IN SEARCH OF TESLA'S ELUSIVE FIREBALL LIGHTNING

$1.95 MAR. 1985
IN CANADA $2.25

TECHNOLOGY - VIDEO - STEREO - COMPUTERS - SERVICE

What's new in DMM's and Oscilloscopes—How much must you spend to get the features you really need?

Build R-E's Uninterruptable Power Supply and protect your equipment against power outages.

Build R-E's Cassette Streamer to back up your computer software.

All about thermistors and their applications.

Special 16-page tear-out section.

PLUS:
★ Hobby Corner ★ New Ideas ★ Service Clinic
★ Equipment Reports ★ State-Of-Solid-State

www.americanradiohistory.com
100 MHz scope, counter, timer, multimeter: All one integrated system.

Now make measurements faster, easier, with greater accuracy and user confidence. The Tek 2236 makes gated counter measurements, temperature, time, frequency, resistance and voltage measurements push-button easy. You see results concurrently on the 9-digit numeric readout and CRT display.

Its complete trigger system includes pushbutton trigger view, plus peak-to-peak auto, TV line, TV field, single sweep and normal modes.

At just $2650* the 2236 includes the industry's first 3-year warranty on all parts and labor, including the CRT.

Integrated measurement system. 3-year warranty. 15-day return policy. And expert advice. One free call gets it all! You can order, or obtain literature, through the Tek National Marketing Center. Technical personnel, expert in scope applications, can answer your questions and expedite delivery. Direct orders include probes, operating manual. 15-day return policy; full warranty and worldwide service back-up.

Order toll-free: 1-800-426-2200

Extension 57

In Oregon call collect: (503) 627-9000 Ext. 57
Write Tektronix, Inc.
P.O. Box 1700
Beaverton, OR 97075

Copyright ©1984, Tektronix, Inc. All rights reserved. TTA-324-1. "U.S. Domestic price F.O.B. Beaverton, Oregon. Price subject to change.
FREE Bearcat® Rebate Offer

Get a coupon good for a $35.00 rebate when you purchase a Bearcat® 210XL $30.00 rebate on model 501 $20 rebate on model 150 and $10 on any other Bearcat scanner. Print this ad and bring it to your Uniden dealer. A limited number of rebates are available. Supplies are on a first come, first served basis. Communications Electronics has no obligation to you if the offer is exhausted. Use your rebate check to reduce the final amount by $35.00. Please make sure to write "Uniden" in the space provided. A limited number of rebates are available. Supplies are on a first come, first served basis. Communications Electronics has no obligation to you if the offer is exhausted. Use your rebate check to reduce the final amount by $35.00. Please make sure to write "Uniden" in the space provided.

NEW! Bearcat® 201-G

List price $549.95/CE Price $434.00/$350.00 rebate Your final cost is a low $350.00

9-Band, 18 Channel, 100,000+ memories. The Bearcat 201-G is a state-of-the-art scanner that can store an almost limitless number of frequencies. It can be programmed to store up to 16 channels for automatic monitoring. It is perfect for monitoring fire, police and amateur radio frequencies. It can be programmed to search for frequencies that are no longer in use. It is perfect for monitoring fire, police and amateur radio frequencies. It can be programmed to search for frequencies that are no longer in use.

NEW! Bearcat® 180-G

List price $349.95/CE Price $274.00/$200.00 rebate Your final cost is a low $200.00

9-Band, 18 Channel, 100,000+ memories. The Bearcat 180-G is a state-of-the-art scanner that can store an almost limitless number of frequencies. It can be programmed to store up to 16 channels for automatic monitoring. It is perfect for monitoring fire, police and amateur radio frequencies. It can be programmed to search for frequencies that are no longer in use. It is perfect for monitoring fire, police and amateur radio frequencies. It can be programmed to search for frequencies that are no longer in use.

NEW! Bearcat® DX1000-G

List price $349.95/CE Price $289.00 /$215.00 rebate Your final cost is a low $215.00

12-Band, 18 Channel, 100,000+ memories. The Bearcat DX1000-G is a state-of-the-art scanner that can store an almost limitless number of frequencies. It can be programmed to store up to 16 channels for automatic monitoring. It is perfect for monitoring fire, police and amateur radio frequencies. It can be programmed to search for frequencies that are no longer in use. It is perfect for monitoring fire, police and amateur radio frequencies. It can be programmed to search for frequencies that are no longer in use.

NEW! Bearcat® 260-G

List price $299.95/CE Price $220.00/$165.00 rebate Your final cost is a low $165.00

9-Band, 18 Channel, 100,000+ memories. The Bearcat 260-G is a state-of-the-art scanner that can store an almost limitless number of frequencies. It can be programmed to store up to 16 channels for automatic monitoring. It is perfect for monitoring fire, police and amateur radio frequencies. It can be programmed to search for frequencies that are no longer in use. It is perfect for monitoring fire, police and amateur radio frequencies. It can be programmed to search for frequencies that are no longer in use.

Uniden® PC22-G

List price $158.95/CE Price $120.00

The Uniden PC22-G is a state-of-the-art scanner that can store an almost limitless number of frequencies. It can be programmed to store up to 16 channels for automatic monitoring. It is perfect for monitoring fire, police and amateur radio frequencies. It can be programmed to search for frequencies that are no longer in use. It is perfect for monitoring fire, police and amateur radio frequencies. It can be programmed to search for frequencies that are no longer in use.
NEW! Regency® MX7000-G

List price $599.95/CE price $449.00
10-Band, 20 Channel + CRYSTALASS / AC/DC
Frequency range 25-550 MHz, continuous coverage
Includes battery charger/AC adapter
+ LCD display
World’s first continuously tunable scanner
Frequency range 25-550 MHz, continuous coverage

NEW! Regency® MX5000-G

List price $595.95/CE price $354.00
Multi-Band, 20 Channel + Mobile Scanner
Search + Priority / AC/DC
+ Selectable AM/FM modes / LCD display

Regency® MX3000-G

List price $319.95/CE price $162.00
6-Band, 20 Channel + Handheld Crystal Scanner
Search + Lockout / Priority / AC/DC
+ Bands: 45-147.950, 148-440 MHz

Regency® Z30-G

List price $279.95/CE price $166.00
6-Band, 20 Channel + Handheld Crystal Scanner
Search + Priority / AC/DC
+ Bands: 45-147.950, 148-440 MHz

Regency® C403-G

List price $99.95/CE price $62.00
6-Band, 4 Channel + Crystal Scanner
Channel Indicator / AC only / Low cost

Regency® RX1000-G

List price $329.95/CE price $209.00
30-Band + Mobile crystal Scanner
Search + Lockout / Priority / Scan delay

Regency® RX106-G

List price $189.95/CE price $92.00
5-Band, 10 Channel + Crystal Scanner
Frequency range 25-500 MHz, continuous coverage
+ Bands: 45-147.950, 148-440 MHz

REGENCY GENERAL PRODUCTS DIVISION

P.O. Box 1048, Ann Arbor, Michigan 48106-1048 U.S.A.
Call 800 USA-SCAN or outside U.S.A., 313-973-8888

For credit card orders call 1-800-USA-SCAN

COMMUNICATIONS ELECTRONICS

www.americanradiohistory.com
SPECIAL SECTION: TEST EQUIPMENT

49 WHAT'S NEW IN DMM'S
A look at the specifications and features that you should know about before you shop for a multimeter. Herb Friedman

58 WHAT'S NEW IN OSCILLOSCOPES
The performance and features you should expect from a modern oscilloscope. Herb Friedman

BUILD THIS

43 UNINTERRUPTABLE POWER SUPPLY
This inverter power supply can provide backup power to many AC devices from burglar alarms to emergency exit lights.
Dave Sweeney

75 TAPE STREAMER FOR YOUR COMPUTER
Part 2. Complete construction details for building a universal, high-speed cassette interface. Mike Huddleston

TECHNOLOGY

46 IN SEARCH OF FIREBALL LIGHTNING
Ball lightning remains one of physics' biggest mysteries. But some recent experiments may answer some of our questions. Robert K. Golka

92 STEREO AUDIO FOR TV
Part 2. The dbx noise-reduction system. Brian C. Fenton

CIRCUITS AND COMPONENTS

63 SELECTING THE BEST RESISTOR/CAPACITOR
Part 2. This month we turn our attention to the myriad capacitor types available and how you can choose the one that's right for your application. Victor Meeldijk

67 ALL ABOUT THERMISTORS
Part 3. Practical thermistor applications including a digital thermometer. Harry L. Triety

80 HOBBY CORNER
Backing up AC devices.
Earl "Doc" Savage, K4SDS

88 DRAWING BOARD
Designing with memory IC's.
Robert Grossblatt

98 DESIGNER'S NOTEBOOK
Putting an end to power supply ripple. Robert Grossblatt

102 STATE OF SOLID STATE
Microwave PSIFET's. Robert F. Scott

105 NEW IDEAS
An electronic watchdog.

RADIO

82 COMMUNICATIONS CORNER
Half-duplex communications. Herb Friedman

100 ANTIQUE RADIOS
Where to find antique radios. Richard D. Fitch

VIDEO

10 VIDEO NEWS
The present and future in the fast-changing video scene. David Lachenbruch

12 SATELLITE TV
A look at TVRO features. Bob Cooper, Jr.

106 SERVICE CLINIC
Op-amps in TVs. Jack Darr

107 SERVICE QUESTIONS
Radio-Electronics' service editor answers your questions.

COMPUTERS

Following page 88

82 COMPUTER DIGEST
How to turn your IBM PC into an Apple—and more!

96 COMPUTER CORNER
Integrated software. Lou Frenzel

EQUIPMENT REPORTS

24 Valiant Telecomp 1000
Video Mixer

32 Sony ICF-2002 Receiver

DEPARTMENTS

128 Advertising and Sales Offices
128 Advertising Index
129 Free Information Card
20 Letters
110 Market Center
108 New Products
6 What's News
Whether you're an electronic professional, hobbyist, or student, one thing is for sure: You won't get very far without test equipment. The subjects of our special test-equipment section are also the most popular—the modern oscilloscope and the digital multimeter. In our special section, we take a look at the features that you should be familiar with and how much you can expect to pay for those features. If you're in the market for either a DMM or scope, then you'll find the section especially helpful. It starts on page 49.

Next Month

On Sale March 12

Real Time Audio Analyzer
Adjust your equalizer for maximum performance in your listening area.

Servicing Videodisc Players
The concluding installment on how to service laser and CED systems.

Cellular Telephones
A look at the technology behind cellular phone systems.

Oscilloscope Upgrade
Add a video-sync separator to your scope for stable displays of video signals.

And lots more!
For Hz, people choose this DMM with amazing frequency.

Our 8060A has four unique buttons you won't find on any other 4½-digit handhelds.

Push the Hz button, and you're ready to measure frequencies from 12 Hz to 200 kHz. And that's just the beginning.

Select dB for automatic conversion from voltage measurements. Continuity for quick checks for opens and shorts. And Relative for offset measurements — in any function or range you're working in.

Put them together and it's obvious this is no ordinary DMM.

The 8060A also offers true RMS ac measurements, 0.04% basic dc accuracy and 10 µV resolution. Plus Fluke's traditional quality, precision, ruggedness and value. In all, the most powerful handheld DMM you can buy.

But don't take our word for it.

The next time you're comparing DMMs, take a closer look. Because compared to the competition, something will become very clear.

There isn't any. That's why for Hz and many other reasons, people choose the Fluke 8060A — with amazing frequency.

To learn more about the top-of-the-line 8060A, the lower-cost 8062A and the bench/portable 8050A, contact your local Fluke Distributor, or call toll-free 1-800-425-0361.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

8060A DMM
- Frequency measurements
- Continuity and Diode test
- Auto-ranging multimeter
- One-year calibration cycle and warranty
- 2.5 µA leakage

8062A DMM
- Frequency measurements
- Continuity and Diode test
- Auto-ranging multimeter
- One-year calibration cycle and warranty
- 2.5 µA leakage

8050A DMM
- Frequency measurements
- Continuity and Diode test
- Auto-ranging multimeter
- One-year calibration cycle and warranty
- 2.5 µA leakage

IN THE U.S. AND NON-EUROPEAN COUNTRIES
John Fluke Mfg. Co., Inc.
P.O. Box 1000, P.O. 200C
Everett, WA 98206
(206) 566-5400, Fax: 566-5662

IN EUROPE:
Fluke (Holland) B.V.
P.O. Box 5063, 1900 EB
Tilburg, The Netherlands
(011) 67978, Fax: 67983

Copyright © 1984 John Fluke Mfg. Co., Inc. All rights reserved. Ad No. 4761-2085
For technical data circle number 256
What's News

Capacitance-coupled device may replace camera tubes

RCA has announced a new silicon imaging device that for the first time can produce color-television pictures with the image quality previously attainable only with film. This exceptional quality is largely due to the device's ability to handle bright light while at the same time producing clean images from shadows. It can practically see in the dark, producing clear images with as little as three foot-candles of light.

Under well-lit conditions, with no motion, the resolution of the RCA SID504 is about the same as that of 1/2-inch vacuum tubes. But its ability to see detail in rapidly moving objects in low light is remarkably better than that of tubes. The signal-to-noise ratio is greater than 62 dB, about 4 to 6 dB better than the best comparable tubes. The new device also eliminates blooming, a glare caused by objects reflecting too much light into the TV camera.

These features are particularly useful in industrial surveillance and inspection, where lighting conditions are often difficult to control. Other advantages include immunity to magnetic fields and acoustic interference. And, because it is a solid-state device, the SID504 is virtually maintenance-free as compared to conventional tubes.

Columbia University opens window on Russian TV

Students and professors on the campus of Columbia University are receiving up to 15 hours of live domestic television broadcasts a day from Moscow. In Columbia's W. Averill Harriman Institute for Advanced Study of the Soviet Union, they are watching the programs of four "Molniya" satellites. Those satellites orbit 90 degrees apart in a highly inclined ellipse around the poles, rising as high as 40,000 kilometers (25,000 miles) at their highest point. (The popular geostationary orbit over the equator would not be practical for the Soviet Union, since so much of it lies in the far North.)

This technical breakthrough was accomplished for Columbia by a young electronics expert, Ken Schaffer. He spent three years developing the data and specialized equipment necessary to access the Molniya network that carries Moscow's Programma 1 throughout the Soviet Union.

Seemingly insurmountable problems of microwave interference in Manhattan had to be solved, as did technical difficulties of adaption: The Russian TV bandwidth is almost twice as great as the American, the signal uses circular polarization, and the color system is the French SECAM, or line sequential. The Russian system also has 625 lines, and sound is transmitted as part of the picture instead of being transmitted on a subcarrier.

Benefits of the new study, says Jonathan Sanders, director of the Institute, are many: "We will know immediately how the Soviets have or have not reacted to an event. We will learn more about how Russian is spoken. We will see how the Soviets define news, and how they use television for educational purposes. It will be a very broad exposure, from a speech by Chernenko to the Million Rouble Movie."

R-E
VIDEO ACCESSORIES

- Highest quality
- Highest performance
- Lowest prices

bp VIDEO-CINE CONVERTER

The BP Video-Cine Converter is an optical device that allows the easy transfer of slides, 8mm or 16mm movie film to VCR tape. The Video-Cine Converter's precision optics put the image from your movie or slide projector on a high-contrast, rear projection screen. Your video camera shoots that image, can color-correct faded pictures, add narration to other sound. Can be used with any video camera or slide projector. If your video camera lacks close-up capability, you will need a macro lens attachment.

MODEL V-1701 $34.95

FOR ULTIMATE VIEWING

TEKNIKA

Model 6510

WIRELESS REMOTE
CONTROL TV TUNER
& CABLE CONVERTER
WITH VOLUME CONTROL

Model 6510 $169.95

bp

81 CHANNEL WIRELESS
REMOTE CONTROL

Model V7861 $79.95

bp

VIDEOTAPE REWINDER

Model V7778 VHS $49.95

Model V7778 BETA $49.95

Charge it with VISA/MASTERCARD. Phone orders accepted.

Toll Free

800-645-9518

In NY State 800-832-1446

Fordham

260 Motor Parkway, Hauppauge, NY 11788

Phone orders accepted.

STABILIZER/IMAGE ENHANCER/RF CONVERTER/VIDEO FADER/2-WAY DISTRIBUTION AMPLIFIER

Model V1880 $99.95

Hook-up cable kit $11.75

The most versatile, all-in-one video processor. Can be used as a video guard remover, video tapes, enhancer, video to RF Converter, professional video fade in and out and a dual output distribution amplifier.

bp

VIDEO TAPE REWINDER

Model V7777 VHS $49.95

Model V7778 BETA $49.95

Reduce wear and tear of your VCR heads with the AC powered circuit protected rewinders. LED power-on indicators.

Service and Shipping Charge Schedule

<table>
<thead>
<tr>
<th>For Orders</th>
<th>Addon</th>
</tr>
</thead>
<tbody>
<tr>
<td>$25-250</td>
<td>$4.50</td>
</tr>
<tr>
<td>$251-500</td>
<td>$6.50</td>
</tr>
<tr>
<td>$501-750</td>
<td>$8.50</td>
</tr>
<tr>
<td>$751-1,000</td>
<td>$12.50</td>
</tr>
<tr>
<td>$1,001 and up</td>
<td>$15.00</td>
</tr>
</tbody>
</table>

Phone orders accepted.

www.americanradiohistory.com
Introducing a broad, new line of multi-feature, cost-competitive instruments from Beckman Industrial Corporation.

They're in stock now and as close as your local Beckman Industrial Corporation distributor. Just walk in and choose the instruments that provide the features and functions you need. Then buy them and take them home, or to work. No more ordering and waiting.

Whichever instruments you choose, you'll be buying our reputation for high quality and reliability, plus straightforward, easy operation. And you'll be getting it all for a very affordable price. In fact, you'll have a hard time finding comparable instruments that offer as much functionality and quality. All of which makes this line of instruments an exceptional value.

Choose between our 100MHz or 60MHz advanced design oscilloscopes. Both provide professional grade performance. Both also feature dual time base and three channels.

The UC10 Universal Counter measures unit count, period, time interval and frequency to 100MHz. And the FG2 Function Generator produces sine, triangle and rectangular waves up to 2MHz and at continuously variable duty cycle.
Our new circuit-powered LPIO Logic Probe is the ideal, low cost way to check TTL, DTL, HTL and CMOS signals.

The CM20 Capacitance Meter is a low cost, hand-size meter that lets you measure capacitance up to 2000 µF easily and quickly.

The CT233 AC/DC Current Clamp enables you to use your digital multimeter to measure AC or DC current without breaking the wire.

Plus every instrument is designed, manufactured, and tested to ensure years of trouble-free, reliable operation.

And whichever products you buy, service and parts will be available close to home from your local Beckman Industrial Corporation distributor.

Now it's easier than ever to buy the name with a reputation for the best quality—and value—in electronic and electrical instruments: Instrumentation Products Division, Beckman Industrial Corporation, A Subsidiary of Emerson Electric Co., 630 Puente Street, Brea, CA 92621, (714) 773-8111.

Beckman Industrial™

©1984 Beckman Industrial Corporation
VIDEO NEWS

DAVID LACHENBRUCH
CONTRIBUTING EDITOR

- **8mm Video growing.** That off-again-on-again 8mm video fever seems to be on again. In the past, the tiny-cassette format has received only half-hearted support from major Japanese VCR manufacturers. But now, Sony appears to be backing it with great enthusiasm, and reportedly is changing over one production line from Betamax to 8mm video—and is capable of turning out nearly 2,500,000 of the new-type VCR's in a year. Sony's first 8mm product is expected to be an extremely lightweight (less than 4 pounds) camera-recorder combination. Sony will also make camcorders for sale under the Fuji and Yashika brands, and supply Pioneer with basic components to make a tiny home-VCR deck. Eastman Kodak is already marketing an 8mm camcorder in the U.S. and plans to sell a similar one. Polaroid is due to begin sales of a Toshiba-made version here early this year, and Sanyo plans to offer a 4½-pound portable 8mm deck soon.

- **More camcorders coming.** Although sales of portable VCR's and cameras last year failed to keep up with booming increases in AC-only video recorders, combinations of the two items—

 camcorders—met initial consumer acceptance. The trail was blazed by Betamovie (sold by Sony, Sanyo, Nc, Toshiba, and others), and was followed by the highly successful VHS-C Video Movie, being sold under JVC and Zenith brand names, and 8mm Video camcorders launched late in the year by Kodak and General Electric.

 This year should see virtually every brand offering its own camcorder. RCA has now confirmed the report in this column that it will introduce a one-piece unit combining a camera with a VCR that can accommodate a full-sized VHS cassette. The RCA unit, and some other VHS camcorders to be marketed this year, are expected to play back as well as record. Betamovie is a record-only system, requiring a Beta deck for playback. VHS-C Video Movie records and plays back, but accommodates only 20-minute cassettes compatible with home VHS decks when placed in an adaptor. The 8mm Video record-and-playback camcorders accept the new small cassettes, which at press time were available with maximum recording time of 90 minutes, but a two-hour cassette is scheduled to become available this year.

- **More digital TV's.** As new digital-TV sets are announced, it is becoming clear that a wide variety of different features will be available under different brand names. In Japan, Sony introduced two component video systems, with 18- and 20-inch monitors, accompanied by a companion scan converter that changes the incoming B25-line signal to a non-interlaced picture with 1,060 lines—double the scan rate.

 Next fall, Mitsubishi plans to introduce a digital set that will place up to nine TV pictures on the screen—scanning all nine channels with a single tuner and refreshing the slow-scan pictures every four seconds. A single video source, such as a VCR, may be used to provide sort of a comic-strip effect, with nine sequential still-pictures frozen at pre-set intervals that can be as short as 1/30 second.

 The Panasonic and Toshiba digital TV's are both designed to display a smaller picture from a video device in any corner of the screen, and freeze the picture on command.
LITTLE THINGS MEAN A LOT

Even from the outside there's more to an ACEBOARD than meets the eye. Our durable Acetal Copolymer plastic body is a good insulator with excellent dielectric properties. And special manufacturing techniques in the insertion of the contacts into the plastic body insure that your Breadboard will always remain flat. No skimping or planned obsolescence here. Again, just good solid contact on every connection.

Turn our breadboard body over...and you'll discover another key to its reliability. The double-sided adhesive foam you'll see there is more than a pressure sensitive mount. It also insulates to prevent shorts and seals the bottom of the individual spring clip cells. If solder shavings from resistors or component leads drop into the cell, they can't spread into other cells to short them out.

Take a close look at our ACEBOARDS. A P PRODUCTS has the biggest and most complete line of ACEBOARD sizes. It's also our commitment to you that if your ACEBOARD doesn't work perfectly, bring it back to your A P PRODUCTS distributor. He'll replace it, no hassles.

To help you see for yourself what a big difference the little things make, we're offering you a 10% discount on the entire A P PRODUCTS ACEBOARD/Breadboard line. Just fill out the coupon and present it to your A P PRODUCTS distributor.

This coupon is worth 10% off the purchase price of any size ACEBOARD or Breadboard product. Offer expires 4/30/85.

Your Name ____________________________
Address ________________________________
City ______ State ______ Zip ____________
Dealer Name ___________________________

ACEBOARD # ___________________________

Limit 8 ACEBOARDS at Breadboards per coupon. Only valid at participating A P PRODUCTS distributors. RE 386
IN THE FIRST INSTALLMENT OF "SATELLITE TV," we took a "then-and-now" look at the typical home TVRO-system, concentrating on in-home TVRO-system mounts and feeds. We continued that comparison with an emphasis on LNAs and motor drives. We’ll complete our analysis by concentrating on the TVRO receiver (i.e. demodulator), as well as some of the new features that have turned the system into a real consumer item. Let’s deal with home receiver pricing right up front because there is a strong message there!

TVRO receivers
The first home TVRO-systems were sold by Scientific-Atlanta in the summer of 1979. No other firm was offering a home TVRO-package at that time. (You may recall that the Neiman-Marcus Christmas catalog for 1979 featured the Scientific-Atlanta system priced at $6,500.)

Those early terminals were being sold with 15-foot dish antennas, a pair of LNAs—one for each of two polarizations (horizontal and vertical)—hardline coaxial cable, and typically four single-channel (tuned and forgotten) receivers.

Each receiver was equipped with a single channel MATV-style modulator. What you ended up with, by today’s standards, was an "SMATV" (Satellite Master Antenna TeleVision) system. Standard RG-59/U cable running throughout the house distributed the four VHF channels to multiple outlets in the building.

As the "real" home TVRO-industry began late in 1979, system designers saw the Scientific-Atlanta home-TVRO’s $6,500 price tag as the number to beat. In the fall of that year, one of the first home-style TVRO receivers was being produced by AVCOM (a small firm in Virginia). The price for the AVCOM package was extremely close to $3,000. A real bargain, considering that a similar-featured, "commercial-grade" receiver from Scientific-Atlanta cost about twice as much.

Early receivers from AVCOM (International Crystal Manufacturing/ICM) were similar in design to existing Scientific-Atlanta and Microdyne professional receivers. The 4-GHz microwave signal, after being amplified by an LNA located at the dish antenna (see December’s column), was transported inside the home through large (½- or ¾-inch diameter) hardline coaxial cable.

That signal was then fed to an indoor receiver, with the downconverter mounted inside the same cabinet.

By early 1980, an engineer with the Harris Corporation, named Clyde Washburn, had completed his own receiver design. Washburn took the downconverter out of the receiver cabinet and made provisions to mount it outside, at or near the antenna. That started a modest revolution in receiver design.

Taking the downconverter out of the receiver cabinet and placing it closer to the antenna meant that long runs of expensive and hard-to-handle coaxial cable could be eliminated. Those early units used a double-conversion system that downconverted the 4-GHz microwave signal to the 70-MHz IF in two steps, as shown in Fig. 1. A. In short order, virtually all home-style receivers would be designed in the same way.

However, the big breakthrough came in mid-1980 when an Arizona microwave engineer—David Barker—revealed a new circuit for what he called single conversion. (Up to then, all downconverters were the double-conversion type.) Barker had worked out an acceptable way to reduce the 4-GHz microwave signals to the intermediate frequency (70 MHz) all in one step (see Fig. 1-B). That single-conversion unit suddenly made it possible for receivers to be built using about half the parts found in traditional dual-conversion models offered by AVCOM and others.
WE’RE TURNING THE COMPETITION GREEN WITH ENVY.

NTE is the red hot success story of the electronics industry and the big boys are green with envy. They don’t like the fact that we’ve built our reputation on giving you more of what you’re looking for in a replacement part. More quality. More reliability. And, more parts to choose from. That’s why more and more technicians across the country are picking the package with the green NTE diamond on the front.

NTE parts are extensively tested on state-of-the-art equipment during every phase of production to ensure top performance — performance that’s backed by the industry’s only two year warranty.

What’s more, NTE uses a special computer controlled inventory system, so when you replace or design with NTE, you can be sure that the part you need is on your distributor’s shelf. Our new 1985 Technical Guide and Cross Reference manual, which has over 3,100 NTE types cross-referenced to over 220,000 industry part numbers, is now available.

Why settle for our competitor’s parts when you get more quality and service with NTE? Look for NTE’s replacement parts in the bright green polybags and cartons at your distributor today. Don’t forget to ask about our new Flameproof Resistors and Wire Ties, too!

NEW-TONE ELECTRONICS, INC.
44 FARRAND STREET, BLOOMFIELD, NEW JERSEY 07003
CIRCLE 265 ON FREE INFORMATION CARD
Now the home TVRO-industry was really off and running! From double-conversion to single-conversion, there has been a steady progression of receiver innovations and reductions in parts count. The receiver of 1984 has about one-third the parts found in the 1980 (dual-conversion) models. A receiver with more features, considerably more consumer appeal and greatly simplified operation now costs TVRO dealers under $300. Yet, they offer features that were totally out of reach in 1980, for example:

- Scan tuning: The receiver repeatedly scans through the full 1224 transponder channels looking for signals—a helpful feature when moving the dish in search of new satellite programming.
- Automatic polarization: The receiver knows, from a pre-programmed memory, the correct polarization (vertical or horizontal) and directs the feed system (Polarisor or similar device) to the proper polarization at the antenna each time the channel is changed.
- Automatic fine tuning: Quartz or synthesized tuning is now available in many receivers. That means when the user changes channels, he is moving in precise "channel steps." The receiver is also equipped with an automatic frequency-control (AFC) so that fine tuning is eliminated.

- Full audio tuning: Since audio subcarriers can be transmitted on any subcarrier frequency between 5.5 and 8.5 MHz, it no longer is adequate to have a simple preset audio subcarrier-tuner that is dedicated to a single subcarrier (such as 6.8 MHz). Receivers now tune the full range, and many have memories, so that when you switch the master channel selector to a specific transponder (on a specific satellite), the audio comes up automatically.

Those four features combine to make a "user-friendly" unit. The viewer need only change the channel and the receiver (with its memory or seeking circuits) does the rest. Much of that has happened because of the creation of IC devices that are either designed for (or adapted to) digital control circuits. But there have been refinements within the basic receiver as well! We'll look at those next month.

SATELLITE TV/

The First Five Years!

THE MOST COMPLETE report on the mushrooming home TVRO industry ever compiled, written as only the 'father of TVRO' could have prepared. More than 1000 pages (1) tracing the complete story of home TVRO, lavishly illustrated with equipment photos, schematic diagrams, equipment analysis reports. Bob Cooper, the first private individual to own and operate a TVRO (1976) has collected and polished hundreds of individual reports into a unique "collector's edition" which clearly explains the TVRO phenomenon in North America. From Cooper's first 20 foot 'monster' dish to the present day 5 foot 'C-band' TVROs, the fascinating growth of TVRO equipment and its legal status unloads for you.

THIS TWO VOLUME SET totaling more than 10,000 pages is available for the first time to readers of Radio-Electronics at special discount pricing. Originally sold at $100 per two-volume set, a limited supply now is available at $50 each (save 50% over the retail price). The October 1984 edition of CSD's Satellite Digest is a special report on the present day 5 foot 'C-band' TVROs, the fascinating growth of TVRO equipment and its legal status unloads for you.

SEND CSD ANTHOLOGY,'84 Vols. + CSD Bonus. SEND CSD October '84 Special Issue ONLY.

NAME

COMPANY

ADDRESS

CITY

STATE

ZIP

PAYMENT: $70.00 for (9) copies of '84 ANTHOLOGY; $15.00 for single copy; $20.00 for '84 ANTHOLOGY + Bonus.

SHIPPING charges prepaid. Enter order to: CSD Anthology, Radio-Electronics Magazine, 200 Park Ave. S., New York, NY 10003; or call 305-771-0505 for credit card orders ONLY.
ZORBA PORTABLE COMPUTER
THE EXPERTS' CHOICE

OPTIONS:
- 16 BIT 256K RAM UPGRADE ($99.00)
- 600K DSQD 96TPi DRIVES $300.00
- COMPOSITE VIDEO OUTPUT $110.00
- SOFT VINYL CASE $25.00
- TUTOR KIT $15.00
- SCHEMATIC SET $5.00
- 1MB HARD DISK DRIVE

BUNDLED WITH
WORDSTAR, MAIL MERG, SPELLSTAR,
DATA STAR, REPORTSTAR, CALCSTAR

DEALER INQUIRIES INVITED

$799.00 W/O Bundle

$999.00 With Bundle

CIRCLE 272 ON FREE INFORMATION CARD
Learn robotics and you build this

New NRI home training prepares you for a rewarding career in America's newest high-technology field.

The wave of the future is here. Already, advanced robotic systems are producing everything from precision electronic circuits to automobiles and giant locomotives. By 1990, over 100,000 “smart” robots will be in use.

Over 25,000 New Jobs

Keeping this robot army running calls for well-trained technicians...people who understand advanced systems and controls. By the end of the decade, conservative estimates call for more than 25,000 new technical jobs. These are the kind of careers that pay $25,000 to $35,000 a year right now. And as demand continues to grow, salaries have no place to go but up!

Build Your Own Robot As You Train at Home

Now, you can train for an exciting, rewarding career in robotics and industrial control right at home in your spare time. NRI, with 70 years of experience in technology training, offers a new world of opportunity in one of the most fascinating growth fields since the computer.

You need no experience, no special education. NRI starts you at the beginning, takes you in easy-to-follow, bite-size lessons from basic electronics right on through key subjects like instrumentation, digital and computer controls, servomotors and feedback systems, fluids, lasers, and optoelectronics. And it’s all reinforced with practical, hands-on experience to give you a priceless confidence as you build a programmable, mobile robot.

Program Arm and Body Movement, Even Speech

Designed especially for training, your robot duplicates all the key elements of industrial robotics. You learn to operate, program, service, and troubleshoot using the same techniques you’ll use in the field. It’s on-the-job training at home!

You get and keep Hero I robot with gripper arm and speech synthesizer. NRI Discovery Lab for electronic experimentation, professional multimeter with 3½-digit LCD readout, 51 fast-track training lessons.

www.americanradiohistory.com
Building this exciting robot will take you beyond the state of the art into the next generation of industrial robotics.

You'll learn how your completely self-powered robot interacts with its environment to sense light, sound, and motion. You program it to travel over a set course, avoid obstacles using its sonar ranging capability. Program in complex arm and body movements using its special teaching pendant. Build a wireless remote control device demonstrating independent robot control in hazardous environments. You'll even learn to synthesize speech using the top-mounted hexadecimal keyboard.

Training to Build a Career On

NRI training uniquely incorporates hands-on building experience to reinforce your learning on a real-world basis. You get professional instruments, including a digital multimeter you'll use in experiments and demonstrations. Use later in your work. And you get the exclusive NRI Discovery Lab, where you examine and prove out theory from basic electrical concepts to the most advanced solid-state digital electronics and microprocessor technology. Designed by an experienced team of engineers and educators, your

experiments, demonstrations, and equipment are carefully integrated with 51 clear and concise lessons to give you complete confidence as you progress. Step-by-step, NRI takes you from the beginning, through today, and into an amazing tomorrow.

Send for Free Catalog Now

Send for NRI's big free catalog describing Robotics and Industrial Control plus over a dozen other high-technology courses. You'll see all the equipment you get in detail, get complete descriptions of every lesson, find out more about career opportunities for trained technicians. There's no cost or obligation, so send today. Your action today could mean your future tomorrow. If the card has been removed, please write us today.

NRI SCHOOLS

McGraw-Hill Continuing Education Center
3939 Wisconsin Ave.
Washington, DC 20016

WE'LL GIVE YOU TOMORROW.
A couple of errors have been called to our attention regarding the high-power audio amplifier schematic that appeared in our December and January issues. First, the outputs of the power supply were shown as -75 volts. Only two of them should be—the upper two are +75-volt outputs. Also, the neon lamps shown should really be pilot lamps (which include current-limiting resistors). Q5–Q8 are 2N5087 transistors. The schematic showed them incorrectly.

The parts-placement diagram that appeared in the January issue also had an error: The base and collector leads of Q10 should be exchanged. Note that the leads for Q9 and Q10 are not in the standard plastic-package configuration. Be careful when you install them.

In the “Checkout Procedures” section in the January issue, one of the procedures (in the last paragraph on page 60) should have read: “Connect the collector of Q4 to the collector of Q3.” On page 62, we told you to install a 1-mA fuse for F2. We should have told you not to install anything—just use the F2 position to measure for 500 mA.

STATIC ELECTRICITY MYTH

I must dispute the myth, repeated in Mr. Kanter’s article “Curing Static Electricity,” (Radio-Electronics, August 1984), that relative humidity is the dominant factor in controlling the buildup of static electricity.

My statements are based on 50 years of experience in the manufacture of photographic films. Those films are very susceptible to damage by static discharges, and could never be handled at 72°F and

Be Sure... with RCA’s Antistatic Kit.

Protect static sensitive devices from costly damage.

Electrostatic charges build up all around the work environment, posing a constant threat to static sensitive devices.

RCA’s Antistatic Kit (Stock No. 162351) protects these devices from the damaging effects of static buildup. The kit consists of a static dissipative mat, a lightweight wrist strap and coil cord, and a six-foot grounding cable that safely drains electrostatic charges to ground.

No matter what kind of static sensitive devices you test, repair, or work with, you need RCA’s Antistatic Kit working for you. See your RCA Parts Distributor; or for more information write RCA Distributor and Special Products Division, 2000 Clements Bridge Road, Deptford, NJ 08096-2088.

Attention: Sales Promotion Services.

WRITE TO:

LETTERS
Radio-Electronics
200 Park Ave South
New York, NY 10003

www.americanradiohistory.com
50% relative humidity as suggested by the National Fire Protection Association and mentioned in the article.

The safe relative humidity varies with temperature and barometric pressure.

At sea level the following conditions are normally safe: 70% relative humidity at 70°F, 60% relative humidity at 75°F, 50% relative humidity at 80°F.

The last condition was for drying treatments (containing acetone and methanol) on cellulose acetate film base. An attempt to operate at 85% relative humidity resulted in fires and/or explosions about once a month.

At the elevation of Mexico City (7800 ft.), the safe operating conditions are 54% relative humidity at 70°F.

CHESTER E. ROSE, P.E.
Montrose, PA

TELEPHONE VOLUME CONTROL

Now that the door has been opened for telephone add-ons with your article "Tele-Toll Timer," (Radio-Electronics, November 1984), I would like to ask you or any of the readers if they could help solve a problem. With the cost of extension phones now so reasonable, it is convenient to have more than one phone on line. But, in my area, if more than one phone is picked up at the same time, the volume of the receiver drops drastically. My question is: Do you or any of your readers know of a device or circuit that will eliminate that problem?

RAY BLACKBURN
Lakewood, CA

SCHEMATIC NEEDED

I'm repairing a portable National Panasonic T-430 and am in need of a schematic and service manual for it. The radio was purchased in the United States. Can anyone help me with that? I can pay a fair sum for a repair manual if necessary. Thank you.

JUAN MACHADO
Calle Infantil No.63 Santa Rosa-Maracay Aragua 2104-Venezuela

"SELLING OUT?"

I'm not old enough to have been a subscriber to your magazine when "Hi-Fi" came along. I don't even go back far enough to remember reading your "Letters" columns when television first appeared, but I bet that if you look through those past issues you'll find letters accusing you of "selling out" to special interests by carrying articles about Hi-Fi or television.

Computers are a very large part of current electronics. But they are not all of electronics, and I'm glad to see Radio-Electronics cover various other fields as well.

Please continue to provide computer articles which are hardware and construction-project oriented. Most of the "computer" magazines only talk about new equipment, new software, and programming techniques. Articles about interfacing and building hardware add-ons are non-existent—except in Radio-Electronics! Keep up the good work!

NOEL NYMAN
Seattle, WA

The Reason Is Clear...

Simpson 260® VOM
Has Features No Digital Can Match!

"Instant" null, peak, trend and continuity indications
High immunity to transients. RF interference
dB measurement capability at no extra cost
Resistance indication from zero to infinity
Self-powered voltage, current and dB ranges—no batteries to fail
Reliable, accurate performance even under extreme environments
Easy, low-cost maintenance—no expensive "chips" to fail
UL Listed per UL-1244 Standard for Safety—Electrical and
Electronic Measuring and Testing Instruments
Complete line of UL recognized accessories
Options include mirrored scale, extra overload protections, roll top carrying case

See the World Famous 260 Series 7, the 260-6XL, the 270 and the Pocket-Size 160®
at Leading Electronics/Electrical Distributors

SIMPSON ELECTRIC CO.
A Key Industries Subsidiary
853 Dundee Avenue, Elgin, IL 60120
(312) 697-2260 • Telex 72-2416 • Cable SIMELCO
Canada: Bach-Simpson Ltd., London, Ontario
England: Bach-Simpson (U.K.) Ltd., Wadebridge, Cornwall

www.americanradiohistory.com
WE CARRY A FULL LINE OF FLUKE MULTI-METERS.
IN STOCK NOW

Sale ends April 85

FLUKE
SERIES
MULTIMETERS

$119.95

4½ DIGIT MULTIMETERS

- Frequency measurements to 200kHz
- dB measurements
- Basic dc accuracy 0.4%: 10μV, 10nA, and 10 mV sensitivities
- Relative measurements
- True RMS
- High-speed Beep

MODEL 8060A

- Analog Display • Rotary Knob • Volts AC & DC • Resistance to 32 MΩ • 10 Amps • Diode Test • 3200 Counts • Fast Autoranging • Function Annunciators in Display • Power-Up Self Test • 2000 + Hour Battery Life w/ Power Down • "Sleep Mode" • New Test Leads • VDE & UL Approval

70 MHz Dual Time Base SCOPE

MODEL 1570

- 1mV/division Sensitivity to 70 MHz
- 500 μV/division cascade sensitivity
- Four-input operation provides trigger view on 4 separate inputs
- Alternate time base operation
- Switching power supply delivers best efficiency and regulation at lowest weight

FLUKE
FUNCTION GENERATORS

- Sine, square and triangle output
- Variable and fixed TTL outputs
- 0.1 Hz to 1MHz in six ranges
- Push button range and function selection
- Typical sine wave distortion under 0.5% from 1 Hz to 100kHz

MODEL 3010

- 0.3% Accuracy
- Manual or Autorange
- 10A + mA Range
- Beeper
- "Touch-Hold" Function

$189.95

BK PRECISION
POWER SUPPLIES

- Isolated 0-60VDC, continuously variable: 0-3A in four ranges
- Fully automatic shutdown, adjustable current limit
- Perfect for solid state servicing

MODEL 1601

- 0.5% Accuracy
- Manual or Autorange
- 10A + 300 mA Range
- Beeper

$349.00

MODEL 8060A

- 0.7% Accuracy
- Autorange Only
- 10 Amp Only

$99.00

$799.50

and free C70 holster 73

INDUSTRIAL TRANSISTOR TESTER

MODEL 520B

- Now with HILO Drive
- Works in-circuit when others won't
- Identifies all three transistor leads
- Random lead connection
- Audibly and visually indicates GOOD transistor

$199.95

- Capacitance 0.1pF to 200mF
- 0.1pF resolution
- 0.2% basic accuracy
- 3½ digit LCD display

MODEL 830

- Capacitance 0.1pF to 200mF
- 0.1pF resolution
- 0.2% basic accuracy
- 3½ digit LCD display

MODEL 820

- Fuse protected against charged capacitors
- Overrange indication

$159.95

- 10 Amp Only

$99.50

www.americanradiohistory.com
BECKMAN'S CIRCUITMATE
ALL UNDER $100

AVAILABLE NOW . . .

$64.95
Circuitmate DM 20—
3½-digit, pocket-size
multimeter; 0.025% Vdc
accuracy, diode test,
ohm test, conductivity
10 amps AC and DC
ranges, auto-polarity
auto-zero, auto-decimal

$79.95
Circuitmate DM-25—
3½-digit, pocket-size
multimeter; 0.05% Vdc
accuracy, diode test,
conductance, continuity
beeper, conductance,
10 amps AC and DC
ranges, auto-zero,
auto-decimal

$69.95
Circuitmate DM-40 —
3½-digit multimeter;
0.05% Vdc accuracy,
diode test, auto-
polarity, auto-zero,
auto-decimal

$89.95
Circuitmate DM-45 —
3½-digit multimeter;
0.05% Vdc accuracy,
diode test, continuity
beeper, 10 amps AC
and DC ranges,
auto-zero, auto-decimal

SALE
$59.95

The DM73 is the smallest digital
multimeter on the market. Its
probe-style design makes it ideal
for taking measurements in hard-
to-reach test areas.

$76.95
The DM 77 gives you
the convenience of
autoranging plus 10
amps AC and DC
ranges, auto-decimal.

NEW
Beckman
Circuit-mate
DM10

$239.00
AVAILABLE NOW!

BECKMAN does it
again ...a true RMS
4½ DMM w/1 year
calibrated cycle at
a 3½ digit price.

BECKMAN'S CIRCUITMATE
ALL UNDER $100

...Quality and Performance
Beckman and 4½ Digits ...

True RMS

$39.95
in stock now

THE TEST EQUIPMENT SPECIALISTS
ADVANCE ELECTRONICS

TOLL FREE HOT LINE
800-223-0474
212-730-7030
26 WEST 46th STREET, NEW YORK, N.Y. 10036

www.americanradiohistory.com
Valiant Telecomp 1000
Video Mixer

Combine the outputs from your computer and a video camera for some truly unique videotapes.

CIRCLE 5 ON FREE INFORMATION CARD

So You've wiggled into an impossible position and found the problem! BUT YOUR TOOLS ARE BACK ON THE BENCH!

CHAPMAN TOOLS
ARE MADE FOR THE TIGHT SPOTS
Complete pocket sized kits contain 17 different bits (Slotted, Hex or Phillips) plus Screw Driver Handle with Extension and the "World's Mightiest" Midget Ratchet (Torque strength 200 in lbs.) Fix it on the spot with Chapman.

No. 6320 KIT
Only $20.85 (Include $2.00 for Handling)
Send Check or M.O.
MasterCard & Visa accepted

Write for Industrial brochure
THE CHAPMAN MANUFACTURING CO.
P.O. Box 250, Rl. 17, Dept. RE-3
Durham, Connecticut 06422 (203) 349-9228
CIRCLE 263 ON FREE INFORMATION CARD

IF YOU OWN A COMPUTER, YOU doubtless know about the wide variety of programs on the market that let you generate all sorts of graphics and fancy type faces. But have you ever thought of storing your creations on videotape? Better yet, how about combining graphics or text with the output of a video camera for some truly unique home videos?

