at Fig. 1, the detection circuits monitor inputs J1, J2, and J3, and, when they sense an intrusion, they energize control-relay RY1 via drive-transistor Q5. Note that the relay controls power (Vcc) to the driver stage shown enclosed in the dashed lines. Diodes D2-D6 guarantee full "off" and "on" functions of the circuit while D7 clips the voltage spike produced when the coil of RY1 is turned off. A set of relay contacts are
used to "hold on" the circuit once triggered. A pushbutton switch (S4) allows resetting of the circuit by grounding the positive "hold on" voltage at the diode junctions.

As for the driver circuitry (inside the dashed lines), a 555 timer (IC2) is connected as an astable free-running multivibrator whose frequency is externally controlled by potentiometer R7. Resistor R8 selects the range limit of R7, while R9 selects the duty cycle or symmetry of the pulses. Capacitor C6, along with those resistors determines the frequency range of the device. A low-range switch (S2) decreases the frequency by switching C5 into the circuit. A test switch (S3) connects C7 across C6, thus dropping the frequency to approximately 1/4, producing a clearly audible tone for verification and test purposes.

The square-wave output of IC2 pin 3 is resistively coupled to Q2 through R11. The collector of Q2 is DC biased by R12-a and R12-b. The square-wave output signal is then fed into power amplifier Q3 via D1. The collector of Q3 is DC biased by the choke-coil/transformer combination, L1. Resistor R14 helps stabilize the stage. The amplified square waves are fed to the transducer via resonating-coil L2 and DC-blocking-capacitor C10. The resonating coil is selected to tune out the inherent capacitance of the transducer at the upper frequency limit—usually around 20 kHz. A sinusoidal wave is generated that allows the transducers to operate at a higher peak power level than would the equivalent-voltage square wave because less power is going into the harmonics that would make up the square wave. Resonant peaking of the voltage is also obtained. The transducers, unlike their electromagnetic counterparts, have a tendency to draw high current at higher frequencies. That effect is compensated to an extent by power-resistor R23. Note the wave shape shown is at a fixed frequency of 20 kHz.

Timer IC1 is similarly connected as an astable running multivibrator, and is used to produce the sweeping voltage necessary for modulating the frequency of IC2. IC1 is activated by S5 (the switch-half of R1/S5), and the sweep repetition rate is controlled by R1 (the potentiometer-half of R1/S5). Resistor R2 limits the range of the repetition time. Resistor R3 selects the duty cycle of the pulse while capacitor C2 sets the sweep time range. A slow sweep range is selected by S1 connecting C3 to the circuit. The ramp-voltage output of IC1 at pins 2 and 6 is resistively coupled via R4 to inverter transistor Q1. The output of Q1 is led to pin 5 of IC2 and provides the modulation voltage necessary to generate the sweeping frequency action required. Note that the signal is easily disabled via S5, which is a convenience when initially setting or checking the range of IC2, as it elimi-
nates the constant varying frequency.

Power is supplied to the system by a conventional step-down transformer T1, bridge-rectifier BR1 and filter-capacitor C12. Power is controlled by S6, which is part of the frequency-control potentiometer R7. A neon indicator lamp (NE1) tells when the system is energized (R24 is a current-limit for NE1). A remote-control option is available via pins 1 and 2 of the terminal strip; pins 1 and 2 must be connected for normal operation. A three-wire line cord is shown, but a two-wire cord will suffice as the power supply voltages are under 25 volts.

Construction

The Property Guard consists of a driver board that’s assembled on a PC board and a detection board that’s assembled on a piece of perfboard. Both are installed inside a metal cabinet with various controls and other hardware mounted to it. A parts-placement diagram for the driver board is shown in Fig. 2. Most of the resistors are vertically mounted. Always leave at least \(\frac{1}{4} \) inch lead between the body of a component and the PC board.

As for the detection board, a suggested layout is shown in Figs. 3 and 4; simply mount the components on the perfboard and hardware the jumpers as indicated by the dashed lines. Assemble the resonator coil L2 by winding 40 turns of no. 18 enameled wire in a solenoidal format on a 2-inch long piece of \(\frac{1}{4} \)-inch outside-diameter cardboard form. Wrap the coil with tape, or hold the turns together with shellac, varnish, etc. The ferrite core (FER1) included in the kit.

FIG. 2—DRIVER-BOARD PARTS PLACEMENT. Most of the resistors are vertically mounted.

PARTS LIST

<table>
<thead>
<tr>
<th>Resistor Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1—(\frac{1}{4}) watt, 5%, unless otherwise indicated.</td>
<td>500,000 ohms, potentiometer/switch (S5)</td>
</tr>
<tr>
<td>R2, R3, R4, R5—10,000 ohms</td>
<td></td>
</tr>
<tr>
<td>R6, R15, R16, R17, R18, R20—1000 ohms</td>
<td></td>
</tr>
<tr>
<td>R7—5000-10,000 ohms, potentiometer/switch (S6)</td>
<td></td>
</tr>
<tr>
<td>R8—1500 ohms</td>
<td></td>
</tr>
<tr>
<td>R9—3900 ohms</td>
<td></td>
</tr>
<tr>
<td>R10—10 ohms, (\frac{1}{2}) watt</td>
<td></td>
</tr>
<tr>
<td>R11—470 ohms</td>
<td></td>
</tr>
<tr>
<td>R12—a and R12-b—220 ohms total (2110-ohm 3-watt resistors connected in series)</td>
<td></td>
</tr>
<tr>
<td>R14, R21—0.33 ohms, 5 watts</td>
<td></td>
</tr>
<tr>
<td>R19—100 ohms</td>
<td></td>
</tr>
<tr>
<td>R22—30 ohms, 2 watts</td>
<td></td>
</tr>
<tr>
<td>R23—15 ohms, 10 watts (see text)</td>
<td></td>
</tr>
<tr>
<td>R24—39,000 ohms</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitor Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1—0.01 (\mu) F, 25 volts, ceramic disc</td>
<td></td>
</tr>
<tr>
<td>C2—1 (\mu) F, 25 volts, electrolytic</td>
<td></td>
</tr>
<tr>
<td>C3, C9—10 (\mu) F, 25 volts, electrolytic</td>
<td></td>
</tr>
<tr>
<td>C5, C6—0.01 (\mu) F, polystyrene (use 0.0068 (\mu) F for higher frequency)</td>
<td></td>
</tr>
<tr>
<td>C7—0.047 (\mu) F, 25 volts, ceramic disc (use lower value for higher frequency)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1—IN4001 50-volt diode</td>
<td></td>
</tr>
<tr>
<td>D2, D3, D4, D5, D6—IN514 small signal diode</td>
<td></td>
</tr>
<tr>
<td>D7—IN4007 15-volt diode</td>
<td></td>
</tr>
<tr>
<td>D8—15-volt Zener diode</td>
<td></td>
</tr>
<tr>
<td>Q1—PN2907 PNP transistor</td>
<td></td>
</tr>
<tr>
<td>Q2, Q5—D40D5 NPN power transistor</td>
<td></td>
</tr>
<tr>
<td>Q3—2N3055 NPN power transistor, TO3 package</td>
<td></td>
</tr>
<tr>
<td>Q4—PN2222 NPN transistor</td>
<td></td>
</tr>
<tr>
<td>Q5—5-amp bridge rectifier</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transistor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1—PN2907 PNP transistor</td>
<td></td>
</tr>
<tr>
<td>Q2, Q5—D40D5 NPN power transistor</td>
<td></td>
</tr>
<tr>
<td>Q3—2N3055 NPN power transistor, TO3 package</td>
<td></td>
</tr>
<tr>
<td>Q4—PN2222 NPN transistor</td>
<td></td>
</tr>
<tr>
<td>Q5—5-amp bridge rectifier</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply voltages</td>
<td></td>
</tr>
<tr>
<td>Three-wire line cord</td>
<td></td>
</tr>
<tr>
<td>Terminal strip; pins</td>
<td></td>
</tr>
<tr>
<td>Ferrite core</td>
<td></td>
</tr>
<tr>
<td>Transformers,</td>
<td></td>
</tr>
<tr>
<td>Diodes,</td>
<td></td>
</tr>
<tr>
<td>Resistors,</td>
<td></td>
</tr>
<tr>
<td>Capacitors,</td>
<td></td>
</tr>
<tr>
<td>Switches,</td>
<td></td>
</tr>
<tr>
<td>Connectors,</td>
<td></td>
</tr>
<tr>
<td>Wire,</td>
<td></td>
</tr>
<tr>
<td>Hardware,</td>
<td></td>
</tr>
<tr>
<td>Sheathing,</td>
<td></td>
</tr>
<tr>
<td>Adhesives,</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
</tr>
</tbody>
</table>

Miscellaneous

- Line cord and retaining bushing, wire nuts, metal cabinet, perfboard (3½ × 4¼ inches), dual TO3 heat sink, TO3 mounting kit (see Fig. 5), tape, neon-lamp holder, small vinyl strap, no. 24 hookup wire, no. 20 hookup wire, hardware, 4-lug screw terminal strip, fuse holder, PC board, etc.

Note: The following items are available from Information Unlimited, PO Box 716, Amherst, NH 03031: assembled and tested driver board (Fig. 2), part no. PPG3A (includes all switches and controls), $59.50; assembled and tested detection board (Figs. 3 and 4), part no. PPG3B, $39.50; L1 multitap transformer, $34.50; L2 resonator, $19.50; TDI-TD4 Piezo directional transducers, $12.50 ea. For overseas operation on 220 volts, it is suggested that you use transformer no. STDWT, or obtain any 220-to-110-volt, 50/60 ohm 50 VA unit.
40

FIG. 3—A SUGGESTED LAYOUT for the detection board. Mount the components on perfboard as shown.

FIG. 4—DETAILED VIEW of the detection board. Hardwire the jumpers as indicated by the dashed lines.

should be inserted inside the cardboard tube. Note that L2 is secured to the perfboard by a piece of foam tape and a small nylon strap. Bring the leads out from T2 as shown Fig. 3. Note the wiring of relay RY1. Use appropriate pieces of vinyl-covered no. 22 wire for leads from the relay to the board.

Assemble and wire the cabinet as shown in Figs. 5 and 6. Be careful to allow sufficient clearance for the contacts of the terminal strip. Note that a hole about the size of a half-dollar must be made in the cabinet directly under Q3 for the wires to pass through. Use the drawings as a reference for the location of all holes and components. It’s a good idea to test-position each component before drilling or cutting. Note the mounting of power resistors R14 and R23; R14 must be sealed in RTV or electrical putty to prevent contact of 115V circuits. Do not connect the lead to Q3’s base at that point.

Assemble Q3 with its mounting kit as shown in Fig. 5, and mount it on the heatsink. Note that the body of Q3 must be insulated from the heat sink. Check it with a meter to prevent damage to the circuitry.

Assemble the choke-coil/transformer combination L1 by winding 15 turns of no. 18 wire between pin 1 and 18 on the bobbin, 10 turns between 18 and 6, and 5 turns between 6 and 13. Wind all sections in same direction. Those are taps for setting the output level desired. Assemble the ferrite “E” cores with the brass “U” bolt to secure it to the cabinet.

Since the choke is for feeding DC current to Q3 and to maintain a blocking effect to the AC signal, an air gap may be required if more than 4 transducers are powered by the system. It is suggested that you wind 10 more turns on the core and space the ferrite “E” cores with a piece of scotch tape placed one layer thick on each leg of one of the “E” core pieces. Note that the preassembled units do not use an air gap.

Checkout

Check your wiring for accuracy, the quality of solder joints, short circuits, pinched wires, debris, etc. Now place a jumper across contacts 1 and 2 of the terminal strip, and ground J3. Plug the unit into a 120-VAC outlet and turn it on. Check TP1 for 3–4 volts higher than what’s shown in Fig. 1 (that’s because there’s no load on it now). Also check for 15 volts at TP3. Relay RY1 should be deenergized, and TP2 should be at zero volts. Momentarily unground J3 and then reconnect it; RY1 should energize. Measure 15 volts at TP2. Push the reset switch (S4) and make sure TP2 drops to zero.

Momentarily ground J1 and again note RY1 energizing. Measure 15 volts at TP2; push S4 and make sure TP2 drops to zero. Momentarily apply a 5–10-volt level to J2 through a 1K resistor and repeat the previous step. That verifies the detection stage of the device.

Energize the system by removing
the ground connection to J3. Turn S5 to “off,” rotate R7 fully clockwise, open up S2, connect a scope to the collector of Q2, and note the approximate wave shape as shown; the voltage will be approximately 15 volts p-p. Those settings should be at the maximum frequency obtainable. If the frequency varies much from 20 kHz, it will be necessary to change the value of R8 or C6; a higher value for lowering the frequency and vice versa.

Rotate R7 fully counter-clockwise and note the frequency dropping from 20 kHz to 10 kHz. Close S2 and note frequency range dropping from approximately 10 kHz to 5 kHz. Check the action of test-switch S3 and make sure that all frequencies decrease by a factor of 4 to 5.

Preset all controls for maximum frequency, and turn on S5 to initiate sweeping action. Close S1 and rotate R1 fully counter-clockwise. Note the frequency sweeping from 20 kHz to approximately 25 kHz. Sweep rate will increase by approximately \(\times10 \) when S1 is open. A change will also occur when varying R1. That checks the frequency and sweep ranges of the device. Note that the frequency readings may vary, and can be compensated for, if necessary, by changing circuit values.

Connect the base of Q3 to the driver board via jumper lead (N). Connect up to 4 transducers in parallel to contacts 3 and 4 of the terminal strip. Note that if only 1 or 2 transducers are used, it will be necessary to change R23 from 15 ohms to 40 ohms for output compensation.

Apply power and connect a scope across the transducer(s). The wave shape should be close to a sine-wave. The wave shape deteriorates as the frequency is lowered. Double check the test points with the system in full operation, noting the values given in Fig. 1.

Adjust the ferrite core inside L2 for maximum voltage at maximum frequency and secure it in place. The core may not be needed if four or more transducers are used, as the induction of the coil by itself is usually sufficient.

You will note that L1 is shown with several tap connections intended to produce more output. Tap 18 is the factory setting and is intended for continuous use; the voltage across the

(Continued on page 76)
WE LEFT OFF LAST MONTH WITHOUT finishing the discussion on the circuitry operation. So let’s finish describing the circuitry, and then get to building and aligning the unit. Before we begin, though, please note that there are a couple of corrections that you’ll want to make to last month’s article.

First, in Fig. 3, pin 13 of IC3 and its corresponding channel-2 component, IC16, should be connected to +5 volts for proper operation. Second, the correct value for R9 and R209 should be 15K. When we left off we were explaining Fig. 5, so would you please refer back to that figure in last month’s issue.

Ramp-generator IC12 is used to generate a slowly varying DC voltage for slow fades, wipes, or key-ins. It is fed either positive or negative through R44. The speed (rate) of the ramp depends on the setting of the speed control R42. By varying R42, either a slow or fast key transition can be obtained. R47 is used where manual control of key transition is desired. Q3 and Q4 feed either +5 or −5V DC to R42, depending on the logic level at the junction of R37 and R36.

Figure 6 shows the video switching circuits; IC17–IC20 are CMOS analog SPDT switches. Each has three sections that can be switched at over 1-MHz and can handle signals up to 5 MHz with 50 dB isolation. They are controlled by a logic level at the input. All switches are in “up” positions (N.C.) when logic level is zero, and “down” (N.O.) when logic level is high.

Channel-1 video is input to pin 15 of IC17 (IC1 is fed from that point as well), where it is split into video and sync. IC17 is driven by IC2 in the keying section. Sync and video are available separately at J2 and J7. In Fig. 6, an “EF” followed by a letter represents an emitter-follower circuit; one is shown in detail inside dashed lines in Fig. 6. IC18-a selects either input video or effects video (derived externally from video 1). IC18 selects either CH1 or a DC level between −0.5 and +1.5 volts from R115 used in a fadeout; it is blanked during sync intervals so as to not upset sync levels. Transistors Q100–Q102, D100, and R112–R118 generate the required waveform.

IC18-c and IC20-c are configured as a DPDT switch to switch between CH1 and CH2 for direct fades, wipes, or key-ins (genlock sources are required). Switched video from both channels is fed to fader R125. The output of R125 is taken to summing amplifier IC21, together with sync from IC17-b and IC19-b (sync is selected for the channel in use). Frequent use of IC’s output may upset sync levels.

The PLL on the keyer board (IC5) need be only 50 mA, but it should be well filtered. A suitable power-supply is shown in Fig. 7.

The two PC boards can be constructed using the Parts-Placement diagrams of Figs. 8 and 9. Foil patterns for the two PC boards are provided in PC Service. Just be very careful when soldering, so that you don’t create any problems for yourself when you go to calibrate the unit. Check off each part as you install it, and inspect your work as you go along to minimize headaches later on.

After you’ve assembled and checked out the two boards, you must wire them along with the switches, RCA jacks, control potentiometers, and power supply as shown in Fig. 10. There are a lot of connections to be made, so be patient, take your time, and do a careful job.

Any suitable control-panel layout can be used. Just make sure that leads
are kept as short as possible and separated from each other to minimize crosstalk. The prototype that you see pictured in this article is mounted inside a metal cabinet. While a metal cabinet is preferred for its shielding, any other kind will do, as long as everything fits inside.

Checkout and alignment

After the unit is all together, and you’ve inspected the boards for soldering defects, turn the unit on and make sure that none of the IC’s get hot. Then check all points for proper voltages—+5, -5, and +12. You will need an oscilloscope for the following checks, and we will go over the procedures for CH1 only, but the procedures are identical for CH1 and CH2.

Apply a 1-volt p-p negative-sync NTSC video signal to J1, and verify negative sync pulses at about 5-volts p-p at IC1 pin 1. Adjust R6 so that IC2
FIG. 7—THE SCENE SWITCHER REQUIRES ±5 AND +12-VOLTS DC. The prototype's power supply is shown here.

Note: A kit consisting of the two PC boards, the parts that mount on them, and the front-panel potentiometers is available from North Country Radio, PO Box 53, Wykagyl Station, New Rochelle, NY 10804, for $137.50. The kit does not contain other parts that mount off the board, such as the switches, RCA jacks, power supply components, project case, etc. A set of two PC boards is available separately for $27.50. Add $2.50 to either order for postage and handling. New York residents must include sales tax.

FIG. 8—VIDEO-KEYING BOARD parts-placement diagram. Solder the resistors and capacitors first, and then the ICs.

pin 6 (IC2-a) shows an 8-µs pulse and adjust R8 so that pin 9 (IC2-b) shows a 53-µs pulse. Check for a 60-Hz vertical-sync pulse at IC1 pin 3. Adjust R10 for 0.5-0.6-ms pulses at IC3-a pin 6, and adjust R12 for a 16-ms pulse at IC3-b pin 9. (Start out with R12 at its minimum-resistance setting). Make sure that S10 (sync selecting) is in the CH1 position, and then check for sync pulses at pin 6 of IC4. Connect the scope to IC5 pin 13 and, using a non-metallic tool, adjust C22 so that the pulses are synchronized to the video signal. Check for 60-Hz pulses at IC5 pin 12.

Connect the scope to IC8 pin 4, and adjust R35 for a 126-kHz sawtooth wave. Now connect the scope to IC11 pin 6, and adjust R57 for a 480-Hz sawtooth. Verify a 15.7-kHz horizontal sawtooth at the junction of R31 and the emitter of Q2, and a 60-Hz vertical sawtooth across C42. Now check the waveform at the wiper of R49; it should be a mixture of two of the four previous waveforms, depending on the settings of S1, S2, and R49.

Check for ±2.5 volts at the wiper of R47, and also for between +4 and −4 volts at IC12 pin 6. When you activate S4, the voltage should slowly

continued on page 54
It's easy to build a low-cost, professional-type PC-board etching system.

TONY LEWIS

MAKING A PRINTED-CIRCUIT BOARD by simply plunking the copper-clad board into a bowl of etchant is usually an irritating and time-consuming project, even if you try to speed things up by heating the etchant in a Pyrex bowl on the stove. But build yourself a professional-type etching system that has automatic heater control and air-burst agitation, and your PC boards will be done before you can figure out how to drill or cut the holes. Best of all, the total cost will be about half that of a comparably equipped commercial system.

System design

Etching a printed-circuit board is usually a time-consuming task for even the smallest of boards, because copper etchants require two things to work properly: heat and agitation. Traditional methods of heating the solution include warming its container on a hotplate or stovetop, immersion in a hot-water bath, or even by placing the etchant in a microwave oven. Of course, due to the chemical action of the etching solution, only plastic or glass containers are used—usually large flat bowls with the copper board immersed in the fluid. That is an acceptable method for single-sided boards, but double-sided boards must be removed frequently and turned over to monitor the etching process. Also, the etchant emits fumes when heated; and although the fumes aren’t dangerous, they really don’t belong in the kitchen.

