WHAT'S NEW IN CAR STEREO

AUTO SOUND
Great systems
Great installations

R-E ROBOT
Build a controller board

EARLY DAYS OF RADIO
Amplifier beginnings

TV SIGNAL DESCRAMBLING
Digital audio encoding

BUILD A DIGITAL SPEEDOMETER
For a high-tech dashboard

COMPUTER DIGEST
IBM's new PC's
NOW GET SCOPE, COUNTER AND DMM INPUT ALL AT ONCE THROUGH ONE PROBE!

Gated frequency measurement. B sweep triggering during the intensified portion of the A sweep. Intensified portion frequency is measured with the counter/timer/DMM.

Delay time measurement. Delay time from the start of A sweep to the start of the B sweep is measured with crystal accuracy.

Channel 1 dc volts measurement. The average dc component of a waveform is measured directly through channel 1 with direct digital fluorescent readout.

The Tek 2236 combines 100 MHz, dual timebase scope capability with counter/timer/DMM functions integrated into its vertical, horizontal and trigger systems. For the same effort it takes to display a waveform you can obtain digital readout of frequency, period, width, totalized events, delay time and Δ-time to accuracies of 0.001%.

The same probe is used to provide input for the CRT display and the digital measurement system, resulting in easy set-up, greater measurement confidence and reduced circuit loading. Probe tip volts can also be measured through the Ch 1 input.

Precision measurements at the touch of a button.
Auto-ranging frequency, period, width and gated measurements are push-button-simple. And the 2236 offers an independent floating 5000 count, auto-ranging multimeter with side inputs for DC voltage measurements to 0.1%.

A built-in, auto-ranging ohmmeter provides resistance measurements from 0.01 Ω to 2GΩ—as well as audible continuity. Automatic diode/junction detection and operator prompts serve to simplify set-up and enhance confidence in your measurements.

The 2236: scope, counter, timer, DMM plus a 3-year warranty—all for just $2,650.

Contact your nearest distributor or call Tek toll-free.

Technical personnel on our direct-line will answer your questions and expedite delivery. Orders include probes, 30-day free trial and service worldwide.

Call Tek direct:
1-800-433-2323 for video tape or literature,
1-800-426-2200 for application assistance or ordering information.

In Oregon, call collect:
1-627-2200

Copyright © 1986, Tektronix, Inc. All rights reserved TTA-797

CIRCLE 92 ON FREE INFORMATION CARD
SPECIAL SECTION
31 GREAT SYSTEMS
A look at the latest and the greatest in autosound.
Frank Vizard

39 GREAT INSTALLATIONS
Some classic autosound installations, and a few unusual ones, too.
Frank Vizard

BUILD THIS
44 R-E ROBOT
Part 8. Building the control board.
Steven E. Sarns

47 DIGITAL SPEEDOMETER FOR YOUR CAR
An accurate, eye-catching upgrade for your dashboard.
Ross Orman

79 PC SERVICE
Use the direct-etch foil patterns to make circuit boards for the digital speedometer.

TECHNOLOGY
6 VIDEO NEWS
A review of the fast-changing video scene.
David Lachenbruch

58 TV-SIGNAL SCRAMBLING
William Sheets and Rudolf E. Graf

62 SATELLITE TV
HDTV and DBS.
Bob Cooper, Jr.

CIRCUITS AND COMPONENTS
26 DRAWING BOARD
Dynamic memories.
Robert Grossblatt

RADIO
52 EARLY DAYS OF RADIO
Early amplifiers.
Vaughn D. Martin

EQUIPMENT REPORTS
15 Avcom PSA-35A Portable Spectrum Analyzer

DEPARTMENTS
102 Advertising and Sales Offices
103 Free Information Card
102 Advertising Index
7 Ask R-E
84 Market Center
21 New Products
5 What's News

EDITOR'S WORKBENCH
IBM's new machines and keyboard reviews.

FROM KEYPRESS TO SCAN CODE
How PC keyboards work.
Jeff Holtzman

WORKING WITH SURPLUS KEYBOARDS
Interface any keyboard with your computer.
Robert Grossblatt

DIGITAL AUDIO TAPE: It's coming in the future. We'll cover the technical details of this promising new audio tape format in an up-coming issue.
Hi-fi autosound has come a long way since the days of 8-track tape. This month, we'll look at some of the latest and the greatest that the autosound industry has to offer, like Pioneer's DFX-77 CD player and tuner. Included in our discussions are high-tech receivers, cassette players, CD players, CD changers, and speakers, and what makes them special. We'll also look ahead to the next wave in autosound, the DAT player.

But there's more to great mobile sound than just selecting a system and throwing it in your car. And today's downsized vehicles offer tough challenges for even the most skillful installer. However, with effort, electrifying results can be achieved. To prove that, we'll show you how car manufacturers and independent installers have merged automobiles and high-fidelity sound systems to produce concert halls on wheels.

Our two-part special look at autosound begins on page 31.

Next Month

THE AUGUST ISSUE IS ON SALE JULY 2

HDTV
The next wave in television is brought into sharp focus.

BUILD AN SCA RECEIVER
Build this special FM receiver and hear what you've been missing.

BUILD THE TALKING BOX
It digitizes your speech and stores it electronically.

R-E ROBOT
Part 9 looks at the robot's control language.

TRANSISTOR AMPLIFIER DESIGN
Hints and pointers for your next project.
the fourth law of robotics
A robot shall make learning fun for man and thereby improve the quality of life for mankind.

A robot is a robot is a robot...was a robot. Until HERO 2000.

HERO 2000 is much more than a robot. It's a walking, talking 16-bit computer. With 64K ROM and 24K RAM expandable to more than half a megabyte. And a fully articulated arm with five axes of motion. Yours to program, Command, Modify and expand. Total system access and solderless experimenter boards provide almost limitless possibilities. Its remote RF console with ASCII keyboard gives total control. Available with three self-study courses. Backed by Heath Company, world leader in electronic kits. Build your own HERO 2000. Or buy it assembled. Have fun learning skills that translate directly to the world of work.

HERO 2000
the knowledge builder

FREE. Send today for latest Heathkit Catalog.

Heathkit
Heath Company
A subsidiary of Zenith Electronics Corporation.

Mail coupon today to receive a FREE Heathkit Catalog featuring HERO 2000.
Mail to: Heath Company
Dept. 020-558
Benton Harbor, Michigan 49022

Name
Address
City
State
Zip

CIRCLE 204 ON FREE INFORMATION CARD

Industry's Most Popular Heavy-Duty DMMs... Now Even Better With Dual-Fuse Protection And A Tougher Case.

The tough just got tougher. When Beckman Industrial introduced heavy-duty DMMs tough enough to withstand accidental drops, input overloads and destructive environments, they quickly became the industry's most popular.

Now they're even tougher, thanks to the best dual-fuse protection you can buy and a new case. Covered by a one-year, no-fault guarantee against damage to the meter other than gross abuse.

For overloads, all voltage ranges can withstand transients up to 6KV. Resistance ranges are protected to 600 volts. Current ranges are protected by a 2 amp/600 volt fuse. The 10 amp range is protected by a 15 amp, 600 volt high energy fuse with 100,000 amp interrupt rating.

Our heavy-duty DMMs can withstand accidental drops, literally bouncing back for more, thanks to a new case made of Valox®, one of the most impact and corrosive chemical resistant thermoplastics around. Sensitive components are shock mounted for impact protection.

Even oil, water and industrial grime can't keep our heavy-duty DMMs away from the action. Everything is sealed with o-rings for maximum protection.

Of course, even the toughest DMM isn't much good if it can't deliver accuracy and the right combination of capabilities at the right price.

Check the HD DMM specs for yourself. Maximum voltage rating of 1500 volts DC, 1000 volts AC; tested to 40KHz; dual-test function; and exclusive INSTA-Ohm® capability, now with an audible beeper, to make your HD even easier to use.

What's more, you can select just the model you need without paying extra. Start with the economical HD-100 at $169.00 for solid, all around meter performance. Choose the HD-110 with continuity beeper. Or, the HD-110T that lets you select Fahrenheit or Celsius temperature measurement with a simple field adjustment, accurately measuring from -40°F to +199°F, and works with any k type thermocouple. It also has a measurement range of 32°F to 592°F, with the thermocouple provided.

You can even get the true RMS capability on the HD-130.

or with a 4 1/2 digit display required by the HD-140's accuracy.

Visit your local Beckman Industrial distributor today. Compare. And discover why the toughest are tougher than ever.
Superconductivity is the condition in which a metal loses all its electrical resistance. That normally happens only at extremely low temperatures, near absolute zero (−459.4 °F). If conductors could be made superconducting at practical temperatures, our whole electrical world could be revolutionized. Motors could be drastically miniaturized, computers could be made to operate at even higher speeds, and high-voltage transmission lines could be abandoned. In short, a complete change in most electrical techniques could take place.

Since superconductivity was discovered in 1911, in metals at 4 °C above absolute zero (4 ° Kelvin), the threshold of superconductivity has been raised in slow steps, largely through the discovery of new materials. In 1973, a maximum of 23 degrees Kelvin (−410 °F) was apparently obtained.

However, in January 1986, a breakthrough occurred. Superconductivity was obtained in a new class of materials at 30 ° Kelvin. This past December, a new record was set at 39 ° Kelvin. In February 1987, superconductivity at a temperature of 98 °K was reached using an oxide material composed of yttrium, barium, copper, and oxygen, a combination that would be a pretty fair resistor at ordinary temperatures.

Since then there have been reports of “indications” of superconductivity at 240 ° Kelvin (−28 °F) and even hints of “superconducting phenomena” at room temperature. Old theories have been abandoned, and many scientists believe that there is no theoretical temperature limit for superconductivity. Research is going on at a feverish pace, with new results being reported daily, or even faster. One report from Bell Labs bore the dateline: Update, noon, 3/19/87.
Sony answers Super VHS. Sony has fired an answering salvo in the latest phase of the war between VHS and Beta. And in announcing a new version of their Beta recording format, called ED Beta (Extended Definition Beta), Sony appears to have recaptured its long-held technological advantage over VHS.

Like Super VHS (Video News, June 1987), ED Beta provides a better-than-broadcast-quality picture. However, Sony's ED-Beta system is claimed to provide 500 lines of horizontal definition, as compared with about 430 for Super VHS. Also, ED Beta raises the luminance bandwidth to 6.8–8.6 MHz, as opposed to Super VHS's 5.4–7 MHz, with a deviation of 1.8 MHz (vs. Super VHS's 1.6). Where Super VHS uses a high-coercivity oxide tape, ED Beta uses metal particle tape in a standard Beta cassette. As in the Super-VHS system, the new Beta machines can play back the older conventionally recorded tapes and record tapes in the conventional (standard Beta) manner, but the new higher definition tapes can't be played on standard machines.

ED-Beta cassettes use newly developed TSS (Tilted Sputtered Sendust) heads and a tape stabilizer system to reduce jitter. Sony claims third- and fourth-generation copies made with ED Beta are almost indistinguishable from the original. Super-VHS machines will be available in the United States soon. Sony says ED Beta will be on the Japanese market this fall, but hasn't disclosed export plans. Both Super VHS and ED Beta were developed in anticipation of a new compatible high-resolution broadcasting system in Japan, which could be inaugurated as early as next year.

Next stop, S terminal. The back of an up-to-date TV set has begun to resemble a piece of Swiss cheese. There are video inputs and outputs, audio inputs and outputs, RGB terminals, etc. Now, add the "S" terminal to all of that. That's the name JVC gives to a two-connector input for the Y (luminance) and C (chrominance) output signals of the Super-VHS recorder. Of course, Super-VHS recorders will also have standard RF and video/audio outputs, but to get the super performance of the system, you will need a high-resolution set equipped with Y and C inputs. JVC, in fact, has already introduced four monitor-receivers with S terminals. Of course, a good monitor receiver without a Y/C input presumably can be modified to inject the super signal into the proper circuits. It's probably only a matter of time before we see Sony TV's with "ED" terminals.

Digital videodisc. A completely unexpected development brought the audience at a recent CD-ROM seminar to its feet with a spontaneous round of applause. A project initiated by RCA at what is now SRI's David Sarnoff Research Center (Radio-Electronics, June 1987) has resulted in what could be the first relatively low-cost digital-storage system for full-motion, full-resolution video pictures. Until now, pictures stored digitally on CD-ROM's have been stills, or at best, limited-motion, cartoon-like diagrams. The demonstration by GE/RCA made it clear that the developers' claim of one full hour or more of digital full-motion video plus audio on a standard five-inch optical Compact Disc is now attainable. The developers say that production models could be available for less than $1,000 within two years. As shown on a PC monitor, the system currently has a resolution of 256 × 200 pixels, which is nearly TV quality.

The DVI (Digital Video Interactive) system uses data compression to get full motion on the disc. Without compression, only 30 seconds of full-motion video would fit on a five-inch disc and it would require a full hour to play it back. The home-video potential of DVI is clear; Sarnoff Center engineers say, but they stress the interactive capabilities of the system. "This is much too powerful a medium to just put movies on," said one. The DVI breakthrough casts some doubt on the future of CD-I (Compact Disc-Interactive), for which standards have just been finalized to permit still video along with data and audio, as well as on Philips' CDV (Compact Disc Video), essentially a reinvention of the videodisc that provides five minutes of analog video and 20 minutes of digital audio on a Compact Disc (Radio-Electronics, March 1987).
CROSSOVER NETWORKS

I am putting together a speaker system and need information on the values for components in the crossover network. —S.P., Corona, NY.

A two-way crossover network consists of a low-pass filter to feed the woofer and a high-pass filter to feed the tweeter. The high- and low-frequency outputs are equal at the crossover frequency. The sharper the desired rate of attenuation outside the crossover point, the more complex the divider network becomes. The rate of attenuation is usually expressed in terms of decibels per octave. (An octave is the interval between two frequencies that have a ratio of 2:1 or 1:2. For example, if the crossover is at 1 kHz, one octave below is 500 Hz and one octave above is 2 kHz.)

If you are simply adding a tweeter to an existing system, you can use a capacitor in series with the tweeter as a high-pass network. The value of the capacitor in microfarads is determined from:

\[C = \frac{79,600}{(f_c \times R_s)} \]

where \(f_c \) is the crossover or cutoff frequency and \(R_s \) is the speaker impedance. The simplest crossover network is shown in Fig. 1. There, we have a capacitor feeding the high frequencies to the tweeter and an inductor feeding the lows to the woofer. That circuit is a single element of a constant-resistance type filter. The values of the inductor in millihenries and the capacitor in microfarads are easily found from the following equations:

\[L = \frac{(159 \times R_w)}{f_c} \]
\[C = \frac{159,000}{(f_c \times R_t)} \]

where \(R_w \) is the impedance of the woofer.

Now test and restore every CRT on the market . . . without ever buying another adaptor socket or coming up embarrassingly short in front of your customer . . . or your money back.

Have you ever?

Thrown away a good TV CRT, cata display CRT, or scope CRT that could have been used for another two or three years because you had no way to test or restore it?

Lost valuable customers because you advised them that they needed a new CRT when another technician came along and restored the CRT for them?

Lost the profitable extra $35 or more that you could have gotten for restoring a CRT while on the job and locked in the profitable CRT sale later?

Avoided handling profitable trade-ins or rentals because you were afraid you'd have to replace the picture tube when you could have restored it?

Had a real need to test a CRT on the job, but didn't have the right adaptor socket or setup information in your setup book?

If any of these things have happened to you, CALL TODAY, WATS FREE, 1-800-843-3338, for a FREE 15 day Self Demo.

"BEAM BUILDER" is a trademark of Sencore, Inc.
V-1150
DC TO 150MHz, Quad Channels, Delayed Sweep
$2550.
Save $400!

- CRT Readout Functions: DVM, Freq, Counter, Events Counter, Cursor Readout, Ground Level Indicator, Comments Display, Panel Settings Display.
- CRT: 6" rectangular with 20 kV Potential
- X-Y Operation: (CH1:X, CH2:Y) 3° or less from DC to 1MHz
- Weight: 10kg (22 lb)

V-223 $695. Save $100!
DC to 20MHz, Dual Channels, Delayed Sweep
$847. Save $150!

- CRT: 6" rectangular with 2kV Potential
- X-Y Operation (CH1:X, CH2:Y): 3° or less from DC to 100kHz
- Weight: 5kg (11 lb)

V-209 DC to 20MHz, Dual Channels
$465. Save $150!

- CRT: 6" rectangular with 1.5kV Potential
- X-Y Operation (CH1,X, CH2,Y): 3° or less from DC to 100kHz
- Weight: 7kg (15.5 lb)

V-212 $515. Save $200!

- CRT: 6" rectangular with 2kV Potential
- X-Y Operation: (CH1:X, CH2:Y) 3° or less from DC to 1MHz
- Weight: 6kg (13.3 lb)

V-222
- Same as above, but with CH1 output and DC offset voltage monitor outlet available for external counter or DVM.

VC-6020
$1750.
Save $200!

1MHz Sampling, Dual Channels
- Usable as both a conventional oscilloscope and a digital storage scope.
- CRT: 6" rectangular with 2kV Potential

POLAROID®
DS-34 CAMERA
$280.

- Instant Hard Copy From Oscilloscopes
- 5", 6", and 7" Hoods (Available separately @ $51 ea. Please Specify size)
- Pistol Grip For Ease of Operation
- Works on Any Make of Oscilloscope
- Three Full Year Warranty

V-1100A DC to 100MHz, Quad Channels, Delayed Sweep
$240. Save $250!

V-680 DC to 60MHz, Triple Channels, Delayed Sweep
$1340. Save $150!

V-422 DC to 40MHz, Single Time Base Delayed Sweep
$745. Save $250!

V-1050F DC to 100MHz, Quad Channels, Delayed Sweep
$1445. Save $150!

V-650F DC to 60MHz, Triple Channels, Delayed Sweep
$1070. Save $125!

V-422 DC to 40MHz, Dual Channels
$795. Save $130!

V-509 DC to 50MHz, Dual Channels, Delayed Sweep
$1195. Save $250!

V-085G DC to 5MHz, Dual Channels
$838. Save $100!

V-134 DC to 10MHz, Dual Channels
$1420. Save $200!

V-425 DC to 40MHz, Dual Channels
$845. Save $150!

WM. B. ALLEN SUPPLY COMPANY

ALLEN SQUARE
The 300 Block • North Rampart Street
New Orleans • Louisiana 70112-3106
NATIONWIDE 800 535-9593
LOUISIANA 800 • 462 - 9520
NEW ORLEANS (504) 525 - 8222
- American Express • Visa • MasterCard •
wooler, R_1 is the impedance of the tweeter, and f_c is the crossover frequency in hertz. The network's attenuation is 6 dB per octave.

Two types of filters are used in crossover networks. One is the M-derived filter, which, in its basic form, has a rolloff at 12 dB per octave. Each half-section has two capacitors and two inductors. The inductors have different values, as do the capacitors. The other type of filter is the constant-resistance type. We are showing the latter here because the values of both capacitors are equal; the same is true of the two inductors. Both the constant-resistance and M-derived filters can be arranged so the speakers are fed either in series or in parallel.

Figure 2 shows the four most common constant-resistance networks. Series and parallel quarter-section filters with 6-dB/octave rolloffs are shown in Figs. 2-a and 2-b, respectively; half-sections with 12-dB/octave rolloffs are shown in Figs. 2-c and 2-d, respectively. The values of the inductors in henries and capacitors in farads in those networks are as follows:

- $L_1 = R_{t} (2\pi f_c)^{-1}$
- $L_2 = R_{t} (2\sqrt{2}\pi f_c)^{-1}$
- $L_3 = (\sqrt{2} R_{t}) (2\pi f_c)^{-1}$
- $C_1 = 1/(2\pi f_c R_{t})$
- $C_2 = 1/(2\sqrt{2}\pi f_c R_{t})$
- $C_3 = 1/(2\sqrt{2}\pi f_c R_{t})$

where f_c is the crossover frequency in hertz and R_{t} is the speaker (and input) impedance in ohms.

Your choice of a series or parallel arrangement will probably be determined by component availability and cost. For example, when we compute the values for

Walk “tough dog” troubles out of any TV & VCR in half the time... or your money back

with the exclusive, patented, VA62 Universal Video Analyzer... $3,295

Would you like to?

Reduce analyzing time: Isolate any problem to one stage in any TV or VCR in minutes, without breaking a circuit connection, and proven signal substitution method of troubleshooting?

Cut costly callbacks and increase customer referrals by completely performance testing TVs & VCRs before they leave your shop? Own the only analyzer that equips you to check all standard and cable channels with digital accuracy? Check complete, RF, IF, video and chroma response of any chassis in minutes without taking the back off the receiver or removing chassis plus set traps dynamically right on CRT too? Simplify alignment with exclusive multiburst pattern?

Reduce costly inventory from stocking yokes, flybacks, and other coils and transformers, for substitution only, with the patented Ringing Test. Run dynamic proof positive test on any yoke, flyback, and integrated high voltage transformer... in- or out-of-circuit?

Protect your future by servicing VCRs for your customers before they go to your competition? Walk out “tough dog” troubles in any VCR chrominance or luminance circuit - stage-by-stage - to isolate problems in minutes? Have proof positive test of the video record play heads before you replace the entire mechanism?

Increase your business by meeting all TV and VCR manufacturers' requirements for profitable warranty service work with this one universally recommended analyzer?

To prove it to yourself, CALL TODAY, WATS FREE, 1-800-843-3338, for a FREE Self Demo... or learn how the VA62 works first by calling for your free simplified operation and application instruction guide, worth $10.00.
Increase your knowledge about all aspects of electronics

An absolutely no-risk guarantee.

Select 5 Books for only $3.95 and get a Free Gift!

Membership Benefits • Big Savings. In addition to this introductory offer, you keep saving substantially with members' prices of up to 50% off the publishers' prices. • Bonus Books. Starting immediately, you will be eligible for our Bonus Book Plan, with savings of up to 80% off publishers' prices. • Club News Bulletins. 14 times per year you will receive the Book Club News, describing all the current selections—mains, alternates, extras—plus bonus offers and special sales, with hundreds of titles to choose from. • Automatic Order. If you want the Main Selection, do nothing and it will be sent to you automatically. If you prefer another selection, or no book at all, simply indicate your choice on the reply form provided. As a member, you agree to purchase at least 3 books within the next 12 months and may resign at any time thereafter. • Ironclad No-Risk Guarantee. If not satisfied with your books, return them within 10 days without obligation! • Exceptional Quality. All books are quality publishers' editions especially selected by our Editorial Board.

Free guide to mail order sources for electronic parts and components

Value! A $6.95 Value!

Please accept my membership in the Electronics Book Club and send the 5 volumes circled below, plus my FREE copy of The Electronics Buyer's Guide (345P), billing me $3.95 plus shipping and handling charges. If not satisfied, I may return the books within 10 days without obligation and have my membership canceled. I agree to purchase at least 3 books at regular Club prices (plus shipping/handling) during the next 12 months, and may resign at any time thereafter.

Name ____________________________ Address ____________________________
City ____________________________ State/Zip ____________________________ Phone ____________________________

Valid for new members only. Foreign applicants will receive ordering instructions. Canada must remit in U.S. currency. This order subject to acceptance by the Electronics Book Club.

10 CIRCLE 191 ON FREE INFORMATION CARD
the inductors and capacitors in the 12-dB half-section networks, we find that the values of the capacitors in the series configuration are twice that of those in the parallel configuration. On the other hand, the values of the inductors in the series configuration are half that of the inductors in the parallel configuration. If you've priced enamelled copper wire lately (used for winding the inductors), you'll realize that economy will probably dictate using the series network.

Ideally, the capacitors should be paper or oil-filled types with a tolerance not greater than 10%. Practically, we use non-polarized or back-to-back electrolytics.

The inductor must be wound with fairly heavy wire, such as 16 or 18 gauge, so its resistance will be negligible when compared to the speaker impedance.

Exclusive, triple patented dynamic cap and coil analyzing . . . guaranteed to pinpoint your problem every time or your money back

The “Z METER” is the only LC tester that enables you to test all capacitors and coils dynamically — plus, it’s now faster, more accurate, and checks Equivalent Series Resistance (ESR) plus small wire high resistance coils.

Eliminate expensive part substitution and time-consuming shotgunning with patented tests that give you results you can trust every time. Test capacitor value, leakage, dielectric absorption, and ESR dynamically; with up to 600 volts applied for guaranteed 100% reliable results — it’s exclusive — it’s triple patented.

Save time and money with the only 100% reliable, in- or out-of-circuit inductor tester available. Dynamically test inductors for value, shorts, and opens, automatically under “dynamic” circuit conditions.

Reduce costly parts inventory with patented tests you can trust. No more need to stock a large inventory of caps, coils, flybacks, and IIVTs. The “Z METER” eliminates time-consuming and expensive part substituting with 100% reliable LC analyzing.

Turn chaos into cash by quickly locating transmission line distance to opens and shorts to within feet, in any transmission line.

Test troublesome SCRs & TRIACs easily and automatically without investing in an expensive second tester. The patented “Z METER 2” even tests SCRs, TRIACs, and High-Voltage Diodes dynamically with up to 600 volts applied by adding the new SCR250 SCR and TRIAC Test Accessory for only $148 or FREE OF CHARGE on Kick Off promotion.

To try the world’s only Dynamic LC Tester for yourself, CALL TODAY, WATS FREE, 1-800-843-3338, for a FREE 15 day Self Demo.

Call Today Wats Free 1-800-843-3338

SENCORE
3200 Sencore Drive
Sioux Falls, SD 57107
605-339-0100 In SD Only

innovatively designed
with your time in mind.

CIRCLE 186 ON FREE INFORMATION CARD
OLD CAR RADIOS
After reading your article, "New Life for Old Car Radios," in the April 1987 issue of Radio-Electronics, I was inspired to make use of an old AM/FM cassette deck that had been sitting in my closet idly for over a year.
I integrated the unit into the shelf of a computer desk, using an old pair of bookshelf speakers, a 12-volt power supply from my junkbox, mounting brackets that had come with the radio, and a 16-inch rubber car antenna that I purchased for less than $6.00.
The cassette deck was mounted on the underside of the top shelf of the desk. The antenna was mounted through a hole that was drilled in a rear corner of that shelf. The speakers were placed on top of the shelf. The setup provides me with an excellent sound system that takes up little space at my computer workstation.

MICHAEL K. MIZOTE
Gardena, CA

THE R-E ROBOT
I have enjoyed the "Build the R-E Robot" series that is currently appearing in Radio-Electronics. In fact, I have just re-subscribed, after an absence of some years, because of it. I've been a roboticist since I was a boy, long before it was fashionable, and I'm currently involved with developing a mobile robot for artificial intelligence research. I also teach robotics for the State University of New York, on a part-time basis. Now for a few comments about Mr. Sarns' design, as presented to date.
Automated equipment is more dangerous than non-automated equipment, because it can start—under computer control—without warning. Program bugs or electro/mechanical failures can result in runaway machines, which (as Mr. Sarns correctly points out) can cause a lot of damage. I would rec-
ommend the addition of the following safety features to the design:

- A clearly marked and easily accessible cutoff switch that would be in series with the motor(s)' power bus. This will allow quick disabling of a runaway machine without interrupting power to the computer/memory.
- A motor-bypass switch on each motorized subassembly that would redirect motor power to a set of forward/reverse/on/off indicators. That is invaluable for troubleshooting and program debugging.
- Lead acid batteries pose three risks—hydrogen gas production during charge/discharge cycles; very high voltage-discharge rates in the event of a short circuit; and finally, the acid itself. You should ventilate the battery compartment, fuse the main power bus at the battery post, and line the battery compartment with an acid-resistant material. Plastic boxes are available at low cost. It may be desirable to add baking soda to the packing material in the battery compartment to neutralize spilled acid. (I can assure you, from personal experience, that all mobile robots turn over sooner or later.)

Also, any machine that uses a chain or belt drive, as does the R-E Robot, is a potential hazard. A 1/4-horsepower motor geared down to 12:1 can sever young fingers caught between the belts/chain and pulleys/sprockets. Please put guards over the drive trains. They are easy to fashion and will add mere ounces to the machine.

Thank you for Radio-Electronics' continued interest in robotics. I hope that my comments here will not be taken as overly critical; Mr. Sarns' overall design has been excellent, and I am looking forward to reading the rest of the series.

JOSEPH A. COPPOLA
Sherrill, NY

Mr. Coppola is absolutely correct. The R-E Robot was designed as a heavy-duty workhorse quite unlike most hobby robots. The standing joke here at Vesta is to equip a unit with over-sized, knobby tires and take pictures of it crushing Hero 2000’s. Seriously though, the safety issues cannot

Analyze defective waveforms faster, more accurately, and more confidently — every time or your money back

If you value your precious time, you will really want to check out what the exclusively patented SC61 Waveform Analyzer can do for you. 10 times faster, 10 times more accurate, with zero chance of error.

End frustrating fiddling with confusing controls. Exclusive ultra solid ECL balanced noise cancelling sync amplifiers, simplified controls, and bright blue dual trace CRT help you measure signals to 100 MHz easier than ever.

Accurately and confidently measure waveforms from a tiny 5 mV all the way to a whopping 3,000 V without hesitation with patented 3,000 VPP input protection — eliminates expensive “front end” repairs and costly equipment downtime.

Make only one circuit connection and push one button for each circuit parameter test. You can instantly read out DC volts, peak-to-peak volts and frequency 100% automatically with digital speed and accuracy. It’s a real troubleshooting confidence builder.

Confidently analyze complex waveforms fast and easily. Exclusive Delta measurements let you intensify any waveform portion. Analyze glitches, interference signals, rise or fall times or voltage equivalents between levels; direct in frequency or microseconds.

Speed your digital logic circuit testing. Analyzing troublesome divide and multiply stages is quicker and error free — no time-consuming graticule counting or calculations. Simply connect one test lead to any test point, push a button, for test of your choice, for ERROR FREE results.

To see what the SC61 can do for your troubleshooting personal productivity and analyzing confidence, CALL TODAY. WATS FREE, 1-800-843-3338, for a FREE 15 day Self Demo.

Call Today Wats Free 1-800-843-3338

SENCORE
3200 Sencore Drive
Sioux Falls, SD 57107
605-339-0100 In SD Only

Innovatively designed with your time in mind.
be overstated. Mr. Coppola's suggestions are well taken. We have added a main power switch to each of our units that shuts everything off. One solution to the risks posed by using lead-acid batteries is to substitute sealed gel type batteries. However, they cost about 5 to 10 times more than the conventional variety. I agree, all mobile robots do turn over. Sometimes it's simply a result of not tightening the axle retaining bolts sufficiently (one learns the ramifications fast!)

The external drive system is dangerous—old fingers may be equally in jeopardy. I know of one company (Micro K Systems) that is considering offering a set of vacuum formed chain guards.

Perhaps I have not stressed the safety issues as much as I should have. I have assumed that if you, as a robot hobbyist, are intelligent enough to assemble, program, and test the robot, most of the safety issues will be self-evident.

Many of the issues raised relate to the difference between a project and a product. A product with the price/performance advantages that the K-E Robot offers would be impossible. But as a project, one is not forced to protect the "innocent" with expensive safety features that are not needed in your specific application, and the basic cost is kept down.

It is also worth pointing out that the series, from the beginning, has encouraged robot experimenters to use our robot only as a guide or an example. We are most happy when we hear of builders modifying our basic design.—Steven E. Sarns

THE "FOX-HOLE" RADIO

As a follow-up to the razor-blade detector discussions in "Letters" in December 1986 and April 1987, I thought that you and the readers might be interested in the following item about Lt. M. L. Rupert of Springfield, MO, who made a most ingenious radio during World War II. The information, including part of a letter from Lt. Rupert, is on a plaque that has been hanging on a wall at the Armed Forces Radio and Television Service as long as anyone can remember. The letter reads:

"...Your Marlin double-edged blade is used to make a foxhole radio for the Yank infantrymen on this beachhead. All that's needed is a coil of wire, insulated, a safety pin, a headset, and a used blade. The blade is tucked down, with a wire attached to it and going to one side of the coil and on to the aerial. The other side of the coil goes to the ground and to one side of the headset. A wire from the other side of the headset goes to a safety pin driven into the wood, leaving the other end of the pin free to be moved across the under part of the Marlin blade to find your station. Reception is very good and at night we get several stations including the Berlin Sally propaganda put out in English."

Have any of your readers seen any earlier references to the "razor detector?"

THOMAS P. SMITH ICI-USN
Sun Valley, CA
If you think of spectrum analyzers as instruments that cost tens of thousands of dollars and are available only when home on— are hardly ever moved from—a laboratory test bench, you better think again! The TVRO industry has fueled many advances in microwave components. The same technology and components that have helped reduce the cost of microwave equipment to drop dramatically during the recent decade has benefited test equipment for microwave frequencies as well. We recently had the opportunity to inspect one of the best analyzers: the PSA-35A portable spectrum analyzer from Avcom of Virginia, Inc. (500 South Lake Blvd., Richmond, VA 23235).

A spectrum analyzer is a scanning radio receiver that displays the signals present in a given part of the RF spectrum. It can be an extremely valuable tool for a TVRO installer. Using it, a technician can greatly speed up the dish-aiming process and polarizer adjustment. He can measure the performance of LNA’s and downconverters, troubleshoot cabling and connector problems, and even spot Terrestrial Interference (TI) problems. Before we look at how the analyzer can be put to work in practical applications, let’s take a look at its general specifications and features.

The PSA-35A offers 5 low bands of coverage from less than 10 MHz to greater than 1500 MHz, and a single high band from 3.7 to 4.2 GHz. The low bands are configured as follows:

- a) less than 10 MHz to 500 MHz
- b) 270 MHz to 770 MHz
- c) 400 to 900 MHz
- d) 950 to 1450 MHz

The fifth low-frequency band can be preset by the user to cover any 500-MHz band between 300 MHz and 1500 MHz (or up to 1900 MHz on special order).

The PSA-35A offers two input connectors: The low band connector is a BNC type, and the high band connector is an N type. Because it is a TVRO service tool, the continued on page 20
"If you're going to learn electronics, you might as well learn it right!"

"Don’t settle for less. Especially when it comes to career training... because everything else in your life may depend on it. That’s why you ought to pick CIE!"

Stephen J. Simcic
Vice President, Academic Affairs
Meet the Electronics Specialists.

When you pick an electronics school, you're getting ready to invest some time and money. And your whole future depends on the education you get in return.

That's why it makes so much sense to go with number one... with the specialists... with CIE!

There's no such thing as bargain education.

If you talk with some of our graduates, chances are you'd find a lot of them shopped around for their training. Not for the lowest priced but for the best. They pretty much knew what was available when they picked CIE as number one.

We don't promise you the moon. We do promise you a proven way to build valuable career skills. The CIE faculty and staff are dedicated to that.

When you graduate, your diploma shows employers you know what you're about. Today, it's pretty hard to put a price on that.

Because we're specialists we have to stay ahead.

At CIE, we've got a position of leadership to maintain. Here are some of the ways we hang onto it:...

Programmed Learning

That's exactly what happens with CIE's Auto-Programmed Lessons. Each lesson uses famous "programmed learning" methods to teach you important principles. You explore them, master them completely, before you start to apply them. You thoroughly understand each step before you go on to the next.

You learn at your own pace.

And, beyond theory, some courses come fully equipped with electronics gear (the things you see in technical magazines) to actually let you perform hundreds of "hands-on" experiments.

Experienced specialists work closely with you.

Even though you study at home, you are not alone! Each time you return a completed lesson, you can be sure it will be reviewed, graded, and returned with appropriate instructional help.

When you need additional individual help, you get it fast and in writing from the faculty technical specialist best qualified to answer your question in terms you can understand.

Pick the pace that's right for you.

CIE understands people need to learn at their own pace. There's no pressure to keep up... no slow learners hold you back. If you're a beginner, you start with the basics. If you already know some electronics, you move ahead to your own level.

Enjoy the promptness of CIE's "same day" grading cycle.

When we receive your lesson before noon Monday through Saturday, we grade it and mail it back the same day. You find out quickly how well you're doing!

CIE offers you an Associate Degree.

One of the best credentials you can have in electronics — or any other career field — is a college degree.

That's why CIE gives you the opportunity to earn an Associate in Applied Science in Electronics Engineering Technology. Any CIE career course can offer you credit toward the degree — more than half of the number needed in some cases.

"Cleveland Institute of Electronics is the only accredited institution of higher learning offering an Associate Degree program with tuition based on actual study time used. The faster you complete your degree assignments, the less your overall tuition."