We recently had the opportunity to examine a unit that lets you do exactly that. It is the Valiant International Multimedia Corporation (195 Bonhomme St., Hackensack, continued on page 28)
Every book purchased and qualify for big discounts of 60% to editions, plus, every club member will give without your order. Without any obligation. Join Now, Get A Utility Apron FREE! 7 very good reasons to join the Electronics Book Club

- **Big Savings.** Save 20% to 75% on books sure to increase your electronics know how.
- **No-Risk Guarantee.** All books returnable within 10 days without obligation.
- **Club News Bulletins.** All about current selections—main, alternate, extras—plus bonus offers. Comes 13 times a year with hundreds of up-to-the-minute titles to pick from.
- **Automatic Order.** No nothing and the Main selection will be shipped automatically but...if you want an Alternate selection—no books at all—we'll follow the instructions you give on the reply form provided with every News Bulletin.
- **Bonus Books.** Immediately get a Dividend Certificate with every book purchased and qualify for big discounts of 60% to 80%.
- **Extra Bonuses.** Take advantage of added-value promotions, plus, special discounts.
- **Exceptional Quality.** All books are first-rate publisher's editions selected by our Editorial Board and filled with useful up-to-the-minute information.

Please accept my membership in the Electronics Book Club and send the 4 volumes ordered below. Plus, my FREE utility apron billing me $2.95 plus shipping and handling charges. If not satisfied, I may return the books with ten days without obligation and have my membership canceled. I agree to purchase 4 or more books at reduced Club prices (plus shipping/handling) during the next 12 months and may resign any time thereafter. 800 1108 1183 1218 1277 1393 1449 1465 1487 1531 1536 1539 1542 1561 1565 1604 1605 1616 1625 1650 1673 1679 1682 1685 1690 1709 1765 1811 Name Phone Address City State Zip

Valid for new members only. Foreign applicants will receive ordering instructions. Canada must remit in U.S. currency. This offer subject to acceptance by the Electronics Book Club.
PORTABLE OSCILLOSCOPES

MODEL V-212
DC to 20MHz, 1mV/div, Dual Trace
Feature 6” Rectangular CRT
Full 2 year parts and labor warranty.

$461.00

MODEL V-650F
DC to 60MHz, Dual Trace
Delayed Sweep

$956.00

MODEL V-1050F
DC to 100MHz, Quad Trace, Delayed Sweep
All prices include full set of factory probes - up to $120.00 value.

$1276.00

GLOBAL SPECIALITIES

MODEL 1301
- Fully regulated triple output
- Fixed 5VDC, 1A
- V1 + 5 VDC to 18 VDC .5A
- V2 - 5 VDC to 16 VDC .5A
- Fully automatic current limiting

$219.00

MODEL 1650
- Functions as three separate supplies
- Exclusive tracking circuit
- Fixed output 5 VDC, 5A
- Two 0 to 25 VDC outputs at 0.5A
- Fully automatic, current-limited overload protection
- + and - terminals of each output are fully isolated. In all modes
- All three outputs may be connected in series or parallel for higher voltage or current

$319.00

Polaroid CR-10 Camera

Now you can get an instant picture in black & white or color from any oscilloscope screen. Includes CRT hood. *Large hoods also available to fit computer terminals and CAD/CAM screens.

$369.00

GLOBAL SPECIALTIES

TRIPLE OUTPUT POWER SUPPLY

MODEL 1301
- Fully regulated triple outputs
- Fixed 5VDC, 1A
- V1 + 5 VDC to 18 VDC .5A
- V2 - 5 VDC to 16 VDC .5A
- Fully automatic current limiting

$219.00

TRIPLE OUTPUT POWER SUPPLY

MODEL 1650
- Functions as three separate supplies
- Exclusive tracking circuit
- Fixed output 5 VDC, 5A
- Two 0 to 25 VDC outputs at 0.5A
- Fully automatic, current-limited overload protection
- + and - terminals of each output are fully isolated. In all modes
- All three outputs may be connected in series or parallel for higher voltage or current

$319.00

CALL US TOLL FREE
1-800-732-3457
IN CALIFORNIA TOLL FREE
1-800-272-4225

RAG ELECTRONICS, INC. /21418 Parthenia Street/ Canoga Park, CA 91304 / 1-818-998-6500

GLOBAL SPECIALTIES

DIGITAL PULSER
- Uses state of node, preset pulse polarity
- Short circuit protected, circuit powered
- Handheld digital signal injector

$83.00

DIGITAL LOGIC PROBE
- Use to 50 ns, 10 MHz
- Circuit powered, portable
- Compatible with most logic families

$19.95

DIGITAL CAPACITANCE METER
- Battery operated
- 3 digit LCD display
- Range 1 PF to 2,000 UF
- 0.5% basic accuracy

$139.00

PORTABLE OSCILLOSCOPES

11-P-102
- Length = 7.4”
- Width = 4.5”
- Height = 2.5”
- Terminals = 248
- Tie points = 1240

$34.95

DIGITAL CAPACITANCE METER

MODEL 3000
- Battery operated
- 3 digit LCD display
- Range 1 PF to 2,000 UF
- 0.5% basic accuracy

$139.00

RAG ELECTRONICS, INC. /21418 Parthenia Street/ Canoga Park, CA 91304 / 1-818-998-6500
GIANT 14th ANNIVERSARY SALE!

FLUKE 70 SERIES MULTIMETERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>$85.00</td>
<td>- Analog Display • Rotary Knob • Volts AC & DC • Resistance to • 32 MΩ • 10 Amps • Diode Test • 3200 Counts • Fast Autoranging • Function Annunciators in Display • Power-Up Self Test • 2000+ Hour Battery Life w/Power Down “Sleep Mode” • New Test Leads • VDE & UL Approval</td>
</tr>
<tr>
<td>75</td>
<td>$99.00</td>
<td>- Analog Display • Rotary Knob • Volts AC & DC • Resistance to • 32 MΩ • 10 Amps • Diode Test • 3200 Counts • Fast Autoranging • Function Annunciators in Display • Power-Up Self Test • 2000+ Hour Battery Life w/Power Down “Sleep Mode” • New Test Leads • VDE & UL Approval</td>
</tr>
<tr>
<td>77</td>
<td>$129.00</td>
<td>- Analog Display • Rotary Knob • Volts AC & DC • Resistance to • 32 MΩ • 10 Amps • Diode Test • 3200 Counts • Fast Autoranging • Function Annunciators in Display • Power-Up Self Test • 2000+ Hour Battery Life w/Power Down “Sleep Mode” • New Test Leads • VDE & UL Approval</td>
</tr>
</tbody>
</table>

LEADER AUDIO SINE/SQUARE WAVE GENERATOR

- Model LAG-120A
- $259.95

VIZ MULTI-FUNCTION GENERATOR

- Model WD-755
- $259.95

PORTABLE OSCILLOSCOPES

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS-5705</td>
<td>$899.00</td>
<td>- Digital Display • 6 MHz to 200 MHz • 6 Digit LED Display • Period Measurement 5 Hz to 300 MHz • Totalizor to 99,999,999 Plus Overload • Frequency Ratio Mode • Time Interval Mode • Switchable Attenuator & Low Pass Filter</td>
</tr>
<tr>
<td>SS-5702</td>
<td>$535.00</td>
<td>- Fast relay opens input circuit on overload • Lamp indicates relay is open • Easy-access battery compartment and tested storage • High-accuracy: ±2% DCV, ±3% ACV • 3-10 range (AC/V) • 10V, 1A, 1Ω, 1MΩ, 1KHz, 100KHz, 1GΩ, 10GΩ • Filter • Variable filter, and filter scales coded by three colors for quick function identification • Multi-color LED display • Battery-condition indicator for overload protection circuit</td>
</tr>
</tbody>
</table>

PROBE MASTER

- $145.00

SHIMPO

- $75.00

SIMPSON

- $349.00

PRIMELINE

- $295.00

SABINO PRODUCTS CO.

- $49.00

ENDICOTT PRODUCTS CO.

- $85.00

GLOBAL SPECIALTIES

- $75.00

DIGIT MULTIMETER MODEL 8060A

- Shi Po Polaroid
- 3-to-1
- 5702
- 73 $85.00
- 6 traces. High precision calibrator
- 300 V Voltage
- Accurate within ±1%
- Fastest sweep rate, 10 ns.
- High sensitivity: 1 mV/div
- CH1 signal output
- Beam finder
- Delayed sweep
- Alternate time base

MODEL SS-5702

- DC – 20 MHz, 5 mV/div
- Dual trace
- 6 inch rectangular internal graticule CRT
- Includes 2 each x1/x10 probes and full factory warranty; 2 years on parts, labor, and CRT.

CIRCLE 262 ON FREE INFORMATION CARD

www.americanradiohistory.com
The Telecomp 1000

The Telecomp 1000 is housed in an attractive beige steel cabinet, and is supplied with the three cables required to hook the unit up to a computer, video source, and video monitor. The mixer’s controls are logically arranged and easy to use. All inputs and outputs are routed via 5 rear-panel connectors (four for signal, one for power; a wall-plug transformer power supply for the mixer was supplied with the unit).

Setting up the unit is quite simple, and should only take a few minutes. The first step is to unplug the video line from the computer to the monitor, at the monitor end, and feed it to a rear panel jack on the mixer that is labeled FROM COMPUTER. A cable with phono plugs at both ends (supplied) is then run from the mixer (from the connector labeled TO MONITOR) to the monitor.

The connection from a video camera is handled via the remaining two supplied cables. The video-signal connection is handled via a cable that is terminated with phono plugs at either end. But not all cameras use phono jacks for the video output; many use BNC connectors. For that reason, a BNC adaptor is supplied for use with the cable. At the mixer end, the cable is plugged into the connector labeled VIDEO.

The sync signal back to the camera is transferred via the third and final cable. That cable is terminated at one end with a phono plug, and at the other end with a DIN connector. The phono plug is connected to the jack labeled SYNC at the mixer end, while the DIN connector is plugged into the camera. The DIN jack at the camera may be labeled PULSE IN, or something similar.

Using the unit is very simple. A three-position switch on the front panel lets you select between input sources. Those sources are, of course, the computer, the video camera, or both. When both the video camera and the computer are selected, the monitor will show a combination of the two outputs.

The framing of the video camera signal is handled by four WINDOW controls. Those controls don’t position the picture, however. Instead, they are used to define the edges or borders of the picture. The controls are arranged in a diamond pattern, with the upper and
Learn to design your own ideas.

How many times have you looked at a clever piece of circuitry and thought “I could have designed that.” Or... “I thought of that years ago, if only I had...”

If you enjoy the challenge of creating your own circuits or have the desire to learn... then, the new ET-1000 Analog/Digital Circuit Design Experimenter/Trainer is for you. Designed to be a multi-purpose lab for experimental circuit design, the ET-1000 makes it easy to design, develop and experiment with circuits of your own design.

Unit features large solderless plug-in breadboard, built-in heavy duty power supplies, 1 Hz to 100 kHz signal generator, “no bounce” logic switches, logic probe and much, much more.

And if you need to learn circuit design before starting to create on your own, there are three self-study courses in passive, transistor and analog circuits that will teach this exciting area to you right on the ET-1000.

Find out more about the new ET-1000 trainer and courses today. Complete specifications and details are in the new free Heathkit Catalog. The catalog also features more than 450 kit and educational products for your home, hobby and business. Circle reader service number below.

New Engineering Design Series
Diskette Users...

When you've heard from all the animals in the diskette zoo, but you need fast delivery and high quality diskettes...

Call Communications Electronics

Diskette order desk
800-USA-DISK
In Canada 800-CA1-DISK

Choose your brand
Choose your price

Product Description

Super Disk

Wabash

BASF

3M

diskettes $0.94 each

diskettes $0.99 each

diskettes $1.44 each

diskettes $1.44 each

8" SSSD IBM Compatible 128B/S, 26 Sector	$0.94 each	$0.99 each	$1.44 each
8" SSSD Shugart Compatible, 32 Hard Sector	$0.94 each	$0.99 each	$1.44 each
8" SSSD IBM Compatibles (128 B/S, 26 Sectors)	$0.94 each	$0.99 each	$1.44 each
8" DSDD Soft Sector (Unformatted)	$0.94 each	$0.99 each	$1.44 each
8" DSDD Soft Sector (256 B/S, 26 Sectors)	$0.94 each	$0.99 each	$1.44 each
8" DSDD Soft Sector (512 B/S, 18 Sectors)	$0.94 each	$0.99 each	$1.44 each
8" DSDD Soft Sector (1024 B/S, 8 Sectors)	$0.94 each	$0.99 each	$1.44 each
5¼" SSSD Soft Sector w/Hub Ring	$0.94 each	$0.99 each	$1.44 each
5¼" SSSD Same as above but bulk product	$0.94 each	$0.99 each	$1.44 each
5¼" SSSD 10 Hard Sector w/Hub Ring	$0.94 each	$0.99 each	$1.44 each
5¼" SSSD Soft Sector w/Hub Ring	$0.94 each	$0.99 each	$1.44 each
5¼" SSSD Same as above, but bulk product	$0.94 each	$0.99 each	$1.44 each
5¼" SSSD Soft Sector Flipside (use both sides)	$0.94 each	$0.99 each	$1.44 each
5¼" SSSD 10 Hard Sector w/Hub Ring	$0.94 each	$0.99 each	$1.44 each
5¼" SSSD Soft Sector w/Hub Ring	$0.94 each	$0.99 each	$1.44 each
5¼" SSSD Same as above, but bulk product	$0.94 each	$0.99 each	$1.44 each
5¼" SSSD 10 Hard Sector w/Hub Ring	$0.94 each	$0.99 each	$1.44 each
5¼" SSSD 15 Hard Sector w/Hub Ring	$0.94 each	$0.99 each	$1.44 each
5¼" SSSD Soft Sector w/Hub Ring (66 Top)	$0.94 each	$0.99 each	$1.44 each
3½" SSSD Soft Sector micro-floppy	$0.94 each	$0.99 each	$1.44 each

For more information about this brand call:

800-USA-DISK
in Michigan 313-973-1111

800-323-9858
in Iowa 319-659-3385

800-433-4500
in Massachusetts 817-271-6081

800-328-9438
in Washington 817-730-9321

CIRCLE 275 ON FREE INFORMATION CARD
CE...your best source for diskettes

For you the diskette buyer, it's a jungle out there. There are so many different brands to choose from, you need to go on a safari to find a good brand at a reasonable cost. Fortunately, CE has already hunted for the best diskettes and offers you an excellent choice at a CE price. To save you even more, CE also offers bulk product where 100 diskettes are packed in the same box without envelopes or labels. Since we save packaging costs, these savings are passed on to you. Diskette envelopes are also available from CE. These super strong and tear resistant Tyvek envelopes are only $15.00 per 100 pack. Use order # TE-5 for a 100 pack of 5½" diskette envelopes.

Quantity Discounts Available

Our diskettes are packed 10 disks to a carton and 5 or 10 cartons to a case. The economy bulk pack is packaged 100 disks to a case without envelopes or labels. Please order only in increments of 100 units for quantity 100 pricing. With the exception of bulk pack, we are also willing to accommodate your smaller orders. Quantities less than 100 units are available in increments of 10 units at a 20% surcharge above our 100 unit price. Quantity discounts are also available. Order 300 or more disks at the same time and deduct 1%. 500 or more saves you 2%; 1,000 or more saves 3%; 2,000 or more saves 4%; 5,000 or more saves 5%; 10,000 or more saves 6%; 50,000 or more saves 7%; 100,000 or more saves 8%; 500,000 or more saves 9% and 1,000,000 or more disks earns you a 10% discount off our super low quantity 100 price. Almost all our diskettes are immediately available from CE. Our efficient warehouse facilities are equipped to help us get you the quality product you need when you need it. If you need further assistance to find the flexible diskette that's right for you, call the appropriate manufacturer compatibility hotline telephone number listed at the bottom of this ad. Dealer inquiries invited.

Buy your diskettes from CE with confidence

To get the fastest delivery of your diskettes, phone your order directly to our order desk and charge it to your credit card. Written purchase orders are accepted from approved government agencies and most well rated firms at a 10% surcharge for net 10 billing. For maximum savings, your order should be prepaid. All sales are subject to availability, acceptance and verification. All sales are final. All prices are in U.S. dollars. Prices, terms and specifications are subject to change without notice. Out of stock items will be backordered or substituted for equivalent product at no extra cost to you unless CE is instructed differently. A $5.00 additional handling fee will be charged for all orders with a merchandise total under $50.00. All shipments are F.O.B. CE warehouse in Ann Arbor, Michigan. COD terms are available, in U.S. UPS areas for $5.00 extra, and are payable with cash or certified check.

For shipping charges add $5.00 per 100 diskettes and/or any fraction of 100 8-inch diskettes, or $5.00 per 100 diskettes and/or any fraction of 100 5½"-inch or 3½"-inch diskettes for U.P.S. ground shipping and handling in the continental U.S. UPS 2nd day air rates are three times continental U.S. rate. For Canada, Puerto Rico, Hawaii, Alaska, or APO/FPO delivery, shipping is three times the continental U.S. rate.

Mail orders to: Communications Electronics, Box 1045, Ann Arbor, Michigan 48106 U.S.A. If you have a Visa or Master Card, you may call and place a credit card order. Order toll-free in the U.S. Dial 800-USA-DISK. In Canada, order toll-free by calling 800-CA1-DISK. If you are outside the U.S. or in Michigan dial 313-973-8888. WU telex anytime 671-0155. Order today.

Copyright © 1984 Communications Electronics Inc.

Verbatim diskettes $1.59 each

<table>
<thead>
<tr>
<th>Part #</th>
<th>CE price per disk ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3062-P</td>
<td>1.94</td>
</tr>
<tr>
<td>3018-P</td>
<td>1.94</td>
</tr>
<tr>
<td>3008-P</td>
<td>2.39</td>
</tr>
<tr>
<td>3102-P</td>
<td>2.69</td>
</tr>
<tr>
<td>3104-P</td>
<td>2.69</td>
</tr>
<tr>
<td>20870-P</td>
<td>1.59</td>
</tr>
<tr>
<td>3461-P</td>
<td>1.59</td>
</tr>
<tr>
<td>3461-P</td>
<td>2.19</td>
</tr>
<tr>
<td>20823-P</td>
<td>3.39</td>
</tr>
</tbody>
</table>

Memorex diskettes $1.59 each

<table>
<thead>
<tr>
<th>Part #</th>
<th>CE price per disk ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0120-P</td>
<td>1.94</td>
</tr>
<tr>
<td>02701-P</td>
<td>2.69</td>
</tr>
<tr>
<td>02700-P</td>
<td>2.69</td>
</tr>
<tr>
<td>01401-P</td>
<td>1.59</td>
</tr>
<tr>
<td>02402-P</td>
<td>1.99</td>
</tr>
<tr>
<td>02404-P</td>
<td>2.10</td>
</tr>
</tbody>
</table>

Ultra diskettes $1.59 each

<table>
<thead>
<tr>
<th>Part #</th>
<th>CE price per disk ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>02001-P</td>
<td>2.99</td>
</tr>
<tr>
<td>02001-P</td>
<td>3.74</td>
</tr>
</tbody>
</table>

TDK diskettes $1.59 each

<table>
<thead>
<tr>
<th>Part #</th>
<th>CE price per disk ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0102-P</td>
<td>1.94</td>
</tr>
<tr>
<td>02700-P</td>
<td>2.69</td>
</tr>
<tr>
<td>02701-P</td>
<td>2.69</td>
</tr>
<tr>
<td>0161-P</td>
<td>1.59</td>
</tr>
<tr>
<td>0162-P</td>
<td>1.99</td>
</tr>
<tr>
<td>0232-P</td>
<td>2.19</td>
</tr>
<tr>
<td>0232-P</td>
<td>2.84</td>
</tr>
</tbody>
</table>

Fuji diskettes $1.59 each

<table>
<thead>
<tr>
<th>Part #</th>
<th>CE price per disk ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>06107-P</td>
<td>1.94</td>
</tr>
<tr>
<td>06107-P</td>
<td>1.99</td>
</tr>
<tr>
<td>06107-P</td>
<td>2.19</td>
</tr>
<tr>
<td>06107-P</td>
<td>2.84</td>
</tr>
</tbody>
</table>

Dysan diskettes $1.94 each

<table>
<thead>
<tr>
<th>Part #</th>
<th>CE price per disk ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>88026-P</td>
<td>2.49</td>
</tr>
<tr>
<td>80026-P</td>
<td>2.69</td>
</tr>
<tr>
<td>80026-P</td>
<td>3.14</td>
</tr>
<tr>
<td>80026-P</td>
<td>3.14</td>
</tr>
<tr>
<td>80026-P</td>
<td>3.14</td>
</tr>
</tbody>
</table>

COMPUTER PRODUCTS DIVISION

Box 1045 Ann Arbor, Michigan 48106-1045 U.S.A.

Call toll-free 800-USA-DISK or outside U.S. 313-973-8888.

CIRCLE 275 on FREE INFORMATION CARD
lower controls used to position the upper and lower borders, and the left and right controls used to position the left and right borders, respectively.

The OVERLAY switch is used to provide three separate displays. When set to the COMPUTER position, the output from the video camera will only be seen where there is no computer output. In the VIDEO position, computer output will only appear outside the video “window.” In the MIX position, the two outputs share the entire screen. The relative intensity (brightness) of the two outputs can be set independently using two INTENSITY controls labeled VIDEO and COMPUTER.

Once the output of the mixer meets your approval, it can be fed to a VCR and recorded.

The unit was supplied with a simple character-generator program. That program lets you enter a limited amount of text, and determine whether that text would be displayed continuously or scrolled up the screen. Such variables as display time, starting position of text on the screen, and how many lines may be displayed at a time can all be pre-determined by the user.

The manual that was supplied with the unit was a bit on the skimpy side. All that it contained were some simple instructions for set-up and use. There was no information on the unit’s theory of operation, nor were there any schematics or servicing or alignment information. In fact, the manufacturer strongly recommends against even opening the unit, stating that doing so would void the 90-day warranty. There was also no information on the accompanying software; that was not so large a liability, as the program was pretty much self-explanatory.

On the plus side, a toll-free phone number for those who have difficulty interfacing the unit with their computer or video equipment was provided.

In testing out the unit, we found that it was easy to use and performed exactly as claimed. The Valiant Telecomp 1000 sells for $499.95.

Sony ICF-2002 Receiver

A feature-packed, portable shortwave receiver.

CIRCLE 6 ON FREE INFORMATION CARD

IF ANY SINGLE TREND CAN BE DISCRIMINATED FROM THE DOZENS OF NEW SHORTWAVE RECEIVERS CIRCULATING AROUND, THE TROJAN HANDHELD 2000 IS PROBABLY IT. THIS PORTABLE MACHINE PULLS OUT ALL THE STOPS IN ITS EFFORTS TO BE A VICTORIOUS SHORTWAVE RECEIVER.
Here's The Savvy-est True Dual Trace 10 MHz Digital Storage Scope You Ever Saw
... At The Saving-est Price. Only $595.

The Handy New LogicScope™ 136

True Dual Trace • 10 MHz Real Time Bandwidth • 3 Input Channels • I/O Port
Digital Waveform Storage • Boolean Waveform Operations • Audio Functions
8.0 (L) x 4.5 (D) x 1.75 (H) Inches • 1.25 Pounds • 9 Volt Battery/AC Operation

Consider the LogicScope 136

- The LogicScope 136 is the next logical step in test instrumentation for you. It combines many of the features and capabilities of sophisticated logic analyzers and oscilloscopes...and it fits in your hand. Never before has so much technology been available in so small an instrument, at such a low price.
- The pocket-sized LogicScope 136 is made possible by a patented breakthrough in display technology. The conventional CRT has been replaced by a unique array of 400 LED's that permits simultaneous display of two digital waveforms.
- The 136 can be used for viewing single shot events, or repetitive waveforms. It can be operated in real time mode, or in memory mode which permits acquisition and storage of up to 50-100 bit waveforms. These can be recalled, logically compared (AND, OR, EXCLUSIVE OR) to other input waveforms, or output to an external device via an I/O port. This I/O port will also accept future add-on 136 Modules.
- Its very low cost, convenience and ease-of-use make the LogicScope the ideal instrument, for designing, troubleshooting or repairing digital systems. Made in U.S.A.

Consider its Engineering & Field Service Applications:

- On microprocessor-based systems, check the timing relationship of various parameters relative to the system clock and other key events. Its storage capability allows visual and logical comparison of non-repetitive waveforms to known reference signals. Output in the start-up of the digital device can be compared to reference signals to determine the operating state of the device. Questionable waveforms can be stored for analysis.
- Its light weight and small size make the LogicScope convenient to take on every service call. The 136 provides much more information for trouble shooting a digital system or peripheral than a logic probe or digital counter without having to lug an oscilloscope or logic analyzer along.

Contact us for the name of your local distributor

POCKET TECHNOLOGY, INC.
7320 Parkway Drive, Hanover, MD 21076 U.S.A.
301-796-3300 TELEX 908207
Division of Renaissance Technology Corp

CIRCLE 258 ON FREE INFORMATION CARD
At CIE, you get electronics career training from specialists.

If you're interested in learning how to fix air conditioning, service cars or install heating systems—talk to some other school. But if you're serious about electronics... even earning an Associate Degree... come to CIE — The Electronics Specialists.
Why trust your education and career future to anything less than a specialist? You shouldn't. And you certainly don't have to.

If you talked to some of our graduates, chances are you'd find a lot of them shopped around for their training. They pretty much knew what was available. And they picked CIE as number one.

Be sure to shop around. Because, frankly, CIE isn't for everyone.

There are other options for the hobbyist. If you're the ambitious type—with serious career goals in electronics—take a close look at what we've planned for you at CIE. What you should look for first.

Part of what makes electronics so interesting is it's based on scientific discoveries—on ideas! So the first thing to look for is a program that starts with ideas and builds on them!

That's what happens with CIE's "Auto-Programmed" Lessons. Each lesson takes one or two principles and helps you master them—before you start using them! How practical is the training?

This is the next big important question. After all, your career will be built on what you can do—and on how well you do it.

Here are ways some of CIE's career courses help you get your "hands-on" training... With CIE's Personal Training Laboratory... you learn and review the basics—perform dozens of experiments. Plus, you use a 3-in-1 precision Multimeter to learn testing, checking, analyzing!

When you get your own 5MHz, solid-state oscilloscope, you take some real professional steps. You use it as a doctor uses an X-ray machine—to "read" waveform patterns...lock them in...study, understand and interpret them!

When you get your Digital Learning Laboratory, you'll be into digital theory—essential training today for anyone who wants to keep pace with the state of the art of electronics. With CIE's Digital Lab, you'll be applying in dozens of fascinating ways the theory you've learned. For example, you'll compare analog and digital devices. You'll learn to make binary to decimal conversions and to work with semiconductor devices and circuits. You'll see how digital equipment is vital to today's exciting, growing fields such as security...where digital theory provides the brains for space-age alarm and protective devices.

You'll build your Microprocessor Training Laboratory, a working microcomputer—from "scratch." You'll also learn how to program and interface it with displays, memories, switches, and more.

Earn an Associate Degree from CIE.

One of the best credentials you can have in electronics—or any other career field—is a college degree. That's why CIE gives you the opportunity to earn an Associate in Applied Science in Electronics Engineering Technology. Any CIE career course can offer you credit toward the degree...more than half of the number needed in some cases.

You can also prepare for the government-administered FCC (Federal Communications Commission) Radiotelephone License, General Class. It can be a real mark in your favor...government-certified proof of your specific knowledge and skills.

Shop around...but send for CIE's free school catalog first!

Mail the card. If it's gone, cut out and mail the coupon. If you prefer to write, mention the name and date of this magazine. We'll send you a copy of CIE's FREE school catalog—plus a complete package of independent home study information! For your convenience, we'll try to have a representative contact you to answer your questions.

Mail the card or coupon—or write: CIE, 1776 East 17th St., Cleveland, OH 44114.
wave receivers introduced over the last few years, it would have to be easy of operation for both the neophyte and experienced listener. That goes especially for tuning—it is easier, more precise, and more accurate than ever.

The ICF-2001, introduced by Sony (9 West 57th St., New York, NY) in 1980 was the first portable general-coverage receiver to use frequency memories, direct-access tuning, scanning, and performance that was good enough to make it the central receiver in many Short Wave Listening (SWL) stations. But now Sony seems to have outdone itself with the introduction of its ICF-2002 receiver (model ICF-7600D outside the U.S.).

The ICF-2002, housed in a slim package only slightly larger than a paperback book, is a PLL-synthesizer receiver with continuous tuning capabilities from 153 kHz to 29,995 MHz in AM and SSB modes. The radio also covers the FM broadcast band. Power for the unit is provided by six AA-type batteries: two for its 10-memory tuner and built-in clock/timer, and four for the receiver portion of the unit.

The receiver may be tuned in any of several ways. If you know the frequency of the station you want to hear, you can directly access that station by first pressing the AM button (unless, of course, you want to listen to FM) and then entering the station's frequency on the ten-button keypad, followed by a press on the execute button.

If you don't know what frequency you're after, you can use a rocker-type tuning switch to manually tune up or down the spectrum. Pressing the manual tuning buttons (+ or −) and the band select button simultaneously allows you to jump to the bottom of each broadcast band, with annunciators appearing in the LCD readout to show the shortwave band (75, 60, 49, 41, 31, 25, 21, 19, 16, and 13 meters).

Scan tuning is also possible; it is intended for use in the predefined bands noted above, but it will work on all bands, including FM. A single button on the front of the unit starts and stops scanning. Pressing the button while tuned to 11,750 kHz, for example, starts the tuner on its way up to the top of the 25-meter band (12,100 kHz), and then it starts over at the bottom (11,600 kHz).

When a strong signal is encountered, the scanner stops for about two seconds, giving you time to halt scanning if desired. Otherwise, it continues to climb up the

Can/Am Satellite TV Descrambler

Works on Everything

Fully Assembled & Tested

No Internal Connections to Receiver

Works on both American & Canadian Birds

For Use with TVRO's Only

Modulator Installed, Baseband Output Optional

$395.00

Tampa Electronic Supply
9207 N. 14th St.
Tampa, FL 33612

Vector

SLIT-N-WRAP

CONNECTIONS are RELIABLE

P210 MilliOhm Probe

Precise, dependable resistance as low as 1.0 milliOhm. Finds faults fast in wire wrapping or any connection in switches, relays, sockets, I.D. joints, printed circuits...

Write for free brochure:

Vector Electronic Co.
12460 Gladstone Avenue
Sylmar, CA 91342-0636
Telephone (818) 366-9661

NOW WITH NEW P210 MILLIOHM PROBE.

Wrap 28 or 30 gage insulated wire four times faster without stripping, measuring or threading! Daisy-chain continuous gas-tight joints. Each connection is in/out, lowering profile so 7 turns is equal to 14 standard wraps. Patented.

CIRCLE 253 ON FREE INFORMATION CARD

CAN/AM SATELLITE TV DESCRAMBLER

Works on Everything

Fully Assembled & Tested

No Internal Connections to Receiver

Works on both American & Canadian Birds

For Use with TVRO's Only

Modulator Installed, Baseband Output Optional

$395.00

Tampa Electronic Supply
9207 N. 14th St.
Tampa, FL 33612

CIRCLE 271 ON FREE INFORMATION CARD
band. The PLL tuner is rock solid. We had one memory (which we'll discuss shortly) set to tune SSB signals of inflight aeronautical transmissions on 11,282 kHz. From a cold start, the tuner was right on the signal.

The LCD frequency readout responds in predefined increments depending on the band segment you're in. For longwave (153-520 kHz), tuning is in increments of 3 kHz; for 520-1600 kHz, increments of 9 or 10 kHz (selectable from a switch inside the battery compartment)—10 kHz for North American stations, 9 kHz for the rest of the world. Above 1610 kHz, tuning is in 5-kHz increments.

For most broadcast stations, the preset increments are perfect. But if you want to tune to some station between increments, like a utility or amateur-radio station, a slide switch on the right side of the cabinet selects a vernier tuner (also on the side) for use in either the straight AM or SSB/CW mode. Although the LCD readout doesn't change with the vernier tuner, you can still tune the bands continuously.

You can store up to ten frequencies in the memory of the ICF-2002. To do that, you simply tune to the desired frequency and press the small ENTER button and a memory-number key simultaneously. Then, when you want to return to that frequency from memory, simply press the appropriate memory-button number on the keypad.

A welcome addition to the ICF-2002, not featured in the ICF-2001, is the digital clock/timer. You can set the receiver to turn itself on at a given time. The clock can be set for 12- or 24-hour operation using a small switch on the back panel. Setting the clock or timer is extremely simple unless you have very large fingers, in which case the small buttons may be a problem.

When the timer turns on the receiver, the unit's 65-minute, sleep-time switch timer is activated. Thus, if you have the main timer set and you're not around to turn off the radio (say, for unattended audio recording), it will power itself down after 65 minutes of playing.

Other convenience features include a tuning LED, which may not be an accurate enough indication of signal strength for a dedicated SWL, but it should be more than adequate for the casual listener. A separate master-power switch on top of the cabinet disconnects the pushbutton on/off switch to prevent the radio from accidentally switching on when stowed away in a suitcase or pocket.

The built-in telescoping whip antenna is rather short—only a little over 15 inches in length. An external antenna can be connected to the receiver by using a special plug-in adapter supplied with the unit.

The adapter has two screw terminals for connection to an antenna lead-in and ground. The antenna adapter can be left on your desk or other main listening area, and quickly unplugged when portable operation is desired.

Performance with the whip antenna is adequate for picking up major broadcasts. With an external wire antenna, however, the ICF-2002 rivals a desk-top receiver like the Kenwood R-2000, with a similar antenna. Strong signals coming through an external antenna overloaded the receiver and had a tendency to pull the PLL off frequency by one or so kilohertz (extremely noticeable when tuned to an SSB or CW station). However, switching on the built-in attenuator usually solves that problem.

Although the ICF-2002 does not have switchable selectivity, the filtering chosen is surprisingly good for a portabled size small dimensions.

Adjacent channel interference seems less severe than on the original ICF-2001, and the variable tuning lets you tune a kilohertz or so away from the intruding signal. After using the receiver for a short time, it was hard to believe that all its features and relatively good performance could be crammed into an easy-to-operate unit that can be lost on the top of your desk. Overall, the ICF-2002—with its manufacturer's suggested retail price of $299.95—is perhaps the most sensibly designed receiver (desktop or portable) now available.
One-Stop Component Center
1355 SHOREWAY ROAD
BELMONT, CA 94002

Quality Components
Competitive Prices
Distributors Welcome

For information call (415) 595-9536 Telex: 176043

NEW!! 1985 ITEMS!

MICRO CHARTS
Instant Data on the Most Popular Computer and Microprocessor Parts
- Fully decoded data
- Compact 8½" x 11" size
- Durable credit card plastic
- Clear and concise two-sided tables for:
 Full instruction set, disassembly, ASCII, base conversion, pinout & much more...

Part No. Description
ML295 280 CPU
ML5802 6800 (8500)
ML7400 5400/7400 TTL Pinouts
ML5808A 8080A/8085A
ML5806 8086/8088

FIBER OPTICS
The EDU-LINK Learning Kit
The EDU-LINK fiber optic system is a low-cost, TTL compatible data transmission system designed specifically as an educational tool for students and engineers working in many different industries.

Includes:
- Transmitter PCB
- Receiver PCB
- One meter of plastic optic fiber
- All necessary electrical hardware
- Complete step-by-step instructions
- Theory of operation
- Tutorial Information

Part No. ELK-1

74LS00 Series
74LS273 8-Bit D Type Register
74LS244 Octal Bus Transceiver (1nv)
74LS245 Octal Bus Transceiver (True)
74LS246 Octal Bus Transceiver (True)

Linear
Part No. Description
LM3367N Low Noise Dual Pre-Amp
LM3506N Quad Timer
LM3905N Precision Timer

Microprocessor
Part No. Description
2712A 32K EPROM (21V)
4164N-200 64K Dynamic RAM (200ns)
6161LP-1 16K Static CMOS RAM (200ns Low Power)
6264P-15 64K Static CMOS RAM (150ns)
68008 MPU with Clock (3MHz)
6945 CRT Controller (CRT)
8085A CPU 8-Bit N Channel
8086 CPU 16-Bit (8MHz)
8086S CPU 16-Bit (8-Bit Data Bus)
8251A Programmable Comm. 1/O
8263-5 Programmable Interval Timer
2712B 128K EPROM 250ns (21V)
MM58167 Microproc. Real Time Clock

OPTO-ISOLATOR
Part No. Description
4N33 Single Channel
PEPPY Photo-Darlington

DIODES
CRYSTALS
TRANSISTORS
Sockets
Kits
SWITCHES
RESISTORS
LEDS
HEAT SINKS
KEYBOARDS
WIRE
SPEAKERS
TOOLS
CORS
SOLDER
IC'S
BOOKS
CAPACITORS
and more...

Connections
Solder-Type Connectors
Part No. Description
57-30360 36 Contact Plug (Centronics)
57-30365 36 Contact Socket (Centronics)
57-30500 30 Contact Plug
57-30505 30 Contact Socket

INDUSTRIES
DATASHIELD SURGE PROTECTOR
Eliminates voltage spikes and EMI/RFI noise before it can damage your equipment or cause data loss.
- 6 sockets - 6 ft. power cord
- Brown-out/Black-out reset switch
- Brown-out notification (audible alarm)
- 6 mo. warranty

Part No. Description
Model 100

MARCH 1985
CIRCLE 251 ON FREE INFORMATION CARD

www.americanradiohistory.com
Where's Your ELECTRONICS Career Headed?

The Move You Make Today Can Shape Your Future

Yes it's your move. Whether on a chess board or in your career, you should plan each move carefully. In electronics, you can move ahead faster and further with a B.S. DEGREE

Put professional knowledge and a COLLEGE DEGREE in your electronics career. Earn your degree through independent study at home, with Grantham College of Engineering. No commuting to class. Study at your own pace, while continuing your present job.

The accredited Grantham non-traditional degree program is intended for mature, fully employed workers who want to upgrade their careers ... and who can successfully study electronics and supporting subjects through INDEPENDENT STUDY, AT HOME

Free Details Available from:

Grantham College of Engineering
10570 Humbolt Street
Los Alamitos, California 90720

Independent Home Study Can Prepare You
Study materials, carefully written by the Grantham staff for independent study at home, are supplied by the College, and your technical questions related to those materials and the lesson tests are promptly answered by the Grantham teaching staff.

Recognition and Quality Assurance
Grantham College of Engineering is accredited by the Accrediting Commission of the National Home Study Council.

All lessons and other study materials, as well as communications between the college and students, are in the English language. However, we have students in many foreign countries: about 80% of our students live in the United States of America.

Grantham College of Engineering
10570 Humbolt Street, Los Alamitos, CA 90720

Please mail me your free catalog which explains your B.S. Degree independent-study program.

Name ____________________________ Age ______

Address __________________________

City __________________ State ______ Zip ______

www.americanradiohistory.com
Uninterruptable Power Supply

Did you ever wish you could have a backup AC power supply in case of a power failure? Or did you ever wish you could take one or more of your home appliances with you on family outings? Well, this easy-to-build power inverter can help you do both!

DAVE SWEENEY

A POWER INVERTER IS USEFUL GADGET that can lend some degree of portability to otherwise home-bound electronics devices. Its function is to convert a low DC-voltage to a usable AC level. The power inverter we'll describe here will let you generate alternating current that will allow you to power a small television, personal computer, strobe light, or other AC-operated device without being tied down to an AC outlet.

While the project was originally designed so that AC devices could be operated in a car (from the 12-volt system), it has another important use: it can serve as part of an uninterruptable (backup) AC supply. If you suffer from short-term power outages, it could be particularly valuable. Your burglar alarm could still operate during a blackout, and your clock would still keep time.

We won't go into detail on particular applications of the uninterruptable power supply. But we will mention that you have several options for making the unit “kick in” automatically when the power company cannot deliver. The easiest way, as shown in Fig. 1, is to use a 117-volt relay to switch between the standard AC line or the 117 volts from the inverter. One possible disadvantage there is that the relay might not be fast enough in some applications. For example, only a very slight disruption in power can overwrite your computer's memory with garbage. Only experimentation will let you know for sure. A solid-state relay, which typically has a faster switching time than a mechanical relay, might be your best bet. In either case, you'll want to make sure that you have a fully charged battery to supply power to your inverter. A trickle charger would be a valuable addition to the circuit.

Provided the inverter's power capacity is not exceeded, you can power most any AC-operated device indoors or outdoors, and during power failures. Be cautioned however, that the output of this inverter is closer to a squarewave than a sinewave. Even though the high-frequency components of the squarewave output are filtered, some devices will not operate properly with such an input and others may even be damaged!

In a motor vehicle (which is where this unit was designed to be used), the inverter produces 117-volt AC from your auto's 12-volt DC battery. So you can use the unit to add to the fun of an outdoor party, or even to power an electric razor while you wait in line at the drive-in bank!

Voltage isn't everything

Besides generating the correct AC voltage, an inverter must provide the correct frequency. Many devices, especially those with transformers or motors, require 60 Hz. If the frequency varies as the load changes, or when the DC input fluctuates, the performance of the device may be reduced, or the equipment might be damaged.

Low-power, inexpensive inverters typically rely on a special winding of the transformer for oscillation. Since most inverters are little more than an oscillator with specially wound transformers, the unit's output frequency is determined by transformer's inductance. Therefore, loading the transformer changes its effec-
For example, the transformer is an inexpensive, general-purpose 25.2-volt center-tapped, 2-amp unit with a single high-voltage winding.

Circuit description

Figure 2 shows a schematic of the power supply inverter. MOSFET transistors, Q3 and Q4, form a flip-flop whose output is used to turn power transistors Q1 and Q2 on and off alternately. When Q1 is on, current flows in half the low-voltage winding; when Q1 is off, Q2 is on and current flows in the other half of the low-voltage winding.

Transformer T1, which has a 117-volt primary and 25.2-volt secondary is used as a step-up, rather than a step-down, transformer. (A transformer transfers power in either direction—the terms primary and secondary are assigned rather arbitrarily.) Current in each half of the center-tapped winding flows in opposite directions (i.e., positive and negative). That alternating current (AC) in the center-tapped “secondary” winding induces AC in the high-voltage “primary” winding.

That voltage step-up results from the operation of Q1 and Q2, which are turned on and off alternately. As long as the power transistors (Q1 and Q2) alternate at 60 Hz, the output voltage will also be at 60 Hz. To maintain that operating frequency, the flip-flop (Q3 and Q4) switches the base currents of Q1 and Q2. The flip-flop is triggered by the output of the S55 oscillator, IC1. Since Q3 and Q4 conduct alternately, they are always inversely related to each other. And because they operate from the same trigger, they’ll always generate a symmetrical AC squarewave.

Now let’s turn to Fig. 3 for a discussion of the turns ratio and transfer characteristics of the transformer. When a 60-Hz AC voltage is applied to a standard transformer, the relationships of the voltage (V), current (I), and windings (N) may be expressed as $V_p/V_s = I_p/I_s = N_p/N_s$.

Since transformer T1 is rated at 2-amperes maximum in the secondary winding, the transferable power is 25.2 (V) × 2 (A) or 50.4 watts. Because the turns ratio determines the output voltage, applying 12-volts AC to half the secondary also yields an output of 117 volts. However, the output power capacity will be cut in half.

To increase the capacity of the unit, connect two identical transformers in parallel, a similar effect to placing two batteries in parallel. Just be sure to connect like terminals together, so as not to cause a phase difference that could damage the transformers! The unit’s power-handling capacity will then be the sum of all parallel transformers.

The net result is while transformer T1 determines the step-up voltage level, the S55 oscillator determines the output frequency. Therefore, even if T1 is severely loaded, the oscillator and MOSFET’s maintain a symmetrical 60-Hz AC signal for T1.
Circuit operation

Capacitor C5 and potentiometer R12 determine the frequency of the output signal at pin 3 of IC1, the 555 oscillator. The output signal is differentiated by C3 and C4 before it’s input to the base of the two power transistors (Q1 and Q2) via diodes D1 and D2, respectively. The signal from IC1 is adjusted to 120 Hz. That’s because the flip-flop formed by transistors Q3 and Q4 divides the frequency by 2.

When Q3 is on, the base of Q1 is connected via R1 to the regulated 12-Volt supply. Then, when the flip-flop changes states, Q4 is turned on and the base of Q2 connected to the 12 volt supply through R2. The 100 mA base current allows Q1 and Q2 to alternately conduct through their respective halves the transformer’s secondary winding.

To eliminate switching transients caused by the rapid switching of Q3 and Q4, capacitors C1 and C2 filter the inputs to the base of Q1 and Q2 respectively. Figure 4 shows the waveform that appears at the output (primary) of the transformer. Though the output is not a sine wave, it is close enough to operate all but the most critical equipment. But don’t risk damage to your expensive equipment if you’re not sure. As a rule of thumb, if your equipment can be damaged by transients, it’s not a good candidate for this backup power supply.

Power for the unit comes from your automobile’s 12-volt system, or—if you want to use the inverter for backup applications—from a storage battery. It is regulated by IC2 (a 7812 regulator). LED 1, connected across the 12-volt input, may be used as an indicator whether power is being fed to the circuit. The neon pilot lamp, LMP1, shows the presence or absence of output power. Jack J1 is included to provide a convenient 9-volt DC supply for a videogame, like the Atari 2600.

Circuit construction

The method of construction is not critical, but if you’re going to build the inverter as a portable unit, it’s important to build it to withstand punishment. The author’s prototype was built on perforated construction-board using point-to-point wiring, as shown in Fig. 5. Note that there are two transformers shown: as mentioned previously, two or more transformers may be paralleled to increase the unit’s power handling capacity.

The power-inverter circuit should be housed in a metal cabinet, and power transistors Q1 and Q2 should be heat sunk. To avoid damage from vibration, the components should be secured to the driver board with an epoxy adhesive.