Effective etching also requires agitation, which is usually provided by constantly moving the container and the board back and forth while they are being heated. Since the board is probably in the horizontal position, dissolved copper is likely to pile up on the board unless you are very enthusiastic in your agitation. So etching a typical board may take from 20 to 60 minutes, even if you continuously push the copper-clad board around the bottom of the container of hot etchant. Between the agitation and the heat, it’s not a pleasant job.

Build a tank

To minimize the etching time, while also reducing your concentration and effort, you should use an etching system that incorporates its own source of heat and agitation. Systems with heaters and air bubblers (for agitation) sell for about $60 and
The major components of the PC-board etching system are shown in Fig. 1. The individual bits and pieces of plastic that are used to make the tank are shown in Fig. 2. For best control of the etchant's temperature, the solution heater should have an adjustable thermostat. Although heaters are available through mail-order firms, they can also be purchased locally from stores that carry aquarium supplies. Whatever you use, make certain that the heater has a device that allows it to be clipped to the side of the etchant tank.

Depending on the initial temperature of the solution, a 100-watt heater will raise the temperature 100°F in 30 to 45 minutes. If you purchase a heater with a smaller capacity—one with a lower wattage rating—the heat-up time for the solution will be extended proportionally.

The air bubbler and its hose can also be purchased either through the mail or from local aquarium-supply stores. The cost should be under $10. The air bubbler should be sized for at least a 15-gallon aquarium: The larger the flow capacity, the better the performance. Make sure that you buy enough clear plastic air hose so that it will fit inside the tank and also
allow the bubbler to be placed in a convenient location.

The Plexiglas used for the tank should be $\frac{3}{16}$-$\frac{5}{16}$ inch thick. Thinner sheets tend to crack too easily, and thicker sheets are harder to work with. You'll need about three square feet of the Plexiglas, preferably in a 1 x 3-foot sheet form. Always buy more Plexiglas than required, to allow for practice and mistakes. Of course, you'll want to use clear Plexiglas so you'll get a good view of the PC board when it's immersed in the etchant. If you live in a metropolitan area, there's probably a local plastics dealer listed in the phone book who can supply the Plexiglas. If not, most hardware stores carry Plexiglas—or can advise you where to get it.

Other items that you'll need include Plexiglas adhesive and a cutter. To build the tank you'll also need a long metal straightedge, a carpenter's or Tee square to draw precise corners, a table or a surface having a sharp edge, and possibly some small C-clamps. A variable-speed drill, assorted drill bits, and sandpaper or a file will also come in handy.

Figure 3 shows the tools and materials that you'll need. The Plexiglas is the "dark" sheet upon which everything else is placed. It's dark because it's supplied with protective paper stuck on both sides to make sure that the Plexiglas doesn't get scratched during construction.

The tank first

The tank should be designed on paper first, then cut and assemble the components from the Plexiglas sheet. Don't hesitate to stop and make a new
part if you make an error while cutting the components, because once Plexiglas is glued together it's glued for good. If you follow the procedures outlined below, you should be able to assemble a leak-tight working system in less than a weekend.

If you use the Plexiglas component sizes shown in Fig. 2, you'll end up with a 10 x 11 x 2-inch tank that sits on a 10 x 6-inch base, and a carrier having an 8 x 2-inch base. The two small strips of Plexiglas on top of the carrier's base form a groove for the bottom of the PC board to rest in.

Working with Plexiglas

Plexiglass isn't hard to work with as long as you're aware of some of the tricks of the trade. The first step, as shown in Fig. 4, is to carefully measure and mark your sheet of Plexiglas. Since the Plexiglas comes with a peel-off paper backing on both sides, simply mark the cutting layout directly on the backing. Because you will be cutting out more than one section at a time, a long straightedge, preferably metal, is necessary. Also, a carpenter's square is invaluable for both drawing the cutting lines and for making perfectly square corners.

Whenever possible, line up the sections having common dimensions; for example, the left and right sides and the base should have a common width. Don't forget to account for the thickness of the Plexiglas when determining the dimensions. Check and double-check all the dimensions, and double-check the corners for squareness. Also check the precut edges and corners of the Plexiglas itself; don't assume that they're cut straight and square at the factory.

Before cutting the sheet of Plexiglas, practice on an extra piece or two just to get the hang of the special cutting technique. Actually, the term "cutting" is a misnomer because you will score rather than cut the Plexiglas. If you try to cut the Plexiglas using a conventional saw you will quickly discover one of Plexiglas' annoying characteristics: it melts. If you try to cut or drill the plastic quickly it begins to melt locally in the area of the blade or the drill bit, and will quickly foul the saw or drill. By slowly scoring the surface multiple times, then breaking the Plexiglas on the score line, you can create a smooth edge with very little effort.

Figure 5 shows the tools needed to cut the Plexiglas: a plastic knife (which is not made of plastic, but is designed to cut plastic—available for under $4), and a metal straight edge to guide the knife as it scores a groove. Draw the knife along the line you marked on the paper in a smooth, slow fashion, without pressing down too much. As a general rule, score the Plexiglas a minimum of 36 times in one direction, then a minimum of 36 times on the same line in the opposite direction. Before stopping, check the edges of the plastic on both ends; the groove should be about one-half the depth of the sheet of Plexiglas.

Next, break the edge. As shown in Fig. 6, position the plastic with the scored line on the edge of a table. Use one hand and a straightedge, or a similar solid object, to hold the plastic down. Using your other hand, press firmly down on the part to be broken off. The Plexiglas will bend slightly, then suddenly snap in two. Inspect the edges. If they're not perfectly smooth, they can be sanded or filed down. Do not leave any ridges on the edge, because they will cause problems when you're trying to seal the tank.

Generally, sections longer than six inches are hard to cut properly the first time when hand-holding the Plexiglas. Clamps and a straightedge, rather than hand pressure, are better for holding long pieces.

Drilling Plexiglas isn't difficult if you use a variable-speed drill and a little patience. Mark the area where the hole is to be drilled, then drill a pilot hole using a small-diameter bit. Note that the faster you drill, the more likely the Plexiglas will be to melt and wrap itself around, and clog the drill bit. After drilling the pilot hole, start drilling slowly with a ⅛-inch bit. Don't press down too hard, or the plastic may crack. For best results, place the Plexiglas on a piece of soft wood when drilling.

As shown in Fig. 7, straighten a length of the plastic air-bubbler hose and drill small-diameter (0.04—0.06-inch) holes spaced about one inch apart. Seal one end of the hose with silicone or RTV sealant and allow it to dry overnight. To ensure that the hose will bubble correctly, connect it to the air bubbler and test the hose underwater in a sink. Drill more holes if there are not enough bubbles, but keep the holes evenly spaced so that the printed-circuit board will not get too much agitation in one section.

Tank assembly

Remove any ridges from the edges of the Plexiglas pieces before gluing them together. Although it is possible to use epoxy or other adhesives to hold the sections together, we recommend an adhesive that is specifically intended for use on Plexiglas. The stuff is not really an adhesive as much as it is a solvent. Capillary action causes the adhesive to rapidly spread between the two pieces of Plexiglas. The adhesive slightly dissolves both pieces of Plexiglas, which then solidifies into a "weld." A small amount of adhesive will go a long way, so you'll need a convenient dispenser, such as a syringe (hypodermic), which is available from drug stores for about $1 each. The syringe allows precise dispensing of the amount and location of the adhesive. Once you have the Plexiglas sections aligned, slowly inject the adhesive at the joint without pushing the Plexiglas out of position. The adhesive will flow under the joint and begin to "melt" the plastic slightly, which helps seal the two Plexiglas pieces together watertight—even if they have small imperfections on the edges.

Note: Many states require a doctor's prescription in order to purchase a syringe. If you live in one of those backward-thinking states, purchase a syringe-type fine-oil dispenser, which is really a syringe whose tip has been blunted.

Figure 8 shows a square being used to hold two sections of Plexiglas perpendicular to each other while being glued. Make sure that the two sections are as square as possible, or you'll have trouble fitting the other sections later. After applying the adhesive, press the two sections together and hold them in position for a minute or two. Then allow them to set up undisturbed for at least 15 minutes or longer. When the adhesive dries completely, the joint will be as solid as the Plexiglas itself.

Another reason to use Plexiglas adhesive is that it dries completely clear, which makes for a better appearance of the final product. Once you've applied the adhesive to one side of the joint, go back and apply it to the other side of the joint, and allow it to set up. That will give the joint a better seal and added strength.

Place one of the larger Plexiglas
FIG. 7—STRAIGHTEN THE PLASTIC AIR HOSE and drill a series of small holes spaced approximately one inch apart.

FIG. 8—SQUARE THE PLASTIC SECTIONS using a machinist's square. Then, apply the Plexiglas adhesive.

FIG. 9—THE HOLES DRILLED in the bottom of the carrier allow the air bubbles to pass through to the printed-circuit board.

FIG. 10—HANG THE HEATER from the side of the tank, connect the air bubbler, and check for an even bubble distribution.

sides on a flat surface. Using the previous procedures, position one of the smaller sides so that it is perpendicular to the flat piece. Note and correct any ill-fitting edges, and also make certain that the two pieces are of the same height. When you are sure that the pieces have a good fit and are properly supported, slowly begin injecting the Plexiglas adhesive on the inside interface of the two pieces. Note that the adhesive will probably move faster along the interface than you do. When all of the interface has been injected with adhesive, press down lightly on the vertical piece for a minute or two while maintaining its perpendicular position. Release the pressure and recheck for proper position. The adhesive will set up in about 15 minutes, but allow at least 30 minutes before attempting any more work. After drying, the interface should look clear, with a few minor bubbles. If a bubble appears to run from one side to another, a second injection of adhesive may be necessary. When you're satisfied with the adhesive injection process on one side of the interface, repeat the process for the other side.

With one small side in place, repeat the procedure for the other small side. Your tank should now have three sides, and be capable of standing upright. Position the partially assembled tank over the center of the base section. Once again, make sure there's a tight fit between the Plexiglas pieces before applying adhesive to both sides. Then install the two small supports in the bottom of the tank. But before installing the supports, drill two evenly spaced ¼-inch holes in each support for the air-bubbler tubing. Temporarily set the supports in the bottom of the tank (using tape to hold them in place) and position the last side on top. Check to make sure that the last side will fit tightly with the base and the two smaller sides, and that the supports do not cause the piece to bulge out. It's too late to correct measuring errors after the supports are glued in place.

When you're satisfied with the fit all around, glue the supports to the base and to the side. (You will not be able to glue them to the last side that's installed.)

Run the bubbler's hose through the holes in the supports—try not to create kinks in the hose. Install the final side of the tank after the hose is properly installed and all the other joints are sealed from both sides.
With the tank in a vertical position, first inject the adhesive to the interface at the base and press down lightly while holding the sides together. Then, place the tank on its side and apply adhesive to the two side interfaces. To ensure a good seal, place a heavy object (about five pounds) on top to apply even pressure.

Checkout

The tank is no good if it can't hold the etching solution, so check it out thoroughly. After the tank has had a chance to set up overnight, place it in a sink and slowly fill it with hot water while watching for leaks. If leaks do occur, drain and dry the tank and reapply Plexiglas adhesive in the areas of the leaks. If necessary, a small amount of adhesive can be poured along the inside corners to enhance sealing from the inside. If you discover that you have a gap between two Plexiglas pieces that the adhesive will not seal, then epoxy or contact cement may have to be applied from the outside to stop the leak. Do not use silicone or RTV sealer, because they may weaken or leak after repeated exposure to the hot etchant.

Another possible way to solve the leaks that the less-than-perfect craftsman is bound to get is to mix some DATAKOAT liquid, or other 100% acrylic coating, with some solvent for acrylic adhesive. The resulting material should seal even relatively large leaks.

The printed-circuit board carrier, shown in Fig. 9, is easier and less critical to make than the tank. Cut the base, the two top pieces, and the handle. To ensure that the carrier will move in and out of the tank without hitting the walls, the width of the carrier's base is slightly less than the width of the two small sides. As shown, glue the two top strips over the center of the base so that they provide a groove to hold the bottom of the circuit board as it rests in the tank. Carefully drill a series of evenly spaced 1/4-inch holes in the base assembly. Then, glue the handle on top.

Finally, as shown in Fig. 10, install the solution heater and bubbler to test your system. The carrier should be able to move in and out of the tank without hitting the air hose or the heater. With the carrier in place, and the bubbler running, the bubbles should be evenly distributed along the base of the tank.

Custom size

The main advantage to building your own etching system is that you can customize the tank to your needs; it should be customized for your anticipated PC-board sizes. There is no need to oversize the tank because that wastes etchant and takes longer to heat up. If your boards are usually wide and short, or you don't need a tall tank, it is possible to redesign the tank so that the heater is inserted horizontally near the bottom of the tank, above the bubbler hose. An ordinary hole saw from the hardware store will do the trick. In that case, one of the supports will need a corresponding hole drilled to accommodate the heater. However, a horizontal heater assembly is really not advised unless absolutely required because the area around the heater/side joint might be prone to leaks.

Using the system

Two types of etchants are available for hobbyist and technician use: ferric chloride, and sodium or ammonium persulfate. Ferric chloride is generally available and is economical to use. However, it should be used only in a well-ventilated room, and it can stain badly—which can be a problem if the etching tank is upset. The persulfates come in crystal form and have several advantages over ferric chloride in that they will not attack stainless steel. They are totally effective when cold, solutions are clear when first used, and they give an indication of their copper absorption by turning blue. Like ferric chloride, the more the persulfate solution is reused, the slower the etching process will become.

Another important advantage of persulfates is that they are not as aggressive as ferric chloride in the etching process, and will not undercut the PC-board's traces. That is especially important if you work with printed-circuit board patterns having line widths of 0.032-inch or smaller, such as memory boards. (Nothing is quite as frustrating as having the etchant dissolve some lines on one side of a board while you were examining the other side.)

For comparison purposes, four 2 x 4-inch single-sided boards having identical patterns were etched in heated ferric chloride and ammonium persulfate, both with and without the bubbler running. For ferric chloride, the etching time with the bubbler off was 16 minutes; 9 minutes with the bubbler on. For ammonium persulfate, the etching time was 19 minutes with the bubbler off, 11 minutes with the bubbler on. (Etching times will vary, depending upon the board pattern, the number of times the etchant was reused, etc.) Also, monitoring the etching process in the tank was easier using the ammonium persulfate solution, because it is clear.

Note that our test etching times are considerably faster than when agitating a Pyrex dish over a heater or the stove. Often, the bubbler results in a 40% reduction in etching time compared to simple hand agitation. Also, keep in mind that the faster a board is etched, the less likely the chance that the etchant will attack the sensitizer and undercut edges of the traces, thus ruining the board.

If you'd like to use persulfate as an etchant, it is available from Kepro Circuit Systems, and Active Electronics. Other major mail-order firms such as Datak, carry powdered ferric chloride and others carry ferric-chloride solutions.

Those of you who choose to work with ferric chloride will want a way to get rid of the spent etching solution. The best way is to mix it with a solution of lye (sodium hydroxide). The copper and iron will precipitate. The remaining solution is salt water and excess lye. Pour the salt water down the drain. Let the copper and iron hydroxide dry out, and then dispose of with your tin cans, etc.

Our etching system should give you years of trouble-free service, while saving you many hours of time spent in etching PC boards. If you want additional information on making PC boards, see the following articles that have appeared in Radio-Electronics:

"Making Your Own PC Boards" (Feb. 1988); "Designing Double-Sided PC Boards" (Sep.—Oct. 1985); "Etch Your Own PC Boards" (Dec. 1982, Feb. 1983). Also, Bob Grossblatt has been covering PCB-board design and production in his "Drawing Board" column since August of this year, and Don Lancaster's "Hardware Hacker" column in this issue looks at a novel approach to PC board design. Now you have no excuse for not putting the PC Service pages to work, or building that design you've been working on and meaning to prototype!
ELECTRONICS HAS CERTAINLY CHANGED THE WAY WE LIVE. IF nothing else, it has made the holiday shopping season a little easier to deal with! The array of consumer products is so great, that you are sure to find something for everyone.

We’ve compiled a subjective list of what we would buy for our families—or ourselves—from the plethora of products available in the consumer-electronics market. We looked at video and audio products, computer-related products, and electronics for people who take their electronics seriously. We didn’t pick products for their price, nor did we pick them because they were the “best.” We picked the products because we felt they offered something unique, something fun, or something innovative.

We don’t pretend that our list is comprehensive—we’re sure that we’ve neglected to mention some of the products that deserve recognition. Despite that, we hope that this guide proves helpful by, at the very least, giving you some new ideas.

Video products

- **Integrated Video System**
 For those on an unlimited budget, we’d like to suggest the Bang & Olufsen Video System 5000, an integrated video system that is capable of multiroom operation. It can be teamed with any Bang & Olufsen audio system to form an interactive audio/video system in anywhere from one to sixteen rooms. The Video System 5000 integrates a 26-inch TV monitor and a Super-VHS digital VCR with a motorized, remote-controlled stand and an audio/video remote control. As you might expect, the Video System 5000 doesn’t come cheap. But if you’re contemplating installing a through-the-house A/V system, that probably doesn’t matter much. The entire system, including the motorized stand retails for $4290.

- **LCD projection TV**
 For those more concerned about picture size than high-tech convenience, Sharp’s LCD projection system is the answer. It’s quite a change from traditional projection sets. First of all, it’s portable. The projector weighs about 30 pounds, and projects a bright, clear picture on either a wall or screen. The unit’s magnification can be varied, producing a picture from 25 to 100 inches (measured diagonally). The key to the system’s size and performance are three small LCD panels inside the unit. The 3-inch twin TFT (Thin Film Transistor) panels form the red, green, and blue components of the video picture. The projector does not require any convergence adjustment, and it features two video inputs and and Super-VHS compatibility. The price for this first-of-its kind TV is $6500.
Self-Powered Subwoofer

Perhaps you already have a big-screen TV but you don’t feel that you’re getting the big-screen feeling. Maybe you’ve even tried surround sound and still don’t feel that you’ve been successful in creating the home theater experience. Don’t give up yet. Audiophiles and videophiles have created a demand for accurate low-frequency sound reproduction. Pioneer Electronics has answered the demand with their S-W1000 switchable, self-powered subwoofer and center-channel speaker system. The S-W1000 subwoofer system features a magnetically shielded design and low-distortion 12-inch woofer powered by a built-in switchable power amplifier. An extra amplifier is provided for center-channel Dolby Pro-Logic Surround Sound applications. Switchable roll-off frequency settings of 50, 90, or 140 Hz are available. The subwoofer system is available at a suggested retail price of $500.

Talking Remote Control

While we hope that no one reading this magazine has trouble programming his VCR, we’re sure you’ve heard family members muttering under their breath as they go through the sometimes frustrating procedure. Until now, you’ve probably never heard your VCR talk back. But the Optonica Voice Coach remote control from Sharp will vocally guide users through the proper programming procedure. The Voice Coach comes with the Super-VHS VC-G990U VCR. Full remote operation is featured, including remote eject. The VC-G990U, with the Voice Coach, is available for $999.95.

Videotape Editor

As camcorder sales have skyrocketed over the last couple of years, the need for an easy-to-use editing system has become evident. DirectED Plus, from Videonics, combines the functions of a video editor, titler, special-effects generator, and video librarian. DirectED works with just about any VCR that uses an infrared remote control. Both a recording and a playback VCR are required to assemble your finished video production. DirectED Plus sells for $549.95. For professional video producers, ProED, a computerized multifunction edit controller is available for less than $1000.

VCR Survival Kit

VCR maintenance is simple. Simply keep it clean. Unfortunately, not many people follow even that simple advice. You can help them along with the GE Survival Kit. The kit includes a head cleaner, a dust cover, and a GE T-120 video tape. While we generally don’t recommend head cleaners for VCR’s, giving someone this kit might do the favor of stressing the importance of cleanliness for long VCR life. The GE Survival Kit retails for $19.95.

Audio products

10th Anniversary Walkman

The last ten years have seen a lot of changes in audio. Most people would point to the CD player as the most important development of the decade. But we think that the Sony Walkman has done more to bring an appreciation of good
The Walkman introduced a whole segment of society to good stereo sound. Of course, in doing so, it made people realize how bad some of their audio sources were. Take airplane headphones as an example. They're uncomfortable to begin with, and sound awful, too. Air travelers will be happy to discover Jetman, a small audio amplifier with ear-bud style mini stereo headphones. A small microphone module plugs into the headphone jack of a typical airline seat, filters the sound, and converts it to electronic signals. The signals are amplified by a stereo amplifier and output to stereo headphones. When you can't find any of the airline's music that suits your tastes, you can always plug Jetman's earphones into the Walkman that you brought on board. Jetman sells for $34.95

• Big Sound, Small Speakers
The major change in home-stereo systems over the last decade is that they've gotten smaller and less obtrusive. That's to be expected with the electronics portion, but getting big sound from small speakers always proved to be a problem. The Bose Acoustimass 3, however, seems to have solved the problem. Acoustimass technology, developed by Dr. Amar Bose, uses two moving air masses (acoustic masses) rather than a moving driver cone to launch low-frequency sound energy into the room. The Acoustimass module can be hidden anywhere in a room, even under furniture. Two curved wedge-shape enclosures, measuring 3½ × 4½ × 4½ inches, complete the loudspeaker system, which sells for $599.

