BUILD THIS ROBOT BRAIN
Construction details for a robotics-control computer

LOGIC-GATE PRIMER
Fundamentals of buffers and gates

COMMUNICATIONS TECHNOLOGY
Spread-spectrum systems

BUILD AN ACID-RAIN MONITOR
Measure the danger yourself

THE EARLY DAYS OF RADIO
Radio pioneers and their contributions

PLUS:
★ COMPUTER DIGEST
★ Video News
★ Ask R-E
★ Designer’s Notebook

Radio Electronics
TECHNOLOGY - VIDEO - STEREO - COMPUTERS - SERVICE

$2.25 APR. 87
IN CANADA $2.75
New GPS Series: Tek sets the pace with SmartCursors™ and push-button ease.

Work faster, smarter, with two new general purpose scopes from Tektronix. The four-channel, 100 MHz 2246 and 2245 set the new, fast pace for measurements at the bench or in the field. They’re easy to use and afford, by design.

On top: the 2246 with exclusive integrated push-button measurements. Measurements are accessed through easy, pop-up menus and implemented at the touch of a button. Measure peak volts, peak-to-peak, ±peak, dc volts and gated volts with new hands-off convenience and on-screen readout of values.

SmartCursors™ track voltmeter measurements in the 2246 and visually indicate where ground and trigger levels are located. Or use cursors in the manual mode for immediate, effortless measurement of waveform parameters.

Both scopes build on performance you haven’t seen at the bandwidth or prices. Lab grade features include sweep speeds to 2 ns/div. Vertical sensitivity of 2 mV/div at full bandwidth for low-level signal capture. Plus trigger sensitivity to 0.25 div at 50 MHz, to 0.5 div at 150 MHz.

Accuracy is excellent: 2% at vertical, 2% at horizontal. And four-channel capability includes two channels optimized for logic signals.

Best of all, high performance comes with unmatched convenience. You can see it and feel it — in the responsive controls and simple front-panel design, in extensive on-screen scale factor readouts, and in simplified trigger operation that includes Tek’s Auto Level mode for automatic triggering on any signal. Start to finish, the GPS Series saves steps and simplifies tasks.

Get out in front! Call toll-free today to order, to get more details or a videotape demonstration.

1-800-433-2323
In Oregon, call collect 1-627-9000

Featuring four channels, flexible triggering, extensive CRT readouts and push-button ease of use, the new Tek 2246 (left) and 2245 (above) bring high-quality, low-cost analysis to diverse applications in digital design, field service and manufacturing.
BUILD THIS

<table>
<thead>
<tr>
<th>Page</th>
<th>Article Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>R-E ROBOT</td>
<td>Steven E. Sarns</td>
</tr>
<tr>
<td>45</td>
<td>COMMERCIAL ZAPPER FOR YOUR RADIO</td>
<td>Mark Rumreich</td>
</tr>
<tr>
<td>48</td>
<td>ACID RAIN MONITOR</td>
<td>Walter D. Scott</td>
</tr>
<tr>
<td>65</td>
<td>PC SERVICE</td>
<td>Ray Marston</td>
</tr>
</tbody>
</table>

TECHNOLOGY

<table>
<thead>
<tr>
<th>Page</th>
<th>Article Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>VIDEO NEWS</td>
<td>David Lachenbruch</td>
</tr>
<tr>
<td>55</td>
<td>ALL ABOUT SPREAD SPECTRUM COMMUNICATIONS</td>
<td>James E. McDermott</td>
</tr>
<tr>
<td>68</td>
<td>AUDIO UPDATE</td>
<td>Larry Klein</td>
</tr>
</tbody>
</table>

CIRCUITS AND COMPONENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Article Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>LOGIC GATE FUNDAMENTALS</td>
<td>Ray Marston</td>
</tr>
<tr>
<td>62</td>
<td>TESTING SEMICONDUCTORS</td>
<td>TJ Byers</td>
</tr>
<tr>
<td>67</td>
<td>NEW IDEAS</td>
<td>Ray Marston</td>
</tr>
<tr>
<td>76</td>
<td>DRAWING BOARD</td>
<td>Robert Grossblatt</td>
</tr>
<tr>
<td>79</td>
<td>DESIGNER'S NOTEBOOK</td>
<td>Robert Grossblatt</td>
</tr>
<tr>
<td>80</td>
<td>STATE OF SOLID STATE</td>
<td>Robert F. Scott</td>
</tr>
</tbody>
</table>

RADIO

<table>
<thead>
<tr>
<th>Page</th>
<th>Article Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>EARLY DAYS OF RADIO</td>
<td>Martin Clifford</td>
</tr>
</tbody>
</table>

EQUIPMENT REPORTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Article Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>SENCORE LC75 Z-METER II</td>
<td></td>
</tr>
</tbody>
</table>

DEPARTMENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Article Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>Advertising and Sales Offices</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>Advertising Index</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Ask R-E</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>Free Information Card</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Letters</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Market Center</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>New Literature</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>New Products</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>What’s News</td>
<td></td>
</tr>
</tbody>
</table>
The past few months we've described a versatile robot that you can build. Up to now, much of the discussion has been devoted to the logic behind the design, and some of the goals we'd like the robot to achieve. What construction details we did present were pretty much confined to the mechanical systems.

Now it's time to get to the heart of the matter. Or, to be a bit more precise, the brain. If our robot is to be a useful servant, an on-board computer is a necessity. The one we've designed for our robot offers great power and flexibility: it is built around an upgraded version of the microprocessor used in the IBM PC. To find out more about the computer, turn to page 39.

Next Month

The May Issue is On Sale April 2

A Special Double Issue

Leading writers and authorities in their fields give Radio-Electronics readers a sneak preview of expected developments in robotics, artificial intelligence, medical electronics, automotive electronics, communications, energy technology, and other fields, and show how they will impact our lives. Among the featured writers are:

Arthur C. Clarke
Issac Asimov
Donald E. Petersen (Chairman of the Board and Chief Executive Officer, Ford Motor Company)
George Heilmeyer (Senior Vice President and Chief Technical Officer, Texas Instruments)
And many others!

We'll also have the full line of articles and columns you've come to expect every month in Radio-Electronics. Don't miss this very important issue!

As a service to readers, RADIO-ELECTRONICS publishes available plans or information relating to newsworth products, techniques and scientific and technological developments. Because of possible variances in the quality and condition of materials and workmanship used by readers, RADIO-ELECTRONICS disclaims any responsibility for the sale and proper functioning of reader-built projects based upon or from plans or information published in this magazine.

Since some of the equipment and circuitry described in RADIO-ELECTRONICS may relate to or be covered by U.S. patents, RADIO-ELECTRONICS disclaims any liability for the infringement of such patents by the making, using, or selling of any such equipment or circuitry, and suggests that anyone interested in such projects consult a patent attorney.
TEST EQUIPMENT THAT MEASURES UP TO YOUR SPECIFICATIONS

DMM-300
3.5 DIGIT DMM / MULTITESTER
$79.95

- Higher accuracy, full function DMM loaded with many extra features. Audible continuity, capacitance, transistor, temperature and conductance all in one handheld meter. Temperature probe, test leads and battery included.
- Basic: DC accuracy: plus or minus 0.25%
- DC voltage: 200mV - 100V, 5 ranges
- AC voltage: 200mV - 750V, 5 ranges
- Resistance: 200 ohms - 20M ohms, 6 ranges
- AC/DC current: 200mA - 1A, 6 ranges
- Capacitance: 200pF - 20uF, 3 ranges
- Transistor tester: HFE test, NPN, PNP
- Temperature tester: °F - °C
- Conductance: 200ms
- Fully over-load protected
- Input impedance: 10M ohm

DMM-200
3.5 DIGIT FULL FUNCTION DMM
$49.95

- Higher accuracy, full function DMM loaded with many extra features. Audible continuity, capacitance, transistor, temperature and conductance all in one handheld meter. Temperature probe, test leads and battery included.
- Basic: DC accuracy: plus or minus 0.25%
- DC voltage: 200mV - 100V, 5 ranges
- AC voltage: 200mV - 750V, 5 ranges
- Resistance: 200 ohms - 20M ohms, 6 ranges
- AC/DC current: 200mA - 20A, 6 ranges
- Fully over-load protected
- Input impedance: 10M ohm
- 150 x 75 x 34mm, weighs 320 grams

DMM-700
3.5 DIGIT AUTORANGING DMM
$49.95

- Autorange convenience or fully manual operation. Selectable LO OHM mode permits accurate in-circuit resistance measurements involving semi-conductor functions. MEM mode or measurements relative to specific reading. Probes and battery included.
- Basic DC accuracy: plus or minus 0.5%
- DC voltage: 200mV - 100V, autoranging or 3 manual ranges
- AC voltage: 2V - 750V, autoranging or 4 manual ranges
- Resistance: 200 ohms - 20M ohms, autoranging
- Autoranging: AC/DC current: 20mA - 1A, 2 ranges
- Fully over-load protected
- Input impedance: 10M ohm
- 150 x 75 x 34mm, weighs 230 grams

DMM-100
3.3 DIGIT POCKET SIZE DMM
$29.95

- Short circuit protection with no compromises in features or accuracy. Large, easy to read 5.5 LCD display. 2000 hour battery life with standard 9v cell buttons over 2 years of average use. Probes and battery included:
- Basic DC accuracy: plus or minus 0.5%
- DC voltage: 2V - 1400V, 4 ranges
- AC voltage: 20V - 750V, 2 ranges
- Resistance: 20M ohms - 2M ohms, 4 ranges
- AC current: 20mA - 2A, 4 ranges
- Fully over-load protected
- Input impedance: 10M ohm
- 130 x 85 x 13mm, weighs 195 grams

MODEL 2000
20 MHz DUAL TRACE OSCILLOSCOPE
$349.95

- Model 2000 combines useful features and exacting quality. Frequency calculation and phase measurement are quick and easy in the X-Y Mode. Service technicians will appreciate the TV Sync circuitry for viewing TV-V and TV-H as well as accurate synchronization of the Video Signal, Blanking Pedestals, VITS and Vertical/Horizontal sync pulses.
- Lab quality compensated 10X probes included
- Built in component tester
- 110 -220 Volt operation
- X-Y operation, Bright S" CRT, TV Sync filter

MODEL 3500
35 MHz DUAL TRACE OSCILLOSCOPE
$499.95

- Weid bandwidth and exceptional 1mV/DIV sensitivity make the Model 3500 a powerful diagnostic tool for engineers or technicians. Delayed triggering allows any portion of a waveform to be isolated and expanded for closer inspection. Variable HOLDoff makes possible the stable viewing of complex waveforms.
- Lab quality compensated 10X probes included
- Delayed and single sweep modes
- Z Axis intensity modulation
- X-Y operation, Bright S" CRT, TV Sync filter

DPM-1000
3.5 DIGIT PROBE TYPE DMM
$54.95

- Autoranging, pen style design for the ultimate in portability and ease of use. Custom 80 pin LSI chip enhances reliability. Audible continuity tester and data hold feature for added convenience. Case, test leads and batteries included.
- Basic DC accuracy: plus or minus 0.5%
- DC voltage: 2V - 5500V, autoranging
- AC voltage: 2V - 500V, autoranging
- Resistance: 2M ohms - 2M ohms, autoranging
- Fully over-load protected
- Input impedance: 10M ohm
- 162 x 28 x 17mm, weighs 75 grams

ORDER TOLL FREE
800-538-5000

OR VISIT OUR RETAIL STORE
1256 SOUTH BASCOM AVE.
SAN JOSE, CA. (408) 947-8881

CIRCLE 59 ON FREE INFORMATION CARD
WHAT'S NEWS

New broadcast stations coming
In 1979, WARC (the World Administrative Radio Conference) allocated or reallocated the 1605-1705-kHz band to radio Region 2 (the Western Hemisphere). An Expanded-Band Conference was scheduled to plan the broadcast use of that band. The FCC made two proposals to that Conference: One was that allotment planning be used; the other was that station power be limited to 10 kW.

"Unmanned" warfare due in the future?

General Electric researchers are engaged in a project to improve the image-understanding abilities of machine-vision systems. The purpose is to permit an unmanned vehicle to recognize objects in its range of "vision" and to take appropriate action—steer around an obstacle, stop at a body of water, or turn and flee from a hostile tank.

To do that, it is necessary to teach the vehicle's computer "geometric reasoning," that is, to train it to recognize objects by matching their geometric features (lines and corners) with those of images stored in memory. Hundreds of images will have to be remembered, including those of landmarks, vehicles, and other objects the vehicle may encounter.

To store the images, the computer is "shown" photos, drawings, or mockups of objects from several viewpoints, including front views, side views, three-quarter views, etc. That is done with a TV camera that converts the images into digital data that the computer can deal with. The computer then manipulates the data to create a model of the object, which is filed away in memory.

When the vehicle’s camera spots an unidentified object in its path, the computer starts processing the image to extract rough geometric data, looking for lines and vertices where there are sharp changes. That produces a two-dimensional representation (resembling a crude line drawing) showing the boundaries of the object. That is compared with all the possible two-dimensional orientations of the three-dimensional models in the computer’s memory. If several features of any rotation of the 3-D model agree with the computer’s 2-D image, the computer assumes a tentative identification. It then examines finer details to confirm or reject the identification.

The project is supported by a $1 million contract from DARPA (the U.S. Defense Advanced Research Projects Agency), and is aimed at evaluating the potential of unmanned vehicles for military operations, such as surveillance and reconnaissance missions, or shunting supplies to front lines.

Allotment planning has several advantages over assignment planning, the alternative. In allotment planning, each signatory country must submit its complete and detailed requirements, pinpointing each prospective station and stating power, antenna systems, and other characteristics for each.

Under allotment planning, designated frequencies are made available for designated areas. Although the allotment of frequencies is based on the presumption of stations with defined characteristics within defined areas, the signatories are not bound to follow the exact details of the plan and may depart from the plan provided that the radiation toward other signatories does not exceed what would have resulted from operating stations with the presumed characteristics.

As to the proposed 10-kW power limit, the FCC believes that such a maximum power provides for adequate service range for each station, while making it possible to have enough stations to meet the requirements of the area.

The first session of the Conference, held in the spring of 1986, approved both the allotment system and the 10-kW power limit. Unless unexpected difficulties crop up at the second and final session, to be held near the end of 1988, it is expected that the portion of the band between 1665 and 1705 kHz will be opened July 1, 1990. Some stations in the 1605 to 1665 portion of the band may be actually on the air well before that date.

Under present allocations, a small part of the 1605-1705 kHz band is in use for broadcasting. The rest of that band is divided between fixed and mobile stations; those stations chiefly are used for navigational aids.

R-E
Your Best Source for Banana Plugs and Adapters is POMONA ELECTRONICS

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Model Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Double Banana Plug</td>
<td>MDP</td>
</tr>
<tr>
<td>BNC Female to Standard Double Banana Plug</td>
<td>1269</td>
</tr>
<tr>
<td>Standard Double Binding Posts to BNC Male</td>
<td>1296</td>
</tr>
<tr>
<td>Double Banana Jack</td>
<td>2269</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Free 1987 General Catalog</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Single Binding Post to BNC Male</td>
<td>3430</td>
</tr>
<tr>
<td>Standard Binding Post</td>
<td>3760</td>
</tr>
<tr>
<td>Connector Test Adapters: Socket Type (Left)</td>
<td>4650; Pin Type (Right)</td>
</tr>
<tr>
<td>BNC Female to Phono Plug</td>
<td>2957</td>
</tr>
</tbody>
</table>

ITT Pomona Electronics
1500 E. Ninth St., Pomona, CA 91766
Tel: (714) 623-3463

Our Products are available through your favorite electronics parts distributor.

Circle 101 on free information card
www.americanradiohistory.com
Make your home into something special!

That's exactly what your home will be when you fill it with Heathkit electronic products – products that make your life easier and more enjoyable. Within our diverse line are kit and assembled products sure to enhance each room in your home.

1. Make your entryway more secure and easy to use with the Keyless Doorlock. You'll never again be locked out because of lost or forgotten keys. All it takes is a simple fingerprint entry of a four-digit code, and the Keyless Doorlock unlocks your door.

2. Add a new dimension to your living room with your own Computerized Weather Station. This Digital Weather Station displays up-to-the-minute temperature, wind, and barometric pressure readings, along with time and date.

3. Give your kitchen a unique blend of style and efficiency with our Digital Wall Clock. This easy-to-build kit keeps time with quartz-crystal accuracy. And with its simulated oak wood-grain finish cabinet, you'll have a timepiece that fits into almost any decor.

4. Put your den to greater use with this IBM PC AT Compatible Computer. Do word processing, personal accounting and more when you run exciting IBM-compatible software on your fast and powerful HS-241. And you can build it yourself in just a few hours.

5. Bring the latest in digital technology to your bathroom. This Digital Scale lets you closely monitor your weight with electronic precision. And, it's battery operated so it's safe to use right out of the shower.

6. Add a video entertainment center to your bedroom. Our 19"-diagonal stereo TV kit gives you an extra-sharp color-corrected picture with full stereo sound, and convenient viewing that you can control from your bed. Comes in a simulated walnut cabinet that complements your room.

7. Transform your rec room into a haven for hobby fun. Put our Deluxe QRP CW Transceiver in this room and enjoy superb HAM radio operation that excels in performance and features. It offers expandable transmission and reception capabilities.

8. Give your workbench a touch of professionalism with this oscilloscope. Whether you're a service technician or a hobbyist, you'll love the wide range of measurement capability our laboratory-grade Dual Trace 10 MHz Oscilloscope gives you.

9. Add practicality to the utility room and save money, too. Avoid expensive food spoilage with our Freezer Alarm that warns you when the inside temperature of your freezer rises too high. Prevent water damage with our Food Alarm that warns you of water that's where it shouldn't be.

10. Make your coming and going easier than ever. Your garage door will open with incredible ease and dependability with our Deluxe Garage Door Opener. Easy to install, this opener is durable and includes a handy security light.

You'll find fun and excitement with every Heathkit product. Whether they're in kit form or already assembled, our products will help you enjoy your home more than you ever dreamed possible.

Send NOW for your FREE Heathkit Catalog. Send to: Heath Company, Dept. (22)-524 Benton Harbor Michigan 49022

Name ____________________________

Address ____________________________

City ____________________________ State ______ Zip __________

A subsidiary of Zenith Electronics Corporation CL-789A
EDTV. A new program in Japan has as its goal a major change in television transmission standards by 1988. The new standard will produce a sharply-improved picture, but will maintain compatibility with existing standards and TV sets.

The Broadcasting Technology Association, a Japanese government-industry association, has announced that it established the following guidelines for its proposed new Extended Definition TV (EDTV) system:

- Complete compatibility with existing receiving equipment and standards.
- Picture quality that is sufficient for viewing at a distance of four times tube height (rather than the existing optimum of 10 times the tube height). Therefore, under the standard, a 30-inch tube (tubes of that size are expected to be common in the near future) would be ideally viewable from eight feet away.
- Horizontal resolution of 450 lines (compared with today’s approximately 300 lines) and vertical resolution of 450 lines compared with today’s 300 lines) by using a progressive non-interlaced scanning system.
- Reduction of cross-color and cross-luminance to unnoticeable levels.
- Ghost cancellation, possibly by means of a reference signal transmitted along with the TV program.

The details of the proposed specifications are scheduled to be released this summer, after which it will be the responsibility of Japan’s Ministry of Posts and Telecommunications to implement the new standards.

The Broadcasting Technology Association currently has 35 member companies, 19 of which are manufacturers, including the Japanese subsidiaries of Philips and RCA. The association is maintaining liaison with the U.S.’s Advanced Television Systems Committee, which is working on similar proposals, but with less well-defined deadlines.

HDTV. Another study in Japan, this one by an affiliate of NHK (Japan Broadcasting Company), is developing specifications for a reasonably priced VCR system for Japan’s High Definition TV (HDTV) system, which uses an 1,125-line widescreen picture. Existing videotape recorders for the system cost between $250,000-$300,000 and use open-reel one-inch videotape.

The proposed new system would use half-inch tape, probably metal coated, in a cassette similar to that used by the VHS format. Nine Japanese electronics manufacturers have agreed to use the new standard that is developed as the result of the study. The HDTV VCR’s could be used for projection in motion picture theaters, closed-circuit performances of various kinds, and high-quality electronic publishing. Japan is preparing for the direct satellite broadcasting of high-definition TV to theaters and to specially equipped homes.

Electronic still camera. The first electronic still camera to be introduced for the consumer market has been announced by Casio. It will go on sale in the United States and Japan around the middle of 1987. The camera uses the standard two-inch “video floppy” developed for electronic still photography; the video floppy can hold up to 25 full frames or as many as 50 fields of color pictures.

The camera has an MOS image sensor capable of 280,000-pixel resolution. Shutter speeds range from 1/6 to 1/2000 of a second. It differs from other such cameras shown to date in that it includes playback capability; a recorded image can be played back on any television set without the need for a separate player. Other features include erase capability and the ability to shoot five fields continuously in one second.

Furthermore, the price announced for the two-pound camera in Japan is by far the lowest reported for any proposed such camera to date: $650, although it may be somewhat higher in the U.S. Although electronic still cameras have been developed and tested by many manufacturers, the only other one currently on the market is a professional model by Canon, which sells at $2,400. Casio says it also will offer a color printer for about $1,250.
INTERFERENCE FROM LIGHT DIMMERS

How can I prevent electronic light dimmers from interfering with reception on my AM radios? Whenever I use a dimmer-controlled light, a loud buzz makes reception impossible.—P.B., Gustavus, AK

Literally thousands of the early electronic light dimmers were marketed before the manufacturers realized that there was a problem. Those dimmers used a Triac or an SCR as the control device. What they failed to account for was that Triacs and SCR's produce harmonic-rich squarewaves that cause RFI (Radio-Frequency Interference) unless steps are taken to prevent it. Later dimmers have built-in filters and shielding to prevent the harmonic interference from feeding back into the power line, or use zero-crossing control switching to eliminate the noise. Figure 1 shows the schematic of one of the newer versions; it was developed by General Electric. The RFI filter in that circuit is enclosed in the dashed box.

As for do-it-yourself remedies, you could connect a 0.0047-μF capacitor across the dimmer to reduce the interference. But if not done carefully, making such a modification could produce a shock or fire hazard. In the interest of safety, the best approach would be to simply replace the noisy dimmers with models that incorporate an RFI filter.

MORE ON MOTOR-SPEED CONTROL

In a recent column, I replied to queries from C.S., TX and J.C., TN. One reader wanted to reverse a small universal fan motor and the other wanted to vary the speed of a drill-press motor. I was not able to give specific advice to either reader. Well, if you guys are still "listening" both problems were solved over twenty years ago in a Popular Mechanics article entitled "Electronic Drill-Press Drive."

In the article, the author describes how he replaced his drill-press motor with a 1-horsepower universal motor salvaged from a Hoover canister-type vacuum cleaner. He shows how to reverse that motor by shifting the pole and field coil assemblies to the opposite side of the brush-holder centerline. Further, he used an SCR in a conventional circuit to vary the speed of a drill-press from below 1000 rpm to 10,000 rpm. If you want more information, the article appeared on pages 188 through 193 of the February 1964 issue of Popular Mechanics. Back issues are often available at larger public or university libraries.

WHAT IS THIS IC?

I have a Fairchild 40-pin IC marked "3805." I'm not sure if it is a UART or a microprocessor. Can you tell me what it is compatible with and where I can get a data sheet?—T.A., Loganspor, IN

The type number is unknown to anyone I've been able to contact at Fairchild. One person suggested that the device was probably made for an equipment manufacturer who specified that his own part number be used. Another wondered if you had transposed the last two figures while copying the numbers off of the device. In that case, possibly the device is a 3850 CPU (Central Processing Unit) for the Fairchild F8 microprocessor system. For information on the 3850 and its applications, refer to the F8 User's Guide and/or write to Fairchild, Microcomputer Division, 464 Ellis St., Mountain View, CA 94042.

SOLID-STATE TUBE SUBSTITUTES

In my job I service U.S. Army electronic equipment that uses vacuum tubes. I've heard that there are solid-state replacements for vacuum tubes such as the 12AT7, 12AU7, 6AL5, 6AK5 and 6SN7. Is that true? If so, where can I find them?—R.L., Anaheim, CA

Back in the mid-1960's, several manufacturers attempted to de-
The Ultimate in Low-Cost Test Equipment

At last! Here is your opportunity to take your pick from a new test equipment line that has all the features you need and more... and at a price that is unbelievably low.

MODEL 9101
Compact VOM with 27 ranges, including a 10 megohm range
$29.99

MODEL 9120
Analog VOM with 12 A DC range and output jack
$39.99

MODEL 9201
4 1/2-digit, full function, hand-held DMM with .05% accuracy and data hold
$129.99

MODEL 9301
3 1/2-digit, hand-held DMM with 0.25% basic accuracy and 2,000-hour battery life
$69.99

MODEL 9340
Pocket size, 3 1/2-digit DMM with 20 megohm range and 10 megohm input resistance
$34.99

MODEL 9370
Digital capacitance tester covering 0.1 pF to 20,000 µF
$99.99

MODEL 9670
Pocket size, 3 1/2-digit DMM with 0.25% basic accuracy and 2,000-hour battery life
$69.99

MODEL 9770
Digi-clamp™ compact AC clamp-on volt-ohm-ammeter with data hold
$69.99

Mercer Electronics products reflect the design and quality standards established by Simpson Electric Company, an industry leader for over 50 years and known worldwide for its integrity and product excellence.

In Stock... Available Now! Stop in at your nearest distributor and see this new, complete line of Mercer test instruments. For the name of the MERCER distributor in your area, call (312) 697-2265, or send for our new line catalog.

CIRCLE 194 ON FREE INFORMATION CARD
velop lines of universal semiconductor replacements for vacuum-tube diodes and triodes. Their efforts were short-lived because substituting a semiconductor device for a tube usually meant that the adjacent circuitry had to be extensively modified.

One approach was using two transistors connected in a cascode arrangement as a plug-in replacement for a triode voltage-amplifier tube. Similarly, semiconductor diodes were offered replacements for vacuum-tube diodes. To my knowledge, none of the solid-state replacements for tubes included a resistor as the equivalent of the tube’s heater. A resistor would have to be hard-wired into the circuit to take the place of the heater in series heater-string sets.

Of all the plug-in solid-state replacements tried, the most practical and successful were those for power rectifiers. For a short period in the 1960's, five IN-type silicon rectifier assemblies were offered as replacements for some popular vacuum-tube rectifiers. Those were the IN1237 for the 0Z4, the IN1238 for the 5U4-GB, the IN1239 for the 5R4, the IN1262 for the 6AU4-GTA, and the IN2637 for the 866-A.

If you are permitted to make permanent modifications in the equipment you are servicing, then you might consider hard-wiring IN34 semiconductor diodes as replacements for small-signal detector tubes.

Figure 2 shows how to do that for 5 popular tubes. The scheme for replacing a 6H6 or 12H6 is shown in Fig. 2-a, the scheme for replacing a 6AL5 or 12AL5 is shown in Fig. 2-b, and the scheme for replacing a 7A6 is shown in Fig. 2-c. The resistors shown need only be installed in circuits where the tube heaters are wired in series.

R-E

Fluke breaks the old mold.

Dollar for dollar the Fluke 37 breaks into the market with more features for the money than any other bench DMM. It's bold new design includes built-in handle and storage compartment, and it has all the high performance features of the world's best, most reliable 3½-digit DMMs.

Autoranging, to eliminate guesswork. Audible Continuity, so you don't have to look at the display. An exclusive analog and digital display. Superior EMI shielding. Plus a two-year warranty.

And, how many other bench/ portable meters give you these features? Min-Max recording, for monitoring signals. 38 components dedicated exclusively to input protection. Relative mode, to help you calculate changes in readings. And Fluke's patented Touch Hold, to give you an extra set of hands when you're taking critical measurements.

None. Only the Fluke 37.
For more information call 1-800-426-0361.
SIGNAL ACCURACY.

12,000 Reasons Why Industry Relies on E-Z HOOK.

Choose from over 12,000 standard test accessory products for an immediate solution to your application. They’re engineered to assure a reliable contact or connection for any testing, hook-up or assembly task. And E-Z HOOK can ship what you need in 48 hours or less.

For a quick, economical answer to your testing needs, ask for our 112-page catalog of Electronic Test Accessories. It’s free. And reliable.

E-Z HOOK

E-Z HOOK, A Division of Tektest, Inc., 225 North Second Ave., Arcadia, CA 91006
P.O. Box 450, (818) 446-6175, TWX 910-582-1614.

CIRCLE 203 ON FREE INFORMATION CARD

www.americanradiohistory.com
LETTERS

RAZOR-BLADE DETECTOR

I enjoyed, and have just finished reading, the “Letters” department in the December 1986 issue of Radio-Electronics. Matthew Kleinmann of Binghampton, NY, mentioned the “razor-blade detector,” which was used in the first radio that I constructed.

The razor blade must be a blue blade (quench-type, not lacquered—Editor). It is the bluing process which, in conjunction with the lead, allows the detection of radio waves. Mount the blade flat. Take a medium-size safety pin and bend the latch so that it may be mounted flat to the board, with the point of the pin facing the center of the razor blade. Sharpen a No. 2 pencil, and carefully cut away enough wood so that you can break off about an inch of lead. Then affix the lead so that it extends past the point of the pin.

I fastened mine together by wrapping some fine wire tightly around the pin and the lead. (That operation may require a helper. The end of the pin where it fastens to the board, and the end of the blade are the connecting points of the detector.) The pin must be bent to where the lead makes good contact with the blade. It is then moved around like the “cat whisker” until a spot is found where it will detect radio waves. Have fun.

DON SMITH
Perrysburg, OH

CASSETTE FIDELITY

I am an old-time audio research and development engineer, and an audio buff dating back to the ’30’s and ’40’s, now retired.

I have been highly skeptical of the flowery advertising claims made about the fidelity that can be
had nowadays on prerecorded audio cassettes. As a consequence, I resisted getting any such equipment until recently.

Unfortunately, the cassettes I have obtained left a great deal to be desired. I found that the high-end response depended on which deck it was played back on. Further, that response seemed to vary from one playing to another, and often it changed in the middle of a program. On decks in which the high frequency response seemed deficient, I could lift or twist the cartridge slightly and have the highs fade in and out. That discovery put me on a two-week personal fact-finding project, in the interest of my own education. My discoveries have convinced me, positively, that my skepticism was well-founded.

Applying my old R and D experience, I recorded a full-track-width cassette with a 5-kHz audio tone for a head-alignment test. (I first tried to buy such a cassette, but was unable to find one for sale anywhere. I suspect that the deck manufacturers do not want such cassettes available, because such a test is too severe for the playback equipment available on the consumer market.)

On twenty decks I plugged my tape into, barely four of them had the heads aligned properly. Most of the rest were well down at 5 kHz, one of them to almost zero. I could put a very slight pressure, one way or the other, on any of them and bring my test signal up to full output.

Another problem: The guides on most decks are welded directly to the heads. When the head is tilted when aligning, the tape is also forced to track higher or lower on the head. That causes the output level to vary at the same time that the high-end response is maximized. Furthermore, the tape-tracking within the cartridges is so loose and sloppy that the tape tends to walk up and down on the head, depending on a slight tipping up or down of the cartridge. Also, the springs behind the pressure pads are often not perfectly flat, or the pad itself is tipped or twisted slightly, causing an unbalanced pressure against the face of the head. That causes the tape to
INTRODUCING THE REPLACEMENT FOR OUR REPLACEMENT GUIDE.

RCA's new SK Guide gives you fast, accurate solid state replacements.

In the world of semiconductor replacements, no one outperforms RCA's engineering excellence. We're in the business of manufacturing semiconductors, so you can depend on our reliability.

Our new, expanded RCA SK Guide to Reliable Replacement Semiconductors lists more than 2,900 SK and KH types that replace over 214,000 industry types. And, for the first time, QMOS logic devices and an extensive line of RF types are included.

The new RCA SK Replacement Guide (SKG202E). It's the only solid state replacement source you need. For a copy, see your RCA SK Distributor. Or mail a check or money order for $3.25 to RCA Distributor and Special Products Division, Box 597, Woodbury, New Jersey 08096-2088.
wander up or down, or twist ever so slightly, but more than enough to wipe out the high-end response.

In addition to the above, the pressure rollers were frequently not square with the capstan. That also tended to make the tape walk up or down with the capstan, forcing the tape to twist out of alignment.

I suspect that the only way that you can realize frequency response at 5 kHz or higher is when you record and play back on the same machine. I did that however, and I still had a problem some of the time, due to the internal cartridge slop, which caused the tape to screw up or down, depending on room temperature, whether the tape had just been fast-forward or reverse wound, and other impossible-to-control variables.

I challenge anyone to record 5 kHz on his or her best machine, using the highest quality cartridge, and then see what it looks like when played back and viewed on one’s own scope. The dropouts, semi-dropouts, and volume fluctuations are quite unbelievable. After that, try your recording on a few other machines and see what happens.

My conclusion? Fortunately, the average listener does not have a “golden ear.” And the dropout problem is hard to detect by ear on music, rather than on a sustained pitch. The average listener, on hearing 3- or 4-kHz tones interprets them as “super” high-frequency response. If all recorded music on cassettes were to be given a boost at 3 or 4 kHz, and then chopped off above 5 kHz, I suspect that everyone would be pleased, and fully convinced of his or her listening quality. I sort of suspect that the cassettes being sold now are so recorded, and that very few listeners out in the real world know the difference.

JACOB ANTHES
Glidden, WI

You have either purchased some really low-priced junk, or have managed to acquire manufacturing rejects. All high-fidelity type machines and tapes that we have tested here over a period of many years can easily record to 15 kHz (not 5 kHz) and will hold its alignment within tolerable limits from 12 kHz and higher. In fact, the cassette system is so good, including its resistance to dropouts, that even rock-bottom priced machines and tapes are popular as low-cost data storage systems for personal computers.—Editor

ATTENTION: MR. MICHAEL HARDY

First, let me compliment Radio-Electronics for an excellent magazine. I have been an avid cover-to-cover reader for several years. I have never found another publication that covers all conceivable interests and subject matters within its range. Please keep up the good work; don’t change a thing.

Second, an open reply to Mr. Michael Hardy, of Massillon, OH, and other interested job-candidates in the electronics field. I suggest that you pick up a copy of the Sunday Atlanta Journal-Constiutation at your local library.

continued on page 20

SALE PRICES ON FLUKE DMM’S!
JOSEPH ELECTRONICS HAS THE LOWEST PRICES
PLUS FREE SHIPPING*

<table>
<thead>
<tr>
<th>FLUKE</th>
<th>3½ DIGIT 3200 COUNT ANALOG/DIGITAL MULTIMETERS</th>
<th>Reg</th>
<th>Sale</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>Value Leader - World's Most Popular DMM - Autoranging</td>
<td>$79</td>
<td>$69</td>
</tr>
<tr>
<td>75</td>
<td>Autoranging + Range Hold</td>
<td>$109</td>
<td>$95</td>
</tr>
<tr>
<td>77</td>
<td>Touch-Hold Feature + Features of Model 75</td>
<td>$145</td>
<td>$125</td>
</tr>
<tr>
<td>37</td>
<td>Bench/Portable, 0.1 VDC Accuracy</td>
<td>$229</td>
<td>$199</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FLUKE</th>
<th>3½ DIGIT HIGH-ACCURACY HAND HELD</th>
<th>Reg</th>
<th>Sale</th>
</tr>
</thead>
<tbody>
<tr>
<td>8021B</td>
<td>0.25% DC Accuracy, Audible Continuity Function</td>
<td>$169</td>
<td>$149</td>
</tr>
<tr>
<td>8020B</td>
<td>0.1% DC Accuracy, Audible Continuity & Conduction Function</td>
<td>$199</td>
<td>$175</td>
</tr>
<tr>
<td>8024B</td>
<td>0.1% DC Accuracy, 11 Functions, Peak Hold, Temperature</td>
<td>$249</td>
<td>$219</td>
</tr>
<tr>
<td>8026B</td>
<td>0.1% DC Accuracy True RMS AC Volts & Current</td>
<td>$219</td>
<td>$195</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FLUKE</th>
<th>4½ DIGIT TRUE RMS HAND HELD</th>
<th>Reg</th>
<th>Sale</th>
</tr>
</thead>
<tbody>
<tr>
<td>8060A</td>
<td>Measures True RMS AC Volts & Amps, dB + Frequency From 12 Hz to 200 kHz, Resistance to 300 MΩ</td>
<td>$359</td>
<td>$315</td>
</tr>
<tr>
<td>8062A</td>
<td>Same as 8060A, but Less Frequency & dB</td>
<td>$295</td>
<td>$265</td>
</tr>
</tbody>
</table>

TRUE RMS BENCH DMMS

<table>
<thead>
<tr>
<th>FLUKE</th>
<th>8010A 3½ Digit 10 AMP Range</th>
<th>Reg</th>
<th>Sale</th>
</tr>
</thead>
<tbody>
<tr>
<td>8010A</td>
<td>With Rechargeable Battery</td>
<td>$289</td>
<td>$255</td>
</tr>
<tr>
<td>8012A</td>
<td>3½ Digit Two Low (t) Ranges</td>
<td>$329</td>
<td>$295</td>
</tr>
<tr>
<td>8012A-01</td>
<td>With Rechargeable Battery</td>
<td>$359</td>
<td>$319</td>
</tr>
<tr>
<td>8050A</td>
<td>4½ Digit Relative Ref. Function, 0.03% DC Accuracy</td>
<td>$399</td>
<td>$355</td>
</tr>
<tr>
<td>8050A-01</td>
<td>With Rechargeable Battery</td>
<td>$439</td>
<td>$389</td>
</tr>
</tbody>
</table>

HURRY! QUANTITIES LIMITED AT ABOVE SALE PRICES!
ORDER TOLL-FREE: 1-800-323-5925
IN ILLINOIS: 312-297-4200
CHECK • MONEY ORDER • VISA • MASTERCARD • DISCOVER
Open Account to Retail Companies, Illinois Residents Add 7% Tax
*FREE SHIPPING ON FLUKE TO UPS SHIPPABLE DESTINATIONS.

SINCE 1947
Joseph Electronics
6830 N. Milwaukee
Niles, IL 60646

APRIL 1987
Train with NRI for a servicing

NEW!
Train with the newest Sanyo 880 Series Computer—it's fully IBM-compatible and runs almost twice as fast as the IBM PC!

Get started now by building this fully IBM PC compatible computer

Now you get it all... training for America's fastest growing career opportunity... training to service all computers... training on the newest total computer system, the Sanyo 880. Only NRI can give you the well-rounded training you need, because only NRI gives you a complete computer system... computer, monitor, disk drive, software, even test instruments like a digital multimeter and logic probe to work with and keep. It all adds up to training that builds the knowledge, competence, and ability you need to succeed as a computer service specialist.

Get inside the newest, fully IBM PC compatible Sanyo Microcomputer

As an NRI student, you'll get total hands-on training as you actually build your own latest model Sanyo 880 Series computer from the keyboard up. It's fully IBM PC-compatible and, best of all, it runs programs almost twice as fast as an IBM PC. As you assemble the Sanyo 880, you'll perform demonstrations and experiments that will give you a total mastery of computer operation and servicing techniques. You'll do programming in BASIC language—even run and interpret essential diagnostic software.
high paying career computers

Understanding you get only through experience
You need no previous knowledge to succeed with NRI. You start with the basics, rapidly building on the fundamentals of electronics with bite-size lessons. You perform hands-on experiments with your NRI Discovery Lab and then move on to master advanced concepts like digital logic, microprocessors, and computer memories.

Learn at home in your spare time
You train in your own home at your own convenience, backed at all times by your own NRI instructor and the entire NRI staff of educators and student service support people. They’re always ready to give you guidance, follow your progress, and help you over the rough spots to keep you moving toward your goal.

100 page free catalog tells more...send today
Send the postage-paid reply card today for NRI’s 100 page catalog that gives all the facts about computer training, plus career training in robotics, data communications, TV/audio/video servicing, and many other fields. If the card is missing, write to NRI at the address below.

NRI SCHOOLS
McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue
Washington, DC 20016
We’ll give you tomorrow
The North-Atlanta area is covered with high-tech industry. In fact, the entire North-Georgia area is booming. We have the factories; all we need are more technicians. I am sure that most manufacturers in this area will tell you that they can't find enough techs. If you don't want to go to Georgia, try Florida. With firms like Harris Semiconductor (Gates Radio) there I am sure that you'll be satisfied.