The frequency-adjust potentiometer, R12, should be set prior to connecting the collectors of Q1 and Q2 to the transformer. Set the frequency at pin 3 of the IC1 to 120 Hz; then use a scope, monitor the base of both Q1 and Q2 to verify that a 60-Hz signal is present. Once the signal is established, the Q1 and Q2 collectors may be connected to the transformer.

Potentiometer R12 may be mounted on the panel to allow frequency adjustments from outside the inverter. To test the unit out, plug it into the cigarette-lighter socket in the vehicle. Both pilot lights should come on. If not, go back and check your work. If all is well, the unit is ready for use.

Safety procedures

Caution: Keep in mind that the inverter, whether being tested or used, has the same output-voltage level as that of an ordinary household power-outlet and is just as dangerous. Exercise the same caution that you would in dealing with household line voltage.

PARTS LIST

All resistors 1⁄4, 5% unless otherwise noted.
R1, R2=100 ohms, 1 watt
R3, R4=470,000 ohms
R5, R6=990,000 ohms
R7, R8=1 megohm
R9=1000 ohms
R10=10 ohms, 1 watt
R11=10,000 ohms
R12=100,000 ohm potentiometer

Capacitors
C1, C2=50 µF, 50 volts electrolytic
C3, C4=0.047 µF, ceramic disc
C5=0.1 µF, ceramic disc
C6=0.01 µF, ceramic disc
C7=0.01 µF, 50 volts electrolytic

Semiconductors
IC1=555 oscillator
IC2=7812 12-volt regulator
Q1, Q2=2N3055 NPN power transistor
Q3, Q4=RF5133 N-channel FET
D1, D2=N914P

Miscellaneous
Cabinet, perforated construction-board, AC panel socket, miniature phono jack, 4A slow-blow fuse, cigarette lighter plug, etc.

FIG. 4—THE ABOVE TRACE SHOWS the 60-Hz output from the Inverter. Note that although the output is closer to a squarewave than a sinewave, most of the high-frequency components have been removed.

FIG. 5—THE AUTHOR’S PROTOTYPE IS shown here installed in metal cabinet. Note that two transformers are used to increase power handling capabilities.

MARCH 1985

R-E
In Search of

FIREBALL LIGHTNING

ROBERT K. GOLKA

The author's latest experiments have provided new insight into one of physics' biggest mysteries. Here's a report on those rather unique experiments, and the results that they produced.

Nikola Tesla's achievements and discoveries have done much to shape modern electronics. After all, among his patents are those for the AC motor and the tuned circuit. But none of his achievements were more spectacular than his legendary 12.5-million volt Tesla Coil. The coil was built in Colorado Springs, CO, in 1899, as part of Tesla's experiments in worldwide communications (although some say he was also interested in the transmission of power). But it is not the experiment that is of interest here, instead, it is one of the by-products that it produced.

Ball lightning

In his diary, Tesla made note of little fireballs that were produced during his experiment. Those fireballs measured about an inch and a half in diameter, and persisted even after his apparatus was turned off. Though their production was accidental, it was also repeatable.

The nature of ball lightning, or fireballs, have long been a mystery. That phenomenon consists of glowing balls, apparently of electrical plasma, that are a foot or less in diameter. They appear in the wake of thunderstorms, move slowly, and bounce when they hit the earth or some other solid object.

There was little interest in Tesla's observations and experiments until the coming of the "nuclear age." Since then, nuclear scientists have been struggling to contain and control the plasma of ionized and superheated gases that are necessary for a sustained fission reaction. Since in ball lightning, it appears that electrical plasma is controlled, that phenomenon has drawn attention from a few scientists.

In addition to myself (reports on my work appeared in the June 1976 and February 1981 issues of Radio-Electronics), the two men most interested in this phenomenon were Russia's Dr. Peter L. Kapitsa, winner of the 1978 Nobel Prize in physics, and James L. Tuck of Manhattan Project fame and the founder of the Los Alamos Plasma Physics Laboratories. Both men are now deceased, but Dr. Tuck left something behind of great importance.

About two years ago, while going through Dr. Tuck's personal papers at Los Alamos National Laboratories, I came across a series of four sequential photos of a submarine battery-bank circuit breaker being opened; the current through the breaker was on the order of 10,000 amps. Dr. Tuck had shown those pictures to me in 1971, and mentioned that after about 30,000 shots over a 2½ year period, he had gotten only those 4 pictures of what he thought were ball lightning. Three of those photographs are reproduced on the facing page.

Upon seeing those photographs once again, I decided to reproduce Dr. Tuck's experiments using a real World War II submarine. Unfortunately, there are few of those left in our "nuclear Navy." The only one I managed to locate was not being used, but that may have been due to the fact that it had no propellers and only one working engine. I thus decided to try the experiment with a diesel railroad locomotive instead.

The next problem was finding a railroad that was willing to loan me a locomotive, box cars, and track for such an experiment. Thankfully, the president of the Boston and Maine railroad had the wisdom, foresight, and love of progress necessary to fulfill my needs; the railroad provided me with two locomotives, a train, and a mile and a half of track. It was because of that, that I was able to conduct 3½ months of experiments that completely altered my thinking on the nature of ball lightning.

First of all, I now feel that it is more of a particle rotation flow than a high voltage
electrostatic effect; that is, more like a giant plasma vortex donut with a tiny hole than an electrostatic sphere. Now, there are a whole host of phenomena in aeronautical engineering, particularly in the area of fluid dynamics, that are not yet fully understood. One of those is the physical properties of vortices. One can blow smoke rings inside of smoke rings, and have the inner ring move back and forth. You can also blow smoke rings that stand perfectly still. In liquids, rings can form spheres and other shapes.

Well, back to the railroad! To perform my experiments, I grafted a submarine circuit breaker into the high-voltage circuit between the million watt, 1600-horsepower diesel generator and the 2000-horsepower motor trucks beneath the locomotive. By opening the circuit breaker (using a long broomstick handle), I was able to generate ball lightning.

The effects of opening the circuit breaker were quite astonishing. Temperatures in the cab of the locomotive would go instantly from 60°F to 110°F. As you might imagine, there was an overwhelming desire to leave the train cab for some fresh air, of course, could not do that since the train was still moving (at a speed of about 20 miles an hour), and the likely result would have been running the train off the end of the track and destroying the experimental setup.

In any event, after redoing the experiment countless times, I was able to convince myself that the fireball effect was due to the elimination of turbulence. In fact, I found that when I closed the door and windows of the cab, the effect was most likely to occur.

My earlier experiments involved placing the breaker on the top of the locomotive, over the updraft of the engine radiators; that proved to be the most ineffective way to go. It was only after I realized that shielding the set up from turbulence aided the effect that I began to see results. If nothing else, that shows that one must have almost a Sherlock Holmes-like approach to this kind of research if it is to succeed. Also, that was probably the first plasma physics experiment ever performed on a moving train!

I now feel that there is much to be done in this area. The next step is to perform the experiment using a more conventional setup: in a low velocity wind tunnel, using controlled arc discharges to form ball lightning. I believe that setup would be very productive.

While the mechanism that allows the confinement of the plasma is still unknown, now the probable nature of that mechanism is known, at least in part. The next task is to demonstrate the phenomenon over and over again. By doing that, the remaining questions will be answered and the true nature of ball lightning will be revealed.
Electronics Paperback Books
Quality Paperbacks at Affordable Prices

- 20 BOLDERLESS ELECTRONIC PROJECTS BOOKLET.
- 75% TINPLATE COPPER for a better price on wire, solder, and other components.
- 4 MOSFET HAND-HELD PROJECTS.
- 10 ELECTRONIC PROJECTS BOOKLET.
- 100 SIMPLE SOLDERLESS PROJECTS.
- 200 MODERN SOLDERLESS PROJECTS.
- 300 INSANITY ELECTRONIC PROJECTS.
- 500 HOW TO MAKE ELECTRONIC PROJECTS.
- 700 TIPS & TRICKS ELECTRONIC PROJECTS.
- 1000 MICROCONTROL PROJECTS.
- 2000 ELECTRONIC PROJECTS BOOKLET.
- 3000 ELECTRONIC PROJECTS BOOKLET.
- 4000 ELECTRONIC PROJECTS BOOKLET.
What's New In DMM's

Herb Friedman

Here's an overview of the features and specifications you should look for in the most popular electronics test instrument: the modern digital multimeter.

Before digital multimeters became a commercial reality, the multimeter in primary use was called a VOM (Volt-Ohm-Milliammeter). In those days, whether the multimeter was to be used in a commercial or school laboratory, in a basement workshop, or by the local radio TV service center, selecting a VOM was a simple task. You had your choice of the "legendary" VOM's from Simpson and Triplett in either the "pocket" or "bench" sizes, or similar but less expensive models from other sources.

An amplified version of the VOM—called the VTVM (Vacuum Tube Volt Meter)—which had an input impedance of 1 to 10 megarhms (depending on the specific model) was required when the lower input-impedance of VOM's might load the circuit being measured and affect the reading.

Except for the astronomically-priced laboratory instruments, within each category, VOM's and VTVM's were similar in features and performance, being generally limited to measuring AC and DC voltages and currents, and resistance. Price differences generally reflected long-term reliability and accuracy rather than operating features. Occasionally, a VOM or VTVM would be introduced that was touted as a multi-function supermeter, but more often than not the superfunctions turned out to be some way to measure small capacitance values, and possibly a low-current variable-voltage supply used to test the leakage of, or to reform, electrolytic capacitors.

Though a VOM and modern solid-state equivalents of the VTVM are still available (primarily in the lowest and highest price ranges), for general all-around use the DMM (Digital MultiMeter) is the standard test, service, experimenter, and laboratory meter.

Unlike the early DMM that simply substituted a digital readout for an analog meter, and whose accuracy and reliability were often substantially less than that of a VOM of equivalent price, the modern DMM provides functions, accuracy and reliability rarely, if ever, attained by conventional analog meters. (Note: The first DMM introduced in this country was produced by Non-Linear Systems, now better known for their compact oscilloscopes and Kaypro computers.—Editor).
DMM's are not the same

In a general way, few DMM's are alike. Whether it's the power supply, the display, the functions, or the kind of batteries used to power the instrument, every manufacturer has its own ideas as to what should go into a DMM: what functions, tolerance and reliability should be provided for a given price. More often than not, the user must trade off a feature or function for cost-effectiveness, or just plain convenience of operation. So instead of looking at specific models, we'll take a look at the various functions and features. You select the ones that answer your needs.

DATA PRECISION MODEL 2480.

The display

First things first: let's look at the display devices because they determine how long a battery can power a portable DMM. (Even though a portable DMM might have a connection for a line-powered AC adapter, away from a powerline it runs off its internal batteries.)

Both LCD (Liquid Crystal Display) and LED (Light Emitting Diode) displays are used for DMM's. The LCD is the most commonly used display for battery powered instruments because it requires a minimal amount of operating current. In fact, the current required by an LCD display is often less than a battery's internal leakage current. The typical LCD DMM uses a 9-volt rectangular type battery that will last from 300 to 2000 hours depending on the design of a particular meter.

The problem with LCD's is that they are difficult or impossible to see under low ambient light, and some of them respond relatively slowly when the reading is updated.

On the other hand, the LED (Light Emitting Diode) display can be seen in total darkness and responds almost instantaneously to updating. Unfortunately, compared to the LCD, the LED display requires a considerable amount of power, and a small 9-volt battery—even of the alkaline type—cannot provide substantial operating life. So LED DMM's generally use either two or four AA-type batteries. Which provide considerably more current than 9-volt rectangular-type batteries. However, the total life per AA battery set is approximately 50 to 75 hours when powering LED's, though some are as low as 30 hours.

Because each element of an individual LED digit requires considerable current—usually in the range of 3 to 10 mA, the instantaneous load on the DMM's power supply depends on how many display segments are lit. An LED display whose reading is continuously changing will produce a varying load on the meter's power supply. An LED DMM will usually (not always) use an internal voltage regulator of some kind to prevent the power-supply voltage fluctuations from affecting other circuits. As you might expect, this increases the relative cost of the LED DMM.

Resolution

Assuming similar internal circuitry, a DMM's resolution as well as its price is determined by the number of display digits. Resolution means the smallest measurable increment. The most common service-grade DMM's have 3½ digits, meaning three active digits that can indicate from 0 to 9, and a MSD (Most Significant Digit) "half-digit" that is either blanked, or can indicate a value of 1. For example, a typical service instrument would indicate 999 volts. An increase of .1 volt would result in a display of 1,000. The "1" is the "half" digit: it cannot step to a "2." At 1,999 volts, an increase of .001 volt would produce a reading of 2.00 volts (three digits). Notice the "half" digit is blanked. More important, the resolution decreases. With 3½ digits used for the display, a voltage variation of only .001 volt could be observed. With only three digits in use, the minimum resolution is 0.1 volt. Going a step farther, 120 volts would be displayed as 120. Now the resolution is 1 volt. Unless some form of unusual range selection is provided, the half-digit would not turn on until the display reaches 999, i.e., 1200 volts would be displayed as 1,200, but note that although the half-digit is turned on the decimal is still in the same location, so resolution remains at 1 volt.

Because of internal circuitry, the common service-grade DMM's have a resolution of approximately 100 millivolts; higher performance meters have a more sensitive resolution. Resolution is also determined by the sample rate, meaning the time interval between updates of the display. The shorter the sample rate, the greater the inherent resolution capability. The sample rate depends on the function, price and quality. Low cost service-grade DMM's have a sample rate in the range of 2.2 to 5 seconds; the better-quality service-grade DMM's have a nominal sample rate of 2.2 seconds. A somewhat higher price buys a sample rate of nominally 1.5 seconds. Laboratory-grade DMM's have a sample rate into the millisecond range. The only time sample/update gets sticky or frustrating is when making resistance measurements above 10 megohms because the sample/update can be almost 10 seconds.

Where the internal circuits permit greater resolution, it can only be observed if the DMM has sufficient digits to indicate the increased resolution. To this extent, high-performance service-grade DMM's are available with 4½ digits, while laboratory-grade DMM's have from 6½ to 8½ digits.

Digits don't mean accuracy

The fact that a meter uses digital technology doesn't necessarily mean it is any more accurate than an analog VOM because it is the internal circuits rather than the display that determines the overall accuracy. Accuracy ranges from about 3% to 5% of full-scale for the low cost pocket DMM's, to .002% for the laboratory grade meters. The high-performance service-grade instruments fall in the range of 0.1% to 0.5% for DC voltage and resistance, and possibly as high as 1% for high values of current.

What should be remembered is that the accuracy is in addition to a factor of ±1 count, even if not specified. This means that the LSD (Least Significant Digit) can be 1 count higher or lower than the worst-case tolerance. For example, if a DMM should indicate 120 volts, it will also be within specifications if the display is 119 or 121 volts. Naturally, the greater the number of digits used for the display the smaller the effect of the ±1 count on the total reading. While a 3½ digit display could indicate 119, 120, or 121 volts and be within specification, a 4½ digit display with the same effective meter tolerance might indicate 119.99, 120.00, or 120.01 volts.

A critical area, however, is AC measurement. The AC accuracy is heavily dependent on the operating frequency. Most of the conventional and even laboratory grade DMM's have their maximum...
accuracy in the range of 40 Hz to 20 kHz. That is, of course, more than an adequate frequency range for most AC measurements. However, if you are interested in high-fidelity audio service or experimentation, your measurements should be accurate down to at least 20 Hz, and possibly as low as 15 Hz, or 10 Hz. Finding relatively inexpensive DMM’s that go down to the basement so to speak isn’t the easiest of tasks because many of the service grade instruments don’t show a frequency range in their tolerance specifications.

Analog DMM’s

We have previously mentioned the sample/upgrade rate, which is nominally 1.5 to 2.5 seconds for most service-grade DMM’s. This means that any sudden peaks or dips in voltage, current or resistance will not be displayed if the reading returns to the average value before the next sample is taken. In many instances the short-term variation is really what the technician is looking for, and this is the reason so many analog meters are still sold. Two techniques are used to inform the technician of variations that might occur between samples. Neither is commonly found on DMM’s, although they are available on a few of them.

The first is simply a small analog meter built into the DMM. While the DMM provides the convenience and accuracy of a digital display, the analog meter allows the user to observe short-term variations. If the user suspects there are short-term variations, he can keep one eye on the analog meter.

The second way in which short-term variations are indicated is with a built-in tone generator whose output frequency is proportional to the measured voltage, current, or resistance. While a change in pitch doesn’t indicate the magnitude of the variation to the measured voltage, current or resistance, it is an effective way to call attention to a change that might otherwise be concealed by the DMM’s sample/update rate.

True RMS

Unlike analog VOM’s and early DMM’s, the modern DMM can indicate “true” rather than interpreted values. Pre-1970, and certainly pre-digital, the typical voltage or current being measured was either DC or sinusoidal. The conventional meter movement responded to the DC value. For AC measurements, the AC voltage or current was first passed through a rectifier with the resultant DC passed on to the meter. (The rectifier’s DC output depends on inherent non-linearity characteristics of the rectifier and whether it’s a half- or a full-wave rectifier.) Since the AC world was sinusoidal, the range divider was simply calibrated so the AC and DC meter scales were similar, with the AC scales indicating RMS volts or current.

And again, since the AC world was sinusoidal, a peak-voltage scale was obtained by simply multiplying the RMS value by 1.4. The peak-to-peak value was attained by multiplying the RMS value by 2.8. It was all quick and dirty, and it was accurate for most applications in those days.

While interpolation works out quite well, if the input signal is always the same waveform, the TV and digital world uses non-symmetrical waveforms whose average, RMS, and peak values have no relationship to each other. Since DMM’s are digitally-based to start with, it is often cost-effective to include measurements of non-sinusoidal true RMS and peak values, and as we move away from the relatively low-cost service-grade DMM’s, we can find models that feature true RMS indications and peak hold.

True RMS is exactly what the term implies: The DMM determines the true RMS value of the waveform—whether it be sinusoidal or non-symmetrical makes no difference when the value is determined. That is of particular importance when power is involved because a pulse of extremely narrow width has relatively low power even if the peak value is substantial, and a true RMS DMM would indicate the actual power, or an accurate RMS voltage value from which power could be accurately calculated.

Peak hold is when the DMM stores and displays the measured value until deliberately cleared by the user. The feature is effective because it can often display the peak value of a waveform so narrow that a scope was previously required for measurement. It also displays the value of a peak variation that might occur during the lag in the DMM’s sample/update rate.

With no presently known exception, commonly-used DMM’s have the peak hold as a switch-selected feature in addition to conventional metering. Similarly, true RMS is also generally switch-selected, though some high priced laboratory-grade instruments measure all non-sinusoidal waveforms in terms of true RMS.

Autoranging

Much ado about nothing goes into how a DMM’s functions and ranges are selected. Some models have the selector buttons on the side, others on the bottom, still others have the buttons on the front panel, and some use rotary switches. The way the ranges are selected has absolutely no effect on performance unless it is done by autoranging.

Autoranging is an internal electronic switch that automatically attempts to select the most efficient display range when the user connects the DMM’s probes into the circuit being tested. Since autoranging also automatically repositions the display’s decimal point, the user need only glance at the display to know the measured value—there is no fussing with range switches. There is also no need to worry about meter overload, or even about possible damage caused by overload because the autoranging circuits initially set the meter to its highest range.

Autoranging is generally provided in addition to standard range selection because the range that is automatically provided might not be optimum for a particular kind of circuit or test. The user might want to lock the meter to a fixed range to obtain a specific degree of resolution.

Diode tests

Another somewhat unusual feature usually found in the higher priced DMM’s is a ‘diode test.’ In the conventional VOM, the voltage across the test probes when the meter is set for resistance measurements ranges upwards from 1.5 volts, which is more than enough to test conventional signal and rectifier diodes for forward and reverse conduction. Unfortunately, one of the disadvantages of this kind of check is that the current flow through the test probes can reach almost 500-ma or higher, a value that has been known to fry what was previously a good diode or transistor junction.

DMM’s, on the other hand, have no such problems because the test voltage across the probes is generally less than 1 volt, and the maximum test probe short-circuit current is most often in the range of 100-µa to 1-ma, which isn’t enough to fry anything. Unfortunately, neither the voltage nor the current is sufficient to perform the most rudimentary check of a
IF YOU WANT TO GET YOU HAVE TO GET INTO

Learn PC Servicing By Building Your Own NTS/HEATH HS-151 Desk-Top Computer, Circuit-By-Circuit

NTS Intronic Home Training Takes You Below The Surface
NTS gets you right down into the heart of computer circuitry. You learn how microprocessors function, how they are designed, how they operate and are used to solve problems. Your program includes a wide variety of tests and projects, as you assemble your PC. You experience the excitement of seeing your own skills grow, the security of knowing you really understand what makes a computer tick.

A Career in PC Servicing
The world of computers is constantly expanding. Applications have spread from business to manufacturing, from industry to medical and scientific fields. Computer-aided design, engineering, and production have revolutionized drafting, graphics, and prototyping. Computer sales figures point to a continuing need for service technicians as well as installation and maintenance specialists. The type of training you receive will largely determine your ability to take advantage of these opportunities... and nothing beats the practical, down-to-earth training you get from NTS.

The NTS/HEATH 16-Bit HS-151
This desk-top PC is the most powerful and versatile ever offered in any home training program. Check the advanced features listed below:
1. 128 KB RAM user memory on board, expandable to 640 KB
2. 16-bit 8086 Microprocessor accepts advanced software, speeds word processing; also allows selection from the huge library of IBM software.
3. 5.25-inch floppy disk drive, double density, IBM formatted, stores up to 360 KB. (Expandable to dual disk drive, and optional 10.5 MB hard-disk drive.)
4. MS-DOS operating system, IBM compatibility, make a wide choice of software programs available.
5. Four open IBM-compatible slots provide for future expansion, printer, modem, etc. Will accept most peripheral boards designed for IBM-PC.
6. Two video outputs for color or monochrome display monitor. Your NTS course includes a high resolution monitor displaying 80 characters by 25 lines, or graphics.
7. Editing capabilities help you insert or delete characters and lines, erase, jump or smooth scroll, etc.
Your NTS training course will teach you to program on this outstanding PC, using lessons, texts, and diagrams to make full use of its capabilities. Catalog contains complete details.

Learning circuitry through the construction of this equipment offers practical training for which there is no substitute. Test equipment is included.

Field servicing is interesting and rewarding. Technicians may work for a service company, manufacturer, or major users.

The NTS/HEATH HS-151 PC completed, includes monitor and full-function keyboard with calculator style keypad, and typewriter format.
INTO PC SERVICING
A MICROCOMPUTER

NTS COURSES COVER MANY AREAS OF SPECIALIZATION IN ELECTRONICS:

Robotics: Build the NTS/HEATH Hero 1 Robot as you learn robotic programming. Robot is complete with arm and gripper, voice synthesizer. Robotics is becoming increasingly important in industry as almost daily news features attest.

Video Technology: Build one of the most advanced Color TV sets in America as you learn circuit diagnostics, and the use of digital test instruments. Course covers color TV, video tape recorders, computer fundamentals, solid-state devices.

Industrial and Microprocessor Technology covers circuit analysis, microprocessors and automation applications, lasers, and basic industrial robotics.

TV & Radio Servicing is a specialized course offering an excellent foundation in the use and application of both analog and digital test equipment as applied to the TV servicing field. Learn circuits, adjustments, trouble-shooting, and servicing of Color and monochrome monitors.

Digital Electronics offers the student the opportunity to get involved with computer concepts, computer technology fundamentals, and digital equipment by training on the NTS Compu-Trainer.

Basic Electronics is a course designed for those wishing to have an overview of electronics in many of its aspects including radio receivers, solid-state devices, and electronic components.

NTS Technical training programs include a variety of superb equipment, most of which is classified as field-type, making the training practical and career oriented. Texts and lessons have been tested in our Resident School in Los Angeles to assure home study students their courses of training are easy to understand. NTS, now in its 80th year, continues to be at the leading edge in Electronics home training.

* IBM is a trademark of International Business Machines Corp.
* MS is a trademark of Microsoft Corp.

If card is missing, simply write to the address shown below stating the course you are interested in. A FREE color catalog with all details will be sent to you by return mail.
diode, so some DMM's make special provisions for a diode test by providing either a special set of terminals or switch selection of a special diode test voltage and current.

A variation of the diode test actually measures the voltage at which the diode starts to conduct. The DMM first applies a voltage higher than needed to cause a diode to conduct, and then the DMM indicates the voltage at which the diode starts to conduct. While not all that important a feature—generally, a plain go/no-go test is adequate—it is helpful for those circuits whose performance is somehow dependent on the precise turn-on voltage.

Oddball features

While the conventional DMM measures voltage, current, and resistance, and might possibly have some form of special circuit for diode tests, some make provision for unusual tests or accessories. At least one DMM also features a rudimentary transistor tester, others can measure capacitance. Several DMM's have connections for an optional transducer to measure temperature. Some multi-function meters also include power measurements, while others go a step further and provide logarithmic dB (decibel) scales for audio amplifier tests.

Other functions, usually found in the more sophisticated test-bench DMM's, are a peak and null indicator, or a relative-reading baseline. Peak and null is essentially a substrate for an analog device in that it can indicate or track variations in the circuit being tested. Usually, two or three LED's or LCD dots or + and − indicators are used to indicate when a varying voltage or current has passed through a peak or a null. A variation of the LCD dots is an LCD "analog" bar graph—a line of dots or dashes—that tracks the input signal between updates of the display. This bar-graph display is coupled with the standard digital display so that the meter contains both display-types. Since the bar-graph consists of segments, it is not really analog. It is a digital readout. However, the update rate is much faster than the standard digital display. For example, the Fluke 70-series contains a bar-graph display, but its update rate is 10 times faster than the standard digital display.

The relative-reading baseline does essentially the same thing but the variations can be measured. A reference test probe is used in this technique. The meter accepts the signal on the reference test probe as "0." The value of the variations in the voltage or current sensed by the test probes are indicated in values referenced to the "0" level. For example, if the baseline is 10 volts, 11 volts at the test probes would be indicated as +1 volt.

Another unusual variation is the digital versions of clamp-on ammeters, a device specifically designed to measure moderate to large AC currents through an induction device that clamps around a current-carrying conductor.

Most clamp-on meters also provide for measuring voltage (in the line voltage range) and resistance, so they are, in effect, a DMM, though they are most effective and convenient for measuring large amounts of current because the circuit being tested doesn't have to be opened for the insertion of test probes or a sensing device.

Unlike what we consider conventional DMM's, clamp-on DMM's are intended for use on powerline equipment, hence, the frequency range of the voltmeter circuit is generally optimized for the powerline frequency range of approximately 40 to 500 Hz. The AC meter isn't intended for measuring AC voltages in the 20 Hz to 20 kHz audio range.

Since most service-grade clamp on meters are intended for field service, they are almost without exception housed in a hand-sized enclosure that is impact resistant.

The package

Finally, we come to the way the meter is assembled and packaged. Many different kinds of enclosures are used to house DMM's. Some are simply conventional plastic cabinets, others are made of high-impact plastic that will bounce rather than shatter if dropped on a hard surface. Some are water or moisture resistant, still others are completely sealed for use in areas where explosive gases might be present; and some DMM's are enclosed in a conventional metal cabinet.

Almost without exception (we say "almost" because there is always an exception somewhere), the DMM's with a plastic cabinet have no exposed metal surfaces that might present a shock hazard.

The DMM's housed in a metal cabinet generally have both probe terminals insulated from the cabinet, with the cabinet grounded through a 3-wire linecord. Many of the better-quality metal-enclosed DMM's also provide a ground connection on the front panel that allows the use of test probes encased in an insulated shield so that RF interference does not get into the probes and interfere with low-level test signals. Also, the ground connection allows the frame or cabinet of the equipment being tested to be connected to a common ground, in this way preventing ground loop "hash" from interfering with the test signals, while also protecting
against a cabinet or chassis being unknowingly at a high potential with respect to ground.

It's really gold

Some service-grade, and most laboratory-grade DMM's feature gold-plated contacts on the selector switches. The value of gold plating on a self-wiping contact has never really been established. Self-wiping contacts usually grind down the rotary sliders, so in a year or two there's not likely to be any gold on at least one contact surface. In fact, there are many VOM's built 40 years ago with ordinary switches (for their day) that are still giving reliable service. The real value of gold plated selector switch contacts is that it's usually done only in the better-built instruments (within the same general price range), so you can make the logical assumption—which actually might not have any validity—that an instrument with gold contacts is built with higher quality components, or was subject to a more vigorous inspection during its assembly.

Anything goes

Just about anything is possible using digital technology: the only limitation is price. (Some far out measurement systems are unusually expensive.) But if you can think of some obscure, seemingly unknown feature that might be of unusual value to you, either someone builds it into a meter today, or will do so tomorrow. Almost nothing is impossible.
What’s New In
OSCILLOSCOPES

High technology has changed the high-priced oscilloscope, and it has also added a lot of convenient features to lower priced scopes.

The oscilloscope presently stands with one foot in the past and the other in the future. New digital technologies are creating new concepts of use and, more important, new magnitudes of accuracy for scopes commonly used for servicing and general laboratory work. Unfortunately, the cost of the new digitized and computerized circuitry is not yet low enough to completely replace conventional circuits. So what we presently find in moderately priced scopes is often a mix of the old and the new. How much (if anything) is truly new in a given oscilloscope depends on its price.

The modern service-grade and general-purpose laboratory scope is simply a logical development of the reliable oscilloscopes introduced in the late 1940's. Those scopes weren’t all that much better than the scopes of the 1930’s. They simply had available reliable components that were originally developed for wartime conditions. While solid-state devices have replaced vacuum tubes, and high-tech triggering circuits allow us to more accurately freeze, observe, and measure transient waveforms, the overall accuracy of the moderately priced (meaning under $600) scope really isn’t that much better than it was 30 years ago. The really big difference is that modern scopes often have features that make them more convenient, reliable and accurate.

Three classes of scopes

There are presently three categories of conventional scopes: general-purpose/TV, TV service, and general laboratory. (For the moment I am excluding the digital scopes and the astronomically-priced laboratory scopes.)

The general-purpose/TV scope is the direct upgrade of the old general-purpose scope that had a calibrated vertical input attenuator. What makes a scope a member of the general-purpose/TV category isn’t the tolerance of the vertical input(s), the kind of triggering, or the relatively low cost. Rather it is a frequency response that extends to between 5 MHz and 8 MHz (measured at 3-dB down) and an external...
CRT graticule that makes these scopes members of the general-purpose/TV category.

A bandwidth that stretches to 5 or 8 MHz makes these scopes just about suitable for DC, low-frequency AC, TV-receiver signals, and general experimentation. The external graticule is a plastic or glass device having etched lines that is placed over the CRT from the outside. Often, it can be replaced by a graticule calibrated for a specific purpose. Because the graticule is external, there is approximately ¼ to ¼-inch between the graticule and the coating on the back of the CRT face on which the trace is displayed. The parallax error produced by the separation between the graticule and the trace can easily add 10% error to the measurement, which generally started out with a combined attenuator and amplifier tolerance of 2% to 5%.

In the error generated by the CRT that price usually reflects improved measurement accuracy. Virtually all better-quality scopes have a recessed screwdriver adjustment (trace rotation) that rotates the CRT's trace so it is precisely parallel to the graticule. Another recessed control (astigmatism) forms the beam into a precise circle rather than an oval. But the very high-priced laboratory-grade scopes are so precisely made and factory-adjusted that many have no external user adjustments for the CRT trace.

Triggering

In addition to the features and performance common to other scopes in its price range, models specifically intended for use by TV technicians—or others who will do a modest degree of TV service work—usually feature what is called TVO or TV trigger. This is nothing more than a switch-selected horizontal timebase that is automatically corrected for TV, providing 2½ to 3 horizontal lines or 2½ to 4 vertical fields; the precise number depending on the particular scope. The feature doesn’t make the scope more accurate; only more convenient to use (it’s a big convenience). For real convenience you must consider the vertical or video delay, which is not to be confused with a timebase or trigger delay. Consider, if you will, using a scope to observe the leading edge of a transient one-shot waveform. If you’re using an internal timebase trigger—one derived from the vertical input signal—the waveform’s leading edge will be long gone before the horizontal sweep is triggered. If you’re using an external trigger signal—which probably is generated by the same device that generates the scope’s video input signal—at least part of the waveform’s leading edge will have past before the trigger starts the timebase oscillator.

The way to see the entire waveform is to use a TV scope—of which there aren’t too many models to choose from—that has a delay line in the vertical amplifier. The sample for the timebase trigger is taken off at the input to the delay line. By the time the signal itself gets out of the delay line, the trigger sample has triggered the timebase and the entire leading edge can be observed. Since the slope of the timebase trigger—the trigger point—is somewhat variable, the user can generally set the trigger so the CRT trace starts slightly before the waveform’s leading edge. In this way the complete leading edge of the waveform can be observed.

Dual scopes

A major area of upgrading for the higher-cost general purpose and general purpose/TV scope is the dual vertical-input (dual trace) and dual-timebase, features that until recently were found primarily on the higher-cost laboratory scopes. The dual-trace scope has two identical vertical inputs. On the higher-cost laboratory scopes there are separate compartments for two plug-in modules, which may be individual vertical amplifiers. Depending on the purpose for which the scope is intended and its selling price, there will be one or two timebase oscillators, but whether there are one or two oscillators, almost without exception, the scope will have a dual-trace function, also known as a chopper or input switcher.

The dual-trace function allows simultaneous display of both vertical input signals using just one timebase oscillator. At the lower frequencies, the dual-trace function “chops” portions out of each signal to form two separate CRT traces, one for each vertical input signal. For high-frequency input signals—because the chop rate would be greater than the period of the signal and would distort the traces—the dual-trace function also provides an alternate mode. In the alternate mode, one complete vertical input trace is displayed and then the other. Two distinct methods—chop and alternate—are used because each is not usable at all input frequencies. Separate centering controls for each vertical channel permit the position of each trace to be adjusted independently of the other.

Generally, the user must decide whether to use chop or alternate. In some new scopes, however, an internal circuit...
PROVIDING THREE CRT TRACES

While the idea is perfectly suitable and reliable when you know the third input is generally not the equivalent of the conventional vertical input in terms of frequency response, sensitivity, or even attenuator ranges, the surface specifications create the appearance of three similar vertical inputs. If your work requires multi-screen traces, double-check those specs and make sure that you're really reasons what you think you're getting.

BECUSE THE X-Y PLOT IS BECOMING
MORE FREQUENTLY REQUIRED IN LABORATORY
WORK, SOME OF THE LATEST SCOPE MODELS
PROVIDE AN OUTPUT FOR DRIVING A PLOTTER.
THIS FEATURE IS GENERALLY PROVIDED IN THE
DIGITAL AND COMPUTERIZED SCOPES THAT WE'LL
GET TO SHORTLY.

WHILE IT IS POSSIBLE TO MORE EASILY TAKE
A PICTURE OF THE CRT WITH ONE OF THE LOW-
COST CRT CAMERAS PRESENTLY AVAILABLE, THE
PRINTED X-Y PLOT IS MORE CONVENIENT TO
USE AND USUALLY MORE ACCURATE THAN THE
PHOTO.

ON-SCREEN HELP

Several years ago, Tektronix literally astonished the industry by providing an alphanumeric CRT display that indicated the settings of the vertical amplifier(s) and timebase switches. Since the screen characters were digitally generated, a logical extension was a means whereby the user—through an accessory character selector—could actually write small messages on the screen. A photograph of the CRT could now show not only the trace(s) but the settings of all involved switch(s) and a short message as to what was represented by the display. Years later, someone could select a CRT photograph from a file and know exactly

THREE INPUTS ARE BETTER?

If two inputs are good then it follows that three must be better. Right? Usually wrong! Almost all commonly used scopes allow the horizontal (timebase) amplifier to be used as a third input—perhaps the x input. Signals applied to the x-input results in a horizontal, rather than a vertical, deflection of the CRT beam. Since the horizontal amplifier was originally used for the timebase oscillator, except for some very high-priced scopes that can use one of the vertical amplifiers for the x-input, it generally has nowhere near the performance of the vertical inputs because the timebase signals are lower in frequency than that of their associated vertical input. Of late, some manufacturers provide a means whereby the horizontal amplifier or a trigger amplifier can be used as a third vertical input, with a switching circuit

PROVIDING THREE CRT TRACES

While the idea is perfectly suitable and reliable when you know the third input is generally not the equivalent of the conventional vertical input in terms of frequency response, sensitivity, or even attenuator ranges, the surface specifications create the appearance of three similar vertical inputs. If your work requires multi-screen traces, double-check those specs and make sure that you're really sure you're getting what you think you're getting.

BECUSE THE X-Y PLOT IS BECOMING
MORE FREQUENTLY REQUIRED IN LABORATORY
WORK, SOME OF THE LATEST SCOPE MODELS
PROVIDE AN OUTPUT FOR DRIVING A PLOTTER.
THIS FEATURE IS GENERALLY PROVIDED IN THE
DIGITAL AND COMPUTERIZED SCOPES THAT WE'LL
GET TO SHORTLY.

WHILE IT IS POSSIBLE TO MORE EASILY TAKE
A PICTURE OF THE CRT WITH ONE OF THE LOW-
COST CRT CAMERAS PRESENTLY AVAILABLE, THE
PRINTED X-Y PLOT IS MORE CONVENIENT TO
USE AND USUALLY MORE ACCURATE THAN THE
PHOTO.

ON-SCREEN HELP

Several years ago, Tektronix literally astonished the industry by providing an alphanumeric CRT display that indicated the settings of the vertical amplifier(s) and timebase switches. Since the screen characters were digitally generated, a logical extension was a means whereby the user—through an accessory character selector—could actually write small messages on the screen. A photograph of the CRT could now show not only the trace(s) but the settings of all involved switch(s) and a short message as to what was represented by the display. Years later, someone could select a CRT photograph from a file and know exactly

THREE INPUTS ARE BETTER?

If two inputs are good then it follows that three must be better. Right? Usually wrong! Almost all commonly used scopes allow the horizontal (timebase) amplifier to be used as a third input—perhaps the x input. Signals applied to the x-input results in a horizontal, rather than a vertical, deflection of the CRT beam. Since the horizontal amplifier was originally used for the timebase oscillator, except for some very high-priced scopes that can use one of the vertical amplifiers for the x-input, it generally has nowhere near the performance of the vertical inputs because the timebase signals are lower in frequency than that of their associated vertical input. Of late, some manufacturers provide a means whereby the horizontal amplifier or a trigger amplifier can be used as a third vertical input, with a switching circuit

PROVIDING THREE CRT TRACES

While the idea is perfectly suitable and reliable when you know the third input is generally not the equivalent of the conventional vertical input in terms of frequency response, sensitivity, or even attenuator ranges, the surface specifications create the appearance of three similar vertical inputs. If your work requires multi-screen traces, double-check those specs and make sure that you're really sure you're getting what you think you're getting.

BECUSE THE X-Y PLOT IS BECOMING
MORE FREQUENTLY REQUIRED IN LABORATORY
WORK, SOME OF THE LATEST SCOPE MODELS
PROVIDE AN OUTPUT FOR DRIVING A PLOTTER.
THIS FEATURE IS GENERALLY PROVIDED IN THE
DIGITAL AND COMPUTERIZED SCOPES THAT WE'LL
GET TO SHORTLY.

WHILE IT IS POSSIBLE TO MORE EASILY TAKE
A PICTURE OF THE CRT WITH ONE OF THE LOW-
COST CRT CAMERAS PRESENTLY AVAILABLE, THE
PRINTED X-Y PLOT IS MORE CONVENIENT TO
USE AND USUALLY MORE ACCURATE THAN THE
PHOTO.

ON-SCREEN HELP

Several years ago, Tektronix literally astonished the industry by providing an alphanumeric CRT display that indicated the settings of the vertical amplifier(s) and timebase switches. Since the screen characters were digitally generated, a logical extension was a means whereby the user—through an accessory character selector—could actually write small messages on the screen. A photograph of the CRT could now show not only the trace(s) but the settings of all involved switch(s) and a short message as to what was represented by the display. Years later, someone could select a CRT photograph from a file and know exactly

THREE INPUTS ARE BETTER?

If two inputs are good then it follows that three must be better. Right? Usually wrong! Almost all commonly used scopes allow the horizontal (timebase) amplifier to be used as a third input—perhaps the x input. Signals applied to the x-input results in a horizontal, rather than a vertical, deflection of the CRT beam. Since the horizontal amplifier was originally used for the timebase oscillator, except for some very high-priced scopes that can use one of the vertical amplifiers for the x-input, it generally has nowhere near the performance of the vertical inputs because the timebase signals are lower in frequency than that of their associated vertical input. Of late, some manufacturers provide a means whereby the horizontal amplifier or a trigger amplifier can be used as a third vertical input, with a switching circuit

PROVIDING THREE CRT TRACES

While the idea is perfectly suitable and reliable when you know the third input is generally not the equivalent of the conventional vertical input in terms of frequency response, sensitivity, or even attenuator ranges, the surface specifications create the appearance of three similar vertical inputs. If your work requires multi-screen traces, double-check those specs and make sure that you're really sure you're getting what you think you're getting.

BECUSE THE X-Y PLOT IS BECOMING
MORE FREQUENTLY REQUIRED IN LABORATORY
WORK, SOME OF THE LATEST SCOPE MODELS
PROVIDE AN OUTPUT FOR DRIVING A PLOTTER.
THIS FEATURE IS GENERALLY PROVIDED IN THE
DIGITAL AND COMPUTERIZED SCOPES THAT WE'LL
GET TO SHORTLY.

WHILE IT IS POSSIBLE TO MORE EASILY TAKE
A PICTURE OF THE CRT WITH ONE OF THE LOW-
COST CRT CAMERAS PRESENTLY AVAILABLE, THE
PRINTED X-Y PLOT IS MORE CONVENIENT TO
USE AND USUALLY MORE ACCURATE THAN THE
PHOTO.

ON-SCREEN HELP

Several years ago, Tektronix literally astonished the industry by providing an alphanumeric CRT display that indicated the settings of the vertical amplifier(s) and timebase switches. Since the screen characters were digitally generated, a logical extension was a means whereby the user—through an accessory character selector—could actually write small messages on the screen. A photograph of the CRT could now show not only the trace(s) but the settings of all involved switch(s) and a short message as to what was represented by the display. Years later, someone could select a CRT photograph from a file and know exactly

THREE INPUTS ARE BETTER?

If two inputs are good then it follows that three must be better. Right? Usually wrong! Almost all commonly used scopes allow the horizontal (timebase) amplifier to be used as a third input—perhaps the x input. Signals applied to the x-input results in a horizontal, rather than a vertical, deflection of the CRT beam. Since the horizontal amplifier was originally used for the timebase oscillator, except for some very high-priced scopes that can use one of the vertical amplifiers for the x-input, it generally has nowhere near the performance of the vertical inputs because the timebase signals are lower in frequency than that of their associated vertical input. Of late, some manufacturers provide a means whereby the horizontal amplifier or a trigger amplifier can be used as a third vertical input, with a switching circuit

PROVIDING THREE CRT TRACES

While the idea is perfectly suitable and reliable when you know the third input is generally not the equivalent of the conventional vertical input in terms of frequency response, sensitivity, or even attenuator ranges, the surface specifications create the appearance of three similar vertical inputs. If your work requires multi-screen traces, double-check those specs and make sure that you're really sure you're getting what you think you're getting.

BECUSE THE X-Y PLOT IS BECOMING
MORE FREQUENTLY REQUIRED IN LABORATORY
WORK, SOME OF THE LATEST SCOPE MODELS
PROVIDE AN OUTPUT FOR DRIVING A PLOTTER.
THIS FEATURE IS GENERALLY PROVIDED IN THE
DIGITAL AND COMPUTERIZED SCOPES THAT WE'LL
GET TO SHORTLY.

WHILE IT IS POSSIBLE TO MORE EASILY TAKE
A PICTURE OF THE CRT WITH ONE OF THE LOW-
COST CRT CAMERAS PRESENTLY AVAILABLE, THE
PRINTED X-Y PLOT IS MORE CONVENIENT TO
USE AND USUALLY MORE ACCURATE THAN THE
PHOTO.

ON-SCREEN HELP

Several years ago, Tektronix literally astonished the industry by providing an alphanumeric CRT display that indicated the settings of the vertical amplifier(s) and timebase switches. Since the screen characters were digitally generated, a logical extension was a means whereby the user—through an accessory character selector—could actually write small messages on the screen. A photograph of the CRT could now show not only the trace(s) but the settings of all involved switch(s) and a short message as to what was represented by the display. Years later, someone could select a CRT photograph from a file and know exactly

THREE INPUTS ARE BETTER?

If two inputs are good then it follows that three must be better. Right? Usually wrong! Almost all commonly used scopes allow the horizontal (timebase) amplifier to be used as a third input—perhaps the x input. Signals applied to the x-input results in a horizontal, rather than a vertical, deflection of the CRT beam. Since the horizontal amplifier was originally used for the timebase oscillator, except for some very high-priced scopes that can use one of the vertical amplifiers for the x-input, it generally has nowhere near the performance of the vertical inputs because the timebase signals are lower in frequency than that of their associated vertical input. Of late, some manufacturers provide a means whereby the horizontal amplifier or a trigger amplifier can be used as a third vertical input, with a switching circuit

PROVIDING THREE CRT TRACES

While the idea is perfectly suitable and reliable when you know the third input is generally not the equivalent of the conventional vertical input in terms of frequency response, sensitivity, or even attenuator ranges, the surface specifications create the appearance of three similar vertical inputs. If your work requires multi-screen traces, double-check those specs and make sure that you're really sure you're getting what you think you're getting.
what it all meant; in fact, the display might even show the name or initials of the person making the measurement.