Steve Simcic
Vice-President Academic Affairs

Which CIE Training fits you?

Beginner? Intermediate? Advanced? CIE home study courses are designed for ambitious people at all entry levels. People who may have:

1. No previous electronics knowledge, but do have an interest in it;
2. Some basic knowledge or experience in electronics;
3. In-depth working experience or prior training in electronics.

You can start where you fit and fit where you start, then go on from there to your Diploma, Associate Degree, and career.

Today is the day. Send now.

Fill in and return the postage-free card attached. If some ambitious person has removed it, cut out and mail the coupon. You’ll get a FREE school catalog plus complete information on independent home study. For your convenience, we’ll try to have a CIE representative contact you to answer any questions you may have.

Mail in the coupon below, or, if you prefer, call toll-free 1-800-321-2155 (in Ohio, 1-800-523-9109).
A new Storage Oscilloscope with 5 MHz sampling rate.

This instrument offers all the outstanding features of a state-of-the-art 20 MHz realtime oscilloscope. In addition, it provides digital storage capability for signals between 50s and 5μs duration. Maximum memory is 1024x8 bits for each channel. A Dot Join feature permits linear interpolation between sample points. An X-Y recorder option and an optional GPIB interface allow full integration in automatic test systems.

In many cases, the HM 205-2 can easily replace considerably more expensive digital storage oscilloscopes.

Price incl. 2 Probes 888,- $

Demonstration of the excellent transmission performance of the HM 205-2 in analog mode with a fast risetime 1 MHz square wave signal. All HAMEG Oscilloscopes are specified to have less than 1% aberrations and overshoot.

This screen photo shows a 20 kHz sine wave signal in storage mode. The screen resolution of 1024 x 256 points offers an outstanding display that can easily be compared to those found on analog instruments.

Write or call toll free 8002471241

HAMEG Instruments

HM 205-2

2 year warranty

connectors can supply (at the flick of a front-panel switch) +18 volts DC (Which is required by most LNA's and block downconverters).

Signals are displayed behind a 10 x 7 graticule. The horizontal (frequency) scale can be adjusted using the continuously variable Scan control from 1 MHz per division to 50 MHz per division. In other words, you could expand the entire display to show a 10 MHz bandpass, or compress it to show the signals in a 500 MHz bandpass—all the transponders on a given satellite, for example. The vertical (amplitude) scale can be either 10 dB per division or 2 dB per division.

Using the analyzer

A TVRO installation technician could use the PSA-35AA in a number of ways—even before the actual installation. The first step in any TVRO installation procedure is a site survey, which determines the suitability of a given site for installation. A clear view of the southern horizon is not the only factor determining site suitability; the site must also be free of interference from terrestrial microwave links. That's where the PSA-35A comes in. When used along with an auxiliary feedhorn that Avcom calls the THS (Terrestrial Interference Survey Horn), the spectrum analyzer can indicate the presence or absence of TH.

Knowing whether TH is present before a dish is installed can save an installer a lot of headaches and a lot of extra work. In many cases, a suitable site can be found not too far from the first, but with some trees, buildings, or other obstruction blocking the TH.

Once a site is found, and a dish and feedhorn are installed, a spectrum analyzer can again make the job easier. At a glance, the analyzer can show the signals in a given band and their strengths. It can make homing in on the Clarke belt a breeze. And because the spectrum analyzer is so sensitive, using it to aim the dish is much more reliable than using a receiver and a monitor. Small adjustments of the dish that would make little difference on the picture seen with a strong transponder would be seen quite dramatically on the display, especially when the unit is switched to an amplitude sensitivity of 2 dB per division. The result is better overall TVRO operation.

The spectrum analyzer again shows its strengths when it's time to align the polarizer. You can display the outputs of several transponders on the screen and watch the cross-polarized transponders null out.

The manual included with the PSA-35A is written directly for the TVRO installer. Its application section gives several excellent examples of how to use the instrument in TVRO installation and service. It also includes several pre-cut acetate sheets that can be slipped directly over the display so that the signal and switch settings can be traced and kept on record. It also includes a form that Avcom calls a SASAR (Spectrum Analyzer System Analysis Report) for recording all pertinent information of an installation. It problems develops in the future, a comparison of SASAR measurements could allow the service man to quickly solve the problem.

The PSA-35A is an excellent servicing tool. It has a suggested list price of $1965. If you are involved in TVRO service, you can expect to recoup the cost quickly.
NEW PRODUCTS

HI-FI VHS VCR, the model VR6600F, is a front-loading recorder and it offers two video heads with HQ circuitry for virtually noise-free pictures; hi-fi stereo audio recording/playback; built-in MTS decoder for stereo-TV broadcasts; and 110-channel, cable-compatible, frequency-synthesized tuning. The recorder also features a 14-day/6-event programmable timer, three-speed record and playback functions, auto rewind, picture search, pause/still, and one-touch recording.

The model VR6600F measures 3½ inches high, by 16½ inches wide, by 13¾ inches deep. The suggested retail price is $649.95.—Samsung Electronics, America, 301 Mayhill Street, Saddle Brook, NJ 07662.

SURGE PROTECTOR, the model DE-LSP, is designed to protect valuable video equipment against induced transients from lightning. The simple-to-install in-line device is designed with extremely low capacitance circuitry for minimal insertion loss; there are external ground connections for extra protection against high-potential surges from chassis ground to earth ground.

The model DE-LSP is priced at $92.00.—Diamond Electronics, Inc., P.O. Box 200, Lancaster, OH 43130.

SCANNER, the model R1090, is 45-channel and includes bank scanning, weather scan, and a priority control. It is designed for beginners as well as veteran scanning enthusiasts, and covers more than 15,000 frequencies from six of the most popular VHF and UHF bands. Coverage includes VHF low (30-50 MHz), VHF amateur (144-148 MHz), VHF high (148-174 MHz), UHF amateur (440-450 MHz), UHF (450-470 MHz), and UHF-T (470-512 MHz). 45 popular frequencies are pre-programmed at the factory, so that the unit can be operated right out of the box.

The 70 Series Multimeter: The Shining Standard By Which Others Are Measured

These multimeters give you solid value for your money. A 3-year warranty keeps you from paying the price over and over for lesser quality meters.

Choose from either the basic 73 or the feature-rich 75 and 77. You’ll find the features you need at the price you can afford. Touch F-old™ for holding readings. Audible tones for continuity checks. Autoranging for simple operation.

Uncompromised quality at competitive prices. Get your hands on a 70 Series Multimeter at leading electronics distributors nationwide. Or call toll free 1-800-227-3600, ext. 223 for more information.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

FLUKE 73, 75, 77

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>$75</td>
<td>Accuracy: 3% and 4% basic accuracy, Audible continuity, Test leads</td>
</tr>
<tr>
<td>75</td>
<td>$100</td>
<td>Range: 200 ohms, 2k ohms, 20k ohms</td>
</tr>
<tr>
<td>77</td>
<td>$200</td>
<td>Range: 2M ohms, 20M ohms, 200M ohms</td>
</tr>
</tbody>
</table>

Touch F-Old™ for holding readings. Autoranging for simple operation. Uncompromised quality at competitive prices.

© 1987 Fluke
CIRCLE 121 ON FREE INFORMATION CARD
TAKE ANY ONE OF THESE HANDBOOKS — when you join the ELECTRONICS AND

- your one source for engineering books from over 100 different publishers
- the latest and best information in your field
- discounts of up to 40% off publishers' list prices

ANTENNA ENGINEERING HANDBOOK, Second Edition
Edited by R. C. Johnson and H. Jasik
- 1,468 pages, 946 illustrations
- covers all types of antennas currently in use with a separate chapter devoted to each
- provides detailed data on physical fundamentals, operating principles, design techniques, and performance data
- up-to-the-minute information on antenna applications
- a must for those involved in any phase of antenna engineering

STANDARD HANDBOOK OF ENGINEERING CALCULATIONS, Second Edition
By T. G. Hicks
- 1,068 pages, 793 illustrations, 199 tables
- puts more than 1,100 specific calculation procedures at your fingertips
- every calculation procedure gives the exact, numbered steps to follow for a quick, accurate solution
- virtually all procedures can be easily programmed on your PC or calculator
- uses U.S.C.S. and SI units in all calculation procedures

TELEVISION ENGINEERING HANDBOOK
Edited by K. B. Benson
- 1,478 pages, 1,091 illustrations
- packed with all the technical information today's engineer needs to design, operate, and maintain every type of television equipment
- extensive coverage of receivers, broadcast equipment, video tape recording, video disc recording, and the latest technological advances
- provides television system and industry standards for the U.S. and other countries
- the most comprehensive book on the subject of television engineering
4 reasons to join today!

1. **Best and newest books from ALL publishers!** Books are selected from a wide range of publishers by expert editors and consultants to give you continuing access to the best and latest books in your field.

2. **Big savings!** Build your library and save money, too! Savings range up to 40% off publishers' list prices.

3. **Bonus books!** You will immediately begin to participate in our Bonus Book Plan that allows you savings up to 70% off publishers' prices of many professional and general interest books.

4. **Convenience!** 14-16 times a year (about once every 3-4 weeks) you receive the Club Bulletin FREE. It fully describes the Main Selection and alternate selections. A dated Reply Card is included. If you want the Main Selection, you simply do nothing — it will be shipped automatically. If you want an alternate selection — or no book at all — you simply indicate it on the Reply Card and return it by the date specified. You will have at least 10 days to decide. If, because of late delivery of the Bulletin you receive a Main Selection you do not want, you may return it for credit at the Club's expense.

As a Club member you agree only to the purchase of three additional books during your first year of membership. Membership may be discontinued by either you or the Club at any time after you have purchased the three additional books.

<table>
<thead>
<tr>
<th>Publisher's Price $82.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODERN ELECTRONIC CIRCUITS REFERENCE MANUAL</td>
</tr>
<tr>
<td>By J. T. Markus</td>
</tr>
<tr>
<td>• 1.26 x 2 pages, 5.666 circuit diagrams</td>
</tr>
<tr>
<td>• a handy, desktop reference with 103 chapters organized by "family" grouping</td>
</tr>
<tr>
<td>• filled with predesigned and use-tested circuits to save you production time and money</td>
</tr>
<tr>
<td>• includes concise summaries of all the recent applications notes, journal articles, and reports on each circuit, efficiently organized and indexed for the practicing engineer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Publisher's Price $89.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELECTRONICS ENGINEERS' HANDBOOK, Second Edition</td>
</tr>
<tr>
<td>By D. G. Fink and D. Christiansen</td>
</tr>
<tr>
<td>• 2.12 x 2 pages, 2,189 illustrations</td>
</tr>
<tr>
<td>• unrivaled for its completeness, authority, reliability and timeliness</td>
</tr>
<tr>
<td>• 80% new or extensively revised</td>
</tr>
<tr>
<td>• prepared by a staff of 173 expert contributors</td>
</tr>
<tr>
<td>• brings you more than 2,000 formulas and equations</td>
</tr>
<tr>
<td>• has over 2,500 bibliographic entries</td>
</tr>
</tbody>
</table>

FOR FASTER SERVICE IN ENROLLING CALL TOLL FREE 1-800-2-MCGRAW

<table>
<thead>
<tr>
<th>I wish to order the following book</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ANTENNA ENGINEERING HANDBOOK (322 910)</td>
</tr>
<tr>
<td>2. MODERN ELECTRONIC CIRCUITS REFERENCE MANUAL (404 461)</td>
</tr>
<tr>
<td>3. ELECTRONICS ENGINEERS' HANDBOOK (209 812)</td>
</tr>
<tr>
<td>4. TELEVISION ENGINEERING HANDBOOK (527 700)</td>
</tr>
<tr>
<td>5. STANDARD HANDBOOK OF ENGINEERING CALCULATIONS (287 35X)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name: _______________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address: __________</td>
</tr>
<tr>
<td>City State Zip: __________</td>
</tr>
</tbody>
</table>

This offer expires June 30, 1987.

<table>
<thead>
<tr>
<th>McGraw-Hill Book Clubs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronics and Control Engineers' Book Club</td>
</tr>
<tr>
<td>11 West 19th Street</td>
</tr>
<tr>
<td>4th floor</td>
</tr>
<tr>
<td>New York, NY 10011</td>
</tr>
</tbody>
</table>

Please enroll me as a member of the Electronics and Control Engineers' Book Club and send me the book I have chosen for only $14.95; plus local tax, postage, and handling. I agree to purchase a minimum of three additional books during my first year as outlined under the Club plan described in this ad. Membership in the club is cancellable by me or McGraw-Hill any time after the three book purchase requirement has been fulfilled. A shipping and handling charge is added to all shipments.
The COMMUNICATIONS REPLACEMENT

The Dependable Pulse of CRYSTEK CRYSTALS

"off automated components manufacturer"

Offering FREE Crystek Crystals offers their P.O. 2351/2371

From tart CIRCLE CRYSTEK TOLL FREE

ELECTRONIC CB Monitors/Scanners

Aircraft Marine Pagers Mobile/2-way/Channel

(813) 936-2109

Experimenter HObbiest Medical Test/Measurement

Computers/Modems Micro -Processor Control

(For example, “Bank One” could include all common police

frequencies; “Bank Two” can include fire channels, etc.) All four

banks can be scanned at once, or individual banks can be scanned

to speed up the scanning cycle. When the “weather scan” key is

pressed, the scanner automatically searches all National

Get A Complete Course In

ELECTRONIC ENGINEERING

8 volumes, over 2000 pages, including all necessary math and

physics. 29 examinations to help you gauge your personal pro-

gress. A truly great learning experience.

Prepare now to take advantage of the growing demand for

people able to work at the engineering level.

Ask for our brochure giving complete details of content. Use

your free information card number, or write us directly. $99.95.

Postage Included. Satisfaction guaranteed or money refunded.

Weather Service frequencies to find the active frequency in a few

seconds.

The model RF-36 is designed for FM-stereo, VHF- and UHF-TV, or police-scanner

applications. Features include 50- to 950-MHz bandwidth, 12-dB

signal gain, 75-ohm output, and 117-volt AC operation.

The unit’s small size and con-struction allow it to be remotely

mounted, hidden, or placed on a shelf. The model RF-36 is priced at

$79.95.—Rhoades National Corp., P.O. Box 1316 Dept. ZN9, Colum-

bria, TN 38402.

CABLE CHECKER, the model

DX-50, is pocket-sized, and in-

stantly evaluates the integrity of any 2, 3, or 6-wire RJ-11 modular

telephone or data cables. To use, simply plug in both cable ends and

examine the three two-color LED’s on the front panel to determine the

integrity of the cable pairs. Si-
multaneously, the color of the LED's determine whether the cable is properly wired for data use with straight-through pinning (lights red), or for voice communication with crossed pinning (lights green). The high-impact case is 2.4" × 3.8" × 1" and operates from one alkaline 9-volt battery (supplied). The model DX-50 is priced at $26.95.—L-Com Data Products, 1755 Osgood Street, North Andover, MA.

DIGITAL THERMOMETER, the model DT-160, is pocket-sized and, in addition to its extendable temperature probe, has a temperature sensor mounted on its front panel. That allows the user to switch between reading room temperatures and probe temperatures in seconds. There is also a built-in clock that displays time when selected, and the unit is programmable at two individual temperature limits that trigger an audible alarm. The model DT-160 has a built-in tilt stand and spring clip that allows it to be placed in almost any location. Its range is 0°-159.8°F (-19.9° to 71° C).

THE CIRCLE 36 ON FREE INFORMATION CARD

The model DT-160 comes with battery, 34" attached probe lead, and one-year warranty; it is priced at $45.00.—A. W. Sperry Instruments, Inc., 245 Marcus Boulevard, Hauppauge, NY 11788.

CASSETTE TERMINAL, the model 5450XL, is microprocessor-based, with extended baud-rate capability. The new model now oper-

ates at 4800, 9600, and 19,200 baud, in addition to its existing rates of 110-2400 baud. Existing units can be upgraded through the purchase of an upgrade kit. It is fully compatible with ANSI/ECMA, RS-232C-BUS, and CCITT V.24-BUS standards, and cassette interchangeability is guaranteed. Each terminal incorporates cassette tape drive, microprocessor controller, and dual interface ports; it is particularly designed for data-collection and data communications applications.

The model 5450XL is priced at $2495.00.—Memtec, Keewaydin Drive, Salem, NH 03079. R-E
continued on page 81

CIRCUIT 35 ON FREE INFORMATION CARD

Cash in on the Video-Cassette Boom!
START YOUR OWN TV/VCR REPAIR BUSINESS at Home in Spare Time

Now it's easy for you to get into this money-making business. Be the person in demand by the millions of families who own videocassette recorders—the fastest-growing product in the home entertainment field. Train at home in your spare time for an exciting career as a TV/VCR Repair Specialist. Experts show you how to start small at home with low overhead. Later you can go after repair business from hotels, offices, hospitals and other companies that use TVs and VCRs in their daily operations.

Experts show you what to do, how to do it...guide you every step of the way!

Learn how to handle house calls and shop repairs—everything you need to know to get started fast. Tools are included with your course so you get "hands-on" practice as you follow your lessons step by step. Everything is explained in easy-to-understand language, but if there is ever anything in your lessons you don't understand, you can write or phone your instructor and you can count on getting an authoritative answer. Get free facts and color brochure that tell about home business opportunities. No cost. No obligation. No salesman will visit.

MAIL COUPON TODAY!

ICS
SCHOOL OF TV/VCR REPAIR, Dept DE607
Scranton, Pennsylvania 18515
Please send me free facts on how I can learn TV/VCR Repair at home in my spare time.
Name
Address
City/State/Zip
Phone

CIRUCIT 192 ON FREE INFORMATION CARD

IIOM COMB Authorized Liquidator

CIRUCIT 197 ON FREE INFORMATION CARD

10 CHANNEL SCANNER

Listen to the Action As It's Happening! Pick up all the listening excitement including fire, police, weather, and more...with this pocket-size, hand-held Bearcat® Scanner. Rebuilt-like-new by trained technicians this Model 50XL carries a 90-Day Limited Vendor Warranty on Parts and Labor. Order now at a LOW liquidation price!

- Scans 10 Channels Over 10 Bands.
- Keyboard Lock Prevents Accidental Information Entry.
- Frequency LCD, Squelch, Volume, Lock-Out and Review Controls.
- 61/2" Flex Antenna. Belt Clip. Uses 5 "AA" Batteries (Not Included).

Compare At $229.99 $139

Liquidation
Priced At
Item H-2504-7146-384 S/H: $4.00 ea.

Credit card members can order by phone. 24 hours a day, 7 days a week.
Toll-Free: 1-800-328-0609
Sales outside the 48 contiguous states are subject to special conditions. Please call or write to inquire.

SEND TO:
C.O.M.B. Direct Marketing Corp.
1405 Xeniam Lane N/Minneapolis, MN 55411-4949

Please list my name on each order
Send Bearcat Hand-Held Scanner(s) Item H-2504-7146-384 at $139 each plus $4 each for ship-handling (Minnesota residents add 6% sales tax) Sorry, no C.O.D. orders.

[] My check or money order is enclosed. (No delays in processing orders paid by check.)

[] Please check

[] Overnight Service

[] Money Order

[] Ready-Gift Service

[] Certified Check

Please print clearly:

Name
Address
City
State
Zip
Phone
Sign Here
Dynamic memory

Up until about eight or nine years ago, systems designers would avoid dynamic memory like the plague. The reason for that was simple: the disadvantages far outweighed the advantages. You could plop static RAM in a circuit and use it without much other thought, but dynamic RAM required a lot of support circuitry. In fact, back in those days a 16K dynamic RAM was a big deal: it needed three supply voltages and was very particular about timing.

Things have changed.
Today's cheap 64K dynamic RAMs are much easier to use and, since they give so many bits for the buck, any designer worth his salt has to be familiar with them. Lots of special dynamic RAM controllers are available that take care of all of a dynamic RAM's special needs, and make them almost as easy to use as static RAM. To help you get a good grasp on how to use dynamic RAM, we'll put together a simple system; and although the system won't be state-of-the-art, once you understand how it works you'll have a good grasp of the basic considerations of designing with dynamic RAM.

Keeping in mind the DRAM (Dynamic Random Access Memory) characteristics we discussed last month, you can see that any system using them has to have certain building blocks. The block diagram in Fig. 1 describes not only the system we're putting together,
but also one that uses the most sophisticated LSI DRAM controller. The difference between the two is where the elements are found. A lot of the discreet parts we'll be using are packed together in the substrate of LSI devices such as Intel's 8208 family. Once you're familiar with our system, putting together an LSI system will be a relatively easy task.

The system has three main sections, and although each one does a separate job, they have to interact as well.

1. The memory array: That section contains only the actual storage devices. In our circuit it's made up of eight 4164's, each of which is organized as 64K × 1 bit.

2. The refresh circuit: That produces the control signals, sequential addresses, and the timing logic to maintain the data in the memory array.

3. The I/O circuitry: That circuitry generates the necessary timing and control signals to let an external device get access to the memory array.

Let's look at each of the sections individually.

First section
You should be familiar with the memory array because we've already spent lots of time talking about dynamic RAM in general and 4164's in particular. Each of the eight IC's has its address and control lines bused together. The data in and data out pins on each IC are also tied together, because the direction of data flow will be controlled by the rest of the system, and the 4164 can be told to three-state its output.

Second section
The refresh circuit is designed to count systematically through all the addresses needed to maintain the stored data. That is, of course, the big drawback of using dynamic RAM. IC designers have made refresh as easy as possible and, if you read a 4164 data sheet, you'll see that there are several ways in which it can be done. We'll be doing a RAS-only refresh, which means that we present a row address to the A0 to A6 address pins of the memory array and then bring the RAS line low. That will...
FREE CATALOG OF HARD-TO-FIND TOOLS is packed with more than 2000 quality items. Your single source for precision tools used by electronic technicians, engineers, instrument mechanics, schools, laboratories and government agencies. Also contains Jensen's line of more than 40 tool kits. Send for your free copy today! JENSEN TOOLS INC., 7815 46th St., Phoenix, AZ 85044. (602) 968-6231.
CIRCLE 115 ON FREE INFORMATION CARD

THE MODEL WTT-201S ONLY THE SIZE OF A DIME, yet transmits both sides of a telephone conversation to any FM radio with crystal clarity. Telephone line powered - never needs a battery! Up to ¼ mile range. Adjustable from 70-130 MHz. Complete kit $29.95 + $1.50 S&H. Free Shipping on 2 or more! COD $4 add. Call or send VISA, MC, MO.
CIRCLE 127 ON FREE INFORMATION CARD

BUILD STEVE CIARCIA'S NEW VIDEO DIGITIZER. True "Frame Grabber" pic takes 1/60th sec • Not bus Dependent • Standalone digitizer • Serial output, transmits 300bps to 57.6Kbps • Resolution: 256 × 244 × 6 w/64 level grayscale • Accepts any NTSC video input. B&W or Color • Optional Rec/Display makes Video Telephone • Images can be stored & displayed on IBM PC. Full Digitizer/Serial Transmitter Kit - $249. Call for other options and specs.
CIRCLE 206 ON FREE INFORMATION CARD

CALL NOW AND RESERVE YOUR SPACE

- 6 x rate $74.50 per each insertion.
- Reaches 239,312 readers.
- Fast reader service cycle.
- Short lead time for the placement of ads.
- We typeset and layout the ad at no additional charge.

Call 516-293-3000 to reserve space. Ask for Arline Fishman. Limited number of pages available. Mail materials to: mini-ADS, RADIO-ELECTRONICS, 500-B Bi-County Blvd., Farmingdale, NY 11735.
CIRCLE 182 ON FREE INFORMATION CARD

NEW 442 SYNE WAVE DECODER WITH VARI SYNC—Replaces the oak N-12 $80.00, S.B. add on decoder $99.00, S.B. Tri-Bi decoder $100.00, Zenith SAVI $185.00, S.B.-S.A. decoder $140.00, Starcom converter $139.95. Buy a decoder take off $10.00. Guaranteed. (402) 331-4957. Call or write for your free catalog. Many other products & quantity pricing. M.D. ELECTRONICS, 5078 So. 108th #115A, Omaha, NE 68137
CIRCLE 208 ON FREE INFORMATION CARD

CIRCLE 81 ON FREE INFORMATION CARD

SEE IN TOTAL DARKNESS—BUILD THIS AMAZING IR VIEWER. Applications include; night surveillance, IR photography, laser tracking, fibre optic observations, hi-temp thermal viewing, IR alarms, IR communications & controls, IR astronomy & microscopy, document examination, painting & stamp authentication etc. Kit $189 delivered. (Dealers wanted). Catalog $1. 514-739-9328. OCTE ELECTRONICS, Box 840, Champlain, N.Y. 12919
CIRCLE 190 ON FREE INFORMATION CARD

CIRCLE 94 ON FREE INFORMATION CARD

A CAREER START FOR THE 21ST CENTURY. Since 1905, National Technical Schools has helped people build successful careers. Enter the 21st Century through home study courses in Robotics, Computer Technology and Servicing, Microprocessors, Video Technology, Basic Electronics, Transmission Technology, Climate Control Technology or TV and Radio Servicing. For a FREE catalog, call 1-800-BETTER. Or write NTS/INDEPENDENT TRAINING GROUP, 456 West M. L. King Jr. Blvd. L.A., CA 90037.
CIRCLE 180 ON FREE INFORMATION CARD
automatically refresh all the memory cells located in that row.

A 4164's memory matrix is organized as 128 rows by 512 columns, so it's only necessary to sequence through 128 addresses to completely refresh the device. We're using 7 address lines, (A0 to A6), because two to the seventh is 128. On the simplest level, refresh is done by putting out a 7-bit address and strobing ras, but there are other things to deal with as well. As we'll see, timing is the really critical factor and the state of the other memory-control pins has to be considered as well.

Third Section

The last section of our circuit handles the I/O. It's all well and good to build a system that can properly massage dynamic RAM, but it's not much good unless there's some way to store and access the data in the RAM. Any system wanting access to our circuit only has to give it an address, data, and a read or write request, and then sit back until its notified that the job is done. Doing that with static RAM is simple, but the constant refresh activity that is going on in a dynamic RAM system complicates things.

Servicing a memory request means accessing a location somewhere in the memory array's address space. The chances are slight that the requested location is going to be on the row that's currently being refreshed; and it would take too long, and require a lot of extra circuitry, to wait until the refresh circuitry reaches the particular row containing the requested location. An external memory request means that the refresh activity has to be halted, access has to be given to the requested location, and then the refresh circuit can regain control of the memory.

If you're beginning to think that here is a real nightmare for a circuit designer, you're starting to appreciate and understand the reservations that most circuit people have about using dynamic RAM. Given all the needs of our system, putting one together with a gates-only approach would be extremely complex, even if the job were done using MSI components.

One of the major problems when dealing with dynamic RAM is the strict timing parameters. A standard 4164 will retain the data stored in its pint-sized capacitor cells for only 2 milliseconds. That means that your circuit has to perform a refresh on each cell within 2 milliseconds or the data is lost.

Since a ras-type refresh works on a whole row at a time, and since there are 128 rows in a 4164, the refresh must be performed at least every 16 microseconds. The circuit that takes care of all that for you must be designed to sequence through several steps for each refresh operation.

1. The refresh counter has to increment to the next address.
2. That address has to be put on the address bus for the RAM.
3. A ras signal has to be generated and fed to all the RAM.

continued on page 81

TEST INSTRUMENTS

New! MINI-METERS w/MAXI-SPECs

SCOPE 3½ Digit LCD with 8 Full Functions

Model DVM-632

Deluxe test leads included
- 0.5% accuracy • Transistor gain test • Audible continuity checking & diode test
- 10 Amp measurement

SCOPE 3½ Digit LCD Multimeter

Model DVM-630

Test leads included • 0.5% accuracy • 6 functions, 19 ranges • Automatic zero adjust • Low battery indication • Measures 5½ x 2½ x ½

B & K 20 MHz Dual Trace

Model 2120

Probes included • 20 and 26 MHz bandwidths • TV and

B & K 20 MHz Dual Trace

Model 2120

Probes included • 20 and 26 MHz bandwidths • TV and

TVM • X-Y operation • Trace rotation: adjustable front panel • Channel 1 output

Phone orders accepted.

Fordham

260 Motor Parkway, Hauppauge, NY 11788

SCOPE 3½ Digit Capacitance

Model DCM-602

Test leads included • 8 ranges with full scale values to 2000 uF • LSI circuit • Crystal time base • Frequency range 800 Hz to 8 Hz

SCOPE 3½ Digital Multimeters

Model DVM-638

Test leads included • 11 function, 38 ranges • Logic level detector • Audible continuity • Capacitance and conductance measurement

Model DVM-634

- 7 function, 32 ranges • Transistor measurement

SCOPE Pocket Sized Audio Signal Generator

Model RC-555

Test leads & 9V battery included • Low distortion sine-wave signal • 46 step selected frequency • 11 range 20 Hz to 1.5 KHz/100 range 20 Hz to 150 KHz

HiTachi 35 MHz Dual Trace Oscilloscope

Model V-355

(Reg. $189.95) Probes included • Thin, lightweight, compact • Large 6" rectangular, internal graticule CRT • Autofocusing

Fordham Sweep Function Generator

Model FG-801

(Reg. $289.95) Probes included • 7 frequency ranges, 0.2 Hz to 2 MHz • Accuracy ± 5%

Fordham 550 MHz Frequency Counter

Model FM-8

(Reg. $249.95) Completely assembled, pre-tested, precalibrated • High intensity 8-digit LED display

New! SCPOE 4½ Digit LCD Bench Digital Multimeter

Model DVM-6805

Test lead set & "D" size batteries included • 0.4" high characters • Conversion period: 500 milliseconds • Automatic, negative polarity

Ask for our Free Catalog

TOLL FREE 800-645-9518

In New York State 800-832-1446

Service & Shipping Charge Schedule Continental U.S.A.

<table>
<thead>
<tr>
<th>Price</th>
<th>Add-Ons</th>
</tr>
</thead>
<tbody>
<tr>
<td>$75.00</td>
<td>$4.50</td>
</tr>
<tr>
<td>$100.00</td>
<td>$7.50</td>
</tr>
<tr>
<td>$150.00</td>
<td>$11.25</td>
</tr>
<tr>
<td>$250.00</td>
<td>$18.00</td>
</tr>
<tr>
<td>$500.00</td>
<td>$37.00</td>
</tr>
<tr>
<td>$1000.00</td>
<td>$100.00</td>
</tr>
</tbody>
</table>

29
Do You REALLY Want to Make More Money?

Yes it does take work and a few sacrifices to climb up the electronics ladder to where the bigger money is. But, if that’s where you want to be, then that’s what you must do — work harder at learning and getting the right credentials, even if it takes a few sacrifices. A B. S. degree and the knowledge that rightly goes along with it can give you powerful ladder-climbing equipment in your search for success in electronics.

The accredited Grantham non-traditional B.S. Degree Program is intended for mature, fully-employed workers who want to upgrade their electronics careers.

You say you’re already trained in electronics but that you’re not making enough money?? Well then, maybe you don’t have an accredited bachelor’s degree to prove that your education is up to snuff! Check out the Grantham Independent-Study B. S. Degree Program. It could make a dollars and sense difference in your electronics career.

Grantham offers this program, complete but without laboratory, to electronics technicians whose objectives are to upgrade their level of technical employment. Since the field of electronics is so enormous, opportunity for advancement is always present. Promotions and natural turnover make desirable positions available to the man who is ready to move up.

Put Professional Knowledge and a COLLEGE DEGREE in your Electronics Career through Independent Home Study

Study materials, carefully written by the Grantham College staff for independent study at home, are supplied by the College. Your technical questions related to these materials and the lesson tests are promptly answered by the Grantham home-study teaching staff.

Recognition and Quality Assurance

Grantham College of Engineering is accredited by the Accrediting Commission of the National Home Study Council, as a degree-granting institution.

All lessons and other study materials, as well as communications between the college and students, are in the English language. However, we have students in many foreign countries; about 80% of our students live in the United States of America.

Grantham College of Engineering RE787
10570 Humbolt Street, Los Alamitos, CA 90720

Please mail me your free catalog which explains your B.S. Degree independent-study program.

Name __________________________ Age ______

Address __________________________

City________________________ State ______ Zip____
UNTIL THE INVENTION OF THE TRANSISTOR, CAR radios had a reputation for outstanding sound quality. Compared to the typical table radio of its day—which was no slouch when it came to a well-balanced sound—the car radio had more output power and less distortion, a tracking loudness-compensated volume control, and a relatively large speaker of 6 x 9 inches that was specifically designed to handle the extra output power and the extended low-frequency response of a car radio. Most important of all, the labyrinthine dashboard served as a superb enclosure for the speaker, thereby providing an enhanced bass response. In fact, one often looked to purchase a home radio that had the solid-bass sound quality of a car radio.

Unfortunately, transistors allowed manufacturers to cheapen the overall design of car radios, while the downsizing of the average family-size vehicle made it difficult to squeeze large speakers into a small dashboard, which by itself no longer functioned as a decent speaker enclosure. In a sense, we might say that the transistor radio and the compact car led to second-rate autosound, and several generations of young new-car owners never had the thrill of hearing truly outstanding autosound.

However, as highway sound got progressively worse, high-fidelity systems for the home became less expensive. The "hi-fi player" became a common household appliance, and listeners soon demanded hi-fi sound for their cars (never knowing that grandma and grandpa used to sit out in the car when they wanted to hear "concert hall" sound).

EASY HIGHWAY HI-FI

The first of the so-called "high-fidelity autosound systems" was really a misnomer, for it was not much more than an 8-track or cassette player piggybacked on a conventional car radio. By any standard of reference, the sound quality ranged from poor to miserable.

Fortunately, today's listeners are more demanding. When manufacturers realized that audiophiles were willing to spend considerable sums to put high-fidelity sound in their cars, many well-known companies specializing in hi-fi components for the home entered the autosound field. Those companies, as well as a number of new firms that chose to specialize in autosound, actually succeeded in approximating the sound quality of a home system in the restricted confines of highway autosound.
the modern, downsized vehicle. In fact, once hi-fi was available for cars, like early home stereo it soon assumed cult status, becoming the latest must have for the up-and-coming young professional—or anyone else who wanted to be part of the "having it all generation."

To fulfill their fantasy of sitting in Philadelphia Hall while barreling to the next stoplight, the new generation of auto-sound stereophiles actively sought out the small coterie of installers having the acoustical expertise needed to compensate for the harsh environmental conditions posed by a moving vehicle. The best among those installers learned how to match specific products to individual car models to get the best sound possible. The lessons learned by the early pioneers in auto-sound passed into the mainstream of high-fidelity sound, and sound systems tailored to specific cars are now a commonplace objective that is being met on two different and distinct levels.

On one level, car manufacturers have recognized that high-fidelity highway sound can be an important consideration to potential new-car buyers, so many models either are supplied initially with a high-fidelity sound system, or make it available as an optional package. Generally, the factory-installed hi-fi systems are acoustically tailored to a particular model car through the expertise of recognized hi-fi experts; in particular, speaker manufacturers. For example, General Motors' DeLco Radio Division has developed a partnership with Bose Corporation. Similarly, Ford relies on the expertise of JBL, and Chrysler seeks the advice of Infinity Systems.

On another level, a legion of auto-sound retailers who specialize in installing various brands and types of equipment have become what is collectively called the "aftermarket." The aftermarket survives because its offerings are generally more advanced than the equipment sold with most new cars. The "advancements" are principally in the area of features and flexibility. While the car companies can offer a good, basic auto-sound system, the array of aftermarket equipment available is such that you may find:

1. Products having more conveniences and better performance than the factory-installed equipment.
2. Equipment as good as what is usually supplied factory-installed, but at lower cost than what the car dealer charges. Although the car dealers do offer the convenience of one-stop shopping, if you're willing to spend time checking out several dealers the chances are that you'll end up with better sound and features for the same basic cost.

Buying an auto-sound system necessitates making choices in three areas: signal source, power, and speakers. Each area, however, has a common consideration: the space limitation of your vehicle. Different cars have variously-sized holes slated for radios and speakers. A particular cassette/receiver, for example, might not fit into a dashboard without extensive, and often expensive, cutting to enlarge the opening. Conversely, a small unit may not fit without the use of an adapter to fill up the extra space left in the opening. Likewise, the almost "standard" 6 x 9-inch speaker will not fit easily— if at all— into compact and sub-compact cars.

