BUILD THE LASER LISTENER
All about high-tech surveillance

BUILD THE VIDEO PALETTE
It generates special video effects

DIGITAL AUDIO TAPE
Tomorrow’s audio-tape format is here today

SCR’s AND TRIACS
28 practical circuits

PLUS:
★ Video News
★ Satellite TV
★ Audio Update
★ Ask R-E
NOW! DIGITAL STORAGE ANSWERS STARTING AT $2995.

The new 60 MHz Tek 2221 (above) offers such features as CRT readout and measurement cursors for just $3995.

Now you have three low-cost choices in Tek digital storage oscilloscopes. All featuring powerful 20 MS/s digitizing along with familiar, full-bandwidth analog operation. It's the best of both worlds in one easy-to-use, portable package.

Discover the potential!
With digital storage you can freeze waveforms. Capture events invisible to non-storage scopes. Find signals buried in noise. And build a library of reference waveforms.

CRT readout and cursors distinguish the new 2221. For even higher performance, there's the 100 MHz, dual time base 2230 with optional battery-backed memory for saving up to 26 waveform sets. And if it's economy you want, choose the 60 MHz 2220 with many of the same features at an even lower cost.

With each scope you can automate measurements with interface options. And output direct to a printer or plotter. Tek software is available for systems.

Call Tek direct: 1-800-433-2323 for free video brochure for orders/assistance
In Oregon, call collect: 627-9000

<table>
<thead>
<tr>
<th>Features</th>
<th>2230</th>
<th>NEW! 2221</th>
<th>2220</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog/Digital Storage BW</td>
<td>100 MHz</td>
<td>60 MHz</td>
<td>60 MHz</td>
</tr>
<tr>
<td>Maximum Sampling Speed</td>
<td>20 MS/s</td>
<td>20 MS/s</td>
<td>20 MS/s</td>
</tr>
<tr>
<td>Record Length</td>
<td>4K/1K (selectable)</td>
<td>4K</td>
<td>4K</td>
</tr>
<tr>
<td>Peak Detect</td>
<td>100 ns</td>
<td>100 ns</td>
<td>100 ns</td>
</tr>
<tr>
<td>Save Reference Memory</td>
<td>One, 4K Three, 1K</td>
<td>One, 4K One, 4K</td>
<td></td>
</tr>
<tr>
<td>Vertical Resolution</td>
<td>8 bits 10 bits (AVG mode) 12 bits (AVG mode over the bus)</td>
<td>8 bits 10 bits (AVG mode) 12 bits (AVG mode)</td>
<td></td>
</tr>
<tr>
<td>CRT Readout/Cursors</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>GPIB RS-232-C Options</td>
<td>Yes ($750)</td>
<td>Yes ($500)</td>
<td>Yes ($500)</td>
</tr>
<tr>
<td>Battery-Backed Memory (save 26 waveform sets)</td>
<td>Yes (inc with GPIB RS-232-C)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Warranty</td>
<td>3 year on labor and parts, including the CRT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price</td>
<td>$4995</td>
<td>$3995</td>
<td>$2995</td>
</tr>
</tbody>
</table>
OCTOBER 1987

BUILD THIS

39 LASER LISTENER
Eavesdrop using a beam of light
Richard L. Pearson

48 VIDEO-EFFECTS GENERATOR
Part 2. Building, aligning, and using the generator.
Rudolf Graf and William Sheets

56 R-E ROBOT
Part 11. Adding the arm.
Steven E. Sarns

75 PC SERVICE
Use the direct-etch foil patterns to make circuit boards for the video-effects generator.

TECHNOLOGY

45 DIGITAL AUDIO TAPE
Tomorrow’s recording medium is here today.
Brian C. Fenton, Managing Editor

CIRCUITS AND COMPONENTS

60 NON-VOLATILE MEMORY IC’s
Giving memory to memories.
Robert Grossblatt

64 WORKING WITH TRIACS AND SCR’S
A handy cookbook for experimenters and builders.
Ray Marston

DEPARTMENTS

6 VIDEO NEWS
What’s new in this fast-changing field.
David Lachenbruch

22 EQUIPMENT REPORTS
Mondo-Tronics Space Wings Robot.

33 COMMUNICATIONS CORNER
Light makes the perfect wire.
Herb Friedman

80 SATELLITE TV
International politics, part 2.
Bob Cooper, Jr.

83 AUDIO UPDATE
Magnetically shielded speakers.
Larry Klein

101 DESIGNERS NOTEBOOK
Overvoltage indicator.
Robert Grossblatt

104 NEW IDEA
Outdoor-light controller

AND MORE

125 Advertising and Sales Offices
125 Advertising Index
10 Ask R-E
4 Editorial
127 Free Information Card
15 Letters
106 Market Center
26 New Products
ON THE COVER

Alexander Graham Bell experimented with light beam communications back in the 1880’s. The technology of the day prevented his success then, but now, thanks to the availability of low-cost lasers, experimenters can apply their energies to that fascinating topic. This month, we’ll show you a simple listening device that will let you use modulated laser light for communications over distances of several hundred feet or more. It can even be used to secretly listen in on conversations. To find out more about light-beam communications, turn to the story on page 39.

COMING NEXT MONTH

THE NOVEMBER ISSUE IS ON SALE OCTOBER 1

SPECIAL SECTION: ALL ABOUT SURFACE-MOUNT TECHNOLOGY
A Radio-Electronics Special section that focuses on that exciting building technique. Included will be a variety of circuits to get you started.

DIGITAL IC TESTER
A computerized, in-circuit tester.

EARLY DAYS OF RADIO
Some early amplifier circuits. and much more!

COMPUTER DIGEST
Hands-on report: Turbo boards

As a service to readers, RADIO-ELECTRONICS publishes available plans or information relating to newsworthy products, techniques and scientific and technological developments. Because of possible variances in the quality and condition of materials and workmanship used by readers, RADIO-ELECTRONICS disclaims any responsibility for the safe and proper functioning of reader-built projects based upon or from plans or information published in this magazine.

Since some of the equipment and circuitry described in RADIO-ELECTRONICS may relate to or be covered by U.S. patents, RADIO-ELECTRONICS disclaims any liability for the infringement of such patents by the making, using, or selling of any such equipment or circuitry, and suggests that anyone interested in such projects consult a patent attorney.

RADIO-ELECTRONICS, (ISSN 0033-7062) October 1987. Published monthly by Gernsback Publications, Inc. 500 B-County Boulevard Farmingdale, NY 11735 Second-Class Postage paid at Farmingdale, NY and additional mailing offices. Second-Class mail registration No. 9242 authorized at Toronto, Canada. One-year subscription rate U.S.A. and possessions $16.97. Canada $22.97. all other countries $25.97. All subscription orders payable in U.S.A. funds only. via international postal money order or check drawn on a U.S.A. bank. Single copies $1.95. © 1987 by Gernsback Publications, Inc. All rights reserved. Printed in U.S.A.

POSTMASTER: Please send address changes to RADIO-ELECTRONICS, Subscription Dept., Box 55115, Boulder, CO 80321-5115. A stamped, self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs. If your return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.

Advertising Sales Offices listed on page 126.

Hugo Gernsback (1884-1967) founder
M. Harvey Gernsback, editor-in-chief, emeritus
Larry Steckler, EHF, CET, editor-in-chief and publisher

EDITORIAL DEPARTMENT
Art Kleiman, editorial director
Brian C. Fenton, managing editor
Carl Laron, WB2SLR, associate editor
Jeffrey K. Holtzman, assistant technical editor
Robert A. Young, assistant editor
Julian S. Martin, editorial associate
Byron G. Wels, editorial associate
M. Harvey Gernsback, contributing editor
Jack Darr, CET, service editor
Robert F. Scott, semiconductor editor
Herb Friedman, communications editor
Bob Cooper, Jr. satellite-TV editor
Robert Grossblatt, circuits editor
Larry Klein, audio editor
David Lachenbruch, contributing editor
Richard D. Fitch, contributing editor
Tcri Scaduto, editorial assistant

PRODUCTION DEPARTMENT
Ruby M. Yee, production director
Robert A. W. Lowndes, editorial production
Andre Dusant, technical illustrator
Ronald Dee, assistant technical illustrator
Karen Tucker, advertising production
Marcella Amoroso, production traffic

CIRCULATION DEPARTMENT
Jacqueline P. Cheeseboro, circulation director
Wendy Alanko, circulation analyst
Theresa Lombardo, circulation assistant

Typography by Mates Graphics
Cover Photo by Nick Koudis

Advertising Sales Offices listed on page 126.

MPA OMA AEA

2
Another attack on home taping

Consumers will soon have the advantages of digital sound quality in a compact cassette tape format, but the usefulness of the technology is threatened by special interest legislation that would prevent home recording of records, tapes or compact discs.

The new technology is known as Digital Audio Tape (DAT) recording and, like compact-disc technology, it uses electronic pulses to store and play back sound, offering the public much-higher quality than is possible on conventional analog recording equipment. In particular, the DAT will create a market for pre-recorded audio cassettes that sound as good as compact discs.

The recording industry is urging Congress to enact legislation that would require DAT recorders to incorporate anti-taping systems that would make it impossible for consumers to record most prerecorded or broadcast material, including material they have purchased and are recording for their personal use. The anti-taping IC is activated if the source material is recorded with a notch inserted in the high frequencies. The notch, which may be audible to a listener and could distort the music, would trigger the IC to stop the recording.

The legislation, HR 1384, sponsored by Rep. Waxman (D-CA) in the House of Representatives, and S 506, by Senator Gore (D-TN) in the Senate, would discourage consumers from buying this high-potential technology. Historically, consumers have accepted new recording technology only when it has offered them the chance to make tapes themselves. The anti-taping chip, however, would prevent home taping of notched source recordings and of tapes or records for use in car stereos and portable players.

DAT has extra advantages in that DAT tapes can be made much smaller than conventional cassette tapes, and they can store huge amounts of information -- nearly one gigabyte (one billion bits). The information storage capability gives DAT enormous potential in connection with personal computers.

Although recording companies claim that they would produce higher-priced recordings without anti-taping notches, it is highly questionable how many would be available, or at what price. Furthermore, research now shows that the anti-taping encoding process interferes even with sound quality on DAT playback.

Anti-taping legislation runs directly counter to the Supreme Court’s “Betamax” decision, which held that consumers have a right to record aired material for their personal use. Just as that Supreme Court decision did not stop sales of prerecorded video tapes from topping five billion dollars, there is no evidence that home DAT recording will in any way limit the profits of the recording business.

The recording industry is plain wrong in stating that DAT recorders can make perfect copies of prerecorded material through conventional analog inputs. The DAT is simply a better tape recorder, with tremendous portable applications, and will make people even more interested in buying music.

This latest assault by the recording industry on home taping is contrary to the intent of Congress and to Supreme Court precedent. Congress protected the right to tape during five years of debate. The recording industry's anti-consumers, anti-technological attack should be rejected once again.

Home Recording Rights Coalition
P.O. Box 33576
1145 19th Street, NW
Washington, DC 20033
(800-282-TAPE)
HANDHELD DIGITAL IC COMPARATOR
TESTERS FEATURE 20 CHANNEL
LOGIC MONITOR
B&K-PRECISION's Model 550 and 552 IC
Comparator Tester/Logic Monitors test ICs
by comparison to a known good reference in
one simple operation. As logic monitors, they
simultaneously indicate the logic states of up to
20 IC pins. They test most 14 to 24 pin, 54 and
74 Series TTL, 1400 Series CMOS (Model 552)
devices. Both models are available from distributors
at $395. Contact your local distributor or:
B&K-PRECISION, Dynacorn Corp., 6460
W. Cortland St., Chicago, IL 60655. (312)
889-9087.

NEW COMPARATOR ADDS IC COMPONENT TESTING TO SCOPE
Test virtually any type of passive or active component
or module with B&K-PRECISION's new 541 Com-
ponent Comparator. The 541 is designed for use with
the 540 component tester or virtually any x-y oscilloscope.
It is well suited for both in-circuit and out-of-circuit testing.
It's fast and easy to use. Unlike single function testing, the 541 can be used on series,
parallel or series/parallel circuits. $395. Contact your local distributor or:
B&K-PRECISION, Dynacorn Corp., 6460 W. Cortland St., Chicago, IL 60655.
(312) 889-9087.

NEW COMPONENT TESTER LOCATES FAULTS ON UNPOWERED BOARDS IN FIELD OR PLANT
The new Model 540 Component tester is an extremely
cost-effective, highly flexible trouble-shooting aid that
can assist in rapidly locating faults on unpowered
boards. Faults can be traced to the component level
without specific circuit knowledge. Individual com-
ponents can also be tested. Test results are displayed
as a curve on a built-in CRT display. Curve tracing
allows matching of components. Two channels allow
production testing or known good boards. Ideal for
field service or production testing. $995. Con-
tact your local distributor or: B&K-PRECISION.
Dynacorn Corp., 6460 W. Cortland St., Chicago,
IL 60655. (312) 889-9087.

PROGRAMMABLE IC TESTER TESTS TTL,
CMOS, RAM AND ROM IC'S, IN OR OUT-OF-
CIRCUIT
Called the "first cost-effective way to test IC's in-and-out-of-circuit," the new B&K-PRECISION
Model 560 fills the void between basic component
testers and costly ATE systems. Over 1500 different
14 to 24 pin devices can be tested, including TTL and
CMOS digital IC's, RAM's and ROM's. The 560
speeds testing, simplifies diagnostics and doesn't
require prior test skills. Plain-English user prompts
guide every step of operation. Test results are
displayed as positive "pass" or "fail." Test results can be
printed on a printer. Applications include incoming
inspection, QC, production line testing and
troubleshooting faulty products. $5,500. Contact
your local distributor or: B&K-PRECISION, Dyna-
corn Corp., 6460 W. Cortland St., Chicago, IL 60655.
(312) 889-9087.

LOGIC/PULSER PROBES HELP LOCATE DIGITAL
FAULTS IN LAB OR IN FIELD SERVICE
B&K-PRECISION now offers logic and pulser probes
to fill the needs of engineers and technicians. The DP-21
is a 20 MHz probe that also displays pulse presence
and logic status. Both LED and audible logic state
indicators are featured. The DP-31 pulser probe
is used alone or with a logic probe or scope. It
produces a 10µs pulse at 0.5 or 400 PPS rates
and features an external square wave and
clocking terminal. Both probes are
multi-family compatible. The DP-21 is
$32. The DP-31 is $33. Contact your local distributor or: B&K-PRECISION,
Dynacorn Corp., 6460 W. Cortland St.,
Chicago, IL 60655. (312) 889-9087.
Video News

DAVID LACHENBRUCH,
CONTRIBUTING EDITOR

- **Wireless is hot.** No, not Marconi's type of wireless, but wireless control and reception devices are big these days. Almost every TV manufacturer has introduced a wireless remote control that will work with the same brand of VCR, audio equipment, or both, and several have developed remote hand-held units that can "learn" other brands by facing them off with other remote units in a sort of bad-day-at-Black-Rock situation.

Wireless stuff got hotter at the recent Consumer Electronics Show in Chicago. CL9, the company started by Apple Computer co-founder Steve Wozniak, showed a universal remote control that could be taught whole sequences of commands, to be executed at a single keystroke. The controller, which costs $199, can perform as many as 260 series of tasks, has 16 keys, and 16K program memory. It can accomplish such tasks as turning on a VCR, setting it to record a specific channel, rewinding the tape and turning the machine off at one keystroke, for example. Coming in the future are computer and telephone interfaces—one of which would make it possible to program a VCR by phone.

Another hot wireless product was a hi-fi stereo speaker system using only house wiring for connection. To be marketed by Recoton for about $250 including amplified speakers, it can carry stereo sound to any room of the house via the AC wiring system and is claimed to have Compact Disc fidelity. Future models will be designed to accommodate name-brand speakers. Many years ago, General Electric's "Portasound" wireless AC speakers were all the rage, but they were killed off with the introduction of stereo. Now Recoton has updated Portasound in stereo and hi-fi.

Now you can edit your videotapes without even touching your VCR—by using Videonics' wireless editor. It's a complete editing system with a wireless hand-held alphanumeric keypad which is aimed at a high-speed microcomputer with 256K RAM as its main memory. Two VCR's are required—one of which can be a camcorder. Utilizing on-screen commands and prompts, the system guides the user through the process of editing, making titles, and captioning. More sophisticated add-ons will become available, but the basic system lists for less than $500.

Infrared wireless headphones are coming onto the American scene—none too early. They've been a fixture in Europe for many years. You merely plug the IR transmitter into the headphone jack of the TV or stereo and to a power source.

- **Personal video.** In its efforts to popularize the 8mm Video format, Sony has adopted a new approach. Calling the format "personal video," the company is emphasizing 8mm's small size and ability to be built into miniaturized equipment. Two new products introduced by Sony are "the world's smallest" complete VCR with tuner and timer, designed to be easily attached to any TV set and moved from room to room, and a "desk set" combination VCR and 5-inch color TV. Scheduled for introduction next year is a 2.7"-LCD color-TV and VCR combination that is about the size of a paperback book. A companion color camera, small enough to fit in a pocket, was also shown.

- **Up in the air.** A completely new airborne video system is being offered to the airlines. As introduced at the Paris Air Show, each seat has its own individual 4-inch flat CRT built into the back of the seat in front of it. Passengers have their choice of at least three video programs, can pass the time by playing seven different video games, watch local TV or live closed-circuit TV showing takeoff and landing from the pilot's cabin, listen to one of 18 mono or nine stereo channels of digital audio. They also can use the interactive keypads and screens in front of them to order meals and drinks, purchase duty-free items and get safety instructions in multiple languages. Developed jointly by Sony and Sundstrand Data Control, the Airborne Cabin Service and Entertainment System (ACSES) uses 8mm videotape for video and audio programs, and is expandable for the addition of further new features. There's no word on when you'll find it on an airplane. Its unveiling was the first indication that Sony had developed a color version of its flat Watchman picture tube.
February 1984 Issue

We stock the parts, PC Board and AC Adaptor for an article on building a cable TV descrambler appearing in Radio-Electronics.

#701 Parts Package* $29.00
Includes all the original resistors, capacitors, diodes, transistors, integrated circuits, coils, IF transformers (Toko BKAN-K5552AXX).

#702 PC Board* $8.95
Original etched and drilled silk-screened PC Board used in the article.

#704 AC Adaptor $7.95
Original (14 volts DC @ 285 ma) AC Adaptor used in the article.

FREE reprint with Purchase Above

#708 Toko Coil Set $6.95
Includes (2) BKAN-K5552AXX, (1) E520HN-300023, (1) 144LY-120K and BFQ-85 Replacement 2SC2369.

February 1987 Issue

We stock the parts, PC Board and AC Adaptor for an article on a tri-mode cable TV descrambler appearing in Radio-Electronics.

#301 Parts Package* $39.00
Includes all the original resistors, capacitors, diodes, potentiometers, transistors, integrated circuits, LED's, Toko coil (E520HN-3000023) and Plessey Saw Filter (SY-323).

#302 PC Board* $8.95
Original 5 x 8.8 etched and drilled silk-screened PC Board used in the article.

#304 AC Adaptor $7.95
Original (14 to 18 volt DC @ 200 ma) AC Adaptor used in article.

Free Reprint with Purchase Above

#308 Plessey & Toko Set $6.95
Includes (1) Plessey SY323 Saw Filter plus (1) Toko E520HN-3000023 Coil.

Add $2.50 Shipping & Handling; $4.50 Canadian Orders

MC-702 CONVERTER

72-CHANNEL CABLE CONVERTER
WITH INFRA-RED REMOTE CONTROL

- 72-channel capability
- Wireless, Infra-Red remote control
- Channel output 2 or 3 switchable
- Microprocessor controlled PLL operation
- Skip channel memory eliminates unused channels
- Parental control for all channels
- Last channel recall
- Fine tune memory
- UL listed/FCC approved
- Simple installation with any TV
- Includes battery and 3 foot coax cable

ORDER TOLL FREE 1-800-227-8529
Inside MA: 617-695-8699
VISA, MASTERCARD OR C.O.D.

Add $3.50 Shipping and Handling
$4.50 on Canadian Orders

J & W ELECTRONICS, INC.
P.O. BOX 800 • MANSFIELD, MA 02048

*Not available to Massachusetts residents due to state law

©copyright 1987 by J&W Electronics, Inc.

CIRCLE 65 ON FREE INFORMATION CARD
Pride, quality,

When you unpack a Heathkit product, you open up a special world, a world providing a unique blend of achievement and fun. With your Heathkit product, you'll enjoy the pride of building it yourself, and the confidence that it's built right. Along with the convenience and assurance of knowing how to keep it running at peak performance. Plus you'll learn about new and emerging technologies. For knowledge that gives you that added edge in your field. But most important, with a Heathkit product you're buying from a company whose name is synonymous with quality and enjoyment. From our easy-to-follow documentation to our renowned technical support, we make sure your kitbuilding experience is fun and relaxing—as well as rewarding. And when you're done, your pride will be matched by the satisfaction of owning a product that you know inside out. And that will last a long time. Thousands of people have discovered this unique dimension in product ownership. We'd like you to discover it, too.

For information on all our quality kits, send NOW for your FREE four-color Heathkit Catalog.

Send to: Heath Company, Dept. 020-586
Benton Harbor, Michigan 49022

GR-9009 9" AC/DC
Color TV – ONLY $249.95
Enter the Heathkit world with...

The Heathkit ID-4001 Weather Computer, which puts weather information at your fingertips. With the press of a button, you can instantly know temperature, wind speed and direction, and barometric pressure for the exact location in which you live. For planning outdoor activities with greater assurance than ever.

And its all done with unsurpassed accuracy. Long life IR LED's act as sensors to make both the wind speed cups and the wind direction vane as sensitive and as accurate as a costly laboratory instrument. While active solid state devices reliably measure indoor and outdoor temperatures, all stored by a microprocessor for later recall.

Attractively designed, the ID-4001 will give you extraordinary performance unheard of at such a reasonable price. $399.95.

The IC-1001 Logic Analyzer is the perfect answer for transforming a PC-compatible computer or standard terminal into a versatile logic analyzer.

A top-grade troubleshooter and design aid, the compact Logic Analyzer includes 16 data lines plus clock and two qualifier lines, checksum capability, and state and timing displays with hex, octal and ASCII equivalents. You can even use it in circuits with clock speeds up to 10 MHz, trigger on any digital word and view events 2,000 pulses before trigger and up to 50,000 pulses after. High impedance inputs virtually eliminate circuit loading.

And it's easy to use! The highly intuitive user-friendly software makes the IC-1001 fully keyboard-configurable and menu-driven. All in one portable unit.

Put this most advanced technology to work for you – for only $269.00.

To order, call toll-free 1-800-253-0570.
Ask for Operator 310.

We also have 66 Heath/Zenith Computers & Electronics stores in North America.
Call 616-982-3614 for the store location nearest you.
MORE ON MOTORS

In selecting questions for this column, we try to choose those that will interest the greatest number of readers and provide what we feel is the most practical answer when there may be two or more possible solutions to a problem. At times we consult professionals and experts before preparing a reply; but, unfortunately, the expertise of experts and professionals is often governed by their experience and familiarity with the question, and recently we got some “not-so-expert” opinions. So...we apologize for the less-than-expert replies to a couple of inquiries and will now try and set the record straight.

In an early inquiry on reversing electric motors, we pointed out that there are many types of motors and suggested that the reader take the motor to a motor repair shop and have a technician install a reversing switch. In a follow-up on the question (See “Ask R-E” in the April 1987 issue), we mentioned the possibility of reversing a motor by shifting the pole and field coil assemblies to the opposite sides of the brushholder center-line.

Reader Edward T. Smith, of Brogue, PA adds that a simpler and more practical solution is to switch the leads connected to the brush holders. Interchanging those leads reverses the current through the armature, so the torque and the direction of rotation are also reversed.

Now for what we hope will be the final word on the subject of reversing motors:

Single-phase, split-phase motors have a main winding fed directly from the AC powerline and an auxiliary winding that is fed a current that is out of phase with that in the main winding. The two windings may be electrically equal. In this case, the phase shift is generally produced by an inductor or a capacitor in series with the auxiliary winding. The usual single-phase, split-phase motor can be reversed by reversing the connections to either the auxiliary winding or the main stator winding.

In the single-phase capacitor motor (Fig. 1-a), the main and auxiliary windings are electrically similar. One winding is fed directly from the AC powerline and the other is fed through the capacitor. The position of the switch selects between the forward and reverse directions of rotation by switching the series capacitor from one winding to the other.

In some split-phase motors, the “start” winding has many turns of fine gauge wire; the “run” winding has fewer turns of a much heavier gauge wire. The phase difference in the magnetic fields causes the armature to rotate. The motor easily is reversed by reversing the connections to one of the windings.

In the capacitor-start motor (Fig. 1-b), the main or “run” winding is directly across the AC powerline and the auxiliary or “start” winding is fed through a capacitor and centrifugal switch that opens when the motor comes up to speed. For forward rotation, the start winding, switch, and the capacitor are in a series string from the midpoint of the main winding to one side of the powerline. For reverse operation, the switch returns the start-winding assembly to the other side of the powerline.

The shaded-pole induction motor (Fig. 1-c) is usually a low-torque low-speed type used for
FOR OPTIMUM STABILITY AND RELIABILITY IN FREQUENCY MANAGEMENT

QUARTZ CRYSTALS FOR

Industrial Equipment/Instrumentation
- Microprocessor control
- Computers/Modems
- Test/Measurement
- Medical

General Communications
- Channel element Service (VHF/UHF)
- Land Mobile 2-way
- Marine
- Aircraft
- Telemetry
- Monitors/Scanners/Pagers

Amateurs/2-Meter/General Coverage
CB/Hobbies/Experimenter

CRISTEK CORPORATION
DIVISION OF WHITEHALL CORPORATION
2351/2371 Crystal Drive • Ft. Myers, FL 33907
P.O. Box 06135 • Ft. Myers, FL 33906-6135
TOLL FREE 1-800-237-3061
PH 813-936-2109/TWX 510-951-7448/FAX 813-939-4226
TOLL FREE IN THE U.S.A. EXCEPT FLORIDA, ALASKA, HAWAII

CIRCLE 195 ON FREE INFORMATION CARD

Test VCR Mechanics Fast and Easy!

Take the guesswork and hassles out of VCR mechanical problem diagnosis!
Four Universal, Powerful Tools for VCR Service

Tape Tension Gauge: The Tentelometer® is the world’s most universal method of measuring holdback tension. Calibration can easily be checked in the “field” without special equipment. Merely slide the probes over tape to measure tape tension directly in grams. An illustrated instruction manual included. This is the back tension gauge referenced by many of the VCR service manuals, and it will work on all VCRs.

Video Head Provision Gauge: Universal, fast, easy to use, field calibratable, universal VCR test equipment available for several mechanical tests. CIRCLE 185 ON FREE INFORMATION CARD

Spindle/Elevator Gauge: The TSH gauge inserts into the VCR just like a cassette. The new TSH-V5 performs 6 critical measurements to eliminate tape binding and edge damage. This gauge quickly locates problems that can’t even be detected by other methods. Fully illustrated instruction manual is included.

TORQUE GAUGE: A universal, inexpensive, accurate torque gauge for VHS and Beta VCRs. Calibrated in Gram-Centimeters both clockwise and counterclockwise. Complete with easy-to-follow, detailed instruction manual for VHS recorders. Includes a modified VHS cassette for ease-of-use.

COMPLETE SYSTEM TO-600 $139

Ask about the combination discount when ordering all 4 gauges.

RHOMBIC ANTENNA IMPEDANCE

In the "Ask R-E" column of August 1986 you supplied information for a matching section for the 600-ohm impedance of a VHF rhombic antenna. Now, the article "Rhomboids for TV reception" (May 1957, page 86) gives the impedance of a rhombic antenna as 800 ohms. That figure is also given in the The ARRL Antenna Book. Why the discrepancy?—H.L.E., Cedar Rapids, IA.

A number of factors enter into the design of a rhombic antenna: tilt angle, antenna height, and the length of each leg. The maximum output design gives maximum radiation of signals in a desired direction and maximum response to signals arriving from that direction. Other designs are used to meet special conditions where pumps and fans.
height, leg length, or tilt angle may be dictated by local conditions. Of course, all variations in design can have an effect on the antenna's input impedance.

When a conventional single-wire rhombic is used over a 3:1 frequency range, its input impedance ranges from a maximum of about 830 ohms to a minimum of 700 ohms. When used over a frequency range of 4:1, the input impedance drops to a minimum of 580 ohms. In some authoritative references, we find:

"The transmission line can sometimes be designed to have a characteristic impedance the same as...the (rhombic) antenna input resistance, or vice versa in some cases. A 600-ohm two-wire balanced feeder gives a line of reasonable cross-section, but becomes less reasonable for higher (line) impedances. For this reason, rhombic antenna and feeder are designed for a value of 600 ohms for a majority of applications." — Jask's Antenna Engineering Handbook.

"If the broad frequency characteristics of the rhombic antenna are to be fully utilized, the feeder system used with it must be similarly broad. This practically dictates the use of transmission line of the same characteristic impedance as that shown at the antenna input terminals, or approximately 750-800 ohms. The spacing required for an 800-ohm line is rather awkward, also, rather small wire must be used. Both these considerations are disadvantageous mechanically, and the radiation from the line tends to be comparatively high at frequencies, because of the wide spacing. On the whole, the best plan is to connect a 600-ohm line directly to the antenna and accept the small mismatch which results." — Antennas and Antenna Systems, War Department Technical Manual TM II-314.

"A 600-ohm line connected to the antenna feedpoint is perhaps the most convenient means of feeding the antenna." — Antenna Systems, Air Force Manual 52-21.

One thing that is often overlooked is that at frequencies where the rhombic's input impedance is 800 ohms and the feedline impedance is 600 ohms, the standing-wave ratio is a low 1.33 to 1, and the line loss compared to a perfect match will be negligible.
NEW. SMARTER. LIGHTER. SMALLER. AFFORDABLE. HITACHI.

THE COMPACT SERIES™
Light weight—just 13 pounds!
Light price—4 models from $1095.
Great smarts—60 MHz and 100 MHz
featuring Hitachi's unique Trigger Lock, Auto Sweep,
Cursor Measurement, and more. Full size
screen—Crisp 6-inch (8 x 10 cm) CRT. Hitachi
reliability—all carry our standard three-year warranty.

Get more information and more scope for your
money from Hitachi. Call: NY area 516-921-7200 ·
LA area 213-538-4880 · Dallas area 214-233-7623.

Hitachi Denshi America, Ltd., 175 Crossways Park W., Woodbury, NY 11797
CIRCLE 194 ON FREE INFORMATION CARD
SCA ERRORS

In the article, "Build This SCA Receiver," in the August 1987 issue of Radio-Electronics, the Parts List has R42 at 22K and R37 and R38 at 10K. The schematic has R42 at 4.7K and doesn't show R37 and R38 at all. They appear to be in series with pin 13 of IC1. The Parts List also says that C27 is not used, while the schematic shows that it is in the line between Q2 and Q6.

G. L. McDONALD
Auburn, WA

Resistors R37 and R38 are 10K units; as you surmised, those are the unmarked resistors at pin 13 of IC1. Resistor R42 is 4.7K, as shown in the schematic; the Parts List is incorrect. Also, capacitor C27 is a 0.01-µF ceramic disc as shown in the schematic.

In addition, a ground symbol is missing in the schematic; it should be added at the junction of R23, R25, and C27.

Finally, if you have trouble finding the National LM3189N used for IC1, an RCA CA3189E or CA3089E can be used in its place; the latter one should be the easiest to find.

—Rudolf Graf and William Sheets

MORE ON SCA

I enjoyed "Build this SCA Receiver" in the August 1987 issue very much. I want to use the unit to receive data for input into my computer, as mentioned on page 41. Some of those transmissions are at 19.2 kilobaud, so the SCA audio bandwidth must be high enough to not distort the transmission waveform.

The article states, "SCA is not a high fidelity service; its audio-response bandwidth is limited to about 5000 Hz." Is that an FCC limitation, or an arbitrary one to eliminate noise? I'm concerned that the 12-dB-per-octave low-pass filter on the output of the LM565 (R56/C45-R57/C46) will cause waveform distortion of any digital-data transmission.

If there is an FCC restriction, the bandwidth will be limited at the transmitter, and I don't have to worry. I do want to receive the signal exactly as transmitted, however.

What is the FCC bandwidth restriction on SCA transmissions? And what component value changes, if any, are necessary to receive digital-data exactly as transmitted, without waveform distortion caused by a restricted bandwidth?

I believe the authors were wrong in their statement. "The signals are FM with ± 7.5 kHz deviation maximum." According to the FCC's December 1984 amendment, section 73.319 (d)(2), for stereo FM plus an SCA and nothing else (the most common SCA situation) the following applies:

"During stereophonic program transmissions, modulation of the carrier by the arithmetic sum of all subcarriers may not exceed 20% referenced to 75 kHz modulation deviation..."

The maximum used to be 10% (7.7 kHz) but now it's 20 percent (15 kHz)—and 30 percent for monaural and SCA-only transmissions. That error brings up a possible design error in the SCA receiver's circuit. If the designer's thought the maximum allowable deviation was noticeably less than what actually might be encountered, might the circuit distort more than it was designed for when it gets a true max-
“If you’re going to learn electronics, you might as well learn it right!”

“Don’t settle for less. Especially when it comes to career training...because everything else in your life may depend on it. That’s why you ought to pick CIE!”

Stephen J. Simcic
Vice President, Academic Affairs
You've probably seen advertisements from other electronic schools. Maybe you think they're all the same. They're not! CIE is the largest independent home study school in the world that specializes exclusively in electronics.

Meet the Electronics Specialists.

When you pick an electronics school, you're getting ready to invest some time and money. And your whole future depends on the education you get in returns.

That's why it makes so much sense to go with number one... with the specialists... with CIE!

There's no such thing as bargain education.

If you talk with some of our graduates, chances are you'll find a lot of them shopped around for their training. Not for the lowest priced but for the best. They pretty much knew what was available when they picked CIE as number one.

We don't promise you the moon. We do promise you a proven way to build valuable career skills. The CIE faculty and staff are dedicated to that. When you graduate, your diploma shows employers know what you're about. Today, it's pretty hard to put a price on that.

Because we're specialists we have to stay ahead.

At CIE, we've got a position of leadership to maintain. Here are some of the ways we hang onto it...

Programmed Learning

That's exactly what happens with CIE's Auto-Programmed Lessons. Each lesson uses familiar "programmed learning" methods to teach you important principles. You explore them, master them completely, before you start to apply them. You thoroughly understand each step before you go on to the next. You learn at your own pace.

And, beyond theory, some courses come fully equipped with electronics gear (the things you see in technical magazines) to actually let you perform hundreds of "hands-on" experiments.

Experienced specialists work closely with you.

Even though you study at home, you are not alone! Each time you return a completed lesson, you can be sure it will be reviewed, graded, and returned with appropriate instructional help. When you need additional individual help, you get it fast and in writing from the faculty technical specialist best qualified to answer your question in terms you can understand.

Pick the pace that's right for you.

CIE understands people need to learn at their own pace. There's no pressure to keep up... no slow learners hold you back. If you're a beginner, you start with the basics. If you already know some electronics, you move ahead to your own level.

Enjoy the promptness of CIE's "same day" grading cycle.

When we receive your lesson before noon Monday through Saturday, we grade it and mail it back the same day. You find out quickly how well you're doing!

CIE offers you an Associate Degree.

One of the best credentials you can have in electronics — or any other career field — is a college degree. That's why CIE gives you the opportunity to earn an Associate in Applied Science in Electronics Engineering Technology. Any CIE career course can offer you credit toward the degree, more than half of the number needed in some cases.

"Cleveland Institute of Electronics is the only accredited institution of higher learning offering an Associate Degree program with tuition based on actual study time used. The faster you complete your degree assignments, the less your overall tuition." — Steve Simcic, Vice-President, Academic Affairs

Which CIE Training fits you?

Beginner? Intermediate? Advanced? CIE home study courses are designed for ambitious people at all entry levels. People who may have:

1. No previous electronics knowledge, but do have an interest in it;
2. Some basic knowledge or experience in electronics;
3. In-depth working experience or prior training in electronics.

You can start where you fit and fit where you start, then go on from there to your Diploma, Associate Degree, and career.

Today is the day.

Send now.

Fill in and return the postage-free card attached. If some ambitious person has removed it, cut out and mail the coupon. You'll get a FREE school catalog plus complete information on independent home study. For your convenience, we'll try to have a CIE representative contact you to answer any questions you may have.

Mail the coupon below or, if you prefer, call toll-free 1-800-321-2185 (in Ohio, 1-800-523-9109).
imum signal? The output of LM565 and 2N3565 are the two possible overload points. What deviation was the circuit designed for, and what component changes are necessary for the true maximum possible SCA signal levels? Also, do you know where I could get a list of stations with SCA digital data transmissions?

I look forward to using the SCA receiver.
PETER SKYE
Glendale, CA

We were not aware of the change in the FCC rule when we wrote the article. Our object was to receive SCA music and speech transmission. The 565 PLL will lock and follow any signal up to ± 60% of the design frequency depending on external components. We refer you to National Semiconductor’s LM565 data sheets for more details.

The circuit was designed to handle the ± 10% deviation (7.5 kHz). It does better than that on the bench, but we cannot guarantee that you, too, will receive better performance.

If you find that the lowpass filter distorts the waveform, you can try removing it. However, you may find that results in unacceptable noise levels. In that event, try experimenting with smaller levels of filtering.—Rudolf Grat and William Sheets

COMPUTER FLEA MARKET
There will be 80 sellers of hardware, software, printers, disk drives, supplies, books, and more at the Computer & Hi-Tech Flea Market on Saturday, November 21, 1987. It will be held at the Veterans Memorial Building, 4117 Overland Avenue, Culver City, CA from 10 AM to 5 PM. There will be ample free parking, and the admission charge is $2.00. For those wishing to set up and sell at the fair, information can be obtained by calling (213) 276-1577. MICHAEL J. FLAHERTY
303 North La Peer Drive
Beverly Hills, CA 90211

R-E ROBOT
I was disappointed to see that Clifford King was not credited as the co-author of the article on the RCL Robot Command Language (“R-E Robot,” August 1987). Mr. King designed and wrote the RCL, then wrote the article describing it. I offered only general guidance in terms of the purpose of the program and the overall direction of the article. Without Cliff King’s consulting group’s—Micro-K Systems—offer of software support at the inception of the robot project, I doubt if I would have started the project at all.

As you know, it’s not the hardware that is the bottleneck in the design and utilization of robots. It is the software. The RCL that Micro-K developed took over 4 man-months of solid effort and the results are outstanding.