Once the digital circuitry was on board, it was just a matter of time before it was used to enhance the actual measurement in addition to providing messages. Among the first of the exotic digital features added to a conventional scope—now used in some of the higher priced models—was digital on-screen display of the actual measured value(s) in addition to the range switch settings. Whereas the scope displays peak-to-peak waveforms, the on-screen digital display might also indicate the true RMS value. There might also be electronic cursors or cross-hairs for period measurement of sections of the displayed waveform. For example, if the screen indicates a series of pulses, centering the cursor cross-hairs on one part of the waveform and then another will produce a digital display of the actual time between the selected points. The measurement could be made between periods, between multiple periods, or between points on the same period. The accuracy of cursor-determined measurements is generally superior to “eyeball” measurements by the user.

An extension of the on-screen digital display is the auxiliary DMM and/or counter—often called a time/voltage module—which is available either built-in or as an optional accessory for what is otherwise a conventional laboratory-type scope. Usually, the time/voltage module functions in conjunction with a CRT cursor, the digital display providing an instant readout of time, frequency or DC voltage for any point on the CRT display on which the cursor is positioned.

A variation of the time/voltage module is a digital meter (without cursor) that is actually a DVM that provides a digital voltage or frequency readout of the signal at the test probe(s). The readout can be in DC volts, peak-to-peak volts, time, or frequency. The precise functions of the DVM-type module vary from scope to scope, but regardless of its functions and ranges, its purpose is to provide a more convenient or reliable reading than a straight “eyeball” measurement. Where the CRT's trace might have an overall accuracy of 2% to 5%, the digital meter's accuracy is more likely to be in the range of .002% to 1%—the precise value depending on the specific instrument and its selected function and range. While the scope shows the physical attributes of the applied input waveform, the digital meter provides the exact time and voltage values.

Digital scopes

With few exceptions, the conventional scope is limited to real-time analysis regardless how many enhancements we hang on it: when the input signal ceases, the CRT goes blank. The usual way we store a display for future analysis is to use a CRT having a special phosphor that “remembers” the trace until deliberately erased, or until the power switch is turned off.

While effective, the conventional storage scope has many limitations, among them that the CRT trace(s) are volatile and data cannot be stored for future use, cannot be passed from location to location by hand, and cannot be integrated or compared with previously stored data. Those functions are the province of the digital/computerized scope. With conveniences, functions, and accuracy many times that of the analog scope, the digital/computer scope is the modern standard of reference.

The digital scope should not be confused with a conventional scope that employs a digital timebase for exciting sweep triggering. The digital scope is completely digital and employs conventional computer circuitry such as you would find in your personal computer. In fact, the newer digital scopes can be directly interfaced with a personal computer through an IEEE bus.

The digital scope first converts the input signal into digital form through an analog-to-digital converter. From this point on the electrical bits that represent the input signal can be processed like any other computer signal: They can be stored in volatile or non-volatile RAM, combined with previous information stored in RAM; they can be stored on floppy disks and passed on from one scope to another, translated, processed...you name it and it can be done. The stored bits eventually end up as a bit representation of the CRT trace, often bit mapped. Depending on the particular scope being used, the CRT trace might be displayed as a densely packed group of dots, or the scope might generate connecting lines for greater visual resolution.

The signal values such as peak or RMS values, time and period, frequency, etc., represented by the bit pattern is usually displayed on the CRT along with the graphic trace. Cursor cross-hairs select any point of the bit trace for analysis by an internal or external computer.

Unlike conventional scopes, which might have a X5 or X10 horizontal magnifier, digital scopes often feature a zoom function that generates almost any reasonable degree of trace expansion. Top-of-the-line digital scopes have a high resolution capability, such that you can detect a change of .25 millivolts in a 1-volt signal; along with an overall measurement accuracy of 0.2%. Admittedly, the average service technician has little use for such a high degree of accuracy, but the performance of new equipment is rapidly outpacing the tolerances of conventional test equipment. One cannot reasonably adjust and service the emerging high tech hardware if the accuracy of the test equipment is less than that of the hardware.

Perhaps the primary feature of the latest digital scopes is disk or bubble memory storage. The disk and bubble memory overcome the problems of volatile display storage. Since the digitized display actually is a bit representation of the data in RAM, a mirror image can be stored on disk or bubble. Months, even years later, a mirror image of the disk or bubble data can be entered into a scope's RAM and then directly compared on the screen with the waveforms from other storage devices, or even a real-time trace. The overall accuracy of the waveform representation is
When I was his age, they wouldn’t let me use even a slide rule.

constant—there is no storage loss. In the event the scope itself is damaged, even destroyed, all its data can be reproduced on another scope because it exists on a disk or in a bubble. Though disk and bubble storage are expensive options, keep in mind that just a couple of years ago, a pair of disk drives for a home computer cost more than $1000.

Whether compared to the conventional scope or considered by itself, the potential application of the digital scope’s accuracy and storage devices is awesome; unfortunately, its price is presently also awesome—in the range of about $4000 to $14,000.

Summing up

In the final analysis one could say that the “best” scope is the one that’s most reliable. But what is reliability? Is it physical reliability? Modern scopes are not more or less reliable than any other test gear—they should easily go 10 to 20 or more years without breakdown. Is it accuracy? Two percent, even 5% total accuracy is adequate for most consumer electronic products: If you need tighter accuracy, it’s available at additional cost—but greater accuracy and greater costs doesn’t mean the scope is physically also more reliable. Most likely, reliability simply means the scope will do exactly the job that needs to be done with the least amount of fuss and bother. The scope that helps you get the job done easily with the least amount of effort and possibility of error is probably the most reliable. R-E
SELECTING THE BEST RESISTOR/CAPACITOR

There are a lot of factors to consider when selecting the proper capacitor for your design or project. In this article we'll look at those factors, and which of the many, many types of capacitors is right for your application.

those devices are thin enough to mount beneath unsouked IC's, thus reducing the length of a trace for a bypass capacitor. That is important in high-frequency circuitry, since a PC trace can have an inductance of 10 nanohenries/inch.

Capacitors come in a variety of styles including ceramic, mica, paper, plastic, aluminum, and tantalum types.

Each type was designed for best performance in a specific application or environment. Each type of capacitor is discussed below, and the important specifications and considerations that pertain to the type of capacitor are summarized in Table 2. Table 3 is a glossary of capacitor terms and specifications.

One note about Table 2—the specifications shown there are only provided as guidelines. It is certainly possible to find units with slightly, or even greatly different specifications.

Ceramic capacitors
Ceramic capacitors are used in many applications. For instance, they are used as bypass capacitors. They are also used to compensate for temperature-caused changes in resonant frequency in tuned circuits. When used in that second application, the ceramic capacitors should be mounted close to the tuned circuit, but be shielded from any heat generating components.

The EIA has broken ceramic capacitors into categories. Class I capacitors are
TABLE 2—CAPACITOR SELECTION GUIDELINES

<table>
<thead>
<tr>
<th>Capacitor Type</th>
<th>Values</th>
<th>Tolerance</th>
<th>Voltage Rating</th>
<th>Temperature Range</th>
<th>Dissipation Factor</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CERAMIC</td>
<td>1 pf to 2.2 µF</td>
<td>10% to 20%</td>
<td>3.3 volts to 6 kilovolts DC</td>
<td>-55°C to +125°C</td>
<td>5% (at 25°C and 120 Hz)</td>
<td>Capacitance and Impedance limits are very stable and capacitors perform very well at frequencies of 10 kHz to 500 MHz. Devices using silver in their construction are very susceptible to silver ion migration resulting in short circuits. Failures can occur if exposed to DC voltage stresses, humidity, and high temperature.</td>
</tr>
<tr>
<td>MICA</td>
<td>10 pf to 18 µF</td>
<td>5% to 20%</td>
<td>100 to 2500 volts DC</td>
<td>-55°C to +150°C</td>
<td>80% voltage (dipped case) and 40% voltage (molded case)</td>
<td>Has excellent dielectric absorption characteristics. Large size with excellent stability and very good load life.</td>
</tr>
<tr>
<td>GLASS</td>
<td>5 to 10,000 pF</td>
<td>5%</td>
<td>100 to 500 volts DC</td>
<td>-55°C to +125°C</td>
<td>40% to 80%</td>
<td>Small size, high temperature range (to 150°C) suitable for high-frequency applications, and high insulation resistance. Excellent high current and military applications. Not for sample hold, fast setting amplifiers, or filters due to dielectric absorption characteristics.</td>
</tr>
<tr>
<td>PAPER/PLASTIC DIELECTRICS</td>
<td>1 µF to 1000 µF</td>
<td>1% to 20%</td>
<td>100 to 5000 volts DC</td>
<td>-30°C to +100°C (derated by 30% over 75°C)</td>
<td>90% to 95%</td>
<td>Polypropylene foil metized polypropylene foil. Metalized paper foil. Metallized paper foil.</td>
</tr>
<tr>
<td>POLYSTYRENE FOIL</td>
<td>10 µF</td>
<td>1%</td>
<td>500 volts DC</td>
<td>-55°C to +125°C</td>
<td>100%</td>
<td>Small size, high temperature range (to 150°C) suitable for high-frequency applications, and high insulation resistance. Excellent high current and military applications. Not for sample hold, fast setting amplifiers, or filters due to dielectric absorption characteristics.</td>
</tr>
<tr>
<td>LESS COMMON TYPES</td>
<td>Polyvinyl chloride (PVC)</td>
<td>1%</td>
<td>500 volts DC</td>
<td>-55°C to +125°C</td>
<td>95% to 99%</td>
<td>Polyvinylidene difluoride (PVDF)</td>
</tr>
<tr>
<td>POLYTETRAFLUROETHENE (PTFE)</td>
<td>1%</td>
<td>500 volts DC</td>
<td>-55°C to +125°C</td>
<td>95% to 99%</td>
<td>Polyethylene terephthalate (PET)</td>
<td>For applications that require high reliability, high insulation resistance at high temperatures.</td>
</tr>
</tbody>
</table>

Notes: DC blocking, filter, bypass, coupling, and transient suppression applications. Close tolerance, high frequency capability (40-100 kHz) and high insulation resistance. Suitable for small size, high temperature range (to 150°C) and high insulation resistance. Capacitors are suitable for small size, high temperature range (to 150°C) and high insulation resistance. Capacitors perform very well at frequencies of 10 kHz to 500 MHz. Devices using silver in their construction are very susceptible to silver ion migration resulting in short circuits. Failures can occur if exposed to DC voltage stresses, humidity, and high temperature.
(AC). Operating temperature from -40°C to +80°C.

Teflon Kapton: Has a temperature range of -55°C to +250°C with a temperature coefficient of 0.009%/°C. Teflon's extremely low dielectric absorption makes it good for critical sample and hold circuitry. Those capacitors used in specialized applications such as oil well drilling equipment. Those capacitors are large in size since the dielectric is not available in the gauges.

Polyethylene: Manufactured by Union Carbide, those capacitors are equivalent to polystyrene types in performance but are rated to +125°C, versus +85°C for polystyrene.

Tantalum Electrolytic

Solid type—

- Values: 0.001 to 1000 μF
- Temperature range: -55°C to +85°C (if derated to +125°C)
- Voltage rating: 6 to 120 volts DC
- Tolerance: 5% to 20%
- Leakage current: varies with temperature

Non-solid types—

- Values: 0.5 to 1200 μF
- Temperature range: -55°C to +85°C (if derated, to +125°C)
- Voltage rating: to 350 VDC
- Leakage current: varies with temperature

Notes: Used in low-voltage DC applications such as bypass, coupling, and blocking. Not for use in RC timing circuits. Triggering systems, or phase shift networks due to dielectric absorption characteristics. Also not recommended for applications subject to voltage spikes or surges. High capacitance in a small volume with excellent shelf life. Solid types not temperature sensitive and have lowest capacitance-temperature characteristic of any electrolytic unit. Dielectric absorption and high leakage currents make them unsuitable for timing circuits. Except for non-polarized types, these should never be exposed to DC or peak AC voltages in excess of 20% of their rated DC voltage. To prevent failures due to leakage or shorting when serving as a coupling capacitor, parallel each unit with a shunt resistor.

Chip types

- Values: 0.068 to 100 μF
- Voltage rating: 3 to 50 volts DC
- Temperature range: -55°C to +85°C (if derated, to +125°C)
- Leakage current: varies with temperature

Notes: Used for bypassing or filtering out low-frequency pitting effects. Leakage current: Not suitable for timing or precision circuits due to wide tolerances. Large values available. Etched foil has 10 times the capacitance per unit volume as plain foil types. Peak AC and applied DC voltages should not exceed rated maximums. Usable to 200 kHz. Non-polarized foil are used in tuned low-frequency circuits, phasing low-voltage AC motors, and in servo systems. Sintered slug units are used in low-voltage power supply filtering and in DC applications. Can withstand any reverse voltage. Leakage current lowest of all tantalum types; no appreciable leakage below 85°C. Usable to frequencies of 1 MHz.

Aluminum Electrolytic

- Values: 68 to 220,000 μF
- Tolerance: -10% to +75%
- Voltage rating: up to 350 volts
- Temperature range: -55°C to +85°C (if derated, to +125°C)
- Dissipation factor: varies with temperature
- Temperature coefficient: varies with temperature

Notes: Used in filter, coupling, and bypass applications. With large capacitance, these are required and capacitance above nominal can be tolerated. Sum of the applied AC peak and DC voltages should never exceed the rating DC voltage. Aluminum electrolytics are larger than tantalum electrolytics but less expensive. Loss of capacitance, as little as 10% of rated value, will occur as the aluminum oxide electrode electrochemically combines with the electrolytic. Oxide film deterioration also requires capacitors to be "re-formed" after storage to prevent dielectric failure. That involves application of rated voltage for a period of 30 minutes, or more, to restore initial leakage current value. Over time, dissipation factor can rise by as much as 50%. Four terminal devices are available (two leads to each connection) that allow low ESR and inductance at high frequencies. Those units were designed for use in switching power supplies.

Trimmer Capacitors

- Values: range from 25 to 1 pF and 1 to 120 pF
- Class Quartz: Low loss, high Q, and high stability for high tuning sensitivity applications. Frequency range up to 300 MHz
- Sapphire: High level of performance between 1 and 5 GHz
- Ceramic: Smallest sized single turn units with maximum capacitance under 100 pF. Capacitance changes with temperature
- Air: High level of performance through UHF Band, from 300 MHz to 1 GHz
- Mica: Has wide capacitance range and relatively high current handling capability.
- Vacuum Gas: Used for high voltage applications. Values from 5 to 3000 pF, with voltage ratings from 2 to 30 kilovolts (DC)

Those that have very predictable temperature vs. capacitance characteristics. One type of Class I ceramic capacitor is the NPO (Negative-Positive-Zero) capacitor. That designation means that the negative and positive temperature coefficients of the device are zero and that they suffer almost (nothing is ever absolute) no change in capacitance vs. temperature. Other Class I capacitors have very predictable changes in capacitance with temperature. For instance, a ceramic capacitor that is specified as N750 has a negative temperature coefficient of 750 parts-per-million per degree centigrade. That is, for each degree centigrade the temperature rises, the capacitance of the unit will drop 750 parts-per-million.

Class 2 capacitors are those that are non-linear. Their temperature coefficients are specified by a three letter code that specifies the low and high temperature ranges and the maximum change in capacitance from that at 25°C. Table 4 shows the EIA Class 2 code, and what the various designations mean. As an example, an XR7 capacitor will vary in capacitance by no more than a factor of ±15% over the temperature range of -55°C to +125°C.

Mica Capacitors

There are two types of mica capacitors. One type is a stacked foil unit consisting of alternate layers of metal foil (or deposited metal film) and sheet mica insulators. The metal foil layers are connected together with tin-lead foil strips with terminals attached by using solder coated pressure clips.

The second type of mica capacitor is the silver-mica capacitor. Those have a silver electrode material screened on the mica stampings, which are then assembled as described above. The silver-mica capacitors are very susceptible to silver-ion migration, which can occur within a few hours, when exposed to high DC-voltage stress, high humidity, and high temperature. The ion migration results in the capacitor short circuiting.

To keep internal inductance small for high-frequency use, button-style silver-mica capacitors have the anode connected through the center of the stack of mica sheets. The other terminal is formed by the case, which is connected to all points around the outer edge of the electrode. That design permits the current to fan out in a 360° pattern from the center terminal thus providing the shortest RF current path from the center terminal to the chassis.

One of the more common micas used for capacitors is Micasite mica, which comes from India. This substance has a dielectric constant between 6.5 and 8.5, can be split into thin sheets, is non-porous, and does not readily absorb moisture. Mica capacitors are temperature and frequency stable, have a low dissipation factor, and perform well at frequencies up to 500 MHz. Those high precision units are used in a variety of applications, in-
including tuning circuits, oscillators, filters, and RF power circuits.

Glass capacitors

Glass capacitors are used in applications that require high stability in a hostile environment. These devices can withstand vibration, acceleration, extreme moisture, vacuum, and high operating temperatures; they are, however, susceptible to damage from any mechanical shocks. They have a life expectancy of 30,000 hours or greater.

Glass capacitors perform very well at high frequencies up to 500 MHz, and have a frequency range of 100 kHz to 1 GHz. Because of their characteristics, these devices are commonly used in missile and spacecraft electronics.

Paper/plastic capacitors

Paper and plastic capacitors are used in applications that require high and stable insulation resistance at high temperatures, and good capacitance over a wide temperature range. (However, an exception to that are the metalized—we’ll talk about metalization in a moment—

<table>
<thead>
<tr>
<th>Table 3—Glossary</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC leakage—Small current that flows through or across the surface of the dielectric or insulation of the capacitor.</td>
</tr>
<tr>
<td>Dielectric—Insulating material between the plates of a capacitor.</td>
</tr>
<tr>
<td>Dielectric absorption—A property of a capacitor’s dielectric such that even when the capacitor is discharged to zero, a residual charge remains stored in the dielectric.</td>
</tr>
<tr>
<td>Dissipation factor—Important in AC applications. It is the ratio of effective series resistance (ESR) to capacitive reactance (X_C) and is usually expressed as a percentage. The dissipation factor varies with temperature, humidity, and frequency.</td>
</tr>
<tr>
<td>Electrolyte—Current-conducting solution (liquid or solid) between two electrodes or plates of a capacitor.</td>
</tr>
<tr>
<td>Equivalent series resistance (ESR)—Energy losses in the capacitor due to lead resistance, termination losses, and dissipation in the dielectric.</td>
</tr>
<tr>
<td>Insulation resistance (IR)—Measure of a capacitor’s insulation quality expressed either in megohms or as a time constant, RC, in seconds. That value determines a capacitor’s leakage current for a continuously applied DC voltage when a capacitor is fully charged.</td>
</tr>
<tr>
<td>Temperature coefficient—A capacitor’s change in capacitance per °C. May be positive, negative, or zero and is usually expressed in parts per million per °C (PPM/°C).</td>
</tr>
<tr>
<td>Working voltage (WDC)—The recommended maximum voltage at which a capacitor should be operated.</td>
</tr>
<tr>
<td>Quality factor (Q)—An figure of merit used mostly in tuned circuit applications. It is defined as (fVf / X_C) or (fVf / ESR).</td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>+10°C</td>
<td>2</td>
<td>+45°C</td>
<td>A</td>
<td>±1.0%</td>
</tr>
<tr>
<td>Y</td>
<td>-30°C</td>
<td>5</td>
<td>+85°C</td>
<td>B</td>
<td>±1.5%</td>
</tr>
<tr>
<td>X</td>
<td>-55°C</td>
<td>7</td>
<td>+125°C</td>
<td>C</td>
<td>±2.2%</td>
</tr>
</tbody>
</table>

Paper units, which have low insulation resistance and are prone to dielectric breakdown.) Plastic types are less affected by humid conditions than paper units since they are non-absorbent. Plastic capacitors, such as polycarbonate and polyester (Mylar) types, are generally intended for applications where minimum capacitance change with temperature is required. They are especially suited for tuned and precision-timing circuits.

In metalized capacitors, a thin film of metal is deposited directly on the paper or plastic dielectric. Doing that gives the capacitor a "self-healing" characteristic called "clearing." If there is a hole or contamination in the dielectric of the capacitor, a short may occur, resulting from the heavy current flow in the fault area. In a metalized capacitor, that heavy current flow will melt away a very small part of the thin metal film, thus disconnecting the fault from the capacitor. These capacitors are best for analog circuits because the momentary current flow during the clearing action may result in a spurious signal and cause false triggering in digital logic circuits.

Metalized plastic devices work well in switching power-supply output filters because they have a comparatively low ESR, as well as stable temperature characteristics. When using these capacitors in such an application, however, be sure that the unit selected is rated to handle the voltage surges produced by the circuit.

Tantalum electrolytics

Tantalum capacitors offer high capacitance in a small package size and have an excellent shelf life. Various types of tantalum electrolytic capacitors are available including solid, sintered slug, plain foil, etched foil, wet slug, and chip. Applications include low-frequency filtering, bypassing, coupling, and blocking. The solid types are not temperature sensitive and have a lower capacitance-temperature characteristic than any other electrolytic capacitor.

Applications that tantalums are not suitable for are: in RC timing circuits, triggering systems, or phase-shift networks. That's because they have high "dielectric absorption" characteristics. That is, when a capacitor is discharged, the dielectric retains a residual charge. Thus, even if a capacitor that has a high dielectric absorption characteristic has been discharged to "zero," it may still be holding a considerable charge. That, as you might imagine, can cause considerable problems in timing circuits and the like.

Tantalum capacitors also are not recommended for circuits that produce spikes, surges, or pulses. If their voltage rating is exceeded by even a few volts, the device is likely to fail.

Tantalums may be polarized or non-polarized. Polarized capacitors should never be exposed to a reverse DC or peak AC voltage greater than 2% of its rated DC voltage. Non-polarized units, as their name would apply, do not suffer from that limitation. Non-polarized units are made up of two polarized units in series with their cathodes connected together.

Aluminum electrolytics

Aluminum electrolytic capacitors are generally larger than tantalums, and are less expensive. One problem with aluminum is that they will change capacitance (drift) over time. This is caused by the aluminum oxide electrodes chemically combining with the electrolyte. Because of that, capacitance can drop substantially, to 10% of rated values. Those units also have a limited shelf life due to oxide film deterioration and must be "reformed" after long periods of storage. Re-forming consists of applying the capacitor's rated voltage to the unit for a period of 30 minutes. Re-forming also prevents dielectric breakdown or shorting. In addition, the dissipation factor of these devices can rise as much as 50%.

To prevent electrolyte evaporation and component cleaning problems, aluminum electrolytics sometimes have an epoxy end seal. However, without a vent, such

continued on page 109
ALL ABOUT THERMISTORS

HARRY L. TRIETLEY

We conclude our look at thermistors with two simple but practical projects—a digital thermometer and a temperature-to-frequency converter—that you can build.

Part 3 BEFORE WE MOVE ON to our thermistor-based projects, let's finish up our discussion of matched thermistor sets.

At least two manufacturers, Yellow Springs Instrument Co. (Box 279, Yellow Springs, Ohio 45387) and Fenwal (63 Fountain Pl., Framingham, MA 01701), sell presel ected and precalculated sets of components. The thermistor pair is constructed as a single component and looks just like an ordinary small, epoxy-coated disc, except that it has three leads instead of two. Internally, the two thermistors are connected in common on one side. The resistors are low-temperature-coefficient, 0.1% metal film resistors.

Table 3 lists the values of four different component sets from the Yellow Springs Instrument Co. that are intended to be used with either the 44018 thermistor-pair or the 700 series thermistor probe. The selected values of R1 and R2 optimize the linearity over several temperature ranges. Table 3 also lists a resistance node equation—we will get to this a bit later. The thermistor-pair itself has an accuracy of ±0.15 °C (±0.27 °F), which should be added to the linearity deviation to find worst-case error. Other prepackaged thermistor sets are available, including a three-thermistor set for even better linearity.

Table 4 lists the bridge component values (R3, R4, and V0) needed for an output of 10 mV-per-°C or 5 mV-per-°F. You can get 10 mV-per-°F by doubling the supply voltage, but that's not recommended—the power dissipation in the thermistors may become high enough to affect accuracy.

Resistor-thermistor networks

It is often useful to create a network whose resistance changes linearly with temperature. Such networks are used to temperature-compensate other circuit values or to measure temperature using an ohmmeter-like circuit. An NTC thermistor may be linearized by simply connecting a resistor in parallel as shown in Fig. 14.
Figure 15 shows the resistance-versus-temperature curve for such a network. You can see that it is the same S-shaped curve as was seen earlier for a thermistor bridge; only inverted. As it turns out, the same rules apply for linearization: you can get good linearization over narrow ranges by simply choosing the resistor to be equal to the thermistor's value at mid-scale. For best possible linearization, you can use the same equation as was used earlier to linearize the bridge.

Table 5 lists the resistance equations and linearity deviation for three temperature ranges. Just as with the bridge, linearity becomes worse as the temperature range increases. Of course, sensitivity and zero-offset are not adjustable, although you can add a resistor in series with the network without affecting linearity. Only negative-going slopes are possible, since the thermistor's resistance decreases with increasing temperature.

Table 3—Multiple Thermistor Linear Networks

<table>
<thead>
<tr>
<th>Linear temperature range</th>
<th>R1</th>
<th>R2</th>
<th>Bridge equation' (V\text{out} \text{, volts, when } V_\text{e} \text{ equals 1 volt})</th>
<th>Resistance mode* (ohms)</th>
<th>Linearity deviation</th>
<th>Manufacturer's component set no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 100°C</td>
<td>3.20K</td>
<td>6.25K</td>
<td>0.0053463 (T + 0.13493) or (0.00287127 T + 0.00985) or (0.0035185 T + 0.093083) or (0.0067966 T + 0.34893) or (0.00377588 T + 0.228102) or (0.0053179 T + 0.192437) or (0.0031289 T + 0.09232)</td>
<td>2766.23 (-17.115) T or 3072.48 (-9.508) T or 4593.39 (-32.402) T or 5169.42 (-18.001) T or 12175 (-127.096) T or 14435 (-70.608) T or 4603.11 (-32.1012) T or 5173.8 (-17.834) T</td>
<td>(\pm 0.216^\circ) (\pm 0.388^\circ) (\pm 0.065^\circ) (\pm 0.12^\circ) (\pm 0.29^\circ) (\pm 0.03^\circ) (\pm 0.065^\circ)</td>
<td>YSI 44018, YSI 44019, YSI 44020, YSI 44021, YSI 44022, YSI 44023, YSI 44024</td>
</tr>
<tr>
<td>32 to 212°F, -30 to 50°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 to 45°C, 23 to 113°F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-30 to 50°C, -22 to 122°F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2 to 38°C, 5 to 45°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 to 100°C, 23 to 113°F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The values shown work with YSI 44018 thermistor-pair. Resistors must be 0.1% or better.

Bridge equation refers to Fig. 13. Resistance mode equation refers to Fig. 16.

Table 4—Linear Bridge Components

<table>
<thead>
<tr>
<th>Temperature range</th>
<th>Resistor R3, R4</th>
<th>Supply voltage (V_\text{e})</th>
<th>Bridge output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 100°C</td>
<td>20.52K, 3.20K</td>
<td>1.6698 V</td>
<td>10 mV/°C</td>
</tr>
<tr>
<td>32 to 212°F</td>
<td>21.00K, 3.20K</td>
<td>1.6826 V</td>
<td>5 mV/°C</td>
</tr>
<tr>
<td>-5 to 45°C</td>
<td>23.66K, 5.70K</td>
<td>1.7591 V</td>
<td>10 mV/°C</td>
</tr>
<tr>
<td>23 to 113°F</td>
<td>34.84K, 18.7K</td>
<td>1.9437 V</td>
<td>5 mV/°C</td>
</tr>
<tr>
<td>-30 to 50°C</td>
<td>63.28K, 18.7K</td>
<td>1.4713 V</td>
<td>10 mV/°C</td>
</tr>
<tr>
<td>-22 to 122°F</td>
<td>23.92K, 5.70K</td>
<td>1.3242 V</td>
<td>5 mV/°C</td>
</tr>
<tr>
<td>-2 to 38°C</td>
<td>56.04K, 5.70K</td>
<td>1.7756 V</td>
<td>10 mV/°C</td>
</tr>
<tr>
<td>30 to 100°C</td>
<td>1.164 ohms</td>
<td>1.980 V</td>
<td>5 mV/°C</td>
</tr>
</tbody>
</table>

Note: Resistors should be 0.1% or better. For values of R1 and R2 see Table 2.

Table 5—Linearized Thermistor-Resistor Network Values

<table>
<thead>
<tr>
<th>Temperature range</th>
<th>R1</th>
<th>Linear resistance equation (ohms)</th>
<th>Linearity deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 to 30°C</td>
<td>2,168 ohms</td>
<td>1692.84 - 23.664 (T)</td>
<td>(\pm 0.07, -0.06^\circ)</td>
</tr>
<tr>
<td>0 to 50°C</td>
<td>1,753 ohms</td>
<td>1422.12 - 17.330 (T)</td>
<td>(\pm 0.05, -0.09^\circ)</td>
</tr>
<tr>
<td>0 to 70°C</td>
<td>1,164 ohms</td>
<td>1004.96 - 10.147 (T)</td>
<td>(\pm 2.0, -2.3^\circ)</td>
</tr>
</tbody>
</table>

For better linearity, you can use two thermistors in parallel. This circuit provides a linearity of \(\pm 0.25^\circ \) from 0 to 100 °C.
analog-to-digital converter IC or module as shown in Fig. 17. The bridge values are selected as before to provide best linearity, needed voltage sensitivity, zero offset, etc. Either a single thermistor or a thermistor-pair may be used, and the component values of Tables 2 and 3 will work just as well here. The reference voltage input should be set for the desired sensitivity or for the desired full-scale output.

One interesting observation results from the fact that an analog-to-digital converter is really a ratio device; that is,

\[
\text{Output} = K \times \frac{\text{Input}}{\text{Reference}}
\]

If the supply voltage, \(V_s\), varies, the input and reference voltages will vary by equal percentages, leaving the output unchanged. That means that the regulation, and even the exact value of \(V_s\), are not critical—an inexpensive zener diode or regulator may be used. In fact, if the circuit's power supply is only moderately regulated, you may be able to use a simple voltage divider to create \(V_s\). We will see this in the next example. A very simple circuit can give accurate and stable results.

Digital thermometer

If we replace the A/D converter with a digital voltmeter IC, we can produce a simple, accurate, battery-powered thermometer. Figure 18 shows the complete circuit we need. It uses an Intersil ICL7106 A/D converter IC and a two-thermistor linear network.

The thermistor-pair \(R_T\) forms the left-hand side of a Wheatstone bridge. The right-hand side of the bridge is formed by the voltage-divider string \(R_4\) through \(R_8\). That same string provides the reference voltage for the A/D converter.

The ICL7106 maintains its ANALOG COMMON (pin 32) 2.8 volts below the supply voltage. Resistor \(R_3\) reduces the voltage for the bridge, to minimize thermistor self-heating. You will notice that the bridge voltage varies as the thermistors change with temperature, from about one volt at 0°C to 0.5 volt at 100°C. In a normal analog situation, that would be disastrous. In this case, however, the A/D converter's output equals the input divided by the reference and, since the input and reference vary by equal percentages, the output is unaffected.

The IC itself is a dual-slope A/D converter with an auto-zero cycle. Its output will directly drive a 3-1/2-digit, seven-segment LCD readout. The output (as seen on the display) is given by:

\[
\text{Output} = \frac{\text{Input}}{\text{Reference}} \times 1000
\]

The IC's clock timing is set by \(R_9\) and \(C_2\) to 48 kHz, which results in three readings per second. Transistor Q1 inverts the backplane waveform to drive the decimal point. The thermistor-pair shown is a 44018 or 700-series probe from Yellow Springs Instrument Co.

To calibrate the thermometer, you first have to know the \(R\) versus \(T\) values of the thermistor-pair. That information is shown in Table 6. Once you know their characteristics, you can replace two thermistors of the pair with accurate, known resistances (from precision decade resistors, for example). Set both to the zero-degree resistances, then adjust \(R_7\) (zero control) for a reading of 0.2 (the setting for minimum nonlinearity error). Next, set the decades to 100°C and adjust \(R_5\) (sensitivity) until the reading is 100.0. Repeat as necessary.

Temperature to frequency converters

You can make a temperature-to-frequency converter by replacing the A/D converter of Fig. 17 with a voltage-to-
FIG. 19—A MULTIVIBRATOR can be used to give a frequency output that varies linearly with temperature.

TABLE 6—R VERSUS T VALUES

<table>
<thead>
<tr>
<th>Temperature</th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6K°C @ 25°C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30°C (-2°F)</td>
<td>481K</td>
<td>1052K</td>
</tr>
<tr>
<td>20°C (-4°F)</td>
<td>271K</td>
<td>582K</td>
</tr>
<tr>
<td>0°C (-14°F)</td>
<td>158K</td>
<td>320K</td>
</tr>
<tr>
<td>(-4°F)</td>
<td>94K</td>
<td>19K</td>
</tr>
<tr>
<td>10°C (5°F)</td>
<td>587K</td>
<td>119K</td>
</tr>
<tr>
<td>20°C (8°F)</td>
<td>373K</td>
<td>74K</td>
</tr>
<tr>
<td>50°C (86°F)</td>
<td>24K</td>
<td>24K</td>
</tr>
<tr>
<td>40°C (104°F)</td>
<td>16K</td>
<td>31K</td>
</tr>
<tr>
<td>50°C (122°F)</td>
<td>10K</td>
<td>21K</td>
</tr>
<tr>
<td>60°C (140°F)</td>
<td>7K</td>
<td>15K</td>
</tr>
<tr>
<td>70°C (158°F)</td>
<td>3.5K</td>
<td>10K</td>
</tr>
<tr>
<td>80°C (176°F)</td>
<td>2K</td>
<td>7K</td>
</tr>
<tr>
<td>90°C (194°F)</td>
<td>1.5K</td>
<td>4K</td>
</tr>
<tr>
<td>100°C (212°F)</td>
<td>1K</td>
<td>2K</td>
</tr>
</tbody>
</table>

The combination of R_A and C affects the circuit's sensitivity, while R_B affects only the frequency offset. Resistor R_1 is selected using:

$$f = \frac{1}{2.2 (R_A + R_T) C} \approx \frac{1}{2.2 (R_B) C}$$

where R_T, R_1, and C are the thermistor's resistances at the low-end, mid-scale, and high-end temperatures, respectively. Linearity is the same as shown in Fig. 12.

A high-resistance thermistor should be used for this temperature-to-frequency converter. Depending on the supply voltage, the 4047 will generate several volts between terminals 2 and 3, and a low resistance thermistor will self-heat enough to cause large errors. Once the thermistor and the temperature range are chosen, compute R_A for best linearity.

Next, the capacitor must be chosen to give the right sensitivity (hertz per degree). In the circuit shown:

$$C = \frac{1}{2.2 S (R_A + R_B)} \frac{R_A + R_B}{R_A + R_T}$$

where S has the units of Hz/°C, C is in farads and all resistances are in ohms. Finally, R_2 is found by substituting R_A, R_T, and C in the original frequency equation and solving for the value of R_B that gives the desired frequency at T_1. Figure 19 includes a table of component values for three temperature ranges. Notice that the calculations generally produce odd component values. The needed value of C must be created by using a parallel combination of capacitors, R_A and R_B include trimmer potentiometers.

Just as with the bridge, linearity and range of the temperature-to-frequency converter may be improved by using a two-thermistor network. The design process is complex, but Fig. 20 shows such a circuit.
Discover the pride.

With Heathkit, you'll discover the pride of accomplishment that comes with creating handbuilt quality that is uniquely yours. And you'll develop skills and abilities in many technologies as you follow the step-by-step directions through the building process. You work confidently, always backed by our simple promise, "We won't let you fail." If you don't have the latest Heathkit Catalog, you're missing something great, so mail the coupon now, while you're thinking about it.

Send NOW for your FREE Heathkit Catalog
It's the beginning of something great for the whole family.

Heath Company
A subsidiary of Zenith Electronics Corporation

FREE high tech catalog
More than just a catalog, a trustworthy guide to what's new in computers and electronics.

Ever since radio grew into electronics, the illustrated Heathkit catalog has been a guide to new and exciting kit products for people like you to build. To enjoy and learn from, while saving money in the process.

What sets the Heathkit catalog apart is its range of high quality products and accurate information on every product offered. And that's a lot of products - over 450 separate items, including:

- Computer hardware and software
- Robots
- Precision test instruments
- Computerized weather instruments
- Solar hot water systems
- Automotive and home energy products
- Security devices
- Color TVs and video accessories
- Quality stereo components
- Amateur radio gear
- Educational courses that lead from the basics of electronics all the way to high tech.

Heath Company
Dept. 020-274
Benton Harbor, Michigan 49022
Please send me the latest Heathkit Catalog Free

Name

Address

City State Zip

CIRCLE 274 ON FREE INFORMATION CARD
HITACHI

OSCILLOSCOPES

CALL TOLL FREE FOR FAST DELIVERY

800-645-9518

In New York State 800-832-1446

HITACHI 100 MHz W/CRT READOUT & BUILT-IN MICROCOMPUTER

Model V-1100

$2,500.00

Probes included.

- Quad channel (Ch. 1, 2, 3, 4) with independent position controls
- 8 trace with alternate sweep
- 18 kHz rectangular CRT
- Minimum deflection factor 1 mV/div, maximum sweep time 2 nsec/div
- TV sync = X-Y

operation up to 1 MHz (3" or less), variable hold-off
Gated output for A and B sweep
CH 1 signal output to 100 MHz (-3 db)

plus much more.

HITACHI 100 MHz QUAD TRACE DELAYED SWEEP SCOPE

Model V-1050F

$1,299.95

(Reg. $1,980) Probes included.

- Automatic focus circuits
- Variable hold-off circuitry
- X-Y operation
- Delayed sweep function with one touch control 10X magnification

HITACHI 80 MHz DUAL TRACE DELAYED SWEEP SCOPE

Model V-650F

$995.00

(Reg. $1,195) Probes included.

- 6" rectangular CRT with internal graticule
- 1 mV/div high sensitivity design
- Triple trace for checking synchronous signals and relationship and timing between observed waveforms
- TV sync separator circuitry
- Automatic focus circuitry
- Variable hold-off circuitry
- X-Y operation
- Delayed sweep function with one touch control 10X magnification
- Signal output CRT output terminal to frequency counter, etc.

HITACHI PORTABLE OSCILLOSCOPES

1 mV/div DUAL TRACE

Model V-222 (20 MHz)

$549.95

(Reg. $715) Probes included.

- Thin, light and compact design
- Large 6-inch rectangular, internal graticule CRT
- Autofocus circuit and scale illumination
- DC offset function
- Voltage and frequency reading outputs
- Alternate magnify function
- 8 divisions of displayed dynamic range
- TV sync separator circuit
- X-Y operation mode

Model V-212 (20 MHz)

$499.95

(Reg. $615) Probes included.

- Thin, light and compact design
- Large 6-inch rectangular, internal graticule CRT
- High accuracy
- High sensitivity
- Stable, low-drift design
- 8 divisions of displayed dynamic range
- TV sync separator circuit
- X-Y operation mode

MATER CARD/VISA ACCEPTED

Service and Shipping Charge Schedule

FOR ORDERS
ADD
$501-750 $8.50
$751-1,000 $12.50
$1,001 and up $15.00

PHONE ORDERS ACCEPTED

Fordham

260 Motor Parkway, Hauppauge, New York 11788

www.americanradiohistory.com
Tape Streamer for Your Computer

We've looked at the circuit of this universal cassette interface. Now we'll look at its data encoding scheme and then get set to build the device.

Part 2 Last month, we described the circuit of an interface that lets you take data from your RS-232 port and store it on cassette tape. During our description, we made many references to Manchester and NRZ data encoding techniques. We're going to start off this month with an explanation of these techniques so you can better understand the circuit's operation.

Manchester encoding

Manchester coding is a method of phase-encoding serial data. It was introduced during the early days of data recording as a means of efficiently including clocking information with transmitted data. The technique was invented at Manchester University in England to be used in Ferranti computers and it is in widespread use today in both the computer and the communications industries.

Non-return-to-zero, or NRZ, code is by far the most common means of serial data interchange between computers and their peripherals. Whether represented by TTL levels, RS-232 levels, or current loops, the conventions are the same: An idle line stays at a mark level; a data word is represented by a specific number of bits, mark or space, and each data word is preceded by a start bit (which is a space) and followed by one or more stop bits (which are marks). The word size is not specified, but is usually five to eight bits, and may or may not contain a parity bit for error detection.

There are several good reasons for the proliferation of NRZ code. First, it's easy to understand. (If you take a look at Fig. 4, you'll probably be able to immediately see what's going on with the NRZ code before we even discuss it.) Second, NRZ is supported by numerous LSI communications controllers (UART's, USART's, etc.). Third, almost every peripheral available uses it.

One characteristic of NRZ code is that it must be capable of preserving very long periods of idleness or marking. That implies that the link must have a low-end frequency response reaching down to DC. In the typical data-equipment environment, that requirement is met by hard-wired connections. But when connections without DC continuity are used for data, NRZ code cannot be used.

Telephone lines and audio tape, for example, where frequency response drops off below about 30 Hz, are two applications for which raw NRZ code is unsuitable. Due to the very nature of NRZ coding, there is only one place in an entire transmitted word where bit timing may be recovered during reception. That is the initial mark-to-space transition at the beginning of the start bit. Since all other bits in the word are undefined (and indeed, may be all spaces or all marks), it is easy to see that there are simply no other places in the word that can be predicted. That technique is known as word synchronization, as all the bits of the word are recovered by timing from that one known point.

Word synchronization implies that timing errors are cumulative. The longer the data word, the more likely the chances for recovery errors. Recognizing that, devices using NRZ coding generally are designed with crystal-controlled clocks at each end of the link, and word length is kept under ten or so bits in order to avoid timing errors.

From the above, we can see that NRZ coding is unacceptable for audio magnetic media: Audio tape devices are not responsive to DC levels, and the lack of stability...
of their motor-driven capstans precludes precision clocking. An audio data interface, then, must convert NRZ marks and spaces to signals that can be successfully recorded and recovered. In addition, the interface must compensate for the tape device's inherent timing instability.

Historically, the most common method of audio data recording has been to represent NRZ data with two audio tones, one for mark, and another for space. (That modulation technique is known as FSK or Frequency Shift Keying.) Those two frequencies are then detected during playback with either high-Q audio filters or phase-locked loops. With either technique, some individual tuning is required, and the higher the data rate, the more critical the tuning becomes.

However, if you're not interested in maximum performance, then it's possible to design quite simple interfaces. The combination of modulating fairly high audio tones with low data rates allows greatly simplified (and thus lower-cost) decoder hardware to be used. The old Kansas City Standard—300 baud 1200- and 2400-Hz audio tones—is a prime example.

The maximum frequency of the audio tones is limited by the available bandwidth of the recording medium. In order to maximize data rate, the available bandwidth should be made use of and the recording format should be bandwidth-efficient. (In other words, the ratio of the higher audio-tone frequency to the data rate should be low.) The 300-baud format discussed above uses a 2400 Hz maximum frequency, indicating a frequency to data ratio of 8 to 1. The Manchester code used by the Streamer sports a ratio of 1 to 1—an eight-fold increase in efficiency. By doubling the modulation frequency, a 16 X speed advantage is attained.

Building the Streamer

Now that we understand the theory of Manchester encoding and of the Streamer's circuit, we can get on to building it. Because of the large number of discrete components, it is highly recommended that the Streamer be built on a printed circuit board. Full scale artwork for the component and foil sides of a suitable circuit board is shown in Fig. 5 and 6. If you can't make your own board, you can buy a pre-etched, drilled, silk-screened, and solder-masked board from the source listed in the parts list.

The parts-placement diagram for the Streamer is shown in Fig. 7. When you install the parts, use a clean, low-power soldering iron. The finer the tip, the better. If you purchase a PC board, you'll note that it has a solder mask, so the chances of the solder inadvertently bridging is greatly reduced. Even so, it pays to be careful. If you make your own board, take particular care to avoid solder bridges. They may be hard to find and will definitely keep the unit from operating.

There is nothing critical about the components. Everything is available through vendors that regularly advertise in Radio-Electronics. Normal precautions should be taken in the handling of the CMOS IC's as they can be destroyed by static charges.

None of the capacitors are used for timing, so they may have tolerances as low as 20% without ill effects. The power-supply filter capacitors, C14 and C15, can be as large as you want (as long as they fit on the board), if the DC supply isn't filtered, however, C14 must be at least 220 µF to smooth out the ripples.

The Streamer is overdesigned with power-supply bypass capacitors. While it never hurts to include them, feel free to eliminate three or four if you want—it won't impair the circuit's operation. Note that the bypass capacitors—although
listed in the Parts List—were not shown in the schematic of Fig. 1. They are, however, shown in the parts-placement diagram.

The resistor values also are not critical. All resistors may have 10% tolerance, and you may even go to either the next higher or next lower standard value, if it's more convenient. The PC-mounted potentiometer may be replaced, if desired, with a 1000-ohm resistor, as long as a jumper is added between the audio input terminal and the negative side of C1. That potentiometer is used only when extremely poor quality tape information requires an additional "tweak." In normal use, it will never be touched.

The use of IC sockets always seems to be a controversy. On the one hand, including them adds a potential long-term reliability problem; on the other, trouble shooting soldered-in IC's is a nightmare. Ultimately, it is the decision of the builder, but we recommend their use, as long as high quality sockets are used. (Cheap ones may cause more problems than they solve.)