Choosing a signal source means opting for a product that offers a radio, tape, or Compact Disc (CD) combination. To complicate your decision, the coming months will see the arrival of Digital Audio Tape (DAT), a new cassette format that rivals the performance of even the compact disc.

Although existing auto-sound speakers and amplifiers are compatible with DAT, because of the projected high initial expense of the early DAT players, at least for the foreseeable future the primary prerecorded signal source for highway hi-fi will be Dolbyized cassette tapes; followed by the Compact Disc, which is only now starting to make significant inroads into auto-sound installations.

Auto-sound CD player equipment is available in a number of configurations. CD receivers are similar to cassette receivers in that they combine an all-stereo AM/FM or an AM/FM-stero receiver with a compact disc player. Typical of CD receivers is the Audiomax HCD-1000. The tuner section includes 12 station presets that you can program with your favorite radio stations, a station seek that automatically locates the next strongest station, and a scan for easy sampling of many different stations.

The HCD-1000's CD section offers an auto-index that allows the user to preview each disc "track" or selection for eight seconds, a repeat button for playing the track over again, fast-forward and fast-reverse selection search, and digital indicators for the track number and elapsed time. Suggested list price for the HCD-1000 is $699.95.

While the HCD-1000 is a typical CD receiver, it is somewhat unusual in that the disc must be inserted into a cartridge before it can be played. The cartridge system is also used by JVC, Yamaha, Clarion, and Blaupunkt to facilitate loading while also providing the disc with much added protection.

Pioneer's DIN-mount DEX-77 CD receiver is one of the most high-tech models available; it is specifically designed to withstand the rigors of an automotive environment. It uses a three-beam tracking system to ensure error free tracking, and a "Last-Address Memory" function that ensures pickup on the right track even on rough, jarring roads. The CD player can be programmed for the order of track play, automatic scan, all track repeat, and random play, whereby the player automatically shuffles the order of track play. The receiver section features a "Best Station Memory," which remembers the six strongest stations in descending order of signal strength. The Pioneer DEX-77 is priced at $850.

Player-only models are another CD configuration. These tuner-less CD players may be suitable if your car is already equipped with a cassette/receiver and you simply want to have the option of CD. If you want to listen to both CDs and cassettes, you may want to buy a cassette receiver that is equipped with an input jack for a CD player. The jack gives you the option of easily adding a personal CD player by simply plugging it into the jack. Conversely, Sanyo's CD players have an input jack for "Walkman-type" personal tape players.

Sony offers an alternative to those wanting to listen to both cassettes and CD's: That product is a slim cassette-only player to be used in conjunction with its companion model CDX-R85 CD receiver.
List price for the CD receiver is $750, while the add-on cassette player has a suggested list price of $270.

A related product is the Philips CD 10, an autosound CD player that slides out of the dashboard for use as a personal or portable CD player. List price for the CD 10 is $400.

Another approach to CD is provided by Sony and Alpine. Both companies offer CD disc changers that mount in the trunk. A cable from the changer to a control unit mounted up front near the driver's seat allows the driver (or passenger) to control the music selection. The Alpine changer holds 12 discs in a removable "magazine," while the Sony DiscJacket holds 10 discs. The Alpine control unit mounts in-dash while the Sony controls can be hand-held or mounted. Optional tuners are available for both units so that the CD changer can also function as an AM/FM-stereo radio.

The cassette receiver may represent an older technology, but they are still the mainstay of most autosound systems. Because of its nearly universal use, development of cassette receivers has not ground to a halt since the introduction of CD. The old "tin can" with two knobs on either side is giving way to sleek, flat-panel (no knobs) models housing more features than some of the older models could ever hope to offer.

High-tech

A number of companies, in fact, are offering cassette receivers in which only the cassette mechanism represents older technology. A case in point is Blaupunkt's Berlin TQR 07 model listing for $1500. The TQR 07 incorporates so many features that many of the buttons on the faceplate have multiple functions defined by the mode selected. Possible modes are tape, radio, security, and ARI, the latter being a system that either turns up the radio volume or interrupts tape play during traffic advisories from participating radio stations. An LCD (Liquid Crystal Display) indicates the selected mode.

In addition to the more commonplace features found on virtually every cassette receiver, the TQR 07 features: AM stereo, 16 station presets, last-station memory, and an automatic volume control that adjusts to changes in ambient noise, plus Dolby-B and Dolby-C noise reduction for eliminating tape hiss.

Coordinating all the functions of the TQR 07, including monitoring the tuning and adjusting the AM and FM filtering, is the task of a 16-bit, 32K microprocessor that uses a digital data bus to relay information between the dash-mounted control panel and cassette deck, and an independent module that houses the tuners and the volume- and tone-control components. Use of a separate mounted-out-of-sight module is a technique used by an increasing number of other manufacturers, including Kenwood and Sony.

Technology is also having a great effect on the appearance of cassette receivers. Among the most dramatic is the appearance of Pioneer's KEX 900. A single LCD faceplate displays information on five key functions: AM/FM tuning, cassette deck, graphic equalizer, spectrum analyzer, and time (clock). A seven band equalizer offers more precise adjustment of the frequency response than does conventional tone controls, while the spectrum analyzer presents a visual indication of the program's frequency content.

Cassettes are loaded into the KEX 900 by flipping down the front panel. Behind the door is the cassette mechanism and a number of less-frequently used controls. The "hidden door" trick is used by other manufacturers as well. The flip-down door on Sharp's RG-F882, for example, conceals a seven-band equalizer. List price for Pioneer's KEX 900 is $580. Sharp's RG-F882 lists for $449.95.

Most technological advancements appear first in the higher-priced cassette receivers. There are exceptions, of course. Fujitsu's model Ten, for example, includes a dual-azimuth adjusting system in its series of cassette receivers that list between $250 and $550. (The head-to-tape alignment of auto-reverse decks can sometimes be accurate in one direction but skewed in the opposite direction—an error that can severely affect high frequency response. Dual-azimuth adjustments optimize the alignment for each of the directions.)

A feature becoming increasingly common on high-end autosound equipment is a built-in security system. Generally, the security system requires that a three to five digit code be entered via the preset station buttons before the CD or cassette receiver can be used. The equipment is inoperable until the correct code is entered. Another anti-theft system allows the user to simply slide the radio or the tuning unit from a dash-mounted sleeve so it can be concealed in the trunk, or even carried away from the vehicle.

More volume

As a general rule of thumb, high-end autosound systems usually provide more output power than "original equipment" or "replacement" receivers. The reason for the extra power, of course, is to avoid amplifier overload when the volume is cranked up to overcome ambient road and car noises. Power capabilities vary enormously. For example, the specialty autosound amplifier maker HiFones Corp. offers amplifiers ranging from a low of 16 watts per channel to a high of 275 watts per channel.

Although the average autosound stereo
NRI Trains You At Home—As You Build Your Own IBM PC Compatible Computer

GET THE KNOW-HOW TO SERVICE EVERY COMPUTER ON THIS PAGE... AND MORE!

Learn the Basics the NRI Way—and Earn Good Money Troubleshooting Any Brand of Computer

The biggest growth in jobs between now and 1995, according to Department of Labor estimates, will occur in the computer service and repair business, where demand for trained technicians will actually double.

You can cash in on this opportunity—either as a full-time corporate technician or an independent service-person—once you've learned all the basics of computers the NRI way. NRI's practical combination of "reason-why" theory and "hands-on" building skills starts you with the fundamentals of electronics, then guides you through advanced electronic circuitry and on into computer electronics. You also learn to program in BASIC and machine language, the essential languages for troubleshooting and repair.

Total Computer Systems Training, Only From NRI

No computer stands alone...it's part of a total system. To really service computers, you have to understand computer systems. And only NRI includes a powerful computer system as part of your training, centered around the new, fully IBM PC compatible Sanyo 880 Series computer.

IBM is a Registered Trademark of IBM Corporation.
Epson is a Registered Trademark of Epson America, Inc.
Apple and the Apple logo are Registered Trademarks of Apple Computer, Inc.
Compaq is a Registered Trademark of Compaq Computer Corporation.
1985 AT&T Technologies, Inc.
u start with
a step-by-step
assembly of the new, highly-rated, Sanyo computer. You install and trouble-
out the "intelligent" key-
board. Then you assemble the
drive, and add extra memory to
new IBM speed of 4.77 MHz and a remarkable
two speed of 8 MHz, making it almost twice as
as the IBM PC. Next, you'll interface the high-
solution monitor and begin to use the valuable software.

It all adds up to confidence-building, real-world
perience that includes training in programming, circuit
sign, and peripheral maintenance. You'll be learning
out, working with, servicing, and troubleshooting an
tire computer system—monitor, keyboard, computer,
disk drive, power supply—to ensure that you have
all the essential skills you need
to succeed as a professional
computer service technician.

No Experience Needed,
NRI Builds It In
This is the kind of practical,
handson experience that makes you uniquely prepared, with
the skills and confidence you need for success. You learn at your
own convenience in your own home. No classroom pressures,
no night school, no need to quit your present job until you're
ready to make your move. Your training is backed by your
personal NRI instructor and the NRI technical staff, ready to
answer your questions and help you when you need it. You get
it all with NRI at-home training.

100-Page Free Catalog Tells More
Send the postage-paid reply card today for NRI's big,
100-page, color catalog on NRI's electronics training, which
gives you all the facts about NRI courses in Microcomputers.
Robotics, Data Communications, TV/Audio/Video Servicing,
and other growing, high-tech career fields. If the reply card is
missing, write to the address below.
system contains only one stereo amplifier that is intended for use with a single pair of left and right speakers, many auto-sound installations have multiple speaker systems (perhaps front and rear), and the two stereo speaker systems are simply connected in parallel (left front to left rear and right front to right rear, or criss-cross). Connecting the speakers in parallel splits each channels output power, which was intended for one speaker, between two speakers. The alternative to sharing one stereo amplifier between two speaker systems is a receiver such as Kenwood's KAC-8070, which has two independent stereo amplifiers, each specifically intended to drive a single stereo speaker system. The KAC-8070 lists for $279.

One brand, manufactured by the ADS Company, has gone as far as to develop two six-channel amplifiers, the PH12 and the PH15, which allow a subwoofer to be easily added to an autosound system. List prices for the PH12 and PH15 are $320 and $560 respectively. The PH12 provides 20 watts per channel, while the PH15 delivers 40 watts per channel. ADS also makes four-channel amplifiers, the PQ8 and the PQ20, listing for $200 and $680 respectively.

Speakers

Speakers come in a wide variety of configurations and sizes. The material used for the cone itself can range from traditional paper to polypropylene, a flexible material that is more resistant than paper to heat, cold and moisture.

The magnet, the other critical speaker component, is also being improved. The GM Delco/Bose system in the Cadillac Seville and Eldorado, and the Chevrolet Camaro, uses a new high-energy neodymium magnet. The high energy potential of neodymium allows Bose to use a smaller magnet, thereby reducing the overall size of the speaker, particularly in its depth.

Speakers range in size from ½-inch tweeters to 6 x 9-inch woofers, and there are various two, three, and even four-way combinations of tweeters, midranges, and woofers available. Two companies, Sparromatic and Philips, even have models with the speakers and their amplifiers built into the same enclosure.

Some autosound systems use one or two subwoofers to reproduce extremely low bass frequencies. One large woofer is often enough considering the omnidirectional characteristics of low frequencies.

Two smaller subwoofers are used when space limitations prohibit the use of a larger woofer.

Special speakers have also been developed for light trucks and other types of sports/utility vehicles. Typical of that new breed if speakers is The Force from Jensen, which consists of a large, wedge-shaped enclosure housing an eight-inch woofer and an upward-firing tweeter. Its list price is $299.95.

Crossover networks handle the routing of specific frequencies to the appropriate speaker. Most crossover networks are offered as separate components. Some speakers, such as the the ALS-500 from Altec Lansing, have built-in, highly efficient crossover networks.

An autosound system can be a very complex purchase. A vehicle's environment is hostile to the reproduction of high-fidelity sound. The amount of equipment sometimes needed can be intimidating, and its installation can be tricky and time-consuming. In fact, tackling anything beyond the most basic installation is probably not advisable unless you have the time and skill required. However, you should keep in mind that most dealers won't do installation work unless they have sold you some or all of the necessary components.

When all is said and done, however, you should have a system that will rival your home system. When that happens, you'll probably be joining the thousands of people who do most of their music listening on the road.
Like writing a great novel, designing and installing a great auto sound-system is part inspiration, and part perspiration.

FRANK VIZARD

WHEN INSTALLED PROPERLY, AN AUTO-MOTIVE SOUND SYSTEM CAN BECOME A CONCERT HALL ON WHEELS. IN FACT, MANY OWNERS OF HIGH-END SYSTEMS FIND THEMSELVES LISTENING TO MUSIC ALMOST EXCLUSIVELY IN THEIR CARS SINCE THE ACOUSTICAL EFFECTS ARE OFTEN SUPERIOR TO THOSE OFFERED BY THEIR HOME SYSTEMS.

BUT THERE CAN BE MORE TO INSTALLING A SYSTEM THAN MEETS THE EYE. WHEN SELECTING A SYSTEM, THE TYPE OF VEHICLE IT IS TO BE INSTALLED IN SHOULD BE CAREFULLY CONSIDERED. SPACE LIMITATIONS, FOR EXAMPLE, MAY RESTRICT THE SIZE OF THE SPEAKERS USED. LIKewise, EVERY DASHBOARD DOESN'T HAVE THE SAME SIZE RADIO HOLE, WHICH MEANS THAT NOT EVERY CASSETTE/RECEIVER OR CD/CDP/TUNER WILL FIT IN EVERY CAR.

COMPOUNDING THE PROBLEM IS A LACK OF STANDARDIZATION THAT CAN CONFUSE EVEN THE MOST-GIFTED DO-IT-YOURSELFers: ONE MANUFACTURER'S GREEN WIRE IS ANOTHER'S YELLOW WIRE. AND IMPROPER WIRING CAN LEAD TO BLOWN SPEAKERS AND AMPLIFIERS. FURTHER, UNIDENTIFIABLE NOISE CAN BE CAUSED BY ALMOST ANY ELECTRONIC COMPONENT IN THE CAR, INCLUDING THE ALTERNATOR OR IGNITION SYSTEM. SUCH NOISE CAN RENDER A SYSTEM UNLISTENABLE, AND FINDING ITS SOURCE CAN BE A TIME-CONSUMING NIGHTMARE. THEREFORE, IT'S NOT ALL THAT SURPRISING THAT A $2000 INSTALLATION OFTEN CAN TAKE UP TO 25 HOURS TO ACCOMPLISH IF THE INSTALLER IS A PRO; AN AMATEUR INSTALLER IS ALMOST SURE TO BE AT IT A LOT LONGER.

DESPITE ALL OF THAT, A TOP-NOTCH SOUND SYSTEM CAN BE FOUND FOR JUST ABOUT ANY APPLICATION AND FOR JUST ABOUT ANY CAR. TO PROVE THIS, RADIO-ELECTRONICS HAS ASSEMBLED A PORTFOLIO OF EIGHT CAR-AUDIO SYSTEMS. FOUR SYSTEMS ARE AVAILABLE AS ORIGINAL EQUIPMENT FROM CAR MANUFACTURERS. THE REMAINING USE AFTER-MARKET EQUIPMENT INSTALLED BY CAR-AUDIO RETAILERS TO SATISFY PARTICULAR NEEDS AND VARYING INSTALLATION REQUIREMENTS. ALL THE SYSTEMS HAVE ONE THING IN COMMON: THEY'LL PLEASE EVEN THE MOST DISCRIMINATING LISTENER.
Chevrolet Camaro: Delco/Bose

General Motors was the first car maker to turn to a well-known loudspeaker company, Bose Corp, for help in developing a premium sound system. While Delco, GM’s radio division, and Bose have joined forces to outfit a number of GM cars with top-flight auto sound-systems, the Delco/Bose system installed in the 1987 Chevrolet Camaro shown in Fig. 1 represents the best the partnership has to offer.

The most noticeable difference between the Delco/Bose system in the Camaro and the Delco/Bose system installed in other GM cars is the size of the speaker enclosures. Each enclosure is required to house a 25-watt amplifier. Such enclosures generally take up a lot of room, which is not much of an issue in a large Cadillac but of definite concern in a much smaller Camaro.

For the 1987 Camaro, Bose reduced the size of the speaker to a thin waler only 32-mm deep. That reduction in size at no cost to sound quality is made possible by one of the first commercial uses of neodymium, a high-energy magnetic material. The “waler” speakers are also four times lighter than their predecessors. The new speaker/amplifier modules, like the old enclosures, are mounted in the doors and on the rear deck. The same technology is also being used in the new Cadillac Allante, Seville, and Eldorado.

Like its competitors, a Delco/Bose system positions its loudspeakers so that the listener is off-axis to the rear speaker and on-axis to the far speaker. Delco/Bose believes it has accomplished its task so successfully that they omit the left/right balance control typical of other systems.

How those speakers are powered is the unusual feature of the Chrysler/Infinity system. While many auto sound systems are bi-amplified, meaning that separate amplifiers are used to power woofers and tweeters/midranges, the Chrysler/Infinity systems use an unusual method of bi-amplification. The tweeters in the dashboard and in the rear deck are powered by amplifiers built into the cassette/receiver. The door speakers and the woofers in the rear, however, are independently powered by miniature amplifiers attached to the back of each speaker. The audio signal must also pass through a low-pass filter before reaching each woofer. A total of 32 watts power the speakers while an additional 56 watts power the woofers.

The Chrysler cassette/receiver has many of the features common to the genre, including auto reverse, Dolby B, DNR, AM stereo, and 10 AM and 10 FM radio presets.

The digital display is a vacuum-fluorescent type. It shows radio frequency, tape type, noise-reduction status, and tape-play direction. When the unit is shut off, the display doubles as a clock, accurately showing the time of day. The display is clearly visible in sunlight. It’s visible at night, too: All displays and controls are backlit.

Less common is a built-in, five-band equalizer that takes the place of the tone controls. With it, sound can be tailored for the listener’s preference. Slide controls allow the adjustment of bass, midbass, midrange, upper midrange, and treble. There is also an “ambience” feature, which is designed to create a “concert hall” effect.

The relative merit of the ambience feature is questionable, however, since even the owner’s manual advises against its overuse. Also, Chrysler has opted to have front/rear and left/right balance controlled by a joystick that rotates in all directions, making placement of the soundstage even easier than usual.

The price of the Chrysler/Infinity system is $600. The same system you’ll find also available in the New Yorker and LeBaron GTS.

Dodge Lancer: Chrysler/Infinity

The premium sound system offered by Chrysler in its 1987 Dodge Lancer (Fig. 3) is the least expensive and perhaps the most unusual of the auto sound offerings made by the “big three” U.S. car-manufacturing companies.

Like Ford and General Motors, Chrysler entered into a partnership with a major audio company to develop that system. In Chrysler’s case, the audio partner is Infinity Systems, Inc., a well-known maker of home and car loudspeakers.

The Chrysler/Infinity system uses six speakers. One pair of 3½-inch tweeters are installed in the dashboard. Another pair of 5½-inch midrange/woofer speakers are in the front doors. Lastly, a pair of 5×7-inch coaxial speakers are mounted on the rear deck.

The cassette/receiver, shown in Fig. 2, does include most of the other features found in competitive models. Those features include auto reverse, bi-directional music search, seek/scan and Dynamic Noise Reduction (DNR) for the radio, and five AM and FM presets. AM stereo is also available.

More unusual is the fact that the cassette/receiver automatically recognizes Dolby-B encoded tapes and makes the appropriate adjustment for playback.

The Delco/Bose system in the Camaro lists for about $900. Add about $200 for the standard radio that comes with the car and the overall cost is roughly $1100. A compact disc player is not available.

Key Features

- Bi-amplification, 5-band equalizer, ambient control, joystick balance control, AM stereo

Price

$600

System Configuration

- Cassette receiver, 4 speaker/amp modules (Delco/Bose)

Key Features

- 3-inch woofers, automatic Dolby-B recognition, AM stereo

Power (per channel)

- 25 watts

Price

$900

System Configuration

- Cassette receiver, 6 speakers (Chrysler/Infinity)

Key Features

- Bi-amplification, 5-band equalizer, ambient control, joystick balance control, AM stereo

Power (per channel)

- See text

Price

$600

FIG. 1-SHALLOW CLEARANCES IN THIS CHEVROLET CAMARO REQUIRED DESIGNING A SPEAKER ONLY 32-MM DEEP.

FIG. 2—THIS DELCO-BOSE CASSETTE RECEIVER FEATURES AUTOMATIC RECOGNITION OF DOLBY-B ENCODED TAPES.

FIG. 3-THE CHRYSLER/INFINITY SOUND SYSTEM IS OFFERED AS STANDARD EQUIPMENT IN THIS DODGE LANCER.
Lincoln Town Car:
Ford/JBL

The Ford/JBL sound system in the Lincoln Town Car (shown in Fig. 4) offers the most power and uses the highest number of drivers of any auto sound system offered by an American car company. Like its two major competitors, Ford used an audio company, JBL, as its partner in developing its system.

The Ford/JBL system, which is shown in its entirety in the opening of this article on page 39, uses six speakers—a pair of speakers is mounted in the dashboard, in the front doors, and on the rear deck. The five-inch dashboard speakers are coaxial units, the 6 x 9-inch rear deck speakers are three-way units, and the 5 1/4-inch door speakers are full-range units. The speakers are powered by a 140-watt four-channel amplifier.

The Ford/JBL system in the Town Car has three potential sources of music—radio or tape from the cassette/receiver, and compact disc from a separate player. See Fig. 5. The cassette/receiver is rather unusual in that the radio is digitally tuned but the controls for the cassette section operate very mechanically, albeit efficiently. Features include Dolby B, DNR, four-AM and four-FM presets, auto reverse, seek, scan, and bi-directional music search for tape.

The Ford cassette/receiver lacks AM stereo, a feature provided by GM and Chrysler. However, Ford’s unit automatically sets the correct tape equalization for tape playback. The compact-disc player offers most of the features you would expect to find, including automatic music search to locate any track at the touch of a button, scan, and a dual repeat mode for replay of an individual track or the entire disc.

The Ford/JBL system is priced at about $1500. Without the CD player, system cost is about $850. That price includes the cost of the equipment that is supplied as standard on the Town Car; that equipment must be removed before the Ford/JBL system can be installed.

Sterling 825S/825SL:
Philips/Elac

One of the newest car lines on the market is the Sterling, the product of a joint development program between Great Britain’s Austin Rover Group and Japan’s Honda Motor Co. The engine and the exterior are of Japanese design while the interior creature comforts are of European design. There are two models of the Sterling, the 825S and the 825SL (shown in Fig. 6).

The sound system in the 825SL is a mixture of Dutch and English expertise. The cassette/receiver is made by Philips, the Dutch electronics manufacturer. The unit includes most of the standard features you would expect to find, including auto reverse, Dolby-B noise reduction, and five-AM and five-FM presets.

The cassette/receiver also has two rather unusual features as well. The first is an anti-theft system; it is armed using a three-digit code that is entered into the cassette/receiver using the five preset buttons. The second is an “auto-store” feature, that feature lets you override the permanently stored presets, without erasing them, and select the five strongest radio stations in an area. It can be an especially handy feature if you’re traveling out-of-town.

Power is supplied by an amplifier capable of delivering 20 watts to each of four channels. (The sound system in the 825S comes without the amplifier, reducing power to only seven watts through each of four channels.)

The speakers in the 825SL are supplied by Elac, a British company. The rear deck houses a pair of 6 1/2 inch coaxials, while a pair of 5 1/4-inch full range and 3/4-inch tweeters are separately installed in the front doors. The speaker setup is standard for a car of the Sterling type, providing a balanced sound radiation pattern, front and rear.

The sound systems in the Sterling 825SL and 825S come as standard equipment in the cars. The 825SL carries a sticker price of $23,900; the estimated retail value of the sound system is about $1000. The 825S has a sticker price of $19,000; its lower powered sound system is somewhat less expensive than that of the 825SL.

System Configuration
Cassette/receiver, 6 speakers, optional CD player, (Ford/JBL)

Key Features
Optional CD player, automatic tape equalization

Power (per channel)
35 watts

Price
$1500 (with CD player)

System Configuration
Cassette/receiver, amp (Philips); 6 speakers (Elac)

Key Features
Anti-theft system, temporary preset override

Power (per channel)
20 watts

Price
$1000
Porsche 911 Carrera: Custom Installation

For a little more money, you sometimes get a lot more. A case in point is the Autotek (855 Cowan Rd., Burlingame, CA 94010) sound system shown in Fig. 7, which has been installed in the 1985 Porsche shown in Fig. 8. At $1000, that system is only slightly more expensive than auto sound systems offered by car companies, but offers more power and features.

Why is more power better? Assuming that the amplifiers meet acceptable standards, higher power levels allows us to hear low music levels more clearly. Therefore, due to road and wind noise, power is very critical in a car.

The SR500 cassette receiver that is part of the system has many of the usual features: auto reverse, 12 radio presets, seek/scan, and electronic tuning. But two features of the SR500 can not be found in the cassette receivers offered by the major U.S. car companies. One is Dolby-C noise reduction (in addition to the more usual Dolby B). The other is a CD input that allows a personal compact-disc player to be plugged into the system.

The SR500 supplies a great deal of power on its own; 20 watts per channel. In that installation, the 20 watts are used to power a pair of coaxial speakers mounted beneath the dashboard at the extreme right and left.

In addition, a pair of amplifiers with a rating of 130 watts each the power the other four speakers in the system: a pair of four-inch three-way speakers in the doors and a pair of 6 x 9-inch three-way speakers in the rear deck. Signal routing chores are performed by an NOU-1 two-way crossover (Fig. 9).

Ford Thunderbird: Custom Installation

Installing a new sound system doesn’t necessarily mean junking all the original equipment that came with the vehicle. The sound system in the 1983 Ford Thunderbird shown in Fig. 10 uses the standard Ford cassette receiver, but adds a variety of equipment from ADS (One Progress Way, Wilmington, MA 01887) and Sony (Sony Drive, Park Ridge, NJ 07656). The end result is a fine sound system that uses three sound sources and produces 320 watts of power.

Two of the sound sources are, of course, the standard radio and the cassette; the third is an add-on compact-disc player. Having a CD player in a car is becoming less unusual, but this installation is different in that it incorporates a Sony DiscJockey CD changer. Installed in the trunk, the DiscJockey stores 10 discs in a removable magazine. See Fig. 11. A cable connects the CD changer to a control unit mounted into the dashboard beneath the cassette receiver. The Sony CD changer comes with an optional tuner pack, but because of the existing Ford cassette receiver, this installation didn’t require it.

To fully appreciate the dynamic range provided by compact discs, the installation has plenty of power. A pair of ADS DX10 5½-inch coaxial speakers are installed in the doors, while a pair of ADS L200C/C mini-speakers, a four-inch mid-range and a one-inch tweeter housed in their own cabinet, sit atop the rear deck. Adding punch to the system is a single 10-inch subwoofer mounted beneath the rear deck.

The division of labor among the speakers is handled by the ADS 642C 36; a unit that acts both as an electronic crossover and signal processor. That unit, which serves as the interface between the Ford cassette receiver and the Sony DiscJockey, is equipped with four inputs and six outputs and directs high and low frequencies to the appropriate speaker. In this installation, a constant bass signal is applied to the door speakers to augment the signal at the subwoofer. Fading between the front and rear speakers is independent of the subwoofer.

Power is supplied by two ADS PQ10 four-channel amplifiers. One amplifier powers the door speakers while the second powers the rear speakers and the subwoofer. In terms of power, 80 watts is supplied to each door speaker, another 80 watts is supplied to the subwoofer, and 40 watts to each rear deck speaker.

The price of the system is about $3400.
GMC Jimmy:
Custom installation
Where normal passenger cars fear to travel, four-wheel drive vehicles like the GMC Jimmy love to go. To provide off-road music for an off-road vehicle, a Kenwood (1315 E. Watson center Rd., Carson, CA 90745) music system was added to the Jimmy.

The heart of the Kenwood system is the KRC-838 cassette/receiver shown in Fig. 12. It is one of a new breed of "theftproof" models available from several aftermarket manufacturers. The KRC-838 is considered theft-proof because it can be removed by the owner easily; the cassette/receiver is installed inside a sleeve. A lever on the left side of the KRC-838 releases the unit from the sleeve so that it can be taken with you when you leave the vehicle.

The KRC-838 offers most of what we've come to expect in the way of features, and adds a few others as well. Both Dolby-B and Dolby-C noise reduction are available, as is Kenwood's own ANRCII circuitry—the latter providing roughly the same benefit as the DNR circuitry found in cassette/receivers offered by other suppliers.

Other features include a signal meter to judge station strength, 24 presets that can be arranged in any combination of AM and FM stations, and a "tuner-call" feature that automatically switches on the radio when a tape is in fast-forward or rewind. Lastly, the KRC-838 features a mute button that lowers the volume 20 dB; that's handy for toll booths.

While standard bass and treble controls are incorporated into the cassette/receiver, the system's sound can be more precisely adjusted using the KQC-9480 graphic equalizer installed under the cassette/receiver. That unit lets you contour the sound over seven bands.

Space is limited in the Jimmy, so all the speakers are installed in the door. High frequencies are reproduced using a pair of 11/2-inch tweeters that feature a built-in overload protection circuit. Midrange and some higher bass frequencies are handled by a pair of five-inch speakers mounted next to the tweeters. Very low bass frequencies are reproduced by a pair of eight-inch woofers that are installed below the tweeters and midranges.

The eight-inch woofers are very power hungry, requiring a minimum of 35 watts each. That power is supplied by a KAC-8020 amplifier, which feeds 80 watts to each woofer. A second amplifier, a KAC-8070, powers the tweeter and the midranges. That amplifier is unusual in that it is a four-channel amplifier delivering two different power levels through each pair of channels. In our system, it is used to deliver 20 watts per channel to the tweeters and another 37 watts per channel to the midranges.

The entire system costs $2000.

Chevrolet Corvette:
Custom installation
At first glance, the sound system in the 1985 Corvette, appears to be a perfect marriage of original equipment that came with the car and aftermarket gear. Looks can be deceiving.

In truth, all that's left of what was once a GM Delco/Bose system is the speaker grilles and the cassette/receiver. What's more, the cassette/receiver doesn't work. Its only purpose is cosmetic; it's used to cover the hole in the dash.

The owner of that Corvette has opted solely for a CD/tuner system using Sony's DiscJockey. Unlike the Thunderbird installation discussed previously, this setup makes use of the DiscJockey's optional AM/FM tuner pack, making the Delco radio redundant. Adding the tuner pack was a less expensive alternative to incorporating the Delco/Bose cassette/receiver into the system; the lack of fine outputs on the original equipment, as well as some voltage-level problems, would require the use of complicated and expensive switching devices that are also unattractive.

The DiscJockey is built into a special enclosure that sits in the rear of the Corvette. That enclosure also houses two Sony L20 subwoofers, which reproduce all bass frequencies below 100 Hz. Also installed in the enclosure are two Hitronics (845 Broad Ave., Ridgefield, NJ 07657) Callisto electronic crossovers. The DiscJockey's operation is controlled via a wired remote control that is stowed away in an accessory compartment in the center console. See Fig. 13.

The original Delco/Bose speakers in the car were replaced with Hitronics units. A pair of one-inch tweeters were installed in the dashboard so that the sound will reflect off the windshield and radiate throughout the car. Four-inch midranges were installed in the doors. Another pair of one-inch tweeters and four-inch midranges were placed side-by-side in each of the larger speaker cavities in the rear of the car. The new Hitronics speakers were covered with the original Delco/Bose grilles except for the front tweeters which were covered with acoustically transparent cloth.

The system also incorporates two Hitronics amplifiers. A Thor amplifier supplies 125 watts to the rear subwoofers while a Gemini four-channel amplifier is used to supply 70 watts to the front and rear speakers.

The system's sound can be tailored to your taste with a Hitronics Ceres IV parametric equalizer. The Ceres IV is the only parametric equalizer we know of that is designed for automotive applications. With a graphic equalizer response can be raised or lowered only along predetermined bands. Parametric equalizers, on the other hand, allow you to adjust response within a range of frequencies.

The cost of the upgrade, while ignoring the cost of the original equipment, was $3260.
This month we show you how to build the control board.

Part 8

The past two months we've looked at how the robot's control circuitry works. Now it's time to get our hands dirty and build the control board.

Construction

Building the control board is a straightforward operation. The double-sided pattern is shown in PC Service. Note that because of its large size, the pattern is shown half size, so it must be enlarged before etching. The board is also available from the supplier mentioned in the Sources box. The supplier provides a board with two-ounce copper, plated-through holes, and a solder mask. If you choose to etch your own board we recommend that you use a blank with two-ounce plating, solder all components on both sides of the board, and install feedthroughs at any unused pads. The reason for the heavier copper is that it provides better power handling capacity and better noise margins.

Once you've either bought or etched the board, check it for power to ground shorts. Those will be very difficult to locate after all of the components have been installed. Then stuff the board following the parts-placement diagram that is shown in Fig. 1.

All of the control-board components can be obtained from most electronics distributors. The Fujitsu relays specified can be found at many relay specialists. If you have trouble finding them, you can substitute units from other manufacturers as long as they have a contact rating of more than 10 amps. If you make any substitutions, you may also need to modify the board to accommodate the substitutes.

The control board is designed to be mounted on standoffs in the forward bulkhead of the chassis as shown in Fig. 2. When mounting the board, it should be oriented so that the terminal strip is located at the top edge of the chassis.

The RPC mounts over the board on one-inch standoffs. Use fixed standoffs at the top edge of the board, and hinged standoffs at the bottom. That will allow the RPC to be swung down and out of the way during troubleshooting.

Holes should be punched in the forward bulkhead for the wires. The motor-power, battery-power, and return wires should all be fed through one hole. All other wires, such as the leads from the shaft encoders, should be fed through a second, separate hole. The return wire from the control board's single-point ground should be as heavy as possible. Also, the motor-power wires should be as heavy as required to handle the current they must carry.

If you are going to use large drive motors with current requirements over 10 amps, the two main switching transistors and their associated diodes may be removed from the circuit board and mounted on the forward bulkhead to take advantage of the huge heat-sinking capacity of the robot's chassis. Use sockets, of course, and connect the sockets to the board with short lengths of heavy-gauge wire. After the control board has been assembled and both it and the RPC have been installed, the forward bulkhead will contain all of the robot's electronics. Now we're ready for bench testing.

Testing

To do the testing you will need a DC supply capable of producing 14–30 volts at 3 amps. If you can't find a suitable supply, you can build one using a high-current transformer, a full-wave bridge, and a suitable filter circuit. Be sure to select diodes (for the bridge) and capacitors (for the filter) whose ratings are appropriate. We built a unit that supplied 18-volts DC at 3 amps for our testing. Whenever the motors were accelerated too quickly, the power supply sagged, the motor relays dropped out, and that brought the motors to a stop. The power supply was completely adequate for testing, however.

Begin testing by connecting the control board to the power supply, but not to the RPC. Apply power and examine the sleep circuit for proper operation. If it is being clocked at 10-Hz as designed, the state of pin 4 should change once every 15 seconds. If all is well, you have confirmed that power is correctly bused to the board.

Proceeding, defeat the sleep circuit by soldering a jumper from R10 to ground, causing KY1 to close. That will energize the system. (Don't forget to remove that jumper when testing and troubleshooting are completed!) Now you should verify that IC9 delivers ±5-volts DC and that IC30 delivers ±12-volts DC. Also check that +5 volts is available at the correct pins at PL4, the RPC connector.
FIG. 1—ALL OF THE CONTROL CIRCUITRY mounts on one double-sided board. Follow this guide when assembling the board; the patterns can be found in PC Service.