The point, Mr. Hardy, is that jobs are available. They might not be down the street from your house, but if you are serious about your profession, there is work to be had. Right in your home state, the Cleveland Institute of Electronics publishes a newspaper called the Electron. Many, many jobs are listed there, and not just open to CIE graduates.

I wish you the best of luck. It took me three months to find the right position, but I have never gone hungry since.

MICHAEL MALLORY
Carrollton, GA

PATENT COSTS

I enjoyed reading Dave Sweeney's article, "How to Apply for a Patent," in the January 1987 issue of Radio-Electronics. The information is very good, with the exception of the cost of obtaining copies of already issued patents. Like the 5-cent cigar, 28-cents-per-gallon gasoline, and 10-cent Coca-Cola, the day of the 50-cent patent copy is long gone. The current price is $1.50 per copy from the Commissioner of Patents and Trademarks, Washington, DC 20231. Provide the patent number with your fee and, in 6–8 weeks time you'll get your copies. If you need faster service, many large cities have patent depositories where you can even make copies yourself.

Being an inventor with three recent patents, I have used the Boston Public Library for obtaining copies of relevant patents. If any reader writes to me and encloses a self-addressed, stamped envelope (SASE), I'll provide the location of the nearest patent depository in his or her area. Also, if requested, I'll include information about using expired patents that saved me time and money in conducting my own patent search.

I am confident that the information I provide regarding the cost and process for obtaining patent copies will expedite ordering.

JOSEPH R. BIRKNER, President
Star Research Co.
P.O. Box 2121,
West Peabody, MA 01960.

ON SAMS PHOTOFACTS

I should like to comment on your answer to D.D., in the "Ask R-E" section of the December 1986 Radio-Electronics.

You were unquestionably correct when you told the reader that the Philco service data that he needed could be found in Sams Photofact #794–8, and then you gave him the telephone number of the company.

But you failed to mention that most of the old "Photofacts" are out of print, and that those that are available cost $9.95 per set.

And you failed to tell him that
Here's your chance to win a complete monitoring package from Regency Electronics and Lunar Antennas. 18 scanners in all will be awarded, including a grand prize of the set-up you see above: the Regency HX1500 handheld, the Z60 base station scanner, the R806 mobile unit, and a Lunar GDX-4 Broadband monitoring/reference antenna.

55 Channels to go!
When you're on the go, and you need to stay tuned into the action, take along the Regency HX1500. It's got 55 channels, 4 independent scan banks, a top mounted auxiliary scan control, liquid crystal display, rugged die-cast aluminum chassis, covers ten public service bands including aircraft, and, it's keyboard programmable.

Compact Mobile
With today's smaller cars and limited installation space in mind, Regency has developed a new compact mobile scanner, the R806. It's the world's first microprocessor controlled crystal scanner. In addition, the R806 features 8 channels, programmable priority, dual scan speed, and bright LED channel indicators.

Base Station Plus!
Besides covering all the standard public service bands, the Regency Z60 scanner receives FM broadcast, aircraft transmissions, and has a built-in digital quartz clock with an alarm. Other Z60 features include 60 channels, keyboard programming, priority control, digital display and permanent memory.

Lunar Antenna
Also included in the grand prize is a broadband monitoring/reference antenna from Lunar Electronics. The GDX-4 covers 25 to 1300 MHz, and includes a 6 foot tower.

Contest rules: Just answer the questions on the coupon, (all answers are in the ad copy) fill in your name and address and send the coupon to Regency Electronics, Inc., 7707 Records Street, Indianapolis, IN 46226. Winners will be selected from all correct entries. One entry per person. No purchase necessary. Void where prohibited by law. Contest ends June 30, 1987.

1. The Regency Z60 is
 - a digital alarm clock
 - an FM radio
 - a scanner
 - all of the above

2. The Regency R806 is the world's first _______ controlled crystal scanner.

3. The Regency HX1500 features
 - 55 channels
 - Bank scanning
 - Liquid crystal display
 - all of the above

4. The Lunar GDX-4 antenna covers ___ to ___ MHz.

Name: ____________________________
Address: ____________________________
City: _______ State: _______ Zipcode: _______
I currently own ______ scanners.
Brands owned: ________________________

Send in a photo (like this one of Mike Nikolich and his Regency monitoring station) and receive a free gift from Regency. Be sure to include your name, address and phone number.
Radio-Electronics has a constant advertiser (me) who sells previously-owned individual folders for $3.00 or $5.00 each, and has a stock that is more than 99% complete up to set #1600, plus many later numbers.

They are genuine Sams folders (not copies). Many of them are unused, and all are complete and clean. There is also an equally complete stock of Sams specialized books on auto radios, tape recorders, CB sets, modular hi-fi, etc.

ALLEN J. LOEB
414 Chestnut Lane,
East Meadow, NY 11554.

FILAMENT CHECKER
The filament checker in the "Antique Radio" section of Radio-Electronics, December 1986, should use a 1.5-volt battery and a #49 lamp. Using the #14 bulb and a 3-volt source could blow out old battery tubes with 1.4-volt, 50-mA filaments. Ignoring the inrush resistance of a #14 lamp, 2.3 volts would be applied to a 1.4-volt filament. A fresh, new tube might stand that, but not a 40-year-old relic. (Of course, your local distributor probably has a shelf full of 1A7's worth $1.25 each.)

STEVE DOW
Powell River, BC, Canada

POWER-SUPPLY OVERLOAD
Your "Service Clinic" and "Service Questions" are my favorite parts of Radio-Electronics, and I am very disappointed when either or both do not appear, as happens occasionally.

This letter is occasioned by the letter from A.H., Eureka, CA, entitled "Power-Supply Overload." Your reply is fine, but I want to call to your attention another possible explanation, because I have encountered similar problems at least a couple of times in the past.

The most recent was a TV set in which the TV filament was supplied from the horizontal-output transformer, but rectified by a single diode. There was no picture, and I found that there was no voltage at the socket's filament terminals. However, I checked with the socket removed from the tube and found that the full voltage was present.

After some searching and testing, I discovered that one of the diode (rectifier) connections had resistance that did not affect the reading without the tube, but was high enough to drop the voltage with the load of the tube filament.

Present-day meters use so little current that that can easily happen with a poor solder joint.

CHARLES W. MARTEL
Belmont, MA.

MEMORIES
I read with interest the query concerning razor-blade radio detectors in the December 1986 section of "Letters" in Radio-Electronics. It brought back memories of the sets built when I was just a teenager, using scraps and junk scrounged from the junkbox of a local radio repairman.

RON E. CASH
Pierre, SD
continued on page 29
Where's Your ELECTRONICS Career Headed?

The Move You Make Today Can Shape Your Future

Yes it's your move. Whether on a chess-board or in your career, you should plan each move carefully. In electronics, you can move ahead faster and further with a

B. S. DEGREE

Put professional knowledge and a COLLEGE DEGREE in your electronics career. Earn your degree through independent study at home, with Grantham College of Engineering. No commuting to class. Study at your own pace, while continuing your present job.

The accredited Grantham non-traditional degree program is intended for mature, fully employed workers who want to upgrade their careers...and who can successfully study electronics and supporting subjects through

INDEPENDENT STUDY, AT HOME

Free Details Available from:

Grantham College of Engineering
10570 Humbolt Street
Los Alamitos, California 90720

Independent Home Study Can Prepare You

Study materials, carefully written by the Grantham staff for independent study at home, are supplied by the College, and your technical questions related to those materials and the lesson tests are promptly answered by the Grantham teaching staff.

Recognition and Quality Assurance

Grantham College of Engineering is accredited by the Accrediting Commission of the National Home Study Council.

All lessons and other study materials, as well as communications between the college and students, are in the English language. However, we have students in many foreign countries; about 80% of our students live in the United States of America.

Grantham College of Engineering
10570 Humbolt Street, Los Alamitos, CA 90720

Please mail me your free catalog which explains your B.S. Degree independent-study program.

Name__________________________Age__________________________

Address__________________________

City________________State___________Zip_________________

www.americanradiohistory.com
because the modern IC-based circuit usually has tighter parameters than the older vacuum-tube and transistor designs, the inductors and capacitors used in the circuit must likewise have tighter parameters, or at the very least, be tested within a narrower range of tolerances. Much, if not all of the older service-grade LCR test equipment has neither the precision nor the testing capabilities needed to ensure proper performance from the capacitors and inductors used in modern circuits.

Critical parameter tests of capacitors and inductors require new techniques of measurement, and that is precisely what's to be found in Sencore's "Z meter II."

The Z Meter II uses an autoranging 3½ x 0.5-inch LED display to indicate: capacitor and inductor values; capacitor leakage, inter-element capacitor leakage, capacitor effective series resistance, capacitor "memory," and air-core coil shorted turns and opens.

No bridges
Unlike conventional C and L meters that employ some kind of bridge configuration to determine reactance (which is then interpolated to capacitance and inductance values), the Z-meter measures both directly. Capacitance is determined by measuring how long it takes to charge an unknown capacitor to +5 volts through a precision resistor. (Remember: I = RE.) Inductance is determined by measuring the emf caused by a constantly-varying current in the coil being tested.

The capacitance test range is 1 pF to 200,000 µF in 10 automatically-selected ranges. Accuracy is ± 1% of reading + resolution error ± 1 pF to 1000 µF, with the reading error increasing to ± 5% above 1000 µF.

The inductance test range is 10 µH to 2 H in 6 automatic ranges. Accuracy is ± 2% of reading + resolution error.

In addition to capacitance value, a stepped variable output voltage range of 3- to 600-VDC permits capacitors to be tested for leakage at their operating voltage (not necessarily their rated voltage); charts are provided showing the leakage limits for various capacitor types and test voltages. The stepped variable output voltage can also be used to "reform" electrolytic capacitors.

Unusual tests
Two other unusual Z-meter capacitor tests are those for
dielectric absorption and ESR (Equivalent Series Resistance). Dielectric absorption is the inability of a capacitor to completely discharge. It is often referred to as "memory," or "battery action," and all capacitors have some amount of dielectric absorption. Until the age of critical solid-state circuits, high values of dielectric absorption passed unnoticed. Unfortunately, modern circuits can be disabled by unusually high dielectric absorption, which usually goes undetected by conventional service-grade capacitor tests. (It’s the unseen force that can “blow” computer components if you fool with the circuit even after the powerline has been disconnected.) The Z-meter, on the other hand, will uncover excessive capacitor “memory.”

All electrolytic capacitors have ESR—equivalent series resistance—which is not usually a problem in non-critical circuits. When it is a problem, it usually can’t be determined by conventional test equipment. The Z-meter has a one-button test for ESR.

Two inductor tests

The Z-meter actually has two kinds of inductor tests. The conventional kind determines the value of an unknown inductor. The second test is a “ringing current” test used to determine the condition of non-iron-core coils, such as TV yokes and flybacks. Basically, the ringing test measures the coil’s "Q."

It works this way. The Z-meter applies a single pulse to a coil and then digitally counts the number of ringing cycles produced by the pulse until the signal is damped to the reference level. For most non-iron-core coils, 10 ringing cycles is considered “normal,” or “good.” A shorted coil will lower the Q and produce less than 10 ringing cycles, while an open coil will produce no ringing. So, less than 10 rings, or no rings, means a bad yoke or flyback.

Actually, any air-wound coil can be ring-tested; however, because of their low impedance, coils of less than 10 μH usually display only 2 to 4 rings.

Tracing defective cables

Both the capacitance and inductance functions can be used to determine cable lengths, or the distance to either a short-circuit or an open in a length of cable. Open coaxial cable is capacitive. To determine the length of the cable or the distance to an open you simply measure the capacitance of one foot of cable, then measure the input capacitance of the open cable. Divide the open-cable read-

High Quality Lowest Prices Off-The-Shelf

SCOPE 3½ Digit Capacitance

Model DCM-602 Test leads included. 8 ranges with full scale values from 2000 μF. LSI circuit. *Digital time base. Frequency range: 800 Hz to 8 Hz.*

SCOPE 3½ Digit Multimeters

Model DVM-638 Test leads included. 11 function, 38 ranges. Logic level detector. Audible visual continuity. Capacitance and conductance measurement.

SCOPE Pocket Sized Audio Signal Generator

Model RC-655 Test leads & 9V battery included. Low distortion sine-wave signal: 48 step selected frequency: x1 range 20 Hz to 1.5 KHz per 100 range 20 KHz to 150 KHz

HITACHI 35 MHz Dual Trace Oscilloscope

Model V-355 (Reg. 1899.95) Probes included. Thin, lightweight, compact. Large 6" rectangular internal graticule CRT. Auto-focus

FORDHAM Sweep Function Generator

Model FG-801 (Reg. 1899.95) Test leads included. 7 frequency ranges. 0.2 Hz to 2 MHz. Accuracy ± 0.5%

FORDHAM 550 MHz Frequency Counter

Model FM-8 (Reg. 1499.95) Completely assembled, pre-tested, pre-calibrated. High intensity 8-digit LED display.

SCOPE 4½ Digit LCD Bench Digital Multimeter

Model DVM-6005 Test leads set & 6 "D" size batteries included. 0.4" high characters. Conversion period: 50 milliseconds. Automatic, negative polarity.

TOLL FREE 800-645-9518

In New York State 632-1446
ing by the 1-foot value and you'll be very close to the distance to the end of the cable, or the distance to the open.

The same technique is used for shorted cable. However, a shorted cable appears inductive rather than capacitive. Measure the inductance of a one-foot length of cable that is shorted at the far end and use the indicated value as a reference. Then measure the inductance of a length of cable that you believe has an internal short-circuit. Divide the total cable-reading by the 1-foot value and you are within inches of the short-circuit's location.

How do we get within inches of an open or a short? It works this way. Assume the problem is an open length of RG-59. You measure an exact one-foot length and find it has a capacitance of 27 pF. You measure the defective cable and find its capacitance is 859 pF. Dividing 859 by 27 gives 31.8. In other words, the open is 31.8 feet from the input to the cable. Since 0.8 foot equals almost 10 inches (actually 9.6), the open is 31 feet, 10 inches from the input to the cable.

Allowing for assorted measurement errors, the open will be near, but probably not precisely, 31.8 feet.

Measuring very small values
A logical question is "What happens when capacitor and inductor values get so small they are actually less than those of the test leads and wires?" Good question, but the Z-meter has a good answer. A front panel control that is normally used to balance out the test lead inductance or capacitance can be used as an offset for small values. For example, if it is no problem to balance out the inherent capacitance of the test leads by using the front panel LEAD ZERO control. However, that doesn't solve the "window" problem of digital measurement—a small area that must be overcome before the instrument reads. For example, a 2-pF capacitor won't push the reading off zero because of the window's inertia; but the basic reading can be offset to perhaps 10 pF by the LEAD ZERO control. Connecting a 1-pF capacitor will result in a reading of 11-pF. Since you know that 10 pF is an offset value, the true value must be 11 pF less 10 pF, or 1 pF. The offset measurement procedure is used the same way when measuring very small inductor values.

While the intricacies of the measurement systems give an appearance of complexity, the Z-meter is notably easy to use because the readings themselves are autoranging, thereby restricting function selectors to only a few switches and controls. Stepped selectors are provided for leakage/capacitor return output voltages and the inductance ringing tests. Rocker switches are provided for leakage range (aluminum electrolytics or all other types) and power. A conventional potentiometer is used for the test-lead zeroing. Five push-buttons are used for: capacitor leakage, value, and ESR, and inductor value and the ringing tests.

"THE RABBIT"

MODEL TRX-7000

$51.95

IT'S LIKE HAVING A VCR IN EVERY ROOM

*ADD $5.00 FOR VISA OR MASTER CARD

OMNITRONICS

770 Amsterdam Ave., New York, NY 10025

SHIPPING CHARGES

For Orders Add

$25-100 $6.50

$100-500 $8.50

$500-750 $10.50

$750 and up $20.00

CIRCLE 110 ON FREE INFORMATION CARD
Now test and restore every CRT on the market... without ever buying another adaptor socket or coming up embarrassingly short in front of your customer... or your money back

with the new improved CR70 “BEAM BUILDER”™
Universal CRT Tester and Restorer
Patented $995

Have you ever?
Thrown away a good TV CRT, data display CRT, or scope CRT that could have been used for another two or three years because you had no way to test or restore it?

Lost valuable customers because you advised them that they needed a new CRT when another technician came along and restored the CRT for them?

Lost the profitable extra $35 or more that you could have gotten for restoring a CRT while on the job and locked in the profitable CRT sale later?

Avoided handling profitable trade-ins or rentals because you were afraid you’d have to replace the picture tube when you could have restored it?

Had a real need to test a CRT on the job, but didn’t have the right adaptor socket or setup information in your setup book?

If any of these things have happened to you, CALL TODAY, WATS FREE, 1-800-843-3338, for a FREE 15 day Self Demo.

"BEAM BUILDER" is a trademark of Sencore, Inc.

Call Today Wats Free 1-800-843-3338

Sencore
3200 Sencore Drive
Sioux Falls, SD 57107
605-339-0100 In SD Only

INFORMATION BOOKLET, the Surface Mount Technology Handbook, is 24 pages, letter size, on coated stock, and is fully illustrated with photos, tables, and diagrams.

Among the points covered are: board retention, strain relief, housing insulators, thermal mismatch, materials, lead design, automated PC-board assembly, and solder-reflow methods.

The handbook includes a glossary of SMT terms, and a description of the surface-mounting process. Last but not least, the handbook contains a catalog of Molex’s surface-mount connectors. Available free on request from Molex Incorporated, 2222 Wellington Ct., Lisle, IL 60532.

For the infrequent times when you must hold down a button—such as when using the leakage test to reform an electrolytic capacitor—a small spring-loaded device is provided that slips between the handle and the button, which keeps the function button depressed as long as needed.

User calibration
Non-laboratory (user) calibration of the digital reading is made possible by three screwdriver adjustments (located on the rear apron) for Zero Meter Reading, Capacitor Zero (with test leads open), and ESR zero.

The Z-meter has a fused BNC input connector. It is supplied with a test cable terminated in miniature-hook test clips: Adapters are provided for making connection to capacitors having screw terminals.

The Z-meter is list-priced at $995. For additional information on the instrument, write to Sencore, 3200 Sencore Drive, Sioux Falls, SD 57107.

NEW LIT

INFORMATION BOOKLET, the Surface Mount Technology Handbook, is 24 pages, letter size, on coated stock, and is fully illustrated with photos, tables, and diagrams.

Among the points covered are: board retention, strain relief, housing insulators, thermal mismatch, materials, lead design, automated PC-board assembly, and solder-reflow methods.

The handbook includes a glossary of SMT terms, and a description of the surface-mounting process. Last but not least, the handbook contains a catalog of Molex’s surface-mount connectors. Available free on request from Molex Incorporated, 2222 Wellington Ct., Lisle, IL 60532.
AN OUNCE OF PREVENTION.

The complete line of Flameproof Resistors from NTE Electronics.

NTE Flameproof Resistors are designed to provide you with a premium quality replacement device... that won't flameout or short even under the most severe overloads.

Our resistors range in capability from \(\frac{1}{8} \) Watts to 25 Watts with resistance values from 10 to 2.2 Megohms.

They're totally noncombustible with a metallic resistance material between a nonresistant core and a special ceramic outer cover.

NTE Flameproof Resistors are the ideal replacement components for electronic games, telecommunications, medical, data processing, military, broadcast and home entertainment equipment.

Don't take chances with your expensive equipment. Use NTE Flameproof Resistors ... they handle the current.

LOOK FOR THE FULL LINE OF QUALITY NTE REPLACEMENT PARTS AND PRODUCTS:

- Transistors
- Thyristors
- Integrated Circuits
- Rectifiers and Diodes
- High Voltage Multipliers and Dividers
- Optoelectronic Devices
- Zeners
- Microprocessors and Support Chips
- Memory ICs
- Thermal Cut-Offs
- Bridge Rectifiers
- Unijunctions
- RF Transistors
- Microwave Oven Rectifiers
- Selenium Rectifiers
- Flameproof Resistors
- Wire Ties
- Electrolytic Capacitors
- Static Control Products

For more information or the name of your local distributor, call or write NTE.
GATED SYNC DESCRAMBLER

We've made a number of modifications to the gated-sync descrambler that was featured in the February 1987 issue of Radio-Electronics. In addition, several errors crept in.

Starting with the modifications, resistor R1 has been deleted. Resistor R3 is now connected between R2 and the cathode of D1. C15 has been replaced by a 3-40-pF trimmer connected in parallel with a 47-pF fixed unit. L2 is now 18 µH fixed unit.

Also, if you require AM detection of the sound subcarrier, the following modifications can be performed: Connect C27 to pin 4 of IC2 (rather than pin 12 of IC4). Increase C11 to 100 pF. Remove three turns from L1; it will now be 5½ turns on an 8-32 screw. When tuning L2, it should be adjusted for the appropriate sound subcarrier (65.75 MHz for Channel 3 or 71.25 MHz for Channel 4) as you now want to pass sound and reject video. If you have trouble rejecting the video, you can also try adding a trap to IC2. That trap should consist of a 100-pF NPO capacitor and 5½ turns of No. 22 enamelled wire on an 8-32 screw. Connect the trap in series between pin 7 of the MC1330 and ground. For more information see Video Scrambling and Descrambling for Satellite and Cable TV (H.W. Sams), by the authors.

Turning to the errors. There are several mis-identified components on the PC board (Fig. 2). There are two C5's; the one located between C18 and L2 is actually C15. There are two R20's; the potentiometer located below switch S1 is actually R30. There are two R21's; the one located above C3 is R29. There are two C4's; the one located between R14 and R15 is actually C19. There are two C20's; the one located below IC5 is actually C30.

Finally, C13 and C22 should both be 0.1-µF units and C24 should be a 47-pF unit; a 47-pF unit can also be used for C24. RUDOLF E. GRAF and WILLIAM SHEETS

Walk "tough dog" troubles out of any TV & VCR in half the time . . . or your money back

with the exclusive, patented, VA62 Universal Video Analyzer . . . $3,295

Would you like to?

Reduce analyzing time: Isolate any problem to one stage in any TV or VCR in minutes, without breaking a circuit connection, using the tried and proven signal substitution method of troubleshooting?

Cut costly callbacks and increase customer referrals by completely performance testing TVs & VCRs before they leave your shop! Own the only analyzer that equips you to check all standard and cable channels with digital accuracy? Check complete, RF, IF, video and chroma response of any chassis in minutes without taking the back off the receiver or removing chassis plus set traps dynamically right on CRT too! Simplify alignment with exclusive multiburst pattern?

Reduce costly inventory from stocking yokes, flybacks, and other coils and transformers, for substitution only, with the patented Ringing Test. Run dynamic proof positive test on any yoke, flyback, and integrated high voltage transformer . . . in- or out-of-circuit?

Protect your future by servicing VCRs for your customers before they go to your competition? Walk out "tough dog" troubles in any VCR chrominance or luminance circuit — stage-by-stage — to isolate problems in minutes? Have proof positive test of the video record/play heads before you replace the entire mechanism?

Increase your business by meeting all TV and VCR manufacturers' requirements for profitable warranty service work with this one universally recommended analyzer?

To prove it to yourself, CALL TODAY, WATS FREE, 1-800-843-3338, for a FREE Self Demo . . . or learn how the VA62 works first by calling for your free simplified operation and application instruction guide, worth $10.00.

Call Today Wats Free 1-800-843-3338

SENCORE
3200 Sencore Drive
Sioux Falls, SD 57107
605-339-0100 In SD Only

innovatively designed
with your time in mind.

CIRCLE 183 ON FREE INFORMATION CARD

www.americanradiohistory.com
NEW PRODUCTS

SOUND SENDER, is a device that makes it possible to play a portable cassette player, Walkman, or CD player through an FM auto-sound system by merely plugging it into the cigarette lighter of a car, truck, van, RV, or boat. There is no extra wiring needed.

The device eliminates the need for earphones while driving, which are prohibited by law in many states. It also reduces the possibility of theft, because the cassette radio in the dashboard is usually the target of thieves.

The Sound Sender weighs 2 ounces and consists of a small plastic housing (4½” x 1¼” x 1½”) and a wire with a cigarette-lighter plug at one end and a jack for a cassette player at the other. The suggested retail price is under $30.—**Dynasound Organizer**, a Division of Hartzell Manufacturing, Inc., 2516 Wabash Ave., St. Paul MN.

SCANNER, the Regency model R1070, has ten channels, and can receive more than 15,000 frequencies over six of the most popular public-service bands, including VHF-low (30–50 MHz), VHF-amateur (144–148 MHz), VHF-high (148–174 MHz), UHF-amateur (440–450 MHz), UHF (450–470 MHz), and UHF-T (470–512 MHz). No crystals are required, and the scanner is pre-programmed with 10 of the most popular frequencies.

Programmed frequencies can be changed or added by touching the fingertip controls. A dual-level vacuum-fluorescent digital display flashes messages to aid in programming; and once a frequency is entered into a channel, a special test key automatically verifies the...
frequency, while checking all microprocessor functions.

In addition to scanning as many as 10 channels, the scanner can search an entire frequency range to find active frequencies. Other features include a channel lockout for skipping channels that are not of current interest, manual search and scan controls, and sliding volume and squelch controls. During a power failure, a built-in capacitor will save the frequencies in memory for several hours, without the need for batteries.

The Regency model R1070 comes complete with an AC power-supply cord, telescopic antenna, and an easy-to-follow instruction manual. The suggested retail price is $159.95.—Regecy Electronics, Inc., 7707 Records Street, Indianapolis, IN 46226.

MINIATURE HANDHELD DMM, the Circuitmate model DM78, is designed for the electronics hobbyist, but is also convenient for computer and field technicians to carry as a supplement or backup to their larger DMM.

The model DM78 has 0.7% accuracy: It includes diode test, continuity test, and autoranging capabilities. The meter weighs 3½ ounces, including the supplied carrying case. It can measure AC or DC voltages over the four ranges of 2-, 20-, 200-, and 450-volts, full scale. Resistance ranges on the model DM78 are 2K, 20K, 200K, and 2000K, full scale. Bandwidth is specified as 40–500 Hz. There is overload protection to 650-volts DC or peak AC, and the battery life is 70 hours. Test leads are included.

Exclusive, triple patented dynamic cap and coil analyzing... guaranteed to pinpoint your problem every time or your money back

with the all new LC75 "Z METER 2"
Capacitor Inductor Analyzer
Patented $995

The "Z METER" is the only LC tester that enables you to test all capacitors and coils dynamically — plus, it's now faster, more accurate, and checks Equivalent Series Resistance (ESR) plus small wire high resistance coils.

Eliminate expensive part substitution and time-consuming shotgunning with patented tests that give you results you can trust every time. Test capacitor value, leakage, dielectric absorption, and ESR dynamically; with up to 600 volts applied for guaranteed 100% reliable results — it’s exclusive — it’s triple patented.

Save time and money with the only 100% reliable, in- or out-of-circuit inductor tester available. Dynamically test inductors for value, shorts, and opens, automatically under "dynamic" circuit conditions.

Reduce costly parts inventory with patented tests you can trust. No more need to stock a large inventory of caps, coils, flybacks, and IHVTs. The "Z METER" eliminates time-consuming and expensive parts substituting with 100% reliable LC analyzing.

Turn chaos into cash by quickly locating transmission line distance to opens and shorts to within feet, in any transmission line.

Test troublesome SCRs & TRIACs easily and automatically without investing in an expensive second tester. The patented "Z METER 2" even tests SCRs, TRIACs, and High-Voltage Diodes dynamically with up to 600 volts applied by adding the new SCR250 SCR and TRIAC Test Accessory for only $148 or FREE OF CHARGE on Kick Off promotion.

To try the world's only Dynamic LC Tester for yourself, CALL TODAY, WATS FREE, 1-800-843-3338, for a FREE 15 day Self Demo.

Call Today Wats Free 1-800-843-3338
Sencore
3200 Sencore Drive
Sioux Falls, SD 57107 605-339-0100 In SD Only
innovatively designed with your time in mind.

CIRCLE 180 ON FREE INFORMATION CARD

CIRCLE 32 ON FREE INFORMATION CARD

WATS FREE — 1-800-843-3338

www.americanradiohistory.com
The model DM78 is priced at $29.95.—Beckman Industrial Corporation, 630 Puente Street, Brea, CA 92621.

CD-PLAYER ADAPTOR, the Sparkomatic model CDA50, will allow portable compact-disc players to be played through a car-stereo system. It operates by inputting a standard FM-stereo signal having a carrier frequency of 90.1 MHz into the antenna input of the car radio.

A switch is incorporated into the adaptor that turns on the unit; power-on status is indicated by an LED. The switch also disconnects the external antenna so that the only signal reaching the car radio will be that of the model CDA50.

In addition to compact-disc players, the unit can be used for playing portable cassette players that have a line out or headphone jack. The unit also provides a 9-volt output that is suitable for powering audio equipment requiring that voltage. The unit is intended for under-dash mounting, and appropriate mounting brackets are supplied. The model CDA50 has a suggested retail price of $19.95.—Sparkomatic Corporation, Milford, PA 18337.

REPAIR STATIONS, the OK Industries model BTR-55, (shown), the model BTR-35, and the model BTR-25, are self-contained repair stations specifically developed to meet the requirements of delicate multilayer PC-board rework.

The desolder section of the model BTR-55 features a 100-watt desoldering tool; spike-free operation; pistol-grip handpiece; accurate temperature indication via thermocouple tip-temperature sensing; temperature adjustable 280°C – 470°C (535°F – 880°F); heavy-duty, quick-rise diaphragm pump; adjustable hot-air blower; 24-volt handpiece; long-life desolder nozzles.

The solder section features: spike-free operation; 48-watt, heavy-duty soldering iron with thermocouple tip-temperature sensing; and temperature control adjustable from 280°C – 470°C (535°F – 880°F).

The hand-tool section features: 12-volt DC drill and grinder; variable power output, continuously adjustable up to 16,500 rpm, and 3-volt AC output.

The model BTR-35 combines the same performance features as the

EASY LISTENING

- FOR 810 TO 912 MHZ BAND SUPER CONVERTER 8001
- FOR YOUR UHF SCANNING RECEIVER AND OTHERS

A super-converter 8001 has been certified by FCC part 15 regulation.

<table>
<thead>
<tr>
<th>HOW TO ORDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name:</td>
</tr>
<tr>
<td>Address:</td>
</tr>
<tr>
<td>City:</td>
</tr>
<tr>
<td>Zip:</td>
</tr>
<tr>
<td>State:</td>
</tr>
<tr>
<td>Phone:</td>
</tr>
<tr>
<td>Make Check or Money Order payable to GRE AMERICA, INC.</td>
</tr>
<tr>
<td>Mail to: GRE AMERICA, INC. 425 Harbor Blvd., Belmont, CA 94002</td>
</tr>
<tr>
<td>Unit Cost ($59.94 x Qty) Total</td>
</tr>
<tr>
<td>CA Residents Add 6.5% Tax</td>
</tr>
<tr>
<td>Shipping & Handling ($4.00/Unit x Qty)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAYMENT METHOD</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check</td>
<td></td>
</tr>
<tr>
<td>Mastercard</td>
<td></td>
</tr>
<tr>
<td>Money Order</td>
<td></td>
</tr>
<tr>
<td>Visa</td>
<td></td>
</tr>
</tbody>
</table>

The Super Converter 8001 Features:

- Listening to 810–912 MHz Band on a UHF Scanner and/or Other Monitor Receivers
- Easy Connections to Your Receiver
- 9 Volts Battery Operation Power Source and Power On Indicator by LED Display
- External Power Jack Size: 79(w) x 30(h) x 100(D)mm

Warranty

- 180 Days From Date of Purchase

Unit Cost

- $59.94 plus $4.00 Shipping and Handling Charge

PHOTO ORDER: 800-233-5973 or 415-591-1400
model BTR-55 but without the hand-tool section. The model BTR-25 contains the multi-layer desolder section of the model BTR-55.

The BTR series systems start at $565.00—OK Industries, 3455 Con-

ner Street, Bronx, NY 10475.

DMM, the A.W Sperry Instruments model DM-1 "Pocket Pro" is a miniatura, 3½ digit, ultra slim digital multimeter that provides the measurement capabilities of a 14-range digital instrument in a pocket-calculator size.

The model DM-1 measures a mere 4.2" in height, is 2.0" wide, 0.4" deep, and weighs 3.5 ounces. It features autoranging, manual ranging, electronic overload protection on all ranges, auto-polarity, and audible-continuity indication.

The model DM-1 comes with two 1.5-volt LR-44 button-type batteries, a carrying case, built-in test leads, and one-year warranty; it is priced at $29.95.—A. W. Sperry Instruments, Inc., 245 Marcus Boulevard, Hauppauge, NY 11788.

SCREWDRIVER, the model T-15 Torx driver, features an extra-long 9¼" blade. It makes servicing difficult-to-reach areas of Maclintosh and other personal computers a far-easier task. The overall length is 13¼", with a break-resistant plastic handle. The model T-15 is priced at $6.95.—Jensen Tools, Inc., 7815 South 46th Street, Phoenix, AZ 85044.

Analyze defective waveforms faster, more accurately, and more confidently — every time or your money back

with the SC61 Waveform Analyzer
Patented $2,995

If you value your precious time, you will really want to check out what the exclusively patented SC61 Waveform Analyzer can do for you. 10 times faster, 10 times more accurate, with zero chance of error.

End frustrating fiddling with confusing controls. Exclusive ultra solid ECL balanced noise cancelling sync amplifiers, simplified controls, and bright blue dual trace CRT help you measure signals to 100 MHz easier than ever.

Accurately and confidently measure waveforms from a tiny 5 mV all the way to a whopping 3,000 V without hesitation with patented 3,000 VPP input protection — eliminates expensive "front-end" repairs and costly equipment downtime.

Make only one circuit connection and push one button for each circuit parameter test: You can instantly read out DC volts, peak-to-peak volts and frequency 100% automatically with digital speed and accuracy. It's a real troubleshooting confidence builder.

Confidently analyze complex waveforms fast and easily. Exclusive Delta measurements let you intensify any waveform portion. Analyze glitches, interference signals, rise or fall times or voltage equivalents between levels; direct in frequency or microseconds.

Speed your digital logic circuit testing. Analyzing troublesome divide and multiply stages is quicker and error free — no time-consuming graticule counting or calculations. Simply connect one test lead to any test point, push a button, for test of your choice, for ERROR FREE results.

To see what the SC61 can do for your troubleshooting personal productivity and analyzing confidence, CALL TODAY, WATS FREE, 1-800-843-3338, for a FREE 15 day Self Demo.
Today's world is the world of electronics. To be part of it, you need the right kind of training, the kind you get from Cleveland Institute of Electronics, the kind that can take you to a fast growing career in business, aerospace, medicine, science, government, communications, and more.

Specialized training.
You learn best from a specialist, and that's CIE. We're the leader in teaching electronics through independent study, we teach only electronics and we've been doing it for over 50 years. You can put that experience to work for you just like more than 25,000 CIE students are currently doing all around the world.

Practical training.
You learn best with practical training, so CIE's Auto-Programmed lessons are designed to take you step-by-step, principle-by-principle. You also get valuable hands-on experience at every stage with sophisticated electronics tools CIE-designed for teaching. Our 4K RAM Microprocessor Training Laboratory, for example, trains you to work with a broad range of computers in a way that working with a single, stock computer simply can't.

Personalized training.
You learn best with flexible training, so we let you choose from a broad range of courses. You start with what you know, a little or a lot, and you go wherever you want, as far as you want. With CIE, you can even earn your Associate in Applied Science Degree in Electronics Engineering Technology. Of course, you set your own pace, and, if you ever have questions or problems, our instructors are only a toll-free phone call away.

The first step is yours.
To find out more, mail in the coupon below. Or, if you prefer, call toll-free 1-800-321-2155 (in Ohio, 1-800-523-9109). We'll send a copy of CIE's school catalog and a complete package of enrollment information. For your convenience, we'll try to have a representative contact you to answer your questions.

CIE
Cleveland Institute of Electronics
1776 East 13th St., Cleveland, Ohio 44114

YES! I want to get started. Send me my CIE school catalog including details about the Associate Degree Program. I am most interested in:

- □ computer repair
- □ television/high fidelity service
- □ telecommunications
- □ robotics/automation
- □ medical electronics
- □ broadcast engineering
- □ other

Print Name __
Address ___ Apt. ______
City. __________ State. __________ Zip. __________
Age ________ Area Code/Phone No. ________________________
Check box for G.I. Bulletin on Educational Benefits _______

□ Veteran □ Active Duty

MAIL TODAY!
NEW! Turbo Scan™

Scanners

Communications Electronics, the world's largest distributor of radio scanners, introduces new lower prices to celebrate our 16th anniversary.

NEW! Regency® TS2-LA

Allow 30-120 days for delivery after receipt of order due to high demand for this product. List price $349.95. CE price $139.95

12-Band, 75 Channel • Crystalless • AC/DC Frequency range 29.5-117.5 MHz. The Regency TS2 scanner lets you monitor Military, Space Satellites, Government, Railroads, Justice Department, State Department, Fish & Game, Immigration, Marine, Police and Fire Departments, Aeronautical AM band, Paramedics, Amateur Radio, plus thousands of other radio frequencies most scanners can't pick up. The Regency TS2 features new 40 channel per second Turbo Scan™ so you won't miss any of the action. Model TS1-LA is a 5-channel version of the radio without the 800 MHz band and costs only $239.95.

Regency® Z60-LA

List price $329.95. CE price $184.95/SPECIAL 8-Band, 60 Channel • No-crystal Scanner Bandwidth: 45 MHz. The Regency Z60 covers all the public service bands plus aircraft and FM music for a total of eight bands. The Z60 also features an alarm clock and voice-operated control as well as AC/DC operation. Order today.

Regency® Z45-LA

List price $295.95. CE price $159.95/SPECIAL 7-Band, 45 Channel • No-crystal Scanner Bandwidth: 35 MHz. The Regency Z45 is similar to the Z60 model listed above however it does not have the commer- cial broadband bands. The Z45 now at a special price from Communications Electronics.

Regency® RH250B-LA

List price $699.95. CE price $329.95/SPECIAL 10 Channel • 25 Watt Transceiver Priority This new handheld RH250B is a ten-channel military, public service, and commercial mobile scanner designed to cover any frequency between 150 to 162 MHz. Since this radio is synthesized, no expensive crystals are needed to store up to ten frequencies without battery backup. All radios come with CTCSS tone and scanning capabilities. A monitor and night/day switch is included. This transceiver even has a priority function. The RH250 makes an ideal radio for any police or fire department volunteer, or for those whose low cost and high performance. A 60 Watt VHF 150-162 MHz version called the RH600B-LA is available for $439.95. A 15 watt version of this radio called the RH150-LA is also available and covers 450-482 MHz but the cost is $439.95.

Bearcat® 50XL-LA

List price $199.95. CE price $114.95/SPECIAL 10-Band, 10 Channel • Handheld Scanner Bandwidth: 30 MHz Integrated headphones. The Uniden Bearcat 50XL is an economical, hand-held scanner with 10 channels covering ten frequency bands. It features a keyboard lock-switch to prevent accidental entry and more. Also order part # BPS5 which is a rechargeable battery pack for $14.95 or the double-long life battery pack part # BPS5 for $29.95, a plug-in wall charger, part # AD110 for $14.95, a carrying case part # VC001 for $19.95, and a special cigarette lighter cable part # P5001 for $14.95.

NEW! Scanner Frequency Listings

Regency® VX1500-LA

List price $369.95. CE price $224.95

11-Band, 55 Channel • Handheld/Portable Scanner Bandwidth: 118 MHz. The Regency VX1500 includes a channel select liquid crystal display • EAROM Memory Direct Channel Access Feature • Scan delay 500 channels • Full function keypad. The VX1500 is fully keyboard portable for the ultimate in versatility. You can scan up to 55 channels at the same time including the AM aircraft band. The LCD display is even edit for night use includes belt clip, fix or fold earphone jack and 1.2 Volt rechargeable Ni-cad batteries (not included). Be sure to order batteries and battery charger from the catalog prior to this ad.