• Amplified AM/FM Antenna
When most people think of stereo components, antennas usually don't enter into things. That may change with the Parsec ARC, or Amplified Receiving Component. The ARC is contains an amplified, directional AM antenna and omnidirectional FM antenna. The amplifier uses GaAsFET circuitry for low-noise, high-gain operation. The FM section provides a gain of better than 30 dB, AM better than 15 dB. Both AM and FM sections are tunable for optimum performance, and the gain is adjustable. Since most receiver manufacturers pay little attention to the AM sections of their receivers, an antenna that offers a way to improve AM reception is a welcome sight. The suggested retail price of the ARC is $149.95.

• Hi-Fi Phono Plugs
If you're looking for some "stocking stuffers" for the audiophile in your family, you might consider Pro-Fi connectors from Neutrick. These connectors incorporate a special retracting ground shell. Thus, the ground makes contact first, and breaks contact last, ensuring a noise-free connection of equipment. Grounding noise is not only annoying, of course, but can also cause speaker damage if the amplifier is operating while the connections are being made. The connectors range in price from $17.14 to $24.96, depending on finish.

Computer Products

• Palm-top Computer
It's finally happened: You can buy a PC-compatible computer that fits in your shirt pocket. The Atari Portfolio, which the company calls a "palm-top" computer, weighs one pound and is smaller than a VHS video cassette. The keyboard is too small to touch type on, but it's arranged in a standard QWERTY format for quick data entry. The Portfolio comes with 128K of RAM standard, and plug-in solid-state RAM cards can add up to 128K of memory. The screen is a 40-line by 8-line liquid-crystal display. A wide variety of add-ons are expected soon, including a parallel interface that will allow for connection to full-sized PCs. A Lotus 1-2-3 work-alike spreadsheet is built in, as are standard pocket-computer functions such as an address book, appointment calendar, editor, and more. This may be the first pocket computer that really makes sense. It sells for $399.95.

• Tower Computer Case
While small computers make some people happy, others are always looking for more room. For example, we're always playing around with some new card, and always running out of slots or drive bays. We think we've finally found a case for our computer that will help: Jameco Electronics' JE2010. It not only accepts all

continued on page 78
Using the switcher

Switches S5–S9 determine exactly what signal is applied to each side of the fader control. For example, suppose a fade to black is desired. In that case, FADE SELECT (S7) would be set so that CH1 video passes directly to one side of FADER CONTROL (R125). S8 would be placed in the fixed position, which applies a fixed DC level (set via the FADE LEVEL CONTROL) to the opposite side of the FADER CONTROL. By rotating the FADER CONTROL, a mix of CH1 video and the DC fade level is sent to the output amplifier, and manual fading is performed.

If a fade from CH1 to CH2 is desired, both CH1 and CH2 fade selectors must be placed in the normal position. If a fade from CH2 to CH1 is desired, S7 and S8 must be placed in the fixed and normal position. S9 swaps CH1 and CH2, reversing the connections to each side of the fader control. If the fader control is set at one extreme, and CH1 is coming through, then moving S9 to the "reverse" position instantly routes CH2 into the output amplifier.

In the "keyed" positions, S5–S9 apply a waveform to electronically switch the video for wipes, transitions, and fades. Switches S1 and S2, in combination with R49 determine the particular pattern. Switch S3 selects the manual fade/key mode where R47 manually controls the effect, or

you can check with a monitor. Adjust C104 for optimum sharpness. Adjust C107 for correct burst phase, as indicated by proper flesh tones on a video image. Place S8 in the "fixed" position, and vary R125. You should be able to fade to a level set by R115.

You will see the waveform will change, and R42 should vary the rate of change. Set R45 at the center of its range, and set S3 to manual.

Place the scope at the collector of Q5; you should see the keying waveform. The waveform will disappear if you rotate R49 to its extremes, and you will see either 0 or +5 volts at either extreme.

Place S5–S9 in the "normal" position; you should get video at J9 that

the auto-key mode where the ramp generator produces the effect; S4 initiates the transition or effect, but has no effect in the manual position of S3. Switches S5 and S6 select the effects channel or other video inputs that are synchronized to CH1 or CH2.
CMOS PLL's

R.M. MARSTON

The 4046B MICRO-POWER PHASE-LOCKED Loop (PLL) is one of the most versatile of all CMOS IC's. PLL's can be used in frequency synthesis, tracking, multiplication, and coherent communication systems. Although the PLL concept has been around for some time using discrete components, the IC was needed to make the idea practical.

The 4046B also has a number of useful, independently accessible elements, very similar to the layout of the 555 IC timer. Its VCO (Voltage-Controlled Oscillator) is the most versatile and cost-effective version available, producing a symmetric square wave with an upper frequency limit over 1 MHz, and capable of being scanned over a 1,000,000:1 frequency range. It can be gated on and off via an INHIBIT terminal, and produces a biphase output when used with one of the two internal Phase Comparators (PC's). Several practical applications will be covered later.

4046B basics

Figure 1 shows the internal block diagram and pinouts of the 4046B, with two different PC's, a Zener diode, and the VCO. PC1 is a simple XOR gate with good noise rejection, but needs square waves on pins 3 and 14, and has only a narrow capture-frequency range (span). PC2 is an edge-triggered logic/bistable memory version with a tristate output, can be driven by grossly asymmetric waveforms on pins 3 and 14, and has very wide span but somewhat poor noise rejection. The reason is that an XOR gate, being level-triggered, must have a lower frequency response than the edge-triggered/bistable version.

The VCO is wide-range, with a maximum operating frequency over 1 MHz determined by the voltage on pin 9, the capacitor between pins 6 and 7 (50 pF minimum), and R1 and R2. Also, R2 presets the minimum operating frequency, and can be eliminated in many applications. The symmetric square-wave VCO OUT appears on pin 4.

The VCO is, pin 9, has almost infinite input impedance, and is driven from a high-impedance source. The source follower can be externally monitored on pin 10 without loading that source. The INHIBIT terminal, pin 5, is normally tied to VSS, enabling both the VCO and source follower, both are disabled when pin 5 is grounded. The 5-volt Zener provides supply regulation if needed.

PLL basics

Figure 2 shows the basic 4046B PLL configuration, including frequency multiplier/synthesizer capability. Each PC has two inputs, IN

An in-depth look at a particularly versatile CMOS IC, the 4046 micropower CMOS phase-locked loop.
of a PLL alone. The output is directly proportional to the phase difference between \(\text{IN1} \) and \(\text{IN2} \), smoothed via the Low-Pass Filter (LPF), and fed to \(\text{IN2} \).

If the VCO frequency is less than that of \(\text{IN1} \), the PC output goes positive, and the resulting filtered voltage increases the VCO frequency until it tracks \(\text{IN1} \) in frequency and phase. If the VCO frequency is greater than that of the external input, the PC output decreases, causing the VCO output to phase-lock to \(\text{IN1} \).

That may not seem immediately useful. However, the VCO generates a clean, symmetric output waveform, even if the external input waveform is noisy and asymmetric. Also, because the LPF has a finite time constant, the VCO tracks the mean phase and frequency of a rapidly-varying external input. A PLL can track and clean up slowly-varying external inputs, or track the center frequency of an FM signal and provide a demodulated signal at the PC output.

The VCO frequency adjusts so that the divider output frequency matches that of the external input, and the VCO frequency equals \(N \times f_{IN} \). If the external input comes from a precision source (a crystal), signals of any frequency can be synthesized with equal precision using the appropriate \(N \) value. Some practical versions will be examined later.

VCO circuits

Figure 3 shows the simplest way to use the 4046B VCO. The voltage-control input (pin 9) is tied permanently high and the circuit acts as a basic square-wave oscillator, with variable frequency over a 10:1 range via \(\text{R2} \). The VCO output (pin 4) is tied to the PC input (pin 3); if pin 3 is allowed to float, the PC's resonate at

Figure 3—SIMPLE VARIABLE-FREQUENCY (200 Hz–2 kHz) square-wave generator.

Figure 4—WIDE-RANGE VCO, fully variable from 0 Hz–1.4 kHz.

Figure 5—RESTRICTED-RANGE VCO, variable from 60 Hz–1.4 kHz via \(\text{R2} \).

Figure 6—A BIPHASE WIDE-RANGE VCO.

Figure 7—GATED WIDE-RANGE VCO, using either \(\text{S1} \) or an external inverter.

Figure 8—AN ELECTRONIC SIREN. For normal wailing tone, short \(\text{D1} \) and open \(\text{R2} \). For fast rise and slow fall in frequency, include \(\text{D1} \) and \(\text{R2} \).

Figure 9—PHASOR-SOUND GENERATOR CIRCUIT.
about 20 MHz and superimpose a signal on the top part of the VCO output waveform.

Figure 4 shows how to use the 4046B VCO in wide-range mode. Here, R1-C1 determines the maximum frequency obtained, and R2 controls the actual frequency via pin 9. The frequency falls to a few cycles per minute with pin 9 grounded. The effective control range of pin 9 varies from roughly 1 volt above ground to 1 volt below VDD. Also, R2 has a dead range (hysteresis) of several hundred nV at either end of its span, eliminated by D1 and D2. The minimum operating frequency is reduced to zero by R2 on pin 12, in which case the VCO output randomly settles in either logic state.

Figure 5 shows a restricted-range VCO; R2 going to ground determines the minimum operating frequency. Here, fmin is determined by R2-C1, and fmax by C1 and R1-R2 in parallel. By suitable selection of R1 and R2, the restricted-range VCO can span any range from 1:1 to near-infinity. The VCO can generate 180 degree out-of-phase square waves by connecting the VCO output to the PCI input, taking the external input (pin 14) high, and taking the anti-phase output from pin 2, as in Fig. 6.

The 4046B VCO can be disabled by taking INHIBIT (pin 5) high. That lets the VCO be gated on and off externally. Figure 7 shows how the VCO can be either manually gated via pushbutton on pin 5, or by an external inverter from a 4011B NAND gate.

Sirens and sound-effects

Figure 8 shows the 4046B VCO in a siren circuit. For a conventional wailing tone, short D1 and leave out R2. When S1 is closed, C1 charges exponentially via R1, and the VCO frequency rises from zero to a maximum value. When S1 is opened, C1 discharges via R2 and the operating frequency decays to zero. The VCO output is AC-coupled to the speaker via C4 and Q1. For a “quick-start” tone, leave D1 unshorted, and include R2. In that case, C1 discharges rapidly to \(\frac{1}{2}VDD \) via R1-R2 and D1 when S1 closes, and discharges via R3 when S1 is opened.

Figure 9 shows a “phasor” sound generator. The 4011B astable is gated by S1 to produce 4-millisecond pulses at 70-millisecond intervals. Each pulse rapidly charges C2 via R3-D2, producing a high tone that decays fairly slowly as C2 discharges via R5; the process repeated on the arrival of each pulse.

Miscellaneous VCO circuits

Figure 10 shows a 220-kHz FM generator. The internal Zener on pin 15 of the 4046B provides a stable output to the 3140 op-amp, biased at about 2 volts via R2-R3; the 2-volt VCO input on pin 9 of the 4046B is an amplified version (\(\times 20 \)) of the audio input, that modulates the VCO frequency.

Figure 11 shows a “run-down” clock generator used in dice and roulette games. When S1 is pressed, C1 charges via D2, while Q1 is biased on via D3-R5 and effectively connects R7 between pin 11 and ground. The VCO operates in the tens of kHz,
generating clock pulses until S1 is released. At that point, Q1 turns off and the VCO timing is governed by R8.

Cl slowly discharges via R4, and the VCO frequency slowly decays to zero in about 15 seconds.

Figure 12 shows a simple but very useful 4046B VCO “universal” clock or square-wave generator, spanning 0.5 Hz–50 kHz in three switch-selected bands. A biphase output is provided, along with either free-running or gated modes.

Figure 13 shows a PLL wide-range signal tracker combined with a “lock detector” in a precision narrow-band tone switch. The signal tracker captures and tracks any input within the approximate span 100 Hz–100 kHz, provided the input on pin 14 switches fully between logic-0 and logic-1. The circuit uses PC2, and can lock to any signal within the VCO span due to the wide range it provides.

Filter R3-R4-C2 is a sample-and-hold that determines signal capture, settling, and tracking times. The maximum VCO frequency is determined by R1×C1, the minimum by (R1+R2)×C1, and the pin-9 voltage for both. The VCO span, capture, and tracking ranges go from the VCO frequency with pin 9 grounded, to the maximum value with pin 9 at VDD. In the lock detector, each PC output is a series of pulses with widths proportional to the phase difference between the two PC inputs. The PC1 output is low and the PC2 output is high, except for those pulses.

When the PLL is locked, the two PC outputs are almost perfect mirror images, and the output of IC1-a remains low, driving the output of IC1-b high and lighting LED1. If the loop isn’t locked, the output of IC1-a is a series of positive-going pulses that rapidly charge C1 via D1-R6, forcing the output of IC1-b low, keeping LED1 off.

Figure 14 shows a 4046B with either a 4518B dual synchronous up/down counter in a ×100 frequency prescaler, or a 4017B decade counter as a ×1–×9 frequency multiplier, depending on which counter IC is connected between A and B. The prescaler can upconvert 1–150 Hz in to 150 Hz–15 kHz out; the 4518B contains a pair of decade counters configured as a divide-by-100. The frequency multiplier generates an output, the frequency of which is ×1–×9 that of the input. The 4017B is replaceable by a string of programmable decade counters to give a wider 10 Hz–1 MHz range.
LAST MONTH, WE EXAMINED ELECTROMECHANICAL relays in depth. This month, we’ll examine solid-state versions, including how to build your own. Like the electromechanical variety, solid-state relays use low-level signals to switch isolated loads. However, instead of mechanical contacts, solid-state models use transistors or thyristors (SCR’s or triacs) to switch a load.

Control-to-load isolation is provided either by optoisolators or transformers. Solid-state relays are available in AC and DC versions; Fig. 1 shows typical block diagrams. All approaches shown use an optoisolator to separate the control and drive segments. Figures 1-c and 1-d need a rectifier and filter for AC input. Figures 1-a and 1-c use a drive circuit, an NPN transistor, Zener transient suppression, and reverse-biased inductive load diode for DC output. Figures 1-b and 1-d use a zero voltage switch, an RC snubber filter, and a triac for AC output.

Virtually all solid-state relays are Single-Pole Single-Throw, Normally Open (SPST-NO) devices, where the outputs turn on in response to a control voltage. The majority take operating power from the control I/O, although some require separate DC logic power. The simplest DC input circuits use an LED optoisolator and series current-limiting resistor. The resistor is usually sized for a 5-volt logic input, and results in a specified “ON” range of 3–6 volts DC. For wider operating ranges (typically 4–32 volts DC), the resistor is replaced by a constant-current diode. Then, AC input circuits rectify and filter the control input before applying it to the LED. Typical AC/DC LED currents are 5–20 mA.

AC and DC outputs

The optoisolator photocurrent is amplified and used to drive whatever output device the relay is connected to, whether a transistor for DC outputs, a thyristor for AC, or a power MOSFET for either. The power for the drive circuitry is taken either from the output load or is supplied separately. In some MOSFET designs, the photocurrent is sufficient to drive the output device. Table 1 summarizes typical specifications.

Normally, DC output devices like those in Figs. 1-a and 1-b use an NPN
transistor, and may include a Zener diode across the output for transient suppression. The transistor will drop some voltage in the “ON” state, and the drive circuit will need some current to operate. Typical output drop is 1–2 volts at the full rated load current, while the “OFF”–state leakage may range from approximately 10 µA–1 mA.

Most AC output devices include zero-voltage-switching circuitry. Logic detects when the AC load voltage crosses zero (changes polarity) and delays the triac turn-on pulse until then. The triac turns on at the next zero crossing after the input goes high. Once triggered, it remains on until its current goes to zero. Zero-voltage and zero-current switching minimize transients and Electromagnetic Interference (EMI). The RC snubber in Figs. 1-b and 1-d suppresses rapid voltage changes that can inadvertently turn on the thyristor.

In some applications, having the output turn on instantly is desirable. Relays referred to as “random turn-on” are designed without zero-voltage switching. Turn-off still occurs at zero current, due to the inherent latching effect of thyristors. As with DC output relays, the thyristor drops voltage while conducting, while the drive circuitry requires power to operate. In addition, the snubber passes AC leakage in the “OFF” state. Typical “ON”–state voltage is 1.6 volts, while “OFF”–state leakage is 2–10 mA for 60-Hz power.

With recent advances in power MOSFET’s, solid-state relays can be designed with lower “ON”–state voltage drops, and greatly reduced “OFF”–state leakage. These MOSFET’s offer bidirectional current flow, near-zero gate-drive current, no inherent source-to-drain offset volt-

FIG. 1—SOLID-STATE RELAY INPUTS AND OUTPUTS may be designed for AC/DC. All approaches shown use an optoisolator to separate the control and drive segments.

FIG. 2—DUE TO NEAR-ZERO gate current, power MOSFET’s can be driven directly by a series stack of photodiode junctions.

FIG. 3—A PHOTODIODE junction stack, known as a photovoltaic generator, from International Rectifier. It’s constructed using IC-fabrication techniques, and exposes a series of photodiodes to LED illumination. No operating power is required from the load.
Transformer coupling allows faster switching. The oscillator frequency is typically 1–3 MHz, resulting in switching times as low as 1 µsec. Optoisolators exhibit slower response, with times for DC versions typically 10–100 µsec. They can be designed for slightly higher temperatures, being free of LED limitations. However, achieving breakdown voltages above 1.5 kilovolts is easier using optical techniques.

Hybrid relays
Hybrid relays marry reed relays with a solid-state power output. Figure 5 shows a thyristor version; DC outputs are also offered. The hermetically sealed reed contacts switch only low power, and last 10 million operations or longer. The turn-on time is that of the reed relay, about 1 msec. Other hybrid relays are the reverse, using a solid-state input amplifier driving a reed-relay output, the obvious advantage being high input sensitivity. The term “hybrid” sometimes describes construction technique, rather than method of operation. In some catalogs you’ll find hybrid solid-state relays with no mechanical components at all.

Self-powered and buffered relays
So far, all the relays that have been discussed until now have been “self-powered,” in that they take operating power from the applied signals. All models, whether optoisolated, transformer coupled, or hybrid, require approximately 5–50 mA at their inputs. Some, notably thyristor-output relays with zero-voltage switching, also take operating power from output loads, although none require separate power connections.

Buffered relays offer improved input sensitivity at the expense of needing separate DC power, and are usually used in systems that already include DC power supplies (not as stand-alone devices). Figure 6 shows a buffered DC-output relay. The input circuitry and the LED are powered from a separate logic supply, allowing the logic input current to be typically 25–250 µA.

Package styles
Solid-state relays are generally grouped into DIP’s, power relays, and I/O modules. DIP relays are available with transistor (DC), thyristor (AC), or MOSFET (AC/DC) outputs, and with optoisolator or transformer coupling. Most power relays are used to switch AC power, and use thyristor switching with optoisolator coupling. Transistor (DC) outputs and transformer coupling are also available. I/O modules are always optocoupled, and don’t offer MOSFET outputs. Fig. 7-a shows an IC DIP version, Fig 7-b a power version, and Fig. 7-c an I/O module. The DIP version has transistor (DC), thyristor (AC), or MOSFET (AC/DC) outputs, and either optoisolator or transformer coupling. Most power types use thyristor switching with optoisolator coupling for AC power, transistor outputs and transformer coupling are available. I/O modules are always optocoupled, and don’t offer MOSFET outputs. Their characteristics are summarized in Table 1.

DIP relays look just like IC’s; most often, 8- or 14-pin DIP’s. Rated load currents are a fraction of an ampere, with voltage ratings from 60–300 volts. Since many can fit on a PC board, they’re very handy for interfacing logic signals to the outside world in digital control systems. MOSFET-output relays also make excellent replacements for reed relays in measurement and data-acquisition applications. Edge-mounted SIP (single-inline package) relays also are made. Military-grade relays are pack-
TABLE 1—SOLID-STATE RELAY OUTPUT SPECIFICATIONS

<table>
<thead>
<tr>
<th>Output</th>
<th>AC/DC</th>
<th>Package Style</th>
<th>Max. Load Currents</th>
<th>Max. Load Voltages</th>
<th>Voltage Drop (on) at Rated Load</th>
<th>Leakage Current (off) At 25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bipolar Transistor</td>
<td>DC</td>
<td>Dual Inline (DIP)</td>
<td>500 mA 50 mA</td>
<td>60 VDC 250 VDC</td>
<td>1 to 1.5 V</td>
<td>20 μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Input/Output Module</td>
<td>3.5 A 1 A</td>
<td>60 VDC 200 VDC</td>
<td>1.2 to 1.75 V</td>
<td>10 μA to 1mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power (High Voltage)</td>
<td>to 5 A</td>
<td>250 VDC</td>
<td>1.5 to 2 V</td>
<td>5 to 15 mA</td>
</tr>
<tr>
<td>Thyristor (Triac or SCR)</td>
<td>AC</td>
<td>Dual Inline (DIP)</td>
<td>0.3 to 1 A RMS (to 3 A RMS with heat sink)</td>
<td>140 or 280 V RMS</td>
<td>1.5 V max</td>
<td>10 μA to 1mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Input/Output Module</td>
<td>3.5 A RMS</td>
<td>140 or 280 V RMS</td>
<td>1.5 V max</td>
<td>2 to 5 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power</td>
<td>10 to 40 A RMS</td>
<td>140 to 480 V RMS</td>
<td>1.5 V max</td>
<td>2 to 15 mA</td>
</tr>
<tr>
<td>Power MOSFET</td>
<td>AC/DC</td>
<td>Dual Inline (DIP)</td>
<td>100 to 500 mA (Some to 1 A)</td>
<td>60 to 300 V</td>
<td>Resistance 0.25 to 50 ohms</td>
<td>Resistance typically 100 megohms</td>
</tr>
</tbody>
</table>

FIG. 7—THE THREE most common solid-state relay styles are the (a) IC DIP, (b) power, and (c) I/O module varieties.