PARTS LIST

All resistors ¼-watt, 5%, unless otherwise noted
- R1, R4, R6, R7—not used
- R2, R12, R16, R18—R20, R23, R26—R28, R30, R34, R36, R37, R39, R41, R44—10,000 ohms
- R3—62,000 ohms
- R5, R9—15,000 ohms
- R8—4700 ohms
- R10—220 ohms
- R11, R35, R42, R43—1000 ohms
- R13, R14—1 megohm
- R15, R39—47 ohms
- R17, R24, R40—100 ohms
- R21, R29—0.1 ohms, 5 watts, 1%
- R25, R31—R33—100,000 ohms

Capacitors
- C1, C2, C4, C5, C13—19, C22, C25, C27, C31—0.1 μF, monolithic ceramic
- C3—100 pf, 50 volts, ceramic disc
- C6, C10, C21, C30—2.2 μF, 50 volts, ceramic disc
- C7—0.002 μF, 50 volts, ceramic disc
- C8—330 pf, 50 volts, ceramic disc
- C9—0.047 μF, 50 volts, ceramic disc
- C11, C12—2200 μF, 25 volts, electrolytic
- C20, C23, C24, C26—10 μF, 16 volts, electrolytic
- C28, C29—not used

Semiconductors
- IC1, IC2—4051 multiplexer
- IC3, IC6—74LS541 octal buffer/line driver
- IC4—74LS377 octal D-flip-flop
- IC5—ADC0804 8-bit A/D converter
- IC7, IC8—74LS374 octal D-flip-flop
- IC9—L296 switching regulator (SGS)
- IC10—74LS645 octal three-state bus transceiver
- IC11—74LS125 quad three-state buffer
- IC12—74LS266 quad 2-input exclusive NOR gate
- IC13, IC14—8253 programmable interval timer
- IC15—74LS32 quad 2-input on gate
- IC16—74LS528 8-bit comparator
- IC17—74LS164 8-bit serial-in/parallel-out shift register
- IC18—74LS393 dual 4-bit binary ripple counter
- IC19—74LS138 1-of-8 decoder
- IC20—LM358 dual op-amp
- IC21—74LS259 8-bit addressable latch
- IC22—ULN2003 Darlington array
- IC23, IC25—2046 PLL
- IC24—74LS50 quad 2-input NAND gate
- IC25—4050 14-stage ripple counter
- IC27—4078 8-input NOR gate
- IC28, IC29—dual D-flip-flop
- IC30—LM340-12 12-volt regulator
- Q1, Q5—2N3906 PNP transistor
- Q2, Q6—2N3906 PNP transistor
- Q3, Q7—2N3772 NPN transistor
- Q4—2N3904 NPN transistor
- SCR1—C106Y1 (GE) SCR
- D1, D3, D4, D9—1N4001 rectifier
- D2, D5, 1N5400 rectifier
- D6, D7—1N4148 switching diode
- D8—1N754 6.8-volt Zener diode
- D11—8R05 Schottky diode (SGS)

Other Components
- L1—300 μH
- RY1—RY5—DPST relay, 12-volt coil, Fujitsu FBR-631D012 or equivalent
- PL1, PL3—26-conductor plug, dual row, 0.025-inch spacing
- PL2, PL6—10-conductor plug, dual row, 0.025-inch spacing
- PL4—60-conductor right-angle plug, dual row, 0.025-inch spacing
- PL5—2-conductor plug, single row, 0.025-inch spacing
- TS1—6 connector terminal strip
- B1—see text

Miscellaneous
- PC board, IC sockets, heat sinks (Thermalloy 601 or equivalent for IC9, Thermalloy 366 or equivalent for IC30), mounting hardware, nuts, bolts, wire, solder, etc.
FIG. 2—THE ROBOT’S ELECTRONICS mount on standoffs in the forward bulkhead. The control board is shown here; the RPC mounts above it on hinged standoffs.

TABLE 1—OUTPUT FUNCTION$:

<table>
<thead>
<tr>
<th>Address</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>Left forward relay</td>
</tr>
<tr>
<td>121</td>
<td>Left reverse relay</td>
</tr>
<tr>
<td>122</td>
<td>Right forward relay</td>
</tr>
<tr>
<td>123</td>
<td>Right forward relay</td>
</tr>
<tr>
<td>124</td>
<td>Left motor control enable</td>
</tr>
<tr>
<td>125</td>
<td>Right motor control enable</td>
</tr>
<tr>
<td>126</td>
<td>Beeper</td>
</tr>
<tr>
<td>127</td>
<td>not used</td>
</tr>
</tbody>
</table>

If all is well, connect the RPC. Write the following diagnostic word (in the hex-number base) and execute it:

: TEST0 BEGIN 0 127 PC! 1 127 PC! ?TERMINAL UNTIL:

As mentioned last time, the scope of this article prevents us from going into a detailed discussion of Forth and its structure. However, note that the while Forth requires statements like the preceding one to be entered as a single line, for space reasons it is impossible for us to show it that way. When you enter such statements, be sure to enter them as single lines or they will not be processed correctly. If you are not familiar with Forth, we recommend the book Starting Forth, by Leo Brodie; it is published by Prentice-Hall. You can probably obtain a copy from the Forth Interest Group or at your local computer bookstore.

Let’s briefly look at what TEST0 is, and how it works. The colon tells the interpreter to compile the following word called TEST0 into the dictionary. That word is a begin-until loop that will loop until activity from the terminal (?TERMINAL) is detected. The loop itself stores a 0 to port 127H, then stores a 1 to port 127H. Compilation stops at the semicolon and the interpreter returns to the interpretive mode. After compiling TEST0, you can execute your new word simply by typing TEST0 and a carriage return on the keyboard. The word will execute until you touch any key.

During execution, you should observe the output of IC16, the 74ALS520. The address-latching pulse should be about 1 microsecond long, indicating that the wait-state generator is working correctly. Now examine the state of pin 12 of IC21 with an oscilloscope: you should see it toggling. That shows that the RPC and the control board are working together.

Testing the digital inputs and outputs is a very simple process with our operating system in ROM. We have only to write a few diagnostic words and execute them. The individual outputs can be toggled with the following test word:

: TEST1 BEGIN 8 0 DO 0 120 1 + PC! 1 120 1 + PC! LOOP 0 UNTIL:

The function of each of the individual outputs is as shown in Table 1.

Next, connect a speaker to the J6 and test the beep function:

: DELAY 0 DO 10 0 DO LOOP LOOP :
 BEEP 1000 0
 DO 1 126 PC! 2 DELAY
 0 126 PC! 2 DELAY
 LOOP :

Notice that here we used “pretty” source-code formatting techniques. That becomes increasingly important as the complexity of our code increases.

continued on page 78
Digital Speedometer

for your Car

Dual display delivers both an accurate digital readout and a rapid-read analog display.

ROSS ORTMAN

You probably spend more time watching your speedometer than any other part of your dashboard. However, because most speedometers are mechanical devices and analog in nature, they are prone to error. And just as other parts of your car wear out and must be replaced, so must your speedometer. Besides, the most common speedometer is simply a pointer with a background scale; so exact speed is hard to determine accurately.

Our digital speedometer will accurately display vehicle speed both on a three-digit seven-segment display for precise speed readings, and on a quick easy-to-read analog bar-graph display. The speedometer can be calibrated to read in miles per hour or in kilometers per hour, whichever is preferred. In addition, the bar-graph's "red line" can be set to any desired speed—probably 55 mph.

Theory of operation

The digital speedometer operates by monitoring the speed of drive shaft rotation (on a rear-wheel-drive vehicle) or one of the transaxle output shafts (on a front-wheel-drive vehicle.) Rotational speed is monitored by sensing four magnets (that are secured to the driveshaft or output shaft) with a pickup coil that is mounted to the chassis or body of the automobile. As each magnet passes the pickup coil, a pulse is generated and sent to the digital speedometer, which then counts the number of pulses that occur during a preset time interval and converts this number to display the vehicle's actual speed. The pickup coil and magnets are commercial units that are available from many auto-parts stores.

Because the speedometer uses magnets

FIG. 1—BLOCK DIAGRAM OF THE SPEEDOMETER: The input amplifier conditions the signal from the magnetic pickup for processing by the counting and display circuitry.
for sensing (just as many aftermarket cruise-control devices do), dirt, moisture, and weather will not affect its operation. Also, because the speedometer is digitally calibrated, it will remain accurate in all conditions ranging from the coldest winter morning to the hottest summer day.

Referring to the block diagram shown in Fig. 1, pulses from the magnetic pickup coil are amplified and shaped by the input circuitry. Because all input pulses may not be the same amplitude (due to different magnet strengths and possible distance variations between the magnets and the pickup coil), input-pulse shaping increases the speedometer's accuracy by eliminating multiple counts, missed counts, or both.

The conditioned input pulses are sent to the counter and then to the digital and analog displays. The counting section counts the number of input pulses for a period of time that is determined by the setting of the programmable timebase.

Let's take an example of how the timebase is set for a particular vehicle. On most vehicles, the gear ratio in third (or high) gear is 1:1. In other words, drive-shaft speed is equal (or very close) to engine speed. On an eight-cylinder engine, the engine is running at approximately 2200 RPM when the vehicle's speed is 60 mph. With 2200 RPM as our drive-shaft speed, we know that the input-pulse rate to the speedometer will be 8800 pulses per minute (2200 RPM times four magnets). Dividing that number by 60 gives us our input frequency in Hertz, in this case, 146.66 Hz.

We now determine that the time for one complete pulse cycle is 6.818 ms (1 / 146.66 Hz). In order to display 60 mph on our digital readout, we must count 60 of those 6.818-ms pulse cycles. That gives us a timebase of 0.41 seconds (60 × 6.818 ms), or 2.44 Hz.

The analog display indicates relative speed by converting the input frequency to a voltage that is then processed for display by the bar-graph display driver IC's (IC8 and IC9).

Circuit description

Referring to Fig. 2, the pickup coil is connected to P1 of the digital speedometer via a twisted-pair cable and a 0.1" female Molex connector. One side of the coil assembly is AC coupled to ground through C5 and C6, and the other side is passed on to the input amplifier, which is composed of Q1, Q2, and the associated bias resistors. The pickup coil is biased slightly positive to ensure that Q1 turns on reliably. After buffering by IC3-a, the input signal is ready for processing by the counting section of the speedometer.

The 60-Hz signal is generated by IC1, an MM5369 17-stage programmable oscillator/divider, and its support components. Here, IC1 uses a 3.58 MHz colorburst crystal to produce a stable and accurate 60-Hz reference.

The programmable divider uses two
All resistors are 1/4-watt, 5% unless otherwise noted.
R1—22 megohms
R2—R5, R7, R11—R14, R25, R26, R30, R32—10,000 ohms
R6, R33—470 ohms
R8, R10, R22—R24, R27—1000 ohms
R9—33,000 ohms
R15—R21, R37—220 ohms
R28—22,000 ohms
R29—50 ohms, 5 watts, wire-wound
R31—220,000 ohms
R34—10,000 ohms, vertical trimmer
R35—2,200 ohms
R36—22,000 ohms

Capacitors
C1—0.01 µF disc
C2—10 µF, 16 volts, electrolytic
C3—33 pF disc
C4—22 pF disc
C5—C12—0.1 µF disc
C6—4.7 µF, 15 volts, electrolytic
C7—0.001 µF disc
C8, C9—0.1 µF disc
C10—0.022 µF mylar
C11—1 µF, 16 volts, electrolytic

Semiconductors
IC1—MM5369 17-stage oscillator/divider
IC2, IC4—74C161 synchronous binary counter
IC3, IC5—4001
IC6—IC14553 three-digit BCD counter
IC7—74C48 BCD to 7-segment decoder-driver
IC8, IC9—LM3914 dot bar display driver
IC10—LM2917N frequency-to-voltage converter

Miscellaneous
F1—1 amp slo-blow fuse
S1—eight-position DIP switch
P1, P2—0.1” 2-pin Molex connector
XTAL1—3.58-MHz color-burst crystal

PARTS LIST

74C161 synchronous 4-bit counters (IC2 and IC3) to produce a divider that can be programmed to divide by a factor ranging from 4 to 256. The division ratio is set via eight-position DIP switch S1. The text box that appears elsewhere in this article indicates how switch positions correspond with different division ratios.

The output of the programmable divider is led to two pulse generators consisting of IC3—c, C6, and R25; and IC5—c, C9, and R26. The pulse generators produce two sequential pulses, a latch pulse followed by a clear pulse. The latch pulse latches the current counter value for display, and the clear pulse resets the 14553 counter (IC6, shown in Fig. 3) so that it begins counting from zero for the next sample period.

The heart of the digital display section (shown in Fig. 3) is IC6, an MC14553 three-digit BCD counter. That IC counts the incoming signal for the duration of the timebase and outputs the value through IC7, a 74C48 BCD to 7-segment decoder, and on to displays DISP1, DISP2, and DISP3. Resistors R15—R21 limit the amount of current that passes through the displays. The three digits are multiplexed by Q3, Q4, and Q5.

The analog display section (shown in Fig. 4) consists of IC10, an LM2917N frequency-to-voltage converter, and its associated components. That IC produces a DC voltage that is proportional to the frequency of the input signal. That relative voltage is then used to drive two cascaded LM3914 bar-graph display drivers (IC8 and IC9), which, in turn, drive the 20-element discrete LED display. The analog display is calibrated simply by setting potentiometer R34.

74C161

DISP1 DISP2 DISP3

IC6 14553

IC7 74C48

FIG. 3—THE DIGITAL DISPLAY section of the circuit uses a 14553 (IC6) to count pulses, and a 74C48 (IC7) to display the count.
Construction

Construction of the digital speedometer is nearly identical to that of the digital tachometer presented last month. The circuit is built on two PC boards: a display board and a main board. The two boards are connected by 35 jumpers.

The display board contains the seven-segment readouts, the twenty LED's and several resistors; the main board contains everything else. The display board is single-sided; the main board is double-sided. The PC boards can be made using foil patterns shown in PC Service, or they may be purchased from the supplier mentioned in the Parts List. If you etch your own boards, be sure to solder both sides of the main board.

Begin stuffing the boards with resistors, diodes, and other low-profile parts. Refer to Fig. 5 and Fig. 6 for part locations. If you use IC sockets, which we recommend, install them next. If you don’t use sockets, install the IC’s last and solder only a few legs of each IC at a time to prevent overheating. Whether sockets are used or not, observe CMOS handling precautions: use a ground strap, ground your soldering iron, and work only on an anti-static surface.

Continue installing the rest of the parts, including the DIP switch, the capacitors, and the crystal, on the main board. The transistors are installed with the base or center leg bent toward the flat side of the body of the device. Install each transistor about ¼ inch above the board.

When stuffing the display board, begin by inserting and soldering the three seven-segment displays. Don’t forget to install the three jumpers located just below the displays. Then insert the discrete LED’s into the board with ten green
LED's (LED1-LED10) starting in the lower left corner. Do not solder them in yet. Next insert six yellow LED's and then four red LED's. Double-check to be absolutely certain that the LED's are oriented properly; the cathode (usually the flat side) of the LED should face the bottom of the board.

Next, turn the board over and lay it down on a flat surface, being careful not to allow any LED's to fall out. That's accomplished easily by holding a piece of stiff cardboard against the LED's while turning the board over. Now, to keep the board parallel to your working surface, apply pressure to the board where the seven-segment displays are mounted, and solder one lead of the end and middle LED's. Next, carefully look across the surface that the board is lying on to see whether the LED's are at the same height as the seven-segment displays. If not, correct their positions and then continue soldering one lead each of the remaining LED's.

SWITCH SETTINGS

For a front-wheel-drive vehicle, the transaxle output shaft's speed can be determined from this formula:

\[
DF = 5.355 \times R
\]

where DF is the division factor, and R is the radius of the front wheel. For a rear-wheel-drive vehicle, the driveshaft speed can be estimated from the engine speed. If you have an overdrive transmission, use the gear ratio found in the owner's manual to convert the engine speed to the driveshaft speed. The output of each programmable divider (IC2 and IC4) can be determined from the chart below. The total division factor provided by the two IC's is the product of the individual DF's provided by each separately.

For example, a 10" wheel requires a division factor of 5.355 \times 10^2 = 535.5. We could approximate that value by setting IC2 to divide by 5 and IC4 to divide by 10. To do so, the DIP switch would be set like this: 01001001.

WARNING

Although the speedometer can be mounted above, below, or inside the dashboard, some conditions must be met if the unit is to be installed in place of the original speedometer. First, Federal law prohibits any tampering with the odometer section of the speedometer and imposes harsh penalties on those in violation of that law. That does not mean that a person is forbidden to replace the original speedometer with the digital speedometer presented here. However, if the device is installed, it must be done in a manner that will keep the vehicle's odometer fully operational.

To replace the original speedometer with the digital speedometer, remove the face plate and pointer of the original, making sure that you leave the original gearing and odometer mechanism intact. The digital speedometer can then be installed in the space left by the old face plate and pointer. Also, the original speedometer cable must be left connected. To remove it is also a violation of Federal law. Check your state laws, too, as they may have additional restrictions.
The radio pioneers
discover how to amplify signals.

Part 4 THE INVENTION OF THE
triode vacuum tube by de Forest opened the floodgates to the
design of high-gain circuits. Although the
crystal and the vacuum-tube diode were
adequate radio signal detectors, neither
could amplify; hence, circuit design was
sharply circumscribed. But once the ex-
perimenters had a device that could am-
plify, there was almost nothing the early
pioneers could not and did not try.

Tube design

Some early tube designs were “off the
wall”; some because they were attempts
to bypass de Forest’s patent; others be-
cause their designers thought they had
invented devices with better performance.
One of those unusual designs—now prac-
tically unknown—was the “horned tri-
ode” (Fig. 1), a tube in which the plate-
and control-grid leads were brought out at
the top. The idea didn’t take hold for re-
cieving tubes, because it had no practical
reason to justify its existence; but a vari-
ation subsequently became adopted for
transmitting tubes. Ultimately, tube de-
sign went on a four-pin base, although
there were commonly used tube types hav-
ing a base with five and six pins.

Early radio tubes such as the WD-11,
UX-199, UX-120, UX 201A, and the
UX-200A had a filament made from a
mixture of tungsten and thorium, which
was, in turn, coated with metallic thor-
ium. Tungsten was used because of its
ability to withstand high temperatures;
thorium was used because it is a prolific
source of electrons. When electron emis-
sion became low, the filament could be
reactivated by simply raising the filament
voltage to increase the filament tem-
perature, thereby “boiling off” the oxida-
tion products that were interfering with
release of the electrons. Generally, the
voltage was raised 200-300% for 10 to 15
seconds. For users without the necessary
equipment to adjust the filament voltage
(see Fig. 2), a “filament renewal service”
was available in radio stores for a nominal
charge of 25 cents per tube.

If the tungsten/thorium filament was
good, something else must be better, so
the search for a “better filament” was
something like the search for the Holy
Grail. Just about everything was tried,
including various alloys of platinum, pure
nickel, and alloys of nickel such as chro-
mium nickel and titanium nickel. Barium
and strontium carbonates in oxide form
were also used as the electron source; but,
unlike oxide-coated filaments, they could
not be reactivated.

Soft and hard tubes

Any trace of air remaining in a tube
following its manufacture resulted in a
higher plate current that usually could not
be controlled by the grid, which resulted
in erratic operation. Typically, an electric
light bulb had an internal gas pressure of
150 millionths of atmospheric pressure
(which is 14.7 lbs/square inch at sea
Make your home into something special!

That's exactly what your home will be when you fill it with Heathkit electronic products—products that make your life easier and more enjoyable. Within our diverse line are kit and assembled products sure to enhance each room in your home.

1. Make your entryway more secure and easy to use with the Keyless Doorlock. You'll never again be locked out because of lost or forgotten keys. All it takes is a simple fingertip entry of a four-digit code, and the Keyless Doorlock unlocks your door.

2. Add a new dimension to your living room with your own Computerized Weather Station. This Digital Weather Station displays up-to-the-minute temperature, wind, and barometric pressure readings, along with time and date.

3. Give your kitchen a unique blend of style and efficiency with our Digital Wall Clock. This easy-to-build kit keeps time with quartz-crystal accuracy. And with its simulated oak wood-grain finish cabinet, you'll have a timepiece that fits into almost any decor.

4. Put your den to greater use with this IBM PC AT Compatible Computer. Do word processing, personal accounting and more when you run exciting IBM-compatible software on your fast and powerful HS-241. And you can build it yourself in just a few hours.

5. Bring the latest in digital technology to your bathroom. This Digital Scale lets you closely monitor your weight with electronic precision. And, it's battery operated so it's safe to use right out of the shower.

6. Add a video entertainment center to your bedroom. Our 19" diagonal stereo TV kit gives you an extra-sharp color-corrected picture with full stereo sound, and convenient viewing that you can control from your bed. Comes in a simulated walnut cabinet that complements your room.

7. Transform your rec room into a haven for hobby fun. Put our Deluxe QRP CW Transceiver in this room and enjoy superb HAM radio operation that excels in performance and features. It offers expandable transmission and reception capabilities.

8. Give your workbench a touch of professionalism with this oscilloscope. Whether you're a service technician or a hobbyist, you'll love the wide range of measurement capability our laboratory-grade Dual Trace 10 MHz Oscilloscope gives you.

9. Add practicality to the utility room and save money, too. Avoid expensive food spoilage with our Freezer Alarm that warns you when the inside temperature of your freezer rises too high. Prevent water damage with our Food Alarm that warns you of water that's where it shouldn't be.

10. Make your coming and going easier than ever. Your garage door will open with incredible ease and dependability with our Deluxe Garage Door Opener. Easy to install, this opener is durable and includes a handy security light.

You'll find fun and excitement with every Heathkit product. Whether they're in kit form or already assembled, our products will help you enjoy your home more than you ever dreamed possible.
As a result, the ions, having lost one or more electrons, were positively-charged and migrated toward the filament. Because of their relatively large structure (compared to electrons), the ionic bombardment was able to destroy sections of the filament. Tubes that contained oxygen displayed a flickering blue glow toward the bottom end of the glass bulb and were called "soft." A "hard" tube, on the other hand, was one that produced no glow, thereby indicating little internal air.

Microphonics

As tubes were made smaller, the internal pins that supported the various elements were so small they didn’t provide adequate support, so the elements were more susceptible to vibration. Element vibration resulted in microphonics, whose chief characteristic was a variation in sound volume that was sometimes accompanied by howling. The problem was relieved somewhat by putting lead weights on top of the tube to give it greater mass, and thereby reduce vibration. Subsequently, the lead-weight technique was also applied to larger tubes that had microphonic tendencies.

A riot of color

The 1920’s was the age of the experimenter. Although most people purchased complete ready-to-operate radios, many purchased parts and assembled their own radios, using circuits they designed or tweaked. Aesthetic beauty was often an important aspect of circuit-design and assembly, so it wasn’t unusual to find that the wiring used in early radios was covered with "spaghetti," a varnished camphor insulation that was available in most of the colors of the rainbow. The innards of many an early radio were a riot of color—and beauty.

Early experimenter receivers were actually built on a breadboard, and so was at least one commercial receiver: the five-tube Atwater Kent Model 10. Although cabinets were available to experimenters, many breadboard receivers were left open to solicit the oh’s and ah’s of friends and neighbors. It’s on record that one builder, who wanted both protection for the front panel and the cabinet so that the radio could be used even while it was on display.

Circuit diagrams

Like the radio itself, circuit diagrams have gone through many changes. Early builders made use of pictorial diagrams, such as the one shown in Fig. 3, to show how the equipment was assembled. In some instances the diagram was a combination of a pictorial and a schematic circuit, as in Fig. 4.

FIG. 1—THE HORNED TRIODE had the plate (anode A) and grid (G) leads at the top of the tube. The base had four pins, but only two were used for the filament (F).

FIG. 2—AN ADJUSTABLE VOLTAGE was often used to reactivate tubes having thoriated tungsten filaments.

FIG. 3—PICTORIAL DIAGRAMS were often used instead of schematics to show the working of radio circuits.
The symbols used in drawings and schematics also evolved along with the components and circuits they represented. Figure 5 shows how the simple symbol representing a headphone developed over the years. In Fig. 5-a, an original schematic from the early days of radio, the headphone is represented by a vertical bar followed by the letter T, the T being used to indicate that the bar represented a telephone receiver. The bar eventually evolved into the single headphone symbol shown in Fig. 5-b, which in turn evolved into the symbol shown in Fig. 5-c, the one used today to represent a headphone having two receivers.

Early circuits
The first use of the vacuum tube was as a detector. Figure 6 shows a common (for its time) receiver that used a Fleming diode instead of a crystal for the detector. As you can see, except for the tube the circuit is essentially the same as that of a conventional crystal receiver. The rheostat in the filament circuit was used as a way to apply higher-than-normal filament voltage, which was an early attempt to increase plate current, and therefore, the output volume. (It also shortened the life of the filament.)

De Forest’s triode was initially regarded strictly as an amplifier. Early experimenters were not aware that it could be used as a detector/amplifier, so one early circuit used the crystal as a detector, followed by the triode as an audio amplifier (Fig. 7). In time, experimenters learned that the triode could be used as a detector/amplifier, which eliminated the need for a separate detector. Initially, it was known that the control grid of the triode needed bias, a fact that was brought home when the action of an unbiased grid blocked plate current flow. Initially, grid bias was provided by batteries, which were labeled C to indicate they were used for biasing the grid. Although a C battery could last its entire shelf life, since they were not replaced until their acid had oozed out and damaged the radio, experimenters searched for a better way to bias the grid. The better way was a large resistor connected from grid to ground—called a grid leak—that was usually shunted directly or indirectly by a capacitor (that stored the voltage developed across the grid leak).

As shown in Fig. 8, various techniques for getting extra oomph from the triode were tried. It was learned early that the best triode circuit was the one shown in Fig. 8-a, wherein the input signal (E<i>) is injected at the control grid and the filament. Some attempts were made to put the signal across the filament (Fig. 8-b), or between the plate and the filament as shown in Fig. 8-c.

Although it offered superior performance, it took a number of years for the triode vacuum tube to replace the crystal detector because crystals were considerably less expensive than tubes and required no power source other than that supplied by the signal itself. Also, in many areas radio signals could supply satisfactory reception using a crystal detector; there was no need for additional sensitivity (amplification).

In fact, the primary concern with early radio reception was not sensitivity but selectivity. In the next installment of this series, we’ll look at ways that selectivity was increased and at some audio-coupling schemes that were used.
There are several ways by which conventional audio signals can be digitized (converted to digital form). The best approach for a given situation depends on the signal frequency, accuracy required, and cost considerations. We will discuss several approaches to A/D and D/A conversion.

First, a word about basic digitizing theory. Analog signals are digitized by taking minute discrete samples of the analog waveform. Digital sampling theory tells us that a signal of length T and a frequency bandwidth of f_m can be completely specified by $2 \times f_m \times T$ samples of the signal. (In this instance, “completely specified” means that the analog signal can be digitized and then restored to back to analog with essentially no distortion.)

Alternately, it may be said that if $T = 1$ second, then $2 \times f_m$ (or twice the bandwidth samples per second) are required to specify the signal; which means that a typical TV-audio signal having a 12-kHz bandwidth must be sampled at a 24-kHz rate (or higher) in order to completely specify the signal. (Because “it’s already available,” a convenient audio sampling rate is twice the horizontal scan frequency, or 31.5 kHz.) Why sample at a rate higher than necessary? Because sampling at the highest possible rate reduces aliasing distortion, thereby reducing the anti-aliasing filtering requirements.

Aliasing products

Aliasing distortion is the production of spurious waveforms caused by too low a sampling rate. The distortion appears as unwanted and unrelated very-low-frequency or in-band signals. For example, in an audio application, the baseband signal may be in the 0–12 kHz range and would theoretically be sampled at a 24 kHz rate. However, because of distortion within the audio amplifiers, some audio
components as high as 24 or 30 kHz might be present, and they would also be sampled during the digitizing process. Figure 2 shows what might occur. The top waveform (Fig. 2-a) represents audio frequencies above 12 kHz caused by distortion within the analog audio amplifiers. The sampling pulses (Fig. 2-b) are obviously not twice the frequency of Fig. 2-a, so they produce the unwanted sampling pulses shown in Fig. 2-c. After normal filtering, we get the unwanted reconstructed waveform—caused by aliasing distortion—shown in Fig. 2-d: a distorted waveform of very low frequency having no relation to the original analog audio signal. Aliasing can be reduced by adequate audio-bandwidth limiting, and by using as high a sampling rate as possible.

Binary numbers

Typically, the audio is digitized by generating discrete binary numbers to represent the analog level. If we have a binary word n bits long, we can specify 2^n discrete levels. Obviously, it is necessary to specify a large number of samples to reproduce minute changes in analog level. One hundred levels would take care of 1% (-40 dB) uncertainty, meaning a 40 dB dynamic range. And if 256 levels were used, uncertainty would now be less than -46 dB, which is adequate for TV audio. A single data byte can do that.

However, since we only have horizontal blanking pulses at a 15.75 kHz rate, how can a 31.5 kHz sampling rate be produced? Simply by having each blanking interval contain two bytes rather than one byte. In this way, 31.500 bytes per second are available, which is adequate for a 12-kHz audio baseband. In addition, a third byte is inserted in the blanking interval. It is a coded digital word that can be used to determine where the horizontal and vertical starting points are located (to ensure proper vertical and horizontal timing). It can also be used for other purposes; for example, to obtain two 12-bit audio samples (total 24 bits).

Figure 3 shows how an analog signal can be digitized. The output from the audio amplifier is level-set for proper dynamic range, and then sampled every 31.2 microseconds (31.5 kHz rate). The analog value is stored in a sample and-hold circuit until the next sample is taken; let us assume it may be any value between zero and ten volts. That analog level is then fed to one input of a comparator. The other comparator input is fed with a linear ramp (sawtooth) whose amplitude rises from 0 to 10 volts. (The ramp starts slightly after the sampling interval and ends just before the next audio sample is taken, because some time must be reserved for sampling and setting the ramp to zero.) If the audio sample is relatively large (say 7 to 10 volts) in amplitude, the ramp will have to rise to that value before the comparator's output voltage will drop to zero. If the analog sample is small (say 1 volt), the comparator will drop to zero when the ramp exceeds one volt. (The comparator's output is a logic high (1) when $V_S < V_R$, it is a logic low (0) when $V_S \geq V_R$. Therefore, the comparator output is a train of pulses having a frequency of 31.5 kHz and a pulse width ranging from nearly zero to 30 microseconds (depending on the sample amplitude.)

The variable-length pulse represents the analog value of the audio sample's amplitude. A narrow (5 microsecond) pulse represents low values (say 0 to 2 volts). A wide pulse of 25 microseconds would represent 8 to 9 volts. (If we should get about 3 microseconds pulse-width per volt in this instance.) Next, the pulse has to be converted to a binary value, which can be done by using the pulse as a gating pulse for a counter that is clocked by a much higher clock frequency. If we had a 4-MHz clock, 120 clock pulses would be counted in 30 microseconds. By using two separate (alternating) systems and the full line-scan time (63.5 microseconds), it is possible to count up to 240 clock pulses, therefore generating a full 8-byte binary word. That is possible because each byte is only needed every 63.5 microseconds, and there are two bytes.

Therefore, the counter can be reset to zero, the high-frequency clock signal can be gated by the variable-length pulse, and the width of the variable-length pulse will determine how many cycles of the high-frequency clock will be input to the counter. The counter will count to a state that is proportional to the length of the variable pulse, whose width depends on the analog...
value of the audio sample. Therefore, a binary number appears at the output of the counter that is proportional to the analog value of the audio sample and is its digital equivalent in parallel format.

Next, as shown in Fig. 4, the binary number—which we'll call Sample 1—is stored in parallel format in a shift register. During the horizontal blanking interval, it is clocked out in serial format, appearing as an 8-bit digital word. The clock frequency of 4.096 MHz shown in Fig. 4 has a 6-microsecond interval, which permits 24 bits (3 bytes) of digital information to be transmitted during the sync pulse. By using two additional shift registers, as shown, it's possible to serially transmit three bytes. The first two bytes, Sample 1 and Sample 2, are generated because we need 31,500 samples per second—we must transmit two bytes in every blanking interval, and there are 15,750 blanking intervals per second. The third byte can be used for system housekeeping or overhead. As previously mentioned, it can represent signals for determining horizontal and vertical sync references, and have special-purpose coding.

Because the audio is both digitized and piggybacked on the sync interval, it is no longer found on the TV signal's sound carrier. In fact, the sound carrier can be dispensed with, as done by ViewCipher II. Or, the sound carrier can be put to other use; for example, it could be used for "barker" audio.

Approximation

Another approach to audio A/D conversion is the successive-approximation register shown in Fig. 5. There, a clock is used to drive a register connected through a digital-to-analog converter, which is part of a feedback loop around the op-amp. In a sense the op-amp is used as a comparator, but the register and D-A converter may be thought of as an integrator. In that circuit a DC level (steady logic level) will cause the register to produce a successively increasing binary count, since the DC level is merely "gating" the clock signal. As the register is counting, the D/A converter produces a rising ramp output. When the D/A converter's ramp output is equal to that of the analog input to the op-amp the output of the op-amp will flip low, thereby shutting off the clock gate. (At that point, the binary number seen at the register's input or the D/A converter input is the digital equivalent, in parallel form, of the analog input signal. That signal can be stored in a latch or another register for later use.)

The speed of conversion of the successive-approximation system depends on the clock frequency, the bandwidth of the operational amplifier, and the system's stability. Normally, the clock frequency must be much higher than the input signal frequency. For example, if a 256-level (8-bit) resolution is wanted, the clock must be 256 times faster than the analog sampling rate. Actually, it must be even greater to allow for setup times, latching, and sampling of digital-data output to the bus interface.

The A/D conversion systems shown in Figs. 4 and 5 are effective at low to moderate frequencies, such as those used for audio. They are not suitable for the higher frequencies that make up the video signal. One of the most effective A/D video converters is the "flash" converter shown in Fig. 6. It is simply a collection of high slew-rate wideband op-amp comparators that use independent reference voltages, with the video signal common to all comparators. The reference voltages are derived from a resistive voltage divider.

Each of the 256 steps that make up a data byte requires its own comparator, so a practical circuit would require LSI technology. The "flash" comparator's output feeds encoding logic that provides 8-bit binary data corresponding to the analog value of the video signal sample.

Bear in mind that regardless of the kind of digitizing used for video, a bandwidth of 4.2 MHz is required for NTSC video, and digitized video is processed either a line or a frame at a time. Generally, eight bits or more must be used to describe the signals adequately and to avoid visible deterioration of the picture. That corresponds to 256 levels (0 to 255), each step being 48 dB below peak video. Since the sample rate must be at least 2 × 4.2, or 8.4 MHz, more likely 10 MHz would be used so there would be a small amount of leeway. To allow for glitches and pulse-settling time, and to reduce aliasing, bandwidths of 20 MHz are necessary.
Descrambling

To demodulate digitized audio, the digitizing process is simply reversed. Figure 7 shows the block diagram of a sync-interval digital audio decoder. A data-separator gate following the TV's video detector extracts the audio-data pulses from the video signal. The output from the separator is a squarewave containing unwanted components, among them possibly video "spill," and a 15-Hz waveform that is used to prevent the accidental use of the digital data as TV synchronizing pulses. All extraneous signals, regardless of type, are removed by the filter-amplifier so that only the digitized data appears at the input to the level converter. The level converter makes the data signal TTL compatible (or whatever is necessary for the logic circuitry that follows). The compatible data is clocked into a 24-bit shift register, which can easily be made up of three 8-bit shift registers, as shown. One shift register contains the first audio sample, another the second sample, and the remaining register contains the encoded third byte. The third byte is led to a pattern-recognition system that specifically interprets the encoding of the third byte.

Byte 1 and byte 2 are fed in parallel form to a data selector that is driven by a 31.5-kHz clock, which is derived from the horizontal-sync circuit. Bytes 1 and 2 are alternately selected and fed in parallel form to a D/A converter, which converts the audio data back to analog form. The filter, which we'll get to shortly, completes the restoration process by "smoothing" the analog waveform.

Figure 8 shows how an op-amp and a resistor network create an elementary D/A converter. Resistor R₁ is the feedback resistor from the op-amp's output to its inverting input. Using a +15-VDC supply and TTL signal levels, values for R₁ and R might be 10k and 5k, respectively.

The converter works this way: Assume that data-input D₃ is the most-significant data bit, having 128 times the effect on the output compared to D₀, which is the least-significant bit. And assuming that R₁ is 10k and that R is 5k, if D₃ is high and all other data lines are low, we would get 10 volts out of the D/A converter. If D₃ were low and D₀ were high, the D/A output would be 5 volts. A high D₃ would produce 2.5 volts; a high D₀ would produce 1.25 volts, and so on, until D₀, which would produce 0.5 volts. Note that each data line produces twice the effect of its lower neighbor. Any binary number would therefore produce a definite analog voltage.

As shown in Fig. 9, due to the sampling process the output of a D/A converter used for decoding is an analog signal having a 31.5-kHz component. The low-pass filter, also shown in Fig. 7), removes the 31.5-kHz component, thereby producing a low-distortion waveform that closely resembles the input signal.