Bearcat® 100XL-LA

List price $349.95. CE price $194.95/SPECIAL 9-Band, 60 Channel • Priority Scan Channel Search/ Limit Frequency range 30.50-116.75 MHz. This radio is the world's first no-crystal handheld scanner now it has a LCD display, high performance, light weight and aircraft band coverage at the same low price. Size is 1¼ x ¾ x 2¼” and weighs 7oz. The RH600-LA is a low price CE unit at a sturdy carrying case, earphone, battery charger/AC adapter, six AA Ni-cad batteries and flexible antenna. Order your scanner now.

NEW! SPECIAL SAVINGS COUPON

Save even more off your order with this coupon. As long as your order is prepaid with a money order, you'll get a special price on items listed in this coupon. This coupon cannot be combined with any other offer. Use of this coupon must be at time of purchase to add to shipping & handling fees listed in this ad.

RH250B-R: Regency 25 W VHF Transceiver $299.95
RH600B-LA: Regency 60 W VHF Transceiver $399.95
R150B-LA: Regency 15 W UHF Transceiver $399.95
UC1000B-R: Regency 1 W VHF 2 channel transceiver $119.95
HX1500-LA: Regency 150 W VHF Transceiver $299.95
Z60-R: Regency 60 Channel scanner $164.95
BC100XL-LA: Bearcat 10 Channel scanner $179.95
BC300XL-LA: Bearcat 30 channel scanner $249.95
BCX200XL-LA: Bearcat 20 channel scanner $239.95
BC120XL-LA: Bearcat 12 channel scanner $199.95
RD55-R: Uniden Raiden Detector $97.95

NEW! SPECIAL SAVINGS COUPON

For credit card orders call 1-800-USA-SCAN.

COMMUNICATIONS ELECTRONICS INC.

Consumer Products Division
P.O. Box 1045 (Ann Arbor, Michigan 48106-1045 USA)
Call 1-800-USA-SCAN or outside U.S.A. 313-973-8888

www.americanradiohistory.com
THE ROBOTIC PERSONAL COMPUTER (RPC) was introduced in the January 1987 issue. To gain an overall understanding of how the board works, see the block diagram (Fig. 1), and the memory (Fig. 3) and I/O maps (Fig. 4) presented in that issue. Now we'll discuss the basics of how the separate sub-sections function, and then go on to discuss construction and debugging.

Data buses

To begin, note that three functionally equivalent but electrically isolated data buses exist on the RPC. The data-bus outputs of the 80188 feed IC14, which feeds the three buses: the expansion bus (see Fig. 1), the memory bus (through IC16, shown in Fig. 2), and the auxiliary bus (through IC17, shown in Fig. 3).

The microprocessor's address bus is buffered by IC15, IC22, and IC21; the outputs of those octal latches feed the expansion connector and all on-board IC's that need access to the address bus.

The 80188's major control signals are buffered by IC13, which also buffers the microprocessor's timer output, which in turn feeds the resulting signal through C18 to speaker SPKR1. The 8259 interrupt controller connects to the auxiliary data bus through IC17. Three-to-eight line decoder IC41 decodes the microprocessor states for the expansion bus.

Memory interface

The RPC provides decoding for sixteen RAM/ROM sockets in two 64K banks (00 00:0000 to 0000:FF00 and 1000:0000 to 1000:FFFF). However, due to PC-board space limitations, the upper bank (IC44-IC51), if used, must be mounted physically above the lower bank (IC1-IC8). Only the chip-enable (CE) pins (pin 20 of each IC) are routed to separate pads. The parts-placement diagram, which appears along with the PC pattern in PC service, indicates how those pins are connected.

Otherwise, the memory interface is fairly straightforward. Octal transceiver IC16 provides an isolated bus for the low-memory RAM (IC1-IC8, and IC44-IC51). The two three-to-eight line decoders (IC11 and IC12) provide the CE signals for the low-memory IC's. In a similar manner, half of two-to-four line decoder IC39 provides the CE for the BIOS and language ROM's (IC23, IC24, IC30, IC31).

Several jumpers (JU1, JU2, JU10-JU13) allow you to provide a different decoding scheme, or to accommodate RAM IC's of other sizes. Jumpers JU3-JU9, when connected as shown, allow you to provide battery backup for selected (or all) low-memory RAM IC's. Note that the jumpers enable and disable battery backup in pairs (IC1 and IC4, IC2 and IC45, etc.). If battery backup is not desired (for example, if EPROM's are used in low-memory sockets), the appropriate jumper(s) should be grounded.

Clock and disk controller

As shown in Fig. 3, gates IC28-a-IC28-c, IC27-a, and IC26-d decode the 80188's peripheral select, read, and write lines, to enable the WD1770 disk controller (IC34) when appropriate. Data-bus buffering is provided by IC17 (which also feeds most of the RPC's peripheral circuits); IC37 provides outputs for selecting one of four drives. One bit (Q4, pin 12) of IC37 drives an LED that indicates disk drive activity; another bit (Q3, pin 9) provides the STROBE signal for the parallel printer interface (shown in Fig. 4).

Here are the hardware details of the 80188-based computer board. We also discuss the principles of bringing up a microprocessor system for the first time.

STEVEN E. SARKS
FIG. 1—THREE OCTAL LATCHES. IC15, IC21 and IC22 buffer the microprocessor's address line.
The output of those latches feed the expansion bus and any on-board IC's that need access to the address line.
FIG. 2—DECODING FOR 16 RAM/ROM SOCKETS, in two 64K banks, is provided by the Robotic Personal Computer.
The clock IC is a National MM58274; it can be programmed to provide one interrupt or continuous interrupts at one of seven selected intervals, ranging from 0.1 second to 60 seconds. Jumper JU14 provides hardware defeat of the interrupt output.

Serial and parallel interfaces
A dual UART, the 28-pin version of Signetics' 2681, is used for serial communications; the IC has a built-in software-programmable baud-rate generator. As shown in Fig. 4, Channel A of the DUART, accessed through P1, is dedicated for use by a standard ASCII terminal. Channel B, accessed through P2 (for RS-232 signal levels) or P4 (for TTL levels), is an auxiliary port for use with a serial printer, modem, etc. Level translator IC18 converts the +5-volt outputs of the DUART to RS-232 levels. Jumper JU16 allows you to defeat the "busy" input of DUART channel B; JU17 allows you to select TTL or RS-232 input to Channel B.

The data lines of the parallel printer port (P6) are driven by IC33, an eight-bit latch. As mentioned above, the STROBE signal for latching data in the printer is provided by IC37 (shown in Fig. 3). The printer's BUSY and ERROR outputs are buffered by IC32, as are the separate positions of DIP switch S1. Table 1 shows the meanings of the various settings of S1.

Power supply
The RPC requires only +5 volts at
FIG. 4—A DUAL UART is used for serial communications. The IC used, a 28-pin Signetics 2681, has a built-in programmable baud-rate generator.

All resistors are 1/4-watt, 5% unless otherwise noted.
R1, R8, R10, R15, R18, R21—10,000 ohms
R2, R3, R9, R11, R13, R14, R17—1000 ohms
R4, R6, R7—100,000 ohms
R5, R20—unused
R12—1 megohm
R16—10,000 ohms, trimmer potentiometer
R19—15 megohms
RN1—1K x 7 SIP resistor pack
RN2—1K x 5 SIP resistor pack

Capacitors
C1, C34—unused
C2, C9, C12, C19-C32, C35-C38, C40, C42-C50, C52, C53—0.1 µF, bypass
C10, C15, C33—27 pF, disk
C11—6.36 pF variable trimmer capacitor
C13, C18—10 µF, 16 volts, electrolytic
C14—20 pF, disk
C17, C39—100 pF, disk
C41—4.7 µF, 16 volts, electrolytic
C51—1 µF, 35 volts, tantalum

Semiconductors
IC1—IC6, IC44—IC51—6264 RAM or 2764 EPROM

PARTS LIST
IC9—MM58274, clock
IC10—LM393, op-amp
IC11, IC12, IC41—74LS138, 3-to-8 line decoder
IC13, IC32—74LS41, octal buffer
IC14, IC16, IC17—74LS645, octal transceiver
IC15, IC21, IC22—74LS373, octal latch
IC16—MC145406, RS-232 line driver/receiver
IC17, IC38—74LS367, hex buffer
IC20—80188, microprocessor
IC21, IC24, IC30—IC31—BIOS and language EPROMs (see text)
IC22—SCN2681AC1N28—Dual UART (Signetics)
IC26—74LS98, quad two-input AND gate
IC27—74LS32, quad two-input OR gate
IC28—74LS11, triple three-input AND gate
IC29—TL497, switching regulator
IC33, IC37—74LS377, octal latch
IC34—WD1770, floppy disk controller
IC35—LM336-2.5, precision voltage reference (2.5 volt)
IC36—74LS540, octal buffer
IC39—74LS139, dual 2-to-4 line decoder
IC40—8259A, interrupt controller
IC42—SN75176B, RS-422 controller (optional)
IC43—7555, CMOS 555 timer
D1—D3—1N4148 switching diode
D4—1N759 6.8-ohm Zener diode
LED1—standard
Q1, Q2, Q4—2N3906, NPN transistor
Q3—2N3904, PNP transistor
Other components
L1, L2—56 µH coil
P1, P3—3-pin 0.025" post connector
P2—7-pin 0.025" post connector
P4—5-pin 0.025" post connector
P5—60-pin dual-row 0.025" post connector
P6, P7—34-pin dual-row 0.025" post connector
P8—4-pin 0.025" post connector
S1—four position DIP switch
S2— normally-open pushbutton switch
XTAL1—32.768 kHz crystal
XTAL2—16.000 MHz crystal
XTAL3—3.6864 MHz crystal

Note: The RPC is available from Vesta Technology, 7100 W. 44th Ave., Suite 101, Wheatridge, CO 80033; 303-422-8088

www.americanradiohistory.com
IC29 is a switching regulator that provides the EPROM programming voltage (Vpp). Both 12- and 21-volt EPROM's can be accommodated by adjusting R16.

Op-amp IC10-a functions as an oscillator that generates the -6-volt supply for the RS-232 output. IC10-b provides a low-power detection circuit that applies power from battery B1 to the RAM IC's shown in Fig. 2.

The computer's reset function is handled by S2; in addition, IC43, a CMOS 555 timer, can provide reset pulses at fairly long intervals—30 seconds with the component values shown. Jumper JU15 must be installed for those pulses to have effect. As we'll see, resetting the processor periodically can be useful in debugging the hardware.

Construction

Due to the complexity of this project, we recommend that you use a PC board. A double-sided board with plated-through holes is available from the source mentioned in the Parts List; foil patterns for that board are presented in PC Service. If you etch your own board, allow some method of soldering each and every pad on both sides of the board. You should pass a thin jumper wire through all pads in which components are not mounted, and solder the jumper on both sides of the board.

Mount and solder all components as shown in the diagram in PC service. Use sockets for all IC's, but don't insert the IC's yet. We recommend that the PC board be wave soldered for several reasons:

- Solder will fill the plated-through holes, thereby increasing their reliability.
- The solder wave will cause the traces under the solder mask to reflow, thereby forming a better circuit.
- Wave-soldered joints are more reliable.

A local electronics assembly shop may be able to wave solder the board for you. After soldering, remove all solder flux and check all work carefully.

Testing and debugging

The next step is the most exciting—and the trickiest. Bringing up an untested microprocessor system is a difficult task, especially without the aid of sophisticated test equipment. However, the following has served us many times, using only a 50-MHz dual-channel oscilloscope.

The first task is to check power distribution. Use an ohmmeter to confirm that the +5-volt line is not shorted to ground. Next, apply power, and check all sockets for power at the correct pins.

The next step is to try to execute code. Install the microprocessor and all of the support circuits required to read from ROM (IC11-IC17, IC21, IC22, IC39). In continued on page 102
Bothered by commercial interruptions on FM? Kill 'em with this zapper.

MANY SMALL OFFICES USE FM EASY-LISTENING STATIONS TO SUPPLY BACKGROUND MUSIC. OFTEN, THE COMmercIALS BROADCAST BY THOSE STATIONS ARE UNOBSERVEDLY LOUD. IF YOU'D LIKE TO RESTORE PEACE AND QUIET TO YOUR OFFICE, JUST CONNECT OUR COMMERCIAL KILLER TO YOUR RECEIVER'S TAPE-MONITOR LOOP. THE CIRCUIT AUTOMATICALLY SENSES LARGE CHANGES IN VOLUME AND REDUCES OUTPUT ACCORDINGLY. IN ADDITION, IT'S EASY TO BUILD, AND INEXPENSIVE.

HOW IT WORKS

THE COMMERCIAL KILLER MONITORS THE INCOMING SIGNAL AND REDUCES OUTPUT ACCORDING TO HOW MUCH THE INPUT RESEMBLES A COMMERCIAL (WE'LL DISCUSS HOW IT MAKES ITS DECISION IN A MOMENT). IN REDUCING OUTPUT, THE COMMERCIAL KILLER TAKES ACCOUNT OF THE LAST FEW SECONDS OF SIGNAL IN DETERMINING HOW MUCH TO REDUCE OUTPUT. DOING SO REDUCES THE NUMBER OF ERRORS AND CREATES A SMOOTHER EFFECT AS IT FDES OUT OF COMMERCIALS AND FDES INTO MUSIC. IT IS LESS OBJECTIONABLE TO MISS THE FIRST FEW SECONDS OF MUSIC THAN TO HEAR THE FIRST FEW SECONDS OF A COMMERCIAL, SO THE COMMERCIAL KILLER HAS DIFFERENT ATTACK AND DECOY TIMES.

WHETHER A SIGNAL IS "COMMERCIAL-LIKE" IS DETERMINED BY THE RATE OF LARGE VOLUME TRANSITIONS. BECAUSE MUSIC (ESPECIALLY THAT ON "LIGHT" STATIONS) IS TYPICALLY COMPOSED OF A NUMBER OF INSTRUMENTS PLAYING MORE OR LESS CONTINUOUSLY, THE VOLUME (OR ENVELOPE) STAYS FAIRLY CONSTANT OVER A SHORT PERIOD OF TIME. IN A TYPICAL COMMERCIAL, HOWEVER, THE INSTANTANEOUS VOLUME CHANGES RAPIDLY OVER TIME AS THE ANNOUNCER PAUSES BETWEEN WORDS, AND AS VARIOUS ADDITIONAL SOUND SOURCES ARE MIXED IN AND OUT.

MUSIC WITH MUCH DYNAMIC RANGE (ROCK AND ROLL, FOR EXAMPLE) HAS A HIGH RATE OF LARGE VOLUME TRANSITIONS, SO THE COMMERCIAL KILLER PROBABLY WILL TRIGGER ERRONEOUSLY WITH THAT TYPE OF MUSIC.

FIGURE 1 SHOWS A BLOCK DIAGRAM OF THE COMMERCIAL KILLER. A SUMMING AMPLIFIER ADDS THE LEFT- AND RIGHT-CHANNEL INPUTS. THE SUMMING AMP HAS ADJUSTABLE GAIN SO THAT YOU CAN FIND THE OPTIMUM SIGNAL LEVEL FOR THE STATION YOU USE THE COMMERCIAL KILLER WITH.

THE VCA'S ARE WHAT ACTUALLY REDUCE THE OUTPUT SIGNALS DURING COMMERCIALS. AN LED CONNECTED TO THE VCA'S PROVIDES A VISUAL INDICATION OF THE AMOUNT OF VOLUME REDUCTION TAKING PLACE.

FIGURE 2 SHOWS THE SCHEMATIC OF THE CIRCUIT. DIODES D5-D8 FORM A BRIDGE RECTIFIER THAT FEEDS ZENER DIODE D9, WHICH PROVIDES A REGULATED SINGLE-ENDED 16-VOLT SUPPLY FOR THE CIRCUIT. BECAUSE A SINGLE-ENDED SUPPLY IS USED, A REFERENCE VOLTAGE (VREF) IS GENERATED VIA THE VOLTAGE DIVIDER COMPOSED OF R36 AND R37 AND TRANSISTOR Q3. THAT REFERENCE VOLTAGE IS USED TO BIASE THE OP-AMPS PRECISELY.

FIG. 2.—THE COMMERCIAL KILLER’S SCHEMATIC: Q3 provides a reference voltage for the op-amps; Q1 and Q2 control the gain of IC1-c and IC1-d.

FIG. 3.—THE SPIKES represent L-I R audio, and the smooth trace, the output of the envelope detector.

summing amp (IC2-a); that allows the summer to be referenced to ground (not V_{REF}). The envelope detector has a second-order network optimized for normal audio material.

Figure 3 shows typical waveforms at the output of the summing amplifier (TP1), and the corresponding waveform at the output of the envelope detector (TP2). The spiked traces represent the audio signal, and the smooth trace riding above them, the envelope. The summer’s channel is set for 1 volt/division, and the envelope detector for 0.5 volt/division. The timebase is 20 ms/division.

Referring back to the schematic (Fig. 2), IC2-b is used as a comparator. As mentioned earlier, the comparator has two thresholds; the signal must cross both before the output changes from positive to negative (or vice-versa). The equations describing the lower and upper threshold voltages (V_{LO} and V_{HI}, respectively) as functions of the supply voltage and bias resistors are as follows:

$$A = (R_{12} \times R_{13}) / (R_{12} + R_{13})$$

$$V_{LO} = (A \times V_{CC}) / (A + R_{11})$$

$$B = (R_{11} \times R_{12}) / (R_{11} + R_{12})$$

$$V_{HI} = (R_{13} \times V_{CC}) / (R_{13} + B)$$

In this case, V_{LO}~ 0.5 volts and V_{HI}~ 2.48 volts.

Figure 4 shows the envelope-detector’s output (TP2) at 0.5 volts/division and the comparator’s output (TP3) at 2 volts/division (both at 20 ms/division). The square waveform in the center of the photo is the comparator’s output; the other waveform is the envelope detector’s output. Notice that the comparator does not respond to
Figure 5 shows a typical output of the transition converter (TP4) along with the corresponding input from the hysteresis comparator, in the upper and lower traces, respectively. The transition-converter waveform is shown at 5 volts/division, with the bottom graticule at 0 volts; the timebase is 100 ms/division. Notice that the baseline is approximately eight volts (VCC/2); that is due to the bias at the non-inverting input of IC2-c.

The leaky integrator (IC2-d) produces a DC voltage that depends on the pulse rate from the transition converter. When no pulses are present, diode D4 is reverse-biased, and the output of IC2-d will be equal to the voltage present at its non-inverting input, VREF. When pulses arrive, diode D4 is forward-biased, so the voltage across capacitor C8 increases. The output of IC2-d then decreases by a factor of about 60 (R21/R20). When the pulse rate is high, the output voltage will be between six and nine volts, thereby providing minimum gain from the VCA’s. But when the pulse rate is low, capacitor C8 will discharge through resistor R20 to VREF, thereby restoring the gain op-amp to maximum.

The trick about the VCA circuits is that a matched pair of N-channel JFET’s act as voltage-controlled input resistors. When gate-to-source voltage (VGS) is near 0 volts, the JFET acts as a small resistor, and gain is maximum—about 5 DB with respect to the output of the buffer stages (IC1-a and IC1-b).

However, when VGS is less than -3 volts, the JFET acts as a large resistor, so the gain of the op-amp is minimized—it provides about 20 dB of attenuation. In order to provide good left/right matching, the two FET’s should have similar voltage and current characteristics, especially at drain-to-source voltages of 0.6 volts.

Figure 6 shows the author’s prototype, which was built on a piece of prototype board. The author used two LM324 quad op-amps, because they’re inexpensive and easy to obtain. However, slightly better frequency response and signal-to-noise ratio may be obtained by replacing the op-amps with low-noise JFET op-amps (TL074’s, for example). Whichever op-amps you use, make sure that the buffer amps (IC1-a–IC1-d) are not in the same physical package as the processing amps (IC2-a–IC2-d). Also, be sure to connect a good decoupling capacitor, near the IC, from the VCC pin to ground.

Construction hints

Figure 6 shows the author’s prototype, which was built on a piece of prototype board. The author used two LM324 quad op-amps, because they’re inexpensive and easy to obtain. However, slightly better frequency response and signal-to-noise ratio may be obtained by replacing the op-amps with low-noise JFET op-amps (TL074’s, for example). Whichever op-amps you use, make sure that the buffer amps (IC1-a–IC1-d) are not in the same physical package as the processing amps (IC2-a–IC2-d). Also, be sure to connect a good decoupling capacitor, near the IC, from the VCC pin to ground.

Alignment and troubleshooting

To align the commercial killer, adjust the detector-gain potentiometer (R41) to

continued on page 75
BUILD THIS

Concerned about acid rain? This inexpensive monitor will keep you informed.

WALTER D. SCOTT

ACID RAIN MONITOR

THE EFFECTS OF ACID RAIN HAVE BEEN widely debated, often with little hard evidence to back up either side's point of view. Actually, it's not difficult to provide hard evidence. A simple one-transistor circuit can be used to sense the acidity of local rainfall (and other liquids). Accuracy is as good as the source used to calibrate the meter. The project can be built for about $30 using all new parts; many of the parts are of the junkbox variety, so with just a little bit of luck the cost could be even less.

The sensor can be mounted in a remote location; it has a built-in solenoid-operated drain valve. The meter indicates acidity in terms of pH, which refers to the concentration of hydrogen ions in a solution. The meter's range is from 7 (neutral) to 2.5 (highly acidic).

How it works
The schematic diagram of the circuit is shown in Fig. 1. A simple bridge rectifier and 12-volt regulator powers the MOSFET sensing circuit. The unregulated output of the bridge rectifier operates the drain solenoid via switch S1. The sensor itself is built from two electrodes, one made of copper, the other of lead. In combination with the liquid trapped by the sensor, they form a miniature lead-acid cell whose output is amplified by MOSFET Q1. The maximum output produced by our prototype cell was about 50 µA.

MOSFET Q1 serves as the fourth leg of a Wheatstone bridge. When sensed acidity causes the sensor to generate a voltage, Q1 turns on slightly, so its drain-to-source resistance decreases. That resistance variation causes an imbalance in the bridge, and that imbalance is indicated by meter M1.

Construction
The circuit is simple, but the sensor must be built exactly as shown for calibration to be accurate. As shown in Fig. 2 and Fig. 3, the electrodes must have a diameter of ¼ inch, and they must be spaced ½ inch apart in a plastic funnel with a handle to ensure accurate calibration. The positive electrode is a ½" length of ¼" copper tubing. The negative electrode is a strip of lead that is formed to the same size and shape as the copper electrode. You should be able to get lead strip from a sporting-goods store; it's used to make fishing sinkers. Otherwise, try a junkyard.

Use flux-less solid-core solder to make connections to the electrodes, and waterproof all exposed joints and wiring. Seal the electrodes in the bottom of the funnel by melting the plastic with a soldering iron, or plug the funnel with epoxy putty. Use a good-quality waterproof cable to connect the electrodes and solenoid to the control box.

The solenoid assembly must be waterproof, otherwise, water may leak into the solenoid housing and cause a short. But first, remove the valve and coat the plunger with grease, preferably silicone. For temperature resistance. Also, coat all metal solenoid parts with acrylic spray or clear lacquer. Then epoxy the solenoid's valve to the funnel stem through a 1" washer with a drain hole. Mount the solenoid in a 35mm film canister or other waterproof container. It may be necessary to trim off some of the valve's exit tube in order to fit it inside the 35mm film canister.

The method of fitting the solenoid to the cap of the film canister and the mount-
Two 1/4-inch electrodes, made of copper and lead, are mounted inside the funnel, spaced 1/4-inch apart. A solenoid valve attached to the mouth of the funnel is used to drain it as necessary.

Preventing drain-clogging or electrode shorting by air-borne particles, the screen prevents false pH readings that might be caused by pine needles, oak leaves, or other acidic contaminants. You should also coat the filter with lacquer to prevent aluminum-oxide contamination. Plastic screening is also available and may be used.

All parts were mounted and wired point-to-point on a piece of perfboard; the perfboard was then mounted in a case, as shown in Fig. 5.

Calibration

Our prototype was calibrated against a professional pH meter using precisely-diluted sulphuric acid (which is, by the way, a major ingredient of industrial pollution.) After setting the zero and full-scale points, you can calibrate the meter using Table 1. Otherwise, you can, as we did, measure known solutions with your meter and a professional meter, and mark your meter's scale accordingly.

The first step is to null the meter. 0 µA represents neutrality, a pH of 7. With the sensor connected through the same cable that will be used for the final installation, set R1 for lowest resistance and fill the receptor funnel with distilled water. Adjust R4 until the meter reads exactly zero.

You'll need to connect a 1.5-volt battery in series with a 5,000-ohm linear potentiometer to calibrate the remaining continued on page 73.
logic elements is at the heart of all digital circuitry.
We discuss how each element works in detail.

Ray Marston

A small group of simple logic elements is at the heart of all digital circuitry. We discuss how each element works in detail.

drive TTL loads. In addition, its inputs can accept signals far greater than the supply voltage, so the gates can be used to translate signals between circuits operating at different voltages (a ten-volt CMOS circuit to a five-volt TTL circuit, for example).
The 4041 also has high output-drive capacity and can be used to drive TTL circuits. However, the 4041 cannot accept input signals greater than the supply voltage. The device is a quad inverting/non-inverting buffer, in which each input has both a true and an inverted output.
The 5402 is a hex inverting buffer capable of driving TTL loads. It has a controlable three-state output and an inhibit control (pin 12), which is normally held low, but which grounds all outputs when pin 12 is forced high.

or and NOR gates

Figure 3-a shows the standard symbol of a two-input OR gate, and Fig. 3-b shows its truth table. As indicated by its name, the output of the OR gate goes high if any of its inputs goes high.
The simplest way to make an OR gate is with several diodes and a single load resistor, as shown in Fig. 4. The diode-based OR gate is reasonably fast, very cost effective, and can readily be expanded to accept any number of inputs by adding a diode to the circuit for each new input.
Closely related to the OR gate is the NOR gate. Figure 5-a shows the standard symbol of a two-input NOR gate, and Fig. 5-b shows its truth table. Note that the output is high only when both inputs are low.

The inverter

Shown in Fig. 1 is the most basic element of digital electronics: the inverter. The symbol for an IC inverter is shown in Fig. 1-a; an inverter may also be built from discrete components, as shown in Fig. 1-b. However it's built, it functions according to the truth table shown in Fig. 1-c.

In any digital circuit, all input and output signals can be at only one of two levels, high or low. A logic high is usually represented by a "1," and a logic low by a "0." When the inverter's input is low (0), its output is high (1), and when its input is high (1), its output is low (0).

In the resistor-transistor circuit (Fig. 1-b), when the input is low, the transistor is cut off, so the output floats high. When the input is high, the transistor goes into saturation, so the output is pulled low.

In a sense, the inverter is the most versatile of all logic elements. As we'll see, it can be used to convert one type of logic gate to another (an OR gate, for example, to a NOR gate). A pair of inverters can be used to make a bistable latch, a monostable or astable multivibrator, etc. Also, the real-world inverter usually has a high input impedance and a low output impedance, so it can be used as an impedance buffer.

However, not all buffers are of the inverting type. Figure 2-a shows the standard circuit symbol of a non-inverting buffer, which can be made by cascading two inverters, as shown in Fig 2-b. The truth table in Fig. 2-c shows how the non-inverting buffer works: When the input is low, the output is low, and when the input is high, the output is high.

Of course, both inverters and buffers are available in IC form. For example, the 4049 and the 4069 are hex inverters, and the 4050 is a hex (non-inverting) buffer. The 4069 is especially useful, because it has high output-drive capacity, so it can

Logic elements come in many different forms, and they're built from both integrated circuits and discrete components. Many logic circuits may be designed in more than one way; a detailed understanding of the basic logic elements can help you optimize your design based on the materials at hand. We'll give specific examples of how that's done later; for now let's get our feet wet.

50
It's easy to convert an or gate to a nor gate; Fig. 6 shows several methods. As shown in Fig. 6-a, the diode-based or gate can be followed by a transistor inverter to produce a nor gate. Or, as shown in Fig. 6-b, a digital inverter can produce the same effect.

In fact, or and nor gates can function in a variety of other ways. As shown in Fig. 7-a, following an or gate with an inverter produces a nor gate. Similarly, following an or gate with an inverter produces an or gate (Fig. 7-b). The nor gate can also function as a simple inverter. Figure 7-c and Fig. 7-d show several ways of configuring a nor gate as an inverter. Likewise, the or gate can function as a simple buffer, as shown in Fig. 7-e and Fig. 7-f.

Sometimes a circuit requires more or fewer inputs than the available gates provide. For example, as shown in Fig. 8-a, you could ground an unused input of a multi-input or gate. To expand the number of inputs, you can cascade gates, as shown in Fig. 8-b. You can also add resistor-diode logic to one input, as shown in Fig. 8-c.

You might think it's wasteful to use a multiple-input gate as a simple buffer or inverter. In general, that's true, but there are occasions when doing something of that nature is desirable. For example, assume that a design requires an inverter for some function but that no inverters are available. If there is a spare nor gate available in another IC it could be used instead.

A practical example
Suppose you want to build a low-power tone generator that can be activated by any one of four inputs. A non-optimal version of such a circuit is shown in Fig. 9-a. For the oscillator composed of IC3-a and IC2-b to work, the pin-2 input of IC3-a must be low. Therefore, the output of the input or gate must be inverted, so IC2-a is used.

To simplify the circuit, it quickly becomes apparent that IC1-a and IC2-a simply form a nor gate, so they can be replaced by a single four-input nor gate,
in Fig. 11, the simplest way to make an AND gate is with several diodes and a resistor. Like the OR gate, additional inputs may be obtained by adding an extra diode for each new input.

Figure 12-a shows the standard symbol of a two-input NAND gate; its truth table is shown in Fig. 12-b. As you can see, the output of the NAND gate is low only when both inputs are high.

**You can convert a NAND gate to an AND gate or an AND gate to a NAND gate using an inverter, as shown in Fig. 13-a and Fig. 13-b, respectively. To use a NAND gate as an inverter, connect the unused input(s) to the positive voltage source (as shown in Fig. 13-c), or to each other (as shown in Fig. 13-d). Likewise, to use an AND gate as a buffer, connect the unused input(s) to the positive voltage source (as shown in Fig. 13-e) or to each other (as shown in Fig. 13-f).

To reduce the number of inputs to a NAND gate, connect the unused input(s) to the positive voltage source, as shown in Fig. 14-a; to expand the number of inputs, use a second gate, as shown in Fig. 14-b.

XOR and XNOR gates

Figure 15-a shows the standard symbol of a two-input XOR (for Exclusive OR) gate, and Fig. 15-b shows its truth table. As you can see, the XOR gate has the unusual property that its output goes high only when its inputs are different. That property gives the XOR gate unusual flexibility: by connecting its unused input to ground or to the positive supply voltage, it can function as an inverter (as shown in Fig. 16-a) or as a buffer (as shown in Fig. 16-b), respectively.

Figure 17-a shows the symbol and Fig. 17-b shows the truth table of a two-input XNOR (for Exclusive NOR) gate. The XNOR gate is equivalent to an XOR gate with an inverted output. The XNOR gate gives a high output only when both inputs are identical; it's very useful in logic-comparator applications.
“conditioned” (given fast rise and fall times) before being applied to the actual logic circuitry.

The most useful conditioning element is the Schmitt trigger. Schmitt triggers come in many forms; Fig. 18-a and Fig. 18-b illustrate one section of a hex Schmitt inverter (the 40106) and one section of a quad NAND gate (the 4093), respectively. Schmitt-type gates logically function the same as regular CMOS and TTL gates; only the electrical switching and current-drive characteristics vary.

Programmable logic
Most logic IC’s are dedicated devices.

Without external components, a NAND gate, for example, can’t function as anything else. There are, however, special logic elements that can be programmed to function as any one of a variety of gates, in various configurations.

One such gate is the 4048, a multifunc-

<table>
<thead>
<tr>
<th>TABLE 1—4048 FUNCTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Function</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>NOR</td>
</tr>
<tr>
<td>OR</td>
</tr>
<tr>
<td>OR/AND</td>
</tr>
<tr>
<td>AND</td>
</tr>
<tr>
<td>NAND</td>
</tr>
<tr>
<td>AND/NOR</td>
</tr>
<tr>
<td>AND/OR</td>
</tr>
</tbody>
</table>

For example, to use the 4048 as an eight-input OR and gate (as shown in Fig. 20), K_A and K_C would be connected to ground, and K_B would be connected to the positive supply voltage.

The expand input of the 4048B allows IC’s to be cascaded, so that, for example,
two IC's could function as a single 16-input gate by feeding the output of one IC into the EXAND input of the other. Note that, when using expanded logic, the overall logic functions of the two IC's may differ; Table 2 summarizes the configurations and their output expressions.

Majority logic

Less well known than the logic families we've already discussed is _majority logic_, which, as the name implies, gives an output when the majority of an odd number of inputs are high, irrespective of which inputs are active.

The best known CMOS majority-logic IC is the 4530, a dual 5-bit unit shown in Fig. 21. The output of each element feeds one input of an XNOR gate; the other XNOR input is externally available, enabling it to be wired as either an inverting or a non-inverting stage.

As shown in Fig. 22-a, the effective number of inputs of a 4530 can be reduced by wiring half of the unwanted inputs high and the other half low. On the other hand, the effective number of inputs can be increased by cascading elements, as shown in Fig. 22-b.

Majority-logic IC's can be difficult to find, but it's easy to simulate majority logic with an op-amp, as shown in Fig. 23. In that circuit the op-amp functions as a voltage comparator; voltage-divider R6–R7 applies one-half the supply voltage to the inverting input (pin 2) of the op-amp, and the five input resistors (R1–R5) each of which must be connected either to ground or to the positive supply voltage) form a voltage divider that supplies a fraction of the supply voltage to the op-amp's non-inverting input (pin 3).

To understand how it works, suppose that two input resistors are connected to ground and that three resistors are connected to the positive supply voltage. The three logic-1 resistors have a combined (parallel) impedance of 333K, and the two logic-0 resistors have a combined impedance of 500K. Therefore, the resulting voltage on pin 3 is greater than one-half the supply voltage, so the output goes high.

If, on the other hand, only two of the five inputs go high, the resulting pin-3 voltage at the non-inverting input is below one-half the supply voltage, so the output of the op-amp goes low.

If 5% resistors are used, that circuit can have as many as eleven inputs, simply by adding additional one-megohm input resistors. The output of the circuit goes all the way to ground, but it only rises to within several volts of the value of the supply voltage when the output is high. In many applications that's of little importance; it does, however, mean that elements cannot be cascaded to increase the total effective number of inputs.

That defect can be overcome by using the "compound" circuit shown in Fig. 24. In that circuit, the output is inverted and level-shifted by Q1, and the op-amp inputs are transposed. The output of that circuit swings to within 50 mV of either supply rail, enabling circuits to be cascaded without limit.
SPREAD SPECTRUM COMMUNICATIONS

Learn about the methods used by the government and others to achieve reliable communications under the most difficult conditions.

JAMES E. McDERMOTT
where \(BW_{RF} \) is the spread-spectrum bandwidth and \(BW_I \) is the information bandwidth.

Noise

Noise can be considered as all RF energy other than the signal of interest, it is the most significant limiting factor for all communications systems. For a signal to be received, its level must be greater than the noise level. A useful quantity in determining whether a signal will be received, and how well, is the Signal-to-Noise Ratio (SNR). The SNR can be expressed in dB's using the following formula:

\[
SNR = 10 \log (signal-power/noise-power)
\]

In designing a communications system, the goal is to maximize the effective SNR. When increasing the signal strength is either impractical or illegal, the only recourse is to minimize the effects of the noise degrading the signal. Depending on the nature of the signal and the noise, there are various techniques that can be used to achieve that goal.

When faced with white or flat noise, narrowband signals are transmitted so that effective filtering can be done at the receiver. A bonus is that the use of narrow bandwidths allows for greater use of the crowded communications bands.

Willful interference, especially from narrowband, high-power jammers, is quite another story, however. Spread spectrum is a powerful weapon in combating that type of interference.

Some history

As early as the 1920s, engineers proposed using broadband signals, primarily to counteract the effects of fading on communications links. The idea was to spread the signal energy over a wide range of frequencies, then to reconstruct the signal by gathering all the frequency components at the receiver. Then when one part of the band suffered from fading, the combined signal in the receiver would only be diminished slightly. Unfortunately, technology was far behind insight, so those proposed systems remained largely theoretical.

World War II brought an urgent need for secure communications as engineers confronted man-made problems in the form of high-power jammers. Engineers tackled the problem using that era's more advanced technology. Before the war's end both sides were using sophisticated communications systems, many of which used bandspreading techniques.

By occupying large bandwidths, spread-spectrum signals increase their ability to withstand interference by improving what is referred to as jamming margin. For example, if a narrowband signal is marginally readable under a certain level of jamming or interference, and 20 dB of \(G_p \) is added by using a spread-spectrum technique, then the signal can withstand 200 dB, or 100 times, more jamming power.

A useful byproduct of the bandwidth spreading process is a proportional reduction in signal density, making the signal virtually undetectable by an uninformed receiver. That has a particular appeal in tactical and strategic systems; today the military is one of the largest users of spread-spectrum systems.

A communications shell game

A frequency hopper is a communications signal in which the carrier frequency is continuously changed to one of a great many frequency slots. The resulting signal has a large hopped bandwidth, often in the hundreds of MHz. Figure 2-a shows the resulting spectrum for a 10-slot system, although typical systems in use today may have 1000 or more such "hop slots." A noise source, usually a digital PseudoNoise (PN) sequence generator, is used to determine the current hop slot. A typical hop sequence for a ten-slot system is shown in Fig. 2-b. A typical frequency-hopper system is shown in block diagram form in Fig. 3.

Frequency hoppers can be subdivided into fast hoppers, which can change frequency in less than a microsecond, and slow hoppers, which may use each slot frequency for several seconds at a time. Fast hoppers are generally used in tactical military environments where jammers can quickly home in and swamp a slow-hopping signal. Such a system is usually based around expensive state-of-the-art frequency synthesizers. Fast hoppers are limited by the speed at which the synthesizer can be effectively switched, al-
Extremely wide bandwidths would result.

By carefully selecting the hopping sequences or codes to prevent overlap, several slow-hopped systems can co-exist in the same band and in so doing increase bandwidth efficiency. A jammer attempting to interfere with a specific signal is now even less effective since it may be impossible to isolate that signal from the rest of those using the band. (Of course, a jammer could always just knock the entire band out of service.)

Signal shredders

Imagine shredding an important message into a million pieces and then scattering them into a tornado. A thousand miles away someone gathers up all or almost all of the snippets and reconstructs the original message. If you substitute communications signals for the paper you have the essence of the most sophisticated and exciting of the spread-spectrum techniques: direct-sequence spreading.

In the direct-sequence technique, bandwidth spreading is accomplished by exploiting the inherent properties of digital modulation. That is, whenever a pulse stream is mixed with a carrier signal, a slight broadening of the RF carrier occurs. However, if instead of a single bit, a long code sequence, called a chip sequence, is sent in the same time interval, large instantaneous bandwidths can be produced, as shown in Fig. 4. The wide bandwidths are a direct consequence of the extremely narrow pulse widths of the bits in the chip sequence.

In the receiver, the RF signal must be correlated; that is, the signal must undergo a de-spreading or bandwidth-collapsing procedure. First, the signal is converted back to baseband by mixing it with an appropriate carrier signal. The resulting baseband signal contains noise as well as the chip sequence. That noise, which includes willful interference, must be removed. That task can be handled in many ways, but one design makes use of a matched filter, a circuit that compares the received chip sequence with a predetermined sequence and looks for a match.

One popular matched-filter design is built around an analog shift register, as shown in Fig. 5. As each bit in the chip sequence is received, it is fed into the input of the register. As the bits are cycled through the register, the contents of each cell are sampled and summed. The output of the filter is a current that is proportional to the degree of the match. The filter shown in Fig. 5 is set up to look for a sequence of 1101101. When the bits in each cell match that sequence exactly, the output

![FIG. 3—BLOCK DIAGRAM of a typical frequency-hopper system. The pseudo-random noise-sequence generators at both the transmitter and receiver are set up to output the same sequence.](image)

![FIG. 4—WHEN AN RF SIGNAL IS MODULATED by a digital pulse, the carrier widens. If that pulse were replaced with a chip sequence, extremely wide bandwidths would result.](image)

![FIG. 5—MATCHED FILTERS are used to search for particular chip sequences. The one shown here, which is built around an analog shift register, searches for the sequence 1101101.](image)

![FIG. 6—MULTIPLE MATCHED FILTERS are used in direct-sequence receivers to increase the likelihood of successful correlation. Decision logic is used to select the filter output that is most likely to be correct.](image)
Chirp systems

Similar to signals used in radar applications, chirped signals are formed by sweeping or sliding the frequency of the signal over a wide range during a pulse interval. The block diagram of a circuit for a chirp transmitter is shown in Fig. 7.

