POCKET TV ROUNDUP

$1.95 JULY 1986
IN CANADA $2.50

TECHNOLOGY - VIDEO - STEREO - COMPUTERS - SERVICE

BUILD THIS 1.2-GHz FREQUENCY COUNTER
For less than $60!

TV DESCRAMBLING
Here's how it works.

THE EARLY DAYS OF RADIO
Early crystal radios.

BUILD A UNIVERSAL BATTERY CHARGER
Keep your rechargeables in peak condition.

BUILD A STEREO AMPLIFIER
100 watts per channel of FET power.

OSCILLATORS
Our new back-to-school series.

PLUS:
★ Ask R-E
★ Designer's Notebook
100 MHz scope, counter, timer, multimeter: All one integrated system.

100 MHz dual time base scope. 3.5 ns risetime; sweeps from 0.5 s to 5 ns/div. alternate sweep, ±2% vertical/horizontal accuracy; vertical sensitivity to 2 mV/div @ 50 MHz

9-digit fluorescent display. Digitally accurate readouts accompany the CRT waveform. Error messages and prompts also appear on the display.

Gated measurements. Use the scope's intensified marker to measure frequency, period, width and to count events within specified portions of the signal.

Auto-ranged, auto-averaged counter/timer. Frequency, period, width, delay time, J-time, plus total-ize to more than 8 million events—with 7 digits plus exponent displayed.

Auto-ranged DMM. Use floating DMM side inputs with up to 5000-count resolution. Get precise read-out of average dc and true RMS voltage. Measure resistance from milliohms to gigohms.

Now make measurements faster, easier, with greater accuracy and user confidence. The Tek 2236 makes gated counter measurements, temperature, time, frequency, resistance and voltage measurements push-button easy. You see results concurrently on the 9-digit numeric readout and CRT display.

Its complete trigger system includes pushbutton trigger view, plus peak-to-peak auto, TV line, TV field, single sweep and normal modes.

At just $2650, the 2236 includes the industry's first 3-year warranty on all parts and labor, including the CRT.

Integrated measurement system. 3-year warranty. 15-day return policy. And expert advice. One free call gets it all! You can order, or obtain literature, through the Tek National Marketing Center. Technical personnel, expert in scope applications, can answer your questions and expedite delivery. Direct orders include probes, operating manual, 15-day return policy, full warranty and worldwide service back-up.

Order toll-free: 1-800-426-2200
Extension 57

In Oregon call collect: (503) 627-9000 Ext. 57
Or write Tektronix, Inc.
P.O. Box 1700
Beaverton, OR 97075

Tektronix
COMMITTED TO EXCELLENCE

Copyright ©1984 Tektronix Inc. All rights reserved. TTA-324-1 *U S Domestic price $O B Beaverton, Oregon. Price subject to change

CIRCLE 92 ON FREE INFORMATION CARD
SPECIAL FEATURE

39 POCKET TELEVISION RECEIVERS
Here's a round-up of the pocket-TV market. We show you what's available, for how much, and the performance you can expect.
Fred Blechman

BUILD THIS

47 1.2 GHZ FREQUENCY COUNTER
High frequency at a low price. Fred Huff

56 HIGH-POWER FET STEREO AMP
Here's an excellent way to upgrade your outdated system!

67 UNIVERSAL BATTERY CHARGER
Keep your rechargeable batteries in tip-top condition by safely recharging them with our inexpensive circuit. Michael R. Wright

75 PC SERVICE
Use our exclusive direct-etch foil patterns to make circuit boards for your frequency counter.

TECHNOLOGY

6 VIDEO NEWS
Inside the fast-changing video scene.
David Lachenbruch

44 TV SIGNAL DESCRAMBLING
Part 2. We continue our series with a look at some rather complex scrambling schemes.
William Sheets and Rudolf F. Graf

78 SATELLITE TV
The issues of scrambling. Bob Cooper, Jr.

80 ROBOTICS
Give arms to the robotics. Mark J. Robillard

CIRCUITS AND COMPONENTS

52 RADAR SIGNAL DETECTOR
An easy-to-build circuit that can detect signals from 50 MHz to 500 GHz. Gregory Hodowanec

65 HOW TO DESIGN OSCILLATOR CIRCUITS
Our new back-to-school series.
Joseph J. Carr

82 SERVICE CLINIC
Servicing a dead set. Jack Darr

83 SERVICE QUESTIONS
Solutions to servicing problems.

84 DRAWING BOARD
More on memory management. Robert Grossblatt

RADIO

61 THE EARLY DAYS OF RADIO
A nostalgic look back at the original solid state radios.
Martin Cliford

86 ANTIQUE RADIOS
Tuning eyes and other "advances."
Richard D. Fitch

89 COMMUNICATIONS CORNER
Amateur packet switching. Herb Friedman

COMPUTERS

Following page 88 COMPUTER DIGEST
Touch screens, modems, and more!

EQUIPMENT REPORTS

23 Radio Shack Telephone Tester

26 OK Industries Model 205 Function Generator

DEPARTMENTS

112 Advertising and Sales Offices

112 Advertising Index

8 Ask R-E

113 Free Information Card

12 Guest Editorial

14 Letters

92 Market Center

30 New Products

4 What's News

RADIO-ELECTRONICS, (ISSN 0033-7862) July 1986. Published monthly by Gernsback Publications, Inc., 500-B, Bi-County Boulevard, Farmingdale, NY 11735 Second-Class Postage paid at Farmingdale, NY and additional mailing offices. Second-Class mail registration No. 9242 authorized at Toronto, Canada. One-year subscription rate U.S.A. and possessions: $15.97, Canada $20.97, all other countries $23.47. Subscription orders payable in US funds only, international postal money order or check drawn on a U.S. bank. Single copies $1.95 < 1986 by Gernsback Publications, Inc. All rights reserved. Printed in U.S.A.

POSTMASTER: Please send address changes to RADIO-ELECTRONICS, Subscription Dept., Box 5515, Boulder, CO 80321-5515.
A stamped self-addressed envelope must accompany all submitted manuscripts and or artwork or photographs if their return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and or artwork or photographs while in our possession or otherwise.
Who says that good test instruments have to be expensive? The subject of this month's cover can be built for under $60 if you're willing to overlook the case. But that low price doesn't mean low performance. For example, our counter features an accuracy of ±1 PPM, ±1 count and a sensitivity better than 150 mV over the entire measurement range from 1 Hz to 1200 MHz. For more details and complete instructions on how to build the counter, turn to page 47.

THE AUGUST ISSUE IS ON SALE JULY 1

BUILD AN INFRARED POWER SWITCH
Control your electrical appliances from your easy chair!

TV SIGNAL SCRAMBLING
Our series continues

POCKET TV ROUNDUP
Set-by-set descriptions.

THE 4007
An indepth look at one of the most versatile CMOS IC's.
NEW! Lower Price Scanners

Communications Electronics*, the world's largest distributor of radio scanners, introduces new lower prices to celebrate our 15th anniversary.

Regency® MX7000-EA
List price $599.95/CE price $399.95/SPECIAL 10-Band, 20 Channel * Crystalless * AC/DC Frequency range: 25-250 MHz, continuous coverage and 800 MHz, 10-15 GHz, continuous coverage
The Regency MX7000 scanner lets you monitor military, F.B.I., Space Stations, Police and Fire Departments, Drug Enforcement Agencies, Defense Department, Aeronautical AM Band, Aero Navigation Band, Fan & Game, Immigration, Paramedics, Amateur Radio, Justice Department, State Department, plus thousands of other radio frequencies most scanners can't pick up. The Regency MX7000 is the perfect scanner for intelligence agencies that need to monitor the new 800-MHz public safety band. The MX7000, now at a special price from CE.

Regency® Z60-EA
List price $299.95/CE price $179.95/SPECIAL 8-Band, 60 Channel * No-crystal scanner Bands: 30-50, 100-110, 220-260, 400-490 MHz
The Regency Z60 covers all the public service bands plus aircraft and FM music for a total of eight bands. This also features an alarm clock and priority control as well as AC/DC operation. Order today.

Regency® Z45-EA
List price $259.95/CE price $159.95/SPECIAL 7-Band, 45 Channel * No-crystal scanner Bands: 50-52, 110-120, 220-260, 390-410, 430-450 MHz
The Regency Z45 is very similar to the Z60 model listed above however it does not have the commercial/FM broadcast band. The Z45, now at a special price from Communications Electronics.

Regency® RH250B-EA
List price $163.00/CE price $329.95/SPECIAL 10 Channel * 25 Watt Transceiver * Priority The Regency RH250B is a 10-channel, 25-watt scanner equipped with a high-gain antenna for maximum performance in urban areas. It's specifically designed for use in urban areas and has a powerful 25-watt transceiver, which makes it ideal for high-performance applications. It's equipped with a high-gain antenna for maximum performance in urban areas.

NEW! Bearcat® 50XL-EA
List price $199.95/CE price $114.95/SPECIAL 10-Band, 1 Channel * Handheld scanner 50-XL is an economical, handheld scanner with 10 channels covering two frequency bands. It features a keyboard lock switch to prevent accidental entry and more. Also order part # BP50 which is a rechargeable battery pack for 14.95, a plug-in wall charger, part # FST110 which is a high-performance AC/DC wall charger for $19.95, and also order optional cigarette lighter cable part # P5001 for 14.95.

NEW! Bearcat® 800XL-EA
List price $499.95/CE price $317.95 12-Band, 40 Channel * No-crystal scanner Priority control * AC/DC Bands: 29-54, 118-174, 406-512 MHz
The Bearcat 800XL has an advanced third-generation architecture that makes it our most powerful scanner ever. It's equipped with a high-performance AC/DC power supply for $299.95, a rechargeable battery pack for 14.95, and also order optional cigarette lighter cable part # P5001 for 14.95.

NEW! BEARCAT® 10XL-EA
List price $349.95/CE price $202.95/SPECIAL 8-Band, 45 Channel * No-crystal scanner Bands: 30-50, 110-120, 220-260, 390-410, 430-450 MHz
The Bearcat 10XL is a high-performance scanner that provides exceptional reception of all public service bands. It's equipped with a high-gain antenna and a powerful 25-watt transceiver, which makes it ideal for high-performance applications. It's equipped with a high-gain antenna and a powerful 25-watt transceiver, which makes it ideal for high-performance applications.

Bearcat® 210XW-EA
List price $339.95/CE price $209.95/SPECIAL 8-Band, 20 Channel * No-crystal scanner Frequency range: 30-50, 110-120, 220-260, 390-410, 430-450 MHz
The Bearcat 210XW is an advanced third-generation scanner that provides exceptional reception of all public service bands. It's equipped with a high-gain antenna and a powerful 25-watt transceiver, which makes it ideal for high-performance applications.

NEW! Bearcat® 145XL-EA
List price $179.95/CE price $102.95/SPECIAL 10-Band, 16 Channel * AC/DC * Instant Weather Frequency range: 29.5-480 MHz, 406-512 MHz
The Bearcat 145XL is a high-performance scanner that provides exceptional reception of all public service bands. It's equipped with a high-gain antenna and a powerful 25-watt transceiver, which makes it ideal for high-performance applications.

TEST ANY SCANNER
Test any scanner purchased from Communications Electronics® for 31 days before you decide to keep it. If it does not perform to your requirements, return it in original condition with all parts in 31 days, for a prompt refund (less shipping and handling charges and rebates).

BEARCAT® 10XL-EA
Regency Products Division P.O. Box 1045 Ann Arbor, Michigan 48105-1045 U.S.A. Call 800-USA-SCAN or outside U.S.A. 313-973-8888

COMMUNICATIONS ELECTRONICS INC.

Copyright © 1986 Communications Electronics Inc.
WHAT'S NEWS

Science-research budgets holding up under cuts

Federal budgets for science and research are not faring too badly, in spite of budget cutting for many services due to Gramm-Rudman and other factors, reports the Institute of Electrical and Electronics Engineers (IEEE).

Under the fiscal 1987 budget requests, says Dr. John McTague, acting science advisor to the President, the number of Department-of-Defense-sponsored engineer-

Magnetic-resonance imaging solves mysteries of growth

Scientists of the General Electric Co. and the U.S. Department of Agriculture have adapted the recently-discovered technology of magnetic-resonance imaging to help unravel the mysteries of plant growth.

In magnetic-resonance imaging, the object being studied is positioned in an extremely strong magnetic field and probed with high-frequency radio signals from a special type of antenna. Under the field's influence, those signals can excite atoms of selected substances in the object. Radiation from those atoms is picked up by another antenna and sent to a special-purpose computer that constructs a "map" showing the location and concentration of the excited atoms.

The scanner used for the plant studies uses a large, doughnut-shaped superconducting magnet capable of producing a field of 1.5 tesla—30,000 times the strength of the earth's field—within its 1-meter bore.

In this first application of magnetic-resonance imaging of intact root systems, the researchers used hydrogen imaging (looked at hy-

Electronics technicians honored by Reagan

Electronics technicians were honored nationally on March 4, 1986 with the inauguration of the first National Electronics Technicians Day. That special day recognized both the twentieth year of the certification program that is sponsored by the International Society of Certified Electronics Technicians and the certification of the 20,000th electronics technician.

In his proclamation announcing National Electronics Technicians Day, President Ronald Reagan saluted the high standards of performance and excellence maintained by professional technicians and by ISET in its 20 years of distinguished service to the electronics industry. He paid tribute to the vital part that electronics technicians play in helping to ensure our country's continued technological and economic leadership as a formidable international competitor. In extending his warm personal congratulations to technicians who have met the demanding criteria for certification, President Reagan recognized the individual skills, talent, and expertise that make electronics technicians one of our country's most important technological resources.

To make National Electronics Technicians Day an official commemorative holiday, persons involved in the electronics industry are asked to contact their senators and congressmen to request their support for House Joint Reso-

R-E
FEATURES:
- AC DC voltage
- AC DC current
- Resistance
- Diode test
- Audible Continuity check
- Temperature (Type K, 3510 & 3525)
- Data hold
- Manual or autoranging
- Overload protection
- LCD display
- Built-in stand
- Battery included
- Test leads included

2 year warranty plus carrying case included!

MODEL V-222
DC to 20 MHz, 1 mV/div, Dual Trace, D.C. offset for DMM Output, Vertical Mode Trigger, 6” CRT (w/two X1/X10 probes).

MODEL V-422
DC to 40 MHz, other features same as V-222 (w/two X1/X10 probe).

MODEL V-1050F
DC to 100 MHz, 5 mV/div, Quad Trace, Full T.V. Triggering, Delayed Sweep, alternate time base (w/two X1/X10 probes).

MODEL V-650
DC to 60 MHz, 1 mV/div, Triple Trace, Delayed Sweep, Full T.V. Triggering, variable trigger hold-off (w/two X1/X10 probes).

NEW! 3 year warranty parts and labor on above scopes!

RAG Electronics is a factory authorized Hitachi repair center.

CALL US TOLL FREE
1-800-732-3457
IN CALIFORNIA TOLL FREE 1-800-272-4225

Prices subject to change without notice.

RAG ELECTRONICS, INC. / 21418 Parthenia Street / Canoga Park, CA 91304 / 1-818-998-6500
VIDEO NEWS

DAVID LACHENBRUCH
CONTRIBUTING EDITOR

What kind of stereo? Although broadcast stereo-sound TV is relatively new, the transmission of stereo audio with the video has long been an accepted practice—for example, in PBS simulcasts and on cable, with such services as MTV. Many cable-TV systems provide an FM-stereo service to their subscribers at a small additional monthly charge that includes FM channels in stereo plus stereo sound for such special cable channels as MTV, as well as special closed-circuit audio-only channels in some cases. With the advent of broadcast multichannel-TV-sound (MTS), cable systems have a new option—and new problems. Most cable systems are capable of passing along to their subscribers TV programs that are broadcast in the new stereo-sound system. The question now is whether they should also continue carrying the sound of such satellite-delivered cable programs as MTV and HBO as extra-cost FM channels or to use the standard MTS transmission systems, equipment is now available to let cable systems convert the sound of such programs to MTS.

When a consumer buys a stereo-TV set, he expects to be able to receive all stereo programs on it; in the case of simulcast programs on the FM band, for which cable systems usually add an extra charge, it creates ill will among cable subscribers when they buy “stereo-TV” receivers and can’t receive cable stereo on them. As a result, HBO is currently urging its affiliated cable systems to add the standard MTS system, and to continue simulcasting as well, in order to gather the largest possible stereo audience. But MTV says it is making no recommendations and letting its affiliates use any stereo system they wish. Meanwhile, a new “super-stereo” system is being offered to cable companies. Called Stereo-Track II, the system is claimed to provide “digital quality sound,” with 68–90-dB signal-to-noise ratios and 90-dB stereo separation. The audio is carried as two discrete tracks above and below the standard FM band, and the cable system provides special receiving equipment to its subscribers choosing to pay extra for the stereo-audio service.

Disc-continued. The CED videodisc has reached the end of the road. RCA announced it is ending production of CED discs at its Indianapolis plant June 27 because of declining demand. The company announced the end of disc-player production in April 1984 and at that time said it would continue output of the disc for three years or as long as there was “reasonable demand.” However, RCA now says the market for the discs has collapsed, with sales this year about five percent of the 1984 rate. CBS, the only other manufacturer of CED discs, ended production in the summer of 1984. RCA introduced the videodisc player in March 1981. RCA is being sold to General Electric, which once backed the competing VHD videodisc system developed by JVC. Disc players using that system are currently being produced in Japan, but have never been introduced in the U.S.

Going up. In most products, it’s news when prices go down. In electronics, news is made when there’s a price increase—and that’s just what’s happening now. A steady string of price reductions in color TV, almost since their introduction in the 1950’s, has come to an end. And the even more dramatic decline in VCR prices is being reversed. Price increases so far have been relatively minor. Actually, color-TV prices have not so much risen as bottomed out. VCR prices, however, are up from the rock bottoms they reached late in 1985, with retail prices some $10 to $20 higher than at that point. The rise in VCR prices is due almost entirely to the increase in the value of the Japanese yen against the American dollar—by more than 25 percent since last September—which has caused price hikes in most Japanese products here. The yen/dollar relationship also has contributed to the rise in the cost of television sets made in Japan or using Japanese components. Another factor in the leveling-off of the downward TV price-spiral is the fact that most television manufacturers have been operating at a loss or sharply curtailed profits as a result of climbing costs in a hotly competitive market.

R-E
OTHER PRODUCTS

- TEST LEADS
- TERMINATIONS
- ATTENUATORS
- BNC CABLES
- BNC ADAPTERS

- RUGGED AND RELIABLE
- REPLACEABLE TIP & GROUND LEAD
- ADJUSTABLE LF & HF RESPONSE
- COMPENSATION FOR MOST SCOPES

The Probe Master 2900 series oscilloscope probes combine the characteristics of high performance, and fast rise time pulse response, with a slender design to meet the needs of today's micro electronics. The miniature tip is ideal for accessing high density boards and hard to reach test points. By locating the high and low frequency compensation circuits in the BNC end of the cable, the design of the probe has become light weight and slender for easy handling.

Other features of the 2900 series probes include a replaceable probe tip, replaceable ground lead and a Readout Actuator option (RA).

The Readout Actuator option (permanently attached) is available on the 10X fixed attenuation probes only. This option provides the necessary resistor circuit to change the range factor on the model 465, 475, 485 and 7000 series Tektronix scopes.

The Standard Accessories included with each probe are the sprung hook, trimmer tool, BNC-adapter, tip insulator, IC tip cover, spare probe tip, 6" ground lead, and a handy storage pouch. The Engineers Accessory Kit ($12.00 option) includes a wire wrap adapter tip, wire wrap adapter ground lead, alligator tip, micro sprung hook, and a 12" ground lead.

IMMEDIATE DELIVERY
CALL FOR NEAREST DISTRIBUTOR
POWER-LINE TV INTERFERENCE
My TV reception is being ruined by high voltage power transmission lines that run behind my apartment. My antenna is about eight to ten feet below, and 75 feet away from, those power lines. The interference is in the form of horizontal streaks and noise on channel 3, snow on channel 11, ghosts on channel 23, and extreme snow on channels 32 and 41. Sound is clear on all channels except 3. I've tried “ghost eliminators” and AC in-line filters without success. What can I do?—S. G., Elizabethtown, KY.

We're not sure that all of your problems, (ghosts, snow and noise) are caused by the power lines. We assume that all the stations you want to view are in the same general direction and that the power lines are not between the antenna and the desired signals. The snow indicates that your antenna is not pointed directly at the station, or that the station is located far away. The snow can probably be cleared up by installing an antenna rotator for accurate antenna orientation, and by installing a good all-channel booster for a boost in received signal strength.

In Fig. 1 are shown two ways we have found of reducing or eliminating power-line interference. In both cases, we use a high-gain antenna, but we replaced the single-element reflector with one that screens interference from behind and from above. In each case, the screen is as wide as the original reflector, and it extends approximately ¼ wavelength above and below the plane of the antenna.

We built ours from hard-drawn ½-inch copper tubing used as the frame for the corner-reflector. We covered it with copper screen wire and soldered the mesh all around. The billboard-reflector was framed with ½-inch bamboo salvaged from inexpensive fishing poles and covered with hardware cloth. The mesh should be three-quarter inch or smaller.

We found that the ratio of received signal to interference varied with antenna height. In fact, raising or lowering the antenna as little as three feet made an appreciable difference in the signal-to-interference ratio.

AIRCRAFT RADIO ON THE FM BAND
I live near a very active airport. FM reception is frequently marred by chatter from pilots in planes leaving or approaching the airport. Who should I complain to—the local airport authorities or the FCC?—H. McD., New Smyrna Beach, FL.

Neither; your complaint is invalid. The interference you are experiencing is due to an FM receiver with insufficient selectivity. Common FM receivers, which cover the 88- to 108-MHz band, have IF's of 10.7 MHz, so their local oscillators operate 10.7 MHz above the desired signal. To cover the broadcast band, that oscillator runs from 98.7 to 118.7 MHz. As you know, the 88- to 108-MHz band is assigned exclusively to FM broadcast stations, but, as you may not know, the 108- to 135-MHz band is allocated to aeronautical mobile services, including air traffic control.

So, if you are listening to an FM station on 100 MHz, the local oscillator is actually tuned to 110.7 MHz. Now suppose that a nearby plane is transmitting on 121.4 MHz. That signal is 10.7 MHz higher than the local oscillator signal, so it will also develop a 10.7-MHz IF signal. The signals developed by the FM broadcast station and the aircraft radio will both be amplified by the

WRITE TO:
ASK R-E
Radio-Electronics
500-B Bi-County Blvd.
Farmingdale, NY 11735
FORDHAM WILL BEAT ANY ADVERTISED
B&K LEADER HITACHI
AW SPERRY NON-LINEAR
BBC
OSCILLOSCOPE PRICE by $25.00
No ifs, ands or buts.

ASK FOR FREE CATALOG.
Money orders, checks accepted. C.O.D.'s require 25% deposit.

Fordham
260 Motor Parkway, Hauppauge, NY 11788

Toll Free 800-645-9518
In NY State 800-832-1446

Service & Shipping Charge Schedule
Continental U.S.A.

<table>
<thead>
<tr>
<th>FOR ORDERS</th>
<th>ADD</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2-S100</td>
<td>$4.50</td>
</tr>
<tr>
<td>S101-S250</td>
<td>$6.00</td>
</tr>
<tr>
<td>S251-500</td>
<td>$8.00</td>
</tr>
<tr>
<td>S501-750</td>
<td>$10.50</td>
</tr>
<tr>
<td>S751-1100</td>
<td>$12.50</td>
</tr>
<tr>
<td>S1101-1500</td>
<td>$16.50</td>
</tr>
<tr>
<td>S1501-2000</td>
<td>$20.00</td>
</tr>
<tr>
<td>S2001 and Up</td>
<td>$25.00</td>
</tr>
</tbody>
</table>

Copyright © Fordham 1985

Must be a currently advertised price.
This offer may be withdrawn at any time without prior notice.
IF amp and converted into interfering audio signals.

That type of interference is called "image" interference. It develops any time a receiver picks up a signal whose frequency is twice the frequency of the IF above the frequency of the desired station. To eliminate it, you must increase the selectivity of your receiver by installing additional stages of preselection or image traps that discriminate against the unwanted signal.

AUDIO DISTORTION FILTER

I am in the process of designing a 10-watt power booster and distortion filter for my portable stereo system. I have the booster amplifier all laid out, but I don't know how to get rid of the distortion. At full output the portable has 10% total harmonic distortion, and that is quite high. Can you tell me how to reduce that interference to a tolerable level?—D. P., Los Allos, CA.

I don't know anything about your portable stereo, but I'll bet that the distortion you find objectionable is caused by overloading its small speakers. Unless you have "golden ears," 10% THD is not so bad when heard through good hi-fi speakers that are not being overdriven.

Be sure that you design your booster amplifier so that it can be driven to the desired output level by the portable stereo when it is just "loafing along." Then the set-up should sound fine as long as you don't try to get every last watt out of the booster amp.

Distortion curves for a typical 15-watt amplifier are shown in Fig. 2; as you can see, distortion increases drastically when you drive such an amplifier beyond about 66% of its rated output—in this case, about 10 watts.
PERFORMANCE
THAT IS OUT OF THIS WORLD...

...AT A DOWN TO EARTH PRICE

At last! Truly affordable test equipment with no compromise in design, and features you would expect to find only on oscilloscopes costing hundreds of dollars more! JDR Instruments presents two, new, high-performance models backed by a two year warranty and technical support which is only a phone call away. Perfect for the technician or advanced hobbyist, both models feature Dual Trace capability and a variety of operating and triggering modes, including CH-B Subtract and X-Y operation.

MODEL 2000 has a 20 MHz bandwidth and 20 calibrated sweeps ranging from .2s to .2μs. A convenient built-in component tester provides additional diagnostic power.

MODEL 3500 features a 35 MHz bandwidth and exceptional 1mV/DIV sensitivity. Delayed sweep and variable holdoff allow stable viewing of complex waveforms.

ORDER TOLL FREE
800-538-5000
800-662-6279 (CA)

JDR INSTRUMENTS
1224 South Bascom Avenue
San Jose, California 95128 (408) 995-5430

CIRCLE 59 ON FREE INFORMATION CARD

COPYRIGHT 1985 JDR INSTRUMENTS. EARTH PHOTO COURTESY OF NASA.
THE JDR INSTRUMENTS LOGO IS A REGISTERED TRADEMARK OF JDR MICRODEVICES. JDR INSTRUMENTS IS A TRADEMARK OF JDR MICRODEVICES.
Guest Editorial—
Scrambling: Another View.

Satellite television is a vital, billion-dollar industry, and one that is growing. Ill-conceived quips that dishes "are good only for scavenging eggs" reflect a total ignorance of reality—satellite technology is now the prime delivery system for TV signals.

Industry leaders, including satellite-dish-system manufacturers and cable-TV programmers and operators, must share the blame for consumer confusion about satellite-signal scrambling. Rather than treating each other with disdain and mistrust, home satellite-TV-system manufacturers and dealers, and cable-TV operators, should cooperate to provide consumers with the free choice in programming that they desire. Instead, many in both camps are in fantasy land, trying to wish each other out of existence.

The lack of hard information that has resulted from that has left the typical consumer totally baffled. To many, the clear and important distinction between legal home satellite-TV and illegal signal piracy has become blurred. Protecting their own special interests, some, knowing better, have told satellite-system buyers that there would be little scrambling. For the same reasons, others, knowing better, have claimed that with scrambling the sky will go dark. Shallow news reports in the media, often based on half-truths or presented by those not truly familiar with satellite and cable TV, have only compounded the confusion, endangering the livelihood of those who have put their faith in exciting new technologies.

Cable-TV programmers and operators, and satellite-dish and receiver manufacturers are all part of one industry. It is called television: an educational, entertainment, and data-transfer medium that depends on satellite technology—whether signals eventually get to the home by dish, cable, or some other means. Encoding has and will not do anything to substantially change that. It is merely a means to ensure that all party's (programmers, cable operators, home-satellite-TV-system manufacturers and dealers, and home viewers) interests are protected.

Satellite TV, with signal encoding and all of the possibilities that that entails (direct pay-per-view, for instance), offers the greatest numbers of viewers the widest choice of programming options. For millions, it is the only alternative for those wishing to take advantage of what television has to offer.

Hans Giner
President
Luxor North America Corp.
For the Field Service Professional Who Doesn’t Have Everything... Rackable, Stackable and Portable Instruments From

Bench Portable

Model 202
200 KHz Function

Model 203
2 MHz Function

Model 204
5 MHz Pulse

Generators

These extremely compact, space saving generators do not sacrifice performance for size. The models are easily operated and have outstanding specs at unbelievably low prices.

Micro/Miniature

Model 1010
10 MHz

Oscilloscope

Designed and built for field service, this micro/miniature scope weighs only 2lbs. Made for your tool kit, it's the lightest most compact, most complete scope you’ll ever buy.

Compact and Complete

Model 2324-R

Oscilloscope
Function Generator
Multi Frequency Counter
3½ Digit DMM

The Bench Rack

When your bench is cramped for space and you are short on budget there is a superior alternative: Model 2324-R Bench Rack System. The Test Solution.

Accurate and Affordable

Model 510
200 MHz Multi Function

Model 515
600 MHz

Counters

Whether you need 8 digit accuracy on the bench or in the palm of your hand precision and reliability does not cost a fortune.

For more information about O.K. Electronics Division's full range of Test Instruments contact:

For more information about O.K. Electronics Division's full range of Test Instruments contact:

Send stamped, self-addressed envelope to receive a Quarterly Sales Flyer — FREE!

Send stamped, self-addressed envelope to receive a Quarterly Sales Flyer — FREE!

MasterCard
Visa

VISA®

VISA®

Send $1.00 Postage for a FREE 1986 JAMECO CATALOG

1355 SHOREWAY ROAD, BELMONT, CA 94002 • PHONE ORDERS WELCOME 415-592-8097 Telex: 176043 CIRCLE 199 ON FREE INFORMATION CARD
MODEL AIRCRAFT FREQUENCIES

I noted your response to B. G. of Evergreen Park, IL in the “Ask-RE” department, Radio-Electronics, April 1986, page 14. I wonder if he gave you enough information. Would your answer have been the same if you had known that the channel separation is 40 kHz? Channel 42 is 40 kHz below and channel 46 is 40 kHz above his frequency. In 1991, the odd-numbered channels will come into use and separation will decrease to 20 kHz. Those model-aircraft frequencies are in the 72-MHz region, along with many commercial services.

One solution to his problem is to use a down-converter working through an automobile radio to get selectivity. I designed one, added an RF preamp, and got a 0.25-microvolt receiver that tunes the band—not really a simple project, but not too complex.

I have two suggestion for B. G. He could replace the motor in a servo with a small speaker, and with his receiver on and his transmitter off, he would hear if there were another transmitter on his frequency. Second, he should inquire at his hobby shop about local clubs affiliated with the Academy of Model Aeronautics, 1810 Samuel Morse Drive, Reston, VA 22090. Or he could write directly to them for information. Safety procedures used by those clubs are designed to avoid simultaneous channel usage.

Here are a few suggestions for Radio-Electronics. I think it is time that you did a comprehensive article on radio-controlled model aircraft. The impact of solid-state continued on page 20

So You’ve wiggled into an impossible position and found the problem! BUT YOUR TOOLS ARE BACK ON THE BENCH!

CHAPMAN TOOLS ARE MADE FOR THE TIGHT SPOTS

Complete pocket sized kits contain 17 different bits (Slotted, Hex or Phillips) plus Screw Driver Handle with Extension and the “World’s Mightiest” Midget Ratchet (torque strength 200 in lbs.). Fix it on the spot! with Chapman. No. 8320 KIT

Only $22.94 (Include $2.00 for Handling)
Send Check or M.O. MasterCard & Visa accepted
Write for industrial brochure

THE CHAPMAN MANUFACTURING CO.
P.O. Box 250, Rt. 17, Dept. RE-7
Durham, Connecticut 06422 (203) 349-9228
CIRCLE 179 ON FREE INFORMATION CARD

NOISE REDUCTION FOR UNDER $10.

CRAMOLIN®

Even the finest equipment in the world cannot guarantee noise-free operation. One “dirty” connection anywhere in the electrical path can cause unwanted noise or signal loss.

“MORE THAN A CONTACT CLEANER”

CRAMOLIN® is a fast-acting, anti-oxidizing lubricant that cleans and preserves all metal surfaces, including gold.

When applied to metal contacts and connectors, CRAMOLIN® removes resistive oxides as it forms a protective molecular layer that adheres to the metal surfaces and maintains maximum electrical conductivity.

CAIG LABORATORIES INC.
1175-D Industrial Ave., (P.O. Box 2), Escondido, CA 92025-0051 U.S.A. * (619) 745-7145

CIRCLE 183 ON FREE INFORMATION CARD

SEND FOR YOUR COPY OF THE FREE "ELECTRONICS" BOOKLET, "THE COMPLETE GUIDE TO AMATEUR ELECTRONICS"!

AT ONLY A small fraction of the cost of actual copies, this 237-page hard-bound volume is being generously distributed to those who are interested in the hobby of electronics and radio. It includes full coverage of all the practical topics, from basic electronics to advanced RF techniques, and helpful summaries of current market trends, plus a complete index of products and services.

丝 wseres CIRCLE 184 ON FREE INFORMATION CARD
the fourth law of robotics
A robot shall make learning fun for man and thereby improve the quality of life for mankind.

A robot is a robot is a robot... was a robot. Until HERO 2000.

HERO 2000 is much more than a robot. It's a walking, talking 16-bit computer. With 64K ROM and 24K RAM expandable to more than half a megabyte. And a fully articulated arm with five axes of motion. Yours to program, command, modify and expand. Total system access and solderless experimenter boards provide almost limitless possibilities. Its remote RF console with ASCII keyboard gives total control. Available with three self-study courses. Backed by Heath Company, world leader in electronic kits. Build your own HERO 2000. Or buy it assembled. Have fun learning skills that translate directly to the world of work.

HERO 2000
the knowledge builder

FREE. Send today for latest Heathkit Catalog.
NEW!

Satellite Communications Training from NRI!

Move into commercial satellite communications and home satellite TV with NRI's latest training breakthrough!

Explore Every Aspect of Satellite Transmission and Reception As You Assemble, Install, and Train With the Complete TVRO System Included in Your Course

Back in 1964, great excitement surrounded the launching of Syncom 2, the true forerunner of today's satellites. But not even the most hopeful of scientists believed that in less than 25 years, communications satellites would have such a tremendous impact on the professional and personal lives of millions of people around the globe.

Today, thanks to the rapid development of satellite technology, a call to Paris is as clear and as easy to make as a call to your next door neighbor...executives from multi-national corporations and even small businesses use video conferencing to "meet" without leaving their offices...simultaneously a billion people witness a single event (a soccer game, an inauguration, a benefit rock concert)...global weather maps transmitted from satellites allow meteorologists to forecast weather trends weeks in advance...and scientists now explore and investigate the mysteries of outer space without leaving their labs.

And, not surprisingly, these amazing applications of satellite technology have opened up exciting new opportunities for the technician trained to install, maintain, troubleshoot and repair satellite communications equipment.

Home Satellite TV Is Just at the Start of Its Explosive Future

You've seen them in suburban backyards and alongside country farmhouses. Home satellite TV systems are springing up all across the country.

Already there are over a million TVRO (Television Receive-Only) systems in place in the U.S. alone, and experts predict that by 1990, a remarkable 60% of U.S. homes will have a satellite dish. Contributing to the field's phenomenal growth are the support of the FCC and Congress, steady improvement in product quality, the development of smaller dishes, and a growing consumer enthusiasm for satellite TV.
New Jobs, New Careers for the Trained Technician

Now you can take advantage of the exciting opportunities opening up in this service- and support-intensive industry. NRI's new breakthrough training prepares you to fill the increasing need for technicians to install, adjust, and repair earth station equipment, such as dishes, antennas, receivers, and amplifiers.

As an NRI-trained technician, you can concentrate your efforts on consumer-oriented TVRO equipment. Or you can use your NRI training to build a career servicing larger commercial or military equipment used both to transmit and receive voice, data, and video signals. You'll also find opportunities in sales and system consulting, a role some expect to increase tenfold within the next five years on both the corporate and consumer levels.

NRI Brings Satellite Technology Down to Earth

Only NRI has the resources and the skills necessary to transform today's most sophisticated technology into understandable, step-by-step training.

NRI's new course in Satellite Communications gets you in on the ground floor of this booming technology. You are thoroughly trained in the necessary basic electronics, fundamental communications principles, and television transmission and operation.

Using the remarkable NRI Discovery Lab®, you demonstrate first-hand many important points covered in your lessons. You perform critical tests and measurements with your digital multimeter. And, using your NRI Antenna Applications and Design Lab, you assemble and test various types of antennas and matching sections.

Then you concentrate on both commercial and consumer satellite earth station equipment, putting theory to practice as you assemble and install the 5' parabolic dish antenna system included in your course.

Your Home Satellite TV System Brings Theory to Life!

The Wilson TVRO system included in your course comes complete with 5' parabolic dish antenna system, low-noise amplifier (LNA), down converter, receiver, low-loss coaxial cable, and even a permanent polar mount.

By training with an actual TVRO system, you'll come to understand the function and operation of a satellite earth station—knowledge that you can apply to both consumer and commercial equipment. And once you have completed your TVRO system, you'll have access to the best television entertainment available—direct from the satellite to your home.

At-Home Training the Uniquely Successful NRI Way

It's hands-on training, at home. . . designed around the latest state-of-the-art electronic equipment you work with as part of your training. You start from scratch and "discover by doing" all the way up to the level of a fully qualified professional. You conduct key experiments... perform vital tests... install your own system... and you do it at the pace that suits you best.

But, most important to your success, you don't do it alone. Built into your NRI training is the enormous experience of our development specialists and instructors, whose long-proven training skills and personal guidance come to you on a one-to-one basis. They are always available for consultation and help.

Make Your Move Into the Future Today! Send for Your FREE NRI Catalog

Only NRI can train you at home for an exciting and rewarding career as a satellite communications technician. The knowledge and know-how you gain from your NRI training provide you with the soundest possible foundation for further growth with the industry. But now is the time to act. Return the post-paid card to us today. You will receive your 100-page catalog free. It's filled with all the details you'll want to know about our training methods and materials and our more than 70 years of successful innovation in at-home, hands-on career training—the kind of experience that enables NRI to provide the most effective training possible to prepare you for today's, and tomorrow's, high-tech opportunities. (If the card is missing, write to us at the address below.)

NRI SCHOOL OF ELECTRONICS
McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue, NW
Washington, DC 20016
We'll give you tomorrow.
technology on the hobby has been incredible. Some very sophisticated equipment is now in use at surprisingly modest prices, compared to 10 or 15 years ago. Besides AM pulse-width modulation, we now have FSK (they call it FM); and pulse-code modulation is coming into use with systems of up to 7 or 8 channels. Most equipment is Japanese, but one U.S. supplier, ACE R/C in Higgensville, MO offers equipment in kit form.

C. R. AHERN
President,
District of Columbia Radio Club

SECRETs

I couldn’t help but be angered at the lament in one of your product-review columns that schematics were not given out freely for new products—especially in “enthusiast type” equipment.

Perhaps the design of an elegant, manufacturable, and cost-effective product seems a minor exercise to that writer, but in fact it is not. Often, the only way a small company can prevent or at least slow down larger companies with volume advantage (or the Japanese) from sliding in and seizing a market is to keep as many circuit details as secret as possible for as long as possible.

That way, at least, you have a chance of selling enough of the product to recover development costs before someone else muscles in. And never mind “proprietary” circuits; the protection provided is negligible. A small company can be destroyed before the court gets around to looking at your case. A large company can patent a product before a ruling is reached, and you are left up the creek without a paddle.

NAME WITHHELD

OOOOPS!

I have received some letters from Radio-Electronics readers in regard to my article on the TV Stereo Adapter that appeared in the March 1986 issue. Those letters complained that the Adapter does not operate.

Reviewing the schematic presented, I understood the reason for the complaints: there is an omission in the schematic. Pin 1 of the MC1310 IC should be connected to +12 volts. Without that connection, the Adapter certainly will not operate.

STEVE SOKOLOWSKI

RELAYS IN ROBOTICS

I enjoy your magazine, but one thing that bothers me is the use of electromechanical relays, especially in robotics projects. For example, in “Building Your Own Robot,” (Radio-Electronics, March 1986) Mark Robillard states: “First of all, you’re going to need relays if your motors are small DC types.” He goes on to say that transistors sometimes don’t provide full power.

My objection is that, with MOSFETS having R_{DS}‘s of 0.05Ω and less commonly available, why use a relay? It’s best these days to reduce the number of unreliable mechanical parts as much as possible. I have worked with relay sys-

Build Circuits Faster and Easier With Our $20 Solderless Breadboard

...and do even more with our $40 breadboard

Introducing the plug-in world of AP Product’s versatile, low cost breadboards.

Now you can design, build and test prototype circuits just like the professionals ... and make changes in seconds. No messy soldering or desoldering. No more twisted leads or damaged devices.

With our ACE 109 and 118 blue breadboards, you simply plug in components and interconnect them with ordinary hook-up wire. All sizes of DIPs and other discrete components up to 22 gauge lead diameters snap right into the 0.1” x 0.1” matrix of the solderless tie points ... anywhere on the layout. You don’t need expensive sockets or special tools. Buses of spring clip terminals form a distribution network for power, ground and clock lines.

AP Products 100 series breadboards give you all the functions and flexibility of more expensive circuit evaluators. The spring terminals have mechanically independent contact fingers to accommodate most DIPs and discrete components (see diagram).

The ACE 109 has two terminals for separate voltages plus a ground connection. The larger ACE 118 offers the same three terminals, plus an additional terminal which can be used for clocking or another voltage. The backplates are heavy steel to keep the boards stationary.

Don’t wait. These low prices won’t last forever. See your local AP Products dealer today, or send for a list of dealers in your area. Free information on request.

AP PRODUCTS/3M
9325 Progress Parkway
P.O. Box 540
Mentor, Ohio 44060
800-321-9668
(Ohio, 216/354-2101)

CIRCLE 76 ON FREE INFORMATION CARD
Mercer Electronics products reflect the design and quality standards established by Simpson Electric Company, an industry leader for over 50 years and known worldwide for its integrity and product excellence.

In Stock...Available Now! Stop in at your nearest distributor and see this new, complete line of Mercer test instruments. For the name of the MERCER distributor in your area, call (312) 697-2265, or send for our new line catalog.

CIRCLE 177 ON FREE INFORMATION CARD
tems, and, believe me, they waste power and they are prone to failure with age. They are also slow and they induce transients. Their only redeeming feature is that they provide simultaneous multiple-contact closure. But even that can be circumvented by using logic and semiconductor devices.

You fellows who write for the magazines: Please try to dump the old mechanics and keep it state-of-the-art.

Let me repeat that I enjoy your magazine and hope that you won’t succumb to computer mania. Not that computers aren’t wonderful, but a steady diet of them bores me. Let’s face it: If you can’t interface them with the real world, then they are limited.

As far as I am concerned, you are the last remaining good electronics magazine.

CLYDE H. HYDE
Tenino, WA

HELP NEEDED
Help! I need an operator/service manual for the Leader LBO-511 single trace oscilloscope. Can you give me an address so that I can obtain that manual? Thanks.

PETER A. MELVILLE
Mt. Sterling, KY
Leader Instruments Corp. is located at 380 Oser Ave., Hauppauge, NY 11788.

INFORMATION NEEDED
I recently acquired an Astrocom/ Marlux Solid State Tape Deck. It is a rugged, 3-motor deck, the model 407, made in Japan. It is a ¼-track reversible reel-to-reel deck.

Unfortunately, it is in need of some minor repairs, and I have no information or schematic. If any of your readers could help me out, I would be glad to pay a reasonable compensation for their time.

ROLF K. TAHLOH
2692 Mayfield Road, apt. 2
Cleveland Hts, OH 44106
(216) 321-8716

SERVICE AND INFO NEEDED
I have an Akai model X-IV tape recorder and I need service information, or at least a schematic. The Akai Company’s response to my request for a manual was that they no longer have any information. Sams lists it in their T-111 manual, but that manual is no longer available. Therefore, I will appreciate any information you readers could provide.