Thank you for correcting the oversight and printing this information.
STEVEN E. SARNES
Vesta Technology Inc.

continued on page 25
Nine Test Probes with only one difference between them and your scope's original equipment

<table>
<thead>
<tr>
<th>Manufacturers Scope</th>
<th>Original Probe</th>
<th>Price</th>
<th>Coline/TPI Price Equivalent</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEKTRONIX 2000 Series</td>
<td>P6101A</td>
<td>$53</td>
<td>M12X1</td>
<td>$38</td>
</tr>
<tr>
<td></td>
<td>P6108A</td>
<td>$75</td>
<td>M12X10</td>
<td>$62</td>
</tr>
<tr>
<td></td>
<td>P6121</td>
<td>$100</td>
<td>M12X10AP</td>
<td>$68</td>
</tr>
<tr>
<td></td>
<td>P6122</td>
<td>$58</td>
<td>P100</td>
<td>$38</td>
</tr>
<tr>
<td>2400 Series</td>
<td>P6131</td>
<td>$140</td>
<td>M15X10HFAP</td>
<td>$87</td>
</tr>
<tr>
<td>400 Series</td>
<td>P6133</td>
<td>$115</td>
<td>M12X10AP</td>
<td>$68</td>
</tr>
<tr>
<td></td>
<td>P6105A</td>
<td>$93</td>
<td>P100</td>
<td>$38</td>
</tr>
<tr>
<td></td>
<td>P6106A</td>
<td>$140</td>
<td>M15X10HFAP</td>
<td>$87</td>
</tr>
<tr>
<td></td>
<td>P6110A</td>
<td>$130</td>
<td>M12X10AP</td>
<td>$68</td>
</tr>
<tr>
<td>IWATSU SE-5321</td>
<td>SS-0014</td>
<td>$92</td>
<td>M12X10</td>
<td>$62</td>
</tr>
<tr>
<td></td>
<td>SS-5711</td>
<td>$77</td>
<td>M12X10</td>
<td>$62</td>
</tr>
<tr>
<td>LEADER LBO-315</td>
<td>LP-060X</td>
<td>$60</td>
<td>SP100</td>
<td>$43</td>
</tr>
<tr>
<td></td>
<td>LP-100X</td>
<td>$76</td>
<td>SP100</td>
<td>$43</td>
</tr>
<tr>
<td>PHILIPS PM3267</td>
<td>PM8294</td>
<td>$60</td>
<td>M12X1</td>
<td>$38</td>
</tr>
<tr>
<td></td>
<td>PM3256</td>
<td>$70</td>
<td>P100</td>
<td>$38</td>
</tr>
<tr>
<td></td>
<td>PM8926</td>
<td>$95</td>
<td>M12X10</td>
<td>$62</td>
</tr>
<tr>
<td>HITACHI V-1100A</td>
<td>AT-10AL15</td>
<td>$64</td>
<td>SP100</td>
<td>$43</td>
</tr>
<tr>
<td></td>
<td>V-670</td>
<td>$62</td>
<td>SP100</td>
<td>$43</td>
</tr>
<tr>
<td></td>
<td>V-509</td>
<td>$62</td>
<td>SP100</td>
<td>$43</td>
</tr>
<tr>
<td>HEWLETT PACKARD 1715A</td>
<td>10018A</td>
<td>$135</td>
<td>M20X10</td>
<td>$68</td>
</tr>
<tr>
<td></td>
<td>1722B</td>
<td>$130</td>
<td>M15X10HF</td>
<td>$79</td>
</tr>
<tr>
<td></td>
<td>1725A</td>
<td>$130</td>
<td>M15X10HF</td>
<td>$79</td>
</tr>
<tr>
<td></td>
<td>1740 Series</td>
<td>$135</td>
<td>P100</td>
<td>$38</td>
</tr>
<tr>
<td></td>
<td>10021A</td>
<td>$25</td>
<td>IP20</td>
<td>$29</td>
</tr>
</tbody>
</table>

Take up the Coline TPI challenge and compare our prices with the probes you currently use. In many cases you can replace both probes on your dual trace scope at the cost of one probe from the scope manufacturer. Plus, bandwidth and overall performance of the TPI probe typically exceed that of the original equipment. Satisfaction is guaranteed with a ten day return privilege. Coline TPI - Specialists in probes for over 15 years.

Available from your local distributor.

TOLL FREE INFORMATION LINE
1-800-368-5719, 1-800-643-8382 in California

Coline TPI TEST PROBES INC.
9178 Brown Deer Road, San Diego CA 92121 Phone: (619)535 9292
CIRCLE 123 ON FREE INFORMATION CARD
Mondo-Tronics Space Wings Robotics Kit

New wing-flapping technology

CIRCLE 25 ON FREE INFORMATION CARD

ROBOTICS IS A DIFFICULT HOBBY TO GET started in because it requires a knowledge of so many disciplines ranging from electronics to mechanics. Beginners to the hobby are often discouraged because building even a simple moving robot can be a complex project. We recently found, however, what might be the world’s simplest robot project—Space Wings from Mondo-Ironics (20090 Rodrigues Avenue #1, Cupertino, CA 95014).

Calling Space Wings a robotics project might be stretching the truth a little bit. Usually we would consider a pair of wings that flap a dozen times or so per minute more of a novelty item than a robot. But this kit is worth mentioning because of its use of BioMetal wire.

Shape-memory alloys

BioMetal wire is an alloy of titanium and nickel that contracts when an electrical current passes through it. In some ways, it is very much like a human muscle. We have seen demonstrations of robotic arms using BioMetal wire.
whose movements seem eerily human-like. The nickel-titanium alloy of which BioMetal is made is known as a shape-memory alloy. Such alloys undergo a reversible change in their crystal structure at certain temperatures.

BioMetal is different from other, similar alloys in that it has a more uniform crystal structure. That helps to make its behavior more consistent and predictable and makes its usable lifetime much longer. More important, the uniform structure makes electrical heating of the wire practical because “hot spots” don’t develop.

For more information on BioMetal, contact its manufacturer, Toki America Technologies, Inc. (18662 MacArthur Boulevard, Suite 200, Irvine, CA 92715).

Building the kit

Space Wings uses BioMetal wire to move a pair of Mylar wings. A 555-timer circuit controls the current through the wire. Each time current flows, the wire contracts and pulls down the “V” where the wings meet. The kit is very easy to build. After all, the entire circuit consists of the 555 timer IC, two resistors, a capacitor, a transistor, some hardware, and, of course, the BioMetal wire. The simplicity, however, is a disadvantage in this case. The instructions recommend the use of a 3-volt, 200-mA transformer that is available at Radio Shack, and notes that “higher current outputs can adversely affect the performance” of the kit “and reduce its operating lifetime.” We think it would have made sense to include current limiting on the board.

In conclusion, Space Wings makes an interesting conversation piece. It also gives you a chance to play with shape-memory alloy wire. Since education is its only real practical use, we feel the company should have done a better job at it. All that is included on the properties of the wire—the most exciting part of the kit—is a list of specifications that are not explained. Also, although the building instructions are clear and concise, there is no circuit explanation. That’s inexcusable. Despite those complaints, we still liked Space Wings, and its $19.95 price.

Call 1-800-843-3338 today to start thoroughly analyzing and pinpointing any trouble in any TV-RF distribution system, automatically to FCC specifications . . .

Does your success in servicing RF distribution systems depend on locating problems quickly and accurately? If so, here’s why your all new Sencore FS74 CHANNELIZER SR. will mean success for you . . .

Quickly tune in all TV/FM channels from 5 MHz to 890 MHz. Exclusive all channel, microprocessor-controlled digital tuner checks every standard cable channel with better than FCC accuracy to fully analyze any system.

Exclusive 5 microvolt sensitivity to bring in even weak signals. Autoranged attenuator automatically selects the best sensitivity for simplifying your VHF, UHF, or FM signal measurements like never before possible.

Automatic hassle-free S/N ratio, A/V ratio, and hum level tests. Exclusive on-channel signal-to-noise ratio test eliminates time-consuming signal comparison and chart reading. Exclusive audio-to-video ratio test measures directly in db for easy comparison to specifications.

Exclusive checks for ghosts, co-channel interference, line reflections, and other signal quality checks. Portable 4 MHz wideband battery-operated monitor lets you finally check the quality of your cable or MATV system and stop annoying callbacks.

Built-in autoranging AC/DC volt/ohmmeter makes troubleshooting a snap. Exclusive all-weather design holds tighter than FCC specifications from -4°F to +104°F. Truly portable, field-tested tough for dependable ease of use.

Begin successfully locating TV-RF signal problems more quickly and accurately than ever before possible, with the new FS74 CHANNELIZER SR. Call WATS Free 1-800-843-3338 today for a free Product Guide or an industry exclusive “Try before you buy” 15 Day Self Demo.

“CHANNELIZER SR.” is a trademark of Sencore, Inc.

WATS Free 1-800-843-3338 In Canada WATS Free 1-800-851-8866
Sencore Means Success In Electronic Servicing
3200 Sencore Drive, Sioux Falls, South Dakota 57107
Call Collect 605-339-0100 In SD & AK
CIRCLE 186 ON FREE INFORMATION CARD
Some are famous for missing parts, others for replacing them.

Over the past few years we've made quite a name for ourselves in the electronics industry. Technicians worldwide know that the NTE diamond stands for the highest quality in replacement components.

To distributors, we're known for responsive service, customer satisfaction and a broad product line that includes flameproof resistors, capacitors and static control products.

With this kind of reputation for quality and service, it's no wonder NTE has become the fastest growing supplier of replacement components in the electronics industry!

See for yourself why NTE is famous for replacement parts. Our Technical Guide and Cross Reference lists more than 3,400 NTE devices cross-referenced to over 228,000 industry part numbers.

To obtain your copy see your local NTE distributor. For their name and location just call us Toll Free.

ONE SOURCE. ONE CALL.

NTE ELECTRONICS, INC.
44 Farrand Street, Bloomfield, New Jersey 07003
Toll Free 1-800-631-1250 (Except N.J.) • 1-800-624-2624 (N.J. Only)
CIRCLE 71 ON FREE INFORMATION CARD
CAR RADIOS

I finished building the converter described in “New Life for Old Car Radios” (Radio-Electronics, June 1987), but found it lacking. However, I noted great improvement after I tied the bottom of L2/C1 to ground and eliminated C3. There’s no cost in giving that a try, especially if you are using a variable capacitor (C1) that has the rotor connected to the chassis after mounting.

Thanks for a great magazine and projects such as that one. They’re greatly appreciated.

l. GRISWOLD
 Douglas, AZ

FLIP-FLOPS

I enjoyed your article, “Working with Flip-Flops,” in the June 1987 issue of Radio-Electronics. I am a graduate of a technical school (digital and microprocessor technician), and have accumulated a good selection of books on digital electronics. I found that article to be the most comprehensive treatment of the topic that I have seen, and very enlightening. I’m sure there are many other Radio-Electronics readers who have had very intensive courses in electronics, or who are making the transition from analog to digital, who find areas in their understanding of the basics a bit sketchy.

May I offer a suggestion? I would like to see Ray Marston do an article, or a series of articles, on switching techniques used in digital circuits. He might start with the use of pull-up and pull-down resistors and continue with transistor push-pull configurations and three-state devices to explain how highs, lows, and pulses may be applied in digital circuitry. It could be accompanied by schematics of typical circuitry currently used, for example, in microprocessor applications.

Thank you for the fine articles I receive each month: Radio-Electronics continues to be the biggest bargain in my bookcase.

ED JOHN
 West Iopsham, VT

ANALYZE DEFECTIVE WAVEFORMS FASTER, MORE ACCURATELY, AND MORE CONFIDENTLY — EVERY TIME OR YOUR MONEY BACK

with the SC61 Waveform Analyzer
Patented $2,995

If you value your precious time, you will really want to check out what the exclusively patented SC61 Waveform Analyzer can do for you. 10 times faster, 10 times more accurate, with zero chance of error.

End frustrating fiddling with confusing controls. Exclusive ultra solid ECL balanced noise cancelling sync amplifiers, simplified controls, and bright blue dual trace CRT help you measure signals to 100 MHz easier than ever.

Accurately and confidently measure waveforms from a tiny 5 mV all the way to a whopping 3,000 V without hesitation with patented 3,000 VPP input protection — eliminates expensive “front end” repairs and costly equipment downtime.

Make only one circuit connection and push one button for each circuit parameter test: You can instantly read out DC volts, peak-to-peak volts and frequency 100% automatically with digital speed and accuracy. It’s a real troubleshooting confidence builder.

Confidently analyze complex waveforms fast and easily. Exclusive Delta measurements let you intensify any waveform portion. Analyze glitches, interference signals, rise or fall times or voltage equivalents between levels; direct in frequency or microseconds.

Speed your digital logic circuit testing. Analyzing troublesome divide and multiply stages is quicker and error free — no time-consuming gatticule counting or calculations. Simply connect one test lead to any test point, push a button, for test of your choice, for ERROR FREE results.

To see what the SC61 can do for your troubleshooting personal productivity and analyzing confidence, CALL TODAY, WATS FREE, 1-800-843-3338, for a FREE 15 day Self Demo.
NEW PRODUCTS

40 CHANNEL CB
For Help/Info On-The-Road

Breaker! Breaker! A closeout from Fuzzbuster® means BIG savings on a Z-80 40 Channel CB Radio. Now get weather and road data. Know where traffic delays are. Signal for help in an emergency or breakdown as you drive.

- Noise Blankers Screens Out Ignition Static/Interference.
- Automatic Noise Limiting Reduces Annoying Static That Often Comes with a Received Signal.
- Channel Up/Down Buttons with Convenient LED Readout.
- Separate Channel 9 Emergency Switch.
- Illuminated Power Meter. 6 LED Segments Glow Green, to Yellow, to Red to Show Signal Strength Activity.
- Public Address Feature. Speaker Jack.
- Sensitive Squelch Control. Microphone with 18" Coiled Cord.
- Metal Case: 2¾"H x 7¼"W x 7¼"D.

Limited Factory Warranty:
1-Year Parts; 90-Days Labor.

Mfr. List Price $149.95
Liquidation Price At $79
Item H-2822-7125-825 S/H: $5.00 ea.

CIRCLE 10 ON FREE INFORMATION CARD

ELECTRONIC STILL CAMERA. The model VS-101, is capable of recording images and playing them back on a standard TV set. It requires no chemical processing for development and printing, but records to and plays back from special magnetic disks (video floppies) for viewing of photographs immediately after they are taken.

The camera weighs only 2.1 pounds, and has a high-resolution auto-exposure system with lock function. It can operate at a high speed, up to five frames per second. Up to 50 frames for recording/playback are possible on a single floppy disk; a built-in erase function permits multiple reuse of the disk.

The model VS-101 has a suggested retail price of under $1000.00.—Casio, Inc., 15 Gardener Road, Fairfield, NJ 07006.

ACCELERATOR BOARD, the PC-BANDIT, is designed for the IBM PC, PC-XT, and PC compatibles. It requires no expansion slot; the PC-BANDIT uses the computer's current 8284 clock IC position, and provides additional clocks with its own clock IC. The user then connects two leads from the PC-BANDIT board: one to the DMA chip to retain proper DMA function, and the other lead to the motherboard to provide speed selection.

Instead of an externally-mounted switch box, the board uses software to toggle between speeds, and is compatible with certain
BIOS hot-key sequences. That makes it easy to choose between the accelerated rate or the standard 4.77-MHz speed of the 8088 CPU. No other utilities are necessary for the board to function properly.

Depending on the application, PC-BANDIT boosts the PC's processing speed as much as 60 percent. It is priced at $69.95.—Prism Electronics, Inc., 14682 NE 95th Street, Redmond, WA 98052.

EQUIPMENT BELT, the Transporter 2000, is designed for comfort by allowing its load to be evenly distributed around the entire waist of the body, and transfers that weight to the bone structure.

In addition to the comfort of the convoluted foam interior and the anti-slip moulding, the belt uses clip buckles that accommodate practically any kind of tool bag or other equipment-holding apparatus.

The Transporter 2000 is priced at $49.95.—Transport Technics, 8909 Complex Drive, #F, San Diego, CA 92123.

TINNER/CLEANER, the TTI, is a device for cleaning and re-tinning soldering iron tips. The tinner/cleaner is a small block of electronics-grade solder powder and chemicals compacted into the

Walk “Tough Dog” Troubles Out Of Any TV & VCR In Half The Time ... Guaranteed!

with the exclusive, patented
VA62 Universal Video Analyzer™ ... $3,495

Would you like to...

Reduce your analyzing time? Isolate any problem to one stage in any TV or VCR in minutes, without breaking a circuit connection, using the tried and proven signal substitution method of troubleshooting.

Cut costly callbacks and increase customer referrals by completely performance testing TVs and VCRs before they leave your shop? Own the only analyzer that equips you to check all standard and cable channels with digital accuracy. Check complete, RF, IF, video and chroma response of any chassis in minutes without taking the back off the receiver or removing chassis, plus set traps dynamically and easily right on the CRT.

Reduce costly inventory from stocking yokes, flybacks, and other coils and transformers for substitution only, with the patented Ringing Test? Run dynamic proof positive test on any yoke, flyback, and integrated high voltage transformer.

Protect your future by servicing VCRs for your customers before they go to your competition? Walk out “tough dog” troubles in any VCR chrominance or luminance circuit to isolate problems in minutes. Have proof positive tests of the video record/play heads before you replace the entire mechanism.

Have one piece of test equipment that doesn’t need replacing every time technology changes? Be able to service Stereo TVs & VCRs profitably, and get in on the ground floor of this growing market with exclusive phase-locked accessories.

Find out how the VA62 Universal Video analyzer will make servicing easier and more profitable in your shop? Call WATS Free 1-800-843-3338 and ask your area Sales Engineer for a “Try before you buy” 10 Day Self Demo or a full color brochure and join the many servicers already on the road to more profitable servicing with the VA62.

Universal Video Analyzer is a trademark of Sencore, Inc.

WATS Free 1-800-843-3338 In Canada WATS Free 1-800-851-8866
You are only one manual away from knowing how the new technology in RCA's CTC 140 color TV chassis operates and how to service it!

Some servicers were expecting tomorrow's high-tech color TV chassis to have a lot of technician-obsoleting, expensive black boxes . . . The CTC 140 is a high-tech color TV chassis, but it doesn't have any black boxes. It is a state-of-the-art unitized chassis with advanced technology that can be easily and economically serviced by professional consumer electronic technicians . . . As a professional technician you need to learn how the new technology in the CTC 140 operates and what strategies we recommend you use to proficiently service it. That's why you should buy and carefully read the CTC 140 Color TV Chassis Technical Training Manual. Its price of $19.95 is an excellent investment in professional upgrading . . . And to make the learning easier, we've included the companion Technical Training Workbook content at no extra charge. You get both the manual and the workbook information in one manual for only $19.95.

ORDER FORM

Complete this order form, make check payable to "RCA Consumer Electronics" for full amount, and send this form and check to:

RCA Technical Training/1-450/P.O. Box 1976/Indianapolis, IN 46206

☐ Send me _____ copies of the RCA CTC140 Color TV Chassis Technical Training Manual with Workbook content @ $19.95 ea.

Enclosed is my check for: _____ copies X $19.95 = ________ total

NAME ____________________________

STREET ADDRESS ____________________________

CITY ____________________________ STATE ________ ZIP ________
shape of a thick disc. It is packaged in a metal container complete with lid and self-adhesive pad on the underside, so that it can easily be attached to any convenient surface.

A single wipe of the iron tip across the TTCI block immediately cleans, wets, and tins the tip. It will remove even tin/iron intermetallic layers that form on iron plated tips and resists rosin-based fluxes. The chemicals it contains are non-corrosive and have a low evaporation point, so that nothing except solder remains on the tip after tinning.

TTCI blocks are supplied in cartons of ten; the price is $3.95 each.—Multicore Soldiers, Cantigae Rock Road, Westbury, NY 11590.

TELEPHONE ACCESSORY, the TWISSTOP, is a modular telephone-cord rotary connector. It allows the telephone handset to rotate freely without twising the cord. Installation is simple. TWISSTOP clips quickly and easily into the standard modular telephone-handset jack.

TWISSTOP is available in a variety of colors, including almond, white, black, and clear, and can be imprinted with a logo or message; it is priced at $5.95.—Telcor, Inc., 88 Hillside Road, Chester, NJ 07930.

PRINTER BUFFER BOXES. The model BX-64, the model BX-128, and the model BX-256, are capable of storing up to 256K bytes of data for printing.

The model BX-64 buffers up to 64K of data; the model BX-128 buffers up to 128K of data, and the model BX-256 buffers to 256K of data. All three boxes are microprocessor-controlled printer-buffers/interface-converter, which

Discover How The World's Only 100% Automatic, Dynamic, & Portable LC Analyzer Gives You Total Confidence In Your Cap/Coil Testing . . .

Call 1-800-843-3338 Today!

LC77 AUTO-Z™
Automatic Capacitor and Inductor Analyzer Double Patented $1,895

The first cap/coil analyzer guaranteed to reliably test anywhere, without conclusions, look-up tables, or error — 100% automatically so you're confident of your accuracy.

Do you want to eliminate doubt from your cap/coil testing? The LC77 AUTO-Z tests all key parameters with results anyone can understand. Automatic good/bad results eliminate the guesswork for error-free analysis. Touch-sensitive keypad and one-two-three setup makes your AUTO-Z the easiest and fastest LC analyzer on the market.

Are you frustrated trying to test the new high-tech caps/coils used in modern electronics? Only the LC77 AUTO-Z allows you to test them all. Test capacitors from 1 pf to 20 farads, with leakage tests to 1000 V and ESR to 2000 ohms for locating failures other testers miss. Inductor value from 1 uH to 20 H and a patented ringing test for dependable, error-free coil testing every time.

Do you need the freedom of a battery-operated portable LC meter? The LC77 is 100% battery portable for use in the field or factory. The full power and potential of the LC77 AUTO-Z is packed into a light-weight, portable package. The AUTO-Z puts the complicated electronics on the inside for ease of operation on the outside.

Do you want maximum efficiency with a bus compatible LC testing system? Your LC77 AUTO-Z is IEEE 488 compatible for automated cap/coil analysis for data collection, incoming inspection, and quality assurance tests.

Be satisfied that you can meet all the challenges new technology brings. Call WATS Free 1-800-843-3338 today and tell your Area Sales Engineer you want to "try before you buy" with Sencore’s exclusive 10 Day Self Demo.

AUTO-Z is a trademark of Sencore, Inc.

WATS Free 1-800-843-3338 In Canada WATS Free 1-800-851-8866

SENCORE
Means Success In Electronic Servicing
3200 Sencore Drive, Sioux Falls, South Dakota 57107
Call Collect 605-339-0100 In SD & AK

CIRCLE 189 ON FREE INFORMATION CARD
accept data at very high rates from a host of computers and simultane-ously feed that data to your printer at the printer’s slower data-acceptance rate. The host computer is then free to process other data during printing, because the data transfer to the buffer box is accomplished very rapidly.

The suggested retail price for the model BX-64 is $169.95; the model BX-128 costs $209.95, and the model BX-256 sells for $259.95.—Chenesko Products, Inc., 21 Maple Street, Centereach, NY 11720.

Your Career in ELECTRONICS or COMPUTERS

Put Professional Knowledge and a COLLEGE DEGREE in your Technical Career through HOME STUDY

No commuting to class. Study at your own pace, while you continue on your present job. Learn from easy-to-understand lessons, with help from your instructors when you need it.

Grantham College of Engineering is a specialized institution catering to mature individuals who are employed in electronics and allied fields such as computers. These fields are so enormous that advancement opportunity is always present. Promotions and natural turn-over make desirable positions available to those who are prepared to move up.

Advancement in your career is made easier and more certain by (1) superior knowledge and (2) documentation of that knowledge — both of which are obtainable through Grantham distance education, fully accredited by NHSC.

Grantham’s home study (distance education) programs leading to the

B. S. DEGREE

may fill an important need for you. These are comprehensive correspondence programs in which you first review some things you already know, in preparation for the studies that come later. Some previous knowledge in electronics is presumed, but is thoroughly reviewed in depth, so as to give you a thorough foundation for the level of studies you have not previously undertaken. Even though some students hold associate degrees before enrolling, an A. S. Degree is awarded along the way toward the B. S. Degree.

For full information, write for Catalog 10-87.

Grantham College of Engineering
10570 Humboldt Street
P. O. Box 539
Los Alamitos, California 90720

REPEATER CONTROL BOARD

The model SRC-10, is a smart, low-cost, low-power, self-contained microprocessor-based repeater controller. All repeater functions have been incorporated onto a 4" × 6" G-10 glass-epoxy PC board.

The model SRC-10 controller provides up to 7 buffered auxiliary function-control outputs, which are selected remotely via a three-digit DTMF command. The controller responds with a function-complete tone after each valid DTMF command.

In addition to the function-complete tones, there are auxiliary-function tone responses to indicate an on or off condition. Courtesy-tone responses are also available to indicate repeater or link COS activity. There is a lock command: When it is selected, the controller ignores all DTMF commands until the unlock command is received. That is effective against jammers.

With the optional model PI-10/S synthesizer board, the frequency and offsets of the link radio can be programmed remotely. After the frequency and offset is sent in serial format from the controller, it is converted into parallel outputs to interface with the link radio’s frequency synthesizer. A read-back command can be used to verify the link frequency.

The model SRC-10 with manual is priced at $149.00. The optional model PI-10/S synthesizer board costs $39.00.—Creative Control Products, 31285 Bunting Avenue, Grand Junction, CO 81504.
Light makes the perfect wire.

YEARS AGO, BECAUSE ONLY A HANDFUL of circuits were needed to design almost all communications equipment, there was a logical progression to electronics technology, and it was possible to make an accurate guess as to what would come next. Today, the field of electronics is so fragmented that, more often than not, a manufacturer has no idea what's being developed by a competitor around the block. More important, the competition might be leapfrogging what is otherwise accepted as the leading edge of technology, and suddenly an entire technology becomes obsolete. It's as if someone had already perfected a 20-meter SSB (Single SideBand) transceiver and the beam antenna while Marconi was still waiting to hear the spark signal from his transmitter located in England.

HERB FRIEDMAN,
COMMUNICATIONS EDITOR

Just such a leapfrogging situation is happening today to the development of a national consumer communications network. Recently, there has been much ado about such a network in which the same wires used for the telephone would also provide digital access to a wide variety of services, such as on-line information and database, cable and pay-per-view TV, hi-fi stereo music, school-at-
R-5000
High performance receiver
THE high performance receiver is here from the leader in communications technology—the Kenwood R-5000. This all-band, all mode receiver has superior interference reduction circuits, and has been designed with the highest performance standards in mind. Listen to foreign music, news, and commentary. Tune in local police, fire, aircraft, weather, and other public service channels with the VC-20 VHF converter. All this excitement and more is yours with a Kenwood R-5000 receiver!

- Covers 100 kHz-30 MHz in 30 bands, with additional coverage from 108-174 MHz (with VC-20 converter installed).
- Superior dynamic range. Exclusive Kenwood DynaMix™ system ensures an honest 102 dB dynamic range. (14 MHz, 500 Hz bandwidth, 50 kHz spacing.)

R-2000
- All modes • Digital VFOs tune in 50 Hz, 500 Hz, or 5 kHz steps • 10 memory channels • Programmable scanning • Dual 24-hour digital clocks, with timer • 3 built-in IF filters (CW filter optional) • All mode squelch, noise blanker, RF attenuator, AGC switch, S meter • 100/120/220/240 VAC operation • Record, phone jacks • Muting terminals • VC-10 optional VHF converter (108-174 MHz)

- Versatile programmable scanning, with center-stop tuning.
- Choice of either high or low impedance antenna connections.
- Kenwood non-volatile operating system. Lithium battery backs up memories; all functions remain intact even after lithium cell expires.
- Power supply built-in. Optional DCK-2 allows DC operation.
- Selectable AGC, RF attenuator, record and headphone jacks, dual 24-hour clocks with timer, muting terminals, 120/220/240 VAC operation.

Optional Accessories:
- VC-20 VHF converter for 108-174 MHz operation • YK-88A-1 6 kHz AM filter • YK-88S 2.4 kHz SSB filter • YK-88SN 18 kHz narrow SSB filter • YK-88C 500 Hz CW filter • YK-88NS 270 Hz narrow filter • DCK-2 DC power cable • HS-5, HS-6, HS-7 headphones • MB-430 mobile bracket • SP-430 external speaker • VS-1 voice synthesizer • IF-232C/IC-10 computer interface

More information on the R-5000 and R-2000 is available from Authorized Kenwood Dealers.
home, picturephone, dial-up computer-to-computer communications, and just about anything else that’s imaginable.

A multi-mode world of home- and office communications is possible because we can now easily digitize any kind of signal—voice, music, TV, the printed word—and anything that’s digitized can be sent down a line and restored to its original form or structure at the receiving end. The only problem with the idea is that many of the people doing the high-tech work in digitizing signals are talking in terms of metallic-wire lines—existing telephone and cable-TV wiring. In my view, putting digitized signals on a metallic-wired system is like putting spoilers on an underpowered sports car. It will look great, and it might be fun to drive, but it won’t be a better car.

Fiber optics

In the world of modern communications systems we rarely talk in terms of metallic wires; rather, the term “wiring,” if used at all, refers to fiber optics. Not esoteric fiber systems that connect cities with other cities or teleports, but a stretch of fiber filament from one office to another perhaps fifty feet away, or from home to the telephone switching center.

All other considerations aside, a major advantage of fiber-optic communications is speed. For example, a conventional fiber-optic office system that is presently available from AT&T will easily handle data communications at 200 megabits per second. You’re not going to do that with conventional wires, and that’s the cheap system. Even higher speeds, to 1 gigabit/sec, are possible by using laser transmitters.

But why would you, or anyone else, want so high a data rate for conventional use? Because the faster we can push data through a line the greater the number of signals that can be multiplexed. Ignoring the overhead loss—the bits needed to encode the individual digital signals—ten different 20-megabit signals could be sent through a 200-megabit system, and even 20 megabits is unusually fast for consumer applications.

How it’s done

Figure 1 shows a simplified fiber-optic communications system. On the left we have a sending (transmit) MUX; MUX is shorthand for several terms having to do with multiplexing, such as multiplex and multiplexer. On the right we have a receiving MUX, which separates the signals and also restores the bits and pieces of a MUXed signal to the form it was in when it was input to the sending MUX—its original digital form.

The sending MUX looks at the incoming lines in order and strips off a single data block, or whatever data or bit group that it’s designed for. The MUX affixes a header (digital code) representing a specific data source to the front of the block. (Line 1 has its own header, Line 2 its own, etc.) The transmit continued on page 103
Train for the Fastest Growing Job Skill in America

Only NRI teaches you to service all computers as you build your own fully IBM compatible microcomputer

With computers firmly established in offices—and more and more new applications being developed for every facet of business—the demand for trained computer service technicians surges forward. The Department of Labor estimates that computer service jobs will actually double in the next ten years—a faster growth rate than for any other occupation.

Total systems training
No computer stands alone... it's part of a total system. And if you want to learn to service and repair computers, you have to understand computer systems. Only NRI includes a powerful computer system as part of your training, centered around the new, fully IBM PC compatible Sanyo 880 Series computer.

As part of your training, you'll build this highly-rated, 16-bit IBM compatible computer system. You'll assemble Sanyo's "intelligent" keyboard, install the power supply and disk drive, and interface the high-resolution monitor. The 880 Computer has two operating speeds: standard IBM speed of 4.77 MHz and a remarkable turbo speed of 8 MHz. It's confidence-building, real-world experience that includes training in programming, circuit design and peripheral maintenance.

No experience necessary—NRI builds it in
Even if you've never had any previous training in electronics, you can succeed with NRI training. You'll start with the basics, then rapidly build on them to master such concepts as digital logic, microprocessor design, and computer memory. You'll build and test advanced electronic circuits using the exclusive NRI Discovery Lab®, professional digital multimeter,

Learn Computer Servicing Skills with NRI's "Hands-On" Training...

Using NRI's unique Action Audio Cassette, you are talked through the operation and practical application of your hand-held digital multimeter—the basic, indispensable tool for the computer specialist.

You'll set up and perform electronics experiments and demonstrations using your NRI Discovery Lab. You'll even interface the lab with your computer to "see" keyboard-generated data.

After you build this digital logic probe, you'll explore the operation of the Sanyo detached "intelligent" keyboard and its dedicated microprocessor.
Your NRI total systems training includes all of this: NRI Discovery Lab to design and modify circuits + Four-function digital multimeter with walk-you-through instruction on audio tape + Digital logic probe for visual examination of computer circuits + Sanyo 880 Series Computer with "intelligent" keyboard and 360K double-density, double-sided disk drive + High-resolution monochrome monitor + 8K ROM, 256K RAM + Bundled software including GW BASIC, MS DOS, WordStar, CalcStar + Reference manuals, schematics, and bite-sized lessons.

and logic probe. Like your computer, they’re all yours to keep as part of your training. You even get some of the most popular software, including WordStar, CalcStar, GW Basic and MS DOS.

Send for 100-page free catalog
Send the post-paid reply card today for NRI’s 100-page, full-color catalog, with all the facts about at-home computer training. Read detailed descriptions of each lesson, each experiment you perform. See each piece of hands-on equipment you’ll work with and keep. And check out NRI training in other high-tech fields such as Robotics, Data Communications, TV/Audio/Video Servicing, and more.

If the card has been used, write to NRI Schools, 3939 Wisconsin Ave., N.W., Washington, D.C. 20016.

as You Build Your Own Sanyo 880 Computer System.

The power supply is assembled in the main unit of the computer. You check out keyboard connections and circuits with the digital multimeter included for training and field use.

Next, you install the disk drive. You learn disk drive operation and adjustment, make a copy of MS DOS operating disk and begin your explication of the 8088 CPU.

Using the monitor, you focus on machine language programming, an indispensable troubleshooting tool for the technician. You continue by learning BASIC language programming.
HITACHI

COMPACT SERIES SCOPES

- 6" CRT with Internal Graticule
- Dual Channel X-Y Display
- Sweep Time Autoranging
- Delayed Sweep
- Single Sweep
- Trigger Lock
- CRT Readout
- +3% Accuracy
- Bandwidth Limiter
- 400V Hi-High Input Voltage Protection
- TV Sync Trigger Circuit

V-223 $695. Save $100!
DC to 20MHz, Dual Channels,
Delayed Sweep
- CRT: 6" rectangular with 1.5k V Potential
- X-Y Operation (CH1 X, CH2:Y): 3° or less from DC to 50kHz
- Weight: 5kg (11 lb)

V-209 DC to 20MHz, Dual Channels
- CRT: 6" rectangular with 2k V Potential
- X-Y Operation (CH1 X, CH2:Y): 3° or less from DC to 50kHz
- Weight: 6kg (13.3 lb)

V-212 $440. Save $175!

VC-6020 $1750. Save $200!
1MHz Sampling, Dual Channels

V-1066 DC to 100MHz With Cursor Readout $1595. Save $200!

PROBES INCLUDED WITH ALL HITACHI SCOPES AT NO EXTRA CHARGE!

Polaroid®
DS-34 CAMERA

Save $135!
- Instant Hard Copy From Oscilloscopes
- 5", 6" and 7" Hoods (Available separately @ $51 ea. Please Specify size)
- Pistol Grip For Ease of Operation
- Works on Any Make of Oscilloscope
- Three Full Year Warranty

V-1060 DC to 100MHz $1345. Save $150!

V-665 DC to 60MHz $1145. Save $150!

V-660 DC to 60MHz $970. Save $125!

WM. B. ALLEN SUPPLY COMPANY

Allen Square
300 Block North Rampart Street
New Orleans Louisiana 70112
Toll Free 800 535-9593 LA 800 462-9520
New Orleans (504) 525-8222 Fax (504) 525-6331
- American Express - VISA - MasterCard
- 928 pg Catalog Free with your order

CIRCLE 103 ON FREE INFORMATION CARD
Use a light beam to listen in to anything, anywhere, any time.

RICHARD L. PEARSON

Early light-wave communications

Communication using a modulated beam of light isn’t a new idea. In the 1880’s, Alexander Graham Bell experimented with something he called a photophone, a device that modulated a beam of sunlight. It had a mouthpiece that concentrated sound energy on a reflecting diaphragm, which, in turn, modulated a beam of sunlight that was aimed at the diaphragm. When a remote receiver con-

WARNING

Extra precautions must be taken because of a laser beam’s intense concentrated energy. Among other factors, the hazards presented depend on the power density, the frequency of the beam, and the time of exposure. Guidelines have established the classification of lasers. A brief description of the classification is as follows:

Class I: Low-power beam. Not known to produce any biological injuries to the eye or skin.

Class II: Reserved for visible-light lasers only. They are limited to less than 1 milliwatt output. Eye damage will result if stared into for longer than 1 second. The normal blink response of the human eye will provide protection. Eye damage will occur if the beam is viewed directly by optical instruments. Direct (specular) reflection, as from a mirror, should be considered to be the direct beam. Diffuse reflection of the light may be viewed.

Class III: Instantaneous eye damage will occur if exposed to the direct beam.

Class IV: Both direct exposure or direct and diffuse reflections will produce eye damage. Exposure of the skin to the beam is hazardous. The beam is considered to be a fire hazard.
sitting of a photovoltaic cell and a sensitive earphone was positioned in the beam, the voice could be heard clearly from the receiver. The aiming problems presented by the movement of the sun, and the interruptions due to clouds and night, probably prevented the commercial exploitation of the device.

But by using coherent light—such as that produced by a continuous-wave laser—the principles used by Bell’s device may again be applied in a meaningful way. After all, terrestrial lasers aren’t influenced in any way by sunlight or clouds. And perhaps more important, unlike acoustic sound-detection devices, lasers aren’t usually subject to interference originating between the sound source and the receiver.

For example, remote sound-pickup devices in the form of directional microphones have been available for many years. Unfortunately, any sound generated between the listener and the sound source usually renders the device useless because the interference is heard at the receiver, and it can be even louder than the source. On the other hand, lasers are not sensitive to sound of any kind between the source and the receiver. However, lasers may be subject to other kinds of interference: For example, AC-powered incandescent lights can produce a hum; gas discharge devices such as fluorescent, mercury, sodium vapor, and neon lights might produce a buzz; and direct sunlight might swamp the laser detector device. Also, where unusually long distances are involved, air currents can add flicker to the laser beam, which on windy days can result in a noise that is similar to that of blowing into a microphone. (But even though sensitive to some kinds of electronically-generated noise, laser-listening devices have an advantage: They can seemingly hear through walls or closed windows, and even selectively monitor only one window of a building from several hundred feet away.)

Commerically-available laser sound pickups use a laser device having an output in the infrared region. Because infrared is below the visible portion of the light spectrum, it cannot be seen by humans. However, some commercial devices have a power output rating as high as 35 milliwatts. At such a power level there is clear potential for eye damage if someone in the target area unknowingly stares into the beam, or if the laser is operated carelessly by the user.

Laser basics

Although the details underlying the generation of laser light are beyond the scope of this text, an understanding of some of the characteristics of a laser beam as compared to ordinary light will be helpful in assembling a laser-listener system.

Light is considered to be comprised of packages of energy particles called photons. However, light is also electromagnetic radiation and behaves like radio waves, although at a much higher frequency. The perceived color of visible light is determined by the radiation’s wavelength, which is usually given in micrometers (one micrometer = 10⁻⁶ meter). The shorter wavelengths are perceived as violet, the longer wavelengths as red. The spectrum below the visible portion is called infrared; the spectrum above is called ultraviolet.

The light emitted by a conventional incandescent or fluorescent source contains a wide range of frequencies, and the photons are emitted randomly and spontaneously in all directions. On the other hand, in a laser light source the photons are released in one direction, at one frequency, making the laser light highly directional and pure in color. (An analogy would be to liken ordinary light to the white noise, while the laser is likened to a sine wave—a single pure tone.) Since all of the light emitted by a laser is coherent (has the same frequency), constructive or destructive interference occurs when two beams of laser light meet at the same place and time (Fig. 3).

As shown in Fig. 3-a, the beams cancel each other when out of phase (destructive interference). As shown in Fig. 3-b, the
interferometer, the laser, and the reflective target. For super-snooping, a direct reflection from the target is preferred because the collimated nature (parallelism) of laser light also allows modulation of the beam to occur just as Bell's photo-phone modulated the sunlight.

The prototype's laser

Regardless how we choose to eavesdrop, we must start out with a laser, so we'll cover the prototype laser-bug's laser unit first. It's a Heathkit model ETS-4200 Laser Trainer, a Helium Neon (HeNe) unit having an output power of 0.9 milliwatts. It has a beam divergence of 1.64 milliradians, which produces a spot of light 1/2-inches in diameter at 200 feet. Although 0.9 milliwatts doesn’t appear to be much power, it can cause extreme eye damage if allowed to shine or be reflected directly into the eye, or if viewed directly through any optical device such as a telescope, binocular, etc. The beam may be safely viewed only if projected onto a non-reflective surface such as a white sheet of paper.

If you want to keep costs at rock-bottom, or just want the excitement of a complete home-brew project, another alternative is to assemble the helium-neon laser shown in the June 1986 issue of Radio-Electronics. Also, if you want to build a laser from your own design, helium-neon tubes are often available from “surplus” distributors.

The receiver

The Laser Listener’s receiver is relatively easy to build and adjust. It is designed to drive a 4-20-ohm headphone or speaker, which permits just about any high-fidelity or Walkman-type headphone to be used for monitoring. The circuit shown in Fig. 1, uses a photo transistor (Q1) for a sensor, and has a meter (M1) that indicates the relative signal strength of the reflected laser beam. Because the meter responds only to the amplitude modulation of the reflected laser beam, it is unaffected by ambient light and the relative intensity of the laser beam. An adjustable polarizing light filter can be installed in front of Q1 to avoid swapping of the phototransistor by very high ambient light.

Phototransistor Q1 is an inexpensive type usually called an IR detector, which means that it is specifically sensitive to infrared light. Tests comparing the unit specified in the parts list with other less readily-available and more-expensive devices show no measurable differences in performance in the prototype receiver. No base connection is used for Q1 because the reflected laser light controls the collector current. The audio signal developed across collector load-resistor R1 is coupled by C2 to voltage-controlled attenuator IC1, which has a greater than 30-dB gain variation; it serves as both a preamplifier and as an electronic volume control.