Power relays look very similar to the one in Fig. 7, common sizes being about 2-3 inches on a side. Rated load currents are 10-40 amps, making them suitable for switching all but the biggest industrial power loads. Smaller power relays are also available, including some PC board versions. I/O modules are used primarily in microprocessor-based data acquisition and control systems, although they can be used in other applications where they

FIG. 8—THIS BASIC DC IN, DC OUT I/O RELAY switches up to 5 amps at 60 volts DC. It's built around a Motorola 4N37 optoisolator, which passes up to 30 mA output with a 10 mA LED current, while providing 1.5 kilovolts peak I/O isolation.

FIG. 9—ADDING A DIODE BRIDGE and filter capacitor converts the control input to AC.
Plug a Friend into Radio-Electronics
this Christmas ... and Save $11!

This Christmas give an electrifying gift ... plug a friend into Radio-Electronics and brighten his whole new year! Whether electronics is his livelihood or his hobby, your gift will sharpen his focus and illuminate the whole spectrum of electronics throughout the coming year.

Radio-Electronics will keep him informed and up-to-date with new ideas and innovations in all areas of electronic technology ... computers, video, radio, stereo, solid state technology, satellite TV, industrial and medical electronics, communications, robotics, and much, much more.

He’ll get great plans and printed circuit patterns for great electronic projects. In just the last year, Radio-Electronics has presented voice scramblers, video switchers, frequency standards, wireless audio links, radiation monitors, function generators, and much more.

In coming issues, Radio-Electronics will present practical, educational, and money-saving projects like: a helium-neon laser ... a lighting controller ... a video timebase corrector ... a video noise processor ... a light-beam communicator ... an antenna amplifier ... and many others!

PLUS ... equipment troubleshooting techniques ... circuit design ... reports on new technology and new products ... equipment test reports ... in-depth coverage on computers, video, audio, shortwave radio ... and lots more exciting features and articles.

SAVE $11 ... OR EVEN $22 ... For each gift of Radio-Electronics you give this Christmas, you save a full $11.00 off the newsstand price. And as an R-E gift donor, you’re entitled to start or extend your own subscription at the same Special Holiday Gift Rate — you save an additional $11.00!

No need to send money ... if you prefer, we’ll hold the bill till January, 1990. But you must rush the attached Gift Certificate to us to allow time to process your order and send a handsome gift announcement card, signed with your name, in time for Christmas.

So do it now ... take just a moment to fill in the names of a friend or two and mail the Gift Certificate to us in its attached, postage-paid reply envelope. That’s all it takes to plug your friends into a whole year of exciting projects and new ideas in Radio-Electronics!
plug into mating multi-channel I/O boards; their normal size is about 1-2 inches on a side.

“Output” modules convert logic signals to AC/DC switched outputs, acting just like the relays examined thus far. They plug into racks of 4, 8 or 16, and can be connected to a computer or microprocessor to control power devices drawing up to 3.5 amps, or to drive power relays for heavier loads. “Input” modules do the reverse.

When to use solid-state relays

The advantages of solid-state relays are fast switching and no mechanical contacts to wear, burn, pit, or corrode, hence clean switching with no contact bounce, and immunity to shock and vibration. Their life should be unlimited, barring electrical surge or overload damage. Their low drive requirements often enable them to be driven directly from logic IC’s.

Some have features like noise suppression or overload sensing. The latter shuts the relay off until it’s reset, letting it act as a circuit breaker. Their I/O isolation equals that of mechanical versions, and there are no inductive coil surges. AC-output relays with zero-voltage and zero-current switching minimize EMI.

Their major disadvantage is that their outputs are never completely ON/OFF, as shown in Table 1. If the “ON” resistance or “OFF” leakage is of prime importance, use a mechanical device. Also, when switching power, remember that the load is never “OFF.” The several-mA leakage current of AC power relays is a very real shock hazard.

Switching AC loads

AC loads can be switched using either thyristors or power MOSFET’s, the latter generally limited to loads under 1 amp. A thyristor is a regenerative, positive-feedback device which, upon triggering, conducts until the current through it goes to zero. When a thyristor is in the “OFF” state, the voltage across it changes rapidly, capacitive coupling within can produce a sufficiently high pulse to cause conduction. The RC snubber in Figs. 1-b and 1-d reduces the effect.

AC relays specify a maximum rate of change of typically 100–200 volts/μsec for power devices, and higher (500–1000 volts/μsec and above) for DIP versions and other small models. Normally, 100–200 volts/μsec is adequate for most loads, but inductive loads need special caution. Since a thyristor turns off when its current reaches zero, and an inductor’s current lags its voltage, the supply voltage won’t be zero when the relay turns off. When the relay opens, the supply voltage will appear across the thyristor, producing a very high rate of change.

Purely inductive loads are a problem for any relay or switch. Fortunately, most real loads such as motors are both inductive and resistive. For highly inductive loads, select a relay with a high rate-of-change rating. Some AC power relays specify maximum motor horsepower or a minimum load power factor.

Incandescent lamps have high initial currents due to the cold filament resistance. Most relays specify peak as well as steady-state surge current. For lamps, a relay should be capable of handling five times the lamp current for 1 sec. Transformers can also draw high initial currents, so you should allow for a one-half cycle surge current equal to the line voltage divided by the resistance of the transformer primary (I = E/R). Finally, most thyristor relays are designed for use only at or near 60-Hz.

Building your own

Although solid-state models are readily available at moderate cost, you may want to design your own. That will not only afford greater packaging flexibility, but will let you tailor I/O characteristics. Low-cost optoisolator IC’s make designing your own easy. Figure 8 shows a basic DC I/O model built around a Motorola 4N37 optoisolator, which passes up to 30-mA output with a 10-mA LED current, while providing 1.5 kilovolts peak I/O isolation.

The output characteristics depend mainly on the output transistor; the type you use depends on whether you want high power or minimum leakage current. With the 2N5337 shown, the relay can switch up to 60 volts and 5 amps DC; OFF-state leakage is a few microamps. Zener protects against voltage transients and inductive turn-off. The input resistor is suited to 10 mA at 5 volts; increase for higher inputs. The LED drops 1.1 V, so:

\[R = \frac{(V_{IN} - 1.1 \text{ volts})}{10 \text{ mA}} \]

The value isn’t critical, although operation at lower currents will reduce available output current; the LED can handle up to 60 mA continuously. Figure 9 shows modifications for AC control. Building a zero-voltage-switching AC output relay is almost as easy, as in Fig. 10. The Motorola MOC3031 optoisolator provides built-in zero-voltage switching and triac driver circuitry optimized for 120 volts AC. It also provides up to 7.5 kilovolts peak I/O isolation, but you’ll need to keep both the input and output well separated.

Figure 10 is from the Motorola spec sheet; R1 is selected for 20 mA at 5 volts. Or, you can add a bridge and filtering for AC control; R2, R4 and C1 provide “snubbing” of inductive loads. If the load is very inductive then increase R2 to 360 ohms. The breakdown voltage of C1 must be higher than the peak line voltage.

Output voltage and current capabilities depend on the triac used. The circuit shown will switch 120 volts at 15 amps RMS, if the triac is heat-sink mounted. Substitute optoisolator MOC3041 and triac MOC3040 for 240 volts RMS. OFF current through the snubber will be 400 μA at 120 volts. If the OFF leakage is important, and you’ll be switching resistive loads like heaters or incandescent lamps, then the snubber can be reduced or eliminated.
Are there sonic differences among CD players?

LAST MONTH WE LOOKED AT THE AUDIO community's reactions, pro and con, to the introduction of the digital compact disc. Many dedicated audiophiles and LP collectors complained that, compared to LP's, many—if not most—CD's sounded harsh, constricted, and unmusical. Because the first transistor amplifiers produced the same sort of complaints, I tended to dismiss the critics as simply having emotional or financial vested interests in LP technology. Ultimately, it turned out that many CD's did sound bad—not because the music had been chopped into digital bits as the critics claimed, but simply because many recording and record-mastering engineers were unable to adapt to the different demands of the new medium. The many excellent-sounding CD's currently available are sufficient proof that there is nothing inherently wrong with the CD format.

Player problems
One of the claims made in favor of the compact disc is that individual players that conform to the CD standard will all sound essentially alike when working correctly. In other words, a given data stream on a disc will produce from any player a wide-range audio signal with vanishingly low distortion, noise, and wow and flutter.

Leaving aside acknowledged differences in the players' ability to resist external shock and vibration and to ignore varying degrees of disc flaws, do all the machines sound essentially alike, as many of the more technical critics claim? As you might suspect, dedicated audiophiles claim that each brand and model of player sounds different. Their view is not surprising since those on the outer audio fringes regularly perceive differences that are not only imperceptible to ordinary mortal ears, but also usually defy measurement. But given the release of so many sonically flawed CD's, is it safe to say that the marketplace hasn't been subjected to equally flawed players?

Aside from the regular annual tests run by Consumer Reports there have been two fairly rigorous comparative-listening tests conducted by Stereo Review, a large mainstream hi-fi publication. The first tests appeared in the January 1986 issue and involved a disparate group of six players ranging in price from an under-$200 Emerson to a $1,300 Sony. The second series of comparative-listening tests (in the December 1988 issue) was performed on six pricey ($750–$2,500) "state-of-the-art" machines. All tests were carefully controlled, using specially qualified listeners working with the sophisticated ABX test device.

Test techniques
Two players at a time were connected to the ABX test unit's input; its output was connected to a very-high-quality reference audio system. During each trial in the series of listening tests, a logic circuit in the ABX comparator randomly chose one of the two CD players to serve as X. The listener was instructed to take as much time as he liked switching between A, B, and X. His task was to decide whether the sound of player A or B was identical to that of the machine-selected X. The ABX's microprocessor kept track of its random choice of X for subsequent comparison with the listeners' written choices. For each listener, every player was compared with every other player for a total of 50 trials.

The beauty of the ABX system is that the listener is not forced to make value judgments, but is asked only to indicate whether he hears a difference between components A, B, and reference X, when X can be either A or B. If the listener can reliably identify A or B as sounding different from (or the same as) X, then it can be said that there is an audible difference between the two components under test. If the choices come out no better than chance, it is evident that the listener is not hearing a difference, even though he might believe he is.

Test results
Since I would rather not drag the reader through a rather dull discussion of the design and statistical mathematics of the ABX double-blind test procedures, let it suffice to say that I have no complaints with either the test techniques or the statistical analysis used in the two series of tests. However, I do have a mild quarrel with some of the article's conclusions.

As with previous tests, the most...
Our stupendously major new breakthrough for this month is a brand new way of doing hacker printed-circuit boards that I'll call the direct toner method. Believe it or not, all you need is an iron and your favorite word processor.

This new process is ridiculously faster, simpler, and cheaper than any of the old ways. Since it's so new, we sure could use your personal help in further testing and debugging.

But first, let's review some of the older ways of making printed-circuit boards. We might start off by going over some...

Circuit-board fundamentals

Printed circuit boards first became popular in the early 1950s because of their overwhelming advantages over point-to-point wiring. The PC wiring pattern was always the same, virtually eliminating wiring errors. Stray inductance and capacitance were much lower and far more uniform. And the manufacturing could be totally automated. Production times became much shorter, and labor costs dropped sharply. So did size and weight.

A printed-circuit board often will consist of an insulating substrate that has one or more layers of conducting patterns placed on or in it. Figure 1 shows some popular forms of printed-circuit boards.

You will find three main substrate materials in use today. They include phenolic, FR-4 (or G-10) glass epoxy, and CEM-1 composite epoxies. While phenolic is the cheapest, it does chip and shatter easily, and should be heated before punching or drilling. It is often used for single-sided layouts in toys, appliances, and any other high-volume applications. For us hackers, phenolic is nearly useless.

Glass epoxy is pretty near the same stuff that a fiberglass boat is made of. It has great electrical and mechanical properties, and is nearly ideal for any double-sided and multilayer boards. Hacker disadvantages are that glass epoxy costs more and dulls drills at an amazing rate. Carbide drills are just about mandatory for all but the shortest of production runs.

The CEM-1 material has only a pair of fiberglass layers impregnated into an epoxy body. Because it's cheaper and easier to drill than glass epoxy, it's a good choice for hacker use. It also drills and punches well. Glass-epoxy boards are well suited for all but the most precise and exacting needs. They even come in a wide variety of colors.

The simplest variation is a single-sided board. The substrate is most often 1/16th of an inch thick, and has a single layer of copper foil laminated to one surface only. Two popular thicknesses of copper are used. One-ounce copper is around 0.00135 inches thick; two-ounce copper is double that, or around 0.00270 inches thick.

Thus, one-ounce copper is a tad over one mil thick, and two-ounce copper is somewhat over two mils thick. Two-ounce copper is normally reserved for higher-current uses or where extreme reliability is needed.

On a traditional single-sided circuit board, most of the components get mounted on the bare side of the board, giving us a component side and a foil side to work with. That allows a dip, a reflow, or wave soldering of all the parts at once. The components tend to pull the foil toward the substrate, rather than trying to peel the foil from the board.

Single-sided boards limit both your minimum size and how much you can connect where, unless you go to an unacceptable number of interconnecting jumpers. Because of that, most modern boards are double-sided, and have foil on both surfaces. While the most common means of routing connections between the two board sides is with plated-through holes, hacker alternatives are eyelets, wire tabs, the component leads by themselves, or individual socket pins. Mill-Max is a leading source of low-cost socket pins, and Simpson is a good eyelet source.

A double-sided plate-through
setup is beyond what most hackers would care to attempt. The tanks and such alone can set you back the better part of $10,000.00. Nasty chemicals are involved that are hard to get in small quantities. Worse yet, it takes a long time and involves several dozen steps, all of which have to function perfectly to ever get any product out at the far end. You could farm one prototype board at $30 to $60 before you could ever justify the investment.

Fortunately, the latest of the surface-mount technology components tend to greatly minimize both the number of holes and the need for plate-through. So jumpers, eyelets, or individual socket pins are not really all that bad an alternative for your prototype boards.

The next step beyond double-layer boards are multi-layer boards, where circuitry is placed inside the substrate, as well as on both surfaces. Typically, there will be four layers. Your horizontal runs will dominate on the top surface, followed by a lower power-supply plane, a ground plane that is lower still, and the vertical runs that dominate the bottom surface.

As you might guess, all four-layer boards are quite expensive and are extremely hard to modify, but they do offer superior shield-

FIG. 1—SEVERAL POPULAR TYPES of printed-circuit boards. Note that a double-sided plate-through board can be hacker-faked by using component leads, eyelets, wire tabs, or low-cost individual pin sockets.

ing and extreme component densities. Multi-layer PC boards as dense as 24 layers have been built. Quite often, the multi-layer PC board will be the most expensive part of an electronic system.

Flexible boards are also becoming popular. They are often thinner and use a Kapton substrate. Uses include mounting connectors, and for highly dense or unusual packaging. Rogers Corp is a leading source of flexible PC-board supplies.

Creating a printed-circuit

There's a number of good ways to create a final printed-circuit board. In general, those methods that put new conductors on an insulating substrate are additive; those that remove unwanted conductors from unneeded areas are subtractive. Very often, both additive and subtractive techniques will be used in combination.

Four of the traditional board-production techniques include direct, mechanical, silk screen, and photographic.

In the direct method, an etch-resistant pattern is applied by hand to the printed-circuit stock. Most any paint, lacquer, instant transfer, or ink will work, as will the tape and dots intended for initial layout work. So does a fingerprint or spilled root beer. Bishop Graphics is a leading supplier of PC tape and dots, and Datak is one source for instant-transfer products. There are also some rubber-stamping layout aids being offered.

Actually, the direct method is more hassle than it is worth, and ends up just about totally useless. Some problems here are pattern alignment, preventing fingerprints, tape lifting, a lack of uniformity, and too many defects.

The mechanical methods physically remove unwanted copper, usually by routing, special drills, or by milling. They're another concept that looks much better on paper than in the real world. Several specialized systems are usable for the mechanical PC layouts. Invariably, they are both laughingly and obscenely overpriced.

The silk-screen PC method is quite simple and is widely used commercially, especially for sin-
ingle-sided boards of fairly low tolerances. The process is exactly the same as silk screening a T-shirt or a greeting card. Oversize artwork is created, usually at a 2:1 or sometimes a 4:1 scale. A litho negative gets shot from the artwork, which in turn creates a photo master for the screen. High-resolution screens are used, often in a 20XX density.

To print a board, etch-resistant ink is placed on the screen, and a squeegee is used to force the ink through the open portions of the screen. The board is then etched to remove all copper that is not covered by the inked image.

The advantages of the silk-screen method are that it is cheap, fast, and relatively low tech. One disadvantage is that the $30 setup charge per screen gets out of hand when you want only a single prototype board. A second is the inability to do very fine lines or precisely aligned work.

Ulano is one major source of silk-screen films. The screens themselves are available from such

1. Always do your layouts double sized (2X) on a blue gridded mylar sheet, available from any drafting supply house. Always work on a light box. Use only "real" printed circuit tape and dots. Bishop Graphics is one source.

2. Watch which side you tape from. Pin one of an integrated circuit is at the lower left when viewed from the top as shown in the data book. Pin one will be at the lower right when etched from the bottom board foil.

3. Never cut your tape with an X-acto knife! Instead, lay the knife down flat and pull the free end of the tape back against the blade. Always firmly mash the tape in place after routing. A teaspoon is ideal for this.

4. Never do your own photography! A litho negative costs only $3 at a jiffy printer, ad agency, or lithographers. This is the only way to get the proper precision and density.

5. Never coat your own boards! Always use commercially precoated dry film boards, such as those from Kepro.

6. Always use dry film photoresist, rather than spray-on or liquid coated KPR types. Otherwise, pinholes, dust, and uniformity will eat you alive.

7. Note that properly cleaned copper will allow an unbroken film of water to flow over it, and that it will not be copper colored at all. Instead, it will be a uniform hot pink.

8. Never print through the negative base! Always have the photo emulsion in direct contact with the dry film photoresist.

10. Always etch at an elevated temperature, around 120 degrees Fahrenheit. A warming plate from a yard sale is ideal for this. Agitate the etchant with a gentle sloshing or bubbles from an aquarium pump.

11. Never etch with your foil side up! Support the board vertically, or else fail side down at least 1/2 inch above the bottom of the etchant tray. A mirror under a glass etchant tray lets you view etching progress. Use only plastic or glass in contact with your etchant.

FIG. 2—SOME REALLY DUMB MISTAKES are often made by hackers who do their own printed-circuit boards the "old way." Here is how to avoid the worst of the pitfalls of the traditional methods. But this is all ancient history, because...

PRINTED CIRCUIT RESOURCES

Advance Process Supply
400 North Noble Street
Chicago, IL 60622
(312) 829-1400

Bishop Graphics
5210 Lewis Road
Agoura Hills, CA 91376
(818) 991-2600

Black Lightning
RR 1-87 Depot Road
Hartland, VT 05048
(802) 359-2790

Circuits Manufacturing
500 Howard Street
San Francisco, CA 94105
(415) 397-1881

Datak
3117 Paterson Plank Road
North Bergen, NJ 07047
(201) 863-7667

DuPont Riston
3945 Freedom Circle F4
Santa Clara, CA 95054
(408) 562-9300

Electronic Manufacturing
17730 W Peterson Road
Libertyville, IL 60048
(312) 362-8711

Electronic Packaging
1350 E Touhy Avenue
Des Plaines, IL 60018
(312) 635-8800

Kepro Circuit Systems
630 Axminster Drive
Fenton, MO 63026
(314) 343-1630

Kodak
343 State Street
Rochester, NY 14650
(716) 724-4000

www.americanradiohistory.com
sources as Dick Blick, Southern Sign Supply, and Advance Screen. Two trade journals that serve the field are Screen Printing and Signcraft magazines.