E. W. HOFFHINE
P.O. Box 252
Kihei, HI 96753

RESTORING AN OLD MARCONI
I am trying to restore an old Marconi TV set (TV 500 chassis) to its original working condition, but I am unable to find a schematic or repair manual from the usual sources. The chassis appears to have a problem in the horizontal phase detector circuit, which is a type I have not encountered before. I would appreciate any help you or your readers could give me in locating information about that chassis.

P.G. DODD
18 Lakeland Cres., Scarborough, Ontario, Canada M1G 2L3
Radio-Shack Telephone Tester

Now anyone can troubleshoot a telephone.

CIRCLE 5 ON FREE INFORMATION CARD

IN THE "GOOD OLD DAYS" (BEFORE THE breakup of AT&T), getting your telephone fixed was easy. All you needed to do was call the phone company and they would come out and give you a new one. There were no extra charges, no questions to answer, and no arguments.

Now it's like playing a game of Truth or Consequences. First, you've got to figure out if it's the phone itself that's broken, or whether the problem is in the telephone line. Guess wrong and you could add a hefty, needless bill to your woes. That's because your friendly neighborhood telephone company now regards the telephone instrument itself as an alien object—they won't touch it with a ten foot pole. If they make a service call and determine that the problem is not in their lines, the only thing they are now responsible for, they'll bid you adieu, after they advise you that the bill is in the mail. Assuming that you own your own phone, as many of us now do, getting the phone fixed is your headache.

One way to cure that headache is with Radio-Shack's (Ft. Worth, TX 76102) aptly named Telephone Tester (catalog number 43-114). One of Radio-Shack's newest products, that microprocessor-controlled unit makes troubleshooting a telephone so easy even a child could do it.

By the numbers

The unit is capable of testing either pulse- or tone-dialed telephones. It can also be used to test answering machines, and cordless telephones.

The tester, as supplied, is designed for use with single-line telephones. It can be adapted for use with two-line telephones via a two-line coupler. An appropriate coupler is available from Radio-Shack (catalog number 279-401).

The layout of the Telephone Tester is reminiscent of the self-service TV- and radio-tube testers that used to be all over the place; they are still around, but now you might have to search a bit more.

All instructions are printed in a flow-chart-like format on the unit's front panel. By following the steps in sequence, the user is able to test for most common telephone and answering machine malfunctions, including defective plugs and cords, in a systematic manner.

The unit is entirely self-contained; there are no probes, accessories, etc. required. Sockets are provided on the tester for the...
telephone itself, and for the line and handset cords. There are also
two AC outlets for telephones or
answering machines that require
an outside source of power.

Results of all tests are conveyed
via two LED's using a simple pass-
fail system. In addition a small
readout is used to display further
information in two of the tests: In
the cord test, it is used to display
the number of conductors in the
cable; in the dial test, it is used to
verify the number dialed. Tests are
selected using a row of pushbut-
tons; which test has been selected
is indicated by a lighted LED.

In all, the unit is capable of test-
ing nine different parameters. It
has both LONG LOOP and SHORT
LOOP modes that simulate connec-
tions to distant and nearby Central
Offices.

The CORD TEST checks the
number of conductors in the
handset or line cord, and verifies
the condition of either cord, in-
cluding plugs.

When the handset is off-hook,
the telephone company's Central
Office should see a DC resistance
of between 57 and 600 ohms.
The function of the unit's LOOP TEST is to
verify that parameter.

The DIAL TEST checks for correct
dialing. Each digit output by the
phone is displayed on the readout
for verification. That test will work
for both pulse- and tone-dialed
telephones.

The TRANSMIT TEST and the RECEIVE
TEST check the functioning of the
telephone microphone and ear-
piece, respectively. In the TRAN-
SMIT TEST, if everything is function-
ing normally, the PASS LED flickers
in response to the output of the
microphone. In the RECEIVE TEST,
the user listens at the earpiece for
a tone that is output by the tester.

The unit will also test ringer op-
eration at low and high voltages,
simulating distant and nearby
Central Offices, and it will test
telephone answering machines.

Limitations
The tester is not without its lim-
itations. First of all, its trou-
bleshooting capabilities are quite
basic. It will tell you that the tele-
phone is defective, and will more-
or-less tell you which functions
have failed, but that's all. Pinpoint-
ing the fault any further must be
done using appropriate equip-
ment and standard troubleshooting
techniques. Also, the tester
will not test electronic key systems
or PABX key sets reliably.

The manual is pretty much what
you would expect from Radio-
Shack—operating instructions,
some specifications, and a sche-
matic, but little else. As to the
schematic, in our copy of the man-
ual, the hand-lettering was excep-
tionally difficult to read; in some
cases the printing was so blurred
that figuring out a part number or
value was reduced to educated
guesswork. (A note indicated that
the schematic was subject to
change and advised contacting Ra-
dio-Shack for the latest schematic
and parts.) The operating instruc-
tions were a fleshed out version of
the front-panel instructions.

Obviously, the tester is not
something that's a must for every
workbench. But without a doubt,
it is a unit that will find plenty of
use in the appropriate application.
The tester would perhaps be at its
best on a counter in a telephone
store, were customers could trou-
bleshoot their own telephones
with ease. It's professional, yet,
non-threatening layout and sturdy
grey-steel case seem to indicate
that the tester will lend itself par-
ticularly well to such an applica-
tion. In service departments, the
tester could be used to do initial
troubleshooting, and final check-
out. Since the work could be done
by a non-technical individual, ex-
pensive bench time could be saved.

The Telephone Tester, which is
covered by a one-year limited war-
ranty, is available at Radio-Shack
stores. It sells for $299.95.
Two of our best Performers

14 day full money back guarantee

HM 205
an outstanding Oscilloscope with digital storage

This new oscilloscope offers all the features of a state-of-the-art 20 MHz realtime instrument. In addition it provides digital storage capability for signals between 50 s and 0.3 ms duration, with a max. sampling rate of 100 kHz. Especially when working with comparatively slow phenomena, the HM 205 can easily replace considerably more expensive digital storage scopes.

2 Probes x1/x10 incl. $ 820 00

HM 208
the high tech Storage Scope with 20 MHz sampling rate

The HM 208's high sampling rate of max. 20 MHz facilitates storing of relatively fast single shot events. Max. memory is 4096 x 8 bit, conveniently divided into two independent blocks. XY-storage capability enables easy viewing and recording of characteristic curves and Lissajous figures. An XY-recorder output and the optional GPIB-Interface allow full integration in automatic measurement systems. With more than 5000 units sold, this is one of Europe's bestselling digital storage scopes.

2 Probes x1/x10 incl. $ 2380 00

Write or call
HAMEG® Inc.
88-90 Harbor Road
Port Washington, N.Y. 11050
(516) 883.3837
TWX (510) 223.0889

2 year warranty
AS YOUR TEST AND MEASUREMENT needs become more sophisticated, one instrument you’re sure to need is a function generator that offers sinewave, squarewave, and triangle wave outputs. We recently examined one such instrument, the model 205 from the Electronics Division of OK Industries Inc. (3455 Conner Street, Bronx, NY 10475).

We’ll start our description of the 205 with its physical characteristics. It measures about 12 x 4 x 9 inches and weighs 7½ pounds thanks, in part, to a well shielded steel housing. All circuitry and switches, with the exception of front-panel potentiometers and BNC input and output jacks, are mounted on a single well laid-out circuit board.

The 205 has a frequency range of 0.005 Hz to 5 MHz in seven overlapping ranges. The output frequency is chosen by using a vernier dial (calibrated from 0.005 to 5) and a group of pushbutton MULTIPLIER switches that are arranged in decade multiples from 1 to 1 million.

Although the 205 does not offer an internal sweep generator, it does provide a SWEEP IN jack that allows the generator’s frequency to be controlled by an external voltage. The sweep input sensitivity is 0 to 4 volts for 1000:1 sweep, and a maximum allowable input of ± 10 volts.

Operating modes

The 205 has 3 basic operating modes: free-run, triggered, and gated. In the free-run mode, the generator runs continuously at the selected frequency.

In the triggered mode, the generator outputs one complete cycle of the selected signal after it receives a trigger. That trigger signal can vary from DC to 5 MHz and from TTL-compatible levels up to 20 volts. Alternatively, the MANUAL button can be used to trigger the generator. The phase of the output signal can be selected by the START/STOP PHASE control, which offers a full ± 90-degree range of adjustment at output frequencies up to 500 kHz.

The gated mode is similar to the triggered mode except that the output runs for the duration of the gate signal (instead of only one cycle). As you would expect, the starting and stopping phase at the output can be set by the START/STOP PHASE control.

Outputs

The model 205 has two outputs jacks: TTL OUT and SOI OUT. The TTL output is at a fixed amplitude level at the frequency and symmetry of the main (50-ohm) output. It has a fan-out of 20 standard TTL loads.

The 50-ohm output has a maximum output voltage (into 50 ohms) of 10 volts peak-to-peak. The AMPLITUDE control allows you to vary the output more than 20 dB. Additional attenuation is available from three pushbutton switches (0, –20, and –40 dB), and a DC OFFSET control is featured to further tailor the output signal to suit your needs.
saving you money for over 45 years

WM. B. ALLEN

slashes prices on the new oscilloscopes from

HITACHI

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>V089</td>
<td>Vector Scope/3.5" CRT/AC Operated/Optional Battery Pack/External DC Source</td>
<td>$1390</td>
<td>SAVE $200!</td>
</tr>
<tr>
<td>V1100A</td>
<td>Digital Storage Scope/4 MHz Dual Channel/20 MHz Real Time/CPB Option 1K Words Memory per Channel</td>
<td>$2190</td>
<td>SAVE $300!</td>
</tr>
<tr>
<td>V680</td>
<td>50MHz/4 Channels/4 Trace/Delayed Sweep/ Cursor Measurement/CRT Readout</td>
<td>$1340</td>
<td>SAVE $150</td>
</tr>
<tr>
<td>V079</td>
<td>Waveform Monitor/Loop-through Inputs/AC-DC Input Coupling/Video Output PCIe EPE 20MHz Half-rack Width/6" CRT</td>
<td>$1800</td>
<td>SAVE $300!</td>
</tr>
<tr>
<td>V1150</td>
<td>150MHz Quad Channels/ 8 Trace Delayed Sweep/ Digital Measurement/CRT Readout</td>
<td>$2550</td>
<td>SAVE $400!</td>
</tr>
<tr>
<td>V099</td>
<td>Waveform Monitor/3.5" CRT/AC Operated Optional Battery Pack/External DC Source</td>
<td>$1050</td>
<td>SAVE $200!</td>
</tr>
<tr>
<td>V134</td>
<td>10 MHz/Dual Trace/Bi-Stable Storage</td>
<td>$1395</td>
<td>SAVE $225!</td>
</tr>
<tr>
<td>V509</td>
<td>50MHz/Dual Channels Mini Portable/Delayed Sweep</td>
<td>$1199</td>
<td>SAVE $200!</td>
</tr>
<tr>
<td>V1070A</td>
<td>100MHz Quad Channels 8-trace Delayed Sweep CRT Readout</td>
<td>$1595</td>
<td>SAVE $355!</td>
</tr>
<tr>
<td>V069</td>
<td>VectorScope® CRT with internal Gradinput/AC/Power/100-120-220-240V/50-60Hz</td>
<td>$2090</td>
<td>SAVE $300!</td>
</tr>
<tr>
<td>V059</td>
<td>40MHz Digital Storage/1mV/Dual Trace/6" CRT/4 Words per Channel/CPB Option</td>
<td>$5100</td>
<td>SAVE $850!</td>
</tr>
<tr>
<td>V209</td>
<td>20MHz/Dual Channels/AC-DC Operated Mini Portable</td>
<td>$795</td>
<td>SAVE $150!</td>
</tr>
<tr>
<td>V222</td>
<td>40MHz/Dual Channels/ Single Time Base Delayed Sweep</td>
<td>$675</td>
<td>SAVE $675</td>
</tr>
<tr>
<td>V650F</td>
<td>50MHz/3 Channels/ Delayed Sweep</td>
<td>$945</td>
<td>SAVE $250!</td>
</tr>
<tr>
<td>V423</td>
<td>40MHz/Dual Channel/Single Time Base Delayed Sweep</td>
<td>$745</td>
<td>SAVE $250!</td>
</tr>
<tr>
<td>V422</td>
<td>40MHz/Dual Channels</td>
<td>$675</td>
<td>SAVE $250!</td>
</tr>
<tr>
<td>V222</td>
<td>20MHz/Dual Channels/Single Time Axis Delayed Sweep</td>
<td>$595</td>
<td>SAVE $200!</td>
</tr>
<tr>
<td>V212</td>
<td>20MHz/Dual Channels</td>
<td>$515</td>
<td>SAVE $200!</td>
</tr>
<tr>
<td>V1050F</td>
<td>10MHz/Dual Channels/8-Trace Delayed Sweep</td>
<td>$1245</td>
<td>SAVE $300!</td>
</tr>
<tr>
<td>V650F</td>
<td>50MHz/3 Channels/ Delayed Sweep</td>
<td>$945</td>
<td>SAVE $250!</td>
</tr>
</tbody>
</table>

WM. B. ALLEN SUPPLY COMPANY

ALLEN SQUARE

300 BLOCK NORTH RAMPART, NEW ORLEANS, LA 70112

NEW ORLEANS 504 525-8222 800 535-9593 LOUISIANA 800 462-9520

24 HOUR ANSWERING TO EXPEDITE YOUR ORDER

CIRCLE 103 ON FREE INFORMATION CARD
LOWEST EVER

from

MEGURO

(JAPAN)

20 MHz Dual Trace Oscilloscope

$299.00

2-Free Probes Included

- Built-in Component Tester
- 6" Square Internal Graticule CRT
- Sensitivity: 5mV ~ 200V/div ± 3%
- Rise Time: 17ns or less
- Sweep Time: 0.2μs ~ 0.5μs/div ± 3%
- X-Y and Z Axis Operation
- 110/220 Volt Operation
- One Year Parts & Labor Warranty

35 MHz Scope/Delay Trigger $499.00

Add 12% Per Unit for UPS & C.O.D. Charges

TO ORDER CALL COLLECT:

(213) 624-3757

Diplomat International,
453 South Spring St.,
Suite 1224
Los Angeles, CA 90013

CALL NOW

AND

RESERVE YOUR SPACE

- 6 x rate $745.00 per each insertion.
- Reaches 229,044 readers.
- Fast reader service cycle.
- Short lead time for the placement of ads.
- We typeset and layout the ad at no additional charge.

Call 516-293-3000 to reserve space. Ask for Arline Fishman. Limited number of pages available. Mail materials to: mini-ADS, RADIO-ELECTRONICS, 500-B Bi-County Blvd., Farmingdale, NY 11735.

THE MODEL WTT-20 IS ONLY THE SIZE OF A DIME, yet transmits both sides of a telephone conversation to any FM radio with crystal clarity. Telephone line powered - never needs a battery! Up to 1/4 mile range. adjustable from 70-130 MHZ. Complete kit $29.95
+ $1.50 $ + H. Free Shipping on 2 or more.
COD add $4. Call or send VISA, MC, MO.
DECOp INdUSTRIES, Box 607, Bedford Hills, NY 10507. (914) 241-2827.
CIRCLE 127 ON FREE INFORMATION CARD

MTS STEREO ADAPTER. Add the dramatic, new dimension of MTS STEREO to virtually any TV or VCR using the Audio Output Plug and your stereo system. So versatile it even simulates extra ordinary stereo sound on non-stereo broadcast. Assembled $81.00, also available in kit form, $52.00. N.Y. Residence add tax. DEL-PHONE INDUSTRIES, Box 150, Elmont, New York 11003.
CIRCLE 180 ON FREE INFORMATION CARD

SUBSCRIPTION TV MANUAL. This information packed book details the methods used by subscription TV companies to scramble and descramble video signals. Covers the Sinewave, Gated Pulse, SSSAVI system, and the methods used by most cable companies. Includes circuit schematics, theory, and Trouble shooting hints. Only $12.95 plus $2.00 first class P&H. ELEPHANT ELECTRONICS, INC., Box 41865-R, Phoenix, AZ 85080.
CIRCLE 120 ON FREE INFORMATION CARD

APPLIANCE REPAIR HANDBOOKS—13 volumes by service experts, easy-to-understand diagrams, illustrations. For major appliances (air conditioners, refrigerators, washers, dryers, microwaves, etc.), elec.
housewares, personal-care appliances. Basics of solid state, setting up shop, test instruments. $2.65 to $5.90 each. Free brochure. APPLIANCE SERVICE, PO Box 789, Lombard, IL 60148. 1-(312) 932-9550.
CIRCLE 84 ON FREE INFORMATION CARD

Get in on...

ELECTRONICS!

TRAIN TODAY for an exciting money-making career in:
- Electronics Engineering Technology
- Computer Programming
- Data Processing
- Information Systems
- Drafting with C.A.D.

NATIONAL EDUCATION CENTERS has 50 campuses nation-wide, so there's a Center near you. In as little as 9 months, you can train for a high-tech career, in a state-of-the-art environment.

ASK ABOUT OUR BENEFITS: Day and Evening classes, Financial Aid to those who qualify, and Job Placement Assistance! Many of our schools are approved for Veterans Training, and all are ac-
credited members of either A.A.T.T.S. or A.I.C.S. So DON'T DELAY! For information send in the handy coupon today or call 7 days a week - TOLL-FREE

National Education Centers
1032 Raynolds Ave - Irvine, CA 92714

The program I am interested in is:
Year of High School Graduation or G.E.D.
NAME
ADDRESS
CITY/STATE/ZIP
PHONE

RE-786

CIRCLE 192 ON FREE INFORMATION CARD
NEW PUBLICATION, "5 Great Ways to Use the SSAVI": a complete guide for all uses, including conversion to a stereo TV decoder $6.50 ppd. ZENITH SSAVI Descramblers only $169. Gated pulse $199. Reconditioned original equipment for UHF chs. 27,48,51 & 60, etc. Quantity discounts. Surplus TV equipment: Oak N-12, Hamlin MLD-1200, SB-3, etc. Warranty. Catalog $1. A1 SATELITE, P.O. Box 1226-A, Dublin, PA, 18917. 215-249-9411.
CIRCLE 81 ON FREE INFORMATION CARD

CALL NOW AND RESERVE YOUR SPACE
- $6 x rate $745.00 per each insertion.
- Reaches 229,044 readers.
- Fast reader service cycle.
- Short lead time for the placement of ads.
- We typeset and layout the ad at no additional charge.

Call 516-293-3000 to reserve space. Ask for Arline Fishman. Limited number of pages available. Mail materials to: mini-ADS, RADIO-ELECTRONICS, 500-B Bi-County Blvd., Farmingdale, NY 11735.

MICROWAVE ANTENNAS $69.95 + shipping, lifetime warranty. We repair all types of downconverters. Satellite Dishes and parts complete 9' dish with block system, 80' LNA by arcfinder $965.00. Coax cable T.V. parts, accessories connectors, T.V. amplifiers. Write for free catalog or call for prices. BLUE STAR IND., Dept. RE7-86, 4712 Ave. N, Brooklyn, N.Y. 11234 (718) 338-8318 Ext. 105.
CIRCLE 85 ON FREE INFORMATION CARD

CIRCLE 198 ON FREE INFORMATION CARD

FREE CATALOG OF HARD-TO-FIND TOOLS is packed with more than 2000 quality items. Your single source for precision tools used by electronic technicians, engineers, instrument mechanics, schools, laboratories and government agencies. Also contains Jensen's line of more than 40 tool kits. Send for your free copy today! JENSON TOOLS INC., 7815 46th St., Phoenix, AZ 85044. (602) 968-6231.
CIRCLE 115 ON FREE INFORMATION CARD
A symmetry control can be used to vary the duty cycle of the output. So, for example, you can produce sawtooth waveforms from the triangle output or you can produce pulse waveforms from the squarewave output in the symmetry mode.

The instruction manual for the 205 should be adequate for most users. It includes a list of specifications, instructions on how to change the operating voltage from 110 volts to 220 volts, and basic operating information. It also includes a nomograph that can be used to determine the output frequency based on the vernier setting and the externally applied sweep voltage.

We would have liked the manual to include calibration instructions, especially since the circuit board has more than thirty trimmer potentiometers. However, a service manual (which we did not see) is available separately.

The model 205 seems like a rugged unit that offers the most often-needed features in an attractive package. It is priced at $545.

VIDEO HEAD CLEANER, the model CJ-58, is an electronic head cleaner that doesn't require the user to estimate either the length of the cleaning cycle or the amount of fluid to supply. The device automatically calculates both items.

The automatic dispensing system in the cartridge also makes the product easy to use—no spraying, swabbing, or pouring the cleaning fluid; no other paraphernalia to keep track of. The user inserts the cartridge into the VCR and presses the PLAY button. It takes about 15 seconds to clean the video heads and other components thoroughly; then the cartridge stops and emits a beep. The user then presses the STOP button and removes the cartridge.

The head cleaner lasts for about 25-30 cleanings. It comes complete with a 9-volt alkaline battery and has a suggested retail price of $18.95. —Video Dynamics, Inc., 6525 Oxford Street, St. Louis Park, MN 55426.

DISK SYSTEM, the EquiDisk +, is a subsystem for the Apple II+ and IIe that increases data storage to 737 kilobytes on each 5.25-inch floppy disk and allows CP/M users to access foreign formats.

The EquiDisk + is a complete package. It includes an EquiDisk + controller card, software, and instruction manual, plus two (or optionally one) disk drives. The half-height, high-capacity disk drives are enclosed in a slimline case that fits neatly between the computer console and the
20 MHz DUAL TRACE OSCILLOSCOPE
$336 MO-1251

35 MHz DUAL TRACE OSCILLOSCOPE
$545 MO-1252

Top quality scopes at a very reasonable price. Contains all the desirable features. Elenco's 2 year guarantee assures you of continuous service. Two 1x, 10x probes, diagrams and manual included. Write for specifications.

MULTI METER with CAPACITANCE and transistor tester
$65 Model CM-1500
Reads Volts, Ohms, Current, Capacitors Transistors & Diodes

TRUE RMS 4½ DIGIT MULTIMETER
$135 Model M-7000
.05% DC Accuracy .1 % Resistance with Freq. Counter & Deluxe Case

3½ DIGIT MULTIMETER
$25 Model M-1600
1% DC Accuracy 1% Resistance Reads 10A DC

GF-8016 Function Generator with Freq. Counter
$219
- Sine, Square, Triangle,
- Pulse, Ramp, .2 to 2 MHz
- Frequency .1 thru 10 MHz
GF 8015 without Freq. Meter '169

Quad Power Supply
Including 2-20V Variable Supply

Triple Power Supply XP-660
$149.50
0-20V @ 1A
0-20V @ 1A
5V @ 5A
Fully regulated, Short Circuit Protected with 2 Limit Cont. 3 Separate Supplies.

3 Amp Power Supply XP-650
$119.50
0-40V @ 1.5A
0-20V @ 3A
Fully regulated, short circuit protected current limit control

DIGITAL LCR METER
Model LC-1800
Measures: Inductors Capacitors, Resistors
Inductors .1µH to 200 H
Capacitor 1Pf to 200µf
Resistor .012 to 20M Ω
Ranges 6 Ind, 7 cap, 7 res
$148

C&S SALES, 8744 W. North Ter. Niles, IL 60648 800-292-7711 (312) 459-9040
15 DAY MONEY BACK GUARANTEE ASK FOR CATALOG
2 Year Limited Guarantee! Add 5% for Postage ($10 max.), IL Res., 7% Tax
CIRCLE 109 ON FREE INFORMATION CARD
The EquiDisk+ is priced at $679.00 for the two-drive system, $579.00 for the one-drive system.—H&M Disk Drive Services, Inc., 1101 East Pacifico Avenue, Anaheim, CA 92805.

DC POWER SUPPLY, the model 1630, features regulated outputs for volts and amperes; built-in metering; two current ranges for full or half output; a pre-regulator to limit internal dissipation; an isolated output so either polarity may be floated or grounded; and reverse-polarity protection. It is a 0–30 volt, 3-ampere device with low ripple.

The model 1630 has fully adjustable current limiting (from 5% to 100% of maximum output current) that protects both the circuit under test and the power supply. It can be hooked up in series or in parallel with another model 1630 for 0–30 volt, 6-ampere or 0–60-volt, 3-ampere operation. It is designed for use in service shops, engineering labs, production testing, school labs, and by hobbyists. The model 1630 is priced at $225.00, and comes with test leads, spare fuse, schematic and parts list, and a complete instruction manual.—B&K Precision, Dynascan Corporation, 6460 West Cortland Street, Chicago, IL 60635.

HOME SATELLITE RECEIVER, the Zenith Home Satellite Receiving System, is available with a 10-, 8-, or 6-foot-diameter perforated dish; the full system includes a microprocessor-based receiver with Space Command remote control and an electronic antenna positioner.

The design of the perforated aluminum dish provides high gain and interference rejection—important when receiving signals from satellites that are more than 22,300 miles away and spaced together closely. To receive signals from different satellites, the system features a motorized actuator that moves the antenna. Also mounted on the antenna is an LNB (low-noise block downconverter) and feed assembly for optimum reception.

Indoors, the system is built around a satellite receiver that can feed up to 24 channels through to a television set or videocassette recorder. The Space Command remote control operates channel selection and audio tuning, and can be used to change antenna positions. Because information is programmed (during installation) into a non-volatile memory inside the antenna positioner, the unit will retain programmed information during a power loss.

CIRCLE 23 ON FREE INFORMATION CARD

CIRCLE 24 ON FREE INFORMATION CARD

The Zenith Home Satellite Receiving System has a range of prices from $1495 for a 6-foot manual system to $2549.00 for a 10-foot motorized system, plus installation.—Zenith Electronics Corporation, 1000 Milwaukee Avenue, Glenview, IL 60025.
Where's Your ELECTRONICS Career Headed?

Yes it's your move. Whether on a chess board or in your career, you should plan each move carefully. In electronics, you can move ahead faster and further with a

B. S. DEGREE

Put professional knowledge and a COLLEGE DEGREE in your electronics career. Earn your degree through independent study at home, with Grantham College of Engineering. No commuting to class. Study at your own pace, while continuing your present job.

The accredited Grantham non-traditional degree program is intended for mature, fully employed workers who want to upgrade their careers . . . and who can successfully study electronics and supporting subjects through

INDEPENDENT STUDY, AT HOME

Free Details Available from:

Grantham College of Engineering
10570 Humboldt Street
Los Alamitos, California 90720

Independent Home Study Can Prepare You

Study materials, carefully written by the Grantham staff for independent study at home, are supplied by the College, and your technical questions related to those materials and the lesson tests are promptly answered by the Grantham teaching staff.

Recognition and Quality Assurance

Grantham College of Engineering is accredited by the Accrediting Commission of the National Home Study Council.

All lessons and other study materials, as well as communications between the college and students, are in the English language. However, we have students in many foreign countries; about 80% of our students live in the United States of America.
Today's world is the world of electronics. To be part of it, you need the right kind of training, the kind you get from Cleveland Institute of Electronics, the kind that can take you to a fast growing career in business, aerospace, medicine, science, government, communications, and more.

Specialized training.
You learn best from a specialist, and that's CIE. We're the leader in teaching electronics through independent study, we teach only electronics, and we've been doing it for over 50 years. You can put that experience to work for you just like more than 25,000 CIE students are currently doing all around the world.

Practical training.
You learn best with practical training, so CIE's Auto-Programmed lessons are designed to take you step-by-step, principle-by-principle. You also get valuable hands-on experience at every stage with sophisticated electronics tools CIE-designed for teaching. Our 4K RAM Microprocessor Training Laboratory, for example, trains you to work with a broad range of computers in a way that working with a single, stock computer simply can't.

Personalized training.
You learn best with flexible training, so we let you choose from a broad range of courses. You start with what you know, a little or a lot, and you go wherever you want, as far as you want. With CIE, you can even earn your Associate in Applied Science Degree in Electronics Engineering Technology. Of course, you set your own pace, and, if you ever have questions or problems, our instructors are only a toll-free phone call away.

The first step is yours.
To find out more, mail in the coupon below. Or, if you prefer, call toll-free 1-800-321-2155 (in Ohio, 1-800-523-9109). We'll send a copy of CIE's school catalog and a complete package of enrollment information. For your convenience, we'll try to have a representative contact you to answer your questions.

CIE
Cleveland Institute of Electronics
1776 East 17th St. Cleveland, Ohio 44114

YES! I want to get started. Send me my CIE school catalog including details about the Associate Degree Program. I am most interested in:
- computer repair
- television/high fidelity service
- telecommunications
- robotics/automation
- medical electronics
- broadcast engineering
- other

Print Name: __________________________
Address: ____________________________ Apt. __________
City: __________________ State: _______ Zip: ______
Age: _______ Area Code: Phone No.: _______

Check box for G.I. Bulletin on Educational Benefits
- Veteran
- Active Duty

MAIL TODAY!
OR CALL TOLL FREE
1-800-321-2155
(In Ohio, 1-800-523-9109)
Buy a Hitachi Scope from Joseph's... Get FREE DELIVERY* and a FREE DMM!

*To UPS-shippable destinations only

Pocket Calculator-Size DMM
Yours FREE with Each Hitachi Scope

- 3½-Digit LCD - Autoranging
- Continuity Beep - AC/DC Volts - Resistance
- Test Leads, Battery - Case
- 4½” H x 2½” W x 0.4” D

V1100A 100MHz
Quad Channel/8 Trace

Reg. Joseph's Price Free Delivery! Free DMM!
$2490 $2235

- CRT Readout - Built-in Computer - Cursors
- Built-in DVM and Frequency Counter
- Digital Measurement - Delayed Sweep
- 6” CRT - 18KV Acceleration
- 1 mV/Division Sensitivity
- 2 ns/Div. Max. Sweep - High 2% Accuracy
- Probes, Dustcover included

Write for FREE Catalog
116 pages of tremendous discount prices on 25 leading instrumentation lines.
Write today!

Famous HITACHI Scopes at Joseph's Low Discount Prices!

Hurry! Quantities limited at sale prices!

Joseph electronics
8830 N. Milwaukee Ave Niles, IL 60648

VISA, MASTERCARD & DISCOVER
Phone Orders Welcome
Call 1-800-323-5925
In Illinois: 312-297-4200
THE CONCEPT BEHIND POCKET-TV IS NOT NEW; ITS origins can be traced to the science-fiction pulps and comic strips of the first part of this century and beyond. Science fiction became science fact in January 1977 when Sir Clive Sinclair, that English genius of micro-miniaturization, introduced and sold the Microvision "pocket" TV through his company, which was called Sinclair Radionics at that time. The Microvision was a black-and-white TV set; it used a CRT with a 2-inch (diagonal measure) screen. Despite having some interesting features, that set's price (about $300) and size (pocketbook size would have been more accurate) contributed to its eventual demise.

The reasons behind both the high cost and the relatively large size of the Microvision could be traced to the CRT (specifically, its manufacturing costs and long neck). Realizing that, Sinclair launched research aimed at producing a "flat" CRT. His efforts, and those of his competitors, have led to the birth of a whole new branch of consumer electronics—pocket-TV sets.

This report

As we stated, Sinclair is not the only player in this field. In developing products, various manufacturers have embraced new technologies and have added color as well. Sony’s Watchman line, originally offered in 1982, recently passed the one-million-unit production mark.

In this report we will look at 24 pocket-TV sets that are either available now or about to be introduced. For quick reference, the features of each set are summarized in Table 1. More details on each set.

Pocket Television Receivers

FRED BLECHMAN

Here’s a no-punches-pulled look at pocket TV, one of the hottest segments of the consumer-electronics market.
can, of course, be found in the text.

In preparing this report, most of the TV sets discussed were actually tested, and comments on their performance are provided. Untested sets are noted as such. Any available or supplied accessories are also listed.

Note that the performance judgments were relative to other pocket-TV sets. (The sound from all of the sets was poor compared to a regular TV set.)

LCD displays

In developing their tiny TV sets, manufacturers have taken two basic approaches. One is to use tiny CRT's. Those CRT's are identical to the ones found in your home TV set, except that they are significantly smaller. The other approach has been to turn to a new display technology, at least as far as TV is concerned—the LCD (Liquid Crystal Display).

CRT technology has been used for decades to produce a bright, clear picture. The CRT, however, is not without its faults. It is expensive to produce; it uses a lot of energy, and it requires high voltages to operate.

In the early 1970's, LCD's made their initial appearance in digital watches. Those displays were cheap and easy to manufacture, and used little power. By the early 1980's, more complicated LCD's began to appear; among other things, they were used as the display screens for pocket videogames.

LCD research has progressed to the point now where those devices are practical for use in TV receivers. To date, perhaps the most sophisticated of the displays are the ones found in some Epson and Seiko models, including the Epson Elf. Those displays make use of TFT (Thin-Film Transistor) technology.

EPSON ELF

The Epson Elf, the product of a five-year research effort by the research and development group of Suwa Seikosha that serves Epson and other companies within the Hattori Seiko conglomerate, was developed to overcome certain limitations of the CRT. For one thing, the relatively high power consumption, bulk, and weight of CRT's make them difficult to use in truly portable TV's. And CRT's are poor performers in bright sunlight.
<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>Size</th>
<th>Display Type</th>
<th>Specifications</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELF ET-20</td>
<td>$199</td>
<td>2½ x 4½ x 1½</td>
<td>LCD</td>
<td>13</td>
<td>240 220 52800 G G</td>
</tr>
<tr>
<td>ELF ET-12</td>
<td>$350</td>
<td>6½ x 3½ x 1½</td>
<td>LCD</td>
<td>13</td>
<td>240 220 52800 G G</td>
</tr>
<tr>
<td>Magnavox BF 3908R</td>
<td>$160</td>
<td>3 x 6½ x 1½</td>
<td>CRT</td>
<td>A A</td>
<td>N/A N/A N/A</td>
</tr>
<tr>
<td>Magnavox BF 39018K</td>
<td>$270</td>
<td>3½ x 6½ x 1½</td>
<td>CRT</td>
<td>A A</td>
<td>N/A N/A N/A</td>
</tr>
<tr>
<td>Panasonic 1310P</td>
<td>$180</td>
<td>3½ x 1½ x 6</td>
<td>CRT</td>
<td>A A</td>
<td>N/A N/A N/A</td>
</tr>
<tr>
<td>Panasonic 101</td>
<td>$450</td>
<td>4½ x 1½ x 7½</td>
<td>CRT</td>
<td>A A</td>
<td>N/A N/A N/A</td>
</tr>
<tr>
<td>POCKET-VISION 2 (16-152)</td>
<td>$100</td>
<td>4½ x 2½ x 1½</td>
<td>LCD</td>
<td>139</td>
<td>110 15290 F P</td>
</tr>
<tr>
<td>POCKET-VISION 3 (16-153)</td>
<td>$160</td>
<td>5½ x 3 1½</td>
<td>LCD</td>
<td>10</td>
<td>148 122 18056 4</td>
</tr>
<tr>
<td>POCKET-VISION 20 (16-154)</td>
<td>$300</td>
<td>8½ x 3½ x 1½</td>
<td>LCD</td>
<td>144</td>
<td>120 18056 4</td>
</tr>
<tr>
<td>SEIKO LVD0712</td>
<td>$199</td>
<td>2½ x 4½ x 1½</td>
<td>LCD</td>
<td>12</td>
<td>240 220 52800 G G</td>
</tr>
<tr>
<td>SEIKO LVD0707</td>
<td>$349</td>
<td>3½ x 4½ x 1½</td>
<td>LCD</td>
<td>12</td>
<td>240 220 52800 G G</td>
</tr>
<tr>
<td>Sinclair Research Limited</td>
<td>$100</td>
<td>5½ x 3½ x 1½</td>
<td>CRT</td>
<td>A A</td>
<td>N/A N/A N/A</td>
</tr>
<tr>
<td>Sony Consumer Products Co</td>
<td>$180</td>
<td>2½ x 4½ x 1½</td>
<td>CRT</td>
<td>A A</td>
<td>N/A N/A N/A</td>
</tr>
<tr>
<td>Sony Consumer Products Co</td>
<td>$240</td>
<td>3½ x 6½ x 1½</td>
<td>CRT</td>
<td>A A</td>
<td>N/A N/A N/A</td>
</tr>
<tr>
<td>Zenith Electronics Corp</td>
<td>$200</td>
<td>4± x 8± x 2±</td>
<td>CRT</td>
<td>A A</td>
<td>N/A N/A N/A</td>
</tr>
<tr>
<td>Zenith Electronics Corp</td>
<td>$199</td>
<td>4± x 8± x 2±</td>
<td>CRT</td>
<td>A A</td>
<td>N/A N/A N/A</td>
</tr>
</tbody>
</table>

LEGEND:
- "Unknown" or "Not tested" / "No" or "Included" E - Excellent, G - Good, F - Fair, P - Poor.
- x - Not usable, N/A - Not applicable, N/R - Not required, O - Optional.

NOTES:
1. 2 hours with backlight
2. Earphone only
3. Earphone wire is antenna
4. Mirror provides viewing angle
By contrast, the circuitry required with LCD's is compact and lightweight. Therefore, the Elf and similar units easily can be held in the palm of the hand. Moreover, the low power consumption of an LCD eases the drain on the unit's batteries. Because the electrodes in a liquid crystal display can be made of transparent materials, the screen can be lit from behind (backlighted) with ambient light or from a built-in source.

In developing the Epson liquid-crystal color TV, Suwa Seikosha's scientists and engineers had to overcome some formidable obstacles. For one thing, the liquid crystals commonly used in watches and calculator displays respond slowly to electrical signals. That is unacceptable for video displays, where the liquid crystals must be turned on and off many times a second. Also, most liquid-crystal displays are low in contrast and limited to black images on a light background.

To solve the problems of slow response times and low contrast, Suwa Seikosha's research team turned to TFT's to turn on and off each of the 52,800 pixels in the Elf display. The transistors, deposited on a glass substrate, are made of polycrystalline silicon, a material known for its stability and reliability.

To understand how the TFT's improve performance, it is necessary to know a little about how liquid-crystal displays operate. In the type of LCD used in watches, calculators, and the Epson Elf, liquid-crystal material, which is composed of long, organic molecules, is sandwiched between two polarizers; for our discussion, let's designate those the top and bottom polarizers. The polarizers are placed in the display so that their transmission axes are separated by 90 degrees. When no electric field is present, the liquid-crystal molecules have their long axes parallel to the top and bottom polarizers and the in-between layers gradually twist through the 90 degrees between top and bottom. Light entering through the bottom polarizer gradually gets twisted through a 90-degree angle by the liquid-crystal layers and exits through the top polarizer as shown in Fig 1-a. A person viewing the display sees a light spot.

In the presence of an electric field, however, the molecules stand up on their ends, parallel to the direction of the field. In that state, they can no longer rotate light. Therefore, light entering the bottom does not get twisted; instead it gets absorbed by the top polarizer as shown in Fig 1-b. To a person viewing the display, that spot appears dark.

To create the hundreds or thousands of pixels needed to form an image in a complex liquid-crystal display suitable for use as a video screen, the earlier (and still widely used) approach is "multiplexing." In multiplexing, rows of electrodes are deposited on one side of the liquid-crystal layer, and columns of electrodes are deposited on the other side. The pixels are created at the junctions of rows and columns.

To simulate the scanning processes of a CRT, electric pulses are fed to the row electrodes in succession; during that interval, all of the column electrodes are pulsed simultaneously. Whenever the voltage at a row-column junction exceeds a threshold value, the liquid crystals respond. In that way, every field of a standard TV signal can be displayed.

Multiplexing has its problems, however. Because many rows must be addressed in a short time by a single electric pulse, the time-weighted average on/off ratio of black to white is very low, and that results in poor contrast.

Those problems were solved by resorting to an approach called active-matrix addressing. In that system, the 240 row and 220 column electrodes of the display are deposited on a single glass substrate. On the opposite side of the display is a common electrode. The TFT's, placed at each row and column junction, are turned on whenever a pixel is to be activated. Driver circuitry controls which pixels are activated at what times.

With the TFT's, each pixel receives the full voltage needed to turn it on, not a time-weighted average, as in multiplexed devices. The result is a very high on/off ratio and good contrast.

Color is added through the use of thousands of microscopic red, blue, and green primary-color filters; one filter is placed over each pixel electrode. When a red spot is to be created, the TFT's at the blue and green filters in the appropriate region are turned on, blocking out light there and letting light through only the red filters. If blue is desired, the red and green TFT's are turned on. If green is to be displayed, the red and blue TFT's are activated.
FIG. 2—DIAGONAL MEASURE versus viewing area for three popular pocket-TV sets. The Panasonic TA-1030P is shown in a, the Sinclair FTV2 is shown in b, and the Citizen O3TA is shown in c.

FIG. 3—a 1.5-INCH SCREEN, viewed at a distance of 1 foot, will yield the same viewing angle as a 15-inch screen viewed at a distance of 10 feet.

Other shades are created by turning on various mixtures of the primary-color pixels. If all the TFT's in a region are turned on, no light gets through and the image appears black. If none of them are turned on, all the primary colors get through and the image appears white.

Charting the sets

While the meaning of many of the entries in Table 1, our comparison chart, are obvious, some require further explanation. So, before discussing the individual TV sets, we'll first explain each of the chart headings. The notes and the remarks at the end of the chart provide much additional information.

Manufacturer or source: Most pocket TV sets are relatively hard to find in local retail stores. Large electronics stores that carry many brands of TV and video equipment are the most likely sources. If you can't find a set you are interested in locally, you may wish to write the manufacturer for assistance. Also, some luxury catalogs, such as those available from Markline and The Sharper Image, frequently offer pocket-TV sets.

Model: It's not unusual for some pocket TV sets to look alike and yet be different in performance. Some are made by one manufacturer for another, but specifications may not be the same although appearance is identical. For example, the Citizen O3TA and the Radio Shack Pocketvision-3 look almost identical, but use a different screen technology and include different accessories. Therefore, when shopping with our chart, look for specific model numbers.

Price: The prices shown are the manufacturer's suggested retail prices in effect at the time this article was compiled. As with most other types of consumer-electronics products, substantial discounts are usually available, either from dealers or from mail-order houses.

Size: The dimensions, given in inches, are approximate, and may not include minor protrusions such as switches or retracted antennas. The intention is to give you an idea of relative size. The designations of wide, high, and deep are made with the assumption that the user is looking at the surface of the unit that contains the viewing screen.

Screen characteristics: Some sets offer color but, with the exception of the Panasonic CT-101, you'll be disappointed if you expect picture quality that rivals your home color-TV set. That's because all of the color sets, except the CT-101, use an LCD instead of a CRT. While some LCD sets are surprisingly good, most have a way to go before they will equal the performance of conventional CRT's.

The screen sizes are given in inches measured diagonally, as is the convention with TV-screen specifications. However, that can be very deceptive when dealing with small-size sets. For example, the 1.5-inch Panasonic sets have a viewing area that is only about 50% of a 2-inch screen (that's why both Panasonic sets come with magnifiers). Figure 2 shows how diagonal measure relates to viewing area for three popular screen sizes. Note that the TV-standard 4:3 aspect ratio is maintained for all sets.

That is not to say that a 1.5-inch screen is too small. It depends upon how far it is from your eye. Figure 3 shows that a 1.5-inch diagonal screen one foot from your eye subtends the same viewing angle as a 13-inch diagonal television screen 10 feet away.

Probably the most important screen characteristic in determining the acceptability of the picture is the type of display. Subjectively speaking, a black-and-white CRT offers the highest levels of resolution and contrast. On the other hand, LCD screens, with their limited pixel counts and often poor contrast ratios, are the worst performers.

The clarity and contrast rating provided in the table are strictly the author's judgments, and are based on his comparisons between sets.