Resistor R2 and capacitor C1 decouple (filter) the power supply voltage to Q1 and IC1. Be sure to take extreme care not to eliminate or accidentally bypass the filter because that will cause unstable operation. The gain of Q1 and IC1 is too great to permit non-decoupled operation from the power supply.

The output from IC1 is fed through C4

beams are additive when in-phase (constructive interference). It is the interference between the beams that enables the movement of any reflecting surface to be sensed by a device called an interferometer. An interferometer is a beam splitter—usually a piece of partially-mirrored glass—that deflects only a small part of a beam aimed through the glass. As shown in Fig. 4, it can be used to reflect both the source and reflected laser beams so that their phasing or amplitude can be compared by a receiver.

The major problems with using interferometry for eavesdropping is that only a part of the laser’s energy is directed at the target, limiting the working range, and the interferometer is sensitive to the diffusion of the sound target’s reflections caused by tremors in the mountings of the

FIG. 3—SINCE LASER LIGHT IS COHERENT, reflections can both cancel and reinforce the direct beam.

FIG. 4—AN INTERFEROMETER DIVERTS part of the laser to the target. Its chief advantage is that it can sense any kind of movement at all four points: the source, the reflector, the target, and the receiver.

FIG. 5—A COMPONENT-POSITION TEMPLATE cemented to the pre-drilled PC board will simplify assembly.
to amplifier IC2. Resistor R4, and capacitors C5 and C7, tailor IC2's frequency response and ensure stable operation with varying drive levels and output loads.

The output of IC2 is split into two paths. One goes to output-jack J1 via C6, the other feeds voltage-follower IC3, which drives the meter circuit consisting of D1, D2, C11, R8, and M1. The time constant created by the values of R8, C11, and M1's DC resistance was selected to provide a comfortable damping of the meter pointer's gyrations. The value of C11 may be varied to change the pointer's response. Increasing the value of C11 provides a smoother response; decreasing C11's value will cause the pointer to more closely track the variations in the laser beam's modulation.

Construction

The prototype receiver was assembled on a modified Radio Shack type 276-170 pre-drilled PC board, which has strips of copper foil on the underside that connect the component mounting holes. A board with a parts-placement template in place, as shown in Fig. 5, is available from the source given in the Parts List. Nothing about the layout is critical as long as you follow the usual precaution of keeping the input and output connections reasonably separated.

Check your parts layout against the foil strips on the underside of the board. If it appears that any will be too long, cut them to size before mounting any components. Cut each foil strip exactly as long as needed so that a foil carrying the input signal doesn't end up running adjacent to an output connection.

For best results when making connection to the foils, use a small pencil-tipped soldering iron and .040 diameter rosin-core solder. If your layout requires jumpers between component mounting holes, use #22 solid, bare wire. Insulated jumpers are #22 solid, insulated wire. Connections between the copper foils should be #18 insulated wire because it's a precise push-fit for the holes in the specified prototyping board.

The enclosure is a $6\frac{1}{2} \times 2\frac{1}{4} \times 1\frac{1}{8}$ inch aluminum cabinet. Phototransistor Q1 protrudes from one end of that enclosure and is mounted with a dab of household cement. Position Q1 correctly before gluing it in place and be very careful to not get glue on the surface of the lens. Do not use cyanacrylate-based instant glue because it might cloud the transistor's plastic lens. Output-jack J1, gain-control potentiometer R5, and the meter are mounted on the side of the cabinet so as to encourage the user to face at a right-angle to the source of the laser light, thereby lessening the chance of looking directly into the reflected beam.

The board is mounted in the enclosure with four ¼ inch 6-32 machine screws. Use ⅛ inch insulated spacers between the board and the enclosure to ensure adequate clearance between the enclosure and the board's foil side. A ground lug located at one mounting screw is soldered to the circuit-board's ground foil to provide the ground connection between the board and the cabinet. The connections between the board and the panel-mounted components can be #18-22 stranded insulated wire.

Optical attenuator

The optical attenuator assembly, for which construction details are shown in Figs. 6 and 7, mounts over phototransistor Q1. Figure 6 shows how it's installed over Q1; Fig. 7 shows the individual details for each component in the assembly. The front of the assembly is painted flat white.
so that the reflected laser beam can be easily seen. The attenuator is built in such a way that the phototransistor can see the laser beam directly, or through a combination of one or two polarizing filters. When both filters are in place, rotation of the large-diameter filter-mount will cause a gradual decrease in light transmission (to almost total blockage within 90° of rotation), which allows the receiver to be used over a wide range of light intensities without swamping the photo detector. Figure 8 shows the installed assembly and the two filters.

The attenuator has an inner filter and an outer filter made from brass telescopic tubing. Each filter consists of two sections; a filter nose that is soldered to small mounting plate made from brass sheet (the painted target), and a filter mount that slips over the base. Polaroid filters cut from neutral-tint polarized sunglasses are cemented to one end of each filter mount to complete the attenuator. When complete, the entire optical attenuator’s mounting plate is secured in the enclosure over phototransistor Q1.

Testing

We advise that a small speaker be used rather than headphones for the initial tests; then, if a wiring error or a defective component has created an audio oscillator rather than an amplifier, your ears will not be assaulted by a high-level tonal or squeal.

With the volume control fully counterclockwise and power-switch S1 set to off, install the battery and connect the speaker. Turn the unit on and point it toward a source of daylight (not direct sun). Advance the volume control to maximum. Correct operation is indicated by a hissing or a squealing sound that sharply diminishes when the light is blocked. The meter-sensitivity control, R8, should then be set so that the meter’s pointer just begins to move off the zero calibration. Decrease the gain and point the receiver toward an AC-powered light source, such as an incandescent or fluorescent light, or even an LED driven by an audio oscillator. Those sources should produce a loud hum or tone. Sound will be heard if the LED is driven from an audio amplifier at the correct level. If everything checks OK, assemble the enclosure.

Remote sound detection

To use the receiver as a remote sound pickup, you will need a laser and a reflective surface that sound waves will cause to vibrate; the receiver must be positioned so it can “catch” the direct reflection of the laser beam (Fig. 9). A particularly effective reflector for experimental use is a small piece of mirror (about ¼ × ½ inch) cemented to the center of a speaker cone (see Fig. 10). There is no connection made to the speaker. The movement of the speaker cone caused by sound waves is transmitted to the mirror-reflector, which in turn modulates the laser beam.

FIG. 8—THE ATTENUATOR’S MOUNTING PLATE IS INSTALLED DIRECTLY OVER PHOTORESISTOR Q1. THE INNER AND OUTER FILTERS ARE SLIPPED INTO POSITION WHEN NEEDED.

FIG. 9—A WIDE RANGE OF REFLECTION ANGLE IS POSSIBLE. THE LASER SOURCE AND THE RECEIVER CAN EVEN BE AT THE SAME LOCATION.

PARTS LIST

All resistors are ¼-watt, 5% unless otherwise noted.

- R1—2200 ohms
- R2—220 ohms
- R3—33000 ohms
- R4—10 ohms
- R5—10,000 ohms, miniature potentiometer with SPST switch

- R6, R7—22,000 ohms
- R8—25000 ohms. trimmer potentiometer

Capacitors

- C1, C6, C9, C10—330 μF, 16 volts, electrolytic
- C2, C4—10 μF, 16V volts, electrolytic
- C3—0.001 μF, 50 volts, ceramic disc
- C5—0.68 μF, 16 volts, Tantalum
- C7, C8—0.047 μF, 50 volts, ceramic disc
- C11—4.7 μF, 16 volts, electrolytic
- C12—1000 μF, 16 volts, electrolytic

Semiconductors

- IC1—SK-3891 attenuator
- IC2—LM380 audio amplifier
- IC3—LM741 op-amp
- Q1—TIL414, NPN phototransistor (Radio Shack 276-145 or equal)
- DI, D2—SK-3090 germanium diode, or equivalent

Other components

- B1—9-volt transistor-radio type battery
- J1—miniature phone jack
- M1—250 μA meter, panel mounting
- S1—SPST switch, part of R5

Miscellaneous

- Cabinet, Pre-drilled PC board, brass sheet and tubing, wire, solder, etc.

The following is available from Dirijo Corp., Box 212, Lowell, NC 28098. A drilled prototype-board with a component layout overlay in place, model LXV-1, $4.50 plus $2.50 postage and handling. NC residents please add appropriate sales tax.

OCTOBER 1987

43
Thin is in

The thinner and more responsive to sound the reflective medium is, the greater the laser bug's sensitivity. Most window panes will work. Moving the beam to different spots on the glass can make a dramatic difference in the sensitivity.

For testing, no additional optics are needed for the receiver. Set up any convenient reflector—the mirrored speaker, or even an embroidery hoop holding plastic wrap or Mylar film (see Fig. 10)—aim the laser at the reflector, and then position the reflector so that the beam bounces back to the receiver. If you speak in the room, or play a radio or a tape recorder, the sound will be heard in the receiver's headphones. Another test can be done by modulating the laser with a 1-kHz tone while having an assistant move the target reflector for maximum tone reception—as indicated by maximum volume in the highest meter reading.

A non-adjustable target, such as a window pane, requires that the operator select a site where a direct reflection can be caught. That can be done from hundreds of feet away if conditions are right. Use the modulated beam for setup, and then remove the modulation to listen in. Double-pane glass and storm windows tend to greatly reduce sound transmission to the outer glass. It is possible, however, to aim through the glass to an object within the room, such as the glass front of a china cabinet or a hanging picture. The returned reflection is usually modulated.

At long range

At ranges greater than 100 feet or so, or when a high ambient light level obscures the reflected beam, a means must be provided to accurately aim the receiver to the reflected laser. As shown in Fig. 11, the receiving unit of our prototype laser-gun system uses a telescopc gunsight, and that assembly is, in turn, mounted directly on the laser housing as shown in Fig. 2 so both the laser and receiver can be aimed as a single unit.

The design of a combination receiver and laser mounting bracket will depend on the particular laser and scope that's being used. In general, the mounting bracket should be sturdy and have provisions for coarse elevation and azimuth adjustments: all gun scopes have provisions for fine adjustments. The adjustment details for the prototype mount are shown in Fig. 12.

The scope-to-laser alignment is done in two stages. First, the distance from the center of the laser beam to the center of the scope is measured and used as the spacing for the cross marks of the target shown in Fig. 13, which is made from dull, white cardboard. Then, the target is taped to a wall about 50 feet away from the laser assembly. Next, with the scope's cross-hair adjustments at the center of their range, position the laser beam at the center of the lower cross. Looking through the scope, adjust the scope's mounting bracket so that its cross-hairs are close to being centered on the target's upper mark. Making sure that the laser beam stays centered on the lower mark, tighten the mounting bracket's nuts and use the scope's fine adjustments for the final alignment. In this instance, the diffuse reflection of the laser beam from the card should present no eye hazard.

When using the laser/scope assembly, remember that at a range of under 300 feet you must compensate for the aiming error introduced by the offset between the scope and the laser beam centerlines.

Again, let us stress that under no circumstances should the laser beam or its direct reflection be viewed through optical devices of this type because severe damage to the eye can result.

R-E
GET READY FOR THE NEXT REVOLUTION IN audio. Digital Audio Tape (DAT) is on its way! Just as the compact disc is replacing the LP, you can expect DAT to replace the conventional audio cassette.

Just imagine audio tape with a frequency response that is flat from 2 Hz to 22 kHz. Imagine making your own hiss-free recordings with a dynamic range better than 96 dB. (Compare that to the 50–60 dB dynamic range of a standard cassette tape with noise reduction!) DAT is coming, and you should be ready for it.

Actually, digital audio tape has been around quite a while. As long as a decade ago, devices were available that would allow digitized audio to be recorded on VCR’s. But they were a far cry from the dedicated DAT format we’ll be discussing. The new generation was first demonstrated a year ago at the Japan Audio Fair, and then at the January 1987 Winter Consumer Electronics show. But all the DAT decks shown in this country were “prototypes only.” No one would even discuss marketing plans.

Finally, this June, Marantz announced at the Summer Consumer Electronics Show that they would bring DAT machines into the U.S. as early as this fall. That hasn’t happened yet, and the future of DAT could be in jeopardy thanks to some controversy in the industry regarding an anti-copy system that may be implemented—and even required by the U.S. government—in all DAT machines. We’ll get to that issue later. First, let’s see what the advantages of the new digital audio tape are.

Is digital better?
When audio tape moves across a tape head, the magnetic particles in the tape pick up and retain the magnetic field created in the head gap. When you play the tape back, you should, of course, hear a duplicate of the signal that was used to create the magnetic field. But in the real world, things aren’t that simple. The transfer characteristics of audio tape, shown in Fig. 1, are non-linear. As a result, the recorded signal is a distorted version of the input.

There is a way to decrease the distortion—by creating a bias field to force the audible signal into the linear portion of the transfer characteristics. The results aren’t perfect but, as cassette sales indicate, they certainly are adequate for many people.

Digital audio tape cassettes also use magnetic tape, and that magnetic tape also has a non-linear transfer characteristic. But as you can see in Fig. 1-b, a digital signal—which has only two discreet values—is not affected by the tape’s non-linearity.

But how can an analog audio signal be
replaced by a string of digital data—which consists of only ones and zeros? It's done by \textit{digital sampling}. An analog signal is sampled at a given rate, and the value of the sample is assigned a number. Figure 2 shows the process.

It might seem strange that a staircase-like signal could accurately represent a smooth analog signal. But if the sampling rate is fast enough, and if a sufficient number of bits is used to represent each sample, the results are excellent. If you've ever heard a compact disc—which also uses digital sampling—you know just how good the results can be.

\textbf{DAT vs. CD}

Both DAT and CD use 16-bit Pulse-Code Modulation (PCM), but each uses a different sampling rate: 48,000 samples/second for DAT, and 44,100 samples/second for CD. Because of the different sampling rate, it is impossible to make a direct digital-to-digital recordings of a CD. In fact, that's precisely why a different rate was chosen.

Pre-recorded digital tapes are recorded with the same sampling rate as CD's are. But tapes you record at home are recorded at the higher rate. The DAT player can play back either tape, but can record only at the higher sampling rate. You will be able to make direct digital-to-digital copies of tapes you record yourself, but not of CD's or pre-recorded tapes.

In terms of sound quality, DAT and CD compare equally. Each format, however, has its own outstanding features—and its own inherent problems. The most obvious advantage DAT has over CD is that consumers can make their own recordings. It's no secret, however, that research is underway to create a recordable CD format. We have quite a few years to wait before that happens though.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{A Digitized Signal is made up of samples of an analog signal.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3.png}
\caption{A DAT-TRANSPORT MECHANISM. When the cassette is inserted into the DAT machine, the protective cover opens, and the tape is wrapped around a rotary-head drum.}
\end{figure}

Another advantage DAT has is its long playing time—the maximum length of a standard digital audio tape is two hours, while the maximum length of a CD is about an hour.

Speaking of pre-recorded tapes, you can be sure that recording companies will release many titles once the anti-copy issue is settled. Will pre-recorded material sell? Yes, because DAT has some playback advantages over CD's—especially in automobiles. The DAT package is smaller and much easier to handle than a CD. The tapes also fit easily in a shirt pocket, and will probably be very popular in personal portable players. The package provides a self-closing protective cover for the tape, which is important in the dirty auto environment. Perhaps more important is that the playback mechanism is much less subject to vibration problems than CD players, so it will be easier to produce portable and automotive players.

CD technology, of course, has some important advantages over DAT. The CD is a non-contact technology. Nothing but a beam of laser light comes in contact with the disc during playback, so playing a disc doesn't wear it out. DAT tape, on the other hand, wraps 90 degrees around a drum that spins at a speed of 2000 revolutions per minute, limiting its lifetime.

CD players feature fast track-access. In less than one second, you can access any random track. DAT, of course, offers only sequential access. While fast-forward and fast-rewind are indeed fast—about 20 seconds for each hour of tape—the access speed will never match that of CD.

\textbf{The mechanics of DAT}

Figure 3 shows a basic DAT transport mechanism. In some ways, it similar to the tape transport mechanism in a VCR. One significant difference is that the tape wrap is only 90 degrees. That helps keep tape wear down, and it is one of the reasons that the rapid fast forward and reverse functions are possible.

The DAT tape head rotates at 2000 rpm.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.png}
\caption{The DAT CASSETTE provides a dust-free enclosure for the tape. A series of holes on the bottom of the cassette identify the tape type, and whether the tape is pre-recorded.}
\end{figure}
and the tape is pulled from the reel at about 0.8 cm/sec. That creates an apparent tape speed of 10 feet per second, which is how much data can be crammed onto such a small cassette.

The DAT cassette—which is about half the size of a standard compact cassette—is shown in Fig. 4. It has a lot in common with a video cassette. A hinged lid protects the tape from dust and fingerprints. A slider covers the hub holes when the tape is not in use, and keeps tape slack to a minimum. Data and reference holes are included to automatically instruct the DAT player what tape type and thickness is used, and whether the tape is pre-recorded. There is also a hole to prevent accidental erasure.

When a cassette is inserted into the recorder, the sliders move to the hubs can be accessed. The lid opens, and the tape is wound around a rotary head.

What's on the tape
A digital audio tape recording contains a lot more than the audio signals. Organizing the data so that it can be played back requires a lot of overhead.

Figure 5 shows how the audio tracks are placed on the tape and how individual tracks are organized. Note that crosstalk (Continued on page 77)}
Part 2

The video palette is built on two printed-circuit boards: a "main" board and a "special-effects" board. The main board contains the video-signal splitting and recombination (summing amplifier) circuits. The special-effects board contains the circuits for the solarizer, posterizer, inverter, and the power supply.

Circuit Description

Refer to Fig. 10, the schematic of the main board, and Fig. 11, the schematic of the effects board. Transformer T1, diodes and C4, provide ±5 volts to IC1 and serve as decoupling networks, reducing video cross-talk through the power-supply wiring. About 2 to 3 volts of inverted (positive sync) composite video appears at IC1 pin 6.

Inverted composite video is fed directly from IC1 to IC2, an analog switch, and through R4, C5, and Q1 to the sync-separator system. Transistor Q1 is normally non-conducting, because bias generated across R5 keeps Q1 cut off except during positive sync tips. Negative sync pulses appear at Q1's collector. Resistor R6 of the second section—about 10 microseconds. A positive-going pulse appears at IC3 pin 10. By proper adjustment of R80, the pulse can be made coincident to, and the same width as, the horizontal-blanking pulse. It's the same with the vertical-sync pulses at the collector of Q3 trigger IC4. Both sections of IC4 function identically to IC3. Resistors R81 and R16, and capacitor C12, determine the pulse width of the first section—nominally 16 milliseconds. Resistors R82 and R17, and capacitor C13, determine the pulse width of the second section. By proper adjustment of

D5 and D6, and capacitors C52 through C55 form two half-wave rectifiers supplying +8-volts DC to regulator IC12, and −8-volts DC to regulator IC13.

A 1-volt peak-to-peak negative-sync video signal at input jack J1 is coupled through C1 to the video amplifier consisting of R2, R3, R78, IC1, and C2. Switch S4 can bypass C1 if DC coupling is necessary. Terminating-resistor R1 can be switched across the input by switch S1 to provide a 75 ohm termination. Trimmer potentiometer R78 sets the amplifier's output level.

At least 0.5-volt peak-to-peak video is necessary for proper operation. IC1 is an LM318, a video op-amp. Resistor R3 provides feedback and C2 provides frequency compensation for IC1. Resistors R18 and R19, together with capacitors C3 provides a collector pull-up for Q1. Resistors R7 and R8 couple the sync pulses to Q2. Resistor R9 is the collector load for Q2. Resistors R10 and R11, and capacitors C6 and C7 form an integrator network that extracts vertical timing pulses from the composite sync at the collector of Q2. Capacitor C8 couples the timing pulses to Q3, which squares and shapes the timing pulses. The negative-going vertical sync pulses are used to trigger dual-multivibrator IC4.

Pulses at the collector of Q1 trigger dual-multivibrator IC3; the two sections of IC3 are connected as two cascaded monostable multivibrators. Resistors R79 and R14, and capacitor C9 determine the pulse width of the first section—about 53 microseconds. Resistor R80 and R15, and capacitor C10 determine the pulse width R81 and R82, the pulse appearing at IC4 pin 10 can be made coincident with the vertical-sync interval of the video-input signal. A negative pulse at IC4 pin 9 cuts off IC3 (horizontal gating) during vertical-retrace intervals. The horizontal and vertical gating pulses are summed across R20. Diodes D1 and D2 DC-isolate IC3's and IC4's outputs from each other. The pulse across R20 is nominally ±5 volts; it is low during line scan and high during sync intervals. It is fed to pin 9, the control lead, of video switch IC2.

Since IC2 pin 9 is low, during line scan intervals the normal video containing luminance and chroma from IC2 pin 4 appears at pin 5. Inductor L1, and capacitors C16 and C17 form a lowpass filter, while C15, R22, and L2 form a highpass filter. Resistors R23 and R24 terminate the
FIG. 10—THE MAIN BOARD provides the video input and output connections and the basic picture processing. Analog switch IC2 separates the sync from the chroma and luminance components.
highpass filter. The luminance gain control, R83, terminates the lowpass filter. Video from R83's wiper goes through R29 to summing amplifier IC7. Chroma amplifier IC5 has a nominal gain of 10. (The chroma signal appears at an equal level, 180° out of phase, at IC5 pins 8 and 9.) Resistor R84 is the chroma-level control. Depending on R84's setting, either positive or negative chroma signal can be supplied to IC7 through R31.

During sync intervals, IC2 pin 9 is high, so sync, burst, and blanking appear at pin 3. Capacitors C24, and C25, and L3 form a lowpass filter, feeding sync and blanking to R85, the sync-level control. The wiper of R85 feeds summing amplifier IC7 through R31. Resistor R21, capacitors C26 and C28, and L4 are used as a burst take-off filter. Trimmer capacitor C26 is adjusted so that the tint-control circuit—C5, C27, C28, and R22—produces correct tints when R86's wiper is centered. The burst from R86's wiper goes to burst amplifier IC6, which has a gain of 100 to compensate for the loss in the tint control circuit. Potentiometer R87 controls the burst level.

Adding effects

Processed video from the effects board is fed to summing amplifier IC7 at pin 2. In addition to summing the various video-signal components, IC7 re-inverts the video so that it appears as 1-volt peak-to-peak with negative sync (nominal NTSC) at video output jack J2. Depending on the settings of the palette's controls, up to 2 volts of video is available when the unit is terminated by 75 ohms.

As shown in Fig. 11, the effects board receives its video input across R93. Video (luminance) is applied to the posterizer circuit through C43 and R55. Resistor R54 provides a ground return for IC9's comparators. Transistor Q4 provides an adjustable reference bias for the posterizer. Resistor R48 and diode D3 provide temperature compensation of the reference voltage. The comparator outputs are summed across level control R39 and flow through the inverter input bus to S3-a, the INVERT-NORMAL switch.

The solarizer, which was discussed in Part 1 (see Radio-Electronics, page 41, September 1982), consists of IC10 and IC11. Amplifier IC10 has a gain of four; its input signal is taken from R90's wiper through R64. The output, which has an amplitude of up to 4 volts peak-to-peak, appears at IC10 pin 6. Potentiometer R91 is the "foldover" control; resistors R68 and R71 limit R91's effective range for

FIG. 11—THE EFFECTS BOARD provides the analog effects: posterization, solarization, and inverter video. The power supply is also built on the effects board.
FIG. 12—INSTALL THE MAIN BOARD COMPONENTS in the order given in the text. While IC sockets aren’t specified, their use is suggested. They make troubleshooting easier if you have any problems.

PARTS LIST—MAIN BOARD

All resistors are %—watt, 5% unless otherwise noted
R1—75 ohms
R2—2200 ohms
R3, R6, R10, R13, R20, R29–R32, R34—10,000 ohms
R4, R22, R24—1000 ohms
R5, R7, R11, R14–R17—33,000 ohms
R8, R9, R21—4700 ohms
R12—220,000 ohms
R18, R19, R25, R26, R33, R35, R36, R38, R39—10 ohms
R23—3300 ohms
R27, R28—1500 ohms
R37—not used
R78—10,000-ohm trimmer potentiometer
R79–R82—25,000-ohm trimmer potentiometer
R83, R84, R85, R87—1000-ohm potentiometer
R86—5000-ohm potentiometer

Capacitors
C1—470 µF, 16 volts, electrolytic
C2, C21—5 µF, silver mica
C3, C4, C5, C6, C8, C11, C14, C18, C19, C20, C22, C23, C28–C33—0.01 µF, ceramic disc
C5—10 µF, 16 volts, electrolytic
C7, C9—0.0033 µF, Mylar
C10—330 pF, silver mica or NPO ceramic disc

C12—2.2 µF, 10 volts, Tantalum
C13—0.1 µF, Mylar
C15, C28—100 pF, silver mica
C16, C24—43 pF, silver mica
C17, C25—47 pF, silver mica
C26—3–40-pF trimmer
C27—33 pF, silver mica
C34—C35—Not used

Semiconductors
IC1, IC7—LM318 wideband op-amp
IC2—CD4053 analog multiplexer/demultiplexer
IC3, IC4—CD4528 dual monostable multivibrator
IC5, IC6—LM733 differential video ampifier
Q1, Q2, Q3—2N3565 NPN transistor
D1, D2—1N914B small-signal diode

Other components
J1, J2, J3—Coaxial jacks, see text
L1, L2—47 µH
L3—47 µH
L5—68 µH
PL1—Power plug
S1, S4, S5—SPST switch
S2, S3—DPDT switch
T1—6.3 volts, 300 mA

Miscellaneous—Wire, solder, cabinet, mounting hardware, knobs, etc.

Similar circuits
Switch S3-a selects the inverter circuit consisting of IC8 and its peripheral components. You may have noticed by now that the circuits using the LM318 are all very similar, hence we are not discussing them in detail except where significant differences are encountered. Resistors R87, R41, R42, and R53 feed an adjustable DC bias to IC8 to maintain correct DC-baseline levels when inversion is used. Resistor R47 feeds inverted output through S3-a to summing amplifier IC7, which is located on the main board. As in the other amplifier circuits using the LM318, a 10,000-ohm feedback resistor (R46) and a 5-pF shunt capacitor (C40) are used to set the gain and provide frequency compensation.

Construction
You can build the video palette from scratch using the PC-board patterns provided in PC Service. Also, a kit of easier operation. Solarized video is fed through C51 to solarizer output level control R92, whose wiper feeds the inverter input bus through R77. Unprocessed video luminance is also fed to the bus from inverter level control R93.
PARTS LIST—EFFECTS BOARD

All resistors are 1/4-watt, 5% unless otherwise noted
R40—R43, R46, R47, R62, R64, R65, R66, R73—R77—10,000 ohms
R48—390 ohms
R49—150 ohms
R50—R52—22 ohms
R54, R55, R58—R61, R69—4700 ohms
R63—2200 ohms
R70—470 ohms
R71—1000 ohms
R72—330 ohms
R95—100,000 ohms
R99—10,000-ohm trimmer potentiometer
R88, R89, R92, R93—1000-ohm potentiometer
R90, R91—10,000-ohm potentiometer

Capacitors
C40, C47, C50—5 µF, silver mica
C41, C42, C44, C45, C48, C49, C54, C55, C56, C59, C60, C61—0.01 µF, ceramic disc
C43, C46—10 µF, 16 volts, electrolytic
C51, C56, C57—470 µF, 16 volts, electrolytic
C52, C53—2200 µF, 25 volts, electrolytic

Semiconductors
IC8, IC10, IC11—LM318 wideband op-amp
IC9—MC3430 high-speed comparator
IC12—LM7805 +5-volt regulator
IC13—LM7905 —5-volt regulator
Q4—2N3904, NPN transistor
D3, D4—1N914B small-signal diode
D5, D6—1N4002 silicon rectifier

Note: The following items are available from North Country Radio, P.O. Box 53, Wykagyl Station, New Rochelle, NY 10804: Main PC board $12.50; main and effects PC boards $25.00; main PC board and all parts that mount on the board $49.95; main and effects PC boards and all parts that mount on the boards $84.95. (The effects board is sold only in conjunction with the main board.) Add $2.50 for postage and handling per total order. NY State residents add appropriate sales tax.

If you decide to etch your own boards, use single-sided .031 or .062 phenolic material, or fiberglass-epoxy G-10 (preferred). Figures 12 and 13 show the parts placement for the boards.

Stuff the PC boards in this order: resistors, inductors, capacitors, controls, transistors, IC's. The lengths of the interconnecting wires aren't critical, but they should be as direct as possible. The palette's input and output connections should be coax when possible. To reduce both stray capacitance and induced 60- or 120-Hz pickup, the leads carrying video signals to and from the effects board should be dressed away from grounded metal and the power-supply leads.

The shafts for all the front-panel controls should be strain relieved. That can be done by passing them through holes in the front of the cabinet that are about .005" larger than the shaft diameter, which is nominally ¼". If desired, bushings can be used around the shafts.

The front panel has eleven controls, a pilot light (if installed), and three switches; don't crowd its layout or it will be hard to use unless you have very small hands. RCA-phono, HF, BNC, or F-type video connectors are suggested for the external connections. Switches can be of the mini-
Plug a Friend into Radio-Electronics this Christmas ... and Save $12!

This Christmas give an electrifying gift ... plug a friend into Radio-Electronics and brighten his whole new year! Whether electronics is his livelihood or his hobby, your gift will sharpen his focus and illuminate the whole spectrum of electronics throughout the coming year.

Radio-Electronics will keep him informed and up-to-date with new ideas and innovations in all areas of electronic technology ... computers, video, radio, stereo, solid state technology, satellite TV, industrial and medical electronics, communications, robotics, and much, much more.

He'll get complete plans and printed circuit patterns for building valuable test equipment and electronic devices for home and car — practical money-savers like these ... a TV signal descrambler ... a video test generator ... an auto exhaust analyzer ... a clockboard for his PC ... a radio commercial zapper ... a solid state barometer ... a working robot ... and many others!

PLUS ... equipment repair and troubleshooting ... circuit design ... new product news and buyer’s guides ... service clinics ... equipment test reports ... a special "Computer Digest" section ... regular columns on video, stereo, radio, circuits, solid state, satellite TV and robotics ... and lots more exciting features and articles.

SAVE $12 ... OR EVEN $24 ... For each gift of Radio-Electronics you give this Christmas, you save a full $12.00 off the newsstand price. And as an R-E gift donor, you’re entitled to start or extend your own subscription at the same Special Holiday Gift Rate — you save an additional $12.00!

No need to send money ... if you prefer, we’ll hold the bill till January, 1988. But you must rush the attached Gift Certificate to us to allow time to process your order and send a handsome gift announcement card, signed with your name, in time for Christmas.

So do it now ... take just a moment to fill in the names of a friend or two and mail the Gift Certificate to us in its attached, postage-paid reply envelope. That’s all it takes to plug your friends into a whole year of exciting projects and new ideas in Radio-Electronics!
nature type which use a 1/4" mounting hole. At this point, check your wiring and PC boards for correct component insertion and pin orientations, unwanted solder bridges, and completeness. If any wiring or assembly errors exist, correct them before proceeding farther.

Alignment

Alignment is simple. If possible, use an oscilloscope having a bandwidth greater than 5-MHz. While a scope does make the initial alignment easier, do not let the lack of a scope discourage you, because final “tweaking” will be found easiest to do by watching the picture. If a scope isn’t available, simply observe the effects of your adjustments on a TV monitor: we’ll tell you what to look for.

Prepare the video palette for alignment by setting R78, R79, R80, R81, R82, and R99 so that they are in the center of their range (midway). Then connect the video palette as shown in Fig. 14.

![Fig. 14 - USE THIS KIND OF HOOKUP for checking and aligning the video palette. A TV-tuner signal source can originate in the VCR, or use an integral TV-tuner device.](image)

Next, connect the ground lead of a 20,000-ohm/volt (or higher) VOM that is set to read about 10-volts full scale to the main board’s ground foil; then apply power to the video palette. Very quickly check the voltages across C56 and C57—they each should be 5 volts (C56 has its negative lead grounded, and C57 has its positive lead grounded). Then very quickly check the following voltages on the indicated pins of IC1, IC7, IC8, IC10, and IC11:

- **Pin 6**: 0-volts (±0.5 volts OK)
- **Pin 7**: +5 volts
- **Pin 4**: -5 volts

Make the following checks on IC5 and IC6:

- **Pin 5**: +5 volts
- **Pin 6**: +5 volts
- **Pin 8**: 0 volts (±1 volt OK)
- **Pin 9**: 0 volts (±1 volt OK)

Then, with no signal input to J1 or J3, check IC1, IC3, and IC4 for:

- **Pin 10**: 0 volts
- **Pin 9**: +5V volts
- **Pin 16**: +5 volts
- **Pin 8**: 0 volts
- **Pin 7**: −5 volts
- **Pin 16**: +5 volts
- **Check IC9 for**:
 - **Pin 16**: +5 volts

Pin 12: −5 volts
Check Q1 for:
- **Collector**: +5 volts
- **Base**: 0 volts

Check Q2 for:
- **Collector**: 0 volts
- **Base**: +0.6 volts

Check Q3 for:
- **Collector**: +5 volts
- **Base**: 0 volts

Check Q4 for:
- **Collector**: +5 volts
- **Base**: +2−5 volts (depends on setting of R88)

Emitter: 0.6 volt less than base
Nothing should get hot—if anything does, there is a problem that must be corrected before proceeding any farther.

If the test signal is provided by a VCR that can output a tuner signal instead of a tape signal, use the tuner signal because it has better stability.

The main board

If an oscilloscope is available, you can check your adjustments using the photographs shown in Figs. 15 through 26 as a general—not an exact—reference. Each figure shows the vertical sensitivity and sweep rate used to obtain the trace.

Apply a 1-volt peak-to-peak negative-sync NTSC video signal to J1 (Fig. 15). Close S1 to provide a 75-ohm termination for the video source. Open S4 so that the video source is AC-coupled to the palette. Set S2 to its W position. Adjust R78 for 3-volts peak-to-peak at IC1 pin 6 (Fig. 16). Notice that the signal at pin 6 is inverted. Check Q1’s collector for negative-going pulses (Fig. 17). Transistor Q3’s collector should also show negative-going pulses (Fig. 18), although because of their short duration they may be hard to see on a scope with screen brightness.

Adjust R79 for a nominal 53-microsecond negative-going pulse at IC3 pin 7 (Fig. 19). Then set R80 for a nominal 10-microsecond positive-going pulse at IC3 pin 10 (Fig. 20). Next, adjust R81 for a negative-going 16-millisecond pulse at IC4 pin 7 (Fig. 21). Then adjust R82 for an approximate 600-microsecond positive-going pulse at IC4 pin 10. If there is no pulse, tweak R81 until a narrower pulse is obtained (Fig. 22). Note that a 600-microsecond pulse will not be generated if the 16-millisecond multivibrator is set for too long a pulse.
3. Adjust R81 and R82 for a stable, vertically-locked picture. When those controls are properly set there should be no “transitions” at the top or bottom of the picture.

4. With all effects controls still set for minimum resistance, set S2 to cut to bypass the video palette and adjust the TV monitor for a normal picture. Then set S2 to the IN position and check that each control does what it’s supposed to do.
 - Resistor R83 should vary the picture contrast (luminance).
 - Resistor R85 should vary the picture brightness. (When R85 is toward minimum, the picture should lose its sync.)
 - Resistor R87 may vary the color saturation and reverse the colors (burst).
 - Resistor R84 should operate in a similar manner to R87 (chroma).
 - Resistor R86 should vary the tint. Adjust R84 to produce normal tint when R86 is set to its mid position.

Aligning by monitor

If a scope isn’t available, make the following adjustments and use a TV monitor to observe their effect.

1. Set R83, R85, R86, and R87 to their mid position. You should see a black-and-white, or a weak color image on the monitor. Set all the effects-board controls for minimum resistance (off).

2. Adjust R79—you will see a “transit” on the right and/or left side of the screen. This is caused by IC2 switching the video through the sync channels. If instability is noticed on the monitor, adjust R85 for maximum stability. Adjust R79 and R80 to move the transitions just off the right and left edges of the screen so they are unseen during normal viewing. The picture may roll vertically—that is OK for now.

3. Set up R83 through R86 for a normal TV picture. Then set R83 to minimum. (All effects-board controls should be at zero again.) You should see a plain raster with only splotches of color, or on a black and white monitor, just a raster with only a very weak, faded picture.

4. Set inverter switch S3 to NORMAL. The picture should return as you adjust R93 clockwise.

5. Set S3 to its INVERT position. A negative picture should be seen.

6. Adjust R99 for a satisfactory negative picture. (You may have to touch-up R85 on the main board first.) When R99 is properly adjusted, R85 can be left alone.

7. Now set S3 to its normal position.

8. Set up R90 and R92 to approximately their mid position and then slowly adjust R91—you will see the solarization effect. Adjust R90 and R92 for the best or the desired effect, although R85 may have to be readjusted at some settings.

9. Set S3 to both its NORMAL and INVERT positions and observe the solarization effect (as in step 10).

11. If you have some form of instability or an undesired effect that we haven’t mentioned, the following scope checks will help you track down the problem. Check for video only at IC2 pin 5 (Fig. 23); sync only at IC2 pin 3 (Fig. 24); normal video at output jack J2 when S3 is set to NORMAL (Fig. 25); inverted video at J2 when S3 is set to INVERT (Fig. 26).

That completes the alignment and checkout. The rest is up to you. A few hours of just plain experimentation is the best way to learn what the video palette can do.
Adding the arm, and the electronics to control it.

Part 11

If you've been following this series, by now you have no doubt noticed that our robot does not have a traditional multi-jointed robotic arm. In its place is an "arm" that resembles a fork lift.

There are several reasons why that approach was chosen. First, it allows our robot to lift loads up to 10 pounds—multi-jointed arms usually are limited to lifting loads of one pound, or less. Second, our design is relatively inexpensive to implement. Third, few tasks actually require multi-jointed dexterity to get the job done—tasks performed with a multi-jointed arm often deteriorate into programming exercises. When we considered those factors, our design seemed to be the obvious way to go.

Of course, some tasks do require some measure of dexterity. For those, a pincher add-on for the lift has been designed; part of that pincher is shown in Fig. 1. The pincher will be described in detail in a future installment of this series. For now, let's concentrate on the basic fork-lift design.

Mechanical overview

Our intention was to provide a rugged and reliable workhorse unit. The lift assembly has been designed to lift 10-pound loads from floor level to the top of a 32-inch-high table at a rate of 3 inches-per-second. The overall height of the assembly described is 43 inches. Exactly the same construction techniques can be used to build smaller (or larger) lifts.

Linear ball-bearing slides are used for the lift to preserve the efficiency of the system. Because of the way cantilever loads are coupled to the bearings, friction

FIG. 1—THIS FORK-LIFT DESIGN can do almost as much as a multi-jointed arm, but with higher lifting capacity and at a lower cost. For greater dexterity, the pincher shown can be added. That pincher, part of which is shown here, will be described in detail in an upcoming installment of this series.
could cause the required lifting force to become several times the total weight of the load on the lifting forks if sliding bearings were used. That would reduce the lifting capacity significantly. A chain drive is used to handle forces of 10 to 20 pounds without slipping and without any uncertainty about the lift position. The steel ladder-chain used is rated at 55 to 90 pounds tensile load. The drive motor is mounted at the top so that the lifting load is applied to its shaft and bearings directly (a ball-bearing version of that motor is desirable for heavy use). A potentiometer used for position-sensing is placed at the bottom of the chain loop as an idler; when it is mounted there, little load is placed on the potentiometer.

As with the rest of the robot project, the mechanical and electrical details cover our implementation of the arm. There are many other ways that the same results could be achieved. If you wish to change the design to accommodate a specific application, to incorporate an improvement, or to use components you have on hand, you may do so.

Note that much of the mechanical design of the arm can be credited to Spectron Engineering, and they provided the prototype on which this article is based. Further, Spectron is offering for sale the complete arm assembly. See the Sources box for more information.

Electronics overview

The electronics required to operate the arm are quite straightforward. We will use the robot's RERBUS expansion bus to communicate to a quasi-analog servo positioner. All the computer must do is to write the desired position of the arm to the servo circuit and that circuit will do the rest. The servo circuit also allows the computer to read back the position of the arm for analysis and direct control.