Not really scrambled

Although we have been referring to "scrambled" audio, as you can see by now, the audio signal itself is not really scrambled, it is simply digitized. But since it cannot be received by a con
High-definition DBS

The C-band home Satellite-TV industry came into being quite accidentally; no one thought that relatively small dishes for C band would be developed, much less proliferate. Instead, most thought that the Ku-band (12 GHz) would be the likely home for any Direct-Broadcast Satellite (DBS) system. Plans for such systems have been on the drawing board for more than ten years, and Ku-band allocations have been reserved for DBS since 1979. But to date, with the exception of some very limited testing by the French, nothing has really happened on that front anywhere in the world. Further, nothing is likely to happen before 1990, at the earliest. But after that, watch out!

Here comes HDTV

Now there is serious planning underway to change the very nature of television broadcasting.

INTERESTED IN SCRAMBLING?

Bob Cooper's CSD Magazine maintains a 24 hour per day Scramble-Fax Hotline telephone service (305-771-0575) which you may call to obtain a 3-minute recorded update on the latest happenings in the satellite scrambling world. Scramble-Fax Newsletter is also published to keep you abreast of the latest events in descrambling, including sources for descrambling chips and equipment. For information, write Scramble Fax, P.O. Box 100858, Ft. Lauderdale, FL 33310 or telephone 305-771-0505.

If you have a dish of your own, tune in the Caribbean Super Station (Western 5, transponder 23) Tuesday at 7 PM eastern for a special weekly Bob Cooper report. Also tune in Boresight at 9 PM Thursday nights (Sparcnet 1, transponder 9) for a weekly one-hour report on the activities in the home TVRO field.

Our present 525-line, NTSC color system grew out of a proprietary RCA black-and-white system and was, for all intents and purposes, adopted in 1939. Back then, that represented the highest resolution that was technologically possible. Now, however, almost 50 years later, High Definition TV (HDTV) with more than 1,000 scan lines per frame at last has become very practical.

But what do you do with all the millions of 525-line TV sets currently in place? The FCC has a plan: They would like to allow existing TV broadcasters to operate in the Ku band using high definition (1,125-line, 5 x 3 aspect-ratio) video; the broadcasters would continue to operate their existing VHF or UHF local stations simultaneously. Using spot-beam techniques at Ku or even Ka frequencies, the satellite footprint could be shaped to more or less duplicate a broadcaster's terrestrial-signal coverage area.

Japanese HDTV

The Japanese will launch 1,125-line high-definition TV service using Ku-band satellites in 1990. The double-bandwidth transponders required for HDTV will transmit their signals to an entirely new generation of TV receivers designed to process the signals. The audio will be digital, stereo, and capable of supporting multiple languages and even closed captioning in the same transmission. The aspect ratio or width of the pictures will be enlarged from the present 4 x 3 format (see Fig. 1-a) to 5 x 7 (see Fig. 1-b).

This past January, Japanese scientists conducted a public dem-
onstration in the U.S. Using a special side-by-side allocation, approved for the occasion by the FCC, two UHF channels were used to allow the Japanese to demonstrate their high-definition video. The demonstration was widely applauded by the National Association of Broadcasters (NAB), which represents U.S. broadcasting interests before the FCC and Congress. It’s now clear that the NAB, and apparently the FCC, both are in favor of allowing wideband, high-definition transmission to develop here as well.

Because our present VHF- and UHF-TV spectrum is filled, and because high-definition video requires twice the bandwidth of present NTSC video, the only logical home for HDTV is on microwave frequencies using direct satellite transmission. But who is to own and operate such a system?

Turning it over to the broadcasters is one way to allay their worries that a superior technology might erode the value of their licenses. In late 1986, a VHF television station in New York City sold for more than the cost of buying and launching more than three 24-channel C-band satellites!

Best laid plans

All of that flies contrary to the present on-record plans for Ku-band DBS. Under the original FCC plan, DBS was to be a separate service allowing programmers to provide a sort of wireless cable. But with the entry of HDTV, the best-laid plans for DBS seemed to be headed out the window.

High-definition TV requires twice the bandwidth per transponder as DBS, and it has a ready-made user list that includes all of the existing TV broadcasters in the U.S. That seems to exclude any other use for Ku or Ka frequencies. In fact, it will take some very careful allocation planning to ensure that all of the broadcasters who might like access to the service will receive it. But through frequency re-use techniques, transponder assignments can be repeated often enough to allow each terrestrial broadcaster a viewing area that’s essentially the same as the one it now serves.

That sort of change in television service will have profound and long-lasting impact on everything related to television in North America. After 50 years of NTSC as our standard, there is serious energy now being devoted to updating the system and to adapting it to the improved techniques.
R-E Computer Admart

Rates: Ads are 2¼” × 2¼”. One insertion $825. Six insertions $800 each. Twelve insertions $775 each. Closing date same as regular rate card. Send order with remittance to Computer Admart, Radio Electronics Magazine, 500-B Bi-County Blvd., Farmingdale, NY 11735. Direct telephone inquiries to Arline Fishman, area code-516-293-3000. Only 100% Computer ads are accepted for this Admart.

NEWWORD—the better word processor

This fine word processor can be considered a clone of the popular WordStar program and it even uses the same commands. However, NEWWORD is faster, easier to customize, has the mail merge feature built-in, supports more printers, has an UNDELETE function and excellent documentation. It also includes the WORD Plus spelling checker by Oasis — an excellent product in itself! We offer this package at a discount. Just check the prices below.

Available in most computer formats including Heath hard sector
30 Day Money-Back Guarantee!
CPU/PM 80
CPU/PM 86

PCDOS, Z100, CPU/PM 86
$269

Add $4 per order for shipping and handling. Terms: Check or Money Order — VISAMC — COD. California residents add 6% tax.

ANAPRO

805/688-0826

213 Teri Sue Lane
Buellton, CA 93427

CALL NOW AND
RESERVE YOUR SPACE

• 6 - rate $800.00 per each insertion
• Reaches 239,312 readers.
• Fast reader service cycle.
• Short lead time for the placement of ads.

Call 516-293-3000 to reserve space. Ask for Arline Fishman. Limited number of pages available. Mail materials to: Computer Admart, RADIO-ELECTRONICS, 500-B Bi-County Blvd., Farmingdale, NY 11735.

DO YOU REPAIR COMPUTERS?
(or want to?)

Your one-stop source for computer repair products:
• trouble-shooting guides
• test equipment & tools
• diagnostic programs
• computer repair courses
• schematics & much more.

Computing Technology
247 Balsam St. Ridgecrest, CA 93555
(619) 375-5744

CIRCLE 61 ON FREE INFORMATION CARD

CIRCLE 199 ON FREE INFORMATION CARD

COMPATIBLE CLONES XT & AT

EASY TO FOLLOW INSTRUCTIONS. CALL FOR TODAY'S COMPETITIVE PRICE.

EPROM PROGRAMMING

EPROM BLASTER + SOFTWARE
$11800
4x EPROM BLASTER + SOFTWARE
$15800

EPROMS
CALL
RAM CHIPS
CALL
MODEMS
CALL

PROCORP, INC.
500 S. CHALLIS ST.
SALMON, ID 83447

(208) 756-4505
MON.-FRI. 8:00-5:00
1-800-548-0004
SAME DAY SHIPPING

CIRCLE 199 ON FREE INFORMATION CARD

SWITCH!

• SWITCH! connects two Parallel printers to IBM-PC/XT/AT.
• SWITCH! comes with all cables.
• SWITCH! lets you forget the bulky boxes.

Price: Only $59.00 (Port No 1/2/C)
(CA residents add 8.5%. Shipping Handling USA) add $4 on all orders. All subject to availability and price change with our notice. Send check or money order only.

We carry, interfaces and cables for most major computer and printers.

CIRCLE 201 ON FREE INFORMATION CARD
KEYBOARDS, KEYBOARDS AND KEYBOARDS!
The man-machine interface

IBM's NEW PC's
First impressions of Big Blue's new entries
IBM's Personal System/2

Following months of speculation and rumor, IBM has finally released a quartet of new computers, a new version of DOS, and a slew of new peripherals, including an optical disk drive.

It's immediately apparent that the new computers are intended to open new directions for IBM, as well as to maintain continuity with past machines. And it doesn't seem that IBM has made the kind of marketing blunder it did with the PC JR and the PC Portable.

There are four new Personal System/2 computers, as shown in Fig. 1; they're dubbed the Models 30, 50, 60, and 80, and base models of each list for $1695, $5295, $3595, and $6995, respectively. As you can see, the Models 30 and 50 are desktop models, and the others are floor-standing.

The Model 30 is basically an upgraded PC (or XT); the Models 50 and 60 are basically upgraded versions of the AT, and the Model 80 is IBM's long-awaited 386 machine. The Model 30 has been rated to run about twice as fast as the PC, and the Models 50 and 60 (which differ mainly in the number of expansion slots each contains) twice as fast as the AT. The Model 80 is rated twice as fast the Models 50 and 60.

Specifications are summarized in Table 1.

New features

Technical details are hard to come by at this early date, but here's what we've learned so far (We hope to have a hands-on review next month.) The main features that distinguish the Personal System/2 computers from the old models are the new disk drives, the new video hardware, the new expansion slots, and the new unreleased operating system called Operating System/2 (OS/2).

All the new models come with 3 1/2" disk drives. Each Model 30 disk holds 720K (twice that of a standard 5 1/4" inch disk); new disks for the other machines hold 1.44 megabytes each, and the Model 50, 60, and 80 disk drives can read both types of disks. The 720K disks are used in many portables currently on the market.

The new video hardware is compatible with the old CGA standard, but it also adds several new modes that are incompatible with all other standards, including IBM's own EGA as well as the Hercules standards. The new video modes offer higher resolution and more colors than the CGA, and they require new analog monitors that are incompatible with all other IBM-compatible monitors currently on the market.

The Models 30 and 50 have three expansion slots each; the Models 60 and 80 have seven slots. The slots in the Model 30 are electrically compatible with the old-style slots, but expansion slots shouldn't be necessary because the Model 30 includes most common add-on hardware: 640K of RAM, a video adapter, serial and parallel ports, mouse adapter, and a battery-backed clock/calendar. The expansion slots in the other models are totally incompatible with the old-style slots, but the new bus, which IBM calls the Micro Channel, can operate at a much higher speed than the old bus. The Models 50 and 60 have 16-bit buses; the Model 80 has a 32-bit bus.

DOS and OS/2

There is a new version of DOS (DOS 3.3) and a totally new operating system, which won't be released before the end of the year. DOS 3.3 has a few added commands (including a CALL statement for use in batch files), and has enhanced some old programs (BACKUP and RESTORE, for example), but all in all the new DOS does very little more than provide support for the new hardware. It runs on all past and present IBM PCs.

The other new operating system is called Operating System/2, and it contains many of the advanced features power users and network managers have been clamoring for. OS/2 supports three "environments" and will come in three versions. The three en-
environments (DOS, family, and OS/2) allow various levels of software compatibility. The DOS environment should be totally compatible with existing programs, the OS/2 environment will allow free access to the features of the new computers (what we call the M & M's: Multi-tasking and extended Memory); and the family environment provides a bridge between the two.

The Standard Edition Version 1.0 of OS/2 will include extensive on-line help facilities and support for the M & M's. IBM expects to release 1.0 in the first quarter of 1988. The Standard Edition Version 1.1 will include all the capabilities of 1.0, plus a Macintosh-style graphics/window user interface. IBM expects to announce a release date for 1.1 by the end of 1987. According to the rumor mill, the window interface may be Microsoft Windows, IBM's own (and neglected) Top View, or some combination thereof.

IBM calls the third version of OS/2 the Extended Edition, and it will include an advanced relational database manager, an advanced communications program (that will allow background communications), and terminal emulation. The extended edition seems to be aimed primarily at users who do a great deal of work on both PC's and mainframes.

Price and performance

It's easy to see that IBM is not going after the rock-bottom clone market, although the new models are not hopelessly expensive, either. For example, one week after IBM's announcement, Model 30's were being sold across the counter in New York City for about $1400 for the dual-floppy model and about $1800 for the floppy/hard-disk model. That price doesn't include a monitor, which runs an extra $925 or $475 (street price) for monochrome or color, respectively. However, that price does include everything IBM and the clone makers previously sold separately—video adapter card, ports, RAM, etc. Meanwhile, prices of the old models have dropped on the order of 30%, so now you can get a real IBM for the cost of a clone.

Technically speaking, the new machines indicate that 5¼" disk drives are on the way out and that 3½" drives are on the way in. The takeover will be gradual, but it is inevitable—as was the transition from 8" to 5¼" disks—because the new drives are much more durable and hold much more information than the old ones.

The problem with video is much more difficult to discuss, mainly because at this early date there is little hard data. We know that the new graphics hardware is not compatible with EGA and Hercules standards, but we've been unable to find out whether it's possible to run an EGA or Hercules card in a Model 30. (The bus structure of the more powerful machines precludes EGA/ Hercules use in those machines.) If it's not possible, until present-day graphics software is adapted to the new video standard, it will have to run in CGA mode. On the other hand, it appears that text-mode software will be able to take advantage of the new higher-resolution hardware, so word processors, outline processors, and the like should benefit immediately.

What to buy

If you want to buy a PC now, first you must choose between IBM and non-IBM equipment. If you choose IBM, you have to choose between old technology and the Model 30, on the other hand, and the Models 50, 60, and 80 on the other. And the choice may not be easy, depending on your needs. If you're sure of your present and future needs, and an old-technology machine or a Model 30 will meet those needs, buy one. Present hardware and software will power those machines for perhaps another five years without looking too dated. However, beware that software developers will gradually shift the focus of their efforts over to the new machines, and that development efforts for the old machines will gradually cease (as happened with CPIM).

Choosing among a Model 30, an IBM PC (or XT), and a clone is difficult, but if I were buying today I'd lean strongly toward a Model 30 because it bridges past and future technologies.

On the other hand, if you want a machine that you can grow with, one that will be able to take advantage of the M & M's and the applications software that will put the hardware to work, buy one of the more powerful new machines.

Table 1—IBM Personal System 2

<table>
<thead>
<tr>
<th></th>
<th>Model 30</th>
<th>Model 50</th>
<th>Model 60</th>
<th>Model 80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microprocessor</td>
<td>8086</td>
<td>80286</td>
<td>80286</td>
<td>80386</td>
</tr>
<tr>
<td>Potential system throughput</td>
<td>Up to 2½ times PC XT™</td>
<td>Up to 2 times Personal Computer AT®</td>
<td>Up to 2 times Personal Computer AT</td>
<td>Up to 3½ times Personal Computer AT</td>
</tr>
<tr>
<td>Standard memory</td>
<td>640KB</td>
<td>1MB</td>
<td>1MB</td>
<td>1MB</td>
</tr>
<tr>
<td>Expandable to</td>
<td></td>
<td>7MB</td>
<td>15MB</td>
<td></td>
</tr>
<tr>
<td>Diskette size and capacity</td>
<td>3.5-inch, 720KB</td>
<td>3.5-inch, 1.44MB</td>
<td>3.5-inch, 1.44MB</td>
<td>3.5-inch, 1.44MB</td>
</tr>
<tr>
<td>Fixed disk</td>
<td>20MB</td>
<td>20MB</td>
<td>44, 70MB</td>
<td>44, 70, 115MB</td>
</tr>
<tr>
<td>Additional options</td>
<td></td>
<td></td>
<td>44, 70, 115MB</td>
<td>44, 70, 115MB</td>
</tr>
<tr>
<td>Maximum configuration</td>
<td>20MB</td>
<td>20MB</td>
<td>185MB</td>
<td>230MB</td>
</tr>
<tr>
<td>Expansion slots</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Operating system(s)</td>
<td>PC DOS 3.3 and Operating System 2™</td>
</tr>
</tbody>
</table>

Keyboards

Keyboards are not all created equal. Like people, they come in a variety of sizes and shapes, and they all work differently. The differences among keyboards may seem trivial, but if you spend much time pounding on one, you'll want to ensure that it has the right feel for you. If you work on a number of different keyboards, trying to adapt to the differences among them can make you yawn for a long rest in a well-padded cell.

We want to keep you out of that cell, so here's the lowdown on various keyboards. We've got fat ones, thin ones, plain ones, fancy ones—there are eight in all, and they cover the majority of styles (PC, AT, and Enhanced) in common use. And several have features that make them attractive for special applications (typing, CAD, use by untrained users, etc.)

TABLE 1—IBM PERSONAL SYSTEM 2

<table>
<thead>
<tr>
<th></th>
<th>Model 30</th>
<th>Model 50</th>
<th>Model 60</th>
<th>Model 80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microprocessor</td>
<td>8086</td>
<td>80286</td>
<td>80286</td>
<td>80386</td>
</tr>
<tr>
<td>Potential system throughput</td>
<td>Up to 2½ times PC XT™</td>
<td>Up to 2 times Personal Computer AT®</td>
<td>Up to 2 times Personal Computer AT</td>
<td>Up to 3½ times Personal Computer AT</td>
</tr>
<tr>
<td>Standard memory</td>
<td>640KB</td>
<td>1MB</td>
<td>1MB</td>
<td>1MB</td>
</tr>
<tr>
<td>Expandable to</td>
<td></td>
<td>7MB</td>
<td>15MB</td>
<td></td>
</tr>
<tr>
<td>Diskette size and capacity</td>
<td>3.5-inch, 720KB</td>
<td>3.5-inch, 1.44MB</td>
<td>3.5-inch, 1.44MB</td>
<td>3.5-inch, 1.44MB</td>
</tr>
<tr>
<td>Fixed disk</td>
<td>20MB</td>
<td>20MB</td>
<td>44, 70MB</td>
<td>44, 70, 115MB</td>
</tr>
<tr>
<td>Additional options</td>
<td></td>
<td></td>
<td>44, 70, 115MB</td>
<td>44, 70, 115MB</td>
</tr>
<tr>
<td>Maximum configuration</td>
<td>20MB</td>
<td>20MB</td>
<td>185MB</td>
<td>230MB</td>
</tr>
<tr>
<td>Expansion slots</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Operating system(s)</td>
<td>PC DOS 3.3 and Operating System 2™</td>
</tr>
</tbody>
</table>

Keypad Medley

KEYBOARD MEDLEY

HARDWARE
The original

IBM introduced the PC in 1981. The first thing many people noticed was that IBM completely abandoned the layout it had standardized on the Selectric series of typewriters (See Fig. 1) The major faults are that the Return key is small and hard to reach, and that the Backslash key is located between the “Z” key and the Left Shift key. Other features (which some users love, but many hate) are that the keys must be depressed far to get a response, and each depression causes the keyboard to emit a loud mechanical click (as opposed to a soft, electronically controlled one).

In addition, the Caps Lock, Num Lock, and Scroll keys have no indicator lights, so you can’t tell which mode you’re in without typing something (and then erasing it) Also, the layout of the numeric keypad leaves much to be desired. For example, there is no Enter key, but the “+” key occupies the space of three keys!

Key Tronic 5151

The first attempt to improve that unpopular layout was made by the Key Tronic company; it has become a standard in its own right, although it is not without its problems too.

The 5151 keyboard addressed many of the faults of the original. The biggest difference is that an additional keypad was added so that it is not necessary to toggle the Num Lock key to alternate between using the keypad to type numbers and move the cursor. The Return key was also enlarged, the Backslash key was moved to the far side of the Right Shift key, and the Grave key (') was moved above the Return key, to leave more room for the latter.

In addition, the function keys were moved from the dual row on the left side of the keyboard to a single row above the main portion of the keyboard. Indicator lights were added to the toggle keys, and an Enter key (which is equivalent to the Return key) was added to the existing numeric keypad.

The feel of the keys is mushy, and, although you’re unlikely to press the Backslash key accidentally with the 5151’s layout, it’s also hard to get to it (without looking) when you do want to press it. In addition, KeyTronic placed the Caps Lock key between the “A” key and the Ctrl key, so it’s easy to hit it by mistake.

A Zenith clone

The keyboard Zenith Data Systems sells with several computers is shown in Fig. 3. It corrects many of the faults of the original IBM board, has a slightly mushy feel (but not as much as the Key Tronic model), and emits a nice keyclick (through the speaker in the system unit). The Return key is large, and there is an Enter key in the numeric keypad. The Backslash key was moved down a row, so that it’s between the Spacebar and the Alt key. You’re not likely to hit it accidentally, but it can be hard to home in on, especially if you also use an IBM or other keyboard. One nice feature is that the toggle keys all have internal LED’s. The keyboard is available separately; see Table 1 for more detailed information.

The AT layout

Everyone in the industry knew that there was widespread dissatisfaction with the original IBM layout, but IBM ignored that dissatisfaction when it introduced the XT in 1983. In fact, it wasn’t until the AT was introduced in 1984 that IBM attempted to correct its error. We were unable to obtain an AT keyboard to photograph, but the layout of the AT-style clone keyboard (shown in Fig. 4) is quite similar. Notice that the Enter key is much larger now. However, the BackSpace key is smaller, and the Backslash key has been moved to the upper row (between the BackSpace and the “=” keys).

The clone shown in the photo has an Enter key in the keypad, but the AT does not. In addition, on the AT, the upper right keypad key is labeled SysReq; that key is not normally used by DOS. Beneath it is the PR15c key, followed by the “-” key and the “+” keys. On the AT, the “+” key occupies the space of two keys.

The main thing about the AT layout is that the Esc key has been moved from its traditional place at the upper left corner of the main keyboard to the upper left corner of the numeric keypad. One can only speculate why that was done. The Grave key was moved to the normal Esc position. The AT keyboard also has indicator lights for the toggle keys.

IBM’s Enhanced keyboard

Two years after the announcement of the AT, IBM introduced the XT 286, a machine
FIG. 5—IBM'S ENHANCED KEYBOARD

FIG. 6—THE DATESKETURBO-101

FIG. 7—QUIXOTE CORPORATION'S RAPIDWRITER

FIG. 8—THE KEY TRONIC KB5153

halfway between the XT and the AT in computing power. Along with the XT 286 came a new keyboard, the so-called Enhanced keyboard. If you had never seen a computer keyboard before, you'd probably say that it's a work of art. (See Fig. 5.) The main keyboard has a symmetrical layout and there are separate numeric and cursor pads. Also, there are two new function keys, for a total of twelve function keys, and 101 keys overall.

The feel of the new keyboard is wonderful; you don't have to press the keys very far or very hard. There's no audio feedback, but you don't need it; the keys themselves provide a pleasant yet unobtrusive click.

In fact, there's only one real problem with the Enhanced keyboard: the Ctrl key. Actually there are two Ctrl keys and two Alt keys, located symmetrically on both sides of the Spacebar. The normal position for the Ctrl key is now occupied by the Caps Lock key. If you're used to a keyboard with Ctrl in the normal position, you may go wild trying to adapt to the new position.

Another anomaly of the Enhanced keyboard is that the Esc has been moved yet again—now it's at the left edge of the upper row of keys, by the Function keys. At least that's the same general area as normal.

The numeric keypad finally has an Enter key, and the Backslash key is now in a reasonable location: just above the Enter key in the main keyboard. In addition, the Backspace key is now large and easy to find; it's located just above the Backslash key.

The DataDesk Turbo-101

There's always someone waiting to correct an IBM mistake. The Turbo-101 has much going for it, including a switch that allows you to swap the functions of the Caps Lock and the Left Ctrl keys, and keycaps to make it look as if the keyboard had been designed that way from the beginning.

In addition, another switch adapts the board for use with either a PC (or XT) or an AT. The board can also be used with either the old BIOS ROM (which doesn't recognize the new function keys) or new BIOS ROMs (which do). If you use the Turbo-101 with an old BIOS ROM, F11 generates Alt-F9 and F12 generates Alt-F10 key codes. By cutting the leads of two diodes, you can force the keyboard to generate the new scan codes for those keys. Further, the Turbo-101 comes with a copy of Borland's Turbo Lightning, a combination spelling checker and thesaurus.

The only problem with the keyboard is that each key has a soft detent that is inferior to that of IBM's Enhanced keyboard. Other than that, the Turbo-101 is a good deal.

Special keyboards

Several firms have taken the idea of improving the IBM keyboard further than merely re-arranging the layout. For example, the RapidWriter (shown in Fig. 7) is a hardware/software combination that is designed to increase keystroke efficiency by automating the processes of typing repetitive words and phrases.

The keyboard is identical to the KeyTronic 5151. Just as we were going to press Quixote Corporation informed us that future versions of RapidWriter will come with a 101-key enhanced keyboard. The software has also been upgraded.

The software loads a special keyboard driver that senses when several keys are pressed simultaneously. That condition is called a "chord" by Quixote. When the keys corresponding to a previously stored chord are pressed, an entire word or phrase flows into the current document, just as if that word or phrase had been typed at the keyboard. Chords are stored in dictionaries; each dictionary can contain 250 chords for a total of 16,000 characters. You can have an unlimited number of dictionaries, as each is stored in a separate disk file.

You can cause the first letter of a chord to be capitalized by pressing a Shift key when you press the chord. Or you can capitalize the entire chord by pressing Caps Lock with the chord. In addition, you can define chords that pause one or more times during chord expansion, allowing you to type information at the keyboard. And a chord can "call" another chord, expand it, and return to the calling chord. You can also edit and print chords.

KeyTronic 5153

The most innovative and useful special keyboard we've seen is the KeyTronic 5153 (shown in Fig. 8), because it contains a programmable keypad (on the right side of the unit) instead of separate numeric and cursor pads.

The basic keyboard layout is in the AT style, with the Escape key in the numeric keypad. The keyboard has the typical KeyTronic feel—mushy, but not so mushy as some inexpensive clones. The programmable keypad is like a digitizing tablet; it can resolve motion to a precision of about 0.001 inch. You use the keypad by pressing it with your finger or with a plastic stylus.

The keypad has several modes of operation. You can use it as a cursor keypad, in which each press is converted into equivalent cursor-key codes. In the function-key mode, the pad is divided into a number of squares, each of which is freest programmable. KeyTronic supplies program files (and plastic overlays) for common DOS commands (DATE, TIME, TYPE, FORMAT, etc.), and for popular applications programs, including WordStar and Lotus 1-2-3. KeyTronic also supplies software that allows you to create your own keypad macro files (for matrix sizes of 2 x 2, 3 x 3, 4 x 4, or 5 x 5), and blank overlays.

In the mouse mode, the keypad emulates the operation of the Microsoft mouse; to use it, you run the stylus across the keypad. A graphics mode functions similarly, but each point on the keypad corresponds to a point on the display screen. You can also use the keypad in several microdes that combine the above modes.

Conclusions

Each of the keyboards we examined has merit; some are better for particular applications than others. The main features you'll want to consider when buying a keyboard are the overall layout, indicator lights, feel (mushy, "clicky" or somewhere between the two), and extra features (bundled software, for example). The most important feature is layout, so examine it carefully; layout can make the difference between productive and non-productive use of a machine. Try before you buy.

Which would we choose? For general use, the IBM Enhanced keyboard. It has by far the best feel, and is now the standard of IBM's entire line of PCs.

The KeyTronic 5153 is our runner-up. It has a good feel, and the keypad can save the cost of a mouse, a digitizing tablet, or both. A person just starting out in computing could get by with it until he or she could justify the cost of the extra peripheral.
IBM keyboards come in a variety of sizes and shapes—
here’s how they work and how they differ from
one another.

JEFF HOLTZMAN,
TECHNICAL EDITOR
The lower of those two levels is the BIOS (Basic Input/Output System); it is contained in a ROM (or in an EPROM on most clones). Code in the BIOS ROM is responsible for all of the low-level functions of the computer: displaying characters on the screen, sending them to the printer, transferring data to and from the disk drives, getting keystrokes from the keyboard, etc.

The upper software level is the DOS (Disk Operating System), which is contained in several files on disk. DOS is the level through which programmers are supposed to display data, manipulate disk files, and get keystrokes. However, to improve performance (or sometimes just by preference), many programmers go to the BIOS (or even to the hardware itself).

Interrupts

To understand how the hardware communicates with the software, you must understand the basics of interrupts. A device (the keyboard, for example) can interrupt the normal processing of the computer's 8088 microprocessor. When you press a key at the keyboard, it generates a signal that is sent to the computer; that signal says "Hey! Someone pressed a key!"

The microprocessor then stops what it is doing and loads the address corresponding to the keyboard handler (interrupt 9) from a special location in memory (Unless otherwise specified, all numbers in this article are in decimal notation). Processing continues at that address as the 8088 reads the keyboard port, converts the raw key code into something meaningful, and stores it for use by whatever program was running before the interrupt occurred. Last, the 8088 performs a special instruction (IRET, for Interrupt Return) that allows it to continue where it left off before the interrupt took place.

Devices other than the keyboard (the disk drives and the serial ports, for example) generate their own interrupts, which the 8088 processes in the same fashion. The difference is that each interrupt is directed to a different location in memory.

In addition to hardware interrupts, the 8088 also allows software interrupts for many commonly used functions. For example, when you press Shift-PrtSc, whatever is displayed on the screen is sent to the printer. That works as follows: First the two keypresses (Shift and PrtSc) generate their own interrupts. The computer processes those interrupts one at a time, and, when it realizes that a print-screen operation should be performed, it generates interrupt 5 (from within the interrupt-9 handler). Interrupt 5 does the screen-print and then returns to the interrupt-9 handler, which then returns to whatever program was in control when Shift-PrtSc was pressed.

Other software interrupts, at both BIOS and DOS levels, allow many operations, including displaying characters, getting user input from the keyboard, reading and writing disk drives, reading and writing communications ports, etc. As we saw, interrupts can interrupt each other (sometimes—but that's a story that we'll not get into here). With the basics of interrupts in mind, now let's see how the keyboard-interrupt-processing software works.

Keyboard hardware, BIOS software

Keyboard processing on the IBM provides a good example of how the hardware meshes with the software. As we said, each keypress generates an interrupt 9. That interrupt is processed in the BIOS ROM and then passed on to DOS for further, more sophisticated handling.

There are 83 keys on the standard IBM keyboard; each has an associated eight-bit scan code. The keys and their scan codes are shown in our lead illustration and in Table 1. Each time you press a key (any key, including the ones you don't normally think of as generating a code—the Shift keys, Alt, Ctrl, etc.), the keyboard interrupts the microprocessor, sending it the scan code. Each time you release a key, the keyboard generates another interrupt, sending it the same scan code, but now with the high bit set (i.e., the scan code + 128).

The BIOS then translates the scan codes into ASCII and other codes, depending on the state of eight keys: Control, Alt, Delete, Insert, Left Shift, Right Shift, Num Lock, Caps Lock, and Scroll Lock. For example, the "A" key has a (hardware-level) scan code of 30. So when that key is pressed, the 8048 in the keyboard sends a 30 to the IBM BIOS through Interrupt 9. When the key is released, the keyboard sends a 158 (30 + 128) to the computer. If the "A" key is pressed continuously, the 8048 continuously sends 30's until the key is released, at which time a 158 is sent.

The BIOS would translate that 30 into a lowercase "a" (ASCII 97). But suppose that one of the shift keys were pressed simultaneously with the "A." In that case, the BIOS would translate that 30 into an uppercase "A" (ASCII 65). If the Control key were pressed, the hardware-level 30 would become a BIOS-level Ctrl-A (ASCII 1). If Caps Lock were on and one of the shift keys were pressed, a lowercase "a" would be generated.

However, if the Alt key is pressed with the "A" key, something funny happens: The BIOS now generates two codes, the first of which is a zero, and the second of which is often (but not always) the scan code for that key. And the scan code, of course, bears no relation to standard ASCII codes. The function keys, the arrow keys,

<table>
<thead>
<tr>
<th>Code</th>
<th>Label</th>
<th>Code</th>
<th>Label</th>
<th>Code</th>
<th>Label</th>
<th>Code</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Esc</td>
<td>22</td>
<td>U</td>
<td>43</td>
<td>A</td>
<td>64</td>
<td>F6</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>23</td>
<td>I</td>
<td>44</td>
<td>Z</td>
<td>65</td>
<td>F7</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>24</td>
<td>O</td>
<td>45</td>
<td>X</td>
<td>66</td>
<td>F8</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>25</td>
<td>P</td>
<td>46</td>
<td>C</td>
<td>67</td>
<td>F9</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>26</td>
<td>[</td>
<td>47</td>
<td>V</td>
<td>68</td>
<td>F10</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>27</td>
<td>]</td>
<td>48</td>
<td>B</td>
<td>69</td>
<td>NumLK</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>28</td>
<td>Retn</td>
<td>49</td>
<td>N</td>
<td>70</td>
<td>ScrLK</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>29</td>
<td>Ctrl</td>
<td>50</td>
<td>M</td>
<td>71</td>
<td>Home</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>30</td>
<td>A</td>
<td>51</td>
<td>.</td>
<td>72</td>
<td>UpArw</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>31</td>
<td>S</td>
<td>52</td>
<td></td>
<td>73</td>
<td>PgUp</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>32</td>
<td>D</td>
<td>53</td>
<td></td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>—</td>
<td>33</td>
<td>F</td>
<td>54</td>
<td>RShift</td>
<td>75</td>
<td>LfAt</td>
</tr>
<tr>
<td>13</td>
<td>=</td>
<td>34</td>
<td>G</td>
<td>55</td>
<td>PrtSc</td>
<td>76</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>Bksp</td>
<td>35</td>
<td>H</td>
<td>56</td>
<td>Alt</td>
<td>77</td>
<td>RgtAr</td>
</tr>
<tr>
<td>15</td>
<td>Tab</td>
<td>36</td>
<td>J</td>
<td>57</td>
<td>Space</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Q</td>
<td>37</td>
<td>K</td>
<td>58</td>
<td>CapLk</td>
<td>79</td>
<td>End</td>
</tr>
<tr>
<td>17</td>
<td>W</td>
<td>38</td>
<td>L</td>
<td>59</td>
<td>F1</td>
<td>80</td>
<td>DwnAr</td>
</tr>
<tr>
<td>18</td>
<td>E</td>
<td>39</td>
<td>;</td>
<td>60</td>
<td>F2</td>
<td>81</td>
<td>PgDn</td>
</tr>
<tr>
<td>19</td>
<td>R</td>
<td>40</td>
<td>/</td>
<td>61</td>
<td>F3</td>
<td>82</td>
<td>Ins</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>41</td>
<td>\</td>
<td>62</td>
<td>F4</td>
<td>83</td>
<td>Del</td>
</tr>
<tr>
<td>21</td>
<td>Y</td>
<td>42</td>
<td>LShift</td>
<td>63</td>
<td>F5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 1—IBM KEYBOARD CODES
LISTING 1

10 REM Computer Digest Keyboard Demo
20 REM Copyright Jeff Holtzman 03-27-87
30 GOSUB 2000
40 REM main loop -----------------------------
50 GOSUB 150 : REM update shift key display
60 IF ASC($) THEN GOSUB 200 : REM update DOS display
70 RETURN
80 REM update status key display ---------------
90 YBOX=21:XBOX=7:FLAC1=PEEK(417)
100 FOR SX=1 TO 8
110 PRINT SX*XBOX+10 : XBOX=XBOX+10
120 IF FLAC1 AND 2*(SX-1) THEN GOSUB 500 ELSE GOSUB 400
130 NEXT
140 RETURN
150 REM Display DOS keys ----------------------
160 A=ASC(A)
170 LOCATE 13,36:PRINT A;
180 IF A<>6 THEN PRINT ASC(MIDS(A,2)); ELSE PRINT " ";
190 LOCATE 5,22
200 IF INSTR(NOPRINT$,A$)=0 THEN PRINT AS; ELSE PRINT " ";
210 LOCATE 5,32:PRINT " ";
220 LOCATE 5,32
230 IF A>127 THEN PRINT "Extended (8-bit) ASCII"; GOTO 300
240 IF A>31 THEN PRINT "Regular (7-bit) ASCII"; GOTO 300
250 IF A=0 THEN PRINT "Cntl-";CHR$(A OR WH40);GOTO 300
260 PRINT DESC$ASC(MIDS(A,2));
270 RETURN
280 REM Clear box -----------------------------
290 REM inputs: xbox,xbox
300 LOCATE YBOX,XBOX
310 PRINT " ";
320 LOCATE YBOX,XBOX
330 PRINT " ";
340 RETURN
350 REM Fill box -------------------------------
360 REM inputs: xbox,xbox
370 LOCATE YBOX,XBOX
380 PRINT FILLS
390 RETURN
400 REM draw box -------------------------------
410 REM inputs: xbox,xbox: start position
420 REM xlen,ylen : length
430 REM first do corners
440 LOCATE YBOX,XBOX
450 PRINT CHR$(201);
460 LOCATE YBOX,XBOX+XLEN-1
470 PRINT CHR$(187);
480 LOCATE YBOX+YLEN-1,XBOX
490 PRINT CHR$(200);
500 LOCATE YBOX+YLEN-1,XBOX+XLEN-1
510 PRINT CHR$(188);
520 REM now do horiz lines
530 FOR BOX=1 TO XLEN-2
540 LOCATE YBOX,XBOX+BOX
550 PRINT CHR$(205)
560 NEXT BOX
570 PRINT CHR$(205);
580 NEXT BOX
590 PRINT CHR$(205);
600 NEXT BOX
610 REM draw shift keys -------------------------
620 GOSUB 2000
630 FOR FKEY=1 TO 72 STEP 10
640 XBOX=XFOK
650 GOSUB 600
660 NEXT
670 RESTORE 1070
680 FOR FKEY=1 TO 73 STEP 10
690 LOCATE 18,FKEY
700 READ AS
710 PRINT AS
720 LOCATE 19,FKEY
730 PRINT AS
740 NEXT
750 RETURN
760 DATA Right,Shift,Left,Shift,Control,Alt
770 DATA Scroll,Lock,Num,Lock,Caps,Lock,Insert
780 DATA Draw BIOS box -------------------------
790 LOCATE 11,30
800 PRINT "BIOS-level scan code ";
810 DATA XBOX=35;YBOX=12;XLEN=10;YLEN=3
820 GOSUB 600
830 RETURN
840 DATA Draw DOS boxes ------------------------
850 DATA XBOX=21;YBOX=4;XLEN=5;YLEN=3
860 GOSUB 600
870 LOCATE 7,20
880 PRINT "ASCII ";
890 DATA XBOX=30;YBOX=4;XLEN=26;YLEN=3
900 GOSUB 600
910 GOSUB 720
920 DATA Draw Description
930 DATA Draw BIOS box
940 DATA Draw DOS box
950 DATA Dim DESC$(12)
960 RESTORE 380
970 FOR I=1 TO 113:READ DESC$(1):NEXT
980 REM draw
990 REM Key label data -------------------------
1000 DATA Null,...........
1010 DATA Back,Tab,...........
1030 DATA Add,...........
1050 DATA Add,...........
1060 DATA Alt-Z,Alt-X,Alt-C,Alt-V,Alt-B,Alt-N,Alt-M
1070 DATA Delete,...........
1080 DATA F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,...........
1090 DATA HOME,Up,Down,PageUp,PageDown,Left,Right,Home,End,Down,Arrow
1100 DATA Cntl-F1,Cntl-F2,Cntl-F3,Cntl-F4,Cntl-F5,...........
1110 DATA Cntl-F6,Cntl-F7,Cntl-F8,Cntl-F9,...........
1120 DATA Cntl-F10,...........
1130 DATA Cntl-PrSc,Cntl-Left,Arrow,Cntl-Right,Arrow
1140 DATA Cntl-End,Cntl-PGdn,Cntl-Home
Home, etc., all generate the two-byte codes.

