BUILD A DIGITAL IC TESTER

Computerized tester works in or out of circuit

THE EARLY DAYS OF RADIO

A nostalgic look at improvements in audio

ANALYZING WAVEFORMS

The right way to use an oscilloscope

STRAIN-GAGE TRANSDUCERS

The theory you need to put them to work

CLEAN UP THE MACROVISION MESS

Remove copy protection from video cassettes for a better picture

ComputerDigest

Floppy-disk data storage build a 68000-based computer
NEW FROM TEK AT JUST $995!

Light weight makes the 2225 easy to carry even to remote servicing sites.

Fully segmented graticule lines ease the way for quick, accurate voltage and time measurements.

Two independent channels with 50 MHz bandwidth and independent bandwidth limiting on each channel to 5 MHz, 500 μV/div sensitivity for low-level signal measurements and differential applications.

New low-cost probes (with nearly unbreakable tips) complement the rugged scope design. Compensation adjustments in the probe body itself eliminate the bulky compensation box at the front panel. Scope and probes are a perfect match!

Fast, accurate alternate horizontal magnification lets you choose any of three expansion levels to magnify any part of the normal waveform display—including the trigger point and end of sweep.

Now for the first time! Two vertical-channel inputs and an external Z-axis input all on the front panel. An excellent combination for manufacturing test stations and rackmount applications. And at the simple flip of a switch you can trigger on the Z-axis signal.

Proven design and rugged construction offer reliability at its best. And the Tek reputation for meeting rigid environmental requirements means confidence in your measurements—and in knowing that his scope is built to last.

Sweep speeds to 5 ns/div are fast enough for making accurate pulse and timing measurements on most digital logic families, with good resolution.

Versatile, easy-to-use triggering functions solidly trigger the sweep on either channel. Included are asynchronous triggering capability; flexible coupling via DC, AC, HF and LF reject filtering; hands-free triggering from virtually any signal; plus independent selection of either TV line or TV field triggering regardless of time-base setting.

Now, the professional quality and performance you expect from Tektronix...at an unexpected price: $995 for scope, probes, 3-year warranty and 30-day free trial on approved credit. No portable in its class can match the Tek 2225 for features, versatility, convenience and value. It's the easy, economical answer to scope needs at bench and field sites, on the manufacturing floor and in the classroom. Call Tek to order, for application assistance or to get the name of your nearest Tek representative or distributor.

Call Tek direct: 1-800-426-2200

Tektronix COMMITTED TO EXCELLENCE
BUILD THIS

47 ELECTRONIC CHRISTMAS TREE
Blinking LED's make this a unique holiday decoration.
Thomas L. Jozwiak

49 MACROVISION STABILIZER
Clean up your VCR's picture.
D. Dupre

55 IN-CIRCUIT DIGITAL-IC TESTER
Part 2. Build the tester and put it to work.
Bill Green

67 R-E ROBOT
Steven E. Sarns

69 PC SERVICE
Foil patterns for Macro-Scrubber, Christmas Tree, and IC Tester.

TECHNOLOGY

59 HOW TO ANALYZE WAVEFORMS
Digital readouts make waveform analysis a snap.
Gregory D. Carey, CET

CIRCUITS AND COMPONENTS

61 STRAIN-GAGE TRANSDUCERS
A look at how they work and how you can use them.
Clinton M. Wood

64 THE EARLY DAYS OF RADIO
Part 5. More nostalgia.
Martin Clifford

DEPARTMENTS

12 VIDEO NEWS
What's new in video.
David Lachenbruch

35 EQUIPMENT REPORTS
Mark V Professional Color Light Controller.

40 AUDIO UPDATE
Can you believe your ears?
Larry Klein

42 STATE OF SOLID STATE
An electronic potentiometer.
Robert F. Scott

74 SATELLITE IV
What's next?
Bob Cooper, Jr.

77 DRAWING BOARD
Designer RAM
Robert Grossblatt
Copy protection is commonplace in today’s movie industry. The Macrovision encoding process is used on many new video tape releases, and some cable companies have expressed interest in it as well. Its advocates claim that Macrovision affords unimpaired viewing of the original tape while making it impossible to copy it. However, many sets are unable to process the encoded signal correctly—resulting in a clouded picture that might also roll or flash. If your TV is one of those that can’t handle the encoded picture, our Macro-Scrubber can help. It eliminates only the Macrovision encoding, with no effect on normal video signals. For a clean picture all the time, build the Macro-Scrubber. The story begins on page 49.

NATIONWIDE PAGING SYSTEM
Wherever you are, you’ll get your message.

BUILD AN UNINTERRUPTIBLE POWER SUPPLY
A 40-watt unit keeps going when your power company quits.

SEMICONDUCTOR TESTING
How to test TTL devices.

COMPUTER DIGEST
Get your PT-68K up and running.

As a service to readers, RADIO-ELECTRONICS publishes available plans or information relating to news-worthy products and techniques and scientific and technological developments. Because of possible variances in the quality and condition of materials and workmanship used by readers, RADIO-ELECTRONICS disclaims any responsibility for the safe and proper functioning of reader-built projects based upon or from plans or information published in this magazine.

Since some of the equipment and circuitry described in RADIO-ELECTRONICS may relate to or be covered by U.S. patents, RADIO-ELECTRONICS disclaims any liability for the infringement of such patents by the making, using, or selling of any such equipment or circuitry, and suggests that anyone interested in such projects consult a patent attorney.

RADIO-ELECTRONICS, (ISSN 0033-7862) December 1987. Published monthly by Gernsback Publications, Inc. 500 B 8th-County Boulevard, Farmingdale, NY 11735 Second-Class Postage paid at Farmingdale, NY and additional mailing offices. Second-Class mail registration No. 9242 authorized at Toronto, Canada. One-year subscription rate U.S.A. and possessions $16.97. Canada $22.97. All other countries $25.97. All subscription orders payable in U.S.A. funds only, via international postal money order or check drawn on a U.S.A. bank. Single copies $1.95. © 1987 by Gernsback Publications, Inc. All rights reserved. Printed in U.S.A.

POSTMASTER: Please send address changes to RADIO-ELECTRONICS. Subscription Dept., Box 55115, Boulder, CO 80321-5515.

A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs if their return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.

Advertising Sales Offices listed on page 126.
HANDHELD DIGITAL IC COMPARATOR/TESERS FEATURE 20 CHANNEL
LOGIC MONITOR
B&K-PRECISION's Model 550 and 552 IC Comparator/Tester/Logic Monitors test ICs by comparison to a known good reference in one simple operation. As logic monitors, they simultaneously indicate the logic states of up to 80 IC pins. They test most 14 to 20 pin, 4-and 24 Series TTLs (Model 550) or 4000 and 74C Series CMOS (Model 552) devices. Both models are available from distributors at $595. Contact your local distributor or B&K-PRECISION, Dynascan Corp., 6460 W. Cortland St., Chicago, IL 60655. (312) 889-9087.

NEW COMPARATOR ADDS IC-COMPONENT TESTING TO SCOPE
Test virtually any type of passive or active component or module with B&K-PRECISION's new 541 Component Comparator. The 541 is designed for use with the 540 Component tester or virtually any x-y oscilloscope. It is well suited for both in-circuit and out-of-circuit tests. It's fast and easy to use. Unlike single function testing, the 541 can be used on series, parallel or series/parallel circuits. $595. Contact your local distributor or B&K-PRECISION, Dynascan Corp., 6460 W. Cortland St., Chicago, IL 60655. (312) 889-9087.

NEW COMPONENT TESTER LOCATES FAULTS ON UNPOWERED BOARDS IN FIELD OR PLANT
The new Model 540 component tester is an extremely cost effective, highly flexible troubleshooting aid that can assist in rapidly locating faults on unpowered boards. Faults can be traced to the component level without specific circuit knowledge. Individual components can also be tested. Test results are displayed as a curve on a built-in CRT display. Curve tracing allows matching of components. Two channels allow production testing against known good boards. Ideal for field service or production testing. $995. Contact your local distributor or B&K-PRECISION, Dynascan Corp., 6460 W. Cortland St., Chicago, IL 60655. (312) 889-9087.

PROGRAMMABLE IC TESTER TESTS TTL, CMOS, RAM AND ROM IC'S IN OR OUT-OF-CIRCUIT
Called the "first cost-effective way to test IC's both in and out-of-circuit," the new B&K-PRECISION Model 560 fills the void between basic component testers and costly ATE systems. Over 1,500 different 14 to 24 pin devices can be tested, including TTL and CMOS digital ICs, RAMs and ROMs. The 560 speeds testing, simplifies diagnosis and doesn't require prior test skills. Plain-English user prompts guide every step of operation. Test results are displayed as positive "pass" or "fail." Test results can be fed to a printer. Applications include incoming inspection, QC, production line testing and troubleshooting faulty products. $3,500. Contact your local distributor or B&K-PRECISION, Dynascan Corp., 6460 W. Cortland St., Chicago, IL 60655. (312) 889-9087.

LOGIC/PULSER PROBES HELP LOCATE DIGITAL FAULTS IN LAB OR IN FIELD SERVICE
B&K-PRECISION now offers logic and pulser probes to fill the needs of engineers and technicians. The DP-21 is a 50 MHz probe that also displays pulse presence and logic status. Both LED and audible logic state indicators are featured. The DP-31 pulser probe can be used alone or with a logic probe or scope. It produces a 10 µs pulse at 0.5 or 400 PPS rates and features an external square wave and synchronizing terminal. Both probes are multi-family compatible. The DP-21 is $32. The DP-31 is $33. Contact your local distributor or B&K-PRECISION, Dynascan Corp., 6460 W. Cortland St., Chicago, IL 60655. (312) 889-9087.

CIRCLE 77 ON FREE INFORMATION CARD

B&K-PRECISION has what you need for fast, cost-effective IC or board testing.

Check it o:

✓ Programmable in/out-of-circuit IC tester
✓ Portable curve-tracing component tester
✓ Portable IC comparator tester/Logic monitors
✓ Benchtop IC component comparator tester
✓ Multi-family compact pulser probes
✓ Memory-mode multi-family logic probes

Whether your needs are for production board testing, incoming inspection or field service, B&K-PRECISION has you covered with saving, accurate digital test products.

The Model 560 Programmable In/Out-of-Circuit IC Tester is the first cost-effective way to rapidly test IC's both in and out-of-circuit. Punch up the number you need from a resident memory of over 1500 TTL CMOS ICs, RAMs and ROMs.

The Model 540 Component Tester locates faults on unpowered boards, down to the component level. Curve-tracing method also allows fast comparison of components or boards.

The Model 541 Component Comparator is a companion instrument for use with yo scope or the 540. It tests IC's, semiconductors, capacitors, incators, transformers and more.

The Models 550 and 552 IC Comparator/Logic Monitors are hand-held portables for TTL and CMOS applications. In-circuit dynamic tests compare a known-good IC to an on-board IC. A 20-channel logic monitor is built-in.

The B&K-PRECISION digital test line-up is rounded out by convenient and economical pulser and logic probes.

For immediate delivery or complete specifications and applications information, call your local distributor or B&K-PRECISION.
EDITORIAL

Where is ComputerDigest going?

It's been almost four years since the first issue of ComputerDigest appeared inside Radio-Electronics. We have proven wrong the thousands of readers who felt that we would soon become "just another computer magazine." We have proven that Radio-Electronics is dedicated to covering the entire scope of electronics from satellite TV to antique radio, from digital audio tape to computers.

We hope you've noticed that ComputerDigest has changed during the last year. We've been taking our coverage of computers more seriously, and we've been covering more serious computers.

We've seen how computers can be used to design printed-circuit boards, and we've seen how graphics coprocessors work to make CAD programs faster and more powerful. We've looked at the computers of tomorrow with reports on IBM's PS/2. And, although we got off to a false start, we've begun to show you how to build a computer based on Motorola's powerful 68000 microprocessor.

Our hands-on reviews have kept you on top of the latest hardware and software. And we hope that our in-depth product comparisons have helped make your buying decisions easier by keeping you informed.

The construction projects have ranged from a clock board for your PC to a complete, powerful, yet low-cost 68000-based machine. We have also shown you how to install a 3-1/2-inch disk drive, and how you can dramatically increase the performance of your PC.

But that's enough talk about 1987. As we prepare our first issue for next year, we wonder how we can make ComputerDigest better. What type of articles do you want to see in 1988? More reviews? More construction? More industry news? Only you know how ComputerDigest can serve you better. Please don't keep it to yourself—we need to know. Write to us at 500-B Bi-County Blvd., Farmingdale, NY 11735. Let us know what computers you use and how you use them, and share your views with us.

Thanks for making 1987 a successful year for Radio-Electronics. We hope your holiday season is happy, and we wish you all the best for the new year.

BRIAN C. FENTON
Managing Editor
Your Best Source for Banana Plugs and Adapters is POMONA ELECTRONICS

STANDARD DOUBLE BANANA PLUG: MODEL MDP

BNC FEMALE TO STANDARD DOUBLE BANANA PLUG: MODEL 1269

STANDARD DOUBLE BINDING POSTS TO BNC MALE: MODEL 1296

DOUBLE BANANA JACK: MODEL 2269

FREE 1987 GENERAL CATALOG

SINGLE BINDING POST TO BNC MALE: MODEL 3430

STANDARD BINDING POST: MODEL 3760

CONNECTOR TEST ADAPTERS: SOCKET TYPE (LEFT) MODEL 4690; PIN TYPE (RIGHT) MODEL 4691

BNC FEMALE TO PHONO PLUG: MODEL 2957

ITT Pomona Electronics
1500 E. Ninth St., Pomona, CA 91766
Tel: (714) 623-3463

Our Products are available through your favorite electronics parts distributor.

CIRCLE 101 ON FREE INFORMATION CARD
In spite of fantastic advances, computers remain remarkably stupid about certain things. In particular, their language level is below that of a two-year-old child. And they are notoriously poor at finding things only slightly different from those asked for. Another weakness of computers is overprecision—without the exact information the computer cannot reach a conclusion. (An officer on the battlefield, on the other hand, must make instant decisions based on incomplete—and sometimes conflicting—information.)

Scientists at the General Electric Research and Development Center recently presented eight papers aimed at those problems at the Tenth International Conference on Artificial Intelligence, held in Milan, Italy. Possibly the most topical were two papers by Dr. Urik Zernik of the Center. Both of them were based on attempts to answer two questions: How do human beings learn language? and "How can the process be taught to computers?"

Past computer-language programs have followed academic models—the computer is "taught" a vocabulary (or fitted with a "dictionary") and given a set of grammatical rules. But humans don't learn a language that way, says Dr. Zernik. They learn with everyday experience with new words, phrases, and idioms.

His solution is to equip his program (called RINA) with a "dynamic lexicon" containing entire phrases (including idioms). RINA is also equipped with a set of mathematical instructions that tell the computer how to work with the lexicon and how to use it to gain new knowledge.

As an example, the computer was given the statement: "Israel and Egypt buried the hatchet." The computer interpreted that as "The nations buried a knife," but it rejected the phrase; in its experience, nations do not bury physical objects. The user helped out: "Israel and Egypt were in a long conflict, they signed a peace agreement." The computer, correctly deducing the meaning of the idiom, then replied: "They buried the hatchet; they terminated the conflict." Later, given the idiom in a totally different context, it responded correctly by applying what it had learned.

A system that is designed to enable a computer to make decisions based on incomplete information was described by Dr. Piero Bonissone, in a paper detailing RUM (Reasoning with Uncertainty Module). The system helps the computer to make sense out of fuzzy terms, like "almost" or "probably" and to weigh the similarities and differences of the current situation against a previous one.

Another paper, by GE scientist Van-Duc Nguyen, describes advances in image understanding—a computer's ability to recognize objects shown by the lines and angles of their outlines. (See "What's News" Radio-Electronics, April 1987). That process of "line labeling", or identification, is improved by adding information showing all lines as either concave, convex, or occluding.
NEW! CB Radios & Scanners

Communications Electronics, the world’s largest distributor of radio scanners, introduces new models of CB & marine radios and scanners.

NEW! Regency® TS2-RA

Allow 30-90 days for delivery after receipt of order due to the high demand for this product.

List price $499.95/CE price $339.95

12-Band, 75 Channel • Crystalless • AC/DC

Frequency range: 29-54, 116-174, 406-512, 600-950 MHz

The Regency TS2-RA scanner lists for $449.95, now it includes additional features.

Military, Space Satellites, Government, Railroad, Justice Department, State Department, Fish & Game, Immigration, Marine, Police and Fire Departments, Aeronautical AM band, Paramedics, Amateur Radio, plus thousands of other radio frequencies.

NEW! Regency Informant® Scanners

Frequency coverage: 35-54, 136-174, 406-512 MHz.

The new Regency Informant scanners cover virtually all the standard police, fire, emergency and weather frequencies. The vast majority of scanners are preprogrammed by state in the units memory. Just plug in and scan.

Regency® Z60-RA

List price $299.95/CE price $148.95/SPECIAL

8-Band, 60 Channel • No-crystal scanner

The Regency Z60-RA scanner lists for $279.95, now it includes a display and alarm. Only $239.95 Order today.

Regency® Z45-RA

List price $259.95/CE price $139.95/SPECIAL

7-Band, 45 Channel • No-crystal scanner

The Regency Z45-RA scanner lists for $239.95, now it includes a display and alarm. Only $199.95 Order today.

Regency® RH256-RA

List price $799.95/CE price $329.95/SPECIAL

16-Band Channel • 25 Watt Transceiver

The Regency RH256-RA scanner lists for $779.95, now it includes a display and alarm. Only $379.95 Order today.

Regency® 50XL-RA

List price $199.95/CE price $114.95/SPECIAL

10-Band, 50 channel • Portable scanner

Bands: 26.95, 136-174, 406-512 MHz

The Uniden Bearcat 50XL is an economical, hand-held scanner with 10 channels covering ten frequency bands. It features a keypad lock switch to prevent accidental entry and more. Also order the new no-longer-a-longer rechargeable battery pack part # BP5 for $29.95, a plug-in wall charger, part # AD100 for $14.95, a carrying case part # VCD01 for $14.95, or a plastic cigarette lighter cable part # PS001 for $14.95.

Uniden CB radios

The Uniden line of Citizens Band Radios introduces a new model with the same features as the popular Bearcat 40XL. The Uniden UC700-2-RA is equipped with a high quality speaker, excellent audio quality, and a front-mounted, easily accessible tuning control. The Uniden UC700-2-RA includes a built-in microphone and speaker. It has an On/Off switch, Volume control, squelch control, and a Squelch button. The Uniden UC700-2-RA is compatible with most CB radios and scanners.

Uniden marine radios

The new line of marine radios includes the UC600-1-RA, the UC700-2-RA, and the UC800-3-RA. These radios are designed to meet the demanding requirements of the marine environment. They include a built-in microphone and speaker, and a front-mounted tuning control. These radios are designed to meet the demanding requirements of the marine environment. They include a built-in microphone and speaker, and a front-mounted tuning control. These radios are designed to meet the demanding requirements of the marine environment. They include a built-in microphone and speaker, and a front-mounted tuning control.
"If you're going to learn electronics, you might as well learn it right!"

"Don't settle for less. Especially when it comes to career training...because everything else in your life may depend on it. That's why you ought to pick CIE!"

Stephen J. Simcic
Vice President, Academic Affairs
You've probably seen advertisements from other electronic schools. Maybe you think they're all the same. They're not! CIE is the largest independent home study school in the world that specializes exclusively in electronics.

Meet the Electronics Specialists.

When you pick an electronics school, you're getting ready to invest some time and money. And your whole future depends on the education you get in return.

That's why it makes so much sense to go with number one... with the specialists... with CIE!

There's no such thing as bargain education.

If you talk with some of our graduates, chances are you'll find a lot of them shopped around for their training. Not for the lowest priced but for the best. They pretty much knew what was available when they picked CIE as number one.

We don't promise you the moon. We do promise you a proven way to build valuable career skills. The CIE faculty and staff are dedicated to that. When you graduate, your diploma shows employers you know what you're about. Today, it's pretty hard to put a price on that.

Because we're specialists we have to stay ahead.

At CIE, we've got a position of leadership to maintain. Here are some of the ways we hang onto it...

Programmed Learning

That's exactly what happens with CIE's Auto-Programmed Lessons. Each lesson uses famous "programmed learning" methods to teach you important principles. You explore them, master them completely, before you start to apply them. You thoroughly understand each step before you go on to the next. You learn at your own pace.

And, beyond theory, some courses come fully equipped with electronics gear (the things you see in technical magazines) to actually let you perform hundreds of "hands-on" experiments.

Experienced specialists work closely with you.

Even though you study at home, you are not alone! Each time you return a completed lesson, you can be sure it will be reviewed, graded, and returned with appropriate instructional help.

When you need additional individual help, you get it fast and in writing from the faculty technical specialist best qualified to answer your question in terms you can understand.

Pick the pace that's right for you.

CIE understands people need to learn at their own pace. There's no pressure to keep up... no slow learners hold you back. If you're a beginner, you start with the basics. If you already know some electronics, you move ahead to your own level.

Enjoy the promptness of CIE's "same day" grading cycle.

When we receive your lesson before noon Monday through Saturday, we grade it and mail it back the same day. You find out quickly how well you're doing!

CIE offers you an Associate Degree.

One of the best credentials you can have in electronics — or any other career field — is a college degree. That's why CIE gives you the opportunity to earn an Associate in Applied Science in Electronics Engineering. Technology. Any CIE career course can offer you credit toward the degree — more than half of the number needed in some cases.

"Cleveland Institute of Electronics is the only accredited institution of higher learning offering an Associate Degree program with tuition based on actual study time used. The faster you complete your degree assignments, the less your overall tuition..."
Steve Simic Vice-President Academic Affairs

Which CIE Training fits you?

Beginner? Intermediate? Advanced? CIE home study courses are designed for ambitious people at all entry levels. People who may have:

1. No previous electronics knowledge, but do have an interest in it;
2. Some basic knowledge or experience in electronics;
3. In-depth working experience or prior training in electronics.

You can start where you fit and fit where you start, then go on from there to your Diploma, Associate Degree, and career.

Today is the day.
Send now.

Fill in and return the postage-free card attached. If some ambitious person has removed it, cut out and mail the coupon. You'll get a FREE school catalog plus complete information on independent home study. For your convenience, we'll try to have a CIE representative contact you to answer any questions you may have.

Mail the coupon below or, if you prefer, call toll-free 1-800-321-2155 (in Ohio, 1-800-323-9190).

CIE Cleveland Institute of Electronics, Inc.
1776 East 17th Street, Cleveland, Ohio 44114
Accredited Member National Home Study Council

YES...I want to learn from the specialists in electronics... CIE. Send me my FREE CIE school catalog...including details about the Associate Degree program... plus my FREE package of home study information,

Print Name ________________________
Address ____________________________
City __________________ State ______ Zip ____________
Age ______ Area Code/Phone No. ________

Check box for G.I. Bill bulletin on Educational Benefits: □ Veteran □ Active Duty

MAIL TODAY!
CIRCLE 60 ON FREE INFORMATION CARD

DECEMBER 1987
What's in a name? Not much, evidently. Take RCA, for example: In 1986, it was sold to General Electric, which was one of the original founders of RCA. General Electric then sold off RCA Records to German publisher Bertelsmann, which not only continues to use the RCA name but has restored the old RCA “meatball” trademark—R, C, and A in a circle, with a lightning bolt at the bottom of the A. Then GE proceeded to sell both GE and RCA consumer electronics to France’s giant Thomson combine. Now the RCA initials will be used on records by a German company and on TV’s by a French one. The David Sarnoff Research Center (once called RCA Laboratories) was donated to SRI International, which still calls it by the name of RCA’s guiding genius.

Or take Philips, the worldwide tradename of the Dutch electronics giant. In the early days of electronics, the company reached an agreement to keep the Philips name out of the United States because it might be confused with Philco, which was there first. Philco was sold to Ford, Ford sold it to GTE, and GTE sold it to North American Philips, which in turn was absorbed by Dutch Philips. So Philips ended up owning Philco, which, not surprisingly, no longer had any objection to the use of the Philips name. Thus, the Philips name finally has come to America on lightbulbs and appliances, and soon on electronics, including TV sets.

Good old names never seem to die; but sometimes they go to sleep for a while. That’s what’s now happening to Pilot, a historic name. It was Pilot Radio that introduced the first big-selling component FM tuner, the Pilotuner. Then in 1948 Pilot brought out the first portable TV (it was in a large suitcase and had a 3-inch picture); that was also the first TV set with a list price under $100. Pilot went through a number of permutations, and eventually when audio marketer Morse sold out to Curtis Mathes, Pilot was one of the names that went with it. Curtis Mathes tried selling Pilot audio equipment for a while, but phased out the line this year. So Pilot is now in limbo, but the brand will probably make a comeback sometime soon, like oldtimers such as Capehart, Emerson, Symphonic, and DuMont; all of those are still around, but the equipment is being manufactured by companies that have no connection to the brand’s originator.

Zenith goes digital. Apparently encouraged by the success of its original digital offerings last year, Zenith has introduced 15 new TV sets with all-digital signal processing, in 20- and 27-inch sizes, all with built-in TV stereo and teletext reception. That’s far more digital models than any other TV manufacturer will be selling in the U.S. In other introductions, Zenith became the first American manufacturer to offer a TV set with a 35-inch tube (the tube is Japanese). Also, Zenith has introduced a new vertical VCR about six-inches wide by 12-inches tall, designed for bookshelves and other tight places. One 27-inch TV set has a removable panel that conceals a compartment just the right shape to hold Zenith’s vertical VCR—and nobody else’s. For its lower-priced sets, Zenith has introduced the new highly automated Duratech chassis, which contains 46% surface-mount parts, 80% machine-inserted components, 20% fewer connectors, and is 100% computer tested and aligned.

Compact disc-video postponed. If you’ve been looking for those Compact Disc-Video (CD-V) records and players (Radio-Electronics, August 1987), you’ll have to wait a little longer. Although they were formally “introduced” last summer, nothing has come on the market, and they’re now scheduled for a new launch early in 1988. The CD-V format is an overall name given to the old Laservision videodisc, as well as the new five-inch discs that play five minutes of analog video and 20 minutes of digital audio. Pioneer has introduced combination players that will play the 5-inch discs as well as 8- and 12-inch ones, and others are due soon. CD-V’s sponsors want to go through the hoopla of a launch after they have about 200 music-video titles in the 5-inch size. At press time, fewer than 100 selections had been committed to the short audio-video singles.
TEST EQUIPMENT THAT MEASURES UP TO YOUR SPECIFICATIONS

DMM-300 $79.95
3.5 DIGIT DMM / MULTITESTER
Our best model. A highly accurate, full function DVM loaded with many extra features. Audible continuity, capacitance, temperature and conductivity all in one hand-held meter. Temperature probe, test leads and battery included:
- Basic DC accuracy: plus or minus 0.25%
- DC voltage: 200mv - 1000v, 5 ranges
- AC voltage: 200mv - 750v, 5 ranges
- Resistance: 200 ohms - 20M ohms, 8 ranges
- AC/DC current: 200uA - 10A, 6 ranges
- Capacitance: 200pf - 20uf, 3 ranges
- Temperature tester: 0° - 2000°F
- Conductance: 200m
- Fully over-load protected
- Input impedance: 10M ohm

DMM-200 $49.95
3.5 DIGIT FULL FUNCTION DMM
High accuracy, 20 amp current capability and many range settings make this model ideal for serious bench or field work. Til stand for hands-free operation. 2000 hour battery life with standard 9v cell. Probes and battery included:
- Basic DC accuracy: plus or minus 0.25%
- DC voltage: 200mv - 1000v, 5 ranges
- AC voltage: 200mv - 750v, 5 ranges
- Resistance: 200 ohms - 20M ohms, 8 ranges
- AC/DC current: 200uA - 20A, 6 ranges
- Fully over-load protected
- Input impedance: 10M ohm
- 180 x 86 x 37mm, weight 320 grams

DMM-700 $49.95
3.5 DIGIT AUTORANGING DMM
Auto-ranging convenience or fully manual operation. Selectable LO DMM mode permits accurate in-circuit resistance measurements involving semi-conductor junctions. MFR mode for measurements related to a specific reading. Probes and battery included:
- Basic DC accuracy: plus or minus 0.5%
- DC voltage: 200mv - 1Mv, autoranging or 5 manual ranges
- AC voltage: 2v - 750v, autoranging or 4 manual ranges
- Resistance: 200 ohms - 20M ohms, autoranging
- AC/DC current: 20mA - 10A, 2 ranges
- Fully over-load protected
- Audible continuity tester
- Input impedance: 10M ohm
- 150 x 75 x 28mm, weight 230 grams

DMM-100 $29.95
3.5 DIGIT POCKET SIZE DMM
Shirt-pocket portability with no compromise in features or accuracy. Large, easy to read 5" LCD display. 2000 hour battery life with standard 9v cell provides over two years of average use. Probes and battery included:
- Basic DC accuracy: plus or minus 0.5%
- DC voltage: 2v - 1000v, 4 ranges
- AC voltage: 200v, autoranging
- Resistance: 20 ohms - 2M ohms, 5 ranges
- DC current: 200uA - 2A, 4 ranges
- Fully over-load protected
- Input impedance: 10M ohm
- 130 x 75 x 26mm, weight 195 grams

MODEL 2000 $349.95
20 MHz DUAL TRACE OSCILLOSCOPE
Model 2000 combines useful features and exacting quality. Frequency calculation and phase measurements are quick and easy in the X-Y Mode. Service technicians will appreciate the TV Sync circuitry for viewing TV V and TV H as well as accurate synchronization of the Video Signal, Blankin Pedestals, VITS and Vertical/Horizontal sync pulse:
- Lab quality compensated 10X probes included
- Built-in component tester
- 110/220 Volt operation
- X-Y operation, Bright 6.5" CRT
- TV Sync filter

MODEL 3500 $499.95
35 MHz DUAL TRACE OSCILLOSCOPE
Wide bandwidth and exceptional 1mV/DIV sensitivity make the Model 3500 a powerful diagnostic tool for engineers or technicians. Delayed triggering allows any portion of a waveform to be isolated and expanded for closer inspection. Variable Holdoff makes possible the stable viewing of complex waveforms:
- Lab quality compensated 10X probes included
- Delayed and single sweep modes
- Axis intensity modulation
- X-Y operation, Bright 6.5" CRT
- TV Sync filter

2 YEAR WARRANTY ON ALL MODELS

ORDER TOLL FREE
800-538-5000
OR VISIT OUR RETAIL STORE
1256 SOUTH BASCOM AVE.
SAN JOSE, CA. (408) 947-8881
CIRCLE 59 ON FREE INFORMATION CARD

JDR INSTRUMENTS
110 Knowles Drive, Los Gatos, CA 95030
(408) 866-6200 • FAX (408) 378-8927 • Telex 171-110

COPYRIGHT 1985 JDR MICRODEVICES
THE JDR INSTRUMENTS LOGO IS A REGISTERED TRADEMARK OF JDR MICRODEVICES.
JDR INSTRUMENTS IS A TRADEMARK OF JDR MICRODEVICES.
IF YOU WANT A BETTER
COMPUTER
BUILD IT YOURSELF.

Heath makes
building the
powerful 386
computer quick,
fun, easy... and a great value.

Now you can own the fastest,
most powerful home computer
available today—at an affordable
cost. Just by building it yourself.

Introducing
the Heathkit
H-386 Desktop
Computer. With
its powerful
32-bit processor, 16 MHz
computing speed and
"zero wait" technology,
the H-386 can breeze through
complex calculations in seconds.

Every INTEL 80386 micro-
processor used in our H-386 is 100%
tested for all functions. And you
get superb graphics because one
video port provides dazzling 640-
by-480 color on Zenith's new flat
screen monitor and
another port
drives EGA, CGA and TTL
monochrome monitors. Both
ports automatically emulate
common video formats for
easy system configuration.

Designed for people
using large spreadsheets,
CAD/CAM or other computa-
tion-intensive applications,
or anyone who simply wants
to own the newest, most power-
ful hardware on the market,
the Heathkit H-386 can be
assembled easily and quickly. One
or two evenings is all it takes, and
no special tools or equipment
are required.

In the bargain, you get the
satisfaction of having built a
powerful computer system all by
yourself, and the confidence that
this exciting product will deliver all
the performance and dependability
you expect. At a significant
savings over comparable off-
the-shelf brands.

What's more, all Heathkit
products are backed by a
newly extended, limited
one-year warranty, highly
respected manuals and tech-
nical consultation service.

So if you want a better
computer, build it your-
self. Impress your friends.
And save
money at the
same time.

To order the new Heathkit
H-386 Desktop Computer, simply
call toll-free 1-800-253-0570. Ask
for operator 312. Use your Visa,
MasterCard or Heath Revolving
Charge. Or call 616-982-3614 for the
Heath/Zenith Computers and Elec-
tronics store location nearest you.

For more information on all
our quality kits, send now for your
free four-color Heathkit catalog.
Write Heath Company, Dept.
020-604, Benton Harbor, MI 49022.
S-METER AND HEADPHONE JACK

Please show the circuit of a signal-strength meter for an AM radio. Also describe how I can add a headphone jack that will automatically silence the speaker when the phones are plugged in.—J.D., Turnersville, NJ.

I don't know anything about the radio you're modifying, so the best bet for a signal-strength indicator is an FET DC voltmeter (Fig. 1) connected to the set's AGC bus. As shown, the meter reads upward when connected to a positive-going AGC. If the radio uses tubes or has a negative-going AGC, completely isolate the voltmeter's positive and negative leads from the receiver and then reverse the meter movement's connections so it responds to a negative voltage input. Or, do as was often done on communications receivers: Turn the meter upside-down so a declining voltage input will cause the meter to appear to read up-scale.

Figure 2 shows how low-impedance headphones can be connected into the audio output circuit of the radio. Inserting the phone plug connects the phones across the audio output while disconnecting the speaker.

PRECEDENCE DETECTOR

We are planning to update the indicator system used in our "Scholastic Bowl" events. The present system uses relays and we want to use solid-state circuitry.

The moderator or quiz-master asks a question and the first contestant to believe that he has the answer presses a pushbutton switch that causes his indicator lamp to light, and, at the same time, locks out the indicators of the other contestants. The judge determines the winner and then resets the system.—J.R., Cuba, IL.
Our tiles contain a number of precedence-detector circuits that indicate which of two pushbuttons is pressed first. One circuit, which uses incandescent lamps for high visibility, is shown in Fig. 3.

The circuit, which was described by M. Jennings in the English magazine *Radio & Electronics Constructor*, is designed for SCR switching. The SCR’s, of which there is one per “player,” remain off until one of them is turned on when a player momentarily closes his pushbutton switch. The switch closure produces a positive trigger pulse on the gate of the corresponding SCR, turning it on. As soon as one SCR turns on, its corresponding indicator lamp lights and the other SCR is locked out so that it cannot fire.

Any number of switching circuits can be added to the detector by duplicating the circuitry to the right of point “X.” The SCR’s are low-power types such as the Radio Shack 276-1020 and the diodes are silicon rectifiers such as the 1N4002. Switches S1 and S2 are normally-open pushbuttons. Switch S3 is used by the judge or referee to apply power and to reset the precedence detector. That switch may be a single-throw push-on/push-off type.

The precedence detector works this way: Even with S3 closed to energize the detector, the SCR’s do not conduct because their gates are isolated from a positive voltage source. Assume that two (or more) players hit their pushbuttons at almost the same instant, but contestant No. 1 closes his switch (S1) a fraction of a sec-
Nine Test Probes with only one difference between them and your scope's original equipment

<table>
<thead>
<tr>
<th>Manufacturers Scope</th>
<th>Original Probe</th>
<th>Price</th>
<th>Coline/TPI Equivalent</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEKTRONIX 2300 Series</td>
<td>P6101A</td>
<td>$53</td>
<td>M12X1</td>
<td>$38</td>
</tr>
<tr>
<td></td>
<td>P6108A</td>
<td>$75</td>
<td>M12X10</td>
<td>$62</td>
</tr>
<tr>
<td></td>
<td>P6121</td>
<td>$100</td>
<td>M12X10AP</td>
<td>$68</td>
</tr>
<tr>
<td></td>
<td>P6122</td>
<td>$58</td>
<td>P100</td>
<td>$38</td>
</tr>
<tr>
<td></td>
<td>P6131</td>
<td>$140</td>
<td>M5X10HFAP</td>
<td>$87</td>
</tr>
<tr>
<td></td>
<td>P6133</td>
<td>$115</td>
<td>M12X10AP</td>
<td>$87</td>
</tr>
<tr>
<td></td>
<td>P6105A</td>
<td>$93</td>
<td>M12X10AP</td>
<td>$68</td>
</tr>
<tr>
<td></td>
<td>P6106A</td>
<td>$140</td>
<td>M5X10HFAP</td>
<td>$87</td>
</tr>
<tr>
<td></td>
<td>P6130</td>
<td>$130</td>
<td>M12X10AP</td>
<td>$68</td>
</tr>
<tr>
<td>IWATSU SS-5321</td>
<td>SS-0014</td>
<td>$92</td>
<td>M12X10</td>
<td>$62</td>
</tr>
<tr>
<td></td>
<td>SS-0012</td>
<td>$77</td>
<td>M12X10</td>
<td>$62</td>
</tr>
<tr>
<td>LEADER LBO-315</td>
<td>LP-060X</td>
<td>$60</td>
<td>SP100</td>
<td>$43</td>
</tr>
<tr>
<td></td>
<td>LP-100X</td>
<td>$76</td>
<td>SP100</td>
<td>$43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHILIPS PM3267</td>
<td>PM8294</td>
<td>$60</td>
<td>M12X1</td>
<td>$38</td>
</tr>
<tr>
<td></td>
<td>PM3256</td>
<td>$70</td>
<td>P100</td>
<td>$38</td>
</tr>
<tr>
<td></td>
<td>PM3264</td>
<td>$95</td>
<td>M12X10</td>
<td>$62</td>
</tr>
<tr>
<td>HITACHI V-1100A</td>
<td>AT-10AL.15</td>
<td>$64</td>
<td>SP100</td>
<td>$43</td>
</tr>
<tr>
<td></td>
<td>V-509</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEWLETT PACKARD 1715A</td>
<td>10018A</td>
<td>$135</td>
<td>M20X10</td>
<td>$68</td>
</tr>
<tr>
<td></td>
<td>1722B</td>
<td>$130</td>
<td>M15X10HF</td>
<td>$79</td>
</tr>
<tr>
<td></td>
<td>1725A</td>
<td>$130</td>
<td>M15X10HF</td>
<td>$79</td>
</tr>
<tr>
<td></td>
<td>1740 Series</td>
<td>$135</td>
<td>P100</td>
<td>$38</td>
</tr>
<tr>
<td></td>
<td>10021A</td>
<td>$85</td>
<td>IP20</td>
<td>$29</td>
</tr>
</tbody>
</table>

Take up the Coline TPI challenge and compare our prices with the probes you currently use. In many cases you can replace both probes on your dual trace scope at the cost of one probe from the scope manufacturer. Plus, bandwidth and overall performance of the TPI probe typically exceed that of the original equipment. Satisfaction is guaranteed with a ten day return privilege. Coline TPI—Specialists in probes for over 15 years.

Available from your local distributor.

TOLL FREE INFORMATION LINE
1-800-368-5719, 1-800-643-8382 in California

Coline TPI

TEST PROBES INC.

9178 Brown Deer Road, San Diego CA, 92121 Phone: (619)535-9292

CIRCLE 123 ON FREE INFORMATION CARD
Train with NRI for a servicing

Get started now by building this fully IBM PC compatible computer

Now you get it all . . . training for America's fastest growing career opportunity . . . training to service all computers . . . training on the newest total computer system, the Sanyo 880. Only NRI can give you the well-rounded training you need, because only NRI gives you a complete computer system . . . computer, monitor, disk drive, software, even test instruments like a digital multimeter and logic probe to work with and keep. It all adds up to training that builds the knowledge, competence, and ability you need to succeed as a computer service specialist.

Get inside the newest, fully IBM PC compatible Sanyo Microcomputer

As an NRI student, you'll get total hands-on training as you actually build your own latest model Sanyo 880 Series computer from the keyboard up. It's fully IBM PC-compatible and, best of all, it runs programs almost twice as fast as an IBM PC. As you assemble the Sanyo 880, you'll perform demonstrations and experiments that will give you a total mastery of computer operation and servicing techniques. You'll do programming in BASIC language—even run and interpret essential diagnostic software.
Understanding you get only through experience
You need no previous knowledge to succeed with NRI. You start with the basics, rapidly building on the fundamentals of electronics with bite-size lessons. You perform hands-on experiments with your NRI Discovery Lab and then move on to master advanced concepts like digital logic, microprocessors, and computer memories.

Learn at home in your spare time
You train in your own home at your own convenience, backed at all times by your own NRI instructor and the entire NRI staff of educators and student service support people. They’re always ready to give you guidance, follow your progress, and help you over the rough spots to keep you moving toward your goal.

100 page free catalog tells more . . . send today
Send the postage-paid reply card today for NRI’s 100 page catalog that gives all the facts about computer training, plus career training in robotics, data communications, TV/audio/video servicing, and many other fields. If the card is missing, write to NRI at the address below.

NRI SCHOOLS
McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue
Washington, DC 20016
We’ll give you tomorrow
ond before any of the others. At the instant S1 closes, gate current flows through R1, S1, and diodes D2 and D3, so SCR1 conducts. Its anode current flows through indicator lamp L1, and the anode voltage falls to around 0.6 volt—the anode-cathode voltage drop across SCR1. That causes D1 to be forward-biased, so it also conducts, dropping point X to 1.2 volts—the sum of the diode-voltage drops across SCR1 and D1.

With point X at 1.2 volts, all the other circuits are locked out, because when any other pushbutton is pressed, the two series-connected silicon diodes (D5, D6, etc.) are not sufficiently forward-biased to pass the gate current needed to fire the associated SCR. After determining the winning contestant, the umpire resets the board by pushing S3 once to turn off the conducting SCR, and again to restore power.

The indicator lamps should be low-current types—drawing approximately 60 mA or so. If you use higher current types make sure that their cold resistance (as measured with an ohmmeter) is high enough to limit the initial inrush of lamp current to the maximum surge-current rating of the SCR.