Arm design

The heart of the arm is the two linear ball-bearing slide units. These are 1000-mm long, with approximately 35 inches of travel available. Our first task is to select the ladder chain-and-sprockets that move the carriage along those linear slides. We must select a sprocket for the potentiometer that will allow at least 35 inches of chain travel in ten turns of the sprocket, or 3.5 inches-per-turn. The ladder chain is ¼-inch pitch. Expressing 3.5 inches in terms of pitch length:

\[
3.5\text{ in.} \times 4\text{ teeth/} \text{ inch} = 14\text{ teeth (exactly)}
\]

In other words, if our potentiometer sprocket has 14 teeth, in 10 turns it will displace 35 inches of chain. We select the next larger sprocket, 15 teeth, resulting in a total chain travel of:

\[
15\text{ teeth} \times 0.25\text{ inches/turn} \times 10 \text{ turns} = 37.5\text{ inches}
\]

![Diagram of the robot arm](image-url)

FIG. 2—THE ROBOT ARM can be fabricated using the mechanical drawings shown here.
The extra 2 inches of chain travel will not be used and gives us a margin of error (± ¼ turn) in the event of some misalignment of the potentiometer sprocket during the assembly.

The motor used to drive the chain is any small DC motor with an attached gearhead. The motor may be rated from 12- to 36-volts DC. Using a motor rated at 12 volts will produce approximately twice the rated output, and using one rated at 36 volts will produce approximately ¾ rated output. The only problem with using under-rated motors is heat build-up. Overheating should not be a problem if your applications call for a low duty cycle—the motor is never on for long, and is off most of the time. Assuming 3000 rpm and a 65:1 gearhead, the lifting speed will be:

\[
(3000 \text{ rpm}) \times (60 \text{ sec/min}) \times 65 = 0.77 \text{ rev/sec at sprocket}
\]

We can choose the lifting speed by selecting the sprocket size for the motor:

\[
0.77 \text{ rev/sec} \times 10 \text{ teeth} \times 0.25 \text{ inch/tooth} = 1.9 \text{ inch/sec}
\]

Other speeds can be calculated by plugging in the appropriate sprocket size. For instance, using a 15-tooth sprocket will give us a lifting speed of 0.77 \times 15 = 2.9 inches per-second, or 15 teeth \times 0.25 inches/tooth = 3.75 inches per-revolution.

Note that as you increase the lifting rate, the lifting capacity (in pounds) will be decreased. We have selected the 15-tooth design for more load capacity.

SOURCES

The complete arm assembly can be purchased from Spectron Engineering, 1342 West Cedar Ave., Denver, CO 80223; (303) 744-7088. The cost is $300 plus $8 shipping. Colorado residents add appropriate sales tax. The assembly includes the following: two 1000-mm linear-bearing assemblies, two cross members, carriage plate, robot end cover, drive block, chain, motor, sprockets, 10 turn potentiometer, servo positioner, cables, and connectors.

Stock Drive Products, Division of Designtronics, Inc. 2101 Jericho Turnpike, New Hyde Park, NY 11040, (516) 328-0200, can supply the 15-tooth ¼-inch pitch sprocket (part number 677-2515) and the ¼-inch ladder cabin (part number 6C88-25). Contact them directly for pricing, shipping, or other information.

The 1000-mm linear ball-bearing slides are manufactured in Japan by T.H.K. Ltd. They can be purchased from Bearing Engineers, Inc., 6009 Bandini Blvd., Los Angeles, CA 90040; (213) 754-9660. Contact them directly for pricing, shipping, and other information. Ask for part number FBW 50110F + 1000L.

The Brevil motor, part 715-980155, can be purchased from Johnstone Supply, 930 Wyandot, P.O.Box 4605, Denver CO 80204; (303) 573-5626. Contact them for pricing and shipping.
forces imposed by off-center loads and provide additional mounting surfaces for future projects. Mount the motor on the upper cross-member so that the shaft is offset to the top, and secure it to the face of the cross-member using 10-32 flat head screws. The potentiometer should be mounted at the bottom of the lower cross-member. When mounting, use double nuts or extra washers so that the mounting bushing extends only 1/6-inch beyond the mounting nut. Installing the motor and potentiometer as described will allow for the maximum possible travel of the linear bearings with a minimum overhang of the cross-members.

The cross-members are mounted to the back of the linear bearing tracks. Those tracks are part of the 1000-mm linear bearing assemblies, which can be purchased from the company mentioned in the Sources box; they are also provided with the complete arm assembly that was mentioned previously.

Next, mount the carriage plate to the front of the sliders with 10-32 screws. The carriage plate should slide over the entire length of the tracks and overlap the motor mount in the end position. If the carriage plate jams, correct the problem by readjusting the mounting screws. Note that the type of slide bearings used in this assembly may bind somewhat, particularly when unloaded. But under load, the bearings provide low friction and long operating life.

The sprockets should now be mounted on the motor and potentiometer. They are positioned with the hub outward so that the working load is kept close to the bearings. The set screws on the sprockets have a bad habit of working loose, so seal them after installation with nail polish, Loc-tite, etc.

Check to be sure that the carriage clears the sprockets and shafts of the motor and potentiometer. Install washers behind the carriage plate to move it away from the sprockets if you have an interference problem. In some instances, you may have to saw off the ends of the motor and potentiometer shafts to achieve clearance.

Next, turn the potentiometer fully clockwise. Use a piece of tape to hold it in that position until the chain installation is complete. Note that if the potentiometer is not positioned properly the full carriage travel will not be available; or worse, the potentiometer stops can be damaged if the full power of the motor is applied to them. Thread the chain over the motor and potentiometer sprockets, open it, remove enough links so that it is the correct length, and reassemble the chain. Move the carriage all the way to the top of the assembly and attach it to the chain via the drive block. Be sure to thread the chain so that it is inside the block: i.e., closer to the centerline.

An alternate to closing the chain into an endless loop is to connect the ends using a spring. Doing so serves to eliminate backlash from chain slack and lessens the load on the potentiometer. However, under heavy loads, the spring may allow the chain to become slack, allowing slippage at the sprockets. Although usually that is not a problem, slippage can be eliminated entirely by not using a spring.

The lifting tines of the fork lift are formed using 8- to 10-inch steel L-brackets. You will probably need to drill some extra holes to allow you to mount the bracket to the carriage plate. If you wish, you can add the holes in such a way to allow the brackets to extend below the slide bearings and reach the floor. Mount the tines to either the outer or inner row of carriage-plate holes to accommodate the width of your anticipated loads.

Attach a 26-conductor ribbon cable to the RERBUS interface on the control board, and lead the cable out through the bottom of the robot's body. Finish up by mounting the arm assembly on the robot's end cover using four 6-32 screws. In our implementation, we split that end cover into two sections to allow for easy access to the fastening nuts and the electronics package, which is mounted on the forward bulkhead.

Arm electronics

The control system for the arm is straightforward. Once notified of the final position for the carriage plate, the system will move the plate to that position without further attention from the Robotic Personal Computer (RPC).

A schematic of the control system is shown in Fig. 4. After determining where the carriage plate should be positioned, the RPC writes a position value into the Digital-to-Analog Converter (DAC). The quasi-analog servo system takes over and begins slewing the motor toward the selected position. When the voltage fed back from the potentiometer is equal to the voltage output from the DAC, the system knows that the selected position has been reached and the motor is turned off. All during that time the computer is free to begin analyzing the next required motion.
Two IC's that retain their content's with few hassles—
and no batteries!

Non-Volatile Memory IC's

ROBERT GROSSBLATT

If you had to single out one area in the semiconductor industry as the most competitive, it would have to be the memory market, because the advances made in electronics invariably put increased pressure on memory designers to produce IC's that are faster, smaller physically, have denser storage, and are easier to use. Unfortunately, it's a lot easier to build a wish list than it is to build an IC. As a result of the market pressure, memory development split into two separate parts, each with different design goals. One group aimed at increased storage capacity while the other tackled the problem of permanence. The result of the dichotomy has been the production of two very different kinds of memories: volatile and non-volatile.

By using a single-transistor storage cell, address multiplexing, and geometries of under 2 microns, 256 K-bit DRAM's are now so commonplace that their price in single units is less than $3. Unfortunately, although DRAM's (Dynamic RAM's) may be able to store a lot of data in a small package, they're not the easiest chips to use. Because only one transistor is used for storage, data has to be refreshed every 2 milliseconds, and any application using DRAM's must have refresh circuitry. Address multiplexing may cut down the size of the package, but it means that external gating has to be used to properly address the IC. And it goes without saying that permanent—non-volatile—data retention is completely impossible.

Although the designers who tackled the problem of volatility wanted to keep storage capacity as large as possible, they also wanted to make sure it was permanent as well. The first consequence of a decision to make non-volatility a design goal was to concentrate on the development of CMOS static RAM's. The inherent low-power requirements of CMOS technology meant that non-volatility could be faked by using a small battery to provide standby power. That approach produced the 5101, a 256 × 4 RAM that could be toggled into a "sleep" mode, in which it would retain data at a current drain measured in the low microamps. Modern versions of that design, such as the 6264, have the same kind of low-power data-retention feature, but the amount of storage capacity has been increased to 64K bits (8K × 8).

Non-volatile memory

But standby batteries are a poor substitute for real permanence. Battery life is often an unknown variable and even a modern lithium cell can't be considered absolutely reliable when the temperature or other operating parameters are outside predefined limits. True non-volatility in a read/write memory first appeared in the late 1970's in the form of EPROM's (Electrically Erasable Programmable Read Only Memories). The early IC's were hard to use, required several voltages, and had the nasty habit of self-destruction if they weren't used exactly according to specifications. As EPROM's developed, they became so reliable and easy to use that they began replacing bipolar PROM's as the memory of choice. Programming simplicity, secondary sourcing, storage capacity, and cost-per-bit have made EPROM's an attractive answer to the problem of non-volatility. But EPROM's still have major drawbacks—they can only be bulk-erased (cells cannot be erased individually), and erase has to be done by narrow-band ultra-violet light (about 2500 Angstroms).

Electrical erasure

EEPROM's (Electrically Erasable Programmable Read Only Memories) appeared on the market at about the same time as EPROM's but never became as popular in the consumer market. Although they have several major advantages over EPROM's, they're more than twice as expensive. The best way to think of an EEPROM is as an EPROM that can be erased in-circuit under program control. Although there are some restrictions in erasing and programming an EEPROM, the fact that it can be done at all makes them an interesting solution to many circuit and design problems.

Storage in an EEPROM is much the same as it is in an EPROM—a charge stored on a polysilicon floating gate. What makes the EEPROM different is the way charges are either moved to, or taken from, the cell. Figure 1 is a representation of an EEPROM storage cell. The three separate gates are completely surrounded
by silicon dioxide to make sure that they're totally insulated from both the silicon substrate and each other. Any electron that gets caught on the floating gate will stay trapped there until a sufficiently large amount of energy forces it to move through the silicon dioxide. In an EPROM, the energy comes from bombarding the gates with doses of ultraviolet light. If sufficient photons hit the cell, the energy level will increase to the point where the trapped electrons will be excited enough to leave the gate and migrate through the insulator.

It's also possible to force electron migration by applying a high electric field. If the field is strong enough, the electrons will tunnel through the silicon dioxide—a phenomenon first described by Fowler and Nordheim in 1928. The Fowler-Nordheim tunneling is the basic principle used to store and remove charges from the isolated gates in EEPROM cell.

Figure 2 shows what happens when you write to an EEPROM cell. If gate 3 is tied to a large enough voltage, and gate 1 is grounded, Fowler-Nordheim tunneling will take place and electrons will migrate through the silicon dioxide insulator from gate 1 to gate 2 (the floating gate), causing it to be charged negatively. The applied electric field causes the gates and insulating material to act as if two capacitors were present there—one between gate 1 and gate 2, and the other between gate 2 and gate 3.

In order to discharge the floating gate, it must be held near ground when the programming voltage is applied. Since gate 1 is also tied low, the electrons will move from gate 2 to gate 3 and the negative charge will be removed from the floating gate.

It takes more than the structure that we just discussed to produce a working EEPROM cell. A means must be added to steer the charges to the floating gate, and switching circuitry has to be added to let the cell's operation be handled by external control signals. Figure 3 shows an operational cell. Notice that the floating gate is only capacitively connected to a rest of the circuit.

The two lines that control the data written to the cell are the nR line and the Vpp line. If a low is put on the nR line and the programming voltage is applied to Vpp, Q1 turns off and floats the junction of C3 and C4. Since their combined capacitance is made to be much larger than the effective capacitance between gate 1 and gate 2, the floating gate (2) will follow the programming voltage and Fowler-Nordheim tunneling will take place, causing a negative charge to accumulate on the floating gate. If the nR line is held high when Vpp is
applied, the C3/C4 junction will be grounded, and since C3 is much larger than the effective capacitance between gate 2 and gate 3, the floating gate will be held near ground as well. The electrons will migrate from the floating gate to gate 3 and leave the floating gate with a positive charge.

The process of adding and removing electrons to the floating gate is never 100% efficient. As a result, each write operation leaves the floating gate less able to retain a stored charge. That is an inherent characteristic of the storage mechanism, and although it can be minimized, it can't be eliminated altogether. Most EEPROM's are guaranteed to be able to successfully perform 10,000 write operations without any noticeable degradation of data storage—and that's a lot of writes.

One voltage source

Like the early EPROM's, early EEPROM's were multivoltage components and needed support circuitry to work properly. Vpp (about 21 volts) had to be generated independently, latches were needed to hold the data and address lines stable during addressing, and strict timing was needed to read or write data. But just as with most IC families, considerable improvements have been made. Figure 4 is a functional diagram of a modern EEPROM. Xicor's 2816A, a 2K x 8 memory that incorporates all the features found in modern EEPROM's.

The first thing you should notice is that the pin configuration is the same as the industry-standard pinout for the 2716 EPROM. As you would expect, the read-cycle timing is also similar to the 2716, so the 2816 is socket-compatible with the EPROM. A more interesting comparison is that the 2816 is both pin and socket compatible with the 6116 2K x 8 static RAM. Since the Xicor part only uses a 5-volt supply, it's possible to literally replace a 6116 with a 2816. The EEPROM will use more power than the low-power 6116, but that's not a high price to pay for real non-volatility. And the amount of current needed by the 2816 can be reduced to 50 mA by bringing the cE line high if the chip isn't being used by the system.

Since the 21-volt programming pulse is generated internally and a pair of latches in the IC hold the data and address during a write, the operation of the IC is essentially identical to that of a static RAM. All of the IC's timing is done automatically by internal circuitry, and the outputs three-state whenever the chip is busy, leaving the bus free for other purposes.

You can get a better idea of how the chip works by examining the truth table, shown in Fig. 4.

EEPROM's are currently available with the same capacity found in the more popular EPROM's, including the 1-megabit (256K x 8) size. And even the power-consumption problem is being solved. Since EEPROM's store their charges on a floating gate that is capacitively coupled to the rest of the chip, EEPROM's are perfectly suited to being made with CMOS technology. Xicor, and other companies such as Seeq and National Semiconductor, are starting to deliver sample quantities of CMOS EEPROM's.

Since it's so easy to write to an EEPROM, they are well-suited for power-failure protection. A small circuit can watch the powerline, and if the voltage falls below a predetermined level an automatic write is done to save system data. The restriction as to the number of writes would seem to be a problem, but the answer can be found in an offshoot of EEPROM technology—NOVRAM's.

The NOVRAM

Non-Volatile RAM's (NOVRAM's) are also known as shadow RAM's. Their construction can be understood from Fig. 5. The EEPROM cell we described earlier is linked to a regular static RAM cell. The six transistors in the standard static RAM cell, Q3-Q8, link to the two transistor EEPROM cell. In that way, each static RAM cell is backed up, or shadowed, by an EEPROM cell. The advantage of using a NOVRAM—as opposed to an EEPROM—in a working circuit has to do with speed and write cycles. EEPROM's, just like EPROM's, are not particularly fast parts. Even the fastest EEPROM has about a 10-millisecond write cycle, which is made a bit more bearable because of the EEPROM's internal latches. A write may be slow but at least it won't tie up the system bus. Any application that has to write data faster than that will have to take some other route for emergency data-backup. And of course, there are only a certain number of guaranteed write cycles over the normal lifetime of the IC.

Those problems are solved, at a price, by NOVRAM's. Data can be written to the static-RAM half of a NOVRAM at much higher speeds. A typical NOVRAM has a 300-nanosecond write time and, of course, there are an unlimited number of writes. After all, the front end of the NOVRAM is ordinary static RAM, so it's no surprise that it operates at microprocessor speeds.

The EEPROM part of the NOVRAM can only be accessed in one of two ways. The static-RAM image can be dumped to the EEPROM with a STORE command, and the data in the EEPROM can be loaded in the static RAM with a RECALL command. A block diagram of Xicor's

FIG. 5—A NOVRAM CELL SCHEMATIC. Transistors Q3-Q8 form a conventional static-RAM cell.
NOVRAM is 4.5 volts. The store must be triggered at a voltage level that can guarantee a 10-millisecond delay before \(V_{CC} \) drops to 4.5 volts.

The values shown in Fig. 7 assume a 5-volt regulator being fed an unregulated 8 volts. The trip point is set to be 6.7 volts by a 6-volt Zener diode and the 0.7-volt base-emitter drop in the transistor. The filter capacitor (C1) helps slow down the voltage drop in the event of a failure.

If you want to put together a circuit that will do the same thing for an AC-powered supply, you can detect the zero crossing on the AC line and feed that to a missing-pulse detector. An easier way would be to use the circuit in Fig. 7. Even if your application has no use for a regulated DC voltage you can still use it to power the NOVRAM, and just think of the regulator and the associated components as part of the detection circuit.

Using NOVRAM's in place of DIP switches eliminates a potentially noisy and troublesome mechanical component with an IC. As an added benefit, fewer external parts are needed as well. As shown in Fig. 8, a single decoder (IC1) is all that's needed to set up a NOVRAM as an electronic DIP. The three NOVRAM control pins are connected to the outputs of a 4051 one-of-eight decoder set to operate in the digital mode. Using only three of the 4051's output ports—Q0, Q1, Q3—will let the system access any one of the switch settings stored in the NOVRAM.

Since Xicor makes NOVRAM's as large as 512 x 8, (the 2X3064), you can pack 4096 separate DIP switches in a single IC; more if you use additional ICs.

Although EEPROM technology has been around for more than 10 years, cost, complexity, and capacity have forced them to take second place to the more popular EPROM's. That may change in the near future as manufacturers continue to refine EEPROM fabrication methods and produce new IC's whose utility, reliability, and versatility compensate for the dwindling differences in cost. Many mail order houses now stock EEPROM's and NOVRAM's. It's well worth your time to get your hands on some parts and their data sheets, and start learning just how useful those IC's can be.

FIG. 6—THE BLOCK DIAGRAM and truth table for a X2212 NOVRAM.

2212, a 256 x 4 NOVRAM is shown in Fig. 6-a; its truth table is shown in Fig. 6-b.

The larger size of a NOVRAM cell compared to an EEPROM cell means that NOVRAM's will have smaller storage capacities. In addition, their cost per bit is going to be much greater. Which one you should use will depend on your application. In general, EEPROM's are better suited for off-line work and NOVRAM's are fast enough to work as an on-line component. If you plan on doing a lot of reads with only occasional writes, EEPROM's are your best bet; but if you have to write data frequently you should look into NOVRAM's. Even though it will take more IC's to build up to the required memory size, they will still be more cost-effective than a handful of regular memory IC's.

Snapshots and DIP's

Two ideal uses for a NOVRAM are for system snapshots in the event of a power failure, and as replacements for DIP switches. The circuit shown in Fig. 7 is one approach for the design of a power-loss trigger device for a snapshot circuit. It operates on DC, but can be adapted for use with an AC-powered circuit.

A trigger device such as the one in Fig. 7 is needed because the store input of NOVRAM's such as Xicor's 22xx family wants to see a negative TTL trigger pulse at least 100-nanoseconds long. As soon as the pulse is received, an automatic store operation transfers the static RAM image, bit for bit, into the EEPROM. The write to EEPROM takes 10-milliseconds, so any detection circuit that produces the store pulse has to tread a fine line. If it has too high a trip point there's a good chance of producing spurious pulses, and if it's set too low there won't be enough time for the NOVRAM to complete the store. Since the minimum operating \(V_{CC} \) for a
WORKING WITH TRIACS AND SCR’s

Twenty-eight practical SCR and Triac circuits.

RAY MARSTON

Figure 2 shows how the Triac can be triggered via a line-derived DC supply. Capacitor C1 is charged to +10-volts DC (via R1 and D1) on each positive half-cycle of the line. The charge on C1 is what triggers the Triac when S1 is closed. Note that all parts of the circuit are “live,” and that makes it difficult to interface to external control circuitry.

Figure 3 shows how to modify the previous circuit so that it can interface with an external control circuitry. Switch S1 is simply replaced by transistor Q2, which in turn is driven from the photo-transistor portion of an inexpensive optocoupler. The LED portion of the optocoupler is driven from a 5-volt DC source via R4. Opto-couplers have typical insulation potentials of several thousand volts, so the external circuit is always fully isolated from the line.

Figure 4 shows an interesting variation of the previous circuit. Here the Triac is AC-triggered on each half-cycle via C1, R1, and back-to-back Zeners D5 and D6. Note that C1’s impedance determines the magnitude of the Triac’s gate current. The bridge rectifier composed of D1-D4 is wired across the D5/D6/R2 network and is loaded by Q1. When Q1 is off, the bridge is effectively open, so the Triac turns off shortly after the start of each half-cycle. However, when Q2 is on, a near-short appears across D5/D6/R2, thereby

Asynchronous designs

As explained last time, a Triac may be triggered (turned on) either synchronously or asynchronously. A synchronous circuit always turns on at the same point in each half-cycle, usually just after the zero-crossing point, in order to minimize RFI. An asynchronous circuit does not turn on at a fixed point, and the initial current surge generated during turn-on at a non-zero point of the AC cycle can generate significant RFI. Triac turn-off is automatically synchronized to the zero-crossing point, because the device’s main-terminal current falls below the minimum-holding value at the end of each half-cycle.

Figures 1–8 show a variety of asynchronous Triac power-switching circuits. In Fig. 1, the Triac is gated on (whenever S1 is closed) via the load and R1 shortly after the start of each half-cycle, the Triac remains off when S1 is open. Note that the trigger point is not line-synchronized when S1 is closed initially, however, synchronization is maintained on all subsequent half-cycles.

The charge on C1 is what triggers the Triac when S1 is closed. Note that all parts of the circuit are “live,” and that makes it difficult to interface to external control circuitry.

Figure 3 shows how to modify the previous circuit so that it can interface with an external control circuitry. Switch S1 is simply replaced by transistor Q2, which in turn is driven from the photo-transistor portion of an inexpensive optocoupler. The LED portion of the optocoupler is driven from a 5-volt DC source via R4. Opto-couplers have typical insulation potentials of several thousand volts, so the external circuit is always fully isolated from the line.

Figure 4 shows an interesting variation of the previous circuit. Here the Triac is AC-triggered on each half-cycle via C1, R1, and back-to-back Zeners D5 and D6. Note that C1’s impedance determines the magnitude of the Triac’s gate current. The bridge rectifier composed of D1-D4 is wired across the D5/D6/R2 network and is loaded by Q1. When Q1 is off, the bridge is effectively open, so the Triac turns off shortly after the start of each half-cycle. However, when Q2 is on, a near-short appears across D5/D6/R2, thereby
inhibiting the Triac's gate circuit, so it remains off.

Figures 5 and 6 show several ways of triggering the Triac via a transformer-derived DC supply and a transistor-aided switch. In the Fig. 5 circuit, Q1 and the Triac are both turned on when S1 is closed, and off when it is open. In practice, of course, S1 could be replaced by an electronic switch, enabling the Triac to be operated by heat, light, sound, time, etc. Note, however, that the whole of the Fig. 5 circuit is "live." Figure 6 shows how to modify the circuit so that it is suitable for use with an optocoupler.

To complete this section, Figures 7 and 8 show several ways of triggering a Triac from a fully isolated external circuit. In both circuits, triggering is obtained from an oscillator built around unijunction transistor Q1. The UJT operates at a frequency of several kHz and feeds its output pulses to the Triac's gate via pulse transformer T1, which provides the desired isolation. Also in both circuits, S1 can easily be replaced by an electronic switch.

In the Fig. 7 circuit, Q2 is wired in series with the UJT's main timing resistor, so the UJT and the Triac will turn on only when S1 is closed. In the Fig. 8 circuit, Q2 is wired in parallel with the UJT's main timing capacitor, so the UJT and the Triac turn on only when S1 is open.

Synchronous designs

Figures 9-18 show a number of power-switching circuits that use synchronous triggering.

Figure 9 shows the circuit of a synchronous line switch that is triggered near the zero-voltage crossover points. The Triac's gate-trigger current is obtained from a 10-volt DC supply that is derived from the network composed of R1, D1, D2, and C1. That supply is delivered to the gate via Q1, which in turn is controlled by S1 and the zero-crossing detector composed of Q2, Q3, and Q4.

Transistor Q5 can only conduct gate current when S1 is closed and Q4 is off. The action of the zero-crossing detector is such that either Q2 or Q3 turns on whenever the instantaneous line voltage is positive or negative by more than a few volts, depending on the setting of R8. In either case, Q4 turns on via R3 and thereby inhibits Q5. The circuit thus produces minimal RFI.

Figure 10 shows how to modify the previous circuit so that the Triac can only turn on when S1 is open. In both circuits note that, because only a narrow pulse of gate current is sent to the Triac, average consumption of DC current is very low (one milliampere or so). Also note that S1 can be replaced by an electronic switch, to give automatic operation via heat, light, time, etc., or by an optocoupler, to provide full isolation.

A number of special-purpose synchronous zero-crossover Triac-gating IC's are available, the best-know examples being the CA3059 and the TDA1024. Both devices incorporate line-derived DC power-supply circuitry, a zero-crossing detector, Triac gate-drive circuitry, and a high-gain differential amplifier/gating network.

Figure 11 shows the internal circuitry of the CA3059, together with its minimal external connections. AC line power is applied to pin 5 via a limiting resistor.
The Circuit Arts (R_a), which should have a value of 12K at 5W for 117-volt use. Diodes D1 and D2 function as back-to-back zeners that limit the potential on pin 5 to ±8 volts. On positive half-cycles, D7 and D13 rectify that voltage and generate 6.5 volts across external capacitor C1. That capacitor stores enough energy to drive all internal circuitry. It also provides adequate drive to the gate of the Triac and a few mA of current are available for powering external circuitry.

Bridge rectifier D3–D6 and transistor Q1 function as a zero-crossing detector, with Q1 being driven to saturation whenever the pin-5 voltage exceeds –3V. Gate drive to an external Triac can be provided (via pin 4) from the emitter of the Q8-Q9 Darlington pair, that current is available only when Q7 is off. When Q1 is on (i.e., the voltage at pin 5 exceeds –3V), Q6 turns off through lack of base drive, so Q7 is driven to saturation via R7, so no current is available at pin 4.

The overall effect is that gate drive is available only when pin 5 is close to zero volts. When gate drive is available, it is delivered as a narrow pulse centered on the crossover point: the gate-drive current is supplied via C1.

The CA3059 incorporates several transistors (Q2–Q5), which may be configured as a differential amplifier or a voltage comparator. Resistors R4 and R5 are externally available for biasing the amplifier. Q4's emitter current flows via the base of Q1; the configuration is such that gate drive can be disabled by making pin 9 positive relative to pin 13. The drive can also be disabled by connecting external signals to pin 1, pin 14, or both.

Figures 12 and 13 show how the CA3059 can provide manually-controlled zero-voltage on/off Triac switching. Each circuit uses a switch (S1) to enable and disable the Triac's gate drive via the IC's differential amplifier. In the Fig. 12 circuit, pin 9 is biased at Vcc/2 and pin 13 is biased via R2, R3, and S1. The Triac turns on only when S1 is closed.

In Fig. 13, pin 13 is biased at Vcc/2 and pin 9 is biased via R2, R3, and S1. Again, the Triac turns on only when S1 is closed. In both circuits, S1 handles maximums of 6 volts and 1 mA. In both circuits C2 is used to apply a slight phase delay to pin 5 (the zero-voltage detecting terminal); that delay causes gate pulses to be delivered after the zero-voltage point, rather than straddling it.

Note that in the Fig. 13 circuit, the Triac can be turned on by pulling R3 low, and that it can be turned off by letting that resistor float. The circuits shown in Figs. 14 and 15 illustrate how that ability can increase the versatility of the basic circuit. In Fig. 14, the Triac can be turned on and off by transistor Q1, which in turn can be activated by any low-voltage circuit, even CMOS devices. And Fig. 15 shows how to use the circuit with an optocoupler.

Figure 16 shows how the Signetics TDA1024 can be used in a similar circuit to provide optically coupled zero-voltage Triac control.

To complete this section, Figs. 17 and 18 show several ways of using the
FIG 12—ZERO-VOLTAGE line switch built from the CA3059.

FIG 13—ALTERNATE CA3059 zero-voltage switch.

FIG 14—TRANSISTOR-CONTROLLED CA3059 switch.

CA3059 so that the Triac operates as a light-sensitive dark-operated power switch. In both designs the IC’s built-in differential amplifier is used as a precision voltage comparator that turns the Triac on or off when one of the comparator input voltages goes above or below the other comparator input voltage.

Figure 17 is the circuit of a simple dark-activated power switch. Here, pin 9 is tied to VCC/2 and pin 13 is controlled via the R2–R5 resistive string. In bright light, photocell R4 has low resistance, so the voltage at pin 9 exceeds that at pin 13, and the Triac is disabled. In darkness, the photocell has a high resistance, so the pin 13 voltage exceeds that at pin 9, and the Triac is enabled. The circuit’s switching point is set with R3.

Figure 18 shows how a degree of hysteresis or "backlash" can be added to the previous circuit. Doing so prevents the Triac from switching in response to small changes (passing shadows, etc.) in ambient light level.

FIG 15—OPTICALLY COUPLED CA3059 switch.

Electric-heater controllers.

A Triac can easily be used to provide automatic room-temperature control by using an electric heater as the Triac’s load, and either thermostats or thermistors as the thermal feedback elements. Two methods of heater control can be used: automatic on/off power switching, or fully automatic proportional power control. In the former case, the heater turns fully on when room temperature falls below a preset level, and it turns fully off when the temperature rises above that level.

In proportional power control, the average power delivered to the heater is automatically adjusted so that, when room temperature is at the preset level, the heater’s output power self-adjusts to precisely balance the thermal losses of the room.
TAKE ANY ONE OF THESE HANDBOOKS — when you join the ELECTRONICS AND

• your one source for engineering books from over 100 different publishers
• the latest and best information in your field
• discounts of up to 40% off publishers' list prices

Publisher's Price $64.50
STANDARD HANDBOOK OF ENGINEERING CALCULATIONS, Second Edition
By T. G. Hicks
- 1,408 pages, 793 illustrations, 499 tables
- puts more than 1,100 specific calculation procedures at your fingertips
- every calculation procedure gives the exact, numbered steps to follow for a quick, accurate solution
- virtually all procedures can be easily programmed on your PC or calculator
- uses USCS and SI units in all calculation procedures

Publisher's Price $110.00
ANTENNA ENGINEERING HANDBOOK, Second Edition
Edited by R. C. Johnson and H. Jasik
- 1,408 pages, 946 illustrations
- covers all types of antennas currently in use with a separate chapter devoted to each
- provides detailed data on physical fundamentals, operating principles, design techniques, and performance data
- up-to-the-minute information on antenna applications
- a must for those involved in any phase of antenna engineering

Publisher's Price $89.50
TELEVISION ENGINEERING HANDBOOK
Edited by K. B. Benson
- 1,918 pages, 1,091 illustrations
- packed with all the technical information today's engineer needs to design, operate, and maintain every type of television equipment
- extensive coverage of receivers, broadcast equipment, video tape recording, video disc recording, and the latest technological advances
- provides television system and industry standards for the U.S. and other countries
- the most comprehensive book on the subject of television engineering
FOR ONLY $14.95 — VALUES UP TO $110.00
CONTROL ENGINEERS’ BOOK CLUB®

Publisher’s Price $82.50
MODERN ELECTRONIC CIRCUITS
REFERENCE MANUAL
By J. T. Markus
• 1,264 pages, 3,666 circuit diagrams
• A handy, desktop reference with 103
chapters organized by “family” grouping
• Filled with predesigned and use-tested
circuits to save you production time and
money
• Includes concise summaries of all the
recent applications notes, journal articles,
and reports on each circuit, efficiently
organized and indexed for the practicing
engineer

Publisher’s Price $89.00
ELECTRONICS ENGINEERS’
HANDBOOK. Second Edition
By D. G. Fink and D. Christiansen
• 2,272 pages, 2,189 illustrations
• Unrivalled for its completeness, authority,
reliability and timeliness
• 80% new or extensively revised
• Prepared by a staff of 173 expert
contributors
• Brings you more than 2,000 formulas and
equations
• Has over 2,500 bibliographic entries

4 reasons
to join today!
1. Best and newest books from ALL pub-
lishers! Books are selected from a wide range
of publishers by expert editors and consultants to
give you continuing access to the best and latest books
in your field.
2. Big savings! Build your library and save money,
too! Savings range up to 40% off publishers’ list
prices.
3. Bonus books! You will immediately begin to
participate in our Bonus Book Plan that allows you
savings up to 70% off the publishers’ prices of
many professional and general interest books!
4. Convenience! 14-16 times a year (about once
every 3-4 weeks) you receive the Club Bulletin
FREE. It fully describes the Main Selection and
alternate selections. A dated Reply Card is
included. If you want the Main Selection, you simply
do nothing — it will be shipped automatically. If you
want an alternate selection — or no book at all —
you simply indicate it on the Reply Card and return
it by the date specified. You will have at least 10
days to decide. If, because of late delivery of the
Bulletin you receive a Main Selection you do not
want, you may return it for credit at the Club’s
expense.

As a Club member you agree only to the purchase
of three additional books during your first year of
membership. Membership may be discontinued by
either you or the Club at any time after you have
purchased the three additional books.

FOR FASTER SERVICE IN ENROLLING CALL TOLL FREE 1-800-2-MCGRAW

McGraw-Hill Book Clubs
Electronics and Control Engineers’ Book Club
11 West 19th Street
4th floor
New York, NY 10011

Please enroll me as a member of the Electronics
and Control Engineers’ Book Club® and send me the book I
have chosen for only $14.95, plus local tax, postage, and
handling. I agree to purchase a minimum of three
additional books during my first year as outlined under
the Club plan described in this ad. Membership in the
club is cancellable by me or McGraw-Hill any time after
the three book purchase requirement has been fulfilled. A
shipping and handling charge is added to all shipments.

I wish to order the following book

☐ ANTENNA ENGINEERING HANDBOOK (422/940)
☐ MODERN ELECTRONIC CIRCUITS REFERENCE MANUAL (404/461)
☐ ELECTRONICS ENGINEERS’ HANDBOOK (209/812)
☐ TELEVISION ENGINEERING HANDBOOK (117/790)
☐ STANDARD HANDBOOK OF ENGINEERING CALCULATIONS (287/355)

Signature ________________________________
Name ________________________________

Address Apt. # ________________________________
City State Zip ________________________________

This offer expires July 1, 1987

E33894

RADIO-ELECTRONICS
The Fig. 20 circuit, on the other hand, is controlled by Negative Temperature Coefficient (NTC) thermistor R7 and transistors Q1 and Q2. The network composed of R2, R3, R6, and R7 is used as a thermal bridge, and Q2 acts as the bridge-balance detector. Potentiometer R6 is adjusted so that Q2 just starts to turn on as the temperature falls to the desired level. Below that level, Q2, Q3, and the Triac are all fully on; above that level all three components are cut off.

Because the gate-drive polarity is always positive, but the Triac’s main-terminal current alternates, the Triac is gated alternately in the +1 and +1H quadrants, and gate sensitivity varies tremendously between them. (See our discussion of gate sensitivity in the September issue.) Consequently, when the temperature is well below the preset level, Q1 is driven fully on. Therefore, the Triac is gated on in both quadrants, so it provides full power to the heater. However, when the temperature is very close to the preset value, Q1 is driven on “gently,” so the Triac is gated in the +1 mode only, and the heater operates at half maximum power drive. The circuit thus provides fine temperature control.

Synchronous circuits

Figure 21 shows how a CA3059 can be used to build a synchronous thermistor-regulated electric-heater controller. The circuit is similar to that of the dark-activated power switch of Fig. 17, except that the thermistor (R3) is used as the sensing element. The circuit is capable of maintaining room temperature within a degree or so of the value set by R2.

To complete our discussion of heater controllers, Fig. 22 shows the circuit of a proportional heater controller that is capable of maintaining room temperature within 0.5°C. In that circuit a thermistor-controlled voltage is applied to the pin-13 side of the CA3059’s comparator, and a repetitive 300-mS ramp signal, centered on Vcc/2, is applied to the pin-9 side of the comparator from astable multivibrator IC1.

The action of the circuit is such that the Triac is synchronously turned fully on if the ambient temperature is more than a couple of degrees below the preset level, or is cut fully off if the temperature is more than a couple of degrees above the preset level. When the temperature is within a couple of degrees of the preset value, however, the ramp waveform comes into effect and synchronously turns the Triac on and off once every 300 mS, with a Mark/Space (M/S) ratio that is proportional to the temperature differential.

For example, if the M/S ratio is 1:1, the heater generates only half of maximum power.

Because of the high power requirements of an electric heater, the circuit must be carefully designed to minimize RFI generation. The designer’s two main options are to use either continuous DC gating or synchronous pulsed gating. The advantage of DC gating is that, in basic off-switching applications, the Triac generates zero RFI under normal running conditions; the disadvantage is that the Triac may generate very powerful RFI as it is turned on. The advantage of synchronous gating is that no high-level RFI is generated as the Triac turns on; the disadvantage is that the Triac generates continuous low-level RFI under normal running conditions.

Figures 19 and 20 show several DC-gated heater-controller circuits. In both cases the DC supply is derived via T1, D1, and C1, and the heater can be controlled either manually or automatically via S1. The Fig. 19 circuit is turned on and off by the thermostat, depending on its temperature.
Lamp-dimmer circuits

A Triac can be used to make a lamp dimmer by using the phase-triggered power-control principles discussed last time. In that type of circuit, the Triac is turned on and off once in each line half-cycle, its M.S ratio controlling the mean power fed to the lamp. All circuits of that type require the use of a simple LC filter in the lamp’s feed line to eliminate RF1.

The three most popular methods of obtaining variable phase-delay triggering are: (1) Diac plus RC phase-delay network; (2) line-synchronized variable-delay UJT trigger; (3) special-purpose IC as the Triac trigger.

Figure 23 shows the circuit of a Diac-triggered lamp dimmer. A defect of that type of design is that it suffers from considerable control hysteresis or backlash.

If the lamp is dimmed by increasing the R2’s value almost to maximum, the lamp will not go on again until R2 is reduced to about 80% of its former, at which it burns at a fairly high brightness level. Backlash is caused because the Diac partially discharges C1 each time the Triac fires.

Backlash can be reduced by wiring a 47-ohm resistor in series with the Diac, to reduce its effect on C1. An even better solution is to use the gate-slicing circuit shown in Fig. 24, in which the Diac is triggered from C2, which “copies” C1’s phase-delay voltage, but provides discharge isolation through R3.

If backlash must be eliminated altogether, the UJT-triggered circuit shown in Fig. 25 can be used. The UJT (Q1) is powered from a 12-volt DC supply built around Zener diode D2. The UJT is line-synchronized by the Q2-Q3-Q4 zero-crossing detector network, in which Q4 is turned on (thereby applying power to the UJT) at all times other than when line voltage is close to zero.

So, shortly after the start of each half-cycle, power is applied to the UJT circuit via Q4, and some later time (which is determined by R5, R8, and C2), a trigger pulse is applied to the Triac’s gate via the UJT.

Figure 26 shows how a dedicated IC, the Siemens S566B “Touch Dimmer,” can be used to build a smart lamp dimmer that can be controlled by several devices simultaneously: a touch pad, a pushbutton switch, or an infrared link. It continues on page 74.
The IC, which provides a phase-delayed trigger output to the Triac, provides both on/off and proportional output control. To do so, the 5566B incorporates conditioning circuitry that recognizes a brief input as a "change stage" command. In addition, a sustained input causes the IC to go into the ramp mode, in which lamp power slowly increases from 3% to 97% of maximum. After reaching maximum, it ramps downward to a minimum of 3%, and then again reverses.