If you want to see which codes are generated by which keys (and combinations of keys), the program in Listing 1 provides a graphic representation of how those keys are interpreted. You can download the program (KEYMON.BAS) from our BBS (516-993-2983); if you type it in yourself, make sure you enter all the commas in the DATA statements.

For example, after pressing Scroll Lock, Insert, and the "J" key, the screen appears as shown in Fig. 2. You'll notice that the boxes corresponding to the Shift keys, Ctrl, and Alt light up as long as you press those keys and go dim when you release them. By contrast, Num Lock, Scroll Lock, Caps Lock, and Insert are toggles—each time you press one of those keys, an internal flag is alternately set and reset that indicates the given state (on or off).

You'll notice that some keys and key combinations produce no display. For example, the "5" key in the keypad produces no code when Num Lock is off. It's important to understand that every time you press any key the keyboard generates an interrupt (unless the keyboard buffer is full, at which point the keyboard will beep). If pressing a key produces no apparent result, that's because the BIOS has defined no code for that key (or combination).

Some programs make use of the "undefined" keys. For example, Cruise Control (reviewed in this month's Editor's Workbench), uses that "S" key (when Scroll Lock is off) as a special hotkey for controlling various functions. However, to get at those undefined keys, you have to write a complete Interrupt 9 handler—and that's no trivial pursuit.

Our demonstration program has several "bugs." Those bugs are due to differences between the ways that BASIC and DOS treat the keyboard. For example, if you print a CHR$(12) to the screen in BASIC, the screen will be cleared. In DOS, however, you'll see the "female" symbol (a circle over a cross). There are several such anomalies; tracking them down will teach you much about BASIC and DOS, as well as the keyboard.

ASCII, extended ASCII, and special codes

Basically, ASCII is a seven-bit code that provides a total of 128 (2^7) unique codes. However, personal-computer memory is organized in eight-bit (or 16-bit) chunks. So why didn't IBM encode all the special keys in the upper 128 ASCII codes? The reason is that IBM wanted to retain the upper codes for use by displayable characters. For example, most of the codes from 128 to 167 are foreign-language characters. Others include box-drawing characters, special math symbols, etc.

You know how to type in standard ASCII codes and the two-byte special codes—but how do you type in the extended ASCII codes? Some programs let you do so directly (for example, by associating special characters with the function keys); the IBM BIOS lets you type in any ASCII code from 1 to 255 as follows. Press the Alt key, and hold it down. Now type the three-digit decimal code that corresponds to the desired character. Use only the keypad keys, not the number keys above the main keyboard. After you release the Alt key, the character will be displayed. That procedure works in BASIC, at the DOS command line, and in some (but not all) applications programs.

New keyboards

When IBM introduced the IBM PC AT in 1984, it introduced a new keyboard. The AT keyboard has a new layout (as shown in the review in Editor's Workbench this issue), and it works differently. The biggest hardware difference is that the keyboard now both transmits and receives data. You can force it to stop scanning temporarily, resume scanning, set the "Typematic" (repeat) rate, and turn the status-indicator LEDs on and off.

In addition, the hardware-level scan codes have changed. The keys have different numbers, and there is one new key. However, those hardware differences are transparent at all levels above (and including) the BIOS. So our demonstration BASIC program works on the AT. But any program that works with the keyboard at the Interrupt 9 level must know whether it is running on an AT or a standard PC.

IBM still wasn't satisfied with the state of keyboard confusion, so, when the company introduced the XT 286 last fall, it introduced yet another keyboard. The new keyboard has 101 keys, even more commands issuable by the system, and three (1) software-selectable sets of scan codes. The first set is similar to the PC/XT set; the second set is similar to the AT set; and the third set is similar to the AT set, except that every key generates a unique code, regardless of the state of any of the shift keys (including Ctrl, Alt, etc.). The last set should make it unnecessary for keyboard-enhancement programs to take over the keyboard-processing interrupts completely. However, such programs will still have to contend with the PC/XT and AT keyboards. Set 6 is the power-up default set.

To give you some idea of how the three sets of scan codes are related, consider this example. The enhanced keyboard has two Insert keys, one in the numeric pad (key 99), the other in the new cursor-control pad (key 75) located between the typewriter and the numeric-keypad sect ons. Table 2 shows the codes that are generated from each set when Insert is pressed and no shift keys are pressed.

<table>
<thead>
<tr>
<th>Code</th>
<th>Set</th>
<th>Make</th>
<th>Key 75</th>
<th>Break</th>
<th>Make</th>
<th>Key 99</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E0</td>
<td>52</td>
<td>E0</td>
<td>D2</td>
<td>52</td>
<td>D2</td>
</tr>
<tr>
<td>2</td>
<td>E0</td>
<td>70</td>
<td>E0</td>
<td>F0 70</td>
<td>70</td>
<td>F0 70</td>
</tr>
<tr>
<td>3</td>
<td>67</td>
<td>F0</td>
<td>67</td>
<td>F0</td>
<td>67</td>
<td>F0</td>
</tr>
</tbody>
</table>

Programming and the special keys

In BASIC, you can use the normal INKEY$ function to get both standard and special keys. Normally INKEY$ collects single characters, but when a special key is pressed, INKEY$ returns two characters, the first of which is a CHR$(0). As at the BIOS level, that's a sign that another character is available. You can test for the existence of a special code by checking the length of the string that INKEY$ returns. Our demonstration program illustrates the procedure; see lines 100–200.

If you're interested in working with the keyboard in assembly language, you'll want to understand how BIOS interrupts 9 and 16, and DOS interrupt 33 (function calls less than 10) work. The best sources of information for BIOS listings and scan codes are IBM's Technical Reference manuals for the PC (or the XT), the AT, and the XT 286, as well as the DOS Technical Reference manual. Some of those manuals are hard to obtain (and expensive), so you may wish to consult Peter Norton's Programmer's Guide To The IBM PC and Ray Duncan's Advanced MS DOS. Both are published by Microsoft Press, and both are excellent sources of information on the BIOS, DOS, and other subjects.
WORKING WITH SURPLUS KEYBOARDS

How they work, and how to use 'em.

Robert Grossblatt

Once upon a time, most of us had to throw switches and turn dials, but if you spent some extra bucks, you could talk to your equipment by pressing buttons. Things stayed like that until calculators showed up. When computers hit the market, keyboards became commonplace.

Adding a keyboard to your own circuit is easy. And with the parts market loaded with surplus keyboards, it's inexpensive. But using a keyboard successfully means understanding how it works, how it's driven, and what you need to get it working. Once we know the theory, we'll talk about how to use those surplus keyboards sold in the back of this magazine.

All keyboard circuits are made up of three parts—the switches themselves, decoding circuitry, and encoding circuitry. The keys are wired so that each one produces a unique code that can be passed on to the decoder, the circuit's main section. The encoder will take the keypress and translate it into whatever kind of information is needed by the equipment the keyboard is talking to. Let's discuss each circuit in turn.

Two methods

The two methods most frequently used to wire up switches are with a common-leg and in a row-and-column matrix. In Figure 1 you can see that both arrangements will let each keypress generate a unique code. A common-leg set-up (Fig. 1-a) is much simpler to design but is only suited to applications where a few switches are needed. Since each switch you add means another lead coming from the keyboard, large numbers of switches become wiring nightmares. A matrix keyboard (Fig. 1-b) has fewer connections but it usually needs more support circuitry.

The break-even point for connections is eight switches. A common-leg keyboard that size will need nine leads, and a matrix keyboard will need eight. Since there are advantages and disadvantages to both, which is best depends on what you're doing.

FIG. 1—A KEYBOARD can be wired from a linear array of switches (a) or in an X-Y matrix (b).
Key-Pressed line becomes active. That signal tells some other circuitry down the line that the keyboard is putting out data.

That circuit could be used for both matrix and common-leg keyboards. The difference between the two would be in how the keyboard was scanned. Figure 3 shows the scanning circuitry for a common-leg keyboard, and Fig. 4 shows a similar setup using a matrix keyboard. The clock and counting circuitry is the same.

In Fig. 3, the values of R2, R3, and C2 give the clock composed of IC2-b and IC2-c an output frequency of about 100 kHz. That signal drives both IC3, half a 4520 binary counter, and IC1, a 4514 1-of-16 line decoder. As the count cycles from 0 (0000) to F (1111), each of IC1's outputs goes high in turn. R1 serves two purposes—it holds the common leg of the switches low, and, with C1, helps to debounce the switches.

When a key is pressed, nothing happens until that output of the 4514 is selected by the count of the 4520. When the output does go high, the Any-Key-Pressed line goes high, IC2-a inverts the signal and disables the clock and the counter; and puts a low on pin 1 of the 4514 to disable it also. The result of this is that a keypress freezes the output data lines at the selected number and generates a signal to indicate that valid data is on the bus.

There are two features of the circuit that should be noticed. First, although the switches are debounced, the design of the keyboard eliminates switch bounce. If you used noisy switches, the worst that would happen is that the switch would be in an open con-
dution when its output was selected. In that case, the circuit would cycle through another count as the clock kept running. Only a valid keypress would produce valid data.

Two-key rollover

That circuit has two key rollover. D1 to D16 isolate each of the 4514's output lines, so, if two keys are closed at the same time, the circuit will output the second bit of data as soon as the first key is released.

Figure 4 shows a circuit for a matrix keyboard. Though we're encoding the same number of switches as we did in the common leg arrangement, we only need nine leads from the keyboard instead of seventeen. The setup is different too. The basic idea behind using a matrix keyboard is to have the control signal come in on one side of the matrix and leave on the other. In Fig. 4, IC4 is a 4028 BCD-to-decimal converter. A binary address on the inputs causes the selected output to go high while all the rest remain low. As we're only handling a four-by-four switch matrix, we only need two of the inputs.

The two low-order bits from the 4550 are routed to the 4028, and the two high-order bits are routed to the 4512, an eight-channel data selector. When one of its inputs is selected, the signal at the input appears at the output. If a key is pressed, the high signal at the output of the 4028 is channeled through the 4512 and serves the same function as the common switch leg did in Fig. 3. It disables both the clock and the counter and also becomes our Any-Key-Pressed line to let other circuitry know that there's valid data on the bus. The circuit also has two-key rollover.

Look at Fig. 4 — what about all those unused inputs and outputs on the 4028 and 4512? And what about the other half of the 4520? Even though we're only using a four-by-four keyboard, this same circuit can be set to handle a ten-by-eight keyboard! We'd cascade the two halves of the 4520 to get the seven-bit word length we need and use the last bit to reset the counter.

Now that we've looked at these two basic approaches to keyboard design, it's plain to see why large keyboards use matrix switches instead of common-leg arrangements. But all we have is a keyboard that puts out raw code, and not elegantly. To remedy the situation, the first thing is to hang a latch on the bus. Which latch you use depends on what you want to do with the keyboard. As we're dealing with a four-bit word length, the 4042 seems a good choice, but we have to do something to control how data is clocked into the latch.

If we use the Any-Key-Pressed line to directly control storing data in the latch, there's a chance we're going to get flaky behavior because of timing problems. Things have to happen in sequence. First valid data has to be on the bus, then it has to be clocked into the latch. The Any-Key-Pressed line has to signal something else that waits a while and then opens the latch for storage.

Since we have a NAND gate left over we'll use it to build an edge detector and control the latch as shown in Fig. 5. Since the latch's polarity control, pin 6, is tied low, the latch will ignore its inputs as long as the store control, pin 5, stays high. Bringing the store input low will write data into the latch. The edge detector made from IC2-d will generate a negative-going pulse when it sees a positive pulse at its input. With the values given for C3 and R4, the pulse will be about 10 milliseconds wide.

FIG. 5—YOU CAN LATCH THE OUTPUTS of the previous keyboard encoders with the circuit shown here.

FIG. 6—A 2716 EPROM makes an inexpensive yet highly flexible keyboard decoder. It can be re-programmed an essentially unlimited number of times.

FIG. 7—A SHIFT REGISTER can be used to convert the output of a serial keyboard to parallel form (a), or the output of a parallel keyboard to serial form (b).
So there they are, two complete keyboard circuits that will latch unique keycodes from matrix and common-lead keyboards. While you could use the circuits as they are, the data they generate is raw. We still need the third basic part of any keyboard—an encoder.

The encoder

The encoder takes raw data from the keyboard and translates it into something useful—ASCII, custom data, control signals, etc. And there are lots of ways to build one. You can do it with gates, but that buys you a lot of complexity at the cost of flexibility. ROM is a much better way to go. It only takes one chip and the whole configuration of the keyboard can be changed by switching memory. Unless you've got a lot of money, the best memories to use are EPROMs. They're cheap, easy to program, and eraseable.

In Fig. 6 you can see how an EPROM would be connected to the circuits we've put together. Since Chip Enable (pin 18), and Output Enable (pin 20), are both held low, a unique address on the address lines (the inputs), will result in programmed data at the outputs. And the data you put in the EPROM is whatever you want for your particular application. It can be discrete code, or, if you add a bit of clocking, whole strings of data.

Now that we know how keyboards work, what about those keyboards that are available on the surplus market? There are different types—some are ASCII encoded, some are oddball encoded, and some are not encoded at all. The data can come out of the keyboard in either parallel or serial form. You can convert between parallel and serial with only a shift register and a clock. The circuit of Fig. 7-a will convert from serial to parallel, and the circuit of Fig. 7-b will go the other way. You can build a small clock circuit or steal some pulses from the keyboard you're converting.

One last point. Although we've built our keyboards with discrete ICs, there are lots of ICs around that do all the work for you. All you do is connect the switches and add a handful of parts. Most commercial keyboards will use either this approach or do the whole job with something like an 8048 and some software. A gates-only design is a good compromise between cost and complexity. The important point is that no matter how the keyboard works, it has to have the three basic parts we covered.
The byte-wide input and output ports can also be tested. The following word tests the output latch.

: TEST2 BEGIN 0 150 PC! FF 150 PC!
?TERMINAL UNTIL:

The parallel input port can be tested with the following test word. Four lines are available to you at PL1:

: TEST3 BEGIN 120 PC@ 10/ , CR
?TERMINAL UNTIL:

Execute TEST3 and then short some of the inputs to ground. As you short each input, you should see the display on the screen change.

Expansion
The robot can be expanded in various ways. If your expansion project requires full use of the RPC, simply couple your circuits to the RPC bus. To interface the circuitry, you need only duplicate the wait-state generator and the bus-buffer interface described in Part 6 (May, 1987).

Select a block of I/O space between 0100H and E000H and start designing.

If your circuit is simple and needs only one or two I/O locations connect it directly to the RERBUS, PL3. Address decoding is accomplished with a single integrated circuit and no bus drivers are needed. For simple digital inputs, digital outputs, and analog inputs, connect the circuit directly to the user connector, PL1.

Operation
Now that we have our electronics in place, it is time to consider the software required to make it all work.

The software commands to be sent to the motor control circuits should follow this sequence:
- Set up timer 0 of each 8253 (left and right wheel control) for mode 3 operation.
- We write control word 36H to register 3.
- Write a frequency representing a slow speed into timer 0. We write 020H to register 0.
- Close the forward or reverse relay. Write 1 to location 0120H.
- Now enable the PLL. Write 1 to location 0124H.

Notice that the relays are closed before the circuit is enabled. That prevents arcing when the contacts close or open.

All those functions are programmed using RCL (Robotic Control Language), a sophisticated language that is implemented in Forth. The RCL lets us control the robot's motions and functions using simple commands. Further, because Forth is extensible, RCL is extensible. That means that any code we write becomes part of the language.

That last feature is especially valuable. For instance, to control circuits connected to the RERBUS we have to change the way in which the byte store and byte fetch words operate—it's like writing new PEEK and POKE words in BASIC.

Forth's extensibility allows us to create two new words, PCX! and PCX@, that we can use to access the RERBUS. Those words will operate just like PC! and PC@ but they'll do all of the data manipulation required by the RERBUS. The computer code used to create those words is shown in Table 2.

Notice that we have documented our code with comments to allow you to determine how it operates in case something goes wrong or you want to change it. The comment immediately after the word being defined is a standard Forth-notation comment showing the effect of the word on the stack. For example, PC@ pops one argument off the stack (the address) and pushes one argument on the stack (the data). Next time, we will examine the RCL in greater depth.

ELENCO PRODUCTS AT DISCOUNT PRICES!

- **20MHz DUAL TRACE OSCILLOSCOPE**
 - Model CM-1500
 - Price: $65
- **35MHz DUAL TRACE OSCILLOSCOPE**
 - Model M-7000
 - Price: $135
- **10MHz OSCILLOSCOPE**
 - Model S-3000
 - Price: $199
- **DIGITAL TRIPLE POWER SUPPLY**
 - Model XP-785
 - Price: $195
- **DIGITAL 3 AMP POWER SUPPLY**
 - Model XP-750
 - Price: $165
- **MULTI-FUNCTION COUNTERS**
 - Price: $245
- **BREADBOARD**
 - Price: $148
- **TRUE RMS 4½ DIGIT MULTIMETER**
 - Model M-7000
 - Price: $135
- **DIGITAL VOLT-AMPERE METER**
 - Model 5V, 1A
 - Price: $23
- **DIGITAL COUNTERS**
 - Price: $23
- **DIGITAL LCR METER**
 - Model LC-1800
 - Price: $23
- **50MHz LOGIC PROBE**
 - Model LP-700
 - Price: $199
- **50MHz LOGIC PROBE**
 - Model LP-600
 - Price: $148

R-E ROBOT

continued from page 46

C&S SALES INC., 874 W. North Ter., Niles, IL 60646 800-292-7771 (312) 459-9040 ASK FOR CATALOG 15 DAY MONEY BACK GUARANTEE 2 Year Limited Guarantee! Add 5% for Postage ($10 max), IL Res., 7% Tax CIRCLE 109 ON FREE INFORMATION CARD
Note: The pattern for the display board of the tachometer will be presented next month along with the robot control board patterns.

THE SOLDER SIDE of the speedometer's main board is shown here.

THE COMPONENT SIDE of the speedometer's main board. When mounting components, be sure to solder all leads completely.

THE SPEEDOMETER'S DISPLAY BOARD. It is connected to the main board using 35 jumper wires.
Timing is important

As you can see, the sequence and timing of those steps have to be done properly if you want the system to work. And all that we've been talking about so far is the refresh operation. Somewhere in there we have to allow for the time needed for data to be stored to, or read from, the memory. After all, that's the whole reason for building the system in the first place.

The interaction between all the components of a dynamic memory system has to be carefully controlled in order for the circuit to work properly. Refresh has to be constant, and memory access has to be kept to a short operation that won't interfere with maintaining the data. Since a gates-only solution to the problem is so complex as to be impractical, it's obvious we have to look elsewhere for a way to handle all the problems.

Although we can use LSI controllers, they are expensive and hard to locate. The route we're going to follow should already have crossed your mind. Since we're putting together a complex system in which timing and access are the major problems, we can use a microprocessor to handle the job.

Microprocessor control

The Z-80 is the perfect CPU for the job. It has many memory-control signals as well as built-in circuitry especially designed for controlling dynamic RAM. An internal refresh counter will automatically provide the sequential addressing we need to take care of refresh, and the address is put on the bottom of the address bus during the tail end of each op code fetch.

The beauty of that scheme is that the Z-80 doesn't have any need for the address bus once it's loaded the op code. During portions of the instruction cycle the memory is idle. That gives us the time we need to use the address to refresh the RAM. Since the Z-80 is busy elsewhere during that time, it doesn't have to slow down or wait for the refresh operation to be carried out.

When we pick this up again next time, we'll start designing the circuitry that is needed to handle the system shown in Fig. 1, and we'll show how to calculate the system speed, timing parameters, and so on. So pull out your Z-80 data books; you'll be needing them because we'll be poking around the Z-80 anatomy.

Finally, next time I'll be announcing the free-subscription winners of the DTMF remote control system contest.

NEW PRODUCTS

continued from page 25

OPTICAL FIBER TOOL SET, model 06808, is designed for preparing single-mode and multimode optical fibers and cables.

The tool set consists of Kevlar-Strip tool—a hand tool designed to remove any length of Kevlar-reinforced protective sleeving between 2.5mm and 6.5mm diameter; sleeve guides to ensure correct positioning of the sheath (the guides are selected according to the sheath diameter); Opti-Strip tool—designed to remove secondary coatings from optical fibers and small cables less than 2.5mm in diameter; guide bushings; Silicon-Strip tool—used for fast removal of silicone coatings; cutters, and screwdrivers.

The model 06808 costs $157.25.

—Davle Tech, Inc., 2-05 Banta Place, Fair Lawn, NJ 07410. R-E
SCRAMBLING

continued from page 61

ventional TV receiver, it is, for all intents and purposes, scrambled. To actually scramble the signal we must rearrange the bits and bytes that represent the audio. For example, we could scramble the audio by encoding the data bits themselves—the 16 audio bits in each horizontal blanking interval. That could be done by adding a random set of digital numbers to the binary numbers that represent the audio signal. Or, we could use matrix encoding to generate a non-related encoding of each binary number. For example, binary 63 might be transformed to binary 35, while binary 94 is transformed to binary 181, etc. For 256 words (a 16-bit system) there are 256! possible combinations. (256! represents 256 factorial, which means: 256! = [256 x 255 x 254 x ... x 2 x 1].

The algorithm used in Videowiper II is the NBS Data Encryption Standard. In that method, the data is encoded using a 64-bit algorithm (eight of which are used for parity checking), leaving 256 possible combinations for a de-encryption key. 256 is a rather large number—about 72 thousand million million (72 quadrillion). Unless the correct key is known, it is therefore essentially impossible to decode the audio.

In review

Over the last year or so, we’ve highlighted a number of scrambling and descrambling topics. For those newcomers who have picked up the series in midstream, here’s a review of those topics, and when they appeared.

In the June, 1987 issue we looked at the basic structure of a video signal and some of the simpler scrambling techniques, such as inverting the video and suppressing the sync. Also discussed were the ways in which audio signals are hidden.

In July we discussed a hypothetical digital video-scrambling system.

In the August issue we showed some of the basic circuitry used in POPULAR scrambling systems such as in-band gated sync and SSASI. Those circuits included several different variable-attenuators and variable-gain amps. We also showed some rudimentary but workable descramblers including one built around a Phase Locked Loop (PLL) that was used to recover a suppressed sync pulse.

In September we looked at PLL’s in greater depth, and briefly discussed sincowave, SSASI, and outbound decoding. The SSASI system was discussed in greater depth in November.

In December we moved from the theoretical to the practical by presenting a functional sincowave descrambler for experimenters. In January and March, 1988 we did the same for those interested in the

in-hand gated sync and the outbound scrambling systems.

To make getting the parts easier, North Country Radio (P.O. Box 53, Wykagyl Station, New Rochelle, NY 10804) provided kits of parts, including PC boards. The following are still available.

- Pulse Decoder: Item PD–1: PC board plus all components on the PC board. $54.95 + $2.50 shipping and handling.
- Outband Decoder: Item OB–1: PC board plus all components on the PC board. $34.95 + $2.50 to cover shipping and handling.
- Sinewave Decoder: Item SW–1: PC board plus all components on the PC board including C13, C14, C15, CR1, and R17 necessary for the interface box. $52.95 + $2.50 postage and handling.
- All three items, PD–1, OB–1, and SW–1. $129.95 + $3.50 shipping and handling.

New York State residents please add the appropriate sales tax.

Finally, the authors of this series have written a book on the topic entitled Video Scrambling and Descrambling for Satellite and Cable TV. It is published by Howard W. Sams and can be purchased at most local bookstores and electronics distributors. It can also be purchased direct from the publisher (ask for book number 22499). It retails for $19.95.

DIGITAL SPEEDOMETER

continued from page 51

voltage at the appropriate pins of each IC. After debugging any problems, apply a test signal to the speedometer. Connect a sinewave generator to PI and apply a one-volt peak-to-peak signal. For test purposes, set SL so that the first three switchers are off, the next three are on, and the last two are off (0001100). Also, set the generator’s frequency to 138 Hz. If everything is working correctly, the seven-segment LED’s should display a value of 60, and at least some of the discrete LED’s should be lit.

Installation

The most difficult part of construction is installing the speedometer in an automobile. The two main tasks are installing the PC-board assembly and installing the magnetic sensor and magnets.

To install the boards, first choose a suitable mounting location for the unit, one that provides a good view of the device, but does not obstruct the driver’s field of vision. After choosing your mounting location, prepare it to receive the speedometer. Whether you are building a custom enclosure or planning to install the assembly in the dash, use a front panel that will both protect the display and make it readable in bright sunlight.

Smoked Plexiglass makes an excellent front panel, especially if it is lettered and masked. Masking is accomplished by painting the area not occupied by displays or LED’s. The easiest method is to mask all areas that are occupied by displays and LED’s on the back side of the front panel and then paint the back side of the panel with black spray paint. Apply several coats to ensure a uniform covering. After the paint dries, peel off the masking tape and install the front panel.

The next step is to secure the magnets to the driveshaft (or output shaft) and mount the pick-up coil to the body or chassis of the automobile. To do that, you’ll probably have to drive your car up on ramps. If you do not have a set of ramps, borrow or buy a set. Never get under a car that is supported only by jacks. It’s also a good idea not to work under a car alone.

After raising the car, find a suitable location for mounting the magnets. On rear-wheel-drive vehicles, the best location is at the front of the driveshaft, near the transmission. At that place the driveshaft has the least vertical movement, so the magnets will maintain a constant distance from the pick-up coil. To mount the magnets, locate them around the driveshaft at 90° intervals and secure them in some way. The magnets we used in our prototype come with a strap that simplifies installation; you can purchase the
set at a local auto-parts store or from the source mentioned in the Parts List.

On a front-wheel-drive vehicle, the magnets can be mounted reliably to the outer ring of the constant-velocity joint's dust boot near the transaxle. In that type of installation, there should be a metal strap on each side of the dust boot. Mount the magnets to the strap that is located nearest the transaxle, and secure the pick-up coil and its metal strip. If the boot is not easily accessible, the magnets may be mounted directly to the output shaft or one of the drive shafts, but be sure to place them where the least amount of vertical movement takes place.

Next mount the pick-up coil to the underside of the automobile using a strip of inch-wide metal. Of course, the length of the strip and the locations of the mounting holes will depend on your installation. But you'll probably want to bend the strip so that the front of the mounting coil and its bolt are about 1/2 inch from the magnets. Figures 7-a-7-d indicate several mounting schemes for driveshaft and transaxle installations.

After the magnets and pick-up coil are installed, run the signal wires from the pick-up coil through the firewall to where the PC boards are located. Use plenty of wire ties or plastic tape. If you purchase the pick-up coil unit mentioned in the Parts List, you must replace its connector with a Molex-style connector.

Run a power wire from the mounting location to the fuse box and connect it to a circuit that is active only when the ignition key is in the on position. Remember to hook the ground wire to the chassis ground of the automobile.

Calibration
To calibrate the speedometer, first decide whether you want the readout to be in miles or kilometers per hour. The next step can be accomplished in several ways. You can either calculate the speed of your driveshaft as discussed in the text box, or you can use the trial-and-error method.

To use the trial and error method, have a friend drive on an open stretch of highway, and, while watching your old speedometer, try setting $\frac{5}{1}$ in different positions until the speedometer displays the correct value. Make sure your friend watches the road and his speed while you calibrate the speedometer! Next, have your friend drive at the "red line" speed, and set $\frac{R}{34}$ so that the first red LED lights up.

If the digital speedometer reads erratically while the vehicle is standing still, reduce the value of R6 from 470 ohms to 330 ohms or less. That reduces input sensitivity and prevents the unit from picking up electrical noise.

After calibration is complete, it's time for final installation. Mount the unit in its permanent housing, then secure and conceal all cables.
MARKET CENTER

FOR SALE

CB Tune-up manual Volume II. Specific adjustments, modifications for peaking all popular CBs. Covers over 1300 radios. $19.95, Visa, MasterCard to: THOMAS PUBLISHING, 127-R Westwood, Paris, IL 61949.

CABLE TV equipment, All major brands. Specializing in Scientific Atlanta, Jerrold, and Zenith products. Our units have worked where others have failed. Send $2.00 for catalog to K.D. VIDEO, P.O. Box 295383, MLPS, MN 55429.

LATEST high-performance op-amps, power mosfets. First quality. Send stamped envelope for list. ANZA INSTRUMENT CO., Box 60907, Palo Alto, CA 94030.

CABLE television converter, descrambler and wireless remote control video equipment accessories catalog free. CABLE DISTRIBUTORS UNLIMITED, 116 Main Road, Washington, AR 71852.

TV tunable notch filters, free brochure. D.K. VIDEO, Box 63/6025, Margate, FL 33063, (305) 752-9202.

ZENITH, SAVI, ready to go $100.00 plus shipping. Order C.D.D. 1-0305 752-9202.

CLASSIFIED AD ORDER FORM

To run your own classified ad, put one word on each of the lines below and send this form along with your check to:
Radio-Electronics Classified Ads, 500-B Bi-County Boulevard, Farmingdale, NY 11735

PLEASE INDICATE in which category of classified advertising you wish your ad to appear. For special headings, there is a surcharge of $23.00.

() Plans/Kits () Business Opportunities () For Sale

() Education/Instruction () Wanted () Satellite Television

Special Category: $23.00

PLEASE PRINT EACH WORD SEPARATELY, IN BLOCK LETTERS.

(No refunds or credits for typesetting errors can be made unless you clearly print or type your copy.) Rates indicated are for standard style classified ads only. See below for additional charges for special ads. Minimum: 15 words.

<table>
<thead>
<tr>
<th>Word Count</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 words</td>
<td>$15.00</td>
</tr>
<tr>
<td>3-4 words</td>
<td>$20.00</td>
</tr>
<tr>
<td>5-6 words</td>
<td>$25.00</td>
</tr>
<tr>
<td>7-8 words</td>
<td>$30.00</td>
</tr>
<tr>
<td>9-10 words</td>
<td>$35.00</td>
</tr>
<tr>
<td>11-12 words</td>
<td>$40.00</td>
</tr>
<tr>
<td>13-14 words</td>
<td>$45.00</td>
</tr>
<tr>
<td>15+ words</td>
<td>$50.00</td>
</tr>
</tbody>
</table>

We accept MasterCard and Visa for payment of orders. If you wish to use your credit card to pay for your ad fill in the following additional information (Sorry, no telephone orders can be accepted):

Card Number

Expiration Date

Please Print Name

Signature

IF YOU USE A BOX NUMBER YOU MUST INCLUDE YOUR PERMANENT ADDRESS AND PHONE NUMBER FOR OUR FILES. ADS SUBMITTED WITHOUT THIS INFORMATION WILL NOT BE ACCEPTED.

CLASSIFIED COMMERCIAL RATE: (for firms or individuals offering commercial products or services) $2.85 per word prepaid (no charge for zip code). MINIMUM 15 WORDS. 5% discount for same ad in 6 issues; 10% discount for same ad in 12 issues within one year; if prepaid NON-COMMERCIAL RATE: (for individuals who want to buy or sell a personal item) $2.30 per word, prepaid...no minimum. ONLY FIRST WORD AND NAME set in bold caps at no extra charge. Additional bold face (not available as all caps) 50¢ per word additional (20% premium). Entire ad in boldface, add 20% premium to total price. TINT SCREEN BEHIND ENTIRE AD: add 25% premium to total price. TINT SCREEN BEHIND ENTIRE AD PLUS ALL BOLD FACE AD: add 45% premium to total price. EXPANDED TYPE AD: $4.30 per word prepaid. All other items same as for STANDARD COMMERCIAL RATE: TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD: add 25% premium to total price. TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD PLUS ALL BOLD FACE AD: add 45% premium to total price. DISPLAY ADS: 1" x 2¼" $320.00; 2" x 2¾" $640.00; 3" x 2¼" $960.00. General Information: Frequency rates and prepayment discounts are available. ALL COPY SUBJECT TO PUBLISHERS APPROVAL. ADVERTISEMENTS USING P.O. ADDRESS WILL NOT BE ACCEPTED UNTIL ADVERTISER SUPPLIES PUBLISHER WITH PERMANENT ADDRESS AND PHONE NUMBER. Copy to be in our hands on the 12th of the month preceding the date of the issue. (i.e., Sept. issue copy must be received by May 12th). When normal closing date falls on Saturday, Sunday or Holiday, issue closes on preceding working day.
CABLE-TV BONANZA!

WE'LL MATCH OR BEAT ANYONE'S ADVERTISED RETAIL OR WHOLESALE PRICES!