Adjustments: The trend by manufacturers in recent years has been to delete some of the traditional user controls from their TV sets. Among the controls that have slowly begun to disappear are vertical hold, contrast, and brightness. One reason for that is that modern integrated circuitry can control many of those parameters automatically, thereby eliminating the need for user override. Another is cost. The elimination of seldom-used controls does make the set a little less formidable to operate, but it also reduces your control over what you watch.

Speaker: If you don't expect much in the way of good sound from these sets, you won't be disappointed. Speaker location plays a role in the sound quality, with the worst performing units being those with the speakers mounted at the rear. Further, some sets are barely audible at maximum volume in noisy surroundings, such as a fast-food restaurant. Earphones are provided or available with all units, if you can tolerate typical earphone quality. The best sound was provided with the stereo earphones included with the Sony FD-30A and the Magnavox BF390HB. Where quality ratings are provided (only on those sets tested), the rating was relative to other pocket TVs.

Computer monitor: Because of those TV set's small size, their use as a computer monitor is obviously marginal. However, the set's ability to display a 32- or 90-column computer screen is useful as a benchmark in determining its resolution capabilities. For all sets, the computer signal was coupled via a UHF modulator (channel 15) with a stub antenna. Where available, displays coupled via a video or external-antenna input were also evaluated.

Accessories: The large range of included and optional items are shown in this section of the chart. Most are self-explanatory, but further information can be found in the discussion of each individual set.

Next time

Of course, there's a lot more to be said for the various TV's than can be summarized in a chart. Next time, we'll provide in-depth, no-punches-pulled evaluations of many of the pocket-TV set currently available. If you are contemplating purchasing one of those sets, it is a round-up you won't want to miss.
TV SIGNAL DESCRAMBLING

Learn all about what might be the ultimate scrambling system in this month's article.

WILLIAM SHEETS and RUDOLF F. GRAF

Part 2 LAST TIME WE LOOKED at several of the simpler scrambling techniques that are currently in use. All of those rendered the picture unwatchable by either reversing the video polarity or altering the sync in such a way that the receiver's sync circuit could not lock onto the video signal.

However, all the methods discussed thus far have one major fault: They are "static." By that we mean two different things. First of all, the scrambling algorithm does not change over time. Once the scrambling technique has been determined, it is relatively simple to come up with a circuit that will unlock it. Further, nothing has been done to alter the order in which the video information is transmitted. The video signal is still transmitted line by line, frame by frame, in the same order as it was scanned. The audio is usually unaltered, though it may be hidden on a subcarrier.

Let's expand on that a bit. The static scrambling systems used on most pay-TV and cable-TV systems are not difficult to decode because of the following:

- There is a horizontal sync pulse (or hole) every 63.5 microseconds, and a new field every 16.68 milliseconds.
- The video signal at every instant has a fixed relationship with the scene that was scanned to produce that picture.
- All necessary decoding or unscrambling information is present in the video signal, or on another frequency or channel in a cable pay-TV system.
- Changes in picture content between adjacent frames is generally insignificant.

Thus, if the sync pulses were stripped from a video signal (currently a very popular scrambling technique), the resulting signal would drop to zero at regular intervals. Those regions of zero signal, or "holes," would occur at the points where the sync pulses would be found normally. As we've previously seen, it is a simple matter to restore the normal sync pulses using a locally generated sync signal.

Scrambling the picture

Here's a thought to ponder for a moment: All of the previously discussed "scrambling" techniques in fact do not scramble the picture. All they do is disrupt the normal video waveform in such a way that a conventional TV receiver cannot reproduce a watchable image.

But what if we could actually scramble the picture? Normally, a scene is scanned by the video camera and broken up into pixels. Those pixels are transmitted to the receiver one by one. At the receiver, the pixels are reassembled in the order in which they are received to recreate the original picture.

However, in theory there is no reason to scan the picture elements in any particular order. The picture could be thought of as a jigsaw puzzle, with each piece represented by a pixel. The puzzle could be put together in any order without affecting the final image that results. In a conventional TV system, scanning is done from left to right and top to bottom, but that is not the only scan sequence that is possible.

What would happen if we reversed the scan process? That would cause the TV picture to be inverted top to bottom, left to right. A quick "descrambler" for that would be to turn the TV set upside down.

But suppose we began the scan at the midline of the picture. Then the top half would appear above the top half and things would appear to be cut in two. By now you of course realize where we're heading. We could cut the picture into four strips and scan them in 2, 4, 3, 1 order. The result would be a nearly unrecognizable picture.

Continuing on, suppose we scanned the 262/3 lines per field in any random order. The resulting picture would be unrecognizable—like an unassembled jigsaw puzzle.

Finally, we could break each line into random segments and scan them in random sequence in each line. All the pixels would still be there, but the picture would look like nothing more than colorful confetti. It would be as if someone tore the picture into tiny pieces and threw it on the floor.

Of course, there is a significant dif-
ference between what is theoretically possible and what is practical. For instance, at the receiving end, conventional, magnetic-deflection CRT's are simply incapable of displaying a picture generated by complex scanning satisfactorily. Further, the sweep circuitry in conventional TV receivers is not capable of generating the type of high-speed, high-precision waveforms needed to properly drive the CRT. It is, of course, possible to redesign the sync circuits and the CRT so they are capable of providing the appropriate drive signals; but the TV set that would result would be prohibitively expensive.

Introducing digital scrambling

There is, however, another approach—use digital technology. Thanks to modern VLSI techniques, the cost of a digital scrambling system is rapidly becoming affordable. Let's see what's involved.

It is a relatively simple task to represent the luminance and chrominance information of each pixel in digital form. Each pixel could, for example, be represented by sixteen different luminance levels and sixteen different chrominance levels. If that were done, any pixel could be described by one of the 256 possible combinations that would result. Further, if our digital system used 8-bit "words," any pixel could be completely described by one byte of data.

A standard TV set, one with a bandwidth of 3.5- to 4-MHz, has a resolution of about 250 vertical lines. That translates to a resolution of 250 pixels per line. (On a 25-inch set, which would have a screen width of about 20 inches, such resolution would allow you to see details that were as small as about 1/8 inch.) Thus, all of the information contained in a line could be stored in a 256-byte memory.

If we wished, even more video information could be stored easily. For instance, each field has 262,5 lines. However, only 249,5 to 241,5 lines are actually displayed; the rest are lost to vertical retrace. That means that a complete field of video can be stored in a 256 x 256 = 64K memory.

Of course, once that data is stored, we will need to retrieve that data at a fairly high rate if a usable video image is to be displayed. For instance, if we are storing our data by field, remember that 60 such fields are displayed per second. Thus our access rate must be 60 x 64K = 3,840 megabytes per second. Those of you familiar with the capabilities of current digital technology will realize that the hardware needed to implement such a system is available, but not inexpensive.

Now the fun begins. Once the data is safely in memory, there are few rules to restrict the order in which that data is retrieved. Thus, the order of the pixels within a line may be scrambled (called line dicing), the order of the lines in a field may be scrambled (called line shuffling), or both.

Let's expand on that thought. The pixels of video data stored in memory could be thought of as pieces of a jigsaw puzzle stored in a box. If we could assign a numerical code to each piece, and if we had a map or chart showing where each piece should be placed, the puzzle could be assembled without wondering where each piece fits or having to figure out what part of the picture it represents.

That code could be assigned in one of several ways. One would be to break up each line into eight segments. Using a binary numbering scheme, the segments would be numbered from 000 at the extreme left to 111 at the extreme right. The ordering of the line could then be altered during transmission. At the receiver end, the segments would be placed in memory in the order in which they are received.

The proper sequence of segments could be relayed to the receiver in many ways. For instance, it could be hidden in the horizontal blanking interval, put on a subcarrier, etc. Once the receiver has the proper segment sequence, it is easy enough to pull the stored segments out of memory in the proper order.

What makes such a scrambling system so hard to break is that the encoding can be changed at any time. Each line could be scrambled in a different manner. Or all the lines in one field or frame could be scrambled in one way and all the lines in the next field or frame in another.

If line shuffling is used, the lines can be sent to the receiver in any order. If that is done, the decoding algorithm can be sent prior to each field during the vertical blanking interval. For maximum security both line dicing and line shuffling can be used with changing algorithms.

To give you a better idea of the level of security that those systems could provide, let's stop and consider the number of possible combinations of segments that line dicing and line shuffling can give us. If we were to dice a line into 8 segments, there would be 8° (read 8 factorial) possible combinations. For those unfamiliar with factorial computations, 8! = 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1 = 40,320.

Now consider the number of lines in a field—rounding down, there are 262. If all of the lines in a field were shuffled, there would be 262! different possible combinations. (If you don't mind, we'll leave the actual computation as an exercise for an adventurous reader.) And that's just for one field; there are some 60 such fields per second, 3,600 per minute, and 108,000 per half hour. Add a constantly changing algorithm and addressability into the equation and you have a video "pirate's" nightmare.

For those unfamiliar with the concept, addressability allows you to send certain signals—such as descrambling algorithms—only to those decoders that have been registered as belonging to paying subscribers. Addressable decoders are now being used by many of this country's largest pay-TV distributors.

A block diagram of a system capable of carrying out the scrambling we've just described is shown in Fig. 1. In that system data stored in memory is first read out, then incoming data is read in. The result is a delay of one field (or line or frame, depending on the system). Because of the times involved (remember, 60 fields are displayed per second), the effect...
that the age of affordable digital scrambling has arrived. That system is used by HBO and other satellite programmers to limit access to their uplinked signals. The video scrambling method used by M/A-COM is rather primitive, and easily unlocked. The audio is another matter. It is scrambled using a sophisticated digital technique, one that makes use of a constantly changing algorithm and the addressability of the Linkabit decoders. Breaking that system should prove to be a formidable task.

Another scrambling method

Before we leave the area of theory, let’s look at one more possible approach to scrambling the video. That system introduces a switchable time delay that alters the spatial relationship between successive horizontal lines. A block diagram of the system is shown in Fig. 3. As you can see in that figure, the technique makes use of one or more delay lines. That allows for various amounts of delay, or no delay at all, to be selected for each horizontal line. The result is that a normal signal, like the one shown in Fig. 4-a, becomes one with severe ghosting and distortion, like the one shown in Fig. 4-b.

Scrambling and picture quality

One consideration with any scrambling system is how it affects the quality of the picture seen by paying subscribers. Gated sync and sinewave, and related methods, introduce deliberate interference into the video signal. While decoders do a good job of removing the interference, they are not perfect. There is always some residual video noise or interference left over. On a good quality, large-screen receiver or video monitor the effect is noticeable and may be objectionable. Further, with the use of audio subcarriers, the bandwidth of the audio that is received is somewhat reduced, resulting in less than optimum audio quality.

If you were watching commercial TV on a 19-inch portable TV set, none of that may be of great consequence to you. But if you are paying a premium for premium programming, you would expect quality video and audio. Unfortunately, scrambling may make that expectation unrealistic. It is something that should be considered when deciding whether or not you wish to receive a scrambled premium system.

However, digital scrambling may affect video quality in a very different way. Higher resolution, reduced video noise, and reduced interference problems are just some of the improvements possible with digital-TV technology. That’s why digital TV is currently such a hot topic.

All of those advantages could also be passed on to the viewer of a digital-scrambling system, especially if the video were viewed on a high-quality, high-resolution monitor. Just as the order of assembly does not affect the way a completed jigsaw puzzle appears, the scrambling/descrambling process would have no detrimental effect on the way the displayed video would appear. In fact, one proponent of a digital video-scrambling system claims that the improvement in the signal-to-noise ratio over that of the baseband video would be about 2 dB.

Next time

So far we’ve seen some of the many different ways that programmers could scramble their signals to prevent access by unauthorized viewers. And we’ve examined those systems at the block-diagram level. But what about the circuitry necessary to implement those scrambling/descrambling systems? That’s our topic for next time.
Who says a frequency counter must be big and expensive? Our little counter can measure signals into the gigahertz range, and it can be built for under $60!

FRED HUFFT

Design Philosophy

Our main design objectives were to produce a 1-GHz counter with good sensitivity, and with minimal size and cost. To meet those objectives we selected two key parts: Intersil's LSI frequency counter, the 7216D (IC1 in Fig. 1), and RCA's ECL prescaler, the CA3179 (IC2).

The Intersil IC was chosen because it contains all the circuitry necessary to count, generate gate signals, latch data, and drive a multiplexed LED display. It also has an MVP (Measurement In Progress) output, and control inputs for decimal point placement and gate time.

The second key part is the RCA CA3179 amplifier/prescaler. It is an ECL part with an exceptional bandwidth of 1200 MHz and with excellent sensitivity. As you can see in Fig. 2, the CA3179's 500-MHz input has a sensitivity of about 10 mV rms above 100 MHz. Below that frequency, sensitivity is inversely related to frequency, rising to 125 mV at frequencies below about 2 MHz. As you can see in Fig. 3, the CA3179's 1200-MHz input is about 25 mV over the 300-1000-MHz range.

The CA3179 requires a single five-volt supply, and it runs barely warm to the touch. That makes it the only IC of its kind we know of that does not run hot in normal operation. Last, it is inexpensive and easy to find.

A few other inexpensive components round out our frequency counter. Refer-
TABLE 1—FREQUENCY COUNTER SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>1-1200 MHz</td>
</tr>
<tr>
<td>Gate time (fast)</td>
<td>0.25 second</td>
</tr>
<tr>
<td>(slow)</td>
<td>2.5 seconds</td>
</tr>
<tr>
<td>Resolution</td>
<td>100 Hz (fast gate time)</td>
</tr>
<tr>
<td></td>
<td>1000 Hz (slow gate time)</td>
</tr>
<tr>
<td>Display</td>
<td>Eight 0.28-inch high, 7-segment LED displays, common-cathode. Decimal point indicates MHz. Leading zero blanking.</td>
</tr>
<tr>
<td>Sensitivity (1-10 MHz)</td>
<td>100-150 mV rms</td>
</tr>
<tr>
<td>(10-1000 MHz)</td>
<td>1-35 mV rms</td>
</tr>
<tr>
<td>(1-1.2 GHz)</td>
<td>10-150 mV rms</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±1 ppm RTXO timebase, ±1 count in LSD</td>
</tr>
<tr>
<td>Timebase aging</td>
<td>0.1 ppm/month</td>
</tr>
<tr>
<td>Input impedance</td>
<td>50 ohms</td>
</tr>
<tr>
<td>Gate LED</td>
<td>Illuminates during count</td>
</tr>
<tr>
<td>Input connectors</td>
<td>2 BNC female jacks</td>
</tr>
<tr>
<td>Input power</td>
<td>9-14 VDC, 150 mA, internally regulated</td>
</tr>
<tr>
<td>Optional battery pack</td>
<td>Six AA Ni-Cd cells (7.2 volts)</td>
</tr>
<tr>
<td>AC adapter and battery charger</td>
<td>9 VDC, 300-500 mA</td>
</tr>
<tr>
<td>Input power connector</td>
<td>1/4-inch jack, center positive</td>
</tr>
<tr>
<td>Case</td>
<td>0.060-inch anodized aluminum</td>
</tr>
<tr>
<td>Size</td>
<td>3.9 x 3.5 x 1.5 inches</td>
</tr>
<tr>
<td>Weight</td>
<td>8.5 oz, 13 oz with battery pack</td>
</tr>
</tbody>
</table>

Circuit Description

Referring now to the complete circuit diagram in Fig. 4, you can see that the output of the CA3179 is fed through the D1/Q1 circuit. Those components serve to boost the 1-volt output of the CA3179 to a standard TTL level. Then, depending on the position of RANGE switch S2, the signal is passed directly to the 7216, or through the divide-by-four circuit built from the two "D" flip-flops in IC3.

The other half of the range switch (S2-a) controls the voltage at pin 3 of the CA3179. When pin 3 is high, the signal applied to pin 9 is fed through an extra internal divide-by-four stage before it is amplified and output on pins 4 and 5. When pin 3 is low, the signal on pin 13 is simply processed for output without being divided internally.

We use a 3.90625 MHz crystal for our time base; the crystal yields a fast gate time of 0.256 seconds. The displayed frequency equals the input frequency divided by 1000 in the fast mode. In slow mode, gate time is 2.56 seconds. The displayed frequency equals the input frequency divided by 100 in the slow mode.

Switch S4, GATE TIME, performs two functions. First it selects the appropriate gate time according to which digit output of IC1 the range input is connected to. Another of the 7216's inputs is always controlled by S4; the DP SELECT input. The decimal point of the digit output to which that pin is connected will be the one that lights up. In our case, the correct decimal point illuminates, according to the position of S4, to provide a reading in MHz.

Self-oscillation

Due to the high gain, balanced-input amplifiers in the CA3179, self-oscillation can occur with no input signal present. The result is a random, constantly-changing count. Although that does not affect the performance of the counter, it can be distracting.

To settle the display we added sensitivity switch S1 and the associated resistors and capacitors. When the switch is on, the RC networks eliminate display bubble. The difference in sensitivity varies with frequency. For example, at 150 MHz, normal sensitivity is typically 15 mV rms, and high sensitivity is about 6 mV rms. But at 850 MHz, normal sensitivity is typically 40 mV rms and high sensitivity is about 25 mV rms.

The mV output of IC1 drives Q2, which in turn drives LED1. When it is illuminated, a measurement is in progress. The LED goes out for a fraction of a second between measurements.

For highest accuracy, trimmer C8 can be adjusted so that the output of the oscillator is exactly 3.90625 MHz.
greatest frequency stability, C7 should be an NPO type, and C9 an N750. In case you’re wondering, temperature causes almost no change in capacitance in an NPO capacitor; the capacitance of an N750 capacitor will decrease 750 parts per million for each °C increase in temperature. The power supply is a standard 7805 circuit. Input voltage can range from 9-14 volts DC; input should never exceed 14 volts. Diode D2 protects the circuit from an accidental reversed-voltage input.

Power input jack J1 has a switch contact. When no plug is present, the contacts are closed, so the negative terminal of the battery is grounded. When a plug is present, R19 appears in the battery’s ground circuit; this resistor is what provides trickle-charging. With a 9-volt input, a charge current of 25-45 mA will be provided. Charging occurs even when power switch S3 is off. You should ensure that charge current never exceeds 45 mA; adjust the value of R19 if necessary.

The Ni-Cd battery pack specified in the Parts List is rated at 45 mA. This means that a charge current of 45 mA will fully charge a completely discharged pack in about 14 hours, and that the batteries won’t be harmed by continuous charging at that rate (or less). For maximum battery life and capacity, Ni-Cd’s should occasionally be “deep cycled” several times by completely discharging and then fully recharging them. That should prevent a discharge “memory” from forming at less than the full rated output voltage.

Voltage regulator IC4 provides a regulated five-volt DC output when S3 is closed. Regulated voltage is especially important to the timebase oscillator, because, as the battery’s voltage varied throughout its life, so would the frequency of the timebase. Erroneous measurements would result. With a good source of regulated voltage, however, the timebase circuit should maintain ±1 PPM stability at room temperature. Both temperature stability and accuracy are almost totally dependent upon the crystal used.

The counter circuitry itself draws about 120 mA; in combination with the battery charger, about 150 mA will be drawn. The optional Ni-Cd battery pack should give up to 5 hours of continuous operation, which is more than adequate for most portable requirements. In any case, we recommend that your DC source be able to supply at least 300 mA for safe and reliable operation.

That’s about all there is to the circuit—so let’s build a frequency counter!

PC board

For ease of construction, we recommend use of a double-sided PC board. You can buy an etched, plated, labeled, and solder-masked board from the source mentioned in the Parts List, or you can etch your own board using the foil patterns shown in “PC Service.”

For flexibility, the PC layout has a number of extra pads and holes to accommodate capacitors of various sizes and shapes. That applies to C2, C3, and C4, and to trimmer C8. We designed a partial micro-strip layout for the input connectors (J2 and J3) to simplify assembly and to approximate a 50-ohm input impedance.

FIG. 4—SCHEMATIC DIAGRAM OF THE FREQUENCY COUNTER is a model of design simplicity. Transistor Q1 and associated discrete components translate IC2’s ECL output into a TTL level for IC3 and IC1.

FIG. 5—A BNC CONNECTOR must be modified as shown in a so that it can be soldered to the PC board as shown in b.
PARTS LIST

All resistors are 1/4-watt, 5% unless otherwise noted.
R1—510 ohms, carbon composition
R2, R4—470 ohms, carbon composition
R5—56 ohms, carbon composition
R9—1000 ohms
R6—220 ohms
R7—2.200 ohms
R8—22 ohms
R9—R14—10,000 ohms
R15—330 ohms
R16—270,000 ohms
R17—22 ohms
R18—20,000 ohms
R19—82 ohms, 1/2 watt, 10%

Capacitors
C1, C2, C15—0.001 µF ceramic disc
C3, C4—470 pF ceramic disc
C5—100 pF ceramic disc
C6, C10, C14—0.1 µF ceramic disc
C7—16 pF ceramic disc, NPO
C8—1—23 pF trimmer
C9—39 pF ceramic disc, N750
C11—10 µF 16 volts, electrolytic
C12—220 µF, 25 volts, electrolytic
C13—100 µF, 16 volts, electrolytic

Semiconductors
IC1—ICM7216DPI, universal frequency counter (Intersil)
IC2—CA3179 ECL pre-scaler (RCA)
IC3—74LS74 dual "D" flip-flop
IC4—7805 voltage regulator (TO-220 case)
Q1—PN3638A transistor (ECG159)
Q2—PN5139 transistor (ECG108)

DISP1, DISP2—DL-4770, four-digit, seven-segment, common-cathode multiplexed display (Litronix)
LED1—standard red LED
D1—1N914 switching diode
D2—1N4001 rectifier

Other Components
S1—S4—subminiature DPDT slide switch
J1—1/8 inch power jack with switch
J2, J3—BNC connector, female, bulkhead mount, modified (see text)
XTAL1—3.906250 MHz crystal, parallel resonant, 22 pF, HC-18 case.

Miscellaneous
1/2" high by 1/4" OD nylon spacer, IC sockets, PC board, case, power pack, etc.

Note: The following items are available from Optoelectronics, Inc., 5821 N.E. 14 Ave., Ft. Lauderdale, FL 33334: PC board (no. PCB-1200H), $16; Kit including PCB and all parts less cabinet (no. 1200HK), $59.95; Anodized aluminum case (no. CAB-1200H), $20; Power adapter/charger (no. AC-1200), $7.50; Ni-Cd battery pack (no. NiCd-1200), $20; Telescoping RF antenna (no. TA-100), $12; Vinyl zipper case (no. CC-70), $10; 50-ohm 1x probe (no. P-100), $18; Wired, tested and calibrated counter (no. 1200H), $110. Individual components also available. Florida residents add 5% sales tax. All orders add 5% for shipping and handling.

In addition, the PC board has two notches at the top to accept modified BNC connectors, and another notch along one side for the power-input jack J1. The notches for the BNC connectors should be 0.365" wide and 0.250" deep. The power-jack notch should be 0.430" wide and 0.150" deep.

Construction

Our frequency counter was designed for quick and easy assembly; by following the directions you should have no trouble building, testing, or calibrating the instrument. We’ll call the “front” side of the board the side that the switches and displays are mounted on.

First modify the two BNC connectors as shown in Fig. 5-a. Using a hacksaw or a modeling file, cut a ¼-inch slot beneath the center post of the BNC connector, leaving ⅛ of an inch beneath the flange. Then solder each connector to the board as shown in Fig. 5-b. The connectors are soldered to the adjoining ground planes on both sides of the PC board; that makes the installation both strong and well grounded. The center conductors of the BNC connectors should also be soldered to the PC board now.

Next, on the back side of the board, as shown in Fig. 6, install the low-profile components (the diodes and resistors), followed by the IC sockets, then the capacitors, etc. Be certain to observe proper polarity when installing the diodes, electrolytic capacitors, the ICs sockets, the battery connector, and, on the front of the board, LED1 and the displays. By the way, we found almost no difference in performance with and without sockets, but using them makes servicing easier.

Since the counter will be dealing with rather high frequencies, R1—R4 and C1—C4 should be installed with minimum lead length. Also, resistors R1—R4 should be the non-inductive, carbon-composition type; the other resistors may be either composition or film types. Capacitors C1—C4 should be small ceramic disk or monolithic ceramic types. All input components should be installed as neatly as possible.

To complete the back side of the board, install the voltage regulator (IC4), trimmer capacitor C8, and all small capacitors. Bend the leads of the regulator so that its body is parallel to the PC board. A heatsink is unnecessary. Next install power jack J1 and transistors Q1 and Q2.

Clean flux off the front side of the board, and then install the switches, DISP1 and DISP2, XTAL1, LED1, and R2, according to Fig. 6. The LED should be mounted above a spacer ¼ inch in length. The displays should be mounted flush against the board. When installing the displays, the IC sockets, and any other components with numerous solder connections, it’s best to solder two or three
pins, check for alignment, correct if necessary, and only then solder the remaining pins. A small piece of double-sided foam tape should be placed under the crystal to insulate its case and to provide a shock mount. Finally, install the electrolytic capacitors, C12 and C13, on the rear side of the board.

Now clean the board and check it thoroughly for solder shorts and opens. When you're satisfied that the board is in good shape, install the IC's. Your board should now appear as in Fig. 7.

Initial check-out

Set the SENSITIVITY switch to NORM and the GATE switch to FAST. With the RANGE switch in either position, apply power. The GATE LED should blink and the display should indicate .000 with leading digits blanked. Move the GATE switch to the SLOW position. The display should now read .000, and the GATE LED should blink at a slower rate. Now move the SENSITIVITY switch to HIGH; the display should show a random, changing count on both ranges.

If the display is dim or blank, remove power, and make sure all IC's are installed correctly. If so, check the orientation of all the diodes and electrolytic capacitors. Re-check the PC board for shorts and opens if necessary. Finally, your power source may be weak or dead, or a switch may be bad.

Calibration and final assembly

To calibrate the counter, let it warm up for at least ½-hour, connect a stable signal of known frequency to the proper input jack, and then adjust trimmer capacitor C8 for proper display. Use the highest frequency you can and the slow gate time in order to get maximum resolution and accuracy.

Remember that a counter's accuracy is specified in PPM (Parts Per Million), and if a reading is 1 PPM high at one frequency, the counter will read 1 PPM high at all frequencies. At 1 MHz a 100 PPM error would, in many applications, be insignificant. But a 100 PPM error at 1 kHz would be quite significant. So calibrate the counter carefully!

When it is calibrated, you can mount it in its case, see Fig. 8. If you use the case mentioned in the Parts List, the PC board just slips into it. The BNC connectors and the power jack should line up with the holes in the case perfectly. Drop a red plastic filter over the displays and then screw the case together. You're ready to start using your 1.2-GHz frequency counter now!

Usage hints

Keep in mind that the counter requires only a few millivolts to make an accurate reading—seldom more than about 50 mV. Inexperienced users commonly overdrive the frequency counter—and that could cause erroneous readings or circuit damage. Signals of several volts or more should be loosely coupled by a small capacitor or picked up inductively by a loop-type probe or antenna. When connecting the frequency counter directly to a circuit, use a 10K series resistor to reduce ringing and to lighten the load on the test circuit. Other than following those simple precautions, you should have no trouble using the counter.

Since the the price-to-performance ratio of this circuit is so good, you may want to install one permanently in a piece of equipment such as a ham rig or a commercial radio transmitter. That way you could have a continuous indication of output frequency, and any drift could be corrected before it caused interference to stations transmitting on nearby frequencies.

Or, for a very handy and versatile piece of test gear, you could combine our circuit with an inexpensive function generator in a single cabinet. Also, it would be easy to adapt our circuit for automotive or marine use. If you do, be sure to wire a ½- to ½-amp fuse in series with the counter's power input line.

As you can see, our frequency counter is so inexpensive and so easily adaptable that new applications for it seem to suggest themselves! You'd better start building several—you'll use 'em before you know it!
If you think that a sensitive radar detector is a complicated and expensive piece of equipment, have we got a surprise for you!

GREGORY HODOWANEC

RADAR DETECTORS ARE USUALLY COMPLICATED and expensive devices, but a simple, yet effective, detector can be built in a small plastic case for less than ten dollars! The circuit, which can be tuned to respond to signals between 50 MHz and 500 GHz, is a modified version of the author's gravity-wave detector presented in April's issue. We'll actually present two different circuits, an "economy" and a "deluxe" model.

How they work

The economy model's schematic is shown in Fig. 1, and the deluxe model's schematic is shown in Fig. 2. The main difference between the two circuits is that the economy model simply drives a piezo-electric transducer directly from an op-amp, while the deluxe model uses an LM386 audio power amplifier to drive a small speaker. Doing that allows the extra op-amp stage to be used for additional buffering, and that makes for a more sensitive detector.

The first op-amp in each circuit (IC1-a) functions as a current-to-voltage converter. Then, in the economy model (Fig. 1), IC1-b buffers the output to drive the piezo buzzer. Potentiometer R5 sets the switching threshold of IC1-b; normally it is adjusted so that the circuit barely triggers on background noise, then it's backed off a bit. That should provide plenty of sensitivity to incident RF.

Resistors R3 and R4, and capacitor C4, serve to "split" the supply voltage. To get more sensitivity from the detector, those components could be eliminated and two series-connected nine-volt batteries used instead. In that configuration, the junction of the batteries would be connected to the point where R3, R4, and C4 now meet. Alternatively, for mobile operation, twelve volts could be tapped from your car's cigarette-lighter jack.

The deluxe model functions in a similar manner, except that IC1-b is configured as a × 20 buffer amplifier to drive the LM386. Potentiometer R2 adjusts threshold here, and potentiometer R5 functions as a volume control.

In both circuits, input capacitor C1 functions as a "transmission-line" that intercepts both electrical and magnetic components of incident radar signals. While it is a low-Q circuit (it is very broadband), the response may be further optimized by trimming C1's lead lengths for the desired frequency, as shown in Fig. 3. To detect typical road-radar systems, the input capacitor's leads should be about 0.5-0.6 inches long.

In both circuits the detector provides a " ringing," or slowly-decaying output with a resonance of about 400-600 Hz for the component values shown. Feedback resistor R1 may be adjusted for another "ring" frequency, if desired.

Construction hints

Whichever detector you choose, build it in a non-metallic case so that incident RF won't be blocked. However, make sure that only R1 provides feedback to the detector's input. Since the gain of the detector is so high, unwanted feedback can force the input stage into continuous oscillation, rather than the "ringing" oscillation that decays in time. Should unwanted feedback become a problem, a small capacitor (0.005-0.01 µF) across resistor R4 may help, as may a 200-500 µF capacitor across the battery.

Perfboard construction is preferable to PC-board construction because reduced wiring capacitance and the absence of a ground plane will reduce the chance of unwanted feedback. Likewise, it's better to use a small shielded speaker for output because magnetic (and gravitational) energy from the speaker could feed back to the input. So keep C1 as far from the speaker as possible.

The detector should perform properly with little adjustment. After applying continued on page 97
Your guide to everything that's new in electronics, computers and technical education. Over 400 items. Discover fascinating kits to build, enjoy and learn with, as well as assembled high tech products for home, business and hobby.

Get our famous High Tech Catalog

FREE

Heath Company
Dept. 020-434
Benton Harbor, Michigan 49022

MAIL COUPON TODAY and receive the latest issue of the Heathkit Catalog free of charge

Name __________________________
Address ________________________
City ___________________________ State ______
CL-763BR3 Zip ____________

A subsidiary of Zenith Electronics Corporation
High-power FET STEREO AMP

Our amp's high-power output, low distortion, and easy construction make it a must for audiophiles who demand the very best!

LEO SIMPSON AND JOHN CLARKE*

Volume/tone control circuit

Whichever source is chosen to drive the amplifier, the signals from that source go through several stages of processing. Let's look at each in turn.

The output of the analog switch IC2 is fed to IC105, shown in Fig. 5, which functions simply as a high-impedance, unity-gain buffer that drives the volume control, R10, and the stereo/mono switch, S11.

The wiper of the volume control is fed to IC106, another NE5534A, that is connected, in this case, as a non-inverting amplifier with a gain of 5.7. In addition to that gain, the op-amp provides a low-impedance source to drive the tone-control circuit.

We use yet another NE5534A in the tone-control stage; that op-amp is configured as a negative-feedback unity-gain amplifier when the bass (R108) and treble (R109) tone controls are set to their flat (mid-position) settings. Both bass and treble controls operate with a "constant-turnover, variable-slope" characteristic. Slope refers to the amount of boost or cut when the circuit applies, and is a maximum of 6dB/octave for our circuit. Turnover refers to the frequency at which boost or cut occurs; our circuit uses a turnover frequency of 1 kHz for both bass and treble control circuits. When the wiper of the bass control is rotated toward the input side of the ap-amp, gain below 1 kHz is increased; similarly, the treble control causes the gain of frequencies above 1kHz to increase.

The tone-control amplifier drives the balance and mute controls via a 6.8 μF non-polarized electrolytic capacitor. The mute circuit is a 20-dB attenuator composed of R141 (680 ohms) and R142 (68 ohms). The attenuator is switched into the circuit by S3, mute.

By the way, the NE5534's are bipolar op-amps that have higher input offset voltages than FET-input types like the TL071. Since we are using the NE5534's in gain stages, offset error is multiplied and therefore appears as a large DC offset at the output of the IC. The same problem occurs with the phono preamp. That's why we use non-polarized DC-blocking capacitors following each NE5534A.

Power amp

Moving on to the power amplifier, shown in Fig. 6, let's discuss a little of our design philosophy before getting into the actual circuit details. Our design, which is based on Hitachi application notes, did not come easily. Indeed, most of the development of the amplifier as a whole revolved around the power amplifier.

We tried many different circuits in many different configurations. Some were completely symmetrical designs with double-differential input stages and so on. We tried cascode driver stages and source degeneration in the MOSFET output stages. We also tried varying the driver stage currents to obtain the best overall distortion and slew rate.
After all that we concluded that Hitachi's design was the best overall for both simplicity and performance. And we discovered one rather surprising fact: performance of the power amps is quite dependent on the layout of the printed circuit board. In fact, even subtle changes in layout made quite dramatic reductions in distortion. We'll present what we believe is the best layout next time. But for now, let's see how the power amplifier works.

The balance control (shown in Fig. 5) is coupled to the power amplifier via a 1-µF non-polarized capacitor. Strictly speaking it should be possible to omit that capacitor because C128 (the 6.8-µF capacitor at the output of IC107) should block residual DC across the balance control. However, if C129 were eliminated, Q105's bias current could flow through the balance control as well as through R142. Q105's 22K base-bias resistor.

By itself that would be harmless, but the signal presented to the power amplifier would vary as the balance control was rotated. In addition, whatever DC offset was present at the input would be amplified, and would lead to an increase in the residual DC voltage at the output of the power amplifier. Hence, the output of the push-pull amplifiers composed of Q111-Q112 and Q113-Q114 would become unbalanced, so output distortion could result.

Also, C129, R144 and C130 function as a low-pass filter that removes signals in the RF region. Resistor R144 functions as a "stopper" that reduces any tendency, on the part of the amplifier, to oscillate super-sonically. For full power output the input to the power amplifier should be about 1.5 volts rms.

Transistors Q105 and Q106 form a differential pair, and Q107 acts as a constant-current "tail." By virtue of diodes D101 and D102, the base-bias applied to Q107 is about 1.3 volts. That sets the current through Q107 at about one milliamp, that current is shared equally by Q104 and Q106. And, as in the RIAA preamp circuit, the constant-current source improves the PSRR of the amplifier.

The balanced output signals from the collectors of transistors Q105 and Q106 are coupled to a second differential amplifier, consisting of Q109 and Q110, which forms a "current mirror," a circuit often used in op-amps. The current mirror helps us obtain higher gain from the stage, as well as better linearity over the full range of output voltage. In fact, the current mirror gives a greater voltage swing than could be obtained with a simple class-A driver stage with a boot-strapped collector load.

Transistors Q108, Q109, and Q110 each has a maximum collector voltage rating of 250 volts; they are intended for use as class-B video-driver stages in television receivers. That voltage rating in conjunction with their 100-MHz gain-bandwidth product and good beta linearity over a wide range of operating currents makes them ideal for use in a low-distortion audio driver stage.

Those two discrete differential amplifiers provide all the voltage gain of the power amplifier; the MOSFET output transistors are operated in source-follower mode, which gives slightly less than unity voltage gain. No source degeneration resistors are used in the output transistors. We found that we were able to dispense with those resistors and thus gain lower distortion.

Nor does there appear to be any need to take measures to ensure current sharing between the parallel-connected MOSFETs (by using small source resistors). In practice, if one MOSFET becomes warmer that its partner, its transconductance (gain) is reduced accordingly, thus it is temperature-compensated automatically.

The 500-ohm trimpot, R156, connected between the collectors of Q108 and Q110 sets the bias applied to the MOSFET gates; that bias determines the quiescent output current. The amount of current is a compromise between minimum distortion and output-stage power dissipation. Since the power amplifier employs a ±65-volt power supply, even a small current results in high power dissipation. So quiescent current must be set carefully.

Zener diodes D106 and D107, in combination with D104 and D105, determine the maximum voltage that can be deliv-
erected to the output transistors. Any signal in excess of ±10 volts will be clipped. In that way the diodes form an effective over-drive circuit and prevent excessive power dissipation in the event of a short circuit. The gate of each output transistor has a series-connected 220-ohm resistor that functions as a "stopper" to prevent RF oscillation. Fuses are included in the output-transistor supply lines to protect the speakers should the output transistors fail. The fuse clips also provide a convenient way of measuring current (or voltage, when they are replaced by resistors) for trouble-shooting or setting the quiescent current.

Voltage gain of the power amplifier is determined by the ratio of the 22K and the 1K resistors (R155 and R156) at the base of Q106. The lower cutoff-frequency of the circuit is determined by 47 µF capacitor C132; that capacitor is in series with 1K resistor R151.

A final refinement involves the RLC network (L101, R164, and C143) in the output circuit. That network is used to render the amplifier unconditionally stable. We use a toroidal air-core inductor in that network, as a solid ferrite core can give rise to distortion, particularly when the amplifier is delivering a great deal of power.

It is necessary to use a special capacitor in the output network. We originally installed metallized polyester capacitors for C143 and C243, but found that high power operation of the amplifier caused them to fail quickly; they developed short-circuits. However, we found that dual dielectric (mixed paper and polyester) capacitors, normally specified for power-line interference suppression, work fine in that circuit. See the Parts List for more information.

Speaker switching

The main and remote loudspeakers are controlled with two relays rather than an expensive, high-current 4-pole switch. The relays also simplify wiring requirements, as we don't need to run heavy loudspeaker wiring to and from the front-panel SPEAKER SELECTOR switch, S12. Instead, S12 controls the coils of the relays, so only low-current wiring is required for that connection.

The DC supply for the relay coils is supplied by the loudspeaker protection circuitry discussed below. When no fault is present, the output of that circuit goes high, and that energizes the coils of both relays, through resistors R4 and R5. Diodes D2 and D3 quench the EMF spike that is generated when the relay coil is de-energized.

The moving contacts of the relays connect to the loudspeakers while the unused stationary contacts are grounded. The reason for this is that, if a large DC voltage is generated in the amplifier by a fault condition, an arc is likely to result as the moving contact opens the circuit. So, as the contact moves to the "de-energized" position, that arc will be more likely to flow to ground than back into the circuit causing damage.

However, because of the high supply voltage used in our amplifier, an arc could be maintained even if the relay contacts were fully open. If that does occur, the power amplifier fuses will blow. There is a very slight chance that the amplifier itself could be damaged, but it is cheaper to repair an amplifier than to replace a loudspeaker.

Headphones

One small drawback to using the relays for loudspeaker control is that the headphones are permanently connected to the amplifier. They are not muted at power-on, but they are protected from DC faults by the 330-ohm feed resistors (R112, R212), which will limit any fault current to a safe amount.

The lack of muting is a problem since the phono preamplifier takes a little while to stabilize. During that time the amplifier is liable to emit some unpleasant sounds via the headphones if the volume control is advanced.

We solved that problem with the network attached to IC2 (shown in Fig. 1 last time), the analog switch that controls tape monitoring. That IC has an inhibit pin...
that opens all switches. The network connects to that pin and simply prevents signals from the preceding stages from passing on for a second or two at power-on.

The muting network works as follows.

At power-on C1 is a virtual short-circuit. This means that pin 6 is pulled high, so all the switches in the IC are open. Then, as the capacitors charge, pin 6 is pulled low, and signals can pass on to succeeding stages. The delay that results makes for more pleasant headphone listening.

Loudspeaker protection circuit

A portion of the signal from each channel’s power amplifier is fed to the speaker protection circuit shown in Fig. 7. The
FIG. 7—THE SPEAKER PROTECTION CIRCUIT will disable the output control relays (RY1 and RY2—shown in Fig. 1 last time) whenever the voltage produced by the output transistors becomes excessive.

FIG. 8—THE AMPLIFIER’S POWER SUPPLY is built around a toroidal power transformer and it includes a trickle-charger for the CMOS-memory batteries, B1 and B2.

The protection circuit does not protect the amplifier—it protects the loudspeakers. If a fault occurs in the amplifier that results in a large DC voltage at an output, a loudspeaker could be severely damaged. The loudspeaker protection circuit prevents that from happening by de-energizing the relays that control the loudspeakers whenever an excessive DC voltage is sensed at the output of a power amplifier. The protection circuit also de-energizes the relay if a large low-frequency signal is presented to the circuit for an extended period of time. That could happen for a variety of reasons; for example, if the amplifier became unstable and began to motorboat.

Both power amplifier outputs are monitored via a low-pass network consisting of the four 22K-ohm resistors (R20–R23) and the two 47-µF non-polarized capacitors (C4 and C5). The two capacitors render the protection circuit immune to normal output voltages. But if one of the amplifiers develops an excessively negative DC voltage, Q1 will turn on. That turns on Q2 and removes the bias voltage from Q4; that in turn switches off Q5 so that no power can be led through S4 (shown in Fig. 1), the speaker-selector switch that controls the coils of the relays. By the same token, if one of the power amplifiers develops an excessively positive DC voltage, Q3 will be forward biased. That again removes the bias from Q4 and Q5, preventing power from reaching the switch that controls the operation of the relays.

Note that the protection circuit is effectively fail-safe. If a malfunction prevents the relays from operating, the loudspeakers will be disconnected from the amplifier, so they will be safe from any potential damage.

Muting

The loudspeakers are muted (i.e., the relays are disconnected) for three seconds after power-on. That works as follows. When power is first applied, the 15-volt supply to Q5 is available almost instantly, but Q5 is unable to turn on because the base of Q4 is at ground potential, so it, too, is off.

The reason Q4 can’t turn on is that its base is supplied via 56K resistor R25. That resistor is supplied by 100-µF capacitor C6, which is a short circuit at power-on. After power-on, C6 charges slowly via 270K resistor R26. Eventually Q4 turns on, so Q5 can turn on and energize the relays.

Switch-off thump

Another problem we faced was a loud thump from the loudspeakers whenever the amplifier was turned off. After investigation, we discovered that the problem was caused by the rapid collapse of the ±15V supply, which supplied the op-amps in the preamplifier stages enough juice to give a thump before the output relays released. If uncorrected, such thumps could eventually damage the speakers.

The solution was to isolate the op-amp supply. We did that by installing an IN4002 diode (D22, shown in Fig. 8) in series with the +15-volt supply line, and by increasing the value of decoupling capacitor C118 by 1IC106 (the tone-control driver in Fig. 5) from 10 to 2200 µF. That large capacitor keeps the op-amp energized until the relays open. Hence, no switching transient can get through to the speakers, preventing the switch-off thump.

Power supply

The schematic of our power supply is shown in Fig. 8. In order to reduce induced hum, AC is provided by a dual-secondary toroidal transformer, shown in Fig. 9. continued on page 74
MARTIN CLIFFORD

In this, the first installment of our new, occasional series about the early days of radio, we look at the original "solid-state" receivers.

DID YOU KNOW: That SOLID-STATE ELECTRONICS can trace its roots back to 1835? That radio signals can be demodulated using sulfuric acid or nitric acid? That oil-filled variable capacitors were once used in radio receivers? That a single crystal detector can be used as a radio receiver? That there are some radio receivers that never need to be turned off, have no on/off switch, and do not require battery or AC power? Or that lenzite, zincite, bornite, tellurium, and chalcopyrite are all semiconductors?