If you need something more elaborate, consider building the “Electronic Umpire” described in the December 1970 issue of Radio-Electronics. It handles two teams of three players each, and indicates the order of response for the first four contestants.

Using an Optoelectronic Coupler

I am trying to design a circuit that uses a Motorola MOC7811 slotted opto-coupler as a sensor, but I can't locate any applications data. Can you help? —B.J.D., Peoria, AZ

Slotted couplers in that series consist of an infrared-emitting diode and a photodetector facing each other across a slot in the housing, as shown in Fig. 4. The slot provides a means of interrupting the path between the infrared source and its detector.

We don't have any idea as to what you want to accomplish, so your best bet is to seek applications data from Motorola Semiconductors, 616 West 24th St., Phoenix, AZ 85282. For typical circuits and additional applications information, see one or more of the following: General Electric Optoelectronics Manual, the Motorola Optoelectronics Device Data Book, or The Optoelectronics Data Book for Design Engineers from Texas Instruments.

What Kind of Resistors

I'm interested in resistors and want information on the differences
between a thermistor, thermistor, thyristor, and varistor. I have found some definitions, but they are conflicting. I’m particularly interested in the thermistor because one is used in my oscilloscope’s power supply.—B.C., San Diego, CA.

The word “thermistor” is an acronym for Thermally-Sensitive Resistor. A thermistor is a ceramic semiconductor whose resistance varies greatly with changes in its temperature. The change in temperature may be due to internal heating due to current flow, or to heat from an external source. Thermistors are available with either positive or negative temperature coefficients. The NTC (Negative Temperature Coefficient) device is one that exhibits a decrease in resistance with increases in body temperature. A PTC device is one that develops an increase in resistance with an increase in temperature.

“Thermister” is a misspelling or corruption of the correct spelling. I never heard of a “varistor.” Perhaps the word you are looking for is “varistor”—meaning a two-terminal voltage-sensitive semiconductor whose resistance decreases rapidly as the applied voltage is increased.

A thyristor is a stable (two-state) semiconductor device having three or more junctions. It can be rapidly switched between its off and on states. The term “thyristor” is often used to include SCR’s and gate-controlled switches.

UNLOADED VACUUM-TUBE AMPLIFIERS

I’ve serviced car stereo and home hi-fi equipment for more than ten years. Occasionally, an old tube-type amplifier is brought in for service. Recently, a new service manager “hit the roof” when he found me working on a vacuum-tube power amplifier when it had not been connected to the outputs. He says that I could have destroyed the amplifier, but won’t explain how or why. What’s the problem?—B.F., Mamaroneck, NY.

Solid-state power amplifiers can be run without a load on their outputs but can be damaged if a short circuit is inadvertently connected across the output terminals. Conversely, a vacuum-tube power amplifier can be damaged if you “crank up the power” before connecting a speaker or resistor load across the secondary of the output transformer.

Here’s what happens: Without a load on the secondary winding, the primary winding appears as a very-high impedance and the audio voltages across it can rise to very-high values. The peak voltages can be high enough to cause arcing in the output tubes or cause a breakdown in the insulation between turns in the primary winding.

Whether the voltage peaks do or don’t cause catastrophic tube or transformer failure depends on such factors as the transformer's design and the amplifier's output power. You have been lucky thus far, so follow the service manager's instructions and always keep a load on the output of a vacuum-tube power amplifier. R-E

NEW RUGGEDIZED SCOPE PROBES

Just a phone call away.

$35 P6103
50 MHz 10x Compensation Range 15 to 35 pF

$58 P6109
150 MHz 10x Compensation Range 18 to 22 pF

These new passive voltage probes can be used with any oscilloscopes having matching compensation ranges. Screw in tips mean easy repair, no downtime.

To order call toll free 1-800-426-2200
In Oregon, call collect (503) 627-9000. VISA and MasterCharge accepted.
ON ARTIFICIAL INTELLIGENCE

I read your article, "Artificial Intelligence," in the May 1987 issue of Radio-Electronics, and I was amazed that nothing was mentioned about the following:

Democratic electronic circuits or systems would consist of not only series/serial circuits, but parallel as well. That type of system would also include analog chips and circuits, which convey data based on the degree that a circuit is on—in short, waveforms—and not just based on electronic switching chips or circuits. Those analog chips would simulate how the neurons work in the brain. They would probably be called almost and almost chips, or maybe on and not maybe on chips. Chips and circuits such as those would make it possible for a computer to learn, memorize, and understand, and to relate or think—to know.

Interface data bridges would allow the thousands of neuronic microprocessors in the computer to have the same data stored in each one as the entire computer has stored in its memory bank overall. Those would make it possible for the computer to have a hologramic memory bank, just as the brain has.

A circuit that performs like an electronic mirror, composed of a simulated data-constructed model of reality, would enable a computer to compare incoming data with that data model for analysis and interpretation. Within that index memory bank should be a form of self-consciousness, so that the
Your Career in ELECTRONICS or COMPUTERS

Add prestige and earning power to your technical career by earning your Associate or Bachelor’s Degree in electronics or computers—through independent home study.

No commuting to class. Study at your own pace, while continuing on your present job. Learn from easy-to-understand lessons, with help from your Grantham instructors when you need it.

Grantham College of Engineering is a specialized institution catering to adults who are employed in electronics and allied fields such as computers. These fields are so enormous that opportunity for advancement is always present. Promotions and natural turn-over make desirable positions available to those who are prepared to move up!

Grantham offers two B.S. degree programs—one with major emphasis in ELECTRONICS and the other with major emphasis in COMPUTERS. Either program can be completed by correspondence (also known as “distance education.”) An A.S. degree is awarded along the way in each B.S. program, but the B.S. program is not complete without the A.S. part. Our catalog gives complete details.

Put Professional Knowledge and a COLLEGE DEGREE in your Technical Career through HOME STUDY

NHSC Accredited

Grantham College of Engineering
10570 Humbolt Street
Los Alamitos, California 90720

Write for our free catalog (see coupon below) or phone (213) 493-4423 (no collect calls) and ask for our “degree catalog.”

Now in Our 37th Year

Grantham College of Engineering
P.O. Box 539, Los Alamitos, CA 90720

Please mail me your free catalog which explains your distance-education degree programs.

NAME

ADDRESS

CITY STATE ZIP

DECEMBER 1987 R-12-87 25
Test RS232C In A Zip.

Test RS232C data communications interfaces—like printers, computers to modems, and computers to computers—fast and easy in the palm of your hand with Beckman Industrial's low-cost, easy-to-use line of testers. Each is self-contained in a Touchpak case, including five models in a durable zippered pouch, and a 10-year warranty on every model. Prices start as low as $49.95.

See your nearest Beckman Industrial distributor today or send for free brochure. We'll send it to you in a zip.

Quick Cable Customizing
Fast RS232C Interfacing and Testing
LED Identification of Cable Configurations
Pocket and Hand-held Compactness
Speeds Up Trouble-Shooting
10 Standard, Low-Cost Models

MICRO-FLOPPY RETROFIT

Before I read the article, "Micro-floppy Retrofit," in the August 1987 Computer Digest, I converted my XT B: drive to 3½ inch, using the Toshiba ND-354A with their "Universal Kit." The kit is very inexpensive and complete, with accessories for the PC, XT, AT, Compaq, AT&T PC6300, and compatibles. Besides costing less than the IBM kit, the Toshiba kit has the advantage of not requiring the IBM's 37-pin D-connector.

My original configuration was one half high 5¼ DDS and one half-height 20-megabyte hard disk. The half height 3½-inch drive fits very nicely on top of my A: drive.

I am using PC DOS 3.2, and to format 3½ inch disks at 720K I used the undocumented DOS command called DRIVPARM in my CONFIG.SYS file. The complete command is DRIVPARM=-D:1/ F:2, where /D:1 is the drive number (B:) and /F:2 indicates the 3½-inch drive type.

Having a 3½ inch drive is necessary for me to maintain compatibility with the new IBM computers at work—and it is nice to have 720K floppy storage.

RICHARD F. PELLY
Huntington Beach, CA

AMPLIFIER DESIGN

I enjoy Radio-Electronics very much—in fact, I can barely wait for the next issue. I want to thank you for including computer program listings with some of your articles. I find them almost as much fun as the projects.

The article, "Transistor Amplifier Design," by Jack Cunkelman in the August 1987 issue was a great source of information on common emitter amplifiers. Maybe he could do more on common-base and common-collector amps.

Line 280 in the program listing reads:

R2 = (I2) * (RE*100) / [(RE*100) - IZ]

Two problems were solved when I changed line 280 to read:

R2 = INT((I2) * (RE*B) / ((RE+B) - IZ))

First, the formula now considers the "input" value for beta. And I no longer get a negative result for R2 with certain "input" data.

I hope that is useful to other readers, and thanks again.

MICHAEL H. PERKINS
Louisville, KY
An extensive line of capacitors for both standard and high voltage applications from NTE Electronics.

NTE, the name you've come to trust for all your replacement semiconductor needs, now has a line of subminiature aluminum electrolytic capacitors.

These quality capacitors are available with both radial and axial leads and are dependable over a broad temperature range. Ratings include capacitance of 0.1 µF to 10000 µF, tolerance of +/− 20% (−10% to +50% for the high voltage line), and voltage range of 6.3 to 100 volts (160 to 450 for the high voltage line), making them ideal for the most demanding applications.

LOOK FOR THE FULL LINE OF QUALITY NTE REPLACEMENT PARTS AND PRODUCTS:
- Transistors
- Thyristors
- Integrated Circuits
- Rectifiers and Diodes
- High Voltage Multipliers and Dividers
- Optoelectronic Devices
- Zeners
- Microprocessors and Support Chips
- Memory ICs
- Thermal Cut-Offs
- Bridge Rectifiers
- Unijunctions
- RF Transistors
- Microwave Oven Rectifiers
- Selenium Rectifiers
- Flameproof Resistors
- Wire Ties
- Electrolytic Capacitors
- Static Control Products

For more information or the name of your local distributor, call or write NTE.
Please note: some books count as 2 selections.
Until you write them yourself, you won't find better books than these... or a better deal!

Take any 3 books for just $1.00 each.
Take 1 more at our special Club Price.

Not only will you save as much as $120.63 off publishers' list prices on 4 of the most popular — and indispensable technical books in print today... but also fulfill half the usual 2-book purchase obligation — automatically!

Examine your 4 books FREE for 15 days!

EBS is the professional service designed specifically to keep you on top of everything new in electronic theory and application. Every book is reviewed and approved by our Technical Advisory Board. And every month we bring you the kind of information you want — and need — to know in the field of advanced electronics... access to new thoughts on systems design, op amps, TTL, bit-slice microprocessors, circuits, LSI, VLSI, optoelectronics, satellite communications, LANs, linear control, feedback, instrumentation, A/D crossovers and more. Everything it takes to keep you going and successful throughout your career!

6 Unbeatable Reasons for Joining Electronics Book Service

1. Our Introductory Offer — 3 books for just $1.00 each... a 4th at our special Club Price — a savings of as much as $120.63 off publishers' list prices.

2. Automatic Fulfillment of half the usual 2-book purchase obligation — Once you have selected and paid for your 4 introductory selections, you automatically fulfill half of EBS's usual 2-book purchase obligation. Your only obligation is to then purchase 1 additional book — at Member discounts — during the first year of your Membership. You may cancel any time after that.

3. Original publishers' editions — Never cheaply-made reprints.

4. A complete book store by mail — Choose from the best, most popular books in your field — by mail and from the comfort and convenience of your home or office. Here's how it works: Every 3-4 weeks (15 times a year) you'll receive the Bulletin describing a new Main Selection and several Alternates. If you want the Main Selection, do nothing. It will be shipped automatically. If you prefer an Alternate — or no book at all — simply indicate your choice on the order card always provided and return it by the date indicated. You'll always have 10 days to decide whether or not you want a Main Selection.

5. Special Member Discounts — 20% to 30% — and more — off regular list prices. A small shipping and handling charge is added to all orders.

6. The Electronics Book Service Guarantee — You never buy books you don't want. If you ever receive a book that does not live up to your expectations, return it for full credit.

Say YES and become an electronics know it all!
Send this coupon today!

Electronics Book Service
A Prentice Hall Book Club
P.O. Box 10621, Des Moines, IA 50380-0621

YES! Please enroll me as a trial Member of Electronic Book Service and send me the 3 books listed below for just $1.00 each and 1 more book for the special Club Price plus postage and handling and applicable state sales tax. I understand the Membership Plan as described in this ad and that by accepting your offer, I automatically fulfill half the usual 2-book purchase obligation. I agree to then purchase 1 additional book — at Member discounts — during the first year of my Membership. If not completely satisfied with my introductory selections I may return them within 15 days and owe nothing.

Send me these 3 books for $1.00 each: PLUS...Send me this book at the special Club Price

Book # __________________________ Book # __________________________

Book # __________________________ (Please note that some books count as 2 selections)

Name ____________________________

Address ____________________________

City State Zip ____________________________

Signature ____________________________

87751

Offer good for new Members only in the continental US and Canada.
All applications subject to credit approval.
NEW PRODUCTS

FM DUAL-BAND TRANSCEIVER. The Kenwood TW-4100A is rated for 45 watts on 2 meters and 35 watts on 70 cm. It features selectable full-duplex cross-band ("telephone-style") operation. Cross-band repeater operation is also possible. (A control operator is needed for repeater operation.) In addition, there are programmable band scan and memory scan with memory-channel lock-out features.

The model TW-4100A is 5.9 x 1.97 x 7.87" and weighs less than four pounds. Frequency coverage is 142-149 MHz (allows operation on certain MARS and CAP frequencies), and 440-449.995 MHz. The suggested price is $649.95. —Kenwood, 2201 T. Dominguez Street, Long Beach, CA 90810.

DIGITAL MULTIMETER. The Beckman DM71 is a handheld pen-type meter that features a 3½-digit display with 0.7% accuracy (2-mV DC range) and auto-ranging; it fits easily into a shirt pocket.

The meter has been designed for ease of use, having a rotary function dial instead of the usual combination-pushbutton operation. A DATA HOLD function allows the user to manually freeze the display so that it can be read without rushing, or under better lighting conditions. The unit features a 90-hour battery life.

The model DM71 has a suggested retail price of $49.94. —Beckman Industrial Corporation, 3883 Ruffin Road, San Diego, CA 92123-3898.

SWITCH MODULE. The IEC SNAP-11C is a new approach to mounting data-entry switches directly onto a printed-circuit board without the need for soldering.

Designed for low- to medium-speed switching applications, the SNAP-11C uses a stainless-steel snap-dome mounted in a plastic housing along with a plastic keycap/actuator. The switch module snaps into two holes in a .062-inch
PC board directly over mating contact circuitry.

Available in a variety of colors and keycap styles, the SNAP-TEC can be mounted on .500-inch centers. Custom-designed keycaps are also available. Actuation force is 220 grams with a 0.015-inch nominal travel. The price per unit is under $0.30 each when purchased in quantities of 1000.—Tec, Incorporated, 2227 North Fairview Avenue, P.O. Box 5646, Tucson, AZ 85703.

CABLE TIES. Two new cable ties from Panduit, the PAN-TY (shown) and the STA-STRAP', are double-loop ties whose bent tips provide faster orientation.

Both types are made of natural 66 nylon (white), which is U.L. 94-V2 self-extinguishing. They are also available in heat-stabilized nylon (black) and weather resistant outdoor nylon (black). Temperature ranges are -40°F to +221°F for heat-stabilized materials and -40°F to +185°F for the other two materials.

PAN-TY double-loop cable ties are one-piece construction; two sizes are available for up to a maximum combined bundle diameter of 3.8". They have a minimum loop tensile strength of 50 pounds. Prices, which depend on size, start at $10 per 100.

STA-STRAP double-loop cable ties have a two-piece design, which allows the first loop to be released prior to final tensioning. That design has zero insertion force and can be hand-installed only. Maximum combined bundle diameter is 1.25"; minimum loop tensile strength is 30 pounds. Pricing depends on size.—Panduit Corp., 17301 Ridgeland Avenue, Tinley Park, IL 60477-0981.

DEDICATED ADAPTER. The Program Automation Surface Mount Adapter, for Data 1/U's 120/121A programmers, can program 10 de-
Even the finest equipment in the world cannot guarantee noise-free operation. One "dirty" connection anywhere in the electrical path can cause unwanted noise or signal loss.

"MORE THAN A CONTACT CLEANER"

CRAMOLIN® is a fast-acting, anti-oxidizing lubricant that cleans and preserves all metal surfaces, including gold. When applied to metal contacts and connectors, CRAMOLIN® removes resistive oxides as it forms a protective molecular layer that adheres to the metal surfaces and maintains maximum electrical conductivity.

CRAMOLIN® - USED BY THOSE WHO DEMAND THE BEST:

Bell & Howell
Boeing
Capitol Records
Hewlett Packard
Motorola
Intronics
Leica
NASA
RCA
Switchcraft

SINCE 1956

CRAMOLIN® preserves the manufacturer's specs and ensures coplanarity; small footprint for ease of handling.

The Surface Mount Adapter can be used for production planning of OTP PLCC EPROMS, for incoming inspection of preprogrammed parts, and in a maintenance environment for checking questionable parts. It is priced at $2000.00—Program Automation, Inc., 22706 Aspan, Suite 308, El Toro, CA 92630.

PRECISION ALIGNMENT KIT. The Jensen Y23840 kit contains a selection of precision tools that are manufactured to extremely fine tolerances and are designed for adjustments of VHS and Beta video-cassette recorders.

The kit includes a base-plate reference jig and a height gauge (used for precision height adjustment of the reel discs, guide posts, continued on page 38

NRI’s At-Home Training in Electronic Design Technology Can Put You in a High-Paying Career as an In-Demand Design Technician

The best jobs in electronics today go to the people who have the skills to think and work creatively. Conceive and design circuits and equipment. Initiate ideas and carry them through. Now NRI can help you be one of these people—design technicians who command up to $22,000 as starting salaries, earn $35,000 or more with experience.

NRI’s Electronic Design Technology course starts you with the fundamentals and builds from there to prepare you for an electronics career with real growth potential!

No Previous Experience Necessary

Even if you've never had any previous training in electronics, you can succeed with NRI training. You start with the basics, then rapidly build on them to master advanced electronics concepts.

NRI Circuit Designer Gives You Invaluable Hands-On Experience

The heart of your lab training is the exclusive NRI Circuit Designer you build. It's a totally unique instrument with full breadboarding capability, built-in multiple power supplies, and a multifunction signal generator for circuit testing. Fast, simple connections let you create prototype circuits, immediately check them out for function or faults. Your Circuit Designer will handle both linear and digital integrated circuits as well as discrete components such as transistors and diodes.

Send for FREE Catalog

Send the coupon today for NRI’s free catalog that gives you all the details about the Electronic Design Technology course. If the coupon is missing, please write to:

NRI School of Electronics, 3939 Wisconsin Avenue, Washington, DC 20016.

Send coupon today for free NRI catalog.

RADIO-ELECTRONICS
Mark V SM-328 Professional Color Light Controller

Control your lights for excitement

IF YOU ARE A PROFESSIONAL DJ—or if you just want to pretend you are—you'll be interested in the SM-328 professional light controller from Mark V Electronics, Inc. (248 E. Main Street, Suite 100, Alhambra, CA 91801). The SM-328 can be used for dance-hall lighting, to add chasing lights to advertising displays, or just to add a new dimension to your parties. The 4-channel controller is a distant relative of the color organs you might remember from the 1960's. It has a power output of better than 1000 watts per channel, so it can be used to control more than forty 100-watt spotlights or more than 800 5-watt bulbs! But whatever lighting array you choose, there are three main ways that the SM-328 can control it: It can run its own chaser programs, it can control the lights based on an external audio signal, or it can use a combination of the input signal and the chaser program.

Chaser programs
The SM-328 can run four chaser programs, which can be used for dramatic displays of chasing lights. The first program lights each channel in sequence, with one channel active at a time. The second program does the opposite. It darkens each channel in sequence, while the other three channels appear lighted. The third
Test VCR Mechanics
Fast and Easy!

Take the guesswork and hassles out of VCR mechanical problem diagnosis!

Four Universal, Powerful Tools for VCR Service

Tape Tension Gauge: The Tentelometer® is the world's most universal method of measuring hold back tension. Calibration can easily be checked in the "field" merely slide the probes over tape to measure tape tension directly in grams. Illustrated instruction manual included. This is the back tension gauge referenced by many of the VCR service manuals, and it will work on all VCRs.

Video Head Protrusion Gauge: Universal, fast, safe method of measuring head wear. Measures in microns and tenths of an inch. Provides useful information about VCR condition and wear on other components. Stop guessing about head wear. Accessory tape stand allows use on any VCR.

Spindle/Elevator Gauge: The TSH gauge inserts into the VCR just like a cassette. The new TSH-V5 performs 5 critical measurements to eliminate spindle and head dam- age. This gauge quickly locates problems that can't even be detected by other methods. Fully illustrated instruction manual is included.

Torque Gauge: A universal, inexpensive accurate torque gauge for VHS and Beta VCRs. Calibrated in Gram-Centimeters both clockwise and counterclockwise. Complete with easy-to-follow, detailed instruction manual for VHS recorders. Includes a modified VHS cassette for ease-of-use.

Complete System
TG-500 $139

HPG-1 $479 $1 $95

Tentel® provides the most powerful, easy-to-use, field-calibrated, universal VCR test equipment available for various mechanical tests. Call our application engineers today for answers to your questions. Ask about the combination discount when ordering all 4 gauges.

Tentel Corp.
1506 Dell Avenue
Campbell, CA 95008
(800) 538-6894
(408) 379-1881

CIRCLE 198 ON FREE INFORMATION CARD

SUPER LONG PLAY TAPE RECORDERS

10 Hour Model - $95.00*
14 Hour Model - $159.00*

Modified Panasonic Slimline, high quality, AC DC, high quality tapes. Recorder provides 5 or 7 continuous hours of quality recording. Each side of cassette for a total of 10 or 14 hours depending on cassette. Built-in features include: Voice level control, digital counter, etc. TDK VC 180 Cassette Furnished.

CIRCLE 108 ON FREE INFORMATION CARD

ATTENTION ELECTRONICS ENGINEERS

EARN YOUR B.S.E.E. DEGREE THROUGH HOME STUDY

Our New and Highly Effective Advanced Placement Program for experienced Electronic Technicians grants credit for previous Schooling and Professional Experience, and can greatly reduce the time required to complete Program and reach graduation. No residence schooling required for qualified Electronic Technicians. Through this Special Program you can pull all of the loose ends of your electronics background together and earn your B.S.E.E. Degree. Upgrade your status and pay to the Engineering Level. Advance Rapidly! Many finish in 12 months or less! Can be used anywhere in the States and throughout the World. Established Over 40 Years! Write for free descriptive literature.

COOK'S INSTITUTE OF ELECTRONICS ENGINEERING
347 RAYMOND ROAD
JACKSON, MISSISSIPPI 32909

PHONE RECORDING ADAPTER

Records calls automatically. All Solid State new connections to your telephone jacks. Tape recorders plus recording when phone is lifted. Stops when you hang up.

PHONE RECOROING ADAPTER

Solid state, Self contained, Adjustable sensitivity, 2 voice activated control devices. Adjustable remote control. Uses either re- gardless. Suggested retail price $42.50.*

Add for ships & handles: Phone Adapter + Voss $10.00 ea.录制ers. $4.00 ea. Res. and Mail Order, Voss. Money back Guarantee. Free data & Pamphlet. 12 months Special Sales on Voss. 550 States and throughout the World. Established Over 40 Years! Write for free descriptive literature.

CIRCLE 189 ON FREE INFORMATION CARD

program lights two channels at a time and alternates back and forth between them. Finally, the fourth program also lights two channels at a time, but in a sequence of 1-2, 2-3, 3-4, 4-1. The speed of the chasing is controlled by a lighted slide potentiometer.

The chaser program and its operating modes are selected via a 9-button keypad. For example, an audio control mode can be selected to automatically vary the time that each channel remains lighted; or, a slide potentiometer can be used to manually control the on-off timing. The direction of the chase is also controlled from the keypad.

Music control

By connecting the SM-328 in parallel with one of your loudspeakers, you can use the audio signal fed to the speaker as the controlling source for the lights. The actual audio level is unimportant because the SM-328 will accept signals ranging from 100 millivolts to 28 volts (or a maximum of 100 watts of audio power). Since the SM-328 has a high impedance (bridging) input, it has no affect on either the speaker or its associated amplifier.

A master level control allows the user to adjust the overall brightness of the lamps in proportion to the volume of the music input. Alternatively, the user can create unusual or customized lighting effects, even "ride gain" on the effects, because each channel has its own level control—a lighted slide control.

The output of each channel's level control feeds an op-amp filter that determines the channel's frequency response. One channel responds to treble frequencies, one to midrange frequencies, and two channels respond equally to bass frequencies. The op-amps, in turn, control optically-coupled tricyclate斯. In addition to a level control, each channel features a three-position switch that can be used to instantaneously dim or cut the light.

Some of the most interesting and eye-catching lighting displays can be obtained by using a music signal to control the execution of the light-chaser programs.
Good layout

The front panel is specifically designed to be used in dim lighting—even in virtual darkness. For example, only those potentiometers that can be used in a given mode are lighted in that mode. Also, the brightness of the level-control potentiometers changes with the music signal in its channel. But while the LED's that illuminate the potentiometers can be used for quick set-up adjustments, they aren't adequate for use as an overall lighting guide; for precise lighting control it's still necessary to view the actual lights.

We found the keypad switches difficult to use. Their tactile feedback was very poor, and the keys did not always do what they were supposed to. However, we were able to clear up the problem by disassembling the case and cleaning the switch contacts. Other than the keypad, the SM-238 is solidly constructed, and its solid metal 14-inch rack-mount case can take a good amount of abuse. The controller carries a suggested list price of $150.

R-E

LETTERS
continued from page 26

SCA RECEIVER

I'm glad to see that Radio-Electronics is showing an interest in FM subcarriers, with "Build This SCA Receiver" in the August 1987 issue. The authors mention that SCA is inherently noisy. However, with the Signetics' 565 PLL (whose basic design the authors follow) most of the noise is due to the unnecessarily wide bandwidth inherent in the SCA receiver design published in the Signetics' application notes.

Ironically, that wide-bandwidth noise shows up mostly in more advanced SCA receivers, such as the one featured in Radio-Electronics, that amplify the signal before input to the PLL. Below 100 mV, the lock range (thus, the capture range as well) decreases with decreasing input voltage. Therefore, a simple receiver accepting a weak SCA signal of 10-20 mV has build-in bandwidth limiting. In general, however, increased input voltage will improve the 565's demodulation characteristics (AM reception, etc.).

Fortunately, there is a simple solution to the wide-bandwidth-noise problem in advanced SCA receivers: reduce the lock range by connecting a 25K potentiometer between pins 6 and 7 of the 565. While some people will enjoy having direct control of the bandwidth from the "front panel," it turns out that simply shorting pins 6 and 7 (minimum lock range) gives acceptable results.

I have one more suggestion: substituting a 470-pF capacitor for C43 and a 4.7K resistor for R55 will give the 10K potentiometer (R72) sufficient range to tune both the 92-kHz and the 67-kHz SCA subcarriers.

The above discussion notwithstanding, designing an SCA receiver with the Signetics 565 is much more straightforward than with Exar's XR2211. But I did find the reward—a portable receiver that works from a single supply of 4.7-6 Volts—to be worthy of the effort of using Exar's model.

GIL ROBERTS
Duarte, CA

Performance Tools.

Our AR-130A is always ready—thanks to intelligent Auto-Power-Off circuitry.
- Ideal multi-purpose meter
- 20 Amp W. DC capability
- Transistor test measurement
- Gold plated PC board reliability

Our AR-170 NL sets new standards—in telecommunications & audio equipment testing.
- Direct dBm reading
- 400 ohms on systems noise level measurement
- True RMS AC measurement
- High accuracy: 20 mV, 20 pA and 20 ohm range
- 1% DC accuracy

Our AR-460 D is an advanced LCR meter rivaling bench instruments in both accuracy and cost—
- Directly measures dissipation...leakage in a capacitor and Q in an inductor
- Ideal for QA and engineering labs
- Inductance to 21, capacitance to 200 mF, resistance to 20 MegaOhms

The American Reliance line of Test and Measurement Equipment has been getting the job done all over the world for nearly a decade. For the location of a distributor in your area, call us for more information.

800-654-9838
American Reliance Inc., 92-41 E. Valley Blvd. Rosemead, CA 91770 • FAX: (818) 287-8855

CALL 1-800-237-3063 FREE (Except Florida)

CIRCLE 104 ON FREE INFORMATION CARD

CIRCLE 195 ON FREE INFORMATION CARD

AMERICAN RELIANCE INC.

Need Quick Turnaround on CRYSTALS?

Try Our E.O.D.
(Emergency Order Dept.)
and get
JAN QUALITY
and STABILITY
PLUS Low Prices!

You benefit from 21 years of manufacturing quality crystals for industry, military services, radio amateurs, citizen band and experimenters.

To Get Free Catalog
Call or Write

JAN CRYSTALS
P.O. Box 06017
Fl. Myers, FL 33906
(813) 936-2397

CALL 1-800-237-3063
FREE (Except Florida)

CIRCLE 104 ON FREE INFORMATION CARD
87" HI-TECH SALE

Cobra Stun Gun generates 45,000 volts of stopping power, the Cobra also delivers a burst of high intensity light directly into an attacker's eyes. Chances are that his optic nerves will be so overloaded with excess light energy that he will not be able to see you let alone continue the attack. If he does, the Cobra delivers its painful bite, leaving him dazed and confused. $49.95. With NiCad battery & charging kit $59.95 + $3.75 ship.

Centron Security Light
The Centron security light puts unwelcome visitors in the spotlight... instantly! This smart lighting system's infrared sensors guard your yard or driveway when you're away or home alone. It senses the presence of people or cars by changes in temperature patterns and instantly floods the area with bright light. It guides your guests to your door and scares away would-be prowlers $55.00 plus $4.99 shipping.

Remote Control Pen
Not only is it a hand-some high quality ball point writing pen, but a powerful remote-control device. Effective at distances up to 75 yards, the Remote Control Pen is perfect for turning on or off any 120 volt appliance or alarm system. Think of the possibilities. $39.00 shipping $3.75.

The Private Eye Motion Detector
Alarm warns you to the presence of an intruder but the intruder doesn't know he has been detected. No wires just plug it in and it works. Information travels from the detector to the receiver via the electrical system. $63.00 shipping $5.40.

World's smallest dialer $49.95
Audible Breath Analyzer $59.00
Labrator $79.95
Telekonvex 2000 $175.00
Pistol Grip Box $39.95
Remote Car starter $225.00
All products ready to use and Guaranteed

ORDERS CALL 1-800-624-1150 for information or free catalog call 402-554-0383 or write United Imports & U.S. Mfg. 646 Pacific St. Omaha, Nebraska 68106

NEW PRODUCTS
continued from page 34

CIRCLE 15 ON FREE INFORMATION CARD

CIRCLE 16 ON FREE INFORMATION CARD

FLUKE

Dollar for dollar the Fluke 37 breaks into the market with more features for the money than any other bench DMM. It's bold new design includes built-in handle and storage compartment, and it has all the high performance features of the world's best, most reliable 3½-digit DMMs.

Autoranging, to eliminate guesswork. Audible Continuity, so you don't have to look at the display. An exclusive analog and digital display. Superior EMI shielding. Plus a two-year warranty.

And, how many other bench/portable meters give you these features? Min-Max recording, for monitoring signals. 38 components dedicated exclusively to input protection. Relative mode, to help you calculate changes in readings. And Fluke's patented Touch Hold, to give you an extra set of hands when you're taking critical measurements.

None. Only the Fluke 37.
For more information call 1-800-426-0361.
Walk “Tough Dog” Troubles Out Of Any TV & VCR In Half The Time... Guaranteed!

with the exclusive, patented VA62 Universal Video Analyzer™... $3,495

Would you like to...

Reduce your analyzing time? Isolate any problem to one stage in any TV or VCR in minutes, without breaking a circuit connection, using the tried and proven signal substitution method of troubleshooting.

Cut costly callbacks and increase customer referrals by completely performance testing TVs and VCRs before they leave your shop? Own the only analyzer that equips you to check all standard and cable channels with digital accuracy. Check complete, RF, IF, video and chroma response of any chassis in minutes without taking the back off the receiver or removing chassis, plus set traps dynamically and easily right on the CRT.

Reduce costly inventory from stocking yokes, flybacks, and other coils and transformers for substitution only, with the patented Ringing Test? Run dynamic proof positive test on any yoke, flyback, and integrated high voltage transformer.

Protect your future by servicing VCRs for your customers before they go to your competition? Walk out “tough dog” troubles in any VCR chrominance or luminance circuit to isolate problems in minutes. Have proof positive tests of the video record/play heads before you replace the entire mechanism.

Have one piece of test equipment that doesn’t need replacing every time technology changes? Be able to service Stereo TVs & VCRs profitably, and get in on the ground floor of this growing market with exclusive phase-locked accessories.

Find out how the VA62 Universal Video analyzer will make servicing easier and more profitable in your shop? Call WATS Free 1-800-843-3338 and ask your area Sales Engineer for a “Try before you buy” 10 Day Self Demo or a full color brochure and join the many servicers already on the road to more profitable servicing with the VA62.

Universal Video Analyzer is a trademark of Sencore, Inc.

WATS Free 1-800-843-3338 / In Canada WATS Free 1-800-851-8866

Sencore Means Success In Electronic Servicing
3200 Sencore Drive, Sioux Falls, South Dakota 57107
Call Collect 605-339-0100 / In SD & AK

CIRCLE 176 ON FREE INFORMATION CARD
The term "psychoacoustics" has recently become a prominent part of the audio vocabulary. But despite the fact that its use seems mostly reserved for those devices that are designed, electrically or acoustically, to enhance stereo imaging, as we've discussed in previous columns, the term covers much more than that. The study of psychoacoustics specifically involves the relationship of the subjective sensations of the human ear/brain mechanism to objective acoustical events.

The significant differences between the subjective and objective worlds of sound are illustrated nicely by the inconsistent ways in which the ear responds to frequency and intensity—or in psychoacoustic terms, pitch and loudness. Three examples: (1) More than fifty years ago Harvey Fletcher demonstrated that the subjective judgment of the pitch of a pure tone can be shifted as much as 10% by simply varying the intensity of the sound. (2) Aside from the pitch shift, as shown in Fig. 1, the human ear's sensitivity to low- and high-frequency ranges diminishes disproportionately as the volume (intensity) of the sound is reduced. The loudness controls found on most amplifiers and receivers are meant to compensate for that fact. (3) Most of us are aware that the ear does not respond linearly to increases in the intensity of the stimulus. For example, the measured acoustic power of a sound has to be raised about ten times before the average person hears it as merely twice as loud.

Those are only three of the psychoacoustic peculiarities of human hearing, and I'm sure that most of you have read discussions of such matters before. But what is not generally appreciated is that the stereo-reproduction process itself is a totally artificial phenomena dedicated to deceiving the ear's psychoacoustic sound-localization process. Think about it—where in nature do you encounter two widely spaced, discrete sound sources each producing a portion of the sound that is heard as coming from between them?

Localization

Two main differences between the sounds reaching each ear are used for localization: time-of-arrival differences, and sound-pressure-level (SPL) differences. In general, differences in arrival times are used to localize the lower-frequency sound sources, SPL differences are used for the higher frequencies; the crossover point between the two is about 1,200 Hz.

There's a good reason why the ear/brain uses (actually, needs) at least two different sound cues for localization. For high- to mid-frequency audio wavelengths, your head is an acoustic barrier that partially blocks the sound reaching the ear most distant from the sound source. The measured difference at the ears is something like 16 dB at 5,000 Hz, falling to
about 7 dB at 1,000 Hz. When the frequency is low enough (the wavelengths long enough), the head is no longer an adequate battle and approximately the same signal level is heard by both ears. However, your brain is still sensitive to the relative timing of the signals reaching each ear, even though there's only about a 0.6-millisecond difference when the source is located fully on one side of your head. That fraction of a millisecond difference provides the brain with the data needed for localization. When the audio wavelengths get very long—below 200 Hz or so—arrival time differences also disappear and localization is completely lost. That, by the way, explains why subwoofers operating below 200 Hz can be installed almost anywhere in the room without confusing the directional information.

Sonic masking
Most noise-reduction techniques rely on psychoacoustic masking to help achieve their ends. Masking describes the ear's loss in sensitivity to sounds in one frequency area when there are louder sounds within the same, or adjacent octaves. Hiss is not heard when there is a lot of music going on in the octaves at or adjacent to the hiss frequencies. Only when the musical frequencies are low (a drum or cello solo), intermittent (a solo piano or guitar), or absent, does hiss become obtrusive. Obviously, the task of a noise-reduction circuit is eased if it has to cope with hiss only in the absence of masking musical sounds.

Masking can be a severe problem in a car because the music gets obscured by wideband wind and tire noises, rather than vice versa. The soft passages in a wide-dynamic-range compact disc will inevitably be masked unless player volume is turned up high enough to override the road noise. But with the volume turned up that high, the louder passages are likely to be unbearably loud! I've not seen any indication that the manufacturers of CD car units recognize the problem and are about to install switchable dynamic-range attenuator (compression) circuits continued on page 45

Discover How The World's Only 100% Automatic, Dynamic, & Portable LC Analyzer Gives You Total Confidence In Your Cap/Coil Testing... Call 1-800-843-3338 Today!

LC77 AUTO-Z™
Automatic Capacitor and Inductor Analyzer Double Patented $1,895

The first cap/coil analyzer guaranteed to reliably test anywhere, without calculations, look-up tables, or error — 100% automatically so you're confident of your accuracy.

Do you want to eliminate doubt from your cap/coil testing? The LC77 AUTO-Z tests all key parameters with results anyone can understand. Automatic good/bad results eliminate the guesswork for error-free analysis. Touch-sensitive keypad and one-two-three setup makes your AUTO-Z the easiest and fastest LC analyzer on the market.

Are you frustrated trying to test the new high-tech caps/coils used in modern electronics? Only the LC77 AUTO-Z allows you to test them all. Test capacitors from 1 pf to 20 farads, with leakage tests to 1000 V and ESR to 2000 ohms for locating failures other testers miss. Inductor value from 1 uh to 20 H and a patented ringing test for dependable, error-free coil testing every time.

Do you need the freedom of a battery-operated portable LC meter? The LC77 is 100% battery portable for use in the field or factory. The full power and potential of the LC77 AUTO-Z is packed into a light-weight, portable package. The AUTO-Z puts the complicated electronics on the inside for ease of operation on the outside.

Do you want maximum efficiency with a bus compatible LC testing system? Your LC77 AUTO-Z is IEEE 488 compatible for automated cap/coil analysis for data collection, incoming inspection, and quality assurance tests.

Be satisfied that you can meet all the challenges new technology brings. Call WATS Free 1-800-843-3338 today and tell your Area Sales Engineer you want to "try before you buy" with Sencore's exclusive 10 Day Self Demo.

AUTO-Z is a trademark of Sencore, Inc.

WATS Free 1-800-843-3338 In Canada WATS Free 1-800-851-8866

Sencore
Means Success In Electronic Servicing
3200 Sencore Drive, Sioux Falls, South Dakota 57107
Call Collect 605-339-0100 In SD & AK
CIRCLE 177 ON FREE INFORMATION CARD
STATE OF SOLID STATE
An electronic potentiometer

Upon hearing or reading the words potentiometer or pot, we immediately think of a variable resistor having a rotary control shaft. But this is the age of electronics, and a potentiometer need no longer be a mechanical device adjusted by turning a shaft; it can be an electronic device that uses small voltages to emulate a potentiometer. One kind of device that can do that is Xicor’s E-POT Digitally Controlled Potentiometer, which is available in several different versions as the X9MME 8-pin miniDIP series of solid-state non-volatile potentiometers. Basically, the device functions as a digitally-controlled trimmer resistor.

A digitally-controlled potentiometer can be adapted to many applications where mechanical potentiometers or digital-to-analog circuits cannot be used, or would be inconvenient to use. For example:
- It provides for automatic potentiometer calibration or adjustment on an assembly line.
- It eliminates the need for manual adjustments of mechanical potentiometers.
- It makes possible remote control via a keyboard of variable adjustments, such as volume and brightness.
- It simplifies adjustment or control of a remote device via a radio, LAN, or modem link.

99 resistors
The device is essentially an array composed of 99 resistive elements with 100 tap points that are accessible to the “wiper” element. (100 points because the taps are located between adjacent resistor elements and at each end of the resistor string.) The X9MME’s functional diagram and pinout are shown in Fig. 1. The wiper’s position is digitally controlled by TTL Level voltages on the CS, U/D, and INC inputs. Table 1 shows the mode selection. The position data is stored in a non-volatile memory and is automatically recalled on power-up. The memory is capable of retaining the wiper position data for 100 years.

The X9MME E-POT is available in three versions, each having different value ranges. The X9103P is 10K, the X9503P is 50K, and the X9104P is 100K. The resolution—the value between tap points—equals the maximum end-to-end resistance divided by 99, or 101, 505, and 1010 ohms for the X9103P, X9503P, and X9104P, respectively. Other E-POT’s features include:
- Single-chip MOS implementation
- Three-wire TTL control
● Operation from a 5-volt supply
● Analog voltage range of ±5 volts
● Temperature compensation for ±20% of end-to-end resistance range
● Wiper current of 1-mA maximum
● Typical wiper resistance 40 ohms at 1 mA
● Resolution 1% of resistance

For information on pricing and availability of the E-POSSs, write to XICOR INC., 851 Buckeye Court, Milpitas, CA 95035.

New 8-bit D/A converter

The ZN438 is a new low-cost monolithic D/A converter that requires only two external passive components for full 8-bit conversion. Features include a trimmable 2.5-volt bandgap reference, which is also available externally for use as a system reference. A trim pin can be left floating to provide the nominal 2.5 volts, or it can be connected to a 10K potentiometer to provide a ±5% trim range. The ZN438 has a settling time to ±0.5 LSB of 1.25 μsec.