<table>
<thead>
<tr>
<th>ITEM</th>
<th>SINGLE UNIT PRICE</th>
<th>DEALER 10+ UNIT PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCA 36 CHANNEL CONVERTER (CH. 3 OUTPUT ONLY)</td>
<td>29.95</td>
<td>18.00 ea.</td>
</tr>
<tr>
<td>PIONEER WIRELESS CONVERTER (OUR BEST BUY)</td>
<td>88.95</td>
<td>72.00 ea.</td>
</tr>
<tr>
<td>LCC-58 WIRELESS CONVERTER</td>
<td>92.95</td>
<td>76.00 ea.</td>
</tr>
<tr>
<td>JERROLD 450 WIRELESS CONVERTER (CH. 3 OUTPUT ONLY)</td>
<td>105.95</td>
<td>90.00 ea.</td>
</tr>
<tr>
<td>SB ADD-ON UNIT</td>
<td>109.95</td>
<td>58.30 ea.</td>
</tr>
<tr>
<td>BRAND NEW — UNIT FOR SCIENTIFIC ATLANTA</td>
<td>109.95</td>
<td>58.30 ea.</td>
</tr>
<tr>
<td>MINICO3E (N-12)</td>
<td>109.95</td>
<td>58.30 ea.</td>
</tr>
<tr>
<td>MINICO3E (N-12) VARISYNC</td>
<td>119.95</td>
<td>62.00 ea.</td>
</tr>
<tr>
<td>MINICO3E VARISYNC W/AUTO ON-OFF</td>
<td>179.95</td>
<td>115.00 ea.</td>
</tr>
<tr>
<td>M-35 B (CH. 3 OUTPUT ON)</td>
<td>139.95</td>
<td>70.00 ea.</td>
</tr>
<tr>
<td>M-35 B W/AUTO ON-OFF (CALL FOR AVAILABILTY)</td>
<td>199.95</td>
<td>125.00 ea.</td>
</tr>
<tr>
<td>MLD-1200-3 (CALL IF CH. 2 OUTPUT)</td>
<td>109.95</td>
<td>58.00 ea.</td>
</tr>
<tr>
<td>INTERFERENCE FILTERS — CH. 3</td>
<td>24.95</td>
<td>14.00 ea.</td>
</tr>
<tr>
<td>JERROLD 400 OR 450 REMOTE CONTROLLER</td>
<td>29.95</td>
<td>18.00 ea.</td>
</tr>
<tr>
<td>ZENITH SSASI CABLE READY (DEALER PRICE BASED ON 5 UNITS)</td>
<td>225.00</td>
<td>185.00 ea.</td>
</tr>
<tr>
<td>SPECIFY CHANNEL 2 or 3 OUTPUT</td>
<td>Other products available — Please Call</td>
<td></td>
</tr>
</tbody>
</table>

LOWEST PRICES ANYWHERE!

SCIENTIFIC ATLANTA UNITS

California Penal Code §593-D forbids us from shipping any cable descrambling unit to anyone residing in the state of California. Prices subject to change without notice.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
<th>Output Channel</th>
<th>Price Each</th>
<th>TOTAL PRICE</th>
</tr>
</thead>
</table>

California Penal Code §593-D forbids us from shipping any cable descrambling unit to anyone residing in the state of California. Prices subject to change without notice.

Please Print

Name ____________________________
Address ____________________________
State ____________ Zip ____________ Phone Number (________) ________

Cashier's Check Money Order COD Visa Mastercard

Acct # Exp Date

Signature ____________________________

FOR OUR RECORDS.

DECLARATION OF AUTHORIZED USE — I, the undersigned, do hereby declare under penalty of perjury that all products purchased, now and in the future, will only be used on cable TV systems with proper authorization from local officials or cable company officials in accordance with all applicable federal and state laws.

Dated: ____________ Signed: ____________

Pacific Cable Company, Inc.
7325½ RESEDA BLVD., DEPT. R-07 • RESEDA, CA 91335
(818) 716-5914 • No Collect Calls • (818) 716-5140

IMPORTANT: WHEN CALLING FOR INFORMATION Please have the make and model # of the equipment used in your area. Thank You.
ATTENTION looking for surplus test equipment signal generator voltmeter oscilloscope, J.B. ELECTRONICS, 5518 Grand. Franklin Park, IL 60131.

INTEL, RCA, National, OGI, SGS, and more. Factory prime and surplus parts catalog. LYNBAR INDUSTRIES, 205 Main, Box 952, St. Joseph, MI 49085-0822.

VIDEO copier ($69.95) connects between two VCR's (stereo) and makes copies as good as the original. For info/order write or call VIDEO VIBES, 657 Allerton Ave., Bronx, NY 10467. Tel. (212) 653-4644.

OLD radio TV schematics. Send $1.00 make model RADIO MAPS, P.O Box 791, Union City, CA 94587.

OSCILLOSCOPES and reconditioned test equipment, Teletronix, H.P. etc. Free list. CAL-SCOPES, 983D Ponderosa Ave., Sunnyvale, CA 94086 (408) 730-4573.

WANTED: Western Electric, McIntosh, Marantz, RCA, Dynaco, Altec. Telefunken, JBL, tubes, speakers, amplifiers. (713) 728-4343. MAURY, 11122 Allwell, Houston, TX 77096.

SATELLITE systems $349 up. VISA MC available. Catalog $3.00. STARLINK, INC., 2603-16R Arise, Huntsville, AL 35805.

"BUGS" miniature transmitters, "James Bond" type. Toys. Catalog $2.00 (refundable) CUDWELL, Salvisa, KY 40372-0034.

PHONE RECORDER CONTROL
- Automatically records phone conversations when receiver is lifted.
- Interlaces your phone to any tape recorder.
- Meets all FCC requirements.
- Guaranteed to work.

Send 19.95 plus 3.00 shipping & handling to: VISA, MASTER CHARGE, COD or ELECTRONIC DEVICES, 2429 Central Ave. St. Petersburg, FLA. 33713.

Dealer inquiries welcomed.

B&K test equipment 25% discount selected scopes otherwise 20% on all products authorized distributor free catalog. CENTURY ELECTRONICS, 3511 North Cicero, Chicago, IL 60641.

ELECTRONIC test equipment and parts. Lowest prices. Free catalog. EF ELECTRONICS, Box 249 Aurila, IL 60507.

BUILD your own pro monitors 3 pg. 5 part manual discloses design criteria utilized by major manufacturers of pro monitoring systems. Blueprints included! $25.00 complete to: BRIX ENTERPRISES INC., 2419 Richmond Road, S.I.N.Y. 10306.

MACROVISION elimination video link 154. 1 year warranty! $69.00 C.O.D. who welcome free into available GMF ELECTRONICS, Box 2444, Titusville, FL 32781. (305) 267-2741.

MICROCONTROLLER clock-timer MCT 200 programs: A- 24 Hr. battery back-up clock with 4 time switches, B. countdown timer with 4 outputs. A$7 $68.00, kit $48.00, manual only $2.00. L.S. ELECTRONIC, 2280 Camilla Rd., Mississauga, Ontario, Canada L5A2J8.

FREE POWER supply with Assortment #103 (February '84 article, has printed circuit, TOKO coils(4), 2N3904(2), BFQ85, 7812, 74123, MC1330, 1N914, 1N5238. TELE-AISE-MASK ASSORTMENT #39 (October Article) Printed Circuit with all ICS. Transistors, diodes. Only $25.00/each Assortment.

Five/$12.50. Shipping $3.00. 1 (800) 821-5226 Ext. 426. (orders), or write JIM RHODES INC., P.O. Box 3421, Bristol, TN 37625.

TUBES, name brands, new. 80% off list. KIRBY, 298 West Carmel Drive, Carmel, IN 46032.

WRITE FOR MCCIE'S SPEAKER & ELECTRONICS CATALOG

1001 BARGAINS IN SPEAKERS toll free 1-800-346-2433 for ordering only. 1901 MOO STREET KANSAS CITY, MO. 64108.

LEADER LF-945 signal level meter $425.00. (312) 771-4661.

SUPERFAST morse code super sexy. Subliminal cassette $10.00 amazing mnemonics: Learn Morse Code in 1 hour, Q Signs super sexy, novice writer exam supersex $5.00 each. Moneyback guarantee. Free catalog SASE: BAHN, 2549-E2 Temple, Pima, BL 3231.

TUBES, new unused. Send self-addressed, stamped envelope for list FALA ELECTRONICS, Box 1376-2, Milwaukee, WI 53201.

TUBES: "Oldest," "latest," Parts and schematics. SASE for list. STEINMETZ, 7519 Maplewood Ave., RE Hammond, IN 46324.

CABLE TV blowout viewster 2501 volume, audio video ports, decoder loop, $129.95 buy a decoder take off $10.00, Star base decoder 1 $99.00, 10 $75.00, tri mode/bi state 1 $100.00, 10 $75.00, MLD 1200-3 $99.00, 10 $65.00, N-12 replacement 1 $99.00, 10 $81.00, better than original auto on off boards 1 $65.00, 10 $45.00, Scientif Atlanta decoder 1 $140.00, 10 $140.00, Pione 5050 decoder 1 $140.00, 10 $140.00, much more. Call or write for your free catalog (402) 331-4857. All products guaranteed 90 days. M.D. ELECTRONICS, 5078 So. 108th St. Omaha, NE 68104.

FREE catalog contains over 10,000 items. In 145 pages, it's comparable to the "List of Low Cost Testing and Display Equipment," by H.1. Stange, 202 pages, 4" x 6" size, $3.75 (includes postage).

COPYGUARD! Eliminate the latest video copyguard "DECIDE A TAPE" units from $595 to $1695.

Deluxe Electronics 1412 N 16th, Omaha, NE 68102 (714) 958-6866

STANLEY ELECTRONICS

PLANS AND KITS

BUILD this five-digit panel meter and square wave generator including an ohms, capacitance and frequency meter. Detailed instructions and circuit diagrams. BAG-NALL ELECTRONICS. 179 May. Fairfield, CT 06430.

PROJECTION TV: Convert your TV to project 7 ft. long pictures. Results comparable to $2,500 projectors...total cost less than $30.00 plans and 8 lens $21.95. Illustrated information FREE...MACROCOMA-GK, Washington Crossing, PA 19077. Creditcard orders 24hrs. (215) 736-3797.

TOP QUALITY imported, domestic kits, surplus, discount electronics, computer components, FREE catalog. TEKTRASONIX, 1120 Avenue of the Americas, 1/f suite 4038, New York, NY 10036.
Hi-Fi speaker systems, kits and speaker components from the world's finest manufacturers. For beginners and enthusiasts. Free literature. A-85 SPEAKERS, Box 7462, Denver, CO 80207 (303) 399-6009.

VOICE disguisers! FM bugs! SWL active antennas! Receivers! More! Catalog $1.00 (refundable). XANDI ELECTRONICS, Box 25647, Dept 60M, Tempe, AZ 85282.

MULTI-COMPONENT MIDWEST R. RECEIVERS

150MC Universal Digital Frequency Counter

150MC Universal Digital Frequency Counter

Frequency Range: 10Hz - 150MHz
Event Counter: 0 to 999999999 counts, 5 Digit
Input Sensitivity: 100mV per decade, 100MHz
Input Range: 500V rms, 150V RMS
Input Time: 0.2 seconds
Input Function: Hold the last input signal
Power Supply: DC5V Battery or DC5V Adapter
Dimensions: 9.8 x 1.8 x 4.5
Assembled: 2900

GREAT VALUES • FAST SHIPPING • QUANTITY DISCOUNTS

STEREO PRE-MAIN AMPLIFIER

200W DOPONER Amplifier with mic. mixer

ELECTRONIC ECHO AND REVERBERATION AMPLIFIER

MARK V ELECTRONICS INC., 248 EAST MAIN STREET, SUITE 100, ALHAMBRA, CA 91801. TELEX: 3718914 MARK5.

1-800-432-3483 TOLL FREE

MARK V ELECTRONICS INC., 248 EAST MAIN STREET, SUITE 100, ALHAMBRA, CA 91801. TELEX: 3718914 MARK5.

1-800-432-3483 TOLL FREE

MARK V ELECTRONICS INC., 248 EAST MAIN STREET, SUITE 100, ALHAMBRA, CA 91801. TELEX: 3718914 MARK5.

1-800-432-3483 TOLL FREE

MARK V ELECTRONICS INC., 248 EAST MAIN STREET, SUITE 100, ALHAMBRA, CA 91801. TELEX: 3718914 MARK5.

1-800-432-3483 TOLL FREE

MARK V ELECTRONICS INC., 248 EAST MAIN STREET, SUITE 100, ALHAMBRA, CA 91801. TELEX: 3718914 MARK5.

1-800-432-3483 TOLL FREE

MARK V ELECTRONICS INC., 248 EAST MAIN STREET, SUITE 100, ALHAMBRA, CA 91801. TELEX: 3718914 MARK5.

1-800-432-3483 TOLL FREE

MARK V ELECTRONICS INC., 248 EAST MAIN STREET, SUITE 100, ALHAMBRA, CA 91801. TELEX: 3718914 MARK5.

1-800-432-3483 TOLL FREE

MARK V ELECTRONICS INC., 248 EAST MAIN STREET, SUITE 100, ALHAMBRA, CA 91801. TELEX: 3718914 MARK5.

1-800-432-3483 TOLL FREE

MARK V ELECTRONICS INC., 248 EAST MAIN STREET, SUITE 100, ALHAMBRA, CA 91801. TELEX: 3718914 MARK5.

1-800-432-3483 TOLL FREE

MARK V ELECTRONICS INC., 248 EAST MAIN STREET, SUITE 100, ALHAMBRA, CA 91801. TELEX: 3718914 MARK5.

1-800-432-3483 TOLL FREE

MARK V ELECTRONICS INC., 248 EAST MAIN STREET, SUITE 100, ALHAMBRA, CA 91801. TELEX: 3718914 MARK5.

1-800-432-3483 TOLL FREE

MARK V ELECTRONICS INC., 248 EAST MAIN STREET, SUITE 100, ALHAMBRA, CA 91801. TELEX: 3718914 MARK5.

1-800-432-3483 TOLL FREE

MARK V ELECTRONICS INC., 248 EAST MAIN STREET, SUITE 100, ALHAMBRA, CA 91801. TELEX: 3718914 MARK5.

1-800-432-3483 TOLL FREE

MARK V ELECTRONICS INC., 248 EAST MAIN STREET, SUITE 100, ALHAMBRA, CA 91801. TELEX: 3718914 MARK5.

1-800-432-3483 TOLL FREE

MARK V ELECTRONICS INC., 248 EAST MAIN STREET, SUITE 100, ALHAMBRA, CA 91801. TELEX: 3718914 MARK5.

1-800-432-3483 TOLL FREE

MARK V ELECTRONICS INC., 248 EAST MAIN STREET, SUITE 100, ALHAMBRA, CA 91801. TELEX: 3718914 MARK5.

1-800-432-3483 TOLL FREE

MARK V ELECTRONICS INC., 248 EAST MAIN STREET, SUITE 100, ALHAMBRA, CA 91801. TELEX: 3718914 MARK5.

1-800-432-3483 TOLL FREE

MARK V ELECTRONICS INC., 248 EAST MAIN STREET, SUITE 100, ALHAMBRA, CA 91801. TELEX: 3718914 MARK5.
SATELLITE TV

CABLE TV Secrets—the outlaw publication the cable companies tried to ban. HBO, Movie Channel, Showtime, disney, sports, entertainment, etc. Suppliers list included $8.95. **CABLE FACTS, Box 711-R, Pataskala, OH 43062.**

Cable TV Converters

Why Pay A High Monthly Fee?

Jerrold Products include "New Jerrold Tri-Mode." SB-3, Hamlin, Oak VN-12, M-35-B, Zenith, Magnavox, Scientific Atlanta, and more. (Quantity discounts) 60 day warranty. For fast service C.O.D. orders accepted. Send SASE (60 cents postage) or call for info 312-658-5320. Midwest Electronics, Inc., HIGGINS ELECTRONICS, 5143-R W. Diversey, Chicago, IL 60639. MC/Visa orders accepted. No Illinois orders accepted. Mon.-Fri. 9 A.M.-6 P.M. CST

SATELLITE TV receiver kits! Instructions! Schematics! Catalog $1.00 (refundable): XANDI ELECTRONICS, Box 25474, Dept. 21P, Tempe, AZ 85282.

DESCRAMBLER build our low cost satellite TV only descrambler for all major movies and sports. Uses all Radio Shack parts. Order P.C. board, 1 unit, shipping charge included, money order, or Visa for $35.00 U.S. funds to: VALLEY MICROVEW ELECTRONICS, Bear River, Nova Scotia, Canada. BOS-193 (902) 467-3577.

10 1/2 ft satellite system, remote controlled, tracker and descrambler with 1 yr free subscription to 20 channels. $14.95 plus UPS. Visa or Master Card accepted. 1-800-378-6275.

Quality Microwave TV Antennas

2-channel system $99.95 (plus shipping) 2-channel system $79.95 (plus shipping) 606A Gain 1 1/2 to 2 7/8 Gain 1 1/2 to 2 7/8 Dealerships, Qty. Pricing, Replacement Parts Phillips-Tech Electronics C.B. Box 65365 • Scottsdale, AZ 85252 602-947-7708 (8100) all phone orders!

LIMITED WARRANTY MasterCard • Visa • C.O.D.

VIDECIPHER data disk, Apple II and PC, dial (01152) (451)42268 (Mexico), 4-10 PM. CST for information.

VIDECIPHER turn ons, bypasses, schematics. Complete information, Order now. Only $29.99. GILMORE, Route 3, Old Town, FL 32680.

CABLE converters compatible with all systems. Guaranteed lowest prices, immediate delivery. call now!! (516) 795-0643.

CONSULTING SERVICES

DIGITEK turns your ideas into hardware. Design and/or prototyping. Send SASE for free feasibility and cost analysis. No job too small. DIGITEK, Box 195 Levittown, PA 19056. (215) 949-2260.

COMPUTERS

TANDY! computers! MSDOS, IBM compatible. Discount prices! For quote or purchase call 1-800-35-SHACK. EDGECOMPUTER CENTER.

DESCRAMBLER MODULE

COMPLETE cable TV decoder in a min-module. Latest technology upgrade for Jerrold SB-3 or Radio-Electronics Feb. 1984 project. Available at very-low cost. For literature, SOUTHTECH DISTRIBUTING, 1-800-821-5226 ext. 130.
What's New at AMERICAN DESIGN COMPONENTS?

The Source of the electro-mechanical components for the hobbyist

AMERICAN DESIGN COMPONENTS, 62 JOSEPH STREET, MOONACHIE, N.J. 07074

MINIMUM ORDER: $15.00

- **Card No.**
- **Exp. Date**
- **Signature**
- **Telephone Area Code**
- **Name**
- **Address**
- **City**
- **State**
- **Zip**

All inquiries and free catalog requests call 201-939-2710.

For all phone orders, call TOLL-FREE 800-524-0809. In New Jersey, 201-939-2710.

ADAM Computer Parts...

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>#10147</td>
<td>$14.95 New</td>
</tr>
<tr>
<td>#12148</td>
<td>$19.95 New</td>
</tr>
</tbody>
</table>

ADAM LINK MODEM

NEW

ADDRESS BOOK FILER SOFTWARE

W/AUTO DIALER

SWITCHING POWER SUPPLY

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>#11148</td>
<td>$17.95 New</td>
</tr>
</tbody>
</table>

COMPUTER POWER DRIVE

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>#12148</td>
<td>$19.95 New</td>
</tr>
</tbody>
</table>

PUMPS—COMPRESSORS—BLOWERS—MOTORS—POTENTIOMETERS—COUNTERS—TIMERS—RELAYS—VOLTAGE REGULATORS—POWER SUPPLIES

COLECOVISION to ADAM EXPANSION KIT

Plugs into your ColecoVision. With printer, power supply & one data drive, you will have a working Adam Computer. Keyboard & one Smart basic cassette also included.

#7410 $99.00

AMERICAN DESIGN COMPONENTS, 62 JOSEPH STREET, MOONACHIE, N.J. 07074

MINIMUM ORDER: $15.00

- **Card No.**
- **Exp. Date**
- **Signature**
- **Telephone Area Code**
- **Name**
- **Address**
- **City**
- **State**
- **Zip**

All inquiries and free catalog requests call 201-939-2710.

For all phone orders, call TOLL-FREE 800-524-0809. In New Jersey, 201-939-2710.
CART MONITORS FOR ALL APPLICATIONS

CASSER EGA MONITOR
- EGA & EGA COMPATIBLE
- SCANNING FREQUENCIES 15 kHz, 5 kHz
- RES: 420 x 240, 350
- 31.5 kHz DOT PITCH, 25 MHz
- 16 COLORS OUT OF 64
- BLACK MATTE SCREEN

CASPER RGB MONITOR
- COLOR GREEN, AMBER
- SWITCH ON REAR
- DIGITAL RGB-IBM COMPATIBLE
- 14 NON-GRADE SCREEN
- 420 x 240
- 25mm DOT PITCH
- CABLE FOR IBM PC INCLUDED

SAMSUNG MONOBUS
- IBM COMPATIBLE TTL INPUT
- 12' NON-GRADE TTL
- LOW-DIGITIZATION SCREEN
- RESOLUTION: 720 x 340
- ATTRACTIVE CASE
- SWIVEL BASE
- ONE YEAR WARRANTY
- PRICE: $99.95

FORTRONICS MD-DV
- IBM COMPATIBLE TTL INPUT
- VERY HIGH RESOLUTION
- 1100 X 800
- 25 MHZ BANDWIDTH
- CABLE FOR IBM INCLUDED
- AMBER OR FREE AVAILABLE
- PRICE: $99.95

APPLE COMPATIBLE INTERFACE CARDS

EPROM PROGRAMMER
- DUPLICATE OR BURN ANY 72 PIN SERIES EPROM
- MENU DRIVEN SOFTWARE
- HIGH SPEED WRITE ALGO

16K RAMCARD
- FULL 2 YEAR WARRANTY
- EASE FOR YOUR EGA MACHINE
- CARE CAN BE USED IN PLACE OF THE APPLE LANGUAGE CARD
- RP-525 $159
- RAM-CARD $93

IC TEST CARD
- QUICKLY TESTS MAN
- DISPLAYS PASS OR FAIL
- TEST 6000 & 2400 SERIES

DISK DRIVE ACCESSORIES

AD-3C
- 100% IBM COMPATIBLE
- READY TO PLUG IN.
- SHIELDED CABLE & MOLDED 18 PIN
- FAST, RELIABLE SLIMLINE DIRECT
- SIX MONTH WARRANTY

MAC-355
- 3.5" ADD-ON DISK DRIVE
- 100% MACINTOSH COMPATIBLE
- DOUBLE SIDED 500K BYTES Storage
- HIGH RELIABILITY
- HAS AUTO-EJECT MECHANISIM
- FULL ONE YEAR WARRANTY

DIPLEX DRIVE ACCESSORIES

FDD CONTROLLER CARD
- IC ADAPTOR CABLE $13.95
- ADAPTS STANDARD APPLE DRIVES FOR USE WITH IC

SWITCH BOXES

IBM PARALLEL PRINTER CABLE
- CENTRONICS MALE TO FEMALE
- MODERN CABLE (FOR IBM)

IBM-8I
- 8I SERIAL MALE TO MALE
- IBM JOYSTICK EXTENDER

DISK ENCLOSURE WITH SUPPLIES

CAD-25V5
- DUAL SIMILNE 5.25" $149
- CAD-1F5H
- FULL HT 5.25" $59
- CAD-2V8H
- DUAL SIMILNE 8" $299

BUILD STEVE CIASCIA'S INTELLIGENT EPROM PROGRAMMER
- AS SEEN IN BYTE OCT 86
- STAND-ALONE OR RS-232 SERIAL OPERATION
- MENU SELECTABLE EPROM TYPES
- NO CONFIGURATION JUMPERS
- PROGRAMS ALL 5V 27XXE EPROMS
- FROM 2766 TO 27612
- READ, COPY OR VERIFY EPROM
- UPLOAD-DOWNLOAD INTEL HEX FILES
- PROGRAMMER DRIVER USER MODIFIABLE

ONLY $199
- KIT INCLUDES PCB AND ALL COMPONENTS EXCEPT CASE & POWER SUPPLY

POWER STRIP
- $12.95
- UL APPROVED
- 15A CIRCUIT BREAKER

DISKETTE FILES

ONLY $4.65
- FOR APPLE OR IBM
- INCLUDES 135 FOR SHARE
- FCC APPROVED
- BULK DISKETTE SALE
- 5.25" SOFT SECTOR, DS, DD
- W/TV/MICRO SLEEVES & HUB RINGS
- 100 FOR $9.95

DISKETTE FILES

ONLY $8.95
- 3½" DISKETTE
- FITS ATARI, VIC, 20-64

CALL FOR VOLUME QUOTES

CIRCLE 176 ON FREE INFORMATION CARD

COPYRIGHT 1987 JDR MICRODEVICES
QUALITY IBM COMPATIBLE MOTHERBOARDS
FROM MODULAR CIRCUIT TECHNOLOGY

STANDARD 4.77 / 8 MHz $109.95
JDR PART # JDR-CTMBO
- 4.77 OR 8 MHz OPERATION WITH 8088 2
- OPTIONAL 8087 2 CO-PROCESSOR
- DYNAMICALLY ADJUSTS SPEED DURING
- DISK I/O OPERATION FOR MAXIMUM
- THROUGHPUT AND RELIABILITY
- CHOICE OF NORMAL, TURBO MODE OR
- SOFTWARE SELECT PROCESSOR SPEED

TURBO 4.77 / 8 MHz $129.95
JDR PART # JDR-TMBO
- 4.77 OR 8 MHz OPERATION WITH 8088 2
- OPTIONAL 8087 2 CO-PROCESSOR
- DYNAMICALLY ADJUSTS SPEED DURING
- DISK I/O OPERATION FOR MAXIMUM
- THROUGHPUT AND RELIABILITY
- CHOICE OF NORMAL, TURBO MODE OR
- SOFTWARE SELECT PROCESSOR SPEED

STANDARD 4.77 MHz $109.95
JDR PART # JDR-CTMBO
- 8088 CPU, 8087 2 Processor
- 8 EXPANSION SLOTS
- MEMORY (5.25 RAM INSTALLED)
- ALL 8087A-HIGHEST QUALITY PCB
- ACCEPTS 2764 OR 27128 RAM

+ BOTH WITH FREE MCT BIOS!

FARADAY
FDD CONTROLLER
JDR PART # FAR FDD
- SUPPORTS UP TO 4 INTERNALLY
- MOUNTED FDDs
- IBM COMPATIBLE, LOW LEVELS TO
- 360K OR 720K USING DOS 2.2
- INCLUDES CABLE FOR 2 DISK DRIVES

IBM COMPATIBLE
FLOPPY DISK DRIVE
JDR PART # FDD-300
- IBM COMPATIBLE, LOW LEVELS TO
- 360K OR 720K USING DOS 2.2
- INCLUDES CABLE FOR 2 DISK DRIVES

BUILD YOUR OWN 250K XT COMPATIBLE SYSTEM
XT MOTHERBOARD $109.95
PRO-BIOS ($20 VALUE) FREE
128K RAM $29.95
130 WATT POWER SUPPLY $39.95
BOOT DRIVE $39.95
KEY TRONIC "B" KEYBOARD $39.95
360K DRIVE $34.95
FARADAY CONTROLLER $28.95
MONOCHROME ADAPTOR $48.95
FORTRONICS MONITOR $69.95
TOTAL: $388.15

IBM COMPATIBLE KEYBOARDS
MCT-5150 $59.95
- 1010 STYLE KEYBOARD
- FULLY IBM COMPATIBLE
- LED STATUS INDICATORS FOR CAPS &
- NUMBER LOCK
- LARGE, EASY TO REACH SHIFT &
- RETURN KEYS
- 83 KEY TYPEWRITER LAYOUT

MCT-5151 $79.95
- REPLACEMENT FOR KEY TRONIC "B"
- IBM COMPATIBLE, LOW LEVELS TO
- 360K OR 720K USING DOS 2.2
- LARGE, EASY TO REACH SHIFT &
- RETURN KEYS
- LED INDICATORS FOR SCROLL CAPS &
- NUMBER LOCK
- IMPROVED KEYBOARD LAYOUT

MCT-5060 $59.95
- IBM AT STYLE LAYOUT
- SOFTWARE AUTOSENSE FOR XT OR AT
- COMPATIBLES
- LED INDICATORS FOR SCROLL, CAPS &
- NUMBER LOCK
- AUTO REPEAT FEATURE

MCT-5339 $89.95
- IBM ENHANCED STYLE LAYOUT
- SOFTWARE AUTOSENSE FOR XT OR AT
- COMPATIBLES
- LED INDICATORS FOR SCROLL, CAPS &
- NUMBER LOCK
- AUTO REPEAT FEATURE
- SEPARATE CURSOR PAD

IBM COMPATIBLE KEYBOARDS
MCT-5150 $59.95
- 1010 STYLE KEYBOARD
- FULLY IBM COMPATIBLE
- LED STATUS INDICATORS FOR CAPS &
- NUMBER LOCK
- LARGE, EASY TO REACH SHIFT &
- RETURN KEYS
- 83 KEY TYPEWRITER LAYOUT

MCT-5151 $79.95
- REPLACEMENT FOR KEY TRONIC "B"
- IBM COMPATIBLE, LOW LEVELS TO
- 360K OR 720K USING DOS 2.2
- LARGE, EASY TO REACH SHIFT &
- RETURN KEYS
- LED INDICATORS FOR SCROLL, CAPS &
- NUMBER LOCK
- IMPROVED KEYBOARD LAYOUT

MCT-5060 $59.95
- IBM AT STYLE LAYOUT
- SOFTWARE AUTOSENSE FOR XT OR AT
- COMPATIBLES
- LED INDICATORS FOR SCROLL, CAPS &
- NUMBER LOCK
- AUTO REPEAT FEATURE

MCT-5339 $89.95
- IBM ENHANCED STYLE LAYOUT
- SOFTWARE AUTOSENSE FOR XT OR AT
- COMPATIBLES
- LED INDICATORS FOR SCROLL, CAPS &
- NUMBER LOCK
- AUTO REPEAT FEATURE
- SEPARATE CURSOR PAD

IBM COMPATIBLE KEYBOARDS
MCT-5150 $59.95
- 1010 STYLE KEYBOARD
- FULLY IBM COMPATIBLE
- LED STATUS INDICATORS FOR CAPS &
- NUMBER LOCK
- LARGE, EASY TO REACH SHIFT &
- RETURN KEYS
- 83 KEY TYPEWRITER LAYOUT

MCT-5151 $79.95
- REPLACEMENT FOR KEY TRONIC "B"
- IBM COMPATIBLE, LOW LEVELS TO
- 360K OR 720K USING DOS 2.2
- LARGE, EASY TO REACH SHIFT &
- RETURN KEYS
- LED INDICATORS FOR SCROLL, CAPS &
- NUMBER LOCK
- IMPROVED KEYBOARD LAYOUT

MCT-5060 $59.95
- IBM AT STYLE LAYOUT
- SOFTWARE AUTOSENSE FOR XT OR AT
- COMPATIBLES
- LED INDICATORS FOR SCROLL, CAPS &
- NUMBER LOCK
- AUTO REPEAT FEATURE

MCT-5339 $89.95
- IBM ENHANCED STYLE LAYOUT
- SOFTWARE AUTOSENSE FOR XT OR AT
- COMPATIBLES
- LED INDICATORS FOR SCROLL, CAPS &
- NUMBER LOCK
- AUTO REPEAT FEATURE
- SEPARATE CURSOR PAD

DISPLAY CARDS
FROM MODULAR CIRCUIT TECHNOLOGY

MCT-EGA $179.95
- 100% IBM COMPATIBLE, PASSES IBM EGA DIAGNOSTICS
- COMPATIBLE WITH IBM EGA, COLOR GRAPHICS
- AND MONOCHROME ADAPTORs
- TRIPLE SCANNING FREQUENCY FOR DISPLAY
- ON EGA, STANDARD RGB GRAPHIC RESOLUTION
- MONOCHROME MONITOR
- FULL 256K OF VIDEO RAM ALLOWS 640 x 350
- PIXELS IN 16 OD COLORS
- LIGHT PEN INTERFACE

MCT-CG $49.95
- COMPATIBLE WITH IBM COLOR GRAPHICS STANDARD
- SHORT SLOT CARD USES VISLIC/IP/TS TO
- INSURE RELIABILITY
- SUPPORTS RGB, COMPOSITE MONOCHROME
- COLOR AND AN RF MODULATOR INPUT
- 640 X 200 COLOR GRAPHICS MODE
- LIGHT PEN INTERFACE

MCT-MGP $59.95
- COMPATIBLE WITH IBM MONOCHROME AND HERCULES GRAPHICS STANDARDS
- SHORT SLOT CARD USES VISLIC/IP/TS TO
- INSURE RELIABILITY
- SUPPORTS RGB, COMPOSITE MONOCHROME
- COLOR AND AN RF MODULATOR INPUT
- 640 X 200 COLOR GRAPHICS MODE
- LIGHT PEN INTERFACE

MCT-MG $79.95
- COMPATIBLE WITH IBM MONOCHROME AND HERCULES GRAPHICS STANDARDS
- SERIAL PORT OPTION
- PARALLEL PRINTER PORT, CONFIGURABLE AS
- LPT-1 OR LPT-2
- 720 X 348 GRAPHICS MODE
- LOTUS COMPATIBLE
- CAN RUN WITH COLOR GRAPHICS CARDS IN
- THE SAME SYSTEM

MCT-MONO $49.95
- ANOTHER FANTASTIC VALUE FROM JDR!
- IBM COMPATIBLE TTL INPUT
- 720 X 348 PIXEL DISPLAY
- PLEASE NOTE THIS CARD WILL NOT RUN LOTUS GRAPHICS
- AND DOES NOT INCLUDE A PARALLEL PORT

EPROM PROGRAMMERS
FROM MODULAR CIRCUIT TECHNOLOGY

MCT-EPROM $129.95
- PROGRAMS 27XX AND 27XXX SERIES EPROMS UP TO 27512
- SUPPORTS VARIOUS MANUFACTURERS
- FORMATS WITH 12, 21 AND 25 VOLT
- PROGRAMMING
- MENU-DRIVEN SOFTWARE ALLOWS
- EASY MANIPULATION OF DATA FILES
- SPLIT OR COMBINE THE CONTENTS OF
- SEVERAL EPROMS OF DIFFERENT SIZES
- READ, WRITE, COPY, ERASE CHECK AND
- VERIFY WITH EASY ONE KEY SELECTION
- INCLUDES SOFTWARE FOR STANDARD
- HEX AND INTEL HEX FORMATS

4 GANG PROGRAMMER $189.95
10 GANG PROGRAMMER $299.95
MULTIFUNCTION CARDS
FROM MODULAR CIRCUIT TECHNOLOGY

MCT-MF
ALL THE FEATURES OF AST'S SIX PACK PLUS AT HALF THE PRICE!
$79.95
- 0-38K DYNAMIC RAM USING 4164A
- INCLUDES SERIAL PORT, PARALLEL PORT, GAME CONTROLLER PORT, AND CLOCKS/CALENDAR
- SOFTWARE FOR A RAMDISK, PRINT SPOOLER, AND CLOCK/CALENDAR

MCT-ATMF
ADDS UP TO 3 MB OF 1 BIT RAM TO THE AT
$139.95
- USER EXPANDABLE TO 15 MB OF ON-BOARD MEMORY (NO MEMORY INSTALLED)
- FLEXIBLE ADDRESS CONSTRUCTION
- INCLUDES SERIAL PORT, PARALLEL PORT, AND CLOCKS/CALENDAR
- OPTIONAL PIGGYBACK BOARD PERMITS EXPANSION TO 3 MB

MCT-MIO
A PERFECT COMPANION FOR OUR MOTHERBOARD
$79.95
- 2 DRIVE FLOPPY DISK CONTROLLER
- INCLUDES SERIAL PORT, PARALLEL PORT, GAME PORT, AND CLOCKS/CALENDAR
- SOFTWARE FOR A RAMDISK, PRINT SPOOLER, AND CLOCKS/CALENDAR

MCT-ID
USE WITH MCT-FH FOR A MINIMUM OF SLOTS USED
$59.95
- SERIAL PORT ADDRESSABLE AS COM1, COM2, COM3, OR COM4
- PARALLEL PORT ADDRESSABLE AS LPT1 OR LPT2 (LS/DS OR ECP)
- CLOCK/CALENDAR WITH A BATTERY BACK-UP

MCT-AT16
USE WITH MCT-ATMF FOR A MINIMUM OF SLOTS USED
$59.95
- SERIAL PORT ADDRESSABLE AS COM1, COM2, COM3, OR COM4
- PARALLEL PORT ADDRESSABLE AS LPT1 OR LPT2 (LS/DS OR ECP)
- GAME PORT
- USES HARD SERIAL SUPPORT CHIPS FOR HIGH SPEED OPERATION IN AN AT

MCT-AT16-SERIAL
2nd SERIAL PORT
$159.95

MCT-ATMF-MC
$29.95
- 2MB PIGGYBACK BOARD (KIC K INSTALLED)

MCT-ATRAM
A POWER USER'S DREAM. 4MB OF MEMORY FOR THE ATr
$149.95
- USER EXPANDABLE TO 2MB OF ON-BOARD MEMORY
- USES FULL 16 BIT PARITY CHECKED MEMORY, 64K OR 256K DYNAMIC RAM
- FLEXIBLE STARTING ADDRESS, ROUND OUT CONVENTIONAL MEMORY TO 64K AND ADD EXTENDED MEMORY ABOVE 1MB