At one time, printed-circuit boards were etched using a ferric chloride solution. Today, ferric chloride is a very poor choice of etchant. A much better etchant choice is ammonium persulfate. It is much cleaner, faster, and easier to use. Being a light blue solution, ammonium persulfate also lets you view the board as it is being etched. Etching best takes place at an elevated temperature, typically 120 degrees Fahrenheit. You could easily hit that temperature with a modified aquarium heater, a warming plate from a yard sale, or any of the strip heaters found on the surplus market.

Everything that comes in contact with the etchant must be glass or plastic. PVC is often usable. Ideally, your etchant should be sprayed onto the vertically held boards. Other ways to keep the etchant moving would be a simple manual sloshing or injecting air from an aquarium pump.

One really dumb mistake that most hackers make when etching their first PC boards is to place their board face up in the etchant solution. All that does is redeposit sediments and any crud removed from the board back on itself, leading to all sorts of nasty problems.

Instead, always support your boards vertically in the etchant, or else use surface tension to float the etchant away. Here are the three key steps in this breakthrough process:

1. A thermal transfer toner image is PostScript laser printed onto a treated polyester sheet as a 1:1 reversed positive.

2. Heat and pressure fuse the toner directly to a thoroughly cleaned printed circuit board.

3. The pc board then gets etched in ammonium persulfate in the usual manner.

FIG. 3—OUR BRAND NEW DIRECT TONER TRANSFER method can dramatically simplify and speed up making all of your hacker printed-circuits at a cost only of pennies per board.
CIRCLE 147 ON FREE INFORMATION CARD

CIRCLE 67 ON FREE INFORMATION CARD

Get A Complete Course In

ELECTRONIC ENGINEERING

8 volumes, over 2000 pages, including all necessary math and physics. 29 examinations to help you gauge your personal progress. A truly great learning experience.

Prepare now to take advantage of the growing demand for people able to work at the engineering level.

Ask for our brochure giving complete details of content. Use your free information card number, or write us directly. $99.95, postage included. Satisfaction guaranteed or money refunded.

Adobe PostScript
1585 Charleston Road
Mountain View, CA 94039
(415) 961-4400

All Electronics
PO Box 567
Van Nuys, CA 91408
(800) 826-5432

EGG & Reticon
345 Potrero Avenue
Sunnyvale, CA 94086
(408) 738-4266

Freedom of the Press
900 Tech Park Drive #8
Billerica, MA 01821
(800) 873-4367

Go Script/LaserGo
9235 Trade Place, Ste A
San Diego, CA 92126
(619) 530-2400

Kroy Kolor
14555 N. Hayden Road
Scottsdale, AZ 85260
(800) 521-4997

JKL Components
1334 Paxton Street
Pacoima, CA 91331
(800) 421-7244

Robert A Main & Sons
555 Goffle Rd, Box 159
Wyckoff, NJ 07481
(201) 447-3700

Rohm Corporation
8 Whatney
Irving, CA 92718
(714) 855-0819

SPIE
PO Box 10
Bellingham, WA 98227
(206) 676-3290

Synergetics
Box 809
Thatcher, AZ 85552
(602) 428-4073

Winzeler Inc
7355 W. Wilson Avenue
Chicago, IL 60656
(312) 867-7971

NAMES AND NUMBERS

1. Create a PostScript printed circuit artwork image on disk, using your favorite word processor and the sample routines of figure five and six, the full code found in my PostScript Show and Tell, or some suitable third party printed circuit layout package.

2. Run a positive, reversed 1:1 proof on a PostScript speaking laser printer, such as an Apple LaserWriter IINT. Many copy shops offer this service. Low cost PostScript printers are available through Don Thompson.

3. Optional step: Take a polyester based, laser printable overhead transparency material and lightly coat one side with Miller-Stephenson type MS-136 heated mold release agent. Mark the coated side.

4. PostScript laser print a 1:1 positive reversed (black = foil; right = left) onto the coated side of the polyester sheet, using a special thermal transfer (T-shirt) toner from Black Lightning, Don Thompson, or Lazer Products. Other graphic toners might also work; try them and see.

5. Sharpen and smooth the leading edge of an oversize piece of 1/16th inch printed circuit material with a file and steel wool, so that it can be sent through a fake Kroy Kolor machine without hurting the rollers. Use a 3/8 to 1/2 inch leading slope.

6. Thoroughly clean this oversize printed circuit board, scouring it three times with fine steel wool and Comet cleanser, followed by a chemical cleaner, followed by a brief etch. The board must be a uniform hot pink in color and must allow an unbroken stream of water to flow smoothly over it. Be sure to avoid any and all fingerprints.

7. Tape the leading edge of the polyester sheet toner side down to the copper side of the printed circuit board, using a suitable high temperature tape. Make sure the polyester sheet lies flat.

8. Run the board, image side up, through a preheated fake Kroy Kolor machine adjusted to a medium temperature. One source of these machines is Lazer Products. See the November 88 Radio Electronics or my hardware Hacker II reprints for details on building your own machine.

9. Optional step: Chill the board suddenly in a freezer before lifting the polyester sheet. Allow to warm to room temperature, then bake for fifteen seconds at 300 degrees F in a kitchen oven.

11. Etch in the usual manner in ammonium persulfate etchant.

FIG. 4—THE STEP-BY-STEP "BASELINE" process for the new toner transfer PC method. An ordinary iron can substituted for the Kroy Kolor machine, but the results may not be as good. Let us know your experiences here.
the board upside down on the surface of the etchant. Another ploy is to add nylon spacers to your PC board so the foil faces down in your etching solution. Or else throw some nylon hex nuts in the etchant and sit the board upside down on the nuts. Once again, never etch a PC board face up!

A second stupid mistake that lots of hackers make is failing to clean the boards properly. It is not possible to clean a circuit board at home without spending at least two minutes per square inch of board. Begin by using Comet or another chlorine-activated cleanser with a fine steel-wool pad or Scotchbrite pad. Rinse thoroughly and wipe on an inner fresh turn of a new roll of paper towels. Repeat that at least three times, avoiding any and all fingerprints.

Note that fairly clean copper will allow an unbroken stream of water to flow over it without any running or beading. Your key secret is that a genuinely and totally clean copper will not be copper-colored at all. Instead, it will be certainly a uniform hot pink. Commercial copper cleaners, such as CU3 from Kepro, are a great help, but are somewhat expensive.

The ultimate final cleanliness step is to place the copper in ammonium persulfate and etch it for ten to fifteen seconds or so. Then thoroughly rinse three times and air dry immediately. If you get a uniform hot pink result, then your copper is clean enough for immediate use.

The photographic methods get rather complicated, but they can be used for arbitrarily fine lines and for all of the precision you will ever need. In fact, the same tech-
niques are used to manufacture integrated circuits to a fraction of a micron accuracy. Note that there are 20 microns in a mil.

With the photo processes, a light-sensitive *etch resist* is placed on the thoroughly cleaned board. The resist is first contact-printed from a photographic negative and then developed. In the most popular *negative-acting* systems, those portions of the resist that receive light harden and remain; those that did not dissolve out. Etching is done in the usual manner.

Traditionally, the spray-on photoresist was used, such as a KPR product from Kodak. These days, though, it is far simpler and far better to use a dry-film photoresist, such as the *Riston* materials by DuPont, or any of the *Laminar AX* products from Thiokol. Those dry films develop in trisodium phosphate, the garage-floor cleaner found at your local hardware store. They are quite resistant to pinholes, eliminate dust and drying problems, have highly visible images, and are always at the right thickness. Once sensitized, the boards must be kept dry, cool, and in total darkness. They also have a one-year shelf life.

The third most stupid mistake that hackers make is trying to use KPR instead of the new and infinitely better dry films. Mistake number four, of course, is trying to coat their own boards instead of using pre-coated ones. Excellent dry-film pre-coated boards are stocked by Kepro.

The cost of the dry-film resist by itself is around a dollar per square foot. Unfortunately, a fancy laminator is needed to bond the resist to the board. I have a hunch that a Kroy Kolor machine or one of its imitators can be substituted here. The required temperature is 234 degrees Fahrenheit. Let me know if you pick up any experience along those lines.

Double-sided plate-through boards often use a combination of processes. Typically, you start with a double-sided board. The holes are first drilled, and then they are plated through by additive techniques. The holes get chemically activated, and then seeded with an ultra-thin palladium plating. Electroless copper is then built up on the conductive palladium to a medium thickness, followed by a heavy copper plating up to the final wall thickness needed. The rest of the board is then processed through the usual double-sided photographic steps. Key hacker printed-circuit mistakes are summarized for you in Fig. 2.

Printed-circuit resources

I've gathered some of the major PC-board resources into our first sidebar, as we've done in previous columns for other topics. Most of the products we have mentioned are available directly through those sources.

The best trade journal for printed circuits is *Circuits Manufacturing*. A few others are *Electronic Packaging and Production*, *Surface Mount Technology*, and their sister publication, *Electronic Manufacturing*. Be sure to let me know if there are other resources that you think should be added to the list.

The direct-toner method

There's a new process on the block for hacker printed-circuits which is ridiculously simpler, faster, and far cheaper than any of the above. All you really need is a word processor and an iron. This new scheme is known as the *direct-toner method*. And it is new and undeveloped enough so that you might play a major role in making it work and shaping its future.

Very simply, copier or laser-printer toner is outstanding as an etch resist. Two decades ago, Xerox even had a product that directly printed on your copper PC boards from a 2:1 artwork original. Away back, a new hacker product known as *Meadowlake* did attempt an iron-on toner system. Early versions of the product didn't turn out reliable enough and lacked stability.

But there is a brand new type of thermal-transfer toner now carried by several laser-printer supply houses. While the toner is intended for making iron-on T-shirt images, it transfers to copper beautifully and smudge-free, and is thus a key secret to the direct-toner process. Three sources of a thermal-transfer toner are *Black Lightning*, *Lazer Products*, and *Don Thompson*. *Black Lightning* does offer a free sample. Cost of the toner ranges from $90 to $180 per cartridge, which translates to a dime per board. Several of the other new graphics toners should also work well. Your help is needed in pinning down which ones are acceptable and which are not.

Figure 3 summarizes the key toner-transfer steps; that is followed by some detailed instructions in Fig. 4.

The best way I've found to create initial artwork is by using a PostScript speaking laser printer and my word processor. In fact, I have a complete package that does just that for Apple, Mac, and IBM.
users. Note that the original image must be a 1:1 reversed positive. That means that left is where right belongs and black is where you want your foil to remain. Naturally, since your image is disk-based, it is easy to change, and super easy to build up from a library of suitable Post-Script dictionary routines.

The image gets printed, again as a 1:1 reversed positive, onto a laser-printable Mylar or polyester overhead projection sheet. Just for luck, I’ll previously apply a very thin coating of MS-136 Heated Mold Release Agent from Miller-Stephenson. That may or may not help, but it sure seems like a good idea, at least for now. It also may be a good idea to anneal or remelt the toner for a few seconds in an oven, after the image is transferred.

Too much reheating, of course, would lower the resolution. Although ten-mil lines on twenty-mil centers should be possible, I’d stick with double that as an initial lower limit.

In theory, you could simply iron the toner directly onto a previously super-cleaned PC board. Instead, I modify the board by sharpening its leading edge, and run it through one of the imitation Kroy Kolor machines we looked at in Radio-Electronics, November, 1988. By the way, an improved and economical do-it-yourself version of that beast is in the works here at Radio-Electronics.

The benefits of the new way are obvious. You go from artwork to PC prototype amazingly fast. No cameras, chemistry, screens, or fancy equipment is needed. Without any fuss or bother. Just print and etch. And products such as GoScript and Freedom of the Press even let you fake PostScript on a dot-matrix printer, so “no printer” is no excuse.

The technique could also revolutionize running hacker PC projects. You show the PostScript code in the magazine and offer it downloadable off your BBS. Now, every hacker can end up with a precisely accurate original, rather than a third-generation copy.

Figure 5 shows some sample PostScript code from my PC layout stuff, while Fig. 6 shows a simple
The transducer is approximately 40-volts p-p. Tap 6 may be used for frequencies below 20 kHz with "on" times no more than 20 minutes; voltage is approximately 50-volts p-p. Tap 13 is intended for intermittent use where "on" times are less than 3 minutes and the frequency well below 20 kHz. Those times may be longer when operating at lower frequencies. Never allow the transducers to get excessively warm. That completes the testing and adjustment of the system.

Setup
The Phasor Property Guard is capable of operating in two modes. Mode 1 is at a frequency that is known to produce paranoia, nausea, disorientation, and many other physiological effects. Mode 2 allows using the system as an audible alarm to frighten off intruders or warn the user of an intrusion. Both modes may be used in combination, and are easily controlled by the user. Three separate jacks provide inputs for a broken trip wire or contact foil, a pressure or actuating switch, and a positive voltage pulse from other equipment.

The position of the transducers should be such that they direct their energy to the points of intrusion or access. They can be all directed to any target area, or be individually placed for multiple effect.

The transducers used in this system are piezoelectric and are many times more efficient than the electromagnetic-type speaker. Their frequency response is shown in Fig. 7.

Ultrasonics
Ultrasonic is a gray area in many respects when the application involves the control of animals or as an intruder deterrent. It is always best to consult with local municipal and state laws before using this device to protect home or property.

Do not operate at continuous high output at frequencies below 20 kHz. Daily sound pressure exposures in excess of one hour at 105 dB may lead to hearing impairment. When properly used, this device provides a limited liability deterrent. It should not cause permanent damage or trauma.

There have been numerous requests for information on the effect of these devices on people. First of all, an ultrasonic device should not be used unnecessarily on humans, because of the possibility of acoustically sensitive people being highly irritated.

Remember that the Property Guard cannot stop a person with the same effect as a gun, club, or more conventional weapon. It will, however, produce an extremely uncomfortable, irritating, and sometimes painful effect in most people. Although not everyone will experience the effect the same degree. Younger women are much more affected than older men, due to being more acoustically sensitive. The range depends on many variables, but is normally somewhere between 10 and 100 feet. R-E
Developing and Etching a PC board.

THE MAIN INGREDIENT IN MAKING good PC boards is consistency. Once you’re past the layout phase, you’re past the creative part. Converting the graph paper lines to copper foils is as mechanical as filling a gas tank. Just follow the rules, if you know what they are. The only problem is, I’ve never found them written down anywhere, and believe me, I’ve looked! Even the Kodak booklet I mentioned last month was vague about the things that were giving me problems.

All the information I’ve given you so far about PC board production is the result of trial and error. If you follow these steps, you’ve got a reliable method. The only steps left are developing and etching. While you might think these straightforward, there are some undocumented problems here also.

Developing the board

By the time you’re ready to develop, you may be lulled into a false sense of security. After all, it’s basically the same process as developing lithographic film. That was easy, but there was so much latitude, you couldn’t make a serious mistake without trying really hard. Developing copper, however, has unique problems.

Copper etchant is considerably more caustic than that for film. It may not exactly be aqua-regia, but it’ll eat through almost any kind of plastic. Guaranteed, if you pour it into a plastic film tray, the bottom will vanish in 15 seconds, and the floor will be ruined; polyurethane and vinyl flooring are plastic, also. If you’re wearing polyester, the consequences are too horrible to contemplate. So, the first rule for PC board development is: The trays must be made of glass or metal or else!

FIG. 1

Properly applied resist is much denser than film emulsion, and development is roughly logarithmic. With film, the image appears fairly quickly, and darkens slowly. The actual rate is irrelevant, since you can watch it happen and pull the film when it’s done. With resist, however, you have to remember the chemical reaction rate, because you won’t see anything happen on the PC board, making reliable development very difficult. The whole PC board process involves many variables, so a problem can be caused by any preceding steps. If the pattern dissolves, you can’t tell why. The list of possible screwups gets longer as you go on. Just as with the earlier parts of the process, I finally doped out a reliable approach.

Put the exposed PC board in the developer slowly, and gently rock the tray at one shake per second for 20 secs. Then, remove the PC board at an angle so the excess developer can run off. Even though the board won’t be fully developed, most of the unwanted resist should be loose enough to wash. All the resist, both pattern and excess, should be very soft now; so handle the PC board carefully, or you’ll have to scrub the copper clean and start over.

Resist manufacturers all have suggested methods, from a water spray to dabbing with paper towel. The latter was told to me by a spray can manufacturer, and I still have difficulty believing that such stupid advice would be given. There’s only one way, which I found after considerable trial and error. Before you start development, fill a sink or tray with COLD water, under 70°F (right from a tap), or it won’t wash off. So, the second rule is: Use only cold water and don’t make waves!

Be careful when washing the PC board; keep it perpendicular to the water as you dunk it and lift it out, and let the water run off momentarily. DON’T shake it, and for God’s sake, DON’T use running water. If you reflect some light off it, you should start to see the pattern appear as the excess is removed. Keep dunking it until you can see the whole foil pattern. The cold water should slowly harden the resist on the board so don’t wash the board for more than a minute. If you only see a partial pattern after a minute of washing, the board just needs more development.

Regardless of how the pattern looks after a 1-min cold water wash, develop for about thirty seconds more. Water and developer
don't mix, so shake the excess water off the board or just let it air dry thoroughly before you immerse it in the developer a second time. The water should have hardened the resist so should tolerate shaking at this point, it'll probably still be too soft to wipe or touch.

The second immersion in developer should eliminate all unwanted resist, and when the 30 secs is over, repeat the water wash. The pattern should appear much faster now, and be much easier to see, since the copper covered by the pattern should be totally free of resist. Repeat until the pattern is clear. The hardest part is knowing when the copper is free of all excess resist and developer. The difference in appearance between clean and coated copper is fairly evident, as in Fig. 1. Clean copper is reddish, and coated copper whitish. You'll understand when you see it.

Etching the board

Once developing and washing is done, let the resist harden for 15 mins before dumping the PC board in the etchant. The etchant will dissolve metal, as quickly as the developer will plastic. All standard etchants like ferric chloride and ammonium persulfate will dissolve metal. There are some exceptions, like stainless steel, but don't experiment. Remember, the secret to success in this is consistency; find a way that works and keep it. We've now reached the third rule of board making: **Use only plastic or glass trays for the etchant!** It stains just about anything, especially the ferric chloride variety.

Put the board in a plastic or glass tray, NOT METAL, and heat the etchant to 100°F. Pour it on the PC board, wait 15 secs, then take the PC board out wash it. The brief contact with the etchant should start the copper removal. The reason for pulling it out so quickly is to let you examine the resist integrity. This is the time to examine the pattern for any breaks in the foils, excess resist, etc.

The foils can be repaired the same way you laid the pattern out on graph paper. Use drafting tape to cover breaks in the foils, and scrape away excess resist with an X-acto knife. When the pattern is right, put the board back in the etchant and rock the tray gently. Don't be violent about it, because you don't want to spill that stuff; cleaning it's a big job. We're not talking the Exxon Valdiz here, but it'd still be pretty bad.

The time needed depends on the etchant type, the amount, the number of times you've used it before, how much copper is involved, the temperature, and how the board is agitated; however, you shouldn't need over a half hour to finish. You'll have to keep pulling the PC board out to check it for foil breaks and excess resist, repairing with the drafting tape and X-acto knife. Most PC boards need work as they're being etched, but if you get something Fig. 2, it's shot.

Etchant has limited life, since the etched copper combines with the etchant chloride to give cupric chloride. When it gets black, it's saturated and must be dumped.
While watching rental movies, you will notice annoying periodic color darkening, color shift, unwanted lines, flashing or jagged edges. This is caused by the copy protection jamming signals embedded in the video tape, such as Macrovision copy protection. Digital Video Stabilizer RXII completely eliminates all copy protections and jamming signals and brings you crystal clear pictures.

FEATURES:
- Easy to use and a snap to install
- State-of-the-art integrated circuit technology
- 100% automatic - no need for any troublesome adjustments
- Compatible to all types of VCRs and TVs
- The best and most exciting Video Stabilizer in the market
- Light weight (8 ounces) and compact (1x3.5x5"
- Beautiful deluxe gift box
- Uses a standard 9 volt battery which will last 1-2 years.

WARNING:
SCO Electronics and RXII dealers do not encourage people to use the Digital Video Stabilizer to duplicate rental movies or copyrighted video tapes. RXII is intended to stabilize and restore crystal clear picture quality for private home use only. (Dealers Welcome)

To Order:
$49.95 ea. + $4 for FAST UPS SHIPPING
1-800-445-9285 or 516-694-1240
Visa, MC, COD M-F: 9-6 (battery not included)
SCO ELECTRONICS INC.
Dept. CR6 581 W. Merrick Rd. Valley Stream NY 11580
Unconditional 30 days Money Back Guarantee

Versatile Lab Power Supply

MODEL 3002A

$125.00

- 0-30 VDC at 0-2A
- Excellent Regulation
- Ripple & Noise: 500 uV RMS
- Built-in Short-Circuit and Overload Protection

Model 3002A features continuously adjustable current limiting and precision constant voltage/constant current operation with "automatic crossover". This lab-grade unit can also be used as a current regulated power source. Options: 10-turn Voltage and Current Controls, $25.00 ea.