The ZN348E device is available for commercial applications in a 16-lead plastic DIP package, and is priced at $5.44, in 1000-piece lots. The ZN348J is ceramic packaged and operates in the military temperature range. Price is $10.37 each, in 1000-piece lots. For additional information, contact Ferranti Semiconductors, 87 Modular Avenue, Commack, NY 11725.

CMOS megabit memory

In the Mega-Project, in conjunction with Philips, Siemens is producing the first laboratory samples of a CMOS memory chip with more than 4-million bits of storage capacity. The project's 1-Megabit DRAM will be mass-produced at Siemens' Regensburg facility this year; followed by the 4-Megabit DRAM in 1989. The 1-Megabit chip stores 4,194,304 bits on a surface of 91 mm² (6.5 mm × 14 mm). It features the novel "trench cell" — a trench not wider than 1 μm (1/1000 mm) etched 4 μm deep into the silicon.

1987 data book

The 320-page 1987 Data Converters & Voltage References data book features information on 27 A/
D converters (including 16 new devices), 20 new D/A converters, and 11 voltage references from Maxim Integrated Products. A complete product listing, converter selector guides, and package information sections are also included.

For a free copy of the 1987 Data Converters and Voltage References data book, contact a Maxim sales representative or distributor, or call Customer Service direct at 408/737-7600. Maxim Integrated Products 510 N. Pastoria Avenue, Sunnydale, CA 94086

New Hall-effect switches

Sprague has developed a new sensor chip that makes possible the new UGN/UGS-3119, UGN/UGS-3120, and UGN/UGS-3140 monolithic Hall-effect switches that are less susceptible to mechanical stress and have better stability over their operating temperature ranges than earlier Hall-effect devices.

The 3119 is recommended for applications that provide steep magnetic slopes and low residual levels of magnetic flux density. The 3120 is for applications that require precise switch points. The 3140 is for use with small inexpensive magnets or for applications where there are relatively large distances between the magnet and the Hall cell.

The UGN types are rated for operation over the -20°C to +85°C temperature range. The UGS series has an operating range of -40°C to +125°C. All types are offered in two 3-pin plastic SIPs—a 60-mil thick (1.54 mm) “U” package and a 80-mil-thick (2.03 mm) “T” package. They also come in SOT 89 (TO-24AA) packages and in hermetically sealed 3-pin ceramic packages.

The UGN-3119, -3120, and -3140 are priced at $0.47, $0.50, and $0.81, respectively in lots of 100. The UGS-3119, -3120, and -3140 are priced at $0.79, $0.90, and $1.20 each, respectively.

For detailed technical information, request Data Sheets 26621, 27622, and 27627 from Technical Literature Service, Sprague Electric Co., P.O. Box 9120, Mansfield, MA 02048-9120.
in their players; but it seems to me that they are a necessity. The compression circuit could even be controlled by the brake system and arranged so that compression would be off when the car is stopped and on when it is moving. Or better yet, let’s stay with cassettes—which to my mind are far more sensible for car use. At least one manufacturer (NAD) is producing a cassette deck with a novel car-tape recording feature. When the circuit is switched in, cassettes are recorded with both compression and equalization to compensate for both the noise and the special acoustics of the automotive environment.

As might be surmised, I’m all for psychoacoustic manipulation of the stereo signal if greater realism can be achieved. I’ve long since given up any hope of being able to provide facsimile reproduction in my home of an original acoustical event. I would be content with a reproduced musical performance that sounded plausible. In other words, it might have been heard that way live in some other acoustic space and time. Plausible reproduction, in my use of the term, is not easy to achieve. Perhaps half a dozen times in my 30 years of audio involvement have I experienced the acoustic illusion “I am there” or “they are here.” And in almost every case, for it to succeed, the illusion required multiple channels or binaural headphone reproduction.

I hope this brief guided tour through some of the mysteries of psychoacoustics has been interesting, instructive, and has provoked some appreciation of what it takes to delude your ears into believing that they are hearing music freshly produced without artificial preservatives. Psychoacousticians are well aware that they do not as yet have all the answers as to how to hear. However, I’m convinced that there’s an R&D Twilight Zone inhabited by a few special psychoacoustically-oriented equipment designers from whose joint efforts the audio millennium will one day emerge. R-E

Audio Update

continued from page 41

Analyze defective waveforms faster, more accurately, and more confidently — every time or your money back

If you value your precious time, you will really want to check out what the exclusively patented SC61 Waveform Analyzer can do for you. 10 times faster, 10 times more accurate, with zero chance of error.

End frustrating fiddling with confusing controls. Exclusive ultra solid ECL balanced noise cancelling sync amplifiers, simplified controls, and bright blue dual trace CRT help you measure signals to 100 MHz easier than ever.

Accurately and confidently measure waveforms from a tiny 5 mV all the way to a whopping 3,000 V without hesitation with patented 3,000 VPP input protection — eliminates expensive “front end” repairs and costly equipment downtime.

Make only one circuit connection and push one button for each circuit parameter test: You can instantly read out DC volts, peak-to-peak volts and frequency 100% automatically with digital speed and accuracy. It’s a real troubleshooting confidence builder.

Confidently analyze complex waveforms fast and easily. Exclusive Delta measurements let you intensify any waveform portion. Analyze glitches, interference signals, rise or fall times or voltage equivalents between levels; direct in frequency or microseconds.

Speed your digital logic circuit testing. Analyzing troublesome divide and multiply stages is quicker and error free — no time-consuming graticule counting or calculations. Simply connect one test lead to any test point, push a button, for test of your choice for ERROR FREE results.

To see what the SC61 can do for your troubleshooting personal productivity and analyzing confidence, CALL TODAY, WATS FREE, 1-800-843-3338, for a FREE 15 day Self Demo.

Call Today Wats Free 1-800-843-3338

Sencore

3200 Sencore Drive

Sioux Falls, SD 57107

605-339-0100 In SD Only

innovatively designed

with your time in mind.

CIRCLE 179 ON FREE INFORMATION CARD

DECEMBER 1987
Before you hear about it on your old radio, hear it live on your new Informant Information Radio. Whether its an all-points-bulletin from the State Police, the dispatcher for the city's Fire Department, an ambulance racing to the hospital or a National Weather Service report, the new Informant from Regency makes you a part of all the action... instantly.

Breakthrough Technology. Instant Information.

Informant Information Radio uses a revolutionary new technology that allows you to constantly monitor your police, fire and emergency frequencies, as well as NOAA weather information channels in all 50 states. All pre-programmed. This new Information Radio utilizes a principle similar to the seek and scan feature found on expensive AM/FM radios. Your information radio scans the public service channels in the area, locates the active signals, locks in and broadcasts all the information right to you. With revolutionary TURBO-SCAN speed!

Hear Your Hometown Like You've Never Heard it Before.

Just turn it on. As easy to use as your AM/FM radio. Instantly, you're tuned into real life adventures. One touch control lets you select and hold police, fire and emergency broadcasts so you don't miss a single minute of the action.

Hear the amazing Information Radio today. Take it home and be a part of the action tonight!!
This pocket-size electronic Christmas tree will give your holiday lighting a new and festive look.

For about $10 you can build a unique high-tech Christmas tree that will add a new and festive look to both your home and office holiday decorations. And because it's powered by two AA batteries, if you can't be home for the holidays you can pack one along in a suitcase to remind you of your loved ones.

The electronic Christmas tree is really a 6½-inch high tree-shaped printed-circuit board that's outlined by what appears to be randomly-blinking red, green, and yellow LED's. The tree's trimming is the components for the electronic circuit that makes the LED's wink and blink. The Christmas tree's base consists of two AA-size battery holders cemented together with the tree's PC board sandwiched between the two. A little imaginative spray painting before the components are installed puts a realistic finishing touch to the Christmas-tree project.

Because the LED's are continuously cycled on and off, two alkaline batteries provide more than 300 hours of continuous operation; that's enough to provide almost two full weeks of window display or entertainment before the batteries need to be replaced.
How it works
As shown in Fig. 1, three individual flashing circuits that use an LM3909 LED flasher-oscillator IC create the appearance of a pseudo-random timing order. The combination of C1 R3, C2 R5, and C3 R6 control the blink rate, which is between .3 and .8 second, while the inherent wide tolerance range (±20% to ±80%) of standard electrolytic capacitors add to the irregularity of the blink cycles. The continuous current drain is about 10 mA; however, if you decrease the values of R4-6 or C1-3 in order to increase the blink rate, the current will then increase proportionally.

PARTS LIST
All resistors are 1/4-watt, 5%.
R1-R3—200 ohms
R4—3000 ohms
R5—2200 ohms
R6—2700 ohms
R7-R18—39 ohms
Capacitors
1—C3—500 µF, 6 volts, electrolytic
Semiconductors
IC1-IC3—LM3909, LED flasher
LED1, LED4, LED7, LED13, LED 16, LED 19—Red, diffused 5-mm LED
LED2, LED5, LED6, LED11, LED14, LED17—Yellow, diffused 5-mm LED
LED3, LED6, LED9, LED12, LED15, LED18—Green, diffused 5-mm LED
LED10—Red flasher LED (Radio Shack 270-401 or equivalent)
Other Components
B1, B2—1.5 volt AA alkaline battery
Miscellaneous: battery holders, PC board, wire, solder, etc.

Note: An etched and drilled PC board is available for $10 postpaid from Fen-Tek P.O. Box 5012, Babylon, NY 11707-0012. NY residents must add appropriate sales tax.

Note in particular that external current-limiting resistors aren’t needed for LED13 through LED18; the resistors are built into the IC’s. LED10, which serves as the tree’s “star,” is a special kind of flashing LED that blinks continuously at a fixed rate.

Power can be turned off by simply removing either battery, or by slipping a small piece of paper between any battery and either of its battery-holder terminals. Of course, a switch can also be added.

continued on page 82
MACROVISION STABILIZER

Are copy-protected video tapes also mucking-up normal viewing on your TV? Then use a Macro-Scrubber to make the picture squeaky-clean.

D. DUPRE

You are probably already aware that the movie industry has launched a new front against video tape copying with a new "encoding" scheme called Macrovision. Although many new releases from Embassy, CBS/Fox, MGM-UA, HBO/Cannon, MCA, and Disney have been protected with it, its use is generally not advertised on the label. However, you can easily identify a Macrovision-processed tape by turning the vertical hold control on your TV (if your set has one) so that the black bar across the top of the picture becomes visible. If the signal contains Macrovision encoding, you will see five or six gray or white pulsating "boxes" on the left side of the black bar.

According to a top Macrovision executive, plans are already in the works to transmit Macrovision-encoded signals through cable systems.

The basic idea behind the Macrovision process is to render the program material uncopyable to a VCR while allowing the unpimared viewing of the original tape. A goal not achieved by the original CopyGuard system, which has since passed away. Although some opponents of the Macrovision process claim that the system meets those goals, numerous consumers who have either purchased or rented a number of Macrovision-encoded tapes can attest to the contrary. That is evidenced by the large influx of letters to magazines predominant in the video field, and by continuous complaints to video rental and retail stores.

Both the users and developers of the Macrovision process admit that some TV's and VCR's are adversely affected in the PLAY mode, but that that percentage is very small. So, if you are one of the "small percentage" you probably have a significant sum of money invested in the best features that state-of-the-art video has to offer, yet with it you wind up watching a dark, murky picture that may be flashing, rolling or streaking as well.

If you're among the users who have discovered that your VCR or TV equipment simply can't handle the so-called
"invisible" Macrovision encoding, then you need the Macro-Scrubber, a device that simply eliminates the encoding. Plug the device between your VCR and its TV or monitor and you won't know that Macrovision even exists.

Macrovision encoding

Macrovision is not an encoding process at all. If it were, then an appropriate decoder would have to be made available to the consumer just so he could view a Macrovision-encoded tape. In fact, the video information remains intact and unmodified in the signal, as does the audio. The encoding is really a disturbance in the TV signal's vertical-blanking interval that is supposed to affect only the VCR attempting to copy the tape. Unfortunately, the encoding also affects some TVs. By simply eliminating the disturbance and returning the offending signal to normal NTSC standards you can view a completely normal picture while playing a Macrovision-processed tape.

As shown in Fig. 1, the Macrovision process merely injects noise bursts and solid pulses into the signal during selected line times within the vertical blanking interval. One possible form of Macrovision encoding is shown in Fig. 1-a; the same signal in conventional NTSC form is shown in Fig. 1-b. The peak level of the bursts is randomly varied from black to white. Sometimes the bursts are pumped between two or three different levels; at other times the burst level is ramped slowly up and down. The location of the injected noise is also randomly alternated between the available line times; however, the location and level of solid pulses usually remains constant for the duration of a particular title—thus all copies of a particular title have the same encoding.

The Macrovision irregularities created during the vertical retrace time are intended to upset a VCR's record-mode AGC circuit so that it records an unviewable picture. Since a VCR is designed to record only the NTSC video signal—which contains no noise transitions during the vertical blanking interval—any fast irregularities in the vertical blanking interval cannot be tracked by the AGC.

The effectiveness of the Macrovision anti-copying system varies with the type of VCR used, but in general, synchronization is lost, leaving an unviewable picture on the attempted copy. At best, the resulting dubbed copy will exhibit erratic brightness changes. Sometimes the picture will roll vertically due to a noise burst injected just before vertical sync.

WARNING

Duplication of copyright material is prohibited by law. The Macro-Scrubber is recommended for use only between a VCR and its TV or monitor as a solution to viewing problems that are generated within the TV or the monitor by Macrovision encoding.

FIG. 2—An electronic DPDT switch is used to restore the video signal to the conventional NTSC format.

FIG. 3—The input-signal level must be within a specified range for the Macro-Scrubber to work properly. If there is some problem with the input-signal level it is suggested that R24—shown with dashed lines—be substituted for R3 and R4.
The majority of devices sold with a purpose similar to that of the Macro-Scrubber either blank or clip the entire vertical blanking interval, which also removes any other VBI data (color correction signals, closed captions, teletext, etc.). They then attempt to economically reconstruct the entire vertical-blanking interval, including horizontal sync, equalization, and serration pulses. From a technical viewpoint, that is often not very successful because the characteristics of the reconstructed pulses are usually set to some form of “standard” value, and as such do not really match the actual input signal. Since those units do not actually detect and selectively remove the Macrovision noise, they also strip the vertical-blanking interval of a normal TV signal if not bypassed or removed from the system.

Many models also require factory-type calibrations of numerous timing potentiometers. Their new blanking level is either preset to some kind of standard value or an external adjustment is provided to compensate for signals from different video tapes or sources.

What makes the Macro-Scrubber unique, when compared to the restoration devices, is that there are there are no precision adjustments; digital filters remove only the Macrovision pulses and pass the original vertical-blanking interval data and sync pulses, while sample-and-hold circuits reproduce the correct vertical-blanking level, which is switched into the output signal in place of Macrovision pulses. Also, the use of a crystal oscillator eliminates the need for timing adjustments. And since the Macro-Scrubber has no effect on normal video signals, there is no need to switch the Macro-Scrubber out of the system for normal viewing.

Unfortunately, similar symptoms sometimes are experienced when merely playing the original tapes on some VCR/TV combinations.

A logical solution
In comparing Figs. 1-a and 1-b, you can see that a normal NTSC video waveform is held at the vertical blanking level during times when injected noise exists in the Macrovision-encoded waveform. By locating the individual noise bursts and solid pulses, and by connecting the output to a DC voltage that is equivalent to the vertical blanking level at those times, we can essentially recreate the NTSC version of the waveform. When no encoding signals are present, we connect the output to the clamped video input.

Figure 2 shows a block-diagram of how the encoding can be removed. First, the incoming video signal is clamped to hold the negative sync tips at the same level thereby removing any AC hum or other time-varying offset from the signal; that step is critical for detecting signal transitions against a fixed reference level. The clamped video is then sent to a filter circuit to accurately locate the noise bursts and the solid pulses from which the switch-timing and the control signal are created. (A crystal oscillator is used so that timing adjustments aren’t necessary.)

The sample-and-hold circuit continuously samples the video waveform to generate a DC voltage equivalent to the vertical blanking level of the incoming signal. That assures that the switched-in blanking level is always correct for the actual input signal applied and eliminates the need for any manual adjustment. Finally, an electronic double-pole, single-throw switch that is controlled by the noise-locating signal connects either the clamped input video or the reproduced blanking level to the output buffer amplifier. In so doing, Macrovision noise is eliminated and the signal is restored to normal NTSC video.

Circuit description
Figure 3 shows Macro-Scrubber’s circuit. The Macrovision-encoded video signal is applied to jack J1 and is fed through back-to-back capacitors C1 and C2 to a resistor/diode network that clamps the negative sync tips close to ground potential (approximately 0.2 volt). The clamped video input applied to ICI’s inverting input (pin 3) resembles the waveform shown in Fig. 1-a. A DC reference voltage derived from diode D2 is fed to ICI’s non-inverting input (pin 2). Since the DC reference is slightly higher than the clamped voltage, ICI’s output goes positive whenever the input signal is lower than the reference signal. As shown in Fig. 4-a, ICI outputs a waveform that is normally low (0 volts) with high-going pulses con-

![FIG. 4—THE MACRO-SCRUBBER GENERATES noise pulses which are used to locate and suppress the Macrovision noise-burst interference.](image)
current with negative-going pulses below the vertical-blanking level (i.e., horizontal-sync pulses, equalization pulses, vertical-serration pulses, and Macrovision noise bursts).

The clamped video signal is also delivered to the input of a sample-and-hold circuit, which consists primarily of analog switch IC8-a, hold capacitor C12, and op-amp IC9. The switch is driven in such a way that it samples the level of the video signal only during vertical-sync time at the peaks of the vertical-serration pulses. The output of IC9 is a DC voltage equal to the vertical-blanking level, which will be switched into the output waveform in place of the Macrovision noise bursts and solid pulses.

Clamped input video is fed to the input of analog switch IC8-b, and the DC output voltage from IC9 is fed to the input of analog switch IC8-c. Notice that the outputs of analog switches IC8-b and IC8-c are connected together, and that because of inverter IC6-e, their control inputs at pins 5 and 6 respectively are driven 180° out of phase. That arrangement creates the electric equivalent of a single-pole, double-throw switch, with either the clamped input video or a DC voltage that is equal to the vertical-blanking level being fed to buffer amplifier Q1 at any one time.

It is through control of the electronic DPDT switch shown in Fig. 2 that the encoded video is restored to a normal NTSC signal. All that is needed is a proper signal to pin 6 of IC8.

The signal from IC1 pin 7 (Fig. 4-a), which contains pulses that correspond to the sync and the Macrovision noise pulses, is fed to IC2 pins 8 and 12. IC2 is a multivibrator that is configured as a digital low-pass filter. The time constant determined by R8 and C7 causes frequencies greater than twice the horizontal frequency to be filtered out. The high-frequency pulses corresponding to the Macrovision noise bursts have been filtered out, leaving a low level for each burst duration. (See Fig. 4-b.)

The filtered signal is fed to pin 3 (on P1) of binary counter IC4. A 4-MHz crystal-oscillator circuit feeds dual flip-flop IC3, which divides the crystal frequency by four, yielding a 1-MHz clock input to IC4 pin 6. When the input at IC4 pin 3 goes high (that counter is asynchronously preset to the binary value determined by preset lines P3, P2, P1, and P0 pins 2, 14, 11, and 5 respectively). With the connections shown in Fig. 3, the preset count is 14 decimal (1110 binary). Whenever the count is not zero, the counter output at pin 12 is low. The counter decrements once for each clock pulse it sees on pin 6 while pin 3 remains low. Thus, 14 µs after the leading, negative-going edge of the input signal on pin 3 goes low, the count reaches 0, and the counter's output switches high. The high output is fed back to pin 4, the inhibit line, which prevents any further counting.

When the input signal at pin 3 returns high, the counter is again preset to a 14 count and the output returns to its low preset state. Low input pulses having a duration less than 14 µsec are ignored because the counter is preset before the count ever reaches zero.

The resulting output signal at IC4 pin 12 is normally low, with high-going pulses that start 14 µs after the beginning of each horizontal-sync pulse that precedes a Macrovision noise burst. The 14 µsec delay forces the horizontal sync pulses (and color-bursts) to be switched into the output waveform. Each of the noise-burst locating pulses returns to a low at the end of the corresponding Macrovision burst. Those pulses, as shown in Fig. 4-c, define the points in time when the bursts occur, with one exception. Concurrent with the vertical-serration pulses, there are a string of pulses that must be removed in order to create a signal that will totally isolate the Macrovision noise. In order to remove those pulses we must create a gating signal with a single pulse that lasts only for the duration of the vertical sync pulse in each frame. To do that, sync and noise pulses from IC1 pin 7 (Fig. 4-a) are fed to a low-pass filter consisting of R9 and C6.

Narrow, positive-going pulses are attenuated because C6 never gets a chance to charge to a logic-high level unless the pulses are long compared to the time constant determined by R9 and C6. The only pulses wide enough to allow C6 to charge

FIG. 5—VERTICAL SYNC AND BLANKING level sampling pulses are derived from the Macrovision-induced noise bursts.
FIG. 6—WINDOWS DERIVED FROM the burst-location pulses provide the switch control signals that eliminate the Macrovision interference from the output signal.

FIG. 7—THE NTSC SIGNAL IS CREATED by selectively switching the encoded input and the sampled vertical-blanking level into the output.

to a logic-high value are those corresponding to the vertical serration pulses.

Therefore, as shown in Fig. 5-a, at IC6-c pin 5 we have a signal that has +5-volt pulses corresponding to the horizontal sync pulses, and +12-volt pulses concurrent with the serration pulses during vertical-sync time.

Inverter IC6-c discriminates farther, since input pulses lower than a logic high (approximately +7 V for a +12-V supply) will not trigger output pulses. Therefore, as shown in Fig. 5-b, at inverter IC6-c pin 6 we have a normally high signal with low-going pulses occurring only during the vertical sync period. When that signal goes low, diode D4 becomes forward-biased and inverter IC6-d pin 9 is immediately pulled low as well. When IC6-c pin 6 goes high, D4 is reverse-biased, so that pin 9 charges to a logic-high level at a rate determined by R22 and C8. (See Fig. 5-c.) Again, narrow pulses are ignored and, as shown in Fig. 5-d, the inverter’s output (IC6-d pin 8) is normally low with logic-high sync pulses.

The inverter’s output signal turns on sampling-switch IC8-a during the vertical-serration time, and IC12 charges to the vertical blanking level. The high input impedance of op-amp IC9, and IC8-a in its off state, prevent the charged voltage on C12 from leaking off between samples. Unity-gain amplifier IC9 feeds C12’s DC voltage level to analog switch IC8-c, where it will be switched into the output waveform in place of the Macrovision noise.

As shown in Fig. 5-e, the vertical-sync signal at IC6-d pin 8 is inverted by IC6-f, and is then fed to NAND gate IC7-b to gate the burst-location signal from IC4 pin 12 (Fig. 4-e). The output signal at IC7-b pin 4 (Fig. 6-a) is normally high, with logic-low pulses that last for the duration of the corresponding Macrovision noise burst.

Notice, from Fig. 1-a, that some Macrovision bursts are followed by a solid pulse that doesn’t have a negative transition. Since the Macrovision noise-locating pulses shown in Fig. 6-a were created by detecting high-frequency bursts below the blanking level, they do not locate the solid pulses. In order to remove the solid pulses without affecting any non-Macrovision pulses we must: 1) detect positive transitions above the vertical blanking level that occur during the Macrovision-encoded areas of vertical blanking, and 2) combine the new signal that locates the Macrovision solid pulses with the signal that locates the Macrovision noise bursts at IC7-b pin 4.

Macrovision-encoded areas of the signal are defined by feeding the signal at IC7-b pin 4 (Fig. 6-a) to a low-pass filter consisting of R3, R16, C18, and IC7-a. The resulting waveform at IC7-a pin 3 contains wide pulses, or windows, that define the time periods in which the Macrovision encoding is present. That signal is shown in Fig. 6-b.

The DC output voltage from the sample-and-hold circuit is fed to the inverting input of comparator IC5, while the clamped video input signal is fed to IC5’s non-inverting input. A train of high-going pulses appears at IC5 pin 7 that corresponds to all transitions above the blanking level, including video, vertical-blanking, interval data and Macrovision pulses. See Fig. 6-c.

The signal from IC5 pin 7 (Fig. 6-c) is gated by the window pulses from IC7-a...
The removal of the Macrovision encoding signal works as follows: During video time, horizontal-sync time, vertical-zeration time, and all non-Macrovision-encoded vertical-line times, the control input of analog switch IC8-c is low—the switch is open. At the same time, the control input of analog switch IC8-b is high—it is closed, connecting the clamped-video signal (Fig. 7-b) to Q1's gate. During Macrovision noise times, the situation is reversed. Switch IC8-b is open and switch IC8-c is closed, thereby connecting the DC blanking voltage from sample-and-hold amplifier IC9 to Q1. An impedance-matching amplifier stage, consisting of Q1, Q2, and Q3, provides a match for the 75-ohm video output. Thus, as shown in Fig. 7-c, a "normal" NTSC-compatible video signal is reconstructed at the output, eliminating only the Macrovision noise.

Construction

The circuit is assembled on a printed-circuit board. The foil pattern for that board is provided in PC Service. The parts-placement diagram for that PC board is shown in Fig. 8.

Begin stuffing the printed-circuit board by first installing all resistors, diodes, and capacitors. Make sure that all of the electrolytic capacitors and the diodes are installed with the proper polarity. Save the clipped component leads for use as jumpers.

Capacitor C12 must be a "polypropylene" type because the extremely low-leakage characteristic of the material prevents the vertical-blanking hold voltage from sagging between samples. As correct R-C time constants are critical to the proper operation of the circuit, use of the component values shown in the schematic is essential.

The PC board's spacing for crystal XTAL1 is for an HC-18 package. Values specified in the Parts List for resistors R14 and R15, and capacitors C16 and C17, must be used in order to insure proper operation of the oscillator.

Mount the transistors and voltage regulator IC10 next. Transistor Q1 is an FET and should be handled with proper regard for static charges. A heatsink should be mounted on the voltage regulator, especially if the circuit is housed in a case that has limited ventilation. Potentiometer R24, which is indicated by dashed lines in the schematic, is not normally used, so its holes in the PC board will remain empty. (We'll explain R24 later.)

Finally, mount the IC's, using proper precautions for static electricity because most of them are CMOS. Sockets aren't necessary, but using them would make any troubleshooting or repair easier. The project will fit nicely into a PAC-TEC CM5-125 case.

Checkout and hookup

Apply power and check that the AC adapter's output voltage is between 14-24-volts DC when it is powering the circuit, and that IC10's output voltage is +12-volts DC, ± 0.6 volt.

Connect an input signal and monitor or a TV to the Macro-scrubber. Connect the VCR's video output to J1. If you have a video monitor or a TV having a video input, connect the Macro-scrubber's output, J2, directly to that piece of equipment's video input.

If your equipment lacks a video input, you'll need an RF modulator for the channel you normally use when watching your VCR (channel 2, 3, or 4). Connect the video output to the modulator's video input. Connect the VCR's audio output to the RF modulator's audio input. Connect the modulator's RF output to the TV's antenna-input jack or terminals.

Play a video tape that you have already identified as containing Macrovision pulses. The picture you see should now be free of interference.

If the Macrovision-related viewing problems still exist, or if part of the picture is blanked out, the input-signal level from your VCR may be excessively high or low. In that case, a pattern of holes has been provided in the PC pattern so that fixed resistors R3 and R4 can be replaced with a 20,000-ohm potentiometer. The potentiometer is shown in the schematic by dashed lines, and is identified in the schematic and on the PC diagram as R24. (Remember, if you install R24 you must remove R3 and R4.)

To adjust R24, play a Macrovision tape, and while observing the TV picture, adjust R24 until the picture appears to be normal—interference-free.

FIG. 8—RESISTOR R24, SHOWN BY THE DOTTED LINES, isn't usually used. If it is needed, you must remove resistors R3 and R4.
Part 2 LAST MONTH WE BUILT the tester and discussed basic test methodology. Now we'll go on and provide specific examples showing how to set up your own test routines on paper and by computer, and how to send those files to and from your desktop computer.

Before we get started, let's correct a few errors from last month. The schematic of the driver board incorrectly identified P2 and P4. Also, the ordering information should have noted that IC16 and IC17 are not included in the partial kit.

7404 test data

Here is how to generate test data. This procedure applies whether data is entered via external computer using the data-entry routine discussed later, or is entered via the tester's keyboard.

Our first example illustrates the process for a 7404 hex inverter. First, obtain the pin numbers for inputs, outputs, V_{CC}, and ground, and the functional description (or truth table) from the device's data sheet.

To ease the process of generating the test data, make a copy of the template shown in Fig. 7, then fill in the blanks for the part number, number of pins, and group number. You must make a template for each test group if you need more than one. You may also sketch the part's logic diagram in the box on the template.

Next fill in the data blanks, leaving room to write eight binary digits at each pin that must be tested. If we put a 1 into an inverter, we should get a 0 out of it. So put a 1 in the blank for pin 1, and a 0 by pin 2. Repeat the procedure with the remaining five inverters. Then put an X at pins 7 and 14 to indicate that they will be ignored. Now we have all data for the first test cycle.

There is a total of eight test cycles, so now place a 0 at each input and a 1 at each output. (The X's should remain by pins 7 and 14.) That accounts for two of the eight bits in this test group's byte, so duplicate the bit pairs four times. Then convert the eight-bit data, four bits at a time, to two hexadecimal digits using the binary/hexadecimal chart at the bottom of the template. The completed test form is shown in Fig. 8.

The test information, along with the part number and the number of pins, is then stored in the tester's memory using the procedure outlined last time. There is no need for more than one test group to test a 7404 completely.

In-circuit example

The data for an in-circuit IC depends on how the IC is connected. For example, input pins may be tied to V_{CC} or to ground, so we tell the tester to ignore those pins. Or, if the IC's input is connected to one of its outputs, ignore the input because its data will be supplied by the output it's connected to. A sample chart is shown in Fig. 9.
Multiple test groups

IC's with pins that can function as both inputs and outputs can be tested as follows. We'll use a 74LS245 octal bus transceiver for illustration. That IC is commonly used to buffer data into and out of a microprocessor; direction of data flow is controlled by a single control input (pin 1).

The data for testing the IC in send mode is shown in Fig 10; the data for testing it in receive mode is shown in Fig. 11. Notice that the data in both cases is identical except for the setting of the direction line.

The enable line of a registered (latched) IC must be toggled to ensure that the IC responds when it is enabled, and does not respond when it is not enabled. Fig. 12 shows the test pattern for a 74L3374 octal data latch. The outputs should follow the inputs when the enable line (pin 11) is high, and shouldn't change otherwise.

Clocked logic

A clocked IC that has no means of setting or clearing its outputs will have an indeterminate state before it is clocked. Therefore, all outputs must be listed as indeterminate (O). The first state of a pin defined as indeterminate will be cleared to zero. (Only outputs can be indeterminate.) The remaining 7 states of the group will be processed normally. If more than one test group is needed, the first state of each additional group will not be indeterminate, and should be defined as Output. Note in the test data that the clock line goes high in the odd-number cycles (1, 3, 5, and 7). The outputs will only change on those cycles, because the 74L3374 changes state during the leading clock edge. Test data is shown in Fig. 13.

Multiple-output-state devices

An IC with many inputs or outputs may require more than one test group. Remember that there is a maximum of five test groups per part number). For exam-
ple, the 74LS4 4-to-16 line decoder has four address inputs (pins 20-23), two active-low gate inputs (pins 18 and 19), and 16 outputs, one of which goes low when both gate inputs are low, depending on the state of the four address inputs. Figures 14, 15, and 16 show the data required to test the IC completely.

Advanced commands

After generating test data you'll probably want to store it in your desktop computer. The tester provides storage for as many as 105 test routines, which you may upload to and download from the tester's internal memory.

After entering test data, if you wish to store it, press the Store key, and the data will be stored in memory for future use under the part number that is active with the data.

To load a test routine from the tester's local memory, press Load and then enter the part number. If a corresponding routine is in memory, CLEAR OR ENTER? will appear on the display. Press Clr to erase the entry from memory, or press Enter to leave the data in the test buffer for testing or transfer to the external computer. To upload the data, press Send. To download it, press Recv. If you wish to retain a received file, press Store. Use the BASIC programs shown in Listings 1 and 2 to send and receive programs.

Remote data generation

The BASIC program shown in listing 3 can be used to create test patterns somewhat more conveniently than on the tester itself. It is important to note that when using the program to generate test files, only hex characters (0-9, A-F) may be used by the part number (TPS) if the file is to be stored in the Tester's memory. The reason for this is that the Tester's keyboard has no other characters to access the test routine in its memory. Therefore you would not be able to load or delete the test routine. For example, a part entered as 74LS138 would be inaccessible because there is no L or S on the Tester's keyboard.

Usage hints

First a few words of caution. Never connect the test clip to an IC that has power on it unless the tester is on and COMMAND? is scrolling in the display. Conversely, never shut the tester off when the clip is connected to a powered IC. And always make sure when testing in-circuit IC's that the tester and the DUT (Device Under Test) share a common ground. Connect the black test hook clip to a ground on the board near the IC's to be tested.

The test drivers (IC7-IC15) are rated at 7 volts maximum, so be careful what you connect the test clip to. A powered RS-232 driver might have ±12 volts, or even more, and voltages at those levels

FIG. 10—TEST SETUP FOR A 74LS245 octal bus transceiver in send mode.

FIG. 11—TEST SETUP FOR A 74LS245 octal bus transceiver in receive mode.

FIG. 12—TEST SETUP FOR A 74LS373 octal transparent data latch. Whenever the enable line (pin 11) is high, each output follows the corresponding input.

FIG. 13—TEST SETUP FOR A 74LS374 octal D flip-flop. Data on each input is clocked into the corresponding output on the leading edge of each clock pulse. Clock pulses are applied to pin 11.
Binary Data Hex Pin# \[\begin{array}{ccc}
\text{Pin #} \text{ & Binary Data} & \text{Hex} \\
q & a1 & 12 \\
q & a2 & 11 \\
q & a3 & 06 \\
q & a4 & 07 \\
q & b1 & 01 \\
q & b2 & 10 \\
q & b3 & 09 \\
q & b4 & 08 \\
q & c1 & 13 \\
q & c2 & 14 \\
q & c3 & 0B \\
q & c4 & 0A \\
q & d1 & 16 \\
q & d2 & 15 \\
q & d3 & 0E \\
q & d4 & 0D \\
q & e1 & 18 \\
q & e2 & 17 \\
q & e3 & 0C \\
q & e4 & 0B \\
q & f1 & 19 \\
q & f2 & 18 \\
q & f3 & 0F \\
q & f4 & 0E \\
\end{array}\]

FIG. 14—A 74154 demultiplexer has six inputs and 16 outputs, so it requires three test groups to test all combinations. Group 1 is shown here.

PART NUMBER (8 Alphanumeric Digits Maximum) 74154
NUMBER OF PINS (2 Digits Maximum, Even Numbers 4 to 24)
GROUP NUMBER (1 to 5) 2
REMARKS

Binary Data Hex Pin# \[\begin{array}{ccc}
\text{Pin #} \text{ & Binary Data} & \text{Hex} \\
q & a1 & 12 \\
q & a2 & 11 \\
q & a3 & 06 \\
q & a4 & 07 \\
q & b1 & 01 \\
q & b2 & 10 \\
q & b3 & 09 \\
q & b4 & 08 \\
q & c1 & 13 \\
q & c2 & 14 \\
q & c3 & 0B \\
q & c4 & 0A \\
q & d1 & 16 \\
q & d2 & 15 \\
q & d3 & 0E \\
q & d4 & 0D \\
q & e1 & 18 \\
q & e2 & 17 \\
q & e3 & 0C \\
q & e4 & 0B \\
q & f1 & 19 \\
q & f2 & 18 \\
q & f3 & 0F \\
q & f4 & 0E \\
\end{array}\]

FIG. 15—GROUP TWO OF THE 74154 TEST set is shown here.

PART NUMBER (8 Alphanumeric Digits Maximum) 74154
NUMBER OF PINS (2 Digits Maximum, Even Numbers 4 to 24)
GROUP NUMBER (1 to 5) 3
REMARKS

Binary Data Hex Pin# \[\begin{array}{ccc}
\text{Pin #} \text{ & Binary Data} & \text{Hex} \\
q & a1 & 12 \\
q & a2 & 11 \\
q & a3 & 06 \\
q & a4 & 07 \\
q & b1 & 01 \\
q & b2 & 10 \\
q & b3 & 09 \\
q & b4 & 08 \\
q & c1 & 13 \\
q & c2 & 14 \\
q & c3 & 0B \\
q & c4 & 0A \\
q & d1 & 16 \\
q & d2 & 15 \\
q & d3 & 0E \\
q & d4 & 0D \\
q & e1 & 18 \\
q & e2 & 17 \\
q & e3 & 0C \\
q & e4 & 0B \\
q & f1 & 19 \\
q & f2 & 18 \\
q & f3 & 0F \\
q & f4 & 0E \\
\end{array}\]

FIG. 16—GROUP THREE OF THE 74154 TEST set is shown here.

could damage the drivers easily. The display will probably dim if you inadvertently connect the test clip to an IC incorrectly, or if you have entered test data incorrectly. If the display becomes dim, disconnect the test clip and remove power immediately.

In addition to testing IC's both in and out of circuit, the tester can also be used as a simple logic analyzer to test as many as twenty-four points in a digital circuit. Simply replace the DIP clip with individual test-hook clips. Some lines would be used as outputs to stimulate the circuit, and others would be used as inputs to read the results.

PARTS LIST

All resistors are 1/4-watt, 5% unless otherwise noted.
R1—22,000 ohms
R2—330 ohms
R3—R6—1000 ohms

Capacitors
C1, C8—1000 µF, 16 volts, electrolytic
C2, C4—C7, C9—C17—01 µF, 10 volts, ceramic disc
C3—10 µF, 16 volts, electrolytic

Semiconductors
IC1—280 microprocessor
IC2—DS1230-104 32K nonvolatile RAM
IC3—MAX233 RS-232 interface
IC4—75499 custom decoder
IC5—74148 custom decoder
IC6—75500 custom decoder
IC7, IC10, IC13—NE591 open-emitter octal driver
IC8, IC11, IC14—NE590 open-collector octal driver
IC9, IC12, IC15—74LS737 octal latch
IC16—7805 5-volt regulator
IC17—2-MHz crystal oscillator
D1—1N4001 rectifier
DISP1—DL1414 16-segment decoder/driver/display

Other components
F1—1-amp pigtail fuse
J1—9-pin D connector
P1, P2—right-angle double 20-pin male header strips
P3—right-angle double 26-pin male header strips
S1—minature SPDT toggle switch
S2—momentary SPST pushbutton
S3—S14—momentary SPST keyboard switches
T1—Transformer, 9.5–12-volts, 1-amp, wall-mount

Miscellaneous: One 10-pin, two 20-pin and one 26-pin double-row female IDC header connectors. Two 2-pin single-row female IDC header connectors. Flat ribbon cable and test clips.

Note: The following are available from: ALPHA Electronics Corporation, P.O. Box 1005, Merritt Island, Florida 32953-1005, (305) 453-3534: Kit of parts for $299.00 + $6.00 P&H. Includes all parts, punched and screened panel, case, and labeled keys. Test cable and clips not included. Completely assembled tester for $399.00 + $6.00 P&H. Includes test cable with 16-, 20-, and 24-pin IC test clips. Partial kit, including all IC's (except IC16 and IC17), display, and PC boards for $199.00 + $5.00 P&H. Three custom IC's (75498, 75499 and 75500) for $60.00 + $4.00 P&H. Florida customers please add 5% State sales tax. Canadian customers please add $3.00 additional postage to all orders. All foreign orders add appropriate postage for Air shipping and insurance.

INSIDE THE IC TESTER. Last time we showed you how to build the project; this month we show you how to use it.
An oscilloscope is an indispensable troubleshooting tool. Adding a digital readout makes it ideal.

How to Analyze Waveforms

GREGORY D. CAREY, CET

An oscilloscope is like an electronic stethoscope—it allows you to confirm a circuit's "health" by examining the signals flowing through it. Whether you are designing a circuit, building a project from a magazine, or repairing circuits for a living, the ability to analyze waveforms quickly, accurately, and without mistakes can let you make the most of your technical skills. Unfortunately, many technicians only use their scopes when absolutely necessary. Because of that, they often are unfamiliar with the unit's operation, making waveform interpretation seem difficult. Combining a digital readout with the scope's graphic display, eliminates most of the problems of waveform interpretation.

What is a waveform?

Before we go on, let's be certain that you understand what the waveform on an oscilloscope's CRT screen represents. The CRT graphically displays the relationship between the voltage and time at the test point you're measuring. The vertical movement (deflection) indicates the signal's voltage, with more deflection representing larger voltages. Simultaneously, the beam is moving horizontally at a constant rate, so that each horizontal division on the CRT represents a constant time interval.

Analyzing the signal helps identify which components are responsible for circuit problems. Let's look at how each part of the waveform helps find different component problems.

The seven waveform parameters

The seven parameters shown in Fig. 1 fully define any signal. Four of those parameters apply to any signal, and the other three apply to complex signals. We will explain how to interpret each parameter and which components are most likely to affect each one.

1) Waveshape: The signal's wave-shape confirms the general operation of a circuit. Waveform distortion is often caused by a problem in a reactive component, such as a coil or a capacitor. Waveform clipping ("flat-topping") may be caused by saturation of a stage or by a power supply with low output. After discovering a waveform problem, other parameters can be used to provide additional clues about the circuit's operation.

2) DC level: The DC bias at a test point is such an important troubleshooting parameter that many people use their voltmeters as their main piece of test equipment. DC problems may be responsible for problems with any of the other parameters, including distorted waveform, or incorrect amplitude or frequency. DC problems may be caused by power-supply problems or an open or shorted...
component somewhere in the circuit. A DC-coupled scope, especially one with digital readout, allows you to measure DC bias directly, while simultaneously observing the signal's waveshape. The DC and waveform readings also work together when a power supply has excessive ripple, even though its DC output is correct.

