How to select the best resistor or capacitor for your project

All about thermistors and their applications

Build R-E's Atari duplicator and transfer your game cartridges to cassette tape

Build this cassette-tape streamer for your computer

New back-to-school series! How to design circuits using digital IC's

Step-by-step guide to repairing your videodisc player

Special 16-page tear-out section.

PLUS:

- New Antique Radio Column
- Bob Cooper on Satellite TV
- New Idea
- Designers Notebook
- Equipment Reports
- Service Clinic
Now! Tek quality and expert advice are just a free phone call away!

100 MHz dual time base scope. Easy-to-read CRT; bright, full-sized 8x10 cm; 14 kHz accelerating potential complete with BEAM FIND, separate A/B dual intensity controls, FOCUS and TRACE ROTATION.

Wide range vertical sensitivity. Choose from 2 mV/div (1x probe) to 50 V/div (1x probe), color-keyed for 1x and 10x probes. Variable control increases scale factor by 2.5 to 1.

Two 100 MHz, high sensitivity channels. 3.5 ns rise time; dc to 100 MHz bandwidth from 5 V/div to 5 mV/div. Extended sensitivity of 2 mV/div at > 90 MHz.

A/B sweep selection. Calibrated A sweeps from 50 ns/div to 0.5 s/div. B sweeps from 50 ns/div to 50 ns/div. Variable control for up to 2.5 to 1 reduction and 10x magnification for up to 50 mV/div.

B trigger slope and level. Use B trigger level to select B-triggered or non-triggered modes. Use B trigger slope to select transitions.

Dual time base measurements. Select either A or B sweeps, or both alternatively with A/B sweep select button.

Our direct order line gets you the industry's leading price/performance portables... and fast answers from experts! The 60 MHz single time base delay 2213A, the 60 MHz dual time base 2215A, and the 100 MHz dual time base 2235 offer unprecedented reliability and affordability, plus the industry's first 3-year warranty* on labor and parts, CRT included.

The cost: just $1200 for the 2213A, $1450 for the 2215A, $1650 for the 2235. Even at these low prices, there's no scrimping on performance. You have the bandwidth for digital and analog circuits. The sensitivity for low signal measurements. The sweep speeds for fast logic families. And delayed sweep for fast, accurate timing measurements. All scopes are UL Listed and CSA approved.

You can order, or obtain literature, through the Tek National Marketing Center. Technical personnel, expert in scope applications, will answer your questions and expedite delivery. Direct orders include comprehensive 3-year warranty*. Operator's manual, two 10X probes, 15 day return policy and worldwide service backup.

Order toll free: 1-800-426-2200.
Ask for Rick.
In Oregon, call collect (503) 627-9000.
Or write Tektronix, Inc.
P.O. Box 500, Delivery Station Y6-068.
Beaverton, OR 97077.

* 3-year warranty includes CRT.
VIDEO ACCESSORIES

- Highest quality
- Highest performance
- Lowest prices

bp VIDEO-CINE CONVERTER

The BP Video-Cine Converter is an optical device that allows the easy transfer of slides, 8mm or 16mm movie film to VCR tape. The Video-Cine Converter's precision optics put the image from your movie or slide projector on a high-contrast, rear projection screen. Your video camera shoots that image, can color-correct faded pictures, add narration to other sound. Can be used with any video camera or slide projector. If your video camera lacks close-up capability, you will need a macro lens attachment.

MODEL V-1701 $34.95

FOR ULTIMATE VIEWING

<table>
<thead>
<tr>
<th>TEKNIKA</th>
<th>Model 6510</th>
<th>$169.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLUME CONTROL</td>
<td>Wireless remote control with volume for cable TV and UHF antenna systems. Upgrades any TV to 140 channel capability.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>61 CHANNEL WIRELESS REMOTE CONTROL</th>
<th>Model V7661</th>
<th>$79.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless remote control on/off, channel selection, and fine tuning.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STABILIZER/IMAGE ENHANCER/RF CONVERTER/VIDEO FADER/2-WAY DISTRIBUTION AMPLIFIER</th>
<th>Model V1880</th>
<th>$99.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hook-up cable kit.</td>
<td>$11.75</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VIDEO TAPE REWINDER</th>
<th>Model V7777 VHS</th>
<th>$49.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model V7778 BETA</td>
<td>$49.95</td>
<td></td>
</tr>
</tbody>
</table>

- Reduce wear and tear of your VCR heads with the AC powered circuit protected rewinders, LED power-on indicators.

Charge it with VISA/MASTERCARD. Phone orders accepted.

Fordham

260 Motor Parkway, Hauppauge, NY 11788

Toll Free 800-645-9518

In NY State 800-832-1446

For orders... Add:

$25-250	$4.50
$251-500	$6.50
$501-750	$8.50
$751-1000	$12.50
$1,001 and up	$15.00

www.americanradiohistory.com
NEW! Regency® MX3000-E

List price $319.95/CE price $179.00

6-Band, 30 Channel • No-crystal scanner

Search • Lockout • Priority • AC/DC

The MX3000 offers the ease of computer controlled, touch-entry programming in a compact-sized scanner for use at home or on the road. Enter your favorite public service frequencies by simply touching the numbered pressure pad. You'll even hear a beep tone prior to the start of your favorite scan. You'll hear priority, dual scan speeds, scan or search delay and a brightness switch for day or night operation.

Regency® C403-E

List Price $99.95/CE price $59.00

6-Band, 4 Channel • Crystal scanner

Channel indicator • Low cost Bands: 30-50, 144-174, 440-512 MHz.

Regency’s basic scanner, the C403 gives you the excitement of crystal-clear emergency calls at a budget price. It can tune in to any of five public service bands and bring the signal in loud and clear on any of four reliable channels. It comes with detachable telescopic antenna and AC power cord. Order one crystal certificate for each channel you want to receive.

Regency® MX7000-E

List price $699.95/CE price $449.00

10-Band, 20 Channel • Crystal scanner

Priority control • Search • Scan • AC/DC

The new handheld Regency MX7000 scanner lets you in on all the excitement of crystal-clear emergency as well as other radio communication. You can scan up to 30 channels at the same time. When you activate the priority control, you automatically override all traffic down to your favorite frequency. The LCD display is even sized for night use. A die-cast aluminum chassis makes this the most rugged and durable handheld scanner available. There’s even a backup battery to maintain memory for 24-hour maximum run charge. Carry case, belt clip, flexible antennas and nicad battery. Order your Regency MX7000 now.

Regency® Z10-E

List price $239.95/CE price $139.00

6-Band, 10 Channel • Crystal scanner

Priority control • Search • Scan • AC/DC

NEW! Regency MX5000-E

List price $599.95/CE price $359.00

Multi-Band, 20 Channel • Crystal scanner

Search • Lockout • Priority • AC/DC

Available 13 Band-FM models • LCD display

World’s first continuous coverage scanner

Frequency range: 25-550 MHz. continuous coverage

Never before have so many features come in such a small package. The Regency MX5000 mobile or home scanner has continuous coverage from 25 to 550 MHz. That means you can hear CB, television audio, FM broadcast stations, all aircraft bands including military and the normal scanner bands, all on your choice of 20 programmable channels.

Regency® MX3000-E

List price $319.95/CE price $179.00

6-Band, 30 Channel • No-crystal scanner

Search • Lockout • Priority • AC/DC

Bands: 30-50, 144-174, 440-512 MHz.

The Regency MX3000 combines the ease of computer controlled, touch-entry programming in a compact-sized scanner for use at home or on the road. Enter your favorite public service frequencies by simply touching the numbered pressure pad. You’ll even hear a beep tone prior to the start of your favorite scan. You’ll hear priority, dual scan speeds, scan or search delay and a brightness switch for day or night operation.

Regency® Z30-E

List price $279.95/CE price $169.00

6-Band, 30 Channel • No-crystal scanner

Bands: 30-50, 144-174, 440-512 MHz.

Cover your choice of over 15,000 frequencies on 30 channels at the touch of your fingers.

Regency® C403-E

List Price $99.95/CE price $59.00

6-Band, 4 Channel • Crystal scanner

Channel indication • Low cost Bands: 30-50, 144-174, 440-512 MHz.

Regency’s basic scanner, the C403 gives you the excitement of crystal-clear emergency calls at a budget price. It can tune in to any of five public service bands and bring the signal in loud and clear on any of four reliable channels. It comes with detachable telescopic antenna and AC power cord. Order one crystal certificate for each channel you want to receive.

Regency® MX7000-E

List price $699.95/CE price $449.00

10-Band, 20 Channel • Crystal scanner

Priority control • Search • Scan • AC/DC

The new handheld Regency MX7000 scanner lets you in on all the excitement of crystal-clear emergency as well as other radio communication. You can scan up to 30 channels at the same time. When you activate the priority control, you automatically override all traffic down to your favorite frequency. The LCD display is even sized for night use. A die-cast aluminum chassis makes this the most rugged and durable handheld scanner available. There’s even a backup battery to maintain memory for 24-hour maximum run charge. Carry case, belt clip, flexible antennas and nicad battery. Order your Regency MX7000 now.

Regency® Z10-E

List price $239.95/CE price $139.00

6-Band, 10 Channel • Crystal scanner

Priority control • Search • Scan • AC/DC

NEW! Regency MX5000-E

List price $599.95/CE price $359.00

Multi-Band, 20 Channel • Crystal scanner

Search • Lockout • Priority • AC/DC

Available 13 Band-FM models • LCD display

World’s first continuous coverage scanner

Frequency range: 25-550 MHz. continuous coverage

Never before have so many features come in such a small package. The Regency MX5000 mobile or home scanner has continuous coverage from 25 to 550 MHz. That means you can hear CB, television audio, FM broadcast stations, all aircraft bands including military and the normal scanner bands, all on your choice of 20 programmable channels.

Regency® MX3000-E

List price $319.95/CE price $179.00

6-Band, 30 Channel • No-crystal scanner

Search • Lockout • Priority • AC/DC

Bands: 30-50, 144-174, 440-512 MHz.

The Regency MX3000 combines the ease of computer controlled, touch-entry programming in a compact-sized scanner for use at home or on the road. Enter your favorite public service frequencies by simply touching the numbered pressure pad. You’ll even hear a beep tone prior to the start of your favorite scan. You’ll hear priority, dual scan speeds, scan or search delay and a brightness switch for day or night operation.

Regency® Z30-E

List price $279.95/CE price $169.00

6-Band, 30 Channel • No-crystal scanner

Bands: 30-50, 144-174, 440-512 MHz.

Cover your choice of over 15,000 frequencies on 30 channels at the touch of your fingers.

Regency® C403-E

List Price $99.95/CE price $59.00

6-Band, 4 Channel • Crystal scanner

Channel indication • Low cost Bands: 30-50, 144-174, 440-512 MHz.

Regency’s basic scanner, the C403 gives you the excitement of crystal-clear emergency calls at a budget price. It can tune in to any of five public service bands and bring the signal in loud and clear on any of four reliable channels. It comes with detachable telescopic antenna and AC power cord. Order one crystal certificate for each channel you want to receive.

Regency® MX7000-E

List price $699.95/CE price $449.00

10-Band, 20 Channel • Crystal scanner

Priority control • Search • Scan • AC/DC

The new handheld Regency MX7000 scanner lets you in on all the excitement of crystal-clear emergency as well as other radio communication. You can scan up to 30 channels at the same time. When you activate the priority control, you automatically override all traffic down to your favorite frequency. The LCD display is even sized for night use. A die-cast aluminum chassis makes this the most rugged and durable handheld scanner available. There’s even a backup battery to maintain memory for 24-hour maximum run charge. Carry case, belt clip, flexible antennas and nicad battery. Order your Regency MX7000 now.

Regency® Z10-E

List price $239.95/CE price $139.00

6-Band, 10 Channel • Crystal scanner

Priority control • Search • Scan • AC/DC

NEW! Regency MX5000-E

List price $599.95/CE price $359.00

Multi-Band, 20 Channel • Crystal scanner

Search • Lockout • Priority • AC/DC

Available 13 Band-FM models • LCD display

World’s first continuous coverage scanner

Frequency range: 25-550 MHz. continuous coverage

Never before have so many features come in such a small package. The Regency MX5000 mobile or home scanner has continuous coverage from 25 to 550 MHz. That means you can hear CB, television audio, FM broadcast stations, all aircraft bands including military and the normal scanner bands, all on your choice of 20 programmable channels.

Regency® MX3000-E

List price $319.95/CE price $179.00

6-Band, 30 Channel • No-crystal scanner

Search • Lockout • Priority • AC/DC

Bands: 30-50, 144-174, 440-512 MHz.

The Regency MX3000 combines the ease of computer controlled, touch-entry programming in a compact-sized scanner for use at home or on the road. Enter your favorite public service frequencies by simply touching the numbered pressure pad. You’ll even hear a beep tone prior to the start of your favorite scan. You’ll hear priority, dual scan speeds, scan or search delay and a brightness switch for day or night operation.

Regency® Z30-E

List price $279.95/CE price $169.00

6-Band, 30 Channel • No-crystal scanner

Bands: 30-50, 144-174, 440-512 MHz.

Cover your choice of over 15,000 frequencies on 30 channels at the touch of your fingers.
FEBRUARY 85

SPECIAL FEATURE:

47 SELECTING THE BEST RESISTOR/CAPACITOR
Finding the right value for your components is the easy part—there's a lot more to consider when choosing parts for your projects. Victor Meeldijk

BUILD THIS

55 TAPE STREAMER FOR YOUR COMPUTER
Can a cassette tape really be an alternative to a disk drive? This high-speed cassette interface comes close. And it works with any computer equipped with an RS-232 port! Mike Huddleston

69 ATARI GAME RECORDER
Part 3. In the concluding part of this article, we give you all the construction details you'll need to record Atari videogames on audio-cassette tape. David A. Chan and Guy Vachon

TECHNOLOGY

14 SATELLITE TV
A look at how LNA's have changed during the brief history of satellite TV. Bob Cooper, Jr.

51 STEREO AUDIO FOR TV
Stereo TV is here at last! Here's an in-depth look at the FCC decision on multichannel television sound and what it means. Brian C. Fenton

CIRCUITS AND COMPONENTS

73 ALL ABOUT THERMISTORS
Part 2. This month we finish our look at the basics and start to use thermistors in real circuit applications. Harry L. Trietty

77 DESIGNING WITH DIGITAL IC'S
If digital logic left you behind, it's time to catch up with our new "Back-to-School" series. Joseph J. Carr

82 HOBBY CORNER
Building a DC power supply. Earl "Doc" Savage, K4SDS

90 NEW IDEAS
A melodious telephone ringer.

92 DRAWING BOARD
Understanding memory IC's. Robert Grossblatt

96 STATE OF SOLID STATE
High-power FET's. Robert F. Scott

RADIO

84 COMMUNICATIONS CORNER
Computers and communications. Herb Friedman

88 ANTIQUE RADIOS
Here's our new column! Richard D. Fitch

VIDEO

63 SERVICING VIDEODISC PLAYERS
Part 3. Here are some practical troubleshooting and servicing hints.
John D. Lenk

12 VIDEO NEWS
The present and future of the fast-changing video scene. David Lachenbruch

98 SERVICE CLINIC
Servicing electronic test equipment. Jack Darr

99 SERVICE QUESTIONS
Answers from Radio-Electronics' service editor.

COMPUTERS

86 COMPUTER CORNER
All about printers.
Lou Frenzel

Computer Digest
The computer on a wrist is here!

EQUIPMENT REPORTS

32 Cardco Card/Universal Printer Interface

81 Beckman DM10 Multimeter

DEPARTMENTS

122 Advertising and Sales Offices

122 Advertising Index

123 Free Information Card

22 Letters

101 Market Center

38 New Products

6 What's News

POSTMASTER: Please send address changes to RADIO-ELECTRONICS, Subscription Dept., Box 2520, Boulder, CO 80322.

A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs if their return is desired. They shall be returned at the discretion of the compiler. We do not assume any responsibility for the loss or damage of manuscripts and/or artwork or photographs if their return is desired by the writer. Manuscripts and/or photographs shall be considered as the permanent property of Radio-Electronics unless otherwise specified. We disclaim any responsibility for the loss or damage of manuscripts and/or photographs while in our possession or otherwise.

www.americanradiohistory.com [1]
Choosing the right component values for your circuit designs can be difficult. But that task can pale in comparison to choosing the proper component types.

If you've ever wondered about the differences between wirewound and carbon resistors, or ceramic and tantalum capacitors, then this article is for you. This month, we'll tell you about resistors—carbon, film, wirewound, cermet, etc. The story begins on page 47.

NEXT MONTH

ON SALE FEBRUARY 14

TEST EQUIPMENT
Two information-packed articles to help you choose the oscilloscope and digital multimeter that's best for you.

UNIVERSAL CASSETTE INTERFACE
In Part 2, we'll show you how to build the high-speed tape streamer.

RESISTOR/CAPACITOR SECTION
Next month, we'll look at different capacitor types and how to pick the right one for your circuit designs.

DIGITAL ICs
Our back-to-school series continues with a look at CMOS technology.

AND LOTS MORE!
For Hz, people choose this DMM with amazing frequency.

Our 8060A has four unique buttons you won't find on any other 41/2-digit handhelds.

Push the Hz button, and you're ready to measure frequencies from 12 Hz to 200 kHz.
And that's just the beginning.
Select dB for automatic conversion from voltage measurements. Continuity for quick checks for opens and shorts. And Relative Reference for relative or offset measurements — in any function or range you're measuring in.
Put them together and it's obvious this is no ordinary DMM.

The 8060A also offers true RMS ac measurements, 0.04% basic dc accuracy and 10 μV resolution. Plus Fluke's traditional quality, precision, ruggedness and value. In all, the most powerful handheld DMM you can buy.
But don't take our word for it.

The next time you're comparing DMMs, take a closer look. Because compared to the competition, something will become very clear.
There isn't any.
That's why for Hz and many other reasons, people choose the Fluke 8060A — with amazing frequency.

To learn more about the top-of-the-line 8060A, the lower-cost 8062A and the bench/portable 8050A, contact your local Fluke Distributor, or call toll-free 1-800-426-0361.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS

<table>
<thead>
<tr>
<th>8060A DMM</th>
<th>8062A DMM</th>
<th>8050A DMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$259*</td>
<td>$229*</td>
<td>$199*</td>
</tr>
<tr>
<td>0.04% basic dc accuracy</td>
<td>0.05% basic dc accuracy</td>
<td>0.05% basic dc accuracy</td>
</tr>
<tr>
<td>Frequency measurements</td>
<td>Frequency measurements</td>
<td>Frequency measurements</td>
</tr>
<tr>
<td>0.01% at 100 Hz</td>
<td>0.01% at 100 Hz</td>
<td>0.01% at 100 Hz</td>
</tr>
<tr>
<td>Continuity</td>
<td>Continuity</td>
<td>Continuity</td>
</tr>
<tr>
<td>Relative Reference</td>
<td>Relative Reference</td>
<td>Relative Reference</td>
</tr>
<tr>
<td>Auto-ranging</td>
<td>Auto-ranging</td>
<td>Auto-ranging</td>
</tr>
<tr>
<td>One-year calibration cycle and warranty</td>
<td>One-year calibration cycle and warranty</td>
<td>One-year calibration cycle and warranty</td>
</tr>
<tr>
<td>UL 1244 listed</td>
<td>UL 1244 listed</td>
<td>UL 1244 listed</td>
</tr>
</tbody>
</table>

* Suggested U.S. list prices

IN THE U.S. AND MOST EUROPEAN COUNTRIES
John Fluke Mfg. Co., Inc.
P.O. Box 02690, W.S 2900
Everett, WA 98206
(206) 356-5400, Toll-free: 1-800-Fluke (3585)

IN EUROPE:
Fluke (Holland) B.V.
P.O. Box 5033, 3580 BA
Tilburg, The Netherlands
(013) 67-3973, Toll-free: 013-673973

Copyright © 1984 John Fluke Mfg. Co., Inc. All rights reserved. All names and numbers in this ad are for advertising purposes only. Actual performance may vary.
WHAT'S NEWS

PROTECTION FOR A COMPUTER

A ROOM AS BIG AS A BASKETBALL COURT is needed to hold the 1,840 storage batteries at the Boeing Computer Services data center in Bellevue, Washington. The 1,840 Allied C & D batteries, with an output equal to that of 3,300 standard car batteries, are part of a fail-safe plan to provide instantaneous backup power in case of electrical failure. Protection is temporary only—the batteries are intended to provide 4,100 kilowatts of power for 15 minutes, while the company's diesel generators can be started. The center is designed to withstand natural disasters, and the batteries are installed on earthquake-resistant racks.

American company locates in Japan

Last October, Applied Materials Japan, a subsidiary of Applied Materials, Inc., of Santa Clara, CA, dedicated a new Technology Center in Marita, Japan, just outside of Tokyo. Applied Materials calls it "the first major research and development facility in Japan established by an American semiconductor production systems manufacturer."

The 57,000-square-foot facility was built at a cost of $9.2 million, part of which was provided by a $3.4 million loan from the Japanese Development Bank, an agency of the Japanese government.

New lab investigates silicon-on-sapphire IC's

The Marconi Co. is establishing a fully-equipped Silicon Systems Laboratory in Lincoln, England. It will provide advanced processing facilities for 1.5-micron silicon-on-sapphire technology IC's.

The advantages of silicon-on-sapphire are improved speed or reduced power, combined with high packing density and proven radiation resistance. A particularly important application is for electronics in satellites, where the cost of providing electrical power is high, and where the circuits are exposed to continuous natural radiation for years.

NASA contracts for advanced space system

NASA's Lewis Research Center, Cleveland, OH, has awarded a $260 million contract to a team of electronics manufacturers headed by RCA's Astro-Electronics Group of Princeton, NJ, for design, development and fabrication of an Advanced Communications Technology Satellite (ACTS). That is expected to be the most advanced and complex space-communications system known. It is scheduled for launch by the Space Shuttle in 1989.

The contract specifications call for a flight spacecraft, ground systems, and operations. The work will be split among the several contractors. Lewis has project-management responsibility for the program; RCA Astro-Electronics will be responsible for construction of the spacecraft and integration and testing of the ACTS system. COMSAT will take care of the design and development of a master control station, a NASA ground station, and operations and maintenance, and TRW will develop the multibeam communications package.