The touch pad used with the circuit may be simple strips of conductive material; the operator is safely insulated from the line voltage via R8 and R9.

Universal motor controllers

Domestic appliances are usually powered by a series-wound universal electric motor, so-called because they can operate from either AC or DC power. In operation, that type of motor produces a back EMF that is proportional to the motor's speed. The effective voltage applied to that type of motor is equal to the applied voltage minus the back EMF. That results in some self-regulation of motor speed, because an increase in motor loading tends to reduce speed and back EMF, thereby increasing the effective applied voltage and causing motor speed to try to increase to its original value.

Most universal motors are designed to provide single-speed operation. A Triac-based phase-control circuit can easily be used to provide that type of motor with fully-variable speed control. A suitable circuit is shown in Fig. 27.

That circuit is useful for controlling lightly-loaded appliances (food mixers, sewing machines, etc.). However, heavy-duty tools (electric drills and sanders, for example) are subject to heavy load variations, and therefore require a circuit like one in Fig. 28.

An SCR is used in that circuit as the control element; it feeds half-wave power to the motor, which results in a 50% reduction in available speed and power. However, during the half-cycles when the motor is off, its back EMF is sensed by the SCR and is used to adjust the next gating pulse automatically.

The network composed of R1, R2, and D1 provides only 90° of phase adjustment, so all motor power pulses have a minimum duration of 90° and provide very high torque. At low speeds the circuit goes into a "skip-cycling" mode, in which power pulses are provided intermittently, to suit motor-loading conditions. The result is that the circuit provides particularly high torque under low-speed conditions.

Notes

The mechanical aspects of the arm are easily modified to suit your needs. If you wish to do so, here are some design factors to keep in mind. When considering whether to increase the arm's lifting capacity, remember that the capacity must be consistent with the design of the robot. It's pointless to design an arm that lifts 100 pounds with ease if lifting such a weight will cause the robot to topple forward.

The steel ladder chain is rated at 90 pounds yield strength. Allowing for a 50% safety factor (highly recommended) means that you can use the ladder chain to lift to about 45 pounds. If your requirements call for loads that are greater than that, you will have to use a different style of chain (for example, a riveted 1/8-inch roller chain). The motor and gearhead are the governing factors for lifting capacity and speed. The lift motor should have no more than 3 amps, the rating of the connecting ribbon cable. Use of a worm-gear style gearhead would improve the design because then the load could not back drive the motor.

The orientation of the linear hall-bearing slides deserves some consideration. Building the lift assembly is easiest when the slides are oriented as described in this article. However, greater loading capacity would be achieved if the slides were mounted on aluminum angle and rotated 90°. That would allow the use of less costly FBW3590NF series linear bearings instead of the FBW5010F series specified. While the FBW3590NF series is only available in 800-mm maximum lengths, several sections could be joined together to yield any overall length desired.

The Brevel motor specified comes with mounting holes for a shaft encoder. That means that we could use the same position sensing scheme as the main motor (shaft encoder and quadrature decoding). That would allow for greater accuracy when positioning the carriage plate. See Part 7 in the July 1987 issue of *Radio-Electronics* for more information.
THE VIDEO-EFFECTS GENERATOR main board.

THE EFFECTS BOARD for the video-effects generator.
DIGITAL AUDIO TAPE
continued from page 47

from adjacent tracks is eliminated by reversing the azimuth on each head.

Each track contains 196 blocks of data, with each block containing 288 bits. There are three types of data stored on the tape: 1) The music signal that is digitally coded using PCM. 2) Subcodes, which provide various information about the tape in the playback mode. 3) An Automatic Track Finder (ATF) signal.

The largest group of blocks is contained in the PCM area. The structure of a PCM block is shown in Fig. 5-b. Along with the PCM music signal, each block contains a synchronizing signal, a code that identifies it as a PCM block, a block address, and parity information.

The structure of the sub-code blocks is similar. The main difference between the two blocks is the identity data. The sub-codes are used mainly for the convenience of the user during playback. They can contain such information as the tape’s table of contents, including the location of each selection. They can be used to designate the beginning of a selection, or they can instruct the machine to skip over areas of a tape.

Along with music and subcode signals is an Automatic Track Finder (ATF) signal that helps the head accurately trace recorded tracks in the playback mode. It controls the head-to-tape positioning, and thus eliminates the need for a control head and a tracking-adjustment knob such as those found on VCR’s.

The other overhead—margin. P.L.I.—helps the DAT player keep track of where it is. The subcodes can provide such information as the selection’s index number, length, etc. They facilitate such tape-deck features as direct-tune selection, track repeat, length of selection, etc.

Now let’s see how all that information gets onto the tape. As the block diagram in Fig. 6 shows, the analog signal to be recorded is first digitized. In the next step, the overhead is added—all the codes that are needed to keep track of the data flow in the playback mode. The order that the data are placed on the tape is interesting. The data are interleaved. In other words, the position of the left-channel and right-channel information are alternated on adjacent tracks. This is very important for error correction. We won’t discuss error correction in detail, except to point out that since the data rate of DAT is about 2.4 megabits per second, you can be sure that some of the data will be in error—either from manufacturing defects, dirt, or any number of reasons. Error correction allows many of the errors to be inaudible during playback.

After the interleave block does its job, the data are converted from 8 bits to 10 bits. The 10-bit modulation helps the DAT recorder keep better track of timing information. Of course for playback, the process is reversed by the 10-to-8 modulator.

The subcode generator and detector are used to decode the subcode channel, which is a low-capacity channel that can be used for storing information ranging from track length to perhaps a transcript of the information on the tape. The sub-codes can also be used to control some of the DAT deck’s functions. For example, some decks may allow you to program repeat-track functions, or auto-shut-off after a certain number of plays, etc.

The politics of DAT
Digital audio tape is an exciting technology. But not everyone is excited about it. The recording industry is tittered that if consumers have access to digital recording, sales of all pre-recorded material will be hurt.

The recording industry wants to incorporate an anti-copy system that cuts a notch in all pre-recorded software—tapes, CD’s, LP’s etc.—that would be recognized by a DAT recorder, shutting the recorder down.

(The hardware manufacturers point out, however, that past events don’t lead to the
conclusion that DAT will hurt the sales of any pre-recorded media. They note that each new recording format has opened up new markets and sales for the recording industry. The hardware manufacturers are convinced that the consumers are ready for—and in fact demand—better quality. To back up that argument, they point to the explosive sales of CD's and CD players, and are happy to remind you of the initial skepticism that the Recording Industry Association of America, or RIAA, had of the CD format.

While the RIAA is convinced that an anti-copy system must be incorporated in DAT so that sales of pre-recorded DAT tape and CD's won't be affected, the hardware manufacturers point out that pre-recorded cassettes actually outsell LP's, and that direct digital-to-digital copies cannot be made of either CD's or pre-recorded DAT's because of the different sampling rates used.

The issue seems to be whether consumers can be trusted to use DAT technology responsibly. That raises another question: is making a copy of a CD or LP for personal use responsible, or is it piracy?

Not only is the anti-copy system an affront to the rights of consumers to make home recordings, it is not inaudible, as the recording industry claims. That is not just our opinion: In May of this year, 200 recording industry executives met to press their demands that the CBS Copycode system be mandatory for all new recordings. Engineers and music critics were brought to the studios of Thorn-EMI to demonstrate that Copycode doesn't affect the reproduction of music.

However, the music critics were able to hear the effects of Copycode. They noted subtle effects, especially on high piano notes. If the industry goes ahead with the use of Copycode, those who take their music most seriously will be the ones affected most. That certainly is not a good marketing strategy. The people most likely to buy a new and better recording technology—especially in its early stages before prices come down—are the people who take their music seriously.

The RIAA's insistence that an anti-copy system be used has so far kept DAT out of this country. Some companies have insisted that if the bill is passed they simply comply with the law and bring in DAT machines incorporating the anti-copy system. We don't believe that is very likely, and many potential DAT manufacturers agree. Would you buy a digital tape recorder if you couldn't make your own tapes—for your own personal use? We wouldn't either.

For more on the political arguments surrounding DAT, see our guest editorial on page 4 from the Home Recording Rights Coalition.
ZENITH SSAVI $169; Level II $199, reconditioned. Sylvania 4040 converter DIC $169; N-12, MLD-1200. Converters & accessories. SSAVI project handbook $6.50 ppd. Radar speed guns for baseball, car/boat racing, bowling, skiing, etc., from $275. Professional models used by police. IBM-compatible TURBO-XT computer system with fully expandable memory & many extras from $695. Catalog $1. AIS SATELLITE, INC., PO, Box 1226-Q, Dublin, PA 18917. 215-249-9411. CIRCLE 81 ON FREE INFORMATION CARD

1 MHz FUNCTION GENERATOR KIT. Covers 0.1 Hertz to 1 MHz in 6 ranges. 100:1 frequency ratio. Sine, Triangle & Square waves available, (with DC offset). TTL output. FM & AM modulation inputs. 47 ohm output. Includes all parts, board, power supply and face plate decal. Excellent detailed assembly and theory of operation manual included. Superb classroom project. OCTE ELECTRONICS, Box 276, Alburg, VT 05440. (514) 739-9328. CIRCLE 201 ON FREE INFORMATION CARD

FREE TOOL & INSTRUMENT CATALOG. Packed with over 5,000 quality products for testing, repairing and assembling electronic equipment. A full selection of test instruments plus precision hand tools, tool cases, soldering equipment and much more. Products are shown in full color with detailed descriptions pricing and a 100% satisfaction guarantee. CONTACT EAST, P.O. Box 786, No. Andover, MA 01845. Call (800) 225-5370 or in MA (617) 682-2000. CIRCLE 55 ON FREE INFORMATION CARD

TUNABLE NOTCH FILTER—for elimination of any TV, FM, or VHF signal. Can be tuned precisely to ANY signal within these ranges: *MODEL 26-Chs. 2-6 plus FM [54-108 Mhz] *MODEL 1422-Chs. 14(A)-22(I) [120-174 Mhz] *MODEL 713-Chs. 7-13 [174-216 Mhz] Highly selective 60dB notch. Send $30 each. Quantity prices as low as $15. Money back guarantee. STAR CIRCUITS, P.O. Box 8332, Pembroke Pines, FL. 33084. CIRCLE 94 ON FREE INFORMATION CARD

ULTRASONIC RADAR. An easy to construct Ultrasonic Ranging System complete with transceiver module and Polaroid ultrasonic transducer. System easily connects to any computer to measure distances from 18 inches to 35 feet with a resolution of 1/2" T101 Sonar Ranger $79, plus $2. S&H - XDR02 Add l Transducers $20. CCI, 4 Park St., Suite 12, Vernon, CT 06066. (203) 872-2751. CIRCLE 203 ON FREE INFORMATION CARD

THE MODEL WTT-20 IS ONLY THE SIZE OF A DIME, yet transmits both sides of a telephone conversation to any FM radio with crystal clarity. Telephone line powered—never needs a battery! Up to 1/4 mile range. Adjustable from 70-130 MZH Complete kit $29.95 - $150 S - H. Free Shipping on 2 or more! CEC add $4. Call or send VISA, MC, MO DECO INDUSTRIES, Box 607, Bedford Hills, NY 10507. (914) 232-3878. CIRCLE 127 ON FREE INFORMATION CARD

NEW 442 SYNE WAVE DECODER WITH VARI SYNC—Replaces the oak N-12 $80.00, S.B. add on decoder $99.00, S.B. Tr-Bi decoder $100.00, Zenith SSAVI $185.00, S.B.-S.A. decoder $140.00, Starcom converter $139.95. Buy a decoder take off $10.00 Guaranteed. (402) 331-4957. Call or write for your free catalog. Many other products & quantity pricing M.D. ELECTRONICS, 5078 So. 108th #115A, Omaha, NE 68137. CIRCLE 211 ON FREE INFORMATION CARD

A CAREER START FOR THE 21ST CENTURY. Since 1905, National Technical Schools has helped people build successful careers. Enter the 21st Century through home study courses in Robotics, Computer Technology and Servicing, Microprocessors, Video Technology, Basic Electronics, Transportation Technology, Climate Control Technology or TV and Radio Servicing. For a FREE catalog, call 1-800-BETTER. Or write NTS/INDEPENDENT TRAINING GROUP, 456 West M. L. King Jr. Blvd. L.A., CA 92617. CIRCLE 181 ON FREE INFORMATION CARD

DECODE THE NEW VIDEO TAPE COPY PROTECTION SCHEME. Bothered by brightness changes, vertical jittering and video noise while watching rented tapes? Stop it with the LINE ZAPPER. New kit removes copy protection that often interferes with normal television operation. Complete KIT only $69.95. Assembled with 1 year warranty $124.95. Add $3.00 shipping per unit. Dealer inquiries welcome. ELEPHANT ELECTRONICS, Box 41865-L, Phoenix, AZ 85080. (602) 581-1973. Allow 6 weeks for delivery. CIRCLE 205 ON FREE INFORMATION CARD
SATELLITE TV

The international connection, part 2

Last time, we saw that some countries, under pressure from the United States, have acted to prevent reception of U.S. satellite signals outside of this country. However, some countries have resisted such pressure.

Some feel that national laws are for the country where the laws are enacted, and those governments see little reason to allow a U.S. law to be applied in Bermuda, or a French law to be applied in Switzerland, for example. The U.S. seems to be slowly reacting to that point of view, and recently there have been proposals to correct that situation.

Many countries, such as Jamaica, are very dependent upon cordial relations with the United States. The Caribbean, as an example, now benefits from a U.S.-aid program called the Caribbean-Basin Initiative. Countries that meet certain legislated provisions of the program can ship products into the U.S. with no or very low duties. A firm manufacturing ceramic figurines in the Dominican Republic, for example, is permitted to bring its products to the U.S. marketplace at a duty-advantage. That is important to that firm and its 100 employees.

Under the proposed legislative changes, a country that does not cooperate with policing the unauthorized use of American "intellectual" property, such as movies, would be disqualified from the program’s benefits.

That is a strong weapon in the hands of U.S. programmers who seek to force foreign governments to shut down unauthorized users of their programming. A country that resists the intrusion of U.S. laws into its territory on philosophical grounds, or feels intimidated by its large North-American neighbor would think twice about not cooperating with U.S. officials applying U.S. laws when local jobs and commerce are at stake.

The United States has reasons beyond the economic well being of its satellite-TV programmers for restricting the reception of domestic satellite TV. Indeed, if economics were the only factor, it might seek to allow such reception. Currently, we have about 50% more available satellite channels or transponders than we have full-time users. That means that many satellite channels are under-used. Naturally a satellite manufacturer such as GTE or RCA would like to see all channels/transponders put to maximum use to realize the maximum possible revenue.

If the U.S. market for transponders is not as large as the supply of transponders, and the satellites coverage extends beyond our borders, why not offer those transponders for rent or sale to firms located outside of the United States? Technically, that is illegal.

Domestic vs. international

The U.S. is a party to various international agreements that define the operation of satellites. Those agreements have created two general categories of satellites: domestic and international. Domestic satellites can only be used to transmit signals to the country that operates it. That means that a U.S. satellite, like one of the Satcom series, can only transmit programming to U.S.-located receiving sites; a Canadian satellite, like a member of the Anik series, can only transmit programming to Canada (the Anik-E, scheduled for launch in 1990 is shown in Fig. 1); and so on.

International satellites, on the other hand, are operated by international organizations and can only be used to transmit signals from one country to another; they can’t be used to beam a signal from a country back to a site within the same country. The two international satellite organizations are Intelsat and the U.S.S.R.-sponsored Intersputnik.

However, international accords tend to be warped with time, and nearly a decade ago Intelsat began renting satellite transponders to countries such as Brazil, who in turn used those transponders for service wholly within their borders. More recently, nations have rented unused transponders on domestic satellites to their neighbors.

For instance, Indonesia has allowed their neighbors access to unused transponders on board their Palapa satellites. Further, un-
There are over 100 channels of programs available, with each programmer making numerous and continuous programming changes.

You will need a weekly guide if you want an accurate guide.

You will need a time-zoned guide if you want an understandable guide.

SAVE 50%

- $48/52 issues
- $89/104 issues
- $109/52 issues

FREE SAMPLE

Send a free sample today!
Dialing for dollars

That last example brings us to an important point: Video is not the only signal delivered by satellite. And while the U.S. is enacting new, more restrictive legislation aimed at curbing distribution of television programming to other countries, the same thing isn’t happening in the fields of data and voice communications. There, free-wheeling agreements and regulations are replacing the restrictive rules of yesteryear.

That is happening because of pressures from satellite owners or from firms who see satellites as a link to potential revenue sources outside of the United States. As a result, the distinction between domestic and international satellites in that field is blurring rapidly.

Interestingly, some of the impetus behind the changes has come about due to reception of U.S. programming by those outside of this country. Much of that programming is advertiser supported, and many of the advertisements offer products that can be ordered by dialing a toll-free 800 number. That’s no problem for viewers in the U.S., but formerly those numbers could not be dialed from other countries. Since many of the products can not be purchased locally in Latin America, the Caribbean, etc., there was considerable demand for such products. Hence, a great deal of potential revenue was lost.

That was until the creative marketing genius of U.S. telephone companies got into the act. Now, thanks to their urging, a service known as USA Direct is in place. For a charge, that service lets those in the Caribbean region bypass the local telephone systems and tie in directly to the U.S. telephone system, including access to 800 numbers. The net result is lower cost per call for the users, more volume for the telephone company, and more business for mail order companies. Eventually, 800 service may even be extended to that region, allowing totally toll-free ordering of products.

As you can see, our government is sending confusing signals to the rest of the world. On one hand, new legislation seems to be saying that we want to restrict the exploitation of American “culture” via satellite. But we seem to have no objection to U.S. business using the “satellite expressway” to expand into global markets. The developments that come about because of that will be interesting to watch.
MAGNETICALLY shielded loudspeakers

The growing popularity of audio/video systems has produced a plethora of components, accessories, and adapters, all intended to facilitate the marriage of the two media. From a technical point of view, one of the more interesting of the newly created audio/video components is the magnetically shielded speaker system. The purpose of the magnetic shielding is to prevent the stray magnetic-flux field normally emitted by a speaker’s magnet from impinging on the video monitor’s picture tube. Because the electron beams inside the picture tube are controlled magnetically, any extraneous magnetic influences can have an adverse effect on the picture.

Preventing flux influx
In my youth I worked for an electronic-kit company as a test-instrument troubleshooter. The oscilloscopes I serviced were primitive devices by today’s standards, but they had the virtue of being easily fixed when something went wrong. One of the things that went wrong in the customer’s kits was trace distortion caused by magnetic radiation from the scope’s power transformer. The fix was simple enough: A 3-by-5-inch piece of thin sheet steel was bolted to the scope’s chassis in the magnetic path and then bent until the trace distortion was no longer visible. What I installed was not a magnetic shield but rather a magnetic deflector, which brings us to a rather interesting topic—the “shielding” techniques available to the manufacturers of video-ready speakers.

Internal shielding
At a time when all speakers used Alnico magnets, shielding was a simple proposition. The Alnico magnet was in the form of a cylindrical “slug” surrounded on two sides by a heavy metal yoke. See Fig. 1. The yoke was actually part of the magnetic circuit that concentrated the magnetic flux in the voice-coil gap. The inherent magnetic leakage from such a structure is quite low, but today the high cost of Alnico magnets has pretty much eliminated them from speaker use in favor of ceramic-ring magnets. The ceramic magnet is usually in the form of a flat-sided ceramic doughnut that surrounds the pole piece as shown in the cross-section view in Fig. 2. If you’ve ever handled a ceramic-magnet speaker you know that there is extensive magnetic leakage from the exposed outer edges of the ceramic-magnetic ring.

External shielding
External shielding in the form of a judiciously placed ferrous-metal cover can be effective with small speakers with low-flux magnetics such as are found in many conventional TV sets. However, when such shielding is applied to larger, better quality speakers, problems occur. Although it can be effective in suppressing magnetic leakage, the shielding diverts a substantial part of the available flux away from the voice-coil gap, which can result in an unacceptable loss of damping and efficiency.

Magnetic deflection.
The technique used to produce today’s better “magnetically shielded” speakers uses no shielding at all! As illustrated in cross-section view in Fig. 3, a second, fairly hefty ceramic-ring magnet is installed piggyback at the rear of...
the speaker so that its magnetic polarity is opposite to that of the main magnet. An iron housing (a "pot" in speaker-designer jargon) is part of the additional assembly and its purpose is to focus the magnetic field of the second magnet so as to divert the stray leakage flux back toward the main magnet. It does that so effectively that an additional benefit occurs—there is an increase in the magnetic flux appearing in the voice-coil gap.

In effect, it is as though the main magnet were made more powerful. Adding an extra magnet is not a cheap solution to the flux-leakage problem, however, because the magnet is the most expensive part in most speakers.

To digress for a moment: Do not assume that a more effective or heavier magnet is always desirable in a speaker system. An excessively strong magnet can electronically overdamp a woofer, thus inhibiting its voice-coil/cone movement at low frequencies. Overall mid-frequency efficiency will be increased, but at the expense of low-bass performance. A knowledgeable designer juggles (trades off) efficiency, bass performance, and cabinet size to achieve the specific results he (or the marketing department) wants.

Video psychoacoustics

There's an important question that no one seems to be asking about shielded video speakers: Is it a product category that is really needed? For several years I've been using a pair of small B&W LM-1 car speaker systems with my Proton video monitor. The speakers are driven directly by the low-powered stereo amplifier built into the Proton unit, which sits between them.

There's no effect on the picture as long as the LM-1s are spaced a foot or so away from the screen. That is not surprising, since magnetic fields are subject to the "inverse square law." That means that the strength of the field decreases in proportion to the square of the distance (rather than linearly) as you move away from its source. If you double the distance, you get a quarter of the field strength. It's easy to move the speakers to where they won't cause any trouble, considering how comparatively weak the stray magnetic field is to start with.

It seems to me that with a full audio/video system you don't want to install stereo speakers that close to the TV screen—or each other. In other words, the normal ground rules of stereo-speaker spacing apply whether the program source is audio or video, stereo or mono. Assuming that your speakers are correctly wired in phase, a normal 5- or 6-foot spread between them won't cause problems with imaging or centering with mono programs. Despite what some recent Japanese literature seems to imply, the human eye, ear, and brain combination is remarkably accommodating in placing the apparent source of a sound where the eyes say it should be. If you've ever watched television while listening through headphones, you know how easily the brain is able to shift the apparent location of the sound to the screen.

There's no technical reason not to buy a good audio/video speaker if for reasons of decor or silliness you simply must place them cheek-to-jowl with your monitor. But the odds are that some less-expensive conventional speakers, properly installed, will sound just as good.

NRI Prepares You At Home For Today's Hottest New Career

Master digital electronics servicing as you build your own IBM-compatible computer!

A brand new course for an exciting new field... servicing computer peripherals (disk drives, printers, display terminals, modems, etc.) and the latest digital equipment found in industry today! Job opportunities for the trained digital technician have never been greater. It takes skilled personnel to keep today's digitally automated production lines and manufacturing equipment rolling. NRI trains you to be a high-demand digital technician or prepares you for your own independent service business.

You learn by doing... the NRI way

As you learn, you get practical hands-on experience building your own IBM-compatible computer and disk drive. You also build and learn to use and service your own triggered sweep oscilloscope, digital logic probe, and digital multimeter—tools used by today's electronics professionals.

Diagnostic Software Makes Your Computer a Dedicated Digital Testing Device

With the exclusive diagnostic software included in your course, your computer actually becomes your most important piece of digital test equipment. You use your computer to troubleshoot video displays and terminals, printers, disk drives, and more. Plus you learn to apply your knowledge to the diagnosis and repair of any digital equipment you own or encounter in your service and repair career.

Send Today For FREE Catalog!

Send the coupon today for NRI’s free, 100-page catalog with all the details about starting your career in Digital Electronics Servicing, plus facts about NRI training in other high-paying, high-growth electronics career fields. If the coupon is missing, write to us at NRI School of Electronics, McGraw-Hill Continuing Education Center, 3939 Wisconsin Avenue, Washington, DC 20016.

School of Electronics

McGraw-Hill Continuing Education Center
3939 Wisconsin Ave., Washington, D.C. 20016

Name (Please Print)
Age
Address
City/State/Zip

1-800-221-1234

"I finally found the perfect speakers!"
BUILD THE PT-68K
And learn 68000 computing in the CD Classroom
CONTENTS
OCTOBER 1987
Vol. 4 No. 10

90 CD CLASSROOM, PART 1
Build the PT-68K using IBM clone components

96 COMMODORE PULSE GENERATOR
Breathe new life into your 64

87 EDITOR'S WORKBENCH
Hardware: The Option Board
Software: Mite
In Brief: PCED, Cruise Control, KSH-1
In the August issue (see Editor's Workbench, p. 63), we announced a new 68000 computer system custom-designed for readers of Computer Digest. The PT-68K is now a reality; the price is still $8000 for a minimal system—and it's available in a number of configurations. (Turn to page 90 for more information.)

We'll be publishing a series of articles on the design of the PT-68K. The series assumes knowledge of basic electronics and basic digital logic, and it assumes that you have basic construction skills. By following the series from beginning to end, you'll learn in detail about one of today's most popular microprocessors, the 68000; that knowledge will surely aid you as you make your career in electronics.

Every effort has been made to make the PT-68K as economical as possible, so it makes extensive use of IBM PC clone components (keyboard, case, power supply, video adapter, monitor, etc.) wherever it is possible.

Our author wrote a similar series of articles on an earlier member of the Motorola family of microprocessors for a now-defunct computer magazine; his disk-operating system is used on various computers in many countries around the world, and he is a practicing teacher who is familiar with the needs of the computer neophyte. So he is well-qualified to be Headmaster of the Computer Digest Classroom.

Central Point Software: The Option Board

Mention the words "copy protection," and you're sure to start an argument, because there are as many good reasons for a programmer to protect his program as there are for a consumer to back it up. Both sides have reasonable arguments, so there's a constant war between the two. And when a new copy-protection scheme shows up, it's only a matter of time before someone figures a way around it.

There are several good programs available for the IBM PC that can defeat most copy-protection schemes, but in the final analysis they all share a common weakness, because no matter how sophisticated their algorithms, they all have to use the PC's disk-control IC, the NEC PD765.

A smart programmer can take advantage of that IC's known quirks in a copy-protection scheme. Since some of those peculiarities cause unreliable reads and writes, it can be difficult for copy-protection software to be sure that the data it thinks it sees is what's really on the disk.

The Option Board (Central Point Software, Inc., 9700 S.W. Capitol Hwy. #100, Portland, OR 97219) plugs into a standard expansion slot and provides the ultimate backup system for the PC. It gets around the limitations of the PD765 disk controller by using its own hardware to read and write the disk. The Option Board's control software makes it simple to copy a disk, and Central Point also supplies you with a very powerful track and sector editor.

Installation consists simply of installing the board in an unused expansion slot, plugging your computer's disk-drive cable into the board, and then using the supplied cable to connect the Option Board to your disk controller. Then you're ready to run the software and put the board to work.

FIG. 1—The Option Board.
The software

Even though the Option Board is connected between your standard disk controller and your disk drives, it is transparent to the system until the supplied software wakes it up. That software consists of two programs: TC, a disk copier, and TE, a disk editor. Both programs are as uncomplicated as possible; their commands are straightforward and all options are displayed on-screen.

Copying a disk with TC is easy. You set the source and destination drives, the number of sides, and the range of tracks to copy through a menu. You can also maintain the track lengths, copy "weak bits," verify each write, and keep the copy's track alignment the same as the original. All options can be specified on the command line when you run the program, but it's much easier to pick and choose from the menu.

One of the first things you'll notice when running the program is, even with 640K of RAM, only 26 tracks are read at a time. Software-only copiers can read more data at a time because they read only the data bytes from a track; the Option Board, on the other hand, reads the entire track into memory, including the data headers, address headers, and the gap bytes that DOS puts there when the disk is formatted. In other words, TC loads a complete image of each track, whereas a software-only copier loads only data. By reading and writing whole track images, the Option Board can easily handle any protection scheme that relies on a non-standard disk format.

The success of any disk copier depends to a great extent on the assumptions it makes when it reads a disk. The greater the number of things it expects to find, the easier it is to fool. The Option Board makes very few assumptions about disk format so it has a much better chance of making a successful copy, and since it can't be confused by non-standard disk formatting, you can use it to copy disks written by other computers—even Apple disks! It's a real testament to the design of the Option Board that it knows how to read them at all.

The disk editor

The full power of the Option Board becomes evident when you use TE, the disk editor. You can get a track dump of both Apple and IBM disks—no mean accomplishment. The board can distinguish between regular bytes and sync bytes, and highlights the latter on the screen display to make them stand out. You can use the editor to take a bit-level cruise through the disk and change anything you find there. One extra nice feature of the editor is that it will recalculate the CRC's for you when you write new data to a track. That is important because it is very difficult to do by hand, and if you get it wrong, the disk will be unreadable by DOS.

Examining a track dump can tell you a lot about how the disk was formatted. If you know what you're doing, you can figure out how the directory is organized, how files are written, and how the data is stored; invaluable information if you're trying to rescue a crashed disk. Being able to identify single- and double-sided disks simplifies the process of data conversion.

The manual holds the user through the process of installing and using the board. There's a small section on how standard disks are formatted, but you'll have to go elsewhere if you want to learn about copy protection. Since there's absolutely no technical description of the Option Board itself, you won't be able to write software to use it. Central Point Software is keeping the board's circuitry to itself. That makes sense because knowing everything the board can do means you also know everything it can't do, and that's something the copy-protection people would love to find out.

Conclusion

If you have a substantial investment in copy-protected software, or if you really want to get into the nitty gritty of disk formatting, the Option Board is for you. It's much more powerful than software-only disk copiers and, at $100, is only slightly more expensive. It's an impressive piece of hardware, the more you use it, the more valuable it becomes. CD

Mycroft Labs (P.O. Box 6045, Tallahassee, FL 32314) has been marketing successive versions of Mite since the late seventies so the current release is the result of nearly 10 years of development. If you're an old hand when it comes to RS-232 stuff, you'll find that Mite has every feature you could conceivably want and if you're just learning what on-line means, you'll find the program so intuitively organized that you'll be getting around it in no time at all.

Although Mite started out in the CP/M world it was rewritten from scratch in 8086 assembler to run on the PC. This means it can cross directories and follow paths that might be set before the program is run. And it's tightly written as well—because Mite weighs in at a mere 51K, you could run it on a machine with as little as 128K. The small size of the program becomes more impressive as you become more familiar with it, and realize how powerful it is.

The most basic function of any terminal software is the uploading and downloading of files. Mite can do simple, non-protocol transfers of text but has the ability to handle four different types of binary transfers as well. XMODEM, YMODEM, KERMIT, and Mite's own protocols are fully supported—in both single and batch mode—and XMODEM can be set for either checksum or CRC error checking. All Mite commands can be issued in two ways. The first is by running through a series of menus while in command mode, and the second method is by typing a user-definable fly key in terminal mode, and then typing the command and appropriate argument, (e.g., SEND [filename], DIR [drive], PATH [directory]). When you're first getting started with Mite it's much simpler to issue commands from the menu but as you get more familiar with the program, you'll take advantage of the speed and convenience of remaining in terminal mode and using the fly key.

If you get stuck, Mite's extensive online help is only a keystroke away. You can get an explanation of any of the commands by pressing the question mark and the first letter of the command. If you're in command mode you'll get a full description of any of the commands on the screen. In terminal mode the help key will give you a commented list of the available commands. In either mode however, the help is well planned—it's complete without being obtuse.

Mite can be automated as well. You can preprogram up to 10 macro strings to give you a one-key logon to dial-up sessions, simplify the search command strings used with on-line data bases and, in general, make your time a lot more efficient—and that's nothing to sneeze at when you're online at more than 25 bucks an hour. Macros can be up to 61 characters long, and there are six special macro characters that perform functions such as making the macro stop executing until a particular character is received or linking to another macro.

W

all have our own special use for home computers, but sooner or later everyone wants to get on-line and explore. Telecommunications lets you tap into a whole new world of information. Everything from extended data bases, to airline guides, to retrieves bulletin boards is only a phone call away—if you have the hardware and software to do it.

Once you've decided on the hardware half of RS-232'ing, you still need software to make it work, and this is where things can get very bewildering. There are probably as many terminal programs available on the market as there are word processors and choosing the one that is best for you can be a confusing business. You need software that is easy to use, yet powerful
If you're really into automating things, you can learn how to use MORSE, the programming language that's built into Dyna-Mite, Mycroft Lab's top of the line product. It's a BASIC-like language that lets you create programs that control operations while you're online. It has over 30 built-in commands such as LET, PRINT, GOTO, GOSUB, DIAL, HANGUP, IF, THEN, etc., and will also accept any of the standard Mite commands. The extensive vocabulary gives you the ability to create programs to automate the handling of electronic mail, do conditional searching through online data bases, or simplify an overly complex online procedure so it can be done by any inexperienced user. MORSE is to Mite what batch files are to DOS. Programmability is not just unique to Mite - other software, both commercial and shareware, have this feature. As far as power goes, MORSE falls about in the middle of the pile. It is, however, extremely easy to use and even someone who's just starting out will have no trouble at all writing programs after ten minutes with the manual.

Mite's documentation is packaged in a 5 x 8 looseleaf binder and it has all the information you need to find your way around the program as well as a good discussion of what you can find in the larger dial-up services such as Compuserve and The Source. If it means anything to you, Arthur C Clarke is a Mite user and he has written a book called Mite For Morons that will show even the most inexperenced user how to use the program.

There are two PC versions of Mite: Maxi-Mite and Dyna-Mite. The difference between them is extended terminal emulation and the MORSE language interpreter Maxi-Mite costs $50 and Dyna-Mite costs $100, so if you're not interested in the extra goodies you can save the $50 bucks, but the addition of MORSE alone is worth the investment. If it were a stand-alone program, it would cost more than Dyna-Mite and you'd still need terminal software.

There's even a way to try out Mite for nothing. Mycroft Labs has put a version, called Mini-Mite, in the public domain. It has a lot of the bells and whistles, (but not MORSE, of course), and it can do XMODEM protocol as well as ASCII uploads and downloads. Look for it on your local BBS and if it's not there, Mycroft Labs will send the whole thing to you on a disk, (including a small manual file), for a minimal charge of about $15.

For all us 8-bit lovers, Maxi-Mite is available in CP/M and there are overlays for a mind-boggling number of terminals. If you need a good terminal package for CP/M, the $50 bucks you spend for Maxi-Mite will turn out to be the best software investment you ever made. And that, of course, goes for the PC version as well. Mite meets every one of the criteria you should look for in software. It's powerful, well seasoned, actively supported, and reasonably priced.

If you need telecommunication software

Certainly, a memory-resident calculator is no ground-breaking product. However, like people, calculators are not all created equal, and not all calculate equally well. For many people, the typical "four-banger" (add, subtract, multiply, divide) included with programs like SideKick, PolyWindows, etc. is sufficient. But engineers often need transcendental functions, programmability, etc.

If you use a scientific calculator and a PC, the KSH-1 calculator can make life much easier for you. It has all the functions of the HP-11c it's modeled on, the ability to store programs on disk, and an attractive screen display (color or mono). See Fig. 2. It'll never get lost in a stack of papers on your desk, nor can anyone walk off with it.

You use the cursor-control keys (or a mouse) to move a blinking reverse-video bar to the screen locations that correspond to various keys. Just press Return, and the function at that location will be executed. Like the original, most keys actually perform three different functions: the default function, an F function (listed above the key) and a G function (listed below the key). F and G functions are available by pressing the F or G key of your PC's keyboard, followed by Return.

The KSH-1 comes with an informative manual containing usage hints and sample programs. The program is very easy to install, and, at $49.95, it's a bargain. Contact the K Software House, Rt. 2 Box 8381, Unionville, TN 37180.

REVOLUTION SOFTWARE, CURSOR CONTROL

Keyboard and screen control has never been a strong point of the MS-DOS operating system. Numerous add-in memory-resident programs purport to correct some deficiencies, but they tend to conflict with one another or other programs.

Along comes Cruise Control, a program that emerged as a by-product of another project. You use it to control cursor speed while moving through a spreadsheet, browsing a text file, etc. It has an automatic repeat (whose rate may be adjusted on the fly) for hands-free browsing. Repeat is applied to all the usual keys (excluding Control, Alt, the shift keys, NumLock, etc.). In addition, Cruise Control has an auto-continued on page 95
The two major microprocessor manufacturers today are Intel and Motorola. Although Intel processors are better known (mainly due to their use in the IBM PC line), astute users agree that Motorola’s 68000 family of microprocessors is more powerful and easier to use. When you look at heavy-duty number-crunching machines, you will find the 68020 used more often than any other.

We were tempted to use the 68020 in the computer described here (hereafter called the PT-68K), but were put off by the $200 price of that one IC alone. So we settled for its slightly slower cousin, the 68000, which is used in various computers made by Atari, Commodore, Apple, in many laser printers, as well as in industrial controllers and scientific workstations.

The 68000 is roughly in the middle of the 68000 family of microprocessors, the 68008 is below it, and the 68090 is above it. A fourth processor, the 68010, is theoretically faster than the 68000, but the 68000 can run at faster clock rates and so is just about equal in overall speed. You can plug a 68010 into the PT-68K, but you probably won’t notice any difference—except in price.

System overview
In its simplest form, the PT-68K runs at a clock rate of 8 MHz. With minor changes, it can run at 10 MHz; if that’s not fast enough, you can also run it at 12 or possibly 16 MHz. Naturally, faster models will cost more. In addition, you won’t be able to use the 68010 at the higher clock rates.

Almost all necessary system components are contained on the PT-68K’s printed-circuit board. A fully built-up board contains the 68000 microprocessor and support circuitry; one megabyte of dynamic RAM (main memory), 4K of battery-backed static RAM; 32K of ROM (containing BASIC, a machine-language debugger, and a link to the disk-operating system); four serial ports, two parallel ports, floppy-disk interface for up to four drives, sound interface for a speaker, a clock/calendar IC; expansion connectors for memory and a hard disk controller; IBM PC keyboard interface, interface connectors for additional clone-compatible I/O boards.

You can communicate with the PT-68K using an RS-232 terminal or any computer running a communications program functioning as a terminal (perhaps an IBM PC or clone, an Apple, or a Commodore). Or you can plug an IBM keyboard and monochrome adapter card directly into the PT-68K and the computer will use them for input and output.

What about software? First of all, the 68K contains 32K of permanent memory containing two programs that will let you use the computer right away, even if your system does not have disk drives.
or a full complement of memory. The first program is called HUMBUG; as shown in Table 1, it has thirty commands that allow you to enter machine-language programs into memory, dump memory contents, test memory, fill memory, move memory, search memory, start and stop programs, single-step or breakpoint them, and more. HUMBUG also provides a number of useful subroutines to handle the screen and keyboard (or terminal), boot from disk (Winchester or floppy), etc.

In addition, HUMBUG's BA command places you into its ROM BASIC interpreter. The ROM BASIC is somewhat limited, but it does allow you to peek and poke in memory, do floating-point calculations, and run test programs. You can't save them, but a full disk BASIC should be available by the time you read this.

SK*DOS

After you add memory and a disk interface, HUMBUG allows you to boot SK*DOS, a disk operating system (DOS) developed specifically for individual users and small system manufacturers, it has been adapted to a variety of different computers in the U.S. and Europe.

SK*DOS comes with about forty utility programs, including an editor, an assembler, another version of BASIC, a game (Eliza), programs to read and write IBM PC disks, and RAM disk and disk cache programs (we will explain those terms later in this section). Also included is an emulator program that lets you run hundreds of programs developed for Motorola's 6809 processor. In addition, device drivers, and a number of other interesting and useful programs are also included.

SK*DOS requires at least one standard floppy-disk drive (single- or double-sided, 40- or 80-track, 3½- or 5½-inch). SK*DOS itself can handle up to ten drives, but the PT-68K hardware will support only four. But you can also add one or two hard-disk drives to provide up to 128 megabytes of additional storage. And because the 68K will accept some IBM type hard-disk interfaces, you can do so relatively cheaply as well.