When used in a communication application, the data input determines the direction of the chirp. The frequency is shifted up the band for a logic 1 and down the band for a logic 0.

Receiving chirp signals involves using matched filters in much the same way as they are used in direct-sequence systems. The structure of the filters themselves do differ, however, because in chirp systems frequency rather than amplitude patterns are of interest. Multiple filters are usually used, with the filter producing the most unambiguous output identifying the data sent.

Chirp systems usually use a linear frequency sweep instead of a noise source and so in strict terms don't qualify as a spread spectrum signal. However, as you can see in Fig. 8, they do have larger than required bandwidths and so produce processing gain. See Fig. 8.

Although many experimental wartime systems used some form of chirping, it is not often used today for communications—at least not for human communications. However, it is believed that dolphins use complex chirp signals for communications, bats use similar signals for ranging and navigation.

Time hopping

Time-hopping schemes are used in conjunction with frequency-hopping or direct-sequence spreading to provide multiple-channel access or data security in the form of “randomly” scheduled transmission times. As shown in Fig. 9, time hopping requires that data be stored or compressed and then transmitted in high-speed bursts during the allotted time slot. See Fig. 10.

The processing gain of time hopping is achieved by virtue of the shorter time taken to transmit the information, since the narrower the pulse in the time domain the larger the bandwidth in the frequency domain. Since scheduling can be derived from a random or pseudo-random source, time-hopping systems are bonafide members of the spread-spectrum family.

Applications

Frequency hopping can be added to either digital or analog communication systems since it is only the carrier that is affected. The U.S. Air Force has retrofitted many of their existing analog UHF radio links with frequency-hopping capability as an interim step while more sophisticated digital systems are being developed. That interim system, which the Air Force has branded Have Quick, uses the time of day to select the currently active frequency slot from among a set of 7000 possible slots.

The Global Positioning System (GPS) is a satellite system that makes use of a basic direct-sequence ranging technique. As of this writing, the system is only partially in place. When fully implemented, GPS could allow subscribers anywhere in the world to determine their position to within a few meters, therefore revolutionizing navigation.

The GPS will consist of a fleet of 18 satellites in low-altitude circular orbits that allow contiguous coverage of the entire globe with direct-sequence microwave signals. Virtually every spot on the globe will be able to receive signals from at least 4 satellites. When decoded, each signal can be used to determine the linear distance from a particular satellite to the receiver. That distance is proportional to the propagation delay; that is the time difference between when the signal is transmitted and when it is received. See Fig. 11. Three of the signals are used to triangulate the receiver's position. The signal from the fourth satellite is used to correct clock drift and other error effects.

The Joint Tactical Information Distribution System (JTIDS) is designed primarily for military use. Using frequency-hopped, direct-sequence modulation the system provides communication, navigation, and control facilities to air-, land-, and sea-based subscribers. The system uses a 5-MHz wide MSK (Minimum Shift Keying, which is closely related to frequency shift keying) direct-sequence signal. The signal is then frequency hopped over a 52-frequency set, with 3 MHz of separation between hopped frequencies. After a user synchronizes with the system, which is done using special preamble signals, data can be exchanged with any other authorized user within a range of 500 nautical miles.
The Early Days of RADIO

Part 3

Two great technological "revolutions" have changed the nature of civilization. One was the Industrial Revolution, which is commonly agreed to have begun in 1750. It was a revolution in the invention, design, and use of machinery for mass manufacturing.

Perhaps less renowned (at least in some circles), though no less important, was the "electronics revolution." It can be considered to have begun with the article "A Dynamical Theory of the Electromagnetic Field," written by James Clerk Maxwell, a Scottish physicist. That article was published in Philosophical Transactions in 1865.

The most significant result of the electronics revolution was radio. But, as is so often the case, radio was not the brainchild of a solitary inventor. Instead, numerous developments by independent researchers and teams led to the evolution of radio.

Remember also that many laws of radio that we take for granted now were only developed during the second half of the 19th century. For instance, by the Civil War, telegraphy was well established and telegraph wires crisscrossed the countryside. Even so, experimenters were hard at work looking for some way of communicating without wires. However, their work was severely hindered by some of the misconceptions of the time.

For one, most people were convinced that there had to be some connecting mechanism between the transmitter and receiver. Around the middle of the 19th century, Samuel F.B. Morse, the inventor of wired telegraphy, tried a wireless system that substituted water for wire over part of a telegraph loop. The system is illustrated in Fig. 1. Note that there is no wired connection between the receiver on one bank and the key on the other. Instead, the link is provided by the water in the stream.

Morse and others also experimented with inductive schemes. In 1885, Sir William Preece, Engineer-In-Chief of the British Post Office, tried using the circuit shown in Fig. 2. He was able to establish communications over a distance of about 1000 yards, using loops of wire that each were hundreds of feet long.

The antenna

Electricity and the possibility of wireless communications attracted enthusiasts and experimenters of all kinds. One of those was Dr. Mahlon Loomis. Dr. Loomis was a prominent Philadelphia dentist who, at the age of 28, had patented a process for making false teeth.

Dr. Loomis is also credited with making the first wireless transmission, in West Virginia in 1865. As shown in Fig. 3, the Loomis "transmitter" consisted of a telegraph key that was connected in series
SO THEY SAID

- While working for the Marconi Wireless Telegraph Co., Ltd. in 1916, David Sar-
noff, who subsequently became President and Chairman of the Board of RCA, pro-
posed to his superiors that the company become involved in the manufacture and
sale of what Sarnoff called "music boxes." They would be used for the reception of
not only music but educational programs that would be broadcast by radio.

- Sarnoff was advised that there was no merit to his suggestion.

- In 1882, Professor Amos E. Dolbear applied for a patent for his invention of a
wireless transmitter that used an inductive technique. The patent application was re-
jected by the patent office on the grounds that it was "contrary to science."

- On November 12, 1913, Dr. Lee de Forest went on trial in New York on the
charge of using the mails to defraud. The indictment stated that his patents were for
a "strange device, like an incandescent lamp, which he (de Forest) called an Au-
dion, and which device had proven to be worthless."

- According to the Federal District At-
torney, "de Forest has said in many news-
papers and over his signature that it would be
possible to transmit the human voice
across the Atlantic before many years.
Based on these absurd and deliberately
malicious statements, the misguided
public, your honor, has been persuaded to
purchase stock in his company, paying as
high as $10 and $20 a share for the stock.

De Forest was acquitted by the jury, but
the judge advised him to "get a common
garden variety of job and stick to it."

- Charles Babbage, the designer of a
calculating machine that can be regarded
as the ancestor of today's computers, was
asked in 1843 by British Prime Minister
Robert Peel to use the machine to "calcul-
ate the time at which it will be of use." R-E

widely recognized as the inventor of the
Antenna, even though Edison also held
a prior patent in the field. Edison's method
shown in Fig. 4, used large metal plates at
the transmitter and receiver. Those plates
formed what was essentially a huge ca-
pacitor. Electrostatic charges at the trans-
mitter plate induced a charge at the
receiver plate. The system was suitable for
short-distance communications only, and
Edison subsequently sold the antenna pat-
righqts to Marconi.

In 1895, while experimenting with the
oscillator circuit developed by Hertz,
Marconi decided to ground one side of the
sender and extend a lead at the other
side of the oscillator into the air. That led
somewhat to the work of an antenna as
soon applied to that arrangement. It was
quickly noted that the use of an antenna
allowed communications over far greater
distances.

The detector

Wireless telegraphy introduced several
problems that were of no concern to the
developers of wired telegraphy. For in-
stance, a wired system operates on DC.
Signals were sent by interrupting the cur-
cent flow. At the receiving end, those in-
terruptions were made audible by an
electromechanical sounder.

With a wireless system, however, some
means of extracting or detecting a signal
required. That task is handled by a rec-
tifier, which is a device that allows cur-
cent to flow in only one direction. Because
of the function they serve, rectifiers are also
called detectors.

We discuss early crystal detectors in the
first installment of this occasional
series. (See the July 1986 issue of Radio-Elec-
nronics.) However, early detectors used
other schemes. One of the first detectors
consisted of two metal electrodes that
were immersed in an electrolyte or acid
solution. Initially developed in the late
1850s, years later detectors of that type
which hitherto were called electrostatic
interrupters became extremely popular
with amateur experimenters and wireless-

telegraphy hobbyists. See Fig. 5 for an
example of an electrostatic detector.

Another early detector was the coherer.
The basic principal behind that device
was discovered first in 1850 by Gustave.
He noted that particles of dust in electrically
charged air tended to adhere to each other.
Later, in 1883, Sir Oliver Lodge noted that
metallic dust, which is normally a poor
conductor, becomes a good conductor
when exposed to high frequencies.

Those discoveries led Edouard Branly
to develop the Branly coherer, which was
also called the Branly wave detector. See
Fig. 6. The coherer consists of a small
glass tube filled with metal filings. In
1894 Lodge used the coherer to detect
signals from a transmitter located 150
yards away.

The coherer was not without its prob-
ings. Perhaps the most significant prob-
lem was that the filings would adhere to
each other each time a signal was passed
through them: that is, after each dot or

FIG. 3—DR. LOOMIS' transmitting and receiving
system. The copper wires were held aloft by
insects.

with a long length of fine copper wire.
The wire was held aloft by a kite in which
a small section of wire mesh was embed-
ed. The receiver, which was located
some 15 miles away was similar except
that the key was replaced by a gal-
vanometer which was used to indicate sig-

duction.

Dr. Loomis was the first to use the word
"aerial." It was the term he used to de-
scribe the copper wire. He received a pa-
ent for his scheme in 1872. It was the first
patent ever issued for wireless telegraphy.

Dr. Loomis' wireless system was demon-
strated publicly in Philadelphia in late
1879.

Despite Dr. Loomis' work, Marconi is
Marconi's coherer consisted of a moving band of iron wire (A) mounted on a pair of wheels (E). The band passed through a coil (N) that was connected to the antenna. As a section of the band passed through a pair of permanent magnets (M), it was magnetized. When that section later passed through coil H, a magnetic field that varied with the signal applied to the coil via the antenna was created. That field was electromagnetically coupled to coil C, which was connected to a telephone receiver. In many ways, Marconi's detector resembled the wire recorder, which would not be developed until over four decades later.

Edison and radio

Edison's work in developing the electric light also played an important part in the development of radio. That's because it led to the invention of the vacuum-tube diode, and later to the triode.

Edison was not the first person to turn his attention to developing an electric light; however, his work was the most successful. One problem with earlier efforts, like that of W. Edward Stanie, was that the filament was exposed to the atmosphere, allowing rapid oxidation. Once Edison hit upon the idea of placing the filament in an evacuated glass bulb, he was on the way to success. But there were still obstacles to overcome.

Edison's difficulties with his electric light are well documented. One of the most significant was that one side of the filament behaved in a different manner than the other side. As a result, the glass envelope of the light would blacken. Edison tried various schemes to eliminate the problem. In 1883, as an experiment, Edison inserted a metal plate between the filament wires. By connecting the plate to the positive terminal of a battery he was able to measure the current between the filament and that plate. Although the information did not lead to an answer to the blackening problem, he deemed the discovery significant enough to obtain a patent for it.

Fleming felt that Edison's discovery might be the solution to the ongoing problem of signal detection. In 1904, Fleming modified Edison's design by replacing the metal plate with a metal cylinder that completely surrounded the filament. Also, the filament was designed to carry a larger current than was required by Edison's bulb. That was made possible by the development of the thoriated tungsten filament by Irving Langmuir in 1900. (Adding thorium to a filament improves a filament's emission.)

The triode

De Forest's invention of the triode vacuum tube was a major step forward for radio. It was the first device that had the ability to amplify. De Forest tried many approaches before finally meeting with success. In one of the earliest designs, the tube was actually a duo-diode—two diodes within a single envelope. In another approach, de Forest tried to influence current flow by wrapping wires around the outside of the envelope.

Eventually the design shown in Fig. 8 took shape. That tube was actually a diode/triode, since the device was used to both rectify and amplify. Rectification was done by using the grid and the filament as a diode.
CIRCUITS

Testing Semiconductors

Our back-to-school series continues this month with a discussion of diodes and their characteristics.

TJ BYERS

We had diodes long before we had transistors. They come in a variety of shapes, sizes, and, most important, voltage and current ratings. Some are used for very special purposes; others are used in a wide variety of circuits. Whether general- or special-purpose, all diodes have three important characteristics: breakdown voltage, reverse leakage current, and forward voltage drop.

Breakdown Voltage

Undoubtedly, the most important characteristic is the junction's breakdown voltage. It is at that voltage that the diode ceases to be a one-way electronic valve; at and above the breakdown voltage, current can flow freely in both directions.

Breakdown occurs when a reverse-biased diode junction goes into avalanche, a condition that is normally fatal to the device if it is allowed to continue unchecked. Data sheets list diode breakdown voltage as V_{BR} or P_{VBR} (which stand for Reverse Voltage and Peak Reverse Voltage, respectively), depending on the type of diode and its intended function.

For all intents and purposes, though, the terms are interchangeable.

Breakdown voltage can be determined in one of two ways: It can be mathematically interpolated from leakage currents and charts, or it can be measured directly.

In the first method, we take a number of diodes and subject each to increasing amounts of reverse voltage, taking note of the leakage currents (I_{L}) as we do. We continue increasing voltage until the junction goes into avalanche. By following that procedure with a number of similarly manufactured diodes, we can correlate leakage currents and breakdown voltages, and thereby derive a family of curves that shows how breakdown voltage varies with leakage current.

These results can be used to test other diodes with identical construction. By applying a voltage that is one-half to two-thirds the expected breakdown potential across the device under test and by measuring the resultant I_{L} current, we can predict the diode's breakdown voltage.

In fact, that's how many semiconductor
manufacturers test their diodes. By specifying a maximum allowable current at a given voltage, the manufacturer can guarantee that the actual breakdown voltage of a diode equals or exceeds the specified breakdown voltage. Any diode that fails the leakage test will more than likely also fail to sustain the maximum voltage: therefore it's rejected.

Figure 1 shows a setup for measuring \(I_R \) and predicting \(V_{R} \). The power supply is adjusted to a specific reverse voltage as indicated by the voltmeter, and the leakage current is noted on the milliammeter. Then the appropriate chart (supplied by the manufacturer) would be consulted to predict \(V_{R} \).

While we're on the subject of reverse leakage current, let's emphasize the importance of \(I_R \) in several different applications. Leakage, for example, plays an important part in signal-diode circuits, particularly when the diode is used for purposes of isolation or modulation. Many times diodes must be matched—and that can be expensive. Measuring the value of \(I_R \) of a handful of general-purpose samples, however, often will yield a matched pair for about one tenth the price of a commercially matched set.

Peak reverse voltage

It's true that \(V_R \) and \(P_{KV} \) are often interchangeable, but there actually is a distinction between them. Both define the voltage at which the diode junction fails. However, \(P_{KV} \) is usually used in connection with rectifier diodes that are subjected to AC voltages, rather than DC.

The distinction is made because of the different ways AC voltages are specified. A 110-volt rms AC signal can accomplish the same amount of work as 110-volts DC. In truth, though, the AC signal only has a value of 110 volts for a brief moment during each cycle. As shown in Fig. 2, for a sine wave to have an rms value of 110 volts, the peak voltage must reach 166—nearly one-third more than you might expect.

Consequently, if you place a diode with a breakdown voltage of 125 volts in a 110-volt AC circuit, it would fail because the peak voltage exceeds the diode's rating, even though the rms value doesn't. The same diode in a 110-volt DC circuit would survive. Hence, the industry adopted the term \(P_{KV} \) as a means of indicating that peak—not rms—voltage is the important breakdown characteristic.

In a true \(P_{KV} \) test, the diode junction is forced into avalanche and voltage is measured. Usually, however, \(P_{KV} \) is tested using a pulse generator, rather than a steady DC source. The peak pulse voltage exceeds the \(P_{KV} \) rating of the diode, thereby forcing the junction into avalanche. Voltage is then measured with an oscilloscope. The test procedure has the advantage that it subjects the diode to operating conditions like those normally found in actual service, and it reduces the possibility of destroying the diode junction by allowing the heat to dissipate between test pulses. The test circuit is shown in Fig. 3.

Forward voltage drop

The third characteristic that all diodes share is forward voltage drop (\(V_F \)). It is the amount of voltage you would measure across the diode during normal operation. The value of \(V_F \) is generally a fixed quantity and is largely determined by the quantum gap in the semiconductor junction.

More simply put, it is a function of the semiconductor material itself. Silicon diodes, for example, typically have a \(V_F \) of 0.7 volts. The \(V_F \) of a germanium diode, on the other hand, is 0.3 volts.

If semiconductor type was the only factor affecting \(V_F \), its measurement would be academic, indeed. However, junction shape, ambient temperature, and current flow all affect forward voltage drop. Consequently, \(V_F \) must be measured for each type of device. It is measured by passing a specific current through the diode and measuring the voltage drop across it. A representative circuit is shown in Fig. 4.

Forward current flow is an important characteristic that is related to forward voltage drop. Normally, the diode displays a fixed voltage drop. A point is reached, however, where the junction becomes saturated with electrons, and the bulk resistance of the junction affects current flow. Higher currents also increase power dissipation, which in turn increases junction temperature, which increases the voltage drop, which results in greater power dissipation...and so on.

It is not unusual to find a two- or three-volt drop across a high-power rectifier operating near its rated current limit. And, in low-voltage designs, the power lost due to \(V_F \) can be appreciable.

The Schottky diode

One way to reduce \(V_F \) losses is to alter the construction of the junction. The Schottky-junction diode, named for its inventor, is just such a device.

As shown in Fig. 5, the Schottky diode consists of a junction made of metal on one side and a semiconductor on the other. The junction forms a barrier that acts like a one-way valve. The forward conduction mechanism uses hot-carrier electrons, as opposed to hole migration in bipolar junctions, to bridge the gap. That mechanism has led to the nickname *hot-carrier diode*.

Since the diode is composed of a single...
semiconductor material, its quantum voltage gap is very small: typically on the order of 0.3 volts or less. The method of testing for V_T or P_N in a Schottky device is identical to the procedures outlined earlier. Because of the way the junction works, however, the Schottky diode typically has a lower reverse-voltage breakdown value than that found in the bipolar diode.

The Schottky diode also has smaller series resistance (V_T/I_T), lower inductance, and faster recovery time than bipolar devices. Those features (and the nearly ideal voltage-current characteristics of the Schottky junction) make it attractive for use in applications other than power rectifiers. In fact, Schottky diodes are commonly found in microwave devices and TTL integrated circuits.

The Zener diode

The avalanche effect characteristic of bipolar semiconductor junctions is the basis of the Zener diode. Basically, it is a bipolar diode that operates in the reverse-breakdown mode. Breakdown voltage is largely independent of current, temperature, and age; therefore the Zener often replaces battery-resistor voltage-reference circuits.

The Zener diode is built much like a bipolar junction diode—with one difference. As we have noted throughout this series of articles, avalanche current often destroys a semiconductor junction because of the excessive heat that is generated. That problem is avoided in the Zener diode by enlarging the junction and providing external heat sinking when necessary (usually for diodes with power ratings greater than one watt).

The Zener's breakdown voltage (V_Z) is measured using the same current-limited avalanche-producing procedures described several times in this series. There is one difference, however: the test current used. Until now we've been careful to maintain the avalanche current at a very low level to prevent damage to the junction. Zener diodes, however, need to be tested near the limits of their operating range—in other words, well beyond the knee—for the test to be accurate.

For V_Z and I_Z Zeners, that current is typically 20 mA. In other words, the test is performed with a constant-current power supply adjusted to provide 20 mA of current. Then, with the diode under test attached to the current source, voltage is measured across the diode. The voltage read is V_Z for that Zener.

Higher-powered Zeners are tested at higher currents, as defined by their data sheet. You will find, though, that V_Z is stable over a wide range of current values. Therefore, it is of little concern whether the diode is tested at 20 mA or at 24 mA—as long as the current remains within the safe operating limits of the Zener.

Dynamic resistance

Because Zener diodes frequently substitute for batteries, dynamic resistance (R_Z) is an important characteristic. Basically, dynamic resistance is the AC impedance of the diode, it is equivalent to the internal resistance of a battery. R_Z is measured by first applying a DC current and then passing an AC current through the diode. The Zener's opposition to the passage of AC is its dynamic resistance.

Both V_Z and R_Z can be determined using the test circuit shown in Fig. 6. First the constant-current source is adjusted until the rated DC current flows through the Zener diode, as described above. At that point, V_Z may be read from the voltmeter.

R_Z is determined by measuring the peak-to-peak voltage (V_P) across the Zener, and that across R_1 (V_P). Then those values are inserted into the following equation:

$$V_Z = V_P \times R_1 + 100 \times V_P / V_Z$$

Note that R_Z will vary as the DC current through the diode varies.

The tunnel diode

The last diode we'll examine this month is the tunnel diode. Although not as popular as it used to be, the tunnel diode is still used in high-frequency circuits.

The tunnel diode is a two-terminal device that differs from other diodes in the level of doping used in the semiconductor materials. The impurity concentrations in both the N-type and the P-type materials is 1000 times greater than that normally found. That high concentration results in an extremely thin depletion layer at the junction—something on the order of 1 micron (0.000001 cm).

Normally, a forward voltage of a 0.5 or more is required to overcome the electrical barrier formed by the P-N junction. Quantum theory, however, predicts that upon occasion an electron will violate classical physics and sneak through the P-N barrier to appear mysteriously on the other side of the junction. That process is called tunneling. If the junction is made thin enough, as in the tunnel diode, the likelihood of tunneling increases.

Tunneling is important in that it occurs at very low voltages, typically 100 millivolts or less. Because the active region of a tunnel diode occurs at a much lower voltage than that of a conventional diode, the tunnel diode is an extremely low-power device.

Such diodes have been used in
PC SERVICE

Because the circuit board for the robotics-control computer will not fit on the pages of Radio-Electronics, the component side is shown here half sized. The solder side of the board will be shown next month. For those interested in receiving full-size photostats of both sides of the board, simply send a self-addressed, stamped envelope to:

Radio-Electronics
Dept PC
500-B Bi-County Boulevard
Farmingdale, NY 11735

The component side of the robotics-control computer is shown here half size. Note that it is not a mirror image, and it cannot be used to directly etch a board.

kePRO CIRCUIT MAKER

For art supplies, kits and economical equipment to produce at home professional quality print circuit boards, ask for the pro's. Kepro Circuit Systems, Inc. Kepro has been producing prototype and short run equipment, as well as providing PCB supplies to industrial companies for years. Their specialized experience and knowledge provides the home hobbyist an economical and convenient source of equipment and supplies for a professional, one-of-a-kind, printed circuit board. Shears, etchers, sensitized and unsensitized copper clad laminates, art supplies, kits and Keproclad...all you need to make a professional quality printed circuit board at home and at a cost you can afford.

Kepro, your one stop source for at home PCB's.

Write or call Kepro for their catalog and price list:
1-800-325-3878 or 1-314-343-1530 (MO)
630 Axminster Drive, Fenton, MO 63026-2992.

ART SUPPLIES

$765.00

SHEAR

$390.00

ART SUPPLIES

from $2.79

COPPER CLAD LAMINATES

Photosensitized
Pre-cut copper clad
Bulk packaged copper clad
Full sheets
Plate-thru copper clad

CIRCLE 184 ON FREE INFORMATION CARD
THE PARTS-PLACEMENT PATTERN for the robotic control computer. For clarity, the parts are shown over the board's pad master. The interconnecting traces are not shown.
Headlight alarm

It's 5:00 P.M., and you've just finished a long day at the office. You climb into your car, turn the ignition switch on, and nothing happens. That's when you suddenly realize the problem: You left your headlights on this morning. Unfortunately, the realization has come about eight hours too late and now your battery is dead.

The preceding incident has probably happened to you at least once; in my case it has happened more often than I care to remember. Or at least it used to. Now, I have installed the simple circuit shown in Fig. 1 in my car. Of course, the circuit is a headlight alarm. It has saved me from embarrassment and aggravation on several occasions.

The circuit

While many cars are equipped with a headlight alarm, many more, unfortunately, are not. For those cars, the circuit in Fig. 1 offers a low-cost way to add that valuable feature. Let's see how it works.

The base of Q1 is connected to the car's ignition circuit; the easiest point to make that connection is at the ignition switch fuse in the car's fuse panel. Also, one side of the piezoelectric buzzer is connected to the instrument-panel light fuse; remember that when the headlights or parking lights are on, the instrument panel is lit too. When the headlights are off, no current reaches the buzzer and therefore nothing happens. What happens when the headlights are on depends on the state of the ignition switch. When the ignition switch is on, transistors Q1 and Q2 are biased on, effectively removing the buzzer and the LED from the circuit.

When the ignition switch is turned off but the headlight switch remains on, transistor Q1 is turned off, but transistor Q2 continues to be biased on. The result is that the voltage across the piezoelectric buzzer and the LED is sufficient to cause the buzzer to sound loudly and the LED to light. Turning off the headlight switch will end the commotion quickly.

Construction

The circuit can be wired together on a piece of perforated construction board. The buzzer I used was a Radio-Shack 273-065 PC-board mounting type, but almost any similar buzzer will do. Circuit parameters are not critical, so feel free to make appropriate substitutions from your junk box to further reduce the cost.

When you are finished, house the circuit in a small, plastic experimenter's box and locate the unit on or under the dash of your car. You could also locate most of the unit behind the dash were it will be out of the way and mounted only the LED where it can be seen easily. One good place would be next to the headlight switch on your dash; that will provide more of a custom look.—Charlie Lowell
Why stereo doesn't work

Despite more than 35 years in pursuit of the "Holy Grail of Hi-Fi" (i.e. perfect sound reproduction), I've experienced it something less than a dozen times. By "perfect" I mean that with my eyes closed, I sonically seem to be in the same room or hall with the performers. Aside from a few impressive experiences with binaural headphone listening, which is another acoustic ballgame altogether, the only times I've experienced the "I am there/they are here" phenomena have been when there was specially recorded program material and/or when two or more extra channels have been involved.

For some of us, quadraphonic sound reproduction, which was introduced in the early 1970's, had a potential that was never fully realized. A combination of bad marketing, bad engineering, and bad demonstrations condemned quadraphonic sound to an early demise, despite the fact that the basic concept was valid.

Live vs. reproduced sound
To appreciate the reasons why multichannel sound is, by its very nature, far superior to the best that conventional stereo has to offer, it's necessary to understand the differences between live sound heard in a hall and recorded sound reproduced in a living room.

There are few acoustic similarities between the two listening environments. The sheer size of most live-performance venues means that the sound reflected and re-reflected from the boundary surfaces (walls, floor, ceiling) are going to reach a listener's ears substantially later than the sound coming directly from the performers. See Fig. 1. Since sound travels roughly 1,100-feet-per-second, or 1.1-feet-per-millisecond, time delays of more than 50 milliseconds between the direct and reflected sound are not uncommon. And when the sonic environment is both large and hard surfaced, such as in a church, the reflections multiply, blend, and take several seconds to die away. Furthermore, the reflected and reverberant energy, which can account for better than 80 percent of the total sound impinging on the audience, comes at the listeners from all directions. See Fig. 2.

Even when perfectly set up in a normal listening room, a conventional high-quality stereo system is functioning with a host of handicaps. First of all, the sound comes from a more or less flat plane whose area is roughly defined by the location of the two speakers. Whatever hall reverberation is captured by or synthesized into the recording is also coming from the same space.

Of course, there are reflections of the speaker sound taking place...
Discover—Explore—Experience
Today's Electronics With ...

McGraw-Hill’s
Contemporary Electronics
Series

Now you can meet the challenges of today's electronics quickly and easily. This professional level learning series is as innovative as the circuitry it explains and as fascinating as the experiments you build and explore! And it's for anyone who has an interest in electronics... from the hobbyist to the professional.

Thousands Have Already Experienced the Excitement!

Today's high-tech world demands an entirely new and innovative approach to understanding electronics. That's why McGraw-Hill has developed this unique "hands-on" learning method that brings to life the dynamics of the new electronics. It's a unique combination of interactive materials that gets you involved as you build and experiment with today's latest electronic circuitry.

Just how well this innovative learning approach meets the challenge of the new electronics is confirmed by those who have already completed the Series... "You have put me right into the middle of an extraordinary learning experience. With each lab exercise I have gained a new understanding of the intricacies of today's electronics." Or...

"For me, the Series was just the answer. I felt confident within my specialty, but my grasp of other areas of electronics was slipping away. Your Series helped me upgrade my knowledge of the latest electronics concepts." Or this from a company director of training... "We manufacture sophisticated electronic products, with a lot of people in sales, assembly and purchasing. McGraw-Hill has answered a real need in helping our employees see the total picture. They now communicate with customers and each other more effectively."

Your Involvement in the New Electronics Begins Immediately.

You master one subject at a time with 15 McGraw-Hill Concept Modules, sent to you one every 4 to 6 weeks. You waste no time on extraneous materials or outdated history. It's an entertaining, lively, nontraditional approach to the most modern of subject matter.

Your very first module takes you right to the heart of basic circuit concepts and gets you ready to use integrated circuits to build a digital oscillator. Then, you'll verify the operation of different electronic circuits using a light emitting diode (LED).

And each successive module brings you up to speed quickly, clarifying the latest advances in today's electronics from digital logic and microprocessors to data communications, robotics, lasers, fiber optics, and more.

Unique Combination of Interactive Instruction Materials Makes Learning Easy.

Laboratory experiments, vividly illustrated text and interactive cassette tapes all blend together to give you a clear, simplified understanding of contemporary electronics.

With each module, you receive a McGraw-Hill Action-Audio Cassette that brings to life the facts and makes you feel as if you're participating in a lively dialogue with experts.

Your ability to quickly make this knowledge your own is further aided by strikingly illustrated texts that use diagrams, explanations, illustrations, and schematics to drive home and reinforce the meaning of each important point. Carefully indexed binders conveniently house all this material, as well as the instructions that will guide you through your "hands-on" lab experiments.

Throughout your Series, laboratory experiments reinforce every significant concept. With this essential "hands-on" experience using actual electronic components, you master principles that apply all the way up to tomorrow's VLSI (Very Large Scale Integrated) circuitry.

Discover, Explore, Experience for Yourself—15-Day Trial.

In all ways, the Contemporary Electronics Series is an exciting learning experience that offers you the quickest and least expensive method available to master today's electronics... and the only one with "hands-on" experience.

To order your first module for a 15-day trial examination, simply complete the card and send today! If the card is missing, write to us for ordering information.

McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue, NW
Washington, DC 20016

www.americanradiohistory.com
within the listening room, but compared to any live recording environment, the listening room walls are usually much too close. That means that the reflections arrive too quickly (have too high a delay time), and the reverberant sounds that would normally be heard from the sides and rear essentially all come from the front. In fact, unless the chosen speaker systems are very carefully set up with due consideration for their specific dispersion characteristics and their proximity to the adjacent room surface, early room reflections are likely to distort the stereo image and to introduce frequency-response irregularities through cancellation and reinforcement of the direct signal.

To my ears, most speakers sound best when at placed least three or four feet away from any reflecting surface, including the back wall, and are, in general, situated in a fairly absorptive part of the listening room. Carpeting in front of the speakers, wall hangings behind and between the speakers, and soft chairs flanking the speakers are all means to that end.

In my view, it is the audible, but usually only unconsciously perceived disparity between the acoustic environment embodied in the recording and the actual acoustic environment of the listening room that is primarily responsible for the lack of sonic realism of even the best stereo system.

My theory is supported by the fact that a good system almost always sounds more realistic when heard from an adjacent room, where you hear a blend of the two contradictory acoustic environments. A very large listening room can give rise to the same effect; when you listen far enough away from the speakers some of the same acoustic blending can take place. But in no case does the recorded early and late reflections (reverberations) surround the listener in the same way it does under live conditions.

The sound field

From the psychoacoustic viewpoint of a single listener, the complex acoustic interactions taking place throughout the concert hall or listening room don’t really matter. What is significant is the ever-changing sound field occurring directly at the listener’s two ears. Even an untrained listener hearing a well-recorded live performance for the first time has a sense of the size and the nature of the recording space. Assuming that the engineers were competent, the acoustic ambience of a recording of Orff’s Carmina Burana performed in a church is going to sound quite different from that of a small jazz group playing in a night club. Our ear/brain computers are constantly analyzing the similarities and differences in phase, timing, amplitude, and frequency occurring in the sounds reaching our two ears. That information is used unconsciously to construct a mental image of the acoustic environment in which the sound is taking place. I say “unconsciously” because we are not talking about a deliberate mental process. But the fact that we are

continued on page 82
begin to turn brown, and soil will need added lime. A pH of 4.5 in ponds and lakes will start killing fish, and, when pH reaches a level of 4.0, a clear blue appearance, although beautiful, will indicate a "dead" body of water. A pH of 3.5 will cause rapid deterioration of painted surfaces. A continuous pH of 3.0 will result in erosion of structural limestone, and entire forests will die. Last, if the meter indicates 2.5 or less, you may be living near an active volcano!

After taking readings from accumulated rainfall, the funnel should be drained, leaving SI in the drain position only long enough to drain the tunnel, as most inexpensive solenoid valves are not designed for continuous duty. Inspect the electrodes several times a year, and if any corrosion forms, swab it off with a weak ammonia-water solution, and then flush the electrodes with distilled water.

For studying the long-term effects of acidity, the output of the meter could be connected to a chart recorder. And the meter may also be used to test your local tap, pond, and stream water by pouring a sample into the funnel.

ELENCO PRODUCTS AT DISCOUNT PRICES!

<table>
<thead>
<tr>
<th>Oscilloscope</th>
<th>Price</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 MHz DUAL TRACE OSCILLOSCOPE</td>
<td>$349</td>
<td>MO-1251</td>
</tr>
<tr>
<td>35 MHz DUAL TRACE OSCILLOSCOPE</td>
<td>$498</td>
<td>MO-1252</td>
</tr>
</tbody>
</table>

Top quality scopes at a very reasonable price. Contains all the desirable features, Elenco's 2 year guarantee assures you of continuous service. Two 1x10 probes, diagrams and manual included. Write for specifications.

FIG. 5—THE ELECTRONIC COMPONENTS mount on a piece of perfboard; they are connected by point-to-point wiring. The terminal strip provides connections to the remote-mounted sensor and solenoid.

feeding a known current to the circuit and noting the position of the needle. Those positions correspond to the pH's shown in Table 1. If you want to interpolate between values, keep in mind the fact that the scale is not linear.

Installation and use

The best location for the sensor assembly is on a post, as shown in Fig. 6, away from trees and buildings. If it's mounted on the side of a house, be sure that the bracket you use is long enough to place the funnel beyond roof or eave run-off.

Don't be alarmed if the meter indicates some acidity. A pH of 6.0 to 6.5 is normal and harmless. However, environmentalists warn of dire consequences for continuously higher readings.

For example, at continuous pH levels of 5.0 to 5.5, lawns and garden plants will begin to turn brown, and soil will need added lime. A pH of 4.5 in ponds and lakes will start killing fish, and, when pH reaches a level of 4.0, a clear blue appearance, although beautiful, will indicate a "dead" body of water. A pH of 3.5 will cause rapid deterioration of painted surfaces. A continuous pH of 3.0 will result in erosion of structural limestone, and entire forests will die. Last, if the meter indicates 2.5 or less, you may be living near an active volcano!

After taking readings from accumulated rainfall, the funnel should be drained, leaving SI in the drain position only long enough to drain the tunnel, as most inexpensive solenoid valves are not designed for continuous duty. Inspect the electrodes several times a year, and if any corrosion forms, swab it off with a weak ammonia-water solution, and then flush the electrodes with distilled water.

For studying the long-term effects of acidity, the output of the meter could be connected to a chart recorder. And the meter may also be used to test your local tap, pond, and stream water by pouring a sample into the funnel.
CABLE TELEVISION CONVERTER, decoder and wireless remote control video equipment accessories. Catalog free. CABLE DISTRIBUTORS, 116 Main Road, Washington, AR 71862.

CIRCLE 200 ON FREE INFORMATION CARD

Also, the $225.00 equipment accessories. Catalog CABLE TELEVISION R.I. ELECTRONICS, Dealers welcome. Sale price only $69.95. CM-04 kits $39.95! Quantity prices insure your all 8550 cable converters. Perfect reception now available SCIENTIFIC ATLANTA super Spring sale. Now available Scientific Atlanta 8500 and 8550 cable converters. Perfect reception on all channels. Sale price 8500 or 8550 $225.00 Hand remotes $20.00. Call now to insure your order. Sale ends Apr. 30, 1987. Also, the original CM-04 for 8500 converter. Sale price only $69.95. CM-04 kits $39.95! Dealers welcome. C.O.D. accepted VIP ELECTRONICS, P.O. Box 628, Forestdale, R.I. 02824. (617) 755-9778.

CIRCLE 202 ON FREE INFORMATION CARD

SIMPLY SNAP THE WAT-50 MINIATURE FM TRANSMITTER on top of a 9v battery and hear every sound in an entire house up to 1 mile away! Adjustable from 70-130 MHZ. Use with any FM radio. Complete kit $29.95 + $1.50 S & H. Free shipping on 2 or more! COD add $4. Call or send VISA, MC, MO. DECO INDUSTRIES, Box 607, Bedford Hills, NY 10507. (914) 232-3878.

CIRCLE 127 ON FREE INFORMATION CARD

TUNABLE NOTCH FILTER—for elimination of any TV, FM, or VHF signal. Can be tuned precisely to ANY signal within these ranges: *MODEL 26-Ch's: 2-6 plus FM [54-108 Mhz] *MODEL 1422-Ch's. 14(A)-22(I) [120-174 Mhz] *MODEL 713-Ch's. 7-13 [174-216 Mhz] Highly selective 60dB notch. Send $30 each. Quantity prices as low as $14. STAR CIRCUITS, P.O. Box 8332, Pembroke Pines, FL. 33084

CIRCLE 94 ON FREE INFORMATION CARD

DECODE THE NEW VIDEO TAPE COPY PROTECTION SCHEME. bothered by brightness changes, vertical jumping and jittering while watching recent movie releases? Stop it with the LINE ZAPPER. New kit detects and removes selected lines of video that have been modified and often interfere with normal television operation. Order your KIT today only $69.95 plus $2.00 S & H. ELEPHANT ELECTRONICS, Box 41865-L, Phoenix, AZ 85080. Visa/MC orders (602) 581-1973. Allow 6 weeks for delivery

CIRCLE 120 ON FREE INFORMATION CARD

NEW: PANASONIC VIDEO SWITCHER. Record a cable channel while viewing any one of your 4 video options, another cable channel, 2nd VCR, TV games, video camera, etc. No need to use your cable converter for channel selection VCS-1 gives your cable ready TV or VCR full control of your viewing. Comptable with all scrambled and one way addressable systems. $85.00 Guaranteed. Free Catalog. (402) 231-4957 M.D. ELECTRONICS, 5078 So. 108th #115, Omaha, NE 68106. We accept MC. Visa. C.O.D.

CIRCLE 195 ON FREE INFORMATION CARD

Now in-cluding shipping and Lifetime warranty. We Repair all types of Downconverters. Cable Converters and equipment available! Panasonic 450 MHz wireless converter $79.95 plus shipping. Coax cable, T.V. parts, accessories, connectors, T.V. amplifiers. Write for free information or call for prices. BLUE STAR IND., Dept. 105-RE 4-87, 4712 Ave. N, Brooklyn, N.Y. 11234 (718) 258-9495 Ext. RE

CIRCLE 85 ON FREE INFORMATION CARD

CIRCLE 177 ON FREE INFORMATION CARD
maximize the number of comparator transitions during commercials. Begin by connecting the commercial killer to the stereo receiver's tape-monitor loop. Set the receiver to FM and select the tape-monitor mode. Because the audio level may vary from station to station, tune to the station of greatest intended use. And remember, the commercial killer works best with easy-listening formats. During commercials, adjust R41 to maximize attenuation by watching the FADE LED. Slight readjustment may be necessary to provide the fewest zapping errors without performance degradation.