FREE SHIPPING - 48 STATES. Check, Money Order or C.O.D. (add $3.00). No credit cards. IL residents add 7% tax. 15-Day Money Back Guarantee. Save on Quality Test Equipment & Closeouts. Free Literature.

Salen Enterprises, Ltd.
P.O. Box 915, Morton Grove, IL 60053
Area Code 312-465-1424

CIRCLE 156 ON FREE INFORMATION CARD
5 1/16 INCHES
VIDEO SCENE SWITCHER BOARD.

7 1/16 INCHES
VIDEO SCENE SWITCHER BOARD.
RGB-to-NTSC CONVERTER

High-quality computer video on your TV—for peanuts!

ROBIN BEK

Have you been searching for a low-cost alternative to a $300 color monitor? Or would you like to run your flight simulator on a big-screen TV? Great idea, but there are problems. Personal computers deliver digital signals that tell the TV when to turn the red, green, and blue guns in the CRT off and on. But TV’s expect an analog signal that is a combination of the three color signals, the audio signal, horizontal and vertical sync pulses, and other things as well.

Even so, there’s an easy (i.e., inexpensive) way of cutting your cake and eating it too. Our RGB-to-NTSC color converter is easy to build, costs less than $30, and is easy to tune using only a color TV and a voltmeter. The circuit was designed specifically for the Atari ST, but it could be used with any computer that delivers standard RGB video. Also, the circuit could be adapted to RGB-to-PAL operation for use with European PCs.

Theory of operation

The problem with interfacing a computer to a TV is that the two use two totally different types of video systems. Computers typically deliver RGB video, which is composed of separate digital signals corresponding to the red, green, and blue guns in a color TV tube. In an RGB system, each signal is either on or off. Hence there is a certain number of combinations of on and off signals which correspond to colors ranging from white (all signals on) to black (all signals off). Because there are three signals, and each may assume only two values, there are 2^3 possible combinations, or eight colors.

On the other hand, TV’s generally expect a composite NTSC (National Television Standards Committee) video signal, which, as the name suggests, combines the three RGB signals, an audio signal, sync signals (and possibly others as well) into a single composite signal.

The advantage of composite video is that instead of using five wires, you use just one. The disadvantage of a single wire is loss of fidelity and increased circuit complexity. Fortunately, though, converting the two radically different signal systems is relatively easy (and inexpensive), thanks to modern technology.

Our circuit is built around Motorola’s single-IC solution to the problem, the MC1377. The circuit is easy to build and tune: you really don’t even need a scope unless you run into problems. However, you will need a voltmeter to verify the supply voltage and several test points.

How it works

The MC1377 is a 20-pin IC. As shown in Fig. 1, pins 3, 4, and 5 accept the incoming RGB signals, which are separated into chrominance (color) and luminance (intensity) information. Continued on page 85.

Wondering about Windows?

The Graphical User Interface (GUI), once relegated to expensive engineering workstations or to toys like the early Macintosh, is gaining wider and wider acceptance from the PC community. There are two complementary reasons for the increasing popularity. First is that hardware has evolved to the point where we can buy computers with enough computing horsepower and memory to handle the greedy demands of GUI’s.

Second is that some, but by no means all, of the necessary software is coming to market. The central hub from which those software elements radiate is Microsoft’s famous (or infamous) product, Windows. shipments of which have surpassed the two million mark.

On the surface, Windows bears a strong resemblance to environments like that provided by the Mac, by Steve Jobs’ NeXT computer, and similar products. That surface resemblance is so strong, in fact, that Apple’s legal corps decided to sue Microsoft, even though Apple could no more claim to have invented the GUI than the cheeseburger. Fortunately, common sense seems to be winning out: the presiding judge has dismissed all but a few of Apple’s claims.

JEFF HOLTZMAN
So what is it about Windows that would make anyone even think of a resemblance between it and the Mac? And why do I say that the resemblance is at best only skin deep?

The points of resemblance are pretty obvious. Both Windows and the Macintosh Finder program present information to the user in a bit-mapped format. The user rolls a mouse about the desktop to select items from menus; those menu items initiate actions such as loading and saving files, etc. In addition, those menu items function pretty much the same from program to program, so that once you learn how to use one, you know them all—in theory, anyway.

The real differences between Windows and the Mac are slightly more subtle. The Mac, on the one hand, was designed around a single coherent philosophy that dictated nearly everything about the system. With the original Macs, software designers didn’t have to worry about half a dozen or more video standards, half a dozen or more mouse protocols, and hundreds and hundreds of printers. Originally there was one video standard, one mouse, one keyboard, and one printer. Gradually, more and more options have appeared, but they have been smoothly integrated into an overall architecture.

Windows, on the other hand, was designed from the beginning as a compromise between multiple competing philosophies, and the effects of that compromise show up in Windows’ famously laggard performance, difficulty of installation, and difficulty of use (more on that in a moment). When you have to support everything from CGA to one-megabit pixel monitors, it’s not surprising that your video drivers aren’t optimal.

Why is Windows difficult to use? Doesn’t Windows work with a mouse, present bit-mapped graphics, and use drop-down menus, dialogue boxes, and the other hallmarks of the GUI?

Because of the necessity of supporting so many underlying types of hardware, Microsoft never got around to building a slick shell (like what you see for the Mac) for Windows. What you use to work with Windows is something called the MS-DOS Executive, which provides a very crude way of launching programs and maintaining disk files. Comparison with any decent DOS shell (X-tree, Norton Commander, etc.) will show you why I say crude.

At bottom you can think of the Mac as a fine piece of finished furniture, and of Windows as a stain-it-yourself piece from the bare-woods factory. Certainly, with care, you can sand it, stain it, varnish it, and polish it. But in the end you may not end up with the kind of product you really wanted.

To be fair, Microsoft is working on a new version of Windows (3.0) that should be out before the end of the year, and it should add a decent user interface (that, by the way, is rumored to bear a very strong resemblance to the forthcoming version of the OS/2 Presentation Manager). In the four years that have passed since Windows was introduced, however, at least four companies have introduced their own products that attempt to correct that user interface problem, and IBM has even given several of these products semi-official endorsements by including them in sales and educational promotions.

Because they’re add-ons, however, these products (all of which I have tested) tend to be buggy and memory hungry. My personal favorite is a $20 shareware products called Command Post (shown in Fig. 1, and available on the RE-BBS at 516-293-2283, 300/1200, 8N1). With it you can customize your version of Windows, adding your own menus and items to the Windows environment. Command Post won’t make a Mac out of your PC, but it does make certain common Windows operations much easier.

Using Windows

Before proceeding, it might be useful to discuss why you’d ever want to use Windows. Up until very recently, there were really only three reasons to ever use Windows:

- **Designer** (Micrografx), a CAD-like drawing program that is simply a joy to use; see *Editor’s Workbench*, March 1989.
- **Excel** (Microsoft), a spreadsheet that greatly surpassed 1-2-3 in its ability to print nicely, and in its ability to consolidate worksheets.
- **PageMaker** (Aldus), the original desktop-publishing program.

However, Samna Corporation has introduced a word processor (Ami) for Windows, Crosstalk has likewise introduced a communications program, and Microsoft
is readying a version of Word for Windows that is due out by the end of the year. The point is that Windows is rapidly approaching critical mass—even more rapidly than OS/2, to IBMs's chagrin.

Even if you're not specifically interested in one of those Windows applications, but are curious about where PC technology is headed, you should get a copy of Windows and play around with it long enough to see what its strengths are—and also its weaknesses.

Problems with Windows

The biggest problem with Windows is the difficulty you have in upgrading hardware. Whenever you change your memory, video setup, or mouse, you must re-install the entire Windows package. When you do, a text file called WIN.INI, which functions like CONFIG.SYS does for DOS, is overwritten by a virgin copy from the installation disk. Consequently, valuable setup information may be lost during a re-installation. A technician on Microsofts's Windows help line told me he includes a line in his AUTOEXEC.BAT file that copies WIN.INI to a safe location every time he boots. I could have saved myself a great deal of heartache on a recent job if I had thought of that trick on my own.

Video hardware is another area that is painful to deal with. On the one hand, you want as much resolution as you can get. On the other, you don't want to wait half an hour each time the screen is redrawn—which means every time anything happens. I've worked with Windows on every IBM standard video system (CGA, EGA, and VGA), and none of them are good enough for professional day-to-day work. For professional use, the 800 x 600 Super VGA (SVGA) offers the best compromise between screen resolution, display speed, and cost.

On the other hand, for occasional use, Hercules monochrome or monochrome VGA work nicely, especially if your final output is in monochrome.

However, if you're considering a SVGA system for professional use, make sure that it is compatible with your software. Yes, I know that the whole purpose behind Windows is to provide device-independence, so software designers (not to mention end-users!) don't have to worry about the hardware. In practice, however, it doesn't work out that way, particularly in the area of screen fonts.

For example, in setting up a desktop publishing system based on SVGA video and an HP LaserJet II, I had trouble installing fonts from two different manufacturers, and eventually had to settle for using the system at VGA level. Even at that level, some special symbols appeared on-screen differently than on paper. In addition, some text simply did not print on paper where it appeared on screen, which required several iterations of the print, inspect, edit, print, inspect, edit process. And don't even think about getting a decent printout when composing a document for one printer and printing it on another. So much for WYSIWYG.

A related problem is a software package that I use to capture graphics screens and either print them on a LaserJet or include in a desktop publishing file. The program translates screen colors into various shades of gray in a quite attractive manner. The problem is that it supports only standard video modes, not SVGA. Part of the reason is that there is no real standard for SVGA; several manufacturers have implemented bit and color planes in different ways, and small software outfits can't afford to support them all. Meanwhile, an industry group (VESA, headed up by NEC) has begun trying to define an SVGA standard. But what about all the cards sold until the standard emerges—if indeed it does?
Memory woes

Depending on whether you have a 286 or a 386 processor, you buy a different version of Windows. However, in one case, I closed up running the 286 version on a 386, because the SVGA adapter did not come with a 386 software driver—only a 286 version. In addition, after the font fiasco, I ended up running the system in VGA mode anyway, which would have allowed me to use Windows/386—so I felt like installing (and transferring) the setup information in WIN.INI yet again.

In theory, Windows/386 sounds great: it will let you run even ill-behaved standard DOS applications (i.e., most DOS programs of consequence) in separate on-screen windows. However, Windows/386 won't load a 386MAX loaded, because both switch into protected mode to manage memory, and you can run only one protected-mode program at a time. So you can either play tricks loading different CONFIG.SYS files, or stick with Windows/286.

Another complaint regards Microsoft's documentation, especially that "explaining" installation tradeoffs (how to allocate memory, for example). Part of the problem is that the documentation hasn't been updated in two or three years; let's hope it is in 3.0!

Given the amount of trouble I had setting up that system, why not stop fighting and switch to a Mac? Hardware cost is one big reason. A 20-MB hard disk for the Mac still costs almost twice what a PC drive costs, and larger capacity drives are even more expensive. There's also the question of selection. With the PC, I've got lots of choices for CPU, memory, video, and printer. And even though I complained about how those choices adversely affect Windows' performance and setup routines, I'd rather be able to make my own decisions.

One standard to watch is the OS/2 Presentation Manager. For a while it seemed that Windows would gradually be phased out as OS/2 PM gained popularity. Now it's not at all clear what will happen. There are rumors that an upcoming 386-specific version of OS/2 PM will run Windows applications as-is. That's an intriguing possibility, but almost certainly one that will not be realized in the near future. So it seems that DOS, Windows, and OS/2 are each going to have their own market niches.

Ultimately, OS/2 would be the better solution, because it offers built-in support for many problems facing Windows users (memory management and low-level device-driver support). However, as few good Windows applications as we have, there are even fewer for OS/2. Again, that's rumored to change during 1990, as versions of Ventura and PageMaker and other programs are released.

At bottom, you've got to look at the problem of system configuration as an ongoing issue that's not likely to settle down in the near future. The point is to find a compromise that seems as though it will remain stable for awhile—a year or two at best. And try not to lock yourself into proprietary solutions that could become obsolete as new standards emerge.

In the ideal world, the Ultimate PC would have unlimited resources, would be extremely powerful, and yet would be easy to operate. That machine doesn't exist yet, and rather than complain about how far short current systems fall from the goal, we should look back ten years and see how far we've come. An editorial of that time expressed certainty that 16-bit microprocessors would never catch on because most people used personal computers for text processing, and eight bits are enough to adequately represent the necessary information.

New from Microsoft

C programmers and would-be C programmers will want to check out Standard C by P. J. Plauger and Jim Brodie. This concise, inexpensive (less than $10) book is a reference for the newly approved ANSI standard for the language. It's not a tutorial but a reference to those printf format specifications you can never remember, as well as the hundreds of other elements of the language. The authors point out that although Standard C is an historical development of the C language, it should be treated as an essentially new language by programmers familiar with previous versions.

Microsoft Mouse Programmer's Reference contains reference information for programmers building menu-based mouse interfaces for text-mode programs, as well as graphics support. The book contains numerous test programs, and two disks containing object code libraries and sample programs in various languages (BASIC, C, Pascal, etc.).

<table>
<thead>
<tr>
<th>ITEMS DISCUSSED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard C ($79.95), P. J. Plauger and Jim Brodie, Microsoft Press, 16011 NE 36th Way, Box 97017, Redmond, WA 98073-9717. (206) 882-8080. CIRCLE 46 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>Microsoft Mouse Programmer's Reference ($82.95), Microsoft Press, 16011 NE 36th Way, Box 97017, Redmond, WA 98073-9717. (206) 882-8080. CIRCLE 47 ON FREE INFORMATION CARD</td>
</tr>
<tr>
<td>Command Post ($20 for license, $5 for disk, $10 for printed documentation), Wilson WindowWare, 3377 59th SW, Seattle, WA 98116. (206) 937-9335. CIRCLE 48 ON FREE INFORMATION CARD</td>
</tr>
</tbody>
</table>

84

RADIO/ELECTRONICS

www.americanradiohistory.com
RGB to NTSC

continued from page 81

The chrominance (R – Y and B – Y) signals drive two double-balanced modulators that are 90° out of phase. The resulting signals are then combined in a chroma amplifier and bandwidth-reduced by an external bandpass transformer.

The luminance signal (– Y) is fed through an external delay line before being combined with the chrominance signal. A composite sync signal is obtained by combining the horizontal and vertical sync signals before they enter the MC1377. Figure 2 shows the complete schematic diagram of the circuit. The power supply is not critical; the circuit shown in Fig. 3 will suffice.

Construction

Because of the high frequencies involved, we recommend use of a PC board. Patterns are shown in PC Service; a kit is also available, as mentioned in the Parts List. If you use a PC board, Fig. 4 shows where to mount the components.

Whatever your construction method, place the components (especially T1 and IC2) as close as possible to the associated pins of IC1. In addition, make sure that the trimmer capacitor (C3) is mounted firmly and is accessible for adjustments. Mount LED1 so that it is visible when the unit is powered up.

Most of the components are readily available, but C13 and R7 are critical. Those two components set the timing for the color-burst signal at pin 1 of IC1. If they are off by as little as 5%, bye-bye color. Therefore, you should use a 2% polypropylene capacitor for C13 and a 1% metal-film resistor.

Fig. 1 BLOCK DIAGRAM OF THE CONVERTER IC. a Motorola MC1377.

Fig. 2 SCHEMATIC DIAGRAM of the RGB/NTSC converter.
Fig. 3 POWER SUPPLY for the converter.

Fig. 4 INSTALL ALL COMPONENTS as shown here.

for R7. If you have access to a scope, you can use a potentiometer in series with R7, an inexpensive capacitor for C13, and tune the circuit to the correct frequency.

After soldering all components to the board, check your work carefully and correct any mistakes. Then apply power to the circuit, making sure polarity is correct. Upon power-up, LED1 should light. Measure the voltage at pin 9; it should be +3-volts DC, and pin 16 should be +8.2 volts. If the LED doesn't light or those voltages are incorrect, go back and check your connections.

Hooking up
The most difficult part of the project is the hook-up to the computer. And that's not very difficult. Just don't forget to route the audio signal from the computer to the monitor.

The output of the converter should be routed with RG59 coax cable and terminated with a male RCA connector (depending on your television). If your TV doesn't have audio and video inputs, you can feed the video output of the converter into one of those cheap (preferably less than $5) RF modulators, and connect it to your TV's antenna inputs.

Pinout information for the Atari ST is shown in Fig. 5. To connect the circuit to an IBM CGA circuit, you must invert the sync signals. A simple way to do that is shown in Fig. 6-a; the IBM video pinout is shown in Fig. 6-b.
17 and adjust C3 until the counter reads 3.579545 MHz. Without a counter, use a computer image of known color. For example, the bootup screen of the Atari is a bright green. Adjust C3 till you obtain that color.

Troubleshooting

There are two things to watch out for:

No image. Check the power supply, Q1, Q2, and connectors. If you have a scope, check pin 2 of IC1 for the waveform shown in Fig. 7-a.

Image but no color. Check pins 3, 4, and 5 of IC1 to make sure that all three of the RGB signals are getting through. Check pin 1 of IC1 for the waveform shown in Fig. 7-b. If adjusting C1 has no effect, then the RC network R7/C13 is out of tolerance. Either replace C13 with a more accurate capacitor or place a trimmer potentiometer in series with R7, and adjust the trimmer until the waveform is correct.

Good luck and enjoy your new computer-TV screen.

Fig. 5 VIDEO OUTPUT connector of the Atari ST.

Fig. 6 USE THIS CIRCUIT FOR AN IBM CGA video system. The gates invert the sync lines.

Fig. 7 WAVEFORMS OF A PROPERLY OPERATING CONVERTER. At (a) is the signal at pin 2, at (b), the signal at pin 1.
recent Stereo Review evaluations used both test signals and music. One particular test-disc signal proved particularly revealing: When listening to it, every one of the evaluators was able to distinguish each of the six players from all other players! The signal is on track 20 of the CBS CD-1 test disc, and is a 500-Hz dithered tone that fades from -60 to approximately -120 dB. When reproducing the lowest levels of that signal, and listened to at full gain, the players produced degrees and types of distortion and noise sufficient to allow almost 100% individual identifications during ABX testing.

The dithered 500-Hz test signal was specifically designed to reveal very low-level linearity problems in D/A converters—which it did very effectively. However, I would suggest that there is a sample-to-sample variability in the D/A-converter chips used in even top-of-the-line players that makes it hard to correlate any particular player's price and design with ultimate performance.

The sound of music
For anyone who has worked with both test signals and music in making audio evaluations, it will come as no surprise that the musical part of the listening tests proved to be very difficult. Even those players that were easily identified with the dithered test signal were either or less sonically merged with the crowd on music tests. The statistical test results indicate that when carefully controlled test conditions are used such as the finest available audio equipment in an acoustically designed listening room, some critical listeners can hear differences on some music some of the time. And even then, I suspect that the perceived differences stem from D/A quality-control problems (or lack of same) rather than from specific design configurations in the player mechanism or circuitry.

So what's the bottom line? In defense of test signals, it's been said that...
PhotoFact Folders
- Under #1400: $4.00
- Others: $3.10 per word
- Special charges for special ads.

Classified AD Order Form
To run your own classified ad, put one word on each of the lines below and send this form along with your check to:

Radio-Electronics Classified Ads, 500-B Bi-County Boulevard, Farmingdale, NY 11735

PLEASE INDICATE in which category of classified advertising you wish your ad to appear. For special headings, there is a surcharge of **$25.00**.

<table>
<thead>
<tr>
<th>Plans/Kits</th>
<th>Business Opportunities</th>
<th>For Sale</th>
<th>Education/Instruction</th>
<th>Wanted</th>
<th>Satellite Television</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Special Category: $25.00

PLEASE PRINT EACH WORD SEPARATELY, IN BLOCK LETTERS.

(Rates indicated are for standard style classified ads only. See below for additional charges for special ads. **Minimum: 15 words**.)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

16 ($49.60)

21 ($65.10)

26 ($80.60)

31 ($96.10)

We accept MasterCard and Visa for payment of orders. If you wish to use your credit card to pay for your ad, please fill in the following additional information.

<table>
<thead>
<tr>
<th>Card Number</th>
<th>Expiration Date</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IF YOU USE A BOX NUMBER YOU MUST INCLUDE YOUR PERMANENT ADDRESS AND PHONE NUMBER FOR OUR FILES. ADS SUBMITTED WITHOUT THIS INFORMATION WILL NOT BE ACCEPTED.

CLASSIFIED COMMERCIAL RATE: (for firms or individuals offering commercial products or services) $3.10 per word prepaid (no charge for zip code). **MINIMUM 15 WORDS.** 5% discount for same ad in 6 issues; 10% discount for same ad in 12 issues within one year. **NON-COMMERCIAL RATE:** (for individuals who want to buy or sell a personal item) $2.50 per word prepaid... no minimum. **ONLY FIRST WORD AND NAME** set in bold caps at no extra charge. Additional bold face (not available at all caps) $5.00 per word additional. Entire ad in boldface, $3.70 per word. **TINT SCREEN** behind entire AD: $3.85 per word. **TINT SCREEN** behind entire AD PLUS ALL BOLD FACE AD: $4.50 per word. **EXPANDED TYPE AD:** $4.70 per word prepaid. Entire AD in boldface, $5.60 per word. **TINT SCREEN** BEHIND ENTIRE EXPANDED TYPE AD: $5.90 per word. **TINT SCREEN** BEHIND ENTIRE EXPANDED TYPE AD PLUS ALL BOLD FACE AD: $6.80 per word. **DISPLAY ADS:** $1.25 per word.