Be careful to observe polarity on the diodes and electrolytic capacitors. The proper polarity is shown in Fig. 7. If you study the foil patterns, you'll notice that as an extra precaution, the PC board uses square pads to denote the positive end for the capacitors, and the cathode (banded) end of the diodes. The parts-placement pattern shows the transistor orientation for TO-92 packages. If you use substitute transistors, be careful that the right wires go into the right holes. The LED's must have long enough leads to reach the front panel. If they don't, simply solder enough additional wire so they do. It won't matter if they are a little longer than necessary.

The Streamer PC board may be mounted in its own enclosure (the one you see in the photos is available from the source mentioned in the Parts List). Alternatively, it can be mounted inside your computer, or even inside the tape deck. Mounting it inside the tape deck is a good idea if the tape deck supplies the Streamer power (as long as the deck won't be used for other recording!). Baud-rate switch S1 can be eliminated, since only one data rate will be used, and the DB-25 connector can be located on the rear of the

FIG. 6—THE SOLDER SIDE of the streamer circuit board. Note that square pads are used here for the same reason as on the component side.

PARTS LIST

All resistors 1/4 watt, 10% unless otherwise noted
R1—1000 ohms, PC-mount, trimmer potentiometer
R2, R6, R11, R16, R17, R20, R26, R29—1000 ohms
R3, R4, R7, R8, R13, R14, R18, R19, R22
R23, R25, R26, R30—10,000 ohms
R9—1 Megohm
R10—100,000 ohms
R12, R21, R27—47,000 ohms
R15—10 Megohms
R24—2200 ohms
R31—330 ohms
Capacitors
C1, C4, C19—10 μF, 25 volts, electrolytic
C2—0.001 μF, ceramic disc
C3, C12, C15—0.1 μF ceramic disc
C5, C7, C17, C18, C20, C22, C23, C24—0.01 μF, .1 μF bypass capacitors (not shown in schematic)
C6, C10—20 μF, ceramic disc
C8—250 μF, ceramic disc
C11—5 μF, ceramic disc
C14—100—330 μF, 25 volts, electrolytic
C15—47—220 μF, 25 volts, electrolytic
C19—0.01 μF, ceramic disc
Semiconductors
IC1—LM392 or LM2924 op-amp/comparator
IC2—4070 or 74C06 quad 2-input NAND gate
IC3—4040 12-stage binary counter
IC4, IC6—4029 16-stage up/down counter
IC5—4520 4-bit synchronous counter
IC7—4011 quad 2-input NAND gate
IC8—4027 dual J-K flip-flop
IC9, IC12—74C74 dual D-type flip-flop
IC10—4015 dual 4-bit static shift register
IC11—6402 CMOS UART (Intersil)
IC13—4021 8-stage static shift register
IC14—LM339 quad comparator
IC15—76L05 low power 5-volt regulator
D1—D5—1N5814 or similar
D6, D7—standard red LED
Q1—Q3—2N5904
Q2, Q4—2N3906
XTAL-1—2.4576 MHz crystal
Miscellaneous; PC board, enclosure, DPDT switch, DB25 connector, phono jacks for tape deck connectors, hardware, solder, etc.

The following are available from Stone Mountain Engineering Co., PO Box 1573, Stone Mountain, GA. 30086: Printed circuit board, double-sided with plated-through holes, solder masked and silkscreened for $25; Enclosure, with all holes punched and legends silkscreened, $16; Both PC board and enclosure for $40. All orders must include $1.50 shipping and handling, and Georgia residents please add 3% sales tax.
deck. Locating the LED's may be a problem, though, depending on the configuration of your tape deck.

Installing the Streamer inside a computer is the least attractive option, as this precludes its use with other computers. One of the most important uses for the Streamer is to transfer files from one computer to another, and that cannot be accomplished if it is dedicated to one unit.

If the Streamer is to be mounted in its own enclosure, the procedure should be:

1. Assemble the PC card.
2. Wire the DPDT switch (S1) to the card.
3. Wire the connector on the rear panel.
4. Install the card and attach the rear panel wires.

Follow the schematic for the proper connections to the DB-25 and the closed-circuit jack carefully. The power connection to DB-25 pin 25 is optional, and may be omitted if an external plug-in supply is to be used.

Troubleshooting

Initial trouble-shooting can be accomplished with an ordinary 20,000 ohms/volt (or better) volt-ohm-millimeter. Connect the VOM, on its highest current scale, between the Streamer and its power supply. The Streamer should draw in the range of 10-30 mA, and no LED's should be on. A very high current would indicate a short or a component in backwards, while a low current would indicate an open in either the power supply lines or the ground return.

If the above test is successful, remove the meter and connect the Streamer directly to the power supply. Measure the +5 volt supply at any convenient place. If it is above 5.25, or below 4.75, IC15 may be defective. Now measure the voltage at the end of R21 closest to Q2. There should be a negative voltage with a magnitude slightly less that that of the positive supply. If there is, that indicates the clock, the negative supply, and IC3 are functioning. Measure the the voltage on IC8, pin 15. If it reads about 2.5 volts, then the Manchester encoder is working.

Connect the encoder's Audio output to the Audio input. Adjust R1 to the normal full-on position. (If you are using the PC board, this is the full-clockwise position, viewed from the board's edge.) If the MARK LED comes on, both the encoder and decoder are working. That is about all the testing that can be done with a VOM. If everything looks good, it should work properly the first time.

If an oscilloscope is available for testing, much more extensive trouble shooting may be accomplished by referring to the schematic and the theory of operation. A word of caution, however, the bit sequence that appears at the output of IC12-b will be in a different order than that received. That "bit shuffling" was done to simplify the board layout. The received bits, then, will also be in a scrambled order until IC10 corrects them.

Using the Streamer

The Streamer is one of the simplest add-ons to any computer system. As long...
as your computer has an RS-232 port capable of a transmission rate of 4800 baud and a reception rate of 9600 baud, and as long as you have some sort of software to support streaming and loading, you should have no problems. The tape machine can be just about anything—even a cheap portable (although, as we’ll mention shortly, you’ll sacrifice some performance). If you have a tape deck as part of your stereo system, it’s probably ideal.

The supporting software may be the SAVE and LOAD commands with a BASIC interpreter, as long as they can be routed to an RS-232 port. BASIC programs can also be conveniently saved by LISTing them out to the Streamer, and read back in through an RS-232 port assigned to the console. The latter method has the advantage of allowing BASIC programs from different machines to be loaded, as the ASCII listing is, in effect, the same information that would be entered through the keyboard. The same can be done with source files, or, for that matter, any ASCII file.

Machine-language program storage and retrieval can be handled by any of a great many approaches, at least one of which is probably resident in the computer you use. The routine the author uses on his system, like many others, transmits in sequence a delimiter stream, a load address, 255 bytes of data, and then a checksum. That is followed immediately by the next load address, data, checksum, and so forth, until all the data is done. When the tape is played back to the computer, each checksum is compared with a calculated checksum, and any error causes the routine to halt.

If you ever run across data errors when loading programs back into your computer, the cause is probably dirty tape heads. Simply cleaning the heads should eliminate the problem.

When configuring your RS-232 port, remember that the Streamer works with 8-bit data words. Those eight bits can be all data, seven data and one parity bit, or seven bits, no parity, and at least two stop bits. The only real requirement is that start bits must be at least nine bit-times apart, such as with eight data bits and one stop bit. In storing 7-bit ASCII files, it is normal to follow with a parity bit. The Streamer will treat the eighth bit as part of the data, faithfully recording it and playing it back. The Streamer itself does no parity checking; it simply records the data and returns what is presented to it.

The audio output of the Streamer is designed to present a signal compatible with the audio input of a hi-fi type tape deck. Since modern decks have input-level controls, the control should be adjusted for best performance. Unlike conventional cassette interfaces, that adjustment is not critical at all. To determine your optimum adjustment, use the tape counter to record segments at various settings, then play them back, noting any recovery errors. The errors should occur at the extremes of the level control settings. Simply set the control approximately half way between where errors occurred, and you’re under way.

The Streamer can be used with low-cost portable tape recorders, with some loss of performance: Because of their lower bandwidth capability, the Streamer must be operated at 2400 baud instead of 4800 (which is possible with hi-fi type decks). The audio signal out of the streamer is about 0.9 volt peak to peak, which suits most decks just fine. But you’ll probably have to reduce that level if you want to apply it to a portable recorder. You can do that with either a resistive voltage divider at the recorder’s input, or by simply reducing the value of R24. Try values in the 100- to 1000-ohm range.

Whether you use the Streamer for primary data and program storage, disk backup, or to exchange programs with other computers, it will undoubtedly be a welcome addition to your computer system.

WE'RE FIGHTING FOR YOUR LIFE

People of all ages die of heart disease and stroke.

With your help, we’re out to change that.

American Heart Association
WE'RE FIGHTING FOR YOUR LIFE

PROBES FOR SALE
FROM THE BEST SOURCE FOR OSCILLOSCOPE PROBES AND DMM/VOM TEST LEAD SETS.

- Low Cost
- High Quality
- Excellent Performance
- Switchable X1 and X10 Attenuation Factor
- 100 MHz Bandwidth
- Flexible Cable
- Wide Range of Choice

MODEL SP100
$4100

TEST PROBES, INC.
P.O. BOX 2113, LA JOLLA, CALIFORNIA, 92038 (619) 459-4137

CIRCLE 123 ON FREE INFORMATION CARD
Many of you have written to express an interest in providing backup power for various projects. Most often, the need is for a clock backup, but other devices, such as radio monitors and exit lights, have been mentioned. No matter what type device is involved, the goal remains the same—to have a battery take over automatically when the AC power fails.

Since most electronic circuits are powered by DC (rectified AC), using a battery as a back-up supply is a simple matter. If the device is operated strictly by AC, then you'll need an inverter power supply, which converts DC into AC. Such a device is too complicated to discuss in this column, but one was covered in a feature article in the March 1984 Radio-Electronics.

Figure 1 shows a simple circuit that can be used for backing up circuits powered by a DC power supply. When the supply is functioning normally, operating current is passed by diode D1 and goes to the device, all or a portion of which is connected to point A. (We will get to point B in a moment.)

The device continues to operate on DC (rectified AC) as long as there is no power interruption. But where does the backup battery come in? As long as the battery voltage is chosen to be lower than that of the DC supply, diode D2 is reverse biased and prevents the battery from affecting the device.

Now, suppose the AC power fails. The battery voltage is then higher than that of the DC supply, which is effectively zero. Diode D2 is now forward biased and passes battery current to operate the device. Of course, diode D1 is now reverse biased, and as such no battery current gets to the DC supply or point B.

When AC power is restored, everything goes back to normal: The DC power supply powers the device, and diode D2 is once again reverse biased. Thus, D2 automatically disconnects the battery, and the battery is saved for the next AC power-line failure.

Note that the circuit in Fig. 1 works only if the battery voltage is lower than that of the normal DC supply. That condition will cause no problem with most devices because the operating voltage can vary at least a volt or two without any apparent effect. Of course, if the device operates on a regulated voltage, be sure to place the back-up circuit between the DC supply and the regulator.

The ratings on the diodes are not critical, provided they can handle the current and reverse voltage (PIV). The 1N4000 series works well for applications requiring currents up to 1A. Also keep in mind the maximum Peak Inverse Voltage (PIV) rating of the unit (it varies). The PIV rating of the 1N4000 is 50 volts. 1N4002 is rated 100 volts PIV, and so on. Make sure that you choose a PIV of at least twice the applied voltage for an extra margin of safety. (There is very little cost difference.)

Now, let's look at point B. Notice that it branches off the supply line before current reaches D1. Because D1 is reversed biased during power failures, anything connected to point B receives no battery-derived current. If the device contains some circuitry that need not be operated under emergency conditions, you may wish to disconnect that portion of the device from point A and connect it to B. That conserves battery power.

Say, for example, the device being powered is a clock that uses an oscillator to maintain time. (This circuit will not work for clocks that rely on the 60-Hz line to keep time!) You want to keep the clock's timing circuits "going" during a power failure, but you don't need the LED readout.

By connecting the display circuit to point B and the timing circuits to point A, the timing circuits will operate much longer on the backup battery supply. And if
needed, you can put a normally open momentary switch between A and B to permit you to check the time during a power outage.

Certainly, a backup supply can be put in other types of devices. Just choose the diodes and the battery voltage appropriately. If the device is one that you want to be able to turn off without having the battery take over, simply put a switch in series with the device.

Those of you who wish to get fancy may want to use rechargeable batteries and build a trickle charger into the circuit to keep the batteries charged while the AC is operating. Doing so isn't worth the effort when dealing with the AC is operating. Doing so isn't worth the effort when dealing with

Expanding your horizons

I recently told you that I've moved into a new community. Since then I have re-discovered an old truth and 'discovered' something that some friends have been telling me for years.

First, a bit of background: I'm an old dyed-in-the-wool ham who began with CW (code) got into AM phone, and had a fling with Single SideBand (SSB) phones in the early days of that technology. (Anyone remember the 2EWL special?)

After a few years, voice communication became tiresome to me and I "retired" to CW exclusively, apparently forever!

As I went from key to keyer, and then to keyboard, the use of 144 MHz (2 meters) changed and grew also, but with no participation or interest on my part. Over the years several friends urged me to get a microphone and try two meters, a suggestion that was quickly dismissed. After all, nothing above 30 MHz could be of much consequence (so I thought).

In my new community, I met several new ham friends. In a short time, Jack K14DL and Bob WA8MWH had put a two-meter, hand-held transceiver in my paws saying, "Try it and see how you like it." Thereby, I re-learned that old truth: hams are the friendliest people in the world, and can present a most convincing argument.

Well a guy just can't be impolite so I tried it and made my big discovery. Two meters is populated by a large contingent of hams and yet remains uncrowded. The countryside is literally peppered with repeaters (some linked to others far away) to increase coverage, and with auto-patches to make telephone calls conveniently from the car or elsewhere. Hey, this is FUN!

And that is saying nothing about joy of easily taking an entire functioning ham station with you anywhere—car, office, lake, trail, mountain-top—anywhere.

If you're not a ham, become one—it is a great way to add a new dimension to your interest in electronics. It is not difficult to get a ham license. Look up a local ham operator for help, or write the American Radio Relay League in Newington, CT 06111.

R-E

PRINT Products International Inc.
8611 Brookville Rd
Silver Spring, MD 20910
(301) 587-7524
Equipment, Tool & Supplies for Maintenance & Service

PACING DESOLDERING EQUIPMENT

MBT - 100
Bell Contained
Solder-Safe
Irregular Rear Rotary Carbon-Case Pump
Pencil Grip Low Voltage Handle
Meet UL Standards
MBT - 100 Desoldering & Soldering

MBT - 200
Now $499.00

HUNTRON INSTRUMENTS
The Art of Trouble Shooting

Tracker and Switcher

Reg. $2,620.00
Special, Both $2,489.00

3M STATIC CONTROL

234 Table Mat (Available Separately)
446, 649 Mat (Available Separately)
2066 Washable Mat (Available Separately)
332X410 (4,6 Volt) Static Control Electrically Conductive
Gold, Blue, Brown, Beige

Work Station

Now $191.00

CIR-KIT

Edge Connector Repair
Polished Thru Hose Repair
Track and Pad Repair
Conductor Repair
Lifted Circuit Trace Repair

Basic $57.00
Advanced $97.00
Master $158.00

Field Service

Now $51.00

SPECIAL OFFER!

With every desoldering system or repair system ordered, receive one a 70-page how-to repair circuit boards' textbook, a $19.95 VALUE.

TOLL FREE 800-638-2020

CIRCLE 286 ON FREE INFORMATION CARD
What is half duplex?

TWO SURE-FIRE INDICATORS OF THE state of advancing technology are newspaper articles and reader mail. For instance, about a year ago, newspaper articles of any kind that contain the term "modem" always provided a concise explanation of what a modem was (or what it did). Similarly, reader mail almost without exception referred to radio or telephone voice-transmissions.

Today, newspaper and magazine articles use the term modem with no attempt to explain what it is because it is now assumed that everyone knows about the device. And as for reader mail, it now reflects a substantial interest in data communications via a modem.

However, there is a feature of computerized communications through a modem—called half duplex—that seems to confuse newcomers to the computer field. One reason for the confusion is because some modem manufacturers (as well as some software authors) use the term out of context. That means that the user suddenly finds himself with three different explanations of what half duplex is—one in computer's documentation, one in the modem's instruction manual, and the other in the software manual.

Full-duplex communications

To understand the term "half duplex" we must first go back to "full duplex." In communications, full duplex means simultaneous transmission and reception. An example of full-duplex communications is the telephone system, where two parties can talk and listen at the same time.

In radio communications, the same thing can be done by using two frequencies, as shown in Fig. 1. Let's assume that two radio amateurs are using full-duplex systems on 20 and 10 meters (even though it is supposedly illegal). Transmitter A broadcasts to re-
receiver B on a frequency of 14 MHz. The transmitter at B broadcasts on 28 MHz to receiver A. With that arrangement, the operators can talk and listen at the same time, as if they were using the telephone. Now enter the computer.

Computerized communications

The terminal-to-computer circuit used for the dial-up telephone system is shown in Fig. 2. Notice that one wire (Fig. 2-a) carries the signal in both directions. Bear in mind that a terminal's display and keyboard aren't connected; they are two distinct and separate units.

The terminal is connected to the telephone line through a modem. The modem routes the outgoing signal from the keyboard to the telephone line, and the incoming signal from the line to the display. That arrangement is called "full duplex" because it allows you to transmit as well as receive data.

Imagine for a moment that you're in Boston inputting data to a terminal for transmission via the dial-up telephone system to a computer 3,000 miles away, in say, San Diego. Now, let's suppose that you type in a single letter "Z," for instance. But how do you confirm that your transmission was actually received by the computer at the other end of the telephone circuit?

The computer at the other end confirms that it has received your transmission by echoing back the letter "Z" (which appears on your display)—telling the originating operator that the computer (at the other end) has received the correct character. (That takes place so fast that it appears as if the letter "Z" pops up on the display as you press the key.)

However, there is one problem that may occur: The computer (at the other end) receives the correct transmission, but the echo gets garbled by line noise. The echo would then appear at originating computer as something other than what was originally transmitted. What happens then depends on your software.

At high transmission rates (4800 to 19,200 baud), several characters would be transmitted before the first echo returned, causing confusion as to what was going out. To

SMALLEST SIZE

Our new AWS Model DM-2000 is the smallest Rotary Switch DMM available today. (4.8" x 2.8" x 0.9" Wt. 7 oz.) Size was a prime consideration in the design of the DM-2000. Its compact size fits comfortably in one hand, easily in a toolkit, and of course, right in your pocket. Still, the LCD incorporates large 0.5" easy to read digits.

MORE FUNCTIONS

The truly unique 3½ digit AWS DM-2000 is capable of reading 9 functions: DC Volts • AC Volts • DC Current • Resistance • Conductance • Diode Test • HFE Test • Battery Test.

MORE RANGES

PLUS A.W. SPERRY INSTRUMENT QUALITY

The AWS DM-2000 boasts 0.5% basic DC Volt accuracy and an "OFF" position, making it ideal for the professional engineer, technician or hobbyist. All ranges are overload protected. Special solid state protection on all resistance ranges protects the instrument and end-user up to 250Vac/dc without blowing the fuse.

FOR JUST $54.95!

So put the new AWS DM-2000 to work for you now. Call your local distributor or contact A.W. Sperry Instruments Inc., P.O. Box 9300, Smithtown, NY 11787. 1-800-645-5398 Toll Free (N.Y., Alaska call collect 516-371-7050).

A.W. SPERRY INSTRUMENTS INC. The Measurable Advantage.
75ft
you an accurate look at the state

g (ves
and receiv

FREE · INFORMATION CARD

84

TIMEX/SINCLAIR 1000, 1500, 2068, ZX81, computers; PRTR I/F—A Centronics parallel
printer interface. Order PRTR I/F—$50. EPROM-
MER—Programs 2716, 2732, 2764's. Order
EPROMR—$75. ASM DSM—A full featured as-
ssembler/disk assembler. Order ASM DSM—
$40. TEXTEDIT—A very complete editor, in-
cluding 64-column mode. Order EDIT—$40.
When ordering, specify type of computer. Cash,
check, or C.O.D. only. Send to: RE-
SEARCH SERVICE LABORATORIES, P.O.
Box 19124, OKC, OK 73144.

CIRCLE 278 ON FREE INFORMATION CARD

MODERN ELECTRICS. Miniature souvenir
of the first publication ever produced by Gems-
back Publications. This issue appeared in
April 1908—just 75 years ago. You can own
your own reprint of the unique first edition for
just $2.50 plus 75c P&H. It's available from
R-E BOOKSTORE, Radio-Electronics, 200
Park Avenue South, New York, NY 10003

CALL NOW
AND
RESERVE
YOUR SPACE

• 6 x rate $550 per each insertion.
• Reaches 225,016 readers.
• Fast reader service cycle.
• Short lead time for the placement of
ads.
• We typeset and layout the ad at not
additional charge.

Call 212-777-6400 to reserve space. Ask for Arlene Fishman. Limited number of pages available. Mail materials
to: mini-ADS, RADIO-ELECTRONICS,
200 Park Ave. South, New York, NY
10003.

SATELLITE CONTROL CABLE—NEMAL
ELECTRONICS has designed a new series
of combination cables for TVRO installations.
These cables provide all necessary wires for
signal, motor and receiver power and sense
circuits together in one direct burial jacket:
TYPE-1 RG-59 + 9 conductor (2-18gu)
$49/1000', TYPE-2 RG-59 + 11 conductor
(2-12gu) $589/1000', TYPE-3 dual RG-59 +
11 conductor (2-12gu) $879/1000', all made
with mil spec RG59, 96% copper, shielded,
tinned drain wires. Over 500 types of cable,
connectors, SMARTV Products in stock. Autho-
ized distributor Kings-Amphenol-Columbia.
NEMAL ELECTRONICS Inc., 12240 N.E.
14th Ave., N. Miami, FL 33161 (305)
893-3924.

CIRCLE 268 ON FREE INFORMATION CARD

ELECTRO IMPORTING CO. CATALOG.
This reprint of the historic 176-page catalog
No. 20 gives you an accurate look at the state
of electronics in 1918. Contains everything
from a Zink Spark Gap to a 1000-Mile Receiv-
ing Loop! You can get your own copy of this
modern antique, profusely illustrated, for only
$4.95 plus 1.00 P&H. Order yours from R-E
BOOKSTORE, Radio-Electronics, 200
Park Avenue South, New York, NY 10003.

CIRCLE 269 ON FREE INFORMATION CARD
CALIFORNIA-DC REGULATED SWITCHING POWER SUPPLY +5v dc @ 5 amp + 12 dc @ 2.8 amp + 12v dc @ 2 amp - 12v dc @ .5 amp 115-230v ac input fused. EMI filtered. Removable DC Power Harness and Schematics included. 7.4" x 8.2" x 1.7" H. Visa/MC/M.O. check; when clears. $37.50 ea. (Free shipping in U.S.) 1-800-327-7182; 305-830-8886. POWER PLUS, 130 Baywood Ave., Longwood, FL 32750. (Call for quantity price).

CIRCLE 125 ON FREE INFORMATION CARD

SATELLITE TELEVISION RECEIVER SEMIKIT with dual conversion downconverter. Features infrared remote control tuning, AFG, SAM filter, RF or video output, stereo output, powercorder controls, LED channel & tuning indicators. Install six factory assembled circuit boards to complete. SEMIKIT $400.00. Completed downconverter add $100. Completed receiver and downconverter add $150. JAMES WALTER SATELLITE RECEIVER, 2657 Nickel, San Pablo, CA 94806. Tel 415-724-0587.

CIRCLE 124 ON FREE INFORMATION CARD

SATURDAY SPECIAL OFFER! This information packed book details the methods used by subscription TV companies to scramble and descramble video signals. Covers the Sinewave, Gated Pulse, SSAVI system, and the methods used by most cable companies. Includes circuit schematics, theory, and trouble shooting hints. Only $12.95 plus $2.00 first class P&H. ELEPHANT ELECTRONICS INC. (formally Random Access) Box 41770-R, Phoenix, AZ 85080.

CIRCLE 120 ON FREE INFORMATION CARD

FREE 1984 ELECTRONIC TOOL & INSTRUMENT CATALOG is packed with over 5,000 quality technical products for assembling, testing and repairing electronic equipment. All products fully illustrated with photographs, detailed descriptions and pricing to allow for easy ordering by phone or mail. Most orders shipped within 24 hours. 100% satisfaction guaranteed. CONTACT EAST, 7 Cypress Drive, Burlington, MA 01803. (617)272-5051.

CIRCLE 45 ON FREE INFORMATION CARD

CONVERT YOUR TV to a High Quality Monitor/Receiver! The TRVM kit permits Dual Mode operation on transformer isolated B&W or Color Sets. Features High Resolution Direct Video. Up to 80 Characters per line. Wide Bandwidth. Easy installation. Low cost. $34.95. 0/1/2/3 kit with Audio available for "Hot Chasis" sets.$54.95. Both kits useos with computers. VCR's and Video Cameras VAMP Inc., Box 411 Los Angeles, California 90028 (213) 466-5533.

CIRCLE 255 ON FREE INFORMATION CARD

CIRCLE 281 ON FREE INFORMATION CARD

APPLIANCE REPAIR HANDBOOKS—13 volumes by service experts; easy-to-understand diagrams, illustrations. For major appliances (air conditioners, refrigerators, washers, dryers, microwaves, etc.), electronic appliances, personal-care appliances. Basics of solid state, setup shop, test instruments. $2.85 to $5.90 each. Free brochure, APPLIANCE SERVICE, PO Box 789, Lombard, IL 60148. (312) 932-9550.

CIRCLE 84 ON FREE INFORMATION CARD
avoid that problem. Baud rates for single-wire circuits are generally limited to 1200 baud. For a faster transmission rate, we would use separate send and receive circuits—but that is beyond the scope of this article, so let's stick to the dial-up telephone system and 1200-baud maximum.

If there is a transmission delay when using a terminal, there's nothing you can do as the terminal operator. You must put up with the "gibberish" displayed on your terminal, unless you can send a code to the other computer to shut off its return echo. But if you're using a computer as a "smart terminal" (which is more likely in this day and age), it's possible that your communications software can overcome a transit delay.

To handle moderate delays at normal transmission rates (300 and 1200 baud), some communications software will not transmit a character until it receives an echo for the previous character. That's all it takes to accommodate a transit delay—just wait until the echo is received.

There is, however, another problem—dual echo—a phenomenon that's caused when the computers at each end of the circuit are generating a return echo. Neither would be able to distinguish between the echo and the transmitted signal.

To further explain, let's again assume that the originating computer transmits a letter "Z," which is picked up at the other end by the receiving computer. The receiving unit would then send a confirmation (echoing the letter "Z") back to the sending unit. When the sending computer receives the echo, it assumes that that signal is (not an echo but) a transmitted character and echoes its confirmation, causing a feedback loop.

The single character "Z" would bounce back and forth between the two units filling their screens with "Z's." (In other words, the first operator could press just one

Are you buying too much instrument? Or too little?

Here at Global, we believe that users of benchtop instruments have often been faced with the decision of either buying an expensive array of test equipment that far exceeds their needs or purchasing instruments which may not meet the specifications. Our solution? Families of precision benchtop and portable instruments that include advanced features and performance, human-engineered operation, and consistently superior quality at affordable prices.

Global packages these capabilities without those expensive cosmetics or redundant features which contribute to price but not to performance or flexibility. Our instrument line includes Function Generators, Frequency Counters, Pulse Generators, Frequency Standard, Digital Capacitance Meters, Scope Multiplexers, Power Supplies, and more.

Want to dig deeper into Global Instruments? Contact your local distributor today or call our Customer Service Department: 1-800-572-1028.

SUPER LONG PLAY TAPE RECORDERS

10 Hour Model - $95.00
14 Hour Model - $159.00

Mobile Panasonic Slimline.

High quality, 4C-CC Recordings provide 5 x 7 continuous hours of quality recordings & playback on each side of cassette for a total of 10 or 14 hours. Built-in features include: Voice level control, code II, BNC connections, etc. Sold DC 190.

Cassette Furnished.

PHONE RECORDING ADAPTER

Records calls automatically. All Solid State connects to your telephone jack and tape recorder. Stops recording when you hang up. $24.50. C.O.D.

VOX ACTIVATED CONTROL SWITCH

Solid state, self-contained, adjustable sensitivity. Vox or other designed to automatically activate and control recorder. $24.95.
Half duplex

To avoid the problem of return-echo delay, or dual-echo bounce back, we can use what is called "half duplex." Figure 2-b shows that the terminal's keyboard is connected to the display, so the display reproduces whatever is input for transmission. There are no connections between the modem and the display. The modem transmits only to the computer on the opposite end of the dial-up circuit. Whether the computer echoes or not makes no difference since the originating computer does not display the return echo.

Normally, it's difficult to muck up half-duplex when only a terminal is involved. It's when we use a computer as a "smart terminal" that things can get sticky (as when the software isn't well thought out). Using "half duplex" should automatically disable reception of the echo; however, that isn't the case with all communications software.

If the computer can operate in half-duplex—showing all characters entered on the keyboard—and still display the echo, everything will be displayed twice on the screen. For instance, the word "ZAP" would be displayed as "ZAAAP."

When that happens the software author usually avoids lock-up and continuous looping by somehow disabling the return echo, even though the screen is displaying the characters twice. Quite frankly, he either has no understanding of half-duplex, or has simply screwed up (which is more likely).

The general rule for half-duplex is that if you're having problems, such as your screen displaying every character twice, turn off the half duplex because you're receiving an echo. If the screen is in a continuous loop and only one character is repeating, either you or the other end (not both) must turn off the computer echo. Though both computers can operate individually in half-duplex, that's not usually recommended because then there is no check (of any kind) on the status of the computer-to-computer link.

R.E.
Everyone knows that there's a world of difference between theory and practice in electronics. As we've seen time and time again, what works perfectly well on paper tends to blow up perfectly well on the breadboard. I can't tell you how many times I've helplessly sat back and watched acres of silicon "real estate" go up in smoke at the speed of light!

One way to avoid blowing up expensive or even inexpensive components is to be really familiar with the eccentricities of the device. That applies to everything in your design and not only IC's. Switches, relays, batteries, and even lowly resistors have operating peculiarities that can screw things up under what would seem to be the most ordinary of circumstances. Therefore, it is best to know a little something about a component before you begin using it.

The best way to learn about any electronic component is to pick up a few and do a little experimenting, or build a demonstration circuit. Nowhere is that more true than when designing memory-based circuits. Using a demonstration circuit lets you learn to safely use a particular memory, and see what requirements have to be kept in mind for its use in general.

Now, there's no single circuit you can design that will teach you everything about all types of memory. And even if we limit our discussion to RAM, we'll find that looking at one type won't teach us everything we need to know. (We've already seen that there's a big difference between the static and dynamic types.) So that you may become familiar with the fundamentals, let's start off with static RAM. When we're done, we'll see that only a few additions and changes have to be made to accommodate dynamic RAM.
PUT AN END TO YOUR RS-232 INTERFACING PROBLEMS
Smart Cable lets you connect your peripherals without thinking twice

TURN YOUR IBM-PC INTO AN APPLE COMPUTER
Run Apple programs on your IBM-PC with Quadlink plug-in board.

MACHINE CODE DEVELOPMENT SYSTEM
Build this add-on and put your Timex/Sinclair ZX81 computer to work as a development system and an EPROM programmer and emulator.
What's New at American Design Components?

We warehouse 60,000 items at American Design Components—expensive, often hard-to-find components for sale at a fraction of their original cost! You'll find every part you need—either brand new or removed from equipment (RFE) in excellent condition. But quantities are limited. Order from this ad, or visit our retail showroom and find exactly what you need from the thousands of items on display. Open Mon.-Sat., 9-5.

Integrated Circuits

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microprocessors</td>
<td>$1.25</td>
</tr>
<tr>
<td>C.O.P. 4007n</td>
<td>$1.25</td>
</tr>
<tr>
<td>4060</td>
<td>2.00</td>
</tr>
<tr>
<td>6800</td>
<td>2.50</td>
</tr>
<tr>
<td>6821</td>
<td>2.50</td>
</tr>
<tr>
<td>MC6809</td>
<td>3.00</td>
</tr>
<tr>
<td>7424P</td>
<td>3.00</td>
</tr>
<tr>
<td>SY6264</td>
<td>5.00</td>
</tr>
<tr>
<td>74HC00</td>
<td>5.00</td>
</tr>
<tr>
<td>74HC138</td>
<td>5.00</td>
</tr>
</tbody>
</table>

5¼" TANDON DISC DRIVES

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM Compatible</td>
<td>$5.95 NEW</td>
<td></td>
</tr>
<tr>
<td>DM572</td>
<td>2V</td>
<td>$7.95 RFE</td>
</tr>
</tbody>
</table>

K. AS KEY KEYBOARD

Replace the membrane keyboard on your Timex/Sincere Z-811100C with this brand new "big computer" keyboard from Texas Instruments. Simple to install—complete instructions and schematic included.

$3.95 NEW

BLOWERS—POTENTIOMETERS—COUNTERS—TIMERS—RELAYS—VOLTAGE REGULATORS—POWER SUPPLIES

American Design Components, 62 Joseph St., Moonachie, N.J. 07074

(201) 933-2110

Q. 12V NICAD BATTERY BACK-UPS (RECHARGEABLE)

12V @ 450mA. Contains 10 AA cells. Rechargeable 45mA, 16-18 hours. Case with built-in output connections. Dim: 2½" x 1¼" x 2⅞". L. Incl. GE # 11V0210 or equiv.

$5.95 RFE

R. AUDIO & VIDEO MODULATOR

Designed for use with TI Computers. Can be used with video cameras, viewers, or other audio/video sources. Built-in A/V switch enables you to switch between TV antenna and video input without disconnecting chassis. Channel 3 or 4 selection. Operates on 12VDC. Schematic included. IBM and Apple compatible. MRI, TI #UM1381-1

$7.95 NEW

INTEGRATED CIRCUITS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microprocessors</td>
<td>$1.25</td>
</tr>
<tr>
<td>C.O.P. 4007n</td>
<td>$1.25</td>
</tr>
<tr>
<td>4060</td>
<td>2.00</td>
</tr>
<tr>
<td>6800</td>
<td>2.50</td>
</tr>
<tr>
<td>6821</td>
<td>2.50</td>
</tr>
<tr>
<td>MC6809</td>
<td>3.00</td>
</tr>
<tr>
<td>7424P</td>
<td>3.00</td>
</tr>
<tr>
<td>SY6264</td>
<td>5.00</td>
</tr>
<tr>
<td>74HC00</td>
<td>5.00</td>
</tr>
</tbody>
</table>

K. AS KEY KEYBOARD

Replace the membrane keyboard on your Timex/Sincere Z-811100C with this brand new "big computer" keyboard from Texas Instruments. Simple to install—complete instructions and schematic included.

$3.95 NEW

BLOWERS—POTENTIOMETERS—COUNTERS—TIMERS—RELAYS—VOLTAGE REGULATORS—POWER SUPPLIES

American Design Components, 62 Joseph St., Moonachie, N.J. 07074

(201) 933-2110

Q. 12V NICAD BATTERY BACK-UPS (RECHARGEABLE)

12V @ 450mA. Contains 10 AA cells. Rechargeable 45mA, 16-18 hours. Case with built-in output connections. Dim: 2½" x 1¼" x 2⅞". L. Incl. GE # 11V0210 or equiv.

$5.95 RFE

R. AUDIO & VIDEO MODULATOR

Designed for use with TI Computers. Can be used with video cameras, viewers, or other audio/video sources. Built-in A/V switch enables you to switch between TV antenna and video input without disconnecting chassis. Channel 3 or 4 selection. Operates on 12VDC. Schematic included. IBM and Apple compatible. MRI, TI #UM1381-1

$7.95 NEW

FREE CATALOG of electro-mechanical devices sent with every order.

For all phone orders, call TOLL-FREE 800-524-0809. In New Jersey, 201-933-2710.
CONTENTS

Vol. 2 No. 3 March 1985

7 Turn your IBM-PC into an Apple Computer
Run Apple programs on your IBM-PC with this new plug-in board from QUADRAM.

10 Smart Cable
Here's how to end those interfacing problems forever. And you won't need a custom cable for each application.

13 Machine Code Development System, Part II
Here are the finishing notes for this project, begun in January

15 Practice morse code with your computer
You select the speed, and your computer transmits five-letter word groups.

4 Editorial

5 Letters

5 New Products

ON THE COVER

If you've been looking jealously at some of the Apple software and wishing that your IBM-PC could handle some of it, look no longer! The Quadlink plug-in board lets your PC run Apple programs! See page 7.
When all else fails, read the instructions.

Your editor got his writing career started many, many years ago, working in the publications department of a major electronics equipment manufacturer. The hardest part of the job was getting people to read the instruction manuals.

Take the guy who sent his brand new transmitter back because it "smoked" when he turned it on. Obviously, this dude never read the section titled "Unpacking." The final amplifier tubes were still surrounded by cotton wadding, put there to protect them during shipment. It was still there, but now burned to a crisp. We told him to "tune for minimum smoke!"

In one case, we even had a jumper wire taped to the last page of the instructions, which, when properly installed alongside the AC input, would complete the primary circuit so the power could be turned on!

Take a careful look at the instruction manuals that come with your new computer equipment, and you'll see that the manufacturers go to great and costly lengths to make those instructions as palatable as they can. (At least some of them do!) They spot little 찾ching cartoons throughout the pages, copiously use photographs, add color where they can, and the writing is light and breezy, written to express, not to impress. They do whatever they can to make you read the instructions, and hopefully read them in detail before you throw the Big Switch for the first time.

The fact of the matter is that by spending some time reading the instructions, you're going to save yourself a lot of time when you power up and go online. That little bit of familiarization can be of tremendous help and add to your previous knowledge.

It's a good idea to begin by unpacking the unit just enough to gain access to the instruction booklet and then stop. Take the book out, and go through it a few times until you know that piece of equipment like the back of your hand. Then and only then should you proceed with the unpacking and really make friends with the equipment you've spent your bucks for.

You'll probably save a small fortune in telephone calls to the manufacturer's service department too.

Byron G. Wels
Editor
LETTERS

ZX81’S OK!

I am a long-time admirer of the enthusiastic and talented work of those who contribute to putting Radio-Electronics in my mailbox each month. More recently, I have added the people who put together ComputerDigest to that category of “good company.”

With that truthfully said, and with the hope that the truth will not only set one free, but get the recipient to the next paragraph, I would like to offer a comment or two to Mark Latham’s comments contained in his worthwhile article, “Machine code Development System” in the January issue.

Mr. Latham commented in the second paragraph of his article that the lack of speed (in loading and running programs) really prevents the ZX81 and/or the Timex Sinclair 1000 from serving any useful purpose.

First, may I say that he and I are, apparently, of one mind in our desire to find useful purposes for the ZX81. It seems to possess great speed and capability. We diverge though at the point of the program-running ability in terms of speed.

The text characters being manipulated to produce them in acceptable printed form and send them on to you are being done in BASIC and at a speed which is comparable with that which I can get on paper with the IBM in the closet, and with less effort.

Once “finalized,” it goes to a Gemini printer at 4600 baud via a Byte-Back RS-232 Serial device; at a speed that is very fast.

I have a quarterly federal and state estimated tax program jammed within the parameters of VU-CALC which allows me to perform that chore four times yearly in at least a twentieth of the time it would take me without it; and, from what I’m able to read, the expensive machines could not really do it substantially quicker.

I therefore find that the ZX81, despite the negative comments by both friends and non-friends, as to running speed, do not correspond to my own experience. Further, when one weighs the cost vs. utility factor, there simply is no contest for home use.

As to loading: The approximately 200-baud loading speed is a tad slow for most programs. However, for a modest sum, fast loading programs and devices are available and in constant use by many of us who spend much time at the ZX81.

Recently I was amazed to read, I think the article was by Mr. Friedman, in another publication, that it took him 72 seconds to disk-load CP/M to, I presume, one of those more costly machines. Honestly, and excuse my nevete, from the many, many articles I had read to that time, I believed that a “slow” disc loading took 10 seconds while the fast one probably took 5 seconds.

My “amazement” changed rather quickly to smugness as I realized that I have been loading three-16 programs back-to-back, accessible to each other and run-able (48K’s worth) in 76 seconds flat (and that’s with a $93.00 cassette recorder and an under-$1.00 data cassette tape).

In conclusion, I wish to say that the ZX81 is not as slow running as many say and for one-one-hundredth the cost of a disc drive, is not slow loading either.

J.E. JUERGENS, Pacifica, CA

COMPUTER PRODUCTS

For more details use the free information card inside the back cover

FIVE-SLOT EXPANSION INTERFACE, the CARDBOARD/S, is designed for the Commodore 64. It allows the user greater flexibility to switch-select any cartridge slot or combination of cartridge slots. Twenty-two LEDs are used to give status indication. Each slot has four LEDs and two toggle switches for indication and control.

The different-colored LEDs indicate the status (on/off) that the cartridge in that slot is requesting on the XRQ/M and GAMEBON LINES. The user has the choice of honoring that request by turning on one of the toggle switches; when the green LED is lit, that shows that the request is being honored. Two master amber LEDs are at the rear of the board, and will show the cumulative status of all the slots selected. The second toggle switch at each slot enables the power to reach the cartridge, and the fourth LED (red) indicates power-on condition. The user can supply power to a cartridge without allowing it to auto-start or to affect other operations. In addition, there are two master toggle switches that allow the user to manually override any situation and set the lines as desired.

The CARDBOARD/S is priced at $79.95—Cardco, Inc., 313 Mathewson, Wichita, KAN 67914.

THE GRAMMAR EXAMINER is an educational journalism game designed to

MARCH 1985 — ComputerDigest 5
help kids ages 3-14 improve their basic grammar skills. The player starts by landing a job as a cub reporter with The Grammar Examiner newspaper. Editing copy and answering questions pays off as the junior reporter earns promotions and moves his way to the top spot on the masthead.

EASYDISK

CIRCLE 23 ON FREE INFORMATION CARD

To edit copy, the reporter moves the cursor through the given paragraph, stopping to revise faulty punctuation and incorrect words. The computer either approves the entire amended text or flashes the proper answer where mistakes were made.

The Grammar Examiner has a suggested retail price of $44.95.— DesignWare, 185 Berry Street, San Francisco, CA 94107.

UTILITY PROGRAM, EasyDisk simplifies the disk-operating system of the Commodore 1541. It enhances and extends that system by providing features that allow users to back up disks, print both program and sequential files, and display them on the screen. The program, which is accessed by a keyboard, does not interfere with the normal operation of the computer.

EasyDisk is currently available for the Commodore 64 at a retail price of $29.95.— Creative Software, 930 East Caribbean Drive, Sunnyvale, CA 94089.

ENU SYSTEM, the Magic Menu, enables users of IBM XT, IBM PC, and PC-compatible computers to move from a word-processing program to a spreadsheet program to a payroll program without dealing with DOS or consulting manuals. Magic Menu interfaces between the user and the DOS (version 2.0 or later) and allows any application with just a few keystrokes.

Sequence screens allow automatic execution of a series of menu entries, while password security can be provided for any and all applications. Magic Menu also provides automatic screen blanking, dynamic variables for customizing general entries, speed entries for advanced users, and a host of other features. It is priced at under $100.00.— DeerSoft, Inc., PO Box 1360, Melbourne, FL 32901.

ADAPTABLE CABLE, the Data Spec Easy March, is a cable assembly kit for microcomputer use. The shielded-cable assembly kit includes a 6' or 12' color-coded, 9-conductor shielded cable with pins attached to the conductors. Those pins can be inserted into any location in the connector block, with the aid of a special tool. The tool is included with the kit, and can also be used to remove the pins for reconfiguration.

The kit contains two 3-pin jumper leads for handshaking and other purposes, plus Data Spec hood assemblies, which feature clamp-style strain relief.

The kit comes in either 6' or 12' lengths, in male/female (model ARU-MM-6) or male/male (model ARU-MM-6). List price of the 6' kit in model ARU-MM-6 is $29.95 and for model ARU-MM-6 is $39.95.— Data Spec, Alliance Research Corporation, 18915 Parkhaven St., Northridge, CA 91325.

MUPPET LEARNING KEYS, is a computer keyboard that helps children aged three and up learn letters, numbers, and colors with the Muppets.

The keyboard simulates the contents of a child's school desk—ruler, watercolor set, pennmanship slate, compass, and arithmetic exercise book. There is even a comic book on the desk to provide key commands for the programs. Kermit the Frog, Miss Piggy, Gonzo, and Rizzo Bear provide friendly and humorous instruction.

Muppet Learning Keys has a price of $79.95.—Koala Technologies Corp., 3100 Patrick Henry Drive, Santa Clara, CA 95059-8100.

COLOR-DISPLAY MONITOR, the Sakata model SC-100, is compatible with Apple II, Apple IIE, Commodore-64, or VIC-20, NEC-PC, Atari-800, and other personal computers. The model SC-100 has a 13" CRT with a 0.69mm dot pitch, and accepts composite video signals. It is designed for the home, at school, or in any business.

The model SC-100 is priced at $399.00.— Sakata USA Corporation, 651 Bonnie Lane, Elk Grove Village, IL 60007.

6 Computer Digest—March 1985
TURN YOUR IBM-PC INTO AN APPLE COMPUTER

Now you get two from one
—A bargain in any man's language!

HERB FRIEDMAN

The term obsolete has really taken on a new meaning when applied to personal computers. For anything else it can mean a product that hasn't all the modern bells and whistles but is still usable. For personal computing, the popular press has made obsolete synonymous with unusable.