Most of us believe that the age of solid-state electronics began with the invention of the transistor; Bardeen and Brattain of Bell Laboratories produced that first crystal triode in 1948. However, lost in the mists of history is the fact that true solid-state receivers have been with us since about 1918.

In more recent times, the term solid-state has been so firmly associated with germanium, and subsequently with silicon, that no one should be blamed for thinking that those are the only materials
suitable for use in semiconductors. Yet there are numerous materials that are just as suitable. Among them are carbonur- dum (silicon carbide); galena (a crystal sulphide of lead); molybdenum; lenzite; zincite (an oxide of zinc); tellurium; born- nite (a sulphide of iron and cooper); chal- cophyre (also known as copper pyrites); and cerusite. Except for carbonurum, a manufactured material also used as an abrasive, all are materials that are found in nature.

Early solid state

The fact that certain materials have rectifying properties (that is, they allow current to flow in one direction only) has been known since 1835, thanks to the research of one Munk Af. Rosenshold. At the time a laboratory curiosity, his discovery was largely forgotten until it was unearthed again by F. Braun in 1874.

However, a practical use for that discovery was not found until many years later. It came at a time when interest in radio was heating up and many early experimenters had radio setups in their attic or basement workshops.

Rectifiers are key components in simple radio detectors. Along with vacuum tubes, early experimenters turned to solid-state rectifiers made from one of the substances that exhibit natural rectifying properties. Since most of those substances are crystalline in nature, such rectifiers were called crystal detectors; radios that used such detectors were called crystal radio sets, or simply crystal sets.

The simplest radio

Early vacuum-tube rectifiers, such as the UX-201A and UV-199 triodes, cost about $15. Since $15 a week was considered good pay for a workman back then, and since crystal detectors cost only a small part of that amount, many experimenters turned to crystal sets. Such radios were among the simplest possible, consisting of just a crystal detector and a headset. See Fig. 1.

The crystal set of Fig. 1 has its virtues, but it also has plenty of faults. Selectivity is non-existent; after all, that radio has no tuning circuits. So whatever the radio receives is what you hear—the strongest signal dominates, and all the rest provide background noise.

The earliest effort at improving selectivity was to add a tuning coil like the one shown in Fig. 2-a. That coil consisted of enamel insulated wire wound on a round form; experimenters often used cylindrical oatmeal boxes as the coil form. The amount of inductance could be selected using a metal slider. The tuning method was crude, but the radio circuits that included that coil (see Fig. 2-b) did offer at least some improvement over those with no tuning at all.

Another problem was that the output of the crystal detector consisted of both an audio signal and an RF carrier; both were passed directly to the headphones. Subsequently, a small capacitor was placed across the headphones to bypass the RF carrier.

Also, it was found that selectivity could be further improved by adding a second slider to the tuning coil. The radio shown in Fig. 3-a incorporates both those improvements; the schematic for that circuit is shown in Fig. 3-b.

Improved designs

As time went on, various methods were used to improve tuning. In one arrangement, shown in Fig. 4-a, the single-slide tuner was used as the primary winding of an RF transformer. The secondary winding, which was tapped, was wound on a form that could travel into the primary by means of a pair of rods. That resulted in triple tuning. The primary was tuned by the single slider; coupling was adjusted by moving the secondary in or out of the primary, and finally, the appropriate secondary tap could be switch selected by the operator. The schematic for the circuit is shown in Fig. 4-b.

Since most crystal radio receivers are “powered” by the radio signal itself, they require no voltage supply or battery. (They
was weak. Those two factors eventually caused the carborundum detector to fall out of favor, but not before it gave rise to some interesting circuit innovations.

One of those was the concept of the amplifier. The early amplifier shown in Fig. 6 was a mechanical one known as the Brown amplifying relay. The leads identified as A and B were connected to the output of the detector. The signal current through relay coil m caused relay armature v to vibrate, thus varying the magnetic field around winding x of the second relay. That caused the current supplied by the battery to be varied at an audio rate. That current flowed through the headphones, producing sound. In some instances a series arrangement was used; the current from the battery drove still another mechanical amplifier.

The need for clumsy tuning coils was finally eliminated through the use of a variable capacitor, then known as a condenser. For a while, however, variable capacitors were used in conjunction with single- and double-slider variable coils. Two examples of capacitor-coil-tuned circuits are shown in Fig. 7.

In some of the more advanced sets, a vario coupler, sometimes called a variometer (see Fig. 8), was used. That consisted of a pair of coils mounted in such a way that one could be rotated within the other.

Ordinarily, the variable capacitors used were air types; that is, the dielectric between the stator and rotor plates was air. Air, though, has a dielectric constant of 1. To increase the capacitance without adding more plates, one design had the variable capacitor positioned in a leak-proof, transparent case, filled with oil. Oil has a dielectric constant of five, so the capacitance of such a capacitor is five times that of one with an air dielectric (assuming all other variables to be the same). One such capacitor had 17 plates and a total maximum capacitance of 0.0004 μF; while another had 43 plates and a maximum capacitance of 0.001 μF.

Anyone who has had any contact with radio knows that the antenna plays an important role in determining the quality of the received signal. Antennas were even more important in the days of the crystal set. That's because that design made no provision for amplification. Thus, the strength of the signal heard was wholly dependent on the strength of the signal delivered by the antenna. Some of the schemes devised were quite elaborate: others were quite simple. For apartment dwellers, a bedspring was a popular alternative to an outdoor design; the ground connection was made to a cold-water or radiator pipe.

The crystal detector

So far, we've spoken about how crystal detectors were used in early radios. But we've not looked at the detector itself and how it was made. It is time now to correct that oversight.

Crystal detectors were available in two basic forms: contact and combination. Of those, the contact detector was cheaper and more popular.

A single crystalline substance was used in the contact detector. A small bit of spring wire, called a catwhisker, was placed so that it made contact with a point on the crystal. In early detectors, the catwhisker was designed to be variable because finding the most sensitive spot on the crystal was a trial-and-error procedure. See Fig. 9-a.

The catwhisker was usually made from stiff phosphor bronze, but in more expensive detectors silver or 18-karat gold was used. The wire was coiled, with a small straight extension ending in a blunt point—an arrangement much like that
used in the first point-contact transistors many years later. There were two connections to the crystal detector: one to the catwhisker and another to the cup holding the crystal.

Later on, fixed-position catwhiskers in sealed containers became available. See Fig. 9-b.

The combination crystal detector consisted of two different crystals in close contact. Various combinations of minerals were tried, including bornite and either zincite or copper pyrites. Another combination detector used tellurium and chalcopyrite (copper pyrites). The chief advantage of the combination detector was that it was less susceptible to vibration than the catwhisker type.

Some of the many different types of crystal detectors are shown in Fig. 10. We've so far looked at all of those save one—the Perikon detector, invented by Pickard in 1906, and shown in Fig. 10-b. That detector used a small, cone-shaped piece of zincite. The zincite could be positioned so that it contacted one of several segments of chalcopyrite located on a circular plate. By selecting which segment of chalcopyrite was used, the detector could be "tuned."

As we stated earlier, most detectors were made using a crystalline material. However, "most" is not "all." One detector that was at least briefly popular was the electrolytic detector, shown in Fig. 11. The design of that detector was similar to that of the catwhisker, but nitric acid, or a dilute solution of sulphuric acid, was used in place of the crystal. Despite that detector's high sensitivity, it had disadvantages. One was that the wire tended to curl away from the acid—so the wire frequently had to be repositioned or replaced. Secondly, the detector used exposed acid, which is dangerous.

AN EARLY WIRELESS RECEIVER. With this set-up, which was part of amateur station 1-WP, Warwick, RI, circa 1913, the operator was able to log stations from Maine to Florida. Note the variable-contact catwhisker crystal detector, 23-plate tuning capacitor, and double-slide-tuned coil.

Building your own

We hope this article has aroused your interest in the electronics of days gone by. If you want to recapture some of the flavor of the early experimenters, perhaps you'd like to try building your own crystal receiver. If so, the circuit shown in Fig. 12-a can be built using modern parts.

In that circuit we've replaced the slide-tuned coil with a tapped one. (Finding a slide-tuned coil these days would be nearly impossible.) Full details of the coil are given in Fig. 12-b. Just about any diode can be used for the detector. For best results, plan on using an outdoor antenna that's at least 75 feet long.

R-E
How to

Design OSCILLATOR Circuits

JOSEPH J. CARR

Here's the first installment of our new back-to-school series that teaches you all about oscillators, multivibrators, and digital clocks.

OSCILLATORS OF ONE SORT OR ANOTHER are at the heart of all kinds of devices ranging from radio transmitters to digital computers. So, at one time or another, everyone involved in electronics—both hobbyist and professional—must build an oscillator, a multivibrator, or a digital clock circuit. A simple oscillator, for example, might be used to generate the carrier frequency in a radio transmitter. A multivibrator that produces squarewaves might be the heart of a test instrument such as a function generator. A digital clock is a special multivibrator that is used in most digital logic and computer circuits.

In this series we’ll examine the two major types of oscillator circuits in detail. We’ll start off this time discussing relaxation oscillators; then we’ll go on to the basic theory of feedback oscillators. And, because they are more commonly used than relaxation oscillators, we’ll spend the bulk of our remaining installments discussing feedback oscillators. In particular, we’ll talk about LC and RC sine-wave oscillators of all types, one-shots, crystal oscillators, and digital clocks built from both TTL and CMOS IC’s. Along the way we’ll give many practical circuit examples that you should have no trouble adapting to your needs. We have a lot to do, so let’s get started.

Basic definitions

There is some overlap between the terms oscillator, multivibrator, and clock, and in conversation people have a tendency to blur the distinctions between those terms even further. But for our purposes let’s use “oscillator” to refer to all three kinds of circuits. In fact, let’s define oscillator to mean any circuit that produces a periodic waveform—one that produces similar outputs at regular intervals of time. That output could be a sine wave, a squarewave, a triangle wave, a sawtooth wave, a pulse train, or some other wave shape. The important point is that it repeats at a regular interval.

As we said, there are two basic types of oscillators: relaxation oscillators and feedback oscillators. The basic difference between the two is that the feedback oscillator is built from active circuit elements—those that provide gain, whereas the relaxation oscillator is built from passive devices—those that do not provide gain.

Some relaxation oscillators are built from electronic devices that pass little or no current at voltages below some threshold, and that pass a relatively large current at voltages above that threshold. Examples of that sort of device are neon lamps and UJT’s (Uni/Junction Transistors). Other relaxation oscillators use a negative-resistance device such as a tunnel diode. If you’re unfamiliar with any of those devices or terms, hold on—we’ll discuss each below.

A feedback oscillator uses an active device (a transistor or an op-amp, for example) as an amplifier; a special network connected to the amplifier provides a controlled amount of positive feedback. That allows the circuit to work regeneratively. By way of contrast, filters of various types (lowpass, highpass, notch, bandpass, etc.) work degeneratively. In other words, in a filter, feedback components are used to decrease the amplitude of a frequency or a range of frequencies; in an oscillator, those components are used to increase the amplitude of a frequency or a range of frequencies.

With those basic distinctions in mind, let’s discuss relaxation oscillators now; we’ll catch up with feedback oscillators below.

A neon-lamp oscillator

A simple neon-lamp relaxation oscillator is shown in Fig. 1. The lamp contains a low-pressure inert gas—neon—in a glass envelope with a pair of electrodes. When the voltage across the electrodes exceeds the ionization potential of neon (V_T in Fig. 2), the gas will glow. It will continue to glow as long as the voltage...
across the lamp’s electrodes exceeds the holding voltage, V_H in Fig. 2. When the lamp is not ionized, it conducts no current. That is the situation at all potentials below V_H. The popular NE-83 lamp has a V_T of 60 to 100 volts, and a V_H of 60 volts.

The circuit works like this: When power is applied to the circuit, C_1 begins to charge. When the voltage across it exceeds V_T, the lamp ionizes and its resistance drops to a very low value. A series resistor may be necessary to prevent the lamp from being destroyed by the sudden onrush of current. Anyway, that low-impedance path allows C_1 to begin discharging. Discharge continues until the voltage across the lamp falls below V_H. At that point the lamp de-ionizes and reverts to its high-resistance state. Then C_1 begins charging again, and the cycle repeats. Hence, the voltage across C_1 varies between V_H and V_T. The circuit’s frequency of oscillation is determined by both V_T and V_H, as well as by the R_1-C_1 time constant.

The unijunction transistor

The UJT is a special semiconductor device that has one emitter, two bases, and no collector. Its basic structure is shown in Fig. 3-a, and its schematic symbol is shown in Fig. 3-b. The UJT is built from a single chunk of silicon; the bases are just the electrodes at the ends of the block. The emitter forms a PN junction with the block. Like most other PN junctions, the UJT’s PN junction will not conduct when it is reverse biased. However, it will conduct when it is forward biased; usually 0.6 to 0.7 volts is sufficient to get current flowing.

A UJT relaxation oscillator is shown in Fig. 4. Its frequency of oscillation is set by R_1 and C_1 in conjunction with the characteristics of the UJT. When the circuit is turned on, the B_1-emitter junction is unbiased, so no current flows through R_3. Capacitor C_1 begins charging through resistor R_1. When the UJT’s threshold voltage is exceeded, the UJT turns on. Capacitor C_1 is quickly discharged by the low-impedance PN junction, so the UJT quickly turns off. A narrow pulse thereby appears across R_3.

Typical UJT’s need very little turn-on current (0.4–12 µA), and that makes them useful in high-impedance circuits for detecting very small amounts of current. Also, oscillators with frequencies ranging from 1 Hz to 1 MHz may be built from UJTs.

The third major type of relaxation oscillator is built from a negative-resistance device, the tunnel diode. Let’s find out what negative resistance is, and then let’s see a practical example of how a tunnel diode may be used.

Negative resistance

What is negative resistance? Let’s approach that question in a roundabout way. A garden-variety resistor functions according to Ohm’s law. When voltage across the resistor increases, current flowing through the resistor will also increase. A device with negative resistance, however, operates in the inverse manner. In other words, as voltage across the device increases, the current that flows through the device decreases.

The tunnel diode (also called an Esaki diode after its inventor) is a negative-resistance device; its characteristic curve is shown in Fig. 5. Note that, in the region labeled PRZ (for Positive Resistance), the device functions in the normal manner—increased voltage causes increased current. However, in the NRZ (Negative Resistance) region beginning at V_T, the opposite is true—increased voltage causes decreased current.

A tunnel-diode oscillator is shown in Fig. 6. That circuit was popular in the 1960’s for tuning up citizen’s-band gear, and for other uses at frequencies near 27 MHz. With the component values shown, the circuit will oscillate in the 27-MHz region using a 27-MHz 3rd overtone crystal. A similar circuit can be used to cause a tunnel diode to oscillate in the UHF and microwave regions. In that type of application, strip-line tuners and cavities are used to establish the resonant frequency.

In general, as you can see, relaxation oscillators are simple, so they’re good for getting a quick-and-dirty periodic waveform, and for specialized uses. However, feedback oscillators built with active devices are much more flexible, and, therefore, much more widely used. So now let’s take a look at the theory behind feedback oscillators.
Universal Battery Charger

Don't let your battery-powered portables run out of energy unexpectedly!
Keep your batteries fully charged with this inexpensive circuit.

MICHAEL R. WRIGHT

One corollary to Murphy's Law states that things always go wrong at the worst possible moment. One example familiar to electronics enthusiasts is the way that batteries tend to go dead just when you need them most. In addition, if you use many portable devices—a Walkman, a "boom-box," a portable TV, a portable computer, flashlights, and toys—the cost of batteries can become excessive.

One way to cut costs is to use rechargeable batteries. And if your portable battery-eater has a DC input jack, you've got an easy way to save some cash and to go longer between recharges. All you have to do is wire up a cable that connects a high-current-capacity battery-pack of the proper voltage to your portable.

The problem is that the price of a commercial charger may cause you to think twice about converting from conventional non-rechargeable cells. However, with the circuit presented here, there's no longer an excuse. Not counting a case, the total cost of the few easy-to-obtain components in our circuit shouldn't exceed $10. And that's for all new parts: by using spare parts you could reduce your cost to nothing!

The circuit can easily recharge batteries with a wide variety of voltages and current capacities. The circuit was specifically designed to recharge gel-cells, but it can also be used to recharge Ni-Cd's and any other type of battery that needs a constant-current source, a constant-voltage source, or both. The values of a few resistors need to be altered to accommodate batteries of various voltages and currents. The simple design equations used for resistor selection are presented below, but first let's talk about gel-cells.

The low-down on gel-cells

Before we get started, it's worth pointing out that the term "battery" really refers to any collection of two or more single "cells," although the term is loosely applied to single-cell power sources like AA cells. The gel-cell battery is a relative newcomer to the world of rechargeable batteries; its name is really a shortened from of "gelled-electrolyte battery cell."

Basically, the gel-cell is very similar to a modern automotive battery. The gel-cell provides high power density in a sealed, multi-cell, maintenance-free, lead-acid battery. Gel-cells are not manufactured in small cases like those that enclose the familiar AA, C, and D cells. However, they are manufactured in larger cases that range in size from a cigarette-pack to an automobile battery, and even larger. Gel-cells are made by (among others) Panasonic (Battery Sales Division, Division of Matsushita, P.O. Box 1511, Secaucus, NJ 07094), Globe (P.O. Box 591, Milwaukee, WI 53201), and Saft (P.O. Box 1886, 711 Industrial Blvd., Valdosta, GA 31603-1886).

Common gel-cell batteries come with voltage ratings that range from 2 to 24, and in current capacities ranging from 1.2 to 720 AH (Amp-Hours). The AH rating refers to the amount of current that can be delivered over a period of time; 20 hours is usually the specified period of time. For example, a battery might be rated at 2 volts and 30 AH. That means that the battery should be able to deliver a current of 1.5 amps (30/20) continuously for a period of twenty hours.

A properly treated battery should last for years, but an improperly treated one may last only a few months, or even weeks. For example, the author's first gel-cell battery lasted only about six weeks, because he was ignorant of how to take care of it. After uncovering and applying
the information related here, his second one is already more than a year old and still going strong.

The most common means by which a gel-cell battery is abused is "deep-cycling," that term refers to the practice of discharging a battery deeply and then over-charging it. That practice is sometimes appropriate for Ni-Cd's, but it is definitely inappropriate for gel-cells. Our charger can't repair a damaged or abused gel-cell battery; it's up to you to treat your batteries with care.

The number of cells in a gel-cell battery is equal to the battery's nominal voltage divided by two. A 12-volt battery therefore has six (12/2) cells. Each cell has a 2.3-volt output when it is fully charged, so a 6-cell battery, nominally rated at 12 volts, actually has a fully-charged output of 13.8 volts.

You can tell when a gel-cell battery is nearly discharged by the fact that, under a no-load or low-load condition, it will have an output voltage that is near its full rated output. However, when the battery is placed under a moderate to heavy load, voltage drops by about 4.6 volts.

The reason for the two-cell drop is that a discharged cell actually reverses polarity and acts as a load that "cancels" the voltage of a good cell. So you might measure only about 9.2 volts (13.8 - 4.6 = 9.2) across a 12-volt battery that needs to be recharged. And speaking of charging, let's find out how to do it now.

Charging methods

Gel-cell batteries from different manufacturers are made in different ways, and they have different charging requirements. Many batteries can be charged using the circuitry described here, but you should check with the manufacturer of your battery to be sure.

A common and reliable method of charging is as follows. First, a regulated, constant current that is equal to 10% of rated output is applied to the battery. For example, a 12-volt 1-AMP battery would start off with a charging current of 100 MA. Voltage must be monitored; when it reaches 90% of rated output, the circuit removes the constant-current source and applies a regulated voltage to complete charging. The switchover is necessary to prevent over-charging in case a battery is left connected to the charger for a long period of time. The battery can float-charge in that way indefinitely.

You may be able to use a charging current different than 10% — for example, for "fast-charging." However, if you use a different current, follow the manufacturer's recommendations carefully.

To determine the voltage the charger will have to supply, you'll have to multiply the number of cells in your battery by 2.3 and then add 5, to allow for circuit loss. To charge our example 12-volt battery, we'll actually need an unregulated DC supply of about 19 volts.

Circuitry

The constant-current charger is right out of the manufacturer's data book. As shown in Fig. 1, the heart of the charger is an LM317 adjustable regulator. An LM317K can supply as much as 1.5 amps of current if it has proper heating-sinking; it can also handle as much as 37 volts. If your battery requires a higher charging voltage, you can substitute an LM317HV, which can handle as much as 57 volts. To increase current, you could use an LM338, which can provide five amps of current at a maximum of 32 volts. Calculate the value of R1 from the charge current (I_{C}) you need, and from the 1.25-Volt bias required by the LM317:

\[R_1 = \frac{1.25}{I_C} \]

For a 1-AMP battery, \(I_C = 0.1\) A, so \(R_1 = (1.25/0.1) = 12.5\) ohms. R1's wattage is determined in the usual manner: 0.1 A x 1.25 V = 0.125 W. Just to be safe, use a ½-watt flame-proof resistor.

That takes care of current, but what about voltage? Take a look at Fig. 1. There an LM317 is configured as a conventional constant-voltage regulator. In normal applications, the manufacturer recommends that R1 have a value of 240 ohms. The value of R2 is what determines the output voltage, and its value may be arrived at by a fairly complex equation. It's usually simpler to wire up the circuit with a 5K or a 10K potentiometer, set the output voltage, and then substitute the closest standard fixed resistor for the potentiometer.

We've got a current regulator and a voltage regulator now. But how do we put them together? See Fig. 3.

The complete charger

Let's discuss the overall operation of the circuit and then show how to calculate resistor values. When power is applied to the circuit, SCR1 is off, so there is no bias-current path to ground; thus, the LM317 acts as a current regulator. The LM317 is connected to the battery through steering diode D1, limiting resistor R1, and bias resistor R2. That portion of the charger is similar to the circuit shown in Fig. 1 above. The steering diode was added to prevent the battery from discharging through the LED and the SCR when power is removed from the circuit.

As the battery charges, the voltage across the potentiometer R5 rises and at some point turns on the SCR. At that point, current from the regulator can flow to ground, so the regulator now functions in the voltage mode. When the SCR turns on, it also provides LED1 with a path to ground (through R3). So, when LED1 is on, the circuit is in the voltage-regulating mode; when LED1 is off, the circuit is in the current-regulating mode.

Calculating resistor values

Now let's find out how to calculate the resistor values. Assume that we're still talking about a 12-volt, 1-AMP battery. Let's start with the voltage-adjustment potentiometer, R6. First we have to calculate a multiplication factor, \(F\); that can be found from:

\[F = \frac{1.25}{V_{OUT}} \]

where \(V_{OUT}\) is the output voltage you want.

Parts List

<table>
<thead>
<tr>
<th>Parts</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, R2, R3, R4, R5</td>
<td>220 ohms</td>
<td>1 each</td>
</tr>
<tr>
<td>R6</td>
<td>10-15 turn trimmer potentiometer</td>
<td>1 each</td>
</tr>
<tr>
<td>LED1, LED2</td>
<td>Standard LED</td>
<td>1 each</td>
</tr>
<tr>
<td>IC1, IC2, IC3</td>
<td>1N4004, 1N4007</td>
<td>1 each</td>
</tr>
</tbody>
</table>
The value the greater than watt have the O. Regulator Handbook voltage, or both, or having up to the next value obtain ohms: Then we charge the lou in that value empirically damage to the SCR. We'll need to recharge voltage the manufacturer recommends the SCR, a bias current of the LM317K when the latter is in the voltage mode, and it must be able to withstand the full, no-load voltage supplied by your DC source—19 volts in our example. The SCR specifications are rated to handle 200 volts at 800 mA; it should be able to handle any battery voltage you're likely to come across.

Construction

Layout and assembly are quite simple: a foil-pattern for a printed-circuit board is shown in “PC Service.” A suitable guide to solder the components, and then check your circuit before proceeding.

1. Apply power to the circuit and check for smoke and other signs of catastrophe. Fix any mistakes.
2. Connect a 4.7K resistor to the circuit where the battery would normally.
3. Apply power to the circuit and measure the voltage across the 4.7K resistor. That voltage should be about 13.8, or your calculated output voltage. If the measured voltage is much different from what you expect, measure the voltage across the SCR. If you don't measure about 0.7 volts, the SCR has not turned on, so adjust trip-point potentiometer (R5) until the LED turns on. If the LED won't turn on, the SCR may be bad.
4. Connect a voltmeter across the output terminals and adjust the voltage control (R6) so that the meter indicates your calculated VC—19 volts, in our case.
5. De-energize the circuit and connect an ohmmeter between the wiper of the trip-point potentiometer (R5) and ground. Adjust R5 so that the meter reads zero ohms. That will disable the current-to-voltage shift. Remove the ohmmeter and the 4.7K resistor.
6. Connect a partially-discharged gel-cell battery to the output terminals of the charger. Be careful to observe proper polarity! The LED should not light; if it does, steering diode D1 is in the circuit backward.
7. Connect a voltmeter across the battery, apply power to the circuit, and measure the voltage across the battery. If the battery is not discharged enough, VC may be reached before you have a chance to adjust R5. If your meter indicates VC now, you'll have to discharge your battery further and try again. What you want to do is adjust R5 so that the SCR trips just after VC is reached.
8. Partially discharge the battery and reset R5 several times until you're satisfied with the accuracy of the trip-point setting.

Charger use

When charging a battery, you'll want to take an occasional look at LED1. After it turns on, interrupt power for about three seconds. That allows the SCR to unlatch. Re-apply power, and if the LED re-luminates quickly, the battery is fully charged. If not, let the battery charge longer and then repeat the test.

You can also use this circuit to recharge lead-acid and Ni-Cd batteries. You'll have to re-calculate resistance values to provide the proper charging current, which can be obtained from manufacturers' data books. We show the required current for several common Eveready Ni-Cd cells in Table 1 as a point of reference.

When charging a (non gel-cell) lead-acid or Ni-Cd battery, power should be removed when the LED lights up, or over-charging may occur, and the battery may be damaged.

<table>
<thead>
<tr>
<th>Number</th>
<th>Charge</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF15</td>
<td>AA</td>
<td>50 mA</td>
</tr>
<tr>
<td>CH15</td>
<td>AA</td>
<td>50 mA</td>
</tr>
<tr>
<td>CH35</td>
<td>C</td>
<td>120 mA</td>
</tr>
<tr>
<td>CH50</td>
<td>D</td>
<td>120 MA</td>
</tr>
</tbody>
</table>

TABLE 1—EVERREADY Ni-Cd CHARGE CURRENT

So, in our case,

\[R4 = \frac{13.8 \times 0.05}{276} \]

Rounding up to provide extra current limiting, the standard value is 300 ohms, which should work fine.

Regarding the SCR, it must be able to handle the bias current of the LM317K when the latter is in the voltage mode, and it must be able to withstand the full, no-load voltage supplied by your DC source—19 volts in our example. The SCR is specified to handle 200 volts at 800 mA; it should be able to handle any battery voltage you're likely to come across.

![FIG. 4—PARTS-PLACEMENT DIAGRAM FOR THE COMPLETE VOLTAGE/CURRENT CHARGING CIRCUIT SHOWN IN FIG. 3.](image)

Work to make sure that the semiconductors are all oriented correctly.

Before applying power, set both trimmer potentiometers (R5 and R6) to the middle of their ranges; and don't connect the DC source or a battery to the charger yet. You must calibrate the charger first. We'll continue working with a 12-volt, 1-AMH battery; substitute the appropriate values for your battery where necessary.

1. Connect an ohmmeter across the voltage-adjustment potentiometer (R6). Adjust R6 so that the ohmmeter indicates the calculated set-point value—2.8V—in the example. Remove the ohmmeter from the circuit before proceeding.

2. Apply power to the circuit and check for smoke and other signs of catastrophe. Fix any mistakes.

3. Connect a 4.7K resistor to the circuit where the battery would normally.

4. Apply power to the circuit and measure the voltage across the 4.7K resistor. That voltage should be about 13.8, or your calculated output voltage. If the measured voltage is much different from what you expect, measure the voltage across the SCR. If you don't measure about 0.7 volts, the SCR has not turned on, so adjust trip-point potentiometer (R5) until the LED turns on. If the LED won't turn on, the SCR may be bad.

5. Connect a voltmeter across the output terminals and adjust the voltage control (R6) so that the meter indicates your calculated VC—19 volts, in our case.

6. De-energize the circuit and connect an ohmmeter between the wiper of the trip-point potentiometer (R5) and ground. Adjust R5 so that the meter reads zero ohms. That will disable the current-to-voltage shift. Remove the ohmmeter and the 4.7K resistor.

7. Connect a partially-discharged gel-cell battery to the output terminals of the charger. Be careful to observe proper polarity! The LED should not light; if it does, steering diode D1 is in the circuit backward.

8. Connect a voltmeter across the battery, apply power to the circuit, and measure the voltage across the battery. If the battery is not discharged enough, VC may be reached before you have a chance to adjust R5. If your meter indicates VC now, you'll have to discharge your battery further and try again. What you want to do is adjust R5 so that the SCR trips just after VC is reached.

9. Partially discharge the battery and reset R5 several times until you're satisfied with the accuracy of the trip-point setting.

Charger use

When charging a battery, you'll want to take an occasional look at LED1. After it turns on, interrupt power for about three seconds. That allows the SCR to unlatch. Re-apply power, and if the LED re-luminates quickly, the battery is fully charged. If not, let the battery charge longer and then repeat the test.

You can also use this circuit to recharge lead-acid and Ni-Cd batteries. You'll have to re-calculate resistance values to provide the proper charging current, which can be obtained from manufacturers' data books. We show the required current for several common Eveready Ni-Cd cells in Table 1 as a point of reference.

When charging a (non gel-cell) lead-acid or Ni-Cd battery, power should be removed when the LED lights up, or over-charging may occur, and the battery may be damaged.
Join the Electronics and Control Engineers' Book Club®

HANDBOOK OF TRANSFORMER APPLICATIONS By W. M. Flanagan. 416 pp., 132 illus. Covers virtually every facet of transformers and related ferromagnetic devices, this industry-oriented reference contains a wealth of specialized information not previously available in a single source.

$41.95 Pub. Pr., $39.00 Club Pr., $36.75

TROUBLESHOOTING ELECTRONIC EQUIPMENT WITHOUT SERVICE DATA By R. G. Middleton. 303 pp., 162 illus. and tables. Packed with charts, diagrams, and case histories, this practical handbook shows you how to pinpoint defective electronic circuits when previously data is unavailable.

$49.50 Pub. Pr., $45.00 Club Pr., $41.50

STANDARD HANDBOOK OF ENGINEERING CALCULATIONS T. G. Hicks, Editor in Chief. 2nd Ed., 1,468 pp., 1,292 illus. and tables. Now revised, updated, and considerably expanded, this huge handbook provides more than 5,100 step-by-step procedures for solving the kinds of engineering problems you encounter most frequently in your work.

$44.50 Pub. Pr., $40.00 Club Pr., $36.00

POWER CONTROL WITH SOLID-STATE DEVICES By Irving M. Gottlieb. 372 pages, 218 illustrations. This comprehensive book discusses every type of solid-state device and circuitry now available for power electronics. It covers both the proven-in-practice power control systems and the avant garde-as well as some promising combinations of the older and newer devices and circuitries.

$44.50 Pub. Pr., $39.50 Club Pr., $35.50

CONTROL SYSTEM ENGINEERING By Mohamed E. El-Hawary. 583 pages, 373 illustrations. This up-to-the-minute guide gives you the latest techniques for the design, analysis, and compensation of today's increasingly complex and sophisticated control systems. All the systems covered are closed-loop time invariant feedback control systems.

$42.50 Pub. Pr., $37.50 Club Pr., $33.50

DIGITAL LOGIC DESIGN By B. Holdsworth. 338 pp., 192 illus. All of the recent advances in digital design techniques are presented here in depth. It's both a text covering basic concepts and a practical guide to design techniques for the modern, locking, clock-driven, and event-driven circuits.

$39.50 Pub. Pr., $35.00 Club Pr., $30.50

INTRODUCTION TO RADAR SYSTEMS By M. T. Skolnik. 2nd Ed., 698 pp., 244 illus. Covering every radar fundamental and all important changes, this EE text exposes you fully to the systems involved—and to their applications! Topics include radar equation, CW and frequency-modulated radar, MTI, pulse-doppler, tracking radar, receivers, displays, duplexer, noise, and more.

$59.00 Pub. Pr., $54.50 Club Pr., $50.00

Handbook of Practical Electrical Design. By J. F. McPartland. 416 pp., 300 illus. This volume provides a step-by-step explanation of designing electrical systems for industrial, commercial, and residential applications.

$44.50 Pub. Pr., $40.00 Club Pr., $36.00

Introduction to Microwave Electronics. By T. C. Edwards. 76 pp., illus., softbound. Eliminating unnecessary theory and mathematics, this book provides you with a lucid overview of microwave engineering and the devices and circuits being used today.

$33.50 Pub. Pr., $29.50 Club Pr., $26.50

Electronics Engineers' Handbook. 2/e. Edited by D. G. Fink & D. Christiansen. 2,727 pp., 2,189 illus. This updated and enlarged edition covers all the latest knowledge in the field, including new advances in integrated circuits, pulsed and logic circuits, laser technology, telecommunications, and much more.

$89.00 Club Pr., $80.00

Antenna Engineering Handbook. 2/e. Edited by R. C. Johnson and H. Jack, with contributions by 57 recognized authorities. 1,408 pp., 946 illus. This widely acclaimed handbook gives you the guidance you need to solve problems in antenna design and application.

$62.50 Club Pr., $55.00

Gate Arrays: Design Techniques and Applications. Edited by J. W. Read. 349 pp., 146 illus. Written by a team of specialists, this book describes the fundamental principles, design techniques, and uses of gate arrays.

$35.00 Club Pr., $30.00

$50.00 Club Pr., $45.00

THE ENCYCLOPEDIA OF ELECTRICAL AND ELECTRONIC ENGINEERING. Editor-in-Chief J. W. Read. 3,000 pp., 1,951 illus. This guide to Motorola's 68000 microprocessor uses a systems approach that includes extensive coverage of the 68000, its architecture, assembly language programming, and hardware interfacing techniques.

$95.00 Club Pr., $85.00

McGraw-Hill Personal Computer Programming Encyclopedia. Edited by W. J. Breden. 704 pp., 48 illus. This giant reference compares the functional and operational definitions of every command used in 19 high-level computing languages as well as B-, C-, and 32-bit assembly languages and machine codes.

$52.00 Club Pr., $45.00

McGraw-Hill Concise Encyclopedia of Science and Technology. Editor-in-Chief S. P. Parker and the Staff of the McGraw-Hill Encyclopedia of Science and Technology. 2,065 pp., 1,600 illus. This volume serves every need for understanding today's science and technology. Written by over 3,000 of the world's foremost experts, including 19 Nobel Prize winners, it covers 75 disciplines from Acoustics to Zoology.

$64.00 Club Pr., $55.00

Get the competitive edge with the newest and the best information in your field... with books from all the leading publishers.

Spectacular values up to $105.00

New members! Any one of these great professional books for only... as a premium with your 1st selection!

Now $9.89

To join the Club, print your name and address on this page and mail it to McGraw-Hill Book Club, 1221 Ave. of the Americas, New York, N.Y. 10020 and ask for a membership application. Offer good in U.S.A. only. McGraw-Hill Book Club reserves the right to reject or cancel any order. Copyright McGraw-Hill Book Company, 1984.
CONTEMPORARY ELECTRONICS CIRCUITS DESKBOOK. Compiled by H. Helms. 272 pp., 442 circuit diagrams. Packed with clearly reproduced circuit diagrams, all proven-in-action, covering the entire spectrum of electronics technology. Each diagram includes a title, a brief description, type numbers or values for significant components and a citation of the original source.
279/802 Pub. Pr., $29.95 Club Pr., $23.50

INTRODUCTION TO RADIO FREQUENCY DESIGN. By W. H. Hayward. 383 pp., illus. This comprehensive volume prepares you to actually design HF, VHF, and UHF equipment and enables you to follow much of the current literature. Structured equation sets make it easy to write programs for small computers or calculators.
582748-4 Pub. Pr., $37.95 Club Pr., $27.25

MCGRAW-HILL ENCYCLOPEDIA OF ELECTRONICS AND COMPUTERS. By S. P. Parker, Editor-in-Chief. 960 pp., 1,266 illus., outsized 8 1/2 x 11 format. It's a single-volume library that covers the entire world of electronics from Edison's pioneering work in electricity right up to optical fiber communications, control systems, lasers, radar, TV receivers, artificial intelligence, and computer storage technology.
454/878 Pub. Pr., $87.50 Club Pr., $41.50

ELECTRONICS ENGINEERING FOR PROFESSIONAL ENGINEERS' EXAMINATIONS. By C. R. Hafer. 336 pp., more than 200 illus. Actually two books in one—a quick preparation manual to help you pass your P.E. exams on the first try and a rich source of practical electronics engineering information and know-how.
254/303 Pub. Pr., $32.50 Club Pr., $25.50

STANDARD HANDBOOK FOR ELECTRICAL ENGINEERS, 11th Ed. By D. G. Fink and H. Beatty. 2,448 pp., 1,414 illus. Today's most widely used source of electrical engineering information and data serves you as no other single work when you need detailed, timely, and reliable facts.
209/74X Pub. Pr., $85.00 Club Pr., $31.00

COMPUTER METHODS FOR CIRCUIT ANALYSIS AND DESIGN. By J. Viach and K. Singhah. 165 pp., 148 illus. Computational methods have become an integral part of circuit analysis and design. And a solid understanding of the basics of computer-aided design is a must for engineers who want to achieve their career objectives.
582995-3 Pub. Pr., $42.50 Club Pr., $33.95

MODERN ELECTRONIC CIRCUITS REFERENCE MANUAL. By J. Marks. 1,264 pp., 3,666 circuit diagrams. Complete with values of components and suggestions for revisions—plus the original source of each circuit in case you want additional performance or construction details.
404/461 Pub. Pr., $75.50 Club Pr., $57.95

Why YOU should join now!

- BEST AND NEWEST BOOKS IN YOUR FIELD — Books are selected from a wide range of publishers by expert editors and consultants to give you continuing access to the best and latest books in your field.
- BIG SAVINGS — Build your library and save money too! Savings ranging up to 40% or more off publishers' list prices—usually 20% to 30%.

BONUS BOOKS — You will immediately begin to participate in our Bonus Book Plan that allows you savings up to 70% off the publishers' prices of many professional and general interest books!

- CONVENIENCE — 1-12 times a year (about once every 3-4 weeks) you receive the Club Bulletin FREE. It fully describes the Main Selection and Alternate Selections. A dated Reply Card is included. If you want the Main Selection, you simply do nothing—it will be shipped automatically. If you want an Alternate Selection—or no book at all—you simply indicate it on the Reply Card and return it by the date specified. You will have at least 10 days to decide. If, because of late delivery of the Bulletin you receive a Main Selection you do not want, you may return it free of charge at the expense of the Club. As a Club member you agree only to the purchase of three books (including your first selection) during your first year of membership. Membership may be discontinued by either you or the Club at any time after you have purchased the first selection plus two additional books.

Other McGraw-Hill Book Clubs:
- Architects' Book Club
- Byte Book Club
- Chemical Engineers' Book Club
- Civil Engineers' Book Club
- Mechanical Engineers' Book Club

For more information, write to:
McGraw-Hill Book Clubs, P.O. Box 582, Hightstown, New Jersey 08520-9959

Be sure to consider these important titles as well!

DESIGN OF FEEDBACK CONTROL SYSTEMS. By G. H. Hostetter, C. J. Saunders. 582702-2 Pub. Pr., $41.95 Club Pr., $31.45

MODERN COMMUNICATION CIRCUITS. By J. Smith. 587078 Pub. Pr., $43.95 Club Pr., $32.50

MICROPROCESSOR SUPPORT SYSTEMS. Theory, Design, and Applications. By I. J. Byers. 095/182 Pub. Pr., $43.95 Club Pr., $32.75

DATA COMPRESSION: Techniques and Applications. By T. J. Lynch. 582894-4 Pub. Pr., $44.50 Club Pr., $31.75

TRANSDUCERS: Theory and Applications. By J. A. Allocca and A. Stuart, 582917-5 Pub. Pr., $29.95 Club Pr., $24.95

ANALYSIS AND DESIGN OF DIGITAL INTEGRATED CIRCUITS. By D. A. Hodges and H. G. Jackson. 291/535 Pub. Pr., $40.00 Club Pr., $27.50

HANDBOOK OF OPERATIONAL AMPLIFIER CIRCUIT DESIGN. By D. E. Stout and M. Kaufman. 617/972 Pub. Pr., $41.50 Club Pr., $34.95

DIGITAL COMMUNICATIONS. By J. Proakis. 509/721 Pub. Pr., $42.95 Club Pr., $31.50

CRYSTAL OSCILLATOR CIRCUITS. By R. J. Mattmyns. 582751-8 Pub. Pr., $37.55 Club Pr., $28.95

DESIGNING DIGITAL FILTERS. By C. Williams. 583677-0 Pub. Pr., $36.95 Club Pr., $27.95

MAIL THIS COUPON TODAY

McGraw-Hill Book Clubs
Electronics and Control Engineers' Book Club®
P.O. Box 582, Hightstown, New Jersey 08520-9959

Please enroll me as a member and send me the two books indicated, billing me for the $2.89 premium and my first selection at the discounted member's price, plus local tax, shipping and handling charges. I agree to purchase a minimum of two additional books during my first year of membership as outlined under the Club plan described in this ad. A shipping and handling charge is added to all shipments.

Write Code No. of first selection here

Write Code No. of $2.89 selection here

Signature ____________________________
Name ________________________________
Address/Apt. # ___
City ____________________________ State __________ Zip ________________

This order subject to acceptance by McGraw-Hill. All prices subject to change without notice. Offer good only to new members.

E33805

JULY 1986
One winding feeds a 10A 400V bridge rectifier, which in turn feeds four 8000-µF capacitors. That well-filtered supply powers the output amplifiers.

The other winding of the toroidal transformer provides a 30 VCT output that is rectified and filtered with 1000-µF capacitors C12 and C13. Separate positive and negative three-terminal regulators, IC9 and IC11, provide fully regulated +15V and −15V supplies for the op-amps. As we just stated, D22 provides an isolated positive supply for the op-amps.

The negative supply that feeds the analog switches is derived from the −15-volt supply via a simple resistive divider composed of R30 and R31. We can get away with using that simple scheme since the CMOS IC's draw only about 100 µA of current, and that loads the resistive divider negligibly.

The positive supply must provide more current than the negative supply because the LED's are fed from the positive supply. Hence a 7805 regulator is used. The 220-ohm resistor (R28) between the output and the positive terminals of the regulator has about 23 mA of current flowing through it, and that current in conjunction with the 15 mA flowing out of the ground terminal impresses about three volts across 130-ohm resistor R29. That raises the output of the regulator from five to eight volts. The latter voltage feeds the LED's, and diode D23 isolates that voltage for the CMOS memory circuit.

Standby power

Two nickel-cadmium batteries are used to supply standby power to the CMOS IC's. The batteries provide just enough voltage so that the flip-flops retain their contents when the main power is switched off. Diode D23 ensures that the the LED's don't drain the battery. Note that the minus rail is not powered by the batteries. That is because we are only interested in maintaining power in the logic circuits. Also, when the main power is on, the battery is trickle-charged via R32.

That (finally!) completes the circuit description. Start warming up your soldering iron; next time we'll go on and build an amplifier! **R-E**

OSCILLATOR CIRCUITS

continued from page 66

Amplifier and feedback network

The essential components of a feedback oscillator are, as shown in Fig. 7, an amplifier and a feedback network. The amplifier could be any amplifying device—a transistor, an op-amp, even a tube. The feedback network could be built from various combinations of resistors, inductors, and capacitors. For a purely resistive network is seldom used in an oscillator because a network of that type is not frequency-selective. It might oscillate, but at a frequency we would have little control over.