General Information: Frequency rates and payment discounts are available. **ALL COPY SUBJECT TO PUBLISHERS APPROVAL. ADVERTISEMENTS USING P.O. BOX ADDRESS WILL NOT BE ACCEPTED UNTIL ADVERTISER SUPPLIES PUBLISHER WITH PERMANENT ADDRESS AND PHONE NUMBER.**

Copy to be in our hands on the 10th of the month preceding the date of the issue. (i.e., Aug. issue copy must be received by May 10th). When normal closing date falls on Saturday, Sunday or Holiday, issue closes on preceding working day. Send for the classified brochure: Circle Number 49 on the Free Information Card.

MARKET CENTER

FOR SALE

PHOTOFAX folders, under #1400: $4.00. Others: $3.10 per word.

Silicon Valley Desclaimers

Engineer software. PC/MODS. Bobbysticks — students — engineers. Circuit design, FFT analysis, MatLab, mathematics, logic simulation, circuit analysis. Free catalog. (614) 491-0832. BSOFT SOFTWARE, 444 Colton Rd., Columbus, OH 43207

CABLE TV DESCRAMBLERS

JERROLD:*

- Tri-Bi Mode: $105.00
- Tri-Bi: $65.00
- HAMSW: $65.00
- Oak M-13: $59.95
- Oak M-14: $62.00
- Oak M-20: $76.00
- Oak M-20 (No) $89.90
- Oak M-20 $93.00

HAMILTON:

- M-1200 (Add-On) $89.90
- MLD-1200 (Add-On) $99.00
- ZENTHO: $24.95

CONVERTER:

- 88 Channels $95.00

CABLE TV Converter:

- M.D. ELECTRONICS 115 NEW YORK MALL SUITE 133
- OMAHA, NE 68114

INFORMATION

- M.D. ELECTRONICS 115 NEW YORK MALL SUITE 133
- OMAHA, NE 68114

NEW STARGATE 2000 CABLE CONVERTER

- $1-$99.00 $10-$69.00 100-Call

Last channel recall

- Channel select-75 channel-Channel scan-Manual fine tune
- One-year warranty-surge protection-HPC & Standard switchable—much more.

December 1989

Call Today!

- CALL TODAY!
CABLE TV converters and descramblers. We sell only the best. Low prices. SB-3 $99.00. We ship C.O.D. Free catalog. ACE PRODUCTS, PO Box 582, Dept. E, Saco, ME 04072. (207) 967-0728.

STEPPER motor driver & control with Commodore 64. Affordable hardware, interface & software. Send for detailed literature, and prices to MASE, P.O. Box 22, Alburg, VT 05440.

FEB 87 Triparts $59.99. Feb 84 SB parts $49.99. 3.50 shipping. OCTE, Box 276, Albury, Vt 05440. (802) 793-9298.

RENTAL movie stabilizer. Connect between VCRs or to monitor. Satisfaction guaranteed $99.95. $4.00 handling. 1 (800) 367-7909.

CABLE TV descramblers, Jerrold, Scientific Atlanta, Hamlin. Jerrold 400 DRX3D3C w/remote $135, Oak M35B $60.00. Quantity discount. Visa/M/C/OD. Order yours today. 1 (800) 327-8544.

MICROWAVE TV RECEIVERS 1.9 to 2.7 GHz. 2 In Compact Unit System. 177-95. 3 System $395. 12 V Yag (Rectangular) $93.60 $139.30. SUN MICROTECH INTL, Inc. Send $11.00 for Catalog. If you need the latest list, send $5.00 to: VISA/MA/C/OD. Quantity Discounts. Warranty.
SINGERS! REMOVE VOCALS FROM RECORDS AND CDs!

CABLE TV DESCRAMBLER LIQUIDATION!

- Major Makes & Models!
- Will match or beat anyone's prices!
- Dealer discounts at 5 units!
- Examples:
 - HAMLIN COMBOS $44 ea. (Min. 5)
 - OAK ADD/ON $40 ea. (Min. 5)
 - OAK M35B $60 ea. (Min. 5)

WEST COAST ELECTRONICS

For Information: 818-709-1758
Catalogs & Orders: 800-628-9656

CB Tricks II book. Power amplifier design and theory. UHF CB tune ups. Send $19.95 MEDICINE MAN CB, PO Box 37, Clarksdale, AR 72433.

DAZER protector kit $44.95! Exciting electronic kits! Catalog $1.00. QUANTUM RESEARCH, 17917-197 Avenue, Edmonton, Alberta T5T 2S1.

SATELLITE TV

CABLE TV secrets — the outlaw publication the companies tried to ban. HBO, Movie Channel, Showtime, descramblers, converters, etc. Supplier's list included $9.95. CABLE FACTS, Box 711- R, Pataskala, OH 43062.

DESCRAMBLERS for movies, networks, $175, video only, $450 complete. Visa, MC accepted. Catalog $4. SKYWATCH, 238 Davenport Road, Toronto, Canada, M5R 1J6.

FREE catalog — Do-it-yourself save 40-60% lowest prices worldwide, systems, upgrades, parts, all major brands factory fresh and warranted. SKYVISION, 2009 Collegeway, Pergus Falls, MN 56537. 1 (800) 334-6455.

DESCRAMBLER: Build our low cost video only, satellite TV descrambler for most satellite channels. Uses easy to get, everyday parts. Boards & plans $35.00 US funds. Board, plans & parts $95.00 US funds. Wired & tested unit $189.00 US funds. Send check, money order or Visa to: VALLEY MICRO-WAVE ELECTRONICS, Blair River, Nova Scotia, Canada B0S 1BO or phone (902) 467-3577. Barn to 4pm eastern time. Note: educational project only. Not to be used illegally.

PAY TV AND SATELLITE DESCRAMBLING NEW... 1989 EDITION... NEW

SCRAMBLING NEWS SUITE FROM... NEW... Y.U., N.Y. 14421 CODE 716-874-2086

VIDEOCYPHER II descrambling manual. Schematics, video and audio. Explains DES, EPROM, CloneMaster, 3Musketeer, pay-per-view (HBO, Cinemax, Showtime, adult, etc.) $13.95, $2.00 postage.

CABLETRONICS, Box 30505H, Bethesda, MD 20814.

BUSINESS OPPORTUNITIES

EASY work! Excellent pay! Assemble products at home. Call for information. (504) 641-8093 Ext. 5192.

MAKE $50/hr working evenings or weekends in your own electronics business. Send for free facts. INDUSTRY, Box 531, Bronx, NY 10461.

YOUR own radio station! AM, FM, TV, cable. Licensed/unlicensed. BROADCASTING, Box 130-F12, Paradise, CA 95667.

INVENTIONS, ideas, technology wanted for presentation to industry/exhibition at national innovation exposition. Call 1 (800) 288-IDEA.

MAKE $75,000 to $250,000 yearly fixing IBM monitors, no investment, start from home, (a telephone required). Information USA. Canada $1.00, Europe, Middle East $5.00. RANDALL DISPLAY, Box 2168-R, Van Nuys, CA 91404 USA.

NEW HE HE LASER TUBES $35

Dealer Inquiries Invited. Free Catalog!

MEREDITH INSTRUMENTS: 6403 N. 59th Ave. Glendale, AZ 85301 (602) 934-9397

(Forms the "Source for Laser Surplus"

INVENTORS

INVENTORS! Can you patent and profit from your idea? Call AMERICAN INVENTORS CORPORATION for free information. Over a decade of service (617) 338-5626. In Massachusetts or Canada call (413) 568-3753.

DIGITAL CAR DASHBOARDS

BUILD yourself complete electronic dashboards. Information package: $2.00 (refundable). MODERN LABS, 2604-F Ruseau, Saint-Elizabeth, Qc, J0K 2J0. Canada.
CABLE RENTERS STOP!

If you're currently renting your cable equipment, it's time to look into owning your own. You can save up to $100 plus every year. Satisfaction Guaranteed.

We carry all the major brands of Converters, Remote Controls, and Decoders - JERROLD, OAK, ZENITH, EAGLE, HAMIL, SCIENTIFIC ATLANTA.

Many more. Fast service.

Call today 512-250-8816 or write for your free catalog.

CABLE TV CONVERTERS WHY PAY A HIGH MONTHLY FEE?

All Jerrold, Oak, Hamlin, Zenith, Scientific Atlanta, Magnavox and all specialized cable equipment available for shipment within 24 hours.

For fast service MC or VISA or COD telephone orders accepted (800) 648-3030

WANTED

INVENTIONS/new products/ideas wanted: Call TOLL FREE for information 1 (800) 686-7200 24 hours/day - USA/Canada.

WILL pay for good information on Jerrold.

DESCRAMBLER MODULE

INVENTORS

"PATENTS, getting one..." a cost-cutting Primer for Inventors." Authored by Stuart Peterson, former patent examiner and registered patent attorney with over 40 years patent experience. This is a "must" for any inventor. Available in early January. Write now for free descriptive literature and special pre-publication price. ACADEMY BOOKS, Dept. R, Rutland, VT 05701.

EDUCATION & INSTRUCTION

PROGRAM your own computer simulations and learn how to analyze circuits. New periodical will show you how to analyze filters, phase locked loops, etc. Complete with basic subroutine methods used in your own programs. Only $10.00 per issue or $100.00 for 12 issues. DESIGN LETTERS, PO Box 251, Gaithersburg, MD 20877.

NUTS & VOLTS

MAGAZINE

951-826-2161

DO IT YOURSELF - A SCIENCE MAGAZINE ON ELECTRONIC PARTS & EQUIPMENT.

WRITE TODAY FOR UNUSUAL AND HARD-TO-FIND ITEMS.

SUBSCRIBE TODAY!

A National Publication for The Buying And Selling Of Electronic Equipment.

SOLID STATE SALES

P.O. BOX 74D - SOMERSET, MASS. 02143

Tel: (617) 547-7063 Fax: (617) 532-8845

TOLL FREE 1-800-343-5230

WE SHIP OVER 95% OF OUR ORDERS WITHIN 24 HOURS OF RECEIPT

CIRCLE 74 ON FREE INFORMATION CARD

WEB LINK

www.americanradiohistory.com
Try the
Radio-
Electronics
bulletin board
system
(RE-BBS)
516-293-2283

The more you use it the more useful it becomes.
We support 300 and 1200 baud operation.
Parameters: 8N1 (8 data bits, no parity, 1 stop bit) or 7E1 (7 data bits, even parity, 1 stop bit).
Add yourself to our user files to increase your access.
Communicate with other R-E readers.
Leave your comments on R-E with the SYSOP.

RE-BBS
516-293-2283

When You Don't Waste Something, You Can Afford To Be Generous With It!

Catalogs are the only way that a Direct Marketing operation can let its current and potential customers be aware of all the items that it carries. Additionally, they should help the firm's customers make an intelligent purchasing decision based on published specifications and operating characteristics. But because most Mail Order Companies send out hundreds of thousands of Catalogs every few months to all the people on their mailing list, they become too skimpy when it gets to technical information. If there is room on the page, they put in a graph or two and if they are really hurting for space they start printing things so small that you need a magnifying glass to read them. What is worse, they send you the same stale information time after time! We at Electronic Buyers Club have a better idea. All of our Members receive a Large three ring binder and we only replace the pages that have new information when the time comes. And because we don't waste paper and money by sending everyone the same information over and over, we include Original Manufacturers' Spec Sheets and offtime their complete Catalogs. Case in point: our competitor lists all the technical information and pricing for Panasonic Type ECQ-E Metallized Polyester Capacitors on one page, but we supply a four page data sheet from Panasonic in addition to 4 pages of pricing information! So you see, by not wasting paper (and money) in sending the same old stuff over and over again we can afford to be generous in supplying complete expanded information to all of our Members.

12 Months Saving Guarantee
We will refund the first year Membership Fee of any member who has purchased $300 or more worth of products from Electronic Buyers Club and has not saved an amount greater than the first year Membership Fee, if buying the same items elsewhere.

30 Days Money Back Guarantee
We will refund the full Membership Fee of any new member of Electronic Buyers Club who, within 30 Days after receiving the Membership Binder, returns the Binder to EBC and asks for the cancellation of Membership.

1803 N.W. Lincoln Way • Toledo, OR 97391
PHONE (All 50 States & Canada): 1-800-325-0101
FAX: (503) 336-4400 • Hours: 6:00 AM - 6:00 PM PST

CIRCLE 138 ON FREE INFORMATION CARD
Mail Order Electronics
24 Hour Order Hotline
415-592-8097
IC Clearance Sale!

PARTIAL LISTING • OVER 4000 COMPONENTS AND ACCESSORIES IN STOCK! • CALL FOR QUANTITY DISCOUNTS • RAMS SUBJECT TO FREQUENT PRICE CHANGES

CIRCLE 114 ON FREE INFORMATION CARD

www.americanradiohistory.com
QUALITY COMPONENTS • COMPETITIVE PRICING • PROMPT DELIVERY

TEST EQUIPMENT

GoldStar 20MHz Oscilloscope

NEW!

- Large 6" rectangular display • High sensitivity: 1 mV/div • High accuracy: ±3% • Stable, low drift design • Distortion-free waveform measurements • Special TV sync for quick measurements • Convenient X-Y

GS7020..$399.95

Oscilloscope Probes
- Attenuation: x1/x10
- Capacitance (LF180): 10pF (LF170)
- 40pF

LF180 40MHz Oscilloscope Probe........$19.95
LF210 100MHz Oscilloscope Probe......$29.95

JAMECO IBM PC/XT 8MHz Turbo Compatible Kit With 256K RAM

- Free! WordStar Easy Word Processing and QAPLUS Diagno-stic Software Included!
- Free! Now included with DR-DOS (Disk Operating System) Software
- 256K RAM included, Expandable to 640K
- AMI BIOS ROMs Included
- 4.77 or 8MHz Operation
- Flip-Top Case w/150 Watt Power Supply
- 360K Disk Drive
- Parallel Printer Port
- 84-key Keyboard
- Monochrome Amber Monitor

JE3002 IBM Compatible PCXT 8MHz Turbo Kit............$499.95

IBM DISPLAY MONITORS

AMBER
12" Amber Monitor......................................$99.95

HD55H 14" RGB 640x4 20

TIM524 14" Multicolor 800x600......$399.95
JE1096 14" Monitor & Card.............$499.95
TIM5116 17" VGA 720x400...$399.95
TIM5126 14" Multicolor 800x600......$399.95
JE2060 VGA Monitor & VGA Card.............$299.95

JAMECO IBM PC/XT/AT DISPLAY CARDS

JE1505 Monochrome Graphics Card w/Parallel Printer Port (PCXTAT/1505)........$59.95
JE1552 Color Graphics Card w/Parallel Printer Port (PCXTAT/1552)........$199.95
JE1071 Multi ID Card/Controller + Monochrome Graphics (PCXTAT/1071)........$199.95
JE1060 IO Card w/Serial, Game, Printer Port & Real Time Clock (PCXTAT/1060)........$59.95
JE1026 RS232 Serial Card (PCXTAT/1026)........$29.95
JE1065 IO Card w/Serial, Game and Parallel Printer Port (AT)........$59.95
JE1081 2MB Expanded Memory Card (zero-kick-on-board) (AT)........$199.95
XE1016 20MHz 240MHz Hard Controller Card (PCXTAT/1016)........$79.95
JE1043 360MHz/20MHz 2MB Hard floppy Disk Controller Card (PCXTAT/1043)........$49.95
JE1044 360MHz/20MHz Hard floppy Disk Controller Card (AT)........$399.95

SEAGATE HALF-HEIGHT HARD DISK DRIVES

ST229 20MB Drive only (PCXTAT)........$224.95
ST229M 20MB w/Controller (PCXTAT)........$299.95
ST225AT 20MB w/Controller (AT)........$399.95
ST238A 20MB Drive only (AT)........$224.95
ST238M 20MB w/Controller (AT)........$299.95

Seagate 40MB and 60MB Hard Disk Drives Also Available!

PC/XT/AT COMPATIBLE MOTHERBOARDS

JE1001 4.77MHz (PCXT)........$69.95
JE1002 4.77MHz (PC)........$69.95
JE3005 Baby 8MHz (AT)........$199.95
JE3010 Baby 8MHz NEAT (AT)........$299.95
JE3020 Baby 16MHz 80386........$999.95
JE3025 Baby 20MHz 80486........$1199.95
JE3026 Full-Size 32MHz 80386........$1899.95

JAMECO IBM PC/XT/AT COMPATIBLE 3.5" 5.25" 2.5" DRIVE KITS

FMB336 3.5" Floppy Disk (MB336)........$99.95
JE2061 3.5" 1.44MB PC XTAT Card (PCXTAT/2061)........$109.95
JE1020 5.25" 360KXTX (MB360)........$89.95
JE1021 5.25" 360KXTX (Jeff)........$89.95
JE1022 3.5" 2MB (PCXT/AT) Range........$199.95

JAMECO IBM PC/XT/AT COMPATIBLE INTERNAL MODULOS

1200D 1200/300 basil internal Modem w/PopComm Comm Software (PCXTAT)........$49.95
2400B 2400/2400Sus block internal Modem w/PopComm Comm SW (PCXTAT)........$99.95

EDUCATIONAL KITS

JAMECO Solderless Breadboards

JE23 JE24 JE27

PROTOTYPING PRODUCTS

JE401 4.5"x5.5"-sized printed circuit board........$9.95
JE403 4.5"x5.5"-sized perf & 6 grid pattern........$9.95
JE405 4.5"x5.5"-sized general purpose........$9.95
JE407 5.125"x2.5"-sized general purpose........$9.95
JE417 4.5"x7.5" PC XT 1/2 card proto board........$19.95
JE421 4.5"x7.5" IBM PC Card Extended........$19.95

ENGINEERING/DATA BOOKS

21035 Same TTL Cookbook (89)........$14.95
21098 Same CMOS Cookbook (88)........$19.95
22453 Same Op Amp Cookbook (86)........$21.95
27064 Same 8-bit Controller Handbook (88)........$19.95
27046 Same 16-bit Controller Handbook (89)........$19.95
27047 Same 32-bit Controller Handbook (89)........$19.95
10410 NSC Linear Data Book Vol. 1 (88)........$14.95
10420 NSC Linear Data Book Vol. 2 (88)........$19.95
10430 NSC Linear Data Book Vol. 3 (89)........$9.95
IC999 1691 C Master (3 Volume Set)........$119.95

EQUIPMENT/TEST KITS

JE310 Fiber Optics Experiment Kit........$19.95
JE320 NSC Linear Fiber Optics Kit........$29.95
JE2206 Function Generator Kit........$19.95

Mail Order Electronics Worldwide

1355 Shoreway Road
Beimont, CA 94002

24 Hour Order Hotline (415) 592-8087
FAX's (415) 592-2303 or (415) 592-2666

Customer Service (415) 592-8121 Technical Assistance (415) 592-9990 Credit Department (415) 592-9983 All Other Inquiries (415) 592-7108

CIRCLE 114 ON FREE INFORMATION CARD
3 to 6 Vdc MOTOR with GEARBOX

Probably designed for children's toys. Lever selects 2 forward and one reverse speed. 15 gear approx 120 rpm/dvd, 2nd gear approx. 300 rpm/dvd, Reverse approx. 120 rpm/dvd.

3.35" X 1.75" X 3.25"
CAT# DCM-10 $6.00

SPECIAL!!
NICKEL CADMIUM BATTERY CHARGER

Rayovac# CH 4
Recharges up to four AA, C or D or two 9 volt nickel cadmium rechargeable batteries. LED charging indicator
CAT# UNCO $10.00 each 12 for $108.00

6 VOLT D.C.
9.5 AMP/HOUR GEL-CELL

Etopower# 695
6 volt, 9.5 amp/hour rechargeable gel-cell battery
4.25" X 2.75" X 5.5"
Quick connect terminals.
CAT# GC-695 $15.00 each

300 SOLAR CELL
4 inch square silicon solar cell. Produces 0.3-0.45 volts 0.1500 ma directly sunlight. Small package approx a 2.2 mm thick.
CAT# UPG-161 2 for $10.00 55 for $50.00

WIDE BAND AMPLIFIER

NEC# UPC1651H, 1000 kHz @ 3 in.
Gain: 15db @ 2.5 KHz, 100 ohm operation.
Small package approx a 2.2 mm thick.
CAT# UPG-161 2 for $10.00 55 for $50.00

N-CHANNEL MOSFET

RF-511 to 205 case
CAT# NMT-65 $1.00 each 10 for $9.00

LARGE QUANTITY AVAILABLE

STROBE KIT

Visible red strobe kit, flashes between 0.02 to 100 times per minute. Will operate on either 6 or 12 Vdc depending upon how you wire the circuit. Comes complete with P.O. Board and instructions for easy assembly.
CAT# STROBE-1 $7.50 each

PHONE COUPLING TRANSFORMER

Multi Products Inc. model: A100-2Q (120) Primary 600 ohm
Secondary: 600/600 ohm 77K X 61K 470 ohms
6 p.c. cards on 187 carriers. Primary inductions:
300 ohm, 600, 77K, 470K, 470 ohm.
CAT# TOT-1 1.25 each 10 for $11.00

OPTO SENSOR

U shaped package with mounting ears. 10" long 1/4" mounting holes.
CAT# TOT-1 $1.50 each 10 for $45.00

A.C. LINE CORDS

Bunch #1, #2, #3, #4,
CAT# COP-13w, 30" long
CAT# COP-13w, 30" long
CAT# COP-13w, 30" long

14.7 VOLT TRANSFORMER

Some Industries #14.7 6mm
60Hz, 8.82 Vav.
18.7 High X 1.57 X 3.51
1/4" Mounting holes on 2.25" centers.
CAT# TX-147 $3.00 each
10 for $27.00 100 for $250.00

CALL OR WRITE
FOR OUR CATALOG
OVER 4000 PARTS!