(3) Amplitude: The next test is to confirm that the signal has the correct peak-to-peak voltage. Low signal amplitude may be caused by low-stage gain or by excessive loading. Poor gain often results from a defective transistor or IC, low power-supply voltage, or a defective emitter-bypass capacitor. Excessive loading may be the result of a component that has shorted or has changed value.

(4) Frequency: Some circuits, such as oscillators, generate signals for use by later stages. Other stages may be referenced to an external source, such as in VCR servo circuits, phase-locked loops, digital counter stages, or television sweep circuits. Testing the frequency of those circuits confirms whether they are working correctly.

Delta measurements

The previous four tests will fully analyze a signal if you are testing a simple waveshape, such as a sine wave or square wave. If, on the other hand, you are testing a complex signal, you may need to know the details of the secondary parts of the signal to complete the analysis. Those added tests are called delta measurements. There are three types of delta measurements as follows:

(5) Delta amplitude: The peak-to-peak voltage test covered earlier measured the total amplitude from the signal's lowest to its highest points. Many signals have additional signals buried within them. For example, an incorrect color-burst level on a composite video signal (see Fig. 2) may cause color problems. An incorrect sync-pulse level on the same composite signal may cause sync instability. Ripples or glitches, riding along the top of digital squarewaves, may cause later circuits to operate incorrectly. Those conditions can be detected by using delta peak-to-peak voltage measurements, which allow the level of secondary signals to be measured independently of the main signal level.

(6) Delta time: Time measurements fall into two categories: those that are part of one signal, and those involving the time difference between two signals. An example of time within one signal would be the duty cycle of a switching power supply, where the "on-time" compared to the "off-time" determines the power delivered to the load. The time delay between two signals is important in many VCR servo adjustments. See Fig. 3. Either of those applications uses a point on the waveform as a reference for a delta-time measurement.

(7) Reciprocal time measurements: You can determine the approximate frequency of a signal by measuring the time for a single cycle and then inverting the time measurement mathematically. You can use that method to determine the time constant of circuits responsible for ringing, or the frequency of an interfering signal to determine its source.

Digital measurements

You make all seven of those measurements every time you fully analyze a signal with an oscilloscope. Conventional scopes require you to make every parameter reading by measuring beam displacement on the CRT, and multiplying that by the settings of the vertical or horizontal circuit controls. Some scopes with microprocessor-controlled measuring circuits, such as the Sencore SC61 shown in the opening of this article, allow every parameter to be converted to a direct digital reading. The CRT is then used only to display the overall shape of the signal.

A digital readout offers three advantages over using the CRT for measurements: Speed, accuracy, and freedom from errors. Let's look at each of those advantages in a little more detail.

Speed: You may begin to appreciate the time that direct digital readings save when you look at the number of steps needed to make a single measurement on a conventional CRT. Those steps are outlined in Table 1. If you use an oscilloscope often, you perform those steps without even

This text continues on page 82.
Strain-gage transducers are linear, it's easy to determine the value of a force-related input. All that's required is to divide the output voltage by the transducer sensitivity as shown in Fig. 1. That's because the input and output are related by a simple linear equation. In this article we'll see where that equation comes from, and, in the process, learn something about the underlying principles that are common to all strain-gage transducers. Toward that end we have divided the strain-gage transducer into three components: 1) the spring element, 2) the strain gage, and 3) the bridge circuit. We'll take a look at each of those components to see what they contribute to the operation of the transducer. Then we'll put them back together to see how the complete transducer works.

The spring element

The principle of elasticity, that is, the tendency of solids to deform or change dimensions when subjected to an external force, is central to the operation of the strain-gage transducer. It makes no difference whether the force is from a weight, a fluid pressure, or even mechanical inertia; the result is the same.

As an example, Fig. 2 shows a steel bar subjected to a force in the form of a weight. In Fig. 2a the bar is unloaded and has a length of L. In Fig. 2b the bar is anchored at the top, and the weight is attached to the bottom. In that case, the resulting deformation will appear as an increase in length. In Fig. 2c, the weight is placed on top of the bar. That will result in a decrease in length. Note that no matter how the bar is loaded, it will return to its original length when the weight is removed, provided that the applied force was not so large as to cause the bar to permanently stretch or break. The change in length resulting from an applied force is known as strain. For metallic solids like steel or aluminum, the maximum allowable strain before deformation is in the range of a few thousandths of an inch.

The property of elasticity is widely used in the manufacture of instruments because there is a linear relationship between strain and the applied force. This relationship can be expressed as

\[S = kF \]

where \(F \) is the applied force, \(S \) is the resulting strain, and \(k \) is the spring element constant; the value of \(k \) depends on a number of things like the geometry and type of material, and the direction of the

Strain gages can be used to measure virtually any force-related physical property. In this article we'll see how those versatile devices work.
applied force. That relationship, known as Hooke's law, was originally applied to coil springs for use as a measure of weight. But we have since recognized that, within limits, it is essentially true for all solids.

The spring element is the foundation of the strain-gage transducer. It is an elastic solid (usually metallic) designed to linearly translate an applied force into an equivalent strain. Its size and shape depend on the magnitude and type of force that the transducer is to sense. A spring element could be as simple as the steel bar in Fig. 2, but a design of that type provides only one direction of strain in response to an applied force. If the applied force can produce two equal strains that are opposite in direction, the resulting transducer will be more accurate. That is often done by applying a force to the spring element in a way that will make it bend.

Figure 3 shows one way that can be done. A rectangular steel bar is anchored at one end in a cantilever configuration. The force is applied to the free end of the bar, perpendicular to the axis, rather than along the axis as in Fig. 2. As a result, the upper surface of the bar will stretch, and the bottom surface will compress. The surface strain will vary along the bar, from a maximum near the end that is anchored, to zero at the other end. But at any given position along the bar, the strain of the upper and lower surfaces will be equal in magnitude and opposite in direction. Later we will see that those opposing strains can help stabilize the transducer against varying environmental conditions that may occur.

Some commercial transducers use spring elements that are similar to the cantilever configuration, but there are a great many other designs that are used as well—in fact, too many to discuss here realistically. Fortunately, a study of the design variations is unnecessary as long as you remember that a spring element is a structural component designed to provide a linear deformation in response to an applied force.

The strain gage

The purpose of the strain gage is to convert the strain of the spring element into an equivalent change in resistance. A strain gage is just a metallic conductor that is bonded to the spring element, stretching and compressing in the same way as the spring element. We know from basic electricity that the resistance of a conductor depends on its length. And, we know that if we place it in tension its length will increase as the steel bar did in Fig. 2. Since resistance is proportional to length, that stretching will result in an increase in resistance. If we turn that around and put the conductor into compression, its resistance will decrease.

Figure 4 shows a typical commercial strain gage. It consists of a thin foil conductor bonded to a plastic backing material. The backing, which serves as a carrier for the metal foil and provides insulation from the spring element, must be flexible enough to follow the spring element, yet tough enough to transfer the strain to the metal foil. The foil conductor is usually made of an alloy having a low temperature coefficient, like constantan. To keep the strain gage reasonably short, the foil has been laid out in a criss-cross pattern over the surface of the backing material. At one end, the foil expands to form two solder tabs which are used to attach lead wires to the strain gage. Although the design shown in Fig. 4 is typical, a number of other designs are available, including multiple gages on a single backing and circular gages for use with diaphragm-type pressure transducers. A number of designs from one supplier, Transducers Inc. (14030 Bolsa

L.N., Cerritos, CA 90701), are shown in Fig. 5.

The strain gage is usually bonded to the spring element with an adhesive like epoxy. The quality of the bond is critical since the adhesive must accurately transfer any spring-element deformation to the strain gage. A poor bond will result in "creep"—a slippage between the strain gage and the spring element. That will make it look as if the input is slowly changing when, in fact, it is not.

The change in strain-gage resistance is related to strain by the gage factor, that is defined as the ratio of the unit change in resistance to the strain, or:

\[G = \frac{\Delta R}{R \Delta S} \]

where \(G \) is the gage factor, \(R \) is the initial (unstrained) resistance of the gage, \(S \) is the strain, and \(\Delta R \) is the change in resistance resulting from a change in length. Most strain gages have an initial resistance of 120 or 350 ohms. For most metal-foil strain gages, the gage factor is usually between 2 and 3; the precise value depends on the composition of the alloy used for the foil conductor.

The last equation can be rewritten in terms of \(r \) or:

\[r = \frac{G \Delta S}{\Delta R} \]

That shows that, since both \(R \) and \(G \) are constants of the strain gage, the change in resistance is proportional to the strain.

Most strain-gage transducers use metal-foil strain gages. However, transducers using semiconductor strain gages are gaining popularity. Instead of a metal alloy, they are built using a semiconductor material. Functionally, they are similar to metal-foil gages, but they have a higher initial resistance and a larger gage factor. Since they can be made very small, they are often used in miniature transducers.

The bridge circuit

So far, we've seen that the change in strain-gage resistance is proportional to the change in the length of the spring element. And we've seen that the change in the length of the spring element is proportional to the applied force. Since both of those relationships are linear, we can
say that the change in resistance is proportional to the applied force. But a resistance change itself is not always a convenient parameter to measure because data loggers, computers, and process controllers usually require a voltage or current signal.

We could convert the resistance change into a voltage change by connecting a resistor in series with the strain gage and applying a DC voltage across the pair. If we used a series resistor of the same value as the strain gage and applied 5-volts DC, the voltage at the junction of the strain gage and the resistor would be 2.5 volts. A change made in the strain-gage resistance would then produce a change in that voltage.

Notice that it is the change in voltage that we want, because it is the change in voltage that is proportional to the change in resistance. But the change will be very small compared to the initial value of 2.5 volts. It’s as if the desired signal voltage has been summed with a large, unwanted DC bias voltage. We can’t amplify the small change until we eliminate the initial 2.5 volts. In transistor amplifiers, DC bias is often removed with a coupling capacitor, but we can’t use that technique here because we want the steady-state voltage change as well as the dynamic change. What we need is some way to null out the initial voltage level.

One approach would be to configure the strain gage in a resistance bridge, as shown in Fig. 6. If the three resistors and the strain gage were all of the same resistance, the voltage at the junction of each pair would be the same. As a consequence, the voltage difference from one junction to the other would be zero. If we consider that voltage difference to be the output, \(e_o \) then we have effectively nullled out the initial voltage but preserved the DC response of the strain gage. We have also invented the Wheatstone bridge.

Unlike the Wheatstone bridge, though, balancing serves only to null out the initial voltage level. To make a measurement with that type of circuit, the bridge must be unbalanced by a change in the strain-gage resistance. That will cause a change in voltage difference across the bridge. We can use that change as an indication of the change in strain-gage resistance.

In the circuit of Fig. 6, you will find that for very small resistance changes, the output voltage appears to be a linear function of the change in resistance. But, as the change becomes larger it is no longer linear. We could limit the non-linearity to an acceptable level by limiting the change in resistance. But there is a better way.

Non-linearity can be eliminated entirely by building the bridge from four identical strain gages, instead of just one. The resulting circuit, which is known as a **four-arm, fully-active bridge**, is shown in Fig. 7.

The output of that bridge is a linear function of the change in strain-gage resistance, provided that the change in each strain gage is identical and that the change in two of the gages will result in an increase in resistance while the change in the other two will result in an identical decrease. In addition to being linear, the output of the circuit is higher and less sensitive to environmental changes than that of the single-gage bridge configuration. That type of circuit is used almost exclusively in strain-gage transducers.

To see how it works, let’s use the spring element again as shown in Fig. 8. At some point near the fixed end of the bar, we will bond two of the strain gages to the upper surface, and the other two directly below them on the lower surface. In Fig. 8, \(R_n \) refers to the gages on top of the spring element and \(R_b \) refers to those on the bottom. When no force is applied to the bar, the top and bottom surfaces will be the same length. Since all four of the strain gages have the same initial resistance, the bridge will be balanced and the potential difference across the bridge will be zero. If we now apply a force to the end of the bar, the upper strain gages will increase in length and the lower gages will decrease. That is shown in Fig. 8 as \(R + r \) and \(R - r \). Note that since the upper and lower strains are equal, \(r \) is the same for all four gages. But, since they are opposite in direction, \(r \) is then added to the gages on top and subtracted from the gages on the bottom.

We can show that the relationship between the voltage difference across the bridge and the change in resistance is linear. The first step is to find an expression for the voltage at point \(a \) \((e_a)\) of the bridge (as shown in Fig. 7) as a function of the change in resistance. If we look at the bridge circuit as the parallel combination of two series resistances, we can see that the voltage at point \(a \) is given by:

\[
e_a = I(R + r)
\]

where \(I \) is the current in the left leg of the bridge. But \(I \) can be expressed as:

\[
E \left[\frac{1}{R - r} + \frac{1}{R + r}\right] = E(2R)
\]

where \(E \) is the bridge supply voltage. Combining those equations yields:

\[
e_a = E(R + r)(2R)
\]

We can find an expression for the voltage at point \(n \) of the bridge in the same way, which yields:

\[
e_b = E(R - r)(2R)
\]

Since \(e_a \) and \(e_b \) are both referred to the ground, the difference in potential \((e_n)\) between point \(a \) and point \(n \) is just the difference between \(e_a \) and \(e_b \), or:

\[
e_n = e_a - e_b = E(R + r)(2R) - E(R - r)(2R)
\]

That can be further reduced to:

\[
e_n = ErR
\]

The last equation shows that the bridge output voltage is directly proportional to the change in strain-gage resistance.

The four-arm, fully-active bridge has another advantage over the single-strain gage bridge. While the single strain gage is mounted on the spring element, the three other resistors must be mounted in a strain-free location. That means that the strain gage could be subjected to temperature changes that are different from those seen by the other three resistors. Since a temperature change will cause a temperature change will cause a
More nostalgia from radio's pioneer days.

Part 5 An important ans amplification was during radio's early days, an even more important receiver criterion was selectivity. Selectivity is a measure of the ability to receive closely spaced signals without interference from each other. Improved selectivity was usually attained by using taps on the antenna coil to increase its Q through better impedance matching on both sides of the antenna coil. Figure 1 shows two "selective" circuits used by the early radio experimenters. In Fig. 1-a the taps on both the primary and the secondary of antenna coil L1 are adjusted for best reception or minimum interference. In Fig. 1-b a separate tapped antenna loading coil L2 is used to peak the antenna itself for a particular range of frequencies, and a tapped inductor L3 increases the impedance that L1 "sees" when looking into the rectifier.

But better selectivity created an unforeseen problem: insufficient receiver sensitivity. Being able to tune between the local powerhouse signals allowed the listener to partially hear much weaker signals from far-away places, and so was born "DX'ing"—DX'ing meaning the reception of distant signals. Unfortunately, crystal detectors could not provide sufficient volume from the weak DX stations. The need for more volume, coupled with a sharp decrease in the price of vacuum tubes, sounded the death knell for the crystal receiver. At first, only one tube was used for amplification; then, two; and finally three or more as designers learned how to build multi-stage amplifiers that didn't break into self-oscillation if the crystal chirped.

Audio coupling

As shown in Fig. 2, early audio amplifiers used transformer coupling between stages, starting at the crystal detector. The transformers provided an amplifier's plate load, DC blocking, and AC coupling into the following stage. Though the transformer simplified interstage connections, the DC current flowing in the primary winding of the amplifier-output transformer caused core saturation, which reduced the effective inductance of the transformer—thereby producing a distorted sound. Known as hysteresis distortion, it marked the beginning of awareness of the need for better sound quality.

Various attempts were made to get around core saturation. The most effective, of course, was to use a transformer with "more iron," but this led to transformers that weighed more than a small boat anchor. The next attempts at reducing core saturation were the circuits shown in Fig. 3, where the transformer was isolated from the DC circuit. The tube got its plate voltage either through an adjustable power resistor (R in Fig. 3-a) or through
FIG. 1—SIMILAR TUNING METHODS were used for both single-tube and crystal receivers.

FIG. 2—INITIALLY, A CRYSTAL receiver’s multistage audio amplifier was transformer coupled.

an inductor (L in Fig. 3b). In both instances, capacitor C effectively isolates interstage transformer T from the DC plate voltage current.

Neither circuit became popular because resistor R required a larger-than-usual battery voltage, while inductor L was frequency-selective.

One of the first attempts to eliminate the interstage transformer completely was the impedance-coupling circuit shown in Fig. 4. Unlike the interstage transformer, it did not supply voltage step-up. Also, as with other attempts to use an inductor as the plate feed, coil L was frequency-selective.

Resistance coupling

The really big breakthrough in both performance and production cost was the resistance-coupled circuit shown in Fig. 5. It was inexpensive to build, had no inductors or transformers to saturate, and was not frequency-selective. Hence, it resulted in better sound quality. The disadvantage of resistance coupling was that the voltage drop across plate load resistor R necessitated a higher battery voltage to make up for the voltage drop.

The disadvantages of resistance, transformer, and impedance coupling were overcome in 1931 by the invention of the first practical direct-coupling system by E. H. Loftin and S. Y. White. As shown in Fig. 6, in the direct-coupled amplifier the plate of one stage was directly connected to the grid of the following stage. Its advantages were its low manufacturing cost, and the possibility of greater fidelity, because it contained no frequency-discriminating components. Early units had a flat frequency-response capability of 30 Hz to 7,000 Hz, with the possibility of extending the upper limit to 10,000 Hz, which was an upper limit for those days.

Electron flow

Prior to the invention of the diode and
triode tubes, the movement of an electron current was thought to be from positive to negative, a concept based on the ideas of Benjamin Franklin, who, having a 50-50 chance of guessing right, guessed wrong. Current flow in a vacuum tube clearly showed that current moved from a negative filament (cathode) to a plate (anode) that carried a positive charge. Although correct, the electron concept confused many experimenters, technicians, and engineers who had adopted the positive-to-negative concept and were most unwilling to give it up. Consequently, the electric and electronic industries compromised, and positive-to-negative current flow was called conventional current flow; while negative-to-positive current flow was called electron flow. For example, the arrows shown in Fig. 6, an original drawing of the Lottin-White direct-coupled amplifier, indicates conventional current flow, were held together with string or a rubber band (Fig. 7-b). The value of the capacitance thus achieved was unknown, but it didn’t matter because it was usually used for a non-critical receiver circuit.

Headphones and speakers

As shown in Fig. 8, headphones evolved from the telephone industry; in fact, the first earphone was the “roaring twenties” standard telephone receiver, and it’s spin-off whistle receiver (Fig. 8-a)—which was specifically designed for use with a radio. Although both types worked with radio receivers, they had two problems: (A) they were fatiguing because they had to be supported by hand, as shown by the complete radio in Fig. 8-b; (B) they had a very low impedance of approximately 75 ohms. Eventually, their impedance was increased to about 100 ohms, and finally to about 1000-3000 ohms. Fatigue was mitigated when the headband shown in Fig. 8-c was invented. It allowed the user to literally “wear” the receiver. When one or two receivers were mounted in a headband the entire assembly was called a “headphone,” “headphones,” or “headset.”

FIG. 8—THE DEVELOPMENT OF HEADPHONES: It started with a conventional telephone receiver, and ended in a headband.

Capacitors

In the early days of radio, to avoid the relatively high cost of capacitors, many experimenters and hobbyists “rolled their own” using the tinfoil from a pack of cigarettes and small sheets of paper. As shown in Fig. 7-a, alternate layers of foil formed the plates of the capacitor, whereas the paper was used for the dielectric. The interleaved sheets of tinfoil and paper
This month, we add the first of the R-E Robot's sensors—an electronic eye.

Part 12 AT THIS POINT, OUR robot is an efficient tractor unit, moderately intelligent, with plenty of pulling power. He can carry items from place to place, and can understand complex instructions. However, he is also as blind as a bat. To make the unit as useful as possible, we must give it a way to see.

You can fully appreciate the severity of the problem by imagining the following example: You are at the end of a hallway. Several doors can be chosen. Look carefully: close your eyes and, without touching or peeking, walk forward and turn into a doorway.

That is what we were asking the robot to do when we programmed the MAILBOT example in Part 9 of this series (Radio-Electronics, August 1987). Instructions like “Go forward a few steps, turn right, and then go forward again 10 steps” seem clear enough on paper, but what if you did not turn exactly 90 degrees? What if your steps were short for some reason? Worst of all, what if you lost your bearing and had to start over, all without peeking?

To make it easier for the robot to get around, we will give it the ability to detect and track light sources. That capability will allow the robot to follow a light beam or an optical stripe on the floor.

Ideally, we also would like to provide the robot with the capacity to determine the distance to a light source and to triangulate its position using several light sources. Unfortunately, the software required to perform those last two tasks is quite formidable, and at this time is far from being fully developed. For now, we will discuss the problems involved in giving the robot those capabilities, and the hardware needed to input the data that future software will require.

The robot eye will eventually be mounted on a rotating platform, or “head.” The head will contain the electronics for a number of the robot’s sensors and will be discussed in more detail in the next installment of this series. The head will move the eye through a few degrees, mapping light intensities at several points. The data collected in that way will be used by all of our navigation schemes.

Navigation schemes

The navigation scheme that we will implement now permits the robot to track a light beam. The robot will rotate the eye until a light-intensity maximum is determined. The robot will then angle toward that maximum.

For the future, position-finding is merely an extension of that navigation technique. By mapping the maxima of several known light sources, the robot can determine its position fairly accurately using triangulation.

For range-finding, we will need to add a second eye to the head. Then, the robot can use parallax to determine the distance between it and an unknown light source. The parallax principal, in which the difference in viewing angle at two points that are equidistant from the third are used to determine the distance to that point, is what provides humans with depth perception; the two equidistant viewing points are our two eyes. See Fig. 1. Note that the technique is only good at relatively close ranges. But remember that even humans lose their depth perception at distances beyond 30 feet.

The human eye

In terms of design, the human eye is difficult to match. The spectral response is not too wide, ranging from 360 to 780 nanometers, but color is of secondary importance to other factors. The eye is capable of resolving details as small as one minute of arc (1/360 of a degree). And most importantly, the eye can operate in a very wide range of light intensities, ranging from starlight to bright sunlight. If those light levels are quantized, you will find that the range is on the order of 180 dB, or a billion to one.
The robot eye

Our design goal was to make the robot’s eye useful over as wide a range of light conditions as possible. While it is unlikely that you will need to have the robot navigate by starlight, giving the robot low-light capabilities will increase its distance range. Since light follows the inverse square law, that is, the illumination is inversely proportional to the square of the distance, light levels fall rapidly as you move away from the source. At the same time, operation at conventional ambient light levels must be possible, and the robot should be able to deal with most common light sources.

Therefore, we feel that the minimum acceptable range should span at least 4 orders of magnitude (10,000:1 or 80 dB); that corresponds (using the inverse square law) to tracking an ideal light source over a 100:1 distance range. The maximum possible dynamic range using readily available components is about 120 dB. That corresponds to a light range of 1,000,000:1, or a distance range of 1000:1.

We choose .01 lux as the lowest light level that we wish the sensor to respond to. A lux is the amount of light falling on one square meter from a candle located one meter away. That is at the extreme low end of most detectors so to improve performance we will enhance the unit’s light gathering power with a Fresnel lens, focusing a 4-square-inch Fresnel lens will amplify the light level by a factor of 100. If we were to focus such a lens on the sensor, a light level of .01 lux at the lens will result in a light level of 1 lux at the sensor. Most detectors can work with such a light level.

As we mentioned earlier, future range finding requires that the robot be equipped with two eyes. Those will be mounted 10 inches apart on the head. If the robot can locate a light source to within 5 degrees of arc, that spacing will allow range finding at distances of up to 30 feet.

Selecting a sensor

Many different sensors for measuring illumination are available. Phototransistors, photodiodes, and PIN photodiodes are all common and well understood.

If our prime design criteria is dynamic range, then we must choose the device with the largest sensitivity range. The key parameter in determining a unit’s sensitivity is its dark current; that is the leakage current that flows when no light reaches the device. In general, photodiodes have the greatest ratio between dark current and high-illumination output. One, the Siemens BPW32 has a rated dark current of less than 10 pA and a high level output at 10,000 lux of 100 µA. Those figures represent a dynamic range of 140 dB. Typical output currents of that photodiode for various light levels are shown in Table 1.

Note that the photodiode’s output current becomes non-linear above 1,000 lux and below .001 lux. Also, remember that linearity can also be affected by the supporting circuitry. If you can not locate the

![FIG.2-THE ROBOT'S EYE. The photodiode, D4, can be configured to source or sink current by IC2.](image-url)

TABLE 1

<table>
<thead>
<tr>
<th>Light Level</th>
<th>Photodiode Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000 lux</td>
<td>100 µA</td>
</tr>
<tr>
<td>1,000 lux</td>
<td>10 µA</td>
</tr>
<tr>
<td>100 lux</td>
<td>1 µA</td>
</tr>
<tr>
<td>10 lux</td>
<td>100 nA</td>
</tr>
<tr>
<td>1 lux</td>
<td>1 nA</td>
</tr>
<tr>
<td>0.1 lux</td>
<td>100 pA</td>
</tr>
<tr>
<td>0.01 lux</td>
<td>10 pA</td>
</tr>
<tr>
<td>0.001 lux</td>
<td>1 pA</td>
</tr>
</tbody>
</table>

PARTS LIST

All resistors are 1/4-watt, 5%-
R1—390 ohms
R2—R4—10,000 ohms

Capacitors
C1, C2, C4—100 pF, ceramic disc
C3, C5—0.1 µF, ceramic disc

Semiconductors
IC1—LT1022 op amp (Linear Technology)
IC2—LTC1043 IC switch (Linear Technology)
D1, D6—1N754 Zener diode
D2, D3, D5—1N4148 diode
D4—BPW32 photodiode (Siemens)

Other components
J1—male header

Miscellaneous: Fresnel lens, PC board, wire, solder, etc.

The 2.3-inch Fresnel lens can be ordered for $10.00 each, plus $6 postage and handling, form Edmund Scientific Company, 101 East Gloucester Pike, Barrington, N.J. 08007, (609) 573-6250. The part number is E32.589. NJ residents must add appropriate sales tax.

A bare printed-circuit board for the eye can be obtained from Vesta Technology Inc., 7100 W. 44th St., Wheatridge, CO 80033, (303) 422-8088, for $19 each. An assembled and tested eye PC board, Fresnel lens not included, is available for $59. CO residents must add appropriate sales tax.

Siemens component, a suitable substitute is NEC’s PH201A photodiode.

The circuit

A schematic diagram of the eye circuit is shown in Fig. 2. The BPW32 photodiode, D4, provides an output current that is proportional to the illumination level. That small current will span a range of 10 million to one. If we were to convert the current into a voltage and the voltage into a binary number with an analog-to-digital converter, we would need a 23-bit unit! For example, if the full-scale voltage was 5, then the least significant bit would be 5 microvolts. Such a unit, if you could find one, would cost thousands of dollars.

Instead, we will convert our current into a frequency and use the RPC (Robotic Personal Computer) to determine the period of the frequency. That will give us the dynamic range that we need, since a 140 dB range can be accommodated using a frequency band of 0.1 Hz to 1 MHz. The circuit will output approximately 200 kHz when held 3 inches away from a 60-watt light bulb in a reflective lamp. The circuit will output 0.5 Hz when illuminated by the trace of an oscilloscope 2 feet away.

The frequency range used is critical. The eye must rotate a small amount, take a reading and repeat the process continuously.

Continued on page 64
One of the most difficult tasks in building any construction project featured in Radio-Electronics is making the PC board using just the foil pattern provided with the article. Well, we're doing something about it.

We've moved all the foil patterns to this new section where they're printed by themselves, full sized, with nothing on the back side of the page. What that means for you is that the printed page can be used directly to produce PC boards!

Note: The patterns provided can be used directly only for direct positive photoresist methods.

In order to produce a board directly from the magazine page, remove the page and carefully inspect it under a strong light and or on a light table. Look for breaks in the traces, bridges between traces, and in general, all the kinds of things you look for in the final etched board. You can clean up the published artwork the same way you clean up your own artwork. Drafting tape and graphic aids can fix incomplete traces and doughnuts, and you can use a hobby knife to get rid of bridges and dirt.

An optional step, once you're satisfied that the artwork is clean, is to take a little bit of mineral oil and carefully wipe it across the back of the artwork. That helps make the paper translucent. Don't get any on the front side of the paper (the side with the pattern) because you'll contaminate the sensitized surface of the copper blank. After the oil has "dried" a bit—patting with a paper towel will help speed up the process—place the pattern front side down on the sensitized copper blank, and make the exposure. You'll probably have to use a longer exposure time than you are used to.

We can't tell you exactly how long an exposure time you will need as it depends on any factors but, as a starting point, figure that there's a 50 percent increase in exposure time over lithographic film. But you'll have to experiment to find the best method for you. And once you find it, stick with it.

Finally, we would like to hear how you make out using our method. Write and tell us of your successes, and failures, and what techniques work best for you. Address your letters to:

Radio-Electronics
Department PCB
500-B Bi-County Blvd.
Farmingdale, NY 11735
BUILD THE MACROSCRUBBER using this board.

THE ROBOT EYE'S PC board is shown here. Remember that the components mount on the foil side.

LIGHT UP THE HOLIDAYS with the electronic Xmas tree. The PC board for that project is shown here.
The members of the Electronic Industries Association Consumer Electronics Group (EIA/CEG) through the Product Services Committee, has marketed the illustrated parts kit for vocational schools, educators and technicians. This is the same material used in the Digital and Microprocessor Course during EIA's summer workshop programs. These workshops are organized by the Consumer Electronics Group and co-sponsored by national service organizations and state departments of vocational education.

Parts and components are contained in a lightweight tool box with individual compartments. It includes a breadboard, power supply, pre-dressed jumpers, resistors, capacitors, and integrated circuits to perform all digital exercises 1 through 25 of the Digital/Microprocessor course book listed in the table of contents. Some parts have been included for the microprocessor section but other components will have to be acquired (as listed in the Introduction to Exercises 26–31).

Individual and classroom size quantities are available at the following cost: quantities 1–9, $69.95 each, quantities 10–19, $67.95 each, and for quantities 20 or more, $64.95 each (cost includes shipping and handling). The kits will also include the Digital and Microprocessor Course book. Additional books are available at the cost of $2.00 per copy.

PLEASE COMPLETE ORDER FORM FOR PARTS KITS AND BOOKS

Send to: EIA/CEG, Department PS, P.O. Box 19100, Washington, D.C. 20036

<table>
<thead>
<tr>
<th>Parts Kit</th>
<th>Quantity</th>
<th>Amount</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–9</td>
<td></td>
<td>$69.95 each</td>
<td></td>
</tr>
<tr>
<td>10–19</td>
<td></td>
<td>$67.95 each</td>
<td></td>
</tr>
<tr>
<td>20 or more</td>
<td></td>
<td>$64.95 each</td>
<td></td>
</tr>
<tr>
<td>Additional Digital/Microprocessor Course Books</td>
<td></td>
<td>$2.00 per copy</td>
<td></td>
</tr>
</tbody>
</table>

Total Amount Enclosed

Name
Title
Firm
Address
City
State Zip

ORDER FORM
What’s next?

BY THE MOST ACCURATE COUNT, THE
home-dish industry was produc-
ing, selling, and installing as many
as 70,000 home-dish systems per
month in the fall of 1985. Now, the
most accurate figures suggest that
fewer than 12,000 home-dish sys-
tems are being sold per month at
the present time.

Those numbers mean different
things to different groups. The ca-
ble-television industry sees a
"thriving low-power satellite
broadcasting business". The
home-satellite industry, the peo-
ple who manufacture, distribute,
and install such systems “sees a
business on the verge of col-
lapse”. Both of the preceding
quotes appeared in the July 20,
1987 issue of Broadcasting Maga-
zine, which contained a full report
on the status of the home-dish in-
dustry.

Death of an industry

Which view is correct? One only
has to peruse the few remaining
trade publications serving the
TVRO market, or to attend an elec-
tronic flea market to witness the
depth of the industry’s doldrums.
Complete home systems with 10-
foot dishes are wholesaling for un-
der $400; individual parts, such as
70° Kelvin LNB’s are selling for as
little as $40. Much of the merchan-
dise warehoused in the spring of
1986 for the anticipated 1986 is still
there.

Several pieces of legislation have been introduced to provide
some form of assistance to an ail-
ing industry and a stunted com-
munications medium. Hearings in
support of that legislation were
held, but the legislation was never
enacted. And even if it were, at
best it would have made it slightly
more difficult for satellite pro-
grammers and cable-television-
system operators to maintain their
present monopolistic control over
programming access.

Control over programming—
how it is distributed to home-dish
owners and what it costs per ser-
vice per month—is the central is-
sue. Some say it is the only issue.
Cable programmers and cable op-
erators have married one another
at the corporate level. TCI, the
largest cable-system owner in the
world, has bought substantial
stock in services such as WTBS/ CNN and others. Virtually every
programmer making a profit has
some or all of its stock owned by
its customers, the cable system
owners.

Home-dish proponents believe
that such cross ownership has
worked against the development
of a “competitive delivery sys-
tem”. As David Woltord, a pub-
lisher in the home-dish industry
told Congress: “Programmers
such as HBO and Showtime/
Viacom derive the vast majority of
their revenue from cable oper-
ators. Are they really going to un-
dercut the prices of their primary
customers? The market is moving
into a dangerous situation. If pre-
sent conditions are allowed to con-
tinue, satellite TV will (end up
being) controlled by its one and
only natural competitor, cable TV.”

Programmers such as HBO and
Showtime have refused to date to
allow anyone but themselves or
their cable affiliates to market pro-
gramming to home-dish owners.
Cable operators are further con-
trolled by specified geographical
territories outside of which they
cannot sell to home-dish owners.
That has resulted in a form of price
control because there are no com-
petitive forces at work. If you live
within a cable franchise area and
want HBO, you must buy from the
local-cable HBO affiliate. If you
live outside a cable franchise area,
you must buy from HBO directly.

Cable trade-association head
James Mooney told Congress:
“Cable programming is readily
available to home-dish owners at
prices less than those paid by the
average cable subscriber for the
same service.”

Others, such as Bob Phillips of
the National Rural Telecom-
communications Corporation testi-
fied that his firm has not been able
to buy cable programming for resale
to home-dish owners at all, or in
the best case they are paying 500%
to 700% more per home than cable
systems are paying for the identi-
cal programming service.

Stephen Shulte of Viacom/
Showtime has his own pet theory
as to why the home dish industry
suddenly dried up and quit func-
tioning. He told Congress: “The
infrastructure of the (TVRO) indus-
try grew up during a time when the
basic selling argument (to would-
be consumers) was errone-
ous...that cable programming was
available at no charge (with a dish).
When services started to scramble
(they programming), the sales
were simply no longer great
enough to support the industry
that had been created.”

BOB COOPER, Jr.
SATELLITE-TV EDITOR
Charles Rule, acting assistant attorney general for the antitrust division of the Department of Justice seemed to agree with that assessment when he told Congress “(our) investigation has not uncovered the existence of any illegal concerted activity among cable operators (or programmers).”

The next generation
Is this to be the end of direct broadcasting satellites for North America, an industry that did too well, too fast, and then was ill-equipped to face its adversaries? Probably not, but a significant period of readjustment is certainly ahead. Even the most optimistic cable-system operators admit that when the cable-television industry has completed the “wiring of America” between ten million and twenty million homes will still be without the magical cable interface. Would those homes be sufficient to support a direct-to-home satellite industry?

The answer of course is yes. But not using the present C-band satellites or frequencies. All planning for the future centers on the use of the 11–12 GHz band, generally called the K or Ku band. Several large firms, such as Comsat, have planned satellites to operate in those frequency bands. Most of those firms have suspended work on the project. Hubbard Broadcasting, a Minnesota-based television and radio station owner has plans to make use of that band. Hughes, the same people who pushed C-band satellite technology to new limits, plans a 1991 launch of a pair of satellites for Ku band as well; those satellites are intended specifically for direct-to-home broadcasting. RCA(GE)–Americom, in conjunction with HBO/Time-Life, also plans to launch Ku-band satellites sometime between 1989 and 1990.

But none of those would-be satellite operators has yet been successful in attracting programming to their satellites. Americom might have a slight advantage here; they have an investment in programming through their association with HBO and could at least fill up some channels from their own stock. But Hubbard and Hughes are offering some attractive financial deals to cable programmers such as Showtime, Turner, or ESPN.

For now, the route to the next generation of home-satellite broadcasting is not clearly marked. Nor is there any certainty that it will happen unless programmers such as Showtime feel comfortable that an offering on the Ku band will not in any way anger their existing cable-TV clients. HBO is even now trying to head off future problems by offering their present cable customers exclusive rights to the sale of Ku-band programming within their cable-franchise territories. That of course translates to monopolistic control of programming rates and terms; the very thing that has stilled C-band sales and growth.

R-E

IF YOU LIVE IN THE CARIBBEAN, CENTRAL AMERICA, NORTHERN S. AMERICA or FLORIDA....

WIN A PARACLIPSE HOME DISH SYSTEM!

Bob Cooper's CARIBBEAN ELECTRONICS MAGAZINE is giving away 12 complete Paraclipse 12' home dish systems between September 1, 1987 and August 31, 1988. FREE. No obligation of any kind! If you are an amateur radio operator in the 'qualifying area' (see map), simply send us your Ham radio QSL card. If you are in electronics but not a licensed amateur, send your business card. You may enter once per month for each of the 12 months but no more than once per month. The home dish system winners are announced in 'CEM' monthly starting with the November 1987 issue.

PLUS - when we receive your QSL card or business card, we will send you a FREE sample copy of the most exciting electronics magazine in the Caribbean; Caribbean Electronics. CEM covers every aspect of communications and broadcasting, just for those who live in the Caribbean and countries surrounding the Caribbean. And we do it in English and Spanish with special Spanish summaries for all feature articles.

OUR twelve FREE home dish systems feature the highly acclaimed Paraclipse 12 foot dish with tuned feeds, state-of-the-art solid state actuator/controller, and the top-rated by test AVCOM 2 series receiver system with remote control. This is the best, quality system for home or commercial use in the Caribbean. Find out how our CEM Lab rates everything from power line filters to VCRs, shortwave radios to home computers for Caribbean use in Caribbean Electronics Magazine. Send us your QSL card or business card today!

CARIBBEAN ELECTRONICS MAGAZINE
P.O. Box 100858, Ft. Lauderdale, FL 33310 USA
Telephone: 305/733-9955; in Florida 800-367-8150

DECEMBER 1987
117 PRACTICAL IC PROJECTS BUILD YOU CAN

2645T—117 PRACTICAL IC PROJECTS YOU CAN BUILD...... $10.95. Dozens of fully-tested, ready-to-build circuits you can put together from readily-available, low-cost ICs! There are a total of 117 IC circuits ranging from an audio mixer and a signal splitter to a tape-deck amplifier and a top-octave generator organ! From TAB Books. To order your copy send $10.95 plus $2.75 shipping to Electronic Technology Today Inc., P.O. Box 240, Massapequa Park, NY 11762-0240.

LINEAR IC EQUIVALENTS & PIN CONNECTIONS

Linear IC Equivalents and Pin Connections

BP141—Shows equivalents & pin connections of a popular user-oriented selection of European, American and Japanese linear IC's 320 pages. 8 x 10 inches. $12.50 Plus $2.75 shipping. ELECTRONIC TECHNOLOGY TODAY INC., PO Box 240, Massapequa Park, New York 11762-0240.

EARLY RADIO

continued from page 66

There were two types of headphones used in the early 20's. One type had an iron armature that was mechanically connected to a mica or composition diaphragm. In the other, an electromagnet was used to attract an iron diaphragm that was supported around its circumference. An unusual design, called a "Baldwin receiver," used a fiber diaphragm; a later model had a diaphragm made of aluminum. Compared to speakers that were used during the early 1920’s, a Baldwin-type headphone rendered superior sound.

The earliest speaker was a headphone put into a resonant chamber such as a glass bowl or a wood box. Subsequently, an enterprising experimenter developed a horn with tubular extension arms to accommodate a headset (Fig. 9).

Commercial horn speakers were soon manufactured. Some were little more than oversized headphone units attached to curved metal or paper-mache funnels (or even to brass automobile horns). Others, like the Magnavox (first to introduce the voice coil) with a 6-volt, 1-ampere field coil, and the Western Electric, produced very good sound.

Later in the 20's cones came into use. Most of the early ones were "balanced-armature" types like a Baldwin head- phone. A stylius from the armature connected to the center of the cone.

These were superseded by the "dynamic speaker," still in use. A voice coil in a strong magnetic field is connected across a low-impedance winding on the receiver's output transformer. The coil and the cone moves in and out of the field in accordance with the signal.

FIG. 9—ONE OF THE EARLIES TATTEMPTS to get more volume was a small horn that fitted over an earphone.
EVER SINCE CPA/M BEGAN TO DECLINE, people have been saying that the days of the Z80 were numbered—don't you believe it. It's true that you won't see many new computer designs done around a Z80, but it's also true that the Z80 has too much muscle to wind up on the silicon scrap heap. It's still one of the microprocessors of choice to use as a dedicated controller.

Building our dynamic-RAM system around a Z80 makes sense because the chip's built-in features relieve us of the burden of implementing much of the design in external hardware. We'll still need glue to put all the pieces together, but not anywhere as much if we were building the whole circuit from gates alone.

There are four Z80 control signals that are critically important in the construction of our circuit. Understanding what they are, how they work, and what their timing relationships are, is the first step in the design. The four signals, all of which are active low, are:
- Memory Request (MREQ), pin 19
- Read (RD), pin 21
- Write (WR), pin 22
- Refresh (RFSH), pin 28

Let's discuss them one at a time.

MREQ is a control signal that is active whenever the Z80 has been instructed to perform an operation that involves external memory. As soon as the Z80 has an address ready to put out on the bus it brings this line low. That happens for all memory operations: read, write, and refresh.

RD goes low when the Z80 wants data from the outside world, which can be from either a memory location or an I/O port. Therefore a request for a read from memory must be sensed by watching MREQ as well as RD.

WR is the opposite of RD. When it goes low, the Z80 has data that it wants to send to either memory or an I/O device. Just as with RD, the destination is determined by watching the MREQ line.