However, we're getting a little ahead of ourselves. Before getting into the details of circuits and components, we really ought to approach the feedback oscillator from a more theoretical point of view. So let's see what the conditions for oscillation to occur are. We'll do that by deriving the gain equation for the circuit.

Feedback amp math

To begin with, let's simply name a few of the quantities that we'll be working with. Let's call the open-loop gain—the gain that would be obtained with no feedback—of the amplifier $A_{V(OL)}$. Gain when the feedback loop is connected is A_V—and that's the quantity we're trying to find an expression for. The circuit's output voltage is V_{OUT}, and its input voltage is V_{IN}. The output of the feedback network is V_F, and the difference between V_{IN} and V_F is V_D. In other words, $V_D = V_{IN} - V_F$.

The gain, or transfer function, of any circuit is simply the ratio of its output voltage to its input voltage. For the amplifier in our model circuit, we would express that relationship as:

$$A_{V(OL)} = \frac{V_{OUT}}{V_D} \quad (1)$$

In other words:

$$V_{OUT} = A_{V(OL)} \times V_D \quad (2)$$

And since the overall gain (A_V) of the circuit can be expressed as:

$$A_V = \frac{V_{OUT}}{V_{IN}} \quad (3)$$

we can substitute the right side of equation (2) into the numerator of equation (3) to obtain:

$$A_V = \frac{A_{V(OL)} \times V_D}{V_{IN}} \quad (4)$$

As we saw above:

$$V_D = V_{IN} - V_F \quad (5)$$

So, rearranging things:

$$V_{IN} = V_D + V_F \quad (6)$$

Now we can substitute the right side of equation (6) into the numerator of equation (4) to arrive at a complete expression of the circuit's gain:

$$A_V = \frac{V_D \times A_{V(OL)}}{V_D + V_F} \quad (7)$$

Now we define a factor B that represents the ratio of feedback voltage to the output voltage:

$$B = \frac{V_F}{V_{OUT}} \quad (8)$$

By rearranging equation (8) we see that:

$$V_F = B V_{OUT} \quad (9)$$

so we can substitute the right side of equation (9) for V_F in equation (7), yielding:

$$A_V = \frac{V_D \times A_{V(OL)}}{V_D + B (A_{V(OL)} \times V_D)} \quad (10)$$

Our job is nearly complete: what we want to do is eliminate V_D from the preceding equation. By substituting the right side of equation (2) into equation (10) we see that:

$$A_V = \frac{V_D \times A_{V(OL)}}{V_D + B A_{V(OL)}} \quad (11)$$

That allows us to eliminate V_D:

$$A_V = \frac{A_{V(OL)}}{1 + BA_{V(OL)}} \quad (12)$$

And that's what we set out to find. The quantity $B \times A_{V(OL)}$ in the denominator of equation (12) is the loop gain of the circuit, and its value is important in determining whether a circuit will oscillate.

A feedback circuit will oscillate if two conditions are met: 1. Loop gain is unity or more, and 2. The feedback signal is in phase with the input signal. Those conditions are known as the Barkhausen Criteria. For the feedback signal to be in phase with the input signal we need a total phase shift of 360 degrees. And since a typical amplifier inverts the signal, or provides 180 degrees of phase shift, the feedback network must provide an additional phase shift of 180 degrees. There are many ways of providing that phase shift; next time we'll show how to do it using coils and capacitors. **R-E**
One of the most difficult tasks in building any construction project featured in *Radio-Electronics* is making the PC board using just the foil pattern provided with the article. Well, we’re doing something about it.

We’ve moved all the foil patterns to this new section where they’re printed by themselves, full sized, with nothing on the back side of the page. What that means for you is that the printed page can be used directly to produce PC boards!

Note: The patterns provided can be used directly only for direct positive photore sist methods.

In order to produce a board directly from the magazine page, remove the page and carefully inspect it under a strong light and/or on a light table. Look for breaks in the traces, bridges between traces, and in general, all the kinds of things you look for in the final etched board. You can clean up the published artwork the same way you clean up your own artwork. Drafting tape and graphic aids can fix incomplete traces and doughnuts, and you can use a hobby knife to get rid of bridges and dirt.

An optional step, once you’re satisfied that the artwork is clean, is to take a little bit of mineral oil and carefully wipe it across the back of the artwork. That helps make the paper translucent. Don’t get it on the front side of the paper (the side with the pattern) because you’ll contaminate the sensitized surface of the copper blank. After the oil has “dried” a bit—patting with a paper towel will help speed up the process—place the pattern front side down on the sensitized copper blank, and make the exposure. You’ll probably have to use a longer exposure time than you are probably used to.

We can’t tell you exactly how long an exposure time you will need but, as a starting point, figure that there’s a 50 percent increase in exposure time over lithographic film. But you’ll have to experiment to find the best method for you. And once you find it, stick with it. Don’t forget the “three Cs” of making PC boards—care, cleanliness, and consistency.

Finally, we would like to hear how you make out using our method. Write and tell us of your successes, and failures, and what techniques work best for you. Address your letters to:

Radio-Electronics
Department PCB
500-B Bi-County Blvd.
Farmingdale, NY 11735
PC SERVICE

THE DISPLAY SIDE of the frequency counter board in a full-size mirror image.
DC-60 MHz
4 Input, 8 Trace, Portable
- Typical Frequency Of From DC To 70 MHz, -3 dB
- Reliable Time Difference Between Channels
- Built-In TV Sync Separator
- 3 Year Warranty
SS-5710 — $1245
SS-5710C — With Counter $1799
SS-5710D — With Counter/DMM $1995

DC-100 MHz
4 Input, 8 Trace, Portable
- Typical Frequency Of From DC To 120 MHz, -3 dB
- Reliable Time Difference Between Channels
- Jitterless Circuitry For Stable Triggering
- 3 Year Warranty
SS-5711 — $1695
SS-5711C — With Counter $2295
SS-5711D — With Counter/DMM $2495

DC-40 MHz
SS-5705 — DC-40 MHz
SS-5706 — DC-30 MHz
- 3 Input, 6 Trace (SS5705); 3 Input, 3 Trace (SS5706)
- Versatile Trigger Capability With TV-SYNC
- Jitter-Free Circuitry And Variable Hold-Off
- High Accuracy For V And H (± 2%)
- Accurate Calibrator (Amplitude ± 1% And Frequency ± 1%)
SS-5705 — $899
SS-5706 — $749

DC-100 MHz Digital Storagescope
- 100 MHz Analog And Digital Bandwidth
- 40 Ms/s Sampling Rate
- Cursor Measurement (Analog And Digital)
- 4 Waveform & 7 Set-Up Memories
- GO/NO GO Judgement
DS-6121 — $5550
DS-6121A — With Envelope Mode $5950

DC-200 MHz
4 Input, 8 Trace, Portable
- Reliable Time Difference Between Channels
- Freerunning Ground Facility
- High-Grade 6 Inch Quadrupole-Lens, Dome Mesh CRT
- Combination Trigger Probe (SS-0071) Optional
- 3 Year Warranty
SS-5712 — $2999

DC-10 MHz Digital Storagescope
- Built-In GP-IB (General-Purpose Interface Bus)
- High-Brightness CRT
- 3-Channel 10 MHz Oscilloscope Function
- 8-bit x 2048 Word/Channel, 1's/word Digital Storage
- Both Real-Time And Digital Storage Waveforms Can Be Displayed On The CRT Simultaneously
SS-5802 — $2750

IWATSU INSTRUMENTS, INC.
430 Commerce Boulevard, Carlstadt, NJ 07072 PHONE: (201) 935-5220; TLX: 710-989-0255
CIRCLE 64 ON FREE INFORMATION CARD
Scrambling woes

THOSE OF YOU WHO HAVE BEEN FOLLOWING the ups and downs of the home-TVRO industry are aware that several pieces of legislation are pending before Congress. Little of that legislation is likely to be made into law this year, and, even if it should, little of it seems likely to benefit our industry.

When HBO first announced it planned to start delivering scrambled signals, there was widespread opposition to both plans and planners. M/A-Com, in particular, and other firms were crucial to the distribution of scrambling equipment; those firms have been justly criticized for their lack of preparedness. But before scrambling became official, a then-defiant trade-industry association believed that scrambling would not happen, and that it would not hurt if it did. However, it did happen, and it did hurt—badly.

Many people who hoped that scrambling would never come to pass pinned their hopes on various pieces of legislation introduced early in 1984. Had that legislation passed, it would have delayed scrambling for at least two years, and it might have gotten the FCC involved in the fray as a mediator between the disputing parties—TVRO users and program suppliers.

However, hearings regarding the pending legislation were held in early March of this year, and at least one additional round of hearings is planned. But the congressmen responsible for both the hearings and the legislation see little chance that any legislation will be enacted this year. They acknowledge the strength of the TVRO lobby, but they believe that differences between users and suppliers will sort itself out in the marketplace with no Congressional intervention.

The proposed legislation relates to two largely-unresolved issues: access to scrambled programming, and the price of that access. Access itself is a matter of little dispute. Virtually all cable-programming services have indicated willingness to offer services to TVRO owners.

Monopoly?

Price is a more difficult issue. For example, just what is a fair price for the TVRO owner to pay for HBO? If you subscribe directly from HBO, the price is $12.95 per month. But some cable vendors have been offering services to cable subscribers for $9 to $10, and that is $2 to $4 per month less than the typical cable subscriber pays for the same service. And it's interesting to note that, when the dish owner buys directly from HBO, the local cable operator receives a $5 per month "sales commission." In effect, HBO retains $7.95 of the $12.95 collected, the rest is retained by the cable operator.

However, some cable operators have offered HBO to TVRO owners for as little as $6.75 per month. As you might suspect, HBO has tried to put a halt to that sort of price- undercutting. One cable vendor (in Arkansas) offered HBO for a very low price; that company was told that HBO would no longer accept orders from subscribers living outside of the cable operator's county. That effectively shut down the company's national sales effort.

What presently galls the TVRO industry is that, to date, virtually all marketing of descrambling services has been done only by the cable programmers (e.g. HBO), and the cable franchises. But there has been no program marketing by firms involved in the satellite-TV industry. Those firms have cried "foul!" And they have claimed that prices are being set, monopoly-like, by cable-program vendors.

Price is important

Perhaps as many as 20 different program services are now sched-
uled to scramble their offerings; several are indicated in Table 1. The cost of unscrambling all of those services will amount to a fair piece of change for the consumer because possible incompatibilities between different systems may require different descrambling hardware. Consequently, many people feel that the total monthly charge for descrambling will be so high as to discourage the sale of new home-TVRO systems. In fact, there are indications that there will be 50% fewer systems sold in 1986 than were sold in 1985. The conclusion is that the price of descrambling a number of different, and very possibly incompatible systems is a key factor holding down sales of new systems.

Help from Congress?
Legislation might be able to help TVRO vendors. But key members of Congress show no interest in pushing legislation that attempts to rescue a faltering industry. The attitude, as one member of Congress noted, seems to be: “Adopting legislation to rescue home dishes will ultimately result in more legislation to rescue some other industry. There is no end to this once it starts; the marketplace must sort it out.”

The problem is that the marketplace to date has not been doing a very good job of “sorting it out.” Dish sales are much worse than a year ago, inventories are excessive, and new models are not being released by manufacturers. The reason is that consumers are delaying purchases until they see who is going to scramble what, when it will be done, how compatible it will be, and how much it will cost.

Things have gotten so bad that Congressman Tauzin of Louisiana, a rare Capitol-Hill proponent of the need for legislation, is predicting that, unless the TVRO industry gets help from federal legislation in six to eight months, the industry may go under. That’s not a pretty prospect to say the least; it reminds us of the speed with which the CB-radio market suddenly collapsed some ten years ago under different circumstances.

Hopefully things won’t go that route. But, in the interim, we’ll continue to examine the growing amount of confusion the program scramblers are creating in the marketplace.

Interest in TVRO?
For nearly two years Bob Cooper has provided a no-charge kit of printed materials that describes the challenges of and opportunities in selling TVRO systems today. With the present intense interest in scrambling systems, Coop’s CSD has made available a new no-charge service.

The SCRAMBLE FAX hotline is a 24-hour-per-day telephone service that provides accurate, detailed, and hard-to-find facts concerning the changeover to scrambling in the satellite communications industry. Information describing satellite receivers tested for scrambling compatibility, sources for authorized descramblers, wholesale rates of scrambling equipment and services—all are provided on the SCRAMBLE FAX hotline. There is no charge for that service, other than your long-distance telephone expenses. Simply dial (305) 771-0575 for a concise and timely three-minute capsule report that covers the latest in scrambling news.

SATELLITE TV/

The First Five Years!

THE MOST COMPLETE report on the mushrooming home TVRO industry ever compiled, written as only the ‘father of TVRO’ could have prepared. More than 1000 pages! (1) tracing the complete story of home TVRO lavishly illustrated with equipment photos, schematic diagrams, equipment analysis reports. Bob Cooper, the first private individual to own and operate a TVRO (1976) has collected and polished hundreds of individual reports into a unique collector’s edition which clearly explains the TVRO phenomenon in North America. From Coop’s first 20 foot monster dish to the present day 5 foot ‘C-band’ TVROs, the fascinating growth of TVRO equipment and its legal status unfolds for you.

THIS TWO VOLUME SET totaling more than 1,000 pages is available for the first time to readers of Radio Electronics at special discount pricing. Originally sold at $100 per two-volume set, a limited supply is now available ONLY through this advertisement PLUS, you will also receive a special extraordinary bonus: the 200 page (+) October 1984 edition of CSD Coop’s Satellite Digest. This very special edition of CSD is a best-seller in the TVRO industry, with the most comprehensive collection of TVRO facts and figures ever compiled. Combined with the 1,000 page CSD ANTHOLOGY report, you have instant reference to everything you will ever need to know about the state of the home TVRO industry. It is MUST reading for every person in, or thinking about getting into, any segment of the home TVRO world.

SEND CSD ANTHOLOGY 2 Vols. + CSD BonusSEND CSD October ’84 Special Issue ONLY.
NAME _______ COMPANY _______
ADDRESS _______ CITY _______ STATE _______ ZIP _______

Payment: $60 US funds (Anthology + Bonus), $15 US funds CSD Oct. ONLY; payable ‘CSD ANTHOLOGY’ Shipping charges prepaid. Enter order to CSD Anthology, Radio-Electronics Magazine, 200 Park Av., S., New York, NY 10003; or call 305-771-0505 for credit card orders ONLY.
You don't have to be involved with robotics for very long to understand that the vast majority of real-world applications involve a mechanical arm of sorts. However, few affordable arms are available for hobbyist and educational purposes.

For example, at least three companies supply arm systems that are used in education. Those arms cost between one and two thousand dollars; and it is my belief that that's beyond the range of most hobbyists and many small educational institutions.

At the other end of the scale, for several years Radio Shack has been marketing an arm called Armatron for less than $30. However, its purely mechanical nature makes it hard to interface to an electrical control system (but see the May 1985 issue of Radio-Electronics for one approach.—Editor). Until recently, I knew of no other arms in the under-$100 range. Let's look at why there have been no inexpensive robot arms.

What's in an arm?

You might wonder just what makes robot arms so expensive. We are used to electronics devices being aggressively priced—after all, IC's are made of sand! However, robot arms are mostly mechanical, and mechanical linkages require expensive machining. Even inexpensive plastic parts are made from molds that are costly to make.

Motors can also be expensive, but clever design can reduce the number of motors that are required. For example, when you take apart Radio Shack's Armatron (which I highly recommend as an educational exercise), the first thing that strikes you is its lack of motors—there's only one, and it can move six different joints.

The next potentially-expensive items are gears. Most arms (including Radio Shack's) are filled with gears of various sizes and configurations. And rarely can a stock catalog gear perform the desired function; thus gears must be designed and manufactured for each individual application. That makes it hard for hobbyists to find gears that are suitable for building an arm from scratch.

So, if parts are expensive or simply unavailable, how can the robotics hobbyist get an arm to experiment with?

It happens that Milton Bradley has begun marketing a kit, the Robotix, that will allow you to build an experimental arm for a surprisingly low price—only $39! The kit consists of a two-fingered manipulator, a rotating base in which the battery supply is located, counterweights, and numerous other parts for construction of arms in various configurations. Each finger comes with two pieces of non-slip rubber for traction.

Two custom-designed motors include complex internal gearing mechanisms, and each motor can produce a torque of 50 inches. The output shaft of the motor is an octagonal male plug that fits snugly into one of several supplied structural elements. Electrically, the motors are connected to the base through specially designed cables that have easy-to-use two-pin plugs.

To give you an idea of what you can do with the Robotix, I built a six-jointed arm from two kits—in seven minutes! It can rotate about the vertical axis, and move at the shoulder, elbow, and wrist; and it incorporates a two-fingered gripper. Vertical-axis rotation allows the arm to transfer a part or object from one area to another along a horizontal arc. For $78, that's impressive!

You could build a simple arm from a single Robotix kit by following the illustration in Fig. 1. The arm is not capable of lifting an automobile, but you could use it...
learn quite a bit about the kinds of problems that robotics designers face. When you master the basics, you can extend the arm’s reach by adding another structural member through a supplied coupler. But how do you master the basics?

Arm fundamentals
A device used to transport materials from one place to another is called a transfer mechanism. In its simplest form, a transfer mechanism can be a gripper and a rotary indexing table that allows the robot to grasp an object and place it on the table in another place. A rotary transfer mechanism is probably the ideal way for people on a limited budget to begin investigating robotics arms.

There are many types of grippers. Electromagnets can be used to grip ferrous metals; the advantage of an electromagnet is that it doesn’t require much to control it. A small vacuum pump connected through a tube is another possibility. However, grippers with two or more fingers are the most common and the most popular because of their versatility.

After you’ve settled on the basic mechanical configuration, it’s time to get the hardware wired up. The Robotix motor runs on three volts and draws approximately 170 mA while stalling. A simple relay arrangement (like the one shown in “Building Your Own Robot,” Radio-Electronics, March 1986, p. 50) can be built that will allow you to reverse motor direction under computer control.

That circuit could be extended to add as many motor controls as are necessary. For simultaneous control of several motors, add an enable circuit and duplicate the direction-control circuit for each motor used.

As for interfacing, there are many brands of personal computers, so we can offer no precise guidelines about specific ways of interfacing a motor-control circuit to particular models. Suffice it to say that you must have some sort of parallel output port. Commodore VIC’s, C64’s and C128’s have a “user port” that can be used. Most other brands of personal computers will require a separate parallel interface card.

Don’t expect that you’ll be able to use a parallel printer output port. Those ports require handshaking signals that our circuit does not supply.

For you Apple II owners, Crabapple Systems (118 Commercial Street, Portland, ME 04101) has a product specifically designed to drive the Robotix motors. For you TRS-80 Color Computer fans, MJR Digital (Mason Road, Milford, NH 03055) has a board with connectors that allows direct connection to the Robotix; software and experiments are also included.

The real problems begin only after you’ve got the hardware all hooked up. If you’ve never attempted to control an electromechanical arm before, I suggest that you start with a simple device before moving on.

One of the first lessons you’ll learn is that it’s hard to determine how far to move each joint when moving toward an object. There is a tremendous amount of literature available on methods of controlling mechanical arms. Most involve complex mathematics. That’s another reason to start with a simple arm.

Anyway, keep in mind that the transfer mechanism moves through space in an arc, so keep the area surrounding the robot free. For a first experiment, try making your arm locate a light plastic block at location A. Then the arm should grasp the block and move it to a new location B. Because the simple arm has no capacity for vertical motion, the block must be placed at A after the gripper arrives there. Otherwise, the gripper will dislodge the object as the gripper approaches it.

Your control program should flow something like this: First move the arm to A, and then open the gripper. Wait for a keypress from the user (that’s you) to indicate that the block has been placed between the jaws of the gripper. Close the gripper, and move the arm to B. Finally, release the gripper.

Reader request
If you own a Heath HERO I, I’d like to hear from you. You don’t have to say whether you like it, just that you own one.
Dead-set servicing

Many people wonder where to start servicing a completely dead TV set. If the circuit-breaker trips as soon as you turn the set on, you've got a "crowbar short" in it. And chances are that it's in the B+ supply. So get out your ohmmeter, locate the B+ section of your chassis, and start hunting.

After you find the B+, unplug the set, discharge all large capacitors, and start measuring the resistance from various points to ground. You should always measure fairly high resistances, at least 50K, or even more. If you do find a resistance of zero (or close to it), you're in the right neighborhood. In fact, the input filter capacitor is probably shorted. But if you measure say 15-20K to ground, the short is somewhere farther down the "B+" string. So continue measuring resistance at other points. Chances are your problem will be due to a shorted capacitor.

Replacing capacitors

If you replace a shorted high-voltage capacitor, be sure that the replacement has a good margin of safety. For example, if a capacitor normally has 300 volts across it, use a capacitor with a rating of at least 450 volts; 600 volts is better, of course.

If you replace a shorted or leaky capacitor, and your picture improves, but still has problems, the one that you replaced may have set off a chain reaction that affected other components. Remove power and check other components in the vicinity.

A shorted filter capacitor is about the only simple thing that can cause the "dead-set" symptom. But if replacing that capacitor doesn't clear up the trouble, and all the nearby components seem to be OK, start checking for other problems. Things like incorrect bias on an audio-output stage or even the horizontal-output stage can wreak havoc. And check all of the high-voltage stages, like the one shown in Fig. 1, for normal operation, because trouble there can disrupt operation severely.

Of course, a dead set could be caused by other things, too—but have you ever seen any problem that couldn't have at least half-a-dozen causes? So check the whole chassis very carefully for something odd—like a solder-blob in the wrong place. I worked on one set that had a dead short somewhere and I just couldn't locate it. Finally I saw a dribble of solder concealed under a terminal point. After removing it, the set worked like a charm.

So when you run into one of those monsters, take up your ohmmeter, set it on its lowest range, and start checking the resistance of the B+ string until you find the troublemaker!

R-E
SERVICE QUESTIONS

OSCILLATION IN RCA CTC-107
I had several problems with an RCA CTC-107. I replaced the flyback as well as several small transistors in the voltage regulator circuit. Now I have vertical lines on the right side of the screen, and the set interferes with other sets in the vicinity! —T. M., Virgin Islands.

From the sound of it, your set is generating parasitic oscillation somewhere. Scope it out, especially the DC supply lines. Look for any sign of “fuzz” on the signal; that indicates the presence of stray or parasitic oscillation. Check all capacitors; scope the “hot” lead of each and look for fuzz, etc. If the capacitor is open you’ll see garbage; there should be none with a good capacitor. Try bridging a suspect capacitor; that should show whether that one is causing the problem.

VOLTAGE PROBLEM
I replaced a blown fuse and the horizontal output transistor in my set, but the transistor still ran hot. The integrated flyback was defective, so I replaced it. But the transistor still runs too warm! What gives?—P. G., Columbia, SC.

I can think of two possible causes. Either the voltage regulator isn’t working properly, or the bias on the horizontal output transistor is incorrect. Check both of those and you should solve your problem. You might also check the output drive while you’re there.

FRENCH CONNECTION?
I’ve got a surplus chassis labeled “Morse-Electrophonic 7900.” I’ve been looking for service data on it without any luck. It needs a power transformer with two 12-volt windings and a separate winding for the clock-chip, a 5387AA. The chassis may be Canadian because the back is marked in French.—T. S., Pahump, NV.

Non, monsieur! Pas de Francais, c’est Americain (by way of the Far East)! That chassis was used in several brand names. Sams does not show an address for the maker, but they do list several models.

But you don’t really need a schematic. Connect an external 12-volt power supply to each of the two supplies and measure the current drain. Now you can substitute a transformer with the appropriate current rating. If you really need a schematic, Sams provides details on several chassis in the 7000 series. Look at those schematics and see if one resembles yours; chances are you’ll be able to find one that’s close enough. That’s what I used to do.

SHORTED FLYBACK?
Thanks for your suggestion about using a reduced line voltage when I was blowing new transistors. That helped a lot, but now I’ve got a new problem. As you suggested, I put a DC milliammeter across the fuse holder and gradually raised the line voltage. Normal current is 320 mA; at only 45-volts AC I got that much! I measure about 10 KV of HV, but nothing else. Do you think the flyback is the culprit?—H. S., Austin, TX.

I can say this: It certainly could be! If you get some HV, the flyback is trying to work, but it’s drawing too much current. That indicates a possible “AC short,” that is, something that doesn’t show up in an ohmmeter test, but does show up when the flyback is driven by a normal signal.

Check the flyback with the well-calibrated eyeball. See if any of the smaller windings look dark or discolored. Measure the resistance of all windings, especially the big one. If any has low resistance, look out; that may be the sign of shorted turns, and one is all you need! Digital ohmmeters, which can read as tenths of an ohm, are very handy for that type of measurement.

DC ON CRT HEATER?
Here’s one I’ve always wondered about. Why is there a DC voltage on the CRT’s filament?—B. M., Hastings, MI.

Thanks, Bill; that’s one question I’m sure of the answer to! DC is applied to the heater of the CRT in order to reduce the stress between the cathode and the heater and to avoid possible heater-cathode shorts. If that happened, the tube would be inoperable. R-E
DRAWING BOARD

More on memory management

ANYONE WHO HAS EVER BUILT A SYSTEM that uses memory for one thing or another should be familiar with the truth of Grossblatt's Twelfth Law: There's no such thing as too much memory.

No matter how much memory you design into your system, it's a foregone conclusion that you'll wind up using all of it, and when you do, you'll start looking for ways to increase it. It's like buying a new house. I know many guys who swore they'd never need more than eight rooms. Two years later they had finished the attic and the basement, and they were eyeballing the garage!

Unfortunately, it takes more than a hammer and some nails to add more memory to an electronics system. And it's slightly difficult to add memory to a system that's already using the full width of its address bus. That's the problem we started talking about at the end of last month's discussion. There are several ways to solve that problem, and each has unique advantages and disadvantages. We'll use the circuit we put together last time to examine one solution; others are certainly possible.

You'll recall that, since we're dealing with 512 bytes of memory space, the address bus is nine bits wide. We use the most significant address bit to select one of two 256-byte banks of memory automatically, and that gives us 512 bytes of continuous memory. Let's assume, for purposes of discussion, that our memory system is managed by a controller that has an eight-bit data bus, a nine-bit address bus, as well as the usual set of read, write, control, and I/O signals. Given those parameters, let's see what we have to do to add more memory to the circuit.

Memory banking

No matter how you implement the circuit, the basic idea is to "page" or "bank" additional memory into the system. To understand the idea of bank-selecting memory, take a look at Fig. 1. Since our basic system can deal directly with only 512 bytes of memory, each page of memory will have 512 bytes. But in order for us to access different pages, we need a signal that the system can use to generate appropriate page-select signals.

We were faced with the same sort of problem when we assembled the demonstration circuit. This time, however, there's no handy-dandy address line to do the job for us. But, even though we have to look elsewhere for an answer, the problem is basically the same now as it was then. We need some sort of switch to toggle from one page to another.

The whole problem of getting from one bank of memory to an-
bit rude and crude. A much better way is to use "soft switches" to do the toggling for us. "Soft-switching" is a term that computer people use all the time; it represents a technique that we've used and over in the circuits we've put together. All it means is that we put a decoder on the address bus and let it watch for a particular address. When that address shows up, the soft switch detects it and changes the state of its output.

As with any other problem in logic design, the first two steps are to decide exactly what you want to do and then to draw a good block diagram of the circuit. So, first, let's say that we want to piggy-back four banks of memory and have our new circuitry select the desired bank by flipping a couple of soft switches.

Second, the block diagram in Fig. 2 indicates the three basic elements we'll need: The detector senses the address we're looking for and causes the decoder to put out a signal that we can then latch to control our system. Now that we know what we need, let's see what we have to do to build it.

The detector is a snap—we've put together many of them during the last few years. You can use anything from a simple gates-only approach to dedicated decoder chips. Since we're just starting to find out how to build and use soft switches, let's take the most straightforward design approach. After we've got the system working, we'll see what we can do to simplify things.

Memory is addressed in our system from 000 to IFF. We have to pick four addresses to use as our soft-switch locations. In a real-world system there would probably be circuit considerations that would dictate which locations to use. But since we're building our circuit from the ground up, we can pick any addresses we want. Let's take the four highest addresses in the system and define them according to the table shown in Fig. 3-a. As you can see, the highest address (IFF) selects the first page, IFE selects the second page, and so on.

A starting point for the circuit we need is shown in Fig. 3-b. Since the four addresses we're looking for are all at the top of memory, the seven most significant lines will all be high when one of those addresses is accessed. That means we can use an eight-input NAND gate as the front end of our circuit. So, any time the NAND gate outputs

FIG. 3

ENABLE BANK

<table>
<thead>
<tr>
<th></th>
<th>BANK</th>
<th>ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1FF</td>
<td>1111111</td>
</tr>
<tr>
<td>2</td>
<td>1FE</td>
<td>1111110</td>
</tr>
<tr>
<td>3</td>
<td>1FD</td>
<td>1111101</td>
</tr>
<tr>
<td>4</td>
<td>1FC</td>
<td>1111100</td>
</tr>
</tbody>
</table>

Students, engineers, or technicians—Now you can learn micro processing and understand the technology which made the IBM PC famous.

The MPF/88 features:
- extensive documentation
- 16-bit central processor
- full-size keyboard
- special options

Three tutorial guides cover all capabilities. The ideal training tool: If the IBM PC or micro-processing are in your future, you owe yourself an MPF/88. Invest now!

Only $349.95

Plus—
- Check the box for a FREE IBM 1-38 tutorial textbook when you order within 7 days: $24.95 value

For immediate action call TOLL FREE: 1-800-426-1044

Full money back guarantee.

CIRCLE 184 ON FREE INFORMATION CARD

Learn the IBM PC's secrets with the MICROPROFESSOR I/88

Be an FCC LICENSED ELECTRONIC TECHNICIAN!

Earn up to $30 an hour and more!

Learn at home in spare time. No previous experience needed.

No costly school. No commuting to class. The Original Home-Study course prepares you for the "FCC Commercial Radio-telephone License". This valuable license is your "ticket" to thousands of exciting jobs in Communications, Radio-TV, Microwave, Computers, Radar, Avionics and more! You don't need a college degree to qualify: but you do need an FCC License.

No Need to Quit Your Job or Go To School! This proven course is easy, fast and low cost! GUARANTEED PASS – You get your FCC License or money refunded. Send for FREE facts now.

MAIL COUPON TODAY!
LAST TIME WE LOOKED AT ONE POPULAR advance in early radio circuits: the automatic tuner. This month we’ll take a look at several other, more controversial advances: tuning indicators and Automatic Volume Control (AVC) circuits. If you ever wondered how a “magic-eye” tuning indicator works, or how to troubleshoot one, you’ll find our discussion valuable.

The Truetone model D925

Our Antique of the Month, made by Western Auto, is a fine-looking radio that incorporates several of the advanced features we’ll be discussing. It has a magic-eye tuning indicator and pushbutton tuning, as well as a tone control and the ability to receive shortwave signals. To override the pushbuttons, the spring-loaded tuning knob is pushed in. The seven-tube (not counting the magic eye) superhet uses a type-80 rectifier tube, and it has an IF of 455 kHz.

Automatic tuning devices like that on the Truetone model D925 did little to hold the cost of a radio down; and cost, in the early 1930’s, was of prime consideration to manufacturers. But not all circuit improvements increased cost. In fact, one of the most important advancements actually reduced cost in the final analysis. The superheterodyne circuit reduced interference and improved reception to such an extent that pounds of shielding could be eliminated.

During World War I, many engineers worked on the superheterodyne circuit, which was first patented by Major Armstrong after the war. Because of patent-right contention, superhet sets didn’t really become widely available until the early 1930’s. However, as late as 1940, TRF (Tuned Radio Frequency) receivers were still being built. But long before patent restrictions were eased, hobbyists began converting their sets from information published in radio magazines. If you come across one of those altered sets, you’ll never be able to track down an accurate schematic.

Along with circuit refinements like the superhet, accessories like tuning indicators became popular. The tuning aids we’ll discuss were, in a sense, a spin-off of AVC circuits. Of course, if a set was properly aligned, and if the dial pointer was set accurately, you could tune stations in with few problems. But manufacturers thought that it would be a good idea to provide a visible indication of tuning status.

The magic eye was one popular tuning indicator. It is a tube-like device that mounts in a socket similar to a panel-light socket. A metal bracket holds the tuning eye and the socket so that the top of the tube is visible through the front of the cabinet. A fluorescent coating and a “shadow” indicate relative signal strength. The smaller the shadow, and the larger the fluorescent area, the better a station is tuned in. A tuning eye was often considered as just another of the set’s tubes, so it was tested with the other tubes when a service man repaired a set.

The magic eye is similar to a dual-triode tube that has a common cathode. One triode is connected to the set’s AVC circuit; it determines the brightness with which the fluorescent part illuminates. The other triode is really the indicator; its plate is the fluorescent target, and its grid, which is controlled indirectly by the other triode, is what actually determines brightness.

The eye works as follows. When a signal is not tuned in, the AVC voltage will be very positive. That will decrease the current flow through the second triode, so the “shadow” area of the fluorescent screen will increase. But as a station is tuned in, AVC voltage decreases, so more current flows, so the illuminated area increases.

Tuning-eye troubleshooting

Problems with the eye shouldn’t be difficult to diagnose, especially
if you have an antique tube tester like my NRI model 70. First test the regular triode section of the tube with the usual short and emission tests. Then check the eye section; but watch the fluorescent screen, not the meter, while making the test. Without the tube tester, only a limited continuity test can be done. If the tube tests OK, there’s a good chance you’ve got a problem in the AVC circuit.

If your radio produces no audio, but the tuning eye still appears to operate, your set’s RF stages are probably in working order. The problem is probably in the audio output stage or in a speaker. If the set is dead and the eye has a red glow, you probably have a defective power supply.

You might be baffled by a receiver that works OK, but whose eye doesn’t close, especially if the eye and the AVC check out. In that case, the problem may be a resistor connected to the fluorescent plate. That resistor may be located in the socket of the tuning eye. Remove the eye from its socket, and carefully pry the socket open with a small screwdriver. Measure the resistor and replace it if necessary. It’ll probably be a high-valued unit—100,000 ohms or so.

Other tuning indicators

In the late 1920’s there were a dozen or more different kinds of tuning indicators, including a not-too-popular tuning meter. Such meters have fancy escutcheons and make fine collectables. As a station was tuned in, the pointer would swing to the right. There is also an indicator that makes an audible sound when the station isn’t tuned in properly.

A popular tuning indicator in the 1930’s was the Shadowgraph, used on Philco and other sets. By opening its case, it becomes obvious that it’s really a meter-type tuning indicator. The moving vane serves to obscure light emanating from a pilot lamp inside the meter. The movement of the vane is controlled by the AVC. As the vane moves, it changes the size of the shadow from the pilot light; that shadow is then imposed on a celluloid screen. The screen is visible on the front panel, and, as with the magic eye, the smaller the shadow, the better the signal. Here’s a few hints on Shadowgraph troubleshooting.

If the screen is completely dark, first check the pilot lamp. If the lamp is good but the shadow doesn’t change when tuning, check the AVC. If that checks out, you may have to open the case to examine the meter movement.

Tuning indicators went hand-in-hand with AVC. But so far we’ve been talking about AVC circuitry as if it came into existence with no birth pains at all. However, that’s not the case; let’s see why.

The birth of AVC

In the 1920’s there was much debate in radio circles concerning the merits of AVC versus its cost. Was the added cost of an extra tube, an extra socket, a tuning indicator of some sort, and other parts worth it just to get a receiver that didn’t blast or fade? As we’ll see below, AVC helped to sell radios; but even so it took patience to tune in a station while watching an indicator. Later, many listeners tired of watching the tuning indicator just to be able to see what their ears were already hearing.

Most people who thought that AVC was unjustified lived in areas of good reception. Also, they attached little importance to the popular hobby of DX'ing. And they thought that programming on distant stations wasn’t high quality. They were often, but not always, right. Programs originating from independent stations sometimes were amateurish, as those stations couldn’t afford to hire the best entertainers.

However, even people in good signal areas sometimes suffered the effects of interference. For example, if a receiver had an antenna tuner or a loop-operated superhet, any nearby radio could be overloaded by a deafening squeal.

Those in favor of AVC usually wanted— or could only—listen to distant stations. Not all receivers were located in the shadow of the transmitter. Also, by that time, consumer radios had to be simple to operate. Housewives, shopkeepers, and other workers wanted to listen to their radios while going about their daily rou-
nine. Having to make frequent volume adjustments was a nuisance to them as it interfered with their tasks.

Audio amplifiers

After the RF and AVC stages comes the audio amplifier. Many designs were popular, but an interesting one is the push-pull amplifier, which was popular in larger, more expensive antique radios. The push-pull amplifier is also called a balanced amplifier. It has two tubes that are operated 180 degrees out of phase with each other. In other words, one tube amplifies the positive, and the other, the negative, half-cycle of a signal.

The grids of the two tubes are connected to opposite ends of the secondary of the input transformer. The plates of those tubes are connected to opposite ends of the primary winding of the output transformer. Both transformers have center taps that are connected to AC ground.

The pentode

In the past we've discussed the origin of the diode and the triode. The screen-grid tube has also been mentioned. Now let's talk about the pentode, which was announced in the early months of 1930 by the CeCo manufacturing company. Of course, it's called a pentode because it has five elements including a cathode and a plate like a diode, a control grid like a triode, and a screen grid for the plate like a tetrode. CeCo's innovation was to add a screen grid between the cathode and the control grid.

CeCo said its five-element tube was three times as powerful as the screen-grid tube. That proclamation brought much criticism from other radio manufacturers, despite promises to share advances and circuit designs. Critics said that tube sales were already low and that a new tube was unneeded at the time. They also said that the pentode wasn't really new, as it was already in use in Europe, especially in England.

Furthermore, it was unclear how the pentode could be used. However, CeCo engineers said that the more powerful pentode would increase tube sales because radios could be made with fewer tubes; thus, radios would cost less, and more people would buy them—by the millions! And that, of course, would increase tube sales.

Of course, the pentode did survive. By the end of 1930 several pentodes were available: the 238 and the 247. The original pentode was probably made from a 24 screen-grid tube, a tetrode. Using the same base and envelope, the extra grid was attached to a terminal on the side of the tube base, instead of adding another prong to the tube base. In later designs, the suppressor grid was usually connected to the tube's cathode internally.

Hobbyists and other experimenters were quick to purchase the new tubes from the mail-order houses. Again, they were guided by information and circuits in the radio magazines. It's unlikely that you'll find any of those early pentodes around. If you do, consider yourself lucky.
A NEW KIND OF MAGAZINE FOR ELECTRONICS PROFESSIONALS

SURFACE ACOUSTIC WAVES
Changing the face of touchscreens

MORE ON MODEMS
What you don't know CAN hurt you!

PROTOCOL CONVERTER
Build yourself some flexibility
SURGE SUPPRESSOR, the SL IV, is a multi-outlet device designed to protect computers and other microprocessor-based equipment from overvoltages.

The model SL IV offers non degrading, permanent protection within operating parameters, and effectively eliminates computer downtime, component damage, and nuisance failures caused by transients. It also features a 15-amp circuit breaker with reset switch, status-indicator lights for the circuit breaker and suppression circuitry, and three high-quality grounded receptacles, which accommodate most CPU/printer/computer configurations and multi-plug setups.

The model SL IV is priced at $99.00—Transector Systems, Inc., 10701 Airport Drive, Hayden Lake, ID 83835.

SINGLE-BORDER COMPUTER, the model GMX Micro-80, combines a Motorola MC68370 32-bit microprocessor and an optional MC68881 floating-point coprocessor with 2 megabytes of 32-bit wide RAM, up to 256 kilobytes of 32-bit wide EPROM, four serial ports, an 8-bit parallel port, a floppy controller, a 80-column monitor, and a clock with battery backup. The board, measuring 8.8" x 5.75", mounts on and uses the same power connector and supply voltages as a standard 5.95" disk drive. Power requirements are +5-volts DC at 4.5A max., and +12-volts DC at 125mA.

The model GMX-Micro-80 is priced at $127.50.—GMX, Inc., 1337 West 37th Place, Chicago, IL 60609.

ENHANCED KEYBOARD, Style 3270, has 106 keys and is designed to go with Smartkey 5.0 Keyboard Enhancement software.

The Smartkey software allows the user to redefine the keyboard for specific needs. It also includes special 24 function keys to the user's use and simplifies complex commands by defining single key macros.

The Style 3270 keyboard is PC compatible. It sends IBM PC synchronous format and responds to handshake and reset signals from the IBM PC and XT. Additional features include: Cherry MX full travel gold crossbar contact configuration key module; full N-key rollover with auto-repeat and chassis ground. The unit is 1.13" from enclosure base to center point at home row-keycap top. It also has keyboard micro with 16-deep FIFO and scanning phase in the event that FIFO is filled.

The Style 3270 enhanced keyboard is priced at $195.00. With SmartKey software included, the price is $295.00 complete.—Cherry Electrical Products Corp., 3600 Sunset Avenue, Waukegan, IL 60087.
When your modem won't talk...

Herb Friedman

A modem is the easiest peripheral to interface with a personal computer. You simply connect them together through matching plugs and everything works. But theory falls down before practice when the software becomes sophisticated, or a manufacturer has taken short cuts and left out circuits because "the average user probably won’t ever need them." Unfortunately, it often works out that the circuit, wire, or signal indicator that's "missing" or unconnected is the one that's required by your software or the computer itself.

Although virtually all conventional RS-232 I/O modems utilize the 95 terminal subminiature D-connector, it takes only three connections from your computer to its modem to establish communications using a non-automatic modem. At the computer itself these connections are usually labeled as TD (transmit), RD (receive), and "common," which is always terminal #7. Although there is supposedly a "standard," TD can be terminals 2 or 3, and RD can be terminals 3 or 2. (Some manufacturers use Tx for RD and Rx for TD—and don't ask why.)

Much mumbo-jumbo has gone into describing the TD and RD connections because the original RS-232 "standard" was murky on the subject. When connecting a personal computer to a modem it's easy to keep track by remembering that TD, or transmit, means the output signal from the computer, while RD means the input signal to the computer. Unfortunately, you will find the modem's connections are probably also labeled TD and RD, so what do the connections represent at the modem? Whether at the computer or the modem TD means the computer's output signal and RD means the computer's input signal; connect the computer's TD terminal to the modem's TD terminal and the computer's RD terminal to the modem's RD terminal.

Straight-across wiring

If a computer's RS-232 I/O connections are intended for connection to a modem the wiring order of the connections is called DTE and will be what is called "straight across," meaning computer terminal #2 connects to modem terminal #2, computer terminal #3 connects to modem terminal #3, etc.

The problem comes in when the computer's serial I/O has connections intended for a printer, the so-called DCE wiring order. The functions of DCE terminals #2 and #3, among others, are reversed; if you connect

![Diagram of DTE and DCE wiring orders]

FIG. 1—ALTHOUGH THE DTE AND DCE WIRING ORDER USES THE SAME DESCRIPTIVE TERMS FOR THE FUNCTIONS, THE SIGNAL DIRECTION IS COMPLETELY OPPOSITE.
DCE computer terminals “straight across” to the modem nothing will happen because neither the computer nor modem will know what’s going on. The way out of the DCE/DTE bind (if you don’t know what goes where) is to match the TD and RD terminals on the computer to the modem, which means “crossing” the connections, that is, connecting DCE computer terminal #2 to modem terminal #3 and computer terminal #3 to modem terminal #2. Make a copy of Figure 1, which shows the differences between the DCE and DTE wiring order for RS-232 D-connectors.