The technologies to be tested in the ACTS program, says a NASA spokesman, could lead to at least a five-fold increase in satellite communications capabilities in the 1990's. Those include multiple spot beam transmission, message switching on board the satellite, and use of a new higher-frequency band between 20 and 30 GHz. R-E
New protection—especially in stormy weather—for the electronics you use, sell or service!

A brief, high voltage surge— or spike—can occur in any AC line system and, at amplitudes lower than 600V, cause little or no damage.

But at greater amplitudes, a spike can do real damage. And the greater the risk of harm, the greater the risk of harm, especially to solid-state devices.

That's why Zenith now announces the availability of two Spike Suppressors—one with a grounding plug and the other without.

Both are designed to provide susceptible TV receivers, household appliances and other electronics with two-way protection from high-voltage surges.

First, a Zenith Spike Suppressor absorbs a wide range of voltage spikes so only a safe voltage level reaches the protected equipment.

Second, heavy or prolonged voltage surges cause a Zenith Spike Suppressor to cut off power completely to protected equipment thereby signaling the need for a replacement Spike Suppressor.

That's double-duty protection against spikes for the electronics you use, sell or service. And ample reason for you to lay in a supply of Zenith Spike Suppressors soon.

Chances are they're available at your Zenith dealer's now. Call and pick up several before the next storm hits!
Train for the Fastest Growing Job Skill in America

Only NRI teaches you to service and repair all computers as you build your own 16-bit IBM-compatible micro

As computers move into offices and homes by the millions, the demand for trained computer service technicians surges forward. The Department of Labor estimates that computer service jobs will actually double in the next ten years—a faster growth than any other occupation.

Total System Training

As an NRI student, you'll get total hands-on training as you actually build your own Sanyo MBC-550-2 computer from the keyboard up. Only a person who knows all the underlying fundamentals can cope with all the significant brands of computers. And as an NRI graduate, you'll possess the up-to-the-minute combination of theory and practical experience that will lead you to success on the job.

You learn at your own convenience, in your own home, at your own comfortable pace. Without classroom pressures, without rigid night-school schedules, without wasted time. Your own personal NRI instructor and NRI's complete technical staff will answer your questions, give you guidance and special help whenever you may need it.

The Exciting Sanyo MBC-550-2—Yours To Keep

Critics hail the new Sanyo as the "most intriguing" of all the IBM-PC compatible computers. It uses the same 8088 microprocessor as the IBM-PC and the MS/DOS operating system. So, you'll be able to choose thousands of off-the-shelf software programs to run on your completed Sanyo.

As you build the Sanyo from the keyboard up, you'll perform demonstrations and experiments that will give you a total mastery of computer operations and servicing techniques. You'll do programming in BASIC language. You'll prepare interfaces for peripherals such as printers and joysticks. Using utility programs, you'll check out 8088 functioning. NRI's easy step-by-step instructions will guide you all the way right into one of today's fastest growing fields as a computer.
service technician. And the entire system, including all the bundled software and extensive data manuals, is yours to keep as part of your training.

How the pro computer critics rate the Sanyo 550:

"Sanyo BASIC is definitely superior to IBM Microsoft...let's you use two or three keystrokes for entering BASIC commands."
—MICROCOMPUTING Magazine

"...compares favorably with the IBM PC, even surpassing it in computational speed..."
—COMPUTERS & ELECTRONICS Magazine

"I went to have a look at the MBC-550...what I found made me an owner the next day!"
—Bill Sudbrink, BYTE Magazine

100-Page Free Catalog Tells More

Send the postage-paid reply card today for NRI's big 100-page color catalog, which gives you all the facts about NRI training in Microcomputers, Robotics, Data Communications, TV/Video/Audio Servicing, and other growing high-tech career fields. If the card is missing write to NRI at the address below.

NRI SCHOOLS
McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue, NW
Washington, DC 20016
We'll Give You Tomorrow.
IBM is a Registered Trademark of International Business Machine Corporation.
German Flat-Screen Color TV. Siemens of Germany, with government backing, has developed a plasma color display less than 2 1/2 inches thick, providing a 12-inch picture on a panel measuring 14-inches diagonally, which the German government says is ready for production. The system uses a plasma cathode, no electron gun, and is addressed by a matrix system. The phosphor screen is said to be a conventional type, currently with 288 lines, each made up of 720 phosphor points, or 240 sets of three colors. The tube reportedly is scheduled for production in an ITT German plant. However, the matrix system currently is very expensive and development of special VLSI IC's is required to bring costs down. Germany claims the flat tube is the most advanced such display device ever built.

All-in-One. Pioneer has introduced a combination Laservision videodisc player and CD compact digital audiodisc player. To be priced at more than $1,000, it automatically adjusts itself to play back 4 1/2-inch CD discs, or 8- or 12-inch LV videodiscs, and the solid-state laser automatically changes in intensity to read either the audio or video disc. With the introduction of the combination player, Pioneer also is adding a digital-audio track to its new Laservision videodiscs. The analog track is also preserved for compatibility with old model players. As it introduced its new model, Pioneer cut the list price of its older videodisc player to $300.

Camcorder update. The all-in-one camera-VCR, or camcorder, is coming into its own, and the three formats now in production will be joined by a fourth in 1985. Currently available or on the way are 8mm camcorders by Kodak, Polaroid, and GE, Betamovie camcorders by the Beta group, including Sony, Sanyo, Toshiba, and NEC, and VHS-C VideoMovie camcorders using the 80-minute compatible mini-VHS cassette by JVC, Zenith, and the European Thomson Group. The VHS group has been accelerating development of a camcorder combining the advantages of all three systems without the disadvantages, and both Matsushita (Panasonic and Quasar) and Hitachi (which also manufactures for RCA) have come up with units combining a full-sized VHS cassette with a video camera. The aim is to produce a basic camcorder model to sell in the U.S. for less than $1,000. The companies believe they have overcome the disadvantages of the three other systems introduced to date—unlike the 8mm models, they will use standard cassettes; unlike Betamovie, they'll be able to play back as well as record, and unlike Videomovie (and currently 8mm), they'll be able to record a full two hours on a cassette.

Multichannel TV Sound. Stereophonic sound will be added to the television signal of more than 100 TV stations in 1985, according to a recent survey. The survey, conducted by the trade newsletter, Television Digest, indicated that the stations would be located in most major metropolitan areas. The new multichannel TV sound (MTS) system also provides for transmission of a Second Audio Program, or SAP, in addition to stereo. The survey found that SAP transmissions would be much slower than stereo in starting up. Only 19 percent of the stations planning to broadcast in stereo indicated they would also originate such program-related SAP transmission as second-language translation, while 3.5 percent planned to originate non-program-related SAP's. Under the FCC rules, stations may originate virtually any non-program-related audio material they wish—anything from paging service to radio-type programming for the public.

A survey of set manufacturers by the EIA, meanwhile, indicates that they expect multichannel sound sets to comprise 10 percent of color-TV shipments by mid-1986, rising to 30 percent by mid-1987 and leveling off at 45 percent in mid-1988. MTS adaptor jacks should be in 10 percent of sets sold by mid-1985, in 20 percent by mid-1986, and peaking at 30 percent in mid-1988. (See story on page 51.)
Here's The Savvy-est True Dual Trace 10 MHz Digital Storage Scope You Ever Saw... At The Saving-est Price. Only $595.

The Handy New LogicScope™ 136

Consider the LogicScope 136

• The LogicScope 136 is the next logical step in test instrumentation for you. It combines many of the features and capabilities of sophisticated logic analyzers and oscilloscopes, and it fits in your hand. Never before has so much technology been available in so small an instrument, at such a low price.

• The pocket-sized LogicScope 136 is made possible by a patented breakthrough in display technology. The conventional CRT has been replaced by a unique array of 400 LED's that permits simultaneous display of two digital waveforms.

• The 136 can be used for viewing single shot events, or repetitive waveforms. It can be operated in real time mode, or in memory mode which permits acquisition and storage of up to 50-100 bit waveforms. These can be recalled, logically compared (AND, OR, EXCLUSIVE OR) to other input waveforms, or output to an external device via an I/O port. This I/O port will also accept future add-on 136 Modules.

• Its very low cost, convenience and ease-of-use make the LogicScope the ideal instrument, for designing, troubleshooting or repairing digital systems. Made in U.S.A.

Consider its Engineering & Field Service Applications:

• On microprocessor-based systems, check the timing relationship of various parameters relative to the system clock and other key events. Its storage capability allows visual and logical comparison of non-repetitive waveforms to known reference signals. Output in the start-up of the digital device can be compared to reference signals to determine the operating state of the device. Questionable waveforms can be stored for analysis.

• Its light weight and small size make the LogicScope convenient to take on every service call. The 136 provides much more information for troubleshooting a digital system or peripheral than a logic probe or digital counter without having to lug an oscilloscope or logic analyzer along.

Contact us for the name of your local distributor

POCKET TECHNOLOGY, INC.
7320 Parkway Drive, Hanover, MD 21076 U.S.A.
301-796-3300 TELEX 908207
Division of Renaissance Technology Corp.

CIRCLE 264 ON FREE INFORMATION CARD

FEBRUARY 1985

www.americanradiohistory.com
SATELLITE TV

LNA's and downconverters

THE PAST FEW MONTHS, WE'VE LOOKED at the evolution of the home TVRO. This time, let's continue with a look at how LNA's and downconverters have changed.

LNA changes
A Low-Noise Amplifier (LNA) has always been a substantial part of the home-TVRO system. Since 1979, that portion of the system has seen the most dramatic change in pricing. In 1979, the basic LNA had a 120-degree noise temperature (figure) with 50 dB of circuit gain at a cost of over $1500 per unit; but by year's end, prices had dropped to around $1195. Not only that, but its original function and use has been significantly modified by creative system designers, as well.

In 1979, an LNA was simply a "low-noise gain block" designed to provide a suitable low-noise front-end for the receiver that followed. Its job was to supply enough RF signal-gain to overcome the coaxial cable's line losses between the LNA and the receiver. It was powered by a DC supply that ranged from 15-25 volts. Power was fed to the LNA through a pair of weather-proof wires from a power connector located on or at the receiver. Back then, the basic LNA was virtually the only one offered.

Today, however, the dealer has a wide list of options available: Virtually any noise temperature from 120 degrees down to 60 degrees; almost any gain from 30-55 dB, and models with or without isolators. Also, the price of an LNA has dropped significantly. Now dealers are paying under $100 for an LNA.

The basic LNA (see Fig. 1) now has a 100-degree or lower noise figure. (Lower noise temperature means lower noise contribution, hence, improved system sensitivity.) In addition, the unit is now powered through the same coaxial cable that connects the LNA to the downconverter portion of the receiver.

Downconverters
In 1979, the 3.7–4.2 GHz output of the LNA had to be driven indoors through (relatively) "lossy" cable—sometimes as much as 200 feet of the stuff—to the downconverter located inside the receiver, as shown in Fig. 2-a. In those days, bulk gain in an LNA was important because immediately after the LNA was bulk loss because of the interconnecting cable. (What was lossy cable at 4 GHz was probably not lossy at 70 or even 1200 MHz.) However, that situation soon changed.

First, downconverters were taken out of the receivers (see Fig. 2-b) and installed in their own weather-resistant housings, allow-
Electricity and water don't mix. At least not in our Heavy Duty Digital Multimeters. Because these Oops Proof instruments are protected by a system of seals to ensure contamination-free dependability in even the cruddiest conditions.

Other abuse-proof features include the best mechanical protection ever built into a precision Digital Multimeter. In fact, every one of our Oops Proof multimeters will survive a drop from ten feet onto a concrete surface!

All the Heavy Duty series meters measure up to 1000 volts AC and 1500 volts DC, with full overload protection to those maximum voltages even on the lowest range settings. Overload circuitry also provides transient protection to 6KV on all voltage ranges and up to 600 volts on all resistance ranges.

We also invented a unique, long-life rotary switch for our Digital Multimeters. You can actually feel the difference just by rotating the function selector knob.

You'll find these features in a full line of Heavy Duty DMMs that offer a 4½ digit readout, 0.05% VDC accuracy, a 10-amp current range, a 2000-hour battery life, diode test, true RMS and temperature measurement. All this and a no-questions, one-year warranty.

You'll want to try one out, of course, so drop into your nearest electronics distributor and drop one.

Our lips are sealed.
ing them to be mounted right at the dish (usually to the rear). Now the microwave energy had to travel only about 10 to 20 feet through lossy cable before it was downconverted to a lower frequency (i.e., the IF), which meant less signal loss.

With less signal loss expected, the gain of the LNA could be scaled down to the 30-45 dB region. That helped reduce the price of LNAs (fewer gain stages equals lower cost). Next, prices for GaAs FETs, used in LNAs, dropped dramatically—from $500 each in 1978 under to $5 in 1984—as volume went up.

Then some clever engineers found that the isolator portion of the LNA could be eliminated if you were extremely careful about how you designed the balance of the LNA, and were equally careful about how you installed and used the unit. (The isolator cost $30 and up and also added circuit noise to the LNA in front of the GaAs-FET amplifier stages.) Seemingly, that was the best of both worlds—lower cost and better performance!

Finally, firms such as Dexcel/Gould created hybrid units that combined the LNA plus the downconverter into a single container (see Fig. 2-c), eliminating the short section of coax between the LNA and the downconverter. Those packages, called Low-Noise Converter (LNC), reduced by 1 the number of pieces in a typical TVRO system, thus, simplifying dealer installation.

Synopsis of trends

As we enter 1985, LNA prices have come down dramatically, while quality (performance and reliability) has gone up. Many had predicted that the development of LNCs would doom LNA's. After all, who'd want to install an LNA plus downconverter when one LNC could replace the pair? However, things didn't quite work out that way because LNCs are designed (typically) to work with one model receiver.

The dealer has learned or believes, that his maximum flexibility occurs when he can separate the LNA or LNC from the receiver so you can "mix-and-match" to get continued on page 120

TVRO dealer "Starter Kit" available

Bob Cooper's CSD Magazine has arranged with a number of TVRO equipment suppliers to provide a single-package of material that will help introduce you to the world of TVRO dealership. A short booklet written by Bob Cooper describes the start-up pitfalls to be avoided by any would-be TVRO dealer. In addition, product data and pricing sheets from prominent suppliers in the field are included. That package of material is free of charge and is supplied to firms or individuals in the electronics service business as an introduction to the 1984-85 world of selling TVRO systems retail.

You may obtain your TVRO Dealer Starter Kit free of charge by writing on company letterhead, or by enclosing a business card with your request. Address your inquiries to: TVRO STARTER KIT, P.O. Box 100858, Fort Lauderdale, FL 33310. That kit not available to individuals not involved in some form of electronics sales and service.
FREE high tech catalog

More than just a catalog, a trustworthy guide to what's new in computers and electronics.

Ever since radio grew into electronics, the illustrated Heathkit catalog has been a guide to new and exciting kit products for people like you to build. To enjoy and learn from, while saving money in the process.

What sets the Heathkit catalog apart is its range of high quality products and accurate information on every product offered. And that's a lot of products—over 450 separate items, including:

- Computer hardware and software
- Robots
- Precision test instruments
- Computerized weather instruments
- Solar hot water systems
- Automotive and home energy products
- Security devices
- Color TVs and video accessories
- Quality stereo components
- Amateur radio gear
- Educational courses that lead from the basics of electronics all the way to high tech.

Discover the pride.

With Heathkit, you'll discover the pride of accomplishment that comes with creating handbuilt quality that is uniquely yours.

And you'll develop skills and abilities in many technologies as you follow the step-by-step directions through the building process.

You work confidently, always backed by our simple promise, "We won't let you fail."

If you don't have the latest Heathkit Catalog, you're missing something great, so mail the coupon now, while you're thinking about it.

Send NOW for your FREE Heathkit Catalog
It's the beginning of something great for the whole family.

Heath Company
Dept. 020-264
Benton Harbor, Michigan 49022
Please send me the latest Heathkit Catalog Free.

Name ___________________________ Address ___________________________
City ___________________________ State ___________________________
Zip ___________________________

CIRCLE 86 ON FREE INFORMATION CARD

FEBRUARY 1985

www.americanradiohistory.com
Professional Books That Help You Get Ahead—And Stay Ahead!

Join the Electronics and Control Engineers’ Book Club® and...

- Keep up with current technology
- Sharpen your professional skills
- Be ready for new career opportunities
- Boost your earning power

THE McGRAW-HILL COMPUTER HANDBOOK: APPLICATIONS, CONCEPTS, HARDWARE, SOFTWARE. Edited by R. M. Sadowski, 1,400 pp., $49.95. Everything you need to know about today's computer science and engineering is here in this massive treasure trove of information. Covers everything from basic algebra to hardware selection techniques to artificial intelligence. A handy reference work that brings you right up to the minute!

279/121 Pub. Pr. $49.95 Club Pr. $42.95

TRANSCEIVERS: THEORY AND APPLICATIONS. By J. A. Allen and J. Stuart. 497 pp., 328 illus. Thoroughly describes the operation of all important transducers used in industrial, communication, medical, and other applications. Photographs, drawings, and diagrams are included throughout this outstanding introduction to a key element in electronic instrumentation. 58297-5 Pub. Pr. $36.95 Club Pr. $28.95

ANTENNA ENGINEERING HANDBOOK. 2/e. Edited by R. C. Johnson and H. Task, with contributions by 57 recognized authors. 1,408 pp., 936 illus. This highly acclaimed handbook gives you the guidance you need to solve problems in antenna design and application. It provides detailed information on physical fundamentals, patterns, structures, and design techniques for practical modern antennas. 322/910 Pub. Pr. $55.00 Club Pr. $43.50

RADIO HANDBOOK, 22/e. By W. Oom. 1,136 pp., more than 1,300 illus. Here's the latest edition of what is universally regarded as the most useful reference in the industry. It's a "course" in communications, a fact-packed reference, and a how-to-guide—all in a single book! 58274-2 Pub. Pr. $21.95 Club Pr. $17.95

MICROPROCESSOR APPLICATIONS HANDBOOK. Editor-in-Chief, D. F. Stout. 417 pp., 264 illus. At last—a reference and power tool for microprocessor applications to help you make your systems timely, versatile, and cost-effective. 617/800 Pub. Pr. $41.95 Club Pr. $33.95

MICROPROCESSORS AND MICROCOMPUTER DATA DIGEST. By W. H. Buchsbaum and G. Weissblum. 336 pp., 93 illus. A unique reference guide for microcomputer-related consultants. This much-needed book contains all the detailed technical data for every microprocessor IC that is currently listed as a "standard," off-the-shelf item. 58283-9 Pub. Pr. $29.95 Club Pr. $22.95

HANDBOOK OF ELECTRIC POWER CALCULATIONS. By A. Sedman, M. Mahrour and T. G. Hicks. 430 pp., 306 illus. Here are 235 tested and proven procedures for handling the electric power problems most frequently encountered. You'll find ingenious, time-saving ways to calculate fuel costs, motor efficiency, and more. 560/617 Pub. Pr. $41.95 Club Pr. $33.95

HANDBOOK OF PRACTICAL ELECTRICAL DESIGN. By J. F. McPharland. 416 pp., 300 illus. This volume provides a step-by-step explanation of designing electrical systems for industrial, commercial, and residential applications. Packed with helpful tips for saving time and complying with code requirements from branch circuits to wiring size. 456/951 Pub. Pr. $49.95 Club Pr. $39.95

DIGITAL LOGIC DESIGN. By B. Holdsworth. 336 pp., 192 illus. All of the recent advances in digital design techniques are presented here in depth. It's both a text covering basic concepts and a practical guide to design techniques for combinational, clock-driven, and event-driven circuits. 58283-2 Pub. Pr. $21.95 Club Pr. $17.95

MODERN ELECTRONIC CIRCUITS. By J. K. Haring. 624 pp., 565 illus. Covers the entire field of electronics, from basic components to state-of-the-art systems. 58783-4-1 Pub. Pr. $25.95 Club Pr. $20.95

MODERN ELECTRONIC CIRCUITS REFERENCE MANUAL. By J. K. Haring. 1,264 pp., 3,655 illus. Covers such topics as theory of circuits, components, and devices; computer design; and much more. 464/487 Pub. Pr. $70.95 Club Pr. $55.95

ELECTRONICS ENGINEERS’ HANDBOOK, 2/e. Edited by D. G. Fish and D. Christiansen. 2,772 pp., 2,189 illus. This updated and enlarged edition covers all the latest knowledge in the field, including new advances in integrated circuits, lasers, and logic circuits, telecommunication. 58283-7 Pub. Pr. $52.95 Club Pr. $41.95

INTRODUCTION TO KARAOKE SYSTEMS. By M. I. Shkolnik. 264 pp., 244 illus. This new edition of a widely used text on karaoke systems shows you the key elements of the system in a point-by-point book that brings you full discussions of the many major changes that occur in the field today. 578/699 Pub. Pr. $43.95 Club Pr. $33.95

PRACTICAL DIGITAL DESIGN USING ICs. By J. D. Greenfield. 712 pp., 545 illus. This revised and expanded Second Edition of a popular guide shows how to get the best out of a wide range of popular integrated circuits. It's more. It contains the specialized know-how today's designer needs to interface ICs with microprocessors. 58283-7 Pub. Pr. $52.95 Club Pr. $41.95

STANDARD HANDBOOK FOR ELECTRICAL ENGINEERS. 16/e. By H. J. Fink and D. Beatty. 2,448 pp., 1,414 illus. Today's most widely used source of electrical engineering information and data serves you as no other single work when you need detailed, timely, and reliable facts. 209/764 Pub. Pr. $79.95 Club Pr. $62.95

New members! Any one of these great professional books for only... as a premium with your 1st selection!

Spectacular values up to $95.00

"$2.89"
Why YOU should join now!

■ BEST AND NEWEST BOOKS IN YOUR FIELD—Books are selected from a wide range of publishers by expert editors and consultants to give you access to the best and latest books in your field.

■ BIG SAVINGS—Build your library and save money too! Savings ranging up to 30% on books plus 70% off publishers’ list prices—usually 20% to 25%.

BONUS BOOKS—You will immediately begin to participate in our Bonus Book Plan that enables you to save up to 70% off the publishers’ prices of many professional and general interest books.

■ CONVENIENCE—12-14 times a year (about once every 3-4 weeks) you receive the Club Bulletin FREE. It fully describes the Main Selection and Alternate Selection. A dated Reply Card is included. Your want list is on the Reply Card. If you have a selection in mind, simply check it and mail the Reply Card. If alternate or no book at all—you simply indicate it on the Reply Card and return it by the date specified. You will have at least 10 days to decide. If, because of late delivery of the Bulletin, you receive a Main Selection you do not want, you may return it for credit at the Club’s expense.