FIG. 7—THE COMMERCIAL ZAPPER circuit is shown here assembled on a PC board.

If the commercial killer fails to work, make sure that the power supply is providing the correct voltage, and that \(V_{REF} \) is about 13.5 volts.

If the voltages are correct, then verify that you can obtain waveform like those shown in Fig. 3–Fig. 5. If the peak signal level at the inverting input of IC2-b cannot be adjusted (via R41) to exceed 2.5 volts, the signal level out of the receiver may be unusually low, so the value of R41 may need to be increased.

If the rate of transitions at TP4 is low during music and high during commercials (but attenuation is not proportional to the rate of transitions), verify the following:

- When there is no signal present, the voltage at TP5 should be within 0.2 volts of the voltage at the non-inverting input of IC1-c.
- During a commercial, the voltage at TP5 should be at least three volts less than the voltage at the non-inverting input of A7.

If the first condition is not met, there will be attenuation during music. Diode D4 should be reverse-biased with no signal present. If it is not, and if the voltage at TP4 is about eight volts, it may be necessary to reduce R18.

If the second condition is not met, there will be insufficient attenuation during commercials. If TP4 is approximately eight volts with no signal present, it may be necessary to decrease R19 or R20.

Last, if fading occurs, but the LED does not light, it may be connected to the circuit backwards.
BELIEVE IT OR NOT, WE'RE ALMOST finished putting together our DTMF transmitter-receiver. All we have to do is add a few bits and pieces and we can start the easy part—looking around for some good applications for the circuit. As it stands now, we can point the transmitter at the receiver, push one of the transmitter's sixteen buttons, and see a DTMF tone pair at the outputs of the receiver's 3525, with the high and low groups already conveniently separated for us. The last thing we have to do is translate the DTMF tones back into binary so we can do something with the output. Fortunately, that's the easiest part of the design.

As was the case with splitting the high and low groups, you could put together a circuit that converted DTMF data to binary using only standard parts. But then again, if you put your mind to it you could probably build a light bulb that way as well. This happens to be one of those times when it makes a lot of common sense to use an IC designed specifically for the job.

Although several companies make DTMF decoder IC's, we decided to use Mostek devices. That company makes a range of decoders, so you can pick an IC that really suits a particular application. Since we're not trying to do anything fancy, any of their decoder IC's will do. The MK5102 is a nice choice since it's easy to find and use. That IC is very similar to the MK5103, and the pinouts are identical, so one can be freely substituted for the other. The only difference between the parts is that the MK5103 is a slightly higher-grade device. The signal-to-noise ratio is 4 dB better, the tones can be detected 3 milliseconds faster, and it only uses about half the current when it's working (2 mA as opposed to 5 mA). But in many applications, those improvements will not make a difference.

Hooking it up

Getting the S3525 to talk to the MK5102 is simple. The only thing that might be the least bit tricky comes about because the two devices want different supply voltages: +5 volts for the MK5102 and +12 volts for the S3525. Since the MK5102 is a CMOS part it doesn't need a lot of current so the supply voltage can be chopped down to size with nothing more than a Zener.

Getting the signals from the S3525 outputs to the MK5102 inputs also takes a bit of thought since the voltage levels have to be translated there as well. That's because the CMOS outputs of the S3525 swing to within 1/2 volt of the supply voltage, which means that a high will be at about 12 volts. That's a definite no-no for the inputs of the MK5102. Figure 1 shows a circuit that takes care of the problem.
and gets the two IC's talking to each other.

One thing you should notice right away is that we're making use of the buffered 3.58-MHz osc-
cillator output that the folks at AMI have so conveniently put in the architecture of the S3525. (The buffered 3.58-MHz signal is exactly what we need to drive the MKS102.) Using one crystal for both IC's is a good idea since it eliminates one possible source of error. Of course we have to take care of the voltage differences there as well, but that's handled in the same manner as the outputs.

If you look at the outputs of the S3525, you'll see that C9 and C7 decouple each of them from the MKS102 inputs. Resistors R6 and R10 are there to do the level translation so the 12-volt outputs can safely drive the MKS102's 5-volt inputs. Much the same kind of level shifting is done at the crystal output as well with C5 and R4. The value you arrive at for R4 depends on the exact supply voltages at each IC but the value used in Fig. 1 should work as long as you're using supply voltages that are within 0.2 volts of 12 volts for the S3525 and of 5 volts for the

<table>
<thead>
<tr>
<th>MKS102 OUTPUT CODES</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
</tr>
<tr>
<td>PIN S HIGH</td>
</tr>
<tr>
<td>D1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

FIG. 3

![Diagram of IC MKS102 with connections labeled](attachment:image.png)

FIG. 4

COMMODORE VICMODEM™

- Use with the Commodore® C64™, the SX-64 or the VIC-20 Computer.
- Bell 103 Compatible.
- Full Duplex; 300 Baud.
- FCC Registered.

This Modem is LOW liquidation priced because it was closed out by Commodore®. Add it to your computer for access to timely financial information, news and reference libraries. as near as your phone! An affordable introduction to phone/computer services, and you can communicate with computer users who also own modems!

Use with data cassette (included), or with terminal program software, available at computer stores.

90-Day Limited Factory Warranty.

List: $59.00

$19

Liquidation Priced At Only

Item H-2296-7041-072 Ship, handling: $4.00 ea.

Commodore is a registered trademark of Commodore Electronics, Ltd.

Credit card members can order by phone, 24 hours a day, 7 days a week

Toll-Free: 1-800-328-0609

Sales outside the 48 contiguous states are subject to special conditions. Please call or write to inquire.

SEND TO: Item H-2296
C.O.M.B. Direct Marketing Corp.
1405 Xenium Lane N./Minneapolis, MN 55441-4494

Send _Modem(s)_ Item H-2296-7041-072 at $19 each, plus $4 each for ship, handling, Minnesota residents add 6% sales tax. Sorry, no C.O.D. orders)

I My check or money order is enclosed. (No delays in processing orders paid by check.)

PLEASE CHECK: [] [] [] [] [] [] [] [] []

Acct. No.

PLEASE PRINT CLEARLY

Name __________________________
Address ________________________
City __________________________
State ZIP ______________________
Phone _________________________
Sign Here ______________________

APRIL 1987

www.americanradiohistory.com
MK5102. If your voltages are different, you’ll have to adjust the value of the resistor.

That problem comes about because the S3525 will work over a wider supply voltage range than the MK5102. The S3525 is happy with anything from 9.5 to 13.5 volts while the MK5102 will choke if you don’t stay within 0.5 volt of 5 volts. You can work out R4 with a lot of math, but this is one of those times when it’s a lot easier (and a lot smarter) to measure the voltage at pin 2 of the MK5102. Using the appropriate DC range on your voltmeter or DMM, adjust the value of R4 until you’ve got a reading of 2.5 volts. That’s not a super-accurate way to get the job done since the voltage at that point is actually AC, but it yields satisfactory results.

If you still have problems, you can modify the circuit as shown in Fig. 2. There, both C5 and R4 have been eliminated and the output of the oscillator on the S3525 is used to drive both IC’s directly. Although that circuit appears simpler, it will put more of a load on the S3525. Experiment with both circuit configurations and see which one works best for you. If there is no apparent difference, stay with the configuration shown in Fig. 1.

Believe it or not, that’s just about all there is to connecting up the MK5102. The only other thing worth discussing is the format-control pin, pin 5. The MK5102 can output data two different ways: two-of-eight or straight binary. The difference between those outputs is shown in Fig. 3. When pin 5 is high, the output is straight binary; when pin 5 is low, the output is in two-of-eight format. Since we’re feeding in binary in at the transmitter, we want binary out at the receiver and we can get that by tying pin 5 high.

Seeing the output

The last step in building our remote-control system is to devise some way of examining the binary output of the receiver. A simple way to look at it is to use a 4514 in a circuit setup that’s exactly the opposite of the one we used at the transmitter. The appropriate circuit is shown in Fig. 4. By tying pin 23 of the 4514 low, we’re permanently enabling the outputs. The input enable pin, pin 1, is controlled by the strobe output of the MK5102. As soon as the MK5102 detects a valid input, it puts a high on the strobe input and valid data on the output. The 4514 will only accept input as long as the MK5102 strobe is active. When the strobe drops low the data will be latched in the 4514 and the selected output will remain high.

There are no end to the uses for the remote-control circuit. If you use the outputs properly, you can control a lot more than 16 devices with the 16 keys on the transmitter keypad. How to go about doing it we’ll leave as an exercise for you.

As a matter of fact, let’s make a contest out of it. The first two readers who send me a working circuit schematic and an explanation will have their idea published and get a year’s subscription to Radio-Electronics—not a bad deal! Remember, I want an add-on to our remote-control system that will let you use it to control more than 16 devices.
ONE OF THE BIGGEST ADVANTAGES OF CMOS-based circuit design is the ability to run everything off batteries. Not only does that make the circuit completely portable, but it simplifies the overall design process as well. Powering a device from a wall socket means that you have to use transformers and rectifiers. It also means that you have to deal with ripple, regulation, and a lot of other stuff that has nothing to do with the circuit you’re trying to build.

Of course, there are two sides to every story. Batteries simplify a lot of problems, but they also have one big one of their own: They go dead. And if power is drawn by a circuit to retain memory, those batteries will fail a lot sooner.

Memories like the 5101, 6116, 6264, and the other members of the CMOS low-power series require only about 10 μA at 2 volts to retain their contents. That makes it possible to use a battery backup with those devices.

Battery backup circuit

If a battery backup is to be of any use, you need a circuit that will automatically switch from the main supply to the battery backup with an absolute minimum of glitching. That’s the purpose of the circuit shown in Fig. 1. Designed for use with rechargeable Ni-Cd units, it charges the batteries whenever power is applied to the +V terminal and supplies power from B1 when power is absent from that terminal. The circuit is easily modified for use with non-rechargeable batteries.

The first thing you should notice about the circuit is its simplicity. The circuit’s operation is straightforward. When power is supplied to +V, D1 conducts and, since D2 is reverse-biased, current flows into the batteries through current limiter R1. When the power is removed from +V, D2 is forward-biased and current flows from the battery to the output and on to the low-power voltage input of the CMOS device. Since D1 is reverse-biased at that time, no current can leak out via the +V terminal to the main part of the circuit. Capacitor C1 is included to filter out any glitches that may pop up during the change over from main power to battery backup, or when you replace the battery.

Component selection

Diode D2 can be a 1N914 unit since only small amounts of current will ever flow through it. Choosing a unit for D2 presents more of a problem; its selection depends on how much current is expected to flow through that diode. Chances are, if you’re powering a CMOS IC, that the operating current is so low that you can use a 1N914 there as well. It is a simple matter to measure the current needs of the device to be powered; that should be done before making a decision about which diode to use for D2.

Resistor R1 is the current limiter for the battery. Its value will depend on the battery’s charging current and the voltage that’s available from +V. The value can be found from:

$$R_1 = \frac{+V - 0.6 - V_B}{I_C}$$

where +V is the voltage available at the +V terminal, 0.6 is the voltage drop across diode D1, V_B is the nominal voltage of the battery, and I_C is the charge current required by the battery. For I_C use the battery’s 14-hour charge rate. The value of I_C might be different for batteries from different manufacturers. The value for the battery you will use may be marked on the battery itself. Otherwise it can be obtained from the battery’s data sheet or from the manufacturer. You can modify the circuit for use with lithium or other non-rechargeable units by deleting R1.

Stabilizing control lines

One precaution you should take when using the circuit is to make sure that the memory control lines are stable before switching from main power to backup. If the control lines are enabled during the switch over, you stand a good chance of generating a write pulse and scrambling the data. In most cases, it’s possible to three-state the appropriate inputs on the IC, which will take care of the problem. Otherwise, extra circuitry can be added that will perform the same function. If there’s enough interest in that topic, we’ll talk about it in more depth in a future column.

www.americanradiohistory.com
STATE OF SOLID STATE

Tone generator IC’s

A BLOCK DIAGRAM OF THE SAB 0600 IS SHOWN IN FIG. 1. THE SAB 0600 CAN BE USED TO BUILD A THREE-TONE MELODIOUS CHIME, WHICH IN ITS SIMPLEST FORM REQUIRES ONLY ONE RESISTOR, THREE CAPACITORS, AND AN 8-OHM SPEAKER AS EXTERNAL COMPONENTS AS SHOWN IN THE FIGURE. THE CHIME SEQUENCE IS PRODUCED BY THREE HARMONICALLY RELATED FREQUENCIES: THEY ARE RED INTO A SUMMING POINT AND THEIR AMPLITUDES ARE ALLOWED TO DECAY INDIVIDUALLY.

THE MASTER OSCILLATOR GENERATES A 13.5-KHZ SIGNAL THAT IS CONTROLLED BY EXTERNAL COMPONENTS R1 AND C1, WHICH ARE CONNECTED TO THE R AND C TERMINALS OF THE TONE GENERATOR. THAT 13.5-KHZ SIGNAL IS DIVIDED TO PRODUCE THE 660-, THE 550- AND THE 440-HZ TONES. ONE OF THOSE FREQUENCIES IS DIVIDED DOWN AND USED TO CONTROL THE TIMING AND DECAY OF THE SEQUENTIALLY-PRODUCED TONES. A 4-BIT D/A (DIGITAL-TO-ANALOG) CONVERTER IN EACH TONE PATH ACTS ON THE THREE TONES IN SUCH A WAY THAT THEY OVERLAP AS THEY DECAY.

THE PUSH-PULL OUTPUT STAGE CAN DELIVER APPROXIMATELY 160 MV TO AN 8-OHM SPEAKER. THE SHRILL TONES PRODUCED BY THE SQUAREWAVE VOLTAGES CAN BE MELLOWED BY SHUNTING SOME OF THE HIGHER HARMONICS TO GROUND THROUGH A CAPACITOR TIED TO PIN 8 (C3 IN FIG. 1); THE VALUE OF THAT CAPACITOR IS TYPICALLY 0.1µF. VOLUME CAN BE CONTROLLED BY INSERTING A 100-OHM POTentiometer BETWEEN THE SPEAKER AND THE OUTPUT BLOCKING CAPACITOR (C2 IN FIG. 1).

THE CHIMES ARE SOUNDED BY MOMENTARILY APPLYING A 1.5- TO 11-VOLT (MAXIMUM) PULSE TO THE TRIGGER TERMINAL, E. TO AT LEAST SOMEWHAT PROTECT AGAINST FALSE TRIGGERING BY INTERFERENCE ON THE CONTROL LINE, A TRIGGER PULSE SHORTER THAN 2 MS WILL NOT ACTIVATE THE CIRCUIT. THE SAB 0600 REQUIRES A SOURCE OF 7- TO 11-VOLTS DC FOR OPERATION, BUT IT CAN BE TRIGGERED BY EITHER AN AC OR A DC VOLTAGE. FOR DC TRIGGERING, THE SWITCH OR PUSHBUTTON IS CONNECTED BETWEEN PINS 1 AND 2.

AN ELECTRONIC DOORBELL

THE FACT THAT THE ELECTRONIC CHIME CAN BE ACTIVATED BY AN AC PULSE SIMPLIFIES USING IT AS AN ADD-ON TO CONVENTIONAL DOORBELL SYSTEMS POWERED BY A 16- TO 25-VOLT BELL TRANSFORMER; IT SIMPLY TAKES THE PLACE OF AN ELECTROMECHANICAL
sounider in the system. Figure 2 shows the required circuitry. An internal diode in the SAB 0600 shunts the negative half-cycles of the AC voltage to ground. The peak value of the positive half-cycles adds to the value of V_s, so a resistor (R3) must be inserted in series with the trigger terminal to prevent the voltage at pin 1 from rising above the maximum level permitted for V_s (11 volts). Let's calculate its value.

The minimum permissible input current at pin 1 is 500 μA. Resistor R3 must drop the AC peak voltage so that the voltage at pin 1 never exceeds 11 volts. Assuming that the bell transformer has a 25-volt secondary:

$$R_{3\text{MIN}} = \frac{V_{\text{RMS}} \times 1.41}{500 \mu A}$$

$$= \frac{(25 \times 1.41)}{0.0005}$$

$$= 70,000 \text{ ohms}$$

For reliable triggering, the maximum value of R3 is determined by the minimum value for V_s (6 volts) while applying 1.5 volts at 50 μA to pin 1 for triggering. So:

$$R_{3\text{MAX}} = \frac{V_s}{I_s}$$

$$= \frac{6}{1.5}$$

$$= 40,000 \text{ ohms}$$

The suggested value of 82,000 ohms shown in Fig. 2 will provide triggering by battery or AC-peak voltages up to 35.

Note well that no conventional electromechanical bell or chime can be connected in parallel with the electronic chime pushbutton. Otherwise the electronic chime will sound continuously as the bell or gong will form an electrical connection between the V_s and the trigger terminals (pins 1 and 2).

The SAB 0600 and the others in the series are $2.30 each, in lots of 1 to 24. Write to Siemens Components, Inc., Integrated Circuits Division, 186 Wood Avenue South, Iselin, NJ 08830.

FIG. 2
A practical approach

Late last year, I was asked by Yamaha to participate in the introduction of their DSP-7 digital sound-field processor. I was particularly interested in the device because it used a completely new approach to recreating "concert-hall realism" in the home. It was neither an updated quadraphonic synthesizer nor a time-delay system, although in a sense it could be said to draw on both techniques in its digital manipulation of the signal.

After some discussion, Yamaha and I agreed on a presentation technique; I would first discuss the acoustic and psychoacoustic differences between the live musical experience and recordings reproduced at home—very much as I have done in my column. I would then introduce the DSP-7 as one company's approach to enhancing the reality of home music reproduction. I'll discuss the specifics of Yamaha's digital processing techniques next time.
The Cauzin Softstrip System
Paper goes digital

Grolier's Electronic Encyclopedia

www.americanradiohistory.com
CONTENTS
APRIL 1987

93 THE CAUZIN SOFTSTRIP SYSTEM
A new way to distribute software.

96 ADD A DISK DRIVE
Increase your computing performance.

98 BUILD A PC INCOMPATIBLE
Even better than the Timex Sinclair 1000!

85 EDITOR'S WORKBENCH
Hardware: The Hercules Graphics Card Plus
Software: Grolier's Electronic Encyclopedia
Etc.: New computer products
At a time when color-graphics systems for the IBM-PC are more prolific than ticks on a hound, one would hardly expect to see a monochrome graphics board squaring off with the competing color-graphics heavyweights. But into the midst of the fray comes the new Hercules card (Hercules Computer Technology 2550 Ninth St., Berkeley, CA 94710).

Like the old Hercules card, the new Plus supports both monochrome text and 720-by-348 pixel graphics on the IBM monochrome display monitor or its equivalent. The Plus is hardware and software compatible with all applications developed for the original card, including tough customers like Lotus 1-2-3, Flight Simulator, and Sub-Logic's Jet. Anything and everything that ran on the old card comes off without a hitch on the new one.

RamFont

What sets the Plus card apart from the original is something called RamFont, a hardware-based graphics mode that enables the PC to display full fonts and limited graphics on the screen as easily as older graphics cards displayed standard monochrome text. (See Fig. 1)

Actually in addition to the original two modes, there are two RamFont modes: 4K RamFont and 48K RamFont. Each uses the indicated amount of display memory, and each serves a different purpose.

The 4K RamFont mode is essentially a superset of the standard text mode. Traditionally, text screens have been limited to one type and style of displayed text; the patterns of which are indelibly etched into the BIOS ROM of the computer. With the Plus, Hercules provides a number of diskette-based fonts, including Bold, Greek, "Medieval," Sans Serif, "Future," and about 25 others, any one of which can replace the standard character set, thereby allowing you to customize the display to your liking.

The selected font is accessible by any and all text-mode software in the normal fashion. Hercules provides a font editor so that you can create your own fonts, or modify theirs.

The 48K RamFont mode is completely new and totally revolutionary. In this mode, each character is defined by twelve bits, rather than the customary eight. Programs can display as many as 3,096 characters in different sizes, shapes and typefaces.

Using drivers supplied by Hercules, the 48K RamFont mode can also be used to display graphics screens from Lotus 1-2-3 (Version 2) and Symphony. (Lotus' new scientistic word processor, Manuscript, makes use of the 48K RamFont mode; watch for a review in an upcoming issue.—Editor.) The drivers actually replace the standard eight-
Join the Electronics and Control Engineers' Book Club®

ADVANCED DIGITAL COMMUNICATIONS SYSTEMS AND SIGNAL PROCESSING. Edited by K. Feher. 768 pp., 436 illus. Emphasizes the latest advancements in telecommunications systems and networks. Chapters on such topics as ISDN, speech coding algorithms, digital signal processing, and interconnections systems with interference are all written by international authorities to give you the latest expertise.

583801 X Pub. Pr., $59.95 Club Pr., $42.50

ELECTRONICS ENGINEERS' HANDBOOK, Second Ed. Edited by D. G. Finke & D. Christiansen. 2,722 pp., 2,189 illus. This updated and enlarged edition covers the latest knowledge in the field, including new advances in integrated circuits, pulsed and logic circuits, laser technology, telecommunications, and much more.

209-812 Pub. Pr., $89.00 Club Pr., $61.50

DESIGNING ELECTRONIC CIRCUITS. By L. Hecht. 368 pp., 109 illus. This book covers the operating principles, characteristics, and applications of all commercially available lasers. It will help you find the specific laser that best meets your needs.

277/338 Pub. Pr., $49.50 Club Pr., $37.50

MICROPROCESSOR HANDBOOK. Edited by J. Greenfield. 656 pp., 222 illus. This first-ever handbook helps you select the best microprocessor, enables you to understand the operation of a microprocessor, and provides you with an easily accessible coverage of the most popular 8- and 16-bit microprocessors currently available.

583836 X Pub. Pr., $44.50 Club Pr., $26.50

SYSTEMS TROUBLESHOOTING HANDBOOK. Edited by L. M. Fakher. 409 pp., 500 illus. This leading experts share their most effective fault-isolation techniques as well as solutions to problems they commonly encounter when troubleshooting microprocessors, robotic control systems, PCs, fiber optics systems and other complex electronic systems and equipment.

583839 B Pub. Pr., $44.50 Club Pr., $33.75

MICROCOMPUTER DESIGN. By M. Heidtke. 406 pp., 115 illus. Emphasizes the most current, cost effective methods for developing, debugging and testing all types of microprocessor products, including software and hardware.

583863 B Pub. Pr., $29.95 Club Pr., $26.95

Get the competitive edge with the newest and the best information in your field . . . with books from all the leading publishers

New Members! Take any one of these great professional books for only $289 as a premium with your first selection!

Spectacular values up to $110.00

ANTENNA ENGINEERING HANDBOOK, Second Ed. Edited by R. C. Johnson and H. Jasik, with contributions by 57 recognized authorities. 1,408 pp., 946 illus. This widely acclaimed handbook gives you the guidance you need to solve problems in antenna design and application.

322/910 Pub. Pr., $110.00 Club Pr., $88.00

CONTEMPORARY ELECTRONICS CIRCUITS DESKBOOK. Compiled by H. Helms. 272 pp., 442 circuit diagrams. This comprehensive book offers a wealth of practical information, including the entire spectrum of electronics technology. Each diagram includes a title, a brief description, type numbers or values for significant components, and a citation of the original source.

278/080 Pub. Pr., $31.50 Club Pr., $23.50

POWER INTEGRATED CIRCUITS: Physics, Design, and Applications. Edited by P. Antognetti. 544 pp., 410 illus. This comprehensive book offers an exceptionally thorough overview of the discipline of power electronics, including topics such as high-voltage regulators, audio amplifiers, power MOS devices, and improved transistor structures.

583861-3 Pub. Pr., $33.95 Club Pr., $24.75

OP-AMP HANDBOOK. Second Ed. By T. W. Hughes. 320 pp., 232 illus. Organized for on-the-job reference, this handbook covers all facets of op-amps, from stability and protection to signal processing using op-amps. It includes a collection of over 60 practical circuits for a variety of applications, including analog-to-digital conversion and much more.

583860-9 Pub. Pr., $49.50 Club Pr., $37.50

CHOOSING AND USING CMOS. By M. J. Walsh. 304 pp., 155 illus. Offers a comprehensive overview of the characteristics and applications of CMOS, along with practical advice on circuit techniques that will make your job easier. Specifications, characteristics, and applications are included.

679/376 Pub. Pr., $35.50 Club Pr., $24.95

AUTOMATIC CONTROL SYSTEMS, Fifth Ed. By B. C. Kuo. 736 pp., 1,160 illus. This volume serves as an introduction to the design of control systems. It is written for students and professionals in the field of control theory, including control engineers, control systems designers, and professionals in related fields.

454/875 Pub. Pr., $59.50 Club Pr., $49.25

MICROPROCESSORS IN SYSTEM DESIGN. By S. A. Money. 240 pp., 148 illus. Provides the design procedures and applications data you need to create effective, high-quality microprocessor-based systems. This comprehensive guide covers the most popular microprocessors, processors, and peripheral devices currently available.

427/970 Pub. Pr., $39.50 Club Pr., $29.95

MODERN COMMUNICATIONS CIRCUITS. By J. Smith. 557 pp., 434 illus. Using realistic examples, this book presents state-of-the-art approaches to analyzing and designing virtually every kind of communications circuit imaginable. It includes a thorough coverage of the techniques used to design high-performance circuits.

587/002 Pub. Pr., $45.95 Club Pr., $32.75

HANDBOOK OF MAGNETIC PHENOMENA. By E. H. Burke. 423 pp., 222 illus. A straightforward guide to the use of magnetic materials and their properties. It covers the properties of magnetic materials, magnetic measurements, and magnetic phenomena, along with practical applications.

583860-9 Pub. Pr., $49.50 Club Pr., $37.50

MODERN ELECTRONIC CIRCUITS REFERENCE MANUAL. By J. Marcus. 1,246 pp., 3,666 circuit diagrams. This comprehensive guide is used in the design of electronic circuits and has become the standard reference for engineers and technicians. It includes complete sets of values for all components, along with practical advice on circuit techniques that will make your job easier. Specifications, characteristics, and applications are included.

404/461 Pub. Pr., $82.50 Club Pr., $61.50

www.americanradiohistory.com
Why YOU should join now!

- BEST AND NEWEST BOOKS IN YOUR FIELD — Books are selected from a wide range of publishers by expert editors and consultants to give you continuous access to the best and latest books in your field.

- BIG SAVINGS — Build your library and save money too! Savings ranging up to 40% or more off publishers' list prices — usually 20% to 30%.

- BONUS BOOKS — You will immediately begin to participate in our Bonus Book Plan that allows you savings up to 70% off the publishers' prices of many professional and general interest books!

- CONVENIENCE—12-14 times a year (about once every 3-4 weeks) you receive the Club Bulletin FREE. It fully describes the Main Selection and Alternate Selections. A dated Reply Card is included. If you want the Main Selection, you simply do nothing — it will be shipped automatically. If you want an Alternate Selection — or no book at all — you simply indicate on the Reply Card and return it by the date specified. You will have at least 10 days to decide. If, because of late delivery of the Bulletin in which you receive the Main Selection you do not want, you may return it for credit at the Club's expense.

As a Club member you agree only to the purchase of three books (including your first selection) during your first year of membership. Membership may be discontinued by either you or the Club at any time after you have purchased the first selection plus two additional books.

Other McGraw-Hill Book Clubs:
- Architect's Book Club
- Byte Book Club
- Chemical Engineers' Book Club
- Civil Engineers' Book Club
- Mechanical Engineers' Book Club

For more information, write to:
McGraw-Hill Book Clubs, P.O. Box 582, Hightstown, New Jersey 08520-9859
bit ASCII character codes with the 12-bit character codes required by RamFont. And through careful definition and manipulation of the character patterns involved (lines and solids included), complex graphic images can be created on-screen. Vendor software support for the new 48K Ramfont mode is expected.

A point to consider, however, is that none of the 4K or 48K RamFont characters can be printed on paper. They are screen images only, and remain that way, Calls to the printer result in standard ASCII characters.

Printer port

Overshadowed by Ramfont’s glitter is a unique parallel-printer port. Its unique in that it is controlled by a single, proprietary IC that replaces about 18 standard TTL ICs. It is configured to function only as LPT1; to disable it, you must remove the IC.

Priced at $299—a full $200 less than the original Hercules card—the Hercules Graphics Card Plus is a winner. If you’re in the market for a monochrome graphics card, check this one out first.

GROLIER’S ELECTRONIC ENCYCLOPEDIA

What is the value of information? The answer to that question depends on the kind of information—and on whether it’s accessible. If it’s inaccessible, it’s worth just about what it would be if it didn’t exist at all: Nothing. That may seem obvious, but there’s more to the idea than may appear at first glance. Our age has already been called the Information Age, but technologies that are here now, albeit in rather primitive form, promise to eclipse previous advances in both the storage and processing of information.

In fact, it’s already happening in several areas. Almost everyone is familiar with optical storage technology, because the audio compact disk is one example of that technology. You may have heard of the CD-ROM—it’s physically the same as an audio CD, but it usually carries information that is to be processed by computer.

We discussed the organization of the audio compact disk in the August 1986 issue; an upcoming issue in 1987 will discuss CD-ROM technology. Meanwhile, we’ve been discussing CD-ROM products as they’ve been released. For example, see our review of the PC-SIG CD-ROM in the March issue. That CD-ROM contains the equivalent of more than 600 diskettes of programs and data files for the IBM-PC.

Another CD-ROM product, The Electronic Encyclopedia, has been released by Grolier Electronic Publishing, Inc. (Sherman Turnpike, Danbury, CT 06810), in cooperation with Actventure Corp. (Monterey, CA). If you’ve ever used a computer with the CP/M operating system, you may be interested to know that its inventor, Gary Kildall, is head of Actventure.

The encyclopedia is contained on a single CD-ROM; an auxiliary diskette contains Actventure’s Knowledge Retrieval System (KRS), installation software, and drivers for several popular CD-ROM drives (Hitachi, Phillips, and Sony models). Unlike some CD-ROM products, KRS does not require the hardware drivers to be included in your CONFIG.SYS file, so there is little possibility for conflict with other programs or devices. The program requires 256K of RAM, and it can run on any monochrome or color IBM-PC display.

What is it?

The encyclopedia itself is based on Grolier’s Academic American Encyclopaedia, which was first published in 1980. The text of The Electronic Encyclopedia has been available electronically through online networks since 1982. The CD-ROM contains a two-part 110-megabyte database. One part, comprising about 60 megabytes, contains the text of the encyclopedia; the other, comprising about 50 megabytes, is an index that pinpoints every occurrence of every word in the main database. The database contains about nine million words and thirty thousand entries. In
the reader to grasp intricate subtleties or wade through drawn-out historical analysis.

- To provide a starting place for further research by isolating key concepts, outlining the structure of the subject, and directing the reader to more specialized primary and secondary sources of information.

Does The Electronic Encyclopedia meet those goals? In general, yes. If you wanted graduate-level information on computer science or Shakespearean drama, the encyclopedia wouldn't help. In fact, as encyclopedias go, The Electronic Encyclopedia is rather weak; it's certainly no Britannica. But if you need a quick overview of a subject, or simply a place to start, it can be valuable.

The real strength of The Electronic Encyclopedia arises from its electronic form and from the indexing and collating abilities that form provides. It would be extremely difficult with any printed encyclopedia to find all articles containing both the words computers and electronics. But with The Electronic Encyclopedia it's simple, as shown in Fig. 3.

After choosing a search topic, you're presented with a list of articles, as shown in Fig. 4, which you may examine one by one. You do so by moving the highlight bar with the cursor keys, and then pressing F2. The text display appears as shown in Fig. 5. In addition, complicated articles can be viewed in outline format.

When you find an interesting article, you can print the text or save it to a standard ASCII text file, for inclusion in a word-processing document.

A separate KRS screen allows you to set the screen colors, type of CD-ROM drive, and operating parameters. See Fig. 6.

Evaluation

The KRS software works fairly well in helping you to extract information from the encyclopedia, but it does have a few rough edges. For example, we wanted to open a file and collect all information on a topic in that file for perusal later. It turns out that you must assign a new output file each time you enter a new article. Doing so requires you to traverse several levels of menus and to wait an appreciable amount of time.

In addition, some menu choices are not obvious, and it takes either some experimentation or a close study of the manual to learn how to accomplish simple tasks.

Last, although it's obvious that The Electronic Encyclopedia was designed not for the power user, but for the masses, a command-driven mode that bypasses the menus would have been nice, especially if it could be run from DOS in batch mode.

However we think the real importance of The Electronic Encyclopedia lies not in what it itself can do, but in the avenues of design it opens for those to follow. KRS has become a standard by virtue of being first; others will emulate its good points and correct its faults.

The situation reminds us of what happened to Kildall's earlier brainchild, CP/M. Indeed, we would be surprised if some product didn't surpass KRS just as MS-DOS surpassed CP/M. We just hope that Kildall will gain the recognition and rewards he deserves for being a true pioneer, not just another copy-cat imitator.

Our methods of dealing with information are going to have a drastic effect on how we work, on the way we live, and even on the way we play. KRS and The Electronic Encyclopedia provide us a glimpse into the kind of information-processing systems our children will take for granted while wondering how earlier ages managed to accomplish anything.

Thanks to Amdek Corporation (2021 Live-ly Blvd., Elk Grove Village, IL 60007) for use of their Color 799 EGA monitor, which was used for our color cover shots.
HALL-COMSEC'S WIRETAP, HAYES' TRANSET 1000, DISC INSTRUMENTS' \LYNX TRACKBALL, AND FINOT GROUP'S KEEP TRACK

If you've ever connected any two pieces of computer gear together, you know that the so-called RS-232 standard is really just a myth. Many companies manufacture devices designed to help you conquer a troublesome RS-232 hook-up, but a device called the WireTap, from Hall-Comsec, Inc. (901 Sandy Cove Lane, Ft. Collins, CO) is inexpensive ($37.50), and it can save you much grief. It's shown in Fig. 7.

The WireTap is a module with male and female DB-25 connectors on either end. Between them is a nine-position DIP switch, two rows of socket connectors, and two rows of LED's. Near the male end, and connected to pins 2-8, 12, 20, and 29, are red LED's, at the female end, and connected to the same pins, are green LED's. The red LED's light on high signals; the green on low. Pin 7 is connected straight through; no other pins are accessible.

To connect a pin on one end to the pin opposite it (pin 2 to pin 2, for example), just connect the alternative switch. To connect a pin to a different pin (pin 2 to pin 3, for example) use the appropriate connector and a short length of solid wire. Hall-Comsec has thoughtfully provided several such wires.

The WireTap is small enough to tuck away in a corner of your briefcase and carry with you wherever you go. It's helped us out of more than one jam.

KeepTrack Plus

Maintaining the files on a hard disk can be a real pain; many programs on the market profess to help ease the task. One of the better ones is called KeepTrack Plus. In operation, the program gives a tree-structured view of your directories and files. You can tag files across multiple directories, and then view, copy, delete, and back them up. You can copy an entire directory (with all subdirectories, if desired) by a single keystroke. KeepTrack Plus will create the appropriate tree structure in the target drive, if necessary. You can back up files to two diskettes simultaneously, and create lists of files not to back up. The screen shot in Fig. 8 should give you an idea of how easy it is.

KeepTrack Plus comes with two manuals. One teaches the fundamentals of DOS, including filenames, directory structure, batch files, etc. The other manual is for users who are ready to start using KeepTrack Plus without training. At only $79 (plus $5 shipping), it's a real bargain. Contact The Finot Group, 2390 El Camino Real, Suite 3, Palo Alto, CA 94306.

Hayes Transet 1000

There are printer buffers and then there are printer buffers like the one shown in Fig. 9. The Transet 1000 from Hayes Microcomputer Products, Inc. (5923 Peachtree Industrial Blvd., Norcross, GA 30092) is a printer buffer—but it's also a whole lot more. You can use it to buffer data from a computer to a printer while simultaneously (or separately) buffering data from a modem. You can use it to connect two computers to one printer, or one computer to two printers. You can even design your own "communication paths" through it.

The Transet 1000 has two bi-directional serial ports and an output-only parallel port. It comes in two versions: with 198K and 512K of RAM, which have suggested retail prices of $399 and $549, respectively, and many dealers discount both versions.

As a printer buffer, you can set it to print multiple copies, as well as to format raw ASCII text as well as most word processing programs.

Disc Instruments \LYNX

Around the computer shack bugs are bad, but rodents can be good. Some people swear by mice; others hate them. A compromise, and a good one, is sold by Disc Instruments (102 East Baker Street, Costa Mesa, CA 92626), a subsidiary of Honeywell. It's called the \LYNX (pronounced micro\LYNX), and it provides the convenience features of a mouse without the hassle.

Its biggest selling point is that you don't need to clean your desk—a rolling ball in the top of the unit performs the "mouse" functions. In addition, you don't need to dedicate a serial port to it; through a special dual connector, it hooks up between your keyboard and your computer. No separate power supply is necessary.

In operation, it greatly speeds cursor movements in programs like AutoCAD, Dr. Halo, etc. And it should be compatible with most programs, because it emulates operation of the Microsoft mouse.
Personal computers have proven themselves extremely valuable to scientists, engineers, students, office workers, writers, musicians, artists and many others. But one problem that has often plagued personal computer users is the dissemination of information. Typing program listings (from ComputerDigest and other magazines) into a computer is time consuming and prone to error. Not only is time wasted in typing, but time is also wasted in debugging one's typing errors.

The Cauzin system is what the publishing industry has been looking for: an inexpensive yet reliable means of printing the software programs that eat up so much valuable page space. Bar codes were touted several years back as a possible solution. But bar codes never caught on because of their low data density, and because no low-cost, reliable bar-code reader became generally available for personal computers. However, a new technology that is similar, but vastly superior, to bar codes hopes to revolutionize the way that computer programs and other data are distributed.

Cauzin Systems, Inc. (a division of Kodak) has devised this new technology. Long narrow strips called Datastrips are the heart of this technology.

As shown in Fig. 1, each strip is about 0.78 inches wide; the length depends on the amount of data a strip contains. The maximum length of a strip is about 9 inches. Different strips can contain different amounts of data, depending on the printing process, and on the paper and ink used for printing. Low-density strips, which can be printed on any Epson MX or FX printer, contain about 1500 bytes; high-density strips, which must be reproduced photographically, can contain up to 5500 bytes. High-density strips printed on good paper with the proper ink can hold 60,000 bytes on a single 8 1/2 x 11 inch sheet of paper. Each strip can hold as many as 10 files; conversely, a long file can extend across as many as 255 strips. A file can contain anything that can be represented in eight-bit bytes: program code, ASCII text, graphic images, spreadsheet workfiles, data bases, etc.

The reader required by the system contains a highly-integrated mechanical, optical and electronic system, all under control of a
custom microprocessor (a TMS7040) and a custom VLSI IC. An internal view of the reader is shown in Fig. 2. In addition to the eight scanning lenses, 160 lenses are used for speed control.

The Softstrip

The physical makeup of a Softstrip is shown in Fig. 3. As you can see in Table 1, each strip contains 20 fields comprising a header area and a data area. Every strip contains fields 1 through 10; only the first strip of a file (or a group of files that extends across two or more strips) contains fields 11 through 18. Field 19 is the data area, and field 20 is an optional two-byte CRC (Cyclic Redundancy Check) code for error checking.

Each strip may contain from 2 to 6 bytes horizontally, plus one parity bit at each end of a line. Each line can be between ten and 40 mils high. Since each scan covers an area 2.5 mils high, the maximum resolution of the reader is 400 lines per inch. And since the thinnest data line is ten mils high, each data line is scanned a minimum of four times. Low-density strips with 40-mil lines are scanned 16 times.

Communicating with the reader

Cauzin has written communications programs for several popular microcomputers: the Apple Ile, the Apple IIc, the Macintosh, and the IBM-PC. Those programs can be used to read data strips automatically. However, if you want to read a data strip into a computer for which Cauzin has written no communications program, or if you’re interested in getting at data strip files directly, here’s some information that will help.