The concept is incorrect. The software might be obsolete in the sense that it won't run properly on some of the newer computer models, but it will certainly work on the computer it was designed for. The spreadsheet will still function as a spreadsheet, the word processor will still function as it did before, and a database will still manage data, because software obsolescence is generally not a function of its features or performance, but of the non-compatibility of the hardware—the computer.

FIG. 1—THE QUADLINK IS A COMPLETE COMPUTER SYSTEM with its own CPU, disk controller, and RAM. It takes up only one PC expansion slot.

Perhaps the greatest area of non-compatibility is that of the Apple and IBM computers. For many years Apple computers were the primary school and business computer. By some "experts' count, there is more educational and business software available for Apple computers than for all others.

But the picture is changing rapidly. The IBM PC has become the de facto standard computer for business, and it is rapidly becoming the standard school computer since the PCjr was upgraded to run virtually all PC software.

Regardless of what is accepted as the new standard computer, the older machines do exist, along with a mountain of effective applications software that's not going to be scrapped. And let's not forget the weeks and months that went into learning how to maximize the performance of the older software; few users of personal computers have the money or time to do it all over again.

If you're caught in a software bind created by having added IBM PCs to an installed base of Apple computers, the answer to your software problems might very well be Quadram's (4355 International Blvd., Norcross, GA 30093) Quadlink, an Apple emulator for the IBM PC. That device allows a PC to function as an Apple computer (see Fig. 1).

The Quadlink, which takes up a single expansion slot in a PC or PCXT, is essentially a complete computer that emulates an Apple. The board contains a 6502 CPU, 64K of RAM, and a disk controller. The Quadlink is essentially the complete guts of an Apple II+ computer. Switching loop-through circuits use the PC's disk drives, speaker, and color/graphics adapter for both PC and Apple operation. Simply touching a few keys toggles the PC between the IBM and Apple operating modes (see Fig. 2).

Yes, "toggie" is the correct word. Since the emulator has its own CPU and its own RAM, the user can actually run two programs in RAM at the same time—one in the IBM mode, the other in the Apple mode—and toggle back and forth while they are running.

The Quadlink provides full emulation of an Apple computer right down to the disk drives. Since one of the verities of personal computing is that non-identical disk formats aren't compatible, perhaps we should first look at how the Quadlink accommodates both the PC and the Apple disk formats on the same disk drive.

FIG. 2—A MASTER PROGRAM installs the Quadlink and gives fingertip toggle between the Apple and IBM PC modes.
Disk conversion isn’t much of a problem when two computers use the same kind of microprocessor. For example, much “conversion” software is available that allows a CP/M computer to run “foreign” software if it is transferred to a compatible disk format. If you can transfer the software from computer X to the disk format of computer Y, it will run on computer Y.

There is even a hardware device that will run non-compatible microprocessor software—in this instance CP/M on a PC computer—if the software is transferred to an IBM PC formatted disk. But only the Quadlink runs software for non-compatible microprocessors directly from the original disk because the user uses PC-formatted disks when the computer is in the PC mode, and Apple-formatted disks when the computer runs as an Apple. That is accomplished by a separate disk controller for the Apple emulation. When the PC is toggled for the Apple mode, the emulator switches the disk drives to the emulator’s controller. As far as the emulator is concerned, the PC’s disk drives are correct for the Apple format.

The design of a PC’s disk drive however, puts limits on how far the Apple disk emulation can be carried. The Quadlink can only be used with software from the Apple II and Apple II+ computers, but not usually from the Apple IIe. The Apple IIe uses what is called half-stepped disk drives, meaning data or information—usually for copy protection—can be recorded between the usual track locations. Since the PC’s disk drives were not designed to half-step they will not read half-stepped Apple IIe software. However, there is non-protected Apple IIe software that is not half-tracked, and such software can often run on the PC.

The Quadlink is furnished on a single printed-circuit board along with a disk containing the initializing software, a disk of Apple utility programs that also contains floating point (Applesoft) and integer BASIC, and three jumper cables; those are for sound, video, and the disk controller.

Installation of the Quadlink could not be easier, involving only the PC board itself and the three plug-in adapter cables. The board installs in a PC expansion slot, while the three cables simply plug into existing connectors. There is no alignment.

Because of the way the Quadlink must be connected to the IBM disk adapter (card), the first step is the relocation of the cable that connects the PC’s disk adapter to the drives. The cable is disconnected from the IBM disk adapter and plugged into the Quadlink. The Quadlink adapter board is then installed in the PC’s expansion slot that is immediately adjacent to the slot having the PC’s disk adapter card. Then, a short cable from the Quadlink is plugged into the IBM disk adapter, completing the disk system loop-through. You use the specified PC slot not for electrical reasons, but because it’s the only slot the adapter’s cable will reach.

The sound is looped through the Quadlink by moving the speaker wire’s connector from its mate—which is located on the PC’s motherboard near the speaker—to a connector on the Quadlink. A short supplied jumper connects the Quadlink to the PC’s original motherboard connection.

Finally, the video from the PC’s color/graphics monitor adapter is looped through the Quadlink via a supplied jumper cable that connects the RGB connector on the back of the PC’s color/graphics adapter to a matching connector on the Quadlink. The backplate of the Quadlink provides both an RGB monitor output, and a composite video output that can be used for either a monochrome or composite color monitors. Note the two DB connectors below, which provide the PC loop-through and RGB color output.

FIG. 3—FINGER POINTS TO THE QUADLINK’S COMPOSITE VIDEO OUTPUT, WHICH CAN BE USED FOR MONOCHROME OR COMPOSITE COLOR MONITORS. NOTE THE TWO DB CONNECTORS BELOW, WHICH PROVIDE THE PC LOOP-THROUGH AND RGB COLOR OUTPUT.
not toggled; the PC's RAM always functions as the PC's RAM, while the Quadlink emulator has its own RAM. Pressing the ctrl-alt-a keys toggle the Apple mode and

FIG. 4—THREE CABLES PROVIDED BY QUADRAM break into the PC's circuits to loop the disk, sound, and video display connections through the Quadlink. All connections are direct plug-in: There is no soldering or trace cutting. Remove the Quadlink, and the PC's connections can be automatically restored.

FIG. 5—NOTE THAT QUADLINK is in the process of auto-loading a school program.

the screen display actually resembles that of the Apple, right down to the screen prompt character (see Fig. 5). Pressing the ctrl-alt-a keys toggle the PC mode, and the screen reverts to the standard PC display. Programs running in RAM keep running even when the function is toggled because—except for the sound, the video display, and the disk system—the computers are actually independent.

When the Quadlink is toggled for Apple emulation, the PC's disk drive function as Apple drives running under DOS 3.3. When the PC mode is toggled the drives revert to the IBM DOS. Switching between the two DOS systems is done by the emulator.

If the Apple software was originally self-booting it will self-boot on the PC when the Apple mode is toggled because the PC-derived Apple works just like "the real thing." The Quadlink is supplied with an Apple-licensed software package called The Filer (See Fig. 6), which contains DOS 3.3, Applesoft and integer BASIC, a disk system check, a disk speed check, a super-fast copy program, file utilities (Copy, Lock, Unlock), and a program called "Quadcopy" that copies ASCII text and binary files from Apple formatted disks to PC formatted disks and vice versa. While you, of course, cannot run an Apple binary file on the PC because the CPUs are incompatible, the ASCII text files are fully compatible; if you use the same word processor for both computers, the files can be exchanged between the two.

Since the Quadlink specifically emulates the Apple II+ computer, it is downward compatible and will run software from the Apple and Apple II computers. Software that is half-tracked or which uses the enhancements of the Apple Ile will not run; for example, the Apple II+ version of VisiCalc runs on the Quadlink; VisiCalc for the Apple Ile won't run. However, software written on an Apple Ile that does not use the Ile's enhancements will often run on the Quadlink (because without the enhancements, the Ile software is effectively II+). Copy-protected software that uses half-tracking won't run at all.

Quadram will provide a list of the Quadlink compatible software. If you're interested in specific commercial software, make sure you check with Quadram first. If the software is a program you developed yourself for school, business, or home use, it will most likely run on the Quadlink if the original computer was an Apple, Apple II, or Apple II+

As far as we could determine from experimentation, the Quadlink runs as intended if the PC is equipped with IBM and/or Quadram expansion adapters. We had some unusual and inconsistent problems with some adapters from other sources: everything from disk emulators and serial I/Os simply failing to operate, or one adapter affecting another. We have no explanation except to say that no problems were encountered as long as all adapters were Quadram or IBM.

FIG. 6—THE SUPPLIED FILER program selects various Apple functions and utilities by cursor or number. Notice that the characters are more legible than those of the PC: The Quadlink has its own character generator.
Here's how one manufacturer solves the RS-232 confusion!

MARC STERN

How many times have you seen the words "RS-232-compatible" in personal-computer advertising or documentation? The RS-232 communications "standard" was formulated by the EIA (Electronic Industries Association) so that various peripheral devices could be interfaced compatibly.

In some ways, today's RS-232 standard bears little resemblance to the original standard drawn up in the late 1960's. Yes, the signal lines and names are still the same. A DB-25 D-type connector is still used, but each computer manufacturer seems to use some of the lines and the connector for its own purposes.

For instance, according to the RS-232 standard, Line 4 is called Request To Send and Line 20 is Data Terminal Ready. (See Fig. 1 for a complete listing of the RS-232 signals.) Both of those lines are supposed to tell one device that another is ready to accept data. At the same time, Line 5 is Clear To Send and Line 6 is Data Set Ready. Again, this second set of lines is used to indicate a device is ready to handle data.

It all seems pretty clear with little room for misinterpretation. If all things were equal, it would be. It should be a simple matter to tie the devices together using the RS-232 lines. After all, those lines are part of the "standard" interface, so, tying the pieces of equipment together should only be a matter of buying a standard cable and hooking things up.

It's not that simple.

All things in the world of computers aren't so simple and clear cut. Over the years, different computer manufacturers have come up with their own ways of handling the RS-232 lines. Some use Lines 5 and 20 to enable devices to indicate when they are ready to accept data. Others use Lines 5, 6, and 20; and still others use Lines 4, 5, and 6, as well as other lines, such
It gets more complicated. Suppose you would like to interface a printer with your computer. To do this you would enable Lines 2 and 3. Transmit and Receive. Again, it seems pretty straightforward, but wait. The printer is also using Lines 2 and 3 for the same things, so you have to reverse the lines in your computer connection 3 to 2 and 2 to 3. However, if you're interfacing a modem, then you leave things alone.

The RS-232 standard not only covers transmission and receiving lines, but two different types of equipment, DCE or Data Communications Equipment (such as modems) and DTE, Data Terminal Equipment (such as terminals or computers). When you're interfacing one type of device to the other, the cable goes "straightthrough." That means that Line 2 of one device goes to Line 2 of the other, and Line 3 of one device goes to Line 3 of the other. It's pretty easy to set up one of these devices with your computer.

But what happens if your computer is set up as a DCE device and the device you're trying to interface is DTE? The answer is that you have to reverse lines to get it to work correctly. You can do that by using a null-modem cable, as shown in Fig. 2. You might wonder why you would want to connect two DCE or two DTE devices together. After all, didn't the people who thought up the standard think about such things? There are lots of reasons you'd want to hook up two similar devices together. That becomes very clear when you realize that both computers and printers (and other non-modem devices) are DTE devices. Why didn't the developers of the standard think about that? Well, it's because things were different back then. Printers were usually connected to auto-answer modems, and personal computers didn't even exist.

Confused?

At this point, we won't blame you if you're confused. But the problem is that the computer world has changed quite a bit from the days when the standard was developed. And the problem is only made worse by manufacturers who use their RS-232 signals for non-standard applications.

One thing that you should remember is that when you are transmitting, the data line (Line 2) always goes to the DCE device and received data (Line 3) always runs from it. Most microcomputer printer ports are DTE and they are usually indicated by male DB-25 connectors. DCE devices are usually indicated by female connectors.

One last thing about this "standard" that we should mention is that it's expensive. Because of the many variations, nearly every device requires its own special cable. Unless you're willing to spend time with a soldering iron and more time checking to see whether you've made the correct connections, you'll spend between $35 and $65 for special cabling. It can get very expensive if you have to replace cables made up for a printer (or printers), modem and plotter or other device.
Is there an easier way?

There is an easier way to hook two serial devices together without spending hours poring over your equipment documentation. A device called Smart Cable takes all the worry out of configuring RS-232 cables. It costs $89.95 and is available from IQ Technologies (1811 N.E. First St., Bellevue, WA 98005).

Smart Cable consists of two elements, the "logic" module and the extension cable (see Fig. 3). The logic module can be equipped with either male or female DB-25 connectors, depending on your computer, while the extension cable is fitted with a header connector to attach to the logic module and is terminated in both male and female connectors.

Inside the logic module is what can best be described as a breakout box—an automatic breakout box. It checks each end of the link for different voltage states and handshake signals and then finds a suitable connection at the other. The voltages are fed first to a test circuit, which passes them to a pattern comparator, which compares those voltages to known values. Once those values are determined, the interconnection circuit takes care of the interface.

Using the Smart Cable

The best thing about Smart Cable is that it's easy to use. In fact, you might even be able to get by without reading the instruction manual because the abbreviated instructions printed on the logic module's case take care of most setups. As you can see in Fig. 3, the logic module sports five LED's (two green, two yellow, and one red) and two switches. The LED's are used to indicate the state of the RS-232 connection. In effect, they tell you how to set up the switches.

The first step is to power up both pieces of equipment and make sure that the word length, parity, etc., are properly matched. (Smart Cable is transparent to such settings.) You then connect the ribbon cable to the logic module and plug the logic module into your computer. (The logic module is available in either a male or female configuration. If you use it with a different computer, you may need a gender reverser.) Next, the other end of the ribbon cable is connected to your peripheral. (Both male and female DB-25 connectors are supplied.)

Once the cable is connected between the two devices, you'll use the LED's on the logic module to set the switches correctly. Unfortunately, if your port is located at some inconvenient place at the back of the computer, doing that will be a bit inconvenient.

The bottom switch (between the two green LED's) should be set in its center position. If both of the top (yellow) LED's are lit, the top switch is in the correct position. If only one light is on, the switch between them should be set to the position most distant from that light. Both yellow lights should then come on, indicating that the top switch is now in the correct position. If neither yellow LED comes on, check the port on the computer. You are probably plugged into a parallel instead of a serial port. If only one yellow light comes on in either switch position (as will be the case with a receive-only printer), you'll have to try sending data in each switch position. The one that permits data flow is (obviously) correct.

If only one of the bottom (green) LED's is on, slide the bottom switch towards that light. If neither green light is on, leave the switch in the center position.

If the center red light comes on, it indicates that something might be disabling data transfer. The red light will flicker during normal operation. And some systems operate with the red light on constantly. If your red light remains on but data transfers properly (as we found in many cases), don't worry about it.

When both switches are set and the red light is off, the installation is complete. Leave Smart Cable in place as long as you like.

Now that sounds really simple—and it is. But things can go wrong. For example, when we were transferring data to a printer, it seemed that everything was working fine. But then the printer came to a standstill and flashed its error light. The reason? The sourcekill signal was of the wrong polarity, and had to be changed at the printer. (Smart Cable couldn't do anything about it.) Luckily, the instruction manual covered just that occurrence. The instruction manual, incidentally, is not bad. Along with a diagnostic guide is a glossary, setup examples, and other useful information.

Do you really need it?

With a price tag of about $90, Smart Cable is not inexpensive. It doesn't cost too much more than a custom made cable, but it's a lot more expensive than a home-made cable. If you need a cable to link your computer and printer, then a dedicated cable is the way to go—whether you make it yourself or buy it custom made. However, if you often switch peripherals and try out new devices, Smart Cable will save you lots of set-up time. (Breakout boxes can take some time to set up and making a custom cable just to test something out is not the way to go about things.)

Computer clubs, computer stores (especially!), and any computer hardware hacker will really love the device because it makes connecting two devices together (even two devices you've never seen before) nothing short of simple.
MACHINE CODE DEVELOPMENT SYSTEM FOR YOUR TIMEX SINCLAIR 1000 PART II

Back in January, we started an interesting and important article on how to build a machine code development system for the Timex Sinclair 1000. We promised to complete the article with the second part, in the February Issue.

But something slipped, and the February Issue went to press without the rest of that important information.

For those of you who may have been wondering what happened to the rest of the article, or who had started it and were hoping to complete it, the remainder of the information is all here, in this issue. We apologise for any inconvenience that this may have caused.

The fact of the matter is, that while at one time, Timex was shipping 100,000 units a month. The price was right, and lots of people bought real keyboards and extra RAM to make these units work like real business or entertainment machines. Others were content to simply fool around with whatever they could hook up to the back of the unit.

MARK W. LATHAM

MARCH 1985 - ComputerDigest
INSIDE THE EPROM I/O, the picture is total neatness that reflects care in assembly. Follow the layout guides and refer to the text for parts positioning.

The three tricolor LEDs (LED3-LED5) are used to monitor the RAM E3, EPROM E8, and E9 lines. Transistors Q5-Q7 reverse the current flow through those LEDs when the associated outputs of IC6 are high. Those LEDs will be green if the corresponding line is high (inactive) and red if the line is low (active). If the line is rapidly changing, the LED will appear to be yellow.

All the software for controlling the I/O port, block data moves, and EPROM programming can be permanently stored in IC8, the resident EPROM. IC1-b, IC2-a and IC2-b decode the 280A REG and address A11-A15 signals to place the resident EPROM in the 8-10K area. IC1-a and D6 hold the computer's row's line high during the resident EPROM read to prevent bus contention. (The computer is wired to see the 8K ROM anywhere in the 0-16K area.) If the program is written at the machine-language level (the EPROM I/O operating system provided by the supplier listed) you will have an I/O-port/EPROM-programmer that is fast, easy to use, and ready to go the second you plug it in.

Construction

The circuit shown in Fig 1 can be built using perforated construction boards. A better method, however, would be to use double-sided printed-circuit boards such as the ones shown in Figs. 2 and 3.

FIG. 5—PARTS POSITIONING ON THE SMALL BOARD is shown here. Placement of the LEDs is fairly critical as they must show through front panel holes.

FIG. 4—PARTS PLACEMENT ON THE MAIN BOARD is shown in this diagram. Take care to observe the proper polarities for all components.

Using the PC boards is the easiest way to go. A parts-placement diagram for those boards is shown in Figs. 4 and 5. Note that the board identifies the functions of the LEDs (in other words, which lines they monitor). Note all the wires to the display board (Fig. 4) and R39-R43 and the diodes on the main board (Fig. 5) are all end-mounted. A holder for the lithium battery should be used-and a 1/8-inch alignment holes are drilled as shown. Depending on the case you use, filter capacitors C10 can be positioned either to the side or above IC9 and R45. A 1/8-inch hole through the PC board and the bottom of the case will allow you to adjust R45 without opening the enclosure.

Mount all of the passive components first, then the diodes, transistors and IC's. A heat sink for IC12 can be made of angle aluminum and placed above H1. The sockets for the IC's are recommended. If you are going to mount the CMOS IC's directly to the board, save them for last and be sure to ground the soldering iron to the board's ground (alligator clips work fine.) With a 26-conductor ribbon cable you can Daisy chain the main board (via PCC1) to the display board (H2) to the DB-25 connector at the back of the unit (in this application the DB-25 is not used as an RS-232 connector). The outside wire, 5-volts, should be torn away from the others before insertion into the DB-25 connector.

If you are going to place the PC boards in a project case you will need to raise the program socket through the top by replacing it with its wire wrap counterpart or by soldering extended posts to its base. The switches and LED1 (in a panel clip) can be mounted directly to the top of the case and wired to the board with a 10-conductor ribbon cable PC board connector assembly. The ribbon cable connects to the board at PCC1 which wires connect to which pads is shown in the parts-placement diagram. The switches, which are mounted on the case, should be wired according to the schematic diagram. Note that R1, R47, C13, and D5 are mounted directly on the switches at the top of the case.
Morse Code Practice
On Your
Commodore
64.

Here's one way to lure a computer-oriented son back to amateur radio!

BOB WOODS, WSQPQD

In an effort to reinterest my 13-year-old son in amateur radio after he succumbed to the siren song of a microcomputer, I wrote the following program for our Commodore 64. The computer has a built-in audio capability and while I did have a lot of fun writing the program, and spend a lot of time using it myself, the idea didn't work. Our computer freak in residence tried it out and went back to the monitor.

You select the speed, the program sends five-letter word groups, and displays them on your screen. After 50 such groups, it pauses, so you can correct your copy. Then when you are ready, it sends a new set. If you are using a monitor without sound capability, use the built-in interface that comes with the Commodore, and any TV set. Your Commodore provides a port that permits you to connect through an interface to any television receiver, permitting that receiver to be used in place of a monitor. As the TV receiver does have audio capability, the problem is thereby solved.

The heart of the program is in statements 230 to 330 where the number of elements (dits or dahs) in the letter, number or punctuation mark are counted and loaded in sequence into successive values of array EL[1]. A dit is a value of one, a dah is three. These are used in statements 350 to 430, where the values of the elements of EL—renamed XX—are multiplied by S, the speed, and used to control the duration of the sound produced by the monitor or TV.

Tone characteristics are set by the statements ending in 120. The 64 has three "voices," but as we do not want to interfere with the pure tone, we silence voices two and three with statements 30 through 60. Statements 80 and 90 set voice one to one kilohertz. Statement 110 provides a steady tone. Instead of one with amplitude modulation, and 120 provides a sharp make and break. You can put these two together and try to reproduce the sound of an underpowered "peanut whistle" transmitter if you like. Statement 100 sets the volume.

There are 41 letters, numbers and punctuations in the data table. Statement 910 selects these at random by picking values of NO (the number of the table entry) and then jumping to the table.

Statement 320 might be confusing. The digits of X are stripped off and entered in sequence as values of EL[1]. This is done by first finding the two numbers that are gotten by moving the decimal point in X one and then two places to the right and discarding the decimal fraction. The smaller number is then multiplied by ten and subtracted from the larger. This leaves only the single digit that was to the left of the fractional part, which will be one or three, to encode a dit or a dah.

Let's also explain statements 160 through 200. S is used to control transmission speed. This is related to words-per-minute, entered as SS in statement 150,
For those of you interested in mathematics, this is a Chebychev polynomial fitted to data that were taken to describe speed. To obtain the data, we wrote a program that switched the tone on.

For turns it off.

Minute

160 POKE 54272,20
190 POKE 54278,64
220 POKE 54276,15
250 POKE 54278,340
280 POKE 54277,0
310 W0 = 1: LE - 1
340 PRINT "W.P.M. (APPROX). 5 TO 20"
370 INPUT SS
390 IF SS<5 THEN GOTO 200
430 PRINT WH "ENTER" it, go back, make the few changes needed, continue this until you have entered the whole table. Anybody experienced with morse code will automatically punch in the proper patterns of 3's and 1's corresponding to dahs and dits.

There is no need to restrict the data table to the 41 lines shown. If certain characters give you trouble in copying (such as double dashes) enter them several times. This will cause those characters to be transmitted more frequently. The only other change required, is to increase the constant (now 41) in line 210 until it is one more than your new maximum value of NO in the data table.

through the expression starting in 170 and continuing in 180. For those of you interested in mathematics, this is a Chebychev polynomial fitted to data that were taken to describe the relationship between S and transmission speed. To obtain the data, we wrote a program that transmitted 100 dahs and dits at the rate this took for various values of S. The information was combined with the knowledge of the number of dahs in a five-second period roughly equals code speed in Words Per Minute (WPM). The relationship seemed linear for under 9.5 WPM, hence the branch at statement 160.

Actual character transmission occurs at statements 350 through 410. Memory location, at 54276 is the "switch." Statement 370 turns on the tone and, after killing the proper length of time in statement 380, 390 turns it off.

Of course, entering the data can be tedious. If you are new at this, you might not have noticed that the easiest way is to key in the first line, and after you "ENTER" it, go back, make the few changes needed, and enter it as the next line. Continue this until you have entered the whole table. Anybody experienced with morse code will automatically punch in the proper patterns of 3's and 1's corresponding to dahs and dits.

There is no need to restrict the data table to the 41 lines shown. If certain characters give you trouble in copying (such as double dashed) enter them several times. This will cause those characters to be transmitted more frequently. The only other change required, is to increase the constant (now 41) in line 210 until it is one more than your new maximum value of NO in the data table.
Static RAM

For our discussion we'll be using the 5101 256x4 RAM. There are several advantages to using that IC: It's cheap, widely available, CMOS, and features a low-power data-retention mode so a battery can be used to back up stored data.

Several manufacturers make the 5101 and although there are minor differences between them, any one you can get your hands on will be fine for our purposes. Table 1 is a listing of several pin-for-pin equivalents of the 5101. The variations in the IC usually have to do with things like maximum operating-voltage, access time, and the like. If we keep the supply at 5 volts and are willing to live with a 450-nanosecond access time, we can forget about the differences altogether.

Figure 1 shows the pinout of the 5101. A block diagram of the IC's innards is shown in Figure 2, but it's no substitute for a data sheet. The timing diagrams and such that are found on data sheets are absolutely invaluable when you're using memory IC's. You can build a demonstration circuit without them, but you'll learn a lot more if you have them in front of you while you work. (Think of it as a poor man's substitute for an oscilloscope.)

The first step in designing the demonstration circuit or any other circuit, for that matter, is to have a perfectly clear idea in your mind of exactly what you want the circuit to do. That means we first must list all design criteria, and then draw a block diagram of the circuit. Once that's done, we can actually begin the breadboarding. The design criteria for our circuit are:

- Keyboard entry of data and address
- Switch control of read and write
- Random read and write operations
- Display of address, data in, and data out
- Automatic keyboard sequencing of address and data
- Keyboard control of all memory functions and modes

A block diagram of a circuit that meets those requirements is shown in Fig. 3.

The first thing we need is a way to generate a binary code from a keyboard. That's exactly what we'll take care of next time.
The Complete Computer

Here's a 50 character per second, plain paper, dot matrix printer that you can use with virtually any home or office personal computer. It's built really tough to withstand heavy use. It's really easy to use. And, it even prints graphics. Price Slashed to $129.

By Drew Kaplan

Complete your computer. Now you can harness the full power of your computer. From writing letters to listing programs, your computer will be incredibly more useful. It uses plain paper and it's super reliable. It prints both upper and lower case characters. And, if you aren't using a printer with your computer, read on.

LISTING/INDEXES/LETTERS

Experience the thrill of actually writing your letters and reports on your computer. You'll be able to use all of your computer's word processing and correcting capabilities to really explore your creative talents.

It's easy. Some of the new word processing programs are so 'user friendly' that you can learn to use them in just about 30 minutes. Change a line, change a word, move a line. Just push a button.

Are data bases a four letter word? Not on your life. Now you can use your computer to organize all your telephone numbers, your stocks, stamps, and recipes. If you're using your computer for business, you can have a complete, instantly accessible file for each customer by name, what they bought, when, etc.

A data base will let you find or organize and print out any information you want. However you want, whenever you want.

There's no more complicated programming required. And, inexpensive data base programs are available at any computer store.

PERMANENT RECORD

If you have a modem, you're in for a treat. You can access encyclopedias, stock market reports, and much more. When you sign on a service like CompuServe or The Source, the world is quite literally at your finger tips.

With a printer, you can get a 'hard copy' of all the incoming information. You can get everything from SAT test simulations and IQ tests to loan amortization schedules.

AFRAID OF PROGRAMMING?

You don't need to know the first thing about programming to use this or any printer. But, if you've never typed in and run a program, here's the easiest one I know. Turn on your computer.

Commodore Owners, and Atari Owners. Your computer, and most others will say 'Ready'. Just push Control and Reset on an Apple. Then type the following:

10 PRINT "DAK IS WONDERFUL"
20 GOTO 10
RUN

You should type a carriage return at the end of each line. Why not try this program now? Next time, I'll tell you how to get out of the program, and maybe even discuss peeks and pokes.

If the program isn't running, type LPRINT instead of PRINT in line 10.

To you sophisticated programmers, think how easy your life will be when you can print out program listings that you can study at length.

And, you won't have to load a bunch of disks to find a program when you print out a menu for each of your disks.

LOOK AT IT DOES

An ad in several August computer magazines listed a $149 thermal printer (that needs expensive thermal paper) as the lowest priced printer in the U.S.

Imagine a 50 character per second, plain paper, full 80 column dot, matrix printer with a built-in standard Centronics Parallel Interface, slashed to just $129.

This printer handles plain old cheap standard fanfold pin feed computer paper from 4.5" to 9.5" wide, with it's built-in adjustable tractor pin feed drive.

It's so powerful you can even use two-part forms for a carbon copy. Plus, there's an impact control for print darkness.

It understands and prints 116 upper and lower case characters, numerals and symbols. And that's not all.

You can even print Double Width characters. And, look at this. This printer has full graphic capabilities with 480 dot horizontal resolution and 63 dot per inch vertical resolution. So, you can print out your pictures, pie charts or graphs.
It prints 10 characters to the inch, six lines to the inch. In short, it's going to make typewriters into dinosaurs. When hooked to your computer, you'll never have to replace ribbons again. If you don't find an error, just make the correction and let the computer retype your work for you.

The printer is made by C.I.T.O.H./Leading Edge in Japan. It's built to really take heavy use. But in the unlikely event that it should need service, there are approximately 400 service centers nationwide.

It takes standard long-life ribbon cassettes that are readily available nationwide. This is a printer that will give you many years of continuous reliable service and enjoyment.

AND NOW THE BAD NEWS

If you're the president of a large company sending important business letters, you may want a $1000 daisy wheel printer. But for most uses, dot matrix printers are incredibly faster, and there isn't any way to print out a graph or picture on a daisy wheel printer.

But there are two things you need to know about this printer. First, it has about the dumbest name I've ever seen. It's called The Gollie Banana Printer.

Second, like many dot matrix printers, the letters and symbols are level and perfect, but each sits level with the rest of the alphabet. Upper case letters are unaffected. So, if you don't want letters that look like they were printed by a computer, this printer isn't for you.

COMPATIBLE COMPUTERS

Any Computer with a standard Centronics parallel port, such as: Apple, Franklin, IBM PC, TRS80, Osborne, Atari, Commodore V120, Kaypro, Apple II, and virtually any other personal computer. Plus, most briefcase portables.

FEAR OF INTERFACES?

Your computer is smart. But, it doesn't know how to "talk" to other devices. That's why you need an interface to fit your printer.

An interface isn't just a cable. It's actually an intelligent translator that lets your computer talk to other equipment. Usually the computer manufacturers don't include the various interfaces when you buy your equipment, because they don't want you to add peripherals such as disk drives, printers or modems.

So, rather than sell you something you don't need, you don't buy an interface until you add onto your computer.

There are two types of printer interfaces. The first allows you to do real word processing. For 99% of computer use, this is all that is needed. It translates all the possible letters and punctuation known as ASCII. This printer understands 116 characters and symbols.

A second interface also allows you to dump pictures or graphics from your screen or memory. This is more complicated because every dot must be told where to go. This interface, or 'driver program' as it is called, is available in two forms: built into an interface card, or as a program on a disk which you use in conjunction with any standard interface.

Either way, you'll have the printer operating in just a few minutes. And if you already have a printer, the same Centronics parallel interface and cable (about 85% of all printers are compatible) should work with this printer.

WHY SO CHEAP

A new model will emerge soon with a different name. Leading Edge had just 28,000 of these remarkable printers which have been selling at discount for as little as $199, left in stock.

DAK bought them all for cold hard cash. And now we're offering them to you for less than the original price we quoted as wholesale.

The printer is approximately 16½" wide, 9" deep and 7" tall. It's backed by Leading Edge's standard limited warranty.

ADDITIONAL PRINTER POWER FREE

Now you can really make use of your computer. 50 characters per second printing on plain paper for just $128. Wow! Now you can print out your programs, notes or your letters. If you're not 100% satisfied, simply return the printer and any accessories in their original boxes to DAK within 30 days for a refund.

To order your 50 Character Per Second Dot Matrix, Plain Paper Printer with a built-in Centronics Parallel Interface, risk free with your credit card, call toll free, or send your check for the breakthrough close-out price of just $129 plus $8 for postage and handling to DAK, Order 4011. CA res add 6% sales tax.

Special Note: If you need a serial printer for a computer, such as the TRS80 Color Computer, order the identical printer with a built-in Serial Interface for the same price. Use Order No. 4602.

The Printer comes packed with a long life ribbon. Extra ribbons are available at computer stores. DAK has them for $4 each ($1 P&H) Order 4013.

Standard Centronics Interfaces for your computer are available at any computer store. This printer has its receiving interface built in. You simply need one, complete with its cable, to plug into your computer to send information. Below are our favorites for 5 of the most popular computers.

For your Apple. We have Practical Peripherals' text interface for just $49 ($2 P&H) Order No. 9877. We have their graphics capable interface for just $79 ($2 P&H) Order No. 4104. If you already have Centronics Parallel Interface, we have a graphics driver program on disk for just $7 ($1 P&H) Order No. 4105.

For your IBM PC, you don't need an interface. It's usually already built-in. But, you do need a cable. We have a cable ready to connect this printer to your computer, for just $19 ($2 P&H) Order No. 9879. We have a graphics driver program on disk for just $7 ($1 P&H) Order No. 4106.

For your Atari 800, 800XL, 400, or 600XL, we have a text interface for just $39 ($2 P&H) Order No. 9863. We have a Graphics Interface for just $54 ($2 P&H) Order No. 4108.

Special Bonus for Commodore 64 owners. We have a powerful word processing program with editing, including changing a line, a word or moving a line. Once you've tried computer word processing, you'll never want to look at a typewriter again.

Plus, we have a super data base program that lets you use 6 fields of information on up to 200 subjects at a time. Then you can search for any part alphabetically or numerically and print out an address book, a list of your stocks or anything you can imagine. They're both yours for just $5 ($1 P&H) with purchase of the printer. Use Order No. 4122 for Disk, or Order No. 1123 for Cassette.

For most TRS80 Computers, you don't need an interface, just a cable. For the Black and White Computers, we have a Parallel Cable for just $18 ($2 P&H) Order No. 9865. For the Color Computers, we have a Serial Cable (you need the Serial Printer as well) for just $18 ($2 P&H) Order No. 4109.

For briefcase-type portables, the Centronics Interface is usually built-in. Just stick your printer into your computer store. All Centronics Printers use the same cable at the printer end, but you'll need a cable that fits your particular computer's plug.

Get hard copy print-outs of your programs or graphics. Turn your computer into a powerful word processor. Just plug this printer into your computer again. Just for $129 you can make your computer complete.

DAK INDUSTRIES INCORPORATED

TOLL - FREE ORDER LINES 800-433-8455
For credit card orders call 24 hours a day 7 days a week CALL TOLL-FREE 1-800-325-0800
8200 Remmet Ave., Canoga Park, CA 91304
ALL ABOUT

STEREO Audio For TV

BRIAN C. FENTON, TECHNICAL EDITOR

We finish up our look at multichannel television sound with a description of the dbx noise-reduction system.

Part 2 This month, we'll turn our attention to the noise reduction system for multichannel TV sound and why it's so important.

dbx noise reduction

As we mentioned earlier, the BTSC system is similar to the broadcast-FM stereo system. And, just like broadcast FM, the high-frequency components of the BTSC signal contain more noise than the low-frequency components. The L - R subcarrier is, of course, at a higher frequency than the main channel, and therefore suffers from more noise.

The Zenith transmission system increases the modulation level or deviation of the L - R signal to help matters somewhat, but the difference is limited to 6 dB because too much modulation will cause interference to the main channel. Even with the increased modulation of the L - R channel, the noise level of stereo reception is about 15 dB greater than mono reception even under ideal reception conditions.

In less-than-ideal conditions, the noise-level difference would be worse. For example, in a grade B reception area (where the received picture is somewhat snowy but considered acceptable by most people), the mono signal-to-noise ratio is about 65 dB—most listeners won't hear any noise. Without noise reduction, however, the stereo signal-to-noise ratio would be about 50 dB. That's 5 - 10 dB worse than a standard compact cassette without noise reduction! It's obvious that for stereo TV to sell, its performance would have to be better than that. To get that better performance, a noise-reduction system is needed that will:

• Provide noise reduction even in poor-reception areas.
• Preserve the dynamic range of the input signal without losing headroom (the safety margin between the maximum level and the actual level of severe overload).
• Prevent the subcarrier from interfering with transmitted power levels. (The modulation level of the composite signal depends on the sum of the L + R and L - R signals, the modulation level of the sum must be limited—not just the level of the separate signals.)

• Be reliable regardless of manmade noise.
• Be reasonably inexpensive and simple to implement.

The Broadcast Systems Test Committee of the EIA felt that the dbx-TV system best met those criteria better than other systems.

We mentioned that the most important characteristic of any MTS signal is its compatibility with existing signals. Therefore, we can't do anything to the main channel. That works out fine—the noise in a multichannel system comes from the higher-frequency subcarriers. The stereo (L - R) signal, however, is encoded as is the SAP channel. Both the stereo difference signal and the SAP signal use the same encoding scheme so that, as shown in Fig. 6, a receiver needs only a single decoder that can be switched between the two. (Keeping costs down is one way to ensure that the system will be accepted by the public!)

Companding

The dbx-TV system is a companding system: The signal is encoded or COMPressed before it is transmitted and then decoded or expANDED by the receiver. Two types of compansion (or compandoring) are used by dbx: spectral and wideband. We'll get to the details shortly.

Companding (like other noise-reduction methods) works to reduce noise using the principle of masking: That is, if the desired signal is loud enough and has a broad enough frequency spectrum, then you will hear that signal, and not the noise of the transmission medium. You can see that principle in action yourself by recording on cassette tape—and at the same level—both a low-frequency tone and some music with a much broader spectrum (some rock-'n-roll music, for example). You will note that the recording of the rock music will have much less perceivable noise. If you record the low-frequency tone at a higher level, it will appear to have less noise than the original recording of the same tone.

From the above description, we can see that for the dbx-TV system to work, it must meet two criteria. First, the level of the audio signal must be high when compared to the background noise. Second, the spectrum must be wide enough to mask the background noise. Another important consideration is that the compand-
of the audio signal so that it is more evenly balanced between highs and lows by using **preemphasis**. FM broadcasting and mono TV-audio uses a 75-microsecond preemphasis. In the dBx-TV system, two preemphasis networks are used to reduce noise and hiss in even less-than-ideal reception areas. The frequency response of the complete fixed preemphasis is shown in Fig. 8. A deemphasis network must, of course, be included in the receiver.

As you might guess, fixed preemphasis is not enough. Signals that already contain mostly high frequencies will be overmodulated, and low-level signals that contain only low frequencies will still be noisy, even with the strong preemphasis.

Spectral companding

To get around the problem of reducing noise in program signals that contain mostly high or mostly low frequencies.

FIG. 8—FIXED PREEMPHASIS FREQUENCY RESPONSE curve shows that the combined effect of the 75-μs and 390-μs networks helps to overcome the large amounts of noise present in poorer-reception areas.

FIG. 9—SPECTRAL COMPRESSOR Here we see the range of variation in frequency response that the spectral compressor can produce. The spectral compressor examines the input signal to determine the appropriate preemphasis or deemphasis.

FIG. 10—THE COMBINATION OF FIXED PREEMPHASIS AND SPECTRAL COMPRESSION. The spectral compressor examines the frequency content of the signal and varies the high-frequency preemphasis accordingly. In other words, the high-frequency preemphasis is boosted in signals that contain low frequencies. But if a signal contains mostly high frequencies, some deemphasis is provided.

The range of the frequency response of the spectral compandor is shown in Fig. 9. As you can see in the figure, that range is broad, which ensures that masking will be provided. That's because the encoded sig-
nal is dynamically adjusted so that it contains a high proportion of—but not too much—high frequencies.

A spectral expander is used in the receiver to restore the program signal to its proper amplitude. It is essentially a mirror image of the compressor. Spectral companding gives us high masking regardless of the frequency content of the input signal and also helps to maintain the necessary headroom by using preemphasis only when necessary. The range of the frequency response available from the combina-

FIG. 11—WIDEBAND COMPANSION. The compressor reduces the dynamic range of input signals by increasing the level of low-level signals and reducing the level of high-level signals. The expander restores the signal to its original amplitude.

CIRCUIT CARDS FOR THE dbx companding system were designed to make implementation of multichannel TV sound easy for broadcasters.

NOISE REDUCTION CIRCUITRY for the dbx system is available in three different IC configurations. The paper clip is shown to provide a sense of scale.

FIG. 10—Wideband companding

Even with fixed preemphasis and spectral companding, we still have a problem with low-level signals (especially low-frequency, low-level signals). That's why the dbx system also uses wideband companding, which adjusts the level of all frequencies to keep the signal level high at all times. That companding method, whose response is shown in Fig. 11, reduces the dynamic range of the compressor input signal by a factor of 2:1 dB—the low-level signals are boosted while high-level signals are reduced. The result is that the signal is always above the noise floor and always below 100% modulation (so as not to interfere with other parts of the spectrum).

The wideband expander in the receiver is essentially a mirror image of the compressor. It restores the signal to its proper amplitudes by reducing the level of low-level signals and increasing the level of high-level signals.

Stereo TV equipment

We mentioned earlier that many stations are stereo capable—or will be shortly. TV set manufacturers are getting set, too. You'll see sets with built-in stereo capability, you'll see set-top decoders, and you'll also see Hi-Fi VCR systems tailored specifically for multichannel television sound. In cities with large bilingual populations, it's likely that we'll see SAP-only decoders.

Some of those devices are already on the market. And as stereo capability becomes a selling point, you're sure to see more. And you can be sure that Radio-Electronics will keep you up to date.
Make your stereo system's sound explode with life. Improve the sound quality by 30 to 50%, plus, you'll add tape dubbing too, with this limited BSR $89 close-out.

It's like night and day. Crashing cymbals, the depth of a string bass, more trumpets or more voice will come bursting forth from your stereo at your command. You'll make your music so vibrant that it will virtually knock your socks off, when you use this professional quality 10 band stereo Sound Detonator Plus Equalizer.

It has a frequency response from 5hz to 10,000h,2 125hz, 250hz, 500hz, 1,000hz, 2,000hz, 4,000hz, 6,250hz, and 12,500hz and/or 125hz, and the mid-bass at fed directly to your tape decks for re-recording. Just plug the equalizer into the tape 'in' and 'out' jacks on your receiver. You can also choose to send equalized or non-IRMCAN equalized signal to your recorders.

When you want to listen to a tape deck, just press a tape monitor button on the equalizer and your tape deck will work exactly as it did before. Except that now you can choose to wash with or without equalization.

And, look at this. There are two tape inputs and outputs, so you can dub from tape deck A to B, or make two tapes at once with or without equalization.

EASY HOOK UP
Use your tape monitor circuit, but don't lose it. Now your one tape monitor circuit lets you connect two tape decks.

As you listen to your records, FM or a time you push the tape monitor switch on your receiver, you'll hear your music jump to life. The output from your receiver is always fed directly to your tape decks for recording, and with the touch of a button, you can choose to send equalized or non-

But life into your music RISK FREE

Prepare for a shock the first time you switch in this equalizer. Instruments you've never heard in your music will emerge and bring a life-like sound that will envelop you and revolutionize your stereo system.

The final facts

There are 20 slide controls, each with a brightly LED to clearly show its position.

There are separate sound detonation slide controls for each channel at 31hz, 62hz, 125hz, 250hz, 500hz, 1,000hz, 2,000hz, 4,000hz, 8,000hz, and 16,000hz.

LED VU meters with 0.01% accuracy show levels for each channel. It is 17" wide, 6 3/4" deep and 4 3/4" tall.

You'll make your music so vibrant that it will virtually knock your socks off, when you use this professional quality 10 band stereo Sound Detonator Plus Equalizer.

It has a frequency response from 5hz to 10,000h, 2 125hz, 250hz, 500hz, 1,000hz, 2,000hz, 4,000hz, 6,250hz, and 12,500hz and/or 125hz, and the mid-bass at fed directly to your tape decks for re-recording. Just plug the equalizer into the tape 'in' and 'out' jacks on your receiver. You can also choose to send equalized or non-

And look at this. There are two tape inputs and outputs, so you can dub from tape deck A to B, or make two tapes at once with or without equalization.

EASY HOOK UP
Use your tape monitor circuit, but don't lose it. Now your one tape monitor circuit lets you connect two tape decks.

As you listen to your records, FM or a time you push the tape monitor switch on your receiver, you'll hear your music jump to life. The output from your receiver is always fed directly to your tape decks for recording, and with the touch of a button, you can choose to send equalized or non-

But life into your music RISK FREE

Prepare for a shock the first time you switch in this equalizer. Instruments you've never heard in your music will emerge and bring a life-like sound that will envelop you and revolutionize your stereo system.

The final facts

There are 20 slide controls, each with a brightly LED to clearly show its position.

There are separate sound detonation slide controls for each channel at 31hz, 62hz, 125hz, 250hz, 500hz, 1,000hz, 2,000hz, 4,000hz, 8,000hz, and 16,000hz.

LED VU meters with 0.01% accuracy show levels for each channel. It is 17" wide, 6 3/4" deep and 4 3/4" tall.

You'll make your music so vibrant that it will virtually knock your socks off, when you use this professional quality 10 band stereo Sound Detonator Plus Equalizer.

It has a frequency response from 5hz to 10,000h, 2 125hz, 250hz, 500hz, 1,000hz, 2,000hz, 4,000hz, 6,250hz, and 12,500hz and/or 125hz, and the mid-bass at fed directly to your tape decks for re-recording. Just plug the equalizer into the tape 'in' and 'out' jacks on your receiver. You can also choose to send equalized or non-

And look at this. There are two tape inputs and outputs, so you can dub from tape deck A to B, or make two tapes at once with or without equalization.

EASY HOOK UP
Use your tape monitor circuit, but don't lose it. Now your one tape monitor circuit lets you connect two tape decks.