Modem communications would be simple if all you had to do was match the TD and RD connections, and this is all you have to do with an acoustic modem, where you dial up the remote computer and place the telephone’s handset in a pair of cups on the modem. But much modern software, and some modems, won’t work with such a simple connection because they require some form of electrical “handshaking,” meaning an electrical signal that informs either the modem, the computer, or both that the other device is ready to receive data. Depending on the particular software used, handshaking might be required from both acoustic and direct-connect modems—the kind that’s “permanently” connected to the telephone line: and handshaking is generally needed when using an automodem—the kind that can automatically answer a call or dial out. For example, to prevent an automodem from answering every ring they are generally designed—or programmed by a switch—not to go “on-line” until a DTR (DATA TERMINAL READY) “handshake” is received from the computer; the DTR being a digital “high” that tells the modem that the terminal is ready to send and receive: it is usually provided by a terminal or computer’s DTE wiring order on terminal #90.

Handshaking

Software intended for use with an automodem looks for a handshake from the modem that indicates the modem is turned on and ready; unfortunately, unlike the computer’s DTR handshake there is no real standard for the “modem ready” handshake. Many moderns create three handshakes, and only one, two, or the full three might be required by the communications software. To make certain the software receives what it considers to be a “correct” handshake the modem might internally connect several terminals on the connector so that a single modem handshake appears on the D-connector as two or three handshakes, forcing the computer to “see” the required handshake.

A modem usually outputs a “high” DSR (DATA SET READY) signal on terminal #5 when power is applied. This tells both the computer and its software that the modem is “ready for use.” (Note that this is the equivalent of the DTR terminal #90 handshake signal from the computer; it’s one of the connections you might have to cross-wire.)

Another modem handshake is the CTS (CLEAR TO SEND) “high” from terminal #6. This handshake can be used for just about anything, but for personal computers it is often combined with the CARRIER DETECT (CD) “high” from terminal #8 by a simple shorting wire.

The CARRIER DETECT is the handshake that modem communications software is looking for because the CD “high” is generated only when the modem senses the “carrier tone” produced by the modem at the remote computer. Because reception of a carrier means the modem is actually “talking” to the remote computer, the CD “high” is often used as the “master handshake” for the computer so it is often internally connected within the modem and also appears as the CTS (CLEAR TO SEND). If a carrier tone isn’t being received the modem isn’t talking to the remote computer; hence, it is not clear for sending data from the computer. (There really is a logic to all RS-232 connections when they concern a computer and a modem—not a printer.)

If the software is only looking for a “modem ready” handshake it might check only the the CTS and CD handshakes. However, some software intended for use with automodems won’t do anything until it is “sees” the DSR (DATA SET READY) handshake, the reason being that the software automatically downloads programming for the auto-modem’s internal microprocessor, forces the modem to go “on-line,” and causes the modem to dial only when the software sees through the DSR handshake that the modem is actually turned on. After dialing, the modem will time-out reception of the CD handshake. If it doesn’t receive a CD handshake within a specified time period it will disconnect the modem or disconnect and redial.

Although software can force a Hayes-compatible automodem to go off line by transmitting a command code such as ATH0 (meaning the modem should go “on hook”), some software causes an automodem to disconnect by forcing the computer’s DTR handshake “low.” The modem sees the low, assumes the computer is turned off, and drops off the line. But a problem can arise when using the DTR to disconnect the modem from the telephone line because not all software and/or computers support (provide) the DTR, and not all modems which claim to be Hayes-compatible respond to the DTR; they go disconnect from the telephone line only if a direct ATH0 command is received from the computer. If either the computer or the modem don’t support the DTR, and the software—or the user cannot provide an ATH0 command—the modem literally gets “stuck” and won’t disconnect unless its power supply is physically turned off.

Handshake signals always appear at the same modem terminals if the modem employs a conventional 25 terminal D-connector. (The D-connector is only a general “standard” for convenience; some manufacturers of external modems employ proprietary connectors.) D-connections at the modem are always DCE and are wired as shown in Figure 1. On the other hand, computers can have either a DTE or DCE wiring order. If they are DTE the connectors are wired, as previously mentioned, “straight across.” But if the computer’s serial I/O is wired DCE then several wires—not just the signal pair—must be crossed if full handshaking is to be attained. Your computer or the software might not require all the handshakes provided.
by the modem. If all the software wants is a "modem ready" handshake before it transmits data, then just the DSR—meaning modem power is on—would be adequate, although the CD is preferred because then the software knows for certain that it is linked up with another computer. There is much software around that appears to go on-line when it's actually working into an unconnected modem because the software is responding to the DSR handshake, which only means the modem is powered—that's all.

If it still won't work

If everything is connected together and the modem still won't work with the computer, double-check the modem's DSR and CTS terminal connections. Somewhere along the line the DSR and CTS got tangled and the Hayes and some Hayes-compatible modems combine the DSR and CD handshakes, using the CTS as the "power on" handshake. It makes no difference whether DSR or CTS is connected to the CD, but usually doesn't mean always.

Finally, there is the modem's RI (RING INDICATOR) handshake on DCE terminal 92, which is intended for use by software that controls automodems. The RI is a "high" that indicates a telephone is ringing; it causes the software to force the modem to go "off hook" (to connect to the telephone line).

As a general rule of thumb, the more sophisticated the software the greater its use of handshaking with the modem, so when you can't get a computer to talk to its modem check that the various signal and handshakes go to the right terminals on both the modem and the computer before you start looking for glitches in the software. More often than not the problem is usually one or more "reversed" connections.
Electronics Paperback Books

EXCITING OFFERINGS AT SPECIAL INTRODUCTORY PRICES

- COMPUTER MUSIC PROJECTS - $7.95
 Shows how to use your home computer to pro-
 duce electronic music. Many outfits on sound and
 music concepts. (REGULAR PRICE $8.95)

- AN INTRODUCTION TO COMPUTER
 PROGRAMMING FROM TDK - $3.50
 A complete course for students in computer
 programming. (REGULAR PRICE $4.50)

- 10 PROJECTS FOR ELECTRONICS
 EXPERIMENTERS FROM TDK BOOK - $11.50
 Great value for those who want to build
 (SHIPPING FREE)

- LINEAR IC EQUIVALENTS AND PIN
 CONNECTIONS - $25.00
 New set of pin descriptions for popular user
 ICs

- DIGITAL IC EQUIVALENTS AND PIN
 CONNECTIONS - $25.00
 New set of pin descriptions for popular user
 ICs

- ELECTRONIC POWER SUPPLY PROJECTS...
 $10.00 per Tape (100 Tapes)
 Provides power supply con-
 nection info for almost any application. WE PAY
 for shipping.

- THE UTILITY BOOK - $7.50
 A book on the basic programs needed by the
 hobbyist. (REGULAR PRICE $8.50)

- REMOTE CONTROL PROJECTS - $5.95
 How to build your own remote control systems.

- THE PRE-BASIC BOOK - $7.50
 A book on the Basic program-
 ming for those who have not
 been exposed to a program-
 ming language. (REGULAR
 PRICE $8.95)

- FIRST BOOK OF
 ELECTRONIC COMPONENTS - $6.50
 Full size charts and data on
 characteristics for thou-
 sands of devices. (REGULAR
 PRICE $8.95)

- SECRETS OF THE COMPUTER COMPANION:
 Programming Hints and Tips - $1.95
 For the computer companion who wants to
 learn how to program

- MICRO INTERFAC-
 E CIRCUIT BOOKS:
 1. $5.95 Pratical guide to
 interfacing your computer.
 2. $9.50 Magnetic sound and speech oper-
 ators, temperature and
 liquid sensors, motor
 controllers and more

- MICRO INTERFAC-
 E CIRCUIT BOOKS:
 1. $5.95 Pratical guide to
 interfacing your computer.
 2. $9.50 Magnetic sound and speech oper-
 ators, temperature and
 liquid sensors, motor
 controllers and more

- SECRETS OF THE
 COMPUTER COMPANION:
 Programming Hints and Tips - $1.95
 For the computer companion who wants to
 learn how to program

- ELECTRONIC SCIENCE
 PROJECTS - $3.75
 Simple to com-
 plete science projects
 with a strong practical
 bias.

- CRYSTAL SET CON-
 STRUCTIONS - $4.50
 A variety of crystal sets to
 build - the easy way.

- ELECTRONIC SCIENCE
 PROJECTS - $4.50
 Simple to com-
 plete science projects
 with a strong practical
 bias.

- CRYSTAL SET CON-
 STRUCTIONS - $4.50
 A variety of crystal sets to
 build - the easy way.

- ELECTRONIC SCIENCE
 PROJECTS - $4.50
 Simple to com-
 plete science projects
 with a strong practical
 bias.

- CRYSTAL SET CON-
 STRUCTIONS - $4.50
 A variety of crystal sets to
 build - the easy way.

- ELECTRONIC SCIENCE
 PROJECTS - $4.50
 Simple to com-
 plete science projects
 with a strong practical
 bias.

- CRYSTAL SET CON-
 STRUCTIONS - $4.50
 A variety of crystal sets to
 build - the easy way.

- ELECTRONIC SCIENCE
 PROJECTS - $4.50
 Simple to com-
 plete science projects
 with a strong practical
 bias.

- CRYSTAL SET CON-
 STRUCTIONS - $4.50
 A variety of crystal sets to
 build - the easy way.

- ELECTRONIC SCIENCE
 PROJECTS - $4.50
 Simple to com-
 plete science projects
 with a strong practical
 bias.

- CRYSTAL SET CON-
 STRUCTIONS - $4.50
 A variety of crystal sets to
 build - the easy way.

- ELECTRONIC SCIENCE
 PROJECTS - $4.50
 Simple to com-
 plete science projects
 with a strong practical
 bias.

- CRYSTAL SET CON-
 STRUCTIONS - $4.50
 A variety of crystal sets to
 build - the easy way.

- ELECTRONIC SCIENCE
 PROJECTS - $4.50
 Simple to com-
 plete science projects
 with a strong practical
 bias.

- CRYSTAL SET CON-
 STRUCTIONS - $4.50
 A variety of crystal sets to
 build - the easy way.

- ELECTRONIC SCIENCE
 PROJECTS - $4.50
 Simple to com-
 plete science projects
 with a strong practical
 bias.

- CRYSTAL SET CON-
 STRUCTIONS - $4.50
 A variety of crystal sets to
 build - the easy way.

- ELECTRONIC SCIENCE
 PROJECTS - $4.50
 Simple to com-
 plete science projects
 with a strong practical
 bias.

- CRYSTAL SET CON-
 STRUCTIONS - $4.50
 A variety of crystal sets to
 build - the easy way.

- ELECTRONIC SCIENCE
 PROJECTS - $4.50
 Simple to com-
 plete science projects
 with a strong practical
 bias.

- CRYSTAL SET CON-
 STRUCTIONS - $4.50
 A variety of crystal sets to
 build - the easy way.

- ELECTRONIC SCIENCE
 PROJECTS - $4.50
 Simple to com-
 plete science projects
 with a strong practical
 bias.

- CRYSTAL SET CON-
 STRUCTIONS - $4.50
 A variety of crystal sets to
 build - the easy way.

- ELECTRONIC SCIENCE
 PROJECTS - $4.50
 Simple to com-
 plete science projects
 with a strong practical
 bias.

- CRYSTAL SET CON-
 STRUCTIONS - $4.50
 A variety of crystal sets to
 build - the easy way.

- ELECTRONIC SCIENCE
 PROJECTS - $4.50
 Simple to com-
 plete science projects
 with a strong practical
 bias.

- CRYSTAL SET CON-
 STRUCTIONS - $4.50
 A variety of crystal sets to
 build - the easy way.

- ELECTRONIC SCIENCE
 PROJECTS - $4.50
 Simple to com-
 plete science projects
 with a strong practical
 bias.

- CRYSTAL SET CON-
 STRUCTIONS - $4.50
 A variety of crystal sets to
 build - the easy way.

- ELECTRONIC SCIENCE
 PROJECTS - $4.50
 Simple to com-
 plete science projects
 with a strong practical
 bias.

- CRYSTAL SET CON-
 STRUCTIONS - $4.50
 A variety of crystal sets to
 build - the easy way.

- ELECTRONIC SCIENCE
 PROJECTS - $4.50
 Simple to com-
 plete science projects
 with a strong practical
 bias.

- CRYSTAL SET CON-
 STRUCTIONS - $4.50
 A variety of crystal sets to
 build - the easy way.

- ELECTRONIC SCIENCE
 PROJECTS - $4.50
 Simple to com-
 plete science projects
 with a strong practical
 bias.

- CRYSTAL SET CON-
 STRUCTIONS - $4.50
 A variety of crystal sets to
 build - the easy way.

- ELECTRONIC SCIENCE
 PROJECTS - $4.50
 Simple to com-
 plete science projects
 with a strong practical
 bias.

- CRYSTAL SET CON-
 STRUCTIONS - $4.50
 A variety of crystal sets to
 build - the easy way.

- ELECTRONIC SCIENCE
 PROJECTS - $4.50
 Simple to com-
 plete science projects
 with a strong practical
 bias.

- CRYSTAL SET CON-
 STRUCTIONS - $4.50
 A variety of crystal sets to
 build - the easy way.

- ELECTRONIC SCIENCE
 PROJECTS - $4.50
 Simple to com-
 plete science projects
 with a strong practical
 bias.

- CRYSTAL SET CON-
 STRUCTIONS - $4.50
 A variety of crystal sets to
 build - the easy way.

- ELECTRONIC SCIENCE
 PROJECTS - $4.50
 Simple to com-
 plete science projects
 with a strong practical
 bias.

- CRYSTAL SET CON-
 STRUCTIONS - $4.50
 A variety of crystal sets to
 build - the easy way.

- ELECTRONIC SCIENCE
 PROJECTS - $4.50
 Simple to com-
 plete science projects
 with a strong practical
 bias.

- CRYSTAL SET CON-
 STRUCTIONS - $4.50
 A variety of crystal sets to
 build - the easy way.

- ELECTRONIC SCIENCE
 PROJECTS - $4.50
 Simple to com-
 plete science projects
 with a strong practical
 bias.

- CRYSTAL SET CON-
 STRUCTIONS - $4.50
 A variety of crystal sets to
 build - the easy way.

- ELECTRONIC SCIENCE
 PROJECTS - $4.50
 Simple to com-
 plete science projects
 with a strong practical
 bias.

- CRYSTAL SET CON-
 STRUCTIONS - $4.50
 A variety of crystal sets to
 build - the easy way.

- ELECTRONIC SCIENCE
 PROJECTS - $4.50
 Simple to com-
 plete science projects
 with a strong practical
 bias.

- CRYSTAL SET CON-
 STRUCTIONS - $4.50
 A variety of crystal sets to
 build - the easy way.

- ELECTRONIC SCIENCE
 PROJECTS - $4.50
 Simple to com-
 plete science projects
 with a strong practical
 bias.

- CRYSTAL SET CON-
 STRUCTIONS - $4.50
 A variety of crystal sets to
 build - the easy way.

- ELECTRONIC SCIENCE
 PROJECTS - $4.50
 Simple to com-
 plete science projects
 with a strong practical
 bias.

- CRYSTAL SET CON-
 STRUCTIONS - $4.50
 A variety of crystal sets to
 build - the easy way.
Allow X-on/X-off devices to interact with lead-control devices.

R. L. L. Hu

When physical differences exist between devices, special adapters and interface converters can resolve the problems of electrical and mechanical interconnection (for example, interfacing between RS232 and RS422 circuits which differ in signal level and connector size). However, when logical differences exist, then a protocol or code converter is required. Protocol and code converters are used in situations where communication between devices cannot proceed due to lack of comprehension of each other's data. They "bridge the gap" for differences in transmission mode, transmission code, communications protocol, etc.

This article describes a protocol converter that will allow RS232 asynchronous terminals or CPU's which operate in X-on/X-off (also called DC1/DC3, Control-Q/Control-S) protocol to communicate with devices that use RS232 lead control for handshaking (e.g. RTS, CTS). Specifically, this project was developed to run a serial printer with hardware-busy handshake from an RS232 port which supported only X-on/X-off software handshake. The use of this converter has freed the host program from all timing considerations (insertion of delays or filler characters), and results in faster and

FIG. 1—BLOCK DIAGRAM provides an easy means to overview the circuit and gain sufficient grasp to make it easy to understand. See text.
more reliable operation. Notable features of this project are that it is powered by the RS232 signal lines and it does not even use a UART or ACIA chip! The whole circuit is built using standard digital CMOS chips.

Description

First, a quick overview, using host-to-printer interface as an example of the X-on/X-off protocol in operation. The printer keeps track of how many characters are in its buffer and signals the host when it can and cannot accept more data. When the printer buffer is almost full, the printer sends the host an X-off character to stop the data transmission. Meanwhile, the printer continues to print the data in its buffer. When the buffer content is reduced below a certain threshold, the printer sends the host an X-on character to resume the data transmission. Thus, during normal printing, the printer buffer is kept nearly full by the host, resulting in maximum throughput on the printer.

Refer to the block diagram in Figure 1 to see how this

![Diagram of the converter](image)

FIG. 2—SCHEMATIC DIAGRAM of converter. Note that the printer side is shown at left, the HOST at right. Text will clarify the schematic for you.
is accomplished in the converter. Serial data from the host is passed directly to the printer. The BUSY line from the printer is, however, first fed to the converter. The converter then sends the appropriate control code to the host unit, but only when there has been a change in the BUSY line state. The changes in states are detected by "remembering" the previous BUSY state and comparing it with the present BUSY state.

Now look at the schematic diagram, Figure 2, for the following detailed description.

The power for this converter is derived from an active RS232 control line, the usual choices being DSR or DTR. D4, D5 and C3, C4

form a voltage inverter which is powered by the oscillator/driver combination of IC4d and IC1c and d. This generated negative supply voltage is used by the op amp IC7b, to drive the RS232 line to the host.

The baud rate clock is built using a Schmitt Trigger, IC4, making possible a simple and reliable oscillator with only a resistor and a capacitor. This eliminates the need for the more-expensive crystal and baud-rate generator chip. The baud rate clock was set to run at 2400Hz (2400 baud) in the prototype unit. This baud rate can be changed by using different values for R4 and C1. Just make sure to set the same baud rate on the

FIG. 3—THE PC BOARD is shown above (solder side, component side to left) full size for those who desire to fabricate their own boards. See parts list for name and address of source for completed circuit boards. Solder side is above, component side to the left.

FIG. 4—PARTS PLACEMENT DIAGRAM, component side of board.
The following are available from Capulum Ltd., 814 Proctor Avenue, Ogdensburg, N.Y. 13669: printed circuit board, double sided with plated-through holes for $12. Assembled and tested unit, complete with connectors for $49. Add $2 for postage and handling. New York residents must add sales tax. Money order or Visa. (613) 726-1966.

The "previous state" circuit is built using flip-flops and XOR gates. The BUSY line from the printer is sampled at each clock cycle. If it has changed from the previous time it was sampled, the output of IC1a XOR will go active low. This signal initiates the sequence necessary for transmission of X-on/X-off code. During these transmissions, the BUSY line is not sampled.

The parallel-to-serial circuitry is made up of shift register, binary counter and flip-flops. The shift register is loaded with either X-on (hex 13) or X-off (hex 11) ASCII code, depending on the present state of the BUSY line. The binary counter counts out 10 pulses (1 start, 7 data, and 2 stop bits) and upon completion, allows the "previous state" circuitry to be updated once again.

The RS232 receiver and driver are constructed using low power op amps. The op amp driver provides the bipolar output necessary to drive the host RS232 TxD input line.

Construction

The building of this converter is straightforward. There are no critical components. The prototype unit was built using a Scotchflex 3303 Breadboard Kit. However, use of the PC board is recommended to minimize construction errors and to save time. A layout for the printed circuit board is provided full size in Figure 3. See parts-placement diagram for location of components on the PC board (Figure 4).

Calibration

Connect the converter board to the host unit. Check the voltage level of +Vdd and -Vee. Note that the magnitude of the -Vee will be about 1.2V less than +Vdd, due to the two diode drops at the inverter circuit. Make sure the RS232 voltage levels do not exceed ± 15 volts; ± 15 being the recommended maximum voltage for operating the CMOS chips. Install a zener diode in the circuit if necessary. Check and adjust R3 for an oscillator frequency of 9400Hz. This frequency does not have to be very accurate, since each start bit synchronizes the receiver clock of the UART/ACIA in the host. Timing errors are thus non-cumulative.

Troubleshooting

If you have problems in making the converter work properly, the best way to troubleshoot is through a terminal program on the host. Install jumper JP1. This jumper will force bit 6 of the transmitted code high, which means that DC1/DC3 control codes will now be displayed as letters 'Q' and 'S'. Then, with the converter connected between the host and the printer, take the printer offline and send enough characters to fill the printer buffer (effectively generating a BUSY signal). You should then receive a DC3 code (now displayed as letter 'S') back in your terminal program. Take the printer back online. The printer should start printing and you should receive a DC1 code (letter 'Q') as soon as the buffer empties. If the order of the received codes is reversed, invert the BUSY signal by tying jumper JP2 to ground instead of +Vdd. If you receive garbage characters, check the baud rate, word length, stop bits and parity. The host should be set up to accept baud rate of 9400, 7 data bits, 2 stop bits and no parity (same as 7 data bits, mark parity and 1 stop bit). If nothing is received at all when the printer is taken offline and online, then scope test test point TP1 on the converter. A negative-going pulse should be observed each time the printer goes busy or not-busy. Presence of pulses here indicates the fault to be in the shift register, counter, or RS232 driver circuitry. Absence of pulses here would suggest problems in the "previous state" flip-flop circuitry. Be sure to remove JP1 when you are finished. One final note: The frequency of the oscillator does change with the circuit voltage, so set the frequency at the voltage at which the converter will operate. Alternatively, you can install the optional zener diode D8, provided DSR or DTR line voltage is sufficient. This way, the frequency will not change with different line voltage. A current limiting resistor in place of jumper JP3 is needed if DSR or DTR line is powered by an external power supply and not by an RS232 line driver.

The author's manuscript was printed using WordStar with X-on/X-off protocol, the protocol converter and a lead control serial printer.

minimize construction errors and to save time. A layout for the printed circuit board is provided full size in Figure 3. See parts-placement diagram for location of components on the PC board (Figure 4).

Calibration

Connect the converter board to the host unit. Check the voltage level of +Vdd and -Vee. Note that the magnitude of the -Vee will be about 1.2V less than +Vdd, due to the two diode drops at the inverter circuit. Make sure the RS232 voltage levels do not exceed ± 15 volts; ± 15 being the recommended maximum voltage for operating the CMOS chips. Install a zener diode in the circuit if necessary. Check and adjust R3 for an oscillator frequency of 9400Hz. This frequency does not have to be very accurate, since each start bit synchronizes the receiver clock of the UART/ACIA in the host. Timing errors are thus non-cumulative.

Troubleshooting

If you have problems in making the converter work properly, the best way to troubleshoot is through a terminal program on the host. Install jumper JP1. This jumper will force bit 6 of the transmitted code high, which means that DC1/DC3 control codes will now be displayed as letters 'Q' and 'S'. Then, with the converter connected between the host and the printer, take the printer offline and send enough characters to fill the printer buffer (effectively generating a BUSY signal). You should then receive a DC3 code (now displayed as letter 'S') back in your terminal program. Take the printer back online. The printer should start printing and you should receive a DC1 code (letter 'Q') as soon as the buffer empties. If the order of the received codes is reversed, invert the BUSY signal by tying jumper JP2 to ground instead of +Vdd. If you receive garbage characters, check the baud rate, word length, stop bits and parity. The host should be set up to accept baud rate of 9400, 7 data bits, 2 stop bits and no parity (same as 7 data bits, mark parity and 1 stop bit). If nothing is received at all when the printer is taken offline and online, then scope test test point TP1 on the converter. A negative-going pulse should be observed each time the printer goes busy or not-busy. Presence of pulses here indicates the fault to be in the shift register, counter, or RS232 driver circuitry. Absence of pulses here would suggest problems in the "previous state" flip-flop circuitry. Be sure to remove JP1 when you are finished. One final note: The frequency of the oscillator does change with the circuit voltage, so set the frequency at the voltage at which the converter will operate. Alternatively, you can install the optional zener diode D8, provided DSR or DTR line voltage is sufficient. This way, the frequency will not change with different line voltage. A current limiting resistor in place of jumper JP3 is needed if DSR or DTR line is powered by an external power supply and not by an RS232 line driver.

The author's manuscript was printed using WordStar with X-on/X-off protocol, the protocol converter and a lead control serial printer.
TOUCHSCREEN TECHNOLOGY

Something new has been added...

Marc Stern

Based on surface acoustic wave (SAW) technology, the Zenith system relies on piezoelectric elements to generate SAWs. Acoustic reflector strips on each edge of the tube face send the SAWs across the screen and an invisible matrix of touchpoints is created. (See Fig. 1)

When the matrix is broken by a touch, an amplitude dip is created. The timing and depth of the dip indicates the location and pressure of the touch.

This concept was first developed in the early 1970s in a system which used a set of parallel SAW beams, in the same manner that infrared LED touch systems are used today. Rows of transducers are placed on opposite edges of a glass panel and are cycled; one transmit-receive set is turned on at a time. In this system, transmission attenuation on one of the possible paths determines the position of the touch.

The need for transducers along a minimum of two edges imposes a cost penalty. To reduce costs, Zenith rethought the concept and borrowed from reflective array technology to complete its acoustic touchscreen. The reason it proved attractive enough for Zenith's work is its good signal-to-noise ratio and the absence of spurious reflections or transducer ringing.

Using a single transducer in the upper left corner of the touchscreen panel, a short burst of SAWs is emitted. Traveling along the top edge of the screen, the SAWs run into an array of partial reflectors, positioned 45 degrees to the direction of wave travel.

Wavelets

This array produces wavelets which travel vertically down the face of the screen. Because of the positioning of the reflectors, wavelets coming from reflectors farther to the right lag behind those which are reflected further to the left.

Eventually, this train of wavelets reaches an upside-down mirror image of the upper array at the bottom of the screen panel. The wavelets hitting the receive array are directed toward the receive transducer to the left. Note that the later wavelets produced to the right are further delayed by a longer return path. (See Fig. 2)

The planned delay of wavelets produces a continuous signal with a long rectangular envelope. The screen panel is covered by a continuous flow of wavelets with different transit times and each point on the time axis corresponds to a specific vertical path along the screen panel.

The attenuation dip caused by a touch appears in the output signal and indicates the position.

This system uses a fixed frequency in the 4 to 10 MHz range. The signal must be weighted so the amplitude of the signal remains constant across the screen panel, rather than decreasing exponentially over time. The designers, therefore, lowered the reflectivity of the array closest to the transmitter, where the signal is the strongest and used the highest reflectivity available at the other end.

Because of technical considerations, such as the SAW's velocity on soda-lime glass, it was found the optimum placement of the reflective elements is 0.75 mm, positioned at 45 degrees. In the perpendicular plane, spacing is 0.53 mm, or half a wavelength. A 50 percent duty factor means the strips should also be 0.97 mm wide. They are 5 microns thick. Therefore, the reflective elements can be screen printed on a panel.

Pressure dependable

A surface wave will be more deeply attenuated as a

FIG. 1—THE ZENITH ACOUSTIC TOUCHSCREEN system is the first to offer three-dimensional touchpoints. It uses acoustic wave technology to create a matrix of inaudible soundwaves across the tube face, providing a depth coordinate as well as vertical and horizontal points.

FIG. 2—USING ARRAY TECHNOLOGY, the Zenith system relies on a transmit transducer and an upside-down mirror image receiver to produce an acoustic wave system that bathes a CRT screen system with soundwaves. It is used in the horizontal and vertical plane.
finger is pressed harder on a screen and thus the signal’s dip is deeper.

Functions can be designed in which take advantage of it. To move a cursor a user might be instructed to press lightly and to make a program choice he might be instructed to press firmly.

In operation, the Zenith SAW system is three-dimensional. It generates the usual X and Y axis points, but also a pressure point. Available in one to 16 pressure levels, it can generate a maximum resolution of 50 touch points per inch. Thus, a 14-inch CRT can have a total of 512 by 384 touchpoints.

In the acoustic touch system, the piezoelectric elements can be mounted directly on the surface of the cathode ray tube or they can also be placed on a glass overlay. When they are excited electrically, they emit SAWs, which are reflected off the reflective strip arrays mounted along each edge of the tube surface. They send the SAWs across the screen and create the invisible matrix of touchpoints.

When a finger breaks the sound waves, two or more transducers sense it and a microprocessor locates the sources of the break at its horizontal and vertical crosspoints. And, because SAWs are affected by the amount of pressure applied, this system can not only generate the traditional X and Y information common to other forms of touch systems, but also a Z or third positional input that is based on pressure.

Three-dimensional

Because it can generate an extra dimensional input, it is possible for the SAW system to be more versatile than the standard touchscreen system. Most standard touchscreen systems can generate touchpoint resolutions from 1,024 by 1,024 to nearly 4,000 by 4,000, but these are only two-dimensional (X,Y) inputs which, while they do yield good positional inputs, fail to yield any other information. Adding the pressure or Z axis allows a company to build in more functionality because a system cannot only place the touchpoint in space, but it also has a pressure reference which can serve another function.

The resistive-membrane system is the more common type. It's been used for years and relies on a grid of resistive elements. When the elements are pressed a current corresponding to the X and Y axes is generated.

Generally transparent, the typical resistive or resistive-membrane touchscreen may have a layer of dots sandwiched in its construction. Although these dots are largely for show, they help a user locate where an input is generated. The resistive element is the important piece of the sandwich and it is a transparent layer of metallic material that has been included in the membrane’s construction. When this comes in contact with a second element a current from a touchpoint is generated and a microprocessor senses the input.

The drawback with is that it cuts down on the visibility of a CRT because of the number of layers that are superimposed on the glass.

A resistive system relies on the current between a fingertip and the resistive element on glass. Since it becomes part of the glass, it can be clearer than the traditional resistive-membrane system. It is less prone to damage from sharp instruments.

The second type of touchscreen technology works in a similar manner to the acoustic wave, except that it uses banks of LEDs and infrared detectors. In this system, LED transmitters are placed along the X and Y axis and receivers are placed opposite them. The LEDs transmit vertically and horizontally, from the bezel surrounding the CRT screen, and where a fingertip interrupts the LED beams input is generated.

This type of system will operated an X-Y position, but is incapable of generating a third dimension.

More flexibility

The Zenith system is important because of the added flexibility it gives to a touchscreen system. A system can be programmed to recognize the increased pressure and can then ask if a user would like to take a new or extra action. It can be programmed to ask a user if the action sought is the correct one.

The SAW system can be programmed to take a user through several steps in a program just by pressing the screen a little harder.

Finally, because it relies on transducers surrounding the CRT, there is no diminution of the screen’s visibility and since only two piezoelectric sensors are used and a corresponding number of receivers, the system has few parts and should be more trouble-free.

This isn’t the first time Zenith has used SAW technology. It has used this technology for years in television sets. It’s the novel approach in touchscreens that makes it interesting and because of its reliability and relatively low cost, it should be appealing to broad areas of the market. It’s a technology with the potential to reshape the market in its own image.

Additionally, it will have impact beyond the CRT market. Because it’s an add-on, it can be used with a wide variety of products. For example, it can become part of a graphics tablet package (See Fig. 3). This will allow the user fingertip control of a computer. It’s just another use of this versatile technology.

FIG. 3—THE SAW SYSTEM is highly versatile. It can be integrated with a graphics tablet to control a personal computer or terminal.
COMMUNICATIONS CORNER

Amateur packet switching

BECAUSE OF THE "CONGLOMERIZATION" of most major manufacturing firms, few if any great technological breakthroughs are now made by hobbyists in basement workshops. Aside from the enormous expense involved, the development of a highly technical communications device or system often requires assistance from persons familiar with unrelated technologies—persons usually beyond the reach of the "crazy professor" working alone in a damp basement or a converted garage.

But there is still one source of manpower (personpower?) skilled in many conceivable technologies: amateur (ham) radio. From its vast pool of hundreds of thousands of technically-informed hobbyists you can come up with a handful of experts on just about any technology—people who are just itching to open up new frontiers in communications. It is that spirit of adventure that has transformed many specialized technologies and obscure laboratory phenomena into viable communications systems.

The latest contribution by the amateurs is something called "packet radio." Yes, you can say that there's nothing new about packet communications. And that's true. Packet communications is used by computer networks and some megabuck communications systems, but it's the hams who are making packet radio a very popular form of communications; packet may even replace SSB, RTTY, and even FM repeaters for anything but chit-chat.

How it works

The idea behind packet radio is shown in Fig. 1-a. For purposes of discussion, let's assume that data originates as entries on a keyboard, just as an actual message might originate. But that data could be chunks of a large database, programs, or just about anything else that can be represented in digital form.

Each station in a packet network is called a node, and two or more (possibly all) nodes are connected together by a simplex (single-wire) circuit. That circuit could be an actual wire, or it could be a line-of-sight radio link, a repeater, or even a satellite circuit. Or it could be any combination of those. The point is that in a simplex circuit stations send and receive on the same wire or frequency. Each node recognizes special protocol signals that switch the node from receive to transmit mode, that generate "busy" signals, etc.

For example, node A and node D might be across the room from each other, or they might be across the country from each other. In any case, to send data from node A to node D the computer at node A assembles data until it has a block of predetermined size. When the node senses that the communications line is clear it transmits an address—where the data is going to—and then the data.

If data must be echoed through a repeater in order to reach its destination, other nodes pick it up and pass it along. As shown in Fig. 1-b, the signal might travel through nodes B and C before they actually reach node D. Obviously, then, nodes B and C must be smart enough to know that they have to pass the signal on.

Since all nodes share a single circuit something must untangle their transmissions. Again, that is part of the protocol. When A is finished transmitting to B, B attempts to retransmit that packet to C. However, suppose that, at the very moment B is ready to transmit, C sends a packet of data to D. B then gets a "busy" when it polls C, so it waits until the circuit is clear. Depending on the system, D might transmit through C and B to E even while B was storing data that is to be passed through B.
(Things do get complex and might get a bit confusing at first, so re-read the preceding paragraph if you find it necessary.)

While all that is going on, A is assembling the next block of data, which it will transmit to B as soon as the circuit is clear. As you can see, the data is handled in small packets which are put on the system one at a time. The destination node assembles the packets in its memory into a single file, document, or whatever. When it receives a signal that it has received the last packet, it feeds the entire file into the user's computer where it can be saved for use when needed.

As you can see, at any given time there may be bits and pieces (packets) of various data files passing through various nodes. For example, while B is waiting for C to “unbusy” so it can transmit a packet to D, B might be transmitting a packet from E to A. Since the communications protocol prevents more than one node from transmitting at a time, for all practical purposes packet communications multiplexes a simplex communications path.

While data packets are usually a predetermined size (e.g., 256 bytes), message packets are usually a typed line; that is, all characters up to the carriage return. If you type a line and enter a carriage return, the node accepts that as a packet. If you type three lines and then a carriage return the node accepts all characters in those lines as a single packet.

The protocol includes checksum and ACK (ACKnowledge) signals which ensure that packets are received error-free. The checksum is a value that is a mathematically determined by the data in the packet. Every packet is transmitted with a checksum value. Each receiving node in the signal path calculates a checksum from the data it receives and compares that value with the checksum transmitted by the originating node. If that checksum matches the transmitted checksum, the receiving node sends an ACK signal to the originating node. That signal informs the originating node that the packet has been properly received and that the next packet can be transmitted.

On the other hand, if something caused a reception error, the received checksum will not match the transmitted checksum, so an ACK will not be sent to the originating node. It therefore knows that it must repeat the transmission. The originating node will continuously repeat the transmission as long as necessary until it receives an ACK, or an abort signal from the receiving node. That's the way communications integrity is maintained through many nodes, thousands of miles of wire, and geographically-distant radio circuits.

Right now, hobbyist packet equipment is expensive. But, as is common in this industry, someone will probably figure out a way to put a complete node on two VLSI IC’s that cost less than $29.95. And we’ll be happy to see that happen!

DRAWING BOARD
continued from page 85

a low, our circuit is addressing one of the soft switches. The two least significant bits of the address bus (A7 and A8) will determine which bank of our memory system to enable.

Since we only want to enable one bank at a time, the second part of our circuit has to be a one-of-four decoder. There are several IC’s we could use, but it’s always a good idea to keep the idea of system expansion in mind. The 4051 shown in Fig. 3 is a one-of-eight switch that we’ve used here before. It’s a CMOS analog switch that can handle either analog or digital signals; the digital mode is selected by tying pin 7 low. The data presented to the input at pin 3 is transferred to the output selected by the A0–A2 inputs (pins 9–11). Since we’re decoding four banks of memory with two inputs, we’ll use the most significant select line (A2) to enable the IC.

The last part of the circuit is a latch. The 4042 is a four-bit latch with a really neat feature. We can make it latch data on either a high or a low trigger by tying the polarity input (pin 6) high or low. The signal from the NAND gate is active low, so we’ll tie the POLARITY pin low. So, whenever a low is presented to the STORE input (pin 5), the data at the latch’s inputs will be stored. They’ll also appear at the latch’s outputs.

The circuit works like this: When one of our soft-switch addresses shows up on the system address bus, the output of the NAND gate goes low. That allows the 4051 to transfer that signal to the output selected by address lines A7 and A8. Since a low is also presented to the STORE input of the 4042, the state of the four 4051 outputs are latched and transferred to the memory enable lines. The result: the selected bank is enabled and the other three banks are disabled.

Caveats
There are a few considerations you should keep in mind when using that arrangement, or a similar one, to control a banked memory system. First, you’ll notice that there’s no way of predicting which states the latch’s output lines will be in when the system is first powered up. Zero, one, or even several of the memory banks could be enabled when you first apply power. That last possibility exists because the 4051 can have an illegal output state—more than one high output—if much noise is present at power up.

Previously, when we were faced with that sort of problem, we used an RC network to generate a quick-and-dirty reset pulse to make sure that things were set up the way we wanted them. But if you examine our circuit, you’ll see that it is, unfortunately, too complicated for that type of reset. A simple reset pulse just won’t work since there are so many variables involved. A hardware reset would have to control all the circuit elements, so it would be very difficult to design.

But there are other ways to solve that problem. However, we’re out of space for now, so we’ll have to wait till next time to see the solution, and also wrap up our discussion of memory management.
A $10,000 Challenge To Escort

Let’s cut through the Radar Detector Glut. We challenge Escort to a one on one Distance and Falsing ‘duel to the death’ on the highway of their choice. If they win, the $10,000 check pictured below is theirs.

By Drew Kaplan

We’ve put up our $10,000. We challenge Escort to take on Maxon’s new Dual Superheterodyne RD-1 $999® radar detector on the road of their choice in a one on one conflict.

Even Escort says that everyone compares themselves to Escort, and they’re right. They were the first in 1978 to use superheterodyne circuits and they’ve got a virtual stranglehold on the magazine test reports.

But, the real question today is: 1) How many feet of sensing difference, if any, is there between this top of the line Maxon Detector and Escort’s? And 2) Which unit is more accurate at interpreting real radar versus false signals?

So Escort, you pick the road (continental U.S. please). You pick the equipment to create the false signals. And finally, you pick the radar gun.

Maxon and DAK will come to your highway with engineers and equipment to verify the results. And oh yes, we’ll have the $10,000 check (pictured) to hand over if you beat us by more than 10 feet in either X or K band detection.

BOB SAYS MAXON IS BETTER

Here’s how it started. Maxon is a mammoth electronics prime manufacturer. They actually make all types of sophisticated electronic products for some of the biggest U.S. Electronics Companies. (No, they don’t make Escort’s).

Bob Thetford, the president of Maxon Systems Inc., and a friend of mine, was explaining their new RD-1 anti-falsing Dual Superheterodyne Radar detector to me. I said “You know Bob, I think Escort really has the market locked up.” He said, “Our new design can beat theirs”.

So, since I’ve never been one to be in second place, I said, “Would you bet $10,000 that you can beat Escort?” And, as they say, the rest is history.

By the way, Bob is about 6’9” tall, so if we can’t beat Escort, we can sure scare the you know what out of them. But, Bob and his engineers are deadly serious about this ‘duel’. And you can bet that our $10,000 is serious.

We ask on the following, 1) The public be invited to watch. 2) Maxon’s Engineers as well as Escort’s check the radar gun and monitor the test and the results.

3) The same car be used in both tests.

4) We do this test during the summer when it’s warm (I’m from California, and anything below 80° will do me in.)

5) We’d like an answer from Escort no later than June 1, 1986 and 30 days notice of the time and place of the conflict. And, 6) We’d like them to come with a $10,000 check made out to DAK if we win.

SO WHAT’S DUAL SUPERHETERODYNE?

Ok, so far we’ve set up the conflict. Now let me tell you about the new dual superheterodyne technology that lets Maxon leap ahead of the pack.

It’s a technology that tests each suspected radar signal 4 separate times before it notifies you, and yet it explodes into action in just 1/4 of one second.

Just imagine the sophistication of a device that can test a signal 4 times in less than 1/4 of one second. Maxon’s technology is mind boggling.

But, using it isn’t. This long range detector has all the bells and whistles. It has a separate audible sound for X and K radar signals because you’ve only got about 1/3 the time to react with K band.

There’s a 10 step LED Bar Graph Meter to accurately show the radar signal’s strength. And, you won’t have to look at a needle in a meter. You can see the Bar Graph Meter with your peripheral vision and keep your eyes on the road and put your foot on the brake.

So, just turn on the Power/Volume knob, clip it to your visor or put it on your dash. Then plug in its cigarette lighter cord and you’re protected.

And you’ll have a very high level of protection. Maxon’s Dual Conversion Scanning Superheterodyne circuitry combined with its ridge guide wideband horn internal antenna, really ferrets out radar signals.

By the way Escort, we’ll be happy to have our test around a bend in the road or over a hill. Maxon’s detector really picks up ‘ambush type’ radar signals.

And the key word is ‘radar’, not trash signals. The 4 test check system that operates in 1/4 second gives you extremely high protection from signals from other detectors, intrusion systems and garage door openers.

So, when the lights and X or K band sounds explode into action, take care, there’s very likely police radar nearby. You’ll have full volume control, and a City/Highway button reduces the less important X band reception in the city.

Maxon’s long range detector comes complete with a visor clip, hook and loop dash board mounting, and the power cord cigarette adaptor.

It’s much smaller than Escort at just 3½” Wide, 4¾” deep and 1¼” high. It’s backed by Maxon’s standard limited warranty. Note from Drew: 1) Use of radar detectors is illegal in some states.

2) Speeding is dangerous. Use this detector to help keep you safe when you forget, not to get away with speeding.

CHECK OUT RADAR YOURSELF RISK FREE

Put this detector on your visor. When it sounds, look around for the police. There’s a good chance you’ll be saving money in fines and higher insurance rates. And, if you slow down, you may even save lives.

If you aren’t 100% satisfied, simply return it in its original box within 30 days for a courteous refund.

To get your Maxon, Dual Superheterodyne, Anti-Falsing Radar Detector risk free with your credit card, call toll free or send your check for just $999® ($4 P&H).

Order No. 4407. CA res add tax.

OK Escort, it’s up to you. We’ve got $10,000 that says you can’t beat Maxon on the road. Your answer, please?

Escort is a registered trademark of Cincinnati Microwave.

Dak Industries Incorporated

TOLL-FREE ORDER LINE

For credit card orders call 24 hours a day 7 days a week

CALL TOLL-FREE...1-800-325-0800

8200 Remmet Ave., Canoga Park, CA 91304

Dept. RE37

JULY 1986
91
MARKET CENTER

FOR SALE

TUBES, new, unused. Send self-addressed, stamped envelope for list. FALA ELECTRONICS, Box 1276-2, Milwaukee, WI 53201.

LINEAR PARTS—TUBES—TRANSISTORS—RF TYPE AD PLUS ALL BOLD FACE AD: add 45% premium to total price. EXPANDED TYPE AD: $4.30 per word prepaid. All other items same as for STANDARD COMMERCIAL RATE. TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD PLUS ALL BOLD FACE AD: add 45% premium to total price. DISPLAY ADS: $1 x 2¼" = $310.00, 2 x 2¼" = $620.00; 3 x 2¼" = $930.00. General Information: Frequency rates and prepaid discounts are available. ALL COPY SUBJECT TO PUBLISHERS APPROVAL. ADVERTISEMENTS USING R.Q. BOX ADDRESS WILL NOT BE ACCEPTED UNTIL ADVERTISER SUPPLIES PUBLISHER WITH PERMANENT ADDRESS AND PHONE NUMBER. Copy to be in our hands on the 12th of the third month preceding the date of the issue. (i.e., August issue copy must be received by May 12th). When normal closing date falls on Saturday, Sunday or Holiday, issue closes on preceding working day.