RFSH is the signal that keeps the Z80 popular. When it goes low it signals that the microprocessor has incremented its internal refresh counter and has put the new refresh address on the lower seven bits of the address bus (A0-A6). By combining RFSH signal with MREQ, you can determine exactly when a refresh operation must take place in your system.

All memory operations require two Z80 control signals, so it's important that we have a good understanding of the timing relationships between them. And any discussion of timing must start with a look at the basic heartbeat of the Z80: the instruction cycle.

M and T cycles

Figure 1 is a representation of the two fundamental parts of all Z80 instruction cycles: the M (machine) cycle, and the T (time, or clock) cycle. Every instruction that
the Z80 executes requires from one to six machine cycles, M1–M6. During M1 the Z80 fetches the op-code of the next instruction. If the op-code is more than one byte long there will be more than one M1 cycle. In addition, it’s during M1 that the Z80 handles refresh addressing. By the way, as shown in the figure, M2 and M3 are used for reads and writes.

Figure 2 is an expanded look at the M1 cycle. During T1 and T2, the Z80 places the contents of the program counter on the address bus to get the next op-code. The microprocessor uses the next two T cycles, T3 and T4, to decode the op-code; it doesn’t need the bus during that time. So, during T3 and T4, the address bus is divided in half to provide two kinds of data. The upper eight bits, A7–A15, have the contents of the index register, and the lower seven bits, A0–A6, have the contents of the R, or refresh, register.

When the refresh address stabilizes, both MREQ and RS11 go low. That combination of signals is therefore a guaranteed-stable refresh address that can be used to systematically refresh dynamic memory.

In case you missed it, what the Z80 is doing for us is to eliminate the need for the external counters and logical glue that used to be necessary to ensure that dynamic memory would be refreshed at the right time and in the right order.

Now that you understand how much work the Z80 is ready to do for us, let’s see what we have to do to take advantage of it.

Putting it to work

In using dynamic RAM with a Z80, the most important design task is to ensure that the memory is fast enough to work in the amount of time available for refresh. In our circuit we’ll use a Z80B and run it at a maximum speed of 2.5 MHz, which translates into 400 nanoseconds (1/(2.5 x 10^6)) per T cycle, or 800 ns to complete one refresh. In fact, however, we can’t count on having the full 800 nanoseconds. Some time is eaten by delays internal to the Z80; more is needed to allow for propagation delays in our support circuitry; and all dynamic RAM needs a refresh “precharge” time. Keeping that in mind, let’s see how much of the 800 nanoseconds we actually have for refresh.

Even though Fig. 2 is only a representation of actual timing, it’s clear that there are delays associated with the memory-control signals generated by the Z80. It takes about three quarters of a T cycle for the Z80 to put the program counter on the address bus and then guarantee that the memory control signals (MREQ and RS11) are stable. And after the op-code appears on the data bus, we also must allow for settling time on the data bus.

Assuming the maximum clock speed of 2.5 MHz, we can expect to see the following timing for the whole op-code fetch cycle, (T1–T2):

\[
T(\text{OP-CODE}) = (T1 + T2) - T(\text{ADDRESS/SIGNAL}) - T(\text{DATA}) \\
= 800 - 300 - 50 \\
= 450 \text{ nanoseconds}
\]

The amount of time needed for a memory read is also an important consideration, but it is usually longer than the time needed for an op-code fetch. For our 2.5 MHz system, a memory read requires about 650 nanoseconds. Not only is that longer than an op-code fetch, but both numbers are well within the bounds of the modern 150-nanosecond (and faster) RAM.

The logic that we’ll need to make our system work also has built-in delays. Each of the buffers and gates that comprise the circuit contributes to the total amount of time the circuit needs to operate. TTL and fast CMOS parts have very small propagation delays, but if you add enough of them together you can wind up with a circuit that is too slow. A worst-case analysis might look like this:

- 40 ns for memory buffer delays
- 40 ns for data buffer delays
- 30 ns for gating delays
- 40 ns for Z80 buffer delays

That’s a total circuit-propagation delay of 150 ns.

Those figures are not exact, but if you look through a TTL or CMOS data book, you’ll see that I’ve over-estimated the maximum possible times by a large margin.

Now that we have all the numbers worked out, we also have the maximum access time for the RAM
Plug a Friend into Radio-Electronics this Christmas ... and Save $12!

This Christmas give an electrifying gift ... plug a friend into Radio-Electronics and brighten his whole new year! Whether electronics is his livelihood or his hobby, your gift will sharpen his focus and illuminate the whole spectrum of electronics throughout the coming year.

Radio-Electronics will keep him informed and up-to-date with new ideas and innovations in all areas of electronic technology ... computers, video, radio, stereo, solid state technology, satellite TV, industrial and medical electronics, communications, robotics, and much, much more.

He'll get complete plans and printed circuit patterns for building valuable test equipment and electronic devices for home and car — practical money-savers like these ... a TV signal descrambler ... a video test generator ... an auto exhaust analyzer ... a clockboard for his PC ... a radio commercial zapper ... a solid state barometer ... a working robot ... and many others!

PLUS ... equipment repair and troubleshooting ... circuit design ... new product news and buyer's guides ... service clinics ... equipment test reports ... a special “Computer Digest” section ... regular columns on video, stereo, radio, circuits, solid state, satellite TV and robotics ... and lots more exciting features and articles.

SAVE $12 ... OR EVEN $24 ... For each gift of Radio-Electronics you give this Christmas, you save a full $12.00 off the newsstand price. And as an R-E gift donor, you're entitled to start or extend your own subscription at the same Special Holiday Gift Rate — you save an additional $12.00!

No need to send money ... if you prefer, we'll hold the bill till January, 1988. But you must rush the attached Gift Certificate to us to allow time to process your order and send a handsome gift announcement card, signed with your name, in time for Christmas.

So do it now ... take just a moment to fill in the names of a friend or two and mail the Gift Certificate to us in its attached, postage-paid reply envelope. That’s all it takes to plug your friends into a whole year of exciting projects and new ideas in Radio-Electronics!
we’ll need. You don’t need a lot of equipment to see that even if we used some slow 250-nanosecond RAM, the total circuit delay time would only be 400 (50 plus 250) ns. Most mail-order houses don’t even stock 250-ns parts. The bottom line is that by using 150-ns RAM we can eliminate all the potential problems that would be caused by timing restrictions.

System design
There are a couple of things to keep in mind when using a Z80 to control a RAM system. All of them come from one general principle: If the Z80 stops running, all our memory data will be history.

That principle is of critical importance and it’s also really easy to forget. As long as the Z80 is executing instructions it will continue putting out new refresh addresses during each M1 cycle. However, anything that puts the Z80 to sleep will also trash the memory. Fortunately, there are only a few circumstances in which that can happen:
- A reset pulse longer than 1 millisecond.
- A wait state longer than 1 millisecond.
- A DMA operation longer than 1 millisecond.

In our system, all memory access will be done through the Z80, we don’t have to worry about the last two on the list. DMA simply won’t be used in our system; any external request to store or retrieve data will be done by loading latches and then asking the Z80 to perform a read or a write. Similarly, we simply don’t have any wait states.

Any slow I/O device using our memory system will talk to buffers and latches, not directly to memory. Some memory systems (like that of the IBM PC) must place wait states into every memory request because there isn’t enough time for the "precharge time" required by the dynamic RAM. As we’ve seen from the mathematical analysis above, we surely don’t have that problem.

Next month we’ll start building the circuit. If you haven’t done so already, you should get good data sheets on the Z80 and dynamic RAM.

CIRCLE 52 ON FREE INFORMATION CARD

SIMPLY SNAP THE WAT-50 MINIATURE FM TRANSMITTER on top of a 9V battery and hear every sound in an entire house up to 1 mile away! Adjustable from 70-130 MHZ. Use with any FM radio. Complete kit $29.95. $1.50 S&H. Free shipping on 2 or more! COD add $4. Call or send VISA, MC, MO. DECO INDUSTRIES, Box 607, Bedford Hills, NY 10507. (914) 232-3878.

CIRCLE 127 ON FREE INFORMATION CARD

CABLE TV CONVERTERS AND DESCRAMBLERS. Large selection of top quality merchandise. Low prices. Quantity discounts. We ship COD. Most orders are shipped within 24 hrs. Send $2.00 for catalog.

CABLETRONICS UNLIMITED, P.O. Box 188 ON FREE INFORMATION CARD

CALL NOW AND RESERVE YOUR SPACE

- 6 rate $745.00 per each insertion
- Reaches 245,824 readers.
- Fast reader service cycle.
- Short lead time for the placement of ads.

Call 516-293-3000 to reserve space. Ask for Arline Fishman. Limited number of pages available. Mail materials to: Computer Admart, RADIO-ELECTRONICS, 500-B Bi-County Blvd., Farmingdale, NY 11735.

CIRCLE 188 ON FREE INFORMATION CARD

PANASONIC CABLE CONVERTERS, Wholesale and Retail. Scientific Atlanta and Pioneer Cable Converters in stock. Panasonic model 130N 68 channel converter $79.95. Panasonic Amplified Videc Control Switch Model VCS-1 $59.95. Scientific Atlanta Brand new Model #4528 550MHZ 80 Channels Converter $89.95. Video Recorders (MACRO, CCYPGUARD, DIGITAL) ENHANCER $89.95. We ship to Puerto Rico, Caribbean countries, & So. Amer. Write or call BLUE STAR IND., 4712 AVE. N, Dept 105, Brooklyn, NY 11234. Phone (718) 258-9495.

CIRCLE 85 ON FREE INFORMATION CARD

PC-601 XT BUS EXTENDER BREADBOARD LAB connects to any IBM PC compatible computer and extends all PC electrical bus connections out to the PC-601 for easy circuit prototype connection, testing and troubleshooting. Includes large 3060 tie-point breadboard, 5V and 12Vdc AC line powered power supplies. Includes buffer card, 2' ribbon cable & 1-Year warranty. Price: $369.95 CHENESKO PRODUCTS, 21 Maple St., Centereach, NY 11720. 516-736-7977, Fax: 516-732-4650

CIRCLE 193 ON FREE INFORMATION CARD
Construction

The PC board can be made photographically using the foil pattern shown in PC Service, or the pattern can be used as a guide for applying liquid and tape resist by hand. Although the foil pattern itself is only 5 inches high, the PC board material must be 6½ inches high because the tree’s 1½ inch trunk is part of the PC board. Since etching large copper areas not only takes excessive time but also shortens the life of the etchant, we suggest you trim away the unwanted PC board material before you etch the board. Or, if you prefer to cut the tree to size after the pattern is etched, protect the foil of the large unused trunk area with resist and simply let the copper remain. As long as the trunk’s foil doesn’t come in contact with any of the circuit traces, it makes no difference whether there’s there or not.

If you want to decorate the front of the tree, do it before the holes for the components are drilled. For example, the author sprayed the component side with a bright automotive metallic-green paint. To prevent a defined line, a cardboard mask was held about ½ inch above the board. Then the edge of the PC board was “dusted” with a fine mist of white paint to simulate snow. After allowing for adequate drying, again using a cardboard mask, the trunk portion of the board was painted with a metallic-brown paint.

Allow the decorative paint to dry overnight before drilling the component mounting holes. Then install and solder the eight jumpers, the resistors, the IC’s, and the capacitors. Then insert all the LED’s, observing the polarities shown in Fig. 2. Position the LED’s so that they are raised approximately ½ inch off the board. To do that, turn the board over and lay it down on a flat surface, being careful not to allow any LED’s to fall out; that can be done easily by holding a piece of stiff cardboard against the LED’s while turning the board over. Keeping the board parallel to your work surface, solder one lead of each LED. Turn the board over and carefully look across the surface to see whether the LED’s are straight and at the same height. If not, correct as needed. When you’re satisfied with their alignment, solder the other lead of each LED.

Adding the base

Prepare the surfaces of the battery holders and the PC board for gluing by sanding the back of each holder and a ½ inch strip on both sides of the circuit board at the bottom of the trunk. Mix a small amount of a 5-minute epoxy and apply some to the ½-inch strip on both sides of the circuit board. With the battery polarities opposite each other, sandwich the PC board between the holders. Hold the assembly firmly on a flat surface that’s covered with a piece of wax paper. You will have a few minutes working time before the epoxy sets to ensure proper alignment. Make certain that the holders are even and that the circuit board is centered and upright between the holders. In about 5 minutes the glue will have set up sufficiently, and the tree can be lifted from the wax paper. Use acetone or flux remover to clean excess glue from the bottom of the battery holders. As with most other cleaners, be careful not to touch the painted surface.

After allowing at least one hour for the epoxy to cure, solder a jumper wire at one end of the battery holders, across the adjacent positive and negative terminal lugs. From the battery source ends, solder the positive and negative leads directly to the foil traces—as shown in Fig. 2. The LED’s will start to flash as soon as the batteries are installed. Any LED that fails is most likely defective, or installed with reversed polarity.

When you’re certain the project is working, you can add a final “dress up” by gluing a colorful felt material over foil traces on the back of the board.
resistance change, any difference in temperature between the strain gage and the other resistors could look like a legitimate output. But when four strain gages are used, and all are mounted on the spring element, they all see the same temperature variations. Then they will all increase or decrease by the same amount, thereby preserving the bridge balance and producing no output.

Putting it together

We are now in a position to say that the bridge output voltage is directly proportional to the force applied to the spring element. To find out what that relationship looks like, we have to do is combine equations 1, 3, and 9. Reviewing what we’ve learned so far:

\[e_0 = E(rR), \quad r = (GS)R, \quad S = kF \]

By substituting \(kF \) for \(S \) in the gage-factor equation and then substituting \((GS)R \) for \(r \) in the bridge equation we find that:

\[e_0 = (AEK)dF \]

(10)

You may recognize that as the equation of a straight line that passes through the origin. The applied force, \(F \), is the independent variable and the bridge output voltage, \(e_0 \), is the dependent variable. The slope of the line is represented by the three constants, \(E, G \), and \(K \). They are shown in parentheses because once the transducer has been assembled and supplied with a suitable operating voltage, they can be treated as a single constant. The slope of the line is also known as the sensitivity of the transducer. We must know the sensitivity of the transducer in order to determine the applied force. We can make that conversion simply by dividing the output voltage by the sensitivity.

Strain-gage transducers can be purchased with or without built in amplification. The transducer’s sensitivity is specified a little differently in each case. First of all, a transducer with built in electronics is usually provided with a fixed bridge supply voltage and enough gain to bring the maximum output up to some standard level. Adding that additional gain to equation 10 will result in:

\[e_0 = \frac{(AEK)dF}{r} \]

(11)

where \(A \) is the gain of the built-in amplifier. Since the gain and the bridge output voltage, as well as the gage factor and spring constant, are all fixed at the time of assembly, they can all be combined into one constant as the transducer sensitivity.

But, rather than specifying transducer sensitivity outright, transducer manufacturers often list the maximum value of the input force and the corresponding maximum output-voltage level. Both of those specifications are important in themselves, and the sensitivity is implied in the two numbers. Since equation 10 defines a line that passes through the origin, all we have to do is divide the full-scale output voltage by the full-scale input force to determine the sensitivity. A typical value for the maximum output might be 5 volts. If the maximum input force is 500 pounds, then the sensitivity of the transducer would be 5-volts/500 psi = 0.01 volts/psi.

If the transducer does not have built-in electronics, it is up to the user to provide the bridge supply voltage and whatever gain may be required. Since the output voltage is a linear function of both the applied force and the bridge supply voltage, sensitivity is then specified as output volts per bridge supply volts per input force. The maximum output voltage corresponding to a maximum input is listed for a bridge supply of one volt. That way we can determine what the maximum output voltage will be when some other value of supply voltage is used by simply multiplying the listed maximum by the supply voltage actually used.
ously throughout a full 360° rotation of the head. Under low-light conditions the output of the eye will be a low frequency. If the eye is operating at 1 Hz and light readings are taken every 5°, it will take over a minute to rotate the head. Obviously, then, the higher the frequency output of the eye, the better. We can always divide the frequency down to get it in a range that the RPC will be able to process effectively; however, we cannot multiply a low-frequency input to obtain information faster.

The active integrator used in the circuit is based on a simple, classic design. The photodiode's output current is used to charge a capacitor; the charging time, of course, is the integral of the input voltage. A novel twist, however, is that we will use the photodiode to both charge and discharge the capacitor. A newly developed IC from Linear Technology Corporation, the LTC1043, will be used to switch the photodiode from a current-sourcing to a current-sinking configuration. That IC is also used to convert the output of the integrator to a frequency signal for input to the robot's RPC.

The integrator is built around op-amp IC1, a Linear Technology LT1022. That op-amp is chosen for its high-speed operation, modest input-bias current, and low cost. Other operational amplifiers can be substituted, but be aware that any increased input-bias current will degrade the low-light performance, and decreased output slew-rate will degrade high-light-level performance.

Construction
The PC-board's design is somewhat different in that all of the components except J1 are mounted on the foil side of the board; the PC pattern can be found in PC Service, and the parts-placement diagram is shown in Fig. 3. The components are mounted in that way so that the PC board can be used as one side of a light-tight structure supporting the Fresnel lens as shown in Fig. 4. Placing the traces on the inside of the box protects them somewhat from contamination; over time, that contamination can build up on the circuitry and affect performance. The completed board can also be covered with a conformal coating (that's a coating that closely conforms to the surface that it is applied to) or potted to minimize any contamination problems.

The printed circuit board is 2.3 inches by 2.3 inches. Those are the same dimensions as the Fresnel lens available from the supplier mentioned in the Parts List. Use screws or standoffs to mount the lens 1.3 inches from the photodiode. That is the focal distance of the lens and will result in maximum light gathering power. To fine-focus the lens, attach an oscilloscope to the photodiode and, with the eye pointed towards a light source located several feet away, adjust the lens supports for maximum frequency output. If you find that your eye saturates too quickly, you can simply defocus the lens slightly to reduce the light level that reaches the photodiode.

After the lens has been focused, cut and mount the remaining sides of the box. Cardboard or a similar material is suitable for that; the author used Foamcore board, which is available at art supply stores. Hot-melt glue is a handy means of attaching the sides.

Paint the cardboard sides black to reduce the amount of light entering the eye except through the lens. That won't do much to stop infrared light, however. If interference due to infrared noise becomes a problem, laminate a layer of aluminum foil to the sides.

Next time
That completes the eye's construction. Now it's time to hook it up and test it. Unfortunately, at the moment there's nothing to hook it up to. That shortcoming will be taken care of next time when we show you the robot's rotating head.

a 0.001% -accurate frequency counter replaces the 10 to 20% errors associated with CRT-based frequency measurements.

Freedom from errors: The third difference may have even more impact than the first two. That's because an error in counting or multiplication—or forgetting to set the horizontal or vertical vernier to the correct position—may lead you down a completely wrong path.

What is worse is that you won't realize that you've made the error until some time later when you re-test a signal. A direct-reading digital readout prevents that because it gives accurate results independently of display settings.

Other problems can happen, too. The verniers can be out of their calibrated position; the signal can be off of the CRT; or the triggering circuits can even be out of sync. But none of those problems will affect the digital readings.

Digital readings make it easier to use waveform analysis for more and more of your troubleshooting. You can lock the waveform onto the CRT when you want to fully analyze all seven parameters of complex waveforms. When making general tests, however, you don't even need to adjust the CRT circuits. If DC voltage, peak-to-peak voltage, or frequency readings are enough to tell you whether the circuits are operating correctly. Such general testing can speed your circuit analysis even more. And, what service technician or engineer could possibly argue with that?
FLOPPY DISKS
Bits, bytes, and copy protection

68000 COMPUTING
The big moment

DEBUGGING TOOLS
Hands-on report
CONTENTS
DECEMBER 1987
Vol. 4 No. 12

91 ALL ABOUT FLOPPY DISKS
Focus on Apple and IBM formats.

95 CD CLASSROOM, PART 3
Install the microprocessor.

87 EDITOR'S WORKBENCH
HARDWARE: Periscope
SOFTWARE: TDebug Plus TurboSmith
Periscope

Debug is the standard MS DOS machine-language debugger. It is included with every copy of DOS, so every programmer, hacker, and hobbyist is familiar with it. Debug is useful for tracing and analyzing both software you write yourself, and software written by others. And with care you can even use it to create short programs without the aid of an external assembler.

However, you don't have to use the program for very long to realize that it has limitations, the most severe of which are limited breakpoint facilities, lack of windowing, and lack of support for the symbols generated by the assembler or compiler you use to generate object code.

Attempting to remedy those deficiencies, the Periscope Company sells a line of high-quality debugging tools with varying capabilities. The latest incarnation includes an expansion card that allows you to trap bus events in real time, thereby providing many of the capabilities of a development system for about 10% of the cost.

Actually, there are four models of Periscope, which differ mainly in the hardware included:
- Periscope I ($345) includes a memory board with 56K of write-protected memory and a break-out switch. The memory is installed outside of the 64K DOS limit (usually in segment D000 or E000), the Periscope software runs from that memory. Pressing the break-out switch at any time—even when the system is apparently locked-up—generates a hardware interrupt that activates the Periscope software.
- Periscope II ($175) includes just the break-out switch; the software runs from normal DOS memory so it may be overwritten by a run-away program. In that case you may not be able to regain control of a hung system. The break-out switch does not require an expansion slot; a small finger slips in an in-use slot between the expansion card and the connector's own finger
- Periscope II-X ($145) includes just the software and no hardware. You may use your own break-out switch or a keyboard hot-key to activate the software.
- Periscope III ($995) is a full-length expansion card (shown in Fig. 1) that includes 64K of write-protected memory, a break-out switch, and additional circuitry that continuously monitors the expansion bus and allows you to create breakpoints that are activated when memory locations, I/O ports, or microprocessor registers attain certain values. A small module must be inserted into your motherboard's 8087 (or 80287) socket.

FIG. 1—The Periscope board.

The software functions pretty much the same for all versions, given the hardware differences. In fact, the same software is included with all versions, during the installation you must specify your hardware configuration.

How to use it

The Periscope software comes in two parts: PS.EXE, the 50K debugger, and RUN.COM, a 7K program that loads and runs your software. First you run PS, which lies dormant in memory until you Run a program. When you do, the Periscope screen comes up, a register dump is displayed, and the first instruction is disassembled. You can then execute your program in various ways.

To ease the learning process, Periscope duplicates many Debug commands, so you can Trace a single instruction or a group thereof, or Go, starting at an address you specify with breakpoints at addresses you specify. In addition, you can Dump memory in the standard Debug format, Read and Write tiles and disk sectors, Unassemble, Examine, Search, and Fill memory, etc.

Normally, all output scrolls up the screen in standard fashion. However, you can open windows (see this month's cover for an example) that maintain information in fixed places on the screen, thereby making that information much easier to find and assimilate. Window size and color is easily specified, windows may contain registers, memory dumps (in several formats), disassembled instructions, stack dump, and a text file dump. Pressing Ctrl-F9 or Ctrl-F10 brings up default windows for mono and color windows, respectively.

The disassembly will contain the symbols and high-level instructions of your program, if an appropriate MAP file is available. (Most assemblers and linkers can generate such a file.) For example, the program shown in Fig. 2 is written in Turbo Pascal; a utility sold by Turbo Power created the required MAP file. Note that both Turbo source lines and the generated object code are shown. See this month’s software review for more information.

You can add your own labels to programs and save them separately. That capability is useful when disassembling third-party software.

Breakpoints and program tracing

You can set an almost bewildering variety of breakpoints with Periscope: BC sets a Code Breakpoint, activated when your program tries to execute code at the specified address. That address may be specified using the notation or symbolically. BI sets an Interrupt Breakpoint, activated when a software interrupt is executed. For example, to stop execution anytime a DOS function (interrupt 21h) was to be executed, you'd type

BI 21

You can also set breakpoints on source-
code line numbers (BL), memory addresses (BM), I/O port addresses (BP), registers (BR),
user-specified conditions (BU), memory contents (BW), and subroutine exit (BX).
Note that those are not hardware-activated breakpoints, so execution must be started
via the GT command, in which machine instructions are executed one at a time,
breakpoint settings are examined, and then control reverts either to Periscope or to the
user program, depending on whether the breakpoint conditions were met.
Each of the breakpoint commands may be cleared by entering the command with an
asterisk. In addition, breakpoints of a particular type may be enabled (by typing +), disabled (by typing -), or displayed (by typing ?).

Hardware control
All of the commands discussed thus far may be used on any version of Periscope.
Periscope III enables an additional set of breakpoint, trace, and display commands
that let you execute your program in real time until a specified condition is met. The
HB command, for example, sets a breakpoint when a specific bit pattern appears
on the data bus. Values of 0, 1, and X (don't care) are legal. You can also trap memory
and port reads or writes (or either) using the HM and HP commands, respectively.
Using the JD command you can qualify the breakpoint so that execution will con-
tinue until data within a specified range, and at the specified address is accessed.
Periscope III's hardware buffer has sufficient
memory to trap 8192 bus events. When defining a breakpoint, you can in-
struct the hardware to save the 8K events preceding the breakpoint, the 8K following
it, or 4K on either side. You can also set up a pass count, so that, for example, the break-
point will not be executed until the fifth time an 0Dh is output to port 6fh. The HC
(Hardware Control) command sets those modes

Operation on an AT is somewhat more complicated. For example, when setting a
bit breakpoint, you must specify the upper or lower half of the bus (or both). In addition,
you can force a hardware breakpoint to be executed when memory beyond the
one-megabyte area is accessed, again using the HC command.

Hardware buffer display
There are four commands for displaying the contents of the hardware buffer; a fifth
(DW) saves the buffer to disk (or memory) for future examination. The display com-
mands are as follows:
The HR command provides a full-screen display of the raw contents of the hardware
buffer. Each line contains an address, data, operation type (input, output, read, write,
DMA, instruction pre-fetch), plus an ad-

ress symbol, if available. A sequence number that corresponds to the 8K of
stored data is also displayed. You can scroll through the buffer and search for address,
data, and operation types.
HS displays a single line in the same for-
mat as the HR command.
HT and HU provide a full-screen display of the hardware buffer, but in a more dis-
gestible format. HT provides a disassembly (with labels) plus the operation types (in,
out, etc.), and HU provides just the dis-
assembly.

Other goodies
Naturally Periscope includes a build-in as-
sembler. The surprise is that you can use symbols for address references—those
from your program's MAP file, or those that
you've defined within Periscope (using ES).
There is also (optional) on-line help. Pressing ? brings up a list of commands; pressing + plus a command brings up a
brief summary of that command.
Periscope can use two monitors—one
for your program's output, and one for the Periscope debug display. When used with
an EGA and enhanced color display, the
Periscope display can optionally run in the
43-line mode.
The Periscope command line is fully edi-
table, and the program maintains a stack of
recently issued commands, which you can
scroll through and then edit and execute the
new line. Limited macro-type facility is available, and you can repeat the last com-
mand executed by pressing F4.
A word about the break-out switch: If you run the following piece of code under
Debug, the only way to regain control of your machine would be by resetting.

X:0100 JMP 0100

A break-out switch will, however, allow you
to escape from the loop.

Conclusions
With or without a break-out switch, Per-
scope impresses us as one of the finest pieces of development software we've ever
seen. It will be part of our tool kit for years to come. The hardware models aren't
cheap, but if you need one, you need it bad, so cost should be no object. If you're
on a tight budget, you can buy the software-only version and add your own break-
out switch.

Turbo Pascal Debuggers

Turbo Pascal, when it was introduced
some four years ago, laid to rest forever
the notion that serious software develop-
ment could only be done by means of the
traditional and time-consuming edit-com-
pile-link-test-repeat loop. Comprising less
than 40K of code, and widely available
at well under $100, Turbo Pascal also dis-
pelled the notion that a professional com-
piler had to be big or expensive. In
addition, it's available for a number of oper-
ating systems (CP/M, CP/M-86, and MS-
DOS)
The only thing missing from Turbo Pascal
was a symbotic source-level debugger of the type that companies like Periscope (see
this month's hardware review) have been
selling for some time.
That lack was addressed a few years ago when a program called TDebug appeared
on BBSes across the nation. Since then, the
product has gone commercial, the com-
mercial implementation, called T-De-
bugPlus, adds a host of new features and
several extremely useful utility programs.
TurboSmith, a latecomer, provides many
of the features of T-DebugPlus, as well as
several unique ones, including an inte-
grated machine-language debugger.

TurboSmith
The program is contained in a single 120K
file (TSM.EXE). In keeping with the Turbo
philosophy, TurboSmith costs $69. It's writ-
ten entirely in assembly language, and requires 512K of free RAM to run. In fact, TurboSmith really needs most of 640K to function properly. It wouldn't work at all on a 3Com network station, which gobbles about 200K of memory for device drivers.

You run TSM to get into Turbo, TSM loads Turbo and adds a new item, Trace, to Turbo's main menu. (See Fig. 3.) The editor and compiler functions work just as they do without TSM; the new Trace option compiles the current program and then brings up the debugging screen. (See Fig. 4.)

That screen can display as many as three windows simultaneously. One is the source-code window, which is always displayed. The other two may contain program variables, a hex/ASCII memory dump, or a machine-language control window.

You switch among windows cyclically by pressing the F10 key; pressing F2 inside any window brings you to a command line where you can initiate various operations. For example, by typing Q you return to the Turbo menu. A full range of line-editing functions is available at each command line.

Other non-command-line operations are initiated by Ctrl-key and Alt-key combinations, and the commands work as much alike as possible inside different windows. For example, pressing Alt-B inside either source or the machine-code window sets a breakpoint where the program will stop when it tries to execute that Pascal statement or that machine-language instruction, respectively.

In either program-control window, you can execute a single statement or instruction by pressing the + key by the numeric keypad. Or press Alt-X (Exe) to execute full-speed until a breakpoint is reached or Alt-S (Stop) is pressed. Another way of starting executing is to press Alt-A (Auto single-step). In that mode, a statement or instruction is executed, the screen is updated, and then the next program element is executed. Terminate Auto mode by pressing any key. Auto mode is not as useful as it might be because you can't control the speed at which statements are executed. You might want to slow execution in order to get the feel of how a loop was executing, for example.

The variables window displays the values of all global variables, Turbo's internal variables as well as your own. You can only view variables inside a nested procedure or function when the program is executing that procedure or function. Further, you can open as many as eight window levels, each of which overlays one of the three on-screen windows. You cycle among displayed windows by pressing F10, and among levels by pressing F9. You are free to change the values of variables within any window.

Version 2.1 (which was not available in time for this review) should automatically open variable windows in nested procedures and functions.

Screen swapping

Most programs produce some sort of screen output; TSM can deal with screen output in two ways. First, and best, you can use two monitors, one mono (IBM or Hercules) and one color (CGA or EGA). In that case, program output must go to the mono screen; the debugging windows come up on the color screen. Otherwise, on a single-monitor system, you can use screen swapping, wherein TSM maintains memory images of both the debugging data and the program's output data, swapping them at the press of a key.

One useful feature is that TSM will respond to a break-out switch. If your program gets locked in a loop and the keyboard won't respond, chances are the break-out switch will allow you to regain control and continue debugging. See this month's hardware review for more information or break-out switches.

TSM's machine-language debugger provides powerful breakpoint facilities. You
can set passpoints, breakpoints that will occur only when an instruction has been executed a number of times (ranging from 1 to 65535). In addition, you can tag an instruction or a group of instructions with a number ranging from 1 to 99; you can then set, clear, or disable breakpoints by tag number. The ML debugger also provides DEGUG-like facilities for searching, filling, moving, and disassembling memory, computing hex values, inputting and outputting values to I/O ports, etc. You also can append comments to disassembled instructions, but the comments may not be saved. A macro facility allows you to record sequences of keystrokes and assign them to any key. Macros may not be saved. TSM also will accept keystrokes from a file.

In the machine-code window, you can use a non-symbolic assembler to enter assembly-language instructions into your program. You can also patch memory in the memory-dump window, in either hex or ASCII notation. You can also force the memory-dump window to track the machine-code window, so that any time you execute a machine instruction that accesses memory, that area of memory will be displayed.

One deficiency is that you can't use TSM to debug graphics programs. Future versions of the program may correct that deficiency, but for now, you'll have to stick to text-mode debugging. Our only other complaint is that window position is hard to control; by contrast, some machine-language debuggers allow window placement by screen line number.

T-DebugPlus

Turbo Power has been selling Turbo enhancements for a long time, and the company has a number of products, including T-DebugPlus, Turbo Extender, which allows you to create very large (greater than 64K) Turbo programs; Turbo Optimizer, which allows you to compact the size of run-time files; and to create and link libraries of often-used routines; and Programmer's Utilities, which contains a program structure analyzer, an execution timer and profiler, pretty printer, and several file-management utilities. Source code is available for all programs, all of which are written in Turbo Pascal.

T-DebugPlus is contained in one .COM file and one overlay file, which together occupy about 100K of disk space. To run T-DebugPlus you need about 256K of free memory. The main features that distinguish T-DebugPlus from TSM are that (a) the program is written in Turbo Pascal, and the source is included; (b) the program has no built-in machine-language debugger; (c) the program does support graphics modes; (d) program and debug screens appear on either mono or color monitors in a dual-monitor system. T-DebugPlus also has a screen-swapping mode.

In addition, T-DebugPlus includes several useful utilities, including TMAP, which generates a .MAP file for use with an external symbolic machine-language debugger; TMERGE, which allows T-DebugPlus to debug large Turbo programs (when used in conjunction with Turbo Extender), and two program-listing programs, one of which generates a symbolic disassembly. In addition, several files contain information about various routines in Turbo's run-time library; that information is extremely useful for learning about Turbo programs. All source files are contained in a single .ARC file on the distribution disk.

To use T-DebugPlus, you run the program, which, like TurboSmith, loads and runs Turbo for you. When you Run your program from Turbo's menu, T-DebugPlus debugging screen comes up. (See Fig. 5). There you can single-step individual statements and entire functions and procedures. You can set breakpoints that become active when a variable changes or becomes equal to a specified value, or when a particular memory location is altered. You can also set breakpoints by line number and by routine name. A breakpoint may also include passpoint count values, so that the breakpoint would be executed after a routine was executed the specified number of times. In addition, you can open a memory-dump window in one of several formats, display "watch" variables, whose values are updated on the screen each time a breakpoint is reached, and examine and change the values of variables.

All commands are executed from a command line, which can be edited. No macros are allowed, but the function keys provide shortcuts to the most common commands, and F4 repeats the last command.

Although T-DebugPlus has no built-in machine-language interface, it can be used in conjunction with an external debugger—even Debug. The DG command will drop you into your debugger. Source-level debugging is not possible in that manner. However, you can use TMAP, one of the utilities included with the package, to generate a .MAP file, which most source-level debuggers can use to link source code and machine instructions.

Several miscellaneous commands provide useful functions. For example, a brief command summary is available by pressing F1. In addition, the X command allows you to find the machine addresses of variables, source-code line numbers, procedures, and functions. Conversely, you can find the nearest statement to a specified address.

Conclusions

T-DebugPlus and TurboSmith are both extremely useful accessories to anyone programming in Turbo Pascal.

Points to keep in mind, however, are that T-DebugPlus does graphics, has full dual-monitor support, and slightly more convenient breakpoint facilities (at the source level). In addition, it requires less memory, and its documentation is more concise and better produced. For beginners and those not needing full machine-language support, it may be the better choice. TurboSmith's strength is its windows, its built-in machine-language interface, and its ability to work with a break-out switch. But considering the reasonable prices of these packages, you may want to get copies of each.
No matter what you use your computer for, it's safe to say that you spend a great deal of time dealing with floppy disks and floppy-disk drives. Loading programs and saving data are such common operations that we tend to forget how fragile the whole system is. But all it takes is one disk disaster to remind us of that fragility.

Of course, there are ways of protecting against those types of disasters, and other ways of dealing with them when they do occur. Performing regular backups is the best protection, but even that is not fail-safe. What happens if a disk crashes during a backup procedure?

In order to have any chance at all of recovering that data, as well as to back up copy-protected software, you need to know how data is stored on your disks. The more of the process you understand, the better your chances of successfully recovering a crashed disk. So in this article we'll examine how data is stored on both IBM and Apple floppy disks. The information provided will put you far on the road toward being a real "disk jockey."

Tracks and sectors

The standard 5 1/4-inch floppy disk consists of a disk of magnetically coated plastic that is contained in a jacket, as shown in Fig. 1-a. In order for your computer to use the disk, it must have a way of finding its way around the magnetic coating on the surface. It does so by treating the disk as a group of tracks that are divided into sectors. As shown in Fig. 1-b, the tracks are a series of concentric circles, each of which is divided into a number of segments, the sectors. In addition to tracks and sectors, disks also have two sides, as shown in Fig. 2. Not all disk control hardware and software can use both sides, however.

The number of tracks and sectors determines how much data will fit on the disk. That amount is dependent on your computer's hardware and disk operating system (DOS). The numbers vary among computers and disk sizes, but the basic principles of operation are the same.

When you tell your computer to format a disk, the hardware moves the read/write head to track zero, the outermost track, and then forces it to deposit information on the surface of the disk that indicates the sector locations. The process is repeated for each track until the last track has been formatted.

Standard 5 1/4-inch Apple disks have 35 tracks on one side of the disk only, and the most common IBM format has 40 tracks on each side of the disk. Double-sided 3 1/2-inch and 8-inch disks have 77 tracks per side, and the AT's quad-density 5 1/4-inch disks have 80 tracks on each side.

DOS (IBM or Apple) uses tracks and sectors to organize the disk's surface. At the DOS level, to find a particular piece of information, you need to know the sector and track number. With double-sided disks, you must also specify the head number.

The number of tracks per disk is usually a function of the hardware. The DOS talks to the disk controller, which, in turn, talks to the stepper motor in the drive and tells it to move the head in or out the desired number of tracks.

The number of sectors, however, is controlled by the DOS IBMs DOS, for example, can format for eight or nine sectors per track, but standard Apple disks have sixteen sectors per track. So you can have more small sectors or fewer large sectors.

ROBERT GROSSBLATT
FIG. 1—DISK CONSTRUCTION: The magnetically coated disk is contained in a jacket (a), and is formatted to contain tracks and sectors (b).

FIG. 2—BOTH SIDES of a disk are used by some disk control hardware and software.

Disk formatting

When a track is formatted, DOS writes three kinds of information in each sector: ID bytes, sync bytes, and gap bytes. The exact format of those bytes differs from computer to computer, but the same sort of scheme is used by every DOS. The reason is that DOS must have a way of determining exactly which sector it's looking at. Not only that, but there must be a way of ensuring that the special formatting bytes are never overwritten by data. If that does happen, DOS has no way to identify the sector and the result is what you might expect—a crashed disk.

There are actually two kinds of ID bytes on a sector—one is the signpost that marks the sector's location on the disk, and the other lets DOS know that it's looking at the beginning of the data stored in the sector.

Figure 3-a shows a dump of an Apple DOS 3.3 sector, and Fig. 3-b shows a dump from an IBM DOS 3.1 sector. At first glance, they both look meaningless—clearly different but equally meaningless. Those disk formats are the two most popular, and both the hardware and the software used to create them are totally incompatible. It's even more interesting, therefore, to see that they use similar schemes to write disk data.

The ID marks on the IBM sector are written in hex on the disk; you'll find them in Fig. 3-b at offset 00A1h. The first three bytes (00, 00, and 01) show that you're looking at track 0, side 0, sector 1. The next byte (02) shows that the sector can hold 512 bytes.

Other sector sizes can be accommodated, as shown in Table 1. Normally, a maximum of about 6000 bytes can be written per track, so the final entry in the table may seem questionable. On the other hand, perhaps IBM has something up its sleeve.

The two bytes following the ID bytes contain a special error-detecting code called a CRC (cyclic redundancy check). The CRC is used by DOS to make sure that data read from the disk is correct. If the CRC calculated from the data that is read from the disk doesn't match the four CRC bytes in the header, DOS considers the data corrupt. Every time you change the data in a sector, DOS recalculates the CRC and writes it to the disk.

In order to keep those bytes from being overwritten accidentally, DOS uses sync bytes to mark the location of the ID bytes. When the floppy-disk controller writes a data byte on the disk, it sends out a steady clocked stream of ones and zeros. The Apple, for example, writes bytes to the disk at intervals of 32 microseconds. Sync bytes, however, are written at a different interval so they're easy to spot on the disk. Apple sync bytes are written in 40-microsecond intervals, and each sync "byte" is 10 bits long.

IBM sync bytes differ. The IBM sector in Fig. 3-b shows that there are three bytes containing a value of A1 beginning at offset 9D. Those are the specially written sync bytes that the floppy-disk controller uses to mark the location of the ID bytes. The twelve 00 bytes preceding the A1 bytes are also sync bytes. You can understand how they're used by tracing through the mechanics of a normal disk read.

When an IBM controller must read data, the first thing it does is make sure that it's looking at the right sector. It starts reading data, watching for a stream of 00 sync bytes, which lets it know that there's a chance that A1 sync bytes will follow. If they do, DOS knows that the following bytes are ID bytes.

Although ID bytes are used to mark both the signposts and your data, DOS can tell the difference by looking at the byte immediately following the A1 bytes. If it's an FE, the ID bytes are signposts, but if it's an FB then it's data. The amount of data is
known because the sector size is specified in the signpost.

The last non-data byte on the disk is called a gap byte. Gap bytes are insurance against worst-case operation. They're needed because not all disk drives turn at the same speed, so there's no way to guarantee that writing a new block of data to a sector won't overwrite existing ID and sync bytes. A disk drive only has one head per surface, so there's no way to read and write simultaneously. As long as drive speed is within tolerance, the DOS standards have been set so that there's no possibility of destroying any of the critical bytes needed to read the sector. On an IBM disk, the gap bytes usually have a value of 4E. Apple, on the other hand, uses 10-bit FF "bytes."

As for data bytes, if the sector hasn't been used, it will be filled with the DOS format ng bytes. IBM uses F6, Apple uses 96, and CP/M uses E5.