Unlike some disk operating systems which are unique to just one brand or type of computer, SK*DOS has been adapted to a number of different 68000, 68000, and 68090 computers in the United States and Europe. This means that software developed on one machine will run on your 68K system as well. For example, a number of inexpensive programs (a text processor, communication software, Edward Ream's screen editor, and Ron Cain's small C compiler, among others) are available through the SK*DOS Users' Group and from the Radio-Electronics BBS (300/1900, 8/N/1).

In addition, several members of the Users' Group are into Unix programming, and have converted Unix-like programs (such as Micro-EMACS and NRO) to run under SK*DOS. Last, as this article was being written, several commercial developers were working on larger programs including a full C compiler and a full BASIC interpreter.

Educational value

The PT-68K will not be presented as an "appliance" computer that you plug in and use with no knowledge of what's going on under the hood. Rather, we are going to spend a great deal of time building the PT-68K section by section, testing and explaining as we go along. Due to its unique construction, you will be able to run machine-language and BASIC programs with a minimal system.

That approach has two big advantages. First, it allows us to spend time discussing and understanding what each section does. More important, though, is the fact that you can catch and fix a mistake or problem soon after it is made. At any stage, you will add just a few IC's, and that will simplify debugging, as well as give you a chance to really understand how various circuits work.

Of course, if you feel that you already possess the necessary expertise, you're free to purchase parts, build the computer, and get to work. Just make sure you are ready!

The bottom line

The PT-68K isn't being built by the millions in the Far East, so you can't expect it to be as cheap as a mass-produced PC clone. On the other hand, it is surprisingly inexpensive, partly because we use PC clone components wherever possible, and also because our motherboard contains much hardware that must be added to most computers on plug-in boards. To illustrate how clone components can save costs, an early prototype of the PT-68K—which did not have the PC bus slots—needed a $920 hard-disk controller. The current version allows you to use a standard Western Digital controller that costs about $90. Kit prices are summarized in the sidebar.

System overview

The block diagram in Fig. 1 shows the major sections of the PT-68K. In general terms, the diagram describes just about any computer, not just the PT-68K. At this point we won't define some of the terms we'll use (RAM, ROM, etc.) in much detail, a later installment will do so.

The heart of the diagram is the microprocessor, a Motorola 68000. It is driven by a clock, which is nothing more than a high-frequency oscillator that generates a squarewave. The clock synchronizes everything that occurs in the system. In the PT-68K, the clock will most likely be an 8-MHz signal, though it could go as high as 16 MHz.

In the PT-68K, two EPROMs (Erasable Programmable Read-Only Memory) IC's contain the system software. Unlike RAM (Random Access Memory) the contents of an EPROM is not lost when power is removed. When you purchase an EPROM, it is "empty" or erased. But the two PT-68K EPROM's have been programmed with HUMBUG and BASIC. The computer can read and use those programs, but it cannot erase or change them.

RAM (which should really be called RWM, for Read-Write memory—but have you ever tried to pronounce RWM?) is memory in which the microprocessor can store information and then read it back at a later time. Of course, the contents of RAM is usually erased when you turn the power off.

The PT-68K actually has two kinds of RAM: static and dynamic. Many computers use only one or the other, but we use both because each has its advantages. For large amounts of memory, dynamic RAM (DRAM) is cheaper and smaller—but without DRAM, it would be impractical to provide one megabyte of memory at any reasonable cost. On the other hand, for small memories static RAM is the right choice because it is much simpler to design with, and therefore the support circuitry is easier to debug.

The minimal PT-68K has a small amount (4K) of static RAM that is contained in just two integrated circuits. Because the static-RAM circuitry is so simple, it will most likely work immediately with no problems. That RAM will allow you to run BASIC and HUMBUG. After the static RAM is working, you can add the DRM, which consists of thirty-two 256 IC's, plus a batch of support IC's. If there is a problem with the DRM, you can use HUMBUG to debug it. That kind of "bootstrapping" makes the building of a large system like the 68K from scratch practical.
There is another reason for providing static RAM, a special clock/calendar IC is plug-compatible with the RAM ICs we use. So we need only unplug one of the RAM ICs and plug in the clock/calendar IC, a MK48T09, which provides not only a clock and calendar, but also some static RAM of its own, and a built-in battery to power the clock and RAM while the computer is off.

I/O interface

Although the block diagram in Fig. 1 shows just a single box labeled I/O interfaces, the PT-68K's I/O is actually quite complex. It consists of two MC6861 DUART's that provide four serial interfaces, one 68230 parallel interface timer, a 1772 floppy-disk controller, keyboard interface, speaker interface, a number of extra support ICs, the PC interface circuitry, plus the interrupt circuitry, which allows I/O devices to interrupt the 68000 when they need it.

Some microcomputers provide DMA (Direct Memory Access) circuits. DMA is often used when the microprocessor has difficulty keeping up with disk drives and other relatively fast I/O devices. The 68000 has no problem keeping up with the disk drives, and DMA really complicates the computer (and increases its cost), so we chose not to use it in the PT-68K.

System buses

As Fig. 1 shows, the two main sets of connections between the microprocessor and the ROM, the RAM, and the I/O interfaces are the data bus and the address bus. The term bus is used to signify that a number of parallel wires are used to carry signals simultaneously.

The data bus is used to move data of any sort (numeric data, microprocessor instructions, or plain text) between the microprocessor, memory, and I/O devices. The arrowheads leading from and going to the various functional blocks in the block diagram show the direction that data may flow from various devices. For example, data can only flow out of ROM, but it can flow both into and out of RAM. The data bus is said to be bidirectional because data may flow either into or out of the microprocessor. The address bus, by contrast, is unidirectional, because address information only flows out of it into the microprocessor.

The PT-68K's data bus consists of 16 signals, each of which carries one binary digit (bit). Therefore, the 68000 can transfer an entire 16-bit number to or from memory at once. Other microprocessors handle eight bits, 16 bits, and other values. As we will see, the 68000 handles numbers in 8-bit chunks (called bytes), 16-bit chunks (two bytes, or a word), and 32-bit chunks (four bytes, or a long word). When transferring a byte, the 68000 uses only half of the data bus, when transferring a long word, it uses the data bus twice, transferring 16 bits at a time.

The number of bits on a data bus (also called the width of the bus) obviously has a bearing on speed: the wider the bus, the more bits that can be moved at a time, so the faster the computer runs. However, bus width is by no means the only factor limiting speed; the microprocessor's internal bus width is also important.

Early general-purpose microprocessors (including the 8080, the 6800, the 6502, and the 8080) have an eight-bit data bus and also handle most numbers internally in an eight-bit format. For that reason they are called eight-bit microprocessors.

The next generation of microprocessors (including the 6809 and the 8088) still have eight-bit external data buses, but 16-bit internal buses. That gives them extra power, but they are still bogged down by the slow speed at which they can transfer data to and from memory and I/O devices.

The next step includes the 8086, the 80186, and the 80386, processors which handle 16-bit numbers both internally and externally, and which are properly called 16-bit processors.

The 68000 is one step higher yet—it has a 16-bit external bus, but a 32-bit internal bus. The 68008 has the same 32-bit internal bus as the 68000, but an external width of only eight bits. That may appear to be an disadvantage, but in cost- and space-sensitive applications, the reduced width can be valuable, because fewer support ICs are necessary.

Last, at the top of the current pyramid are the 80386 and the 68020, both of which handle 32-bit numbers both internally and externally. They are true 32-bit processors.

Internal and external bus width are not the only factors that affect computer speed. A bus that's twice as wide doesn't necessarily mean a computer that's twice as fast, unless you consistently run

FIG. 1—BLOCK DIAGRAM OF THE PT-68K. A functional system can be assembled for $200.
programs that make full use of that width. For example, a program that uses many byte-oriented instructions may not operate much faster on a 32-bit bus than on a 16-bit bus.

Another factor that can affect overall system speed is the use of a cache. Both the 68020 and the 80386 use a cache, an area of memory within the IC itself that holds instructions or data that are loaded from main memory before they are needed. Older microprocessors generally read data from main memory only at the instant it is needed, and main memory is invariably slower than memory inside the IC. However, the newer processors spend their spare time pre-reading a few bytes ahead of themselves, and store those bytes for possible future use. In that way they avoid having to wait for data or instructions to load from main memory. The 68000 and corresponding members of the Intel family have small caches, but they’re too small to provide significant savings.

The address bus

The other major bus, the address bus, carries addresses. That is, in order to store data in memory or read data from memory, the processor must specify exactly where in memory that data is located. That is done with a numeric address, sent out on the address bus. As stated earlier, the address bus is unidirectional. However, there is an important exception to that statement. A DMA controller may seize control and supply addresses instead of the microprocessor. A DMA controller allows extremely quick transfer of large amounts of data without involving the microprocessor.

Transfers may occur from a disk drive (or other mass-storage device) to main memory, from main memory to a disk drive, or even from memory to memory. But because the PT-68K has no DMA circuit, we’ll say no more about it.

The width of the address bus determines the maximum amount of memory a computer can have. If the bus had only three lines, for example, then each address would consist of just three bits. Each bit can be either 0 or 1, so there would be only eight possible addresses: 000, 001, 010, 011, 100, 101, 110, and 111. Hence the maximum number of addresses would be 8, or 8.

In general, the maximum number of addresses is 2 to the same power as the number of address lines. For example, most 8-bit microprocessors have 16 address lines, so the maximum number of addresses would be 2^16 or 65,536.

In electronics, the symbol K stands for multiples of 1000 (a 10k resistor, for example), but in computers, a K is 1024 (2^10). So 65,536 turns out to be exactly 64K (64 x 1024) locations.

Newer microprocessors have more address lines than their predecessors. For example, the eight-bit processors mentioned earlier have 16 address lines, for a total of 64K of memory. The 8088 and the 68008 each have 20 address lines, for a total of 1 megabyte. The 68000 and the 80286 each have 24 address lines, for a total of 16 megabytes. Last, the 68010 and the 80386 have 32 address lines for a total of four billion bytes of physical memory.

As you might expect, the mere width of the address bus is not the only thing that affects system performance. Consider the 20-bit

<table>
<thead>
<tr>
<th>PARTS LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>All resistors are 1/4-watt, 10% unless otherwise noted.</td>
</tr>
<tr>
<td>R1–R6—150 ohms</td>
</tr>
<tr>
<td>R7—4700 ohms</td>
</tr>
<tr>
<td>R8—R10, R12, R13—10,000 ohms</td>
</tr>
<tr>
<td>R11—not used</td>
</tr>
<tr>
<td>R14, R15—330 ohms</td>
</tr>
<tr>
<td>R16—220 ohms</td>
</tr>
<tr>
<td>R17, R18—33-ohm 16-pin DIP package</td>
</tr>
<tr>
<td>R19—10,000-ohm 8-pin SIP package</td>
</tr>
<tr>
<td>R20, R21, R24, R26—2200 ohms</td>
</tr>
<tr>
<td>R22, R23—1 megohm</td>
</tr>
<tr>
<td>R25—33 ohms</td>
</tr>
<tr>
<td>Capacitors</td>
</tr>
<tr>
<td>C1, C2, C6–C62, C64, C67, C68—0.1 μF, disc, ceramic</td>
</tr>
<tr>
<td>C3, C4, C5—47 pF, disc, ceramic</td>
</tr>
<tr>
<td>C63—1 μF, 16 volts, tantalum</td>
</tr>
<tr>
<td>C65—10 μF, 16 volts, tantalum</td>
</tr>
<tr>
<td>C68—33 μF, disc, ceramic</td>
</tr>
<tr>
<td>Semiconductors</td>
</tr>
<tr>
<td>IC1—74LS245 octal bus transceiver</td>
</tr>
<tr>
<td>IC2—MC68230PB peripheral interface/timer</td>
</tr>
<tr>
<td>IC3—3.68-MHz oscillator</td>
</tr>
<tr>
<td>IC4, IC10—MC68661 DUART</td>
</tr>
<tr>
<td>IC5—WD1772 floppy-disk controller</td>
</tr>
<tr>
<td>IC6, IC22, IC32—7406 open-collector hex inverter</td>
</tr>
<tr>
<td>IC7—74LS367 hex bus driver</td>
</tr>
<tr>
<td>IC8, IC29—1489 RS-232 receiver</td>
</tr>
<tr>
<td>IC9, IC30—1488 RS-232 driver</td>
</tr>
<tr>
<td>IC11, IC24, IC31, IC33, IC76—74LS175 quad D flip-flop</td>
</tr>
<tr>
<td>IC12—7442 BCD decoder</td>
</tr>
<tr>
<td>IC13, IC50—74LS74 dual D flip-flop</td>
</tr>
<tr>
<td>IC14, IC26, IC51—74LS32 quad 2-input OR gate</td>
</tr>
<tr>
<td>IC15, IC35—74LS00 quad 2-input NAND gate</td>
</tr>
<tr>
<td>IC16—74LS174 hex D flip-flop</td>
</tr>
<tr>
<td>IC17—IC19—74LS373 octal latch</td>
</tr>
<tr>
<td>IC20, IC27—27128 16K x 8 450ns EPROM</td>
</tr>
<tr>
<td>IC21—6116 2K x 8 400ns static RAM</td>
</tr>
<tr>
<td>IC23—74274 dual D flip-flop</td>
</tr>
<tr>
<td>IC25—74LS322 8-bit shift register</td>
</tr>
<tr>
<td>IC28—6116 2K x 8 400ns static RAM or MK48T02 clock</td>
</tr>
<tr>
<td>IC34—74LS138 3-to-8 line decoder</td>
</tr>
<tr>
<td>IC36—74LS30 8-input NAND gate</td>
</tr>
<tr>
<td>IC37—74LS10 triple 3-input NAND gate</td>
</tr>
<tr>
<td>IC38—IC45, IC53–IC60, IC67–IC74, IC80–IC87—256K 150ns dynamic RAM</td>
</tr>
<tr>
<td>IC46—74LS393 dual 4-bit counter</td>
</tr>
<tr>
<td>IC47—MC68000P8 microprocessor</td>
</tr>
<tr>
<td>IC48—74LS08 quad 2-input AND gate</td>
</tr>
<tr>
<td>IC49, IC77—74ALS74 dual D flip-flop</td>
</tr>
<tr>
<td>IC52—150ns delay gate</td>
</tr>
<tr>
<td>IC62, IC75, IC88—74LS257 quad 2-input multiplexer</td>
</tr>
<tr>
<td>IC61—74S373 octal latch</td>
</tr>
<tr>
<td>IC63—16L8 PAL</td>
</tr>
<tr>
<td>IC64—74LS139 dual 2-to-4 line decoder</td>
</tr>
<tr>
<td>IC65—74LS390 dual decade counter</td>
</tr>
<tr>
<td>IC66—74LS04 hex inverter</td>
</tr>
<tr>
<td>IC78—16-MHz oscillator</td>
</tr>
<tr>
<td>IC79—Optional 20- or 24-MHz oscillator</td>
</tr>
<tr>
<td>IC89—74LS148 8-to-3 line priority encoder</td>
</tr>
<tr>
<td>IC90—74LS164 8-bit shift register</td>
</tr>
<tr>
<td>IC91—555 timer</td>
</tr>
<tr>
<td>IC92—optional 14.313-MHz oscillator</td>
</tr>
<tr>
<td>Connectors</td>
</tr>
<tr>
<td>J1–J6—62-pin card edge connector (for IBM slots)</td>
</tr>
<tr>
<td>J7, J8—40-pin dual header strip</td>
</tr>
<tr>
<td>J9—5-pin DIN connector (for IBM keyboard)</td>
</tr>
<tr>
<td>J10a, J10b—6-pin power connector (IBM style)</td>
</tr>
<tr>
<td>J11, J12, J21, J22—6-pin dual header strip</td>
</tr>
<tr>
<td>J13—34-pin dual header strip</td>
</tr>
<tr>
<td>J14—J17—not used</td>
</tr>
<tr>
<td>J18—4-pin single header</td>
</tr>
<tr>
<td>J19, J20, J24, J25—3-pin single header strip</td>
</tr>
<tr>
<td>J23—2-pin single header strip</td>
</tr>
<tr>
<td>Other components: PC board, cabinet (PC, XT, or AT clone), power supply (135-watt minimum, PC or XT clone).</td>
</tr>
</tbody>
</table>
bus of the 8088 and the 68008, for example. Both processors can address a megabyte of memory, but the 68008 can do so in one continuous piece, whereas the 8088 splits that memory into 64K segments. Handling the segmentation greatly complicates a program, and that’s why many programs written for the 8088 (Microsoft BASIC, for example) can only use 64K of memory at a time, whereas BASIC on the 68008 has no such limitation.

So the 68000 can easily handle programs and data that use up the entire 16 megabytes of memory—almost. The reason is that Intel and Motorola processors differ in the ways they handle I/O. In a Motorola-based computer, I/O devices connect to the processor in approximately the same way as memory does, and the result is that available memory space decreases slightly. So if a 68000 were to dedicate one megabyte of memory to I/O, there would be only 15 megabytes left for memory.

Intel processors do not have that limitation; they use the entire address range for memory, and they have a separate (usually smaller) set of addresses just for I/O. Some people claim that Motorola’s sharing memory and I/O space is a disadvantage, but in practice it makes very little difference, because a given system seldom requires more than a few dozen (or perhaps a few hundred) I/O addresses, and that leaves plenty of space for memory. In fact, in most cases, a 68000 or 68020 has so much unused address space that we can afford to waste thousands—maybe even millions—of addresses on I/O without feeling the pinch.

A list of addresses in a computer and what they are used for is called a memory map. Table 2 shows the memory map of the PT-68K. As you can see, there is still plenty of memory left for expansion, probably much more than most of us would ever care to pay for.

Decoding memory
As Fig. 1 shows, the microprocessor’s address bus is split into two sections: part goes to the address decoder, and part goes to the ROM, RAM, and I/O interfaces.

The address decoder’s job is to examine the address bus and route a given address to the appropriate circuit. For example, as Table 2 shows, the on-board dynamic RAM occupies addresses 0000000 to 0FFFFFF. Whenever the address decoder sees an address beginning with the hexadecimal digit 0, it recognizes that address as a RAM address, and sends a signal to the RAM that effectively says “Hey, you! This address is meant for you—get to work!” That signal is called an enable or select signal. If it goes directly to an IC, then it is called a chip enable or chip select, often abbreviated CE or CS.

The block diagram implies that there is just one address decoder, but in practice most computers split the function among two or more decoders, each of which services just one part of the computer. One reason is that circuit design is easier, but there is a second reason as well: different decoders deal with different parts of the address bus.

For example, to decode the dynamic RAM space, the address decoder need only look at the leftmost hex digit of the address,

<table>
<thead>
<tr>
<th>TABLE 2—PT-68K COMPUTER MEMORY MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
</tr>
<tr>
<td>0000000</td>
</tr>
<tr>
<td>1000000</td>
</tr>
<tr>
<td>C000000</td>
</tr>
<tr>
<td>E000000</td>
</tr>
<tr>
<td>F800000</td>
</tr>
<tr>
<td>FA00000</td>
</tr>
<tr>
<td>FC00000</td>
</tr>
<tr>
<td>FE00000</td>
</tr>
<tr>
<td>FE40000</td>
</tr>
<tr>
<td>FFF0000</td>
</tr>
<tr>
<td>FF80000</td>
</tr>
</tbody>
</table>

Note: Parts of some segments may not be used. For example, 32K is assigned to static RAM, but only 4K is actually installed.

...that is, the four leftmost bits, which must equal 0000 (a hex 0) for the RAM to go to work.

The ROM-decode signal, by contrast, is derived from seven bits. The ROM occupies addresses F800000 through F9FFFF. The lowest address (F800000) begins with 111100 and then continues with 17 zeroes; address F9FFFF also begins with 111100 but then continues with 17 ones. All other ROM addresses also begin with the bits 111100, but have different combinations of zeroes and ones at the end. So any address that starts with 111100 applies to the ROM. Therefore, whenever the address decoder sees a 111100, it sends an enable signal to the ROM.

Hands-on
The preceding serves as a brief introduction to the PT-68K, and it indicates the kind of material we’ll be covering in future installments. Now we’ll discuss some basics of construction. As discussed in the sidebar, the hardware is available in several configurations. If you want (and are able), you can purchase the parts, assemble the computer, and start using it. If, however, you’re...
coming along for the educational ride, you’ll want to follow the steps outlined below. You’ll want to buy either the basic kit (PT1) or the full kit (PT-68K). The basic kit can be expanded to the same capabilities of the full kit, but with a smaller initial outlay. In addition, you’ll want to obtain the following:

- A power supply. Almost any supply that can provide five volts at about five amperes will do; however, a PC clone supply is recommended because it provides ample power for adding disk drives and plug-in boards. It is also about as cheap as you can get, and it has a set of connectors that plug directly into the PC board without having to jury-rig some kluge
- A 12" x 24" wooden board to mount the PC board and power supply so you can work on them easily (See Fig. 2). Don’t fasten the PC board to the wood, just hammer two thin brads into the wood so the board’s mounting holes slide over them to prevent the board from sliding. The white markers in Fig. 2 indicate which holes to use

IMPORTANT: do not use any of the other 7 mounting holes yet. Those holes have a ground trace on the bottom of the board, and a +5-volt trace on the top of the board; if you insert a metal screw or nail into the hole, you may short out the power supply and cause damage. When it is time to mount the board in the cabinet, you will use plastic hardware to avoid a short.

- A voltmeter, logic probe, or oscilloscope would be helpful, but is not essential. If none of those is available, you can build a simple LED-based logic probe right on the board. We’ll show you how next time.
- Some thin wire, 30 gauge or so, will be needed for some of our experiments.
- Last, you need some simple hand tools: screwdriver, needle-nose pliers, diagonal cutters, and, above all, a good soldering iron, rated at no more than 45 watts. A pencil type iron rated 35 watts or so is good, a temperature-controlled low-voltage soldering station is better. In any case, don’t use anything over 45 watts. Good soldering technique is extremely important in a project of this complexity.

When we get together next time, we’ll start to build and test the PT-68K.

EDITOR’S WORKBENCH

continued from page 89

dimmer that will blank your screen after a time period you select. And for privacy you can blank the screen at any time by pressing a key. Press any key to restore the screen.

You can use Cruise Control to insert the current time, date, or both, into your current environment, be it a word processor, a spreadsheet, or just about any other program. The characters flow into the program just as if you had typed them at the keyboard.

A help panel, shown in Fig. 3, that lists all available options, is available at the DOS prompt. Four "strategies" (also changeable on the fly) help adapt Cruise Control to various environments.

Cruise Control has been part of our AUTOEXEC.BAT file since the day we received it. It uses only about 3K of RAM, and lists for $39.95 plus $3.50 shipping and handling, from Revolution Software, 715 Route 10 East, Randolph, NJ 07869.

COVE SOFTWARE GROUP, PCED

Several months ago (March 1987, page 95) we mentioned a little program called CED that we discovered on the PC-SIG CD-ROM. (The CD-ROM contains more than 10,000 public-domain programs for the IBM family of computers.) CED has now gone commercial; the new incarnation is called PCED (for Professional Command-Line Editor). PCED includes all the features of CED (the most important of which are the ability to edit the current command line, the ability to call up previous ones, edit them, and re-execute them, and the ability to define synonyms for single or multiple DOS commands). In addition, PCED adds several new commands, including the ability to load and save its configuration file, the ability to be turned off temporarily, the ability to log every command executed by DOS in a disk file, and more.

CED had provisions for adding external pseudo-commands to DOS; PCED includes several such commands. For example, an optionally installable directory program allows you to get directory listings that are sorted in one of several ways. Another installable pseudo-command allows you to send codes out various communications ports, thereby allowing you to set up a printer, a modem, etc. At $35, PCED is a bargain. Order from the Cove Software Group (PO Box 1072, Columbia, MD 21044).
Only three components are needed to make a Commodore C64 into a pulse generator.

JIM BARBARELLO

If your test gear doesn't include a pulse generator it's probably because you just never got around to buying one. Of course, in a pinch you can always use a 555 timer and a few inexpensive components to assemble a quick-and-dirty squarewave or pulse generator. But for about the same cost you can build a simple device that will put your Commodore 64 to work as a stable, accurate source of squarewaves and pulses, and also provide a debounced one-shot trigger source to boot. Actually, the pulse generator consists of the hardware accessory and an accompanying BASIC program.

The software simulates a physical pulse generator. Its screen display combines a digital frequency indicator with a menu for eight functions that are available through the Commodore C-64's normal function keys. No calibration procedure is necessary because the pulse generator uses the computer's 1-MHz crystal-controlled clock for a time base. What you see on the screen is what you get.

Capabilities and limitations

The pulse generator can generate continuous squarewaves in the range of 15 Hz to 500,000 Hz, or 1-microsecond width pulses with a repetition rate of 30 pps (pulses per second) to 1-million pps. A one-shot function produces a single 1-millisecond pulse on demand. All outputs vary between zero and about 4.3 volts.

The output frequency and waveform is determined entirely by the software. For those of you who might want to experiment with the circuit, we'll take time out to describe how the hardware device uses the Complex Interface Adapter (CIA) IC that drives the computer's user port. With that information and some BASIC programming skill, you can add features such as frequency sweeping, auto sequencing of discrete frequencies, and repetitive trigger pulses having a programmable interval.

The characteristics of the CIA IC require the output frequency to be equal to 500,000/N, where N is a whole number between 1 and 65535. For that reason, the pulse generator's output frequency isn't...
continuously adjustable. When you key in a desired frequency the
software selects the closest value it can generate. As the frequency
increases, the difference between the current and the next fre-
quency value increases. For example, at 100 Hz the next value is
100.02 Hz; at 1000 Hz the next value is 1002 Hz; at 10,000 Hz the
next value is 10,004 Hz. Considering that the pulse generator has
crystal-controlled accuracy, good resolution in the audio range,
and a construction cost of well under $10.00, its performance will
adequate for many applications.

The CIA adapter

The Commodore C-64's user port is connected directly to a 6526
CIA, which has two interval timers. The pulse generator uses the one
called Timer A, which operates just like a standard countdown
timer. Before starting, a number representing the count is loaded
into the timer. When started, the counter begins decreasing by one for
each clock cycle. When the count reaches zero, the timer can either
stop or reset and begin counting again. Memory locations 56580
and 56581 hold the low and high byte values (respectively) for the
count. For example, a count of 1000 would have a high-byte value
of 3 (the integer part of the product of the count value divided by
256) and a low-byte value of 312 (1000 less the high-byte value
times 256). With a clock rate of 1 MHz, the count can produce either
1000 alternating transitions per second (a squarewave with a fre-
cency of 500 Hz) or 2000 pulses per second.

The value loaded into memory address 56590 controls most
aspects of the timer. A value of 2 sets the CIA for pulse output, a
value of 3 begins pulse generation, a value of 6 sets the CIA for a
squarewave output, a value of 7 begins squarewave generation, a
value of 15 produces a single pulse whose width is determined by
the value stored in memory locations 56580 and 56581.

Once the timer is in operation, it continues independent of the
computer until one of the values in memory locations 56580, 56581,
or 56590 are changed. Therefore, all control can be performed
directly from the BASIC program by monitoring the contents of
those locations.

The hardware interface:

The simple circuit shown in Fig. 1 interfaces the signal from the
Commodore's user port to the outside world. Transistor Q1, which
functions as a current amplifier, buffers the output from user-port
connector J1's pin K (Port B8 of the CIA), an arrangement that allows
the signal to drive circuits having current demands that would
otherwise distort a direct output from the user port. All output
signals appear at banana-type jacks (signal) and J3 (ground).

Operating power is provided by the computer itself from the
user port's pins 2 (positive) and 3 (ground). The 100-mA maximum
rating of the user port allows the circuit to easily drive a 50-ohm
load.

Assembly

The circuit is so simple that a printed circuit board assembly isn't
necessary. Instead, use a 1" x 3" piece of perforated construction

FIG. 1—THE USER PORT INTERFACE uses only three compo-
nents and a connector.

FIG. 2—ALTHOUGH THE LAYOUT ISN'T CRITICAL, try to approxi-
mate this layout to insure the interface will fit on the user port.

FIG. 3—THIS IS THE MENU screen display. The frequency or
pulses-per-second of the output is shown in the rectangle near
the top.

FIG. 4—THE WIDTH OF THE PULSE OUTPUT is so narrow that
the signal is changed to a spike by conventional coaxial cable.
Use low-capacitance cables and test leads.
PARTS LIST

J1—12/24-pin card edge connector (mating connector for the C64's user port)

J2—Red banana jack

J3—Black banana jack

Q1—2N2222, NPN transistor

R1—10,000 ohms, 1/4-watt, 10%

R2—100 ohms, 1/4-watt, 10%

Miscellaneous: Perforated construction board, wires, solder, hardware.

NOTE: The 12/24-pin connector (J1) is available for $3.25 each, and the complete program with additional programming information is available on a Commodore-mode disk for $5.00 from B&BT. RC

For the C64's user port, you will need two 6-32 x 1 1/2 round-head machine screws and six 6-32 nuts. Mount the two screws through the mounting holes located on either side of J1. If you're using a standard connector the screws will thread into the holes, making for firm fit. The threaded ends of the screws should be on the same side of the connector as the solder terminals. Secure each screw to J1 with a nut. Drill a hole on both ends of the board about ¾" up from the bottom edge. Place one nut on each of the screws about 1/4" from the end of the screw.

Temporarily mount the board on the screws and then place one more nut on each of the screws, securing the board about ¾" away from the ends of J1's terminals. When you are satisfied with the fit, remove the board, cut it to size, install the components on the board, and attach short wires for the connections to J1 pins 1, 2, and 3. Reassemble the board to J1 and solder the three wires to the appropriate terminals. The finished unit should resemble the pro-
The program listing is shown in Listing 1. It is a relatively long program, and if you feel that you’re not up to keying in so large a program without making errors you can obtain the program on disk from the source given in the Parts List.

When you run the program, you’ll get the screen display shown in Fig. 3. Note that the frequency, which always initializes at 1033 Hz, is displayed in the small dark rectangle at the top of the display. Below the frequency display area are representations of the computer's F1 through F8 function keys, with each key’s function clearly labeled. On startup, F7 will be highlighted, indicating that the generator isn’t running.

Pressing the F1 key once will increase the output frequency one interval. Holding the F1 key down will cause the frequency to continually increase. Similarly, the F3 key causes the frequency to decrease. When the frequency reaches its upper or lower limit, the display will freeze and you will have to reverse the direction of the frequency selection.

Press the F2 key to get to a desired frequency quickly. The F2 screen display will highlight, the frequency display area will clear, and the prompt Enter New Frequency? will appear. Typing any number between 15 and 500000 resets the frequency to the closest

You'll feel that the assembly is a relatively simple one to set up. While the program, as given, is a Windows version, the keying is fairly intuitive.

The software:

The assembly instructions are given in this section. The assembly shown in Fig. 9. Be sure to tighten all six screws firmly since you don’t want the assembly to flex when you’re installing it on the user port. Most 94-pin connectors make a very tight fit to the user port, so make sure all mounting nuts are tight. Finally, install the adapter to the user port.

totype shown in Fig. 9. Be sure to tighten all six screws firmly since you don’t want the assembly to flex when you’re installing it on the user port. Most 94-pin connectors make a very tight fit to the user port, so make sure all mounting nuts are tight. Finally, install the adapter to the user port.

The program listing is shown in Listing 1. It is a relatively long program, and if you feel that you’re not up to keying in so large a program without making errors you can obtain the program on disk from the source given in the Parts List.

When you run the program, you’ll get the screen display shown in Fig. 3. Note that the frequency, which always initializes at 1033 Hz, is displayed in the small dark rectangle at the top of the display. Below the frequency display area are representations of the computer’s F1 through F8 function keys, with each key’s function clearly labeled. On startup, F7 will be highlighted, indicating that the generator isn’t running.

Pressing the F1 key once will increase the output frequency one interval. Holding the F1 key down will cause the frequency to continually increase. Similarly, the F3 key causes the frequency to decrease. When the frequency reaches its upper or lower limit, the display will freeze and you will have to reverse the direction of the frequency selection.

Press the F2 key to get to a desired frequency quickly. The F2 screen display will highlight, the frequency display area will clear, and the prompt Enter New Frequency? will appear. Typing any number between 15 and 500000 resets the frequency to the closest
allowable value. Decimal numbers such as 100.56 are allowed, but commas are not (i.e., 500,000, not 500,000). If a value outside the working range is entered, it will be ignored and the prompt will be repeated. The display area will then show the selected frequency in Hz or the corresponding pulse rate in pps—and remember, the pulse rate is twice the selected frequency in Hz.

The right function

On startup, the frequency is set to 1033 Hz and the square function of F4 is automatically initialized. Pressing F4 toggles the output between squarewave (Hz) and pulse (pps). Again, note that the pulse rate is twice the frequency.

Pressing F6 for one shot generates a single, 1-millisecond pulse. F6 must be released and then pressed again to generate a second pulse. Pressing F8 clears the screen, causes the screen to display the message GENERATOR OFF—PROGRAM ENDED, turns off Timer A, and removes any signal present from the base of Q1 (thus turning it off).

Scope displays

The level and waveform from the pulse generator can be affected by capacitive loading. The most common source of capacitive loading is using a long shielded cable to feed the output to another circuit, or to other test equipment. Normally high test lead or cable capacitance affects only the higher frequencies. If excessive lead capacitance does exist, the resulting waveform will resemble a triangular wave rather than a squarewave, and the signal level will decrease by as much as 25%. For example, a 6400-Hz squarewave fed through a conventional coaxial-cable test lead had sharp rising and falling edges. However, the signal shown in Fig. 4 also started out as a perfect squarewave, but because its frequency is 500 kHz, the test lead's internal capacitance turned the squarewave into a pulse-shaped wave. To avoid capacitive loading, keep cables short, preferably under two feet, and use a low-capacitance oscilloscope test probe.

The capacitive-loading effect will be even more pronounced on short duration pulses. As shown in Fig. 4, a conventional shielded cable turns an essentially rectangular pulse of 20,000 pps into a thin spike.

Finally, keep in mind that the effective load resistance seen by the adapter should not go below 50 ohms. If you are driving a circuit with an input impedance less than 100 ohms, temporarily disconnect resistor R2 so that it does not parallel the input impedance of the circuit being tested, which would result in a total load of less than 50 ohms. Add an SPST switch if you work with low-impedance circuits often.

100
I get a great deal of mail asking for circuits that can add to the well being of batteries. People want to know how to keep them charged, how to prevent memory effects in Ni-Cd’s, how to watch out for dying cells, and so on. I thought I had covered just about every possibility until I got a letter asking for a circuit that could be used to indicate an overvoltage condition.

There are many circuits that could do the job, but this is one occasion when simpler is better. You can get LM3914’s and LM3915’s (bar/dot display drivers) at low prices these days, but if you use one of them, you’re still faced with the problem of setting it up for a specific voltage. Not only that, but an LM3914 (or a “15) may be a classic case of overkill.

The minimalist approach

If all you need is a circuit that will light an LED, sound an alarm, etc., when a particular voltage level is reached, the easiest way to get the job done is with the circuit shown in Fig. 1. It has the whole range of good things—it’s simple, it’s straightforward, it costs next to nothing to put together, and it’s totally bulletproof.

It works like this. When the voltage across potentiometer R3 reaches a particular level, Zener diode D1 will start conducting and turn on the transistor. That, in turn, will light the LED. Resistor R2 limits the current through the LED and R1 does the same for the Zener diode. The accuracy of the circuit is mostly a function of how finely you can tune R3. You can use just about any control you want, but a small multi-turn PC-mount device will provide the greatest precision.

By using a variable-voltage power supply, you should be able to set the circuit to trigger within less than a tenth of a volt of the target voltage. The Zener you use isn’t critical. For most applications, a ½-watt unit will do. The transistor can be any small-signal NPN type. The circuit is so simple that it can be installed easily in the case of just about anything. If you want to keep an eye on more than one voltage, you can build several circuits on the same board.

Although the output device is
The same restrictions apply to the transistor. Make sure that its rated collector-emitter voltage exceeds any voltage you expect to apply to the circuit.

Advanced uses

One consequence of keeping the circuit so simple is that it's very fast, so you can use it for other things. For example, you can have the transistor switch in some sort of circuitry to drop the voltage in your circuit to a safe level. And a bit of thought should let you add to the circuit and make an electronic fuse.

That's possible because the overvoltage indicator draws very little current. Ordinarily you would connect it across the battery or power supply. But, because it uses so little power, you can use it to monitor the voltage just about anywhere in a circuit.

Figure 2 illustrates the basic idea. Even though the monitor is designed to sense excess voltage, it can sense excess current flow by monitoring the voltage across a component. Make sure that V1 exceeds V2 by at least six volts; otherwise you may have to use a different Zener.
MUX sends the digital signals down the fiber-optic path to the receiving MUX, which routes each data block to its specific restorer. The receiving MUX knows which data block goes where because of the header.

Because it's the header that determines the routing, the data or bit groups need not be sent in any particular order. As shown in Fig. 1, the transmit MUX might organize the signal blocks in their most efficient progression. In the example shown, although inputs 1, 3, 7 and 8 are being MUXed, the data group order at a particular time period is 1, 7, 3, 6.

A restorer in the receive MUX puts together however much data it's designed to handle and passes it through to the proper outgoing line in digital form. That's an important point to keep in mind: The receiving MUX simply recreates the original digital signals that were input to the sending MUX; but after the receiving MUX, the devices must know what to do with the data.

Assume for the moment that the sending MUX is at the telephone company's switching center and the receiving MUX is in your home. At any given moment the following could be taking place: The signal on Line 1 might be the communications circuit between your personal computer and the bank's mainframe (you're unverting your credit-card bill). Line 3 is a digitized-TV download of pay-per-view sports (junior is watching the hockey game he used to see for free before all forms of entertainment were sold out to pay-per-view). Line 6 is a pay-per-copy download from the local record store to your daughter's digital tape recorder. Line 7 is Mom talking to her Mom via a long-distance provider, and both are using digitizing telephones; that is, their output is a digital representation of the voice so that the signals can be sent directly through, and to, digital telephone equipment and personal computers.

Now that is a lot taking place at the same time on the same circuit, and all at very high speed; yet, it's made possible because fiber optics are inherently a high-speed, wide-bandwidth medium. For one, one cannot conceive of the same facility using wires, and I'm only talking about 200 megabits/sec. What's more, since 1 gigabit/sec is easily accomplished today, imagine the speeds that will be available next year.

Noise free

In addition to the advantage of speed, fiber optics provides its signals with a noise-free environment, something almost impossible to attain with long metallic lines even when they are shielded. More than that, a fiber-optic cable passing through an area of high electrical disturbance, such as lightning, will not pick up electrical noises; nor will a fiber-optic line radiate interference—a common occurrence when passing digital signals through wires. Not only do fiber optics prevent interference to nearby receiving equipment, because there is no radiation of any kind the filament is secure; external equipment cannot "read" the data in a fiber-optic filament. Short of actually cutting into the filament, there is no known means for unauthorized interception of the signals flowing in a fiber-optic line.

Different wires

One of the surprising things about consumer fiber-optic circuits is that they are not much more difficult to install than conventional metallic wiring. Home- and office fiber-optic cables look very similar to conventional wire cables, and they can even be stapled to moldings, door jambs, etc. A four- or six-filament fiber-optic cable terminated on both ends by a connector looks very similar to a four- or six-wire metallic cable that's terminated with standard modular plugs. Even the fiber-optics LED-equipped sender connector, and the diode-equipped receiver connector, is just about the size of a modular plug. So as far as home or office wiring is concerned, one kind of line is about as easy to install as the other.

R-E
Outdoor light controller

Most automatic yard lights are controlled using just a simple photocell. However, since the ambient light levels at dawn and dusk change rather slowly, that approach usually results in some flickering just before the light fully locks on or off, which can significantly shorten bulb life. That can be avoided by using the controller shown in Fig. 1. That circuit snaps the light on or off, depending on whether ambient light levels are rising or falling.

How it works

The key to the circuit's operation is an optocoupler made up of a

W.S. Jenks & Ungar bring you temperature controlled, anti-static soldering with a 2-year warranty and a great price! $115.95

This soldering system can be tailored to fit your job requirements by means of interchangeable handles and tips. With a variable temperature range of 450 to 850°F, it features electronic control and 24 volt at the handle. Handles have quick disconnect plugs. A 2 position switch on the power base matches the correct calibration to the proper handle. Meets MIL-S-45743E, WS 6536E and DOD-STD-2000-1B, and is ESD safe.

Model 9920AS includes a traditional macro-size handle and heater barrel which is well suited for general electronic and standard soldering applications. Call TOLL-FREE for other handles and tips to expand this versatile soldering system.