As a Club member you agree only to the purchase of three books (including your first selection) during your first year of membership. Membership may be discontinued by either you or the Club at any time after you have purchased the first selection plus two additional books.

MAIL THIS COUPON TODAY

Please enroll me as a member and send me the two books indicated, billing me for the $2.89 premium and my first selection at the discounted member’s price plus local tax, shipping, and handling charges. I agree to purchase a minimum of two additional books during my first year of membership as outlined under the Club plan described in this ad. A shipping and handling charge is added to all shipments.

Write Code No. of first selection here

Signature

Name

Address/Apt #

City

State

Zip

This order subject to acceptance by McGraw-Hill. All prices subject to change without notice. Offer good only to new members.

Mail this coupon to:

McGraw-Hill Book Clubs
Electronics and Controls Engineers’ Book Club
R.O. Box 582, Hightstown, New Jersey 08520

McGraw-Hill Book Clubs
Electronics and Controls Engineers’ Book Club
R.O. Box 582, Hightstown, New Jersey 08520

FEBRUARY 1985

E33716

www.americanradiohistory.com
CLOSED-CAPTIONS TV SIGNALS

Perhaps we can provide some of the information John Bunting asked for in the August 1984, "Letters" column relative to closed caption TV signals. PBS stations helped pioneer the process, first with the National Bureau of Standards system in the 70's, and then with the current system.

In theory, it should be relatively easy to extract the transmitted characters, but one will not be able to obtain the full caption function with "a few dollars worth of chips." First, it is necessary to look in the right place for the caption signal: line 21, the last line of vertical blanking before the start of picture information. Second, the decoder has to distinguish between field 1 and field 2 of each frame, because the actual characters are only transmitted during field 1. (Only half of line 21 can be used in field 2, and that is reserved for a framing code that determines when and where the text will appear on the screen.)

The format of field 1, line 21, is as follows: 10 microseconds after the start of the horizontal-sync pulse, exactly 7 cycles of 503 kHz sine-wave appear. That is phase-locked to horizontal sync, and is used for synchronizing the decoder clock oscillator. About 4 microseconds later, the pulse sequence begins, consisting of two 7-bit (plus parity) ASCII characters in non-return-to-zero (NRZ) format. The two characters occupy a little under 34 microseconds. That is true for only 7 consecutive frames, however; the eighth is used for a reference pulse that allows the commercial decoders to adapt to a variety of distortions that the transmission system may induce. Neither the framing code nor the equalizer pulse would be feasible to de-
WE'RE TURNING THE COMPETITION GREEN WITH ENVY.

NTE is the red hot success story of the electronics industry and the big boys are green with envy. They don't like the fact that we've built our reputation on giving you more of what you're looking for in a replacement part. More quality. More reliability. And, more parts to choose from. That's why more and more technicians across the country are picking the package with the green NTE diamond on the front.

NTE parts are extensively tested on state-of-the-art equipment during every phase of production to ensure top performance — performance that's backed by the industry's only two year warranty.

What's more, NTE uses a special computer controlled inventory system, so when you replace or design with NTE, you can be sure that the part you need is on your distributor's shelf. Our new 1985 Technical Guide and Cross Reference manual, which has over 3,100 NTE types cross-referenced to over 220,000 industry part numbers, is now available.

Why settle for our competitor's parts when you get more quality and service with NTE? Look for NTE's replacement parts in the bright green polybags and cartons at your distributor today.

Don't forget to ask about our new Flameproof Resistors and Wire Ties, too!

NEW-TONE ELECTRONICS, INC.
44 FARRAND STREET, BLOOMFIELD, NEW JERSEY 07003
CIRCLE 272 ON FREE INFORMATION CARD
PORTABLE OSCILLOSCOPES

MODEL V-212
DC to 20MHz, 1 mV/div, Dual Trace
Feature 6" Rectangular CRT
Full 2 year parts and labor warranty.

$461.00

MODEL V-650F
DC to 60MHz, Dual Trace
Delayed Sweep

$956.00

MODEL V-1050F
DC to 100MHz, Quad Trace,
Delayed Sweep.
- All prices include full set of
factory probes - up to $120.00
value.

$1276.00

POLAROID CR-10 Camera
Now you can get an instant
picture in black & white or color
from any oscilloscope screen.
Includes CRT hood.
*Large hoods also available to fit
computer terminals and CAD/
CAM screens.

$369.00

GLOBAL SPECIALTIES
TRIPLE OUTPUT POWER SUPPLY

MODEL 1301
$219.00
- Fully regulated triple output
- Fixed 5VDC, 1A
- V1 +5 VDC to 18 VDC .5A
- V2 – 5 VDC to 18 VDC .5A
- Fully automatic current limiting

MODEL 3002A/0-30 VDC/0-2A
$125.00

TRIPLE OUTPUT POWER SUPPLY

MODEL 1650
$319.00
- Functions as three separate
supplies
- Exclusive tracking circuit
- Fixed output 5 VDC, 5A
- Two 0 to 25 VDC outputs at 0.5A
- Fully automatic, current-limited
overload protection
- + and – terminals of each output
are fully isolated, In all modes
- All three outputs may be
connected in series or parallel for
higher voltage or current

MODEL 3000
$139.00

GLOBAL SPECIALTIES

CALL US TOLL FREE
1-800-732-3457
IN CALIFORNIA TOLL FREE 1-800-272-4225

RAG ELECTRONICS, INC. / 21418 Parthenia Street / Canoga Park, CA 91304 / 1-818-998-6500

www.americanradiohistory.com
GIANT 14th ANNIVERSARY SALE!

FLUKE

70 SERIES MULTIMETERS
- Analog Display • Rotary Knob • Volts AC & DC • Resistance to • 32 MΩ • 10 Amps • Diode Test • 3200 Counts • Fast Autoranging • Function Annunciators in Display • Power-Up Self Test • 2000+ Hour Battery Life w/Power Down
- "Sleep Mode" • New Test Leads • VDE & UL Approval

<table>
<thead>
<tr>
<th></th>
<th>$85.00</th>
<th>$99.00</th>
<th>$129.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>0.7% Accuracy • Autorange Only • 10 Amp Only</td>
<td>0.5% Accuracy • Manual or Autorange • 10 A + 300 mA Range • Beeper</td>
<td>0.3% Accuracy • Manual or Autorange • 10A + mA Range • Beeper • "Touch-Hold Function</td>
</tr>
</tbody>
</table>

ATACAM

- Basic dc accuracy 0.4%;
- True RMS
- 10uV, 10 nA and 10m nA sensitivity
- ...accurate
- CH1 signal output
- High
- DIGIT
- IAN
- PROBE
- 40MHz
- Fastest sweep rate: 10 ns.
- Sine, square and triangle output
- Variable and fixed TTL outputs
- 0.1 Hz to 1 MHz in six ranges
- Typical distortion under 0.3% from 1 Hz to 100 kHz
- Variable DC offset
- VCO input for sweep tests

PORTABLE OSCILLOSCOPES

MODEL SS-5705
- DC to 40 MHz
- Vertical and horizontal deflection accurate within ±2% CRT acceleration voltage 12KV. 3 channels.
- 6 traces. High precision calibrator (±1%). Fastest sweep rate: 10 ns.
- High sensitivity 1 mV/div
- CH1 signal output
- Beam finder
- Delayed sweep
- Alternate time base

MODEL SS-5702
- DC - 20 MHz, 5 mV/div
- Dual trace
- 6 inch rectangular internal graticule CRT.
- Includes 2 each x1/x10 probes and full factory warranty; 2 years on parts, labor and CRT.

LEADER

Audio Sine/Square Wave Generator
- Distortion <0.01%
- 10 Hz to 1 MHz

MODEL 3010
- Sine, square and triangle output
- Variable and fixed TTL outputs
- 0.1 Hz to 1 MHz in six ranges
- Typical distortion under 0.3% from 1 Hz to 100 kHz
- Variable DC offset
- VCO input for sweep tests

VIZ

MODEL WD-755
- 5 Hz to 125 MHz
- 6 Digit LED Display
- Peak Hold Measurement 5 Hz to 2 MHz
- Totallizes to 99,999.999 Plus Overload
- Frequency Ratio Mode
- Time Interval Mode
- Switchable Attenuator & Low Pass Filter

MODEL WD-532A
- Fast relay opens input circuit on overload
- Lamp indicates when relay is open
- Easy-access battery compartment and test lead storage
- High accuracy ±2% DVM, ±0.05% ACV
- 3 to 1 ranges (like VOM)
- Large 5" mirror meter
- Front panel meter scales coded in 3 colors for quick function identification
- Battery condition indicator for overload protection circuit

STACO

VARIABLE TRANSFORMER
- $145.00
- MODEL 3PN1010V
- RAG CARRIES THE COMPLETE STACO VARIABLE TRANSFORMER LINE
- CALL US WITH YOUR REQUIREMENTS.

WE CARRY A FULL LINE OF FLUKE MULTI-METERS, COUNTERS, AND DIGITAL TEMPERATURE METERS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>$349.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODEL 806DA</td>
<td></td>
</tr>
</tbody>
</table>

CIRCLE 286 ON FREE INFORMATION CARD
code, so the experimenter would probably want to display the data stream on a separate monitor.

It would appear that teletext and closed-caption signals are quite different, which is reasonable considering the difference in targeted audiences. The closed-caption signal transmits data at a much slower rate and might appear to be less efficient. It is still capable of transmission faster than most people can read, though, and the slower rate enables reliable data recovery even at the outer regions of a station's coverage.

Teletext, on the other hand, must be more things to more people, so it necessarily must be faster. That is accomplished by higher baud rates and use of more lines. Mr. Bunting might be interested to know that lines 10-13 are not in general use, but according to the FCC's timetable (Section 73.682, Schedule 1) will become available in 1988. Lines 14-18 and 20 (both fields) are currently used, although some stations still use certain of those lines for test signals.

We hope that this information will be useful to Mr. Bunting and anyone others interested in this new area of TV technology.

JOHN H. DAVIS
W5PT-
Warm Springs, GA

ANOTHER ONE JOINS THE RANKS

You can add my name to the list of those who joined your ranks from Computer & Electronics, (formerly Popular Electronics.)

I had been reading and/or subscribing to Popular Electronics since 1964, but no more once they became Computer & Electronics.

By the way I've got nothing against computers, since I design PC boards using a CAD (computer-aided design) system and have a Radio Shack TRS-80 Color Computer at home. But everything has its place, and changing their format to one that covered computers almost entirely was a bad move. I had always looked forward to building the various projects they (and also your magazine) published.

Before I sign off, maybe you or your readers can help me. I need a schematic and parts list for a Southwest Technical Products Corp. project called Psychedelia III, a color organ kit that needs repair. I hope you can help.

RICHARD C. POLK
Streamwood, IL

ZX81 OWNERS ALIVE AND WELL

Thanks to you for running the article on "Interfacing the ZX81," [I just received my July issue of Radio-Electronics, (the mail takes a while) and I am delighted with the article. Also appreciated was the previous article by Paul W.W. Hunter on the ZX81's transparent memory for the ZX81. I estimate that there are on the order of two million ZX81 and Timex 1000 owners scattered about, and although our prime supplier (Timex) and prime publication (Sync) have bitten the dust, we remain alive and well.
FLUKE 70 SERIES MULTIMETERS

- Analog Display
- Rotary Knob
- Volts AC & DC
- Resistance to 32 MΩ
- 10 Amps
- Diode Test
- 3200 Counts
- Fast Autoranging
- Function Annunciators in Display
- Power-Up Self Test
- 2000+ Hour Battery Life w/ Power Down "Sleep Mode"
- New Test Leads
- VDE & UL Approval

WE CARRY A FULL LINE OF FLUKE MULTIMETERS.
IN STOCK NOW

BECKMAN'S CIRCUITMATE® ALL UNDER $100
AVAILABLE NOW...

- 0.3% Accuracy
- Manual or Autorange
- 10A + mA Range
- Beeper
- "Touch-Hold" Function

Sale
$119.95

BECKMAN'S CIRCUITMATE®
ALL UNDER $100
AVAILABLE NOW...

SALE ENDS JAN. 85

BECKMAN CIRCUITMATE DM10
$39.95
IN STOCK NOW

NEW!

*Small Size
*Complete Autoranging
*Audible Continuity Checking

THE DM73 IS THE SMALLEST DIGITAL MULTIMETER ON THE MARKET. ITS PROBE-STYLE DESIGN MAKES IT IDEAL FOR TAKING MEASUREMENTS IN HARD-TO-REACH TEST AREAS.

TOLL FREE HOT LINE
800-223-0474
212-730-7030
26 WEST 34th STREET, NEW YORK, N.Y. 10003

www.americanradiohistory.com
IF YOU WANT TO GET YOU HAVE TO GET INTO

Learn PC Servicing By Building Your Own NTS/HEATH HS-15 Desk-Top Computer, Circuit-By-Circuit

NTS Intronic Home Training Takes You Below The Surface

NTS gets you right down into the heart of computer circuitry. You learn how microprocessors function, how they are designed, how they operate and are used to solve problems. Your program includes a wide variety of tests and projects, as you assemble your PC. You experience the excitement of seeing your own skills grow, the security of knowing you really understand what makes a computer tick.

A Career In PC Servicing

The world of computers is constantly expanding. Applications have spread from business to manufacturing, from industry to medical and scientific fields. Computer-aided design, engineering, and production have revolutionized drafting, graphics, and prototyping. Computer sales figures point to a continuing need for service technicians as well as installation and maintenance specialists. The type of training you receive will largely determine your ability to take advantage of these opportunities ... and nothing beats the practical, down-to-earth training you get from NTS.

The NTS/HEATH 16-Bit HS-151

This desk-top PC is the most powerful and versatile ever offered in any home training program. Check the advanced features listed below:

1. 128 KB RAM user memory on board, expandable to 640 KB
2. 16-bit 8088 Microprocessor accepts advanced software, speeds word processing; also allows selection from the huge library of IBM software.
3. 5.25-inch floppy disk drive, double density, IBM formatted, stores up to 360 KB. (Expandable to dual disk drive, and optional 10.5 MB hard-disk drive.)
4. MS-DOS operating system, IBM compatibility, make a wide choice of software programs available.
5. Four open IBM-compatible slots provide for future expansion. Printer, modem, etc. Will accept most peripheral boards designed for IBM-PC.
6. Two video outputs for color or monochrome display monitor. Your NTS course includes a high resolution monitor displaying 80 characters by 25 lines, or graphics.
7. Editing capabilities help you insert or delete characters and lines, erase, jump or smooth scroll, etc.

Your NTS training course will teach you to program on this outstanding PC, using lessons, texts, and diagrams to make full use of its capabilities. Catalog contains complete details.

Learning circuitry through the construction of this equipment offers practical training for which there is no substitute. Test equipment is included.

Field servicing is interesting and rewarding. Technicians may work for a service company, manufacturer, or major users.

The NTS/HEATH HS-151 PC completed, includes monitor and full-function keyboard with calculus style keypad, and typewriter format.
Installing the disk-drive in the PC is one of the final stages in the assembly of the microcomputer. Learning the use of test equipment to check circuits is an integral part of the training which, with field experience, develops invaluable career skills.

NTS COURSES COVER MANY AREAS OF SPECIALIZATION IN ELECTRONICS:

Robotics: Build the NTS/HEATH Hero 1 Robot as you learn robotic programming. Robot is complete with arm and gripper, voice synthesizer. Robotics is becoming increasingly important in Industry as almost daily news features attest.

Video Technology: Build one of the most advanced Color TV sets in America as you learn circuit diagnostics, and the use of digital test instruments. Course covers color TV, video tape recorders, computer fundamentals, solid-state devices.

Industrial and Microprocessor Technology covers circuit analysis, microprocessors and automation applications, lasers, and basic industrial robotics.

TV & Radio Servicing is a specialized course offering an excellent foundation in the use and application of both analog and digital test equipment as applied to the TV servicing field. Learn circuits, adjustments, troubleshooting, and servicing of Color and monochrome monitors.

Digital Electronics offers the student the opportunity to get involved with computer concepts, computer technology fundamentals, and digital equipment by training on the NTS Compu-Trainer.

Basic Electronics is a course designed for those wishing to have an overview of electronics in many of its aspects including radio receivers, solid-state devices, and electronic components.

NTS Intronic training programs include a variety of superb equipment, most of which is classified as field-type, making the training practical and career oriented. Texts and lessons have been tested in our Resident School in Los Angeles to assure home study students that courses of training are easy to understand. NTS, now in its 80th year, continues to be at the leading edge in Electronics home training.

 방문 is a trademark of International Business Machines Corp.
 IBM is a trademark of International Business Machines Corp.

NTS is a trademark of International Business Machines Corp.

www.americanradiohistory.com
EQUIPMENT REPORTS

Cardco Card? Universal Printer Interface

This interface lets you use almost any printer with your Commodore 64.

CIRCLE 5 ON FREE INFORMATION CARD

Because of its high performance and low cost, the Commodore 64 has become one of the most popular computers for home-and-family and school use. Unfortunately, its matching line printer leaves a lot to be desired when it comes to word processing of any kind. In fact, there is no low cost formed-character (daisy-wheel type) or high-quality dot-matrix printer presently available for that computer.

The way to get high quality printouts from the Commodore 64 (or VIC-20) is to use one of the better printers and a Card? interface, a device that lets you use a Centronics-type parallel printer in place of a Commodore printer.

The Card?
The Card? interface from Cardco, Inc. (313 Mathewson, Wichita, KS 67214) is priced at $69.

GET THE SAME VIDEO TRAINING THE PEOPLE AT SONY GET.

Now you can be trained by Sony even if you aren't employed by Sony. Because we're making our vast library of training videotapes available to you. The very tapes that teach our own engineering, service and sales personnel.

The tapes cover the products and concepts of video and its related technologies. You can learn the basics of video recording. Color systems. Digital video and electronics. Television production. And more.

Plus you can learn how to service cameras, VTR's, and other video products. As professionally as Sony does.

The tapes are produced entirely by Sony and contain up-to-the-minute information. They communicate clearly and simply. And some of them are even programmed for interactive learning.

And learning through video can be done at your own pace, in the convenience of your home, shop or school. Reviewing is quick and easy. And the tapes are always available for reference.

Send for your catalog, which lists more than 250 titles. In your choice of 3/4" or 1/2" formats.

Write Sony Video Products Company, Tape Production Services, 700 W. Artesia Boulevard, Compton, California 90220. Or call (213) 337-4300.

Of course, there's no obligation. Except the obligation you have to yourself: to find out about the best training available in one of the country's fastest-growing, most lucrative fields.

SONY Video Communications
Sony is a reg. trademark of Sony Corp.

CIRCLE 261 ON FREE INFORMATION CARD
OSCILLOSCOPES

CALL TOLL FREE FOR FAST DELIVERY 800-645-9518

B&K

Model 1580
100 MHz DUAL TRACE, DUAL TIME BASE OSCILLOSCOPE

$1249.95
(Reg. $1,595.00)

FEATURES: 1 mV/div sensitivity • 23 calibrated sweeps • Rectangular CRT with internal graticule and scale illumination • Signal Delay Line • Video Sync Separators • 20 MHz Limiter • X-Y Operation • Z axis input • 16 kV Accelerating Voltage • X10 Sweep Magnification • Delayed sweep/Dual Time Base • Single Sweep • V Mode - display two signals unrelated in frequency • Sum and Difference Capability • Channel 1 Output • Includes Probes

B&K

Model 1570
80 MHz QUAD INPUT DUAL TIME BASE OSCILLOSCOPE

$1095.00
(Reg. $1,195.00)

FEATURES: 1 mV/div sensitivity to full bandwidth • 800 μV/div cascode sensitivity to 40 MHz • 22 calibrated sweeps • Rectangular CRT with internal graticule and scale illumination • 12 kV accelerating voltage • Mode - display four signals unrelated in frequency • Alternate timebase operation • Signal delay line • 20 MHz bandwidth limiter • Lighted pushbutton function switching • Video sync separators • Includes Probes

B&K

Model 1560
60 MHz TRIPLE TRACE OSCILLOSCOPE

$899.95
(Reg. $1,150.00)

FEATURES: 1 mV/div sensitivity • 22 calibrated sweeps • Rectangular CRT with internal graticule and scale illumination • Signal delay line • Video sync separators • X-Y operation • Z axis input • 16 kV accelerating voltage • X10 sweep magnification • Delayed sweep dual time base • Single sweep • Auto focus • V mode displays two signals unrelated in frequency • Sum & difference capability • Channel 1 output • Includes probes

B&K

Model 1540
40 MHz DUAL TRACE OSCILLOSCOPE

$799.95
(Reg. $995.00)

FEATURES: 1 mV/div sensitivity • 21 calibrated sweeps • Rectangular CRT with internal graticule and scale illumination • Signal delay line • Video sync separators • X-Y operation • Z axis input • 12 kV accelerating voltage • X10 sweep magnification • Delayed sweep/Dual Time Base • Single Sweep • V Mode - display two signals unrelated in frequency • Auto focus • V mode displays two signals unrelated in frequency • Sum & difference capability • Channel 1 output • Includes probes

B&K

Model 1522
20 MHz DUAL TRACE TRIGGERED SWEEP OSCILLOSCOPE

$569.95
(Reg. $695.00)

FEATURES: 1 mV/div sensitivity • 20 calibrated sweeps • Rectangular CRT with internal graticule and scale illumination • Video sync separators • X-Y operation • Z axis input • 6kV accelerating voltage • Mode - Y sweep magnification • Auto sweep • V mode displays two signals unrelated in frequency • Sum & difference capability • Channel 1 output • Includes probes

MASTERCARD/VISA ACCEPTED

PHONE ORDERS ACCEPTED

Service and Shipping Charge Schedule

<table>
<thead>
<tr>
<th>FOR ORDERS</th>
<th>ADD</th>
</tr>
</thead>
<tbody>
<tr>
<td>$501-750</td>
<td>$8.50</td>
</tr>
<tr>
<td>$751-1,000</td>
<td>$12.50</td>
</tr>
<tr>
<td>$1,001 and up</td>
<td>$15.00</td>
</tr>
</tbody>
</table>

Fordham
260 Motor Parkway, Hauppauge, New York 11788

www.americanradiohistory.com
The unit consists of a small, lightweight plastic box that measures approximately 3 1/2 x 3 x 7/8 inches with a Centronics-type connector on one end and a cable on the other end that terminates in a DIN connector that matches the serial output connector on the Commodore computer or its disk drive. (When using a disk drive, the printer connection is moved from the computer to the disk drive.) A single wire trailing from the Card/it’s DIN connector is attached to an adapter that slips over the computer’s edge connector that provides power and signal I/O for the Commodore Datassette (cassette) tape recorder. The wire provides the 5-volt power supply for the interface and still allows the Datassette to be used.