TABLE 1—IBM SECTOR SIZE ENCODING

<table>
<thead>
<tr>
<th>ID Byte</th>
<th>Bytes/Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>$00</td>
<td>128</td>
</tr>
<tr>
<td>$01</td>
<td>256</td>
</tr>
<tr>
<td>$02</td>
<td>512</td>
</tr>
<tr>
<td>$03</td>
<td>1024</td>
</tr>
<tr>
<td>$04</td>
<td>2048</td>
</tr>
<tr>
<td>$05</td>
<td>4096</td>
</tr>
<tr>
<td>$06</td>
<td>8192</td>
</tr>
</tbody>
</table>

TABLE 2—APPLE DISK ENCODING

One Byte Volume Number =	B7 B6 B5 B4 B3 B2 B1 B0
Two Byte Disk Encoding =	$FF $E
Apple's Encoded Format =	1B7 1B5 1B3 1B1 1B6 1B4 1B2
Decoded Binary Number =	$1 1 1 1 1 1 0
Volume Number =	$254
One Byte Track Number =	B7 B6 B5 B4 B3 B2 B1 B0
Two Byte Disk Encoding =	$AB $E
Apple's Encoded Format =	1B7 1B5 1B3 1B1 1B6 1B4 1B2
Decoded Binary Number =	0 0 0 0 0 1 1 0
Track Number =	$06
Sector Number =	6

Although Apple's disk format is structurally similar to IBM's, the details are different because Apple's disk control hardware and software are unique. Most disk controllers store data in an un-encoded format, so that a dump of an ASCII text file, for example, will be comprehensible.

The Apple hardware, however, limits the values that can be stored on disk. The high bit of each byte must be set, there can't be more than two adjacent zero bits, and at least two adjacent bits must be set in each byte. Some values are reserved for use as ID bytes, and hardware restrictions eliminate many others, so there are only 64 possible values that can be written to the disk to represent your data.

So, in order to be able to write all 256 combinations of eight bits, it's clear that the data must be encoded. In fact, Apple has gone through three major revisions of their encoding scheme. However, that's not a subject that can be covered here; see the books in the References sidebar for more information.

Apples format

Apple's sector format is somewhat different. Referring back to Fig. 3-3, the signpost ID bytes are located at offset 0013h after the series of FF sync bytes. The signpost bytes always begin with a prologue (D5 AA 96), which serves the same purpose as the FE marking the IBM signpost. The next eight bytes are encoded versions of the disk volume number, track, sector, and checksum. As shown in Table 2, by decoding them we see we're looking at volume 254, track 6, sector 13. The checksum is calculated by sequentially XORing all data bytes in that sector together.

Following that information is an epilogue, which can be seen beginning at offset 0C1eh. It marks the end of the signpost area and has no counterpart on an IBM disk. The epilogue is there so that DOS can make sure it's been reading the correct signpost marks and that it is still in sync with the disk. They're not really necessary, but remember that the Apple system was devised in the late seventies when disk drives were not as reliable as they are today.

Following another group of sync bytes comes the data bytes. At offset 0028h is the prologue (D5 AA AD); then follow 342 bytes of data. Apple stores 512 bytes of data in each sector, but, because the data is encoded, 342 bytes are needed to do it. A checksum is calculated for the data and stored at the end of the data space along with the epilogue (DE AA EB).

Sector numbering

Although sectors are numbered sequentially, often they're not stored sequentially. When DOS looks for a particular sector, it must locate the signpost markers, read them, verify the read, and then see if they're the ones it was looking for. All that takes time, but meanwhile the disk keeps spinning, so there's a good chance the next sector will have passed beneath the read/write head while the previous sector was being analyzed.
FIG. 4—LOGICAL AND PHYSICAL sector orders are not necessarily the same.

So, to make things more efficient, the sectors are interleaved, or skewed, as shown in Fig. 4. The inner circle indicates physical sector numbering; the outer circle indicates logical sector numbering.

Disk organization

Now that we know how data is stored on the disk, the next step is to see how it's organized. Once again, although the details vary from computer to computer, the basic method is the same. Let's look at the general principles and then see how they're actually applied in both Apple and IBM systems.

DOS divides the disk into four areas: System, Directory, Table of Contents, and Data. Any disk operation makes use of the information stored in all four areas.

DOS itself is stored in the System area of the disk—the first few tracks on the disk. The number of tracks depends on the size of DOS and the type of computer. The very first sector on the first track is called the boot sector and it's used whenever you boot a disk. It has a short machine-language program that tells the computer how to go about loading DOS from the disk. In addition, in some systems it contains data related to the directory structure, disk format, and so on.

When you boot your computer, the disk controller reads the boot sector into memory. Then the computer turns control over to the program, called the bootstrap loader, that is contained in that sector. Things are done that way because the controller can read in only a sector at a time. You can read in more than one sector at a time—but that's DOS's job. So it's a chicken-and-egg problem: you need DOS to read multiple sectors and you can only read in multiple sectors by using DOS. But because DOS is located in a specific place on the disk, the bootstrap loader knows how to transfer it to the computer's memory.

The Directory and the Table of Contents go hand in hand. The former is a list of the files stored on the disk, and the latter is a list of sectors telling DOS where to find them. Every time you tell DOS to access a particular file, it first goes to the Directory to see if the file exists and, if it does, DOS then turns to the Table of Contents to get the file's location on the disk.

As you might have guessed, the Data space is where DOS stores your data.

IBM stores DOS in three disk files: IBMIO.COM, IBMDS.COM, and COMMAND.COM. (Clones running MS-DOS store the first two of those programs under different names.) In order for the computer to load DOS from the disk, IBMIO.COM and IBMDS.COM must be the first two files on the disk. If they're not, the bootstrap loader won't be able to find them, and you'll get the infamous "NON-SYSTEM DISK OR DISK ERROR" message. Those two files contain the routines the computer uses to control the disk hardware. The third file, COMMAND.COM, is loaded after the first two and it's the part of DOS that executes internal DOS commands (DIR, REN, DEL, etc.), external programs, and batch files.

IBM's Table of Contents is called the FAT (file allocation table). It's used to keep track of where each chunk of file is stored on the disk, which sectors are available for use, which sectors are bad, and so on. The basic unit of the FAT is called the cluster, and it represents a variable number of disk sectors, depending on the operating system and on the format of the disk. For example, single-sided IBM disk clusters are one sector long, double-sided IBM disk clusters are two sectors long, and higher density disks have even larger clusters.

The Directory is also located on track 0, right after the FAT. It stores the names of your files, their attributes, the date and time they were created, their size, and the location of the file's first entry in the FAT. The rest of the disk is set aside for your data. When you change anything on the disk by writing new data, DOS must update the Directory and the FAT, because they work together to keep your files organized.

The Apple also has a boot sector to start the process of loading DOS into the computer. The actual contents of the boot sector (as well as the organization of the disk) depends on which Apple DOS you're using. Both systems, however, differ from the IBM version in that the only job of Apple's boot sector is to start the process of loading in DOS.

There are major differences in the two current Apple operating systems, DOS 3.3 and ProDOS. Although the basic sector formatting is the same, the organization of the disk is quite different. The older system, DOS 3.3, stores the System disk on the first three tracks, and the directory on track 11th (in the middle of the disk). That was done, the reasoning went, because on average, the head would have less distance to travel to get to the directory than if the directory had been located on track 0, as on the IBM. Less distance means less time, so that wasn't bad reasoning.

ProDOS, on the other hand, has a closer resemblance to the IBM system in that the directory is stored in the lower tracks. Disk space is allocated a sector at a time under DOS 3.3, and a block at a time under ProDOS. (A block equals two consecutive sectors.) The Table of Contents is called the Volume Table of Contents in DOS 3.3 and the Volume Bit Map in ProDOS.

Both are similar to the IBM's FAT in that each contains a table that DOS uses to keep track of which sectors are free, which are reserved, and which are otherwise used. Each file on the disk reserves a track-and-sector list sector (or block) that contains a list of the sectors where each file's data is stored. Overall, the Apple has to do about the same amount of housekeeping as the IBM. It must update the directory, the table of contents, and the track/sector list for each file you use.

Copy protection

With those facts in mind, let's examine various copy-protection schemes. But before we get into the details, let's talk about the philosophy behind copy protection. Both software publishers and software owners make strong arguments about protecting their investment—and they're both right. Nobody wants to get ripped off, so publishers should be able to make money, and owners should be able to make legitimate backup copies of software they have purchased. Of course, there is much
The big moment: add the microprocessor.

Part 3 In the first installment of the Computer Digest Classroom, we presented an overview of the PT-68K. In part two, we built clock, reset, and test circuits. Now let's install the 68000 and start learning how it works.

Step 7: hardware basics
The pinout of the 68000 microprocessor is shown in Fig. 1. Though it's a 64-pin IC and looks complex, it really is straightforward. Let's go over it pin by pin.

In the figure, notice first the data bus, with its 16 lines labeled D0–D15, and the address bus, with its 23 lines labeled A1–A23. If you're wondering, there is no A0—see below.

The remaining signals are known collectively as the control lines; let's look at them in more detail. Each control line is labeled with an arrow to indicate whether it is an input, an output, or, in some cases, both.

The three active-high output lines FC0, FC1, and FC2 output a function code that can be decoded to indicate what the 68000 is doing internally; the function code can also be used to increase the 68000's addressable memory to 64 megabytes.

The enable line (E), the valid memory address line (VMA), and the valid peripheral address (VPA) line are all useful when the 68000 is used with older input-output ICs, particularly those originally intended for use with Motorola's 6800 processor. Also, VPA provides some interrupt information.

F16, F17, and F24 are interrupt-level inputs. We will discuss interrupts later, for now let us just say that an event such as a keypress can interrupt the 68000, cause it to stop whatever it's doing, and then respond to the interrupt. The three interrupt inputs tell the 68000 whether an interrupt is being asked for, and what kind of an interrupt it is.

The reset and halt inputs come from the 555 circuit shown in Part 2, Fig. 6. Note, however, that those two pins are also outputs. That explains why an open-collector 7406 inverter was used to drive them, occasionally the 68000 may output a low on one of those lines, and that would conflict with the normally high output of a standard inverter (such as a 7404).

BR, BG, and BACK are used with DMA circuits, which is used to transfer blocks of data without help from the microprocessor. If DMA were used, the DMA controller would send a bus request (IR) signal to the 68000, which would release the data and

FIG. 1—THE 68000 MICROPROCESSOR has sixteen data lines, 23 address lines, and 21 control lines.
address buses and return a bus granted (BG) signal. The DMA controller would then send a bus grant acknowledge (BGACK) to confirm that it has control of the buses. Then the 68000 would sit back and wait while the DMA controller did its thing.

We mentioned that LEDs and DDS replace address line A0; they do so in an interesting way. The 68000 has a 16-bit data bus, but memory is organized as eight-bit bytes. Even so, the data bus can access two bytes at a time. The memory is wired so that half of memory—the odd-numbered locations—connects to the lower part of the data bus (bits D0–D7) and the other half of memory—the even-numbered locations—connects to the upper part of the data bus (bits D8–D15). The 68000 asserts DDS when it wants to use the lower half of the data bus, DDS if it wants to use the upper half of the data bus, or both if it wants to transfer 16 bits on the entire data bus. Thus an odd address turns on DDS, and an even address turns on DDS. The overall effect is similar to that provided by address line A0 in other microprocessors, where A0 is low for an even address and high for an odd address.

A1 is an address strobe which is generally asserted by the 68000 at the same time as either DDS or BDS, it simply tells external circuitry (address decoders, for example) that there is a valid address on the address bus. That's an important point, because the address bus often carries data that is meaningless, as provides a way of preventing decoders from responding to invalid addresses.

Next comes the read/write line (R/W), which is used by the 68000 to tell other circuitry whether it wants to read data in (when R/W is high) or write data out (when R/W is low). In other words, R/W is high when data goes from RAM or ROM to the

FIG. 2—68000 TEST CIRCUIT. By disabling all interrupts and grounding the entire data bus, you can force the 68000 to repetitively cycle through four million "phantom" instructions.

Past, present, future

What follows is a listing of the contents of past and projected future articles in the **Computer Digest** 68000 Classroom. The precise number of articles—and their contents—will depend on your response, so let us know what you're interested in!

Part 1: System overview, block diagram, parts list, memory map, ordering information.

Part 2: Parts-placement diagram, power connector mounting, LED, speaker, reset, and clock circuits.

Part 3: Introduction to the 68000, test circuit, EPROM and RAM circuits, address-bus waveforms.

Part 4: Logic symbols, MAP circuit, address decoding, BERR and DTACK, RAM and ROM, HUMBUG.

Part 5: Serial interfacing and IBM-compatible expansion slots.

Part 6: Dynamic RAM

Part 7: Disk control hardware and software: SK*DOS.
Thanks

I'd like to thank Fred Brown of Peripheral Technology, Inc., kit supplier for this CD Classroom series. Fred is the wizard who designed the hardware of the PT-68K; without his assistance, the project would never have gotten off the ground.

68000, and low when data goes from the 68000 to RAM. Normally we don't write to a ROM.

ERR is an input to the 68000 that external circuitry uses to tell the 68000 when something has gone wrong on one of the buses. We will see how that is done later.

Last, STACK stands for data transfer acknowledge. Whenever the 68000 wants to read or write to memory (or an I/O device), it (a) puts the address on the address bus, (b) puts a high or low on WR, (c) asserts CE, (d) asserts BS, BCS, or both, and (e) waits until either STACK is asserted, indicating that the transfer has completed, or ERR is asserted, indicating that something went wrong. When STACK is received, the 68000 goes on to the next instruction. We'll discuss what happens if ERR is asserted later.

If STACK were permanently grounded, the 68000 would assume that all transfers finished quickly, so it would ziz along at maximum speed. In most cases, though, STACK is generated by an external timer that gives memory and I/O just enough time to finish their jobs. And if a memory or I/O device is particularly slow, STACK can then be delayed so that the 68000 will wait for it to finish.

In practice, each 68000 memory or I/O access takes a specific amount of time, which is measured in clock cycles. If STACK is delayed, for even an instant, the 68000 lets an extra clock cycle slip by and checks again. If STACK is still off, the 68000 waits another clock cycle, and so on. Each of those clock cycles is called a wait state. Ideally, everything would be fast enough so that the 68000 could continue processing without wait states. However, some computers have slow memory or I/O devices, and therefore run with one or even more wait states, which obviously slows everything down. You'll be happy to know that the PT-68K runs with no wait states!

68000 test circuit

Last time we built the clock and reset circuits, and now that we have some basic familiarity with the 68000, it's time to get the system running. Normally you need quite a bit of external hardware to get a 68000-based computer running, but there is a
way of fooling the microprocessor into thinking the necessary support circuitry is connected, even though it isn't. Figure 2 shows how basically the circuit ensures that interrupts are disabled and jamps the data bus with "phantom" instructions that the 68000 will execute over and over.

In order to minimize the amount of extra wiring we have to do, we will take advantage of circuitry already on the printed-circuit board (which will be needed later anyway). For example, we can use RESET, HALT, and CLK as IS.

The circuit works like this: IC37-b is a NAND gate that asserts VIA when IC0, IC1, and IC2 are all high, and negates VIA at all other times. That is done because VIA is used only during interrupt processing; for now we need to force it high.

Also dealing with interrupts is IC89, a priority-encoder IC. In normal operation, when an interrupt request appears on one of the IRQ lines (IRQ0-IRQ7) IC89 functions as a traffic cop that determines which line has the highest priority. IRQ6 has a higher priority than IRQ5, which in turn higher than IRQ4, and so on.

Depending on which interrupt lines are active, IC89's three outputs send a binary number corresponding to the highest priority interrupt to the INP, INP, and INP lines of the 68000. For example, if the highest priority interrupt request is IRQ8, IC89 sends the binary number 100 (4) to the 68000 by forcing INP high and the others low.

In our test circuit, however, the seven resistors in R19 are pulling all of the IRQ lines high. Therefore, IC89 sees no interrupt request, so it sends the binary number 000 to the 68000, telling it that there are no interrupt requests.

By the way, we could have achieved the same result by grounding the three IRS pins of the 68000 and tying VIA high. However, we can save ourselves extra labor by installing R19, IC89, and IC37, which we'll have to do eventually anyway.

Two of the inputs, labeled IRS and INS, are already tied high, and a number of other pins are unconnected.

That leaves the data bus, ERR, and STICK to contend with. First, ERR must be tied high so that the 68000 won't think a bus error has occurred. That is easily done by installing a short jumper between pins 14 and 22 of the 68000, on the foil side of the board.

Normally STICK will carry a meaningful signal, but for now we want to ground it to make the 68000 think that all is well on the outside. The inverter (IC66-a) that drives STICK was installed previously, so force the input high by installing a jumper from pin 1 to pin 14 of that IC on the foil side of the board.

Last, as shown in Fig. 2, we want to ground all sixteen data lines. The reason is that, when the 68000 is running normally, it fetches instructions and addresses from memory, so we have to provide it with some apparently meaningful data. By grounding the entire data bus, every time the 68000 tries to read anything from memory, it will read the number 0000. As it turns out, that is a valid 68000 machine-language instruction, which is written OR.B #0,D0.

That instruction tells the microprocessor to or a 0 to register D0; the instruction consists of four 00 bytes.

Though that OR instruction seemingly does nothing, the 68000 thinks that all 16 megabytes of memory are filled with 4 million OR instructions, and so it starts executing them one after another. When it gets to the top of memory at $FFFFFF, it simply "wraps around" and starts over at $000000.

Fire it up

Now let's wire up the circuit and see what happens. Install the following components: sockets for IC37, IC47, and IC89; R19, a 10K single-in-line package. Pin 1 of R19, identified by a white line or dot, should point toward J25. Then install C14, C48, and C66 (0.1 µF disc capacitors), and last jumpers from pin 14 to pin 29 of IC47 and from pin 1 to pin 14 of IC66. Both jumpers will be removed later, so install them neatly and in a way such that they can be removed easily.

Grounding all sixteen lines of the data bus at the micro-
CALL NOW AND RESERVE YOUR SPACE

- 6 • rate $800.00 per each insertion
- Reaches 245,824 readers.
- Fast reader service cycle.
- Short lead time for the placement of ads.

CIRCLE 194 ON FREE INFORMATION CARD

LASER PRINTER
P.C. COPIER OWNERS

“H P. Apple, QSYS, QMS, and more
Recharging Your Used Toner Cartridges.

RECHARGING PRINTER CARTRIDGES.

BLACK $45 $40
DK BLUE BROWN $65 $60
NEW CARTRIDGE $89

20 Years of Laser Printing and Xerography Experience
- Unconditional Guarantee

800 W. Burlington, Fairfield, IA 52556
(800) 635-8088 (515) 472-7850

CIRCLE 197 ON FREE INFORMATION CARD

RATES: Ads are 2¼" x 2¼". One insertion $825. Six insertions $800 each. Twelve insertions $775. Each. Closing date same as regular rate card. Send orders with remittance to Computer Admart, Radio Electronics Magazine, 500-B Bi-County Blvd., Farmingdale, NY 11735. Direct telephone inquiries to Arline Fishman, area code 516-293-3000. Only 100% Computer ads are accepted for this Admart.

CIRCLE 60 ON FREE INFORMATION CARD

TURBO CHARGE YOUR PC WITH THE ACCELERATOR 286
Replaces your PC, XT, or compatibles 8088 with an 80286 processor. It includes 8K of zero-wait-state cache memory, and your software can run up to 7 times faster. Why not an AT? Upgrade your PC with the Accelerator.

$275

CIRCLE 201 ON FREE INFORMATION CARD

TURBO CHARGE YOUR PC WITH THE ACCELERATOR 286
Replaces your PC, XT, or compatibles 8088 with an 80286 processor. It includes 8K of zero-wait-state cache memory, and your software can run up to 7 times faster. Why not an AT? Upgrade your PC with the Accelerator.

$275

CIRCLE 201 ON FREE INFORMATION CARD

VIDEO SHARING DEVICE
$59.95

Transmits computer/VCR signal to any TV at home with cables. Simply plug it into computer's composite output or VCR's jacks. This is the least expensive way of upgrading your system to color without buying a color monitor. Minor assembly required.

PC Plus Corp., Monterey Park
710 E. Garvey Ave.
(818) 571-6991
processor's socket could lead to problems later, so we'll do it another way. The data bus is more accessible at the two EPROM sockets (IC90 and IC27) and at the two static RAM sockets (IC21 and IC28). The wiring diagram of the EPROM and static-RAM circuitry is shown in Fig. 3. Install a 28-pin socket at IC27 and a 24-pin socket at IC21.

The D0–D7 lines of the data bus are connected to IC27 via pins 11–13 and pins 15–19, and pin 14 is conveniently grounded. So we need to short pins 11–19 together. In the same way, the DB–D15 lines of the data bus are connected to IC21 via pins 9–11 and 13–17, and pin 12 is conveniently grounded. So we need to together pins 9–17 together.

On both IC21 and IC27, those are the bottom four pins on the left and the bottom five pins on the right. Instead of soldering any wires, take a strip of Molex Soldercon pins and insert them into the sockets as shown in Fig. 4, with four pins on the left, five pins on the right, and a section of six or so pins bent in a U shape below. Molex pins are normally sold as an inexpensive substitute for sockets; they consist of individual clips joined by a perforated carrier strip that is normally broken off after soldering the pins to the PC board. In our case, we insert the thin pins into the socket, and use the entire strip as one big short circuit.

Now plug the IC's, being careful not to bend pins, and turn on the power. Connect your LED probe to pin 52 of the 68000.

Ordering Information

Complete details were given in part one (in the October issue). To summarize: The basic kit (PT1, $200) contains all parts except power supply, case, and video terminal or personal computer to get a small system (ROM monitor, 9K RAM) up and running. The full basic system (PT68K, $460) includes 512K of dynamic RAM, floppy-disk controller, parallel port, battery-backed clock/calendar, and three PC-compatible expansion slots. To order, or for more information, contact Peripheral Technology, 1480 Terrell Mill Road #870, Marietta, GA 30067, (404) 984-0742.

FLOPPY-DISK DATA STORAGE

continued from page 94

illegitimate software floating around, so it seems that something has to be done about basic human nature before copy protection will cease to be an issue.

Even though there are obvious (and subtle) differences between the hardware and software comprising various types of computers, the basic approach to copy protection is the same: Make the disk unreadable by the standard DOS. It's easy to do because any DOS must make a number of assumptions about disk format before it tries to read or write information. It must assume, for example, that it's going to find tracks formatted in a particular way, that each one will contain a specific number of sectors, and that those sectors will contain data written in a predefined fashion. If any of those conditions aren't met, DOS will throw in the towel, and, instead of data, all you'll get is an error message. The point is that any disk that has data organized in a non-standard way must also have a non-standard way to read that data.

When Apple introduced its disk system in the late seventies, the company emphasized software rather than hardware. That was a departure from the norm, because most disk systems were and are built around a single-IC LSI controller. As a result, Apple disks were (and still are) unreadable by most other machines. However, Central Point Software's Option Board allows an IBM to read Apple disks, and many others as well. Doing most of the disk control in software makes it simple to upgrade DOS. It also makes it easy for creative programmers to write copy-protection schemes that do strange things with the disk. That dependence on software, as we'll see, has produced methods of copy protection that are unique to the Apple.

Non-standard data formats

There are many methods of storing data in a non-standard format; we'll examine several in what follows. The most popular methods are these:

- Oddball track formatting
- Nibble counting
- Modified DOS
- Non-standard sectoring
- Unique data encryption
- Synchronized tracks
- Quarter tracks
- Spiral tracking

Of course, there are variations on those methods, and they're often used in combination. But attaining a good understanding of them will help you unravel any copy-protection scheme likely to come your way.

Those methods of copy protection are used on the Apple, due to differences in the IBM's disk-control hardware, it has fewer means of coping with a disk. For example, the IBM cannot do quarter tracking. The most popular methods are:

- Oddball formatting
- Weak bits
- Laser burning

We'll examine those and other means of copying software next time.
Stereo (See also AUDIO)

Speedometer, Digital (C) (Ortman)

Soundproofing

SMT

Sequential

Semiconductors, Testing (Byers) Feb

Scanner

SCA

Satellite TV (D) (Cooper)

Spatial Imagery (AUD) (Klein) Nov

Micropower Op-Amp Sep

Instrumentation Amplifiers Jun

Electronic Potentiometer. Bang-Bang All

Unwanted Sounds (AUD) (Klein) Jun

Technology (M) (Martin) May

New Lite Log: Surface Ouest

Questions (D) (Darr) Jan

Clinic (D) (Darr) Jan

Zits Fraud, The What’s Next Dec

International Connection, The Sep

High

Videocipher

Back

Frier

Break

Monopulse

The

FM

International

Cooper

Zoweee! May

21st Century (Gregory)

80, Mar 84,

55, Mar 58,

59, Oct 51,

37, Feb 87,

35, Jan 88,

62, May 125,

13, May 42,

8, Mar 12

65, Oct 62

67, May 49

61, Sep 53,

82, Jul 56

68, Aug 91

24, Apr 64

66, Aug 80

15, May 39

83, Jan 55

12, May 39

84, May 79

102, Jun 43

71, May 97

81, Sep 99

103, Dec 87

18
Add a Disk Drive (Friedman) (C)

Apr 96

Do All Interfacing Part 2 (Holtzman)

Jan 13

Apparatus Limo III (EW)

Mar 94

Boolefeedback(L)

Feb 102

Books (EW)

May 137, Nov 93

Brooklyn Bridge (EW)

Sep 74

Build CAD (C)

Mar 97

MC68000, The (C) (Schneider, Koeng, Voegeke)

Mar 101

PT 68K. The (C) (Stark)

Oct 90

Build CAD (C) (Bernard)

Apr 98

CAD

Feb 110

Computer-Assisted Regulator Design (Cunkelman)

Mar 97

Designing PC Boards on Your Computer (Grossblatt)

Jan 97

CD-ROM (EW) Mar 94, (EW) Mar 95, (EW) Apr 90

Clock

Mar 97, (PCS) Mar 73

Clock Board for Your PC (C) (Martin)

Nov 101

Clones

Feb 104

COMDEX Report (EW)

Sep 73

Commodore PC Generator (C) (Barbarello)

Oct 96

ComDes (EW)

May 136

Computer Products (D)

Jan 4, Feb 102

Computer-Assisted Regulator Design (Cunkelman)

Feb 110

Computer-Controlled Rabbi (C)

May 144, (PCS) May 67

Concurrence (Stark)

Feb 112

Construction

Apr 96

Add a Disk Drive (C) (Friedman)

Apr 96

Clock Board for Your PC (C) (Martin)

Mar 97, (PCS) Mar 73

Central Point Software: The Option Board (EW)

Oct 87

Certificate Maker (SWR)

Feb 103

CD-ROM (EW) Mar 94, (EW) Mar 95, (EW) Apr 90

Gauzin Softstrip System, The (Holtzman)

Apr 93

Clock Board for Your PC (C) (Martin)

Mar 97, (PCS) Mar 73

Circuit for the PT-68K (C) (Stark)

Nov 101

Clones

Feb 104

COMDEX Report (EW)

Sep 73

Commodore PC Generator (C) (Barbarello)

Oct 96

Comput Des (EW)

May 136

Computer-Products (D)

Jan 4, Feb 102

Computer-Assisted Regulator Design (Cunkelman)

Feb 110

Computer-Controlled Rabbi (C)

Barbarello

May 144, (PCS) May 67

Concurrence (Stark)

Feb 112

Construction

Apr 96

Add a Disk Drive (C) (Friedman)

Apr 96

Clock Board for Your PC (C) (Martin)

Mar 97, (PCS) Mar 73

Central Point Software: The Option Board (EW)

Oct 87

Certificate Maker (SWR)

Feb 103

CD-ROM (EW) Mar 94, (EW) Mar 95, (EW) Apr 90

Gauzin Softstrip System, The (Holtzman)

Apr 93

Clock Board for Your PC (C) (Martin)

Mar 97, (PCS) Mar 73

Circuit for the PT-68K (C) (Stark)

Nov 101

Clones

Feb 104

COMDEX Report (EW)

Sep 73

Commodore PC Generator (C) (Barbarello)

Oct 96

Comput Des (EW)

May 136

Computer-Products (D)

Jan 4, Feb 102

Computer-Assisted Regulator Design (Cunkelman)

Feb 110

Computer-Controlled Rabbi (C)

Barbarello

May 144, (PCS) May 67

Concurrence (Stark)

Feb 112

Construction

Apr 96

Add a Disk Drive (C) (Friedman)

Apr 96

Clock Board for Your PC (C) (Martin)

Mar 97, (PCS) Mar 73

Central Point Software: The Option Board (EW)

Oct 87

Certificate Maker (SWR)

Feb 103
FOR SALE
REPAIR your own TV...It's easy. Write RESEARCH, Rt. 3, Box 601BF, Colville, WA 99114.

CIRCUIT boards, kits, & assemblies for QST magazine articles. For price list SASE to: A & A ENGINEERING, 2524 W. La Palma Ave., Anaheim, CA 92801. (714) 952-2114.

CLASSIFIED COMMERCIAL

IF

Card Number Expiration Date
We specialize in a wide variety of technical information, parts and services for CB radios, 10M-14M-FM conversions, repairs, books, plans, kits, high-performance accessories. Our 11th year! Catalog $2.

RESERVED

TV tunable notch filters, free brochure. D.K. VIDE0, Box 63 6025. Margate, FL 33063. (305) 752-9202.

DESCRAMBLER catalog. All brands Special combo Jerrold 400 and SB3 $165. Descrambler kit $39.00 (assemblies in half hour) Send $1.00 MJ INDUST“RY, Box 531, Bronx, NY 10461.

Is it true...Jeeps for $44 through the government? Chipt for diagnostic! (312) 725-1142, ext.

OLD TIME radio programs on high quality tapes. Comedy! Adventure! Music! Free catalog. CARL F. FROELICH, Heritage Farm, New Freedom, PA 17349.

TEST equipment reconditioned. For sale. $1.25 for catalog WALTER'S, 2697 Nickel, San Pablo, CA 94805. (415) 724-0587.

CB RADIO OWNERS!

We specialize in a wide variety of technical information, parts and services for CB radios. 10M-FM conversions, repairs, books, plans, kits, high-performance accessories. Our 11th year! Catalog $2.

TUBES new, unused. Send self-addressed, stamped envelope for list. FALAL ELECTRONICS, Box 1376-2, Milwaukee, WI 53201.

PHOTOFACt folders, under #1400 $3.00. Others $5.00. Postpaid LOEB, 414 Chestnut Lane, East Meadow, NY 11554.

FLASHLIGHT that needs no batteries measures 5" x 3" 5e/d for every situation, money back guarantee $10 - SAMUEL'S ENTERPRISES, 724 East 23rd Street, Bronx, NY 10466.

CUSTOM front panel nameplates for your projects. For details: J & E ENTERPRISES, 2457 N. Marlene, Chicago, IL 60639.

FREE power supply ($7.95 value) with ASSOR- MENT #103. (February 84 article) printed circuit, toko coils, transformers, IC's, diodes $25.00. Five$12.50. Shipping $3.00. JIM RHODES INC., P.O. Box 3421, Bristol, TN 37625.

Quality Microwave TV Antennas

Multi-Channel 1.3 to 2.7 GHz 40dB Gain 12-Channel System complete $104.95 2-Channel System complete $84.95 Dealerships, Qty., Pricing, Replacement Parts

Phillips-Techer Electronics P.O. Box 1833 + Scottsdale, AZ 85201 (602) 947-7700 ($100 Credit if one of our Antennas)-Dealer Card + Visa = C.O.D.

COMMODORE chips repairs C-64 repair $39.95 complete We sell chips at low cost (eg. 6526 6510 $9.95 and many others) C-64 $29.95. Commodore Diagnostician, a complete chart for diagnosing floppy IC's $5.95 postage Send for catalog. KASARA MICROSYSTEMS, INC., 33 Murray Hill Drive, Spring Valley, NY 10977. (800) 642-7634 (outside NY or (914) 352-3131.

MARKET CENTER

DECEMBER 1987

TUBES 59c. Year Guarantee. Free catalog. Tube tester $8.95. CORNELL, 425 University, San Diego, CA 92103.

Oak 56 channel wireless remote converter-de scrambler, original refurbished equipment, exceptional value, $175.00; legal to own your equipment, however, Federal law prohibits hook up without cable company permission. PONDERSA, (303) 661-1665. (Ship C.O.D.)

FREE remote control converter with any de scrambler below. Oak YV12 $85.00; new Hamlin MDL1200 $300.00; new $383.00; new Trimode Besta $125.00; Starcom-6 system $125.00; Zenith cable $175.00, legal to own your equipment. However, Federal law prohibits hook up without cable company permission. PONDERSA, (303) 661-1665. (Ship C.O.D.)

ADD 5 important features to your home telephone, SASE (805) 583-6272, B & M ENGINEERING, Box 823, Simi Valley, CA 93062.

CABLE TV equipment S.A., Jerrold, Zenith, Hamlin, Oak, Eager, filters, remotes and more. Best prices C.O.D.'s accepted dealers needed. Ours work where others failed and we guarantee it! TRANS-WORLD CABLE CO., (218) 343-8671.

TUBES, name brands. New, 80% off list. KIRBY, 28 West Canfield, Carmel, IN 46032.

TRANSISTORS-tubes: MRF421 $24.00, MF454 $15.00, MRF455-MRF477 $12.00, MRF492 $16.95, SRF2072 $13.50, 3000 $18.95, 25SC $278.95, 25SC $278.95, 6LF6-C06-C06HJ $93.95, $590.15, New Ranger AR3500 all mode 10 meter transceiver $319. Quantity discounts! Best prices on hard-to-find parts, antennas, mics, power supplies, & equipment! Catalog $1.00 (refundable), or free with order. RFPC, Box 700, San Marcos, CA 92086. For information or same day shipment—call (619) 744-0728. Visa/M/C.O.D.

CIRCUIT board assembly at 60c per hour. FABRICANTES ELECTRONICOS, AppBarco 391 Pavis, Costa Rica, Ph. 44-21-07.

SATELLITE & cable equipment. We have those hard-to-find units ready to go. Tired of junk that don’t work properly, try our 10 day satisfaction guarantee & SASE for list. STEINMETZ, 7519 Maplewood Ave., R.E. Hammond, IN 46324.

TUBES - 2000 TYPES DISCOUNT PRICES! Early, hard-to-find, and modern tubes. Aliens, transformers, capacitors and parts for tube equipment. Send $2.00 for 20 page wholesale catalog.

ANTIQUE ELECTRONIC SUPPLY
668 W. First St., Tempe, AZ 85281 +602/894-9503

PLASMA sphere colorful bottled lightning; low cost prelaid "5" globes up; easily built for $5. Complete detailed plans $10. kits, complete 5" & 9" units also available, $2. RIESS, Box 54625, Phoenix, AZ 85014.

ALARM do-it-yourself and save. Send SASE: ERIC'S ALARM, P.O. Box 8331, Bossier, LA 71113-8331.

TUBES: "oldest", "latest". Parts and schematics. SASE for list. STEINMETZ, 7519 Maplewood Ave., R.E. Hammond, IN 46324.
DO YOU REALLY GET THE BEST BUY FROM THEM?

LET'S FACE IT: There will always be some outfit that can undercut a published price. They do it by having no overhead, and no responsibility to you, the consumer.

"So, you want that Jerrold 450 corebo? The one that Pacific Cable Co., Inc., is offering for $19997? Well, that's a good price, but here's what I'll do... "What may happen is that you may save a couple of bucks at the time. But suppose there's a problem (and it happens to the best of them) and you call that "Dealer"... This could be what you'll hear:

"No, Steve isn't here. He moved out, the bum! And he owes me $14379 on the phone bill! No, I don't know about any guarantees on your Gerald, who's that? Listen, if you see that creep..." etc.

At Pacific Cable Co., you've got an established company who will be here for you, time after time. We may be tough competitors, but we've got a soft spot for our clients! Try us, and be treated right—and we'll prove it by giving a one-year warranty on everything we sell.

CHECK US OUT—WE'LL MEET OR BEAT THE OTHER'S ADVERTISED WHOLESALE OR RETAIL PRICES!

Pacific Cable Co., Inc.
7325½ Reseda Blvd., Dept. R-12
Reseda, CA 91335
(818) 716-5914 • (818) 716-5140
• NO COLLECT CALLS! •

IMPORTANT • When ordering, please have the make and model number of the equipment used in your area—Thank you!

*Call for availability
Prices subject to change without notice

Jerrold is a registered trademark of General Instruments Corp.

Check our prices on Scientific Atlanta Units!

<table>
<thead>
<tr>
<th>ITEM</th>
<th>1</th>
<th>10 OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCA 36 Channel Converter (Ch 3 output only)</td>
<td>29.00</td>
<td>58.00</td>
</tr>
<tr>
<td>Panasonic Wireless Converter (our best buy)</td>
<td>88.00</td>
<td>99.00</td>
</tr>
<tr>
<td>400 or 450 Converter (manual fine tune)</td>
<td>88.00</td>
<td>99.00</td>
</tr>
<tr>
<td>Jerrold 400 Combo</td>
<td>168.00</td>
<td>168.00</td>
</tr>
<tr>
<td>*Jerrold 400 Hand Remote Control</td>
<td>29.00</td>
<td>29.00</td>
</tr>
<tr>
<td>*Jerrold 450 Combo</td>
<td>199.00</td>
<td>199.00</td>
</tr>
<tr>
<td>*Jerrold 450 Hand Remote Control</td>
<td>29.00</td>
<td>29.00</td>
</tr>
<tr>
<td>Jerrold SB-Add-On</td>
<td>88.00</td>
<td>88.00</td>
</tr>
<tr>
<td>*Jerrold SB-Add-On with Trimeode</td>
<td>99.00</td>
<td>99.00</td>
</tr>
<tr>
<td>*M-35 B Combo unit (Ch 3 output only)</td>
<td>99.00</td>
<td>99.00</td>
</tr>
<tr>
<td>*M-35 B Combo unit with WavSync</td>
<td>109.00</td>
<td>109.00</td>
</tr>
</tbody>
</table>

Check our prices on Scientific Atlanta Units!

<table>
<thead>
<tr>
<th>ITEM</th>
<th>1</th>
<th>10 OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCA 36 Channel Converter (Ch 3 output only)</td>
<td>29.00</td>
<td>58.00</td>
</tr>
<tr>
<td>Panasonic Wireless Converter (our best buy)</td>
<td>88.00</td>
<td>99.00</td>
</tr>
<tr>
<td>400 or 450 Converter (manual fine tune)</td>
<td>88.00</td>
<td>99.00</td>
</tr>
<tr>
<td>Jerrold 400 Combo</td>
<td>168.00</td>
<td>168.00</td>
</tr>
<tr>
<td>*Jerrold 400 Hand Remote Control</td>
<td>29.00</td>
<td>29.00</td>
</tr>
<tr>
<td>*Jerrold 450 Combo</td>
<td>199.00</td>
<td>199.00</td>
</tr>
<tr>
<td>*Jerrold 450 Hand Remote Control</td>
<td>29.00</td>
<td>29.00</td>
</tr>
<tr>
<td>Jerrold SB-Add-On</td>
<td>88.00</td>
<td>88.00</td>
</tr>
<tr>
<td>*Jerrold SB-Add-On with Trimeode</td>
<td>99.00</td>
<td>99.00</td>
</tr>
<tr>
<td>*M-35 B Combo unit (Ch 3 output only)</td>
<td>99.00</td>
<td>99.00</td>
</tr>
<tr>
<td>*M-35 B Combo unit with WavSync</td>
<td>109.00</td>
<td>109.00</td>
</tr>
</tbody>
</table>

Check our prices on Scientific Atlanta Units!

<table>
<thead>
<tr>
<th>ITEM</th>
<th>1</th>
<th>10 OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCA 36 Channel Converter (Ch 3 output only)</td>
<td>29.00</td>
<td>58.00</td>
</tr>
<tr>
<td>Panasonic Wireless Converter (our best buy)</td>
<td>88.00</td>
<td>99.00</td>
</tr>
<tr>
<td>400 or 450 Converter (manual fine tune)</td>
<td>88.00</td>
<td>99.00</td>
</tr>
<tr>
<td>Jerrold 400 Combo</td>
<td>168.00</td>
<td>168.00</td>
</tr>
<tr>
<td>*Jerrold 400 Hand Remote Control</td>
<td>29.00</td>
<td>29.00</td>
</tr>
<tr>
<td>*Jerrold 450 Combo</td>
<td>199.00</td>
<td>199.00</td>
</tr>
<tr>
<td>*Jerrold 450 Hand Remote Control</td>
<td>29.00</td>
<td>29.00</td>
</tr>
<tr>
<td>Jerrold SB-Add-On</td>
<td>88.00</td>
<td>88.00</td>
</tr>
<tr>
<td>*Jerrold SB-Add-On with Trimeode</td>
<td>99.00</td>
<td>99.00</td>
</tr>
<tr>
<td>*M-35 B Combo unit (Ch 3 output only)</td>
<td>99.00</td>
<td>99.00</td>
</tr>
<tr>
<td>*M-35 B Combo unit with WavSync</td>
<td>109.00</td>
<td>109.00</td>
</tr>
</tbody>
</table>

Check our prices on Scientific Atlanta Units!

<table>
<thead>
<tr>
<th>ITEM</th>
<th>1</th>
<th>10 OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCA 36 Channel Converter (Ch 3 output only)</td>
<td>29.00</td>
<td>58.00</td>
</tr>
<tr>
<td>Panasonic Wireless Converter (our best buy)</td>
<td>88.00</td>
<td>99.00</td>
</tr>
<tr>
<td>400 or 450 Converter (manual fine tune)</td>
<td>88.00</td>
<td>99.00</td>
</tr>
<tr>
<td>Jerrold 400 Combo</td>
<td>168.00</td>
<td>168.00</td>
</tr>
<tr>
<td>*Jerrold 400 Hand Remote Control</td>
<td>29.00</td>
<td>29.00</td>
</tr>
<tr>
<td>*Jerrold 450 Combo</td>
<td>199.00</td>
<td>199.00</td>
</tr>
<tr>
<td>*Jerrold 450 Hand Remote Control</td>
<td>29.00</td>
<td>29.00</td>
</tr>
<tr>
<td>Jerrold SB-Add-On</td>
<td>88.00</td>
<td>88.00</td>
</tr>
<tr>
<td>*Jerrold SB-Add-On with Trimeode</td>
<td>99.00</td>
<td>99.00</td>
</tr>
<tr>
<td>*M-35 B Combo unit (Ch 3 output only)</td>
<td>99.00</td>
<td>99.00</td>
</tr>
<tr>
<td>*M-35 B Combo unit with WavSync</td>
<td>109.00</td>
<td>109.00</td>
</tr>
</tbody>
</table>

Check our prices on Scientific Atlanta Units!