All you need is an interface cable, a computer with a serial port, and a communications program that can run at 4800 baud with 1

<p>| TABLE 1—CAUZIN SOFTSTRIP™ FIELD LAYOUT |</p>
<table>
<thead>
<tr>
<th>Field</th>
<th>Length</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Horizontal Sync</td>
<td>1</td>
<td>$00</td>
</tr>
<tr>
<td>2: Vertical Sync</td>
<td>2</td>
<td>$00 See</td>
</tr>
<tr>
<td>3: Data Sync</td>
<td>2</td>
<td>$00 Extended Description</td>
</tr>
<tr>
<td>4: Expansion</td>
<td>2</td>
<td>Two byte Hex length of</td>
</tr>
<tr>
<td>Bytes</td>
<td></td>
<td>total bytes following this field</td>
</tr>
<tr>
<td>5: Length</td>
<td>6</td>
<td>A mandatory 6 byte ID</td>
</tr>
<tr>
<td>6: Checksum</td>
<td>6</td>
<td>field (preferably ASCII)</td>
</tr>
<tr>
<td>7: Strip I.D.</td>
<td>6</td>
<td>Binary Add with carry</td>
</tr>
<tr>
<td>8: Sequence No.</td>
<td>6</td>
<td>Binary</td>
</tr>
<tr>
<td>9: Strip Type</td>
<td>6</td>
<td>Binary</td>
</tr>
<tr>
<td>10: Software Expansion</td>
<td>6</td>
<td>Binary (reserved)</td>
</tr>
<tr>
<td>11: Op. Sys. Type</td>
<td>6</td>
<td>Binary</td>
</tr>
<tr>
<td>12: Number Files</td>
<td>6</td>
<td>Binary</td>
</tr>
<tr>
<td>13: Cauzin Type</td>
<td>6</td>
<td>Binary</td>
</tr>
<tr>
<td>14: O.S. File Type</td>
<td>6</td>
<td>Binary</td>
</tr>
<tr>
<td>15: File Length</td>
<td>6</td>
<td>Binary 1sb, nsb, msb order</td>
</tr>
<tr>
<td>16: Filename</td>
<td>Var.</td>
<td>ASCII Variable length name</td>
</tr>
<tr>
<td>17: Terminator</td>
<td>Var.</td>
<td>$00/FF Filename</td>
</tr>
<tr>
<td>18: Block Expand</td>
<td>Var.</td>
<td>Terminator</td>
</tr>
<tr>
<td>19: Data</td>
<td>Var.</td>
<td>$00 defaults 1 byte no info.</td>
</tr>
<tr>
<td>20: CRC</td>
<td></td>
<td>File data information in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>consecutive blocks based on previous file lengths.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>optional at strip end</td>
</tr>
</tbody>
</table>

NOTES: Fields 1 thru 10 occur on every strip. Fields 11 thru 18 are contained on Strip 1 only. File Directory Repeated Fields 13 thru 18 End of repeated file directory fields

FIG. 1—SAMPLE DATA STRIP contains a 6K BASIC program for printing a calendar for any year with a custom message. The program is also available on RE-BBS.
start bit, 1 stop bit, and no parity bits.

The pinout of Cauzin's 6-pin modular plug is shown in Fig. 4. The reader can provide two kinds of outputs: ± 5-volt RS-232, and 25-mv Apple II cassette compatible. Pin 3 of the output connector determines whether RS-232 or cassette mode is active. The reader has a built-in pull-up to enable cassette mode; to enable RS-232 mode, just ground pin 3 (by connecting it to pin 6). Pin 1 provides a separate ground for the data input line in cassette mode; pin 4 provides a special signal we'll discuss below. To connect the reader to an IBM-PC, a Macintosh, or an Apple, follow the wiring diagrams shown in Fig. 5.

To read a Softstrip into a non-supported computer, you'll use the **TERMINAL** mode. Position the reader by aligning the circle and the bar by the Softstrip with the corresponding points on the reader. Then use your communications program to send the reader a "T" or a "t." The reader does not transmit an acknowledgement, rather the reader goes directly into the read mode. Use your communications program to capture the contents of the file in memory and then write the file to disk when transmission is complete. You can capture a file that extends across more than one strip simply by reading each strip in turn.

The Terminal mode is most useful for ASCII file transfers, because some file-header "garbage" may end up in the file. That garbage could create havoc in a binary object-code file. The communication program supplied by Cauzin transfers files cleanly, makes sure you read the strips in proper order, and performs other error checking.

Hacker mode

Notice in Fig. 4 that pin 4 of the reader's connector is labeled "Slice." Slice is a direct digital representation of the output of the scanner. By capturing the output of slice, you can digitize a rectangular region measuring about 0.78 by 0.5 inches. Possible applications include fingerprint analysis, digitization of musical scores, and handwriting analysis.

Note that the reader provides only the digitized signal; it's up to you to write the appropriate pattern-recognition software. However, Cauzin has written a special demonstration program that captures a digitized image in the memory of an Apple II computer. After an image has been captured, it can be saved to disk, printed, or displayed on screen. The hacker demo program is available from Cauzin.

The signal provided by Slice is purely digital. When the scanner is focused on a black spot, Slice will be high (+5.0 volts). When the

![FIG. 2—INTERNAL VIEW OF THE READER: the eight black tabs provide horizontal-sync-like pulses for synchronizing the reader. All operations are controlled by a custom microprocessor.](image)

![FIG. 3—THE SOFTSTRIP DIMENSIONS are shown in a. Its major areas are shown in b: (1) the header, which indicates paper and ink quality, number of bytes per line, and alignment; (2) the data section, which contains directory information; (3) the file section, which contains all data; (4) boundary lines, which keep the reader aligned and synchronized; (5) alignment marks.](image)
ADD A DISK DRIVE

For improved computing performance.

Herb Friedman

NOT ONLY DO TWO half-height drives take up exactly the same amount of space as a full-height drive, their power requirements are half that of the full-height drive.

There are so many “surplus” 5-1/4 inch disk drives flooding the marketplace that a modern fast-access drive which sold for well over $200 a little more than a year ago can now be purchased for less than $60. Many of these surplus drives are half-height and IBM-compatible, which means they are dual-sided with 40 tracks per side, so that two will fit in exactly the same space as a full-height drive while using only as much power as a single full-height drive, and they will work in IBM-compatible, Radio Shack, Heath, and Zenith computers, as well as any other computer whose original drive was mechanically and electrically compatible with the Shugart SA-400 5-1/4 drive.

Although a half-height IBM-compatible disk drive is double-density, 40 tracks per side, with a track access of 6 milliseconds, it is downward-compatible with earlier single-density 35 track drives having 30 ms. track access. If the original drive(s) for your computer, such as a Radio Shack Model I, use single-density, 35 track, single-sided drives, the IBM-compatible dual-sided 40 track half-size drive will work just fine. The computer simply ignores the extra 5 tracks per side and the second side. If your computer is a Heath H8, which uses hard-sector single-sided, 40-track 20-ms drives, you can again substitute an IBM-compatible drive because a drive having faster track access can replace one of slower access. Also, an IBM-compatible drive automatically works in the hard or soft-sectored mode. (The hard or soft sector mode is determined by the disk controller.)

Satisfied?

Maybe you’re satisfied with your present drive(s) but would like to use modern software which requires additional disk drives for maximum throughput; or maybe you want to increase the number of drives without installing outboard accessories. Either is accomplished by substituting two half-height drives for one or more internal full-height drives. If you have a Color Computer disk drive accessory it has 35 tracks, and 20- or 30-ms track access. The same cabinet and cable will accommodate two 40-track 6-ms drives. Since much modern software for this computer allows the user to select both the number of tracks and the track access time, you can almost double the track access speed. If you have an IBM PC-compatible computer you could replace the A: drive with two half-height drives (A: and B:) and use the space (from the original drive B:) for an internal hard disk drive.

The physical installation of two half-height drives presents no problems because the power and signal connectors are “standard.” You might have to drill new holes in the cabinet for the half-height’s connectors. Simply flip the drive over so the connections are in the clear—there are mounting holes on both sides of the drive.

THE ONLY REQUIRED wiring modification will be the addition of a second power supply connector, which is always supplied with factory-installed wires.

YOU WILL AVOID the possibility of damage to the power supply’s printed circuit board if you splice the new power connector to the original wiring. Cut the tape to 3/8 inch so you can wrap several turns around the splice.

THE COMPLETED SUPPLY looks the same, but now there are two power connectors. Solder neatly, and don’t remove unnecessary insulation.
Every color in the rainbow has been used. Since the connector is polarized, orient the old and new connectors in the same direction and then match the individual connections. To splice in the new wires, scrape about ¼ inch of insulation off an original wire, wrap the new wire around the old, solder, and cover with tape. If you offset each splice about one inch there will be no possibility of a short if a strand of wire slips out from under the tape.

Since it's almost impossible to program one of the half-heights when two are substituted for a full-height drive, make sure you program the drive before it's installed in the cabinet. Programming means setting the drive select jumper and possibly pulling a termination resistor block. Old drives programmed drive selection through pins shorted by a jumper plug. Also, most no longer have HS and HL head-loading programming, nor a MUX connection. If

NEXT TAG and remove the resistor block from all drives except the one that uses the last connector on the signal cable. Then mark the block.

USING TWEEZERS or needle-nose pliers, set each drive's DS drive select jumper to correspond to the jumper of the older drive being replaced, or to the required jumper pair if you're just adding an extra drive.

INSTALL THE DRIVE(S) and the signal and power connections. Make sure that matching power connector terminals are spliced together. One or more drives will probably be damaged if you reverse the end wires of a single connector.

Power connections

You will need to install an extra power connector for the extra drive. Do not remove the power supply assembly and drill new holes in the printed circuit board for the extra power wires because you can end up damaging the printed circuit board or one of the heath-sinked voltage regulators. A better way is to splice the wires for the new power connector into the wires leading to the original power connector. Don’t attempt to match color-coded leads because there is no color standard for a disk drive's power connector.

SECURE THE CABINET COVER and you now have two drives that occupy the space of one, both using the original cabinet and power supply.

they exist they are factory-set at other pin-jumper terminals—which should never be changed by the user. If you don’t know what a jumper is for, don’t touch it.

The drive select programming for any 5-¼ inch disk drive is almost always located adjacent to the card-edge signal connections, which are easy to locate because they are labeled DSO, DS1, DS2, and DS3. To program a half-height, look at your old drive and determine which one of the drive select jumpers isn’t cut open. Then move the half-height’s jumper to the same set of terminals, but keep in mind that the physical location might be different; on your old drive DS1 might be the third set of terminals, on the half-height it might be the first or second set of terminals. You are only interested in matching the DS connections, not their physical location. If your old drive also has HS, HL, or MUX jumpers forget them. If your old drive has all DS jumpers set (Radio Shack does this for some computers because the selection is actually made by the pins of the signal cable’s connector), you either must determine which is the one that’s actually used, or short all DS pairs on the half-height drive.

Finally, there is the terminating resistor block. All drives are supplied with a terminating resistor, which resembles a socketed integrated circuit. It is generally located near the drive select jumpers. (If you can’t locate the terminator block, phone the store that sold you the drive.) Only one drive per set of drives on a signal cable—usually the one at the end of the signal cable from the computer—can have the terminator; often, drives won’t work if two or more drives are terminated. Pull the unwanted resistor block, but use an IC extractor tool so you don’t damage the pins. You might need the block in the future. Not all resistor blocks are alike; a Brand X drive won’t necessarily work with a resistor block from a Brand Y drive, so place a small label on each block before it’s pulled so you know which block goes into which drive.

Basically, it takes longer to describe how to swap or retrofit half-height disk drives than it takes to do the job. The photographs show how easy it is to do a 9:1 half-height retrofit. If you plan your work carefully and solder neatly, soon you’ll enjoy the convenience of dual disk storage 📁 ✓
Like the early settlers of this country, the pioneers of the personal-computer revolution built their own. Legendary machines like the Altair 8800 and the SWTPC 6800 were built, like settler’s houses, from whatever materials were at hand. There was no going into the local Computerland and saying “Yea, I wanna buy a machine to do the bills and maybe play a few games—just for the kids, you know...” If one of those pioneers wanted to balance his checkbook, he had to write a program to do it—and in assembly language at that!

Nowadays people say that that pioneering spirit is dead, and that no one in his right mind would attempt to build his own computer. Well we think differently. We think that you can learn an enormous amount about computers (and, possibly, about psychiatry) by building your own computer. In fact, we think that, for the engineering or technical student interested in digital design, there is no better way to learn than by building your own computer.

So, in this 463-part series, we are going to teach you everything you need to know—from the ground up—about building your own computer. With the information we’ll provide, you’ll be able to put together a fully functional version of anything from an Apple II to an IBM-PC to a Cray. So stay tuned.

Basic electricity

To begin our foray into the world of computers, let’s discuss the basics of electricity. As everyone knows, there are two basic kinds of electricity: positive and negative. (See Fig. 1.) Due to the nature of the Earth’s orientation with respect to the sun, electricity in the northern hemisphere is positive. If you’re from “down unca,” you have negative electricity. You can see for yourself how the two types of electricity differ by standing on the equator, extending your arms from your sides, and holding a large plastic pail in each hand. (See Fig. 2.) You must use a plastic pail, because a metal one would conduct electricity and allow it to leak out on the ground. Anyway, after a while, you’ll find that the pail in the northern hemisphere is much heavier than the one in the southern hemisphere.

For our circuit examples we’ll use positive electricity. Later on (in part 367) we’ll show you a simple means of converting positive to negative (and negative to positive) electricity. But for now, if you live down unca, just reverse the orientation of all polarized components (diodes and capacitors), and substitute PNP for NPN transistors.

POSITIVE ELECTRICITY

- Positive electricity is the electricity found in the northern hemisphere.
- Positive electricity is the electricity found in the northern hemisphere.

NEGATIVE ELECTRICITY

- Negative electricity is the electricity found in the southern hemisphere.
- Negative electricity is the electricity found in the southern hemisphere.

FIG. 1—THE TWO MAJOR KINDS OF ELECTRICITY. Other less-common types are not shown.
Basic logic

Just as there are two basic kinds of electricity, there are two basic kinds of logic. Your choice of positive or negative logic, however, depends not on which hemisphere you live in, but on how obscure you want your circuit designs and programs to be. Due to the nature of the human mind, positive logic is inherently more comprehensible than negative logic. Positive logic is used more often than negative logic, but negative logic certainly has its uses. Sometimes, for example, if you're having trouble resolving a circuit into its proper logic elements, merely thinking about it in the opposite set of terms may suggest a solution. Or, if you're a student, you may be able to impress your professor by casting a circuit with negative logic elements. Or you may be able to confuse him so much that he'll have to admit you're a genius and place you on the dean's list.

As we said, negative logic does have its uses.

There are three basic kinds of logic operations; it has been shown that many logic problems can be solved by combining them in various ways. The operations are the NOT, the AND, and the NAND. Their truth tables are shown in Fig. 3-a-Fig. 3-c.

The NOT gate

The operation of the NOT gate will be familiar to anyone who is married. For lack of anything better to do, couples often take up opposite sides of an argument. It doesn't matter which side each person takes; in fact, often, the partners may in fact agree, or each may actually believe in the point of view the other represents. The important point is that for every "yes" there is a corresponding "no," and for every "no" there is a corresponding "yes." That is the essence of the NOT gate.

The AND gate

By contrast, the operation of the AND gate will be totally unfamiliar to anyone who is married. A two-input AND gate has the following property: for the output to be "yes," both inputs must be yes. Just as the two partners of a marriage almost never agree on the same thing at the same time, the AND gate is seldom used in practical circuits.

The NAND gate

The operation of the NAND gate should be somewhat more familiar. It is a combination of a NOT gate and an AND gate. For the output of a NAND gate to be "no," both inputs must be "yes." However, the output will be "yes" if either input is "yes." That is a very useful property.

Let's consider an example: suppose you want to buy a new computer, and your wife says no. If you had signed a marriage

![Diagram](https://example.com/diagram.png)

FIG. 4—A DISCRETE-COMPONENT NAND GATE. Build several hundred for next time.

![Diagram](https://example.com/diagram.png)

FIG. 5—POSITRON CATCHER. To decrease loss due to leakage, all components should be non-metallic. Use non-conductive epoxy to attach the parts together.
THE CAUZIN SOFTSTRIP SYSTEM

continued from page 95

![Diagram of 6-conductor modular telephone connector](image)

FIG. 4—READER PINOUT: A six-conductor telephone cord provides all connections. See Fig. 5 for connections to typical computers.

<table>
<thead>
<tr>
<th>READER (DB-25 IBM RS-232)</th>
<th>READER DB-9 (MAC RS-232)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2-TXD</td>
</tr>
<tr>
<td>3</td>
<td>7-GND</td>
</tr>
<tr>
<td>5</td>
<td>3-RXD</td>
</tr>
<tr>
<td>6</td>
<td>1-RTS</td>
</tr>
<tr>
<td>4</td>
<td>5-CTS</td>
</tr>
<tr>
<td>6</td>
<td>6-DSR</td>
</tr>
<tr>
<td>5</td>
<td>8-CO</td>
</tr>
<tr>
<td>1</td>
<td>5-PIN DIN</td>
</tr>
<tr>
<td>2</td>
<td>2-TXD</td>
</tr>
<tr>
<td>3</td>
<td>1-RTS</td>
</tr>
<tr>
<td>4</td>
<td>5-CTS</td>
</tr>
<tr>
<td>6</td>
<td>6-DSR</td>
</tr>
<tr>
<td>1</td>
<td>5-PIN DIN</td>
</tr>
<tr>
<td>2</td>
<td>2-TXD</td>
</tr>
<tr>
<td>3</td>
<td>1-RTS</td>
</tr>
<tr>
<td>4</td>
<td>5-CTS</td>
</tr>
<tr>
<td>6</td>
<td>6-DSR</td>
</tr>
<tr>
<td>1</td>
<td>5-PIN DIN</td>
</tr>
<tr>
<td>2</td>
<td>2-TXD</td>
</tr>
<tr>
<td>3</td>
<td>1-RTS</td>
</tr>
<tr>
<td>4</td>
<td>5-CTS</td>
</tr>
<tr>
<td>6</td>
<td>6-DSR</td>
</tr>
<tr>
<td>1</td>
<td>5-PIN DIN</td>
</tr>
<tr>
<td>2</td>
<td>2-TXD</td>
</tr>
<tr>
<td>3</td>
<td>1-RTS</td>
</tr>
<tr>
<td>4</td>
<td>5-CTS</td>
</tr>
<tr>
<td>6</td>
<td>6-DSR</td>
</tr>
<tr>
<td>1</td>
<td>5-PIN DIN</td>
</tr>
<tr>
<td>2</td>
<td>2-TXD</td>
</tr>
<tr>
<td>3</td>
<td>1-RTS</td>
</tr>
<tr>
<td>4</td>
<td>5-CTS</td>
</tr>
<tr>
<td>6</td>
<td>6-DSR</td>
</tr>
<tr>
<td>1</td>
<td>5-PIN DIN</td>
</tr>
<tr>
<td>2</td>
<td>2-TXD</td>
</tr>
<tr>
<td>3</td>
<td>1-RTS</td>
</tr>
<tr>
<td>4</td>
<td>5-CTS</td>
</tr>
<tr>
<td>6</td>
<td>6-DSR</td>
</tr>
<tr>
<td>1</td>
<td>5-PIN DIN</td>
</tr>
<tr>
<td>2</td>
<td>2-TXD</td>
</tr>
<tr>
<td>3</td>
<td>1-RTS</td>
</tr>
<tr>
<td>4</td>
<td>5-CTS</td>
</tr>
<tr>
<td>6</td>
<td>6-DSR</td>
</tr>
<tr>
<td>1</td>
<td>5-PIN DIN</td>
</tr>
<tr>
<td>2</td>
<td>2-TXD</td>
</tr>
<tr>
<td>3</td>
<td>1-RTS</td>
</tr>
<tr>
<td>4</td>
<td>5-CTS</td>
</tr>
<tr>
<td>6</td>
<td>6-DSR</td>
</tr>
<tr>
<td>1</td>
<td>5-PIN DIN</td>
</tr>
</tbody>
</table>

FIG. 5—CONNECT THE READER TO AN IBM-PC AS SHOWN IN a, TO A MACINTOSH AS SHOWN IN b, TO THE RS-232 PORT OF AN APPLE IIc AS SHOWN IN c, OR TO THE CASSETTE PORT OF AN APPLE IIe AS SHOWN IN d.

send three 0E characters, at which point the reader will begin scanning. From that point on, it's up to you to capture and analyze the data.

Other Uses

Datastrips can be printed in other forms. For example, they can be printed on credit-card-like pieces of plastic and used for emergency-room admissions and other applications. For instance, all of a patient’s relevant medical statistics could be printed on a small card. Use of the card, rather than a lengthy interview, can speed the admission process, and could mean the difference between life and death for a critically ill patient. A card and a special reader are shown in Fig. 6.

Softstrip datastrips can also be used to archive any sort of information. They are ideal for long-term storage because paper and ink are much more secure over long periods of time than magnetic media (disks and tape) and microfilm.

Conclusions

As you can see, Cauzin has packed a lot of smarts into a very small package. Whether the Softstrip system will catch on remains to be seen. However, many book publishers (Addison-Wesley, Houghton Mifflin, McGraw Hill, and many others) and many newspapers and magazines (including The Village Voice, Byte, Keyboards, Computers and Software, MacUser, Nibble, Nibble Mac, Dr. Dobbs, and many others) have already begun to print software in strip form, and we're considering it too. Let us know what you think. If reader response warrants it, you'll soon see much of our software in that form.

Project goals

The NAND gate is the basic building block of many digital computers. Whatever kind of computer you want to build, you can be certain of one thing: you'll need many NAND gates. You can start building now, and, if you change your mind later on, that's OK. Provided you use a reliable interconnection scheme, you can always reuse the gates you build. Of course, if you're sure you want to build, say, a Cray, you can get much better prices for the parts you buy by buying in large quantities. Here are our estimates for the number of gates you'll need to build various computers. To build a Cray supercomputer, about 10¹⁰ gates. To build an IBM-PC, about 10¹⁰ gates. To build an Apple II, three or four dozen gates should

Scanner is focused on a white spot, slice will be low (0.0 volts). To use slice, you'll also have to monitor pin 5, data out. Valid data appears at slice only when data out is high. In Hacker mode, data out carries the signal that Cauzin calls Long Black. Long Black is similar to a TV's horizontal-sync signal.

To get into hacker mode, send an “H” to the reader, and wait for the reader to transmit a CTF (Command To Follow) followed by an “H.” CTF is Cauzin's designation for a BREAK-type signal, not an ASCII character. CTF is a single pulse that goes low for 74 ms and then high for 74 ms. After receiving the “H,” your program must agree with her stating that both of you would abide by the rules of NAND logic, you would be able to buy the computer. Of course, simple NAND logic can be detrimental, too. For example, if she wants to buy a new hair dryer, you're stuck. But by combining several logic elements, you could develop an equation like this:

T = H AND (W OR W).

The equation shows that T will be “yes” only when H says “yes,” regardless of what W says. If you think that the term (W OR W) is irrelevant, then you don't understand completely the psychology of marriage.

Other logic elements

There are many other logic functions (OR, NOR, XOR, XNOR, maybe, sort-of-kind-of YES but, and so on), but, in order to reach our goal of building our own computer, we needn’t discuss them here. Consult any elementary textbook on digital logic for more information. In the meantime, let’s turn to something of a more practical nature.

Basic NAND circuit

A two-input NAND gate is shown in Fig. 4. As we stated above, both inputs must be "yes" for the output to be "no." We’re using positive logic, so a “yes” corresponds to a high, and a “no” corresponds to a low (ground). The values of the resistors will depend on the voltage you use to power the circuit. We'll show you how to build your own positron catcher (for generating positive electricity) below. But for experimental purposes, you could use a nine-volt battery and 2k resistors.
R-E Computer Admart

CALL NOW AND RESERVE YOUR SPACE

- 6 x rate $800.00 per each insertion.
- Reaches 239,312 readers.
- Fast reader service cycle.
- Short lead time for the placement of ads.

Call 516-293-3000 to reserve space. Ask for Arline Fishman. Limited number of pages available. Mail materials to: Computer Admart, RADIO-ELECTRONICS, 500-B Bi-County Blvd., Farmingdale, NY 11735.

Construction

After verifying that your circuit works, you’ll want to start duplicating it. Each gate could be built on a separate piece of perfboard, using spring-loaded terminals for connections. You’ll need five terminals per gate (two for inputs, one for the output, and two for power and ground). However, if you’re planning to build one of the larger computers, you may want to build many circuits (hundreds, or even thousands) on each card. The connections between the gates on each card could be soldered, and the cards might be interconnected via spring-loaded terminals.

The size of the positron catcher you’ll need also depends on the computer you’ll build. A filled household bucket will provide several hours of experimentation using several hundred gates. You can use a funnel, a thimble, and a drinking straw, as shown in Fig. 5. Drill a ½-inch hole in the thimble, and then use epoxy to glue the thimble to the funnel, and the straw to the thimble. Be careful not to clog the straw!

If you’re planning to build a Cray, try to obtain a 10,000-gallon fiberglass tank. You may be able to buy one cheaply from an out-of-business gas station. For the sake of efficiency, you should use something larger than a household funnel to catch positrons. If you can locate your catcher on top of a mountain, you’ll avoid the dissipating effect the atmosphere has on positron energy.

Conclusion

The power of simple digital logic elements can be surprising at times. And that is the goal of our series—to show you just how much you can do with a few (or many) simple gates. For next time, start building gates. You should have at least several hundred on hand so that we can start building the most important part of any computer: the ALU (Arithmetic Logic Unit).

One problem you may run into is time. While the gates are easy to build, it’s tough to build several hundred in just a month. So that we don’t leave anyone behind, we’ll delay publishing Part 2 until April, 1988. See you then.

Rates: Ads are 2½" x 2½". One insertion $825. Six insertions $800 each. Twelve insertions $775. each. Closing date same as regular rate card. Send order with remittance to Computer Admart, Radio Electronics Magazine, 500-B Bi-County Blvd., Farmingdale, NY 11735. Direct telephone inquiries to Arline Fishman, area code-516-293-3000. Only 100% Computer ads are accepted for this Admart.

GETTING THE MOST FROM YOUR PRINTER

BP181—It is probable that 80% of dot-matrix printer users only ever use 20% of the features offered by their printers. This book will help you unlock the special features and capabilities that you probably don’t even know exist. To order your copy send $9.95 plus $1.50 for shipping in the U.S. to Electronic Technology Today Inc., P.O. Box 240, Massapequa Park, NY 11762-0240.

A Z-80 WORKSHOP MANUAL

Starting with a review of computer principles, this book describes typical machine-code instructions followed by a detailed description of the Z-80 instruction set. Assembly language programming is also discussed with examples. Z-80 basic machine-code and assembler instructions are given in tabular form, along with in-context for the Z-80 and its associated devices. Order your copy from Electronic Technology Today Inc., P.O. Box 240, Massapequa Park, NY 11762. Price is $9.95 plus $1.00 for shipping.
stall the watchdog timer (IC43) and JU15, and set the timeout for approximately 1 second (by substituting a 1-Megohm resistor for R19). Do not install any other IC’s. Apply power and confirm that the oscillator is operating by observing the signal at pin S6 of the microprocessor. Pin 24 of the microprocessor should go low each time S2 is pressed and each time IC43 times out. If those operations appear normal, remove power and install a ROM with a simple JMP - 1 instruction where the reset vector normally goes (F000:F0F 00). Now, if all is well, you should see a nice tight loop by observing the address bus on an oscilloscope.

You can trigger your scope easily on that signal and actually use your scope as a poor-man’s bus analyzer. Observe the RD line and select a cycle for analysis. Note the exact position of the RD strobe on your scope. Now probe the DO line. Is it high or low when RD is low? Write it down. Do the same for all of the data and address lines. You have just decoded the entire state of the microprocessor for that RD cycle: the address being read and the next instruction in the ROM.

Next, fill a ROM with NOP’s (090h) and execute a jump to the beginning of the ROM. Scope the address lines. You should see a 0101 sequence on A6, a 0011 sequence on A1 and so on. Each address line will appear at half the frequency of the preceding line.

What if things are not as they should be? This is where the watchdog timer (IC43) comes to our rescue. Set it for a timeout of a few milliseconds, trigger your scope on the reset pulse from the microprocessor (pin 27), and observe the first few RD cycles in the ROM. Here are a few things to look for:

1. Is the chip select line to the ROM (pin 20) active? If not, there could be a problem in the address-decoding circuitry or the address latches. Perhaps one or more of the microprocessor signals ALE, DEN, DT/R, RD, or WR are lost.

2. Are the address lines correct? They should all be high except for A6-A3; those lines will toggle. Watch for voltage levels that are neither high nor low, or two lines may be shorted, or the address decoder may not be functioning correctly.

3. Decode the first few instructions on the data bus. Do they accurately represent the contents of the ROM? Are the voltage levels correct? Incorrect voltage levels are caused by bus contention, shorted traces, ungrounded IC’s, unpowered IC’s, capacitors attached to data lines, and many others we have not (yet) had the pleasure of encountering.

The end of spark

Another important milestone in the development of radio was the development of a generator capable of producing a high-frequency, continuous-wave carrier. That is, a carrier that could be modulated by sound.

Early radio transmitters were of the spark type. They could produce only a damped wave, which is very broadband and electrically noisy. Because of those characteristics, spark was suitable only for wireless telegraphy.

In 1889, Elihu Thomson of General Electric produced a high-frequency dynamo. Later, Nikola Tesla also produced such a dynamo. However, both had a maximum frequency of only about 5,000 cycles.

By 1903, Charles Steinmetz had built a 10,000-cycle alternator. In 1904, Reginald A. Fessenden conceived the idea of an alternator that would be capable of reaching a frequency of 100,000 cycles. Assigned to the project by General Electric, Ernst F. W. Alexander attempted to build such a device. He was eventually successful, although only after repeated failures.

The first transmission of a human voice took place on Christmas Eve, 1906. The continuous-wave carrier was generated by an alternator with an operating frequency of 50,000 Hz and a power of 1 kW. The microphone was a water-cooled unit. The historic event was not accompanied by much publicity, and 14 years would elapse before the beginning of scheduled radio broadcasting in the U.S. in 1920.

Tuned circuits

Spark did have one advantage: receivers did not need any type of tuning mechanism. For continuous-wave signals to be useful, some means of tuning would be required. Sir William Crookes’ article, “Some Possibilities of Electricity” published in the Forrnightly Review in 1892, called attention to the need for tuned circuits. He wrote, “What remains to be discovered is a means of generating waves of any desired wavelength, and receivers which will respond to wavelengths between certain defined limits and be silent to all others.”

That idea was put into action by Sir Oliver Lodge, who started experimenting with tuned receivers and transmitters in 1897. He called his method “syntonic tuned achieved through the use of capacitors.” With the development of continuous-wave transmitters, and tuned receivers that could receive their signals, the first stage of the electronics revolution was complete.

as high-current rectifiers in low-voltage applications.

As the forward bias on the tunnel diode is increased, however, something interesting happens. As shown in Fig. 7, the current peaks and then drops into a deep valley, only to increase exponentially in traditional fashion.

The dip constitutes a region of negative resistance, i.e., increased voltage leads to decreased current. By exploiting that characteristic, the tunnel diode can be made to oscillate in the relaxation mode. The small physical size of the tunnel diode permits oscillation into the hundreds of megahertz with simple circuitry and minimum power dissipation.

Tunnel-diode characteristics can be measured easily with a voltmeter and a current meter, as shown in Fig. 8. Bias voltage is increased with R1, and the rise in current noted. At some point (Vp), current will jump suddenly, and voltage will increase by several hundred millivolts. Those characteristics represent valley current (IV) and valley voltage (Vp), respectively. Typical readings are 100 mV at 1 mA for the peak values, and 350 mV at 0.1 mA, for the valley values. The Vp to IV ratio should be no less than 6 to 1.

That's it for this month; next time we'll look at thyristors.
MARKET CENTER

FOR SALE
TUBES new, unused. Send self-addressed, stamped envelop for list. FALAN ELECTRONICS, Box 1376-2, Milwaukee, WI 53201.

CLASSIFIED AD ORDER FORM

To run your own classified ad, put one word on each of the lines below and send this form along with your check to:
Radio-Electronics Classified Ads, 500-B Bi-County Boulevard, Farmingdale, NY 11735

PLEASE INDICATE in which category of classified advertising you wish your ad to appear. For special headings, there is a surcharge of $23.00.

() Plans-Kits () Business Opportunities () For Sale () Education/Instruction () Wanted () Satellite Television

Special Category: $23.00

PLEASE PRINT EACH WORD SEPARATELY, IN BLOCK LETTERS. (No refunds or credits for typesetting errors can be made unless you clearly print or type your copy.) Rates indicated are for standard style classified ads only. See below for additional charges for special ads. Minimum: 15 words.

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15 ($42.75)
16 ($45.60) 17 ($48.45) 18 ($51.30) 19 ($54.15) 20 ($57.00)
21 ($59.85) 22 ($62.70) 23 ($65.55) 24 ($68.40) 25 ($71.25)
26 ($74.10) 27 ($76.95) 28 ($79.80) 29 ($82.65) 30 ($85.50)
31 ($88.35) 32 ($91.10) 33 ($93.95) 34 ($96.90) 35 ($99.75)

We accept MasterCard and Visa for payment of orders. If you wish to use your credit card to pay for your ad fill in the following additional information (Sorry, no telephone orders can be accepted):

Card Number ____________________________ Expiration Date ______/____

Please Print Name ____________________________ Signature ____________________________

If you use a box number you must include your permanent address and phone number for our files. Ads submitted without this information will not be accepted.

Classified Commercial Rate: (for firms or individuals offering commercial products or services) $2.85 per word prepaid (no charge for zip code). MINIMUM 15 WORDS. Minimum discount for same ad in 6 issues; 10% discount for same ad in 12 issues within one year; it prepaid. NON-COMMERCIAL RATE: (for individuals who want to buy or sell a personal item) $2.30 per word prepaid...minimum. ONLY FIRST WORD AND NAME set in bold caps at no extra charge. Additional bold face (not available as all caps)] $8.00 per word additional (20% premium). Entire ad in boldface, add 20% premium to total price. TINT SCREEN BEHIND ENTIRE AD: add 25% premium to total price. TINT SCREEN BEHIND ENTIRE AD PLUS ALL BOLD FACE AD: add 45% premium to total price. EXPANDED TYPE AD: $4.30 per word prepaid. All other items same as STANDARD COMMERCIAL RATE. TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD PLUS ALL BOLD FACE AD: add 45% premium to total price. DISPLAY ADS: 1/2" x 21/4": $320.00; 2" x 21/4": $640.00; 3" x 21/4": $960.00. General Information: Frequency rates and prepayment discounts are available. All copy subject to publishers approval. Advertisements using P.O. Box address will not be accepted until advertiser supplies publisher with permanent address and phone number. Copy to be in our hands on the 12th of the third month preceding the date of the issue. (i.e., August issue copy must be received by May 12th). When normal closing date falls on Saturday, Sunday or Holiday, issue closes on preceding working day.

LASERS, components and accessories. Free catalog. NEAL COMPANY, 6672 Mallard Ct., Ori- ent, OH 43146.

FREE power supply with Assortment #103 PC! TOKO coils 144LY-120K, 520HN-300023, BAKAN-K55AXX(2), 2N3904(2), BFO85, 7812, 74123, MC1330A01P, IN914, IN521B1. Only $25.00. Assortment #201 MC1330, LM1458, MC1358, NE565, LM386, 2N3363, MPN3404, IN4002. Only $10.00. Assortment #301 PC! with all IC's, transistors, and diodes for Telese-Maast Satellite TV project (Oct. 86 article) only $25.00. 10% discount for 5 or more. Service charge $3.00/or/1-(800)-821-5226 Ext. 426. MC VISA, COD, check or M.O. or write JIM RHO- DES INC., P.O. Box 3421, Bristol, TN 37625.

TUBES, name brands, new, 80% off list. KIRBY, 298 West Carmel Drive, Carmel, IN 46032.

INDIVIDUAL Photofact-folders #1 to #1400, $3.00 postpaid. LOEB, 414 Chestnut Lane, East Meadow, NY 11554.

WHOLESALE car-radio computer telephone audio video accessories antenna catalog (718) 897-0509 B&WR, 68-12 110th St., Flushing, NY 11375.

DESCRAMBLER catalog. Cable and satellite. $85. Special combination Jerrycans 400 and SB3 $165. New cable descrambler kit $49.00 (assem- bly in half hour). Send $1.00. MJ INDUSTRY, Box 531, Bronx, NY 10468.

TUBES! 5yr Year guarantee. Free catalog. Tube tester $9.85, CORNELL, 4215 University, San Di- ego, CA 92105.

THE BEST PLACE to BUY, SELL or TRADE in Radio, Television and USEFUL INVENTIONS.

NUTS & VOLTS MAGAZINE BOX 11111-E. PLACENTIA, CA 92870 (714) 632-7722

Join Thousands of Readers Nationwide Every Month!
ONE YEAR U.S. SUBSCRIPTIONS $15.00 - 3rd Class $11.00 - 1st Class $20.00
PER CLASS: 3rd Class $15.00 - 1st Class $25.00

PIONER-Scientific Atlanta-Jerrold Panasonic—Hamlin—Wireless converters all new original man- ufacturers warranted. Try our new converter repair facility we are the best. (718) 459-5088.

CABLE TV converters. Scientific Atlanta, Jerrold, Oak, Zenith. Hamlin. Many others. "New" VIDEO HOPPER. The Copy. (617) 888-5050. Free catalog. Send $2.00 for catalog to K.J. VIDEO, P.O. Box 29383, Mpls., MN 55429.

CABLE TV equipment. All major brands. Specializing in Scientific Atlanta, Jerrold, and Zenith. Acceptable. Our units have worked where others have failed. CODs accepted. Send $2.00 for catalog. K.J. VIDEO, P.O. Box 29383, Mpls., MN 55429.

CABLE-TV converters and decoders. Low pri- ces, quality merchandise, we ship C.O.D. Send $2.00 for catalog. CABLETELETRONICS UNLIMITED, P.O.Box 266, South Weymouth, MA 02190. (617) 843-5191.

April 1987
WIREWRAP labels. Identify IC's, pins. Easier, error-free, wiring. All DIPs 8-40 pins. Inexpensive, 363 labels $6.00. PAUL'S LABELS, 7220 Embass- sy, Miramar, FL 33023.

IS it true...Jeeps for $44 through the government? Call for facts! (312) 742-1142, ext. 4673.

CHANNEL 2—60dB notch filter, 63.5MHz $19.95. All other channels $29.95. Cable converter and ac- cessory catalog $1. (514) 739-9328. CROSLEY(A), Box 840, Champion, NY 12919.

CABLE DEALERS—Get your free catalog for the best buys on quality cable equipment. Most prices too low to print. N-12 Mini Code $100.00, S.B. 2 or 3 $100.80. Transponders are the hot item for the month $100.00. Hamid Mini 1200 $80.00. Extra remotes, cable converters, Pioneer, Jerold, Viewmaster, Star- com, Video Switch: All products guaranteed 90 days. We accept M.C., V.I.S.A. COD, call or write for your free catalog today. (402) 331-4957. M. D. ELECTRONICS, 5078 South 108th, Suite 115, Omaha, NE 68131.

INTEL, RCA, National, OKI, SGS, and more. Factory prime and surplus parts catalog. LYNBAR IN- DUSTRIES, 205 Main, Box 822, St. Joseph, MI 49085-0822.

TUBES: "Oldest", "latest", Parts and schematics. SASE for list. STEINMETZ, 7519 Maplewood Ave., RE. Hammond, IN 46324.

TEST equipment, reconditioned. For sale $1.25 for catalog WALTER'S, 2697 Nickel, San Pablo, CA 94806. (415) 724-0587.

SURPLUS MS-DOS software, hardware, audio, video, lots of bargains. Free catalog. GIL ELECTRONICS, Box 1628, Soquel, CA 95073.

ELECTRONICS projects, components, PCB supplies, test instruments. Oscilloscopes $219.00, multi- meters $7.95, power supplies $69.95. Resistors 1 cent, 2 year warrant. Call or send SASE for free catalog. T.O.R.C.C.C., 11 Tower, Schaumburg, IL 60195. (312) 490-1376.