The interface plugs directly into the Centronics-type connector on the printer. (An earlier version of the Card/it interface—called the Model A; the model we are describing is the Model B—was moved to an adapter that slips over the computer’s edge connector that provides power and signal I/O for the Commodore Datassette (cassette) tape recorder. The wire provides the 5-volt power supply for the interface and still allows the Datassette to be used.

The interface plugs directly into the Centronics-type connector on the printer. (An earlier version of the Card/it interface—called the Model A; the model we are describing is the Model B—was moved to an adapter that slips over the computer’s edge connector that provides power and signal I/O for the Commodore Datassette (cassette) tape recorder. The wire provides the 5-volt power supply for the interface and still allows the Datassette to be used.

The new Model 1301 Triple Power Supply from Global Specialties is designed to meet your DC voltage requirements for product development, testing, quality control, servicing and education applications. This fully regulated power source is especially useful for analog and digital circuit design and offers a fixed 5 VDC, 1.0 A output which is ideal for TTL applications. In addition, the Model 1301 offers two continuously variable ±5 to ±18 VDC, 0.5 A supplies.

The three voltage supplies are completely isolated and outputs are available through six front panel, color-coded binding posts. A separate binding post is connected to the chassis and ground.

Each of the two continuously variable outputs has a separate voltage adjust control. Two front panel meters provide for the monitoring of voltage from 0-20 V and current from 0-1 A. Current limiting protects against short circuiting and outputs may be interconnected to increase voltage range without short circuit damage.

The Model 1301 is a versatile general purpose power supply which provides precision performance in engineering laboratory applications, schools, testing and servicing, and production lines. Because of its low price — under $250.00 — the 1301 is also excellent for use by hobbyists. Rugged construction and a durable metal case permit the 1301 to withstand the wear and tear of regular use and provide many years of trouble-free service.

See the new Model 1301 Triple Power Supply at your electronics distributor, or, for the name of your local distributor, call our toll-free Product Availability Phone: 1-800-243-6077.

To avoid problems caused by differences in response to ASCII control codes between the computer and the printer, the interface automatically makes the required conversions. For example, when listing a program, the Commodore's CHR$(19) "home cursor" command would stop an Epson printer dead in its tracks because CHR$(19) is the Epson-printer command for "stop printing." To avoid that hassle, the interface automatically changes the listing from CHR$(19) to an "[HM]" (home cursor). Other ASCII codes from 1 to 31 and 128 to 160, that might be inconsistent with the non-Commodore printer commands, are similarly designated within brackets. For example, CHR$(150), which is the Commodore command for the color "light red," is listed as "[LR]."

The interface normally defaults to the "normal printing mode," which is upper case only with automatic linefeed after carriage return. A short software command can be used to temporarily or "permanently" lock (until power reset) the interface to provide upper case only with no line feed, upper and lower case with no line feed, upper and lower case with automatic linefeed, graphics mode with line feed, or graphics mode with no line feed.

CIRCLE 62 ON FREE INFORMATION CARD
Where's Your ELECTRONICS Career Headed?

The Move You Make Today Can Shape Your Future

Yes it's your move. Whether on a chess board or in your career, you should plan each move carefully. In electronics, you can move ahead faster and further with a

B. S. DEGREE

Put professional knowledge and a COLLEGE DEGREE in your electronics career. Earn your degree through independent study at home, with Grantham College of Engineering. No commuting to class. Study at your own pace, while continuing your present job.

The accredited Grantham non-traditional degree program is intended for mature, fully employed workers who want to upgrade their careers... and who can successfully study electronics and supporting subjects through

INDEPENDENT STUDY, AT HOME

Free Details Available from:

Grantham College of Engineering
10570 Humboldt Street
Los Alamitos, California 90720

Independent Home Study Can Prepare You

Study materials, carefully written by the Grantham staff for independent study at home, are supplied by the College, and your technical questions related to those materials and the lesson tests are promptly answered by the Grantham teaching staff.

Recognition and Quality Assurance

Grantham College of Engineering is accredited by the Accrediting Commission of the National Home Study Council.

All lessons and other study materials, as well as communications between the college and students, are in the English language. However, we have students in many foreign countries; about 80% of our students live in the United States of America.

Grantham College of Engineering
R 2-85
10570 Humboldt Street, Los Alamitos, CA 90720

Please mail me your free catalog which explains your B.S. Degree independent-study program.

Name: ________________________ Age: ______

Address: _______________________

City: _________________________ State: ______ Zip: ______
The graphics mode has the ability to pass any character string to the printer unchanged. It’s primarily intended for use with word processors and other programs that can function with non-Commodore printers, and that can access the advanced graphics features of certain printers. A semi-permanent selection of the graphics mode can be made by an internal DIP-switch on the printed-circuit board.

Three other DIP switches on the PC board are used to automatically exchange the function of CHR$(15) and CHR$(20); enable or disable software selection of automatic linefeed after carriage return, and enable or disable the ASCII correction described above.

The reason for the automatic exchange of the CHR$(20) and CHR$(15) functions is because Commodore uses CHR$(15) to cancel the expanded print mode, but other printers use CHR$(15) for condensed print with CHR$(20) used to cancel the expanded mode. By automatically swapping CHR$(15) for CHR$(20), the Commodore command to “cancel expanded print mode” will work properly with just about any non-Commodore printer currently on the market.

For listings, user written programs, and word processing, the Card? interface is used as claimed, doing an effective job of emulating a Commodore printer, while providing the enhancements of the higher-performance printers. The few problems that arise, such as dropped spaces between words and stepping of the printer through blank space (no character) on a line comes about through some off-the-wall programming used in some commercial programs—even some better quality software. Fortunately, programs for the Commodore computers are in BASIC, so it’s possible to get into the listings and make whatever changes are necessary to provide rational printer operation.

Overall, the Card? interface is the way to go for “professional quality” printouts from the Commodore 64 and VIC-20 computers.

R-E

continued on page 81
SATELLITE TELEVISION RECEIVER SEMIKIT with dual conversion downconverter. Features infrared remote control tuning, AFC, SAW filter, RF or video output, stereo output. Priorator controls. LED channel & tuning Indicators. Install six factory assembled circuit boards to complete Semikit $400.00. Completed downconverter add $100. Completed receiver and downconverter add $150. JAMES WALTER SATELLITE RECEIVER, 2697 Nickel, San Pablo, CA 94805. Tel 415-724-0867.

CIRCLE 124 ON FREE INFORMATION CARD

SUBSCRIPTION TV MANUAL. This information packed book details the methods used by subscription TV companies to scramble and descramble video signals. Covers the Sinewave, Gated Pulse, SSSAV system, and the methods used by most cable companies. Includes circuit schematics, theory, and trouble shooting hints. Only $12.50 plus $2.00 first class P&H. ELEPHANT ELECTRONICS INC., (formerly Random Electronics Inc.) Box 41770-R, Phoenix, AZ 85080.

CIRCLE 120 ON FREE INFORMATION CARD

FREE CATALOG OF HARD-TO-FIND TOOLS is packed with more than 2000 quality items. Your single source for precision tools used by electronic technicians, engineers, instrument mechanics, schools, laboratories and government agencies. Also contains Jensen's list of more than 40 tool kits. Send for our free copy today! JENSEN TOOLS INC., 7815 46th St., Phoenix, AZ 85040. (602) 668-6231.

CIRCLE 115 ON FREE INFORMATION CARD

FREE PORTABLE COMPUTER 9" Green or Amber CRT. Two 400 K DSDD Drives. CP/M 2.2 Operating System. $799.00. Gemini Electronics, Inc., 130 Baywood Ave., Longwood, FL 32750. 1-800-327-7182 /305-759-8888.

CIRCLE 250 ON FREE INFORMATION CARD

ZORBA 64K PORTABLE COMPUTER 9" Green or Amber CRT. Two 400 K DSDD Drives. CP/M 2.2 Operating System. $799.00. Gemini Electronics, Inc., 130 Baywood Ave., Longwood, FL 32750. 1-800-327-7182 /305-759-8888.

CIRCLE 120 ON FREE INFORMATION CARD

ONE MAN CRT FACTORY. easy operation. Rebuild CRT's for tv's, bus. machines, monitors, scopes, etc. Color, b&w, 20mm, foreign or domestic. 3 x 6 ft. space required. Profits?? Average CRT rebuilding costs—$5. Sell for $100 = $95 profit. x 5 CRT's = $475 daily, x 5 days = $2375 weekly profit. Higher profits overseas. Investigate this opportunity today. We service the entire world.

CIRCLE 90 ON FREE INFORMATION CARD
NEW PRODUCTS

OSCILLOSCOPES, the 2465 DVS (Digital Video System) Special Edition (shown in photo); the 2465 DMS (Digital Multimeter System), Special Edition, and the 2465 CTS (Counter-Timer System) Special Edition. All three are programmable using the IEEE-488 GPIB.

The 2465 DVS has five new measurement capabilities. It incorporates: 1. a talker/listener IEEE-488 GPIB; 2. a counter/timer/trigger; 3. a word recognizer; 4. an auto-ranging digital multimeter, and 5. comprehensive television-waveform measurement capability. That oscilloscope is priced at $7850.

The 2465 DMS incorporates all of the above features except the TV capability. It is priced at $7850.

The 2465 CTS has all the above features except the TV and digital multimeter capability. It is priced at $6650. — Tektronix, Inc., PO Box 500, Beaverton, OR 97077.

SATELLITE TV RECEIVER, model SR-1000 has three variable controls for video and audio tuning, dual threshold extension switches, and an LED "climbing" bar-graph tuning meter. A front-mounted Chapparal Polarator control helps optimize reception for the desired satellite, and helps reject interference from adjacent satellites.

A composite baseband output provides optimum signal quality.
MASTER THE NEW ELECTRONICS WITH McGRAW-HILL'S
Contemporary Electronics Series

The fast, easy and low cost way to meet the challenges of today's electronic innovations. A unique learning series that's as innovative as the circuitry it explains, as fascinating as the experiments you build and explore.

From digital logic to the latest 32-bit microprocessor, the McGraw-Hill Contemporary Electronics Series puts you into the electronic picture one easy step at a time. Fifteen unique Concept Modules, sent to you one every 4-6 weeks, give you a handle on subjects like optoelectronics, robotics, integrated circuits, lasers, fiber optics and more.

Each Concept Module goes right to the heart of the matter. You waste no time on extraneous material or outdated history. It's a fast, efficient, and lively learning experience...a non-traditional approach to the most modern of subject matter.

Unique Interactive Instruction

With each module, you receive a McGraw-Hill Action Audio Cassette. Each tape is a dynamic discussion that drives home the key facts about the subject. Your learning experience is reinforced through interaction with vividly illustrated text, audio cassettes, and actual electronic experiments. Indexed binders preserve backup material, notes, and tapes for convenient referral.

Perform Experiments in Contemporary Electronics

Throughout your series, laboratory experiments reinforce every significant point. This essential experience...dynamic, hands-on demonstrations of theory in practice...will help you master principles that apply all the way up to tomorrow's latest VLSI (Very Large Scale Integrated) circuitry.

In your very first module, you'll use integrated circuits to build a digital oscillator, verifying its operation with a light emitting diode (LED). You'll learn to identify passive and active components, understand concepts common to all electronic circuits.

For Anyone Interested in Electronics

The Contemporary Electronics Series is designed for anyone from hobbyist to professional. It's for you if you're looking for new fields of interest...if you're a teacher who wants an update in contemporary circuits...a manager or supervisor in an electronics plant...a doctor, an engineer, a chemist who finds electronics playing an increasingly important role in your work. It's even for electronics engineers or technicians who feel their training needs freshening up. It's the quickest, most convenient, probably least expensive way to do it. And the only one that gives you hands-on experience.

15-Day No-Risk Trial

To order your first module without risk, send the postage-paid card today. Examine it for 15 days under the terms of the order form and see how the Contemporary Electronics Series gets you into today's electronics. If card has been used, write us for ordering information.

McGraw-Hill Continuing Education Center 3939 Wisconsin Ave. Washington, D.C. 20016

February 1985
MEET THE MICROPROFESSOR

A portable learning center.
Learning shouldn't be limited to the classroom. That's why we made the MicroProfessor lighter and less bulky than the average textbook. Supported by easy-to-understand documentation, the MicroProfessor leads you through dozens of experiments. And with a wealth of accessories to choose from, including a printer, EPROM programming board and sound and speech synthesis, there's virtually no limit to the kinds of applications you can try your hand at.

Custom tailored to a variety of educational needs.
Whether you're a computer novice or prodigy, interested in guided instruction or independent learning, the MicroProfessor will meet your educational objectives. A teaching tool without peer, the MicroProfessor puts hundreds of hands-on lessons in programming, system architecture and circuit design right at your fingertips. Your computer skills will increase dramatically as the MicroProfessor translates important concepts into practical experience.

The most cost-effective instructional microcomputer on the market.
Today, tight budgets are a fact of life and doubly so for educators and students. At under $200.00 including Instruction Manual and AC Power Supply—less than half the price of any competitive product—the MicroProfessor is a very attractive educational resource.

For more information about putting the MicroProfessor advantage to work in your computer education, please write or call:

CIRCLE 267 ON FREE INFORMATION CARD

195 West El Camino Real, Sunnyvale
California 94089
Outside California call (800) 538-1542
In California call (408) 773-8400

www.americanradiohistory.com
NEW PRODUCTS
continued from page 38

for equipment capable of using it (including upcoming stereo decoders); for use with standard TV sets, a built-in modulator puts the signal on Channel 3 or 4. The model SR-1000 is priced at $49.99.
—Regency Electronics, Inc., 7707 Records Street, Indianapolis, IN 46226-9989.

COMPONENT GRIPPER, model E-90, lets you remove IC's from boards or sockets safely. It grips on high-density circuits, and eliminates strain and breakage on IC bodies because it grips from the pin centers rather than from the ends. The Little Gripper is effective on IC's, as well as on ZIF sockets. It can be adjusted for package tolerances, and can be safely used on static-sensitive devices.

CIRCLE 13 ON FREE INFORMATION CARD

The Little Gripper, model E-90, comes with a lifetime guarantee. There are no springs, knobs, or screws to break or wear. It is priced at $29.95.—Techni-Tool, Inc., 5 Apollo Road, PO Box 368, Plymouth Meeting, PA 19462.

AUDIO OSCILLATOR, model 1100, features low distortion, fixed and variable output levels, and frequency coverage from 20 Hz to 50 kHz. Total harmonic distortion measures 0.01% at 1 kHz and is specified as less than 0.03% from 400 Hz to 25 kHz. A fixed 1-volt output and a variable 10-millivolt to 8-volt output are both accurate to 0.5%, with a typical flatness of 0.2% from 20 Hz to 20 kHz.

Manual control is by means of front-panel numeric and function keys. Entries are shown on a 4-digit display, and functions indicated by appropriate annunciators. The entire status of instrument functions can be stored in any one of 190 nonvolatile memory locations for later recall. GPIB control provides full talk and listen capability, including return of values in the talk mode and recall of memory contents. A free-form number-entry system, triggering in immediate or wait modes, choice of end-of-string terminators, SRQ function, and front-panel return to local control all contribute to bus versatility.

The model 1100 is priced at $1795.00.—Boonton Electronics Corporation, 791 Route 10, Randolph, NJ 07459.

PRECISION TRIMMER POTENTIOMETERS, the ME323-242 series lets the user see the wiper setting. These rectangular trimmers are housed in transparent nylon. The user can see exactly where the wiper is positioned for quick adjustments at a glance. The ceramic element has an essentially infinite resolution output. It is precision-adjustable over a wide resistance range. It features a screwdriver-adjusted mechanism (20 turns nominal), ±10% tolerance, and a miniature size that saves board space.

These potentiometers are available at $5.99 to $20.99 each.

For more information, write to Boonton Electronics Corporation, 791 Route 10, Randolph, NJ 07459.
Get your hands on the scanner the pro’s use.

Whether it's firemen, paramedics, reporters or policemen, more professionals use a Uniden® Bearcat® 100 than any other no-crystal hand-held scanner.

It's not just that more professionals use a Uniden® Bearcat® 100 that's important. It's why. The Uniden® Bearcat® 100 will do more for you than many table-top or mobile scanners twice its size.

With 16 channels, four public service bands, two amateur bands, plus military and government land-mobile frequencies, it gives you complete scanning coverage that fits in your coat pocket. Lockout, hold, manual and automatic search, direct channel access and liquid crystal read outs make it easier to use. And like no other hand-held scanner, the Uniden® Bearcat® 100 has Track Tuning to pull in weak signals wherever you go. It comes complete with rechargeable batteries, charger, and professional quality carry case.

The Uniden® Bearcat® 100. The scanner made for born leaders.

For the name of the dealer nearest you, call 1-800-S-C-A-N-N-E-R.

Uniden Corporation of America, 200 Park Avenue, New York, New York 10166.

Uniden® Bearcat® scanners are approved for use in neighborhood crime prevention programs.

www.americanradiohistory.com
power-rated at 0.75 watt at 40°C and comes in values from 500 ohms to 1 megohm. Their operating power is 300 volts; dielectric strength is 350-volts AC, and insulation resistance is 100 megohms.

The unit price of the ME323-422 series is 80 cents in quantities of 500.—Mouser Electronics, 11433 Woodside Ave., Santee, CA 92071.

HAND-HELD TERMINALS, the DATA-MAC 8 and the DATA-MAC 16 (shown) are small, light-weight, and calculator-shaped “data collectors.” Their 40-key keyboards include 10-key numeric keypads, and letters arranged in alphabetic order. Each key can be defined with a second, 10-character function.

![CIRCLE 17 ON FREE INFORMATION CARD](image)

WAVEFORM ANALYZER, the model SC61, brings wideband peak-to-peak voltage readings to the IEEE bus. That allows the designer to feed signals to the IEEE bus that agree directly with conventional oscilloscope readings.

The model SC61S includes the following features: Its autoranging DC voltage circuits read to a full 2000 volts from two different test points. Its autoranging frequency counter reads from 10 Hz (with 0.01-Hz resolution) to 100 MHz (with 6-digit resolution) from either of two channels. Its ratio function automatically calculates the ratio of two frequencies; that function is handy for testing multiplier or divider stages.

The model SC61 is priced at $3275.—Sencore, 3200 Sencore Drive, Sioux Falls, SD 57107.

A QUALITY TRIPLE-REGULATED POWER SUPPLY AT A LOW, LOW PRICE!!

![MODEL PS101 FULLY ASSEMBLED & TESTED!](image)

This DC triple regulated variable power supply has all the features you could ask for plus a full 1 year guarantee. Fully adjustable from 9V to 35VDC! Three completely independent supplies that offer many advantages. They can be either a pos. supply or a neg. supply...they can also be stacked in series so that a 5V and two 15V supplies can total a 35VDC supply or any combination of the three...(after one of the terminals is grounded to give reference)...for the first time you can now purchase this American made fully adjustable power supply at a price that is onefifth of what you'd expect to pay!

SPECIFICATIONS

- **Output:**
 - Fixed 5 VDC ± 0.2V
 - 2 variable ± 2.5V DC
 - Polarity - ground can also be used as pos. or neg.

- **Ripple less than 100mV full load**
- **Regulation ≤ 1% no load to full load**
- **Line Regulation ≤ 0.2% 108 VAC to 135 VAC**

- **Current:**
 - Fixed supply 0.5 amp max.
 - Variable supply 0.5 amp max.

Protection built in, current limiting, with thermal shutdown.

- **Power:** 100-135 VAC
- **Dimensions:** 8½" x 3½" x 7½" (WxHxD)
- **Weight:** 9 lbs.
- **Warranty:** One year full replacement warranty from date of purchase.

DISTRIBUTOR AND REPRESENTATIVE INQUIRIES INVITED

![E.W. ENGINEERING, INC.](image)

VISA, MASTERCARD, AMEX TELEPHONE ORDERS ACCEPTED! 6 Herman Drive, E. Granby, CT 06026 ☎ 203/651-0285

FREE INFORMATION CARD
Regency Scanners
Bring you the Excitement of Police, Fire, Emergency Radio, and more.

Our radios deliver the local news. From bank hold-ups to three alarm fires. It's on-the-scene action. While it's happening from where it's happening ... in your neighborhood.

You can also listen to weather, business and marine radio calls. Plus radio telephone conversations that offer more real life intrigue than most soap operas. And with our new models, there's even more.

Unique Capabilities
Introducing two all new Regency scanners. First, there's the MX7000, a 20 channel, no-crystal unit that receives continuously from 25 to 550 MHz and 800 MHz to 1.2 GHz. That's right!

Continuous coverage that includes VHF and UHF television audio, FM Broadcast, civil and military aircraft bands and 800 MHz communications. Next in line is the new MX4000. It's eight band coverage includes standard VHF and UHF ranges with the important addition of 800 MHz and aircraft bands. Both units feature keyboard entry, a multifunction liquid crystal display and selectable search frequency increments.

Practical Performance
If you don't need the 800 MHz range coverage, Regency offers two exciting new units. The MX5000 is a 20 channel, no-crystal scanner that receives continuously from 25 to 550 MHz with all the same features as the MX7000. Then there's the 30 channel MX3000. It's digitally synthesized so no crystals are necessary, and the pressure sensitive keyboard makes programming simple. What's more, it has a full function digital readout, priority, search and scan delay, dual scan speed, and a brightness switch for day or night operation.

At Home Or On The Road
With compact design, easy access front panel and mounting bracket these Regency scanners are ideal for mobile* use. But we also supply each radio with a plug-in transformer and a telescoping antenna so you can stay in touch at home. The MX4000 even has a rechargeable battery pack so it's fully portable.

See your Regency Scanner Authorized Dealer for a free demonstration on these and other new Regency Scanners. Or, write Regency Electronics, 7707 Records Street, Indianapolis, IN 46226.

Regency ELECTRONICS, INC.®
7707 Records Street
Indianapolis, IN 46226-9989

*Mobile use subject to restriction in certain localities.
DID YOU KNOW THAT:

Polystyrene foil capacitors may be better for timing circuits than polycarbonate types?