Now 60 pages!

MAIL ORDERS TO:
ALL ELECTRONICS
P.O. BOX 567
VAN NUYS, CA 91408

WRITE FOR OUR CATALOG OVER 4000

CIRCLE 107 ON FREE INFORMATION CARD

ORDER TOLL FREE 800-826-5432
INFO: (818)904-0524
FAX: (818)781-2653
MINIMUM ORDER $10.00
QUANTITIES LIMITED
CALIF. ADD SALES TAX
USA: $3.00 SHIPPING
FOREIGN ORDERS INCLUDE SUFFICIENT
SHIPPING. NO C.O.D.
AMERICAN DESIGN COMPONENTS

3 1/2", 20Mb., HALF-HEIGHT HARD DISK DRIVE
(S1225 Compatible)
Universal 5 1/4" mounting. For PC/XT/AT compatible computers. Average access time: 92 msec.
Mfr.: Lapine #17200. Item #15653 RFE $179.00
Western Digital Controller Card For above drive. Item #91452 $89.00

5 1/4" FULL-HEIGHT DISK DRIVE
(IBM* Comp.)
48 TPI, 40 Track. Double Side/Double Density
Mfr.: CDC 9409T
Item #7998 $79.00 New $150.00 New

JVC 20Mb INTERNAL TAPE BACK-UP w/CONTROLLER
Includes Syosyn Interface Card (#3044-001), manuals & software
JVC WMTD-520H
Item #52321 New $199.00

1200-BAUD MODEM
Operates at 300 & 1200 baud.
Most computers. 212A, 232C - Com-
patible. Built-in modulator. Internal speaker, error
correction. 232C cable connects unit to your computer. 7
status lights, volume control, AC & 2 phone jacks, incl. AC plug &
phone wire. (Mfrs. "Close Out"
Item #5X219 Old $59.95

ATARI HOME COMPUTERS
* Capable of running over 2,000
Atari programs including
music composition
* Memory: 64K RAM, 2K ROM (Operating system, plus "Atari
Basic" programming language)
* CPU: 6502 Processor; Clock speed: 1.79 Mhz.
267-key, full-stroke keyboard. W/ built-in diagnostic test, in-
cluding: Memory, Audio/Visual & Keyboard tests. Owner's guide, TV
switchbox, AC power adaptor, & "Atari Basic" guide also included.
Item #24144 RFE $99.95

PARITEK
Processor
64K, with built-in power unit. Designed for
IBM's 5150, 5250, and compatible computers.
Item #15853 New $99.95

Painted metal case. Includes 9" x 12" Control Panel-W/6000

PC/XT/AT-COMPATIBLE MULTI-FUNCTION BOARD
Contains the following: Parallel port, real-time clock w/battery
back up, 2K programmable RAM. 16 optically coupled interface
adapters. Software & schematics included.
Item #24153 New $29.95

AMERICAN DESIGN COMPONENTS, 915 FAIRVIEW AVE., PO. BOX 220, FAIRVIEW, N.J. 07022

MY check or money order is enclosed.
My credit card is honored.

Visa MasterCard American Express

Card No.
Exp. Date
Signature
Telephone: Area Code
Name
Address
City
State
Zip

All inquiries and free catalog requests—call (201) 941-5000.

Shipping & handling: We ship UPS unless otherwise specified. Add 10% of Total plus $2. Canadian $3 plus P.O. Order Change.

Sales Tax (N.J. residents only), please add 6%

ORDER TOTAL

For all phone orders, call TOLL FREE 800-776-3700. In New Jersey call (201) 941-5000.

CIRCLE 106 ON FREE INFORMATION CARD

DECEMBER 1989

www.americanradiohistory.com
MARK V ELECTRONICS, INC.

PROFESSIONAL COLOR LIGHT CONTROLLER SM-328 ★
Assembled & tested $135.00
The SM-328 professional color light controller is a keyboard-operated system which allows for full control of intensity and flashlight rate. It has four separate channels with capacity of 1100 watts peak power at 120V. Each channel is calibrated to 110V, 20kHz Total harmonic distortion levels. A POWER dynamic noise reduction, surround musical: 105-120V, 80hz

SURROUND SOUND PROCESSOR SM-533 ★★
Assembled & tested $83.00
The new SM-533 surround sound processor is a full featured unit that is designed to provide your system with the ultimate music experience. It can be used for VCR, Video Disc and Compact Disc, and can also be used with FM tuners, tape decks and LP disc players. It features a front panel with digital noise reduction, surround level, effect tone and level, and rear speaker controls. The unit may be purchased as a kit or fully assembled ready to plug in.

100W DYNAMIC CLASS A MAIN POWER AMPLIFIER TA-1000A ★
Assembled & tested $80.58
Complete kit & assembled $59.69
This well designed and stable amplifier features DC coupling throughout and a fully complementary symmetry circuit topology. It operates at very low ambient and high levels and gradually shifts to class AB operation at high levels. The output transistors provide 200 watts of power at 8 ohm.

DYNAMIC NOISE REDUCTION UNIT SM-666 ★
Assembled & tested $72.00
The SM-666 dynamic noise reduction unit is designed with the latest technology to provide the listener with a back horn-case transistors. It can be used with all types of systems, including stereo systems, and provides a high level of noise reduction. It can be used in playback or with existing noise reduction systems such as Dolby V.

4½ HI-PRECISION D.P.M. SM-48A ★★
Complete kit $41.20
Assembled & tested $52.00
SM-48A is a high-quality analog digital converter (ADC) that employs an extremely high-quality circuitry, designed using a high-quality analog digital converter (ADC) as its main device and employs advanced digital techniques. It is designed to operate in playback or with existing noise reduction systems such as Dolby V.

300W HI-FI POWER AMPLIFIER (MONO) TA-3600A ★
Assembled & tested $110.00
Complete kit $86.00
Several wattage levels and you may need a few resistors that can turn it into a DC volt meter for 0-70°C. The range and width are highly stable. Beside this unit, these resistors used for matching purposes are applied. In order to keep the stability and accuracy, 50μF temperature compensation capacitors are employed to make this meter working in the best way within 0-10°C.

NEW DIGITAL VOICE MEMO TA-28 MK II ★★
Kit $30 / Assembled & tested $42.00
FEATURES:
• Solar State Record/Play Back
• Power/Record LED Indicator
• 4 Bit ADC/Decoder
• 8 SEC or 8 SEC Continuous Time Record
• Sampling Frequency: 64kHz
• Low Noise Condenser Mic & Speaker
• Built-in Low Pass Filter
• Low Power Consumption: 6V DC

SM-45 3½ Multi-Functional Led D.P.M.
SM-48C 4½ Hi-Precision D.P.M. w/ strip case
SM-100 100W Digital Frequency Counter

DECEMBER 1989
CIRCLE 93 ON FREE INFORMATION CARD

www.americanradiohistory.com
JDR Microdevices®

30 DAY MONEY BACK GUARANTEE • 1 YEAR WARRANTY ON ALL PRODUCTS • TOLL-FREE TECHNICAL SUPPORT

MEMORY

PART# SIZE SPEED PINS PRICE
4164-150 65536 x 1 15ns 16 $2.99
4164-120 65536 x 1 12ns 16 $2.99
4164-100 65536 x 1 10ns 16 $2.99
TMS4464-12 65536 x 1 12ns 16 $3.99
4152-150 262144 x 1 15ns 20 $7.99
4152-120 262144 x 1 12ns 20 $7.99
4152-100 262144 x 1 10ns 20 $7.99
1 MB-120 1048576 x 1 12ns 20 $14.95
1 MB-100 1048576 x 1 10ns 20 $14.95
1 MB-80 1048576 x 1 8ns 20 $15.95

SIMP/SIP MODULES

PART# SIZE SPEED TYPE PRICE
41256-40B-12 256K x 12 12ns 80NS $49.95
41256-60B-10 256K x 10 10ns 80NS $49.95
41200-48B-10 1M x 8 10ns 80NS $99.95
41200-32B-10 1M x 10 10ns 80NS $99.95
256X356P-60 256K x 6 60ns 80NS $79.95
1M50X356P-30 1M x 30 30ns 80NS $179.95

STATIC RAMS

PART# SIZE SPEED PINS PRICE
HM616LP-2 2048 x 8 2ns 24 $4.99
HM626LP-15 8192 x 8 5ns 24 $8.99
HM626LP-12 8192 x 8 5ns 24 $8.99
HM626LP-8 4096 x 8 8ns 24 $11.95
HM626LP-2 1024 x 8 2ns 16 $21.95
HM626LP-1 1024 x 8 1ns 16 $21.95

MATH COrocessors

8-BIT COrocessors

8087 5 MHz 89.95
8087-1 10 MHz 169.55

32-BIT COrocessors

80387 6 MHz 139.95
80387-10 10 MHz 239.95
80387-12 12 MHz 239.95

PROTOTYPE CARDS

FS+ EPOXY GLASS LAMINATE WITH GOLD PLATED EDGE& CUTTERS FINGERS AND SILK SCREENED LEGENDS

CIRCLE 113 ON FREE INFORMATION CARD

DEALERS CIRCLE 170 ON FREE INFORMATION CARD

PARTIAL LISTINGS ONLY—CALL FOR FREE CATALOG!
ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

<table>
<thead>
<tr>
<th>Free Information Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>106 AMC Sales</td>
<td>85</td>
</tr>
<tr>
<td>152 Ace Communications</td>
<td>73</td>
</tr>
<tr>
<td>75 Ace Products</td>
<td>75</td>
</tr>
<tr>
<td>107 All Electronics</td>
<td>98</td>
</tr>
<tr>
<td>-- Amazing Concepts</td>
<td>90</td>
</tr>
<tr>
<td>106 American Design Components</td>
<td>99</td>
</tr>
<tr>
<td>67 Banner Technical Books</td>
<td>72</td>
</tr>
<tr>
<td>110 B & K</td>
<td>7</td>
</tr>
<tr>
<td>106 C & S Sales</td>
<td>36</td>
</tr>
<tr>
<td>70 CEI</td>
<td>95</td>
</tr>
<tr>
<td>60 CIE</td>
<td>11, 23</td>
</tr>
<tr>
<td>147 Chase International</td>
<td>72</td>
</tr>
<tr>
<td>153 Chenesko</td>
<td>75</td>
</tr>
<tr>
<td>-- Command Provisions</td>
<td></td>
</tr>
<tr>
<td>141 Communications Specialist</td>
<td>35</td>
</tr>
<tr>
<td>55 Contact East</td>
<td>33</td>
</tr>
<tr>
<td>58 Cook's Institute</td>
<td>24</td>
</tr>
<tr>
<td>69 Crystek</td>
<td>24</td>
</tr>
<tr>
<td>136 Dattak Corp.</td>
<td>33</td>
</tr>
<tr>
<td>127 Deco Industries</td>
<td>75</td>
</tr>
<tr>
<td>82 Digi-Key</td>
<td>100</td>
</tr>
<tr>
<td>135 Electronic Goldmine</td>
<td>90</td>
</tr>
<tr>
<td>-- Electronic Tech Today</td>
<td>87</td>
</tr>
<tr>
<td>121 Fluke Manufacturing</td>
<td>CV2</td>
</tr>
<tr>
<td>-- Fordham</td>
<td>CV4</td>
</tr>
<tr>
<td>155 Global Specialties</td>
<td>13</td>
</tr>
<tr>
<td>148 Heath Instruments</td>
<td>3</td>
</tr>
<tr>
<td>86 Heathkit</td>
<td>26</td>
</tr>
<tr>
<td>138 International Components Corp.</td>
<td>95</td>
</tr>
<tr>
<td>113, 170 JDR Microdevices</td>
<td>102, 103</td>
</tr>
<tr>
<td>113, 170 JDR Microdevices</td>
<td>104</td>
</tr>
<tr>
<td>114 Jameco</td>
<td>96</td>
</tr>
<tr>
<td>104 Jan Crystals</td>
<td>73</td>
</tr>
<tr>
<td>137 Jinc Computers</td>
<td>94</td>
</tr>
<tr>
<td>-- King Wholesalers</td>
<td>22</td>
</tr>
<tr>
<td>53 MD Electronics</td>
<td>89</td>
</tr>
<tr>
<td>93 Mark V. Electronics</td>
<td>101</td>
</tr>
<tr>
<td>61 Microprocessors Unltd.</td>
<td>83</td>
</tr>
<tr>
<td>154 Movietime</td>
<td>34</td>
</tr>
<tr>
<td>-- NRI Schools</td>
<td>5, 31</td>
</tr>
<tr>
<td>158 Optoelectronics</td>
<td>25</td>
</tr>
<tr>
<td>-- Pacific Cable</td>
<td>91</td>
</tr>
<tr>
<td>56 Parts Express</td>
<td>94</td>
</tr>
<tr>
<td>101 Pomona Electronics</td>
<td>12</td>
</tr>
<tr>
<td>157 Print Products Int'l</td>
<td>32</td>
</tr>
<tr>
<td>78 Radio Shack</td>
<td>15</td>
</tr>
<tr>
<td>156 SCO Electronics</td>
<td>79</td>
</tr>
<tr>
<td>159 Salen Enterprises</td>
<td>79</td>
</tr>
<tr>
<td>149, 151 Sencore</td>
<td>16, CV3</td>
</tr>
<tr>
<td>74 Solid State Sales</td>
<td>93</td>
</tr>
<tr>
<td>-- Star Circuits</td>
<td>32</td>
</tr>
<tr>
<td>83 Synergetics</td>
<td>69</td>
</tr>
<tr>
<td>-- Tektronix</td>
<td>18</td>
</tr>
<tr>
<td>123 Test Probes</td>
<td>27</td>
</tr>
<tr>
<td>250-254 Test Probes</td>
<td>27</td>
</tr>
<tr>
<td>64 Video-Link</td>
<td>92</td>
</tr>
<tr>
<td>139 Viejo Publications</td>
<td>26</td>
</tr>
<tr>
<td>140 WPT Publications</td>
<td>35</td>
</tr>
</tbody>
</table>

Gernsback Publications, Inc.
500 B Bi-County Blvd.
Farmingdale, NY 11735
1-516-293-3000
Fax 1-516-293-3115
President: Larry Steckler
Vice President: Cathy Steckler

For Advertising ONLY
1-516-293-3000
Fax 1-516-293-3115
Larry Steckler
publisher
Arline Fishman
advertising director
Lisa Strassman
credit manager
Christina Estrada
advertising assistant

SALES OFFICES

EAST/SOUTHEAST
Stanley Levitan
Eastern Sales Manager
Radio-Electronics
259-23 57th Avenue
Little Neck, NY 11362
1-718-426-6037, 1-516-293-3000

MIDWEST/Texas/Akansas/
Okla.
Ralph Bergen
Midwest Sales Manager
Radio-Electronics
540 Frontage Road—Suite 339
Norfolk, IL 60093
1-312-446-1444
Fax 1-312-446-8451

PACIFIC COAST/ Mountain
States
Marvin Green
Pacific Sales Manager
Radio-Electronics
5430 Van Nuys Blvd. Suite 316
Van Nuys, CA 91401
1-818-986-2001
Fax 1-818-986-2009
Dynamically Analyze Stereo Audio Power Amplifiers To A Full 500 Watts To IHF/EIA* Specifications In Less Than 1/2 The Time It Now Takes

Introducing the "Missing Link In Audio Servicing," with the NEW PA81 Stereo Power Amplifier Analyzer™ from Sencore Electronics. The PA81 provides everything you need for power amplifier analyzing integrated into one complete package, with:

- Twin Frequency Compensated Autoranged Wattmeters: 250 watts per channel (500 watts if paralleled), and listen to audio clarity with built-in volume control.
- Built-in IHF/EIA Testing Components At Your Fingertips: 2, 4, 8, 16, and 32 ohm-zero reactance loads, and all specified bandpass audio filters.
- Measure RMS Volts And dB As You Trace Through Circuits: Plus, programmable dB to measure stage gain.
- Test Intermittents To Prevent Amplifier Damage: Built-in DC balance test, automatically opens loads.
- Test Audio Line Levels To Make Sure The Driver Input Signal Is Correct: Check turntables, AM tuners, FM tuners, TV stereo demodulator outputs, CD players, etc. for standard line levels.
- Monitor Stereo Separation To 126 dB: Monitor, troubleshoot, or align AM-FM or TV stereo separation circuits.

Call 1-800-SENCORE (736-2673) In Canada Call 1-800-851-8866

Circle 149 on FREE INFORMATION CARD

www.americanradiohistory.com
Precision Hand-Held Instruments

B & K Precision Test Bench
- 41 range voltmeter
- Ammeter
- Ohmmeter
- Frequency counter
- Capacitance meter
- Logic probe
- Transistor & diode tester
- Extra-large LCD display
 - **Model 388-HD**
 - **Reg. $129.95**
 - **$119.00**

SCOPE Digital Multimeter
- 11 function, 38 ranges including Logic Level Detector
- Audible and Visual Continuity
- Capacitance & Conductance measurements
 - **Model DVM 638**
 - **Reg. $87.50**
 - **$79.95**

SCOPE 3½ Digit LCD Mini Meter
- 0.5% accuracy
- AC/DC Voltage
- DC current
- Resistance
- Diode test
- 200 mHz battery life
- Overload protection: DC 500V, AC 550V, ohms - 250V DC/AC
 - **Model DVM-650**
 - **Reg. $50.00**
 - **$32.50**

SCOPE Hand-Held 3½ Digit LCR Meter
- Measure capacitance, resistance, and inductance
- Overload protection
- Includes test leads, test clips, 9V battery, and spare fuse
 - **Model LCR-680**
 - **Reg. $69.95**
 - **$119.95**

SCOPE Pocket Size Audio Signal Generator
- Sine/square wave patterns
- 20Hz to 150KHz
- Battery operated
- Frequency accuracy ± 3% or less
- Output 12V rms max (no load)
- Low battery indicator
- Test leads & 9V battery included
 - **Model RC-555**
 - **Reg. $59.95**
 - **$59.95**

Digital Tracer Oscilloscopes

A.W. SPERRY 20 MHz Oscilloscope
- Built-in component checker
- Z-axis input
- Low power consumption
- TV video sync filter
- High-sensitivity X-Y mode
- Front panel trace rotator
- Includes 2 test probes
 - **Model 620C**
 - **Reg. $899.95**
 - **$349.95**

HITACHI 35 MHz Oscilloscope
- 19 calibrated sweeps
- 6" CRT with internal graticule
- Scale illumination & photographic bezel
- Auto focus
- XY operation
- Test separation
- Includes 2 probes (10:1 & 1:1)
 - **Model V-355**
 - **Reg. $899.95**
 - **$598.00**

Trainers and Tools

SCOPE DIGITAL TRAINER
- Learn logic circuits and equipment design
- Connects to oscilloscopes, signal generators and more
- Logic probe included
- Soldierless breadboard and crib sheets help you build almost any circuit
- Runs off 4 AA batteries or AC adapter (included)
 - **Model DT-01**
 - **Reg. $149.95**
 - **$110.00**

ALL PURPOSE 92-PC. TOOL CASE
- Complete kit for home, workshop and auto
- Includes 52 pc socket set with extenders
- 2 tool pallets with roomy rear storage compartments
- Attractive, rugged carry case
 - **Model FTK-28**
 - **Reg. $169.95**
 - **$129.95**

Service & Shipping Charge Schedule

- **Continental U.S.A.**
 - FOR ORDERS ADD
 - $51-100
 - $101-200
 - $201-300
 - $301-500
 - $501-750
 - $751-1000
 - $1001-1500
 - $1501-2000
 - $2001 and Up

Ask for Your Free Catalog

Fordham TOLL FREE 800-645-9518

(800-645-9518 in NY State 800-832-1446)

Money orders, checks accepted C.O.D.'s require 25% deposit.

260 Motor Parkway
Hauppauge, New York 11788

`www.americanradiohistory.com`