BRAND new Oak var-sync descramblers $45.00 each, Oak automatic on/off $75.00, SB-3 $69.00, Tri-mode $125.00, SC-240, Scientific Atlan- ta $125.00, Hamlin $75.00, Zenith cable $175.00, Starcom VI $125.00, Quad Sigma $175.00, also schematics, service manuals, descrambler infor- mation booklets, catalog $3.00, call us, ship units UPS COD. PONDEROSA COMPANY, (303) 634-6666.

JERROLD cable descrambler closeout SB35, 450- LCC58's $69.95, both $129.95, JRX30C's $89.95. Quantity pricing SASE for order form. CAD, P.O Box 684n, Pembroke Pines, FL 33084.

SPEAKERS, factory over-runs, most sizes, SASE for list. ELCOM, 1190 Bluff, Gutenburg, IA 52052.

OLD radio TV schematics. Send $1.00, make model, RADIO MAPS, P.O. Box 791, Union City, CA 94587.

CALL FOR FREE CATALOG

TEXT TO SPEECH BOARD! PC/XT COMPATIBLE. MAKE YOUR COMPUTER TALK! A VERY POWERFUL AND AMAZING SPEECH CARD. USES THE NEW GENERAL INSTRUMENTS SP0255-AL2 SPEECH CHIP AND THE CTS256A-AL2 T/R CONVERTER.

THIS BOARD USES ONE SLOT ON THE MOTHERBOARD AND REQUIRED A COM- MAND SERIAL PORT. BOARD MAY ALSO BE USED IN A STANDARD PC/XT OR PC/AT ENVIRONMENT WITH ANY COMPUTER THAT HAS A RS232 SERIAL PORT. FEATURES ON BOARD ALLOW CONNECT-ING OR MAY BE USED WITH EXTERNAL AMPs.

DEMONSTRATION SOFTWARE AND A LIBRARY PRINTING PROGRAM IS INCLUDED ON A 5 1/4 INCH PC/AT DISKETTE. FULL DOCUMENTA- TION AND SCHEMATICS ARE ALSO INCLUDED.

NEW!

$89.95
ASSEMBLED A TESTED

CANON 80 COLUMN PRINTER-$39.95

ORIGINALLY MANUFACTURED FOR THE PC JR. BUT WITH OPTIONAL CONNECTOR WILL WORK WITH PC/XT, OR AT, OR AT/B, OR PC/80. THIS PRINTER IS QUIET AND USES EASY TO GET 8 IN. ROLLS OF PAPER. 50 C.P.S., UPPER AND LOWER CASE, IN- Je, AMERICAN RADIO HISTORY, INC.

PC/XT EPROM PROGRAMMER $199

* LATEST DESIGN * PROGRAMMABLE TO 4 DEVICES AT ONE TIME * FEATURES EASY TO USE MENU DRIVEN SOFTWARE THAT RUNS UNDER PC OR MS-DOS. * USES AN INTELLIGENT PROGRAMMING LANGUAGE FOR SUPER FAST (8X) EPROM BURNING. * THIS PLUG-IN BOARD ATTACHES TO AN EXTERNAL MINI CHASSIS COMPUTER PORT. * 2 IN 4 TEXTBOOK TROUBLESHOOTING TIPS. * NO PERSONALITY MODULES REQUIRED * AUTOMATIC VPP SELECTION 12.5V, 21V, OR 25V. * EPROM DATA CAN BE LOADED FROM A DISK OR A KIT. * PROGRAMMING SOFTWARE SUPPORTS: 21716, 21722, 21732A, 21764, 21764A, 21728, 21728A, 21726A, 21725A, 217212, AND 217112. * ASSEMBLED AND TESTED, BURNED, IN WITH MANUAL. $199 WITH SOFTWARE.

New Digital Research Computers

(OF TEXAS)

P.O. BOX 381450B
DUNCANVILLE, TX 75138
(214) 225-2309

TERMS: Add $3.00 Per End. We pay balance. Orders under $15 add 15% handling. No C.O.D. We accept VISA and MasterCard. Cash, RE, add 6 1/4%. Fax, Foreign orders (except Canada) add 20% F & H. Orders over $50 add $5 for insurance.

www.americanradiohistory.com
SCIENTIFIC ATLANTA UNITS

LOWEST PRICES ANYWHERE!

WE’LL MATCH OR BEAT ANYONE’S ADVERTISED RETAIL OR WHOLESALE PRICES!

ITEM	SINGLE UNIT PRICE	DEALER 10-UNIT PRICE
RCA 36 CHANNEL CONVERTER (CH. 3 OUTPUT ONLY) | 29.95 | 16.00 ea.
PIONEER WIRELESS CONVERTER (OUR BEST BUY) | 86.95 | 72.00 ea.
LCC-58 WIRELESS CONVERTER | 92.95 | 76.00 ea.
JERROLD 450 WIRELESS CONVERTER (CH. 3 OUTPUT ONLY) | 105.95 | 90.00 ea.
SB ADD-ON UNIT | 109.95 | 58.00 ea.
BRAND NEW — UNIT FOR SCIENTIFIC ATLANTA | Call for specifics
M NICODE (N-12) | 109.95 | 58.00 ea.
M NICODE (N-12) VARISYNC | 119.95 | 62.00 ea.
M NICODE VARISYNC W/AUTO ON-OFF | 179.95 | 115.00 ea.
M-35 B (CH. 3 OUTPUT ONLY) | 139.95 | 70.00 ea.
M-35 B W/AUTO ON-OFF (CALL FOR AVAILABILITY) | 199.95 | 125.00 ea.
M-D-1200-3 (CALL IF CH. 2 OUTPUT) | 109.95 | 58.00 ea.
INTERFERENCE FILTERS — CH. 3 | 24.95 | 14.00 ea.
JERROLD 400 OR 450 REMOTE CONTROLLER | 29.95 | 18.00 ea.
ZENITH SAVI CABLE READY (DEALER PRICE BASED ON 5 UNITS) | 225.00 | 185.00 ea.

SPECIFY CHANNEL 2 or 3 OUTPUT Other products available — Please Call

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
<th>Output Channel</th>
<th>Price Each</th>
<th>TOTAL PRICE</th>
</tr>
</thead>
</table>

California Penal Code #593-0 forbids us from shipping any cable descrambling unit to anyone residing in the state of California. Prices subject to change without notice.

PLEASE PRINT

Name
Address
State Zip Phone Number

Cashier’s Check Money Order COD Visa Mastercard

Acct # Exp Date

Signature

FOR OUR RECORDS:

DECLARATION OF AUTHORIZED USE — I, the undersigned, do hereby declare under penalty of perjury that all products purchased, now and in the future, will only be used on cable TV systems with proper authorization from local officials or cable company officials in accordance with all applicable federal and state laws.

Dated Signed

Pacific Cable Company, Inc.
7325½ RESEDA BLVD., DEPT. R-04 • RESEDA, CA 91335
(818) 716-5914 • No Collect Calls • (818) 716-5140

IMPORTANT: WHEN CALLING FOR INFORMATION Please have the make and model # of the equipment used in your area. Thank You

www.americanradiohistory.com

CABLEBETS systems. Plans, kits, catalog $1.00. MIDCO, 660 North Dixie Highway, Holy- wood, FL 33020.

CORDLESS phone manual. Simple instructions to modify cheap AM radio to receive entire 1.7 MHz cordless phone band. No parts required, only a screwdriver. Also instructions how to monitor the new 46-49 MHz frequencies. Only $5.95 complete. ADVANCE ELECTRONICS, Box 1086, Edgewater, FL 33309.

CLOCK for IBM PC and compatibles. Complete module, no slots required, 10 year battery life, easy installation, software included, $29 ADVANCED ELECTRONICS, 3778 NW Wisteria, Corvallis, OR 97330.

AMPLIFIER breakthrough—The current amplifier drives loads push-pull with internal voltage gain. Fastest, quietest circuit in transistor electronics. Operates now driver amplifiers. Plans for quietest, easier to construct audio amplifiers, all wattages, $15. AMPLIFIERS UNLIMITED, R. J. Box 139, Highmore, SD 57345.

Hi-Fi speaker systems, kits and speaker com- ponents from the world's finest manufacturers. For beginners and audiophiles. Free literature. A&S ELECTRONICS, Box 74267, Denver, CO 80207. (303) 399-8609.

VOICE disguisers! FM bugs! SWL active antenna, receivers, more! Send stamped envelope: XANDI ELECTRONICS, Box 25647, Dept. 60K, Tempe, AZ 85282.

FREe SAMPLE COPY
Write for your free copy of the most accurate satellite tv guide

p.o. box 308(H2502) Fortuna CA 95540

SATELLITE TV
CABLE TV Secrets—the outlaw publication! Send the cable companies tried to ban! HBO, Movie Channel, Showtime, descramblers, converters, etc. Suppliers in included $8.95 TABLE FACTS, Box 711, Bat- kasala, Ohio 43062.

SATELLITE systems $349 up. VISA/ MC available. Catalog $3.00 STARLINK, INC., 2603-16th Ave, Artech, Huntington Beach, CA 92649.

SATellite TV receiver kits! NLA's instructions, schematics! Send stamped envelope: XANDI ELECTRONICS, Box 25647, Dept. 60K, Tempe, AZ 85282.

OAK Orion "Turn-On" modifications, "Chip kit," "Remote keypad" details—$1.00 NAS-SAT, Box 5261, Long Beach, CA 90805. (213) 631-3552.

PROJECTION TV... Make $55+ asssembly projec- tors. easily, results comparable to $2,500 projec- tors. Total cost less than $30.00. PLANS, 8" LENS and dealers information $20.50. Illustrated Information on FREE MACRO-TECH-72, Washington, Pasadena, CA 91127. Creditcard orders 24hrs. (213) 736-2680.

EASY, lucrative. One man CRT rebuiluding machin- ery. Free info: (815) 459-0666 CRT, 1909 Louise, Crystal Lake, IL 60014.

EARN cash with your own part time electronics business. I do free Research. Please send SASE: INDUSTRY, Box 531, Bronx, N.Y. 10461.

PRINTED-CIRCUIT BOARDS
Low quotes, high quality, quick service. Single, double sided, multilayered substrates. Prototypes through production quantities. Design/layout capabilities. Board assembly project enclosures, turnkey facilities. Call or write for quotes and info. T.O.R.C., 131 Tower, Schaumburg, IL 60195. (210) 520-1470

INVENTORS!

CAN you patent and profit from your idea? Call AMERICAN INVENTORS CORPORATION for free information. Over a decade of service. 1(800) 393-5565. In Massachusetts or Canada call (413) 588-3753.
R-E ROBOT
continued from page 102

After the RPC passes those tests, you’ll want to test each section of the circuit by dumping a test program to an EPROM. Digital inputs and outputs are easy; you can watch the result on a scope. You can test RAM by pushing several different values on the stack, popping them back, and comparing the result. Set an output line high or low to report your result. We suggest pushing and popping several bytes because, if you push a byte and pop it immediately, you’ll find that even an empty RAM socket will pass the test every time! (Bus capacitance will hold the data just as a dynamic RAM does.)

Following a logical, orderly process with techniques like those outlined above will allow you to conquer even the most difficult microprocessor bugs. After each test is complete, toggle an output latch to confirm operation (or lack thereof).

After the basic sub-systems seem to work, install the BIOS and the language ROM—remember that of the testing more conveniently. You can use the high-level language in an interactive mode from a terminal to test the rest of the board. But more on that next time. R-E

SOME OF THE GREATEST THINGS IN AMERICA NEVER CHANGE.
SOME DO.

U.S. Savings Bonds now pay higher variable interest rates—like money market accounts. Plus, you get a guaranteed return. For more information, call toll-free 1-800-US-BONDS.

Variable rates apply to Bonds purchased and after 1/11/86, and if purchased five years Bonds purchased before 1/11/86, Bond held five years earn lower interest.

A public service of this publication.
Get First Class Bench Equipment!

NEW!
4.5 Digit Portable/Bench Multimeter

This versatile instrument is suitable for use in general electronic maintenance production and laboratory. It features 0.05% DCA/C accuracy, integrated circuit electronics, solid-state LCD display and push-button switch selection. Other features include: DCA/Voltage, AC voltage, DC current, AC current, resistance, diode test continuity test, full auto-override operation, overrange indication, dual slope integration, easy calibration (±1% stability), and 6000 continuous hours battery operation. Comes with probes.

Specifications:
- DCV: 10V to 1000V in 5 ranges with ±0.05% ±2 digits accuracy.
- 10M ohm input impedance on all ranges except 17.5 ohm on 2V.
- ACV: ±10% or 750V in 5 ranges with accuracy from ±0.05% ±10% to ±0.05% ±30%.
- 10M ohm parallel with <1000pF, except 17.5 ohm on 2V.
- DC current: 10mA to 10A in 8 ranges with accuracy from ±0.05% ±10% to ±0.05% ±10%.
- AC current: 10mA to 10A in 8 ranges with accuracy from ±1% ±30% to ±1% ±10%.
- Resistance: 10M ohm to 20 Ohm in 8 ranges with accuracy from ±0.05% ±10% to ±0.05% ±10%.
- Size: 6.4" x 10.4" x 3.5".
- Weight: 67 oz.

Price: $179

Soldering/Desoldering Station

Professional rack-mounting station with excellent desoldering facilities, backed by our exclusive 12 month warranty. Check it out!

Soldering features:
- Desoldering: Rapid, "damage-free" desoldering of any size joint; adjustable desoldering temperature with LED bargraph readout; grounded tip. LED "heating" indicator. Finger-tip control variable vacuum gauge; filtered vacuum line; easy to clean.

Price: $399

NEW!

15 MHz Dual Trace Portable Oscilloscope

Portability and performance make this scope ideal for field service maintenance of telecommunications, computer, marine, aviation, industrial & other equipment. Features 2mV/Div sensitivity, automatic selection, chopper or alternate mode, automatic selection of TV line or frame display, and choice of DC, battery, or AC line operation (12 hrs. continuous trickle battery operation). Comes with two probes and schematics.

Specifications:
- Vertical: 250mV/div to 10V/div (DC to 20MHz; AC to 25MHz).
- Horizontal: 500ns/div to 100ms/div (DC to 10MHz; AC to 10MHz).
- Gain: 0.1pF/1V/div to 10V/1V/div.
- Input impedance: 1M ohm shunted to ground.
- Bandwidth: 100MHz.
- Trigger: Internal, single or dual.
- Power source: 100-240VAC or 12VDC.
- Dimensions: 19"W x 16"H x 9"D.
- Weight: 50 lbs.

Price: $499

NEW!

3.5 Digit MM with Temp Sensor

A whole new concept in portable digital meters. Easy-to-read LED displays volts, current, impedance, capacitance, conduction, and temperature. Includes transistor, diode, & continuity tests and overload protection on all ranges. Comes with probes and battery. Includes leads plus temperature sensor.

Specifications:
- DCV: ±2000V ±1% ±2 digits.
- ACV: ±1200V ±1% ±2 digits.
- Ohms: 0.01Ω to 10MΩ ±1% ±2 digits.
- Temperature: °C or °F.
- Size: 4.8" x 2.3" x 1.7".
- Weight: 2 lbs.

Price: $99.95

Economy Digital Multimeter

Price: $21.95

For hobbyist or technician, temperature-controlled station with fully adjustable heat up to 900°F, ramp readout in both °C and °F, insulated leads and insulated alligator clips. Maximum power 25W.

Price: $7.95

50 MHz Dual Trace

A premium scope for computer & general purpose work. It has a high grade CRT for a full 10cm black idle gridline and comes complete with 2 probes and schematics.

Specifications:
- Vertical: 250mV/div to 100V/div (DC to 10MHz; AC to 15MHz).
- Horizontal: 500ns/div to 100ms/div (DC to 10MHz; AC to 10MHz).
- Gain: 0.1pF/1V/div to 10V/1V/div.
- Input impedance: 1M ohm shunted to ground.
- Bandwidth: 100MHz.
- Trigger: Internal, single or dual.
- Power source: 100-240VAC or 12VDC.
- Dimensions: 19"W x 16"H x 9"D.
- Weight: 50 lbs.

Price: $899

35 MHz Dual Trace

Price: $599

20 MHz Dual Trace

Price: $399

Order Toll Free 1-800-332-5373

Prepaid & Credit Card Orders Only!

Mon - Fri 10a.m. - 6p.m. Pacific Time

In California call 415-368-1066

To receive your copy of our colorful 148 page catalog, circle Reader Service 188
Get more power & speed at substantial cost savings with this fully IBM AT compatible computer system!

The superior engineering of this system ensures reliability and performance as well as full compatibility with the IBM AT. Like the IBM AT, it is based on the Intel 80286 microprocessor, but the stable, 4-layered main system board gives better reliability than the IBM. The AT Turbo's efficient design uses fewer chips but packs all the AT power onto a smaller board to fit XT systems as well.

All boards and components are available individually to upgrade your current system, but you'll get even greater savings by buying our custom kit. Complete instructions are included, so you'll have the satisfaction of building your own superb AT computer.

AT Turbo Computer System

(See below for complete component descriptions)

80286 AT Baby Motherboard...

1.2 MB Floppy Disk Drive...

200W Power Supply...

84-key Keyboard...

IBM AT-style case...

Dynamic RAMs...

GENDER CHANGERS

Centronics M/M (X-4006) $9.95
Centronics M/F (X-4010) $9.95
Multisport RS-232 Gender Changer (X-4003) $14.95

MODEM SALE

Voyager 12008 was $169 now $110...
Challenger 1200 was $169 now $129...
Discovery Hi-Speed was $379 now $299...

PEPSwitch

Electronic Printer Switch

Tired of messing with cables and juggling hardware? PEPSwitch is the simple printer switch that lets you switch between printers from your keyboard. Use it to select between draft and finalcopy printers, between printers with different paper types (e.g. envelopes and picking slips), etc.

PEPSwitch is compatible with any printing device with a Centronics parallel interface. The desired printer can be selected from your keyboard or a simple ASCII command sequence or by a mechanical switch on the PEPSwitch cover. Multiple PEPSwitches may be used to select as many as five printers attached to one PC.

It's so good, we use PEPSwitch on our office systems!

Get great values on Computer Accessories at Dick Smith Electronics

New! $129

PEPSwitch

Electronic Printer Switch

25 Pin Adapter $9.95
Null RS-11 to RS-232 $4.95
Keyboard Extension Cable $4.95
5 pin to 5 pin Din, 10' length X-3597

PRINTER CABLES

Parallel Printer Interface $9.95
For use on a large range of computers
IBM Parallel Interface (X-3590) $9.95
Fully RFI and EMI shielded, 6 length
IBM Parallel Interface (X-3591) $11.95
Fully RFI and EMI shielded, 10 length
IBM Serial Interface $9.95
25 pin Male/Male, 10 length X-3592
25 pin Male/Female, 10 length X-3593
Macintosh Serial Interface $7.95
6 foot length X-3594
Try Dick Smith Electronics’ fantastic Mail Order Service!

Electronics hobbyists & professionals all over the world have relied on DSE for more than 18 years!

Now! Custom cables are quick & easy!

IDC BENCH ASSEMBLY PRESS $139
T-5260

Mass terminations up to 64-conductor cable in seconds without wire stripping or soldering! This quarter-inch manual press is a rugged, practical installation tool for low volume, mass termination of various IDC connectors on flat (ribbon) cable. Interchangeable base plates accommodate a broad range of IDC connectors.

PRESS ACCESSORIES
- Cutters
 - Flat (Robbin) Cable (T-5261) $54.95
 - Strips Heater (DG) (T-5262) $149.95
- Base Plates $28.95 each
 - Female Socket Transition Connectors (T-5263)
 - Card Edge Connectors (T-5264)
 - DIP Plugs (T-5265)
 - D-Sub Connectors (T-5266)

Base Plates $28.95 each

Precision work is easy with the right tools!

Mini-Drill Stand $12.95 T-4753

Mini-Drill Set $9.95 T-4751

For hobbyist, toolmaker, technician.
Contains: 4 high-speed twist drills with 3 coating, grinding bit, wrench, tommy bar, and DC power cable (for 12-35VDC) in a plastic case.

INSTRUMENT CASES
- New! H-2504 $6.95
 - 6"W x 8"D x 2"H
 - Includes mounting slots & posts

Now you can afford a VARIABLE POWER SUPPLY $149.95 M-5484

Lab standards at a hobbyist’s price! Variable voltage and current output, with panel meters for each, coarse & fine voltage controls, hi/low amp scales; banana-type outputs.

Specifications: 0-30VDC; 0-5A Output. 0.5mVrms Ripple Regulation, 0.01% 2mV Line, 0.01% 3mV Load

ORDER TOLL FREE 1-800-332-5373
CIRCLE 95 ON FREE INFORMATION CARD

In California call 1-415-368-1066

ATTENTION AUSTRALIANS 1 OWNERS!
The AUSTRALIANS STEREO UPGRADE KIT NOW IN STOCK!
$29.95 K-6317

Turn the page for MORE GREAT VALUES!

www.americanradiohistory.com
EDG CONNECTORS
ALL ARE 156 SPACING.

COMPUTER GRADIE CAPACITORS
1,400 mfd 200 Vdc
3 x 2" dia. $2.00
6,400 mfd 60 Vdc
1 4/" x 3/8" dia. $2.50
7,500 mfd 200 Vdc
5 4/" x 2" dia. $2.50
12,000 mfd 40 Vdc
1 4/" x 2" dia. $2.50
22,000 mfd 25 Vdc
4 3/4" x 2" dia. $2.50
48,000 mfd 10 Vdc
3 x 2 1/2" dia. $2.50
66,000 mfd 15 Vdc
3 x 3/4" dia. $3.00
72,000 mfd 15 Vdc
6 x 2 1/2" dia. $1.90
100,000 mfd 10 Vdc
6 x 2 1/2" dia. $1.90

PHOTO-FLASH CAPACITORS
470 MD 330 Volt
757 each
CAT FDC-400-1.00 ea.

WALL TRANSFORMER
LATTER 11.5 Vdc
INPUT:
SIZE: 3 3/4" x 2 7/8" x 2 5/8"
CAT # CXT-11159
$6.00 each

RELAYS
10 AMP SOLID STATE
CONTROL: 3.2 volt 21/2" x 31/2"
SIZE: 2 1/4" x 3/4" dia. $1.50 each
$3.50 each FOR $10.00

MICRO-CASSETTE MECHANISM
Micro-cassette tape transport for standard MC60 or MC65 MC60/65 Micro-cassette 3 Vdc operation. Contains drive motor, bell, head, capstan, pinch roller, and components 3 1/2" x 1 1/4" x 5/8"
CAT # MC6C $3.00 each 10 FOR $27.50

3rd LIGHT TI:
Sleek high-tech lamp assembly. Colors can be used as a special tail light, emergency warning lamp, or special-vac lamp. Reflektive lens 3/4" to 1 1/2" thick, mounted on a 4" high pedestal with up-down adjustable. Includes 2V 10W replaceable bulb. CAT # TBL $3.95 each

LIGHT ACTIVATED MOTION SENSOR
This device contains a photocell which senses sudden changes in ambient light. When an object or person passes within it's field of view (15') it beeps for several seconds then resets. Could be used as a door annunciator or modeled to trigger other devices. 5 1/2" x 4" x 1". Operates on 6 Vdc. Requires 4A batteries (not included).
CATALOG # LMD $5.75 each

TI SWITCHING POWER SUPPLY
Compact, well regulated switching power supply designed to power Texas Instruments computer equipment. INPUT: 14 - 25 vac @ 1 amp
OUTPUT:
- 5 vac @ 300 ma
- 5 vac @ 1 amp
- 8 vac @ 200 ma
SIZE: 4" x 4" x 1 1/2" dia. $3.50

13.8 VDC REGULATED POWER SUPPLY
These are solid state, fully regulated power supplies. Bush feature 100% solid state construction, fuse protection, and E.D.C power indicator U.L. listed.
2 amp constant, 4 amp surge $20.00 each
3 amp constant, 5 amp surge $275.00 each

COMMODORE PRINTER/PLOTTER
Commodore Model 1520
Our XY printer/plotter. Standard VCC serial interface allows easy connection to Commodore computers. Up to 80 characters per line in 10 font sizes.
4 inch printer CAT # COM-1520 $49.95 each

EXTRA pars sets $1.50 per set.

POLLARITY SWITCH
Designed to control an external coaxial relay on a satellite TV system. IDEAL FOR THE EXPERIMENTER AS PARTS Heavy chassis box containing a 5 Vdc relay. CAT JCA $0.95 each

2K 10 TURN MULTI-TURN POT
SPECTROL 1200 X 750
$5.00 each

WALL TRANSFORMER
11.5 Vdc
INPUT:
SIZE: 3 3/4" x 2 7/8" x 2 5/8"
CAT # CXT-11159 6.00 each

MINIATURE TOGGLE SWITCHES
ALL ARE RATED 5 AMPS @ 125 VAC
S.P.D.T. (on-off-on)
Solder lug terminals $1.00 each $10.00 for 100 $50.00 for 500
S.P.D.T. (on-off)
Solder lug terminals $1.00 each $10.00 for 100 $50.00 for 500
S.P.D.T. (on-off-on)
Non-thrashed $1.00 each $10.00 for 100 $50.00 for 500
S.P.D.T. (on-off-on)
Solder lug terminals $1.00 each $10.00 for 100 $50.00 for 500
S.P.D.T. (on-off-on)
Solder lug terminals $1.00 each $10.00 for 100 $50.00 for 500

FOOTBALL LIGHTER SWITCH
1-2-1 (on-off-on)
Red, Green, Yellow $1.00 each $10.00 for 100 $50.00 for 500

TOLL FREE ORDERS ONLY
1-800-826-5432
(ORDER ONLY)
IN CALIFORNIA 1-800-255-6666
FOREIGN ORDERS
(orders below $50.00) $1.00 each $10.00 for 100 $50.00 for 500

FLASHER LED
3 amp operated $1.75 each
Red, Green, Yellow $1.75 each $10.00 for 100 $50.00 for 500
NEW GREEN FLASHER
3 amp operated $1.95 each $10.00 for 100 $50.00 for 500

LEDS- STANDARD JUMBO
1-3/4" DIFFUSED
RED 10 FOR $15.00 $100.00 FOR $85.00
GREEN 10 FOR $15.00 $100.00 FOR $85.00
YELLOW 10 FOR $15.00 $100.00 FOR $85.00

NEW GREEN FLASHER
CAT LED-40 $1.00

21/2" ON-OFF
BI-POLAR
For jumbo LEDs $1.75 each $10.00 for 100 $50.00 for 500

CLEAR CRUIPLITE LED HOLDER
Made of LED & a clear indicator. Clear. $1.00 each

CLEAR CRUIPLITE LED HOLDER
$1.00 each $10.00 for 100 $50.00 for 500

MINI PUSH BUTTON
5.67 T momentary normally open $1.25 each $10.00 for 100 $50.00 for 500

SNAP ACTION SWITCH
On/off DEL 284 each $2.50 each $25.00 for 100 $125.00 for 500

STARLAKE +
1-800-826-5432
SONIC" SOFTWARE
606-982-5432

MAIL ORDERS TO:
P.O. Box 4026
Los Angeles, CA 90008

TMX: 10101016313313
EASILINK MBX - 62887748

NO C.O.D.

QUANTITY LIMITS
MINIMUM ORDER $10.00
USA: $3.00 SHIPPING AND HANDLING
FOR FOREIGN ORDERS
$100.00 FOR $75.00
LARGE QUANTITIES

THE ELECTRONIC CONNECTION
ALL ELECTRONICS CORP.
1383-8000
48 PAGES

CIRCLE 107 ON FREE INFORMATION CARD

www.americanradiohistory.com
Integrated Circuits

Solder Tag Dip sockets

- **Power Supply**: 5V, 12V, 15V
- **Current**: 500mA, 1A
- **Packages**: DIP-14, DIP-16

Disc Capacitors

- **Value**: 100pF to 1000nF
- **Tolerance**: ±5%, ±10%
- **Voltage**: 50V, 100V, 500V

Integrated Circuits

Metalized Film Capacitors

- **Value**: 1nF to 100μF
- **Tolerance**: ±5%, ±10%
- **Voltage**: 50V, 100V, 500V

Integrated Circuits

Wire Wrap Dip Sockets

- **Current**: 50mA to 5A
- **Tolerance**: ±5%, ±10%
- **Voltage**: 5V, 12V, 15V

Integrated Circuits

Silicon Transistors

- **Type**: NPN, PNP
- **Current**: 10mA to 1A
- **Voltage**: 5V, 12V, 15V

Integrated Circuits

MOSFETs

- **Type**: N-channel, P-channel
- **Current**: 10mA to 5A
- **Voltage**: 5V, 12V, 15V

Integrated Circuits

Proprietary ICs

- **Type**: Custom, ASIC
- **Current**: 1mA to 1A
- **Voltage**: 5V, 12V, 15V

Integrated Circuits

Other Components

- **Chemicals**: Resistors, Capacitors, Inductors
- **DIY Kits**: Basic, Advanced
- **Repair Services**: Parts,电路板, Scripts, Programs

Integrated Circuits

256K (262,144 x 1) DRAM

- **Price**: $5.70 (1); $39.95 (10)
- **Volume Discount**: 100% off for orders over $500

Service Charges

- **1st Class Mail**: $2.00
- **Priority Mail**: $5.00
- **Overnight**: $10.00

Contact Information

- **Phone**: 1-800-344-4539
- **Fax**: 1-800-344-4539
- **Email**: info@digik.com

Location

- **Address**: 1301 S. 7th St., Dayton, OH 45402
- **Hours**: Mon-Fri, 8AM-5PM

Additional Information

- **Shipping**: Continental U.S.
- **Payment**: Credit Cards, Checks
- **Returns**: 30 days

Buyer's Guide

- **Online**: www.americanradiohistory.com
- **Phone**: 1-800-344-4539

Terms and Conditions

- **Sales**: Final sales are non-refundable.
- **Returns**: Merchandise may be returned within 30 days.

Contact Us

- **Phone**: 1-800-344-4539
- **Fax**: 1-800-344-4539
- **Email**: info@digik.com
7400

<table>
<thead>
<tr>
<th>Part No.</th>
<th>1-4</th>
<th>5-6</th>
<th>7-12</th>
<th>13-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
</tr>
<tr>
<td>7401</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>7402</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
</tr>
<tr>
<td>7403</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>7404</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>7405</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>7406</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>7407</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>7408</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7409</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

74LS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>1-4</th>
<th>5-6</th>
<th>7-12</th>
<th>13-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>74L500</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>74L525</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>74L540</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>74L560</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>74L566</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>74L574</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

74S/PROMS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>1-4</th>
<th>5-6</th>
<th>7-12</th>
<th>13-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>74S900</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>74S108</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>74S206</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>74S261</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>74S266</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>74S274</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

74ALS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>1-4</th>
<th>5-6</th>
<th>7-12</th>
<th>13-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>74ALS500</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>74ALS525</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>74ALS540</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>74ALS560</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>74ALS566</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>74ALS574</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

74F

<table>
<thead>
<tr>
<th>Part No.</th>
<th>1-4</th>
<th>5-6</th>
<th>7-12</th>
<th>13-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>74F000</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>74F056</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>74F100</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>74F150</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>74F200</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>74F254</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

CD—CMOS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>1-4</th>
<th>5-6</th>
<th>7-12</th>
<th>13-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4001</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>CD4002</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>CD4003</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>CD4004</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>CD4005</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>CD4006</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CD4007</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

IC SOCKETS

- **Low Profile**
 - **Mini-Stackable**
 - **MCP**
 - **MC7812**

COMMODORE CHIPS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>7407C</td>
<td>4.95</td>
<td>7407C</td>
</tr>
<tr>
<td>7415F</td>
<td>4.95</td>
<td>7415F</td>
</tr>
<tr>
<td>7417C</td>
<td>3.95</td>
<td>7417C</td>
</tr>
<tr>
<td>7411C</td>
<td>1.95</td>
<td>7411C</td>
</tr>
</tbody>
</table>

NEC V20 & V30 CHIPS

Replace the 8066 or 8088 in your IBM-PC and increase its speed by up to 40%!

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>U9A</td>
<td>5.95</td>
<td>U9A</td>
</tr>
<tr>
<td>U9B</td>
<td>5.95</td>
<td>U9B</td>
</tr>
</tbody>
</table>

MICROPROCESSOR COMPONENTS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1511</td>
<td>7.95</td>
<td>1511</td>
</tr>
<tr>
<td>1513</td>
<td>7.95</td>
<td>1513</td>
</tr>
<tr>
<td>1514</td>
<td>7.95</td>
<td>1514</td>
</tr>
</tbody>
</table>

SATELLITE TV DESCAMBRILLER CHIP

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM5321</td>
<td>11.95</td>
<td>MM5321</td>
</tr>
</tbody>
</table>

INTERSIL Also Available!

74HC HI-SPEED CMOS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74HC00</td>
<td>1.95</td>
<td>74HC01</td>
<td>1.95</td>
</tr>
<tr>
<td>74HC02</td>
<td>2.95</td>
<td>74HC03</td>
<td>2.95</td>
</tr>
<tr>
<td>74HC04</td>
<td>3.95</td>
<td>74HC05</td>
<td>3.95</td>
</tr>
<tr>
<td>74HC06</td>
<td>4.95</td>
<td>74HC07</td>
<td>4.95</td>
</tr>
<tr>
<td>74HC10</td>
<td>5.95</td>
<td>74HC11</td>
<td>5.95</td>
</tr>
<tr>
<td>74HC12</td>
<td>6.95</td>
<td>74HC13</td>
<td>6.95</td>
</tr>
<tr>
<td>74HC14</td>
<td>7.95</td>
<td>74HC15</td>
<td>7.95</td>
</tr>
<tr>
<td>74HC16</td>
<td>8.95</td>
<td>74HC17</td>
<td>8.95</td>
</tr>
<tr>
<td>74HC18</td>
<td>9.95</td>
<td>74HC19</td>
<td>9.95</td>
</tr>
</tbody>
</table>

LINEAR

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74HC20</td>
<td>1.95</td>
<td>74HC30</td>
<td>2.95</td>
</tr>
<tr>
<td>74HC40</td>
<td>3.95</td>
<td>74HC50</td>
<td>4.95</td>
</tr>
</tbody>
</table>

IC

- **CMOS**
 - **74HC138**
 - **74HC145**
 - **74HC151**

IC SOCKETS

- **Low Profile**
 - **Mini-Stackable**
 - **MCP**
 - **MC7812**

PARTIAL LISTING:

- **OVER 4000 COMPONENTS AND ACCESSORIES IN STOCK**
- **CALL FOR QUANTITY DISCOUNTS**

CIRCLE 114 ON FREE INFORMATION CARD

www.americanradiohistory.com
NOW YOU CAN BUILD AN IBM PC/XT COMPATIBLE!

IBM Compatible Kit
IBM-64K(2) 64K RAM Chips (16)... $19.95
KB87 8K-Keyboard $29.95
IBM-FC Floppy Controller Card $49.95
IBM-Case Case $39.95
IBM-MCC Monochrome Card $69.95
IBM-64K 64K Disk Drive $109.95
IBM-AD Monochrome Monitor $99.95
IBM-MB Motherboard $109.95

FREE! QUICKSOFT PC WRITE WORD PROCESSING SOFTWARE INCLUDED!

Regular List $58.45

IBM-Special (Includes 9 items above) $49.95

ADDITIONAL ADD-ONS AVAILABLE!

IBM-KB 83-Key Keyboard $59.95
IBM-ENH Enhanced Keyboard $79.95
IBM-ICB Integrated Color Board w/Printer Port $99.95
IBM-EHA Enhanced Graphics Card $129.95
IBM-MGA Monochrome Graphics Adapter $149.95
IBM-MULTI Multifunction 0-384K RAM (without RAM) ... $149.95
IBM-20MBK 20MB Hard Disk Drive, Controller & Cable $449.95
EM-100 Expansion Memory Board $59.95
TTX-1410 14" RGB Color Monitor $299.95

IBM is a registered trademark of IBM Computers

NEW PRODUCTS!

ProModem 1200/300 Baud Half-Card Modems

For IBM PC, XT, AT & Compatibles
Auto-answer/Auto-redial - Extended diagnostics - Built-in speaker/voicetone - Auto-retry on busy - Ability to access and monitor an extended busy (2-w. warranty)

PM1200B-2 without software $129.95
PM1200B-2S with Magic Software $159.95

2 yr. warranty! ZOOM 300 Baud Modem for Apple II, II+ and II GS

For Apple with Apple Auto-answer/Auto-redial - 5-chip compatible - Includes call progress monitor, speaker, and manual - Made in USA

ZM300 $89.95

ProModem 1200/300 for Apple II, II+, IIe and II GS

Fully Compatible with the NEW APPLE II GS!

With an auto-answer version - Built-in software in IBM - Comes with ProCom 4 dialed communications software - Hopes compatible - Compatible with ProDISK - Auto-dial/Auto-answer - Auto-redial on busy - Built-in speaker and volume control - 2-w. phone plus with switch 415-592-8097

PM1200A-2 $199.95

ProModem 2400/1200/300 Baud Modems

For Any Computer with RS232 Serial Port

- Hayes compatible - Dial-up remote access - Hayes command compatible - Call progress tone detection - Automatic call answer/phone status monitoring - Second phone jack for voice handling - Auto-answer/Auto-dial - Touch tone and pulse dialing - Speaker with volume control - 8 LED status lights - 1yr. warranty

PM1200G (1200/300 baud) $199.95
PM2400G (2400/1200/300 baud) $379.95

ProCom-B Communications Software (For IBM PC and Compatibles) $34.95

COMMODORE® COMPATIBLE ACCESSORIES

EHSWARE 300 Baud Modem

For VIC-20 and C-64

- Connects directly to User Port - Magnetic Answer Dial - Dial- function keys defined for convenience - Includes Midwest Micro Associated reductions communication software - CM-1 (for VIC-20 and C-64) ... $34.95 $24.95

Four-Port Cartridge Expander

Singly or in any combination!

Aprospond-64 (for C-64 & C-128) $29.95

External Power Supply

CPS-10 (for C-64) ... $39.95

Parallel Printer Interface

2K Buffer, Expandable to 10K!

WM-355 $54.95

Input/Output Card

16-Channel Analog Multiplexer

MW-611 (for C-64 and C-128) ... $199.95

TRS-80/TANDY® COMPATIBLE ACCESSORIES

E-X-P-A-N-D TRS-80 MEMORY

All kits come complete with documentation

TRS-80 MODEL 4, 4P & 4D 64K/128K EXPANSION TRS-80-k2 64K $7.95

Expands Model 4 from 16K, 46K or Model 4 (Gate Array Version), 4P and 4D from 16K - 64K

TRS-80 26K/4A1 $14.95

Expands Model 1 (Non-Gate Array Version) from 64K to 128K

TRS-80 MODEL 100 EXPANSION M100-5K $19.95 ea. for 3 for $54.95

ZUCKERBOARD

TANDY 1000 Expansion Memory Half Card

Expand the memory of your Tandy 1000 (1188k) to as much as 640k. Also includes ROM controller chip.

TAN-EM256K Includes 256K RAM $59.95
TAN-EM128K Includes 128k RAM $119.95

Options for TAN-EM256K/S12K

tand-c Plug & Clock option chip (only) $39.95

tand-o RAM Disk Printer Spoofer Memory Board $29.95

TANDY 1000 Multifunction Board

With Clock Calendar

Expand the memory on your Tandy 1000 (1188k) version to as much as 640K. Comes with 80002 chip, clockspooler, RAM Disk Printer Spooler and on-board ROM controller chip.