WHOLESALE catalog of unusual money making electronic items. Dealers wanted. Rush $1. CROSLEY (A), Box 840, Champlain, NY 12919.

WANTED: WESTERN ELECTRIC, RCA, Marantz, McIntosh, Telefunken, Dynaco, Aetc, EV TUBES, Amplifiers, Speakers. (713) 728-4343, MAURY, 11122 Atwell, Houston, TX 77096.

ENCLOSURES: Beautiful aluminum and wood hobby box priced. MAIL ORDER $3.00 + $2.00 shipping. Information free. ENERGY ENGINEERING, RF 4, Box 330, Fayetteville, AR 72701.

APPLE public domain software over 150 programs on six disks. Radio-Electronics $52.00 payable to: H.M. TECHNOLOGY, Dept. 1207 Ave. U, Brooklyn, NY 11229.

FREE TRANSISTORS: Sample of PN222 and 2N3904 with our Catalog of Budget Priced Electronic Components for hobbyists and industry. Send $2.00 P&H (refundable) BUDGET ELECTRICAL, Box 1477, Moreno Valley, CA 92388 (714) 653-1663.

CLASSIFIED AD ORDER FORM

To run your own classified ad, put one word on each of the lines below and send this form along with your check to:

Radio-Electronics Classified Ads, 500-B Bi-County Boulevard, Farmingdale, NY 11735

PLEASE INDICATE in which category of classified advertising you wish your ad to appear. For special headings, there is a surcharge of $23.00.

() Plans/Kit () Business Opportunities () For Sale

() Education/Instruction () Wanted () Satellite Television

Special Category: $23.00

PLEASE PRINT EACH WORD SEPARATELY, IN BLOCK LETTERS.

(No refunds or credits for typesetting errors can be made unless you clearly print or type your copy.) Rates indicated are for standard style classified ads only. See below for additional charges for special ads. Minimum: 15 words.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15 ($47.25)</td>
</tr>
<tr>
<td>16 ($45.60)</td>
<td>17 ($48.45)</td>
<td>18 ($51.30)</td>
<td>19 ($54.15)</td>
<td>20 ($57.00)</td>
</tr>
<tr>
<td>21 ($59.85)</td>
<td>22 ($62.70)</td>
<td>23 ($65.55)</td>
<td>24 ($68.40)</td>
<td>25 ($71.25)</td>
</tr>
<tr>
<td>26 ($74.10)</td>
<td>27 ($76.95)</td>
<td>28 ($79.80)</td>
<td>29 ($82.65)</td>
<td>30 ($85.50)</td>
</tr>
<tr>
<td>31 ($88.35)</td>
<td>32 ($91.10)</td>
<td>33 ($94.95)</td>
<td>34 ($98.80)</td>
<td>35 ($99.75)</td>
</tr>
</tbody>
</table>

We accept MasterCard and Visa for payment of orders. If you wish to use your credit card to pay for your ad fill in the following additional information (Sorry, no telephone orders can be accepted):

Card Number
Expiration Date
Signature

IF YOU USE A BOX NUMBER YOU MUST INCLUDE YOUR PERMANENT ADDRESS AND PHONE NUMBER FOR OUR FILES. ADS SUBMITTED WITHOUT THIS INFORMATION WILL NOT BE ACCEPTED. CLASSIFIED COMMERCIAL RATE: (for firms or individuals offering commercial products or services) $2.65 per word prepaid (no charge for zip code). MINIMUM 15 WORDS, 5% discount for same ad in 6 issues; 10% discount for same ad in 12 issues within one year; if prepaid. NON-COMMERCIAL RATE: (for individuals who want to buy or sell a personal item) $2.30 per word prepaid... no minimum. ONLY FIRST WORD AND NAME set in bold caps at no extra charge. Additional bold face (not available as all caps) 50¢ per word additional (20% premium). Entire ad in boldface, add 20% premium to total price. TINT SCREEN BEHIND ENTIRE AD: add 25% premium to total price. TINT SCREEN BEHIND ENTIRE AD PLUS ALL BOLD FACE AD: add 45% premium to total price. EXPANDED TYPE AD: $4.30 per word prepaid. All other items same as for STANDARD COMMERCIAL RATE. TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD PLUS ALL BOLD FACE AD: add 45% premium to total price. DISPLAY ADS: 1" x 2¼" = $310.00, 2" x 2¼" = $620.00; 3" x 2¼" = $930.00. General Information: Frequency rates and prepaid discounts are available. ALL COPY SUBJECT TO PUBLISHERS APPROVAL. ADVERTISEMENTS USING R.O. BOX ADDRESS WILL NOT BE ACCEPTED UNTIL ADVERTISER SUPPLIES PUBLISHER WITH PERMANENT ADDRESS AND PHONE NUMBER. Copy to be in our hands on the 12th of the third month preceding the date of the issue. (i.e., August issue copy must be received by May 12th). When normal closing date falls on Saturday, Sunday or Holiday, issue closes on preceding working day.

CATALOG: Cable converters, both kits and assembled units. NI2 minicore $98.00 Jerrold 400 $93.00. Pulse scrambler kit (assemblies in half hour) $74.00, built $120.00. Satellite scrambler kit $119 built $190. Premium components, hobbyists send $3.00 MJ INDUSTRY (formerly minute kits). Box 531, Bronx, NY 10461.

BUGGING devices, long range self powered FM phone bug, $14.95 kit. Sensitive FM mini mike kit, $14.95. High power professional FM wireless mike kit, $22.95. Mad blaster TV jammer kit, $14.95 Visa, M/C, Catalog. $2.00.00 STUFF, 2575 Band Rd., Penfield, NY 14526, (716) 586-9590.

FILM Negatives 8x10: $6.00, positives $12.00. Layouts by quote. ADD GRAPHICS, Box 24361, Vancouver V5T 4M5 Canada.

1000 photofact folders from 1940's, 1950's and 1960's. Make offer JPB, 115 Melrose Ave., Vicksburg, MS 39180.

WHOLESALE car-radio, computer, telephone, audio-video accessories, antenna catalog (718) 897-0509, D & W, 68-12 110th St., Flushing, NY 11375.

6ft. Antenna $300.00, complete system $695.00 Free catalog. IN-X-SALES, Box 45 Tilton, NH 03276, (603) 296-3082.

WRITE FOR MCgee's

SPEAKER & ELECTRONICS CATALOG

1001 BARGAINS IN SPEAKERS

toll free 1-800-346-2433 for ordering only.

1901 MCgee STREET KANSAS CITY, MO. 64108
SB3 descrambler parts to construct project in Feb 84 Radio Electronics. $49.95 (Dealer inquiries invited). CROSLEY (A), Box 840, Champlain, NY 12919.

WORLDS best channel 3 notch filter. $39.95. (Dealer inquiries invited). CROSLEY (A), Box 840, Champlain, NY 12919.

200 Unique circuits low cost detailed surveillance gadgets test sound and more. Experimenters gold mine US $5.95 plus $1.50 postage. JSW, 2555 Benny, Suite 1403, Montreal H4B 2R6 Canada.

OLDTIME radio programs on high quality tapes. Comedy! Adventure! Music! Free catalog: CARL F. FROELICH, Heritage Farm, New Freedom, PA 17349

TV tunable notch filters, free brochure. D.K. VID-EO, Box 63, 6002, Margate, FL 33063 (305) 752-9202

TEST equipment, reconditioned. For sale. $1.25 for catalog. WALTER'S, 2697 Nickel, San Pablo, CA 94806 (415) 724-0587.

LASERS and high performance surplus components. Free catalog: M.J. NEAL COMPANY, 6672 Mallard Ct., Orient, OH 43146.

CABLE-TV converters and descramblers. Low prices, quality merchandise. We ship C.O.D. Send $2.00 for catalog. CABLETRONICS UNLIMITED, P.O. Box 266, South Weymouth, MA 02190 (617) 871-6500.

DESCRAMBLER plans for Jerrold. Theory, schematic, parts list, waveforms. For speedy delivery send $10.00 cash or money order. BAY STATE ELECTRONICS, P.O. Box 63, Accord, MA 02301.

FREE ADAPTER (Limited offer) with AS-SORTMENT #103 consisting of TOKO Coils 144LY-120K, 520 HN-300002, B3AN-K5552AXX (2); PCB; Transistors 2N3904 (2), BFQ55 (Sub); IC'S 7812, 74123, MC1330AP, Diodes IN914, IN5313B. Only $25.00. 10% Discount for 5 or more. Shipping $3.00/order. MC/Visa/COD. Toll Free 1-800-821-5225 Ext. 426. (orders) Jim Rhodes, Inc., 1025 Ransome Lane, Kingsport, TN 37660.

COLOR CODED WIRE

<table>
<thead>
<tr>
<th>COLOR</th>
<th>CODE</th>
<th>FEET/REEL</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED</td>
<td>R</td>
<td>500</td>
<td>RG3 Technologies, P.O. 276, Pittsburgh, PA 15214</td>
</tr>
</tbody>
</table>

Send Gauge and check or money order to MC or Visa to RG Technologies, P.O. Box 276, Pittsburgh, PA 15214

500 FT ONLY $19.95

CABLE-TV!

WE'LL MATCH OR BEAT ANYONE'S ADVERTISED RETAIL OR WHOLESALE PRICES!

BONANZA!

ITEM

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Single Unit Price</th>
<th>Dealer Unit Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCA 36 CHANNEL CONVERTER (CH. 3 OUTPUT ONLY)</td>
<td>29.95</td>
<td>18.00</td>
</tr>
<tr>
<td>PIONEER WIRELESS CONVERTER (OUR BEST BUY)</td>
<td>88.95</td>
<td>72.00</td>
</tr>
<tr>
<td>LCC-58 WIRELESS CONVERTER</td>
<td>92.95</td>
<td>76.00</td>
</tr>
<tr>
<td>JERROLD 450 WIRELESS CONVERTER (CH. 3 OUTPUT ONLY)</td>
<td>105.95</td>
<td>90.00</td>
</tr>
<tr>
<td>SB ADD-ON UNIT</td>
<td>109.95</td>
<td>58.00</td>
</tr>
<tr>
<td>BRAND NEW - UNIT FOR SCIENTIFIC ATLANTA</td>
<td>Call for specifics</td>
<td></td>
</tr>
<tr>
<td>MINICODE (N-12)</td>
<td>109.95</td>
<td>58.00</td>
</tr>
<tr>
<td>MINICODE (N-12) VARISYNC</td>
<td>119.95</td>
<td>62.00</td>
</tr>
<tr>
<td>MINICODE VARIYNSC W/AUTO ON-OFF</td>
<td>179.95</td>
<td>115.00</td>
</tr>
<tr>
<td>M-35 B (CH. 3 OUTPUT ONLY)</td>
<td>139.95</td>
<td>70.00</td>
</tr>
<tr>
<td>M-35 B W/AUTO ON-OFF (CALL FOR AVAILABILITY)</td>
<td>199.95</td>
<td>125.00</td>
</tr>
<tr>
<td>MLD-1200-3 (CALL IF CH 2 OUTPUT)</td>
<td>109.95</td>
<td>58.00</td>
</tr>
<tr>
<td>INTERFERENCE FILTERS - CH 3</td>
<td>24.95</td>
<td>14.00</td>
</tr>
<tr>
<td>JERROLD 400 OR 450 REMOTE CONTROLLER</td>
<td>29.95</td>
<td>18.00</td>
</tr>
<tr>
<td>ZENITH SAVI CABLE READY (DEALER PRICE BASED ON 5 UNITS)</td>
<td>225.00</td>
<td>185.00</td>
</tr>
</tbody>
</table>

SPECIFY CHANNEL 2 or 3 OUTPUT

Other products available - Please Call

Pacific Cable Company, Inc.
7325½ RESEDA BLVD., DEPT. R-7, RESEDA, CA 91335
(818) 716-5914 • No Collect Calls • (818) 716-5140

IMPORTANT: WHEN CALLING FOR INFORMATION
Please have the make and model # of the equipment used in your area. Thank You
TUBES: "OLDIES." LATEST Parts, components, schematics. SASE for list. STEINMETZ, 7519 Maplewood Ave., RE, Hammond, IN 46324.

SUBSCRIPTION Television descramblers: Oak built, surplus pull outs, are SineWave downconverters-descramblers. Units are tested and without AC power cords. Send $19.95 in money order or cashiers check or money order. PAPER ELECTRIC. Surplus 12970, Branford St. Suite "M" Arleta, CA. 91331.

TUBES, name brands, new. 80% off list, KIRBY, 296 West Carmel Drive, Carmel, IN 46032.

INDIVIDUAL, Photofaci-folders #1 to #1400. $3.00 postpaid. LOEB, 414 Chestnut Lane, East Meadow, NY 11554.

CABLE and Subscription TV secret manual. Build your own descramblers, converters. Instructions, schematics for Sine Wave. inband-outband gated sync, SSSAVI-(HBO, Showtime, Cinemax, UHF, etc.) Send $8.95 to CABLETRONICS, Box 30502R, Bethesda, MD 20814.

COPY-LESS-copy phone interference? We’ve got the answer. Have the power and the answer. Have the power and help. Have the power.

$50.00 worth. Quality Radio-Video parts—only $50.00! CX130, SG-274, PA-501—transistors, capacitors, others. Order from: DEPENDABLE-TV, Box 1645 C-Sted, St. Louis, MO 63103. Tested WTV-BNC-Probe, $89.95 plus $6.50 shipping. Tugan, 2614 W. Leland, Chicago, IL 60625.

THE NEW 65/9028 VT ANSI VIDEO TERMINAL BOARD!

A second generation, low cost, high performance, mini sized, single board for making your own RS232 Video Terminal. Use as a computer console or with a MODEM for hook up to any of the telephone-line computer services.

- Uses the new SMC 9028 Video Controller Chip coupled with a 6502A CPU.
- RS-232 at 16 Baud Rates from 50 to 19,200
- On board printer port!
- 24 X 8 format (50/60 Hz).
- For 15,750 Hz (Horiz.) monitors.
- 3 Terminal Modes: H-19, ADM3A, and ANSI X.34-1979
- Wide and thin-line graphics.
- White characters on black background or reversed.
- Character Attributes: De-Inten., Inverse or Underline.
- Low Power: 5VDC @ 0.1A. 12VDC @ 0.2A.
- Size: 6.5 X 5 inches.
- Composite or split video.
- 5 X 8 Dot Matrix characters (U/L case). Always back capability. Battery backed up status memory. For ASCII parallel keyboard.

$99.95 (Full Kit)

![Microsize Image](image-url)

SOURCE DISKETTE: PC/XT FORMAT 5¼ IN. $15

ADD $40 FOR A&T

Digital Research Computers (OF TEXAS)

P.O. BOX 381450 • DUNCANVILLE TX 75138 • (214) 225-2309

Call for a free catalog on Z-80 or 6809 Single Board Computers, SS-50 Boards, and other S-100 products.

TERMS Add $3.00 postage We pay balance. Orders under $15 add 75¢ handling No COD We accept Visa and MasterCard Texas Res add 5% of total. Tax may apply. Foreign orders except Canada add 20% for handling. Orders over $50 add 8% for insurance

RECOVER silver from home and industrial junk. Free silver with $10.00 booklet of items that contain silver. DON FOWLER, Box 4401, Cleveland, TN 37319.

DIGITAL ASSEMBLY BUSINESS

PLANS AND KITS

CATALOG: Hobby broadcasting 1750 Meters Ham/CB: Transmitters, amplifiers, antennas, scramblers,bugging devices, more PANAXIS. Box 130 P.O. Paradise, CA 95969.

CABLE TV converters: Jerrold products include "New Jerrold TRI-MODE", SB-3, Hamlin, Oak VN-12, M-35-B, Zenith, and more. UHF Deluxe II Kits, (quantity discounts) 60-day warranty. Service convertors sold here. For fast service COD orders accepted. Send SASE (60 cents postage) or call for Info. (312) 637-4408, HIGGINS ELECTRONICS, 5143-R W. Diversey, Chicago, IL 60639. No Illinois orders accepted.

Hi-Fi speaker systems, kits, auto speaker systems and speaker components from the world's finest manufacturers. For beginners and audiophiles. Free literature. AK5 SPEAKERS, Box 7452FL, Denver, CO 80207. (303) 399-8609.

Hi-Fi speaker systems, kits, auto speaker systems and speaker components from the world's finest manufacturers. For beginners and audiophiles. Free literature. AK5 SPEAKERS, Box 7452FL, Denver, CO 80207. (303) 399-8609.

PAY TV and Satellite Descrambling

73 pages of theory and schematics for all major systems. Fantasy and Anti-Oncos schematics included. Most complete reference available on satellite scrambling $12.95. MDS Handbook $10. Stun gun schematics $5

Subsystems under $600. $11.95 Printed circuits, kits catalog $2

SHOJKI ELECTRONICS CORP. 12376 Niagara Street

Niagara Falls, NY 14303 COD: 716-284-2183

**FREE catalog 99-cent kits—audio, video, TV, computer parts. AILKRT. 434 W. 4th St., West Islip, NY 11795.

PROJECTOR TV Convert your TV to project 7 foot picture. Results comparable to $2500 projector. Total cost less than $30.00. Plans and 8 lens $21.95. Illustrated information FREE MAC-ROCMA-GK. Washington Crossing, PA 18977. Creditcard orders 24 Hours (215) 736-3797.

**SAVE money, energy! Circuit makes batteries last longer! Use in your own invention! State of the art. Almost anyone can build. Plans $10.00. WAYNE KESSLER, Box 685, Plymouth Meeting, PA 19462.
CB MODIFICATIONS

Increase channels, range, privacy! We specialize in frequency expanders, speech processors, FM converters, PLL & slider tricks, how-to books, plans, kits. Expert mail-in repairs & conversions. 16-page catalog $2. Our 11th year!

Cable TV DESCRAMBLER PARTS!

We stock the exact parts. PCB board and AC adapter for Radio Electronics February 1984 article on building your own Cable TV Descrambler.

#701 PARTS PACKAGE
Includes all the original resistors, capacitors, diodes, transistors, integrated circuits, coils, IF transformers (toko BKAN-K5552AXX).

#702 PC BOARD
Original etched & drilled silk-screened PC board used in the article.

#704 AC ADAPTOR
Original 14 volts DC at 285ma ad adapter used in the article.

SPECIALS

BOTH #701 & #702
NOW $39

ALL THREE #701, #702 & #704
NOW $49

Add $2.50 shipping and handling — $4.50 for Canadian orders.

We also offer quantity Discounts on 5 or more units.

FREE

Reprint of Radio Electronics article (February 1984) on Building Your Own Cable TV Descrambler with any purchase of above.

ORDER

TOLL FREE
1-800-227-8529
VISA, MASTERCARD OR C.O.D.

J & W ELECTRONICS, INC.
P.O. BOX 800-D • MANSFIELD, MA 02048

EPROM Zapper Kit. Serial, parallel, stand alone. For information send to: EPROM KIT, 6910 Patterson, Caledonia, MI 49316.

NEW! FIBER OPTIC voice link. Send your voice over a beam of light via an optical fiber. Complete kit includes microphone, speaker, fiber, PCBs and all parts. Easy assembled. Introductory offer-send $34.95 to: FIBER SCIENCES, Kit-73A, PO Box 5355, Chatsworth, CA 91311-5355. CA residents add 6.5%.

VCR AMPLIFIER, transmits to any TV. FM transmitter, size of postage stamp, up to one mile range. Kits $24.95 each. Catalog $1.00, refundable with order. CAS Electronics, 1559-J Airm Dr., Suite 457, West Covina, CA 91792.

DIGITAL logic display and frequency meter kit $30. Vogel Enterprises, 2020 Diamond St., #2, San Diego, CA 92109.

NEW

50 dB Signal Rejection Filter
For elimination of objectionable TV interference

MODEL 26 - Suitable from channels 2 through 6
MODEL 1422 - Suitable from channels 14 through 22

($49.95 inst. $149 retail)

For free information, write or call ZAPLUS, 8863 Hollywood Blvd., Los Angeles, CA 90069.

KITS!
Sound effects generator, eprom programmer, function generator and more. All assembled and tested. Write for literature. SERENA INDUSTRIES, 1180-A Aster Ave., Sunnyvale, CA 94086.

BUILD CB base antenna cheap. Send $3.00 for plans. RML VENDING, 1911 West 13th Street, Grand Island, NE 68803.

PC/XT compatible three boards set, motherboard, graphic, and disc card. $225.00 less IC version. $115.00. Brochure available. AMT TECHNOLOGY, 1020 Bay Area Blvd., Suite 210, Houston, TX 77058 (713) 480-9506.

STEREO TV adapter kit easily converts any TV to receive the new stereo TV sound. Contains all parts PCB and instructions to build a quality stereo decoder. For additional information send $5.00 to SOKOLOWSKI, Box 150, Elmont, NY 11003.

PRINTED CIRCUIT BOARDS

PCB 15 cents sq.-in. free drilling. Quantity discounts. Professional work. INTERNATIONAL ENTERPRISE, 6452 Hazlicircle, Simi Valley, CA 93063.

WANTED

INVENTORS! AIM wants—ideas, inventions, new products, improvements on existing products. We present ideas to manufacturers. Confidentiality guaranteed. Call toll free 1-800-225-5800 for information kit.

CABLE-TV

DEALERS wanted: Channel 2.3, and 4 notch filters. More channels. Contact a man who sells. Write, CABLE TV, Box 291394, Davie, FL 33329.

REEL-TO-REEL TAPES

AMPEX professional open reel tape. 1800 or 2400-feet on 7-inch reels. Used once. Case of 40, $45.00, 10 1/2 x 3600 feet and cassettes available. MasterCard Visa, VALTECH ELECTRONICS, Box 6-RE, Richboro, PA 18954. (215) 322-4866.

DO IT YOURSELF TV REPAIR

NEW...REPAIR ANY TV...EASY Anyone can do it. Write, RESEARCH, R13 Box 6018R Colville, WA 99114.

INVENTORS

INVENTORS! Can you patent and profit from your ideas? Call AMERICAN INVENTORS CORPORATION for free information. Over a decade of service. 1-800-338-5656. In Massachusetts or Canada call (413) 588-3753.

PRINTED CIRCUIT BOARDS

GUARANTEED lowest quotes, average $12/12-inch (FR-4), last turnarund, prototype through production quantities. Send specifications, call for quotes. -T.O.R.C.C.C., ELECTRONICS, Box 47148, Chicago, IL 60674, (312) 342-9171.

EPROM PROGRAMMING

HOBBYISTS: Prestyled EPROMs sold with your programming installed. Program listing provided. Fast Service. Write or call: ROMULUS MICROCONTROL, Box 8669, Rockville, MD 20856, (301) 540-8863.
SATELLITE TV

CABLE TV SECRETS—the outlaw publication the cable companies tried to ban. HBO, Movie Channel, Showtime, descriptors, converters, etc. Supplies included. REDUCED CABLE FACTS, Box 711-R, Pataskala, OH 43062.

CABLE TV Book. Source Book. A complete listing of suppliers for hard-to-find converters, descriptors, technical information, schematics and much more. Full refund if not satisfied. Send $4.95 to CABLE Box 12505-R, Columbus, OH 43212.

SATELLITE Descrambler Schematics. Oak Orion PD-20 $20.00, VideoCipher $20.00 Video Cipher Patent $15.00 actual VideoCipher descrambler $350.00 catalog $5.00; send money order to ELECTRONIC PRESS, PO Box 10009, Colorado Springs, CO 80932.

CLOSED circuit feeds. You can watch your favorite TV shows days in advance when you know where to look. Send $5.00 to DOWNLINK, 9420 Reseda Blvd., #473R, Northridge, CA 91324.

WHOLESALE prices top brands only! Decoder information. Systems from $895.00 send $9.95 for complete satellite TV information and product catalog. SKYVISION, Yaritc Flats, Yaritc CA 66389.

BUILD your own satellite system and save! Instructions, schematics, parts! Send stamped envelope: XANDI, Box 25647, Dept. 12C, Tempe, AZ 85282.

MANUFACTURER direct! Best prices, LNAs, LN Bs, receivers, kits, accessories special: Receiver kit $59.00. Catalog $5.00; send $6.00 for catalog of all orders. RAMSEY ELECTRONICS, 2575 Baird Rd., Palmfield, NY 14526, (716) 586-3950.

PATENTED optical process satellite sound system. For information send $3.00 to BEDINI ELECTRONIC PRESS, Box 769, San Fernando, CA 91341.

SATELLITE systems $449.00, catalog $5.00. HBO descramblers. KU equipment STARLINK, INC., 2603-16R Arne, Huntsville, AL 35805.

*TRIPLE-X Satellite TV descrambler information: XXX - Adult Movies, ready to go - $225.00. NAS SAT, Box 5261, Long Beach, CA 90805 (213) 631-3552.

EDUCATION & INSTRUCTION

COMPUTER repair career training in 5 months by accredited Florida Electronics School. Lifetime placement assistance. Financed or self paid. CALL SYSTEMS TECHNOLOGY INSTITUTE (305) 331-2840.

HOBBYIST-need help? We will design, build your project, repair your kit. Unique parts found and supplied. Send your problem with SASS, 1-3-4 Engineering, PO Box 97, Littleton, MA 01460.

ATTENTION video camera owners! Learn how to do special effects, o expensive add-ons, and earn $500 free info! ORP VIDEO, Box 8214, St. Louis, MO 63114-3914.

FREE EVALUATION and ADVISORY SERVICE

For professional electronic technicians by nonprofit organization. Earn University Degree Bachelor's Degree through training. Staff Geared for previous schooling and professional experience, upgrade your earning power. Free Details.

CONTINUING EDUCATION ASSOCIATION

P.O. Box 1197 - Champlain, NY 12919-1197.

BLACK BOX DE-S-FURING THE SOLUTION TO SATELLITE SCRAMBLING VOLUME II

AMERICAN AND CANADIAN

Latest Satellite Technology Available. Over 100 pages of how to build with complete schematics. Parts list and catalog of parts & kits.

CONTENTS OF MANUAL

- 4 different types of satellite scrambling
- Modes of operation
- How to build a De-S-Fur
- Digital audio & CRT controllers
- Digital audio processors
- Schematic dia

ORDER: To order, send prepaid money order only for $29.95 plus S4.00 handling & shipping.

ORDER LINE (401) 333-4772, BELLEEA DIST. CO., PO Box 41, Warren, RI 02885.

BLACK BOX DE-S-FURING

BLACK BOX TO SATELLITE SCRAMBLING

POWER SUPPLIES

RESISTORS, any value (minimum 20 value). 1 watt ¥0.01 1.2 watt ¥0.02. Capacitors - 50V ceramic disk, all values ¥0.10. P.C.B. kits. Basic kit $4.00 (materials for 2 - 3"4" boards-included) or SASE for catalog of all orders. T.O.R.C.C.C., Box 47148, Chicago, IL 60647, (312) 342-9171.

ELECTRONICS SUPPLIES

RADAR SIGNAL DETECTOR

continued from page 52

power, background noise should be ignored. You may want to vary the value of R1 slightly to get a pleasant ringing frequency. Then adjust the threshold control (R5) in Figure 1: R2 in Figure 2.) so that received signals are just above the 1/f noise background.

You can test the detector on the work-

PARTS-LIST—ECONOMY MODEL

All resistors 1/4-watt, 5%.
R1-1.1 megohm
R2-27,000 ohms
R3-4,000 ohms
R5-100,000 ohms, panel-mount potentiometer

Capacitors
C1-0.12 µF
C2-0.01 µF
C3-100 µF 16 volts, electrolytic Semiconductors
IC1-4568 oup-amp Other components
S1-SPST switch
Piezo-electric transducer

PARTS-LIST—DELUXE MODEL

All resistors 1/4-watt, 5%.
R1-2.2 megohms
R2-27,000 ohms, trimmer potentiometer
R3-4700 ohms
R4, R6, R7-100,000 ohms
R5-25,000 ohms, panel-mount potentiometer

Capacitors
C1-0.22 µF
C2, C5-0.05 µF
C3-220 µF, 10 volts, electrolytic
C4-10 µF, 6 volts, electrolytic

Semiconductors
IC1-4568 oup-amp
IC2-LM366 audio power amplifier

Other components
SPKR-8-100 ohm miniature speaker

 bench by generating a millimeter-wave microwave signal. You don't need a fancy signal generator—just "arc" a small inductor (say 500 nH) across a nine-volt battery. A properly-functioning detector should ring loudly when a signal is generated in that manner fifty feet from the detector. You may want to experiment with different inductors at different distances from the detector.

Conclusions

Both circuits pick up low-level pulsed-RF signals. The detector responds to very short pulses and will continue to ring for several milliseconds. But the circuit will respond only to the beginning and the end of a CW (continuous-wave) signal. Using either circuit, you'll soon be able to recognize various signal sources by their "signatures." Microwave towers, for example, provide lots of varied output.

Either circuit could be used for purposes other than radar detection. For example, you could use one to detect a hidden radio transmitter (provided the transmitter is a pulsed type). The detector could also be used as a leakage detector at a microwave tower. The detector could also be used to detect leakage or arcing in home power lines, as well as outdoor power transmission lines. In fact, the uses to which this circuit may be put are limited only by your imagination!
Why Pay Big Blue Prices?
Build your own IBM® PC/XT compatible & SAVE !!!

XT Compatible Motherboard
- Minimum memory expansion: IBM 256K
- Built in 8-bit expansion bus
- Dual 5065/2408 floppy drives
- Dual 1425/2425 diskette drives
- Dual synchronous 1425/2425 drives
- 128K standard
- 256K available

$149
Cat R 1001

BIOS
- IBM PC/XT compatible
- IBM XT compatible

$39
Cat R 1000

IBM PC/AT $899
Cat R 1000

Multi-function Card
- IBM XT compatible
- IBM AT compatible
- 8-bit expansion bus

$99
Cat R 1005

Color Graphics Adapter Card
- IBM XT compatible
- IBM AT compatible
- Built-in 8-bit expansion bus
- 1024 x 768 Refresh Rate

$19
Cat R 1007

512K RAM Card
- IBM XT compatible
- IBM AT compatible
- Built-in 8-bit expansion bus
- 1M x 16 Memory

$37
Cat R 1012

Floppy Disk Drive Adapter
- IBM XT compatible
- IBM AT compatible
- Built-in 8-bit expansion bus
- 360K/1.2M/1.44M drives

$44
Cat R 1009

Monochrome Graphics Printer Card
- IBM XT compatible
- IBM AT compatible
- Built-in 8-bit expansion bus
- 320 x 200 Refresh Rate

$19
Cat R 1012

Winchester Disk Controller Card
- IBM XT compatible
- IBM AT compatible
- Built-in 8-bit expansion bus
- 360K/1.2M/1.44M drives

$174
Cat R 1018

Multi I/O Card
- IBM XT compatible
- IBM AT compatible
- Built-in 8-bit expansion bus
- 320 x 200 Refresh Rate

$129
Cat R 1016

Joystick
- For IBM XT and Apple

$19
Cat R 1135

Disk Storage Files
- IBM compatible
- Apple compatible

Tilt & Swivel Monitor Stand
- IBM compatible
- Apple compatible

$12
Cat R 1026

Diskette Drive
- IBM compatible
- Apple compatible

High Quality Printed Circuit Boards
- IBM AT compatible
- IBM AT/XT compatible

$49
Cat R 1120

Printer Cables
- IBM compatible
- 40-pin card slot with 36-pin connects
- 10 feet long
- 95 cents

Microcassette Cassette
- Various capacities: 1000s to 3000s
- 95 cents

Parallel Printer Interface Cable
- 4-pin card slot with 36-pin connects
- IBM XT compatible
- IBM AT compatible
- 95 cents

MICROCLEAN Head Cleaning Kit
- IBM XT compatible
- IBM AT compatible

$13
Cat R 3517

IBM PC/XT Compatible Case
- Hard drive holder

$659
Cat R 1134

SPECIAL DISK SMITH PACKAGE PRICE
- IBM XT compatible
- IBM AT compatible
- IBM XT/AT compatible

MODEMS
- VOYAGER 1200 B
- 1200 bps
- 1200 bps
- 1200 bps

$169
Cat R 1100

DISCOVERY
- 1200 bps
- 1200 bps
- 1200 bps

$399
Cat R 1100
DIck SMiTH ELECTRONiCS
FIRST CLASS
PRODUCTS & SERVICE

Build Your Own
200W Mosfet
Stereo Amp!

We think this is the best builder's circuit design available. Feature for feature, dollar for dollar, the Playmaster blows the big-name, off-the-shelf designs away. Electronic components handle all the big-wattage, meaning can CD-blow, VCR cassette, tape, Hi-fi, and meet both national, de-Hfilman, & imported transistors. Our program book comes with full-size, instruction manual and sixty-clip set. One Dick, three weeks worth work. Have the customer handle it all. Get other examination and determine the kit is beyond your skill level, simply return products for a full refund.

MAIL ORDERS
P.O. Box 8021 Redwood City CA 94063

1-800-332-5373
Monday - Friday 7am - 5pm Pacific Time
In California call 1-415-368-1066

MAIL ORDERS
P.O. Box 8021 Redwood City CA 94063

14 DAY MONEY-BACK GUARANTEE

SHIPPING & HANDLING INFORMATION
We have UPS ground unless otherwise requested. Add 5% of order total ($1.50 minimum) for shipping outside USA, add 2% ($45 minimum) for Hawaii, Puerto Rico, A.P.O. Add 5% ($1.50 minimum) for UPS expedited service. There is an additional $1.50 handling fee California residents please add sales tax.
COMMODORE® COMPATIBLE ACCESSORIES

RS232 Adapter for VIC-20 and Commodore 64

$39.95

The JE323CM allows connection of standard serial RS232 printers, modems, etc. to your VIC-20 and C64 (excluding the SX-64 Portable). A 4-pole switch allows the inversion of the 4 control lines. Complete installation and operation instructions included.

Plug-in connector—Holoids Standard RS232 signal pins—Uses 8-series (Remtron). Receive Data to Send Requests.

Send, Send Terminal Ready, Data Set Ready)

JE323CM...

Voice Synthesizer VIC-20 & C-64

Plug-in — Talking in Minutes!

$99.95

JE520CM

300 Baud Auto Modem

Mity-Mo (for C-64)...

$69.95

Parallel Printer Interface

FREE 4K Buffer Included!

WM350 (for VIC-20, C-64 & 128)...

$69.95

TRS-80® COMPATIBLE ACCESSORIES

E-X-P-A-N-D TRS-80 MEMORY

All kits come complete with documentation

TRS-80 MODEL I, II, III

TRS-16K2 2000 (Model I)...

$5.95

TRS-16K 2500s (Model II)...

$5.49

TRS-80 COLOR AND COLOR II

TRS-64K...

$11.95

New models only

TRS-CoCo-IAL 2-50469's (14164's)...

$19.95

TRS-80 MODEL 4, 4P

TRS-64K

Expansion Model 4 from 64K-64K or Model 4P from 64K-128K...

$11.95

TRS-80 Model 100 - NEC - Olivetti

M100K...

$29.95 ea. or 3 for $79.95

TRS-100 Model 100 Expansion

NEC6K...

$29.95 ea. or 3 for $79.95

NEC Model PC-2510 Expansion

OM10K...

$29.95 ea. or 3 for $79.95

Olivedetti Model M10 Expansion...

TANDY 200

M200R...

$99.95 ea. or 2 for $189.95

Tandy Model 200 Expansion

$299.95

PROMOTED MODERMS

Intelligent

1200/300 Baud

Modem with Real Time Clock/Calendar

PM1200...

$299.95

Options for Promodem 1200

PM-COM...

$49.95

Comm-1 Compatibility, Software, Optional Switching System — Apple, Pro Dos or CPM — IBM PC DOS or MS-DOS

PM-DOS12K...

$129.95

Communications Buffer Expansion

BULFS12K...

$54.95

10.5" x 10.5" Mother PC-12K

PM-ALP...

$79.95

ALP with Alternate Display for Promodem 1200

PM-SPECIAL #2...

$249.95

Includes PM-COM (BULFS12K) and PM-ALP

APPLE® COMPATIBLE ACCESSORIES

All Apple Cards come complete with instructions MADE IN THE USA!

16K RAM CARD (LANGUAGE)

For Apple II and II*...

JE600...

$39.95

CONTROLLER CARD

For Apple II, II+ and IIe...

JE675...

$49.95

EXTENDED 80-COLUMN CARD

For Apple IIe...

JE664...

$69.95

128K RAM CARD

For Apple II, II+ and IIe...

JE664 is an extended 80-column RAM Card Ultra-high resolution capability...

JE666...

$69.95

APPLESURANCE DIAGNOSTIC DISK CONTROLLER CARD

For Apple II and IIe...

FREE!

PARALLEL PRINTER CARD

For Apple II, II+ and IIe...

FREE!...

Butler Included!

PARALLEL/SERIAL 64K BUFFER CARD

For Apple II, II+ and IIe...

FREE!

ADDITIONAL APPLE® COMPATIBLE PRODUCTS

Only available with Apple CPM, Apple Pascal (for TRS-80), and most other operating systems and software packages available for Apple II and IIe...

APPLE II, II+ and IIe are registered trademarks of Apple Computers.

FREE!...

GENERAL APPLICATION POWER SUPPLIES

Power/Match Corp. REGULATED POWER SUPPLIES

FREE!...

4-CHANNEL SWITCHING POWER SUPPLY

Millivolt-meter terminal block for grounding and process control applications...

JE666...

$69.95

IBM® COMPATIBLE ACCESSORIES

83-KEY KEYBOARD

Identical layout as original IBM PC/XT — Highly durable card with rain proof – Complete with cable and plug-in card...

KE83...

$49.95

Build an IBM PC/XT® Compatible!

IBM-64K

64K RAM Chips (18)...

$24.98

KB-83

E3-Key Keyboard...

$49.95

IBM-FCC

Floppy Coiler...

$54.95

IBM-Case

Case...

$54.95

IBM-CCC

Monochrome Card...

$85.95

IBM-55

Power Supply...

$119.95

FSD55

Disk Drive...

$119.95

IBM-MON

Monochrome Monitor...

$109.95

IBM-MB

Motherboard...

$199.95

Regular List $789.85

IBM...

Special (incl. Items above)...

$699.95

Additional Add-Ons Available!

IBM-KB

E3-Key Keyboard...

$79.95

IBM-ENH

Enhanced Keyboard...

$99.95

IBM-ICB

Integrated Color Board...

$109.95

IBM-E384K

Multifunction Card...

$169.95

IBM-20MBK

20MB Hard Disk Drive...

$499.95

IBM compatible add-ons and IBM accessories...

IBM Compatible!

DISK DRIVES

Included

FD55B

Teac 5.1/2" 140K 1.2MB...

$119.95

SA455

Shugart 5.1/2" 320K...

$139.95

TM100-2

Tangion 5.1/2" 720K...

$139.95

JMR 5/1/2" DISK DRIVE ENCLOSURES

Complete with power supply, switch, power cord, and connectors...

DDE-1FH

Apple Disk Drive...

$69.95

DDE-2H

Apple Disk Drive...

$79.95

NDD-1FH +1/2" Height 720K Floppy Drives

Disk Drive...

$199.95

UV-EU-EPROM ERASER

Erasers all EPROMs. Erases up to 8 chips within 21 minutes (1 chip in 15 minutes). Maintains constant exposure distance of 1", Special conductive field emitter creates static buildup of up to 4000 volts. Automatic control of 1.5" to 2.5" Wide (complete with holding jig for 8 chips)

CE-4

UV-EPROM Eraser...

$74.95

UVS-11EL

Black and Blue...

$17.95

DATA BOOKS

30003

National Lamin Data Book (83)...

$14.95

30009

Internal Data Book (83)...

$9.95

30013

Zilog Data Book (85)...

$14.95

3322

Naitt Logic Data Book Set (84)...

$24.95

21035

Intel Memory Handbook (E5/84)...

$19.95

23064

Intel Microsystem Handbook (SP-84)...

$89.95

MUFFIN/SPRITE-STYLE FANS

MUF800 8M (SP-15-2462)...

$39.95

Muffin/Token Industries 865 65 so. 63 Oak...