MCT-ATRAM-MC
$39.95
- 2MB PIGGYBACK BOARD (ZERO K INSTALLED)

MCT-EMS
2MB OF LOTUS/INTEL/MICROSOFT COMPATIBLE MEMORY FOR THE XT
$129.95
- CONFORMS TO LOTUS/INTEL/MSDOS ARCHITECTURE
- USER EXPANDABLE TO 2 MB
- USES 64K OR 256K DYNAMIC RAM (NO MEMORY INSTALLED)
- USES AS EXPANDED ON CONVENTIONAL MEMORY, RAMDISK OR SPOOLER
- SOFTWARE INCLUDES EMM386 DEVICE DRIVERS FOR RAMDISK AND SPOOLER

MCT-ATEMS
$139.95
- AT VERSION OF THE MCT-EMS

RAM CARDS
FROM MODULAR CIRCUIT TECHNOLOGY

MCT-RAM
$69.95
- A CONTINUOUS MEMORY SOLUTION FOR YOUR SHORT OR REGULAR SLOT
- SHORT SLOT, LOW POWER PC COMPATIBLE DESIGN
- CAN OFFER UP TO 576K OF ADDITIONAL MEMORY
- USER SELECTABLE CONFIGURATION AMOUNTS OF 128, 256, 512, 768K, 1MB, 2MB, OR 576K
- USING COMBINATIONS OF 64, 256K RAM

MCT-EM
$129.95
- 2MB OF EMM386 RAM (ZERO K INSTALLED)
- USER EXPANDABLE TO 2 MB
- SUPPORTS 64K OR 256K DYNAMIC RAM (NO MEMORY INSTALLED)
- USES AS EXPANDED OR ON CONVENTIONAL MEMORY, RAMDISK OR SPOOLER
- SOFTWARE INCLUDES EMM386 DEVICE DRIVERS FOR RAMDISK AND SPOOLER

MCT-ATEMS
$139.95
- AT VERSION OF THE MCT-EMS

MARKETING MATERIALS
93
NICKEL EXPRESS
PC/XT SPEED UP KIT

- Increase the speed of your PC by 67% or more!
- Simple no slot installation
- Software or hardware speed selection
- 8 MHz V20 processor & software included
- Select for 3 Turbo frequencies
- External reset switch
- Optional 8088 8 MHz processor available

SPECIAL ENDS 7/31/87

SOCKET-WRAP I.D.™
- Identifies pin numbers on wrap.
- Helps prevent pin-out errors.
- Can write on plastic, such as ICs.
- WRAP I.D.™ 80PC. OF PRICE
8 IDWRAP 08 10 1.55
16 IDWRAP 16 10 1.55
24 IDWRAP 24 5 1.55
32 IDWRAP 32 5 1.55
40 IDWRAP 40 5 1.55

PLEASE ORDER BY NUMBER OF PACKAGES (PICK OFF)

CAPACITORS
TANTALUM
1.0uf 15V .50 .05 35V .45
6.8 15V 1.0 35V .45
10 15V 1.5 35V .45
22 15V 3.35 4.7 35V .45
22 35V 3.35 19V 1.00

DISC
50u 50V 05 680 50V .05
50G 50V 05 00/4 50V .05
50G 50V 05 00/2 50V .05
50G 50V 05 00G 50V .05
47G 50V 05 01 50V .05
47G 50V 05 02 50V .05
100G 50V 05 05 50V .05
220G 50V 05 1 12V 50V .05
560G 50V 05 10 12V 50V .05

MONOLITHIC
0.01 50V 14 1/4 50V .18
0.047 50V 14 1/4 50V .25

ELECTROLYTIC
1/2 15V 10 100 50V 16
2 25V 15 10 50V 16
4.7 25V 15 100 50V 16
10 25V 15 100 50V 16
15 25V 15 100 50V 16
22 47V 15 100 35V 25
33 47V 15 100 35V 25
100 47V 15 100 35V 25
220 47V 15 220 35V 25
470 47V 15 470 16V 60
1000 47V 15 470 16V 60
3300 47V 15 3300 16V 60
10000 47V 25 4700 16V 125

WISH SOLDERLESS BOARD

WISH SOLDERLESS BOARD

PART NUMBER	DIMENSIONS	DISTRIBUTION	TIE POINTS	TERMINAL STRIPS	BINDING POSTS	PRICE
WBU-U 38 x 6.50 1 100 1 6.00 1.95
WBU-T 1.38 x 6.50 1 100 1 6.00 1.95
WBU-204 3.13 x 6.50 1 100 1 2 1200 2 17.95
WBU-206 5.13 x 8.45 4 400 2 1200 3 24.95
WBU-206 6.88 x 9.06 5 500 3 1800 4 29.95
WBU-208 8.25 x 9.50 7 700 4 2500 4 39.95

LITHIUM BATTERY

3 VOLT BATTERY $1.95
BATTERY HOLDER $1.49
WBU-208

MUFFIN FANS

3.15 50 D-14.95
2.57 50 D-14.95
3.18 SQUARE 14.95
6" LINE CORDS
2 conductor 31 conductor 99
3 conductor w/female socket 1.49
EML FILTER $4.95

2 VOLUME SET IC MASTER
THE INDUSTRY STANDARD $129.95

JDR Microdevices
110 Knowles Drive, Los Gatos, CA 95030
Toll Free 800-538-5000 • (408) 866-6200
FAX (408) 378-8927 • Telex 171-110

COPYRIGHT 1987 JDR MICRODEVICES

THE JDR MICRODEVICES LOGO IS A REGISTERED TRADEMARK OF JDR MICRODEVICES. JDR INSTRUMENTS AND JDR MICRODEVICES ARE TRADEMARKS OF JDR MICRODEVICES. IBM IS A TRADEMARK OF INTERNATIONAL BUSINESS MACHINES. APPLE IS A TRADEMARK OF APPLE COMPUTER.
NEW PRODUCTS!

NEW! Logitech Mice
IB 1000/XT/AT
IB PC/XT Compatible
CT8508 TC Mouse w/31 Software
$34.95
CTPLUS TC Mouse w/PLUS Pkg. Software
$49.95
CTBUS CT Mouse w/o Blt.Pk., Blt. Pk Free
$119.95

NOW YOU CAN BUILD AN IBM PC/XT COMPATIBLE!
IBM Compatible Kit No. 2
IBM-54 Kit (64K RAM Chips 11) $15.95
KB1600 AT Style Keyboard $59.95
IBM-4C 4C Cartridge - Copy Kit $34.95
IBM-Case Floppy Case $39.95
IBM-MC Monochrome Card $59.95
IBM-PS Power Supply $69.95
FD-55B TEAC 5 1/4 Disk Drive $109.95
IBM-MON 12 Monochrome Monitor $99.95
IBM-MB Motherboard $109.95
FREE! QUICKSOFT PC WRITE WORD PROCESSING SOFTWARE INCLUDED!
Weight: 48 lbs. Reg. List $604.50
IBMSP2 (Includes 9 items above) $259.95
ADDITIONAL ADS AVAILABLE!
RS232HC RS232 Serial Card $29.95
EM-100 Expansion Memory Card (without RAM) $59.95
IBM-ICB Integrated Color Board w/Printer $99.95
IMFC Multifunction 0-38K RAM (without RAM) $109.95
PM1200B-2 1200/300 baud Card Board Modem without software $129.95
PM1200B-2S 1200/300 baud Card Board Modem with Monitor Software $159.95
IBM-EGA Enhanced Graphics $343.95
TTX-1410 14 RGB Color Monitor $289.95
IBM-20MBK 20MB Hard Disk Drive, Controller & Cables $429.95

APPLE COMPATIBLE ACCESSORIES

NEW! J440 Coldless Pronto Type-Builder
Provides superior performance for development of electronic circuits-
Components & wire can be quickly inserted and removed without soldering or desoldering -
-80% less soldering - 3x more inlaid power supply 5V 1A, 12V 1.5A, 5V to 15V @ 5A - Power @ 240VAC, 60Hz fused
NEW!

J450 Coldless Pronto Type Builder $119.95
IBM Compatible! DISK DRIVES
FD-55B Teac 5 1/4 IBM PC/XT $109.95
J-455 Panasonic 5 1/4 h/b (IBM PC/XT) $109.95
J-475 Panasonic 3 1/2 h/b (IBM 9199) $119.95

NEW! MUFFIN/SPRITE-STYLE FANS
MUF60 IBM compatible case 60 sq. 40 cm
SUA1 $8.95
EAGO (13 sq. 35 cm)
Data Sheets - $50 each Prices Subject to Change

Send $1.00 Postage for a FREE 1987 CATALOG
Telex: 176043
Jameco Electronics 1-800-368-5706

California Residents: Add 6%, 6% or 7% Sales Tax
We reserve the right to substitute IC manufacturers.

Jameco Electronics Worldwide
Send $1.00 Postage for a FREE 1987 CATALOG
Fax: 415-592-2503
800-368-5706
1355 Shoreway Rd., Belmont, CA 94002

Circle 114 on Free Information Card
Your Only Move Is To MCM Electronics

Make Your Move By Dialing TOLL-FREE 1-800-543-4330
In Ohio, 1-800-762-4315 — In Alaska and Hawaii, 1-800-858-1849

MCM ELECTRONICS
858 E. CONGRESS PARK DR.
CENTERVILLE, OH 45459
A PREMIER Company

CIRCLE 87 ON FREE INFORMATION CARD
Summer Fun Starts at Dick Smith Electronics!

Get the latest books for summer reading & reference!

Know Your Oscilloscope (B-2003) $11.95

The fourth edition of this classic text provides oscilloscope users (whether new, part-time, or experienced) with a wealth of practical data covering a broad range of uses. From the basics of CRT's to the latest high tech scopes, this book is perfect for hands-on training.

World Radio-TV Handbook (B-2087) $19.95

The new 1987 Edition is the most complete and accurate source available for anyone interested in the world's radio & television services. Features comprehensive country-by-country listings of long, medium, short, and broadcast frequencies, languages, and much more!

1987 Radio Amateurs Callbook (B-2187) $25.00

North American listing, 65th anniversary edition includes 478,267 licensed Radio Amateurs and many features.

Yagi Antenna Design (B-3207) $15.00

Based on a series of lectures given in summer, this important reference covers all aspects of the design, performance, and practical data in this handy hardcover text extremely valuable.

Shortwave Radio Listening with the Experts (B-2315) $22.95

Skill & DKC bring you the one book you need for your shortwave receiver. Learn to identify various foreign languages, and broadcasters, locate specific stations, and get many other handy tips from 25 seasoned listeners.

Troubleshooting & Repairing of Microprocessor-based Equipment (B-2376) $21.95

This comprehensive guide provides the service technician, field service engineer, and hobbyist a thorough approach to troubleshooting, almost all devices controlled by microprocessors. Includes blocks & procedures for improving the performance of hearing circuit faults.

The Cellular Connection (B-3951) $9.95

As a shopper's guide or owner's reference, this is an up-to-date, fact-filled, easy-to-read guide to the booming world of mobile telephones. Includes makes & models, prices, related components of concerned companies, numbers access numbers, glossary, & a look at the future.

Video Production Guide (B-3984) $29.95

Become a video mogul! This thorough text provides a broad overview of television production from the viewpoint of the producer & director. It covers studio & location work from pre-through post-production, with diagnosis & solutions to some of the common problems.

IC Substitution Manual (B-4001) $29.95

This is an essential reference for every workshop, lab, factory or design office that uses ICs. Find equivalents or substitutes for an incredible variety of ICs, from general purpose manufacturer or number.

IC Master 1987 Edition (B-4002) $130.00

The original and only complete guide to currently available ICs, microcomputer boards, development systems, gate arrays, and related components. New to this edition is a full section on the design engineer or active hobbyist is bigger & better this year! Includes expanded sections on CHEF/CAD, AC/DC converters/linear products, military & computer micro-boards, and surface mount devices.

Illustrated Dictionary of Microcomputers (B-4003) $14.95

The 2nd edition of the most current & complete reference available on microcomputer terms & concepts - completely updated & expanded to include new developments in microcomputer systems over 8000 key terms on all. Includes over 350 illustrations.

Electronics Math (B-4007) $15.95

Just the right combination of practical problems and theory makes this mathematics text very practical. It is designed to be used in the laboratory, allows the student a hard copy of the text which can be used as a reference for home study.

Logic Data Set (B-4061) $24.95

A complete & comprehensive set containing details on MMS/4HC/74HC/4HC/74HC high speed micro CMOS family, CD4040 family, MM74C family. Also contains a 16 page write-in manual with separate volumes. 4006-4061 and 4061 are now available as a set at savings of over 15%!

R-E Reader's Special

Save on Stereo Systems & Receivers

For a limited time only you can:

1. Save $99.00 on 9938 receiver kit

2. Save on the complete Gould Upgrade Kit

3. Save on the complete Gould Stereo Upgrade Kit

CLOSEOUT: Offer good while supplies last

Here's the meter you've been waiting for!

Handheld 4-digit LCD capacitance meter measures from 0.1 to 999,999fF. Features extended range, true RMS, resolution, interpolation & more. Includes 38-page manual, zeroing & other important test functions. Measures: leakage & capacitance, calculates time constant, reads dielectric value. For any application requiring manual zeroing & other important test functions.

Daeonta 4-digit Auto-range Capacitance Meter

Price $169.95

Closeout: All the best of 1987 as the last summer fun starts at Dick Smith Electronics.

Practical projects are fun to build & use!

Skill Levels

- Beginner
- Intermediate
- Advanced

-10% off package

10% off packaging

$119.95 Value

K-6316/K-6117

CLOSEOUT: Offer good while supplies last

Going away for summer vacation? Don't leave your home unprotected!

KeepSafe Plus

L5000

$349

Install your own system for safety & savings. You can install the home security system yourself, or have the dealer ship the system to you for setup. This system can be expanded or customized with additional Transmitter with Sensor or other unique accessories.

Add on for complete flexibility.

Minidriver with sensor (L-5508) $12.95

Backlit Alarm (L-5509) $25.95

Remote Control (L-5512) $34.75

Emergency Dialer (L-5510) $199.75

Alerts National Central Monitoring Station when alarm sounds!

AFO Display (L-5511) $125.00

Infrared-beam detector adds security.

Alarm Scan (C-2705) $15.95

DSE has the tools you need for protection quality projects!

IDC Bench Assembly Press

$139

T-2690

Custom leads are quick & easy.

This quarter-ton press manual is packed with the right, practical installation tool for any jobs requiring termination of various IDC connectors on flat (ribbon) cable. Interchangeable base plates accommodate a broad range of IDC connectors.

Cutters

- Flat Cable (T-2528) $54.95
- Strip head (T-2529) $49.95
- Rattail strip tool (T-2530) $24.95

Interchangeable tools are available for this unit.

Mini Dropper Set (T-4753) $9.95

For the hobbyist, technician, or engineer, this set includes non-adjustable high precision and dials style tools making clean accurate holes a cinch.

Don't let the kids get bored this summer - give them this affordable Apple-compatible computer!

The Laser 128™ gives you the best of both worlds: Apple as the personal computer virtually any Apple programming language, graphics, productivity packages, games, synthesizers, and more. It's the perfect computer to start your kids on and later, to upgrade with the latest in software. The Laser 128™ runs virtually all Apple software with no modification. And it's affordable and easy to use.

Apple-compatible monitor for Laser 128 (X-1130) $79

Call for current prices & availability of our XT- and AT-compatible computer kits!
Try Our Fast Special-Order Service
- No Minimum Order!
- No Postage Charge!
Your Radio Shack store manager can special-order thousands of parts and supplies not listed in our catalog—tubes, linear and digital ICs, modules, diodes, transistors, crystals, photo car-tridges, styli and computer accessories. Delivery time for most items is one week. Come in and order today!

Mini-Notebook Series
All books feature building tips and easy-to-read schematic diagrams. Use these proven circuits as starting points for your own designs!

Subject	Cat No	Only
Timer ICs | 276-5010 | 99
Op Amps | 276-5011 | 1.49
Optoelectronics | 276-5012 | 1.49
Semiconductors | 276-5013 | 1.49
Digital Logic | 276-5014 | 1.49
Communications | 276-5015 | 1.49

Computer Hookups

Subminature "D" Connectors

<table>
<thead>
<tr>
<th>Type</th>
<th>Positions</th>
<th>Cat No</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>0</td>
<td>276-1537</td>
<td>1.49</td>
</tr>
<tr>
<td>Female</td>
<td>0</td>
<td>276-1538</td>
<td>2.49</td>
</tr>
<tr>
<td>Hood</td>
<td>0</td>
<td>276-1539</td>
<td>1.99</td>
</tr>
<tr>
<td>Fig</td>
<td>Type</td>
<td>Positions</td>
<td>Cat No</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>Male</td>
<td>0</td>
<td>276-1547</td>
</tr>
<tr>
<td>4</td>
<td>Female</td>
<td>0</td>
<td>276-1548</td>
</tr>
<tr>
<td>5</td>
<td>Hood</td>
<td>0</td>
<td>276-1549</td>
</tr>
<tr>
<td>(6)</td>
<td>Shielded 25-Position Hood. For EM/ RFI protection</td>
<td>0</td>
<td>276-1536</td>
</tr>
<tr>
<td>(7)</td>
<td>Multipurpose Hood. Use as hood or null modem foundation</td>
<td>0</td>
<td>276-1520</td>
</tr>
</tbody>
</table>

Let Shack Supply Your Power Supply

Test Cable Sets

Switch-A-Rama!

<table>
<thead>
<tr>
<th>Type</th>
<th>Cat No</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>4001</td>
<td>276-2401</td>
<td>79</td>
</tr>
<tr>
<td>4011</td>
<td>276-2411</td>
<td>79</td>
</tr>
<tr>
<td>4013</td>
<td>276-2413</td>
<td>1.19</td>
</tr>
<tr>
<td>4017</td>
<td>276-2417</td>
<td>1.49</td>
</tr>
<tr>
<td>4049</td>
<td>276-2449</td>
<td>99</td>
</tr>
<tr>
<td>4065</td>
<td>276-2465</td>
<td>1.19</td>
</tr>
<tr>
<td>4066</td>
<td>276-2466</td>
<td>1.19</td>
</tr>
<tr>
<td>4087</td>
<td>276-2487</td>
<td>1.19</td>
</tr>
</tbody>
</table>

Instruction Booklets

Wireless Remote Control System

Never Enter a Dark House! 39.95

Turn lights and appliances on/off from driveway, porch, yard, inside. Includes one 15-amp receive module. Add up to 3 more Plug 'n Power™ receive modules, any time. UL listed. #61-2675

Over 1000 Items in stock: Binding posts, Books, Breadboards, Buzzers, Capacitors, Chokes, Clips, Coax, Connectors, Fuses, Hardware, ICs, Jacks, Knobs, Lamps, Multimeters, PC Boards, Plugs, Rectifiers, Relays, Resistors, Switches, Tools, Transformers, Transistors, Wire, Zeners, more!
ADVERTISING INDEX

Radio-Electronics does not assume any responsibility for errors that may appear in the index below.

<table>
<thead>
<tr>
<th>Free Information Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>28</td>
</tr>
<tr>
<td>A.I.S. Satellite</td>
<td>61</td>
</tr>
<tr>
<td>108</td>
<td>81</td>
</tr>
<tr>
<td>AMC Sales</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td></td>
</tr>
<tr>
<td>All Electronics</td>
<td>95</td>
</tr>
<tr>
<td>103</td>
<td>196</td>
</tr>
<tr>
<td>Allen W.B.</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td></td>
</tr>
<tr>
<td>Amazing Devices</td>
<td>102</td>
</tr>
<tr>
<td>207</td>
<td></td>
</tr>
<tr>
<td>American Design Components</td>
<td>190</td>
</tr>
<tr>
<td>202</td>
<td>103</td>
</tr>
<tr>
<td>Ammapro</td>
<td>84</td>
</tr>
<tr>
<td>202</td>
<td></td>
</tr>
<tr>
<td>Appliance Service</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Banner Technical Books</td>
<td>24</td>
</tr>
<tr>
<td>183</td>
<td></td>
</tr>
<tr>
<td>Beekman Industrial</td>
<td>4</td>
</tr>
<tr>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Blue Star Industries</td>
<td>83</td>
</tr>
<tr>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Cameo Enterprises</td>
<td>93</td>
</tr>
<tr>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Consumertronics</td>
<td>64</td>
</tr>
<tr>
<td>197</td>
<td></td>
</tr>
<tr>
<td>C & S Sales</td>
<td>78</td>
</tr>
<tr>
<td>199</td>
<td></td>
</tr>
<tr>
<td>COM-8</td>
<td>25</td>
</tr>
<tr>
<td>109</td>
<td></td>
</tr>
<tr>
<td>CIE</td>
<td>16</td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>CAIG</td>
<td>27</td>
</tr>
<tr>
<td>181</td>
<td></td>
</tr>
<tr>
<td>Cameo Enterprises</td>
<td>93</td>
</tr>
<tr>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Consumertronics</td>
<td>64</td>
</tr>
<tr>
<td>197</td>
<td></td>
</tr>
<tr>
<td>Cook's Institute</td>
<td>29</td>
</tr>
<tr>
<td>195</td>
<td></td>
</tr>
<tr>
<td>Crystal</td>
<td>24</td>
</tr>
<tr>
<td>193</td>
<td></td>
</tr>
<tr>
<td>Deco Industries</td>
<td>28</td>
</tr>
<tr>
<td>127</td>
<td></td>
</tr>
<tr>
<td>Dick Smith Electronics</td>
<td>99</td>
</tr>
<tr>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Diet-Key</td>
<td>101</td>
</tr>
<tr>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Electronic Design Specialists</td>
<td>63</td>
</tr>
<tr>
<td>194</td>
<td></td>
</tr>
<tr>
<td>Electronic Industry Assoc.</td>
<td>CV2</td>
</tr>
<tr>
<td>194</td>
<td></td>
</tr>
<tr>
<td>Electronic Technology Today</td>
<td>15</td>
</tr>
<tr>
<td>194</td>
<td></td>
</tr>
<tr>
<td>Electronics Book Club</td>
<td>10</td>
</tr>
<tr>
<td>191</td>
<td></td>
</tr>
<tr>
<td>Elephant Electronics</td>
<td>62</td>
</tr>
<tr>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Finnik II</td>
<td>29</td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Fluke Manufacturing</td>
<td>21</td>
</tr>
<tr>
<td>121</td>
<td></td>
</tr>
<tr>
<td>Fordham Radio</td>
<td>29</td>
</tr>
<tr>
<td>121</td>
<td></td>
</tr>
<tr>
<td>Grantham College of Engineering</td>
<td>30</td>
</tr>
<tr>
<td>121</td>
<td></td>
</tr>
<tr>
<td>Hamag</td>
<td>20</td>
</tr>
<tr>
<td>62</td>
<td></td>
</tr>
<tr>
<td>Heath</td>
<td>55</td>
</tr>
<tr>
<td>86, 204</td>
<td></td>
</tr>
<tr>
<td>HS Computer Training</td>
<td>29</td>
</tr>
<tr>
<td>192</td>
<td></td>
</tr>
<tr>
<td>ISFET</td>
<td></td>
</tr>
<tr>
<td>192</td>
<td></td>
</tr>
<tr>
<td>JHI Instruments</td>
<td>91</td>
</tr>
<tr>
<td>59</td>
<td></td>
</tr>
<tr>
<td>JHI Microdevices</td>
<td>91</td>
</tr>
<tr>
<td>113, 176</td>
<td></td>
</tr>
<tr>
<td>JHI Microdevices</td>
<td>92</td>
</tr>
<tr>
<td>177, 178</td>
<td></td>
</tr>
<tr>
<td>JLTR Microdevices</td>
<td>91</td>
</tr>
<tr>
<td>179</td>
<td></td>
</tr>
<tr>
<td>Jameo</td>
<td>96</td>
</tr>
<tr>
<td>114</td>
<td></td>
</tr>
<tr>
<td>Jensen Tools</td>
<td>28</td>
</tr>
<tr>
<td>115</td>
<td></td>
</tr>
<tr>
<td>MCM Electronics</td>
<td>98</td>
</tr>
<tr>
<td>87</td>
<td></td>
</tr>
<tr>
<td>MB Electronics</td>
<td>28</td>
</tr>
<tr>
<td>208</td>
<td></td>
</tr>
<tr>
<td>Mark V. Electronics</td>
<td>87</td>
</tr>
<tr>
<td>93</td>
<td></td>
</tr>
</tbody>
</table>

For Advertising ONLY 516-293-1000
- Larry Steckler, publisher
- Art Fishman, advertising director
- Shelli Weimer, advertising assistant
- Lisa Stavman, credit manager
- Christina Estrada, advertising assistant

SALES OFFICES

EAST/SOUTHEAST
- Stanley Levitan, Eastern Sales Manager
- Radio-Electronics
 - 375-21771st Avenue
 - Little Neck, NY 11362
 - 718-628-6017, 718-291-1000

MIDWEST
- Texas/Arkansas/Okla.
- Ralph Bergen, Midwest Sales Manager
- Radio-Electronics
 - 541-450-874

PACIFIC COAST/Mountain States
- Marvin Green, Pacific Sales Manager
- Radio-Electronics
 - 515 Morrison St., Suite 227
 - Sherman Oaks, CA 91401
 - 818-986-2001
Radio Electronics
FREE PRODUCT INFORMATION
P.O. Box 388
DALTON, MA 01226-9990

Subscribe today to the magazine that keeps you up-to-date with the newest ideas and innovations in electronics. (If you already are a subscriber, do a friend a favor and pass this subscription card along to him.)

check offer preferred

☐ 1 Year—12 issues ONLY $16.97 ☐ 2 Years (SAVE MORE)—24 issues $32.97
(You save $10.03 off single copy price) (You save $21.03 off single copy price)
☐ Canada—12 issues $22.97 ☐ Canada—24 issues $44.97
ALL SUBSCRIPTIONS PAYABLE IN U.S. FUNDS ONLY

☐ Payment enclosed ☐ Bill Me ☐ Check here if you are extending or renewing your subscription

Name (Please Print) __
Company Name (If applicable) ___
Address __
City ___________________________________ State ________ Zip ________________
Allow 6-8 weeks for delivery of first issue

For New Ideas In Electronics read Radio-Electronics every month.

During the next 12 months
Radio-Electronics will carry up to the minute articles on:
• Computers • Video
• Solid-state technology
• Outstanding construction projects
• Satellite TV • Telephones
• Radio • Stereo • Equipment Reports
• Test equipment • VCR's
• Servicing
• Industrial electronics

NEW IDEAS AND INNOVATIONS IN ELECTRONICS APPEAR IN EVERY ISSUE OF RADIO-ELECTRONICS
KEEP UP TO DATE! DON'T MISS ANY ISSUES!
SUBSCRIBE TODAY!
USE THE ORDER CARD ON YOUR LEFT!

Hands-on Electronics™
Formerly Special Projects
Delivers construction article after construction article.... Exciting columns including Jensen on DXing, Friedmann on computers, Test bench tips, Noll with Calling All Hams, New Products and more.

SUBSCRIBE TODAY!
USE THE REPLY CARDS ON YOUR LEFT!
Let's not get lost in the buzzwords. Timely scheduling of component deliveries is not new...it's been at the forefront of the growth of industrial electronic distribution. Distributors have been stocking the quantity inventories necessary to parallel your production schedules for over a quarter of a century.

But your distributor is more than just a convenient, nearby source for OEM product. You also count on him to have on hand the important single piece you suddenly need...to locate those hard-to-find replacement parts...to keep your lines from shutting down for want of missing components.

Your distributor is your key resource...for just in time, for just in case.

Why are we, as electronics manufacturers, "pushing" distribution? Because it's our way of serving you better! It makes our wares more accessible to more buyers; it speeds our components to you faster than we could deliver them. And by extending our sales, warehouse, and credit capabilities, distributors help us keep down our costs, and hence your price!

The sponsors of this message are among over 150 members firms of the Electronic Industries Association, Distributor Products Division, all committed to marketing through distributors, because it benefits buyer and seller. Want more information? Contact Herbert Rowe, Senior Vice President, EIA Components Group, 2001 Eye Street, N.W., Washington, D.C. 20006. Telephone (202) 457-4930.

Alpha Wire Corporation
Wire, Cable, Tubing Connectors

AMP Incorporated
Electrical/Electronic Connectors, IC Sockets, PCB Switches

Amphenol Products
Amphenol, Bendix & Spectra-Strip Connectors, Cable & Cable Assemblies

Arrow Hart Division/Cooper Industries
Power & Control Switches

Beiden Electronic Wire & Cable
Thermosetting, Thermoplastic Wire & Cable for Electronic Applications

Carol Cable Company, Inc.
Electronic and Electrical Wire and Cable and Power Supply Cables

Cornell-Dubilier Electronics, Inc.
Capacitors, Relays, EMI Filters & EMI Systems Engineering Services

Corning Glass Works,
CORNING ELECTRONICS
ML/CC Capacitors (readed) and Chips, Power & Glass Capacitors, Fixed Metal Film Resistors, Resistor Chips, Resistor & Capacitor Networks (standard & custom) and Tantalum Capacitors

CTS Corporation
DIP Switches, DIP/SIP/Resistor Networks, Hybrids, Clock Oscillators, Crystals, Potentiometers & Rotary Switches

Dale Electronics, Inc.
Resistors Networks Oscillators, Displays Connectors Inductors & Thermistors, Electronic Components

Lamptronix Co., Ltd.
Miniature/Miniature, & Incandescent & Neon Lamps

Matrix Science Corporation
ML-C-38999 ML-C-24306 ML-C-83723 ML-C-5015 & ML-C-81714

Murata Erie North America, Inc.
Monolithic Discs Vibrator Capacitors, Potentiometers, RF/EMI Filters, Crystals, Oscillators, Piezo Alarms, and High Voltage Products

NTE Electronics, Inc.
Semiconductors, Flameproof Resistors, Wire & Test

Ohmite & North American Philips Company
Resistors, Rheostats, & Control Components

Perma Power Electronics, Inc.
Portable Sound Systems, Amplifiers, Power Line Surge Suppressors & Multiple Outlet Strips

Philips ECG
A North American Philips Company
Semiconductors, Picture Tubes, Receiving Tubes & Chemicals

Potter & Brumfield
Electromechanical Time Delay, & Solid State Relays, I/O Modules, Circuit Breakers

Quan-Nichols Co., Inc.
Loudspeakers and Commercial Sound Products

RCA Distributor & S.P.Division
Electronic Parts, Semiconductor Devices, Receiving Industrial & Picture Tubes, Video Tape & Accessories

SL Weber, A Division of SL Industries, Inc.
Surge & Noise Suppression, Uninterruptible Power Supplies, Multiple Outlet Strips

Simpson Electric Co.
Analog & Digital Panel Meters, Meter Relays, VOM's, DMM's, Electrical-Electronic, Test Equipment, Elapsed Time & Frequency Meters

Switchcraft, Inc.
Switches, Connectors, Fiber Optic Connectors, Jacks, Plugs, Keyboards, Jacks/Adapters & Audio Accessories

Waldom Electronics
Capacitors, Connectors, Hardware, PCB Accessories, Relays, Switches, Lamps, Lights, IC Sockets, Terminals & Tools
TEST EQUIPMENT THAT MEASURES UP TO YOUR SPECIFICATIONS

DMM-300 $79.95
3.5 DIGIT DMM / MULTITESTER

Our best model. A highly accurate, full function DMM loaded with many extra features. Audible continuity, capacitance, transistor, temperature and conductance all in one hand-held meter. Temperature probe, test leads and battery included.

- Basic DC accuracy plus or minus 0.25%
- DC voltage: 200mV - 1000V, 6 ranges
- AC voltage: 200mV - 750V, 5 ranges
- Resistance: 200 ohms - 20M ohms
- 6 ranges
- 200mV, 10A
- Capacitance: 200pF, 200fF, 3 ranges
- Corroded copper: NPN, NPM, NPN
- Transistor test: BF, NPN, NPN
- Temperature: -200°F - 200°F
- Conductance: 200mV
- Fully overlead protected
- Input impedance: 10M ohm

DMM-200 $49.95
3.5 DIGIT FULL FUNCTION DMM

High accuracy, 20 amp current capability and many range settings make this model ideal for serious bench or field work. Bit stand for handling live operation. 2000 hour battery life with standard 9V cell. Probes and battery included.

- Basic DC accuracy: plus or minus 0.25%
- DC voltage: 200mV - 1000V, 6 ranges
- AC voltage: 200mV - 750V, 5 ranges
- Resistance: 200 ohms - 20M ohms
- 6 ranges
- 200mV, 10A
- Capacitance: 200pF, 200fF, 3 ranges
- Corroded copper: NPN, NPM, NPN
- Transistor test: BF, NPN, NPN
- Temperature: -200°F - 200°F
- Conductance: 200mV
- Fully overlead protected
- Input impedance: 10M ohm

DMM-700 $49.95
4.5 DIGIT AUTORANGING DMM

Auto-ranging convenience or fully manual operation. Selectable DC DMM mode presents accurate in-measurement resistance measurements with semi-conductor junctions. NIST traceable for measurements related to specific reading. Probes and battery included.

- Basic DC accuracy: plus or minus 0.25%
- DC voltage: 200mV - 1000V, 6 ranges
- AC voltage: 200mV - 750V, 5 ranges
- Resistance: 200 ohms - 20M ohms
- 6 ranges
- 200mV, 10A
- Capacitance: 200pF, 200fF, 3 ranges
- Corroded copper: NPN, NPN
- Transistor test: BF, NPN, NPN
- Temperature: -200°F - 200°F
- Conductance: 200mV
- Fully overlead protected
- Input impedance: 10M ohm

DMM-100 $29.95
3.5 DIGIT POCKET SIZE DMM

Small pocket size with no compromise in features or accuracy. EGG read & LCD display. 2000 hour battery life with standard 9V cell provides over two years of average use. Probes and battery included.

- Basic DC accuracy: plus or minus 0.5%
- DC voltage: 2V, 1000V, 4 ranges
- AC voltage: 200mV - 750V, 2 ranges
- Resistance: 20 ohms - 2M ohms, 4 ranges
- 6 ranges
- 200mV, 10A
- Capacitance: 200pF, 200fF, 3 ranges
- Corroded copper: NPN, NPN
- Transistor test: BF, NPN, NPN
- Temperature: -200°F - 200°F
- Conductance: 200mV
- Fully overlead protected
- Input impedance: 10M ohm

MODEL 2000 $349.95
20MHZ DUAL TRACE OSCILLOSCOPE

Nitel's 2000 combines useful features and an exciting price. 4 frequency calculation and phase measurement are quick and easy in the X-Y Mode. Service technicians will appreciate the TV Sync circuitry for viewing TV-V and TV-H as well as accurate synchronization of the Video Signal Blankers, pedestal, VIT and TV Vertical/Horizontal sync pulses.

- Lab quality compensated 10X probes included
- Built-in component tester
- Vertical/Horizontal 100/200 Volt operation
- X-Y operation, Bright 5" CRT
- TV Sync filter

MODEL 3500 $499.95
35MHZ DUAL TRACE OSCILLOSCOPE

Wide bandwidth and exceptional 1mV/DIV sensitivity make the Model 3500 a powerful diagnostic tool for engineers and technicians. Delayed triggering allows any portion of a waveform to be isolated and expanded for closer inspection. Variable Holdoff makes possible the stable viewing of complex waveforms.

- Lab quality compensated 10X probes included
- Delayed and single sweep modes
- Zoom intensity modulation
- X-Y operation. Bright 5" CRT
- TV Sync filter

MODEL 2000
20MHZ DUAL TRACE OSCILLOSCOPE

Nitel's 2000 combines useful features and an exciting price. 4 frequency calculation and phase measurement are quick and easy in the X-Y Mode. Service technicians will appreciate the TV Sync circuitry for viewing TV-V and TV-H as well as accurate synchronization of the Video Signal Blankers, pedestal, VIT and TV Vertical/Horizontal sync pulses.

- Lab quality compensated 10X probes included
- Built-in component tester
- Vertical/Horizontal 100/200 Volt operation
- X-Y operation, Bright 5" CRT
- TV Sync filter

ORDER TOLL FREE
800-538-5000

OR VISIT OUR RETAIL STORE
1256 SOUTH BASCOM AVE.
SAN JOSE, CA. (403) 947-8881
CIRCLE 59 ON FREE INFORMATION CARD