<table>
<thead>
<tr>
<th>ITEM</th>
<th>1</th>
<th>10 OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCA 36 Channel Converter (Ch 3 output only)</td>
<td>29.00</td>
<td>58.00</td>
</tr>
<tr>
<td>Panasonic Wireless Converter (our best buy)</td>
<td>88.00</td>
<td>99.00</td>
</tr>
<tr>
<td>400 or 450 Converter (manual fine tune)</td>
<td>88.00</td>
<td>99.00</td>
</tr>
<tr>
<td>Jerrold 400 Combo</td>
<td>168.00</td>
<td>168.00</td>
</tr>
<tr>
<td>*Jerrold 400 Hand Remote Control</td>
<td>29.00</td>
<td>29.00</td>
</tr>
<tr>
<td>*Jerrold 450 Combo</td>
<td>199.00</td>
<td>199.00</td>
</tr>
<tr>
<td>*Jerrold 450 Hand Remote Control</td>
<td>29.00</td>
<td>29.00</td>
</tr>
<tr>
<td>Jerrold SB-Add-On</td>
<td>88.00</td>
<td>88.00</td>
</tr>
<tr>
<td>*Jerrold SB-Add-On with Trimeode</td>
<td>99.00</td>
<td>99.00</td>
</tr>
<tr>
<td>*M-35 B Combo unit (Ch 3 output only)</td>
<td>99.00</td>
<td>99.00</td>
</tr>
<tr>
<td>*M-35 B Combo unit with WavSync</td>
<td>109.00</td>
<td>109.00</td>
</tr>
</tbody>
</table>
BUILD this five-digit panel meter and square-wave generator including an ohms, capacitance and frequency meter. Detailed instructions $2.50. BAG- NALL ELECTRONICS, 179 May, Fairfield, CT 06430.

CATALOG: hobby/broadcasting 1750 meters/hm: CB: transmitters, antennas, scramblers, bugging devices, more! PANAXIS, Box 130-F12, Paradise, CA 95902.

CRYSTAL, radio sets, plans, kits, catalog $1.00. MIDCO, 660 North Dixie Highway, Hollywood, FL 33020.

PROJECT TV: Convert your TV to project 7 foot picture. Results comparable to $2,500 projectors. Total cost less than $300. Plans and kits. Fire Mountain, P.O. Box 3320, Stone Mountain, GA 30086. (404) 493-1258.

RADIO-ELECTRONICS

STANGE stuff! Plans, kits, new items. Build satellite dish $50.00. Descramblers, buses, adult toys. Information on all photo packages $1.00, refundable. RIO CORPORATION, Box 212, Lowell, NC 28098.

DETECTIVES, experimenters. Exciting new plans. Hard-to-find micro and restricted devices. Large catalog $5.00, refundable on 1st order. WILSON, PO. Box 5504, Augusta, GA 30906.

VIDEOCIPHER II manual 120 + pages. Oak Grove, OR. $27.45. Both $49.95. Plans, kits, enciphering books. Catalog $2.00. MICRO- TRONICS, PO Box 6426, Yuma, AZ 85364-0840.

NOVELTY type electronics projects for the gadgeteer. Unusual, fascinating, and fun. Free information on 125-ELECTRONICS, PO Box 1612, Destin, FL 32541.

PLANS. Car radio amplifiers. 50W. 100W. 200W. per channel. Plans for all $10.00 complete. DBS, PO Box 261632, Tampa, FL 33683.

SELECT TV patents plus complete explanations of authorization, polarity status, audio, sync modifications $14.00. SIGNAL, Box 2512-R. Cuiver City, CA 90231.

PLANS: solar, wood, differential thermostat; wood-stove audible blower control, microprocessor AC DC controller, auto-temple alarm, VLF receiver $5.00 each. AUTO- HIGH CONTROL SYSTEMS, 523 W. Durham, Cary, NC 27511.
If you would like to know more about these Tenma products, ask for our free catalog...
Call TOLL-FREE 1-800-543-4330
In Ohio call 1-800-762-4315
In Alaska or Hawaii 1-800-858-1849

Earth Shattering Products

#72-370 Tenma LCR Meter
- Measures inductance from 1µH-200H in six ranges
- Measures capacitance from 1pF-200µF in seven ranges
- Measures resistance from 0.1ohm-20Mohm in seven ranges
- 3½ digit LCD display
- Fuse protected
- Low battery indicator
- Comes complete with test leads, carrying case and owners manual

#72-445 Tenma Compact DMM/Logic Probe
- 3½” shock-mounted LCD display
- Transistor gain and diode test
- Audible continuity test
- Overload protection
- Low battery indicator
- Comes complete with test leads, carrying case and owners manual

#72-040 Tenma Capacitance Meter
- 3½ digit LCD display
- Zero adjustment
- In or out of circuit measurements
- Fuse protected
- Low battery indicator
- Comes complete with test leads, carrying case and owners manual

#72-050 Tenma 3½ Digit LCD Multimeter
- Transistor gain and diode test
- 10Mohm input impedance
- AC and DC current up to 10A
- Low battery indicator
- Overload protection
- Comes complete with test leads, carrying case and owners manual

#72-045 Tenma Combination DMM/Capacitance Meter
- Measures capacitance from 1pF-200µF
- 3½ digit LCD display
- Transistor gain and diode test
- Audible continuity test
- AC and DC current up to 10A
- Resistance up to 20Mohm
- Overload protection
- Auto-polarity
- Comes complete with test leads, carrying case and owners manual

#72-058 Tenma Autorange DMM
- 3½ digit LCD display
- 10Mohm input impedance
- Auto manual range selector
- Audible continuity tester
- AC and DC current up to 10A
- Switchable LC/Hi power ohms for in-circuit resistance tests
- Overload protection
- Low battery indicator
- Auto-polarity
- Comes complete with test leads, carrying case and owner’s manual

#72-060 Tenma Compact DMM
- 3½” shock-mounted LCD display
- Transistor gain and diode test
- Overload protection
- Low battery indicator
- Comes complete with test leads and owner’s manual

#72-075 Tenma Rotary Dial DMM
- AC and DC current up to 20A
- 10Mohm input impedance
- Overload protection
- Auto-polarity
- Low battery indicator
- Comes complete with test leads, carrying case and instructions manual

#72-430 Tenma True RMS DMM/Frequency Counter
- 4½ digit 1CD display
- True RMS AC voltage and current measurement
- 10Mohm input impedance
- Frequency counter
- Data hold
- Audible continuity test
- AC and DC current measurements up to 10A
- Overload protection
- Diode test
- Auto-polarity
- Comes complete with test leads, carrying case and owner’s manual

Note: All products shown have a 1 year limited warranty.

MCM ELECTRONICS
858 E. CONGRESS PARK DR.
CENTERVILLE, OH 45459
A PREMIER Company
SOURCE NO. RE-39

CIRCLE 87 ON FREE INFORMATION CARD

DECEMBER 1987
SATELLITE TV

SATELLITE TV receiver kits! LNA? Instructions! Schematics! Catalog $1.00 (refundable). XANDI ELECTRONICS, Box 25647, Dept. 21Y, Tempe, AZ 85282.

CABLE TV Secrets—the outlaw publication the cable companies tried to ban. HBO, Movie Channel, Showtime, descramblers, converters, etc. Suppliers list included $8.95. CABLE FACTS, Box 711-R, Pataskala, OH 43062.

DESCRIPTABLE Build our low cost satellite TV video only descrambler for all major movies and sports. Uses all Radio Shack parts. Order PC board and instructions by sending check, money order for $35.00 U.S. funds to VALLEY MICROWAVE ELECTRONICS, Bear River, Nova Scotia, Canada, BOS-1800. (902) 467-3757.

SEE "after dark" with TELESE-MAST assortment #301 (October 86 article) printed circuit, IC's, transistors, diodes. $25.00. Shipping $3.00. JIM RHODES, INC., P.O. Box 3421, Bristol, TN 37625.

DESCRIPTABLES for movies, music, $149 video only, $399 complete. Catalog $4. SKYWATCH, 238 Davenport Road, Toronto, Ontario, Canada. MSR-136.
PERSONAL computer owners can earn $1000 to $5000 monthly selling simple services part time. Free list of 100 services. A.I.M.J.K., Box 60369, San Diego, CA 92108-8369.

PROJECT TV: Make $553 assembling projectors, easy. Results comparable to $2,500 projectors. Total cost less than $30.00. Plans, 8 lens and dealers' information $20.50. Illustrated information free...MARCOMA-GDX, Washington Crossing, PA 18977. Creditcard orders 24hrs. (215) 736-2860

CRT rebuilds Sony color tubes other CRT SYSTEMS. 633 North Semoran, Orlando, FL 32807. Call (305) 275-9543.

MICRO-Electronic engineer to design and manufacture. JPH, 4218 Bunkier Hill, Bettendorf, IA 52722. (319) 355-5292.

WANTED

INVENTORS! AIM wants ideas, inventions, new products, improvements on existing products. We present ideas to manufacturers. Confidentiality guaranteed. Call toll free 1-(800) 225-5800 for information kit.

INVENTIONS. ideas, new products wanted! Industry presentation national exposition. Call free 1-(800) 288-IDEA. Canada. 1-(800) 528-6060 X837.

WANTED excess inventories of I.C. S disk drives, circuit boards, computers, etc. WESTERN TECH. (818) 882-1355 (CA).

INVENTORS

INVENTORS! Can you patent and profit from your idea? Call AMERICAN INVENTORS CORPORATION! Free information. Over a decade of service. 1-(800) 338-5656. In Massachusetts or Canada call (413) 566-3753.

LEARN TV/VCR REPAIR

Now you can train at home in spare time for a money-making career as a TV/VCR Repair Specialist. No previous experience necessary. No need to quit your job or school. Everything is explained in easy-to-understand language with step-by-step drawings, diagrams and photos. We show you how to troubleshoot and repair video cassette recorders and TV sets. How to handle customer relations and shop work. Almost any brand of television or VCR Tools are included with your course so you can get hands-on practice as you go. You get your own step-by-step Study Guide with free facts about the exciting opportunities in TV/VCR repair and how to get started. Only $29.95. Send for free book on this great career. MAIL COUPON TODAY.

ICS SCHOOL OF TV/VCR REPAIR. Dept. DE07, Scranton, Pennsylvania 18515.

Receive full information and color brochure on how you can earn $1000 to $5000 per month as a TV/VCR Repair Specialist. No previous experience necessary. No need to quit your job or school. Job training is easy to understand language with step-by-step drawings, diagrams and photos. We show you how to troubleshoot and repair video cassette recorders and TV sets. How to handle customer relations and shop work. Send for free book. MAIL COUPON TODAY.

INVENTORS!
CABLE TV TURN-ON'S

"TURN-ON" boards & kits for Jerrold 400; Jerrold 450 (all models—no internal modification). Tocom 5541A & 5691. Special requests no problem. Let us know what make and model you are interested in. Fully guaranteed. Call or write for information and prices. VIDEO SOLUTIONS, 3838 E. Grant, Suite 236, Tucson, AZ 85712. (602) 323-6072.

VIDEO TAPE COPYGUARD

Eliminate the latest copyguard problems units from $5999 to $16999
Deluxe Electronics (714) 994-6366
1432 Stein Way, Orange, CA 92665

THIS IS AN EXPANDED-TYPE AD WITH A TINT SCREEN. See how it jumps out on the page. To order your ad in this format calculate the cost at $4.30 per word for the expanded-type and add 25% for the tint background.

CALL FOR FREE CATALOG

TEXT TO SPEECH BOARD!
PC/XT COMPATIBLE. MAKE YOUR COMPUTER TALK!
A VERY POWERFUL AND AMAZING SPEECH CARD. USES THE NEW GENERAL INSTRUMENTS SPG256/AL2 SPEECH CHIP AND THE CT256A-2 TEXT TO SPEECH CONVERTER.

NEW!

NEW ICTESTER! $149.00

USER'S DIAL-TONE TELETYPewriter ADAPTER board "mobile"... with integral power supply... future backwards... for IBM 51x or compatible computers!

PC/XT EPROM PROGRAMMER $169

ASK ABOUT OUR NEW PAL PROGRAMMER!

2. ASSEMBLED AND TESTED. BURNED IN MANUFACTURE. $169 WITH SOFTWARE.

JUST RECEIVED: SAME AS ABOVE PROGRAMMER, BUT PROGRAMS 8 UNITS AT ONE TIME. $99.

Digital Research Computers
P.O. BOX 381450 • OUCANAVILLE, TX 75138 • (214) 225-2309

TERMS: Add $3.00 postage. We pay balance. Orders under $15 add 75¢ handling. No C.O.D. We accept Visa and MasterCard. Texas Res. add 6-1/4% Tax. Foreign orders (except Canada) add 20%. P & H. Orders over $50 add 5% for insurance.
ELECTRONICS PAPERBACKS FROM ETT

<table>
<thead>
<tr>
<th>Title</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP125 - 25 SIMPLE AMATEUR BAND ANTENNAS</td>
<td>$5.00</td>
</tr>
<tr>
<td>BP128 - 20 PROGRAMS FOR THE 2X SPECTRUM AND 16K 2X82</td>
<td>$5.75</td>
</tr>
</tbody>
</table>

- Includes with each program is a flow chart and a description of what happens.
- Notes for converting programs for use on other computers are also included.

BP235 - POWER SELECTOR GUIDE | $10.00 |

- Complete guide to semiconduc-
tor power devices.
- More than 1000 power-handling devices are included.
- They are tabulated in alpha-numeric sequence, by technical specs. Includes power diodes, Thyristors, Triacs, Power Transistors and FETs.

BP234 - TRANSISTOR SELECTOR GUIDE | $10.00 |

- Companion volume to BP235.
- Book covers more than 1400 JEDEC JIS and brand-specific devices.
- Also contains listing by case type, and electronic parameters.
- Includes Darlington transistors, high-voltage devices, high-current devices, high power devices.

BP99 - MINI-MATRIX BOARD PROJECTS | $5.00 |

- Here are 20 useful circuits that can be built on a mini-matrix board that is just 24 holes by left corner-to-left corner strips.

BP117 - PRACTICAL ELECTRONIC BUILDING BLOCKS | $1.00 |

- Oscillators, Timers, Noise Generators, Rectifiers, Comparators, Trigger devices.

BP114 - INTRO TO 68000 ASSEMBLY LANGUAGE | $16.50 |

- The 68000 is a great new breed of microprocessor.
- Programming in assembly language increases the running speed of your programs.

BP179 - ELECTRONIC CIRCUITS FOR THE COMPUTER CONTROL OF ROBOTS | $5.00 |

- Data and circuits for interfacing the computer to the robot's motors and sensors.

BP126 - BASIC & PASCAL IN PARALLEL | $4.95 |

- These two programming languages and develops programs in both languages simultaneously.

BP224 - 50 CMOS IC PROJECTS | $5.25 |

- Includes sections on multivibrators, amplifiers and oscillators, trigger devices, and special devices.

BP225 - A PRACTICAL INTRODUCTION TO DIGITAL IC'S | $4.95 |

- Many concerned with TTL devices.
- Includes several simple projects plus a logic circuit test set and a digital counter timer.

BP170 - INTRODUCTION TO COMPUTER PERIPHERALS | $5.95 |

- Shows how to use a variety of computer add-ons in a non-technical way as a possible computer peripheral.

BP227 - BEGINNERS GUIDE TO BUILDING ELECTRONIC PROJECTS | $5.00 |

- How to tackle the practical side of electronics so you can successfully build electronic projects.

BP169 - HOW TO GET YOUR COMPUTER PROGRAMS RUNNING | $5.95 |

- Shows how to identify error in program and what to do about them.

BP194 - MODERN OPTO DEVICE PROJECTS | $6.25 |

- Crammed with great projects for the experimenter includes sections on Fiber optics, passive Infrared detectors, and an assortment of miscellaneous projects.

BP180 - ELECTRONIC CIRCUITS FOR THE COMPUTER CONTROL OF MODEL RAILROADS | $6.25 |

- Easy to interface home computers to model railroad control.
- The main problem is in interfacing the computer to the system.

BP110 - HOW TO GET YOUR ELECTRONIC PROJECTS WORKING | $5.00 |

- How to find and solve the common problems that can occur when building projects.

BP33 - ELECTRONIC CALCULATOR USERS HANDBOOK | $5.75 |

- An invaluable tool for all calculator owners.
- Tells you how to get the most out of your calculator.

BP36 - 50 CIRCUITS USING GERMANIUM, SILICON & ZENER DIODES | $5.00 |

- A collection of useful circuits you'll want in your library.

BP37 - 50 PROJECTS USING RELAYS, SCRs & TRIACS | $5.00 |

- Build priority indicators, light modulators, warning devices, light dimmers and more.

BP39 - 50 FET TRANSISTOR PROJECTS | $5.50 |

- RF amplifiers, test equipment, timers, receivers, tone controls etc.

BP42 - SIMPLE LED CIRCUITS | $5.00 |

- A large selection of simple applications for this simple electronic component.

BP127 - HOW TO DESIGN ELECTRONIC PROJECTS | $5.75 |

- Helps the reader to put together standard circuit blocks with a minimum of trial and error.

BP212 - AUDIO AMPLIFIER CONSTRUCTION | $5.75 |

- Construction details for preamps and power amplifiers up through a 100-watt DC-coupled FET amplifier.

BP92 - CRYSTAL SET CONSTRUCTION | $5.00 |

- Everything you need to know about building crystal radio receivers.

BP34 - PROJECTS IN OPTOELECTRONICS | $5.00 |

- Includes infra-red detectors, transmitters, modulated light transmission and photographic applications.

BP48 - ELECTRONIC PROJECTS FOR BEGINNERS | $5.00 |

- A wide range of easily constructed projects for the beginner includes some no-soldering projects.

BP49 - PCPLAR ELECTRONIC PROJECTS | $5.50 |

- Radio, audio, household and test equipment projects are all included.

BP51 - ELECTRONIC MUSIC AND CREATIVE TAPE RECORDING | $5.50 |

- Shows how you can make electronic music at home with the simplest and most inexpensive equipment.

BP56 - ELECTRONIC SECURITY DEVICES | $5.00 |

- Includes both simple and more sophisticated burglar alarm circuits using both light, infra-red, and ultrasonic devices.

BP59 - SECOND BOOK OF CMOS IC PROJECTS | $5.00 |

- More circuits showing CMOS applications. Most are of a fairly simple design.

BP72 - A MICROPROCESSOR PRIMER | $5.00 |

- We start by designing a small computer and show how we can overcome its shortcomings.

BP74 - ELECTRONIC MUSIC PROJECTS | $5.95 |

- Provides the experimenter with a variety of practical circuits including a Fuzz Box, Sustain Unit, Reverberation Unit, Tremolo Generator and more.

BP81 - AN INTRODUCTION TO RADIO DXING | $5.00 |

- How you can tune in to those amateur and commercial broadcasts from around the world in the comfort of your home.

BP94 - ELECTRONIC PROJECTS FOR CARS AND BOATS | $5.00 |

- Fifteen simple projects that you can use with your car or boat.
- All are designed to operate from 12-volt DC supplies.

SHIPPING CHARGES IN USA & CANADA

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 5.00</td>
<td>$1.00</td>
</tr>
<tr>
<td>5.01 to 10.00</td>
<td>$1.75</td>
</tr>
<tr>
<td>10.01 to 20.00</td>
<td>$2.75</td>
</tr>
<tr>
<td>20.01 to 30.00</td>
<td>$3.75</td>
</tr>
<tr>
<td>30.01 to 40.00</td>
<td>$4.75</td>
</tr>
<tr>
<td>40.01 to 50.00</td>
<td>$5.75</td>
</tr>
<tr>
<td>50.01 and above</td>
<td>$7.00</td>
</tr>
</tbody>
</table>

SORRY No orders accepted outside of USA & Canada

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total price of merchandise</td>
<td>$</td>
</tr>
<tr>
<td>Sales Tax (New York State Resident only)</td>
<td>$</td>
</tr>
<tr>
<td>Shipping (see chart)</td>
<td>$</td>
</tr>
<tr>
<td>All payments must be in U.S. funds</td>
<td>Total Enclosed</td>
</tr>
</tbody>
</table>
NEC V20 & V30 Chips

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7402</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7404</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7406</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7409</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7411</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7412</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7414</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7417</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7424</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Microprocessor Components

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LS00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LS04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LS06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LS07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LS08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LS13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LS18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LS30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LS34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LS38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74HC30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74HC32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74HC34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74HC37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74HC39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74HC40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SATELLITE TV DESIGN & COMPONENTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Microprocessor Sale!

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

74HC — CMOS TTL

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

74C — CMOS

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Linear

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I.C. Sockets

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCING JAMECO'S NEW COMPUTER KITS!!

Jameco's IBM™ AT Compatible Kit! Mini-286 6/8/10/12MHz Kit!

JE1008 IBM™ AT Compatible Kit. $799.95

FREE! QUICKSOFT PC WRITE WORD PROCESSING SOFTWARE INCLUDED!

Regular List $557.10

SAVE $77.15

Jameco’s 4.77/8MHz Turbo IBM Compatible Kit. Same as JE1004 except comes with 640K RAM, JE1001 (Turbo) 4.77/8MHz motherboard, JE1071 multi I/O with controller and graphics, and AMBER monitor.

SAVE $70.70 Regular List $670.65

JE1004 (IBM™ PC/XT Compatible Kit). $479.95

IBM Compatible Motherboards

4.77/8MHz operation (Turbo only).

- 8087 Math Co-processor capability.

- IC-25 ROM included.

JE1001 4.77/8MHz $429.95

JE1007 4.77/8MHz $499.95

Save $9.95

Additional Add-Ons Available!

Color Graphics Card for PC/XT/AT

- Text 40 x 80 x 256 Graphics 320 x 240 x 8
- 20 Parallel Printer Port. Manual included

JE1052 $49.95

EQA Card for PC/XT/AT

- Graphics: 760 x 348 16 out of 64 colors
- Manual included

JE1055 $149.95

I/O Cards for PC/XT/AT

- Printer Rs232 Port

JE1060 $59.95

JE1065 $59.95

Multi I/O w/Controller & Graphics for PC/XT

- Printer Rs232 Port

JE1071 $119.95

U.S. Funds Only
Shipping: Add 5% plus $1.50 Insurance
California Residents: Add 6%, 6½% or 7% Sales Tax
FAX 415-592-2503 12/87

Jameco's IBM™ 1200/30 GB Hard Drive Disk Drives

JE1020 (300 Drive PC/XT/AT) $89.95

JE1022 (120GB AT Compatible) $109.95

Data Books

30003 National Linear Data Book (82) $19.95
30005 Logic Data Book - Vol. II (84) $19.95
30006 Internal Data Book (87) $14.95
21398 CMOS Cookbook (86) $14.95
21650 Intel Memory Handbook (87) $17.95
23842 Intel Microprocessor datab ets (87) $24.95

MUFFIN/SPRITE-STYLE FANS

TA4505 $11.95
TA245 $11.95
SU2A1 $11.95
EAGLE (Strips 1 1/2 x 1/2) $7.95

ADD12 (Disk Drive II, etc.) $99.95

Additional Apple Compatible Products Available

NEW!

Seagate 20, 30 & 40 MB Half Height Hard Disk Drives

JE1001 $249.95

NEW!

Jameco PC/XT & AT Compatible Disk Drives

JE1020 (Pictures) $89.95

JE1022 (120MB, AT Compatible) $109.95

For Data Sheets - $5.00 each
Prices Subject to Change
Send $1.00 Postage for a FREE 1988 CATALOG
Telex: 176043

© 1987 Jameco Electronics

CIRCLE 114 ON FREE INFORMATION CARD
MONITOR STANDS
MODEL MS-100......$12.95
- Tilts & Swivels - Sturdy Plastic Construction
MODEL MS-200......$39.95
- Tilts and Swivels - Built-in surge suppressor
- Built in Power Station Independently controls up to 5 120 Volt AC outlets - UL Approved

NASHUA DISKETTES
BOXES OF 10
5¼" DS/DQ SOFT SECTOR...
$9.95
5¼" DS HD 120...
$49.98
3½" DS/DQ 720...
$15.98

5¼" DISKETTE STORAGE FILE...
$8.95
- Holds 70 5¼" Floppies
- Sturdy, Atractive Smoked Acrylic Case
- Complete with hinged Dividers
- Version for 3½" Floppies Available...
$9.95

2 WAY SWITCH BOXES...
$38.95
- Connects 2 Printers to 1 Computer or Vice Versa
- Serial & Parallel Models Available
- All Lines Switched
- Gold Plated Connectors & Quality Switches

6" INTERFACE CABLES
MEETS FCC REQUIREMENTS, 100% SHIELDED
IBM COMPATIBLE PARALLEL PRINTER...
$9.95
CENTRONICS (MALE TO FEMALE)...
$15.95
CENTRONICS (MALE TO MALE)...
$14.95
IBM COMPATIBLE MODEM CABLE...
$7.95
RS232 SERIAL (MALE TO FEMALE)...
$9.95
RS232 SERIAL (MALE TO MALE)...
$9.95
COILED KEYBOARD EXTENDER...
$7.95

JOYSTICK...
$19.95
- Set X & Y Axis for Auto or Free Movement
- Fire Button for Use with Game Software
- Includes Adapter Cable for IBM

SWITCHING POWER SUPPLIES
PS-135...
$59.95
- For IBM XT Compatible
- UL App. 135 Watts
- 5V 5A, 12V 2A
- One Year Warranty
PS-150...
$68.95

PS-200...
$89.95
- For IBM AT Compatible
- 200 Watts
- 5V 22A, 12V 8A
- 8V 1A, 12V 3A
- One Year Warranty

MONITORS
SAMSUNG MONOCROME
- IBM Compatible TTL Input
- 12 Non-Glare Low Distortion amber screen
- 7.70 x 350
- Swivel Base
- 1 Year Warranty...
$119.95

MULTISYNC BY NEC...
$549.95
- Original CGA, EGA, P ELA compatible monitor
- Auto Frequency Adjustment
- Resolution as high as 800 x 600

EGA BY CASPER...
$399.95
- 15.75 21.85 KHz scanning frequencies
- Res. 640 X 200, 320
- 14 Black matrix screen
- 16 Colors from 64

RGB BY CASPER...
$279.95
- Color Green Screen Switch
- Res. 640 X 240
- RGB IBM compatible
- 14 Non-Glare Screen
- 35mm Dot Pitch
- Cable for IBM PC included

MONOCROME BY HYUNDAI...
$69.95
- IBM compatible TTL Input
- 12 Non-Glare amber screen
- Attractive casing with a tilt swivel base

20MB HARD DISK ON A CARD
$349
- Saves Space and Reduces Power Consumption
- Ideal for PC's with Full Height Floppies
- leaves room for a half length card in adjacent Slot

RITE MAN II PRINTER
$219.95
- 160 CPS Draft, 32 CPS Nfld Mode
- Supports Epson IBM Graphics
- 9 x 9 Dot Matrix
- Friction and Pin Feeds
- Variable line Spacing & Pitch
- IBM Compatible Printer Cable
- Replacement Ribbon Cartridge
- $9.95

DISK DRIVES
5½" SEAGATE HARD DISK DRIVES
ST-225...
$259
HALF HEIGHT 20MB 60ms...
ST-238...
$299
HALF HEIGHT 30MB 60ms (RLL)...
ST-251...
$469
HALF HEIGHT 40MB 40ms...
ST-277...
$649
HALF HEIGHT 60MB 40ms...
ST-403...
$559
FULL HEIGHT 30MB 40ms...
ST-409...
$589
FULL HEIGHT 80MB 28ms...

1/2 HEIGHT FLOPPY DISK DRIVES
5¼" TEAC FD-555 D/D 360K...
$109.95
5¼" TEAC FD-555 D/D 720K...
$129.95
5¼" TEAC FD-555 D/D 1.2MB...
$134.95
5¼" MITSUBISHI D/D 1.2MB...
$119.95
5¼" DS/DQ 360K...
$99.95
3¼" MITSUBISHI D/D (AT OR XT)...
$129.95

DISK DRIVE ACCESSORIES
TEAC SPECIFICATION MANUAL...
$5.00
TEAC MAINTENANCE MANUAL...
$7.95
2½" HT MOUNTING HARDWARE FOR IBM...
$2.95
MOUNTING RAILS FOR IBM AT...
$4.95
"Y" POWER CABLE FOR 5¼" FDD...
$2.95
5¼" FDD POWER CONNECTORS...
$1.19

DRIVE ENCLOSURES WITH POWER SUPPLIES
CAP-25VS...
$49.95
DUAL SLIMLINE FOR 5¼"...
$69.95
CAP-1FHS...
FULL HEIGHT FOR 5¼"...
$69.95
CAP-2BV...
DUAL SLIMLINE FOR 3½"
$209.95
CAP-2FHS...
DUAL FULL HEIGHT FOR 3½"...
$219.95

EASY DATA MODEMS
All models feature auto dial answer/repeat on busy power up self test, touch tone or pulse dialing, built-in speaker, Hayes and Bell Systems 103 & 212A compatible, full or half duplex, PC Talk III Communications software with internal models and more.

TOLL FREE
U.S. & CANADA
(800) 538-5000

INTERNAL
12H...
$69.95
24B...
$179.95

EXTERNAL
(NO SOFTWARE INCLUDED)
12D...
$119.95
24D...
$219.95

COMPUTER CASES
Attractive sturdy steel cases of the popular sized motherboards and include speakers, fan(s), expansion slots and all necessary hardware.

XT STYLE FLIP-TOP...
$34.95
XT STYLE SLIDE-TOP...
$39.95
AT STYLE SLIDE-TOP...
$89.95
- Front Panel Keylock and Led Indicators
JR. AT STYLE FLIP-TOP...
$149.95
- Includes 180 Watt Power Supply
- Front Panel Keylock and Led Indicators

Visit our retail store located at 1256 S. Bascom Ave. in San Jose, (408) 947-8881
PLEASE USE YOUR CUSTOMER NUMBER WHEN ORDERING
TERMS: Minimum order $10.00. For shipping and handling include $2.50 for UPS Ground and $10.00 for UPS Air, Orders over $100 and tonnage orders qualify for additional shipping charges—please contact our sales department for the amount. CA. residents must include applicable sales tax. All merchandise is warranted for 90 days unless otherwise stated. Prices are subject to change without notice. We are not responsible for typographical error. We reserve the right to substitute manufacturer. All merchandise subject to prior sale. A full copy of our terms is available upon request. Items pictured may only be representative.
MCT-EGA
MCT-FDC
MCT-EMS
MCT-MF
MCT-M6MIO
MCT-MIO
MCT-IO
MCT-ATMF
MCT-ATM
MCT-ATMB
MCT-ATMCK
MCT-ATRAM
MCT-ATEMS
MCT-FDC
MCT-HOC
MCT-FDC-1.2
MCT-FH
MCT-ATFII
MCT-EGA
MCT-CO
MCT-MG

INTERFACE CARDS
FROM MODULAR CIRCUIT TECHNOLOGY
MULTIFUNCTION CARDS

MCT-MF MULTIFUNCTION $79.95
- 0.284K DYNAMIC RAM USING $1664
- SERIAL PARALLEL GAME PORTS, CLOCK, CALENDAR

MCT-M6MIO MONOPHONICS I/O $119.95
- TOTAL SYSTEM CONTROL FROM A SINGLE SLOT
- 2 FLOPPY CONT., SERIAL, PARALLEL GAME PORT, CLOCK, CAL.
- RUN COLOR MONOGRAM SOFTWARE ON A MONOCHROME MONITOR

MCT-MIO MULTI I/O FLOPPY $79.95
- A PERFECT COMPANION FOR OUR MOTHERBOARDS
- SERIAL, PARALLEL, GAME PORT, CLOCK, CALENDAR
- SUPPORTS UP TO 2 360K FLOPPIES, 720K WITH DOS 3.2
- MID-SERIAL 2nd SERIAL PORT $159

MCT-IO MULTI I/O CARD $59.95
- USE WITH MCT-FAT FOR A MINIMUM OF SLOTS USED
- SERIAL PORT, CLC, CALENDAR WITH BATTERY BACK-UP
- PARALLEL PORT ADDRESSABLE AS LPT1 OR LPT2
- IO-SERIAL 2nd SERIAL PORT $159

MCT-ATMF AT MULTIFUNCTION $139.95
- SUPPORTS UP TO 2 DEVICES OF RAM AND I/O AT
- USER EXPANDABLE TO 1 MB OF MEMORY (ZERO K INSTALLED)
- INCLUDES SERIAL PORT AND PARALLEL PORT
- ATMF-SE 2nd SERIAL PORT $59.95

MCT-ATM AT MULTI I/O $59.95
- USE WITH MCT-ATMF FOR A MINIMUM OF SLOTS USED
- SERIAL, PARALLEL, GAME PORTS
- USES 16450 SERIAL SUPPORT CHIPS FOR HIGH SPEED OPERATION
- ATO-SERIAL 2nd SERIAL PORT $29

MEMORY CARDS
576K RAM CARD $59.95
- A CONTINUOUS MEMORY SOLUTION WITH A SHORT PORT
- USER SELECTION OF CONFIGURATION AMOUNTS UP TO 576K USING 64K & 256K RAM CHIPS (ZERO K INSTALLED)

MCT-EMS EXPANDED MEMORY CARD $129.95
- MB OF LOTUS, INTEL, MICROSOFT COMPATIBLE MEMORY FOR XT
- CONFORMS TO XT/AT SPECIFICATIONS
- USER EXPANDABLE TO 2 MB
- EXPANDED CONVENTIONAL MEMORY
- RAMDISK AND SPOOLER

MCT-ATRAM AT 4 MB RAM CARD $149.95
- WHEN USERS DREAM A MB OF MEMORY FOR AT
- BACKFIT TO 486, 586, DESKTOP ADDRESS
- UP TO 2 MB ON CARD, 4 MB WITH OPTIONAL PIGGYBACK BOARD
- ATO-ATRAM-2MC PIGGYBACK BOARD (NO MEMORY) $129.95

MCT-ATEMS AT COMPUTER EMCS $139.95
- CAN BE USED FOR FOR Forms AND CONVENTIONAL MEMORY
- CONFORMS TO LOTUS, INTEL EMCS
- USER EXPANDABLE TO 2 MB
- RAMDISK, PRINT SPOOLER AND LM. EMCS SOFTWARE INCLUDED

DRIVE CONTROLLERS
FLOPPY DISK CONTROLLER $29.95
- SUPPORTS 1.2MB, 1.44MB & 2.88MB FLOPPY DRIVES
- INTERFACES UP TO 4 FDD'S TO AN IBM PC OR COMPATIBLE
- SUPPORTS BOTH D0, D1 AND D0, D2, D3

MCT-HOC HARD DISK CONTROLLER $79.95
- SUPPORTS 2048 DRIVES OF ALL SIZES AND VOLTAGES
- SUPPORTS 16 DRIVE SIZES INCLUDING 50, 60, 80, 160, 320, 640, 1.2GB, 2.2GB, 3.5GB
- EXTENDS UP TO 32 HARD DRIVES

MCT-FDC 1.2MB FLOPPY CONTROLLER $69.95
- FLOPPY DISK CONTROLLER
- CURRENTLY SUPPORTS A SINGLE FLOPPY DRIVE
- SUPPORTS 2 DRIVES, BOTH MAY BE 360K OR 1.2MB
- SUPPORTS A FLOPPY DRIVE ONCE TO TWO AT A TIME

MCT-FH FLOPPY HARD CONTROLLER $139.95
- SYSTEM STARRS FOR 8 DRIVES SUPPORTS 2 FDD'S WITH 32MB OR LESS DATA
- INTERFACES UP TO 2 FDD's, 2 HDD's, CABLING FOR 2 FDD's & 1 HDD
- SUPPORTS BOTH D0, D1 AND D3

MCT-ATFII AT FLOPPY/HARD CONTROLLER $149.95
- FLOPPY/HARD DISK CONTROLLER IN A TRUE AT DESIGN
- SUPPORTS UP TO 360K, 720K, 1.2MB FDD's
- AS WELL AS 2 HDD U.SING STANDARD CONTROLLER TABLES

DISPLAY CARDS
ENHANCED GRAPHICS ADAPTOR $149.95
- 256K OF VIDEO RAM ALLOWS 640 X 350 IN 15 OF 16 COLORS
- COMPATIBLE WITH COLOR AND MONOCHROME ADAPTORS

MCT-CO COLOR GRAPHICS ADAPTOR $49.95
- 384MB X 256M ADAPTOR CAN ADAPT IN A STANDARD AT FORMAT
- SHORT SLOT SUPPORTS RGB COLOR & COMPOSITE MONOCHROME
- 640, 320, 90 RESOLUTION LIGHT PEN INTERFACE

MCT-MG MONOCHROME GRAPHICS $59.95
- CLEARLY SUPPORTS AT/ATX SUPPORTS LOTUS 127
- SOFTWARE DRIVER ALLOWS COLOR GRAPHICS PROGRAMS TO RUN ON A MONOCHROME MONITOR
- PARALLEL PRINT PORT

IBM COMPATIBLE MOTHERBOARDS
FROM MODULAR CIRCUIT TECHNOLOGY

MCT-TURBO TURBO 4.77/3 MB $10995
- 4.77 OR 8MB MEMORY USING 8087 & 2 OPTION
- SUPPORTS DUPLICATE PORT & RELIABILITY DURING BUS 32
- CHOICE CF NORMAL/TURBO MODE SOFTWARE SELECT PROCESSOR SPEED

MCT-XTMB STANDARD MOTHERBOARD $9795
- 5 SLOT (2 EIGHT BIT, 6 SIXTEEN BIT) AT MOTHERBOARD
- HARDWARE SELECTION OF 8 OR 16 MB RAM
- 1 WAIT 5" AT
- KEYLOCK SUPPORTED, RESET SWITCH, FRONT PANEL LED INDICATOR
- Sockets for 1 MB RAM AND 80287
- BATTERY BACKED CLOCK

MCT-BATMB MINI 8086 $429.95
- REPLACE VENT BOARD FOR XT STYLE CHASSIS
- OPERATE AT 4.77 MB WITH UP TO 5MB ON BOARD
- SOFTWARE AUTOSENSE IBM COMPATIBLE
- SOCKET FOR 80287 WITH COPROCESSOR
- GENERAL PURPOSE ADAPTOR
- 8 SLOTS, 8 BIT, EIGHT BIT, SIXTEEN BIT
- CHOOSE MOTHERBOARD, COMPUTER SYSTEM CHIP SET FOR RELIABILITY AND SMALL SIZE

WHY BUY A SYSTEM FROM JDR?
- BUILD YOUR OWN AND SAVE
- QUALITY COMPONENTS AT COMPETITIVE PRICES
- PROFESSIONAL TECHNICAL SUPPORT IN THE U.S.
- AND CANADA
- MONEY BACK GUARANTEE (ASK FOR DETAILS)
- MORE THAN 10,000 SOLD

BUILD YOUR OWN 256K XT COMPATIBLE
- MOTHERBOARD
- 256K OF MEMORY
- 135 WATT POWER SUPPLY
- FLIP TOP CASE
- 5060 STYLE KEYBOARD
- 360K FLOPPY DRIVE
- DRIVE CONTROLLER
- MONOCHROME MONITOR
- GRAPHICS ADAPTOR

FOR ONLY $49995
ANYONE CAN BUILD A SYSTEM IN ABOUT 2 HOURS USING A SCREWDRIVER AND OUR EASY-TO-FOLLOW INSTRUCTIONS!

DEVELOPMENT TOOLS
FROM MODULAR CIRCUIT TECHNOLOGY

MCT-BPR PROGRAMMER $12995
- PROGRAMMER FOR 8085, 8086, 8088, 80286, 80287, 80386 & 80486
- SUPPORTS VARIOUS PROGRAMMNC FORMATS AND VOLTAGES
- SPIT OR COMPILE CONTENTS OF SEVERAL EPROMS
- SUPPORTS 6 EPROM SIZES
- READ, WRITE, COPY, ERASE, VERIFY AND WRITE TO EPROMS

MCT-EPROM-4 4 MEG PROGRAMMER $19995

MCT-EPROM-10 10 MEG PROGRAMMER $29995

MCT-PAL PAL PROGRAMMER $26995

MCT-MP PROCESSOR PROG. $19995

CALL FOR VOLUME QUOTES

CIRCLE 183 ON FREE INFORMATION CARD
MULTIPURPOSE MELODY GENERATOR
The multipurpose melody generator is made with the same (C907) technology used in the popular Yamaha digital synthesizer organs. The C907 is a high-fidelity digital signal processor that can generate a variety of sounds, including voices and instruments. The generator is easy to use and can be programmed to play different melodies.

TA-50A/B/C

COLOR LIGHT CONTROLLER TY-23B

As a result of the advanced technology used, this unit sports a variety of advanced features, such as a melody mode and a lead bypass function. The melody mode allows you to play a pre-programmed melody, while the lead bypass function lets you bypass the melody and play the actual notes. Total power output is 0.0001A at 1000V.