$9.95

EUGM Asteroid Bl1 (2.5" 240 rpm)...
<table>
<thead>
<tr>
<th>NO. 620 CORDLESS SOLDERING IRON RECHARGEABLE</th>
<th>NO. 4001 3½ DIGITAL MULTIMETER YAMATO</th>
<th>SM-100 150MC Universal Digital Frequency Counter</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOR THE TALKING CALIF. CHARGE CARD ORDER:</td>
<td>Includes High Stability KING AIN ULFREE (ORDERS ALSO AVAILABLE)</td>
<td>FREQUENCY RANGE 100A - 150MHz</td>
</tr>
<tr>
<td>Min order.</td>
<td>FREE (ORDERS ALSO AVAILABLE)</td>
<td>Event Counter 0 to 9999999 counts. (10 Digit)</td>
</tr>
<tr>
<td>Conversion displays</td>
<td>SOLDERING IRON</td>
<td>Input sensitivity range 1000kHz.</td>
</tr>
<tr>
<td>Application assures ring error The</td>
<td>SOLDERING IRON</td>
<td>MHz range 1MHz - 150MHz 40Vatts.</td>
</tr>
<tr>
<td>High stability and reliable resulting from employing high quality voltage regulator IC</td>
<td>SOLDERING IRON</td>
<td>Response time 0.5 Sec. Nearby.</td>
</tr>
<tr>
<td>Possessing the ring-use makes the reading of voltage and current more stable and accurate.</td>
<td>SOLDERING IRON</td>
<td>SUPPLY: DC6V Battery or DC5V 2AMPS Adaptor.</td>
</tr>
<tr>
<td>The conversion are enclosed</td>
<td>SOLDERING IRON</td>
<td>Dimension: 9.5 x 6.5 x 2.75.</td>
</tr>
<tr>
<td>with tester is enclosed.</td>
<td>SOLDERING IRON</td>
<td>Assembled with tested</td>
</tr>
<tr>
<td>3½ DIGITAL MULTIMETER</td>
<td>SOLDERING IRON</td>
<td>$99.00</td>
</tr>
<tr>
<td>YAMATO 4001</td>
<td>SOLDERING IRON</td>
<td>Ne-W</td>
</tr>
</tbody>
</table>

Features

- 3½ DIGITAL thermometer with H/B Low temperature alarm function and 12 hours clock combination
- Measuring range: 32°F to 160°F (2°C to 70°C)
- Resolution: 0.1°F (0.1°C)
- Accuracy: ±0.6% + 2.0°F

Kit contents

- [] T-1 with 110VAC power cord
- [] T-2 with fabric wheel/Ceiling mounting

Price

$60.00

Not a kit

$33.00

Assembled with tested

$55.50

Assembled and tested

SM-43 LARGE 3½ DIGIT 8 DIGIT LED DISPLAY

HOURS MON FRI 9:30 TO 5:30 SATURDAYS 8:30 TO 1:00 (PACIFIC TIME)

MARK V ELECTRONICS INC

249 E Main Street Suite 100

Alhambra. CA 91803

Please call us: P.O. Box 7005 ALHAMBRA CA 91802

714-293-1196

TOLL FREE (ORDERS ONLY): 1-800-521-MARK

CIRCLE 33 ON FREE INFORMATION CARD
Static RAMs

<table>
<thead>
<tr>
<th>Model</th>
<th>Time</th>
<th>Capacity</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>28611</td>
<td>1.89</td>
<td>256K</td>
<td>5.0V</td>
</tr>
<tr>
<td>28612</td>
<td>1.95</td>
<td>256K</td>
<td>5.0V</td>
</tr>
<tr>
<td>28613</td>
<td>1.95</td>
<td>256K</td>
<td>5.0V</td>
</tr>
<tr>
<td>28614</td>
<td>1.79</td>
<td>256K</td>
<td>5.0V</td>
</tr>
<tr>
<td>28615</td>
<td>1.79</td>
<td>256K</td>
<td>5.0V</td>
</tr>
<tr>
<td>28616</td>
<td>1.79</td>
<td>256K</td>
<td>5.0V</td>
</tr>
<tr>
<td>28617</td>
<td>1.79</td>
<td>256K</td>
<td>5.0V</td>
</tr>
<tr>
<td>28618</td>
<td>1.79</td>
<td>256K</td>
<td>5.0V</td>
</tr>
<tr>
<td>28619</td>
<td>1.79</td>
<td>256K</td>
<td>5.0V</td>
</tr>
</tbody>
</table>

Dynamic RAMs

<table>
<thead>
<tr>
<th>Model</th>
<th>Time</th>
<th>Capacity</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>28621</td>
<td>1.89</td>
<td>256K</td>
<td>5.0V</td>
</tr>
<tr>
<td>28622</td>
<td>1.95</td>
<td>256K</td>
<td>5.0V</td>
</tr>
<tr>
<td>28623</td>
<td>1.95</td>
<td>256K</td>
<td>5.0V</td>
</tr>
<tr>
<td>28624</td>
<td>1.79</td>
<td>256K</td>
<td>5.0V</td>
</tr>
<tr>
<td>28625</td>
<td>1.79</td>
<td>256K</td>
<td>5.0V</td>
</tr>
<tr>
<td>28626</td>
<td>1.79</td>
<td>256K</td>
<td>5.0V</td>
</tr>
<tr>
<td>28627</td>
<td>1.79</td>
<td>256K</td>
<td>5.0V</td>
</tr>
<tr>
<td>28628</td>
<td>1.79</td>
<td>256K</td>
<td>5.0V</td>
</tr>
<tr>
<td>28629</td>
<td>1.79</td>
<td>256K</td>
<td>5.0V</td>
</tr>
</tbody>
</table>

CRT Controllers

<table>
<thead>
<tr>
<th>Model</th>
<th>Time</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>28631</td>
<td>1.89</td>
<td>256K</td>
</tr>
<tr>
<td>28632</td>
<td>1.95</td>
<td>256K</td>
</tr>
<tr>
<td>28633</td>
<td>1.95</td>
<td>256K</td>
</tr>
<tr>
<td>28634</td>
<td>1.79</td>
<td>256K</td>
</tr>
<tr>
<td>28635</td>
<td>1.79</td>
<td>256K</td>
</tr>
<tr>
<td>28636</td>
<td>1.79</td>
<td>256K</td>
</tr>
<tr>
<td>28637</td>
<td>1.79</td>
<td>256K</td>
</tr>
<tr>
<td>28638</td>
<td>1.79</td>
<td>256K</td>
</tr>
</tbody>
</table>

Disk Controllers

<table>
<thead>
<tr>
<th>Model</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>28641</td>
<td>1.89</td>
</tr>
<tr>
<td>28642</td>
<td>1.95</td>
</tr>
<tr>
<td>28643</td>
<td>1.95</td>
</tr>
<tr>
<td>28644</td>
<td>1.79</td>
</tr>
<tr>
<td>28645</td>
<td>1.79</td>
</tr>
<tr>
<td>28646</td>
<td>1.79</td>
</tr>
<tr>
<td>28647</td>
<td>1.79</td>
</tr>
<tr>
<td>28648</td>
<td>1.79</td>
</tr>
</tbody>
</table>

Crystal Oscillators

<table>
<thead>
<tr>
<th>Model</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>28651</td>
<td>1.89</td>
</tr>
<tr>
<td>28652</td>
<td>1.95</td>
</tr>
<tr>
<td>28653</td>
<td>1.95</td>
</tr>
<tr>
<td>28654</td>
<td>1.79</td>
</tr>
<tr>
<td>28655</td>
<td>1.79</td>
</tr>
<tr>
<td>28656</td>
<td>1.79</td>
</tr>
<tr>
<td>28657</td>
<td>1.79</td>
</tr>
<tr>
<td>28658</td>
<td>1.79</td>
</tr>
</tbody>
</table>

UARTs

<table>
<thead>
<tr>
<th>Model</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>28661</td>
<td>1.89</td>
</tr>
<tr>
<td>28662</td>
<td>1.95</td>
</tr>
<tr>
<td>28663</td>
<td>1.95</td>
</tr>
<tr>
<td>28664</td>
<td>1.79</td>
</tr>
<tr>
<td>28665</td>
<td>1.79</td>
</tr>
<tr>
<td>28666</td>
<td>1.79</td>
</tr>
<tr>
<td>28667</td>
<td>1.79</td>
</tr>
<tr>
<td>28668</td>
<td>1.79</td>
</tr>
</tbody>
</table>

Clock Circuits

<table>
<thead>
<tr>
<th>Model</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>28671</td>
<td>1.89</td>
</tr>
<tr>
<td>28672</td>
<td>1.95</td>
</tr>
<tr>
<td>28673</td>
<td>1.95</td>
</tr>
<tr>
<td>28674</td>
<td>1.79</td>
</tr>
<tr>
<td>28675</td>
<td>1.79</td>
</tr>
<tr>
<td>28676</td>
<td>1.79</td>
</tr>
<tr>
<td>28677</td>
<td>1.79</td>
</tr>
<tr>
<td>28678</td>
<td>1.79</td>
</tr>
</tbody>
</table>

CMOS

<table>
<thead>
<tr>
<th>Model</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>28681</td>
<td>1.89</td>
</tr>
<tr>
<td>28682</td>
<td>1.95</td>
</tr>
<tr>
<td>28683</td>
<td>1.95</td>
</tr>
<tr>
<td>28684</td>
<td>1.79</td>
</tr>
<tr>
<td>28685</td>
<td>1.79</td>
</tr>
<tr>
<td>28686</td>
<td>1.79</td>
</tr>
<tr>
<td>28687</td>
<td>1.79</td>
</tr>
<tr>
<td>28688</td>
<td>1.79</td>
</tr>
</tbody>
</table>

Sound Chips

<table>
<thead>
<tr>
<th>Model</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>28691</td>
<td>1.89</td>
</tr>
<tr>
<td>28692</td>
<td>1.95</td>
</tr>
<tr>
<td>28693</td>
<td>1.95</td>
</tr>
<tr>
<td>28694</td>
<td>1.79</td>
</tr>
<tr>
<td>28695</td>
<td>1.79</td>
</tr>
<tr>
<td>28696</td>
<td>1.79</td>
</tr>
<tr>
<td>28697</td>
<td>1.79</td>
</tr>
<tr>
<td>28698</td>
<td>1.79</td>
</tr>
</tbody>
</table>

High-Speed CMOS

- A new family of high-speed CMOS logic featuring the speed of low-power Schottky CMOS but with only 10% of the power consumption. The advantages of CMOS - very low power consumption, superior noise immunity, and immunity to static discharge.

Electronics Corporation

- EPROMS
- EPROM ERASERS
- P-14T

JDR Microdevices

224 S. Bascom Avenue, San Jose, CA 95128
Toll Free 800-538-5000 • (408) 985-5403
FAX (408) 275-8415 • Telex 171-110

Circle 187 on free information card
ORDER TOLL FREE 800-538-5000

BARGAIN HUNTERS CORNER

DB25P 100/$45 10/$6.90
25 PIN MALE D-SUB CONNECTOR

DB25S 100/$52 10/$7.90
25 PIN FEMALE D-SUB CONNECTOR

HOOD 25 100/$31 10/$6.90
PLASTIC HOOD FOR DB25

IDE34 100/$129 10/$14.90
34 PIN EDGE CONNECTOR

AUGAT 16WW 100/$49 10/$6.90
16 PIN WIRE WRAP IC SOCKET MACHINE PIN

.1uf DISC 1000/$29.50 100/$3.95
1.090 VOLT CARBON FILM DISC CAPACITORS

SPECIALS END 6/30/86

PAGE WIRE WRAP WIRE PRECUT ASSORTMENT
IN ASSORTED COLORS $27.50
100w 5.5 6.0 6.5 7.0
25w 6.5 8.5 10.0
50w 12.0 16.0 20.0

SPOOLST
100 feet 9.30 250 feet 17.75
500 feet 31.75 1000 feet 67.95
Please specify color:
Blue. Black. Yellow or Red

EMI FILTER $4.95
- MANUFACTURED BY CONCORD TECH
- LOW COST
- FITS IC CHIP BELOW
- 6 AMP 120 240 VOLT

6 FLAT LINE CORDS
LE 2 CONDUCTOR 35
LE 3 CONDUCTOR 55
LE 4 CONDUCTOR 85
LE 5 CONDUCTOR 115
MUFFIN FANS
3 15 SO ROTRON 14.95
3 16 SO ETTRI 14.95
3 18 SO MAGUSHA 14.95

FRAME STYLE TRANSFORMERS
12 6V AC CT 2 AMP 5.95
12 6V AC CT 4 AMP 7.95
12 6V AC CT 8 AMP 9.95
25 2V AC CT 2 AMP 7.95

SOLDERLESS BREADBOARDS

CAPACITORS
TANTALUM
1.0 15V 18 35V 45
6.8 15V 70 10 35V 45
10 15V 60 22 35V 45
22 15V 135 47 35V 85
22 35V 40 10 35V 100

DISC
10 50V 05 680 50V 05
22 50V 05 220 50V 05
27 50V 05 022 50V 05
33 50V 05 068 50V 05
47 50V 05 015 50V 05
68 50V 05 022 50V 05
100 50V 05 050 50V 05
220 50V 05 120 50V 05
560 50V 05 1 50V 12

MONOLITHIC
01 50V 15 47 50V 25
047 50V 15 47 50V 25

ELECTROLYTIC
RADIAL AXIAL
1.0 25V 14 15 50V 14
2.2 35V 18 45 50V 18
4.7 35V 18 45 50V 18
10 35V 18 100 50V 10
100 22V 18 220 50V 10
220 22V 20 470 50V 20
470 25V 20 1000 50V 20
2200 16V 70 2700 60V 70
4700 25V 1 14500 60V 14

COMPUTER GRADE 44000/30 39V

DATABASE EPROM ERASER $34.95
- ERASES TWO EPROMS IN 10 MINUTES
- COMPACT NO DRAGGER
- THIN METAL SHIELD
- PREVENTS UV LIGHT
- FROM ESCAPING

1/4 WATT RESISTORS 5% CARBON FILM ALL STANDARD VALUES
FROM 1 OHM TO 10 MEG. OHM
10 PCS 50Q-202 9.025 1000 PCS 50Q-164 015

RESISTOR NETWORKS
SIP 10 PIN 9 RESISTOR .69
10 PIN 7 RESISTOR .59
DIP 16 PIN 8 RESISTOR 1.09
DIP 16 PIN 7 RESISTOR .99
DIP 14 PIN 6 RESISTOR .99
DIP 14 PIN 13 RESISTOR .99

SPECIALS ON BYPASS CAPACITORS
0.1uf CERAMIC DISC 100 5.00
0.1uf MONOLITHIC 100 10.00
1 uf CERAMIC DISC 100 6.50
1 uf MONOLITHIC 100 12.50

WISH SOLDERLESS BREADBOARDS

LITHIUM BATTERY AS USED IN C LOCK CIRCUITS

NEW EDITION! 1986
IC MASTER THE INDUSTRY STANDARD
$129.95

PIC MASTER FROM ELCOMP $14.95
OVER 800 PAGES OF DATA SHEETS ON THE MOST COMMONLY USED IC RAMS INCLUDES TTL. CMOS. TILS. MEMORY. CPU. IC SUPPORT AND MUCH MORE

VISIT OUR RETAIL STORE LOCATED AT 1256 SOUTH BASCOM AVENUE IN SAN JOSE
JDR Microdevices
1224 S. Bascom Avenue, San Jose, CA 95128
Toll Free 800-538-5000 • (408) 995-5430
FAX (408) 275-8415 • Telex 171-110
© COPYRIGHT 1996 JDR MICRODEVICES

CIRCLE 189 ON FREE INFORMATION CARD
PARTIAL LISTING ONLY—CALL FOR A FREE CATALOG

DISK DRIVES
FOR APPLE COMPUTERS

AP-150
$99.95
- HT. DIRECT DRIVE
- 100% APPLE COMPATIBLE
- SIX MONTH WARRANTY

BAL-500
$129.95
- TEAC MECHANISM/DIRECT DRIVE
- 100% APPLE COMPATIBLE
- FULL ONE YEAR WARRANTY

APPLE COMPATIBLE INTERFACE CARDS

EPROM PROGRAMMER
$59.95
MODEL RP525
- DUPLICATE OR RERUN ANY STANDARD 24 SERIES EPROM
- EASY TO USE MENU-DRIVEN SOFTWARE IS INCLUDED
- MENU SELECTION FOR 2716, 2732, 2732A, 2764 AND 2712S
- HIGH SPEED WRITE ALGORITHM LED INDICATORS FOR ACTIVITY
- NO NECESSARY POWER SUPPLY NEEDED
- ONE YEAR WARRANTY

16K RAMCARD
$39.95
- FULL TWO YEAR WARRANTY
- EXPAND YOUR 48K APPLE TO 64K
- USE IN PLACE OF APPLE LANGUAGE CARD
- BARE PC CARD W/INSTRUCTIONS

IC TEST CARD
$99.95
- QUICKLY TESTS MANY COMMON
- DISPLAYS PASS OR FAIL
- ONE YEAR WARRANTY
- TESTS 4000 SERIES CMOS
- 74HC SERIES CMOS
- 74HC4006, 74HC4094

DIRECT DRIVE ACCESSORIES

FDD CONTROLLER CARD
$49.95
- ADAPTS STANDARD APPLE DRIVES FOR USE WITH APPLE IIC

KB-1000
$79.95
CASE WITH KEYBOARD
FOR APPLE TYPE MOTHERBOARD
- USER DESIGNATED KEYS
- NURBEC KEYPAD WITH CURSOR CONTROL
- CAPS LOCK
- AUTO REPEAT

KEYBOARD-AP
$49.95
- REPLACEMENT FOR APPLE II
- KEYBOARD
- COMPUTER SET TO REPEAT
- ONE KEY ENTRY OF BASIC OR CP/M COMMANDS

POWER STRIP
$12.95
- UL APPROVED
- 110V CIRCUIT BREAKER

TEST EQUIPMENT FROM JDR INSTRUMENTS

DIGITAL MULTIMETER PEN DPM-1000
AUTO RANGING, VOLATILITY AND DECIMAL!
- LARGE 3.5 DIGIT DISPLAY
- DATA HOLD SWITCH
- FREEZES READING
- FAST AUDIBLE COV
- TINTUNITY TEST
- 10V BATTERY INDICATOR
- OVERLOAD PROTECTION

20MHZ DUAL TRACE OSCILLOSCOPE
MODEL 2000
MODEL 3500
$389.00
$549.00
FOR MORE INFORMATION ON THEOSCILLSCOPESSEE OUR AD ON PAGE 11

POWER SUPPLIES

IBM-PC
$45.00
IBM-AT
$68.00
APPLE II
$45.00
APPLE IIe
$45.00
MULTIBUS
$86.00

3008 MODEM
$49.95
FOR APPLE OR IBM
INCLUDES ASH-PRO SOFTWARE

JOYSTICK CR-401
$7.95
FOR APPLE II

DISKFILE
HOLDS 70 5¼ DISKETS
$8.95

MASHUA DISKETTES DEALS
5¼ SOFT SECTOR
DS DD WITH HI-JB RINGS
$990
6909a
5909a
800x 10
80K 1040
80K 1040
512x 16
512x 16
512x 16
FOR APPLE OR IBM

VERBATIM 5¼
$59.95
- 3½ 5¼ DD FOR MAC
$32.95

PARTIAL LISTING ONLY — CALL FOR A FREE CATALOG

Sakata
120 CPS DOT MATRIX PRINTER

MODEL SP-1200
$169.95
- EFSN IBM COMPATIBLE
- 9 LINE PRINTERHEAD
- 120 CPS BIDIRECTIONAL 80 COL.
- FRICTION AND TRACTOR FEED
- PRORPORTIONAL SPACING
- CELETRONICS PARALLEL INTERFACE
- 8 CHARACTER SETS AND GRAPHICS

PRINTER BUFFERS
- FREE COMPUTER FOR OTHER TASKS WHILE PRINTING LONG DOCUMENTS
- STAND ALONE DESIGN, WORKS WITH ANY SOFTWARE
- ALL MODELS FEATURE PRINT PAUSE
- MEMORY CHECK, GRAPHICS CAPABILITY

SP120P PARALLEL
$139.95
- 64K UPGRADABLE TO 256K
- LED INDICATOR SHOWS VOLUME OF DATA IN BUFFER

SP120S RS232 SERIAL
$159.95
- 64K UPGRADABLE TO 256K
- 6 SELECTABLE BAUD RATES FROM 2400 TO 9600 BPS

$.25 FLOPPY DISK DRIVES
FD 100-50 $0.05/D0 100-64 $0.50/100-80 $1.00
FD 100-50 $0.05/100-64 $0.50/100-80 $1.00

DISK DRIVE ENCLOSURES

CAB-APPLE
$24.95
- HONEY TRAP TYPE CABINET. OUT POWER SUPPLY

CAB-1FH5
$68.95
- F10 AT H. BEIGE CABINET W/ POWER SUPPLY

CAB-2VS
$49.95
- 80 AND 150 W. CABLE W/POWER SUPPLY

CAB-2VR
$219.95
- HORIZONAL 5¼ DARK H. CABLE W/ POWER SUPPLY

CAB-2FP8
$299.95
- 150 W. DARK H. CABLE W/ POWER SUPPLY

CAB-2VS5
$99.95
- 150 W. DARK H. CABLE W/ POWER SUPPLY

CAB-2F15S
$99.95
- 5¼ DARK H. CABLE W/ POWER SUPPLY

TEST EQUIPMENT FROM JDR INSTRUMENTS

DIGITAL MULTIMETER PEN DPM-1000
$54.95
AUTO RANGING, VOLATILITY AND DECIMAL!

- LARGE 3.5 DIGIT DISPLAY
- DATA HOLD SWITCH
- FREEZES READING
- FAST AUDIBLE COV
- TINTUNITY TEST
- 10V BATTERY INDICATOR
- OVERLOAD PROTECTION

20MHZ DUAL TRACE OSCILLOSCOPE
MODEL 2000
MODEL 3500
$389.00
$549.00
FOR MORE INFORMATION ON THEOSCILLSCOPESSEE OUR AD ON PAGE 11

CALL FOR VOLUME QUOTES © COPYRIGHT 1986 JDR MICRODEVICES

CIRCLE 190 ON FREE INFORMATION CARD
BUILD A COMPLETE 256K XT SYSTEM—$717

XT COMPATIBLE MOTHERBOARD
$159.00

- 4.77 MHz 8088 CPU, OPTIONAL 8087 CO-PROCESSOR
- 8 EXPANSION SLOTS
- ON BOARD INSTALLABLE EXCEPTABLE TO 640K/BOARD MEMORY
- ALL 16 SOCKETED-HIGHEST QUALITY PC BOARD
- ACCEPTS 2754 OR 2718 ROMS

PRO-BIOS $29.95

20 MD HARD DISK SYSTEM
SEAGATE ST-225
$489.00

IBM COMPATIBLE INTERFACE CARDS
ALL WITH A ONE YEAR WARRANTY

MULTI I/O FLOPPY CARD
$129.95

- PERFECT FOR THE 640K MOTHERBOARD
- 2 DRIVE FLOPPY DISK CONTROLLER
- 1 RS232 SERIAL PORT, OPTIONAL 2nd SERIAL PORT
- PARALLEL PRINTER PORT
- GAME PORT
- CLOCK, CALENDAR
- SOFTWARE CLOCK UTILITIES
- RAMDISK, SPOOLER

MULTIFUNCTION CARD
$119.95

- ALL THE FEATURES OF AST'S 6 PACK PLUS AT HALF THE PRICE
- CLOCK, CALENDAR
- 0.38K RAM
- SERIAL PORT
- PARALLEL PORT
- GAME PORT
- SOFTWARE INCLUDED
- PRINTER CABLE
- 64K RAM UPGRADE $9.95

COLOR GRAPHICS ADAPTOR
$99.95

- FULLY COMPATIBLE WITH IBM COLOR CARD
- 4 VIDEO INTERFACES
- RGB, COMPOSITE COLOR, HI RES, MONOCHROME
- RGB MONITOR: MODE 200-200
- MONOCHROME MODE 300-200
- MONOCHROME MODE 600-200
- LIGHT PEN INTERFACE

MONOCHROME GRAPHICS CARD
$119.95

- FULLY COMPATIBLE IN IBM MONOCHROME ADAPTOR & HERCULES GRAPHICS
- LOTUS COMPATIBLE
- TSX MODE 80-200
- MODES GRAPHICS: 720 X 348
- PARALLEL PRINTER INTERFACE
- OPTIONAL SERIAL PORT $19.95

MONOCHROME ADAPTOR
$49.95

- MOTHER FANTASTIC VALUE FROM JDR
- IBM COMPATIBLE TTL OUTPUT
- 270 X 350 PIXEL DISPLAY
- PLEASE NOTE: THIS CARD WILL NOT RUN LOTUS GRAPHICS AND DOES NOT INCLUDE A PARALLEL PORT

FLOPPY DISK DRIVE ADAPTOR
$49.95

- INTERFACES UP TO 4 STANDARD FDD, TO IBM PC OR COMPATIBLES
- INCLUDES CABLE FOR TWO INTERNAL DRIVES
- STANDARD DB37 FOR EXTERNAL DRIVES
- RUNS QUAD DENSITY DRIVES WHEN USED WITH JFORMAT

EASYDATA 1200 BAUD MODEM FOR IBM
$169.95

- INCLUDES PC TALK III COMMUNICATIONS SOFTWARE
- HAYES COMPATIBLE
- AUTO DIAL, AUTO ANSWER
- AUTO RE DIAL ON BUSY
- INCLUDES SERIAL PORT
- ONE YEAR WARRANTY

Luxor Hi-Res RGB Monitor
SAKATA Composite Color Monitor
Center Systems Monochrome Monitor

CRT MONITORS FOR ALL APPLICATIONS

TOTAL: $718.10

BUILD YOUR OWN 256K XT COMPATIBLE SYSTEM

XT MOTHERBOARD
$158.95

PRO-BIOS
$29.95

256K RAM
$28.55

130 WATT POWER SUPPLY
$98.95

FLIP-FLOP CASE
$49.95

DKM-2000 KEYBOARD
$79.95

1/2 HEAD QUIME DRIVE
$49.95

FLOPPY DISK CONTROLLER
$49.95

MONOCHROME ADAPTOR
$49.95

MONOCHROME MONITOR
$98.95

TOTAL: $718.10

IBM STYLE COMPUTER CASE

AN ATTRACTIVE STEEL CASE WITH A HINGED LID FITS THE POPULAR PC XT COMPATIBLE MOTHERBOARDS
- BUSINESS CUT OUT FOR IBM XT COMPATIBLE MOTHERBOARDS
- SWITCH CUT OUT FOR IBM XT STYLE POWER SUPPLY
- CUT OUT FOR 2 EXPANSION SLOTS
- ALL HARDWARE INCLUDED

$49.95

IBM COMPATIBLE KEYBOARDS

DKM-2000 $79.95

IBM-5151 $99.95

- FULLY IBM COMPATIBLE
- LED STATUS INDICATORS FOR CAPS & NUMBER LOCK
- 83 KEY SAME LAYOUT AS IBM PC XT KEYBOARD

IBM TALKS TO CENTERONICS SHIELDED CABLE $9.95

POWER SUPPLY

DISK DRIVES

TANDON TM50-2
$89.95

- 1/2 HT DS/ DD
- IBM COMPATIBLE
- EXTREMELY QUIET!

TEAC FD-55B DS/DD $109.95
TEAC FD-55F DS/DD $109.95
TEAC FD-436 DS/DD $154.95
SIOMO ID-142 DS/DD $79.95
MOUNTING HARDWARE $2.95
AT RAILS $4.95

NOW ONLY $89.95

- FOR IBM PC XT COMPATIBLE
- 135 WATTS
- 5V @ 15A, 12V @ 4.2A
- 5V @ 5A, 12V @ 5A
- 150 WATT MODEL $99.95

EASYDATA 1200 BAUD MODEM FOR IBM
$169.95

- INCLUDES PC TALK III COMMUNICATIONS SOFTWARE
- HAYES COMPATIBLE
- AUTO DIAL, AUTO ANSWER
- AUTO RE DIAL ON BUSY
- INCLUDES SERIAL PORT
- ONE YEAR WARRANTY

$169.95
THE NAME YOU CAN TRUST IN ELECTRONIC TEST EQUIPMENT

Tenma 35MHz Dual Trace Oscilloscope
- Two high quality 10:1 probes included
- For additional specification see MCM Catalog #12

$569.00 (ea.)

Tenma 20MHz Dual Trace Oscilloscope
- Two high quality 10:1 probes included
- For additional specification see MCM Catalog #12

$389.95 (ea.)

Tenma 0-18V 3A Power Supply
- Regulated outputs — constant volt or constant current, both are continuously variable
- Can be connected in series or parallel for more voltage or current output
- Reverse polarity and overload protected
- Isolated output

$995.00 (ea.)

Tenma Combination Function Generator and Frequency Counter
- 6 digit display
- Output range: 2Hz-2MHz, seven ranges
- Counter range: 1Hz-10MHz, 0.1-15V, TTL and CMOS output
- Wave forms: sine, triangle, square, pulse, and ramp

$219.90 (ea.)

Tenma Bench Top DMM
- 3½ digit
- Eight function DCV, ACV, DCA (up to 20A), ACA (up to 20A), Resistance (up to 20MΩ), Audible continuity test, diode test, capacitance test (up to 20µF)
- Available Mid May!

$149.95 (ea.)

Tenma Frequency Counter
- 6 digit LED display
- Measurement range: 1Hz-120MHz
- High input sensitivity of 20mV RMS

$189.95 (ea.)

Tenma Digital LCR Meter
- Measures inductance, capacitance and resistance
- L = 1µH-200H, C = 1pF-200µF, R = 0.1Ωm-20MΩ
- Carrying case included

$149.95 (ea.)

MCM Electronics
258 E. Congress Park Dr.
Centerville, Ohio 45459-4072
(615) 334-1072
SOURCE NO. RE-22

Terms:
- $10 minimum order
- $5.00 charge for orders under $10
- $30 minimum charge card order
- Returns shipped UPS C.O.D.
- Most orders shipped within 24 hours
- Store open 8:30am to 4:00pm Saturdays
- 8:30am to 3:30pm Sundays
- For prepaid orders add $7.75 for shipping and handling
- Should shipping and handling charges exceed $7.75, the balance due will be sent C.O.D.

CALL TOLL FREE 1-800-543-4330
In Ohio 1-800-762-4315 • In Alaska and Hawaii 1-800-858-1849

CIRCLE 87 ON FREE INFORMATION CARD
Radio Shack Parts Place™

START YOUR SUMMER PROJECTS AT THE SHACK®

Wire Wrapping! Easier and Faster Than Soldering

(1) Wire Wrapping Tool. Balanced 4½" all-metal instrument strips, wraps and unwraps 30-gauge wire. #276-1870 5.95

(2) 30-Gauge Wire. 50-foot spools. Use with any wrapping tool to make fast, reliable connections.

<table>
<thead>
<tr>
<th>Color</th>
<th>Cat. No.</th>
<th>50-Ft. Spool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>278-501</td>
<td>2.39</td>
</tr>
<tr>
<td>White</td>
<td>278-502</td>
<td>2.39</td>
</tr>
<tr>
<td>Blue</td>
<td>278-503</td>
<td>2.39</td>
</tr>
<tr>
<td>Yellow</td>
<td>278-504</td>
<td>2.39</td>
</tr>
</tbody>
</table>

(3) Wire Wrapping DIP Sockets. Square 0.25" posts accept three levels of wire. Wrap wiring is the best way to construct experimental IC projects — making circuit changes is easy!

<table>
<thead>
<tr>
<th>Pins</th>
<th>Cat. No.</th>
<th>Pkg of 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>276-1988</td>
<td>1.19</td>
</tr>
<tr>
<td>14</td>
<td>276-1993</td>
<td>1.29</td>
</tr>
<tr>
<td>16</td>
<td>276-1994</td>
<td>1.39</td>
</tr>
<tr>
<td>28</td>
<td>276-1983</td>
<td>1.39</td>
</tr>
<tr>
<td>40</td>
<td>276-1984</td>
<td>1.99</td>
</tr>
</tbody>
</table>

Plug-In PC Boards and Accessories

(4) Jumbo Two-Bus Board. Accepts up to 24 16-pin DIP sockets. #276-100 5.95

Jumbo IC/Discrete Board. Accepts up to 40 16-pin DIP ICS. #276-191 5.95

(6) 90° RS-232 Connector. #276-1521 2.39

Panel Switch Values

(13) SPST Push-On/Push-Off. Rated 3 amps at 250 VAC. 1/2" mounting hole. #275-617 1.59

(14) Momentary Switches. Normally open Rated 3 amps at 250 VAC. Set includes one black and one red. #275-609 Set of 2/1.69

(15) SPST With 3/4" Brushed Aluminum Lever. 3 amps at 125 VAC. Flush mount. #275-639 1.49

Top-Quality Capacitors

<table>
<thead>
<tr>
<th>Tantalum</th>
<th>µF</th>
<th>WVDC</th>
<th>Cat. No.</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/2</td>
<td>35</td>
<td>272-1425</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>0.47</td>
<td>35</td>
<td>272-1433</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>1.0</td>
<td>35</td>
<td>272-1434</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>10.0</td>
<td>16</td>
<td>272-1436</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>22</td>
<td>16</td>
<td>272-1437</td>
<td></td>
<td>79</td>
</tr>
</tbody>
</table>

Metal Film

<table>
<thead>
<tr>
<th>µF</th>
<th>WVDC</th>
<th>Cat. No.</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.08</td>
<td>250</td>
<td>272-1052</td>
<td>39</td>
</tr>
<tr>
<td>0.047</td>
<td>250</td>
<td>272-1053</td>
<td>59</td>
</tr>
<tr>
<td>0.01</td>
<td>250</td>
<td>272-1055</td>
<td>89</td>
</tr>
</tbody>
</table>

Handy Extra Features!

(16) 21-Range LCD Multimeter. Digital precision and handy extra features! Has convenient pushbutton omhs zero adjust. Special “diode-check” mode for testing semiconductor junctions and a built-in audible “beep” continuity tester. Measures to 1000 volts DC, 500 volts AC, DC and AC current to 200 mA, resistance to 20 megohms. Includes manual, probes, spare fuse. Requires 2 AA cells. #22-191 59.95

(17) Dynamic Translator Checker. Tests PNPs, NPNs, silicon and germanium types in or out of circuit. Lamp indicates relative gain, “opens” and “shorts.” An output jack lets you connect an external meter or scope. With instructions. Requires 2 AA battery. #22-025 14.95

Give Your Computer a Voice!

(18) NEW! AT-3-8910A Sound Generator IC. Only your imagination will limit the variety of sounds which can be generated by this 40-pin MOS-LSI chip and an 8 or 16-bit microprocessor. It’s easily interfaced to any bus-oriented system and three simultaneous independent analog outputs are available. With data #276-1786. 9.95

(19) SPO256-AL2 Speech Synthesis IC. This 28-pin MOS LSI device uses a stored program to produce natural sounding speech. With circuit examples and detailed data. #276-1784. 12.95

(20) CT5256-AL2 Text-to-Speech IC. This 40-pin device translates ASCII characters into control data for the synthesizer above. Makes it easy to add voice to most computers and terminals. With data #276-1786. 16.95

Over 1000 items in stock: Binding posts, Books, Breadboards, Buzzers, Capacitors, Chokes, Clips, Connectors, Fuses, Hardware, ICs, Jacks, Knobs, Lamps, Multimeters, PC Boards, Plugs, Resistors, Relays, Resistors, Switches, Tools, Transformers, Transistors, Wire, Zeners and more!

Battery Guidebook

1.99

This New Book Helps You Select The Right Battery

Learn how batteries work, how to recharge and test them, and how to choose the best values. Includes complete technical data on all ENERCELL® batteries. 160 pages. #62-1396

Special-Purchase Bargains!

(10) Low-Voltage DC Motors. Perfect for robotics experiments. #273-229 Pkg. of 2/1.49

(11) Computer Keyboard. QWERTY layout with total of 48 keys. #277-1023 3.95

(12) Plug-In Triple-Output DC Supply. Delivers 5 VDC up to 900 mA, 5 VDC up to 100 mA and +12 VDC up to 300 mA. UL listed. #277-1022 4.95

Prime Digital ICs

Include Pin-Out and Specs

(13) 2-Input NAND Gate. #276-1801 0.89

(14) 2-Input NOR Gate. #276-1802 0.89

(15) 2-Input OR Gate. #276-1803 0.89

(16) 2-Input AND Gate. #276-1804 0.89

(17) 2-Input XOR Gate. #276-1805 0.99

(18) 2-Input XNOR Gate. #276-1806 0.99

Prices apply at participating Radio Shack stores and dealers.

Radio Shack
A DIVISION OF TANDY CORPORATION

CIRCLE 78 ON FREE INFORMATION CARD
Save $30 on the RAMSEY 20MHz Dual Trace Oscilloscope

Unprecedented quality at an unbelievable price! The RAMSEY oscilloscope comes to others costing hundreds more! Features include a component test circuit for resistors, capacitors, diodes, crystals, frequency, sync filter, -500 Hz to 50 MHz bandwidth, high sensitivity and internal graticule, 2 axis, 100 or 200 V/div, 1, 2, 5, or 10 ns/div. Up to 1000 ns/div. Power supply: 115/220 VAC. 30W. Complete kit: $369.95

NEW RAMSEY 1200 VOM MULTITESTER

Compact handheld digital multimeter with key lock, and test leads included. High brightness LCD display features up to 5 digit resolution, 1 MHz digital resistance, 100 mA current, 1000 V AC or DC voltage, 10 MHz frequency, 1000 ohm resistance, and 10 Amp current. Battery: 9V. Complete kit: $149.95

NEW RAMSEY D-4100 COMPACT DIGITAL MULTIMETER

2000 count digital multimeter with key lock, and test leads included. 100 Ohm resistance, 1000 V AC or DC voltage, 10000 ohms resistance, 10 MHz frequency, 10 Amp current. Battery: 9V. Complete kit: $99.95

NEW RAMSEY 3500 DUAL TRACES OSCILLOSCOPE

A heavy duty accurate scope for service as well as for low cost roentgenography. Features include: - wide frequency bandwidth - optimal sensitivity - extremely bright display - 50 MHz response - delayed triggering switch - hold down - ALL trigger - digital readout - buffer memory - scope can display up to 15 MHz signals. Internal battery pack allows up to 2 hours operation on a single charge. Features including: - built-in battery charger - AC/DC power supply - high brightness CRT - front panel video input - internal rechargeable battery pack. Battery: 9V. Complete kit: $499.95

NEW 15 MHz DUAL TRACE PORTABLE OSCILLOSCOPE

Ideal for hohi-diagnosis. This scope can display up to 15 MHz signals. Internal battery pack allows up to 2 hours operation on a single charge. Features including: - built-in battery charger - AC/DC power supply - high brightness CRT - front panel video input - internal rechargeable battery pack. Battery: 9V. Complete kit: $2500

MINI-100 FREQUENCY COUNTER

Features and capabilities of counters costing twice as much. - Digital readout - 3 digit readout - key lock - 50 MHz frequency - 500 Hz dividers - 3M Hz sweep - 3M Hz counter. Battery: 9V. Complete kit: $69.95

CT-70 7 DIGIT 525 MHZ COUNTER

Count from 0 to 1000 in 1 second. High sensitivity displays all leads included. Battery: 9V. Complete kit: $119.95

CT-50 3 DIGIT 600 MHZ COUNTER

Count from 0 to 1000 in 1 second. High sensitivity displays all leads included. Battery: 9V. Complete kit: $169.95

DM-7000 DIGITAL MULTIMETER

Professionally accurate at a hobbyist price. Features include: - 9 digit readout - key lock - 1000 V AC or DC voltage, 1000 Ohm resistance, 10 M Ohm resistance, 10 MHz frequency, 10 Amp current. Battery: 9V. Complete kit: $169.95

PS-2 AUDIO MULTIPLIER

The PS-2 is for those interested in radio receiver measurements. Multiplies up to 150 kHz. Features include: - 12 digit counter - high sensitivity - wide range - trigger - DC voltage - 10 MHz frequency. Battery: 9V. Complete kit: $499.95

PS-108 1.5 GHz PRESCALER

The PS-108 is for those interested in radio receiver measurements. Multiplies up to 150 kHz. Features include: - 12 digit counter - high sensitivity - wide range - trigger - DC voltage - 10 MHz frequency. Battery: 9V. Complete kit: $799.95

ACCESSORIES FOR RAMSEY COUNTERS

Telescopic whip antenna - BNC plug - $8.95
High impedance probe, loading light - $19.95
Low pass probe, audio use - $16.95
Direct probe, general purpose use - $13.95
Tilt ball, for CT-70, 90, 125 - $3.95

PHONE ORDERS CALL 716-586-3950

www.ramsay.com

RAMSEY ELECTRONICS, INC.

2575 Baird Rd. Penfield, N.Y. 14626

CIRCLE 70 ON FREE INFORMATION CARD
FOR FREE INFORMATION
USE THESE POST-PAID CARDS

Print your name, address and Zip Code on one of the attached postage-paid cards.

Circle the number (or numbers) on the card that matches the number at the bottom of each ad or editorial item that you want information on. Advertisers' free information numbers also appear in the ad index on the facing page.

3. Mail the card. It's Postage-Paid.

The bottom free-information card is a BUSINESS/PROFESSIONAL CARD. If you use this card you MUST complete the spaces for Company Name, Title, and Phone Number. If these are not filled in, the card will not be processed.

NOTE: Use the postcard address for Free Product Information only. Address all editorial inquiries to Editor, Radio-Electronics, 500-B Bi-County Blvd., Farmingdale, NY 11735.

FREE INFORMATION CARD
VOID after SEPTEMBER 30, 1986
Allow 6-8 weeks for delivery of first issue

BUSINESS PROFESSIONAL FREE INFO CARD
Use this card if information requested is for business use. You must fill in company name and phone number.

Name __________________________ Title __________________________
Company __________________________ Dept./MS __________________________
Company Address __
City __________________________ State __________________________ Zip + 4 __________

Unlawful or incomplete mailing info will prevent our processing this request.

2 □ Please send me 12 issues of RADIO-ELECTRONICS for $15.97 and bill me. (Canada $20.97—US Funds only)
4 □ Please send me 6 issues of HANDS-ON ELECTRONICS for $14.00 and bill me. (Canada $17.00—US Funds only)

Is this your personal copy of RADIO-ELECTRONICS?
6 □ Yes 8 □ No

19 37 55 73 91 109 127 145 163 181 199 217 235 253 271
20 38 56 74 92 110 128 146 164 182 200 218 236 254 272
21 39 57 75 93 111 129 147 165 183 201 219 237 255 273
22 40 58 76 94 112 130 148 166 184 202 220 238 256 274
23 41 59 77 95 113 131 149 167 185 203 221 239 257 275
24 42 60 78 96 114 132 150 168 186 204 222 240 258 276
25 43 61 79 97 115 133 151 169 187 205 223 241 259 277
26 44 62 80 98 116 134 152 170 188 206 224 242 260 278
27 45 63 81 99 117 135 153 171 189 207 225 243 261 279
28 46 64 82 100 118 136 154 172 190 208 226 244 262 280
29 47 65 83 101 119 137 155 173 191 209 227 245 263 281
30 48 66 84 102 120 138 156 174 192 210 228 246 264 282
31 49 67 85 103 121 139 157 175 193 211 229 247 265 283
32 50 68 86 104 122 140 158 176 194 212 230 248 266 284
33 51 69 87 105 123 141 159 177 195 213 231 249 267 285
34 52 70 88 106 124 142 160 178 196 214 232 250 268 296
35 53 71 89 107 125 143 161 179 197 215 233 251 269 298
36 54 72 90 108 126 144 162 180 198 216 234 252 270 298
Radio-Electronics

Subscribe today to the magazine that keeps you up-to-date with the newest ideas and innovations in electronics. (If you already are a subscriber, do a friend a favor and pass this subscription card along to him.)

check offer preferred

☐ 1 Year—12 issues ONLY $15.97
 (You save $7.43 off single copy price)
☐ Canada—12 issues $20.97

☐ 2 Years (SAVE MORE)—24 issues $30.97
 (You save $15.83 off single copy price)
☐ Canada—12 issues $40.97

ALL SUBSCRIPTIONS PAYABLE IN U.S. FUNDS ONLY.

☐ Payment enclosed
☐ Bill Me
☐ Check here if you are extending or renewing your subscription

Name (Please Print) ________________________________

Company Name (If applicable) ________________________________

Address __

City __________________________ State __________ Zip __________

Allow 6-8 weeks for delivery of first issue

For New Ideas
In Electronics
read Radio-Electronics
every month.

During the next 12 months
Radio-Electronics will carry up to the minute articles on:
- Computers • Video
- Solid-state technology
- Outstanding construction projects
- Satellite TV • Telephones
- Radio • Stereo • Equipment
- Reports
- Test equipment • VCR's
- Servicing
- Industrial electronics

NEW IDEAS AND INNOVATIONS IN ELECTRONICS APPEAR IN EVERY ISSUE OF RADIO-ELECTRONICS

KEEP UP TO DATE! DON'T MISS ANY ISSUES!

SUBSCRIBE TODAY!
USE THE ORDER CARD ON YOUR LEFT!

Hands-on Electronics

Formerly Special Projects
Delivers construction article after construction article....Exciting columns including Jensen on DXing, Freidman on computers, Test bench tips, Noll with Calling All Hams, New Products and more.

SUBSCRIBE TODAY!
USE THE REPLY CARDS ON YOUR LEFT!
RCA's SK Series Replacement Guide (SKG202D) is your one source for over 206,000 solid state replacements using 2,500 SK and KH types. Integrated circuits, thyristors, rectifiers, transistors, microprocessors — RCA has them all.

Likewise, RCA's Industrial MRO Guide (1K7862) lists over 4,000 devices that replace more than 21,000 JEDEC® and Commercial types. The Guide also includes Power MOS/FETs, QMOS Integrated Circuits, a combined index/cross reference, and a section on high-reliability devices.

Together, these RCA Guides provide fast, easy answers for 227,000 solid state replacement problems. For copies, see your local RCA distributor. Or write: Sales Promotion Services, RCA Distributor and Special Products Division, 2000 Clements Bridge Rd., Deptford, NJ 08096-2088.

*Joint Electron Device Engineering Council

RCA SK Replacement
Solid State
SCOPE 3½ DIGIT LCD
MINI-METER
WITH THE
MAXI-SPECS
Small enough to fit in your shirt pocket
$29.95
ONLY
Model DVM-630

Model CC-30 Deluxe
Zippered Carrying Case $4.50

Model DCM-602
$69.95
3½ Digit Capacitance Meter
8 ranges with full scale values to 2000 µF
FEATURES • Broad test range - 1 pF to 2000 µF • LSI circuit provides high reliability and durability • Lower power consumption • Crystal time base • Protected from charged capacitors • Frequency range - 800 Hz to 8 Hz

Model DVM-634
$48.75
7 functions, 32 ranges. Transistor measurement included.

Model DVM-638
$79.95
11 functions, 38 ranges. Includes logic level detector, audible visual continuity, capacitance and conductance measurement.

Model DVM-636
$62.75
8 functions, 37 ranges. Capacitance measurement included.

SCOPE HAND HELD DIGITAL CAPACITANCE AND MULTIMETERS
- 0.5% DC accuracy
- Highest Quality
- Highest Performance
- Lowest Prices

ASk FOR FREE CATALOG.
Money orders, checks accepted. C.O.D.'s require 25% deposit.

Fordham
260 Motor Parkway, Hauppauge, NY 11788

Toll Free 800-645-9518
In NY State 800-832-1446