MTAN-256K Includes 256K RAM $179.95
MTAN-128K Includes 128k RAM $219.95

UV-EPROM ERASER

Erasers up to 8 chips in 21 minutes (1 chip in 15 minutes). Maintains constant exposure distance of 1" - Standard conductive foam roller eliminates static build-up. Built-in safety lock to prevent UV exposure. Composed - 90% w/3.70W x 2.67H. Comes with holding tray for 8 chips

DE-4 UV-EPROM Eraser $19.95
UVS-11EL Replacement Bulb $19.95
NCF-2 Cond Form 12x24x1 Hardkite $8.95

$20 Minimum Order - U.S. Funds Only

Shipping: Add 5% plus $1.50 Insurance

Spec. Sheets - 50¢ each

California Residents: Add 6%, 6% or 7% Sales Tax

MUFFIN/SPRITE-STYLE FANS

$9.95

10" dia. (64 sq. in., 52 cfm)

SUZ1 $8.95

Edge-Motion (12/12 square, 40 cfm)

DATA BOOKS

30003 National Linear Data Book (82) $14.95
30009 National Linear Data Book (82) $9.95
30013 Zilog Data Book (85) $14.95
30033 National Linear Data Book (84) $9.95
21830 Intel Memory Handbook (86) $17.95
20843 Intel Microsystem Handbook (88) $24.95

MUFFIN/SPRITE-STYLE FANS

$9.95

10" dia. (64 sq. in., 52 cfm)

SUZ1 $8.95

Edge-Motion (12/12 square, 40 cfm)

Send $1.00 Postage for a FREE 1987 JAMECO CATALOG

Send 415-592-8097

JAMECO ELECTRONICS

1305 SHOREWAY ROAD, BELMONT, CA 94002 - PHONE ORDERS WELCOME 415-592-8097: Telex: 176043

CIRCLE 114 ON FREE INFORMATION CARD

www.americanradiohistory.com
DISK DRIVES
FOR APPLE COMPUTERS

AP-150
- $99.95
- 1/4 HD DIRECT DRIVE
- 100% APPL. COMPATIBLE
- SIX MONTH WARRANTY

BAL-500
- $129.95
- FULL HT SHUGART MECHANISM
- DIRECT REPLACEMENT FOR APPLE DISK II
- SIX MONTH WARRANTY

MAC535
- $249.95
- 3.5 ADD-ON DISK DRIVE
- 100% APPL. COMPATIBLE
- DOUBLE SIDED 800K BYE STORAGE
- HIGH RELIABILITY DRIVE
- HAS AUTO-EJECT MECHANISM
- FULL ONE YEAR WARRANTY

AD-DC
- $139.95
- 100% APPL. 5.25" COMPATIBLE
- READY TO PLUG IN W/ SHIELDED CABLE & MOLDED 15 PIN CONNECTOR
- FAST, RELIABLE SLIMLINE DIRECT DRIVE
- SIX MONTH WARRANTY

DISK DRIVE ACCESSORIES

KB-1000
- $79.95
- CASE WITH KEYBOARD FOR APPLE TYPE MOTHERBOARD
- USER DEFINED FUNCTION KEYS
- NUMERIC KEYPAD WITH CURSOR CONTROL
- CAPS LOCK
- AUTO-REPEAT

KEYBOARD-AP
- $49.95
- REPLACEMENT FOR APPLE II KEYBOARD
- CAPS LOCK KEY, AUTO REPEAT
- ONE KEY ENTRY OF BASIC OR CP/M COMMANDS

EXTENDER CARDS

IBM-PC
- $45.00

IBM-AT
- $68.00

APPLE II
- $45.00

APPLE IIe
- $45.00

MULTIBUS
- $86.00

2400 BAUD MODEM
FOR IBM WITH PC TALK III SOFTWARE

$259!

DISKETTES

NASHUA DISKETTES DEALS

5 1/4" SOFTWARE

- $54.95
- FOR ATARI 400, 600, 2600, VIC 20/64 AND APPLE IIe

JOYSTICK

- $7.95
- CR-401
- FOR ATARI 400, 600, 2600, VIC 20/64 AND APPLE IIe

DISKFILE

- $89.50
- HOLDS 70 5 1/4" DISKETTES

POWER STRIP

- $12.95
- UL APPROVED 120V CIRCUIT BREAKER

TEST EQUIPMENT FROM JDR INSTRUMENTS

DIGITAL MULTIMETER PEN DPM-1000

- $54.95
- AUTO RANGING, POLARITY AND DECIMAL!
- LARGE 3.5 DIGIT DISPLAY
- AUTO HOLD SWITCH
- FREEZES READING
- FAST, AUDIBLE CONTINUITY TEST
- LOW BATTERY INDIATOR
- OVERLOAD PROTECTION

20MHz DUAL TRACE OSCILLOSCOPE

- MODEL 2000
- $389.00

35MHz DUAL TRACE OSCILLOSCOPE

- MODEL 3500
- $549.00

Call for volume quotes

Copyright 1987 JDR Microdevices

Circle 191 on free information card

BUILD STEVE CIARCIA'S INTELLIGENT EPROM PROGRAMMER

AS SEEN IN BYTE, OCT 86

- STAND-ALONE OR RS-232 SERIAL OPERATION
- MENU SELECTABLE EPROM TYPES—NO CONFIGURATION JUMPERS
- PROGRAMS ALL SV 27XXX EPROMS FROM 2716 TO 27512
- READ, COPY OR VERIFY EPROM
- UPLOAD/DOWNLOAD INTEL HEX FILES
- PROGRAMMER DRIVER USER MODIFIABLE

ONLY $199

KIT INCLUDES PCB AND ALL COMPONENTS EXCEPT CASE AND POWER SUPPLY

5 1/4" FLOPPY DISK DRIVES

TEAC FD-565 1/4 HD DT/DF (FOR IBM)
- $109.95

TEAC FD-553 1/4 HD DT/DF (FOR IBM)
- $125.55

TEAC FD-550FV 1/4 HT DT/DF (FOR IBM)
- $154.35

TANDON TM-100 1/4 HD DT/DF (FOR IBM)
- $119.00

MPT-082 1/4 DD DT/DF (FOR IBM)
- $79.95

TANDON TM-120 1/4 HT DT/DF (FOR IBM)
- $79.95

8" FLOPPY DISK DRIVES

FD 1034-55 1/2 DD DT/DF (IBM)
- $191.00

FD 2000-8 5/2 DD DT/DF (IBM)
- $159.00

DISK DRIVE ACCESSORIES

TEAC SPECIFICATION MANUAL
- $5.00

TEAC MAINTENANCE MANUAL
- $5.00

1/4 HD MOUNTING HARDWARE
- $2.95

MOUNTING RAILS FOR IBM AT
- $14.95

"Y" POWER CABLE FOR 3/4" FDD
- $2.95

5/4" FDD POWER CONNECTORS
- $1.19

CALL FOR VOLUME QUOTES

Copyright 1987 JDR Microdevices

Circle 191 on free information card

April 1987

www.americanradiohistory.com
1.2 MB MITSUBISHI DRIVE HALF HEIGHT FOR AT $129.95

QUALITY IBM COMPATIBLE MOTHERBOARDS FROM MODULAR CIRCUIT TECHNOLOGY
TURBO 4.77 / 0 MHZ $129.95
JDR PART #: MCT-TURBO
- 4.77 OR 8 MHz OPERATION WITH 8088 AND OPTIONAL 8087 CO-PROCESSOR
- DYNAMICALLY ADJUSTS SPEED DURING EXECUTION FOR MAXIMUM THROUGHPUT AND RELIABILITY
- CHOICE OF NORMAL - TURBO MODE OR SOFTWARE SELECT PRODUCER SPEED
STANDARD 4.77 MHZ $109.95
JDR PART #: MCT-XTMB
- 8088 CPU OPTIONAL 8087 CO-PROCESSOR
- 8 EXPANSION SLOTS
- OR RAM INSTALLABLE, EXTENDABLE TO 64K ON BOARD MEMORY
- ALL ICs SOCKETED HIGHEST QUALITY PCB
- ACCEPTS 2764 OR 2725 ROMS

NOW WITH FREE MCT BIOS!

IBM COMPATIBLE INTERFACE CARDS ALL WITH A ONE YEAR WARRANTY
MULTI I/O FLOPPY CARD $89.95
PERFECT FOR THE 640K MOTHERBOARD
- 2 DRIVE FLOPPY DISK CONTROLLER
- 6252 SERIAL PORT, OPTIONAL 2nd SERIAL PORT
- PARALLEL PRINTER PORT
- GAME PORT
- CLOCK-CALNDAR
- SOFTWARE, CLOCK UTILITIES, RAMDISK, SPEDODE...

MULTIFUNCTION CARD $84.95
ALL THE FEATURES OF AST'S 6 PACK PLUS AT THE HALF PRICE
- CLOCK-CALNDAR
- 6KB RAM
- SERIAL PORT
- PARALLEL PORT
- GAME PORT
- SOFTWARE INCLUDED

COLOR GRAPHICS ADAPTOR $69.95
FULLY COMPATIBLE WITH IBM COLOR CARD
- 4 VIDEO INTERFACES, RGB, COMPOSITE COLOR, HI-RES, MONOCHROME GRAPHICS
- CONNECTOR FOR RF MODULATOR
- COLOR GRAPHICS MODE 320 X 200
- MONO GRAPHICS MODE 640 X 200
- LIGHT PEN INTERFACE

MONOCHROME GRAPHICS CARD $79.95
FULLY COMPATIBLE W/JB COLOR MONOCHROME ADAPTOR & HERCULES GRAPHICS
- TEXT MODE 80 X 25
- GRAPHICS MODE 720 X 349
- STANDARD TTL COMPATIBLE OUTPUT

MONOCHROME ADAPTOR $49.95
ANOTHER FANTASTIC VALUE FROM JDR!
- IBM COMPATIBLE TTL OUTPUT
- 720 X 350 PIXEL DISPLAY
- STANDARD DIBS FOR EXTERNAL DRIVES
- RUNS Quad DENSITY DRIVES WHEN USED WITH FLOTAR PORT

FLOPPY DISK DRIVE ADAPTOR $34.95
- INTERFACES UP TO 4 STANDARD DRIVES TO IBM PC OR COMPATIBLES
- INCLUDES CABLE FOR TWO INTERNAL DRIVES
- STANDARD DIBS FOR EXTERNAL DRIVES
- RUNS QUAD DENSITY DRIVES WHEN USED WITH FLOTAR PORT

HAYES MODEM MACHINES BY EASYDATA

1200 BAUD MODEMS BY EASYDATA
MODEL 1200B $119.95
- 1200 BAUD DIAL-UP MODEM
- INTERNAL DESIGN
- FULL SIZE DIAL-UP MODEM
- BILL ALERT
- MODEL 1200H $109.95
- 1200 BAUD DIAL-UP MODEM
- INTERNAL DESIGN
- FULL LENGTH (5") CARD
- WITH POWER SUPPLY
- WITH LED STATUS INDICATORS
- EASYDATA-12 $119.95
- 1200 BAUD DIAL-UP MODEM
- INTERNAL DESIGN
- FULL LENGTH (5") CARD
- WITH POWER SUPPLY
- WITH LED STATUS INDICATORS

IBM RUBBER MONITOR $289.95
- IBM COMPATIBLE TIL INPUT
- 12" NON-GRADE AMBER SCREEN
- 720 X 348 RESOLUTION
- FULLY COMPATIBLE W/IBM MCT-XTMB

CENTURY SYSTEMS MONOCHROME MODEL XLM-121 $99.95
- IBM COMPATIBLE PORT INPUT
- 12" NON-GRADE SCREEN
- IBM COMPATIBLE PORT WITH 25 PIN CONNECTOR
- CABLE FOR IBM PC INCLUDES ADAPTOR IN MILL ET CHICAGO

CRT MONITORS FOR ALL APPLICATIONS

IBM STYLE COMPUTER CASE $39.95
AN ATTRACTIVE STEEL CASE WITH A HINGED LID THATS THE MOST PC/XT COMPATIBLE MOTHERBOARDS
- SWITCH CUT OUT FOR SIDE PORTS AND HP STYLE X MONITOR ONS
- CUT OUT FOR 8 OPTICAL SLOTS
- ALL HARDWARE INCLUDED

IBM COMPATIBLE KEYBOARDS
MCT-5150 $59.95
- "510" KEYBOARD
- FULLY IBM COMPATIBLE
- LED STATUS INDICATORS FOR CAPS & NUM LOCK
- LARGE, EASY TO REACH SHIFT & RETURN KEYS
- 83 KEY TYPEWRITER LAYOUT

110 Knowles Drive, Los Gatos, CA 95030
Toll Free 800-538-5000 • (408) 965-6200 • FAX (408) 370-8927 • Telex 171-110

CIRCLE 192 ON FREE INFORMATION CARD
COPYRIGHT 1987 JDR MICRODEVICES

www.americanradiohistory.com
PARROT 8501 $17.75

TERMS:

- 10% - 15MHz
- Event Counter: 0 to 9999999 counts
- 18 Digital input sensitivity
- Kit range 10MHz - 100MHz 50MHz, 1MHz
- Kit range 15MHz - 150MHz 150MHz

Response time: 0.2 second

Hold Function: Shift the last input signal

PRE DYNAMIC

LIMITS: 1. HIGH SENSITIVITY LIM (LOW LEVEL), 2. LOW SENSITIVITY LIMITS (LOW LEVEL), 3. AUTO SCALING LIMIT (LOW LEVEL), 4. 500V INPUT LEVEL LIMIT (LOW LEVEL), 5. 100V INPUT LEVEL LIMIT (LOW LEVEL), 6. 20V INPUT LEVEL LIMIT (LOW LEVEL), 7. 5V INPUT LEVEL LIMIT (LOW LEVEL), 8. 2V INPUT LEVEL LIMIT (LOW LEVEL), 9. 0.5V INPUT LEVEL LIMIT (LOW LEVEL), 10. 0.2V INPUT LEVEL LIMIT (LOW LEVEL), 11. 0.1V INPUT LEVEL LIMIT (LOW LEVEL), 12. 0.05V INPUT LEVEL LIMIT (LOW LEVEL), 13. 0.02V INPUT LEVEL LIMIT (LOW LEVEL), 14. 0.01V INPUT LEVEL LIMIT (LOW LEVEL), 15. 0V INPUT LEVEL LIMIT (LOW LEVEL)

16. POWER SUPPLY: DC 5V/3A Adaptable

Dimension: 106 x 61 x 5.7mm

Assembled with test menu: $99.99

--

SNOOZE: REMINDER VOICE

- Buttons for voice announcement

DISPLAY: Three display modes of time, alarm time & temperature

- 100W POWER SUPPLY

- 0-50V/3A

- 100W ELECTRONIC THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING

- THERMOMETER CLOCK W/IN/OUT

- THERMOMETER CLOCK W/F/C° MEASURING
What's New at AMERICAN DESIGN COMPONENTS . . . ?

We warehouse 60,000 items at American Design Components—expensive, often hard-to-find components for sale at a fraction of their original cost! You'll find every part you need—either brand new, or removed from equipment (RFE) in excellent condition. But quantities are limited. Order from this ad, or visit our retail showroom and find every single item that you need from the thousands of items on display.

Open Mon. - Sat., 9 - 5

THERE'S NO RISK.
With our full 90-day warranty, any purchase can be returned for any reason for full credit or refund.

PC 8300 HOME COMPUTER
(Advanced version of the Timex 1000)

42-key mechanical keyboard (not mem-
brane). Contains 2K RAM, 2K ROM, 8K disc drive controller board. With floppy disk drive controller board. Contains: 2 Tabor TC-500 3” disk drives. Total capacity 30K. Item #9832 $199.00 New

APPLE
Side-by-side nig. with disk storage space in front. Floppy disk controller board capable of handling 4 disk drives. Contains: 2 Tabor TC-500 3” disk drives. Total capacity 30K. Plugs right into your controller. Item #8827 $199.00 New

IBM PC Jr.
Side-by-side mounting (PC Jr. for top). With floppy disk drive controller board. Contains: 2 Tabor TC-500 3” disk drives. Total capacity 30K. Item #9826 $199.00 New

PC/XT
IBM® COMPATIBLE
3 1/2", 10Mb
HARDCOSS DRIVE
(IBM® Compatible)
Fits standard 5 1/4" spacing. Shock mounted. High speed, low power. Mfr. - IBM
Item #9927 $179.00 New
Power Supply and data drive (both included) are already installed. Item #9984 $99.00 New

5 1/4", 1.2 Mb. AT
HARDCOSS DRIVE
(IBM® Compatible)
Fits standard 5 1/4" spacing. Shock mounted. High speed, low power. Mfr. - IBM
Item #9907 $99.00 New

48/96 TPI
IBM® Comp.)
Double sided, single/double density, high full density. 48 TPI, 96 tracks. Mfr. - IBM $99.00 New

48 TPI
DS/DUAD DENSITY
IBM®
Double sided/double density, full height drive. 48 TPI, 80 tracks. Mfr. - IBM $99.00 New

5 1/4" FULL HT.
HARDCOSS DRIVE
IBM®

96 TPI
DS/DUAD DENSITY
IBM®
Power Supply
Input: 115V Output: +5.1V @ 0.3A + 12V @ 0.3A + 5V @ 0.3A

Each unit supplied with two 3 1/2" flexible diskettes

PUMPS COMPRESSORS BLOWERS MOTORS POTENIOMETERS COUNTERS TIMERS RELAYS VOLTAGE REGULATORS POWER SUPPLIES SWITCHES

COMPUTER GRADE POWER SUPPLY

Other uses—runs CB & car radios. Comes ready to plug in!

DC Output: 5V @ 5 amp. + 9V @ 3 amp. + 12V @ 6 amp.

Input 115V/60Hz. Dim.: 9/8" W x 3/3" H x 4 1/4" D. Mfr. - Standard Cooper $24.95 New

SWITCHING POWER SUPPLY

Input: +5.15V @ 0.1A + 12V @ 1A + 5V @ 1A + 24V @ 1A

Computer Power Supply

Input: 150-230V, 47-440Hz. Output: 0-135V/180-270V. Output 5VDC @ 5A. Mfr. - Tabor $25.00 New

12VDC @ 5A

24VDC @ 3A

TOY MOTOR KIT
For Rubies - Consisting of: 18 assorted toy motors, 1.5V to 12VDC

TOY MOTOR KIT
For Rubies

www.americanradiohistory.com
"The First Source" — for electromechanical & electronic equipment and components — AMERICAN DESIGN COMPONENTS!

15" COMPOSITE VIDEO MONITOR

15" green phosphor, high resolution (12 lines center) and bandwidth from 10Khz to 30MHz ± 3dB. Operating volt. 120/240VAC, 50/60Hz, 3V5A max. Mfr. — Motorola — Alpha Series

Item # 10044 $34.95 New

MECHANICAL KEYBOARDS . . .

48-KEY — Timex Z81/1000

Item # 3672 $5.95 New

66-KEY — Commodore C-16

Item # 9394 $5.95 New

75-KEY — Timex or Adam

For computer upgrade.

Item # 7429 $5.95 New

NS 87PSO-D 11 MICROCOMPUTER

8-bit single chip microcomputer units: emulates 8048/49/50. Piggy-back configuration allows you to plug in an eprom 2758 and 2718, 2732 Features: XMS, 5V, 8-16 bit, 4k directly accessible memory. 256 bits on chip ROM. 11 Mhz. max. freq. Item # 8999 $24.95 New

INTEGRATED CIRCUITS . . .

LM7400CN $ 5.53

DSB60CN 1.57

LM1456V 1.75

LM1586N 1.44

12" COMPOSITE VIDEO MONITOR

Contrasts front panel (mtd.)

12" green phosphor, high resolution (12 lines center) and bandwidth from 10Khz to 30MHz ± 3dB. Operating voltage 120/240VAC, 50/60Hz, 4V5A max. Mfr. — Motorola — Alpha Series

Item # 10043 $29.95 New

CORDLESS TELEPHONE

700 ft. Range

Wall or Base Mount

Full duplex: talk & listen simul. Auto redial: last number dialed recalled. Comes with adapt. for both types of mtg. inc. AC power adapt. & battery indicator. Light: Color: Brown

Wireless. Famous make mfr.

Item # 9997 $29.95 New

GE CELL BATTERIES (Rechargeable)

For use with model cars, trains, boats.

Item # 6703 $14.95 New

RECORDING TAPE 7/8" Reel, 2400 ft.

STEPPING MOTORS for ROBOTICS

Precision stepper with increments from 1 to 7.5 degrees. Speeds up to 5,000 steps.

MINI MICRO-COMPUTER REGULATOR

140 VA

Provides voltage regulation and ultra-isolation for microprocessor-based equipment. Contains less than 3% harmonic distortion, better than 60 dB traverse noise rejection, and 6 ft. line cord.

Input: 95-120V, 60Hz

Output: 120V @ 1.17A

Dimensions: 111/2" x 41/4" x 51/8" W

Mounted on metal base with rubber feet

Mfr. — Sola # 633-132-14

Item # 9999 $39.00 New

CIRCULE 178 ON FREE INFORMATION CARD

www.americanradiohistory.com
Radio Shack Parts Place

PROJECT PARTS AT EVERYDAY LOW PRICES!

Low-Voltage DC Motors

Low As 79¢ Each

Add action to hobby projects and models.
1.5 to 3 VDC. #273-223. 79¢
3.5 to 9 VDC. #273-229. 79¢

Mike Connectors

(1) 8-Pin Mike Plug. #274-025. 1.19
(2) 4-Pin Mike Plug. #274-301. 1.59
(3) 4-Pin Chassis Socket. #274-002. 99¢

IC Inserter and Extractor

695
Handle ICs The Safe Way
Helps you remove or install DIP ICs without bending pins. Both inserter and extractor are grounded to protect static-sensitive MOS devices. #276-1574

Wire-Wrapping Sockets

0.025" posts accept 3 levels of wire.

Benchtop Digital Multitester

LCD Display
Memory Storage
Full Autoranging
Transistor Checker
Our Best Ever!

Melody Synthesizer

Only 299
Preprogrammed
With 12 Popular Tunes

Quality Memory Chips

Upgrade Your Computer With The Best!
Manufacturer’s prime memory ICs with 150 ns access time and low-power design

12-Volt Flashing Lamps

Pkg. of 3 Only
99¢
Add sparkle to hobby projects and model train layouts. Includes each one: yellow, red, green. 95 mA. 4" wire leads. #272-1097

Color-Coded Jumper Cables

379 Each

(12) Set of 10 Test Cables, 14" long with insu-
lated mini alligator clip on each end. #279-1156
(13) Set of 6 Heavy-Duty Cables. 40" long. Claws
type clip at ends. #279-002

Radio Shack Can Replace Almost Any Popular Semiconductor!
More Than 200,000 Substitutions

No Minimum Order
No Postage Charge

If the device you need for a project or repair job is not part of our regular stock, we’ll special-order a replacement from our warehouse. Radio Shack also offers this convenient service on selected tubes, quartz crystals, phono cartridges and styli. Come in and give us a try!

Over 1000 items in stock: Binding posts, Books, Breadboards, Buzzers, Capacitors, Chokes, Clips, Coax, Connectors, Fuses, Hardware, ICs, Jacks, Knobs, Lamps, Multimeters, PC Boards, Plugs, Rectifiers, Relays, Resistors, Switches, Tools, Transformers, Wire, Tuners, more!

Prices apply at participating Radio Shack stores and dealers

CIRCLE 78 ON FREE INFORMATION CARD

www.americanradiohistory.com
Tenma 15MHz Dual Trace Portable Oscilloscope

- Internal rechargeable battery
- Built-in battery charger
- Two 10:1 probes included
- Six horizontal magnifier
- Front panel electrical trace rotation
- High brightness CRT with internal graticule
- For additional specifications see MCM Catalog #14

Two Year Limited Warranty

#72-335 $489.90 (ea.)

Tenma LCR Meter

- Measures inductance from 1uH-200H in six ranges
- Measures capacitance from 1pF-200pF in seven ranges
- Measures resistance from 0.1ohm-20Mohm in seven ranges
- Carrying case included

One Year Limited Warranty

#72-370 $149.95 (ea.)

The Name You Can Trust In Electronic Test Equipment

Tenma Anti-Static Work Mat

- A must for the modern service shop
- Used in conjunction with our #21-660 wrist strap to help eliminate static related problems
- 18" x 26"

#21-655 $33.45

Tenma Anti-Static Wrist Strap

- Silver-plated monofilament fibers are woven into a comfortable elastic wrist strap, that gently conforms to the user's wrist for reliable contact to ground

#21-660 $9.45 (1-5)

Tenma Soldering Station

- Adjustable temperature range of 150°-420° (300°-790° F)
- Grounded tip for soldering static sensitive devices
- LED power, heater and temperature indicators
- See MCM Catalog #14 for additional information

#21-147 $44.80 (4-up)

Call Toll Free 1-800-543-4330 (In Ohio 1-800-762-4315)

In Alaska and Hawaii 1-800-858-1849

Terms:

- 410 minimum order
- $1.00 charge for orders under $10
- $30 minimum charge card order
- Orders shipped UPS C.O.D.
- Most orders shipped within 24 hours
- Sales office open 8:30 am to 7:00 pm, Saturday 10:00 am to 2:00 pm, E.T.
- For prepaid orders add $2.75 for shipping and handling.
- Should shipping and handling charges exceed $2.75, the balance due will be sent C.O.D.

© 1987, MCM Electronics

MCM ELECTRONICS
858 E. CONGRESS PARK DR.
CENTERVILLE, OH 45459
A PREMIER Company

CIRCLE 87 ON FREE INFORMATION CARD

SOURCE NO. RE-31

Tenma Regulated Power Supply

- Output: Regulated 13.8V
- Input: 120VAC
- Fuse protected
- With easily accessible fuse holder
- Neon light indicator
- Heavy duty binding posts
- Effective heat sinks for more power dissipation
- 90 day warranty

3.5 Amp

(5 Amp Surge) $29.95 (ea.)

#72-280

7 Amp

(10 Amp Surge) $59.95 (ea.)

#72-290

Tenma Resistance Selector Box

- This device allows the user to quickly substitute a resistor in a circuit with any value between 1ohm and 11Mohm
- Constructed entirely of 1/2 watt resistors
- With ±10% tolerance ratings
- 90 day warranty

#72-405 $28.50 (ea.)

Tenma Logic Probe

- Working voltage: 4-16VDC
- Frequency response: Maximum 20MHz
- Detectable pulse width: Longer than 25nsec
- Input impedance: 1Mohm minimum
- Input overload protection: ±250V DC/AC
- 90 day warranty

#72-415 $14.95 (ea.)

Tenma RS-232 Break Out Box

- Monitors individual communication interface lines
- Detects the presence or absence of activity
- Rewire RS-232 interfaces
- Line powered
- Dual-state LEDs monitor both positive and negative signal levels
- 48 test points
- For additional information see MCM Catalog #14

#72-440 $49.80 (ea.)

In Ohio 1-800-762-4315

© 1987, MCM Electronics

Be Sure To Call For Your FREE Catalog!
Over 7,000 Items!

SOURCE NO. RE-31
QUALITY TEST GEAR
YOU CAN COUNT ON

INCLUDES 2 HOOK-ON PROBES
$369.95*
20 MHz DUAL TRACE
For component testing—circuits, diodes, transistors, capacitors,
digital and analog—TV sync filter—high sensitivity—
Z-axis—X/Y built-in calibrator—SX horizontal magnifier

INCLUDES 2 HOOK-ON PROBES
$499.95*
35 MHz DUAL TRACE
Wide frequency bandwidth—optimal sensitivity—
delayed triggering—hold off—ALT trigger—simple—TV sync
SX magnification—YF or XY operation—HF LP noise reduction

RAMSEY OSCILLOSCOPES
All Ramsey oscilloscopes feature unsurpassed quality at an
unbeatable price. Of heavy duty construction, they are suitable
for hobby labor, service and production applications.

*Add additional $10.00 for each unit for shipping.

MINI-100 COUNTER
$119.95
FULLY MEASURABLE
AC ADAPTER INCLUDED

CT-70 7 DIGIT 525 MHz
$139.95 1/27 in.
WIRE MEASURABLE
AC ADAPTER INCLUDED

CT-90 9 DIGIT 600 MHz
$169.95 1/27 in.
WIRE MEASURABLE
AC ADAPTER INCLUDED

CT-50 9 DIGIT 600 MHz
$189.95 1/27 in.
WIRE MEASURABLE
AC ADAPTER INCLUDED

RAMSEY D-4100
$2495
COMPACT DIGITAL MULTIMETER

RAMSEY D-5100
$4995
HANDHELD DIGITAL AUTORANGING METER

PR-2 COUNTER PREAMP
$4995
For full, reliable, in-phase and out-of-phase
frequency measurement up to 60 MHz.

PS-2 AUDIO MULTIPLIER
$6995
For full, reliable, in-phase and out-of-phase
frequency measurement up to 60 MHz.

PS-180 8 MHz SCALER
$6995
For full, reliable, in-phase and out-of-phase
frequency measurement up to 60 MHz.

MINI KITS—EASY TO ASSEMBLE—FUN TO USE—FOR BEGINNERS, STUDENTS AND PROS

MINI KITS

TI-SHOT FINDER

TI-SHOT DETECTOR

TI-SHOT PROBES

TI-SHOT CONTROLLER

TI-SHOT INDUCTOR

TI-SHOT TRANSFORMERS

TI-SHOT COILS

TI-SHOT CAPACITORS

TI-SHOT RESISTORS

TI-SHOT UNITS

TI-SHOT ACCESSORIES

ACCESSORIES FOR RAMSEY COUWBS

Telescopic whip antenna—BNC plug...
High impedance probe, light loading...
Low pass probe, audio use...
Direct probe, general purpose use...
Tilt tilt, for CT-90, 90, 12...

PHONE ORDERS CALL
716-586-3950
TELEX 466735 RAMSEY CI
FAX 716-586-4754

AMERICAN RADIO HISTORY
www.americanradiohistory.com
TRI-MODE CABLE TV DESCRAMBLER PARTS

We stock the exact parts, PC board and AC adaptor for Radio Electronics February 1987 article on building your own TRI-MODE CABLE TV DESCRAMBLER.

#301 PARTS PACKAGE $39.95
Includes all the original resistors, capacitors, diodes, potentiometers, transistors, integrated circuits, LED's. Toko coil (E520HN-3000023) and Plessey SAW filter (SY323).

#302 PC BOARD $12.95
Original 5 X 8.8 etched & drilled silk-screen PC board used in article.

#304 AC ADAPTOR $12.95
Original (14 to 18 volt DC @ 200ma) AC adaptor used in article.

SPECIALS
Add $2.50 shipping & handling — $4.50 for Canadian orders. We also offer quantity discounts on 5 or more units.

BOTH #301 and #302 $49.00
ALL THREE #301, #302, and #304 $59.00

FREE
Reprint of Radio Electronics Article (February 1987) on building your own TRI-MODE CABLE TV DESCRAMBLER.

60-CHANNEL
CABLE CONVERTER SC-60R CONVERTER
WITH INFRARED REMOTE CONTROL $69.95
Thousands of these converters sold nationally for $119.95. We offer you this same type of converter for only $69.95. All converters are NEW, with Full manufacturer’s WARRANTY. FEATURES:
- Full 60 Channel Capability - Cordless Infrared remote control
- Ultra-Stable Synthesized tuning - Microprocessor controlled PLL
- Works on all TV models. Specify channel 3 or channel 2 output.
- Standard/HRC Switch for compatibility with all Cable Systems
- Will work with all types of external descramblers

ORDER TOLL FREE
1-800-227-8529
Inside MA: 617-695-8699
VISA, MASTERCARD OR C.O.D.

J & W
ELECTRONICS, INC.
P.O. BOX 800 • MANSFIELD, MA 02048

Not available to Massachusetts residents due to state law.

CIRCLE 65 ON FREE INFORMATION CARD
ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

Free Information Number	Page
— "2001" | CV3 |
81 | A.I.S. Satellite | 75 |
108 | AMC Sales | 78 |
76 | AP Products Brand of 3M | 12 |
107 | All Electronics | 112 |
— Amazing Devices | 106 |
178 | American Design Components | 122, 123 |
196 | B N F Enterprises | 82 |
77 | B & K Precision | 20 |
98 | Beckman Industrial | CV4 |
85 | Blue Star Industries | 75 |
109 | C & S Sales | 73 |
— | C.O.M.B. | 77 |
60 | CIE | 34 |
200 | Cable Distributors | 35 |
179 | Cabletronics | 88 |
79 | Communications Electronics | 38 |
193 | Cook's Institute | 81 |
176, 177 | Crosby | 74, 75 |
127 | Deco Industries | 74, 75 |
95, 188 | Dick Smith Electronics | 109, 110, 111 |
82 | Digi-Key | 113 |
— | Digital Research Computers | 104 |
203 | E-Z Hook | 11 |
120 | Elephant Electronics | 75 |
100 | Firestik II | 81 |
121 | Fluke Manufacturing | 10 |
— | Fordham Radio | 25 |
125 | GRE America | 32 |
— | Grantham College of Engineering | 23 |
86 | Heath | 6.13 |
— | ICS | 108 |
104 | ISOL Circuits | 118 |
121 | Intrinsics Industries | 24 |
65 | J & W | 127 |
59 | JDR Instruments | 3 |
113, 189 | JDR Microdevices | 116, 117 |
190, 191 | JDR Microdevices | 118, 119 |
192 | JDR Microdevices | 120 |
114 | Jameco | 114, 115 |
104 | Jan Crystals | 82 |
— | Joseph Electronics | 15 |
184 | Kepro Circuit Systems | 86 |
87 | KMC Electronics | 5 |
195 | M.D. Electronics | 75 |
93 | Mark V. Electronics | 121 |
— | McGraw Hill Book Club | 86 |
— | McGraw Hill Cont. Education Series | 71 |
194 | Mercer | 9 |
63 | Micro-Mart | 107 |
61 | Microprocessors Unlimited | 101 |
117 | Mouser | 78 |
NRI | 16 |
187 | NTS | 74 |

Gernsback Publications, Inc.
500-B Bi-County Blvd.
Farmingdale, NY 11735
(516) 293-3000
President: Larry Steckler
Vice President: Cathy Steckler

For Advertising ONLY 516-293-3000
Larry Steckler publisher
Arline Fishman advertising director
Shelli Weinman advertising associate
Lisa Strassman credit manager
Christina Estrada advertising assistant

SALES OFFICES

EAST/SOUTHEAST
Stanley Levitan
Eastern Sales Manager
Radio-Electronics
259-23 57th Avenue
Little Neck, NY 11362
718-428-6037

MIDWEST/Texas/Arkansas/Okla.
Ralph Bergen
Midwest Sales Manager
Radio-Electronics
540 Frontage Road—Suite 339
Northfield, IL 60093
312-446-1444

PACIFIC COAST/ Mountain States
Marvin Green
Pacific Sales Manager
Radio-Electronics
15335 Morrison St—Suite 227
Sherman Oaks, CA 91403
818-886-2101

Saratoga Electronics
1280 SARATOGA-SUNNYVALE RD. SARATOGA, CA 95070

INTEGRATED CIRCUITS
D RAMS
4164-150NS $.89 41256-150NS $ 2.45
EPROMS
2716-450NS $2.95 2764-250NS 3.75
2764-450NS 3.00 27256-300NS 6.75
TTL LOGIC
74LS00 SERIES 74 SERIES $1.49
74LSD00 12 74551 $.35
74LS02 12 74553 .20
74LS04 12 74554 .30
74LS05 12 74S138 .50
74LS14 25 74F SERIES .95
74LS107 25 74F101 .95
74LS153 24 74F158 .95
74LS155 24 7400 SERIES .95
74LS158 24 74LS153 .20
74LS163 30 74199 .15
74LS241 49 .75
MISC.
MSM5832 (clock chip) $1.49
W2413M-02 (FDC) 2.49
FD1795A-02 (FDC) 2.49
LF347 (Bi-Fet) 1.29
MC10231 (10K ECL Dual Flip-Flop) .49
MC1468 39
MICROS
8080A-7 (5MHz) $125.00
80827 (6MHz) 165.00
8740-H 7.95
280A DQA 3.00
280B CPU 4.00

ELECTROLYTIC CAPACITORS
5 for 99c
10,000 mF @ 35v
2"(ht.) x 1"(diameter)

PCB's $3.95 ea.
Surplus boards loaded with MANY components!

PC/XT COMPATIBLE SYSTEM BOARD
$115.00
640KB w/o Bios & Ram

408/446-4949
TOLL FREE
800/621-0854 ext. 245

CIRCLE 97 ON FREE INFORMATION CARD

INTERESTED IN ADVERTISING IN RADIO-ELECTRONICS?
WRITE OR CALL:
Gernsback Publications, Inc.
500-B Bi-County Blvd.
Farmingdale, NY 11735
(516) 293-3000

www.americanradiohistory.com
An electronics revolution is in the making, but you don't have to wait until 2001 to find out how it will change your life in the 21st century. Radio-Electronics will forecast the coming chances and how they will affect you in the May 1987 issue!

Created by a special editorial task force—two years in preparation—this unique issue, 2001, takes you into the research laboratories of Westinghouse, Texas Instruments, Ford and Bell Labs where the future is being invented today!

You'll get an advance look at what's coming in artificial intelligence... new cars and highways (cleaner, quieter and more efficient)... futuristic energy sources like magneto-hydrodynamic and particle-beam generators... personal communications systems that will give you instant access to anyone anywhere... super computers and teaching breakthroughs that will multiply your capacity to learn!

Arthur Clarke introduces 2001. Isaac Asimov explores the marvels of robotics. But it is not science fiction. Rather it is emerging technology with a solid foundation in current research and development.

And its impact will be enormous. It will change the way you work... the way you think... the way you live!

2001 is the kind of special publishing event that can only happen once in any magazine's lifetime and it will happen to Radio-Electronics in May, 1987.

With extra features and extra pages, 2001 will bear a premium cover cost, but you can reserve your copy now at less than the regular cover cost by mailing any one of the subscription orders in this issue.

2001 is coming in May. Make sure now that you don't miss it!

Radio-Electronics

Industry's Most Popular Heavy-Duty DMMs... Now Even Better With Dual-Fuse Protection And A Tougher Case.

The tough just got tougher. When Beckman Industrial introduced heavy-duty DMMs tough enough to withstand accidental drops, input overloads and destructive environments, they quickly became the industry's most popular.

Now they're even tougher, thanks to the best dual-fuse protection you can buy and a new case covered by a one-year no-fault guarantee against damage to the meter other than gross abuse.

For overloads, all voltage ranges can withstand transients up to 6kV. Resistance ranges are protected to 600 volts. Current ranges are protected by a 2 amp/600 volt fuse. The 10 amp range is protected by a 15 amp, 600 volt high energy fuse with 100,000 amp interrupt rating.

Our heavy-duty DMMs can withstand accidental drops, literally bouncing back for more, thanks to a new case made of Valox®, one of the most impact and corrosive chemical resistant thermoplastics around. Sensitive components are shock mounted for impact protection.

Even oil, water and industrial grime can't keep our heavy-duty DMMs away from the action. Everything is sealed with o-rings for maximum protection.

Of course, even the toughest DMM isn't much good if it can't deliver accuracy and the right combination of capabilities at the right price.

Check the HD DMM specs for yourself. Maximum voltage rating of 1500 volts DC, 1000 volts AC tested to 60KHz; diode test function; and exclusive Insta-Ohm® capability, now with an audible beeper; to make your HD even easier to use.

What's more, you can select just the model you need without paying extra. Whether it's the economical HD-100 at $169.00 for solid, all around meter performance, the HD-110, or the HD-110T that lets you select Fahrenheit or Celsius temperature measurement with a simple field adjustment, accurately measures from -4°F to 1999°F, works with any K-type thermocouple, and measures a range of 32°F to 932°F with the thermocouple provided.

You can even get true RMS capability (AC coupled) with a 4½ digit display required by the HD-140's accuracy.

Visit your local Beckman Industrial distributor today. Compare And discover why the toughest are tougher than ever.

Beckman Industrial

Beckman Industrial Instrumentation Products Division
A Subsidiary of Emerson Electric Company
430 Pardee Street, Ann, IL 62514
(1) 217/678-4800 • FAX. (1) 217/678-7611 • TLX:488790
© 1986 Beckman Industrial Corporation

HEAVY DUTY DMMs

HEAVY DUTY DMMs

HD100 HD110 HD110T HD140

<table>
<thead>
<tr>
<th>Digits</th>
<th>3½</th>
<th>3½</th>
<th>3½</th>
<th>4½</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy (%)</td>
<td>0.25%</td>
<td>0.25%</td>
<td>0.25%</td>
<td>0.05%</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>22 Megohms</td>
<td>10 Megohms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC Conversion Type</td>
<td>Average</td>
<td>True RMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Circuit Voltage (in OHMS) Range</td>
<td>500mV</td>
<td>4V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Burden (DC Amps)</td>
<td>250mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Ranges</td>
<td>200µA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beep</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>Battery Life (Av. Hrs.)</td>
<td>2000</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visit your local Beckman Industrial distributor today. Compare And discover why the toughest are tougher than ever.

CIRCLE 98 ON FREE INFORMATION CARD

www.americanradiohistory.com