COLOR TA SOA, B

TA-1000A

MULTIPURPOSE MELODY GENERATOR
TA-1000A

100W DYNAMIC CLASS "A" MAIN POWER AMPLIFIER

FREE 1988 MARK V CATALOG

TELEPHONE: 20 WAYS TO USE YOUR NEW COLOR TV

MERRY CHRISTMAS

SUPERIOR ELECTRONIC ROULETTE

PRE MAIN POWER AMPLIFIER

BUILD A 160 W

HI-FI STEREO AMP

YOURSELF

TALKING CLOCK

Clocks that really tell time

OFFICE HOURS: (PACIFIC TIME)

3:00 MON.-FRI. 9:30 to 5:00 SAT. 10:00 to 5:00

PROFESSIONAL COLOR LIGHT CONTROLLER

SM-328

Features:
- 4-way equalizer
- 3-band filter
- 2-band filter
- 1-band filter
- 0-band filter
- Stereo sound
- Mono sound
- Hi-fi sound
- Low-fi sound

Features:
- 0-band filter
- 1-band filter
- 2-band filter
- 3-band filter
- 4-band filter
- Stereo sound
- Mono sound
- Hi-fi sound
- Low-fi sound

MARK V ELECTRONICS INC.
248 EAST MAIN STREET
SUITE 100
ALHAMBRA, CA 91801
TELEPHONE: 317-6194 MARK 6

1-800-423-3483
TOLL FREE

PROFESSIONAL COLOR LIGHT CONTROLLER

SM-328

Features:
- 4-way equalizer
- 3-band filter
- 2-band filter
- 1-band filter
- 0-band filter
- Stereo sound
- Mono sound
- Hi-fi sound
- Low-fi sound

Features:
- 0-band filter
- 1-band filter
- 2-band filter
- 3-band filter
- 4-band filter
- Stereo sound
- Mono sound
- Hi-fi sound
- Low-fi sound

MARK V ELECTRONICS INC.
248 EAST MAIN STREET
SUITE 100
ALHAMBRA, CA 91801
TELEPHONE: 317-6194 MARK 6

1-800-423-3483
TOLL FREE

MANUFACTURER'S WAREHOUSE

MARK V ELECTRONICS INC.
248 EAST MAIN STREET
SUITE 100
ALHAMBRA, CA 91801
TELEPHONE: 317-6194 MARK 6

1-800-423-3483
TOLL FREE

PROFESSIONAL COLOR LIGHT CONTROLLER

SM-328

Features:
- 4-way equalizer
- 3-band filter
- 2-band filter
- 1-band filter
- 0-band filter
- Stereo sound
- Mono sound
- Hi-fi sound
- Low-fi sound

Features:
- 0-band filter
- 1-band filter
- 2-band filter
- 3-band filter
- 4-band filter
- Stereo sound
- Mono sound
- Hi-fi sound
- Low-fi sound

MARK V ELECTRONICS INC.
248 EAST MAIN STREET
SUITE 100
ALHAMBRA, CA 91801
TELEPHONE: 317-6194 MARK 6

1-800-423-3483
TOLL FREE

PROFESSIONAL COLOR LIGHT CONTROLLER

SM-328

Features:
- 4-way equalizer
- 3-band filter
- 2-band filter
- 1-band filter
- 0-band filter
- Stereo sound
- Mono sound
- Hi-fi sound
- Low-fi sound

Features:
- 0-band filter
- 1-band filter
- 2-band filter
- 3-band filter
- 4-band filter
- Stereo sound
- Mono sound
- Hi-fi sound
- Low-fi sound

MARK V ELECTRONICS INC.
248 EAST MAIN STREET
SUITE 100
ALHAMBRA, CA 91801
TELEPHONE: 317-6194 MARK 6

1-800-423-3483
TOLL FREE

PROFESSIONAL COLOR LIGHT CONTROLLER

SM-328

Features:
- 4-way equalizer
- 3-band filter
- 2-band filter
- 1-band filter
- 0-band filter
- Stereo sound
- Mono sound
- Hi-fi sound
- Low-fi sound

Features:
- 0-band filter
- 1-band filter
- 2-band filter
- 3-band filter
- 4-band filter
- Stereo sound
- Mono sound
- Hi-fi sound
- Low-fi sound

MARK V ELECTRONICS INC.
248 EAST MAIN STREET
SUITE 100
ALHAMBRA, CA 91801
TELEPHONE: 317-6194 MARK 6

1-800-423-3483
TOLL FREE

PROFESSIONAL COLOR LIGHT CONTROLLER

SM-328

Features:
- 4-way equalizer
- 3-band filter
- 2-band filter
- 1-band filter
- 0-band filter
- Stereo sound
- Mono sound
- Hi-fi sound
- Low-fi sound

Features:
- 0-band filter
- 1-band filter
- 2-band filter
- 3-band filter
- 4-band filter
- Stereo sound
- Mono sound
- Hi-fi sound
- Low-fi sound

MARK V ELECTRONICS INC.
248 EAST MAIN STREET
SUITE 100
ALHAMBRA, CA 91801
TELEPHONE: 317-6194 MARK 6

1-800-423-3483
TOLL FREE

PROFESSIONAL COLOR LIGHT CONTROLLER

SM-328

Features:
- 4-way equalizer
- 3-band filter
- 2-band filter
- 1-band filter
- 0-band filter
- Stereo sound
- Mono sound
- Hi-fi sound
- Low-fi sound

Features:
- 0-band filter
- 1-band filter
- 2-band filter
- 3-band filter
- 4-band filter
- Stereo sound
- Mono sound
- Hi-fi sound
- Low-fi sound

MARK V ELECTRONICS INC.
248 EAST MAIN STREET
SUITE 100
ALHAMBRA, CA 91801
TELEPHONE: 317-6194 MARK 6

1-800-423-3483
TOLL FREE

PROFESSIONAL COLOR LIGHT CONTROLLER

SM-328

Features:
- 4-way equalizer
- 3-band filter
- 2-band filter
- 1-band filter
- 0-band filter
- Stereo sound
- Mono sound
- Hi-fi sound
- Low-fi sound

Features:
- 0-band filter
- 1-band filter
- 2-band filter
- 3-band filter
- 4-band filter
- Stereo sound
- Mono sound
- Hi-fi sound
- Low-fi sound

MARK V ELECTRONICS INC.
248 EAST MAIN STREET
SUITE 100
ALHAMBRA, CA 91801
TELEPHONE: 317-6194 MARK 6

1-800-423-3483
TOLL FREE
What's New at
AMERICAN DESIGN COMPONENTS?

"The Source" of the
electro-mechanical components
for the hobbyist.

W e warehouse 60,000 items at
AMERICAN DESIGN COMPONENTS.
expensive, often hard-to-find com-
ponents for sale at a fraction of their
original cost! You'll find every part you need—
either brand new, or removed from
equipment IFEE in excellent condi-
tion. But quantities are limited. Order
from this ad, or visit our retail show-
room and find exactly what you need
from the thousands of items on display.

OPEN MON. — Sat., 9-5
THERE'S NO RISK.
With our full 90-day warranty, any purchase can be returned for
any reason for full credit or refund.

ADAM COMPUTER
(less printer)
No wiring
necessary—fast plugs together!
Hook-up diagram included. Includes: Keyboard, 1 case
same digital data drive. Diagram included. Includes: Keyboard, 1 case
ADAM
10Mb HARD DISK DRIVE
Gives your ADAM sette digital data drive,
computer. Includes: Keyboard, printer.

15/8 FLOPPY DISKETTES
Single side single density, 16 hard
sectors. Mfr. — Xerox #118651630
Pack of 10 $9.95 New

AMERICAN'S
IBM PC/XT-
COMPATIBLE COMPUTER
Contains:
-256K RAM:
-XT/AT-Style Keyboard:
-5 1/4" Full-High Floppy Disk Drive
-10Mb Full-High Disk Drive
-ADAM
115 CFM MUFFIN®
FAN With Adjustable Speed Control
115 VAC/60 Hz., 21W., 28A.
1/4" STANDARD
7 metal blades. Dim. 3 1/4 sq. x 1 1/4 deep.

COMPLETE IN
COLECOVISION
GAME
(Factory returns — tested good!)

TIMEX-SINCLAIR 1000
& ZX-81 CASSETTES

NEON TRANSFORMER
(H-Voltage)
7300 VAC
@ 5 Ma
May be used for powering neon lights,
replacing oil burner operation
transformer, building Jacob's lid-
der (spark gap). A high-volt, low-
put: 1/4 quick connect terminal & case ground input fully
enclosed metal case. Weight: 12 lbs.
Base mount: 4" H x 4" W x 1/2" D

PLUG-IN POWER SUPPLIES

COMPUTER/GAME
ADAPTOR
Output: 45 VDC, 5A + 12 VDC, 5A
Roller Controller
Incl. Silther cart #13147 $39.95 New
Super Action
Incl. Cassette cart #13148 $39.95 New

NIBIC BATTERIES
(Rechargeable)
12V @ 450 ma
Contains 10 AA cells. Recharge rate: 45 ma. 16-18 hours
Dim. 2 1/2" H x 1 1/4" W x 1/2" D
Mfr. — GE 123333 or equiv.
Item #6443 $5.95 New

"CELLS"
Dual Pack
2.4V @ 10.2A
(2 D-cells, stacked & series con-
ected) readily ganged for carry-
ing! Recharge in 12-14 hrs. DA
Dim. 1 1/2" dia. x 4 1/2"
Item #12142 (pack of 2) $5.95
(Metal mount) 5 packs: $25.00

5% COMPOSITE VIDEO MONITOR
Power regulated, 12VDC, Mfr. in
standard, 110/120VAC, brightness
control knob. Mfr. — Sperry
OA Dim.: 8" W x 8" H x 8" D
Item #11453 $24.95

MAGNIFYING LAMP
Multi-position, 30°,
completely adjustable

DCELL/LEAD ACID
BATTERIES
RECHARGEABLE — Used for solar
energy storage, alarm systems,
remote control boats, robots, etc.

6V @ 7.5AH
Dim. 5 1/2" L x 3 1/2" H x 2" D
Mfr. — EPC #0031
Item #13324 $5.95

6V @ 2.6AH
Dim. 5 1/2" L x 2 1/4" H x 1 3/4" D
Mfr. — EPC #0030
Item #13325 $3.95

12V @ 3.5AH
Dim. 8 1/2" L x 3 1/4" H x 2 1/2" D
Mfr. — EPC #0027
Item #13326 $7.95

12V @ 2.5AH
Dim. 8 1/2 L x 3 1/4 H x 2" D
Mfr. — EPC #0026
Item #13323 $5.95

12V @ 1.2AH
Dim. 3 1/2" L x 2 1/2" H x 1 3/4" D
Mfr. — EPC #0025
Item #13327 $3.95

CIRCLE 106 ON FREE INFORMATION CARD
“The First Source” — for electromechanical & electronic equipment and components — AMERICAN DESIGN COMPONENTS!

EXTERNAL DISK DRIVE CHASSIS

With 60V power supply
If fan cooled: Can accommodate:
2 full width, 2 1/2" deep
2 floppy drives #1904...13250
Input: 12V/230V, 50/60 Hz
Originally for Burroughs computer.
Dim. 11" x 8" x 12" deep...

Item #14541 $59.50

INSIDES OF THE COMMODORE COMPUTER

SWITCHING POWER SUPPLY

115 & 230V, 47 - 63Hz
Input: 80 - 135V/180 - 270V
Output: 5VDC @ 5.5A
12VDC @ 4A
24VDC @ 3A

Perforated metal case enclosure.
Dim: 9 1/8" x 7 5/8" x 2" H
Mfr - General Instrument...

Item #17993 $14.95 New

COMMODORE CARTRIDGES

C-64
Consists of 12 asst cartridges. Includes:
Script, Pascal, BASIC, Z80, etc.
Label - Plastic, Laser-cut, Etc.
Incl.
Simon, Wizard, General's, 64, etc.
Voice item #13573

Set of 12...$49.95 New

C16 & +4
Consists of 9 asst cartridges. Includes:
Script, C, Pascal, Script, etc., Jack
Attack, Pirate Adventures, Ancient Miss,
Strange Odyssey, Financial Advisor, &
Logo...

Item #13572

Set of 12...$29.95 New

COMPUTER & GAME

HIGH RESOLUTION TTL MONITORS

STEPPING MOTORS FOR ROBOTICS

Precision stepping motors w/ increments from
1 to 7.5 degrees. Stages up to 5,000 steps.

COMPUTER/COPIER - SUPPLIES CART/STAND

Metal cabinet w/wood finish formline top.
On 2 swivel casters. 1 shelf, 2 side doors &
2 inside shelves. Easily assembled.
OA Dim. 32" H x 30" W x 18" D
Cabinet Dim. 20" H x 30" W x 18" D
Weight: 63 lb...

Item #14538 $49.95 New

AMERICAN DESIGN COMPONENTS, 62 JOSEPH STREET

MINIMUM ORDER
Charge my credit card
Visa...Master Card...Amex...RE 127

Mail to: #63-11-15

INTEGRATED CIRCUITS

<table>
<thead>
<tr>
<th>Linear</th>
<th>QTY</th>
<th>Voltage</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH0020CN</td>
<td>15.35</td>
<td>5V</td>
<td>4.15</td>
</tr>
<tr>
<td>LM1454V</td>
<td>1.75</td>
<td>12V</td>
<td>1,07</td>
</tr>
<tr>
<td>LM102CH</td>
<td>2.65</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM102CH</td>
<td>6.02</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM101CCH</td>
<td>5.93</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM101CCH</td>
<td>5.53</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM101CCH</td>
<td>5.33</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM101CCH</td>
<td>5.13</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM101CCH</td>
<td>4.93</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM101CCH</td>
<td>4.73</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM101CCH</td>
<td>4.53</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM101CCH</td>
<td>4.33</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM101CCH</td>
<td>4.13</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM101CCH</td>
<td>3.93</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM101CCH</td>
<td>3.73</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM101CCH</td>
<td>3.53</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM101CCH</td>
<td>3.33</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM101CCH</td>
<td>3.13</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM101CCH</td>
<td>2.93</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM101CCH</td>
<td>2.73</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM101CCH</td>
<td>2.53</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM101CCH</td>
<td>2.33</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM101CCH</td>
<td>2.13</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM101CCH</td>
<td>1.93</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM101CCH</td>
<td>1.73</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM101CCH</td>
<td>1.53</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM101CCH</td>
<td>1.33</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM101CCH</td>
<td>1.13</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM101CCH</td>
<td>0.93</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM101CCH</td>
<td>0.73</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM101CCH</td>
<td>0.53</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM101CCH</td>
<td>0.33</td>
<td>5V</td>
<td>12,43</td>
</tr>
<tr>
<td>LM101CCH</td>
<td>0.13</td>
<td>5V</td>
<td>12,43</td>
</tr>
</tbody>
</table>

MOTORS - TIMERS - PUMPS

AT-STYIE COMPUTER REGULATOR

140 VA MINI MICRO-COMPUTER REGULATOR

Provides voltage regulation & ultra
isolation for microprocessor-based
equipment. Contains less than 3%
harmonic distortion, better than
60 dB traverse noise rejection.
Contains dual output for CPU &
monitor, & 6, or line cord.
Input: 420V (COM), 230V (MON)
Dim. 14 x 4 x 5 1/2 H x W x
Mfr - Morris #306-11-15

Item #9999 $99.00 New
BLACKLIGHT ASSEMBLY

Complete, functioning assembly includes ballast, on-off switch, power cord, sockets and F4T5-HI. blacklight, mounted on a 7 1/4 X 3 1/8 metal plate. Use for special effects lighting or easy EPROMS.

CAT# BLITA $10.00 EACH

STEERING WHEEL COVER

Solid leather steering wheel cover fits most cars. Measures: 13 1/2 X 15 1/2 X 3 1/2.

CAT# 1586 $7.00 each

48 KEY ASSEMBLY

NEW T.I. KEYBOARDS. A special 48-key assembly is designed for use in conjunction with the T.I. computers. Only one key is needed to operate each function. The board is designed for the T.I. computer, and contains 47 push switches, and one key, each designed to operate one function.

CAT# T108-1 $1.00 each

PUSHBUTTON PHONE

Spectra-phone Model OP-1 piece telephone with rotary spoke dial. Output: 2.5 Vac, 0.25 amps. Operates on 120Vac. Need only one phone. Features: 2.5 vac, 0.25 amp.

CAT# C220 15.00 each

SWITCHING POWER SUPPLY

Compact, well regulated switching power supply designed to provide Texas Instruments computer equipment. Output: 12Vac, 1 amp. Voltage: 220Vac. Size: 5 1/4 X 8" X 11", 5 lbs. Includes all necessary parts to build complete unit.

CAT# 4432 $15.00 each

STORAGE: LOS ANGELES 905 S. VERNON AVE. LOS ANGELES, CA 90006 (213) 380-8000 VAN NUYS 6228 SEPULVEDA BLVD. VAN NUYS, CA 91411 (818) 997-1406 MAIL ORDERS TO: ALL ELECTRONICS P.O. BOX 567 VAN NUYS, CA 91408 800-826-5432 TOLL FREE 800-826-5432
INFO:(818)904-0524 FAX:(818)781-2653 MINIMUM ORDERS $15.00 NO SALES TAX USA. $5.00 SHIPPING NO C.O.D. FOREIGN ORDERS: INQUIRE FOR CATALOG:

QUALITY PARTS + DISCOUNT PRICES + FAST SHIPPING!
Radio Shack Parts Place™

HOLIDAY VALUES AT A STORE NEAR YOU

Special Order Hotline
No Postal or Shipping Charge
Fast Service ✱ No Minimum

Your Radio Shack store manager can special order parts and accessories not part of our regular stock. These items include linear and digital ICs, microprocessors, diodes, semiconductors, tubes, and crystals and more. We’ll call when they arrive—in about a week.

Soldering
Rectifiers, Resistors, Switches, Coax, Transformers Needed

TO 7000 Combines RF mixer, IF and demodulator stages in one monolithic IC. Just what you need to build a small, inexpensive mono FM band receiver, repeater monitor or public service band monitor with a minimum of external components. Frequency-locked loop system with 70 KHz IF. Includes plug-in and application notes. #276-1304
5.95

Add Speech to Your Computer

SPO256-AL2 Speech Synthesizer. Easy to interface with most computers. With data. Requires 3.125 MHz crystal(special order). 28-pin DIP #276-1784
12.95

FM Receiver on a Chip

NEW!

No IF Transformers Needed

Audio Hookups

FREE 15 Audio Transformer

Speech Synthesizer

Audio Transformer Kit

Audio Transformer Software

Audio Transformer Test Kit

Audio Transformer Test Kit

Audio Transformer Test Kit

Soldering Tools/Supplies

Over 1000 items in stock: Binding posts, Books, Breadboards, Buzzers, Capacitors, Chokes, Clips, Coax, Connectors, Fuses, Hardware, ICs, Jacks, Knobs, Lamps, Multieters, PC-Boards, Plugs, Rectifiers, Resistors, Switches, Tools, Transformers, Transistors, Wire, Zenes and more!

Variable 0-15 VDC or series up to 30 VDC. Delivers rock-stable DC at precisely the voltages you need. In tracking mode, a unique control lets you adjust both voltages simultaneously. Independent mode to adjust voltages separately. Fully adjustable. UL listed AC #22-129

Radio Shack
A DIVISION OF TANDY CORPORATION

DECEMBER 1987

CIRCLE 78 ON FREE INFORMATION CARD

125
ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

<table>
<thead>
<tr>
<th>Free Information Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>81 A.L.S. Satellite</td>
<td>80</td>
</tr>
<tr>
<td>108 AMC Sales</td>
<td>82</td>
</tr>
<tr>
<td>107 All Electronics</td>
<td>83</td>
</tr>
<tr>
<td>103 Allen W.B.</td>
<td>83</td>
</tr>
<tr>
<td>106 American Design Components</td>
<td>123, 122</td>
</tr>
<tr>
<td>195 American Defense</td>
<td>106</td>
</tr>
<tr>
<td>77, 205, B & K Precision</td>
<td>207</td>
</tr>
<tr>
<td>208 B & K Precision</td>
<td>211</td>
</tr>
<tr>
<td>88 Beehman Industrial</td>
<td>86</td>
</tr>
<tr>
<td>85 Blue Star Industries</td>
<td>86</td>
</tr>
<tr>
<td>109 C & S Sales</td>
<td>109</td>
</tr>
<tr>
<td>60 CIE</td>
<td>11</td>
</tr>
<tr>
<td>188 Cathedrals</td>
<td>81</td>
</tr>
<tr>
<td>41 Carol</td>
<td>34</td>
</tr>
<tr>
<td>193 Chenesco Products</td>
<td>104</td>
</tr>
<tr>
<td>52 Circuit Cellar</td>
<td>81</td>
</tr>
<tr>
<td>79 Communications</td>
<td>87</td>
</tr>
<tr>
<td>202 Computar</td>
<td>99</td>
</tr>
<tr>
<td>55 Contact East</td>
<td>89</td>
</tr>
<tr>
<td>189 Cook’s Institute</td>
<td>61</td>
</tr>
<tr>
<td>187 Crystek</td>
<td>44</td>
</tr>
<tr>
<td>190 Daetron</td>
<td>126</td>
</tr>
<tr>
<td>127 Deco Industries</td>
<td>80, 81</td>
</tr>
<tr>
<td>82 Digi-Key</td>
<td>120</td>
</tr>
<tr>
<td>112 Digital Research Computers</td>
<td>112</td>
</tr>
<tr>
<td>73 Elect. Industry</td>
<td>73</td>
</tr>
<tr>
<td>111 Electronic Technology Today</td>
<td>113</td>
</tr>
<tr>
<td>109 Electronics</td>
<td>81</td>
</tr>
<tr>
<td>51 Emma</td>
<td>13</td>
</tr>
<tr>
<td>116 JDR Microdevices</td>
<td>118, 117</td>
</tr>
<tr>
<td>183 JDR Microdevices</td>
<td>118, 119</td>
</tr>
<tr>
<td>114 Jameco</td>
<td>115, 114</td>
</tr>
<tr>
<td>87 Lazer’s Edge</td>
<td>99</td>
</tr>
<tr>
<td>110 MCM Electronics</td>
<td>109</td>
</tr>
<tr>
<td>93 Mark V. Electronics</td>
<td>121</td>
</tr>
<tr>
<td>63 Micro-Mart</td>
<td>111</td>
</tr>
<tr>
<td>61 Microprocessors Ltd.</td>
<td>99</td>
</tr>
<tr>
<td>117 Mouser</td>
<td>32</td>
</tr>
<tr>
<td>118 NRI</td>
<td>34, 18</td>
</tr>
<tr>
<td>71 New-Tone Electronics</td>
<td>27</td>
</tr>
<tr>
<td>194 NuScope Associates</td>
<td>99</td>
</tr>
<tr>
<td>80 OCTE Electronics</td>
<td>81</td>
</tr>
<tr>
<td>110 Omnikron</td>
<td>24</td>
</tr>
<tr>
<td>201 PC Plus</td>
<td>99</td>
</tr>
<tr>
<td>107 Pacific Cable</td>
<td>107</td>
</tr>
<tr>
<td>56 Parts Express</td>
<td>110</td>
</tr>
<tr>
<td>101 Pemona Electronics</td>
<td>5</td>
</tr>
<tr>
<td>28 Prentice-Hall College Division</td>
<td>28</td>
</tr>
<tr>
<td>78 Radio Shack</td>
<td>125</td>
</tr>
<tr>
<td>46 Regency</td>
<td>46</td>
</tr>
<tr>
<td>184 SEL Labs.</td>
<td>76</td>
</tr>
<tr>
<td>176, 177 Sencor</td>
<td>39, 41</td>
</tr>
<tr>
<td>178, 179 Sencor</td>
<td>43, 45</td>
</tr>
<tr>
<td>51 Silicon Valley Surplus</td>
<td>106</td>
</tr>
<tr>
<td>74 Solid State Sales</td>
<td>108</td>
</tr>
<tr>
<td>32 Star Circuits</td>
<td>32</td>
</tr>
<tr>
<td>75 TNS</td>
<td>CV3</td>
</tr>
<tr>
<td>92, 185 Tektronix</td>
<td>23, CV2</td>
</tr>
<tr>
<td>198 Tentel</td>
<td>36</td>
</tr>
<tr>
<td>123 Test Probes</td>
<td>17</td>
</tr>
<tr>
<td>199 U.S. Cable/Movie Time</td>
<td>44</td>
</tr>
<tr>
<td>192 United Electronic Supply</td>
<td>22</td>
</tr>
<tr>
<td>53 United Imports</td>
<td>38</td>
</tr>
<tr>
<td>186 WPT Publications</td>
<td>76</td>
</tr>
<tr>
<td>99 Weller Publications</td>
<td>99</td>
</tr>
</tbody>
</table>

DOES YOUR DIGITAL CAPACITANCE METER DO THIS?

FULL 4 DIGIT 0.5 INCH LCD DISPLAY COMPLETELY AUTORANGING WITH 10 RANGE MANUAL CAPABILITY

AND THIS

RANGE OF 0.0 pF to 1 FARAD (<99.9 mF)
0.5% BASIC ACCURACY UP TO 1 000 pF

AND THIS

IDENTIFIES TRANSISTORS (NPN, PNP)
AND THEIR LEADS (E, B, C, ETC.)

AND THIS

TESTS ZENER DIODES AND RECTIFIERS.
UP TO 30V ZENER WITH AC ADAPTOR.
ZENER VOLTAGE WITH 9V BATTERY.
DEPENDS ON ITS CONDITION

AND THIS

AUTOMATICALLY CALCULATES LENGTHS OF
DIELECTRIC MATERIALS (IN FEET, METRES, KILOMETERS (THEORETICAL RANGE OF 9,999 MILES)

AND THIS

ABILITY TO SORT CAPACITANCE IN
DIFFERENT MODES

AND THIS

ABILITY TO LEAKY CAPACITANCE
INSULATION RESISTANCE OR CURRENT

AND THIS

CALCULATES TIMECONSTANTS WITH
USER DEFINED RESISTANCE VALUES

SHIPPING INSTRUCTIONS:

All units shipped F.O.B. Buffalo, NY via United Parcel Service (except Hawaii and Alaska)

PREFERED PAYMENT: CIRCUIT 190 ON FREE INFORMATION CARD

DEALER ENQUIRIES INVITED

Gernsback Publications, Inc.
500-B Bi-County Blvd.
Farmingdale, NY 11735
(516) 293-3000
President: Larry Steckler
Vice President: Cathy Steckler

For Advertising ONLY
516-293-3000
Larry Steckler

Airline Fishman
advertising director
Shelli Weinman
advertising associate
Lisa Strassman
credit manager
Christina Estrada
advertising assistant

SALES OFFICES

EAST/SOUTHEAST
Stanley Levin
Eastern Sales Manager
Radio-Electronics
259-235th Avenue
Little Neck, NY 11362
718-428-6037
516-293-3000

MIDWEST/Texas/Arkansas/Okl.
Ralph Bergen
Western Sales Manager
Radio-Electronics
540 Frontage Road—Suite 339
Northfield, IL 60093
312-446-1444

PACIFIC COAST/Mountain States
Marvin Green
Pacific Sales Manager
Radio-Electronics
5430 Van Nuys Blvd. Suite 316
Van Nuys, CA 91401
1-818-986-2001

CIRCLE 190 ON FREE INFORMATION CARD
FOR FREE INFORMATION USE THESE POST-PAID CARDS

1. Print your name, address and Zip Code on one of the attached postage-paid cards.

2. Circle the number (or numbers) on the card that matches the number at the bottom of each ad or editorial item that you want information on. Advertisers' free information numbers also appear in the ad index on the facing page.

3. Mail the card. It's Postage-Paid.

The bottom free-information card is a BUSINESS/PROFESSIONAL CARD. If you use this card you MUST complete the spaces for Company Name, Title, and Phone Number. If these are not filled in, the card will not be processed.

NOTE:
Use the postcard address for Free Product Information only. Address all editorial inquiries to Editor, Radio-Electronics, 500-B Bi-County Blvd., Farmingdale, NY 11735.

FREE INFORMATION CARD

Use this card for information about business or consumer products only.

Name (please print)_________________________Title_________________________
Company_________________________City_________________________
Address_________________________Zip + 4:_________________________

1. Please send me 12 issues of RADIO-ELECTRONICS for $16.97 and my bill me. (Canada $22.97 - US Funds only)
2. Please send me 12 issues of HANDS-ON ELECTRONICS for $18.95 and my bill me. (Canada $23.95 - US Funds only)
3. Is your personal copy of RADIO-ELECTRONICS your birthday gift? (No)
4. Is your personal copy of HANDS-ON ELECTRONICS your birthday gift? (No)

NOTE:
Use the bottom card to buy products and services only. Address all editorial inquiries to Editor, Radio-Electronics, 500-B Bi-County Blvd., Farmingdale, NY 11735.

Print the information on the addressing blocks above and fill in company name and phone number.

Name (please print)_________________________Title_________________________
Company_________________________City_________________________
Address_________________________Zip + 4:_________________________

1. Please send me 12 issues of RADIO-ELECTRONICS for $16.97 and my bill me. (Canada $22.97 - US Funds only)
2. Please send me 12 issues of HANDS-ON ELECTRONICS for $18.95 and my bill me. (Canada $23.95 - US Funds only)
3. Is your personal copy of RADIO-ELECTRONICS your birthday gift? (No)
4. Is your personal copy of HANDS-ON ELECTRONICS your birthday gift? (No)

FREE INFORMATION CARD

Use this card for information about business or consumer products only.

Name (please print)_________________________Title_________________________
Company_________________________City_________________________
Address_________________________Zip + 4:_________________________

1. Please send me 12 issues of RADIO-ELECTRONICS for $16.97 and my bill me. (Canada $22.97 - US Funds only)
2. Please send me 12 issues of HANDS-ON ELECTRONICS for $18.95 and my bill me. (Canada $23.95 - US Funds only)
3. Is your personal copy of RADIO-ELECTRONICS your birthday gift? (No)
4. Is your personal copy of HANDS-ON ELECTRONICS your birthday gift? (No)

NOTE:
Use the postcard address for Free Product Information only. Address all editorial inquiries to Editor, Radio-Electronics, 500-B Bi-County Blvd., Farmingdale, NY 11735.

FREE INFORMATION CARD

Use this card for information about business or consumer products only.

Name (please print)_________________________Title_________________________
Company_________________________City_________________________
Address_________________________Zip + 4:_________________________

1. Please send me 12 issues of RADIO-ELECTRONICS for $16.97 and my bill me. (Canada $22.97 - US Funds only)
2. Please send me 12 issues of HANDS-ON ELECTRONICS for $18.95 and my bill me. (Canada $23.95 - US Funds only)
3. Is your personal copy of RADIO-ELECTRONICS your birthday gift? (No)
4. Is your personal copy of HANDS-ON ELECTRONICS your birthday gift? (No)

FREE INFORMATION CARD

Use this card for information about business or consumer products only.

Name (please print)_________________________Title_________________________
Company_________________________City_________________________
Address_________________________Zip + 4:_________________________

1. Please send me 12 issues of RADIO-ELECTRONICS for $16.97 and my bill me. (Canada $22.97 - US Funds only)
2. Please send me 12 issues of HANDS-ON ELECTRONICS for $18.95 and my bill me. (Canada $23.95 - US Funds only)
3. Is your personal copy of RADIO-ELECTRONICS your birthday gift? (No)
4. Is your personal copy of HANDS-ON ELECTRONICS your birthday gift? (No)

FREE INFORMATION CARD

Use this card for information about business or consumer products only.

Name (please print)_________________________Title_________________________
Company_________________________City_________________________
Address_________________________Zip + 4:_________________________

1. Please send me 12 issues of RADIO-ELECTRONICS for $16.97 and my bill me. (Canada $22.97 - US Funds only)
2. Please send me 12 issues of HANDS-ON ELECTRONICS for $18.95 and my bill me. (Canada $23.95 - US Funds only)
3. Is your personal copy of RADIO-ELECTRONICS your birthday gift? (No)
4. Is your personal copy of HANDS-ON ELECTRONICS your birthday gift? (No)
For New Ideas In Electronics read Radio-Electronics every month.

During the next 12 months

Radio-Electronics will carry up to the minute articles on:
- Computers
- Video
- Solid-state technology
- Outstanding construction projects
- Satellite TV
- Telephones
- Radio
- Stereo Equipment
- Reports
- Test equipment
- VCR's
- Servicing
- Industrial electronics

NEW IDEAS AND INNOVATIONS IN ELECTRONICS APPEAR IN EVERY ISSUE OF RADIO-ELECTRONICS
KEEP UP TO DATE! DON'T MISS ANY ISSUES!
SUBSCRIBE TODAY!
USE THE ORDER CARD ON YOUR LEFT!

Hands-on Electronics
Formerly Special Projects
Delivers construction article after construction article... Exciting columns including Jensen on DXing, Friedman on computers, Test bench tips, Noll with Calling All Hams, New Products and more.

SUBSCRIBE TODAY!
USE THE REPLY CARDS ON YOUR LEFT!

Radio Electronics
FREE PRODUCT INFORMATION
P.O. Box 388
DALTON, MA 01226-9990

check offer preferred

☐ 1 Year—12 issues ONLY $16.97
☐ 2 Years (SAVE MORE)—24 issues $32.97
(You save $10.03 off single copy price)
(You save $21.03 off single copy price)

☐ Canada—12 issues $22.97
☐ Canada—24 issues $44.97

ALL SUBSCRIPTIONS PAYABLE IN U.S. FUNDS ONLY
☐ Payment enclosed ☐ Bill Me ☐ Check here if you are extending or renewing your subscription

Name (Please Print)______________________________
Company Name (If applicable)________________________
Address___
City________________State_________Zip___________

Allow 6-8 weeks for delivery of first issue
TSM 201
$36.77
DIGITAL CLOCK, 51/2 DIGIT READ-OUT, POWER SUPPLY 12 V D.C. 0.2 A, HIGH AND MUTE SWITCHING CONTROLS

TSM 157
$40.00
5100 G CHROMOMETER, COUNT-DOWN CALIBRATION FOR THE CLOCK POWER SUPPLY 12 V.D.C. 0.1 A

TSM 177
$33.20
DIGITAL VOLTMETER DC TO 999 V.D.C. POWER SUPPLY 12 V.D.C. 0.5 A

TSM 206
$10.15
METHANE POWER SUPPLY 12 V D.C.

TSM 210
$11.50
FULLY RANDOMISED ELECTRONIC DICE, POWER SUPPLY 12 V D.C. 0.5 A

TSM 54
$13.85
IN TRANSMITTER, POWER SUPPLY 12 V D.C.

TSM 212
$29.60
4-CHANNEL CATERPILLAR, SAFE LOW VOLTAGE OPERATION X40 W TSM 220 AND 221 SPOT, IV D.C. 0.5 A.

TSM 214
$22.50
LED'S SPOT FOR SAFE LIGHT MODULATION, POWER SUPPLY D.C. 0.02 A.

TSM 220
$35.30
16 LED'S DISPLAY THERMOMETER, POWER SUPPLY 15/18 V.D.C. 0.2 A.

TSM 121
$17.54
18 LED'S SPOT FOR SAFE LIGHT MODULATION, POWER SUPPLY 12 V D.C.

TSM 129
$17.30
20 LED'S SPOT FOR SAFE LIGHT MODULATION, POWER SUPPLIED WITH BOX.

TSM 123
$17.15
ALARM CLOCK WITH RELAY AND TIME LIGHT DISPLAYED, TSM 206 AND 207 SPOT COMPATIBLE POWER SUPPLY 12 V D.C.

TSM 169
$13.93
TONE MODIFIER MODULAR WAVE FOR PICK-UP AND SPEAKER, ADJUSTABLE, POWER SUPPLY 24 V D.C. 0.5 A

TSM 170
$12.42
MOUSE/REPELER POWER SOURCE 12 V D.C.

TSM 86
$15.50
ELECTRONIC MONO VIBRATION SYSTEM, POWER SUPPLY 12 V D.C.

TSM 85
$15.15
TIME DELAY SYSTEM FROM 1 SEC TO 15 MINUTES, POWER SUPPLY 12 V D.C.

TSM 69
$12.92
TB2 EPICORE AMPLIFIER, PICK-UP, TONE CONTROL AND 4-CHANNEL SPOT FOR SAFE LIGHT, SPEAKER, ADJUSTABLE, POWER SUPPLY 12 V D.C. 0.5 A

TSM 90
$12.42
NOISE GENERATOR, FREQUENCY RANGE 100 Hz TO 50000 Hz, POWER SUPPLY 12 V D.C.

TSM 56
$11.84
TWO STATION INTERCOM WITH SPEAKER, VOLUME CONTROL, POWER SOURCE 9 V D.C.

TSM 160
$10.62
STEREO MODULATOR, POWER SUPPLY 12 V D.C.

TSM 196
$10.71
STEREO MICROPHONE OR 4 INPUT MICROPHONE, TONE CONTROL AND ATTENUATION, POWER SUPPLY 4 Volt A.C. TO 75 Volt A.C., POWER SUPPLY 24 V D.C.

TSM 155
$7.70
SPEAKER BOX, POWER SUPPLY 3 V D.C.

TSM 52
$6.00
NOISE GENERATOR, FREQUENCY RANGE 100 Hz TO 50000 Hz, POWER SUPPLY 12 V D.C.

TSM 159
$6.50
SPEAKER BOX, POWER SUPPLY 3 V D.C.

TSM 211
$10.00
MEDIUM WAVE RECEIVER, 1 W S.W.R. M.S.W.R. POWER SUPPLY 12 V D.C.

TSM 205
$3.40
DIODE MICROPHONE, Speaker, POWER SUPPLY 12 V D.C.

TSM 188
$7.45
DIODE MICROPHONE, Speaker, POWER SUPPLY 12 V D.C.

TSM 189
$5.00
DIODE MICROPHONE, Speaker, POWER SUPPLY 12 V D.C.

TSM 102
$2.75
LED'S SPOT FOR SAFE LIGHT MODULATION.

TSM 128
$2.35
LED'S SPOT FOR SAFE LIGHT MODULATION.

TSM 61
$21.48
DIODE MICROPHONE, POWER SUPPLY 12 V D.C.

TSM 60
$20.50
DIODE MICROPHONE, POWER SUPPLY 12 V D.C.

TSM 99
$130.00
VEGAS KIT, VIBRATION LIGHT DISPLAY LED'S, POWER SUPPLY 12 V D.C.

TSM 59
$11.50
REGULATED POWER SUPPLY 5VDC POWER TRANSFORMER NOT INCLUDED IN THE KIT

TSM 116
$13.62
REGULATED POWER SUPPLY 12 V D.C.

TSM 116
$13.20
REGULATED POWER SUPPLY 12 V D.C.

TSM 212
$21.50
LOW OPERATING VOLTAGE SPOT TSM 211 AND TSM 211 COMPATIBLE CONTROLLED BY A MICROPHONE POWER SUPPLY 12V D.C. OUTPUT 0.5A MODULATOR, SAFE 3 CHANNEL LIGHT.

TSM 211
$21.50
LOW OPERATING VOLTAGE SPOT TSM 211 AND TSM 211 COMPATIBLE CONTROLLED BY A MICROPHONE POWER SUPPLY 12V D.C. OUTPUT 0.5A MODULATOR, SAFE 3 CHANNEL LIGHT.

TSM 211
$21.50
LOW OPERATING VOLTAGE SPOT TSM 211 AND TSM 211 COMPATIBLE CONTROLLED BY A MICROPHONE POWER SUPPLY 12V D.C. OUTPUT 0.5A MODULATOR, SAFE 3 CHANNEL LIGHT.

TSM 211
$21.50
LOW OPERATING VOLTAGE SPOT TSM 211 AND TSM 211 COMPATIBLE CONTROLLED BY A MICROPHONE POWER SUPPLY 12V D.C. OUTPUT 0.5A MODULATOR, SAFE 3 CHANNEL LIGHT.
SCOPE 3½ Digital Multimeters

Model DVM-638
$87.50
Test leads included
- 11 function, 38 ranges
- Logic level detector
- Audible visual continuity
- Capacitance and conductance measurement

Model DVM-636
$67.50
- 7 function, 32 ranges
- Transistor measurement

Model DCM-602
$59.95
- 8 ranges with full scale values to 2000 µF
- LSI circuit
- Crystal time base
- Frequency range 800 Hz to 8 KHz

Model RC-555
$59.95
Test leads & 9V battery included
- Low distortion sine-wave signal
- 46 step selected frequency
- 100 range 20 Hz to 1.5 KHz
- 50 KHz to +50 KHz

Model DVM-6005
$219.95
Test lead set 6, "D" size batteries included
- 0.4" high characters
- Conversion period 500 milliseconds
- Automatic, negative polarity

SCOPE 3½ Digit LCD

Model DVM-632
$449.95
- Measures only 5¾" x 2¾" x 1¼"
- Deluxe test leads included
- 0.5% accuracy
- Transistor gain test
- Audible continuity checking & diode test
- 10 Amp measurement

Zipped Carrying Case CC-30 $45.00

SCOPE Pocket Sized Audio Signal Generator

Model RC-555
$59.95
- Measures only 5¼ x 2¼ x ¾"

SCOPE 4½ Digit LCD Bench Digital Multimeter

Model DVM-6005
$219.95
- Test lead set 6, "D" size batteries included
- 0.4" high characters
- Conversion period 500 milliseconds
- Automatic, negative polarity

Mini-Meters with Maxi-Specs

SCOPE 3½ Digit LCD with 8 Full Functions

Model DVM-632
$449.95
- OUR PRICE
- Measures only 5¾" x 2¾" x 1¼"
- Deluxe test leads included
- 0.5% accuracy
- Transistor gain test
- Audible continuity checking & diode test
- 10 Amp measurement

Zipped Carrying Case CC-30 $45.00

ASK FOR FREE CATALOG.
Money orders, checks accepted. C.O.D.'s require 25% deposit.

Service & Shipping Charge Schedule

Continental U.S.A.

<table>
<thead>
<tr>
<th>FOR ORDERS</th>
<th>ADD</th>
</tr>
</thead>
<tbody>
<tr>
<td>$25 - $100</td>
<td>$4.00</td>
</tr>
<tr>
<td>$101 - $250</td>
<td>$6.00</td>
</tr>
<tr>
<td>$251 - $500</td>
<td>$8.00</td>
</tr>
<tr>
<td>$501 - $750</td>
<td>$10.50</td>
</tr>
<tr>
<td>$751 - $1000</td>
<td>$12.50</td>
</tr>
<tr>
<td>$1001 - $1500</td>
<td>$16.50</td>
</tr>
<tr>
<td>$1501 - $2000</td>
<td>$20.00</td>
</tr>
<tr>
<td>$2001 and Up</td>
<td>$25.00</td>
</tr>
</tbody>
</table>

Toll Free 800-645-9518
In NY State 800-832-1446

Fordham
260 Motor Parkway, Hauppauge, NY 11788