Tantalum capacitors are not recommended for any application where current spikes are present?

A hybrid potentiometer consisting of a wirewound element and a conductive plastic track will have a life span that is 10 times greater than that of a wirewound potentiometer?

Power wirewound resistors can be operated with a body temperature of 275°C, and that some can operated at body temperatures of as high as 500°C?

From the above, it should be clear that there's a lot to know about the many different types of resistors and capacitors available. That's because each type has its own unique characteristics, and those characteristics make some types of resistors and capacitors far better for certain applications than others. Selecting the proper component for a particular application is vital in order to ensure the reliability of your design. In this article, we'll look at the various factors that you should consider when selecting resistors and capacitors for your projects.

Resistors

When selecting a resistor, consider stability, noise, power dissipation, environment, AC requirements, and resistance. Actual resistance value is a function of tolerance, voltage coefficient, temperature coefficient, and drift with time. The power rating is based upon ambient temperature and derating. Derating, which is the operation of a component at something less than 100% of its specified rating, may be necessary because of environmental conditions.

Resistor compositions include carbon, film, and wirewound for fixed resistance units, and metal and conductive plastic for variable resistors. Figure 1 shows many of the types of resistors available.

Carbon resistors

Carbon-composition units have a resistive element that is molded from carbon powder that has been mixed with a phenolic binder to form a uniform resistive body. That device, molded with end leads, is a general purpose resistor capable of withstanding temperature and electrical transient shocks. The carbon-composition resistor is used in applications where initial tolerance need not be closer than ±5% with long-term stability no better than ±20%.

For variable resistors, one problem is that the carbon element requires a high contact force to ensure that any variation in the contact resistance remains within acceptable limits. That results in high shaft-torque and poor adjustability.

Carbon elements are susceptible to moisture absorption and such moisture absorption can cause the resistance to change by as much as 20%. That resistance shift can be reversed if the device is baked at high temperatures (100°C).

Film resistors

Metal-film devices are used in applications requiring higher stability and precision than available from carbon devices. In addition, metal-film resistors should be used in applications where AC is present. Operation is satisfactory from DC to the MHz range. Metal-film units have low temperature coefficients and suffer little degradation to ambient temperatures of 125°C and higher. Film resistors can be classified according to the techniques used in their manufacture.

One such technique is vacuum deposition, which is also known as evaporated metal film. In it, a nickel-chromium alloy is superheated in a vacuum. The alloy vaporizes and is deposited on a ceramic substrate. Small quantities of contaminant...
nents, called dopants, are used to control resistor characteristics such as resistance range. These resistors are used in applications that require an extreme degree of precision.

In sputtering, a nichrome target is heated and bombarded by argon atoms. That results in metal atoms being knocked off and deposited on a substrate. Resistors manufactured using that sputtering technique are also suitable for applications that require a high degree of precision.

In metal-oxide deposition, a chemical vapor is used to deposit a tin-oxide film onto a glass substrate. That technique, which is primarily used by Corning, is used to produce resistors for general-purpose, semi-precision, and precision applications.

Thin-film resistors are highly stable, have low-noise characteristics, and have a very low temperature-coefficient. They are used in digital multimeters, precision voltage-dividers, attenuators, A/D and D/A circuits, and in current-summing applications.

Typical thin-film resistors are sputtered tantalum nitride, deposited chromium cobalt, or nichrome, on a substrate. Substrates of alumina, sapphire, glass, quartz, beryllia or silicon are used.

Thin-film resistor networks are also available; those are housed in DIP's and SIP's (Single Inline Package).

In individual resistors, the terminals may be either surface or wrap-around types. Wrap-around terminals wrap around the side of the substrate allowing connections to the underside. Terminals of solder, silver over nickel, platinum, or platinum gold are available.

Trimming of the resistor is done either mechanically or by using a laser.

In thick-film resistors, a ceramic substrate is coated (silk-screened—a mechanized sintering process) with a glass-metal material and then fired (to cure) at a high temperature. The glass-metal materials include nichrome, silver palladium, platinum, ruthenium, rhodium, gold, and a tantalum-modified tin oxide. That film is up to 100 times thicker than evaporated or sputtered metal film (greater than .0001 inches thick) and is used in applications requiring high power density or the capability of surviving power spikes or overloads. Those units are suitable for some precision applications, but not those requiring an extremely high degree of precision.

Bulk metal resistors, made in a process that is proprietary to the Vishay Corporation, metal foil is laminated to a substrate and then chemically etched to produce a conductive path. The flat element is used exclusively for high-precision applications and has tight tolerances and an excellent temperature coefficient.

<table>
<thead>
<tr>
<th>TABLE 1—RESISTOR SELECTION GUIDELINES</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE</td>
</tr>
<tr>
<td>Carbon composition</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Carbon composition resistance</td>
</tr>
<tr>
<td>pointed resistor</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Carbon Film</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Metal film</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Film networks</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Chip resistors</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Power wirewound</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Carbon-film resistors were introduced to perform the same basic functions as carbon-composition resistors, but at a lower price. Just like composition types, they lack the ability to withstand transient voltage spikes and have a poor temperature coefficient.

An axial-lead, carbon-film resistor is made by screening carbon-based resistive inks on a ceramic rod and then firing the assembly. Alternating techniques include depositing pure carbon by cracking a hydrocarbon gas or by depositing a nickel film for resistor values of less than 10 ohms. The resistive element may also be sprayed on, applied with a transfer wheel, or dipped on.

The rod is then cut to size, leaded end caps are attached, and the unit is trimmed to a precise value. The resistor is then coated with an insulating material. Carbon-film resistors are available in the same resistance values as carbon-composition units and have a typical tolerance of ±5%.

Wirewound resistors

Wirewound resistors are used where large power dissipation is required and where AC performance is relatively unimportant. Those devices are generally satisfactory for use at frequencies up to 20kHz. They are available with various insulating/moisture preventative coatings such as vitreous enamel, cement, molded phenolic, glass sleeves, or silicone.

Vitreous enamel units have excellent moisture-resistance properties and will not burn (although they may melt) under high overload conditions since they are made from a glass type material.

Silicone, which also has excellent moisture-resistance characteristics, is an organic material and is more flammable at lower overload conditions than vitreous enamel. It will also emit gases under overload conditions leaving deposits on electrical contacts.

Cement coatings are composed of inorganic materials. Those coatings are essentially flameproof but can be made to burn if subjected to high overloads for long periods. Resistors coated with that material are also subject to changes in value with exposure to moisture.

Aluminum and water-cooled housings are also available. Those housings facilitate the transfer of heat away from the resistive element.

In wirewound resistors, three alloys are commonly used for the resistive element. They are nickel-chromium, copper-nickel, and gold-platinum. Nickel-chromium is the most common due to its excellent temperature coefficient (less than ±5 PPM/°C) and its availability in many different diameters. Copper-nickel is the next most popular, with a temperature coefficient of ±20 PPM/°C. The gold-platinum alloy, that is actually a complex alloy of gold, platinum with small amounts of copper and silver has a high temperature coefficient of ±650 PPM/°C, but has low resistance. That resistance is 85 ohms/cm (cmf) (a circular mil foot, a hypothetical quantity equivalent to one foot of wire that is .001 inches in diameter) while nickel-chromium has a resistivity of 800 ohms/cm. The gold-platinum alloy can also withstand harsh environments.

The ceramic core of a wirewound resistor is either beryllium oxide, which has a high cooling capability, alumina (aluminum oxide) or steatite, which has the lowest thermal conductivity of the three materials but is low cost. Figure 2 shows some steatite cores.

Wirewound resistors are most often used in voltage divider circuits, as power-supply bleeder resistors, or as series dropping resistors. Variable devices are used where voltage and current variations are expected, such as motor-speed and heater controls. Precision variable types are used in servo systems requiring precise electrical and mechanical performance.

TABLE 1 CONTINUED

<table>
<thead>
<tr>
<th>TYPE</th>
<th>SPECIFICATIONS AND NOTES</th>
<th>Resistance range</th>
<th>Power rating</th>
<th>Temperature coefficient</th>
<th>Tolerance</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision wirewound</td>
<td>Resistance range: 0.1 ohm to 800 kilohms</td>
<td>Power rating: to 15 watts</td>
<td>Tolerance: ±1%</td>
<td>Temperature coefficient: varies with resistance</td>
<td>Noise: low static, high dynamic noise levels</td>
<td>Failure mode: Catastrophic failure</td>
</tr>
<tr>
<td>Cermet</td>
<td>Resistance range: 50 ohms to 5 megohms</td>
<td>Power rating: to 2 watts</td>
<td>Tolerance: ±1%</td>
<td>Temperature coefficient: -600 to -300 PPM/°C</td>
<td>Life expectancy (potentiometers): 200,000 to 1,000,000,000 rotations</td>
<td>Failure mode: Catastrophic failure</td>
</tr>
<tr>
<td>Conductive plastic potentiometers</td>
<td>Resistance range: 150 ohms to 5 megohms</td>
<td>Power rating: to 7 watts</td>
<td>Tolerance: ±3%</td>
<td>Temperature coefficient: less than 70 PPM/°C</td>
<td>Life expectancy: Greater than 2,000,000,000 rotations</td>
<td>Resistance range: 10 ohms to 100,000 ohms</td>
</tr>
<tr>
<td>General purpose conductive plastic potentiometers</td>
<td>Resistance range: 1 ohm to 15 kilohms, depending on power rating</td>
<td>Power rating: to 1000 watts</td>
<td>Tolerance: ±5%</td>
<td>Temperature coefficient: less than ±100 PPM/°C</td>
<td>Life expectancy: 10,000,000,000 rotations</td>
<td>Resistance range: 200 ohms to 250,000 ohms</td>
</tr>
<tr>
<td>Conductive plastic trimmers</td>
<td>Power rating: to 7 watts</td>
<td>Tolerance: ±5%</td>
<td>Temperature coefficient: less than ±100 PPM/°C</td>
<td>Life expectancy: 10,000,000,000 rotations</td>
<td>Notes: Conductive plastic potentiometers have a long life expectancy and low noise characteristics. Resistance will shift if exposed to humidity.</td>
<td>Resistance range: 10 ohms to 100,000 ohms</td>
</tr>
<tr>
<td>Hybrid potentiometers</td>
<td>Power rating: to 7 watts</td>
<td>Tolerance: ±5%</td>
<td>Temperature coefficient: less than ±100 PPM/°C</td>
<td>Life expectancy: 10,000,000,000 rotations</td>
<td>Resistance range: 200 ohms to 250,000 ohms</td>
<td>Notes: Conductive plastic potentiometers have a long life expectancy and low noise characteristics. Resistance will shift if exposed to humidity.</td>
</tr>
</tbody>
</table>

For low resistance/high current applications, edge-wound ribbon type power resistors are often used. They are made with the same materials as wirewound resistors but have a lower resistance. These resistors are available with various coatings such as vitreous enamel, cement, molded phenolic, glass sleeves, or silicone.
FIG. 2—MANY WIREFOUND RESISTORS use Steatite cores, such as the ones shown here.

FIG. 3—POTENTIOMETERS can use resistive elements made of many different materials. Three such materials, shown above from left to right, are cermet, carbon, and conductive plastic.

resistors are available. Designed for power handling up to 1000 watts (at currents up to 100 amps) these devices are made up of steel ribbons wound into a coil and supported by ceramic insulators. They are generally rated for normal operation with a temperature rise of 375°C. Those units are used in power-supply testing and in motor-breaking systems. (You may have seen them underneath subway cars, especially the older trains in New York City.)

Cermets are resistive elements made by combining very fine particles of ceramic, oxide, glass, with precious metals. Cermets are very stable under humid conditions and have low temperature coefficients of ±100 PPM/°C. Conductive-plastic or hot-molded carbon potentiometers, for example, have an average temperature coefficient of ±100 PPM/°C. In variable resistors, however, the cermet element is abrasive and long periods of rotational cycling will wear out the wiper long before similar use would wear out the wiper in resistive-film or conductive-plastic units. Cermets are available in low resistance values, which makes them useful in many audio applications.

Cermets is also the thick film used in resistor networks and in chip resistors.

Conductive plastic potentiometers have a resistive element consisting of a blend of resin (epoxy, polyester, phenolics, or polyamides) and a carbon powder applied to a plastic or ceramic substrate. The plastic substrate results in a better temperature coefficient due to greater compatibility between the ink and the substrate. Those devices have a long rotational life and excellent contact resistance variation, or low noise. End resistance is low, two ohms maximum.

Conductive-plastic units are suitable for use in applications that require a consistent temperature coefficient over a limited temperature range, such as -25°C to 75°C. Temperature coefficient values of -200 PPM/°C may be attained by special processing of the carbon material or by incorporating metal powders or flakes into the element. Nickel, silver, and copper are frequently used in low-resistance devices. Conductive-plastic elements, like carbon units, vary in resistance when exposed to humid conditions. Figure 3 shows cermet, carbon, and conductive plastic units.

Hybrid potentiometers are wirewound units with a conductive-plastic track deposited along the contact path of the resistive element. That results in a device that has a better resolution and a longer life, by a factor of 10, over wirewound types. Compared to conductive-plastic units, hybrid devices have a higher power handling capability, due to the wirewound element. Like wirewound units however, they have stray capacitance at higher frequencies and have high contact resistance and marginal output smoothness when drawing current through the wiper contact.

Table 1 summarizes the resistor types available, their characteristics, recommended applications, and suggested derating factors. Use of a derating factor is an effective means to decrease the failure rate of most devices since device life is stress and temperature dependent. Derating is accomplished by either decreasing part stresses such as power/voltage or current or by selecting a higher rated part. Optimum derating occurs at or below the point where an increase in stress or operating temperature results in a large increase in the device failure rate.

One note about Table 1: The values and rating shown are provided as guidelines. While they apply to the most commonly found units, it is not impossible to find units with slightly, or greatly, different specifications.

While that concludes our look at resistors, our look at component selection is far from over. In the next part of this article, we’ll turn our attention to the factors that should be considered when selecting capacitors.
STEREO TV IS FINALLY HERE! IT'S THE most exciting development in television since the introduction of the videodisc player and VCR. Interestingly enough, while the idea of stereo television has been on the minds of the industry for some time, it was the consumer's interest—stimulated by videodisc players and VCRs—that was the driving force behind making it a reality. But Multichannel Television Sound (MTS) is not just stereo TV—it's a completely new way of using television's audio signal.

The FCC decision

The Federal Communications Commission authorized multichannel TV sound in late March 1984 by adopting new, very general rules regarding TV audio signals. As a result of that action, stereo TV sound, as well as second-language programming and many other services, are now possible.

As has been the the FCC's policy of late, the Commission did not adopt a single system as a stereo TV standard. Remember the FCC's "let the marketplace decide" decision on AM stereo, and the uncertainty and inaction in the marketplace that it caused. (AM stereo is yet to really get off the ground.) But thanks to the television industry, that's not about to happen to stereo TV!

The main difference between the two cases is that the industry—with the knowledge of what happened with AM stereo—presented a single proposal to the FCC for adoption. Both broadcasters and equipment manufacturers worked together through the EIA (Electronic Industries Association) whose Broadcast Television Systems Committee (BTSC) worked 5 years selecting a system as a standard. The transmission system that was chosen by the BTSC was developed by Zenith, and the noise reduction system was developed by dbx Corporation. (Those were selected over transmission systems developed by the Electronic Industries Association of Japan and Telesonic Systems, Inc. and noise-reduction systems developed by Dolby and CBS Laboratories.)

Even though the FCC was presented with a proposal for a single MTS system, the Commission's decision still followed an "open marketplace" policy. That was based on the (correct) belief that MTS technology will continue to advance beyond the BTSC system. However, because the FCC was aware both of what happened with AM stereo and the industry's proven desire for a single standard, they endorsed the BTSC system by protecting its pilot tone. That means that the pilot frequency may be used only by broadcasters using the BTSC system. By restricting the use of the pilot frequency, BTSC-type receivers are protected from falsely detecting other MTS formats, but any other MTS system can be used if the marketplace calls for it.

The BTSC system

Before late March, 1984, the TV-audio baseband—the band of frequencies from 0 to 120 kHz that contains a TV signal's audio information—was limited to carrying only audio in the main channel (the portion of the baseband from 50 Hz to 15 kHz). Now, thanks to the FCC decision, the audio baseband is virtually unregulated. For most of us, that means that we can now listen to TV in stereo or in a second language. But for broadcasters, it means a number of options.

Figure 1 shows a "fully loaded" MTS audio baseband. We'll call it stereo + SAP service. The frequency-modulated main-channel audio is contained from 50 to 15 kHz, just as it is in any TV broadcast. What is different from conventional TV signals is that the baseband also includes an amplitude-modulated stereo-difference subcarrier, a pilot signal, a SAP (Second-Audio-Program) channel, and a professional channel. But that is only one of the possible configurations. Figure 2 shows three other possible configurations: stereo service without SAP capability, mono service with SAP capability, and mono service without SAP capability. Note that each configuration leaves room for a professional channel.

The professional channel can be used for a wide variety of non-program-related uses. A TV station can use it to relay broadcast materials to other stations, to communicate with remote crews, etc. But the professional channel could also be used to transmit signals to you—or, to be more precise—to your TV receiver. For
example, a signal could be sent to turn on receiver noise-reduction circuitry. Another—though unlikely—possibility is that a TV station could transmit control signals to your VCR so that it wouldn’t record commercials.

The professional channel is not restricted to carrying TV-related signals; it can also be used for subsidiary communications services (much like the broadcast FM SCA services).

It’s really here!

Before we go into some of the theory behind MTS, let us emphasize that stereo television and multichannel TV sound are here for real. The first commercial television broadcast with stereo sound took place during coverage of the 1984 Summer Olympics in Los Angeles. Television digest, the industry newsletter, notes that as of November 1, 1984, 7 stations were on the air with almost 200 others either testing or planning MTS. Table 1 is a list of those stations.

The Zenith transmission system

The MTS system was chosen by the industry and endorsed by the FCC is made up of a transmission system and a noise-reduction system.

An important aspect of the Zenith system is that it is compatible with the existing NTSC standard. That is important because any MTS system not compatible with existing TV’s would be useless—neither the broadcasters nor the equipment manufacturers would support it.

In order for MTS signals to be compatible with conventional signals, the main channel must be compatible. Therefore, the main channel of the Zenith system signal contains the monaural signal, which is the sum of the left- and right-channel signals. (We’ll refer to the monaural signal as the stereo sum or L-R signal). That L-R signal frequency-modulates the TV carrier in the same way that a conventional mono signal does.

The stereo difference signal (L-R) amplitude-modulates a subcarrier centered at a 31.468 MHz—twice the horizontal scanning frequency. \(2f_H\). A pilot signal, which is used by the receiver to decode the stereo information, is located in the audio baseband at the horizontal scanning frequency, \(f_H(15,734 \text{ KHz})\). As we mentioned previously, while the rest of the audio baseband is virtually unregulated, that pilot frequency is protected under FCC rules.

A standard (mono) TV set will ignore everything but the main channel and will recover the L-R audio just as it would any mono signal. A stereo-capable set, however, will use the pilot signal to both recognize that a stereo signal is present and to generate a carrier for decoding the L-R component.
TABLE 1—MTS BROADCASTERS

<table>
<thead>
<tr>
<th>Station</th>
<th>City/State</th>
<th>Network</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>KNBC-TV</td>
<td>Los Angeles, CA</td>
<td>(NBC)</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KWTV-L</td>
<td>Los Angeles, CA</td>
<td>(ABC)</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WDFV-TV</td>
<td>Miami, FL</td>
<td>(NBC)</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WMMV-TV</td>
<td>Milwaukee, WI</td>
<td>(PBS)</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WLCT</td>
<td>New London, CT</td>
<td>(PBS)</td>
<td>(PBS)</td>
</tr>
<tr>
<td>WBNOL-TV</td>
<td>New Orleans, LA</td>
<td>(ABC)</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WBNCTV</td>
<td>New York, NY</td>
<td>(NBC)</td>
<td>(PBS)</td>
</tr>
<tr>
<td>WGCF-PL</td>
<td>Tampa, FL</td>
<td>(PBS)</td>
<td>(PBS)</td>
</tr>
<tr>
<td>WXKK</td>
<td>Rochester, NY</td>
<td>(ABC)</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KCTA-SAC</td>
<td>Sacramento, CA</td>
<td>(CBS)</td>
<td>(PBS)</td>
</tr>
<tr>
<td>W50D</td>
<td>San Luis, MO</td>
<td>(ABC)</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WPTV</td>
<td>Savannah, GA</td>
<td>(CBS)</td>
<td>(PBS)</td>
</tr>
<tr>
<td>WRC-TV</td>
<td>Washington, DC</td>
<td>(NBC)</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WHYY</td>
<td>Wilmingon, PA</td>
<td>(PBS)</td>
<td>(CBS)</td>
</tr>
</tbody>
</table>

Planning fall 1984 start:

<table>
<thead>
<tr>
<th>Station</th>
<th>City/State</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WJZ-TV</td>
<td>Baltimore, MD</td>
<td>(ABC)</td>
</tr>
<tr>
<td>WXEX-TV</td>
<td>Richmond, VA</td>
<td>(ABC)</td>
</tr>
<tr>
<td>KPIX</td>
<td>San Francisco, CA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WFSB</td>
<td>Hartford, CT</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WTVL</td>
<td>Jacksonville, FL</td>
<td>(ABC)</td>
</tr>
<tr>
<td>KABC-TV</td>
<td>Los Angeles, CA</td>
<td>(ABC)</td>
</tr>
<tr>
<td>KTLA</td>
<td>Los Angeles, CA</td>
<td>(ABC)</td>
</tr>
<tr>
<td>WJJD-Missoula, MT</td>
<td>(CBS)</td>
<td></td>
</tr>
<tr>
<td>WNED</td>
<td>Buffalo, NY</td>
<td>(PBS)</td>
</tr>
<tr>
<td>KATU</td>
<td>Portland, OR</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KRTV</td>
<td>Sacramento, CA</td>
<td>(ABC)</td>
</tr>
<tr>
<td>KPLF-TV</td>
<td>St. Louis, MO</td>
<td>(ABC)</td>
</tr>
<tr>
<td>KSL-TV</td>
<td>Salt Lake City, MO</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WMHT</td>
<td>Schenectady-Albany, NY</td>
<td>(PBS)</td>
</tr>
<tr>
<td>WTVG</td>
<td>Trenton, NJ</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WJXT</td>
<td>Toledo, OH</td>
<td>(PBS)</td>
</tr>
<tr>
<td>KPOL</td>
<td>Tucson, AZ</td>
<td>(CBS)</td>
</tr>
</tbody>
</table>