As you listen to your records, FM or a time you push the tape monitor switch on your receiver, you'll hear your music jump to life. The output from your receiver is always fed directly to your tape decks for recording, and with the touch of a button, you can choose to send equalized or non-

But life into your music RISK FREE

Prepare for a shock the first time you switch in this equalizer. Instruments you've never heard in your music will emerge and bring a life-like sound that will envelop you and revolutionize your stereo system.

The final facts

There are 20 slide controls, each with a brightly LED to clearly show its position.

There are separate sound detonation slide controls for each channel at 31hz, 62hz, 125hz, 250hz, 500hz, 1,000hz, 2,000hz, 4,000hz, 8,000hz, and 16,000hz.

LED VU meters with 0.01% accuracy show levels for each channel. It is 17" wide, 6 3/4" deep and 4 3/4" tall.
The main thing that has made personal computers so popular in business is good software that solves problems and increases productivity. The most popular programs are word processors, spreadsheets, and Database Management Systems (DBMS).

Word-processing software turns a personal computer into a highly efficient electronic typewriter with editing and storage capabilities.

Spreadsheets help to organize financial data, like budgets and sales forecasts, and allow you to analyze different scenarios by asking “What if?” questions.

DBMS’s let you store huge volumes of data and retrieve it conveniently. They also allow you to manipulate the stored data (sort, etc.).

Until recently, most applications programs were simply not compatible with each other. But now a new breed of software—called integrated software—has emerged to improve on those already useful programs. That latest form of software combines several different compatible programs into one that readily shares a common set of data files. Integrated software represents a significant advance in the power and convenience of computer software, because it allows the user to rapidly switch from one program to another.

Integrated software

The typical integrated-software package contains a spreadsheet, a graphics program, a DBMS, and often a word-processor and/or communications program. The combined software is supposedly more powerful and easier to use. But is the whole really greater than the sum of the individual parts?

Some users of spreadsheets, DBMS’s, and the like often find it necessary to use several different programs together. Further, their needs may involve the sharing of information between various programs. Therefore, it was inevitable that some means be found to make those programs compatible, thereby allowing them to “talk” to each other.

The first formal step toward that goal was VisiCorp’s (2895 Zanker Rd., San Jose, CA 95134) development of the data-interchange format (DIF). That standardized format permits files to be constructed in a way that allows spreadsheets, word processors, etc. to share the same information. But, despite the progress in making related programs compatible, using integrated software is somewhat less than simple. An example of that is the use of the popular VisiCalc spreadsheet from VisiCorp and its companion program, VisiPlot.

Using VisiPlot involves first creating a spreadsheet under VisiCalc and storing it to disk. Then VisiPlot is booted up separately and the data disk created under VisiCalc is accessed. VisiPlot is used to graph tabular information developed and manipulated under VisiCalc and then generate a graphics output. The result is a bar graph or pie chart from the spreadsheet data. The process is effective, but somewhat cumbersome and time consuming.

Similar problems arise when
using other compatible—but separate—programs. For instance, it is often necessary to incorporate tabular spreadsheet data into a report or letter being developed on a word processor. Further, it might be desirable to analyze and then transmit the information contained in a database. Therefore, some means had to be provided for the transfer of information between the various programs.

Operating environments and windows

There are two different types of integrated software. The first bypasses the normal disk-operating system and creates its own special environment and file system. The programs in those packages are tightly integrated into a closed system, meaning that no additional software may be added.

The other form of integrated software works with an existing disk-operating system and is open to additions. That means that it works as an enhancement to—or extension of—the normal operating system. Those packages create an environment in which applications programs designed to run under the same operating system can work together and share information. Both types may contain a windowing feature.

The windowing feature implements the so-called “desk-top metaphor.” In other words, it’s an attempt to simulate a person’s desk top by allowing the user to view several applications at the same time. For example, typical desk-top documents, such as memos, letters, budgets, sales forecasts, customer lists, and stock-market reports can be displayed simultaneously. Some windowing programs even overlap the windows to visually emulate the effect of overlapping papers, as seen in Fig. 1. The window feature may be (but is not necessarily) controlled by a hardware device called a mouse.

A mouse is an external hand-controller that is used to move the cursor. (The mouse contains a track-ball that, when rotated—by moving the mouse across the desk top—moves the cursor on the screen.) The mouse also contains one or more pushbuttons that permit you to begin various operations, such as changing window size or scrolling within a window. The mouse is normally connected to a computer through a serial communications-port, and it may be used to point to an icon. An icon is a graphic symbol drawn on the screen and used to refer to a specific function or operation (see Fig. 1). Instead of typing in a command via the keyboard, the cursor is moved to the icon with the mouse and a button is pressed to start the operation.

The fact that windows let you see several applications at once does not mean that all the programs are running simultaneously—in reality, only one runs at a time. However, you may use the spreadsheet, while portions of a letter on the word processor and a data file in the DBMS are displayed, giving the impression that you’re really doing several things at once.

What’s available

Integrated-software packages are usually large and complex, and can require large amounts of RAM and two floppy-disk drives. In fact, there are some that won’t work without a hard disk. In integrated software, all applications programs must be immediately accessible, and you must have plenty of storage space for your data. Not only that, but the windowing software can also "eat-up" large amounts of RAM.

Some popular integrated-software packages include MBA, 1-2-3, VisiON, and Windows.

MBA by Context Management Systems (23864 Hawthorne Blvd., Suite 101, Torrance, CA 90505) was the first integrated-software package introduced. It’s also one of the most complete and powerful integrated-software packages around. MBA combines an advanced spreadsheet, a database management system, a word processor, a graphics program, and telecommunications capabilities. Plus, you can create and use up to four windows. That gives you all the most popular productivity-software "tools" combined into one versatile software package.

The most popular (best selling) integrated-software package is a program called 1-2-3 from Lotus Development Corp. (55 Wheeler St., Cambridge, MA 02138). It combines a powerful spreadsheet, a simple database management system, and a graphics system. At present, 1-2-3 does not include word-processor or telecommunications capabilities; however, a future version is expected to include those features.

Although 1-2-3 does not have windowing capabilities, it does allow you to split its screen in two sections so you can look at two files at once.

The newest and perhaps the most powerful integrated-software package is VisiON from Visicorp. Like the others, VisiON includes a spreadsheet, a DBMS, a graphics program, and telecommunications program. One exceptional feature of VisiON—when compared to other programs—is that it is structured in an open-ended way so that other programs may be readily added.

VisiON also includes a windowing feature, while the use of a mouse is optional for those who prefer keyboard entry. However, the program does require 512K of RAM and a hard disk.

Another software package recently introduced is Windows by Microsoft (10700 Northup Way, Bellevue, WA 98004). Like VisiON, it is an operating environment that works with and is an extension of the disk-operating system. Most applications programs designed to run under MS-DOS will also run under Windows. But to take advantage of Windows' capabilities, they must be modified.

While Microsoft will undoubtedly develop applications programs of their own, they’re now relying heavily on other software companies to support Windows by modifying existing programs and creating new applications software. As its name implies, Windows does include a windowing feature, but approaches it in an unusual way: Instead of overlapping the windows, it keeps them separate but adjacent. (Microsoft calls that "tiling.") Windows also uses a mouse.
ONE COMMON PROBLEM THAT PLAGUES everybody who plays around with electronics hardware is power-supply noise. How critical that problem is depends entirely on the sort of circuit you want to power. Some circuits will "laugh off" ripple as high as ten percent of the supply voltage, while others will go "belly up" if any ripple at all is present.

Of course, there are several different kinds of power-supply noise—AC ripple and RF are two. How you go about dealing with the problem depends on the kind of noise you have. With all due respect to Einstein and his Unified Field theory, curing RFI is a lot different then dealing with poor regulation.

Probably the most common cause of noise is poor regulation in the supply. The 60-Hz that surrounds us has a nasty habit of finding its way into the output stages of even the most carefully regulated supply. That means when you put that plug into the wall socket, you usually get problems along with power!

Reducing ripple is a matter of careful power-supply design—proper shielding, and a whole host of other things we've all dealt with a million times. And if we had to point a finger at the single most important component in the elimination of ripple, it would have to be the filter capacitor that sits right on the output of the power supply.

More noise problems have been cured by increasing the size of that capacitor than by any other single means that I can think of. Unfortunately, finding huge capacitors is a practical problem and fitting them on the board is often a physical problem. However, there is a better way!

This month's "brainsaver" can go a long way toward solving the problem of unacceptable amounts of ripple. It's a very simple capacitance multiplier that works along with and helps the filter capacitor you put on the back end of your supply. If you use it intelligently, you'll be amazed at how quiet (ripple free) the DC can be.

The operation of the circuit is virtually foolproof and it will easily stand up to a lot of experimenting. The basic design is flexible enough to operate with a wide range of component values. Figure 1 shows a schematic of the capacitance multiplier. The part values shown are a good starting point, and you should have no trouble getting the circuit to operate successfully.

How it works

The transistor is set up as a high-gain amplifier that effectively amplifies C2, the capacitor connected to its base. Capacitor C1 is the regular filter capacitor you should have in the circuit to start off with. Since the circuit is in parallel with the filter capacitor, the net capacitance will be the sum of C1 and the "phony" capacitance of the multiplier.

The actual effective capacitance you can produce with that circuit depends on the value of C2 and the gain of transistor Q1. If you pick your values carefully for those two components, you can get a simulated capacitance of over 1 farad at the output and that's enough to quiet even the noisiest supply. (Yes, I said 1 farad, the equivalent of 1 million microfarads!)

As with any circuit, there are trade-offs—the thing that data books usually refer to euphemistically as design considerations. One glance at the circuit will show you that all the load current has to pass through the collector-emitter junction of the transistor. Therefore, you'd better make sure to pick a transistor for Q1 that can handle the current you're going to draw from the supply.

There's also going to be a voltage...
drop for the same reason, so make sure you feed the capacitance multiplier with a voltage that's about a volt or so higher than the value you want at the output. The effective capacitance of the circuit will be roughly the product of C2 and the gain of the transistor.

Since a good rule of thumb is that a transistor's gain decreases as its power handling capacity increases, you'll have to decide for yourself where the break-even point is for your application. If you really have a noise problem, and you want to handle large amounts of current, you might consider using a Darlington. Either the store-bought variety, or a home-made one put together from two transistors and some resistors will do the job. The key here is experimentation.

As with all the circuits that appear here, the schematic (Fig. 1) is only the starting point. What saves the day in one application will undoubtedly blow up in another. I'm sorry I can't give you exact values and part numbers for the components, but the circuit's parts values are dictated by its use. The best advice I can give you is to breadboard the thing and start off with relatively small values. Use a 500-µF capacitor for C2, a 2N2222 for the transistor and see how the circuit operates.

If you're dealing with a circuit that can emulate big capacitors, it pays to exercise more than a bit of caution! You'll be storing plenty of energy in a small place, and any circuit that can melt the tip of a screwdriver deserves to be treated with respect.

The voltage ratings of the capacitors should match up with the output of your supply—the higher the voltage rating of the capacitors the better. If you decide on the right components, the circuit can go a long way toward reducing hum in audio, and all the other nasties that ripple can produce. Just be careful; remember, you'll be dealing with increased amounts of energy.

A correction

November's "Designer's Notebook" had an error in Fig. 1. Power to IC1 is supplied to pin 1 (not to pin 16 as shown).
ANTIQUE RADIOS

In search of antique radios

It isn't really necessary to own an antique radio to be part of the antique radio club. You can be a member whether you actually own an old set or not. All that's needed is an interest in yesterday's technology. So join us as we purchase and analyze different sets of a bygone era. And then follow along as we restore those old radios—from chassis to cabinet—to better-than-new condition!

Newcomers to the world of antique radios often find that just reading about them isn't enough. They are soon overcome by intrigue, and their attention quickly turns to owning one—at least to begin with. But, where to look for antique radios can be a real problem!

Shops that deal in "fine antiques" may seem like the logical place to start, but you're not likely to find antique radios in such places. You may find an expensive, beautifully-restored, wind-up Victorian or Grandfather clock; but, few, if any, radios!

Most antique dealers (or antiquarians as they are called) do not consider an old radio to be antique, mostly because of strict guidelines that dictate the age of an item before it is considered an antique. Some collectables, like timepieces or photographs, date back over a hundred years. But radio didn't really get started until the early 1900's with the invention of diode and triode tubes (which we'll discuss from time to time).

Where to look for antiques

The classified section of the newspaper is a likely place to locate an old radio. It usually takes about two hours to go over the for-sale column in the newspaper looking for old radios. Each ad must be read thoroughly, since there's no old radio category. Often the radio is buried in some obscure ad that reads: "For sale—sofa, bike, etc., and old radio."

Many fine old radios of all types and ages, and in various conditions can be found in the for-sale columns. However, most of them seem to have a price problem, because selling an old radio is only worthwhile if the advertiser can make a profit after paying for the ad. Often the antique radio is part of an estate sale. There are few bargains to be found at those sales because the commissions and heirs who'll be dividing the money keep the price inflated.

One radio in my collection that was purchased through a newspaper ad is the Majestic shown in Fig. 1. I found that old set buried in an ad that listed other household items for sale. I called to inquire about the set, but the discription I was given left me hanging—"It's old, and has four long legs," is what I was told. But, since I couldn't think of any new radio with four long legs, I decided to check it out.

When I finally got to see the set, it looked exactly the way it looks in Fig. 1, an old T.R.F. Majestic in need of some work. But since I didn't have anything like it my collection, I had to have it. The front veneer was peeling and the grill cloth was torn, but those two conditions are common with old radios. Grill cloth and veneer repairs are not too difficult to do, and will be discussed in the future.

Looking in the back of that old Majestic, all the parts seemed to be there. However, there was a heavy wire harness hanging from the chassis, which was laying on a shelf (inside the cabinet) above the speaker. Since it had been severed, rather than unplugged, there was no question that restoring the chassis would be a much greater challenge than doing the same for the cabinet.

Having a phone number to call about a possible find is often as bad as having none at all because the information that people give can be misleading. So be prepared to face disappointment at least nine times out of ten. At least half of what's called a really old radio in ads turn out to be table models from the 1950's, like the set shown in Fig. 2. However, take the time to check it out anyway. Who knows,
you just may find something worth the effort.

While things may sound bad for antique-radio collectors, all is not lost. There's always the flea markets and used furniture stores. A used furniture store may sell antiques, but reproductions are more likely. Of the two, flea markets seem to be the best place.

Flea-market operators rarely restore or repair their wares. That helps to keep the price down and more in line with what we're looking for—an antique radio that can be restored and refinished, at a reasonable price, of course.

What to look for

By now, we all know what is meant by antique radio. But do you know what to look for when purchasing one? Your own individual needs and abilities play an important part in the selection process. For instance, if you're an expert in cabinet work, you can make allowances for appearances. If you're not, or you have no place to work, try to find a set with a passable finish. Many old sets only need some cleaning and a little polish to brighten up the cabinet.

However, even more important than the cabinet is the chassis (a metal base where most working components are mounted). Unlike mostly-wooden cabinet parts, chassis components can not be manufactured to replace those that are missing. Therefore, trying the set out before you buy is a big plus in your favor. But that's not always possible, especially at flea markets.

If you're at a flea market where you can't see the set light up or listen for a little hum, do the next best thing; check the chassis for missing parts. And if you're not familiar with old radios, take someone along who is. Remember once you buy something at a flea market, it cannot be returned.

Missing loudspeakers is probably the most common problem associated with buying old radios. Everyone knows enough to check the chassis for tubes and other components, but don't overlook the speakers, especially in the larger console models. Most of the early radios had the speaker mounted high in the cabinet above the chassis. Make sure the complete speaker assembly is there or you may never restore the unit to its original condition.

Other things to look for include dry rot in line cords, grill cloths, the inside wiring, and missing knobs. Remember these tips and happy hunting.

R-E

VIEW 8 TRACES ON YOUR SINGLE OR DUAL TRACE SCOPE WITH THIS LOW COST DEVICE!!

Now you no longer have to spend thousands on an expensive multi-trace oscilloscope—our Single trace Hitachi scope combined with this module will allow you to view up to 8 simultaneously occurring analog or digital (or both) signals in real-time and amplitude relationship. The MPX 101 may be used on any oscilloscope, whether single, dual, or multiple traces. Its low cost makes it a particularly favorite for designers, teachers, hobbyists and repairmen who want to compare and analyze displayed signals in a timing diagram format. The controls on the front panel of the metal case allow you to vary amplitude and spacing of the displayed signals.

MODEL MPX101

FULLY ASSEMBLED & TESTED!

$99.88

NOT A KIT

SPECIFICATIONS

- Inputs: 8 signals plus ground via 9 input leads terminated with alligator clips
- Bandwidth: ± 1dB to 5 MHz
- Impedance: 10.8 K
- Input Voltage: ± 5 V Peak (diode clamped to ± 5 Volt supplies)
- Output: Staircase waveform summed with input signals; 0-800 mV full scale
- Step Amplitude: Variable 0 to 150 mV/step
- Signal Voltage: Variable 0 to 150 mV/step
- Multiflex Rate: Switch selectable. 40 KHz or 4 KHz
- Impedance: 50 Ohms
- Power: 105-135 VAC @ 1.5 VA
- Dimensions: 8.25" x 3.25" x 4.75" (WxHxD)
- Operating Temperature: 0-40°C
- Weight: 1 lb. 10.5 oz.
- Warranty: one year full replacement warranty from date of purchase
- Wood grain finished metal case

DISTRIBUTOR AND REPRESENTATIVE INQUIRIES INVITED

E.W. ENGINEERING, INC.

VISA, MASTERCARD, AMEX TELEPHONE ORDERS ACCEPTED
6 Herman Drive, E. Granby, CT 06026 □ 203/651-0285

CIRCLE 61 ON FREE INFORMATION CARD
High-power microwave FET's

Most power MOSFET's developed so far have been low-frequency devices that are mainly used in switching and audio applications. Thus, silicon bipolar transistors have handled the workload in the design of VHF, UHF, and microwave equipment.

However, it now appears that recent improvements in MOSFET technology will make possible transistors that can handle appreciable amounts of power in the GHz-range, yet provide several advantages over the silicon bipolar transistor. Among the advantages are: DC bias unaffected by temperature fluctuations, higher input-impedance, and lower output-impedance.

![Figure 1](image1.png)

The FET is a voltage-driven device so it is ideal for use in Class-A and -AB amplifiers, and other amplifiers that require linear transfer characteristics.

The new high-frequency power MOSFET is called the Power Silicon FET (PSIFET) by the developer—Microwave Semiconductor Corp., 100 School House Rd., Somerset, NJ 08873. It is the result of work advanced by Microwave Semiconductor after J. Nishizawa of Mitsubishi proposed that a JFET with a very short vertical channel would provide superior microwave performance.

The PSIFET uses a short-channel vertical JFET configuration similar to that of the TMOS FET described in the February column. Like other vertical-channel FET's, both gate and source are formed on the top surface of the silicon die and the drain is on the bottom as shown in Fig. 1.

In the conventional JFET, the gate voltage controls the cross-section of the lateral source-to-drain channel; thus it also controls the channel's resistance and the current flowing through it. Note that in the PSIFET, the channel is always fully depleted (completely devoid of holes and free electrons), although the electric potential in the depletion area varies with gate voltage.

The electric potential in the channel's depletion region forms a barrier that tends to block electron flow between the source and drain. However, if a sufficiently high voltage is applied to the drain, it generates an electrostatic field that counteracts the poten-
That allows electrons to be injected from the source into the drain.

Figure 2 shows the distribution of the electric potential in the PSIFET. We can see that the source-to-drain current must flow through a potential "neck." That neck impedes electron flow to a degree determined by the gate and drain voltages. (That's similar to the action of the grid of a triode vacuum tube in controlling plate voltages.)

A more negative voltage on the gate increases the potential in the neck and reduces drain current. A more positive drain voltage increases drain current by pulling down the potential in the neck. You "old timers" will immediately recognize the triode-like performance of the voltage-current characteristics curves in Fig. 3.

Despite its non-saturating traits, the PSIFET is similar in operation to a silicon bipolar-transistor. The most important difference is that the neutral p-type base has been replaced by a depleted n-type region. Injected carriers in the PSIFET are majority carriers—not minority carriers—and they travel by drift, not diffusion.

PSIFET design
The design configuration of the PSIFET is unique and differs from other vertical FET's. In the PSIFET's design, individual source sites (see Fig. 4) run at right angles to the length of the source metallization fingers and extends across their width. That layout allows the use of wide gate and source metal-fingers as compared to the 1 to 2 fingers in other microwave silicon FET designs. The wide fingers keep current density low.

A highly n-doped polysilicon material provides the intimate contact with the source. That removes a metal contact from the sensitive source area and increases reliability during long periods of high-temperature, high-current operation.

Advantages of the PSIFET
Since its carriers travel by drift rather than diffusion, a PSIFET's carrier velocity is higher than that of a bipolar device and can exhibit a higher \(f_t \) (gain-bandwidth product) along with a high breakdown voltage. The PSIFET is relatively insensitive to both long-term and transient exposure to high-energy radiation.

It has a negative temperature coefficient so it is immune to thermal runaway and hot spots at high current levels. The drain area of the PSIFET is spread out on the back side of the die, where it can be closely coupled to a heatsink. The configuration of the new device does not include the thin \(\text{SiO}_2 \) insulating film around the gate area, so it is immune to catastrophic failure due to accumulated static charges.

Extensive tests have been run on PSIFET's at 450 MHz and 1 GHz. Input and output microstrip circuits were used to match the devices to 50-ohm impedances. For the 450-MHz test, a PSIFET with a 5.6 cm gate-width and eight separate...
rate transistor cells, was formed on a 33 × 75 mil die. The transfer characteristics of the device are in Fig. 3. That single die delivers 48.5 watts of saturated CW power with 60% drain efficiency. A similar device with 3.5-cm gate fingers was tested at 1 GHz, and it delivered 21.5 watts saturated CW power at 40% drain efficiency.

Applications
Unless it is quickly superseded by vastly improved technology, we can expect PSIFET's to easily find their way into linear amplifiers for communications applications. It is possible to make 70- to 100-volt V_{DD} CW microwave-power FET's. These would be ideal for low-cost, low-current high-power linear amplifiers. Another possible application is as a high-power modulator for a modulated pulsed-power amplifier chain. We’re going to go on the alert and watch for further developments of the PSIFET. Hope you will also.

Transistor data book
The Small-Signal Transistor Data Book is an all-new 1350-page databook providing the complete specifications and typical performance curves on the more than 1750 Motorola bipolar and FET devices.

The devices covered are packaged in metal-can, plastic, and miniature housings and are grouped together by families.

The first section is the “Selector Guide,” which indexes the transistors into groups according to the headings of the six following chapters. Each chapter has at least three tables listing each device according to a sub-grouping. For example, tables listed in the second chapter (“Plastic-Encapsulated Transistors”) are general-purpose, high-speed switching, RF/UHF/VHF amplifiers, high-voltage, diode, and choppers. The five following chapters are: “Micro-miniature Products” (SOT-23 and SOT-99) which covers those devices contained in surface-mount packaging.

“Metal-Packaged Transistors” covers those devices in TO-18, TO-39, TO-46, TO-52, and TO-72 package options. Included are general-purpose, switching, high-voltage, choppers, Darlins, low-noise amplifiers, and RF amplifiers.

“Multiple Transistors” covers both quad and dual transistors that have been implemented on a common substrate.

“Field-Effect Transistors” includes devices operating from DC to UHF for switching and amplifying applications. They are available in plastic and metal-can packages.

“RF Transistors” characterizes small-signal high-frequency transistors as low-noise amplifiers, oscillators, high-speed switches, Class A linear amplifiers, and Class C amplifiers. Package types include plastic/ceramic stripline and various metal cans.

The wrap-up is an 8-page section of package outline drawings and dimensions and application information. Small-Signal Transistor Data Book (DLZ228) is available for $6.95 per copy (1 to 9 pieces) from Motorola Semiconductor Products, PO Box 20912, Phoenix, AZ 85036.

In the rapidly changing field of electronics, it isn’t surprising to be able to telephone a company many miles away, place an order (the computer tells you it is in stock) and have it delivered within a matter of hours. The surprise comes when you receive the bill.

At CEI, our surprise is that when you call, you will know the full price of your order and the method and cost of delivery. You see, we give you a choice of overnight delivery or a less costly transportation depending on your needs.

Just like our competitors, we can ship your needed part immediately but if you are supplementing your store stock with specials from the CEI catalog why not let us save you the extra cost of immediate delivery.

That’s extra savings to you making our already value priced catalog items even a better deal. Give us a call to find out just how much you can save on our complete selection of electronic parts. But don’t tell your competitors. Leave the surprise for them.

It’s no surprise, CEI saves you money.

1-800-543-3568
1-800-762-3412

CALL TOLL FREE!

CEI
Consolidated Electronics, Incorporated

104

CIRCLE 81 ON FREE INFORMATION CARD
Entryway monitor

How it works

At first glance, the circuit in Fig. 1 may appear a bit complex. However, a closer look shows that it's really a simple circuit made up of only three IC's and a few discrete components, all of which fit nicely into a small project box. The circuit has three main sections: a time delay provided by IC2 (a 741 op-amp); a set/reset flip-flop made up of IC3 (a 4011 quad NAND gate); and a piezo-element driver section consisting of a IC1 (LM3909 LED flasher) and transistor Q1.

With a simple flick of a switch (S4), you can choose either a silent or audible mode. Either way, once tripped, the circuit can only be reset by you. In the silent mode, one of two LED's light to show the status of the circuit. In the audible mode, a piezo buzzer sounds off to show that the circuit has been tripped. In that mode, the buzzer can also double as a door announcer.

You may choose between two audio outputs: warbling tone or constant tone. The warbling-tone effect is produced by IC1, and that is its only function in the circuit. Depending on the value chosen for C2, anything from a warbling tone to a slow pulsed output can be produced. However, if no audio output is desired, the driver section and the piezo element can be eliminated.

Checking the status of the circuit is as simple as pressing a switch, before the delay has timed out. If, when switch S3 is pressed, LED2 lights, all is well. But if LED3...

Ever wonder if a gas or electric company representative came to read the meter while you were out, or if your landlord visited your apartment without your knowledge? Well, wonder no longer! The circuit described here is designed to be your personal watchdog. Figure 1 is a schematic of the watchdog circuit.

NEW IDEAS

This column is devoted to new ideas, circuits, device applications, construction techniques, helpful hints, etc.

All published entries, upon publication, will earn $25. In addition, for U.S. residents only, Popular Electronics will donate their model 333—the Rapid Assembly Circuit Board Holder, having a retail price of $39.95, it features an eight-position rotator adjustment, indexing at 45-degree increments, and six positive lock positions in the vertical plane, giving you a full ten-inch height adjustment for comfortable working.

I agree to the above terms, and grant Radio-Electronics Magazine the right to publish my idea and to subsequently re-publish my idea in collections or compilations of reprints of similar articles. I declare that the information is my original material and that its publication does not violate any other copyright. I also declare that this material has not been previously published.

Title of Idea

Signature

Print Name Date

Street

City State Zip

Mail your idea along with this coupon to: New Ideas, Radio-Electronics, 200 Park Ave., South, New York, NY 10003

MARCH 1985

105
SERVICE CLINIC

The ubiquitous op-amp

UBIQUitous IS A WORD THAT I PICKED up quite a while ago, and I've been trying to use it ever since—Well, now I have the chance! Ubique is Latin for “everywhere you look.” It’s the perfect word to describe op-amps (or operational amplifiers). Op-amp IC’s are showing up in the newer TV sets and are used in a number of applications: vertical oscillators, signal amplifying stages, and so on. In many sets, they are used as the vertical-output amplifier.

Each op-amp has two inputs: The inverting input (denoted by -) and the non-inverting (+) input. By grounding one input, we can get a “straight” amplifier, which will invert the signal or not, depending on the input that’s grounded. By fiddling with the feedback or bias resistors, op-amps can be made to have a very high gain, and also an almost infinite input-impedance!

Servicing video circuits

Figure 1 is a partial schematic of a TV set (ES3 chassis) that uses an op-amp as an vertical-output amplifier. Sets of that type are easy to check; at least this one is. All you need to do is check the waveforms at the input and output. That will tell you all you want to know: Is the darn thing working?

First notice that the input is a sawtooth wave of only 1.2-volts P-P. But at the output, there’s quite a different waveform. That’s because the circuit is driving an inductive load, the vertical yoke. Not only that, the 1.2-volt input has been amplified to 19-volts P-P (a pretty hefty gain), which is needed to provide full deflection.

Now look at the op-amp, IC304, which is configured as a non-inverting amplifier with negative feedback applied to pin 2, the inverting input. That feedback is extremely important in maintaining linear operation of the op-amp. Without it, the op-amp would go to positive saturation whenever pin 1 is more positive than pin 2.

The first step in servicing (after a visual check, of course) is to measure the peak-to-peak voltage of the input and output waveforms with a scope. If you find that the input is OK, but the output isn’t,
measure the operating voltages. If they're in the ballpark, measure some of the resistors and make sure the IC has the full 19 volts DC on pin 5. Then check pin 4 for the normal 11-volt DC output. That is a key voltage; if it's off, the chances are the IC is defective.

Audio circuits

Video stages aren't the only circuits where op-amps are used; it's now becoming common to find them used in audio circuits, as shown in Fig. 2. (I told you they were ubiquitous, didn't I?) Note that the output level is specified at ten times the input.

The circuit is checked in the same way as the previous one—read the DC voltages (input, supply, etc), and then check the DC voltages that are output from the IC. Check both sides of the coupling capacitor, C124—a simple task using a scope. Signal levels on both sides of a coupling capacitor should be identical.

If the input waveform is present at the input side of the capacitor but not at the output, the job is over. (The capacitor is open.) If the coupling capacitor is a low-voltage electrolytic, look there first—it's the most likely trouble spot. Many have been found to be open.

Also, watch for intermittent components; I have found several capacitors that were obviously open, but when unsoldered and taken out, they checked out good! What happens is the capacitor leads open up inside the unit, and when unsoldered, they "heal up!" Always replace capacitors that show that condition; the problem can—and probably will—return if you don't!

So, you can see that the op-amp is a very useful gadget, and one deserving of your attention. You can expect to see more and more of them as time goes by.

R-E

SERVICE QUESTIONS

STRANGE SYMPTOMS

I have an RCA CTC120 chassis that's about to drive me crazy. I've replaced the flyback and the deflection IC (U401), and now the vertical is stretched out so far that the scanning lines are ⅓-inch apart. I have never run into a problem like this.—T.B., Brooks, KY

You're not alone; I have no simple answer. However, I do have a rule of thumb that I follow in cases such as yours. First, let us presume that the reasons for changing the flyback and deflection IC had nothing to do with the present situation. Further, we'll also presume that the vertical problem did not exist before changing those parts.

It would follow, then, that something we did may have introduced the new problem. Hence, I would re-examine every solder connection and component that I'd touched—including the IC itself.

More than that, this job requires a scope. Check the input and output waveforms around the vertical circuits. An overscan that large should stand out like a duck in a teacup.

R-E

AN INNOVATIVE 20 MHz OSCILLOSCOPE THAT EMPHASIZES OPERABILITY

$535*

IWATSU

SS-5702

DC-20 MHz OSCILLOSCOPE

- 6-inch rectangular, parallax-free CRT
- TV-V trigger
- Variable sweep length
- Double Lissajous figure
- 1 mV/div to 10 V/div sensitivity
- 100 ns/div to 0.2 s/div sweep
- Differential input with ADD mode

*User price, including probes.
NEW PRODUCTS

CLEANER/PRESERVATIVE, CRAMOLIN Red Liquid, is a fast-acting, anti-oxidizing lubricant that cleans and preserves metal contact/connector surfaces. Corrosive atmospheric compounds coat metal connections with non-conductive oxide films that increase contact resistance; eventually the film becomes so thick that intermittent signals or complete failure results. CRAMOLIN Red Liquid dissolves oxide films and leaves a long-lasting protective layer.

It is particularly for use on switches, potentiometers, relays, connectors, and interconnecting cables, but the applications are unlimited.

CRAMOLIN Red Liquid is available in 2-ounce bottles (R100C) at $9.95 each and 6-ounce 5%, spray cans (R5) at $6.95 each. —Caig Laboratories, Inc., 1175-0 Industrial Ave. (PO Box 1), Escondido, CA 92025-0051.

LEAD BENDER, model LB-300, is a hand tool for bending component leads to preset dimensions prior to insertion in PC boards. Pointers on the tool set lead distance to match hole-to-hole locations on printed-circuit boards. Setting and bending adjustments are made by turning a thumb wheel to the desired spacing.

Lead wires are held securely during forming to prevent lateral stress on component body; the model LB-300 is designed so that components are always positioned centrally for equal leg length. The suggested price for the model LB-300 is $31.10. —OK Industries, Inc., 3455 Conner Street, Bronx, NY 10475.
NEW IDEAS

continued from page 97

lights, someone has tripped the circuit. The remaining LED provides a visual indication of the delay time.

When the circuit is untripped, a low is applied to the input of IC3-b. Therefore, a high is output at pin 10. Pressing switch S3, test, provides a path to ground through LED2 and causes it to light, indicating that the circuit has not been tripped.

However, pressing the reset switch (S2) causes the flip-flop to change states, which means that pin 10 goes low and pin 11 of IC3-d goes high. Now a press on S3 causes LED3 to light and LED2 remains dark. Also, a delay is provided so that you can enter or leave your apartment without triggering the circuit.

If switch S1 is closed when the delay times out, or the circuit is tripped by someone entering the apartment, IC2 outputs a high. That high is delivered to the input of the flip-flop via diode D1 and resistor R5. That, in turn, causes the flip-flop to change states. Now a high is at the anode of LED3, which means it will light when S3 is pressed, showing that someone has been in your apartment.

The delay time is dependent on the setting of potentiometer R1 and the value of capacitor C1. Make sure that the delay provides ample time for you to enter and check the status of the watchdog circuit, or to leave the apartment. The delay time may be varied to suite your needs using R1.

When switch S1 is tripped, capacitor C1 begins charging through R1 and the voltage at pin 3 of IC2 begins to rise. When that voltage reaches the level of that at pin 2 (set by the R2/R3 series combination), IC2 outputs a high at pin 6, which triggers the flip-flop. That turns LED2 off and LED3 on.

The method of construction is not critical; wirewrap, point-to-point wiring, or a PC board of your own design works fine. Housing for the circuit is again a matter of choice. S1 is a normally-open magnetic, security-type switch, and is mounted at the door so that it makes contact when the door is opened and visa versa when the door is closed. S2 and S3 are normally-open momentary switches, and S4 is a SPST.

With switch S4 engaged, the circuit draws 10–11 milliamps of current, and when open, draws only 5–6 milliamps. If you include the audio portion of the circuit, it can be used to test the operation of the circuit. LEDS 2 and 3 should be red and green, respectively, to make it easier to check the status of the circuit. LED1, the delay time indicator, can be either color. (It's your choice.)

To test the project simply trip the circuit several times and check its status, as shown by the LED's, and listening for the buzzer (if it's included). The unit may also be used at windows along with a loud bell or siren to scare off unwanted visitors. There are other possibilities as well, like triggering hidden video monitor and recorder, etc.—Ronald I. Goers

RESISTOR/CAPACITOR

continued from page 66

capacitors may explode if exposed to reverse or overvoltage conditions.

Aluminum electrolytics are used in filtering, coupling, and bypass applications. Large capacitances, and capacitance that are higher than the nominal value, can be tolerated.

Trimmer capacitors

Trimmer capacitors fall into three categories: multi-turn, single turn, and compression types. Multi-turn capacitors have either glass, quartz, sapphire, plastic, or air dielectrics, while single-turn devices use ceramic, plastic, or air dielectrics. Compression types use a mica dielectric.

Glass, quartz, or air dielectric devices are selected for applications requiring low loss, high Q, stability, and tuning sensitivity. Glass and quartz devices are used at frequencies up to 300 MHz. Air dielectrics are usable at 1 GHz. For frequencies of 1 GHz, sapphire dielectrics offer the best performance.

Ceramic and plastic styles are less expensive, with high grade plastic dielectric devices being usable at frequencies up to 2 GHz.
MARKET CENTER

FOR SALE
CABLE-TV Secrets—the only legal publication of the Cable companies tried for theft. HBO, Movie Channel, Showtime, dechannels, converters, etc. Supplied list included. $3.95. CABLE FACTS, Box 7111, Pataskala, OH 43062.

RESISTORS W/VA/VA% 3 cents. 1% network, precision custom woundwires, $1.00 refundable to: JR INDUSTRIES, 5834 B Swan Creek, Toledo, OH 43614.

FREE catalog featuring scanner accessories, car radios, various detectors, voice scramblers, unusual kits. CAPRI ELECTRONICS, Route 1R, Canton, GA 30520.

CABLE-TV equipment. Binable notch filters for "beeping" channels. Information $1.00. DX VIDEO, PO Box 83-0225, Mading, FL 33063.

DIGITALKER Speech Synthesizer has 126 word vocabulary, Interfaces with parallel port of your computer. PCBs & plans $12.00. JIM RHODES, INC., 1025 Ransom Lane, Kingsport, TN 37660.

WHOLESALE F-59 wire connector $80.00/1000. FREE MAX TV catalog. S.A.S.E. (212) 897-0509.

D&W, 59-12 10th St. Flushing, NY 11375.

DIGITAL BOOKS (714) 672-7721, 1C $3.75, 1B $7.50, 1A $15.00. FREE catalog. 30-1376, 135-53 N Blvd., Flushing, NY 11354.

DIGITAL-WORDS has 135.53 words. Interfaces with parallel port of your computer. PCBs & plans $12.00. JIM RHODES, INC., 1025 Ransom Lane, Kingsport, TN 37660.

DIGITAL-SPEECH has 135.53 words. Interfaces with parallel port of your computer. PCBs & plans $12.00. JIM RHODES, INC., 1025 Ransom Lane, Kingsport, TN 37660.

SECRETIVE-KER Speech Synthesizer has 136 word vocabulary. Interfaces with parallel port of your computer. PCBs & plans $12.00. JIM RHODES, INC., 1025 Ransom Lane, Kingsport, TN 37660.

ORDERS TO BE CABLE ADDRESSED TO: CARPE DIEM, 136-1376 N Blvd., Flushing, NY 11354.

FAX 31-1376, P.O. BOX 1376-2, Milwaukee, WI 53201.

FREE Pay TV Reception "How-To" book. HBO, Showtime, Cinemax. $5.00. DIPRIONS, Box 80 (E4), Lake View, NY 11755.

TUBES, new, unused. Send self-addressed, stamped envelope for free CABLE ELECTRONICS, Box 1376-2, Milwaukee, WI 53201.

FREE Pay TV reception, "How-To" book. HBO, Showtime, Cinemax. $5.00. DIPRIONS, Box 80 (E4), Lake View, NY 11755.

AUTOMOTIVE Security Catalog, 1984, 24-page color catalog. $2.00. ASE, Dept. 1, PO Box 362, Plainview, NY 11803.

THE BEST PLACE to BUY, SELL, OR TRADING NEW & USED ELECTRONICS COMPONENTS and etc. NUTS & VOLS MAGAZINE BOX 1311 E, PACIFIC BEACH, CA 92109 (714) 489-7202. Each Thousand of Adverts. Free online. ONE YEAR U.S. SUBSCRIPTIONS $18.00, 2 yr. $29.00. Payable in advance.

CORDLESS phone owners. Increase distance, reduce static. On 1.9GHz/4.9GHz phones. Details $1.00 refundable. HP PHONES, Box 273, Mass. AZ 85201.

COCO owners—Free color computer software and hardware catalogue. SPECTRUM, Box 9666, San Jose, CA 95157-0666.

INDIVIDUAL photocopy folders. No. 1 to no. 1400. $1.00 postpaid. LUT, 414 Chestnut Lane, East Meadow, NY 11554.

DESKTOP readers for downconverters. High gain. Send $2.00. RR ELECTRONICS, PO Box 843, Kalamazoo, MI 49005.

TOCO Kit set (four) $8.00. B/FQS substitute transistor $2.00. JIM RHODES, INC., 1025 Ransom Lane, Kingsport, TN 37660.

CABLE-TV products. Jerold, Hamlin, and Oak Converters. Send $3.00 for information. ADDITIONAL OUTLET CORP., 141 W. Commercial Blvd., FL Lauderdale, FL 33309.

TOCO coils and printed circuits. Quantity discounts. JIM RHODES, INC., 1025 Ransom Lane, Kingsport, TN 37660.

ELECTRONICS catalog. Over 4,000 items. Parts & components. Everything needed by the hobbyist or technician. $2.00 postage & handling (United States only), refundable with first $15.00 order. T & M ELECTRONICS, 472 East Main Street, Patrocu, NH 03792, (603) 239-2350.

Radio-Electronics Classified Ads, 200 Park Avenue South, N.Y., N.Y. 10003

PLEASE INDICATE in which category of classified advertising you wish your ad to appear. For special headings, there is a surcharge of $20.00.

Special Category: $20.00

PLEASE PRINT EACH WORD SEPARATELY, IN BLOCK LETTERS. (No refunds or credits for typographical errors can be made unless your ad is clear or type or your copy). Rates indicated are for standard style classified ads only. See below for additional special charges for ads. Minimum: 15 words.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15 ($37.50)</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20 ($50.00)</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25 ($52.50)</td>
</tr>
<tr>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30 ($75.00)</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35 ($87.50)</td>
</tr>
</tbody>
</table>

We accept MasterCard and Visa for payment of orders. If you wish to use your credit card to pay for your ad fill in the following additional information (Sorry, no telephone orders can be accepted).

Card Number
Expiration Date

Signature

IF YOU USE A BOX NUMBER YOU MUST INCLUDE YOUR PERMANENT ADDRESS AND PHONE NUMBER FOR OUR FILES. ADS SUBMITTED WITHOUT THIS INFORMATION WILL NOT BE ACCEPTED.

CLASSIFIED COMMERCIAL RATE: (for firms or individuals offering commercial products or services) $2.50 per word prepaid (no charge for zip code). MINIMUM 15 WORDS! 20% discount for same ad in 8 issues; 10% discount for same ad in 12 issues within one year; if prepaid. NON-COMMERCIAL RATE: (for individuals who want to buy or sell a personal item or $2.00 per word, prepaid; no minimum, only first word and name set in bold caps at no extra charge. Additional bold face (not available as cash) 25¢ per word additional (20% premium). Entire ad in boldface, add 20%, premium to total price. TINT SCREEN BEHIND ENTIRE AD: add $5.00 to total price. TINT SCREEN BEHIND ENTIRE AD PLUS ALL BOLD FACE AD: add $3.00 premium to total price. EXPANDED TYPE AD: $3.00 per word prepaid. All other items same as for STANDARD COMMERCIAL RATE. TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD: add $3.00 premium to total price. DISPLAY ADS: $3.00 plus $10.00 per line, no minimum. All ADs SUBJECT TO PUBLISHERS' APPROVAL. ADVERTISEMENTS USING P.O. BOX ADDRESS WILL NOT BE ACCEPTED UNLESS ADVERTISER SUPPLIES PUBLISHER WITH PERMANENT ADDRESS AND PHONE NUMBER. Copy to be in our hands on the 15th of the third month preceding the date of the issue. (i.e., August issue copy must be received by May 15th). WHEN normal closing date falls on Saturday, Sunday or Holiday, issue closes on preceding working day.
Radio Shack Parts Place

The Store for Builders Since 1921—Over 1000 Items in Stock.

4000-Series CMOS ICs

With Pin-Out and Specs

<table>
<thead>
<tr>
<th>Type</th>
<th>Cat. No.</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000</td>
<td>276-2401</td>
<td>99</td>
</tr>
<tr>
<td>4011</td>
<td>276-2411</td>
<td>99</td>
</tr>
<tr>
<td>4012</td>
<td>276-2413</td>
<td>5.99</td>
</tr>
<tr>
<td>4014</td>
<td>276-2421</td>
<td>1.19</td>
</tr>
<tr>
<td>4049</td>
<td>276-2449</td>
<td>1.19</td>
</tr>
<tr>
<td>4066</td>
<td>276-2456</td>
<td>1.19</td>
</tr>
</tbody>
</table>

MOV Transient Protectors

<table>
<thead>
<tr>
<th>Power Diss.</th>
<th>Cat. No.</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>900 mW</td>
<td>276-570</td>
<td>1.58</td>
</tr>
<tr>
<td>1 watt</td>
<td>276-556</td>
<td>1.69</td>
</tr>
</tbody>
</table>

Electret Mike Elements

PC Board Mount, Omnidirectional, 2-10 VDC with very low Current drain, 1 milamps max., 20 kHz ± 4 dB, 3.8 mm high, 270-1060...