Be an FCC LICENSED ELECTRONIC TECHNICIAN!

Learn up to $30 an hour and more! No previous experience needed.

No costly school. No commuting to class. The Original Home-Study course prepares you for the "FCC Commercial Radio-telephone License". This valuable license is your "ticket" to thousands of exciting jobs in Communications, Radio-TV, Microwave, Computers, Radar, Avionics and more! You don't need a college degree to qualify, but you do need an FCC License.

No Need to Quit Your Job or Go To School

This proven course is easy, fast and low cost! GUARANTEED PASS - You get your FCC License or money refunded. Send for FREE facts now. MAIL COUPON TODAY!

CIRCLE 66 ON FREE INFORMATION CARD
neon bulb (NE2 type) and a CdS photocell whose resistance varies inversely with light from 10K to 100K; those components are enclosed in a light-tight housing. A Diac/Triac combination is used to provide the snap-switch effect. A second CdS photocell acts as the main sensor.

As evening approaches the resistance of R6 begins to increase. When it reaches a threshold level, which is set by adjusting R1, the Diac triggers the Triac and causes the neon bulb to light. Even a momentary flicker of the bulb is sufficient to reduce the resistance of R5, causing the Diac to trigger the Triac, which lights the neon bulb, and so on.

As morning approaches, the process is reversed. The resistance of R6 begins to decrease until it drops below the threshold level. That causes the Diac to cease triggering the Triac, which extinguishes the bulb, which causes the resistance of R5 to increase, and so on.

Most of the components can be mounted on a piece of perforated construction board and placed within a small experimenters box. Parts placement is not at all critical. All resistors, except the potentiometer and the photocells are ½ watt units. Once the threshold level for the circuit has been established, the potentiometer can be replaced by a fixed resistor of the appropriate value. Before mounting R5 and NE1, place them in a light-tight enclosure. For my unit, the two were simply wrapped together using some black electrical tape.

Mount R6 so that it can be illuminated by the ambient light. However, take care to shield it from any artificial lighting. In my installation, the unit was mounted inside the lamp post, with the sensor looking out through a conveniently placed plastic lens.

To set up the unit, simply adjust the setting of R1 at dusk until the Triac is triggered. Remember that you are working with line voltages in this circuit, so take the appropriate precautions to protect yourself and others from potentially dangerous shocks.—E.J. Holike
MARKET CENTER

FOR SALE
TV tunable notch filters, free brochure. D.K. VIDEO, Box #400, Margate, FL 33063. (305) 752-9202.
DESCRAMBLER catalog. All brands. Special combo Jerrold 400 and S-83 $165. Descrambler kit $39.00 (assembled in half hour). Send $1.00. MU INDUSTRY, Box 531, Bronx, NY 10461.
It is true. Jeffs for $44 through the government? Call for facts! 1 (312) 742-1142, ext. 4573.
OLDTIME radio programs on high quality tapes! Comedy! Adventure! Music! Free catalog. FROELICH, Heritage Farm, New Freedom, PA 17349.
TEST equipment, reconditioned. For sale. $1.25 for catalog. WALTER'S, 2697 Nickel, San Pablo, CA 94906. (415) 724-0587.
ROBOT kits. Books and Plans! Learn to build your own robots. Free catalogs contain hundreds of affordable robot systems. Explore the world of robotics today! Catalog: CEARGS-ROBOTS!, P.O. Box 458, Peterborough, NH 03458. (603) 924-3843.
TUBES, new, unused. Send self-addressed, stamped envelope for list. FALA ELECTRONICS, Box 1376-2, Milwaukee, WI 53201.

CB RADIO OWNERS!
We specialize in a wide variety of technical information, parts and services for CB radios. 10M-FM conversions, repairs, books, plans, kits, high-performance accessories. Our 11th year! Catalog $2.

CVC INTERNATIONAL, P.O. BOX 31500RE, PHOENIX, AZ 85046

SIZZLING deals: Zenith (The Real Thing); Jerrold Oak Scientific Atlanta. No Michigan Sales HOTRONICS (313) 283-4299.
FLASHLIGHT that needs no batteries measures 5 ' x 3' ideal for every situation money back guarantee $10.—SAMUEL'S ENTERPRISES, 724 East 231 Street, Bronx, NY 10466.
HACKING, crashing, pirating, and phreaking. Who's doing it, why they're doing it, and how they're doing it. Sample programs, phone numbers, and the tools of the trade. Hacker's Handbook, $12.95. Computer Underground, $14.95. $1 postage to CABLE ELECTRONICS, Box 30592R, Bethesda, MD 20814.
NEW product protects electronics from lightning. Electro-scape, GIFT SHOP, 1301 2nd Ave. #2R, Rock Island, IL 61201.
SURVEILLANCE-Counter, Security. 52 products—bulletproof to wireless! Catalog $2.00. SPYPRO, 042ER, POB 45521, Seattle, WA 98145-0521.

ZENITH SAVI, ready to go $100.00 plus shipping. order C.O.D. 1 (305) 752-9202.
SILVER solder syringe just add heat $13.95. MISCO, 7619 Detour, Cleveland, OH 44103.

CLASSIFIED AD ORDER FORM
To run your own classified ad, put one word on each of the lines below and send this form along with your check to:
Radio-Electronics Classified Ads, 500-B Bi-County Boulevard, Farmingdale, NY 11735

PLEASE INDICATE in which category of classified advertising you wish your ad to appear. For special headings, there is a surcharge of $23.00.

() Plans Kits () Business Opportunities () For Sale
() Education/Instruction () Wanted () Satellite Television
()

Special Category: $23.00

PLEASE PRINT EACH WORD SEPARATELY, IN BLOCK LETTERS.
(No refunds or credits for typesetting errors can be made unless you clearly print or type your copy.) Rates indicated are for standard style classified ads only. See below for additional charges for special ads. Minimum: 15 words.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15 ($42.75)</td>
</tr>
<tr>
<td>16 ($45.60)</td>
<td>17 ($48.45)</td>
<td>18 ($51.30)</td>
<td>19 ($54.15)</td>
<td>20 ($57.00)</td>
</tr>
<tr>
<td>21 ($59.85)</td>
<td>22 ($62.70)</td>
<td>23 ($65.55)</td>
<td>24 ($68.40)</td>
<td>25 ($71.25)</td>
</tr>
<tr>
<td>26 ($74.10)</td>
<td>27 ($76.95)</td>
<td>28 ($79.80)</td>
<td>29 ($82.65)</td>
<td>30 ($85.50)</td>
</tr>
<tr>
<td>31 ($88.35)</td>
<td>32 ($91.10)</td>
<td>33 ($94.05)</td>
<td>34 ($96.90)</td>
<td>35 ($99.75)</td>
</tr>
</tbody>
</table>

We accept MasterCard and Visa for payment of orders. If you wish to use your credit card to pay for your ad till in the following additional information (Sorry, no telephone orders can be accepted):

Card Number Expiration Date

Please Print Name Signature

IF YOU USE A BOX NUMBER YOU MUST INCLUDE YOUR PERMANENT ADDRESS AND PHONE NUMBER FOR OUR FILES. ADS SUBMITTED WITHOUT THIS INFORMATION WILL NOT BE ACCEPTED.

CLASSIFIED COMMERCIAL RATE: (for firms or individuals offering commercial products or services) $2.85 per word prepaid (no charge for zip code). MINIMUM 15 WORDS. 5% discount for same ad in 6 issues; 10% discount for same ad in 12 issues within one year; if prepaid. NON-COMMERCIAL RATE: (for individuals who want to buy or sell a personal item) $2.30 per word, prepaid...no minimum. ONLY FIRST WORD AND NAME SET in bold caps at no extra charge. Additional bold face (not available as all caps) 50c per word additional (20% premium). Entire ad in boldface, add 20% premium to total price. TINT SCREEN BEHIND ENTIRE AD: add 25% premium to total price. TINT SCREEN BEHIND ENTIRE AD PLUS ALL BOLD FACE AD: add 45% premium to total price. EXPANDED TYPE AD: $4.30 per word prepaid. All other items same as for STANDARD COMMERCIAL RATE. TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD: add 25% premium to total price. TINT SCREEN BEHIND ENTIRE EXPANDED AD PLUS ALL BOLD FACE AD: add 45% premium to total price. DISPLAY ADS: 1" x 2½": $320.00; 2" x 2½": $640.00; 3" x 2½": $960.00. General Information: Frequency rates and prepay discounts are available. ALL COPY SUBJECT TO PUBLISHERS APPROVAL. ADVERTISEMENTS USING P.O. BOX ADDRESS WILL NOT BE ACCEPTED UNLESS ADVERTISER SUPPLIES PUBLISHER WITH PERMANENT ADDRESS AND PHONE NUMBER. Copy to be in our hands on the 12th of the third month preceding the date of the issue. (i.e., Sept. issue copy must be received by May 12th). When normal closing date falls on Saturday, Sunday or Holiday, issue closes on preceding working day.
CHECK US OUT—WE'LL MEET OR BEAT THE OTHER'S ADVERTISED WHOLESALE OR RETAIL PRICES!

Pacific Cable Co., Inc.
7325½ Reseda Blvd., Dept. R-10
Reseda, CA 91335
(818) 716-5914 • (818) 716-5140

* NO COLLECT CALLS! *

IMPORTANT • When ordering, please have the make and model number of the equipment used in your area—Thank you!

* Call for availability

Prices subject to change without notice

Jerrold is a registered trademark or General Instruments Corp

Check our prices on Scientific Atlanta Units!

<table>
<thead>
<tr>
<th>ITEM</th>
<th>1</th>
<th>10 OR MORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCA 36 Channel Converter (Ch 3 output only)</td>
<td>29.00</td>
<td>18.00</td>
</tr>
<tr>
<td>Panasonic Wireless Converter (our best buy)</td>
<td>88.00</td>
<td>68.00</td>
</tr>
<tr>
<td>400 or 450 Converter (manual fine tune)</td>
<td>88.00</td>
<td>68.00</td>
</tr>
<tr>
<td>Jerrold 400 Combo</td>
<td>169.00</td>
<td>119.00</td>
</tr>
<tr>
<td>Jerrold 400 Hand Remote Control</td>
<td>29.00</td>
<td>18.00</td>
</tr>
<tr>
<td>Jerrold 450 Combo</td>
<td>199.00</td>
<td>139.00</td>
</tr>
<tr>
<td>Jerrold 450 Hand Remote Control</td>
<td>29.00</td>
<td>18.00</td>
</tr>
<tr>
<td>Jerrold SB-Add-On</td>
<td>89.00</td>
<td>58.00</td>
</tr>
<tr>
<td>Jerrold SB-Add-On with Trimode</td>
<td>99.00</td>
<td>70.00</td>
</tr>
<tr>
<td>M-35 B Combo unit (Ch 3 output only)</td>
<td>99.00</td>
<td>70.00</td>
</tr>
<tr>
<td>M-35 B Combo unit with VanSync</td>
<td>109.00</td>
<td>70.00</td>
</tr>
</tbody>
</table>

Check our prices on Scientific Atlanta Units!

<table>
<thead>
<tr>
<th>ITEM</th>
<th>1</th>
<th>10 OR MORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eagle PD-3 Descrambler (Ch 3 output only)</td>
<td>24.00</td>
<td>14.00</td>
</tr>
<tr>
<td>Eagle PD-3 Descrambler with Auto On-Off</td>
<td>119.00</td>
<td>65.00</td>
</tr>
</tbody>
</table>

Prices subject to change without notice

PLEASE PRINT

Name ____________________________
Address _____________________________
City ____________________________
State ________ Zip ________
Phone Number _______________________

[] [Cashier's Check] [Money Order] [COD] [Visa] [Mastercard]

Acct. # ____________________________ Exp. Date __________

Signature ____________________________

FOR OUR RECORDS

DECLARATION OF AUTHORIZED USE — I, the undersigned, do hereby declare under penalty of perjury that all products purchased, now and in the future, will only be used on cable TV systems with proper authorization from local officials or cable company officials in accordance with all applicable federal and state laws.

Date: ____________________________ Signed ____________________________

California Penal Code #593-D forbids us from shipping any cable descrambling unit to anyone residing in the state of California.

Prices subject to change without notice

SUBTOTAL ____________________________
Shipping Add ____________________________
COD & Credit Cards—Add 5% ____________________________

TOTAL ____________________________

Check us out—We'll meet or beat the other's advertised wholesale or retail prices!
Cable TV Converters
Why Pay A High Monthly Fee?

Jerrod Products include "New Jerrod Tri-Mode," SB-3, Hamlin, Ok VN-12, M-35-B, Zenith, Magnavox, Scientific Atlanta, and more. (Quantity discounts) 60 day warranty. For fast service C.O.D. orders accepted. Send SASE (60 cents postage) or call for info (312) 658-5320. Midwest Electronics, Inc., HIGGINS ELECTRONICS, 5143 R W. Diversy, Chicago, IL 60659. MC Visa orders accepted. No Illinois orders accepted. Mon.-Fri. -9 A.M. -6 P.M. CST

MINIATURE electronic devices, like James Bond's, Catalog $2.00. F & P ENTERPRISES, Box 5172, Palo Alto, CA 94303-5172.

BUILD this five-digit panel meter and square wave generator including an ohms, capacitance and frequency meter. Detailed instructions $2.50. NAIL ELECTRONICS, 179 May, Fairfield, CT 06430.

SATTELITE TV

CABLE TV Secrets - the outlaw publication the cable companies tried to ban. HBO Movie Channel, Showtime, descramblers, converters, etc. Supplies list included.$8.95 CABLE FACTS, Box 711, R. Patterson, A. 0. 43062.

SATTELITE TV receivers kits! LNAs! Instructions! Schematics! Catalog $1.00 (refundable). XANDI ELECTRONICS, Box 35647, Dept. 21W. Tempe, AZ 85282.

SATTELITE TV equipment. Buyers guide. discount prices. $3.00 N.E.C.S. INC., Box 22608, Little Rock, AR 72221.

TELEASE-MARKASSortiment #301 (October '86 article) Printed circuit, 1Cs, transistors, diodes, $25.00. Shipping $3.00. JIM RHODES, INC., P.O. Box 3421, Bristol, TN 37625.

MOVIE - network descramblers $29.50 up. Catalog $4.00. SKYWATCH, 153 Davenport Road, Toronto, Canada, M5R-1J6.
DIGITRON ELECTRONIC CORPORATION
110 HILLSIDE AVENUE • SPRINGFIELD, NEW JERSEY 07081
201-379-9016 • 201-379-9019 • 1-800-526-4928 • TLX 138441 • FAX 201-467-8065
CIRCLE 57 ON FREE INFORMATION CARD
EDUCATION & INSTRUCTION
F.C.C. Commercial General Commercial Telephonic license. Electronics home study. Fast, inexpensive! For details COMMAND, D-176, Box 2223, San Francisco, Calif. 94176
HAM licenses supervised. Cut exam prep 50%. All classes. Free catalog. SASE BAHR, 259-E5 Temple, Palm Springs, Calif. 92050
INVENTOR'S packet. Protect ideas. Save money without invention brokers. Sample contracts: Manufacturers lists and more inside information $12.95. Check MO. NON-GENRE ENTERPRISES, P.O. Box 1888, Manhattan, KS 66502

TELEPHONE VOICE SCRAMBLERS

SCIENTIFIC ATLANTA & SB-3
SCIENTIFIC Atlanta models 8500-8550, remote included. $240.00 SB-3's. $74.00 TRI-B's. $95.00 SBSA-3's. $99.00 Zenith (Z-Tac) description available. N-12 (Var-sync). $89.00 M-35 (Var-sync). $99.00 Jerrold-450 and 550-Meg converters. $95.00 Dealer discount on (5) units. Brochure available. Call V.A.S. (213) 531-3552.

MASTERCARD and VISA are now accepted for payment of your advertising. Simply complete the form on the first page of the Market Center and we will bill.

AMAZING

SCIENTIFIC & ELECTRONIC PRODUCTS

PLANS
Tele-Transformer, $20.00
BARGAIN IN FTC, $15.00
DIY, $10.00
SMALL, $5.00
SMALL, $2.00

KITS
$159.00
$129.00
$99.00
$69.00
$39.00

ASSEMBLED
$199.00
$199.00
$199.00
$199.00
$199.00

CATALOG contains descriptions of above plus many more. Available for $1.00 per copy. Free w/ all above orders. P.S.: Include 50.00 for BARGAIN IN FTC, $15.00 OFF ALL KITS AND PRODUCTS. PLANS ARE POSTAGE PAID SEND CHECK OR MONEY ORDER TO: SCIENTIFIC ENTERPRISES, 2000 15th St. SE, Amherst, OH 44001

INFORMATION UNLIMITED
P.O. BOX 740
DEPT RE: AMHERST, OH 44001

DO IT YOURSELF TV REPAIR
WANT TO REPAIR YOUR TV? WE HAVE THE PARTS YOU NEED.
WRITE FOR SCIENTIFIC & ELECTRONIC CATALOG
1001 BARGAINS IN SPEAKERS
1-800-346-2433 FOR ORDERING
1901 McGee STREET KANSAS CITY, MO 64106

SOLID STATE SALES
P.O. BOX 740
SOMERVILLE, MA 02143
TEL (617) 547-7053
FAX 617-334-1417
TOLL FREE 1-800-345-1230
WE SHIP OVER 95% OF OUR ORDERS WITHIN 24 HOURS OF RECEIPT

CIRCLE 74 ON FREE INFORMATION CARD
 Videotape Copyguard

INVENTORS

INVENTORS! Can you patent and profit from your idea? Call the

AMERICAN INVENTORS CORPORATION

for free information. Over a decade of

1-800-338-5656

in Massachusetts or Canada call

(413) 568-3753.

Cable TV Turn-Ons

CABLE TV TURN-ON'S

TURN-ON, boards & kits for Jerrold 400, Jerrold 400D, AT
cable models—no external modification needed. Call now for

5504 & 5505. Special requests no problem—let us

know what make & model you are interested in.

Fully guaranteed. Call now for information and prices

VIDEO SOLUTIONS, 3938 E. Grant, Suite 236, Tucson. AZ 85712. (602) 323-6072

This is an expanded type ad. Notice how it stands out on this page. To get your

ad set in this style marks your classified ad order, "Expanded-type ad," and

calculate your cost at $.30 per word.

BONDING

BONDING

MASTERCARD AND VISA are now accepted for payment of your advertising. Simply

complete the form on the first page of the Market Center and we will bill.

Copies of articles from this publication are now available from the UMI Article Clearting

House. Mail to: University Microfilms International

300 North Zeeb Road, Box 91

Ann Arbor, MI 48106

50 PIN IDC Ribbon Cable Connector

36 PIN Round Banana Plug Connector

14 PIN Header for Ribbon Cable

7 PIN Socket for Line Output

IC Storage: Bag Box

$2.45

Heavy Duty Alligator Clips (10 Sets)

$2.50

Regultz Alligator Clips (10 Sets)

$1.40

Wire Strippers (Spring Loaded, 10 Sets)

$2.50

5 Needles Nose Pliers (Spring Loaded)

$3.95

4 1/2" Diagonal Cutters (Spring Loaded)

$3.95

Nut Driver Set for 5/32" 1/4" 5/16"

$3.82

Jeweler 1 Screwdriver Set (4 Pcs)

$2.10

Desoldering Pump (Solder Sucker)

$4.00

Replacement Tip for Desoldering Pump

$2.50

Soldering Iron

$5.50

Safety Glasses

$3.50

Soldering Iron Kit (4 sets)

$3.00

Electronic Screwdriver (Pin Type)

$2.50

Model 620B Logic Probe (Pencil Type)

$18.95

Model 620B Logic Probe (Pencil Type)

$18.95

B2/01 400 Test Meter

$22.95

NPN 221-104, 221-43, 221-48,

Zenith Carrier PT-100

520V 10A, 50/60Hz, 150W

$95.95

TV and Audio Repair Kit

$75.00

Fully guaranteed.

On all items

Free Shipping on Orders $100.00 or more

Call Now

413-527-2326

Fax: 413-527-2326

Credit Card Orders Accepted

CALL 1-800-338-5656

Learn more! Call 1-800-338-5656 for information and prices.

Also includes all components parts. PC Blade, Power Supply and Belkin $24.50

Assembled Version

$57.50

UNF-TV PREAMP

UNF-TV PREAMP

UnfTV Preamp for all Sanyo Electric TVs

Sanyo TV Preamp, Model #6000

$119.95

Sanyo TV Preamp, Model #8009

$149.95

Sanyo TV Preamp, Model #8009

$179.95

Sanyo TV Preamp, Model #6000

$199.95

Fully guaranteed.

Call 1-800-338-5656 for information and prices.
Super Wash
- Powerful spray cleans intricate electronic assembly without harming plastics
- Dries instantly
- Spray literally blasts dirt and grease away \(\times 24 \text{ oz.} \)

Tuner Cleaner
- Cleans, lubricates, protects
- Cleans and restores dirty and corroded contacts
- Doesn't harm plastics
- 15 oz.
- For more Chemicals see pages 128-130 of Catalog #15

Diskette File Box
- Stores up to 70 — 5¼" diskettes
- Case made of anti-static ABS plastic with smoked acrylic cover
- Six adjustable index dividers

Deluxe Joystick for Atari and Commodore
- For use with Atari, Commodore and other VCS compatible systems
- Two firing buttons
- 5.5' cord with 9 pin plug
- Additional Soldering Equipment can be found on pages 137 and 138 of Catalog #15

Tenma 15MHz Dual Trace Portable Oscilloscope
- Dual trace model capable of displaying signals up to 15MHz, for up to two hours on a single charge of its internal battery
- Power can be supplied from either a 12VDC or 120/240V 50/60Hz AC source

Tenma LCR Meter
- LCR Meter provides a convenient way to accurately measure inductance, capacitance and resistance (0.1ohm resolution) on its 3½ digit LCD display
- For more specs and Test Equipment see pages 146-154 of Catalog #15

Tenma Deluxe Anti-Static Desoldering Tool
- Rugged metal construction
- Anti-static tip
- Nozzle cleaner
- Lightweight and compact
- Disassembles easily for cleaning
- 7¼" long x ⅛ diameter

Anti-Static Wrist Strap
- This wrist strap when used with our anti-static work mat, will effectively dissipate static charges
- The five foot coiled cord with 1Mohm resistor, snaps to wrist strap to give user added mobility
- Cord is terminated with a banana plug and alligator clip

Anti-Static Work Mat
- A must for the modern service shop
- Use in conjunction with our #21-660 wrist strap to help eliminate static related problems
- 18" x 26"

Be sure to call for your FREE catalog!
Over 9,000 items!

Call Toll Free 1-800-543-4330
In Ohio 1-800-762-4315
In Alaska 1-800-858-1849
NEC V20 & V30 Chips

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>U10708-5</td>
<td>$995</td>
</tr>
<tr>
<td>U10708-8</td>
<td>$1195</td>
</tr>
<tr>
<td>U10708-10</td>
<td>$1395</td>
</tr>
<tr>
<td>U10708-16</td>
<td>$1495</td>
</tr>
</tbody>
</table>

Microprocessor Components

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC68000L8</td>
<td>$1195</td>
</tr>
<tr>
<td>MC68000L10</td>
<td>$1395</td>
</tr>
<tr>
<td>MC68000L12</td>
<td>$1595</td>
</tr>
</tbody>
</table>

PROMS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4116-15</td>
<td>$1.59</td>
</tr>
</tbody>
</table>

IC SOCKETS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD202</td>
<td>$0.95</td>
</tr>
</tbody>
</table>

Microcontroller Components

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74HC595</td>
<td>$0.50</td>
</tr>
</tbody>
</table>

Mail-Order Electronics

FOR ORDERS ONLY

ALL OTHER INQUIRIES

415-592-8097

415-592-8121

Satellite TV Design and Custom Shop

The MM321N is a $11.95 high-speed CMOS that can be used in satellite TV systems for its high-speed performance and low power consumption.

Linear

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM358</td>
<td>$1.99</td>
</tr>
</tbody>
</table>

74HC/CMOS TTL

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74HC00</td>
<td>$1.59</td>
</tr>
</tbody>
</table>

CD—CMOS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4001</td>
<td>$0.95</td>
</tr>
</tbody>
</table>

Partial Listing - Over 4000 Components and Accessories in Stock! Call for Quantity Discounts

CIRCLE 114 ON FREE INFORMATION CARD
INTEGROERING JAMECO'S NEW COMPUTER KITS!!

Jameco's IBM™ AT Compatible Kit! Mini-268 6/10/12 MHz!

JE1008 IBM™ AT Compatible Kit. $794.95
JE1059 EGA Monitor & Card SAVE $30.00 $569.95

Jameco's IBM PC/XT Compatible Kit

JE1004 IBM™ PC/XT Compatible Kit. $499.95
JE1005 IBM PC/XT Turbo Compatible Kit. $599.95

FREE! QUICKSOFT PC WRITE WORD PROCESSING SOFTWARE INCLUDED!

JE1004 IBM™ PC/XT Compatible Kit. $499.95
JE1059 EGA Monitor & Card SAVE $30.00 $569.95

Jameco's IBM PC/XT Compatible Kit

JE1004 IBM™ PC/XT Compatible Kit. $499.95
JE1005 IBM PC/XT Turbo Compatible Kit. $599.95

FREE! QUICKSOFT PC WRITE WORD PROCESSING SOFTWARE INCLUDED!

JE1004 IBM™ PC/XT Compatible Kit. $499.95
JE1059 EGA Monitor & Card SAVE $30.00 $569.95

Jameco's IBM PC/XT Compatible Kit

JE1004 IBM™ PC/XT Compatible Kit. $499.95
JE1005 IBM PC/XT Turbo Compatible Kit. $599.95

FREE! QUICKSOFT PC WRITE WORD PROCESSING SOFTWARE INCLUDED!

JE1004 IBM™ PC/XT Compatible Kit. $499.95
JE1059 EGA Monitor & Card SAVE $30.00 $569.95

Jameco's IBM PC/XT Compatible Kit

JE1004 IBM™ PC/XT Compatible Kit. $499.95
JE1005 IBM PC/XT Turbo Compatible Kit. $599.95

FREE! QUICKSOFT PC WRITE WORD PROCESSING SOFTWARE INCLUDED!

JE1004 IBM™ PC/XT Compatible Kit. $499.95
JE1059 EGA Monitor & Card SAVE $30.00 $569.95

Jameco's IBM PC/XT Compatible Kit

JE1004 IBM™ PC/XT Compatible Kit. $499.95
JE1005 IBM PC/XT Turbo Compatible Kit. $599.95

FREE! QUICKSOFT PC WRITE WORD PROCESSING SOFTWARE INCLUDED!

JE1004 IBM™ PC/XT Compatible Kit. $499.95
JE1059 EGA Monitor & Card SAVE $30.00 $569.95

Jameco's IBM PC/XT Compatible Kit

JE1004 IBM™ PC/XT Compatible Kit. $499.95
JE1005 IBM PC/XT Turbo Compatible Kit. $599.95

FREE! QUICKSOFT PC WRITE WORD PROCESSING SOFTWARE INCLUDED!

JE1004 IBM™ PC/XT Compatible Kit. $499.95
JE1059 EGA Monitor & Card SAVE $30.00 $569.95

Jameco's IBM PC/XT Compatible Kit

JE1004 IBM™ PC/XT Compatible Kit. $499.95
JE1005 IBM PC/XT Turbo Compatible Kit. $599.95

FREE! QUICKSOFT PC WRITE WORD PROCESSING SOFTWARE INCLUDED!

JE1004 IBM™ PC/XT Compatible Kit. $499.95
JE1059 EGA Monitor & Card SAVE $30.00 $569.95

Jameco's IBM PC/XT Compatible Kit

JE1004 IBM™ PC/XT Compatible Kit. $499.95
JE1005 IBM PC/XT Turbo Compatible Kit. $599.95

FREE! QUICKSOFT PC WRITE WORD PROCESSING SOFTWARE INCLUDED!

JE1004 IBM™ PC/XT Compatible Kit. $499.95
JE1059 EGA Monitor & Card SAVE $30.00 $569.95

Jameco's IBM PC/XT Compatible Kit

JE1004 IBM™ PC/XT Compatible Kit. $499.95
JE1005 IBM PC/XT Turbo Compatible Kit. $599.95

FREE! QUICKSOFT PC WRITE WORD PROCESSING SOFTWARE INCLUDED!

JE1004 IBM™ PC/XT Compatible Kit. $499.95
JE1059 EGA Monitor & Card SAVE $30.00 $569.95

Jameco's IBM PC/XT Compatible Kit

JE1004 IBM™ PC/XT Compatible Kit. $499.95
JE1005 IBM PC/XT Turbo Compatible Kit. $599.95

FREE! QUICKSOFT PC WRITE WORD PROCESSING SOFTWARE INCLUDED!

JE1004 IBM™ PC/XT Compatible Kit. $499.95
JE1059 EGA Monitor & Card SAVE $30.00 $569.95

Jameco's IBM PC/XT Compatible Kit

JE1004 IBM™ PC/XT Compatible Kit. $499.95
JE1005 IBM PC/XT Turbo Compatible Kit. $599.95

FREE! QUICKSOFT PC WRITE WORD PROCESSING SOFTWARE INCLUDED!

JE1004 IBM™ PC/XT Compatible Kit. $499.95
JE1059 EGA Monitor & Card SAVE $30.00 $569.95

Jameco's IBM PC/XT Compatible Kit

JE1004 IBM™ PC/XT Compatible Kit. $499.95
JE1005 IBM PC/XT Turbo Compatible Kit. $599.95

FREE! QUICKSOFT PC WRITE WORD PROCESSING SOFTWARE INCLUDED!

JE1004 IBM™ PC/XT Compatible Kit. $499.95
JE1059 EGA Monitor & Card SAVE $30.00 $569.95

Jameco's IBM PC/XT Compatible Kit

JE1004 IBM™ PC/XT Compatible Kit. $499.95
JE1005 IBM PC/XT Turbo Compatible Kit. $599.95

FREE! QUICKSOFT PC WRITE WORD PROCESSING SOFTWARE INCLUDED!

JE1004 IBM™ PC/XT Compatible Kit. $499.95
JE1059 EGA Monitor & Card SAVE $30.00 $569.95

Jameco's IBM PC/XT Compatible Kit

JE1004 IBM™ PC/XT Compatible Kit. $499.95
JE1005 IBM PC/XT Turbo Compatible Kit. $599.95

FREE! QUICKSOFT PC WRITE WORD PROCESSING SOFTWARE INCLUDED!

JE1004 IBM™ PC/XT Compatible Kit. $499.95
JE1059 EGA Monitor & Card SAVE $30.00 $569.95
CRT Monitors for All Applications

Casper EGA Monitor
- EGA & CGA COMPatible
- Scanning Frequencies: 15.71, 21.85 KHz
- Res: 640 x 200, 350
- 31mm DOT Pitch, 25 MHz
- 16 Colors Out of 64
- 14" Black Matrix Screen
- Color Green, Amber
- Switch On Real
- Digital RGB IBM Compatible
- 14" Non-GLARE Screen
- Resolution: 640x+240
- 39mm Dot Pitch
- Cable for IBM PC Included

$399.95

Casper RGB Monitor
- Color Green, Amber
- Switch On Real
- Digital RGB IBM Compatible
- 14" Non-GLARE Screen
- Resolution: 640x+240
- 39mm Dot Pitch
- Cable for IBM PC Included

$299.95

Fortronics Monochrome
- IBM compatible 16pin input
- 12" Non-GLARE Screen
- Very High Resolution
- 1150 Lines (Center)
- 256 Nyquist Bandwidth
- Cable for IBM PC Included

$99.95

Apple Compatible Interface Cards

EPROM Programmer
- Deluxeate or burn any 27m Series PROM
- Minimal Driver Software
- High-Speed Write/Read

Ram Card
- Full 2 Year Warranty
- Expose Your IBM Machine to a Full 8k of Memory
- Covered Under Place of the Apple Language Card

$395.95

16K RAM Card
- Readily tests many common ICs
- Displays Pass or Fail
- Tests ICs & Tape Seeks
- CMOS, 74LS, 74S, 74HC

$299.95

IC Testers
- Includes PCB

$129.95

Molded Interface Cables
- 6 Foot. 100% Shielded. Meets FDC

$195

IBM Parallel Printer Cable
- Centronics Male to Female
- 15' Length

$595

Apple Joystick Extender

$499.95

Disk Drive Accessories

FDD Controller Card

$49.95

Adaptable Cable

$19.95

Switch Boxes
- 2 Way
- Connects 2 Printers to 1
- Connects 1 Printer to 2

$39.95

Nashua Diskettes
- Nashua Diskettes were used to have the highest polish and recorded amplitude of any diskettes tested (Compraring floppy disk, bit 96)

$590

Bulk Diskette Sale
- 5 1/4" Soft Sector, DOS/ DD
- 850 of 10

$59.00

Diskette Files
- 5 1/4" Disks file holds 70
- 3 1/2" Disks file holds 40

$5.95

Power Strip
- 15 amp circuit breaker
- 6 foot power cord
- Power switch with Surge Protection

$9.95

Solder Station
- JDR part #: 160-30
- Fully adjustable heat setting with tip temperature readout
- Quick heating and recovery
- Variety of replaceable tips are available
- Range: 200°-100°F
- UL Approved

$499.95

Disk Drive Enclosures with Power Supplies
- Cab-23VS Dual Simonke 5 1/4"
- Cab-19HS Full HT 5 1/4"
- Cab-2WHS Dual Simonke 8 1/2"
- Cab-2PWH Dual Full HT 8 1/2"

$199
NEW! EVERYTHING-IN-ONE CARD

MCT-MGMIO $119.95
- Hercules compatible monochrome graphics, 720 x 340 pixels
- 1 standard serial port installed, optional 2nd port available
- 1 parallel port and real time clock/calendar included
- Supports both DS/00 & DS/QD when used w/ DOS 3.2 or JFORMAT

QUALITY IBM COMPATIBLE MOTHERBOARDS

STANDARD MOTHERBOARD TURBO 4.77 / 6 MHz $129.95
- JDR part #: MCT-TURBO
- 477 or 8 MHz operation with 8882 & optional 8872-2C processor
- Dynamically adjusts speed during diskette operation for maximum throughput and reliability
- Choice of normal, turbo mode or software select processor speed

SUPERMOTHERBOARD $199.95
- JDR part #: MCT-STM1B
- 80286 6 / 8 MHz
- 8 slot (2 eight bit, 6 sixteen bit) AT motherboard
- Hardware selection of 6 or 8MHz
- 1 wait state
- Reset switch, front panel LED indicator and keylock supported
- Sockets for 1 MB of RAM and 82870 on board
- On board battery backed clock operates with PC/DOS or MS-DOS

IBM COMPATIBLE DISK DRIVE 3½” FDD KIT BY TOSHIBA $149.95
- JDR part #: FDD-35 KIT
- 720K format, DOS 3.2 compatible
- Allows data interchange with new IBM machines
- Mounting hardware for 5½” slot
- Faceplates for both AT & XT

IBM COMPATIBLE FLOPPY DISK DRIVE $69.95
- JDR part #: FDD-36
- Good quality drives
- BY major manufacturers such as Dume, Tandon & CDC
- 5½” half height
- 360K storage capacity
- 48 TPI

BUILD YOUR OWN 258K XT COMPATIBLE SYSTEM $568.15
- XT motherboard $109.35
- Pro-Bios (a $20 value) FREE!
- 258K RAM $29.35
- 130W power supply $59.35
- Flip-top case $34.95
- MCT-5150 keyboard $59.35
- 380K Drive $69.95
- FDD controller $34.95
- Monographs card $59.35
- Fortronics monitor $99.35

IBM COMPATIBLE KEYBOARDS $59.95

MCT-5060
- IBM at layout
- Software auto-sense for XT or AT compatible
- Extra large shift & return keys
- LED indicators for scroll, caps & number lock
- Auto repeat feature

MCT-5339
- IBM enhanced style layout
- Software auto-sense for XT or AT compatible
- 12 function keys
- Extra large shift & return keys
- LED indicators for scroll, caps & number lock
- Auto repeat feature
- Separate cursor pad

MCT-5150 $59.95
- XT style layout

MCT-5151 $79.95
- KB5151™ equivalent

EASYDATA MODEMS

All models feature auto-dial/auto-redial on busy, Hayes compatible, power up self test, touchtone or pulse dialing, built-in speaker, PC Talk III Communications software, Bell Systems 103 & 2124 full or half duplex and more.