Planning winter 1984-85 start:

<table>
<thead>
<tr>
<th>Station</th>
<th>City/State</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>KTVJ</td>
<td>Anchorage, AK</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WGNX-TV</td>
<td>Atlanta, GA</td>
<td>(ABC)</td>
</tr>
<tr>
<td>WBU-TV</td>
<td>Boston, MA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WTVI</td>
<td>Cleveland, OH</td>
<td>(ABC)</td>
</tr>
<tr>
<td>KERA-TV</td>
<td>Dallas, TX</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KODD</td>
<td>Hays-Russel-Gl</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KVTV</td>
<td>Henderson-Las Vegas, NV</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WIU</td>
<td>Lakeland, FL</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WMMP</td>
<td>Lawrence, MA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WPTT</td>
<td>Miami, FL</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WYES-TV</td>
<td>New Orleans, LA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WEDN</td>
<td>Norwich, CT</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KIEJ</td>
<td>Oxnard, CA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WPBS-TV</td>
<td>Paducah, KY</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WEEW</td>
<td>Port Huron, MI</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KPHO</td>
<td>Phoenix, AZ</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KSBW-TV</td>
<td>Salinas-Montery, CA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KUED</td>
<td>Salt Lake City, UT</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KSAT-TV</td>
<td>San Antonio, TX</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KGBT</td>
<td>Sacramento, CA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WFSU</td>
<td>Tallahassee, FL</td>
<td>(CBS)</td>
</tr>
</tbody>
</table>

Planning spring 1985 start:

<table>
<thead>
<tr>
<th>Station</th>
<th>City/State</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WTTB</td>
<td>Atlanta, GA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WJZ-TV</td>
<td>Baltimore, MD</td>
<td>(ABC)</td>
</tr>
<tr>
<td>WTMD</td>
<td>Birmingham, AL</td>
<td>(ABC)</td>
</tr>
<tr>
<td>KWHX</td>
<td>Boise, ID</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WMAQ-TV</td>
<td>Chicago, IL</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WCET</td>
<td>Cincinnati, OH</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KHBS</td>
<td>Dallas, TX</td>
<td>(ABC)</td>
</tr>
<tr>
<td>KMJ/S</td>
<td>Fresno, CA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WXXI</td>
<td>Greats Sho-Blvd</td>
<td>(ABC)</td>
</tr>
<tr>
<td>WITF</td>
<td>Harrisburg, PA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WFTY</td>
<td>Indianapolis, IN</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WYFF</td>
<td>Las Vegas, NV</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WYUS</td>
<td>Lehigh, FL</td>
<td>(CBS)</td>
</tr>
</tbody>
</table>

Planning fall 1985 start:

<table>
<thead>
<tr>
<th>Station</th>
<th>City/State</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>KME-TV</td>
<td>Albuquerque, NM</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KAO-TV</td>
<td>Albuquerque, NM</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KATU-JACKSON</td>
<td>Anchorage, AK</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WALR</td>
<td>Atlanta, GA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WCBB</td>
<td>Augusta, Me-Wood</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WSKG</td>
<td>Binghamton, NY</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WGBH</td>
<td>Boston, MA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WNEV-TV</td>
<td>Boston, MA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WJLY</td>
<td>Cleveland, OH</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WCMH</td>
<td>Columbus, OH</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WOSU</td>
<td>Columbus, OH</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WTVN</td>
<td>Columbus, OH</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WJBK</td>
<td>Detroit, MI</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WBKD</td>
<td>Detroit, MI</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WTIV</td>
<td>Detroit, MI</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WXYZ</td>
<td>Detroit, MI</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KSTM</td>
<td>El Paso, TX</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KVIA</td>
<td>El Paso, TX</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KJE</td>
<td>Fresno, CA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WLR</td>
<td>Green Bay, WI</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KHOU</td>
<td>Houston, TX</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WVSN</td>
<td>Humacao, PR</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KIFI</td>
<td>Idaho falls, ID</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WJXT</td>
<td>Jacksonville, FL</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KATV</td>
<td>Little Rock, AR</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KJTV</td>
<td>Los Angeles, CA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WMAZ-FOX</td>
<td>Los Angeles, CA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WFMX</td>
<td>Minneapolis-St. Paul, MN</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WNYJ</td>
<td>Montclair, NJ</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WNJ</td>
<td>New Brunswick, NJ</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WPI</td>
<td>New Haven, CT</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WNYC-TV</td>
<td>New York, NY</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KDE</td>
<td>Omaha, NE</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WJFL</td>
<td>Orlando, FL</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WXEX</td>
<td>Phoenix, AZ</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KSPX</td>
<td>Portland, OR</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KTVU</td>
<td>Provo, UT</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KTS</td>
<td>Sacramento, CA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KSJ</td>
<td>St. Louis, MO</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KRON</td>
<td>San Francisco, CA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KETE</td>
<td>San Jose, CA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WSJU</td>
<td>Sioux City, IA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WMHT</td>
<td>Schenectady-Albany</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WVIA</td>
<td>Scranton-Wilkes Barre, PA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KTBS-1</td>
<td>Shreveport, LA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KREM</td>
<td>Spokane, WA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KCCH</td>
<td>Stockton-Sacramento, CA</td>
<td>(CBS)</td>
</tr>
</tbody>
</table>

Planning spring 1986 start:

<table>
<thead>
<tr>
<th>Station</th>
<th>City/State</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WENJ</td>
<td>Hoboken, NJ</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WJLA</td>
<td>Alexandria, VA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WTYC</td>
<td>Alexandria, VA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WPMI</td>
<td>Allentown, PA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WJZ</td>
<td>Baltimore, MD</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WJLA</td>
<td>Alexandria, VA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WPMI</td>
<td>Allentown, PA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WJZ</td>
<td>Baltimore, MD</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WJLA</td>
<td>Alexandria, VA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WPMI</td>
<td>Allentown, PA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WJZ</td>
<td>Baltimore, MD</td>
<td>(CBS)</td>
</tr>
</tbody>
</table>

Planning fall 1986 start:

<table>
<thead>
<tr>
<th>Station</th>
<th>City/State</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WKTV</td>
<td>Fresno, CA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WVTY</td>
<td>Lafayette-Hattiesburg, LA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WXYZ</td>
<td>Marquette, MI</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WITI</td>
<td>Milwaukee, WI</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WTSP</td>
<td>Minneapolis-St. Paul, MN</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WKE</td>
<td>Sacramento, CA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KCTS</td>
<td>Seattle, WA</td>
<td>(CBS)</td>
</tr>
</tbody>
</table>

Planning MTS, no date:

<table>
<thead>
<tr>
<th>Station</th>
<th>City/State</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WNLU-TV</td>
<td>Baltimore, MD</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WRBT</td>
<td>Baton Rouge, LA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WBNG</td>
<td>Binghamton, NY</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WSEG</td>
<td>Birmingham, AL</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KYPR</td>
<td>Bismarck, ND</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KTVB</td>
<td>Boise, ID</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KMGM</td>
<td>Denver, CO</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WGRP</td>
<td>Detroit, MI</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WFQ</td>
<td>Florence, AL</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WSMP</td>
<td>Grandview, WA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KRON</td>
<td>Honolulu, HI</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WISH</td>
<td>Indianapolis, IN</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WICT</td>
<td>Jackson, FL</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WJCT</td>
<td>Jacksonville, FL</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KHH</td>
<td>Kearney-Hastings, NE</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KARK</td>
<td>Little Rock, AR</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KETV</td>
<td>Little Rock, AR</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KCC</td>
<td>Los Angeles, CA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WINS</td>
<td>Milwaukee, WI</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WTVF</td>
<td>Nashville, TN</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WDSL</td>
<td>New Orleans, LA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WJTC</td>
<td>Pensacola, FL</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KAET</td>
<td>Phoenix, AZ</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KOLO</td>
<td>Reno, NV</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KSVX</td>
<td>Sacramento, CA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KGBS</td>
<td>San Diego, CA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KPIX</td>
<td>San Francisco, CA</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KSAF</td>
<td>Santa Fe, NM</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WJKK</td>
<td>Sealy, TX</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KOLR</td>
<td>Springfield, MO</td>
<td>(CBS)</td>
</tr>
<tr>
<td>WTVQ</td>
<td>St. Louis, MO</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KAIU</td>
<td>Salt Lake City, UT</td>
<td>(CBS)</td>
</tr>
<tr>
<td>KTTU</td>
<td>Scranton, PA</td>
<td>(CBS)</td>
</tr>
</tbody>
</table>

1. Construction permit; not on air.
2. Stereo & program-related SAP.
3. Non-program-related SAP only.
4. Program-related SAP only.
5. Adding stereo to SAP.
6. Stereo and non-program-related SAP.
7. Stereo, program, and non-program SAP.

FEBRUARY 1986
By combining the stereo sum and difference signals in-phase and out-of-phase, the stereo decoder can reconstruct the individual left- and right-channel signals. That can be seen by the following equations:

\[(L + R) + (L - R) = 2L\]
\[(L + R) - (L - R) = 2R\]

If you're familiar with broadcast FM stereo, you've probably noticed that stereo TV uses a somewhat similar encoding method. There are some differences. The most important—which we'll describe in detail—is that the AM stereo-difference subcarrier is compressed.

A block diagram of the Zenith transmission system is shown in Fig. 3. Note that the Zenith composite signal that drives the aural (audio) transmitter is the sum of two signals—the stereo-generator and SAP-generator outputs.

The stereo generator

The input to the stereo-generator, as shown in Fig. 4, is made up of three signals: the left- and right-channel signals and the horizontal-sync signal. The L and R signals are first fed through lowpass filters to remove out-of-band components that could cause crosstalk and intermodulation. The L and R signals are then fed to a matrix circuit that forms the stereo-sum (L+R) and difference (L-R) signals. Note that the L+R signal undergoes a 75μs preemphasis (as FM radio signals and mono TV-audio signals normally do) while the L-R signal undergoes a variable compression (the amount of compression is determined by the dbx compressor). We'll look at preemphasis and compression circuitry next month.

To prevent overmodulation and interference with other portions of the baseband (including the pilot and SAP channel), both signals are fed through clippers and lowpass filters.

Although not shown in Fig. 4, equalizers are normally included in one or both of the L+R and L-R paths. They are placed there to help ensure proper stereo separation.

Because the dbx-compressor output may contain a large amount of noise, it may be difficult to measure such things as stereo separation. To overcome that, as shown in Fig. 4, switches are provided to take the compressor and/or the clippers and lowpass filters out of the circuit.

A subcarrier at 2fH, twice the horizontal line frequency, is AM-DSBSC (AM double-sideband, suppressed carrier) modulated by the compressed L-R signal and is summed with the preemphasized L+R signal. The 2fH subcarrier signal is also divided by two to supply the pilot tone. The composite stereo signal that is output from the stereo generator contains the stereo sum (mono) signal, the stereo difference signal, and the pilot tone.

The SAP generator

A block diagram of the other major component of the Zenith transmission system—the SAP generator—is shown in Fig. 5. The SAP audio is processed in much the same way that the stereo-difference signal is. A lowpass filter is used to remove high-frequency components that could overload the compressor, and a clipper is used to prevent overmodulation of the SAP subcarrier and thus prevent interference with the rest of the audio baseband. Equalization, which was used in the stereo generator to preserve stereo separation, is not needed here.

Note the 5fH phase-locked loop in Fig. 5. The compressed audio is added to the PLL control voltage and thus frequency-modulates the VCO (voltage controlled oscillator). The frequency-modedulated subcarrier is then passed through a bandpass filter to protect the other audio signals from SAP spillover interference.

Now, if we look back to the block diagram of the Zenith transmission system (Fig. 3), we see that the outputs of the stereo generator and SAP generator are added together to form the composite signal, which frequency-modulates the TV audio carrier.

Next time, we'll look at the noise reduction techniques used in the BTSC system and why it's so important.
Are incompatible disk formats keeping you from transferring files from one computer to another? This universal cassette interface can solve that problem. And at 4800 baud, it can do it in a hurry!

THE COST OF MICROCOMPUTER COMPONENTS seems destined to continue to drop. Now you can build or buy computers at prices that seemed unbelievable just a few years ago. But when you add floppy-disk drives, the picture changes. Disk drives haven't dropped in price like other computer hardware has—and it seems likely that disk-drive prices will stay high. Is there a low-cost alternative?

Many of you probably have answered, "audio cassettes." Yes, they can be used but—when compared to disk drives—their slow and unreliable performance leaves much to be desired. We'll show you, however, an easy-to-build cassette interface that may change all that.

That interface, which we'll call a Streamer, is a very fast, highly reliable universal audio cassette interface designed to be a low-cost alternative to floppy disks. If your computer has an RS-232 port, you can use the Streamer to transfer data to any other computer similarly equipped. You can transfer any program written on any computer, to any other computer using a compatible language. For example, the author routinely writes and debugs assembly-language programs at work on an Intel development system, and brings them home on a cassette so that they can be run on his "homebrew" 8080-based computer. He has also transferred BASIC listings from a 6502-based system to cassette so that the programs could be run on his system. (Of course, while the BASIC implementation may vary from one system to another, those differences are usually easy to work around.)

The same thing can be done with other high-level language programs, like FORTRAN or Pascal: The listings can be transferred from one computer to cassette tape and then they can be loaded into your next computer, without worry of disk compatibility. Obviously, doing the same thing in these days of endless, ½-inch disk formats would be virtually impossible if the systems were not identical.

Streamer basics

The name "Streamer" is computer-shop talk for "streaming tape interface," a term normally used to refer to magnetic-tape systems that are used for disk backup. If you're looking for something to replace floppy-disk drives, you should first understand that a streamer is not a random-access drive like a floppy disk—the tape moves in one direction only, and files must be accessed sequentially.

The Streamer has no provisions for motor controls, which greatly simplifies its construction and interfacing, but restricts its operation to the manual mode. If you use short (5-minute) cassettes, and put only one program or one file on each, the interface will be easier to use. The cassettes are cheap and reliable, but their random accessibility is limited by the time it takes me to remove one cassette and replace it with another.

In the course of designing the Streamer, several encoding techniques—from Kansas City Standard to FSK and PWM—were tried. The method chosen was Manchester encoding, which we'll look at in some detail next month. Methods of data recovery evolved from the use of filters and phase-locked loops to digital timing. The result is a low-cost but high-performance cassette interface.

Just what do we mean by "high performance?" The data-transfer rate is 4800 baud or bps (Bits Per Second). What that means is that a 16-kilobyte program can be loaded in as little as 38 seconds. The
Learning electronics is no picnic.

At any level it takes work and a few sacrifices. But with CIE, it's worth it.
Whoever said, "The best things in life are free," was writing a song, not living a life. Life is not just a bowl of cherries, and we all know it.

You fight for what you get. You get what you fight for. If you want a thorough, practical, working knowledge of electronics, come to CIE.

You can learn electronics by spending some hard-working time at home. Or, would you rather go bowling? Your success is up to you.

At CIE, you earn your diploma. It is not handed to you simply for putting in hours. But the hours you do put in will be on your schedule, not ours. You don’t have to go to a classroom. The classroom comes to you.

Why electronics training?

Today the world depends on technology. And the "brain" of technology is electronics. Every year, companies the world over are finding new ways to apply the wonders of electronics to control and program manufacturing, processing...even to create new leisure-time products and services. And the more electronics applications there are, the greater the need will be for trained technicians to keep sophisticated equipment finely tuned and operating efficiently. That means career opportunities in the eighties and beyond.

Which CIE training fits you?

Beginner? Intermediate? Advanced? CIE home study courses are designed for ambitious people at all entry levels. People who may have:

1. No previous electronics knowledge, but do have an interest in it;
2. Some basic knowledge or experience in electronics;
3. In-depth working experience or prior training in electronics.

You can start where you fit and fit where you start, then go on from there to your Diploma, an Associate Degree if you want it, and career.

Many people can be taught electronics.

There is no mystery to learning electronics. At CIE you simply start with what you know and build on it to develop the knowledge and techniques that make you a specialist. Thousands of CIE graduates have learned to master the simple principles of electronics and operate or maintain even the most sophisticated electronics equipment.

CIE specializes in electronics.

Why CIE? CIE is one of the largest independent home study schools that specializes in electronics. Nothing else. CIE has the electronics course that’s right for you.

Learning electronics is a lot more than memorizing a laundry list of facts about circuits and transistors. Electronics is interesting! It is based on recent developments in the industry. It’s built on ideas. So, look for a program that starts with ideas and builds on them. Look to CIE.

Programmed learning.

That’s exactly what happens with CIE’s Auto-Programmed Lessons. Each lesson uses famous "programmed learning" methods to teach you important principles. You explore them, master them completely, and think the lessons through each time before you start to apply them. You thoroughly understand each step before you go on to the next. You learn at your own pace.

And, beyond theory, some courses come fully equipped with electronics gear (the things you see in technical magazines) to actually let you perform hundreds of checking, testing, and analyzing projects.

Experienced specialists work closely with you.

Even though you study at home, you are not alone! Each time you return a completed lesson, you can be sure it will be reviewed, graded, and returned with appropriate instructional help. When you need additional individual help, you get it fast and in writing from the faculty technical specialist best qualified to answer your question in terms you can understand.

CIE offers you an Associate Degree.

One of the best credentials you can have in electronics—or any other career field—is a college degree. That’s why CIE gives you the opportunity to earn an Associate in Applied Science in Electronics Engineering Technology. Any CIE career course can offer you credit toward the degree...more than half of the number needed in some cases. You can also prepare for the government-administered FCC (Federal Communications Commission) Radiotelephone License, General Class. It can be a real mark in your favor...government-certified proof of your specific knowledge and skills.

Today is the day. Send now.

Fill in and return the postage-free card attached. If some ambitious person has removed it, cut out and mail the coupon. You’ll get a FREE school catalog plus complete information on independent home study.

For your convenience, we’ll try to have a CIE representative contact you to answer any questions you may have.

Mail the card or the coupon or write CIE (mentioning the name and date of this magazine) at: 1776 East 17th Street, Cleveland, Ohio 44114.
Streamer is reliable, too—the cassette deck is the limiting factor, so a high-fidelity tape deck is recommended. (The author has used a $69 stereo unit for over a year and has had no permanent errors. When a read error occurs, a simple cleaning of the heads and capstan eliminates the problem.)

Along with its speed and universality, the cassette streamer has another attractive feature: It can be built for about $60. All the electronic parts are standard, and all are available from the vendors who regularly advertise in Radio-Electronics.

The Streamer circuit

Figure 1 is a schematic of the interface circuit—we’ll start our look at it with the power supply. The circuit requires a voltage supply between 8 and 16 volts DC at a typical current drain of only about 30 mA. That can be supplied by an external wall plug DC supply or it may be “stolen” from the computer or the tape deck. If the computer supply is to be used, the power can be run through pin 25 of the DB25 connector. If you use a miniature closed-circuit phone jack (13) and wire it as shown in the schematic, then you can conveniently have your choice of either.

Electrolytic capacitor C14 provides filtering for the raw DC (which powers the RS-232 interface and is the input to the five-volt regulator, IC15). The negative voltage required for RS-232 is furnished by a charge pump: Transistor Q1 is alternately turned on and off by a 76.6-kHz clocking signal provided by IC3. And charges developed across C16 are transferred to IC15 through D3. A negative voltage of slightly less magnitude than the positive supply voltage will be developed across C15 for use by the RS-232 output stage.

The circuit’s clock is made up of a 2.4576-MHz crystal (XTAL1), and an exclusive-or gate (IC2-d) that’s connected as an inverter. The clock’s output is divided by IC3, a 4040 ripple counter, for the various frequencies needed by the rest of the circuit. The outputs at pins 2, 3, and 5 of IC3 are baud-rate clocks for the UART (Universal Asynchronous Receiver/Transmitter).

The UART uses a clock at 16 times the data rate, and the transitions at pins 5, 3, and 2 (which are 153.6/76.8, and 38.4 kHz) correspond to UART baud rates of 9600, 4800, and 2400 bits per second, respectively. The UART transmitter (which sends data back to the computer) always runs at 9600 baud, so its TRANSMITTER REGISTER CLOCK (pin 40) is directly connected to pin 5 of IC3. However, since data from the computer to the Streamer may be either 2400 or 4800 baud, a switch is provided to select different RECEIVER REGISTER CLOCK (pin 17) connections.

RS-232 interfaces are usually crystal controlled. Fortunately, UART’s are forgiving of small differences between clocking frequencies. That’s important because an RS-232 data stream is continuous—that is, the stop bit of one word is followed immediately by the start bit of the next. Although it would seem there is no margin for error, UART’s do allow for some timing variations by accepting stop bits that are either short or long, then resynchronizing on the following start bit.

The Streamer extends that idea by sending bits to the cassette tape at a slightly faster rate than its UART receives them. (For an RS-232 input with a data-rate of 4800 bps, the output sent to the tape is at 5468 bps, allowing a timing mismatch of $\frac{12}{25}$%.) If the computer baud-rate clock is a little too fast, the Streamer’s UART will be overrun. As we mentioned previously, RS-232 can accept stop bits that are either long or short (1½ bits for example). But there is no way to represent a half bit in Manchester encoding. (That will become obvious when we discuss the encoding next month.) So, when the Streamer UART is overrun, it fills its idle bit times with marks (which is the convention), and inserts them as needed to make up an integral number of stop bits.

That accounts for the difference in speed from UART-to-UART, but not for the (typically worse) cassette-playback variations. Tape timing is reliably recovered by timing each bit (Manchester encoding is bit-synchronous), but since the data may play back faster than it was recorded, it may be returned to the computer at a still faster rate. To keep things compatible with RS-232 standards, the bits from the tape are gathered in one at a time, grouped into 8-bit words, and returned to the computer at 9600 bps.

Synchronous counter IC4 provides the Streamer with the tape-data rates. For an RS-232 rate of 4800 bps, the tape, as mentioned earlier, is recorded at 5468 bps; while at 2400 bps, the tape-data rate is 2560 bps. IC4 and IC2-c form a counter that divides by either 16, 17, or 7 and outputs the bit rate selected by S1. Since its input is 64.4 kHz, its output will be either 87.77 kHz or 40.96 kHz, sixteen times the bit rate tape. That 16x bit rate will be used by both the receiver and the transmitter sections.