Voltage Regulators

<table>
<thead>
<tr>
<th>Type</th>
<th>Adjustable</th>
<th>Cat. No.</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM723</td>
<td>0 to 40 VDC</td>
<td>276-1740</td>
<td>1.99</td>
</tr>
<tr>
<td>LM317T</td>
<td>0.6 to 37 VDC</td>
<td>276-1778</td>
<td>2.79</td>
</tr>
</tbody>
</table>

Replacement Transistors

<table>
<thead>
<tr>
<th>Type</th>
<th>Cat. No.</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N1305</td>
<td>NPN</td>
<td>276-3007</td>
</tr>
<tr>
<td>2N3054</td>
<td>PNP</td>
<td>276-3009</td>
</tr>
<tr>
<td>2N3904</td>
<td>NPN</td>
<td>276-3016</td>
</tr>
<tr>
<td>2N3905</td>
<td>NPN</td>
<td>276-3017</td>
</tr>
<tr>
<td>2N3906</td>
<td>NPN</td>
<td>276-3018</td>
</tr>
<tr>
<td>2N3908</td>
<td>NPN</td>
<td>276-3028</td>
</tr>
<tr>
<td>2N3909</td>
<td>NPN</td>
<td>276-3029</td>
</tr>
<tr>
<td>2N3910</td>
<td>NPN</td>
<td>276-3030</td>
</tr>
<tr>
<td>2N3911</td>
<td>NPN</td>
<td>276-3031</td>
</tr>
<tr>
<td>2N3912</td>
<td>NPN</td>
<td>276-3032</td>
</tr>
</tbody>
</table>

Power Transformers

120 VAC Primaries

<table>
<thead>
<tr>
<th>Type</th>
<th>Volts</th>
<th>Current</th>
<th>Cat. No.</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC Mini</td>
<td>120</td>
<td>120 mA</td>
<td>273-1350</td>
<td>2.49</td>
</tr>
<tr>
<td>Miniature</td>
<td>120</td>
<td>300 mA</td>
<td>273-1354</td>
<td>2.59</td>
</tr>
<tr>
<td>Miniature</td>
<td>120</td>
<td>350 mA</td>
<td>273-1355</td>
<td>2.79</td>
</tr>
<tr>
<td>Miniature</td>
<td>115</td>
<td>300 mA</td>
<td>273-1356</td>
<td>2.49</td>
</tr>
<tr>
<td>Miniature</td>
<td>115</td>
<td>350 mA</td>
<td>273-1357</td>
<td>2.59</td>
</tr>
<tr>
<td>Miniature</td>
<td>115</td>
<td>450 mA</td>
<td>273-1358</td>
<td>2.99</td>
</tr>
<tr>
<td>Standard</td>
<td>120</td>
<td>1 A</td>
<td>273-1359</td>
<td>3.99</td>
</tr>
<tr>
<td>Standard</td>
<td>120</td>
<td>1.2 A</td>
<td>273-1360</td>
<td>4.99</td>
</tr>
<tr>
<td>Standard</td>
<td>25</td>
<td>1.2 A</td>
<td>273-1361</td>
<td>3.99</td>
</tr>
<tr>
<td>Standard</td>
<td>25</td>
<td>1.5 A</td>
<td>273-1362</td>
<td>5.99</td>
</tr>
<tr>
<td>Heavy-Duty</td>
<td>120</td>
<td>3 A</td>
<td>273-1351</td>
<td>5.99</td>
</tr>
<tr>
<td>Heavy-Duty</td>
<td>115</td>
<td>3 A</td>
<td>273-1352</td>
<td>5.99</td>
</tr>
<tr>
<td>Heavy-Duty</td>
<td>115</td>
<td>4 A</td>
<td>273-1353</td>
<td>7.99</td>
</tr>
</tbody>
</table>

CT = Carbon Tap

MOLE

Understanding Electronic Control of Energy Systems

Leads how modern electronics and computers are used to control electric motors, generators, internal combustion engines, heating and air conditioning, solar systems, and nuclear energy. Easy to understand, fully illustrated.

Lever Switches

Heavy-duty types with 200 mA lever. Rated 8 amps at 250 VAC. Thru x 1½ x ½". 12 each. Requires 3½" of mounting hole.

Communication ICs SALE!

SPECIAL PURCHASE!

Save $1507

43-Range Multimeter With Range-Doubler

4116: Highest quality! 250 ns access. Why gamble with 100 nanosecond models? Upgrade your computer now at huge savings. 276-2503...

16K Dynamic RAM 8-PACK

SPECIAL PURCHASE!

Pkg. of 8 for $795

36-Range Multimeter With Range-Doubler

Save $1507

2288 Reg. 39.95

Siased 38%. The big 4½-digit, dual-overcurrent, zero-based digit display is easy to read. Rangefinder/switch provides extra accuracy on voltage and current ranges. Excellent single-knob function switch. DC volts 0 to 1000, 12 ranges AC volts, 0 to 600, 10 ranges DC current. Includes 10 ranges DC current. 0 to 10 amps, 8 ranges. Resistance: 0 to 20 megohms, 8 ranges (10 ohm center scale). Decibels: 100 to 80, 8 ranges. Accuracy: ±3% DC, ±4% AC. 8½x1¼x5½". Fused and overvoltage protected. Requires one "AA" cell, 9V battery. 223-2004... Sale 24.88

A DIVISION OF TANDY CORPORATION

Prices apply at participating Radio Shack stores and dealers.

CIRCLE 78 ON FREE INFORMATION CARD

MARCH 1985

OVER 8800 LOCATIONS WORLDWIDE

www.americanradiohistory.com
CABLE television secrets fully revealed! HBO, Cinematix, and more. $5 00 to MR. J, 566 E 29th, Tucson, AZ 85711.

CABLE-TV converters, police radar detectors and scanners. Send $1 for catalog. GREAT LAKES COMM., INC., 6-2921 Chicago Dr., Jenison, MI 49428.

IMPORTS—discounts, stereos, boosters, speakers, tools, more! List $1.00 (refundable). J.R.C., 329 76th, N. Bergen, NJ 07647.

CABLE-TV, converters, 8 VCRs. Unlock the mystery of recording one channel while watching another. $29.45, diagrams, instructions, ADDITIONAL OUTLET CO., 105 W Commerical Blvd. Ft. Lauderdale, FL 33309.

FREE catalog featuring lowest price on electronic test equipment and parts. EF ELECTRONICS, 10 Allen, Aurora, IL 60504.

COMPLETE line of electronics for the home television-hobbyist. Integrated circuits, radios, cables, and much more. We have over a $ of million dollars in parts stocked. COD welcome. UPS daily. Information, COD's call (301) 574-1700 or 7683. Call or write for free catalog to S.E. CORPORATION, PO Box 934, Baltimore, MD 21237.

Hi voltage supply DC outputs 16 KV, 400 W. 50 Hz. Now replaces ALLOY 120 W. New, over 40 components. Schematic, parts list, and much more. 1979 price, MINITRON, POB 285, Beltsville, MD 20705.

LIST a nd details. Will take best offer. OSCHIN AUDIO. 1901 MCGEE STREET WOODBRIDGE, NJ 07095.

FLUKE INSTRUMENTS. FLUKE 8021 B $139 FLUKE 8020B $170 FLUKE 77 $88 FLUKE 8021 $115 FLUKE 8020B $170 FLUKE 8021B $139 FLUKE 8022B $125 FLUKE 80224 $174 SOAR $22 SOAR ME $44.

NEW ORLEANS AND WM. B. ALLEN

UP TO 25% OFF ON LARGEST FULL LINE INVENTORY OF HAND HELD METERS FOR EXAMPLE

FLUKE 75 $75 FLUKE 75 $88 FLUKE 77 $115 FLUKE 8020B $170 FLUKE 8021 $139 FLUKE 8022B $125 FLUKE 80224 $174 SOAR $22 SOAR ME $44.

AS CLOSE AS YOUR TELEPHONE CALL TOLL FREE FOR SAME DAY SHIPMENT ON DISCOUNT PRICED TEST EQUIPMENT

16 LEADING MANUFACTURERS IN INSTRUMENTATION INCLUDING HUNTRON

NEW ORLEANS AND WM. B. ALLEN

UP TO 28.5% OFF ON HITACHI SCOPES

SAVE UP TO $480

V212 200V SAVE $184 $451
V222 200V SAVE $191 $454
V422 400V SAVE $240 $679
V650F 600V SAVE $257 $938
V226 400V SAVE $120 $392
V1050F 1000V SAVE $343 $1452
V555V 1000V SAVE $480 $1204
V99 Waveform SAVE $480 $882

All Prices Include FREE $50 Probe
PLANS AND KITS

MAIL ORDER: U.S.J.
PO Box 169
Racine, Wisconsin 53401

FREE catalog, 99 cent kits—audio, video, TV, computer parts. ALL KIT, 434 West 4th Street, West Springfield, MA 01089.

CABLE-TV CONVERSIONS

- **Deluxe** antennas, Hamlin, SB-3.
- **AV** Kits, professional. Contact: H. Harlow, Inc. 741212, Hams, CA 92530.
- **Electronic** antennas, Hamlin, SB-3. Contact: H. Harlow, Inc. 741212, Hams, CA 92530.
- **Digital** antennas, Hamlin, SB-3. Contact: H. Harlow, Inc. 741212, Hams, CA 92530.

ELECTRONIC KITS, LTD, 744259, Racine, WI 53401.

ATTENTION ELECTRONIC TECHNICIANS

Coax Institute of Electronics Engineering, P.O. Box 2043, Morristown, NJ 07960.

DESCRAMBLER plans

New design decodes gated sync superimposed signals — newest process method. Circuit boards, most parts from Radio Shack, compatible with all brands. Contact: H. Harlow, Inc. 741212, Hams, CA 92530.

DIGITAL Oscilloscopes

- **General** digital oscilloscopes. Contact: H. Harlow, Inc. 741212, Hams, CA 92530.
- **Mark II** digital oscilloscopes. Contact: H. Harlow, Inc. 741212, Hams, CA 92530.
- **Digital** oscilloscopes. Contact: H. Harlow, Inc. 741212, Hams, CA 92530.

ELECTRONIC KITS, LTD, 744259, Racine, WI 53401.

EPROM programmer—271-571, 2328714. Operates alone (keypad, display, 2K RAM) or with computer downloading (R5232 Interface). Basic kit includes hardware and software documentation, $115.00. Free details. ELEC-TRONICS, PO Box 703, Seabrook, MA 02070.

PLANS AND KITS

MAIL ORDER: U.S.J.
PO Box 169
Racine, Wisconsin 53401

FREE catalog, 99 cent kits—audio, video, TV, computer parts. ALL KIT, 434 West 4th Street, West Springfield, MA 01089.

CABLE-TV CONVERSIONS

- **Deluxe** antennas, Hamlin, SB-3.
- **AV** Kits, professional. Contact: H. Harlow, Inc. 741212, Hams, CA 92530.
- **Electronic** antennas, Hamlin, SB-3. Contact: H. Harlow, Inc. 741212, Hams, CA 92530.
- **Digital** antennas, Hamlin, SB-3. Contact: H. Harlow, Inc. 741212, Hams, CA 92530.

ELECTRONIC KITS, LTD, 744259, Racine, WI 53401.

ATTENTION ELECTRONIC TECHNICIANS

Coax Institute of Electronics Engineering, P.O. Box 2043, Morristown, NJ 07960.

DESCRAMBLER plans

New design decodes gated sync superimposed signals — newest process method. Circuit boards, most parts from Radio Shack, compatible with all brands. Contact: H. Harlow, Inc. 741212, Hams, CA 92530.

DIGITAL Oscilloscopes

- **General** digital oscilloscopes. Contact: H. Harlow, Inc. 741212, Hams, CA 92530.
- **Mark II** digital oscilloscopes. Contact: H. Harlow, Inc. 741212, Hams, CA 92530.
- **Digital** oscilloscopes. Contact: H. Harlow, Inc. 741212, Hams, CA 92530.

ELECTRONIC KITS, LTD, 744259, Racine, WI 53401.

EPROM programmer—271-571, 2328714. Operates alone (keypad, display, 2K RAM) or with computer downloading (R5232 Interface). Basic kit includes hardware and software documentation, $115.00. Free details. ELEC-TRONICS, PO Box 703, Seabrook, MA 02070.

PLANS AND KITS

MAIL ORDER: U.S.J.
PO Box 169
Racine, Wisconsin 53401

FREE catalog, 99 cent kits—audio, video, TV, computer parts. ALL KIT, 434 West 4th Street, West Springfield, MA 01089.

CABLE-TV CONVERSIONS

- **Deluxe** antennas, Hamlin, SB-3.
- **AV** Kits, professional. Contact: H. Harlow, Inc. 741212, Hams, CA 92530.
- **Electronic** antennas, Hamlin, SB-3. Contact: H. Harlow, Inc. 741212, Hams, CA 92530.
- **Digital** antennas, Hamlin, SB-3. Contact: H. Harlow, Inc. 741212, Hams, CA 92530.

ELECTRONIC KITS, LTD, 744259, Racine, WI 53401.

ATTENTION ELECTRONIC TECHNICIANS

Coax Institute of Electronics Engineering, P.O. Box 2043, Morristown, NJ 07960.

DESCRAMBLER plans

New design decodes gated sync superimposed signals — newest process method. Circuit boards, most parts from Radio Shack, compatible with all brands. Contact: H. Harlow, Inc. 741212, Hams, CA 92530.

DIGITAL Oscilloscopes

- **General** digital oscilloscopes. Contact: H. Harlow, Inc. 741212, Hams, CA 92530.
- **Mark II** digital oscilloscopes. Contact: H. Harlow, Inc. 741212, Hams, CA 92530.
- **Digital** oscilloscopes. Contact: H. Harlow, Inc. 741212, Hams, CA 92530.

ELECTRONIC KITS, LTD, 744259, Racine, WI 53401.

EPROM programmer—271-571, 2328714. Operates alone (keypad, display, 2K RAM) or with computer downloading (R5232 Interface). Basic kit includes hardware and software documentation, $115.00. Free details. ELEC-TRONICS, PO Box 703, Seabrook, MA 02070.

PLANS AND KITS

MAIL ORDER: U.S.J.
PO Box 169
Racine, Wisconsin 53401

FREE catalog, 99 cent kits—audio, video, TV, computer parts. ALL KIT, 434 West 4th Street, West Springfield, MA 01089.

CABLE-TV CONVERSIONS

- **Deluxe** antennas, Hamlin, SB-3.
- **AV** Kits, professional. Contact: H. Harlow, Inc. 741212, Hams, CA 92530.
- **Electronic** antennas, Hamlin, SB-3. Contact: H. Harlow, Inc. 741212, Hams, CA 92530.
- **Digital** antennas, Hamlin, SB-3. Contact: H. Harlow, Inc. 741212, Hams, CA 92530.

ELECTRONIC KITS, LTD, 744259, Racine, WI 53401.

ATTENTION ELECTRONIC TECHNICIANS

Coax Institute of Electronics Engineering, P.O. Box 2043, Morristown, NJ 07960.

DESCRAMBLER plans

New design decodes gated sync superimposed signals — newest process method. Circuit boards, most parts from Radio Shack, compatible with all brands. Contact: H. Harlow, Inc. 741212, Hams, CA 92530.

DIGITAL Oscilloscopes

- **General** digital oscilloscopes. Contact: H. Harlow, Inc. 741212, Hams, CA 92530.
- **Mark II** digital oscilloscopes. Contact: H. Harlow, Inc. 741212, Hams, CA 92530.
- **Digital** oscilloscopes. Contact: H. Harlow, Inc. 741212, Hams, CA 92530.

ELECTRONIC KITS, LTD, 744259, Racine, WI 53401.

EPROM programmer—271-571, 2328714. Operates alone (keypad, display, 2K RAM) or with computer downloading (R5232 Interface). Basic kit includes hardware and software documentation, $115.00. Free details. ELEC-TRONICS, PO Box 703, Seabrook, MA 02070.
STOP DREAMING
START BUILDING

HANDY MAKES IT EASY!
Build anything from computers to LED flashers... any project you want the fast, easy, fun way. Use HANDY solderless breadboards to build, test, modify and expand your ideas.

SATISFACTION GUARANTEED OR YOUR MONEY BACK!

JUST LOOK AT THESE SOCKET FEATURES...
• Full contact labeling — simplifies component layouts
• New durable clip design assures reliable, low resistance, corrosion-free interconnections
• High temp plastic — no warping or melting... ever!
• Self-adhesive backing — mounts anywhere
• Big 9 14-pin IC capacity per socket
• Expand horizontally and vertically

FOR LESS!
Available at Selected Distributors throughout the USA and Canada
HANDY PRICES ARE UP TO 25% LESS THAN COMPETITORS!

SEND FOR FREE Colorful Brochure!

CIRCLE 71 ON FREE INFORMATION CARD

Handy
a division of RSP Electronics Corp.
7 Business Park Drive • P.O. Box 699 • Branford, CT 06405
Telephone: (203) 488-6603 CompuServe: 71346, 1070
TWX: (910) 997-0648 Easy Link Mail Box: 62537580
SATELLITE TELEVISION

SATELLITE-TV receiver breakthrough! Build your own system and save instruction manuals, schematics, circuit board! Send stamped envelope XANDI, Box 25647, Dept. 219, Tempe, AZ 85282.

SATELLITE systems and accessories, Dishes, receivers, LNA, excitors. Top brand, low prices. $2.00 catalog. BATELELECTRONICS, PO Box 3156, Grand Rapids, MI 49501.

PCB for Satellite Stereo Project in October article is now only $15.00. JIM RHODES, INC., 1023 Ransome Lane, Kingsport, TN 37660.

ENJOY SATELLITE TV

DO-IT-YOURSELF AND SAVE

Electronic know-how not required. Easy to build from our plans or kits. Proves in satellite television Send $1 for catalog or send for Consumer Guide to Satellite Television

Call TOLL FREE 800-845-4808

THE BEST PRICES

SAT TV Receiver $849.00. Information $1.00. STARLINK, INC., 1122 Park Plaza, Suite 47, Huntsville, AL 35801.

FINEST QUALITY SOLDER

SN 60/40 Rosin Core (RA)

FREE Freight On All Orders

$62.50 96.75

Call TOLL FREE

800-845-4808

DO-IT-YOURSELF TV REPAIR

NEW! Repair any TV. Easy. Anyone can do it. Write, RESEARCH, R.G. Box 601 SP, Colville, WA 99114.

EDUCATION & INSTRUCTION

EDUCATION & INSTRUCTION

FCC Commercial General Radiotelephone License Correspondence Course, 80 individual lessons for $89.50. Payment plan. Results guaranteed! Details free. AMERICAN TECHNICAL INSTITUTE, Box 201, Cedar Mountain, NC 28718.

SAVE $$$

BIG DISCOUNTS on current electronics, computer hardware/software books, electronic test equipment & electronic type writer/printers. Send name & address for free catalog.

DISCOUNT TEXTS

P.O. BOX 76503

Los Angeles, CA 90078

This is an expanded type ad. Notice how it stands out on this page. To get your ad set in this type style mark your classified ad order, "Expanded type ad," and calculate your cost at $3.75 per word.

This is a boldface expanded ad. If you like this format, request it. Your cost is $3.75 per word, plus 45% for the boldface and tint background.

CABLE TV

DEALERS wanted: Channel 2, 3, and 4-notch filters. Money back guarantee. Send $15.00 for sample and quantity price list. Specify channels. LEE KURTZ, PO Box 291394, Dana, FL 33329.

CB MODIFICATIONS

Increase channels, range, privacy. We specialize in frequency expanders, speech processors, FM converters, PLL & slide tricks, how-to-books, plants, kits, Expert mail-in repairs & conversions. 16-page catalog 52.

CIRCLE 264 ON FREE INFORMATION CARD

SATELLITE television system $849.00. Information $1.00. STARLINK, INC., 1122 Park Plaza, Suite 47, Huntsville, AL 35801.
PARTIAL LISTING ONLY - PLEASE CALL OR WRITE FOR FREE CATALOG.

CAPACITORS

- ELECTROLYTIC
 - RADIAL
 - AXIAL
 - MOUNTED IN A ENCLOSURE

DISK DRIVES

- FORCE
- DISK
- MULTIFUNCTION
- FDD, DS/DD
- CASE.

VOLTAGE REGULATORS

- CMOS

CMOS

ORDER TOLL FREE

800-538-5000
800-662-6279 (CA)

ACCESORIES & PERIPHERALS

FOR IBM

- MAXIMIZER Memory Multi function
- HAYES SMARTMODEM 1200B
- 1.5OW POWER SUPPLY
- TEAC FD-555 1/2 W, Disc Drive, DS/DD
- MPI-B52 8"66 DD
- PROTOTYPE CARD
- PROTOTYPE CARD WITH CABLED

FOR APPLE

- JDR 16K RAM CARD
- EPROM PROGRAMMER RPS25
- PRINTMAX Parallel printer interface
- BAL-500 1/2 W, Disc Drive, Tape Mechanism
- DUAL 500 1/2 W, Disc Drive, Tape Mechanism
- MTAC AD-1 Full Height, Manger Support
- DISK CONTROLLER CARD
- VIEWER-60 60 Column Fax Apparatus
- VIEWMAX-80s 80 Column For Apple II
- THUNDERCLOCK OFFICIAL PROGRAM DISC
- KRAFT JOYSTICK
- GOW POWER SUPPLY

MICELLIANEOUS

- ZENITH ZVM-123 15 MHz Green Monitor
- NEC JD1201M 20 MHz Green Monitor
- BIC BM-A911U Comp. 13" Color Monitor
- BIC EX-SX PRINTER
- NASHUA DISKETTES 56-80 Box of 10
- VERBATEM DATALIFE DISKETTES DS BD
- DISKETTE FILE Holds 70 Diskettes

IC SOCKETS

- 100 100
- 8 pin ST 13 11
- 14 pin ST 16 12
- 16 pin ST 19 17
- 20 pin ST 21 18
- 22 pin ST 23 19
- 24 pin ST 25 21
- 28 pin ST 27 23
- 30 pin ST 29 25
- 32 pin ST 31 29
- 36 pin ST 34 29
- 40 pin ST 40 31
- 45 pin ST 45 31
- 60 pin ST 60 31
- 80 pin ST 80 31
- 100 pin ST 100 31

BYPASS CAPS

- 800 800
- 500 500
- 250 250
- 100 100
- 50 50
- 25 25
- 10 10

DISKETTE FILE

- $8.95
- IF PURCHASED WITH 50 DISKETTES OR MORE
- 49.95% if purchased alone

NASHUA DISKETTES

- 56/80 SECTOR
- DOUBLE SIDED, DOUBLE DENSITY WITH HUB RINGS
- BULK PACKAGED IN FACTORY SEALED BAGS OF 50, INCLUDES DISKETTE SLEEVES AND WRITE PROTECT TABS IDEAL FOR SCHOOL CURRICULUM AND USER GROUPS. THIS IS A SPECIAL PURCHASE. QUANTITIES ARE LIMITED. 5 YEAR WARRANTY.

$1.39 ea. $1.49 ea. $1.59 ea.

D-SUBMINIATURE

- 9000
- 9334
- 9402

INTERISL

- 9002

DIP SWITCHES

- MOUNTING HARDWARE $1.00

RIBBON CABLE

- 36 PIN CENTRONICS
- 16 PIN CENTRONICS

VOLTAGE REGULATORS

- CMOS

CMOS

ORDER TOLL FREE

800-538-5000
800-662-6279 (CA)

CIRCLE 113 ON FREE INFORMATION CARD

MARCH 1985

www.americanradiohistory.com
FREE CATALOG

This new Spectrum Electronics 116 page catalog contains Electronic Parts, Tools, and Test Equipment to serve all of your technical and service needs.

The 116 pages are fully illustrated, with prices you can count on. All products are guaranteed.

CALL TOLL FREE

1-800-523-0721

In PA 215-748-3010

Mail To: 6930 Market St. Phila., PA 19139

Name:
Company:
Address:

City State Zip

10th ANNIVERSARY SALE-A-BRATION
“1974 PRICES” ARE BACK

MECHANICAL TUNER UNIF. VENT TUNING
$7.50 1/8" OR 1/4" BORE

PC DRILL $ 5.30
SOLID CARBIDE 1/8" $ 3.90
143 1/4" SHANK

LINE CORD 5 FT. LONG 2 WIRE BLACK 3/44.80

REED SWITCH SPST 10A 1/4" 30/0.05

DB-255 FEMALE $ 2.89

MOV $ 1.00

CHOSES 1/16" 1/8" 1/4" 3/8" 1/2" 5/8" 3/4" $ 0.19

MATCHING TRANSFORMER 75/1000 OHM, AUTO TYPE $ 1.30 ea.

LED’S $ 0.30 ea.

RELAY MINIATURE DPST 24 VAC $ 0.60 ea.

SIZABLES 3/4" 1" 1-1/4" 1-1/2" 2" $ 0.75 ea.

CAPACITORS

FITMENTS $ 0.19 ea.

RESISTORS $ 0.04 ea.

DIODES $ 0.25 ea.

TRANSISTOR $ 0.35 ea.

HEAT RING $ 0.50 ea.

ALUMINUM EQUIMENT CABINET
4 X 12" X 3-1/2" $40. FOR HEAVY GAGE ALONUM (1/16" SIDEWALLED) WITH ATTACTIVE BLACK FINISH, GREAT FOR ALL SORTS OF TEST AND COMPUTER ROUTINE. FRONT PANEL IS BURNED FOR COUNTER/DVM USE (EASILY COVERED), REAR PANEL HAS OPENINGS FOR TN P/TVI WILL, SWITCH, ETC.

END STACKABLE LED VU METER

M-4275

WT 0.1 LB

NATIONAL MS 3916-9 INCLUDES 10 ELEMENT LED LINEAR ARRAY WITH AN LM3916 DECORDER/OVERRIDE. THRESHOLDS ARE SET AT COMMON POINTS THE FIRST 7 LEDS ARE GREEN, THE LAST 3 ARE RED. 2-1/4" 0.85" OVERALL OPERATING FROM 3 TO 24 VDC, 150 HZ, 100% FUNCTIONAL. DATA - .504

7-12 VDC LED CLOCK

$ 195

7-12 VDC LED CLOCK

$ 195

SOUND EFFECTS P/B BOARD FEPA! FEPA! FEPA! WE ARE

COMPLETE! OPERATING ASSY. HAS PLACED LIGHTS LONG DUTY 2-1/4" SPEAKER. BENCH ON 9-12 VDC MAKES SIREN & EXPLOSION SOUNDS, BUT YOU CAN RE-PROGRAM THE 747474 TO MAKE LOTS OF OTHERS

TO-1560 WT 0.2 LB

$ 195

END STACKABLE LED VU METER

M-4275

WT 0.1 LB

NATIONAL MS 3916-9 INCLUDES 10 ELEMENT LED LINEAR ARRAY WITH AN LM3916 DECORDER/OVERRIDE. THRESHOLDS ARE SET AT COMMON POINTS THE FIRST 7 LEDS ARE GREEN, THE LAST 3 ARE RED. 2-1/4" 0.85" OVERALL OPERATING FROM 3 TO 24 VDC, 150 HZ, 100% FUNCTIONAL. DATA - .504

7-12 VDC LED CLOCK

$ 195

7-12 VDC LED CLOCK

$ 195

SOUND EFFECTS P/B BOARD FEPA! FEPA! FEPA! WE ARE

COMPLETE! OPERATING ASSY. HAS PLACED LIGHTS LONG DUTY 2-1/4" SPEAKER. BENCH ON 9-12 VDC MAKES SIREN & EXPLOSION SOUNDS, BUT YOU CAN RE-PROGRAM THE 747474 TO MAKE LOTS OF OTHERS

TO-1560 WT 0.2 LB

$ 195

END STACKABLE LED VU METER

M-4275

WT 0.1 LB

NATIONAL MS 3916-9 INCLUDES 10 ELEMENT LED LINEAR ARRAY WITH AN LM3916 DECORDER/OVERRIDE. THRESHOLDS ARE SET AT COMMON POINTS THE FIRST 7 LEDS ARE GREEN, THE LAST 3 ARE RED. 2-1/4" 0.85" OVERALL OPERATING FROM 3 TO 24 VDC, 150 HZ, 100% FUNCTIONAL. DATA - .504

7-12 VDC LED CLOCK

$ 195

7-12 VDC LED CLOCK

$ 195

SOUND EFFECTS P/B BOARD FEPA! FEPA! FEPA! WE ARE

COMPLETE! OPERATING ASSY. HAS PLACED LIGHTS LONG DUTY 2-1/4" SPEAKER. BENCH ON 9-12 VDC MAKES SIREN & EXPLOSION SOUNDS, BUT YOU CAN RE-PROGRAM THE 747474 TO MAKE LOTS OF OTHERS

TO-1560 WT 0.2 LB

$ 195

END STACKABLE LED VU METER

M-4275

WT 0.1 LB

NATIONAL MS 3916-9 INCLUDES 10 ELEMENT LED LINEAR ARRAY WITH AN LM3916 DECORDER/OVERRIDE. THRESHOLDS ARE SET AT COMMON POINTS THE FIRST 7 LEDS ARE GREEN, THE LAST 3 ARE RED. 2-1/4" 0.85" OVERALL OPERATING FROM 3 TO 24 VDC, 150 HZ, 100% FUNCTIONAL. DATA - .504

7-12 VDC LED CLOCK

$ 195

7-12 VDC LED CLOCK

$ 195

SOUND EFFECTS P/B BOARD FEPA! FEPA! FEPA! WE ARE

COMPLETE! OPERATING ASSY. HAS PLACED LIGHTS LONG DUTY 2-1/4" SPEAKER. BENCH ON 9-12 VDC MAKES SIREN & EXPLOSION SOUNDS, BUT YOU CAN RE-PROGRAM THE 747474 TO MAKE LOTS OF OTHERS

TO-1560 WT 0.2 LB

$ 195

END STACKABLE LED VU METER

M-4275

WT 0.1 LB

NATIONAL MS 3916-9 INCLUDES 10 ELEMENT LED LINEAR ARRAY WITH AN LM3916 DECORDER/OVERRIDE. THRESHOLDS ARE SET AT COMMON POINTS THE FIRST 7 LEDS ARE GREEN, THE LAST 3 ARE RED. 2-1/4" 0.85" OVERALL OPERATING FROM 3 TO 24 VDC, 150 HZ, 100% FUNCTIONAL. DATA - .504

7-12 VDC LED CLOCK

$ 195

7-12 VDC LED CLOCK

$ 195

SOUND EFFECTS P/B BOARD FEPA! FEPA! FEPA! WE ARE

COMPLETE! OPERATING ASSY. HAS PLACED LIGHTS LONG DUTY 2-1/4" SPEAKER. BENCH ON 9-12 VDC MAKES SIREN & EXPLOSION SOUNDS, BUT YOU CAN RE-PROGRAM THE 747474 TO MAKE LOTS OF OTHERS

TO-1560 WT 0.2 LB

$ 195
WE HAVE WHAT YOU NEED AT THE PRICES YOU WANT!

CALL TOLL FREE
1-800-543-4330
(IN OHIO, 1-800-762-4315)

MIDRANGE
$ 10
Should I
50 for shipping & handling

10" SUB WOOFER
and 858 East Congress Park
SOURCENO.RE.7
shippmg
Most computer accessories, telephone accessories,
We Also Have ... a full line of test equipment,
Items speakers,
#55-390
V.C.,
USA
4-layer
• Free Air : 35 Hz
• 20 oz magnet
8 V.C.
Also
Special
20
1,1-
10M ohm
8 V.C.
accessories, telephone
equipment, capacitors.
LOWEST
35 Hz
10"
$39.80
#72-050
$36 80
(1-up)
$93.80 (10-up)

SHOULD I
STILL PAY $50 FOR SHIPPING & HANDLING?

We Also Have... a full line of test equipment,
computer accessories, telephone accessories,
speakers, television parts, flybacks, yokes, switches,
inductors, capacitors, resistors, carriages, style wire, CATV equipment, and many more. Over 4,800
items AT THE LOWEST PRICES AROUND!

TERMS:
• E.O. Minimum order $10.00 charge for orders under $10.
10°C minimum charge card orders.
Orders shipped UPS C.O.D.
Most orders shipped within 24 hours
Sales office open 8:00 am to 5:30 pm
10:00 am to 5:30 pm ET
7:00 am to 5:30 pm ET
7:00 am to 5:30 pm ET
6:00 am to 5:30 pm ET
7:00 am to 5:30 pm ET
20% before shipping and handling
5% shipping & handling charges incurred $2.50
5% balance due will be sent C.O.D.

CIRCLE 87 ON FREE INFORMATION CARD

MARCH 1985

SOURCE NO. RE-7

www.americanradiohistory.com
HANDICAP ALARM
Maintains constant +5V DC terminals, microcomputer regulation:

- Keys:
 - 20-pin ribbon within 18"

- Buffers in HALF、“...” $159.95
 - 20-pin ribbon

- $79.95

- IV & 11 +, • • • • • • • $79.95
 - Standard RS232 signal: $79.95
 - Intelligent (Numenclature: 10" Cable Kit) $2.95

- Cable Kit $39.95

VOICE SYNTHIZER FOR APPLE AND COMMODORE

CIRCULAR FEATURES

- Over 250 watt capability: sufficient output for most devices
- Built-in speaker: audible output
- LCD panel: display

APPLICATIONS
- Security Warning
- Telemetry
- Games

PRICE
- For Commodore 84 IV: $114.95
- For Apple IIe or IIgs: $143.95

Computer Memory Expansion Kits

IBM PC, PC XT and Compatibles

- 512K (IBM): $33.95
- IBM AT: $33.95

PRICE
- IBM 128K (1250ns 128K RAM): $199.95

APPLE IIe

- Expanded IBM Cable-Connects to Apple IIe memory by 16-bit (16K) expansion card

PRICE
- JE230C: $139.95

PRO-2000 ADAPTER FOR VIC-20 AND COMMODORE 64

- The JE230C attaches connection of standard grade RS232 port to VIC-20 and C64. A 4-pole switch allows the alteration of the 4 control lines. Complete installation and operation instructions included.

- Price: $39.95

NEW... NEW!

KEYBOARDS

- New! 84-key Kawai: $143.95

APPLE KEYBOARD AND CASE for Apple II and III

- Power supply: 12VDC 1.5A

PRICE
- JE230A: $39.95

POWER SUPPLIES

- TRANSACTION TECHNOLOGY, INC
 - 5VDC @ 1 AMP Regulated Power Supply
 - 5VDC @ 1 AMP Switching Power Supply

PRICE
- $79.95

- PowerMate Corp. REGULATED POWER SUPPLY
 - 1000 MFA DC/DC Converter for Apple II: $29.95

PRICE
- $29.95

APPLE II SERIES

- Switching Power Supply for APPLE II+ & IIe

PRICE
- $29.95

4-CHANNEL SWITCHING POWER SUPPLY

- Apple II Series, Apple III, Apple IIe, Macintosh 512K, and IBM/PC 512K

PRICE
- $39.95

APPLE ACCESSORIES

- 5" APPLE Direct Plug-In Compatible Disk Drive and Controller Card

PRICE
- $163.95

More Apple Compatibility Add-Ons...

- CPU-1 (Cooling Fan with surge protectors)...
 - $39.95

PRICE
- $39.95

UV-EPROM Eraser

- EPROM Programmers

PRICE
- JE64-2K $163.95

124

www.americanradiohistory.com
Microprocessor Components

New Super Low Prices!

Microp0cessor CR1Ps

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Component</th>
<th>Voltage</th>
<th>Package</th>
<th>Price</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CMOS 74 Series

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Component</th>
<th>Voltage</th>
<th>Package</th>
<th>Price</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CMOS 40 Series

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Component</th>
<th>Voltage</th>
<th>Package</th>
<th>Price</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

New Super Low Prices!

CMOS 74ALS Series

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Component</th>
<th>Voltage</th>
<th>Package</th>
<th>Price</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Special Offer!

- Free Shipping on all orders over $50.
- No minimum order size.
- 30-day money-back guarantee.
- Free shipping on orders over $50:
 - Continental US: 1 lb. max.
 - Other shipments: 1 lb. max.
- Orders received before 3:00 p.m. (PST) are shipped the same day.
- Orders received after 3:00 p.m. (PST) are shipped the next business day.
- Orders received on Friday after 3:00 p.m. (PST) are shipped on the following Monday.
- Free shipping for orders over $50:
 - Continental US: 1 lb. max.
 - Other shipments: 1 lb. max.
- Orders received before 3:00 p.m. (PST) are shipped the same day.
- Orders received after 3:00 p.m. (PST) are shipped the next business day.
- Orders received on Friday after 3:00 p.m. (PST) are shipped on the following Monday.

Terms and Conditions:

1. Free shipping is available for orders over $50.
2. All orders are shipped via standard ground shipping.
3. Orders received before 3:00 p.m. (PST) are shipped the same day.
4. Orders received after 3:00 p.m. (PST) are shipped the next business day.
5. Orders received on Friday after 3:00 p.m. (PST) are shipped on the following Monday.
6. Free shipping is limited to the continental United States with a maximum weight of 1 lb. per order.
7. All other shipments are limited to 1 lb. per order.
8. Free shipping is available for orders over $50 and is subject to availability.
9. Orders received before 3:00 p.m. (PST) are shipped the same day.
10. Orders received after 3:00 p.m. (PST) are shipped the next business day.
11. Orders received on Friday after 3:00 p.m. (PST) are shipped on the following Monday.
12. Standard ground shipping is used for all orders.

Contact Information:

- Phone Orders: (615) 592-5007
- Fax: 1-866-892-4337
- Email: orders@americanradiohistory.com
- Website: www.americanradiohistory.com

Shipping Information:

- Free shipping is available for orders over $50.
- Orders are shipped via standard ground shipping.
- Orders received before 3:00 p.m. (PST) are shipped the same day.
- Orders received after 3:00 p.m. (PST) are shipped the next business day.
- Orders received on Friday after 3:00 p.m. (PST) are shipped on the following Monday.
- Standard ground shipping is used for all orders.

Important Notes:

1. Free shipping is available for orders over $50.
2. All orders are shipped via standard ground shipping.
3. Orders received before 3:00 p.m. (PST) are shipped the same day.
4. Orders received after 3:00 p.m. (PST) are shipped the next business day.
5. Orders received on Friday after 3:00 p.m. (PST) are shipped on the following Monday.
6. Standard ground shipping is used for all orders.
DON'T BLAME THE SOFTWARE!

Our isolation elimnates equipment interaction, clean up interference, curb damaging power line spikes and lightning bursts.

ISO-1 ISOLATOR
5 isolated sockets; quality spike suppression; basic protection. $81.95

ISO-3 SUPER-ISOLATOR
5 dual isolated sockets; suppressor; commercial protection. $122.95

ISO-17 MAGNUM ISOLATOR
4 quad isolated sockets; suppressor; laboratory grade protection. $213.95

CABLE TV CONVERTERS AND DESCRAMBLERS

* JERROLD
* OAK
* ZENITH
* SCIENTIFIC ATLANTA
* SATELLITE
* DESCRAMBLERS
* CABLE KIT

LOW PRICES
QUANTITY DISCOUNTS

SEND $5.00 FOR CATALOG
R & M DISTRIBUTORS
PO BOX 266-R
BOSTON, MA 02190
(617) 871-5838

ACTIVE RECEIVING ANTENNA
Gives excellent reception, 50 KHz to 30 MHz.

New MFJ-1024 Active Receiving Antenna mounts outdoors away from electrical noise for maximum signal. Gives excellent reception of 50 KHz to 30 MHz signals. Equivalent to wire hundreds of feet long. Use any SWL, MW, AM, VLF or Ham receiver.

High dynamic range RF amplifier. 54 dB gain. 50 foot coax. 20 dB attenuator prevents receiver overload. Switch between two receivers. Select auxiliary or active antenna. Gain control. "ON" ED. Remote unit, 3x2x4 in. Control, 6x2x5 in. 12 VDC or 110 VAC with optional adapter, MFJ-11312, $9.95. $129.95

Order from MFJ and try it. If not delighted, return within 30 days for refund (less shipping). One year unconditional guarantee.

ORDER TODAY, CALL TOLL FREE 800-647-1900
Charge VISA, MC. Or mail check, money order. Write for free catalog. Over 200 products.

CABLE 107 ON FREE INFORMATION CARD

MICROWAVE TV SYSTEM

HIGH QUALITY 75dB GAIN

Varible from 1.9 to 2.5 GHz

The latest advance in microwave technology with a SNOW-FREE PICTURE.

Two Models to choose from.
Both Models Include:

• 20" Parabolic Dish
• Pre-assembled Probe with Down Converter

Power Supply and Coax Switch

60" of RG-59 U Coax with Connector

Transformer for 75 to 300 Ohms

All Mounting Hardware for Fast and Easy Installation

20" Fiberglass Dish Up to 55dB Gain Special $89.95

20" Aluminum Dish Up to 55dB Gain $98.95

$98.95

Send $2.00 for Catalog. Refundable with first purchase.

PROFESSIONAL VIDEO, Inc.
4870 Hollywood Blvd., Hollywood, Calif. 90027

CABLE 109 ON FREE INFORMATION CARD

CABLE 110 ON FREE INFORMATION CARD

CIRCLE 60 ON FREE INFORMATION CARD

CIRCLE 94 ON FREE INFORMATION CARD

CIRCLE 105 ON FREE INFORMATION CARD
ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the Index below.

Free Information Number Page 265
267 A.I.S. Satellite 85 89 New-Tone Electronics 13
50 A. W. Sperry 83 90 PETS 28
108 AB/C Sales 86 116 Pala 39
76 AP Products 11 258 Philips Tech 116
— Active Electronics 114 125 Pocket Technology 33
— Advance Electronics 22 23 266 Power Plus 85
106 Advanced Computer Products 113 119 Print Products International 81
107 All Electronics 117 270 Professional Video 126
72 Amazin Devices 126 252 R&M Distributors 126
— American Design Components — CD2 220 RAM Electronics 26 27
64 Appliance Service 85 78 Radio Shack 111
77 B & R Precision — CV3 70 Ramsey 127
98 Beckman Instruments 8.9 — RE Bookstore 109
81 CEI 104 279 Regency 99
— CIE 34 37 273 Research Service Lab 84
109 Chaney 126 73 Simpson 21
263 Chapman Tools 24 75 Snare 32
54 Chometronics 24 75 solder Craft 110
— Command Productions 89 262 Spartan Electronics 128
79,275,276 Communications Electronics 12.30.31 271 Spectrum 122
55 Contact East 83 — Tampa Electronic Supply 38
— Coop's Solar Digest 14 123 Tektronix CV2
120 Dak Industries 90.91.95 264 Test Probes 101
257 Data World Products 85 255 Unitech 118
269 Diamondback 122 255 VAMP 85
82 Digi-Key 119 255 Vector Electronics 38
— Industrial Research Computers 122 Wm B Allen 112
11 Digitone 116
110 Dooky 118
60 Electronic Specialists 126
61,180 Electronic Warehouse 101.103
261 Electronics Book Club 25
120 Elephant Electronics 85
111 Exponent 89
190 ETT 48
256 Fidelik II 39
256 Fidap Manufacturing 5
— Fordham Radio 7.74 CV4
272 Gemini Electronics 15
62 Global Specialties 85
— Grantham College of Engineering 42
259 Hanley 87
71 Handy Prods.RSP Elec. 115
86,274 Heath 25 71.73
281 Howard Research & Design 85
63 Instrument Mart 107
113 JDR Microtech 120.121
114 Jamieson 124.125
124 James Walter Satellite Rec. 85
115 Jensen Tools 84
251 Jim-Pac 40.41
87 MCM Audio 123
105 MFJ 126
67 McIntosh Labs 99
117 Mooser 108
— NRI 16.19
— NTI 52.55
268 Nenral Electronics 84
88 Network Sales 122

Cernbach Publications, Inc. 200 Park Ave. South New York, N.Y. 10003 (212) 777-6400 Chairman of the Board: M. Harvey Cernbach President: Larry Steckler

ADVERTISING SALES 212-777-6400 Larry Steckler publisher Sheila Weisman advertising associate Arline Fishman advertising coordinator Lisa Strassman credit manager Donna Sala credit associate Naomi Matlen advertising assistant Sales Offices

MIDWEST/Texas/Arkansas/Oklahoma Ralph Bergeen Radio-Electronics 540 Frontage Road—Suite 325 Northfield, Ill. 60093 312-446-1444

Quick... who makes the scopes that out-tech the competition?

Compare these features and performance specifications.

- Bright 20kV display (12kV on 1570A) with illuminated graticule.
- 1mV sensitivity full bandwidth.
- Dual timebase with dual-independent timebase on 1590A.
- Five times more sensitive than most competitors.
- Four vertical inputs with 8-trace display.

Compare all of the features and performance benefits with any scopes in their price range. See your local stocking distributor or contact B&K-PRECISION.

CIRCLE 77 FOR FREE INFORMATION
SCOPE HAND-HELD DIGITAL CAPACITANCE and MULTIMETERS

- 0.5% DC Accuracy
- Highest Quality
- Highest Performance
- Lowest Prices

Model DCM-602
$79.95

Digital Capacitance Meter
8 ranges with full scale values to 2000 µF
FEATURES: • Broad test range - 1 pF to 2000 µF • LSI circuit provides high reliability and durability • Lower power consumption • Clear readout even in bright light • Crystal time base • Easy to operate, compact, lightweight • Protected from charged capacitors • Frequency range - 800 Hz to 8 Hz

Model DVM-634
$48.75

7 functions, 32 ranges. Transistor measurement included.

Digital Multimeters
• DC Voltage 100 µV - 1000 V
• AC Voltage 100 µV - 750 V
• AC/DC Current 200 µA - 10 Amps
• Resistance 20 Megohms
• Capacitance (DVM 636/638) 1 pF - 20 µF

Model DVM-638
$79.95

11 functions, 36 ranges. Includes logic level detector, audible visual continuity, capacitance and conductance measurement.

Model DVM-636
$62.75

8 functions, 37 ranges. Capacitance measurement included.

FEATURES: • Overload Protection • Auto-decimal LCD readout • Polarity Indication • 3000 hour battery life with 9V transistor battery • Low battery indication

Charge it with VISA/MASTERCARD. Money orders, checks accepted. C.O.D.'s require 25% deposit.

Fordham
260 Motor Parkway, Hauppauge, NY 11788

Toll Free
800-645-9518
In NY State 800-832-1446

Service and Shipping Charge Schedule
FOR ORDERS
$25-250 $4.50
$251-500 $5.50
$501-750 $6.50
$751-1,000 $12.50
$1,001 and up $15.00

www.americanradiohistory.com