INTERNAL $39.95
- EASYDATA-12H 1200 baud half card
- EASYDATA-12B 1200 baud 10 card
- EASYDATA-24B 2400 baud full card

EXTERNAL $119.95
- EASYDATA-12D 1200 baud card
- EASYDATA-24D 2400 baud card

MCT DISPLAY CARDS

MCT-EGA $179.95
- 100% IBM compatible, passes IBM EGA Diagnostics
- Compatible with IBM EGA color graphics
- and monochrome adapters
- Triple scan frequency for display on EGA, standard RGB or high resolution monochrome monitor
- Accommodates many adapters
- Supports 640 x 350 pixels in 16 or 4 colors
- Light pen interface

MCT-CG $49.95
- Compatible with IBM color graphics standard
- Short slot card uses VLSI chips to insure reliability
- Supports IBM composite monochrome and RGB color and an RGB Modulator output
- 320 x 200 color graphics mode
- 640 x 200 monochrome mode
- Light pen interface

MCT-MGP $59.95
- Compatible with IBM monochrome and Hercules graphics standards
- Short slot card uses VLSI chips to insure reliability
- Parallel, printer port, configurable as LPT1 or LPT2
- 720 x 348 graphics mode
- Lotus compatible
- Can run with color graphics card in the same system

MCT DEVELOPMENT TOOLS

MCT-PAL $269.95
- PAL programmer
- One array logic chip can replace 4-5 TTL ICs
- Programs 20 & 24 pin pals from TI, NSC & MMA
- Easy to use menu driven software allows programming, verification, memory building & burning the security fuse
- Save and restore program images on disk
- Includes software for standard hex and intel hex formats

MCT-MP $199.95
- Microprocessor programmer
- Programs 8041/2/6/8 processor chips
- Easy to use menu driven software
- Supports read, write, blank check and verify operations
- Port address selection is user configurable
- Save and restore program images on disk
- Includes software for standard hex and intel hex formats

MCT-EPROM $129.95
- EPROM programmers
- Programs 27xx and 27xx series EPROMs up to 27512
- Supports various manufacturers formats w/ 125, 21 and 26 bit programming
- Menu driven software allows easy manipulation of data files
- Split or combine the contents of several EPROMS of different sizes
- Read, write, copy, erase check and verify with easy one key selection
- Includes software for standard hex and intel hex formats
- 4 bank programmer $189.95
- 10 bank programmer $299.95

MCT PRODUCTS CARRY A ONE YEAR WARRANTY

COPYRIGHT 1987 JDR MICRODEVICES

CIRCLE 177 ON FREE INFORMATION CARD
MULTIFUNCTION CARDS
FROM MODULAR CIRCUIT TECHNOLOGY

MCT-MF
ALL THE FEATURES OF AST'S SIX PACK PLUS AT HALF THE PRICE
- 0.348K DYNAMIC RAM USING 1515s
- INCLUDES SERIAL PORT, PARALLEL PRINTER PORT, GAME CONTROLLER PORT AND CLOCK/CALENDAR
- SOFTWARE FOR A RAMDISK, PRINT SPOOLER AND CLOCK/CALENDAR

$79.95

MCT-ATMF
ADDS UP TO 3 MB OF 1 BIT RAM TO THE AT
- USER EXPANDABLE TO 1.5 MB OF ON-BOARD MEMORY AND MEMORY INSTALLS
- FLEXIBLE ADDRESS CONFIGURATION
- INCLUDES SERIAL PORT AND PARALLEL PORT
- CAN EXPAND FIGGACK BOARD PERMITS EXPANSION TO 3 MB

$139.95

MCT-MIO
A PERFECT COMPANION FOR OUR MOTHERBOARD
- 2 DRIVE FLOPPY DISK CONTROLLER
- INCLUDES SERIAL PORT, PARALLEL PORT, GAME CONTROLLER PORT AND CLOCK/CALENDAR
- USES FULL 16 BIT PARITY OR BATTERY BACK UP
- SOFTWARE FOR A RAMDISK, PRINT SPOOLER AND CLOCK/CALENDAR

$79.95

MCT-IO
USE WITH MCT-FH FOR A MINIMUM OF SLOTS USED
- SERIAL PORT ADDRESSABLE AS COM1 COM2 COM 3 OR COM 4
- PARALLEL PRINTER PORT ADDRESSABLE AS LPT 1 OR LPT2 (X379 OR X37B)
- CLOCK/CALENDAR WITH A BATTERY BACK UP

$59.95

MCT-ATIO
USE WITH MCT-AIO FOR A MINIMUM OF SLOTS USED
- SERIAL PORT ADDRESSABLE AS COM1 COM2 COM 3 OR COM 4
- PARALLEL PRINTER PORT ADDRESSABLE AS LPT1 OR LPT2 (X379 OR X37B)
- GAME PORT
- USES 1640 SERIAL SUPPORT CHIPS FOR HIGH SPEED OPERATION IN AN AT

$59.95

RAM CARDS
FROM MODULAR CIRCUIT TECHNOLOGY

MCT-RAM
A CONTINUOUS MEMORY SOLUTION FOR YOUR SHORT OR REGULAR SLOT
- SHORT SLOT, LOW POWER PC COMPATIBLE DESIGN
- O/P OFFER TO 75K OF ADDITIONAL MEMORY
- USER SELECTABLE CONFIGURATION AMOUNTS OF 152 384 512 256 576K USING COMBINATIONS OF 64 & 256K RAM

$69.95

MCT-ATRAM
A POWER USERS DREAM! 2MB OF MEMORY FOR THE AT
- USER EXPANDABLE TO 2MB OF ON-BOARD MEMORY
- USES FULL 16 BIT PARITY CHECKED MEMORY
- 64K OR 256K DYNAMIC RAM
- FLEXIBLE STARTING ADDRESS, ROUND OUT CONVENTIONAL MEMORY TO 64K AND ADD EXTENDED MEMORY ABOVE 1MB

$149.95

MCT-EMS
2MB OF LOTUS/INTEL/MICROSOFT COMPATIBLE MEMORY FOR THE XT
- CONFORMS TO LOTUS/INTEL EMS
- USER EXPANDABLE TO 2MB
- USES 64K OR 256K DYNAMIC RAM (NO MEMORY INSTALLS)
- USE AS EXPANDED ON CONVENTIONAL MEMORY, RAMDISK OR SPOOLER
- SOFTWARE INCLUDES EMS DEVICE DRIVERS, PRINT SPOOLER AND RAMDISK

$129.95

MCT-ATEMS
AT VERSION OF THE MCT-EMS
$139.95

DISK CONTROLLER CARDS
FROM MODULAR CIRCUIT TECHNOLOGY

MCT-FDC
QUALITY DESIGN OFFERS 4 FLOPPY CONTROL IN A SINGLE SLOT
- INTERFACES UP TO 4 FDD'S TO AN 10MB PC OR COMPATIBLE
- INCLUDES CABLE FOR 2 INTERNAL DRIVES
- USES STANDARD BIB3 CONNECTOR FOR EXTERNAL DRIVES
- SUPPORTS BOTH DS/DO AND DS/OD WHEN USED W/ DS 3.2 OR 5.25F

$34.95

MCT-HDC
HARD DISK CONTROL FOR WHAT OTHERS CHARGE FOR FLOPPY CONTROL
- IBM XT COMPATIBLE CONTROLLER
- SUPPORTS 16 DRIVE SIZES INCLUDING 5.25, 80, 30 & 10MB
- OPTIONS INCLUDE THE ABILITY TO DIVIDE 1 LARGE DRIVE INTO 2 SMALLER, LOGICAL DRIVES
- INCLUDES CABLES FOR 1 OR 2 TERNAL DRIVE

$69.95

MCT-RLL
GET UP TO 50% MORE STORAGE SPACE ON YOUR HARD DISK
- INCREASES THE CAPACITY OF PLANET MEDIA DRIVES BY 50%
- RLL 2.7 ENCODING FOR MORE RELIABLE STORAGE
- TRANSFER RATE IS 150% FASTER; 750K/sec vs 500K/sec
- USE WITH AT 238 DRIVE TO ACHIEVE 30MB IN A HALF HEIGHT SLOT

$119.95

MCT-FH
STARRVED FOR SLOTS? SATISFY IT WITH THIS TIMELY DESIGN
- INTERFACES UP TO 2 FDD'S & 2 HDDS
- CABLE FOR 2 FDD'S & 2 HDDS
- FLOPPY IN INTERFACE SUPPORTS BOTH DS/PO AND DS/OD WHEN USED WITH DS/3.2 OR DS/5.25F
- HARD DISK SUPPORTS 680K, 1.2M, 2.6M
- CAN DIVIDE 1 LARGE DRIVE INTO 2 SMALLER LOGICAL DRIVES

$139.95

MCT-AFH
"FLOPPY AND HARD DISK" CONTROL IN A TRUE AT DESIGN
- AT COMPATIBLE, CONTROL JP TO 2 360K, 720K OR 1.2MB FDD'S AS WELL AS 2HDD USING AT STANDARD CONTROL TABLES
- SUPPORTS AT STYLE FRONT PANEL LED INDICATORS FOR ACTIVITY
- 16 BIT BUS PROVIDES RAPID DATA TRANSFERS
- FULLY SUPPORTED AT BIOS

$169.95
MODEM

1200 BAUD $99.95

BARGAIN HUNTERS CORNER

HYUNDAI

MONOCROME MONITOR

- AMBER SCREEN
- IBM COMPATIBLE
- ATTACHABLE CASE WITH TILT & SWIVEL BASE

ONLY $69.95

SPECIAL ENDS 10/31/87

FRAME STYLE TRANSFORMERS

12.6V AC CT	2 AMP	5.95
12.6V AC CT	4 AMP	7.95
12.6V AC CT	8 AMP	10.95
25.2V AC CT	2 AMP	7.95

QATARASE EPROM ERASER

$34.95

- ERASES 2 IN 10 MINUTES
- COMPACT DESIGN
- THIN METAL SHUTTER
- PREVENTS AND LIGHT FROM ESCAPING

RESISTOR NETWORKS

- 10 PIN 9 RESISTOR $6.99
- 8 PIN 7 RESISTOR $6.99
- 16 PIN 8 RESISTOR $1.99
- 16 PIN 15 RESISTOR $1.99
- 14 PIN 7 RESISTOR $9.99
- 14 PIN 13 RESISTOR $9.99

SPECIALS ON BYPASS CAPACITORS

- 0.1 µF CERAMIC DISC $1.00 - 100.00
- 1 µF MONOLITHIC $1.00 - 100.00
- 1 µF CERAMIC DISC $1.00 - 100.00
- 1 µF MONOLITHIC $1.00 - 100.00

WISH SOLDERLESS BOARDSPADS

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DIMENSIONS</th>
<th>DISTRIBUTION STRIPS</th>
<th>TIE POINTS</th>
<th>TERMINAL STRIPS</th>
<th>TIE POINTS</th>
<th>BINDING POSTS</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>WB108</td>
<td>38 x 6.50</td>
<td>1</td>
<td>100</td>
<td>1</td>
<td>630</td>
<td></td>
<td>6.95</td>
</tr>
<tr>
<td>WB109</td>
<td>1.38 x 6.50</td>
<td>1</td>
<td>100</td>
<td>2</td>
<td>1260</td>
<td></td>
<td>7.95</td>
</tr>
<tr>
<td>WB204</td>
<td>3.94 x 8.45</td>
<td>1</td>
<td>100</td>
<td>1</td>
<td>630</td>
<td></td>
<td>6.95</td>
</tr>
<tr>
<td>WB205</td>
<td>8.68 x 9.06</td>
<td>5</td>
<td>500</td>
<td>3</td>
<td>1890</td>
<td></td>
<td>9.95</td>
</tr>
<tr>
<td>WB208</td>
<td>8.25 x 9.45</td>
<td>7</td>
<td>700</td>
<td>4</td>
<td>2520</td>
<td></td>
<td>11.95</td>
</tr>
</tbody>
</table>

MODEM

2400 BAUD $199.95

WIRE WRAP PROTOTYPE CARDS

FR-4 EPOXY GLASS LAMINATE

WITH GOLD-PLATED EDGE CARD FINGERS

XT

BOTH CARDS HAVE SILK SCREENED LEGENDS AND INCLUDES MOUNTING BRACKET

- IBM PR2 WITH 5V AND GROUND PLANE $72.95
- IBM PR2 AS ABOVE W/ LEAD OUT LAYOUT $99.95

APPLE

- MONITOR 16V .70 $15.15
- MONITOR 16V .50 $19.80
- MONITOR 16V .35 $21.75

SWITCHING POWER SUPPLIES

- PS-IBM $89.95
 - FOR IBM PC XT COMPATIBLE
 - 155 WATTS
 - 12V @ 5.3A, 5V @ 15A
 - 5V @ 5A, 12V @ 2A
 - ONE YEAR WARRANTY

- PS-IBM-150 $79.95
 - FOR IBM PC XT COMPATIBLE
 - 150 WATTS
 - 12V @ 5.3A, 5V @ 15A
 - 5V @ 5A, 12V @ 2A
 - ONE YEAR WARRANTY

- PS-AT $89.95
 - FOR IBM PC XT COMPATIBLE
 - 220 WATTS
 - 12V @ 5.0A, 5V @ 5A
 - 1 YEAR WARRANTY

- PS-A $49.95
 - USE TO POWER APPLE TYPE SYSTEMS 75 WATTS
 - 5V @ 7A, 12V @ 3A
 - 45V @ 5A, 12V @ 5A
 - APPLE POWER CONNECTOR

- PS-155B $34.95
 - 75 WATTS UL APPROVED
 - 5V @ 7A, 12V @ 3A
 - 12V @ 250mA, 5V @ 300mA

- BOOKS by STEVE CIARCIA
 - BUILD YOUR OWN Z80 COMPUTER $19.95
 - CIRCUIT CELLAR VOLUME 1 $17.95
 - CIRCUIT CELLAR VOLUME 2 $18.95
 - CIRCUIT CELLAR VOLUME 3 $18.95
 - CIRCUIT CELLAR VOLUME 4 $17.95
 - CIRCUIT CELLAR VOLUME 5 $19.95

- MUFFIN FANS
 - 3.15 Super Q 16.95
 - 3.53 Q 14.45
 - 3.98 SQUARE 16.95

- 6" LINE CORDS
 - 2 conductor 15 ft. $3.95
 - 3 conductor w/ female socket 1-49

- EMI FILTER $4.95

- 2 VOLUME SET IC MASTER THE INDUSTRY STANDARD $129.95
Computer Hookups

<table>
<thead>
<tr>
<th>Fig</th>
<th>Type</th>
<th>Cat No</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>D-Sub 25 Male</td>
<td>276-1559</td>
<td>3.99</td>
</tr>
<tr>
<td>5</td>
<td>D-Sub 25 Female</td>
<td>276-1666</td>
<td>3.99</td>
</tr>
<tr>
<td>6</td>
<td>Printer Male</td>
<td>276-1533</td>
<td>4.99</td>
</tr>
<tr>
<td>7</td>
<td>Printer Female</td>
<td>276-1523</td>
<td>4.99</td>
</tr>
<tr>
<td>8</td>
<td>RS-232/Printer Cable</td>
<td>Length Conductors Cat No Only</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Feet 25</td>
<td>276-772</td>
<td>3.59</td>
</tr>
<tr>
<td>6</td>
<td>Feet 36</td>
<td>276-774</td>
<td>4.69</td>
</tr>
</tbody>
</table>

Reliable Relays

<table>
<thead>
<tr>
<th>Fig</th>
<th>Type</th>
<th>Cat No</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Mini SPDT 6/9 VDC</td>
<td>276-004</td>
<td>2.99</td>
</tr>
<tr>
<td>10</td>
<td>SPST Reed 5 VDC</td>
<td>276-232</td>
<td>1.69</td>
</tr>
<tr>
<td>11</td>
<td>OA DPDT 120 VAC</td>
<td>276-217</td>
<td>12 VDC</td>
</tr>
</tbody>
</table>

Buzzer Bonanza

9.59

Project Lighting

NEW!

<table>
<thead>
<tr>
<th>Fig</th>
<th>Type</th>
<th>Cat No</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Super-Bright LED, 300 mcd output</td>
<td>#276-056</td>
<td>1.99</td>
</tr>
<tr>
<td>13</td>
<td>5 V Z2 Lamps</td>
<td>#272-1590</td>
<td>2.19</td>
</tr>
<tr>
<td>14</td>
<td>Super-Jumbo LED</td>
<td>#276-064</td>
<td>3.49</td>
</tr>
</tbody>
</table>

Audio Amp / Speaker

Makes an Excellent Test Amp

Dozens of uses—get one for your test bench. Ready-to-use amp features high-gain IC design and 200-mW output. "he input/output phone jacks. #277-1008 11.95

Breadboard Bargains

<table>
<thead>
<tr>
<th>Fig</th>
<th>Type</th>
<th>Cat No</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>SPST Lighted</td>
<td>276-678</td>
<td>5.95</td>
</tr>
<tr>
<td>16</td>
<td>Knife Switch</td>
<td>276-1537</td>
<td>9.9</td>
</tr>
<tr>
<td>17</td>
<td>Submini SPST</td>
<td>275-645</td>
<td>1.79</td>
</tr>
</tbody>
</table>

Look! New Devices

<table>
<thead>
<tr>
<th>Fig</th>
<th>Type</th>
<th>Cat No</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>335 pF Variable Capacitor, Two-section</td>
<td>#272-1337</td>
<td>4.95</td>
</tr>
<tr>
<td>22</td>
<td>100,000 MFD Cap</td>
<td>Really handy for CMOS memory backup 5.5 VDC #272-1440</td>
<td>2.95</td>
</tr>
<tr>
<td>23</td>
<td>Thermostat</td>
<td>#271-110</td>
<td>1.99</td>
</tr>
</tbody>
</table>

Power Supply Parts

<table>
<thead>
<tr>
<th>Fig</th>
<th>Type</th>
<th>Cat No</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>"AA" Battery Holder</td>
<td>#270-391</td>
<td>99c</td>
</tr>
<tr>
<td>25</td>
<td>x 20 VDC Fuse Holder</td>
<td>#270-1238</td>
<td>1.19</td>
</tr>
<tr>
<td>26</td>
<td>Panel Meter</td>
<td>#270-1754</td>
<td>7.95</td>
</tr>
<tr>
<td>27</td>
<td>Gator Clips</td>
<td>#270-347</td>
<td>10/1.65</td>
</tr>
</tbody>
</table>

Remote Command Center

NEW!

<table>
<thead>
<tr>
<th>Fig</th>
<th>Type</th>
<th>Cat No</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>The mighty midget! Features "deep" continuity autopolarity, low-battery indicator measures to 400 volts AC/DC With probes, case batteries #22-171</td>
<td>24.95</td>
<td></td>
</tr>
</tbody>
</table>

Over 1000 Items in stock: Binding Posts, Capacitors, Chokes, Diodes, Enclosures, Fuses, Inductors, Jacks, Knobs, Lamps, LEDs, Motors, Multimeters, Optoelectronics, PC Boards, Rectifiers, Relays, Resistors, SCRs, Solder, Tools, Transformers, Transistors, Triacs, Wire and more!

Dual-Tracking Power Supply

69.95

Tight Regulation And Low Ripple

Our Microtech bench supply delivers rock-stable DC voltages adjustable from 0 to +15 VDC, and connect in series for up to 30 VDC. Selectable independent or slave operation. Rated 1 amp per channel, maximum UL listed AC. #22-121

Pocket Autoranging VOM

24.95

The mighty midget! Features "deep" continuity autopolarity, low-battery indicator measures to 400 volts AC/DC With probes, case batteries #22-171

Save With Our "Hotline" Order Service

Save Postage! We Deliver To Your Local Radio Shack

Save Time! Delivery On Most Items Just One Week

Over 200,000 Substitutions

Your Radio Shack store manager can special-order a wide variety of parts and accessories not in our catalog—tubes, ICs, transistors, crystals and more. No minimum!

Experiment With Our High-Tech LSIs

(1) TDA 7000 FM Receiver. Build your own custom FM monitor. Combines an RF mixer, IF and demodulator stages in one monolithic IC. PLL system with 70 KHz IF. #276-1334 5.95

(2) Speech Synthesizer IC. Requires 1.2 MHz crystal (special-order). #276-1784 12.95

(3) Text-to-Speech IC. Use with above requires 10 MHz crystal (special-order) #276-1786 16.95

Battery Data Book

Indispensable For CMOS Experimenters

Explains how batteries work, different types, performance data and applications. #62-1395 1.99

Switch Selection

<table>
<thead>
<tr>
<th>Fig</th>
<th>Type</th>
<th>Cat No</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>SPST Lighted</td>
<td>276-678</td>
<td>5.95</td>
</tr>
<tr>
<td>16</td>
<td>Knife Switch</td>
<td>276-1537</td>
<td>9.9</td>
</tr>
<tr>
<td>17</td>
<td>Submini SPST</td>
<td>275-645</td>
<td>1.79</td>
</tr>
</tbody>
</table>

CIRCLE 78 ON FREE INFORMATION CARD

Radio Shack
A DIVISION OF TANDY CORPORATION

OCTOBER 1987

121

What's New at AMERICAN DESIGN COMPONENTS?

We warehouse 60,000 items at American Design Components — expensive, often hard-to-find components for sale at a fraction of their original cost! You'll find every part you need — either brand new or removed from equipment (RFE) in excellent condition. But quantities are limited. Order from this ad, visit our retail showroom and find exactly what you need from the thousands of items on display.

Open Mon. - Sat., 9 - 5

THERE'S NO RISK.
With our full 90-day warranty, any purchase can be returned for any reason for full credit or refund.

ADAM COMPUTER

5 1/4" DISK DRIVE

ADAM Accessories...

ColecoVision to Adam Expansion Kit — #9918 $59.50
Adam Printer — #8893 $69.50
Data Drive — #6641 $19.95
Printer Power Supply — #6642 $19.95
ASCII Keyboard — #6643 $19.95
Controllers — (Set of 4) #7013 $9.95
Adam Cassettes — (Consisting of Simon Bank, Buck Rogers & blank cassette) #7786 $9.95
Baker's Dozen — $19.95
Adam Link Modern — (Software included) #12358 $29.95
Auto-Dialer Address Book — #12365 $19.95

3 1/2" 10Mb HARD DISK DRIVE (IBM® Compatible)

Fits standard 5 1/4" spacers. Shock mounted. High-speed, low power. Mfr. Rundell #2023F. Item #10151 $159.00. New Controller Card for above item #10150 $89.00

115 CFM MUFFIN TYPE FANS

115VAC/60Hz, 21W. 28A. 3100 RPM. 5-blade model. Aluminum housing. Can be mounted for blowing or exhausting. New — Item #1684 $12.95. Used — Howard Ind. 315 3455 $5.95.

12/24 VDC MUFFIN TYPE FANS 55/100 CFM

8 W. Can be mounted for blowing or exhausting. Aluminum housing, brushless, ball bearing type. 1. Thin 5 plastic blades w/feathered edges. Centur C5D244E60 $15.95 New. Item #5841 $19.95. 1 1/2" Standard. 5 plastic blades. Centur C5D244K60 $15.95 New Item #12109 $14.95 RFE

ColecvoVision Game

Complete unit, without housing. Can be easily mounted on any base. Contains game board, 2 controllers, power supply, TV game switch & connecting coaxial cable. Item #7411 $19.95

Mechanical Keyboards...

48-K Ey - Timex 281/1000

Item #6712 $5.95 New. Item #9349 $5.95 New. 75-K Ey - Timex or Adam

For computer upgrade, item #7429 $12.95

Audio & Video Modulator

Designed for use with TI computers. Can be used with video cameras, camcorders, or other audio-visual equipment. Item #7430 $19.95

Recording Tape 7/8" Reel, 2400 ft.

Bulk erased. Major mfns: Ampex, Scotch, etc

Item #6771 $4.95

Coring Alternator (Hi-Voltage)

3700 Vac @ 6 Ma

May be used for powering neon lights, replacing brush ignition transformer, building Jacob's ladder gap, etc. Item #12643 $5.95 New

NEON TRANSFORMER

7300 Vac @ 6 Ma

May be used for powering neon lights, replacing brush ignition transformer, building Jacob's ladder gap, etc. Item #12423 $5.95 New

Playback Equipment...

Integrated Circuits

Solder Tab Dip sockets

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Qty</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1% Carbon Film Resistors

<table>
<thead>
<tr>
<th>Value</th>
<th>Type</th>
<th>Qty</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Disc Capacitors

<table>
<thead>
<tr>
<th>Value</th>
<th>Qty</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tantalum Capacitors

<table>
<thead>
<tr>
<th>Value</th>
<th>Qty</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Factory Firsts

- **Silicon Transistors**
- **NEC Memory Chips**
- **NEC Microprocessor Chips**

The Dig-Key volume discount and service charges are detailed in the product catalog. Items that are not discounted are identified by the suffix "Unpriced." Service charges apply to orders over $100,000. For further information or a personalized quote, please contact Dig-Key at 1-800-344-4539.
BLACKLIGHT ASSEMBLY

Complete, functioning assembly includes ballistic, on-off switch, power cord, sockets and P45-BL blacklight. Mounted on a 7 1/8" X 3 1/8" metal plate. Use for special effects lighting or erasing Impressions.
CATO RX-1A $10.00 each

SWITCHING POWER SUPPLY

Compact, well regulated switching power supply designed to power Texas Instruments computer equipment. INPUT: 14-25 vac @ 1 amp OUTPUT: Vdc - 115 Vac @ 1 amp. SIZE: 4 3/4" square. Includes 18 Vac @ 1 amp well regulated transformer to power this supply.
CATO PS-55 $5.00 each
10 for $45.00

SLIM LINE FAN

Sputon PS-2115A New 115 Vac 1 3/4" X 4 3/4" X 7/8" deep. Metal housing. 115 Vac. Includes 6" cord. CATO SFE-115 $5.00 each
20 for $75.00

1 mA METER

Modutech 0-1 mA digital current meter with KIT logo. 1/4" X 3/4" X 3/4" deep.
CATO MP-2 $2.00 each
2 FOR $15.00

PUSHBUTTON PHONE

Spectra-phone Model # OP-1 1 piece telephone with rotary (pulse) output. Operates on most rotary or touch-tone systems. Features last minute redial and mute button. 500 ohm impedance. Includes plastic, coin cell case and standard modular plug.
CATO PHN-1 $5.50 each
2 FOR $15.00

12-6V DC MOTOR

Mabuchi R-5500 12VDC 1300 rpm (500mm) 10000 rpm (mm jumps) 13.5 mm. CATO MH-5 $5.00 each

VIC 20 MOTHERBOARD

NEW T.I. KEYBOARDS. Originally used on computers, these keyboards contain 40 S.P.S.T., mechanical switches. Terminals are already at 15 pin connector. Print order 9682 IP-6 $3.50 each

VIC 20 IC's including 6522A and 6526. 3 ea, 6522, 2 ea, 6526, 2 ea, 6516, 1 ea, 2214. Not guaranteed but great for replacement parts or experimentation.
CATO VIC-20 $15.00 each

48 KEY ASSEMBLY

NEW T.I. KEYBOARD. Originally used on computers, these keyboards contain 40 S.P.S.T., mechanical switches. Terminals are already at 15 pin connector. Print order 9682 IP-6 $3.50 each

SHARP ONSCREEN SWITCH

Designed to control an external co-axial relay on a satellite line. Ideal for parts. Includes a 5 Vdc relay and many other parts on a P.C. board.
CATO RDS-1 $7.50 each
10 FOR $75.00

SOUND AND VIDEO MODULATOR

TTL 4280C-2 for IIC. Used for control. Can be used with V.T. computers. Can be used with electronic, games or other audio/video sources. Built in 406 switch enables use to switch on T.V., antenna, or disjoint source. Requires 3.3 volt supply. Includes 3 or 4, Requires 12 Vdc. Hook up diagram included.
CATO AVNDO $5.50 each

TOGGLE SWITCH

Designed to control an external coaxial relay on a satellite line. Ideal for parts. Includes a 5 Vdc relay and many other parts on a P.C. board.
CATO RDS-1 $7.50 each
10 FOR $75.00

SOUND AND VIDEO MODULATOR

TTL 4280C-2 for IIC. Used for control. Can be used with V.T. computers. Can be used with electronic, games or other audio/video sources. Built in 406 switch enables use to switch on T.V., antenna, or disjoint source. Requires 3.3 volt supply. Includes 3 or 4, Requires 12 Vdc. Hook up diagram included.
CATO AVNDO $5.50 each

TELEPHONE COUPLING TRANSFORMER

STANCO RT-8 $1.00 each

FREE INFORMATION CARD
ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

<table>
<thead>
<tr>
<th>Free Information Number</th>
<th>Page</th>
<th>120, 205</th>
<th>Different Companies</th>
<th>78, 79</th>
<th>181</th>
<th>NTI</th>
<th>79</th>
</tr>
</thead>
<tbody>
<tr>
<td>81 A.I.S. Satellite</td>
<td>70</td>
<td>100 Firestik II</td>
<td>105</td>
<td>71</td>
<td>New-Tone Electronics</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>108 AMF Sales</td>
<td>22</td>
<td>Fordham Radio</td>
<td>182</td>
<td>22</td>
<td>Nutone</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>107 All Electronics</td>
<td>125</td>
<td>GE/RCA</td>
<td>196</td>
<td>102</td>
<td>NuScope Associates</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>103 Allen W.R.</td>
<td>18</td>
<td>Grantham College of Engineering</td>
<td>201</td>
<td>102</td>
<td>OCTE Electronics</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>— Amazing Devices</td>
<td>111</td>
<td>Hamag</td>
<td>110</td>
<td>102</td>
<td>Omnimon</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>200 American Design Components</td>
<td>122</td>
<td>Heath</td>
<td>8.9</td>
<td>102</td>
<td>Pacific Cable</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>77 B&K Precision</td>
<td>5</td>
<td>Hitachi Denki America</td>
<td>14</td>
<td>108</td>
<td>Parts Express</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>98 Beckman Industrial</td>
<td>33</td>
<td>InC Computer Technology</td>
<td>101</td>
<td>121</td>
<td>Radio Shack</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>85 Blue Star Industries</td>
<td>78</td>
<td>ISCT</td>
<td>105</td>
<td>121</td>
<td>Satellite TV Week Mag.</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>109 C & S Sales</td>
<td>17</td>
<td>Inverter Technologies</td>
<td>101</td>
<td>186</td>
<td>Sensore</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>— C.G.M.B.</td>
<td>15, 76</td>
<td>J & W</td>
<td>7</td>
<td>188</td>
<td>Sensore</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>60 CIE</td>
<td>19</td>
<td>JDR Instruments</td>
<td>1</td>
<td>180</td>
<td>Silicon Valley Surplus</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>197 Cabeltronics</td>
<td>78</td>
<td>JDR Microdevices</td>
<td>116, 117</td>
<td>209</td>
<td>Simpson</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>198 Caribbean Electronics Mag.</td>
<td>82</td>
<td>JDR Microdevices</td>
<td>118, 119</td>
<td>74</td>
<td>Solid State Sales</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>203 Circuit Cellar</td>
<td>70</td>
<td>JDR Microdevices</td>
<td>120</td>
<td>94</td>
<td>Star Circuits</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>— Command Productions</td>
<td>104</td>
<td>Jamesco</td>
<td>114, 115</td>
<td>78</td>
<td>Symmetric Sound</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>55 Contact East</td>
<td>70</td>
<td>Jan Crystals</td>
<td>22</td>
<td>102</td>
<td>T S A I</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>199 Cook's Institute</td>
<td>22</td>
<td>Kit-Blitz Tester</td>
<td>102</td>
<td>116</td>
<td>Tektronix</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>195 Crystek</td>
<td>12</td>
<td>KMC Electronics</td>
<td>113, 115</td>
<td>74</td>
<td>Tento</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>212 Dactron</td>
<td>126</td>
<td>MD Electronics</td>
<td>78, 79</td>
<td>123</td>
<td>Test Probes</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>127 Device Industries</td>
<td>78, 79</td>
<td>Mark V. Electronics</td>
<td>100</td>
<td>116</td>
<td>Trans-Am</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>82 Digi-Key</td>
<td>13</td>
<td>McGraw-Hill Book Club</td>
<td>68</td>
<td>102</td>
<td>Trio-Kenwood</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>193 Electronic Salvage Parts</td>
<td>112</td>
<td>Microprocessors Untld.</td>
<td>100</td>
<td>191</td>
<td>WFT Publications</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>— Electronic Technology Today</td>
<td>13</td>
<td>—</td>
<td>NRI</td>
<td>84, 14, 17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DOES YOUR DIGITAL CAPACITANCE METER DO THIS?

FULL 4 DIGIT 0.5 INCH LCD DISPLAY COMPLETELY AUTORANGING WITH 10 RANGE MANUAL CAPABILITY

AND THIS
- RANGES FROM 0.0001 F TO 1 FARAD (999,999 MFD)
- 0.5% BASIC ACCURACY UP TO 1000 UF
- **AND THIS**
- READS DIELECTRIC ABSORPTION
- **AND THIS**
- EXTENDED PSEUDO 5 DIGIT RESOLUTION ON SOME RANGES ONLY
- **AND THIS**
- ABILITY TO ZERO LARGE CAPACITANCE VALUES UP TO 99.99 UF
- **AND THIS**
- CALCULATES TRUE CAPACITANCE IF CAPACITOR IS LEAKY
- **AND THIS**
- DIODE CLAMP AND FUSED PROTECTED INPUT
- **AND THIS**
- DISCHARGE RESISTOR IN OFF POSITION AT TERMINAL INPUTS
- **AND THIS**
- POWERED BY 9V BATTERY
- **AND THIS**
- ONE YEAR PARTS & LABOUR WARRANTY

FOR ONLY THIS

$169.95

MODEL MC300

EDAETRON

A division of Bergeron Technologies Inc.
7650 KIMBEL STREET UNIT 5
MISSISSAUGA, ONT., CANADA
L5E 1E9
(416) 857-1600

Gernsback Publications, Inc.
500 B Bi-County Blvd.
Farmingdale, NY 11735
(516) 293-3000
President: Larry Steckler
Vice President: Cathy Steckler
For Advertising ONLY
516-293-3000
Larry Steckler
publisher
Aline Fishman
advertising director
Sheili Weinman
advertising associate
Lisa Strassman
credit manager
Christina Estrada
advertising assistant

SALES OFFICES
EAST/SOUTHEAST
Stanley Levitan
Eastern Sales Manager
Radio-Electronics
259-23 57th Avenue
Little Neck, NY 11362
718-426-6037, 516-293-3000

MIDWEST/Texas/Arkansas/
Okl.
Ralph Bergen
Midwest Sales Manager
Radio-Electronics
540 Frontage Road—Suite 339
Northfield, IL 60093
312-446-1444

PACIFIC COAST/ Mountain
States
Marvin Green
Pacific Sales Manager
Radio-Electronics
5430 Van Nuys Blvd. Suite 316
Van Nuys, CA 91401
1-818-986-2001

DEALER ENQUIRIES INVITED
CIRCLE 212 ON FREE INFORMATION CARD

SHIPPING INSTRUCTIONS:

All units shipped F.O.B. Buffalo, NY via United Parcel Service (except Hawaii & Alaska) unless otherwise instructed (in which case shipments will be F.O.B. Canada).

PLEASE SEND ME

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>(MC300)($)</th>
<th>U.S. FUNDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARRYING CASE</td>
<td>$15.95</td>
<td>$-</td>
</tr>
<tr>
<td>AC ADAPTOR</td>
<td>$9.95</td>
<td>$-</td>
</tr>
<tr>
<td>SHIPPING AND HANDLING</td>
<td>$5.00 PER INSTRUMENT</td>
<td>$-</td>
</tr>
<tr>
<td>CHECK</td>
<td></td>
<td>$-</td>
</tr>
<tr>
<td></td>
<td>VISA</td>
<td>$-</td>
</tr>
<tr>
<td></td>
<td>MASTERCARD</td>
<td>$-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SIGNATURE</td>
</tr>
<tr>
<td>NAME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADDRESS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CITY</td>
<td></td>
<td>STATE</td>
</tr>
</tbody>
</table>

GO......á
DECyODEH`'
WILD
itorial inquiries
better
magazine
Your
E
ingdale,
Bi-County
tion
for Free Product Informa-
Use the
NOTE:
be
Not
Company
complete
you
PROFESSIONAL
3
2
1
CARDS
POST-PAID
USE THESE
INFORMATION
FOR
A
90O1
OFSCAAMIIIAG
DM*
NY
11735
Blvd.,
500-B
Farn-
First Class PERMIT NO 597 BOULDER COLORADO
BUSINESS
P.O. BOX 51866
BOULDER, COLORADO 80321-1866
SUBSCRIPTION SERVICE
FIRST CLASS POSTAGE PAID AT BOULDER COLORADO
FREE INFORMATION CARD
VOID after DECEMBER 31, 1987
Allow 6-8 weeks for delivery of first issue

FREE INFORMATION CARD
MAIL the card, its
Postage-Paid.
3
Mail the card, its
Postage-Paid.

3-1087
Name (please print):
Company Name (if applicable):
Address:
City State Zip + 4:
Unsal or incomplete mailing info will prevent our processing this request.
1 Please send me 12 issues of RADIO-ELECTRONICS for $18.95 and bill me. (Canada $23.95 - US Funds only)
2 Please send me 12 issues of RADIO-ELECTRONICS for $16.97 and bill me. (Canada $22.97 - US Funds only)
4 Please send me 12 issues of HANDS-ON ELECTRONICS for $18.95 and bill me. (Canada $23.95 - US Funds only)

FREE INFORMATION CARD
VOID after DECEMBER 31, 1987
Allow 6-8 weeks for delivery of first issue

FREE INFORMATION CARD
MAIL the card, its
Postage-Paid.
3
Mail the card, its
Postage-Paid.

3-1087
Name (please print):
Company Name (if applicable):
Address:
City State Zip + 4:
Unsal or incomplete mailing info will prevent our processing this request.
1 Please send me 12 issues of RADIO-ELECTRONICS for $18.95 and bill me. (Canada $23.95 - US Funds only)
2 Please send me 12 issues of RADIO-ELECTRONICS for $16.97 and bill me. (Canada $22.97 - US Funds only)
4 Please send me 12 issues of HANDS-ON ELECTRONICS for $18.95 and bill me. (Canada $23.95 - US Funds only)

FREE INFORMATION CARD
MAIL the card, its
Postage-Paid.
3
Mail the card, its
Postage-Paid.

3-1087
Name (please print):
Company Name (if applicable):
Address:
City State Zip + 4:
Unsal or incomplete mailing info will prevent our processing this request.
1 Please send me 12 issues of RADIO-ELECTRONICS for $18.95 and bill me. (Canada $23.95 - US Funds only)
2 Please send me 12 issues of RADIO-ELECTRONICS for $16.97 and bill me. (Canada $22.97 - US Funds only)
4 Please send me 12 issues of HANDS-ON ELECTRONICS for $18.95 and bill me. (Canada $23.95 - US Funds only)

FREE INFORMATION CARD
MAIL the card, its
Postage-Paid.
3
Mail the card, its
Postage-Paid.
For New Ideas
In Electronics
read Radio-Electronics
every month.

During the next 12 months
Radio-Electronics will carry up to
the minute articles on:
- Computers • Video
- Solid-state technology
- Outstanding construction
 projects
- Satellite TV • Telephones
- Radio • Stereo • Equipment
 Reports
- Test equipment • VCR’s
- Servicing
- Industrial electronics

FREE PRODUCT INFORMATION
P.O. Box 388
DALTON, MA 01226-9990

check offer preferred

☐ 1 Year—12 issues ONLY $16.97
 (You save $10.03 off single copy price)
☐ 2 Years (SAVE MORE)—24 issues $32.97
 (You save $21.03 off single copy price)
☐ Canada—12 issues $22.97
☐ Canada—24 issues $44.97
ALL SUBSCRIPTIONS PAYABLE IN U.S. FUNDS ONLY
☐ Payment enclosed ☐ Bill Me ☐ Check here if you are extending or
 renewing your subscription

Name (Please Print) ___
Company Name (If applicable) ___________________________________
Address ___
City ____________________________ State ____________ Zip ___________

Allow 6-8 weeks for delivery of first issue
Co.K.1110....

ELECTRONIC TECHNOLOGY TODAY INC.

Name ____________________________

Address __________________________

City ______ State ______ Zip ________

SHIPPING CHARGES IN USA & CANADA

$0.01 to $5.00 $1.00

$5.01 to $10.00 $1.75

$10.01 to $20.00 $2.75

$20.01 to $30.00 $3.75

$30.01 to $40.00 $4.75

$40.01 to $50.00 $5.75

$50.01 and above $7.00

OUTSIDE USA & CANADA

Multiply Shipping by 2 or 3 to air mail

Multiply Shipping by 4 or 5 to sea mail

Total price of merchandise $____

Sales Tax (New York State Residents only) $____

Shipping (see chart) $____

All payments must be in U.S. funds

Total Enclosed $____

R-1087

Electronics Paperback Books

EVERY BOOK IN THIS AD $6 OR LESS!
SCOPE 3½ Digital Multimeters

Model DVM-634
$52.75
- 7 function, 32 ranges • Transistor measurement

Model DVM-635
$58.75
- 8 function, 37 ranges • Capacitance measurement

Model DVM-638
$79.95
Test leads included • 11 function, 38 ranges • Logic level detector • Audible visual continuity • Capacitance and conductance measurement

Model DCM-602
$55.00
Test leads included • 8 ranges with full scale values to 2000 μF • LSI circuit • Crystal time base • Frequency range 800 Hz to 8 kHz

Model RC-555
$49.95
Test leads & 9V battery included • Low distortion sine-wave signal • 46 step selected frequency • x1 range 20 Hz to 1.5 KHz/ x100 range 2 KHz to 150 KHz

Model DVM-6005
$199.95
Test lead set 6, "D" size batteries included • 0.4" high characters • Conversion period: 500 milliseconds • Automatic, negative polarity

SCOPE 3½ Digit Capacitance Meter

Model DVM-638
$79.95
Test leads included • 11 function, 38 ranges • Logic level detector • Audible visual continuity • Capacitance and conductance measurement

SCOPE Pocket Sized Audio Signal Generator

Model DVM-6005
$199.95
Test lead set 6, "D" size batteries included • 0.4" high characters • Conversion period: 500 milliseconds • Automatic, negative polarity

SCOPE 4½ Digit LCD Bench Digital Multimeter

Model DVM-6005
$199.95
Test lead set 6, "D" size batteries included • 0.4" high characters • Conversion period: 500 milliseconds • Automatic, negative polarity

Mini-Meters with Maxi-Specs

SCOPE 3½ Digit LCD with 8 Full Functions

Model DVM-632
$449.95
OUR PRICE
Measures only 5½" x 2 ¾" x 1½"
Deluxe test leads included • 0.5% accuracy • Transistor gain test • Audible continuity checking & diode test • 10 Amp measurement

Zipped Carrying Case CC-30 $45.00

SCOPE 3½ Digit LCD

Model DVM-630
$299.95
OUR PRICE
Test leads included • 0.5% accuracy • 5 functions, 19 ranges • Automatic zero adjust • Low battery indication

Zipped Carrying Case CC-30 $45.00

ASK FOR FREE CATALOG.
Money orders, checks accepted. C.O.D.'s require 25% deposit.

Toll Free
800-645-9518
In NY State 800-832-1446

Service & Shipping Charge Schedule
Continental U.S.A.

<table>
<thead>
<tr>
<th>FOR ORDERS</th>
<th>ADD</th>
</tr>
</thead>
<tbody>
<tr>
<td>$25-$100</td>
<td>$4.00</td>
</tr>
<tr>
<td>$101-$250</td>
<td>$6.00</td>
</tr>
<tr>
<td>$251-$500</td>
<td>$8.00</td>
</tr>
<tr>
<td>$501-$750</td>
<td>$10.50</td>
</tr>
<tr>
<td>$751-$1,000</td>
<td>$12.50</td>
</tr>
<tr>
<td>$1,001-$1,500</td>
<td>$16.50</td>
</tr>
<tr>
<td>$1,501-$2,000</td>
<td>$20.00</td>
</tr>
<tr>
<td>$2,001 and Up</td>
<td>$25.00</td>
</tr>
</tbody>
</table>

Fordham
260 Motor Parkway, Hauppauge, NY 11788