The receiver

The CMOS UART, IC11, has two separate functional sections: an NRZ receiver with parallel output, and a parallel-input NRZ transmitter. (We’ll discuss NRZ encoding—and compare it to Manchester coding that this interface uses—later on in this article.) The receiver section of the UART, in conjunction with IC12, IC13, IC14-d, IC5-b, IC8-b, and IC7-d comprise the RS-232-to-Manchester converter. Comparator IC14-d, along with its associated discrete components, converts incoming RS-232 data to TTL-level NRZ code. That code is applied to the serial input (pin 20) of the UART receiver section, which is clocked (on pin 17) at the appropriate rate for RS-232 standard compatibility.

An 8-bit shift register (IC13) and a flip-flop (IC12-b) are connected together to

PARTS LIST

All resistors \(\frac{1}{4} \) watt. All unless otherwise noted.

<table>
<thead>
<tr>
<th>Resistance (ohms)</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1-1000 ohms, PC-mount, trimmer potentiometer</td>
<td></td>
</tr>
<tr>
<td>R2, R5, R8, R11, R16, R17, R20, R28, R29-1000 ohms</td>
<td></td>
</tr>
<tr>
<td>R3, R4, R7, R8, R13, R14, R18, R19, R22, R23, R25, R26, R30-100 ohms</td>
<td></td>
</tr>
</tbody>
</table>

- Capacitors
 - C1, C4, C15-10 pF, 25 volts, electrolytic
 - C2, C21-0.001 \(\mu \)F, ceramic disc
 - C2, C12, C16-0.1 \(\mu \)F ceramic disc
 - C5, C7, C17, C20, C22, C23-0.01 \(\mu \)F, ceramic disc
 - C21-0.01 \(\mu \)F, ceramic disc
 - C15-0.01 \(\mu \)F, ceramic disc
 - C16-0.1 \(\mu \)F, ceramic disc
 - C17-0.1 \(\mu \)F, ceramic disc
 - C22-0.1 \(\mu \)F, ceramic disc

- Semiconductors
 - IC1-LM392 or LM292: op-amp/comparator
 - IC2-4070 or 74C86 quad xon gate
 - IC3-4040-2-stage binary ripple counter
 - IC4, IC6-4028 presettable up/down counter
 - IC4-5420-2-bit synchronous counter
 - IC7-4011 quad 2-input NAND gate
 - IC8-4027 dual JK flip-flop
 - IC9, IC10-74C74 dual D-type flip-flop
 - IC10-4015 dual 4-bit shift register
 - IC11-6402 CMOS UART (internal)
 - IC13-4021 8-stage shift register
 - IC14-LM339 quad comparator
 - IC15-74LS05 low power 5-volt comparator
 - IC16-14941 or similar
 - IC17-2814 or similar
 - IC18-3N3040
 - IC19-2N3040
 - XTAL1-2.4576 MHz crystal

Miscellaneous

- PC board
- Enclosure
- DPDT switch
- DB25 connector
- Phone jacks for tape deck connectors
- Hardware, screws, etc.

The following are available from Stone Mountain Engineering Co., PO Box 1573, Stone Mountain, GA. 30086:

- Printed circuit boards, double-sided with plated-through holes, soldermask and silkscreen, for $28. Shipping, with all holes punched and legends silkscreened, $56. Both PC board and enclosure for $40. All orders must include $1.50 shipping and handling, and Georgia residents please enclose 3% sales tax.
FIG. 1—CASSETTE INTERFACE SCHEMATIC. The main sections of the circuit are the power supply, crystal-controlled clock, RS-232-to-Manchester converter, and the Manchester-to-RS-232 converter. Although not shown, bypass capacitors (0.1 or 0.01 µF) should be located at some of the IC's.
form a 9-bit parallel-load shift register. Their serial input, pin 11 on IC13, is held high so that marks are clocked through when nothing is parallel-loaded. Once the UART receives a serial word from the computer, IC12-a synchronizes the UART to the tape-data rate from IC5-b, loading IC13 with the eight bits from the UART, and IC12-b with a low for a start bit. The 9-bit register combination now includes a start bit and eight data bits.

The shift register is clocked at the tape-bit rate from IC5-b, pin 14. As soon as it is synchronously loaded by IC12-a, it begins shifting out the loaded data at the tape rate, and follows it with as many marks as necessary until the next word is loaded. The effect of the circuit is that it simply changes the data rate of the received word: the shift register output from IC12-b is still NRZ-encoded, but now at the faster tape-data rate.

An example of this NRZ code is shown in Fig. 2-a, along with the tape rate clock in Fig. 2-a. Those signals are combined in NAND gate IC7 to produce the signal shown in Fig. 2-e. This is applied to IC8-b, which is configured as a toggle flop. The flip-flop will toggle whenever the NAND gate output is high and the clock. (Fig. 2-d) makes a positive transition. The output of this flop-flop, shown in Fig. 2-e, is the resulting Manchester code. Resistors R24 and R25, with capacitor C19, round off the Manchester bits and reduce their amplitude for application to the tape deck.

The Transmitter

The transmitter section of IC11, with the remainder of the circuit components, reverses the Manchester code from the cassette and convert it to standard RS-232. The tape signal is applied to R1, a potentiometer that is normally full on. It is then lightly filtered, coupled to an amplifier stage (IC1-a) and passes to a Schmitt trigger (IC1-b), which outputs TTL-level Manchester data at pin 1. If you look at the signal on IC1 pin 1 with an oscilloscope, you'll see the recovered Manchester code, as shown in Fig. 3-a. Since that code is sensitive only to transitions and not to the level, the signal is applied to IC2, C6 and IC2-a, a transition detector, which outputs a pulse of about one-microsecond at each transition.

Although we'll be discussing the coding format in detail, for now let us say that marks will be represented here by transitions a full bit time apart, while spaces have transitions occurring twice each bit time. That is illustrated in Fig. 3-a. A 4-bit up/down counter (IC6) is used here as a synchronous one-shot. It is continually clocked at its count input by the 16× tape rate from IC2-e, and outputs a low pulse from its carry output (pin 7) whenever it reaches a count of 15. Each time a transition is received, however, the output of IC2-a presets the counter to a value of four. So, as long as spaces are being received, the counter is preset every eight or so clock pulses, so it never reaches the count of 15 before it is again preset to four. Mark bits, on the other hand, have transitions only half as often as space bits, so the counter will reach its terminal count, and output a carry, when a mark is received. Figure 3-c is the output from the synchronous one-shot, IC6.

Note that the pulses in Fig. 3, c indicate the presence of a mark, no output indicates a space.

IC9-a is the clock-recovery flip-flop. The clock signal is derived from the received data: theStreamer's internal clock is used only to test the sense of each bit, in keeping with the bit synchronous nature of this Manchester code. While spaces are being received, IC2-a pulses twice per bit, toggling IC9-a twice. When a mark is received, its single transition toggles the flip-flop, and then the carry from IC6 presets IC9-a. That corrects the phase of the clock so that, as soon as a mark bit is received, the clock runs in the correct phase. The clock output, IC9-a, pin 6, is shown in Fig. 3-d.

The sense of each bit is detected by IC8-a—its output is shown in Fig. 3-e. Wired as a R-S flip-flop, IC8-a is set by the mark-detector output from IC6, and reset by clocking from the inverting data clock from IC9-a, pin 5. The clock and data inputs are applied to IC8-a, which is configured as an 8-bit serial-load shift register. At the end of an eight-bit word, the contents of this shift register are transferred to the UART transmitter, which then outputs NRZ code at 9600 bps.

A bit counter is made up of IC9-b and IC5-a. To understand their operation, assume that IC5-a has its output (pin 6) high. That output is connected to the enable input, which means that it will not accept any input clocks until the output goes low again (i.e., until it is reset). It will remain in that state until a start bit is present.

On the next occurrence of a start bit from the bit-sense detector (IC8-a) and a clock from IC9-a, IC9-b's inverted output (pin 8) goes high. Since that output is connected back to the reset input on IC5-a, the reset operation takes place, which drops the output from 0 to 0 again and re-enables the counter. The output goes low. IC9-b becomes preset, bringing its inverted output back low and removing the reset command from IC5-a. It is held preset until IC5-a has counted eight clock pulses, corresponding to eight bits being continued on page 116.
Servicing Videodisc Players

NOW THAT WE'VE SEEN HOW THE LV AND CED SYSTEMS WORK, WE ARE READY TO TURN OUR ATTENTION TO OUR MAIN TOPICS—HOW TO PROPERLY TROUBLESHOOT AND SERVICE VIDEODISC PLAYERS.

Tools

ALTHOUGH THERE IS NO STANDARDIZATION, MOST VIDEODISC PLAYERS REQUIRE SOME FORM OF SPECIAL TOOLS FOR FULL SERVICE. STUDY THE SERVICE LITERATURE AND USE THE RECOMMENDED TOOLS. IF THE TOOLS APPEAR IN THE LITERATURE, THEY SHOULD BE AVAILABLE FROM THE MANUFACTURER. OF COURSE, THERE ARE FACTORY ASSEMBLY TOOLS THAT MAY NOT BE AVAILABLE FOR FIELD SERVICE (NOT EVEN TO FACTORY SERVICE-CENTERS, IN SOME CASES). THAT IS THE MANUFACTURER'S SUBTLE WAY OF TELLING SERVICE TECHNICIANS THAT THEY SHOULD NOT ATTEMPT ANY ADJUSTMENT (ELECTRICAL OR MECHANICAL) NOT RECOMMENDED IN THE SERVICE LITERATURE. TAKE THAT HINT! THE AUTHOR HAS HEARD MANY HORROR STORIES ABOUT "DISASTER AREA" PLAYERS BROUGHT IN TO FACTORY SERVICE PEOPLE AFTER "A FEW SIMPLE ADJUSTMENTS." ALSO KEEP IN MIND THAT MOST PLAYERS ARE MANUFACTURED TO METRIC STANDARDS AND YOUR TOOLS MUST MATCH.

CHECKOUT AND PRELIMINARY TROUBLESHOOTING

BEFORE CONCLUDING THAT THE PLAYER IS OUT OF ORDER, RUN THROUGH THE FOLLOWING NOTES AND MAKE SURE THAT THERE IS NOT A SIMPLE REMEDY FOR THE PROBLEM.

IF THE LID DOES NOT OPEN ON AN LV PLAYER, CHECK THAT POWER IS ON. TRY PRESSING THE STOP/EJECT BUTTON TO RELEASE THE LID LATCH.

IF THE CADDY ENTRY DOOR ON A CED PLAYER DOES NOT OPEN, MAKE SURE THE FUNCTION LEVER IS IN LOAD (FOR MANUAL PLAYERS), OR THAT POWER IS APPLIED AND THE OPERATION

If you want to learn more about videodisc players and how to service them, this article is for you. In it we cover both LV and CED players.

JOHN LENK

If you want to learn more about videodisc players and how to service them, this article is for you. In it we cover both LV and CED players.
If the disc does not appear to rotate (you can't hear the disc motor running), check that power is on. On LV players, check that the lid is properly closed (to close the interlocks).

If the disc stops rotating soon after starting, it is possible that you are playing an unrecorded side of the disc. Try turning the disc over.

If the disc rotates, but there is no picture, check the following: Are the connections between player and set correct? Are the player and TV set on the same channel? Is the player in pause mode?

If the picture quality is bad (with proper connections and both the player and the TV set on the same channel), check for the fine tuning on the TV set. The player output is on an inactive TV channel and, since that channel is not ordinarily used, fine tuning may not be precisely adjusted. If picture quality is still bad, try a different disc (a known good disc).

If the TV no longer receives other channels after being connected to the player, make sure that the antenna cable is connected to the player. Then check that the player is off (FUNCTION lever set to off, power switch off, etc.).

If a particular part of a disc does not produce a good picture, the disc is possibly damaged. Try pressing the SCAN (or similar) buttons to skip over the damaged portion.

If the remote control does not work, try replacing the batteries (on those remotes that do not have direct wiring). Also check for obstructions between the player and remote.

Servicing videodisc players

If none of the above cures the problem, you must go inside the player. It is impossible to describe full troubleshooting or service procedures for any type of player within the limits of this article. You must read the service literature. But we will, in the balance of this article, give you some service notes that can make the job of servicing either a CED or LV player a lot easier.

As a starting point for either type of player, insert a known good disc and run through all operating procedures. If one or more of the operating features is absent or abnormal, install the recommended test disc and run through the adjustment procedures. That can often lead to the source of the problem, since the adjustment procedures usually require that you monitor the inputs and/or outputs of all circuits and sections in the player.

If the player is still not functioning properly, go through the following service notes, and compare them to any procedures recommended in the service literature. Keep in mind that the circuits referenced in the following are "typical" for a cross-section of videodisc players. You must check at the corresponding points on the circuits of the player you are servicing.

Servicing LV players

Table 1 lists various symptoms common to most LV players. Figure 13 is a block diagram of a typical LV player. After selecting the symptom from Table 1 that matches that of the player being serviced, follow the steps in the troubleshooting procedures using Fig. 13 as a guide. The procedures described help isolate the problem to a defective module or component. Keep in mind that a high degree of integration is used in videodisc players and, thus, defective sections must usually be replaced in their entirety. The adjustments listed at the beginning of each procedure are those usually associated with the related circuit. If possible, always check the adjustments (using the service literature) before proceeding with service.

Prior to replacing the slide assembly or making any substantial mechanical adjustments, always check for any purely mechanical problems that can affect player operation. If the picture skips or repeats, check for a misadjusted slide drive, poor lead dress, misadjusted slide rails, or anything that can inhibit slide movement. The slide must move freely beneath the disc. If a "ratcheting" noise is heard, it is possible that the slide is adjusted too loosely.

Low-voltage power-supply circuits. Monitor all of the supply output voltages. Typically, that includes ±12- and ±24 volt outputs, and possibly ±5-volts for microprocessor or other control logic.

Mute circuits. When power is first applied, both sound and picture should mute (dark screen, low volume). If the picture does not mute, check to see if a video-mute signal to the video processor is missing; if so, replace the mode control. If it is present, try grounding the composite video line from the video processor. If that still does not mute the picture, replace the VHF modulator, after checking for proper power and antenna connections.

If the sound does not mute, check for sound-muting inputs to the sound demodulators. If they are missing at either input, replace the mode control. If present at both, remove demodulator I. If sound then mutes replace demodulator I. If sound still does not mute, replace demodulator II.

Laser power-supply circuits. First check the laser adjustments (if any), and then check for 5-volts at the laser supply test point. Most LV players provide such a test point for a quick check of the laser so that a direct measurement of high voltage is not required. Also check if the laser tube is glowing. A strong glow usually indicates that the high-voltage is present and the laser is good.

Start-up sequence-motor accelerator circuits. If the disc does not spin after the lid is closed, check connections between the lid switch and motor drive. If that is fine, ground the motor-acceleration line from the sequence logic to the motor drive. If the disc starts spinning, remove the ground and check the motor-speed signal to the sequence logic. If the signal is present, replace the sequence logic. If missing, replace the search diaparr. If the disc does not spin when the motor-acceleration line is grounded, remove the ground and check the lid switch and turntable motor.
FIG 13—BLOCK DIAGRAM of the electronic and mechanical systems in an LD videodisc player.
Start-up sequence-focus circuits. First check the focus gain adjustments. As soon as the disc is spinning at the correct speed, the objective lens should rise and focus on the disc. Listen closely to determine if the objective lens is moving up and down (searching for focus). If the lens is not moving, check for a laser-on signal from the laser supply to the sequence logic. If present, check for a motor-speed signal from the search adapter. If missing, see if the motor-speed-sense signal to the search adapter varies as the turntable motor speeds up and down. If so, replace the search adapter. If motor-speed-sense signal is absent or abnormal, replace the motor drive.

If the motor-speed signal to the sequence logic is normal, check for a focus-loopswitch signal to the focus drive. If missing, replace the sequence. If present, check for a focus-drive pulse to the objective lens (that is usually about 1-volt peak-to-peak). If missing, replace the focus drive. If present but the objective lens is not moving, check for a binding objective lens, open lens coil, or poor connections between the lens (which is on the slide) and the focus drive.

If the objective lens is moving but not achieving focus, check for an FM signal from the preamplifier to the high-frequency processor. If present, the FM signal output from the high-frequency processor to the DOC. If missing, replace the HF processor. If present, ground the HF input from the DOC to the sequence logic, and see if the lens achieves focus. If not, replace the DOC and sequence logic.

If the FM signal from the preamplifier to the HF processor is missing, check for a focus-error signal to the focus drive. If present, replace the focus drive. If missing, replace the preamplifier. If that does not clear the problem, replace the slide assembly (unless the photo-diodes can be replaced separately).

Signal-processing circuits. First check the FM AGC, video II, and black-level adjustments. As soon as the objective lens achieves focus on the disc, both sound and picture should unmute, and you should get both sound and picture on the monitor TV.

If neither sound nor picture is present, activate the player's FORWARD SEARCH function. If the sound and picture appear, check for correct setting of the slide-assembly stop (using the manufacturer's adjustment procedures). If the slide-stop adjustment is correct, check for digital-code and composite-sync signals from the reference control to the mode control. If either is missing, replace the reference control. If both are present, replace the mode control.

If the sound is normal, but the picture is dark, weak, or missing, ground the video-mute input to the video processor. If the picture appears, replace the mode control. If the picture is still missing, remove the ground, and monitor the video input at the video processor. If that input is present, monitor the video output from the processor to the VHF modulator. If there is no video signal at the VHF modulator, check for a burstgate (DC-clamp) signal to the video processor from the reference control. If the burst is present, replace the video processor. If the burst is missing, check for video to the reference control, video demodulators, and DOC from the HF processor. (The video from the HF processor passes through the DOC to the video demodulators and delay lines to both the reference control and video processor).

Radial-tracking circuits. First check the radial gain, radial limit, and gating adjustments found on most LV players. As soon as the objective lens achieves focus, the radial-tracking circuit is activated to keep the focused beam on the information track. Indications of radial tracking problems are: garbled sound, shaky picture, or skipping through the picture.

If any of these symptoms occur, check for a radial-loopswitch signal to the radial drive. If absent or abnormal, remove the sequence-logic module and check for a loopswitch signal again. If the loopswitch signal is now restored, replace the sequence-logic module. If the loopswitch signal is still not correct, replace the search adapter. If the loopswitch signal is normal, but the symptoms remain, check for a radial-error signal to the radial drive. If missing, replace the preamplifier. If present, check for a radial-error signal from the radial drive to the slide drive. If missing, replace the radial drive. If present, check connections to the radial mirror on the slide assembly. If necessary, replace the slide-drive assembly-reference control.

Turntable motor circuits. First check the bridge-balance and motor-phase adjustments. The turntable-motor servo is required to maintain the rotational speed of the disc constant (to reduce timing errors). An indication of a turntable-motor servo problem is horizontal jitter (and/or loss of sync) in the picture.

If the disc speed is not constant, first check for a motor-acceleration signal from the sequence logic to the motor drive. If missing, replace the sequence logic. If present, check for a motor-control signal from the reference control. If present, check for motor-speed-sample signals to the motor drive. If missing, check wiring between the motor and drive. If all signals are present to the motor drive, but speed is not constant, replace the motor drive.

Tangential-tracking circuits. First check bridge-balance, motor-phase, and tangential-gain adjustments. The tangential-servo circuit compensates for high-frequency timing errors in the video signal. A tangential-servo problem shows up as color problems (streaking, loss of color, etc.).

If color problems occur, connect the loopswitch input to the tangential-mirror drive to +12 volts. If the picture appears, replace the reference control. If not, check for a burst-sample pulse from the sample detector to the mirror-phase detector. If missing, check for horizontal-drive pulses to the sample detector from the reference control. If missing, replace the reference control. If present, check for burst-zero-cross signals to the sample detector from the color separator. If present, replace the color separator. If present, replace the sample detector.

If the burst-sample pulse is present, check for a tangential-error signal from the mirror-phase detector to the mirror drive. If missing, check for mirror-reference pulses from the reference control to the phase detector. If missing, replace the reference control. If present, replace the mirror-drive amplifier.

If the tangential-phase-error signal is present at the mirror-drive input, check for an error signal from the mirror drive to the tangential mirror. If missing, replace the mirror drive and/or check connections to the mirror on the slide assembly. If necessary, replace the slide assembly.

Dropout compensation circuits. First check any video-level and DOC adjustments. If, after adjustment, there are excessive dropouts in the picture, check the delayed-video signal from the DOC to the video demodulator II, on both sides of the delay line. The video should drop from about 1-volt down to 0.3-volt as it passes through the line. Replace the delay line and/or DOC as necessary. If the delayed video is present at the video demodulator, check for dropout pulses from the DOC to the demodulator. If missing, replace the DOC. If present, replace the video demodulator.

Sound circuits. On most LV players, sound is present only when the player is in the normal play mode, and when either or both audio I and audio II LED indicators are on. If sound (but not picture) is missing under those conditions, check for audio FM (about 1-volt peak-to-peak) from the HF processor to both sound demodulators. If missing, replace the HF processor. If present, check for audio (about 2-volts peak-to-peak) from sound demodulator to the VHF modulator. If present, replace the VHF modulator. If present, check the sound-mute signal from the mode control to sound demodulator II. The normal sound-mute voltage is about 5 to 6 volts for the mute (no sound) condition. If the sound-mute voltage is abnormal, replace the mode control. If the sound mute is normal, and there is sound from the HF processor, but not from the
sound demodulators to the VHF modulator, replace the sound demodulators (starting with demodulator II).

If sound is distorted, first check if the distortion is on one or both audio channels. Then replace the corresponding sound demodulator (I, II, or both). If that does not clear the problem, replace the VHF modulator. On most players, it is possible to monitor the sound via the rear panel audio connectors (left and right).

Slide drive and search circuits. The slide-drive servo is responsible for moving the slide assembly radially beneath the disc. A problem in the slide-drive servo can cause the repeating of sections of the disc. If the player sticks or repeats, check for drive signals to the slide motor from the drive. Generally, the drive signals are on the order of 1 to 8 volts, and the polarity of that voltage is positive in forward and negative in reverse. If the voltages are absent or abnormal, replace the slide drive.

If the search functions (forward or reverse) are not normal, try grounding the corresponding inputs (from the search controls) to the mode control. If that produces correct operation, replace the search control and/or wiring. If not, check the search signal from the mode control to the slide drive. If absent or abnormal, replace the mode control. If normal, but there is no search, replace the slide drive and/or check the wiring between the drive and slide motor.

Index circuits. First check any video level adjustments. If the index numbers are present on the TV screen, but the background blanking is missing, check for a picture-number background signal from the mode control. If present, replace the video processor. If the background blanking is present, but the index numbers are missing, check for a picture-number signal from the mode control to the video processor. If missing, replace the video processor. If the background and background are missing, check the index switch and the connections to the mode control.

Track jumping circuits. First check any jump-pulse adjustments. The track-jumping circuit is used only when a special mode of operation is selected (still, slow motion, fast forward, fast reverse, etc.). A malfunction in the track-jumping circuit can cause loss of special modes (tricks), erratic special modes, or skipping through sections of the disc.

First press the play-reverse button and check for vertical-sync-serration pulses from the mode control to the trick logic. If missing, replace the mode control. If present, check for a PIA pulse from the trick logic to the radial drive. If missing, replace the trick logic. If present, check for a zero-detect pulse from the trick logic to the mode control. If missing, replace the mode control and/or trick logic. If present, replace the radial drive.

Mechanical adjustments. Mechanical adjustments should only be made using the manufacturer’s procedures, and (generally) only after there has been major replacement of mechanical parts (such as manufacturer’s replacement of the slide drive or...)
TABLE 2—CED TROUBLESHOOTING GUIDE

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Circuits To Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>Player totally incompe te, or turntable on but no picture</td>
<td>Power supply and switch control</td>
</tr>
<tr>
<td>Caddy can not be loaded-unloaded</td>
<td>Mechanical adjustments</td>
</tr>
<tr>
<td>Player will not turn off</td>
<td>Mechanical adjustments</td>
</tr>
<tr>
<td>No playback</td>
<td>Stylus lif t-cleaner and pickup electronics</td>
</tr>
<tr>
<td>No or noisy audio</td>
<td>Audio demodulator</td>
</tr>
<tr>
<td>No or noisy video</td>
<td>Video demodulator and video converter</td>
</tr>
<tr>
<td>Picture and/or color instability</td>
<td>Time-base corrector</td>
</tr>
<tr>
<td>Wrong color, picture not in sync</td>
<td>Comb filter/defect corrected</td>
</tr>
<tr>
<td>Soundbeats in picture</td>
<td>NLAC circuits</td>
</tr>
<tr>
<td>No RF output</td>
<td>RF modulator</td>
</tr>
<tr>
<td>Picture and audio repeat, visual search</td>
<td>DAXI signal circuits</td>
</tr>
<tr>
<td>Inoperative, or incorrect</td>
<td>DAXI, system control, time display</td>
</tr>
<tr>
<td>Rapid access inoperative or incorrect</td>
<td>Stylus lif ter and serv o control</td>
</tr>
</tbody>
</table>

Assembled). Always follow the manufacturer’s instructions, even for disassembly when trying to get at mechanical components.

CED player service

Table 2 lists various trouble symptoms common to most CED players. Figure 14 is the block diagram of a typical CED player. After selecting the symptom from Table 2 that matches that of the player being serviced, follow the troubleshooting procedures using Fig. 14 as a guide.

Checking the pickup carriage: The pickup carriage is the most common cause of failure in a CED player, and can produce a variety of symptoms. Fortunately, on most players, the carriage can be reached through an access door, without removing the unit’s cover. So, before you get into any involved service or troubleshooting on a CED player, try replacing the carriage as a first step. Make sure you use a known good carriage.

Also, it is possible that the stylus cleaner has failed so you should check the cleaner circuits after replacements.

Power supply and switch control circuits. Figure 15 shows the power supply and switch control circuits for a typical CED player. Those circuits provide the various voltages required to operate the player. Note that the AC POWER, AC PLAY, and AC SPINE-SENSE switches must be closed for the turntable to operate. The SPINE-SENSE switch is closed when a spine is fully in place. The SPINE-SENSE switch is closed when a spine is fully in place. The POWER and PLAY switches are operated by the user, either through a FUNCTION lever or front-panel controls. If the unit in question does use a FUNCTION lever, the POWER and PLAY switches are usually operated by a cam that may require adjustment. So if the player is dead (with power available, disc in place, and controls operated) check that all three switches are closed. Then monitor all of the power-supply voltages.

If the player does not turn off, check the adjustment of the AC POWER switch cam. (That problem does not occur in automatic-load models where the front-panel power switch is pushbutton-operated.)

Stylus lifter circuits. As shown in Fig. 14, the stylus lifter coil receives a signal from the microprocessor through the power supply and switch control circuits. Generally, the lifter circuits include switches (play, spine sense, etc.) that close and provide a “play enable” signal to the microprocessor. The circuits also include amplifiers that increase the microprocessor’s stylus-up signal to a level suitable for the lifter coil. The stylus is lowered onto the disc after the turntable reaches full speed (450 rpm) generally within 6 seconds after the play enable signal is received.

If the lifter circuits (front-panel displays on, turntable running) but there is no playback (with a good cartridge), look for the play-enable signal to the microprocessor. Then trace the stylus signal (typically about 3 or 4 volts) between the microprocessor and lifter coil.

Stylus damage. When the play enable signal is received (during load/unload, and when not in play), the stylus is lifted from the disc by a spring. If not, the stylus can be severely damaged. Should that occur, look for a defective spring, or for switches not opening and, thus, causing a play enable signal to be applied at the wrong time.

Stylus-cleaner mechanism. The stylus cleaner mechanism removes debris from the stylus during each caddy-unload cycle. That prevents debris buildup that can cause signal loss (and often produce the same symptoms as cartridge failure).

So if a cartridge is replaced, and trouble symptoms disappear temporarily only to reappear shortly afterwards, check the stylus-cleaner mechanism. Also, if you find a defective cleaner, “clean" the original cartridge by loading and unloading the disc several times, then check player operation.

It is possible to check cleaner operation through the cartridge access door on some models. Open the door and remove the cartridge. Load and unload a disc while viewing operation of the lifter plate and cleaner (which is usually viewable through the bottom of the pickup arm). As the caddy is removed past the spindle, the stylus lifter-plate should lower, and the cleaner pad should move across the bottom of the arm (where the stylus is located if the cartridge were left in the player). After the pad as moved, the lifter plate should again rise as the caddy is completely removed. If not, you have problems with the stylus lifter and/or cleaner.

There’s a lot more to servicing videodisc players. But, unfortunately, that’s all the room we have for now. Next time, we’ll finish up by showing you more on the CED player.

R.E.
You can record the contents of your Atari 2600 videogame cartridges on audio cassette tape! This month, in the conclusion of this article, we'll show you how to build the game recorder and how to put it to use.

Part 3 When we left off last time, we were describing the memory-mapping technique that the game recorder uses. The last thing that we want to mention is that, for simplicity's sake, all ROM's were treated as if they were 4K x 8. That doesn't present any problems with 2K x 8 ROM's because they ignore the most-significant address bit. However, we end up with two copies of the cartridge in the 4K x 8 space—the top and bottom halves are identical. For the time being, remember that all 2K x 8 and 4K x 8 ROM's can be read by inputting to the ROM-4096 addresses (all that can be obtained from all possible combinations of 12 address bits), and saving the data patterns that the ROM returns.

One of the goals of the design of the game recorder was to keep the IC count down. Therefore, the extra memory IC's that would be required to make room for the system stack were not added. That conflicted with our desire to use subroutines (whose return addresses are usually stored in the stack). To get around that conflict, return addresses are kept in the Z80's internal registers. Thus, before a subroutine is called, the return address desired is stored in an internal register; the particular register is determined by the subroutine that is to be called. The number of Z80 registers allows for up to three levels of subroutines. Besides that, the software that we showed last month is quite straightforward.

Building the game recorder

The author's prototype, shown in Fig. 6, was built on perforated construction board. Most of the connections were wire-wrapped. (Even the discrete components were wire-wrapped by first installing them in DIP headers, and then installing the header in a wire-wrap socket.) Eight-inch phone jacks were used for cassette I/O and power connections, and 24-pin DIP sockets were used for connections to the Atari 2600 and to the game cartridge. Note that a simple power supply, whose schematic is shown in Fig. 7, was also mounted on board. The input to the supply is from a 9-volt, 500-mA DC wall transformer—similar to the transformer that the Atari 2600 itself uses.

Turning to Fig. 8, we see the connections we need to connect the main board to the game cartridge and to the Atari 2600. At the top left is the cartridge connector. In the author's prototype, that was basically a DIP-to-card-edge converter: One side plugs into the 24-pin DIP socket on the main board, while the other side is a 24-pin card-edge connector with standard 0.1-inch spacing. Note that to make wiring the connector easier, two 12-pin jumper headers are used to plug into the 24-pin socket. The wires from the headers then connect to the 24-pin edge connector. If you look closely at the photograph, you might note that an inverter is mounted between the socket and the card-edge connector. That's needed to invert the ENABLE line because the program ROM in the cartridge—as opposed to a 4K EPROM—is active high. The foil patterns that we'll show you shortly incorporate the inverter on the board.

Below the cartridge connector is a second board—which we'll call the adapter board—that is needed to connect the

FIG. 6-THE MAIN BOARD of the author's prototype. Three SPDT switches, two 24-pin sockets, and 24-inch phone jacks are used for input/output. The fourth jack is used for connection to a wall transformer.

FIG. 7-A SIMPLE VOLTAGE REGULATOR circuit can be mounted on the main board.
main board to the 2600. Note that there is also an inverter on that board.

On the right side of Fig. 8 is a ribbon cable with 24-pin connectors on each side. As you might have guessed, that is used to connect the main board to the 2600 (via the second board). A ZIF (Zero Insertion Force) socket is mounted on the second board for convenience. Note that the ribbon cable is shielded by copper foil. You will most likely find that shielding the cable will be necessary.

Wire-wrapping a circuit of this complexity is possible but, since wire-wrapping sometimes leads to problems in troubleshooting and in mechanical integrity, a printed-circuit board is a desirable alternative. Foil patterns for the component and solder sides of the main board are shown in Figs. 9 and 10 respectively. A supplier of that board is available. See the parts list for information.

The parts-placement diagram for the main board is shown in Fig. 11. Note that there are a few differences between the PC board and the author's prototype. For example, while all the switches and jacks were mounted on the main board of the prototype, the PC board is meant to be used with panel-mounted components. Also, the inverters that were mounted on the prototype's connectors are now located on the board. Note that pull-up resistors for some of the switches are located off-board. Those resistors, which were not shown in the schematic, are shown in Fig. 11.

You will still need an adapter board to connect main board to the 2600, and you will have to wire up special cables to connect the main board to both the 2600 and to the game cartridge. The foil patterns for the adapter are shown in Figs. 12 and 13. Figure 14 shows the card-edge pinout of a game cartridge. That, along with Figs. 1-13 should help you wire your cables correctly.

When you build the game recorder—or any other device that uses IC's—be sure to use IC sockets. Start by installing those sockets, followed by the discrete components. Don't install any of the IC's except the voltage regulator. If you use a wall-mounted transformer, install an 1/8-inch phone jack off the board for power connections. Apply power to that jack and check for +5 volts at the appropriate IC pins. Remove power and double check the board for shorts between traces (solder bridges) or for any other potential problems. When you're confident that the board is in good shape, install the IC's, the two displays, and the relay.

Next, you'll have to install the other jacks and the switches. Since those are meant to be panel-mounted, you'll have to cut wires to the appropriate length. Once that is done, you're ready to test the unit out.

Using the game recorder

Throughout this article, we've referred to the various switches and displays that are used on the game recorder. Now it's time to tell you how to use them.

Six switches, two seven-segment displays, and three phone jacks are used for input and output to the game recorder. If you look at the photo in Fig. 6, you'll see only three switches—each single-pole, double-throw switch is used for two functions. You may want to follow the same setup: After all, you can't read and write to the cassette tape at the same time!

Let's give a brief overview of what the switches and displays do. Then we'll go
FIG. 11—PARTS-PLACEMENT DIAGRAM for the main board. Note the connector pinouts. You will have to wire up a cable to connect the main board to game cartridges and to the adapter board.

FIG. 12—THIS ADAPTER BOARD is used to connect the main board to the Atari 2600. We recommend that you use a DIP socket for convenience.

FIG. 13—THE FOIL SIDE of the adapter board.

There is one cassette input to the game recorder (CASSETTE DATA IN) and two cassette outputs (CASSETTE DATA OUT and CASSETTE ON/OFF). Note that the schematic does not show the CASSETTE ON/OFF output. Instead, the output of IC7-c is labeled "TO CASSETTE-CONTROL RELAY." Although the relay is not shown on the schematic, the board has provision for a DIP mounted relay that can be controlled by the output of IC7-c.

Before you use your game recorder, keep the following notes of caution in mind: NEVER plug a game cartridge in while the game recorder is on. The 2600 should be turned OFF before the game

S6, is the SETUP/PLAY switch which is used to put the game recorder in the mode to play a game on the 2600.

The first of the two displays, GAME SELECT, shows the name of the game that you want to save or the one you are trying to find on a tape. The name is selected by the GAME SELECT switch. The LAST GAME FOUND display is used to indicate the name of the game that the recorder is "listening to" on the tape. We'll see that the decimal points of these displays serve another important function.

into detail on each function. The first switch we'll consider is the GAME SELECT switch, S1, which is used to reset the game recorder in case of failure. The WRITE TAPE switch, S2, is used to initiate the transfer of data from the game recorder's RAM to a cassette tape. Switch S3, READ TAPE, does just the opposite: It initiates data transfer from cassette tape to the game recorder's RAM. The READ CARTRIDGE switch, S4, initiates the transfer of data from the game cartridge to the game recorder's RAM. Switch S5, GAME SELECT, is used to select the name of the game that you want to save on tape, or the name of the game you want to find on a tape. You have 16 choices for a name: the hexadecimal digits 0-F. The final switch,
switch. In a matter of milliseconds, the contents of the game cartridge will be transferred to the game recorder’s RAM. If you want to verify that the copy is correct, you can play the game.

Writing a game to tape

Once you have a game stored in RAM, you can transfer it to cassette tape. First make sure that the game is set up as before. If you’re using a cassette control relay, attach the cassette output to the remote jack of the cassette recorder. Select the name of the game (a hex digit from 0-F) by pushing the GAME SELECT switch. Each time you push it, the GAME SELECT display will increment by one. That will place a “label” on the tape that the game recorder will be able to find at another time. It’s a good idea to name your games in the order that they appear on the tape.

Next set your cassette recorder to record (If you are using the remote control option, it will not start until the game recorder is ready. Push the WRITE TAPE switch; the cassette recorder should start, and the data transfer will begin. Note that the decimal point of the GAME SELECTED display will light. After the game has been transferred, the decimal point will again go dark. That’s your signal to stop your cassette recorder if you’re not using the remote control option.

Reading a tape

Loading a game from cassette tape to the game recorder is perhaps the most difficult operation. But if you follow the instructions carefully, you shouldn’t have any problems. Hook up the game recorder in its setup mode as before. The first step is to set the volume level. Once you learn what the proper level is, you won’t have to repeat this step every time.

Set your tape to play a recorded game (which you can recognize by the high- and low-pitched tones). Then turn the volume down and connect the cassette’s earphone jack to the CASSETTE-DATA IN input. Push the READ TAPE button; the decimal point of the GAME SELECT display should turn on. Now turn up the cassette player’s volume until the decimal point of the LAST GAME FOUND display just turns on. Then turn the volume up just a slight bit more—about a half number, if your volume control is numbered. But don’t turn it up too loud.

Now to make sure that the volume is correct, set the tape to a place before a game you recorded. Then try to read the tape. The LAST GAME FOUND should indicate the name of the game. When you’re finished with setting up the game recorder, press the RESET button.

Now try to load back a game you recorded by selecting its name, setting up the recorder, and hitting the read tape button. The LAST GAME FOUND display will indicate the name of each game the game recorder finds. When it finds the selected game, it will read it and stop the cassette player when it’s finished (if the remote option is used).

Playing a game

Now that you have a game in the game recorder’s memory—either from a tape or from a game cartridge—you can play it on the 2600. Just move the SETUP/PLAY switch to the PLAY position and turn the 2600 on. Your game should be ready to play. Be sure to turn the 2600 off before moving the SETUP/PLAY switch back to SETUP.

Expanding the game recorder

As a final note, we should note that many new games for the Atari 2600 are 8K long. The basic ideas of this game recorder can be used to record those games on cassette tape. However, you will have to make both hardware and software modifications. We won’t go into detail on how those modifications are made, but we will give you a head start.

Figure 15 shows one way of adding to the address decoder to obtain bankswitching ability. The software would have to be written to turn the memory-mapped bankswitching mechanism on and off (by setting and resetting a flip-flop, for example). The software should include some way to detect and record the ROM size. The last two bits of the header could be used for that purpose.
ALL ABOUT THERMISTORS

HARRY L. TRIETLEY

Last month we studied thermistor basics—what they are, how they behave, etc. This month, we'll finish our look at the basics, and then we'll show you design techniques so that put thermistors to work in your circuits.

Part 2 Before we get to circuit applications for thermistors, we have some basic points to mention about thermal runaway PTC thermistors, and probe assemblies.

The negative-resistance behavior makes it possible for a thermistor to go into thermal runaway and destroy itself. Figure 5 shows one of the lines from Fig. 4 (see the January 1985 issue of Radio-Electronics page 50) replotted with voltage on the horizontal axis, current vertical. From that plot you can see that if you connect the thermistor to a voltage source, the current will increase more rapidly than the voltage due to the thermistor's decreasing resistance. When the voltage becomes high enough to enter the negative-resistance part of the curve, the resistance will decrease because the thermistor is getting hotter. That results in increased current, heating the thermistor even more, increasing the current more, etc. If there is no current limiting, the thermistor will continue to heat until it destroys itself. Always be careful, when connecting a thermistor to a voltage source, to either limit the voltage to safe values or else provide some means to limit the current. We would point out that the curves we've just described depend very much on the application and must be determined experimentally. Changing the surrounding temperature, connecting the thermistor to a heat sink, changing the air flow, or putting it in an enclosure will create a new set of curves.

The fact that a thermistor heats itself when power is applied is a drawback when measuring temperature—the power must be kept well below a milliwatt to avoid errors. In other uses, however, thermistors are purposely self-heated. For example, if you self-heat a thermistor well above the surrounding air temperature and then increase the air flow, its temperature will drop, increasing its resistance. You now have a sensor to detect wind or air cur-
Response time

Suppose you suddenly move a thermometer from one temperature to another. Like any thermometer, it will take a while to respond. The mass of the thermometer must heat up or cool down to match the surrounding temperature. The response will look fairly much like an exponential R-C time response as shown in Fig. 6, with the 63% response time indicated by time constant, t. For small disc or bead thermistors, the time constant will be one to several seconds. Larger thermistors respond more slowly: One-inch discs may take two minutes or more. Of course, a thermometer's response will be faster in liquid or in moving air than in still air.

It also takes some time for a thermistor to heat itself when power is applied. Figure 7 shows what happens if a thermistor and resistor in series are connected to a voltage source. At first, the thermistor's resistance is high, limiting the output. If enough power is applied, it slowly heats up, dropping its resistance and raising the output until thermal equilibrium is reached.

Thermistors are often used in this way to create delay times or to protect against sudden intrush currents. We will study such applications in more detail a bit further on in this article.

PTC thermistors

As we mentioned at the beginning of this article, there are two distinctly different types of positive temperatures coefficient (PTC) thermistors: those sintered from powdered metal compounds and those made from silicon. The most common of the sintered types are those made from barium titanate, with various doping materials added. Thermistors of that type have resistances that increase with temperature as shown in Fig. 8. Note that the vertical scale is logarithmic—the increase in resistance is very rapid.

PTC thermistors are sold in most of the same configurations as NTC's, including small and large discs, washers, and rods with and without leads and coatings. The R-T curves are highly nonlinear and, more important, have a sudden increase in resistance over a narrow temperature range. Such devices are especially useful as temperature switches or temperature limiters, particularly when high precision is not required. Larger PTC thermistors can switch moderate amounts of power, for example, enough to control a series relay.

Simply place the relay and PTC thermistor in series with a voltage source and the relay will drop out somewhere along the steep portion of the curve. The switching point is controlled by varying the doping used in the thermistor.

PTC thermistors also can be used as current limiters. When their current becomes too large they will self-heat to the point where their resistance increases rapidly.

An interesting use of larger PTC thermistors is as self-regulating heaters. When power is applied, the thermistor will heat itself until it reaches the steep portion of the curve, at which point the current will decrease rapidly. A fairly constant temperature will be maintained regardless of changes in the ambient temperature or thermal load. One manufacturer has created a heater for liquid-crystal displays by epoxying several PTC thermistors to a metal strip. The strip is glued or clamped to the back of an LCD and connected to a 24-volt power source. When the LCD is warm, the heater will draw very little current. If the temperature drops, however, the thermistors will self-heat until they warm the assembly back up to their switching temperature. It seems that some similar arrangement will have to be used in automobiles if LCD's are used for dashboard displays. PTC thermistor material is also formed into custom designed shapes to form self-regulating heating elements in appliances such as hot-glue guns.

Silicon PTC thermistors do not have much in common with either PTC or NTC sintered thermistors—at least in their manufacturing process. They are made from single-crystal silicon wafers (like those used to make IC's) with dopants (impurities) added to produce the proper resistance.

Figure 9 shows a typical R-T curve for silicon PTC thermistors. They generally are sold in the same resistance values (at 25°C) as standard 10% resistors; that is, 10, 12, 15, 18, and 22 ohms etc., in values from 10 ohms to 10 kilohms. As you can see from the curve they are fairly linear and much less sensitive than other thermistors, about 0.7 percent per degree C. The exact shape of the curve is affected by the dopant added; hence, different resis-
Thermistor probe assemblies

An unprotected thermistor is poorly suited to most temperature measurements. You can't dip it in water or any other conducting liquid since the liquid will shunt the leads, producing false readings. Also, except for hermetically sealed glass units, the liquid will eventually creep into the thermistor, most likely finding a path in minute voids between the leads and the epoxy coating. Nonconductive liquids may attack or soften the epoxy; corrosive liquids may destroy the leads. Even continued exposure to high-humidity air may eventually produce electrical leakage inside the thermistor. Sealing the thermistor can also provide protection for mechanical ruggedness.

Thermistors are often mounted inside temperature probes, such as those seen in Fig. 10. Usually, the probe consists of a length of stainless steel, glass or other tubing welded closed at the measurement end. The thermistor is soldered to a length of wire or cable and inserted into the probe, generally with a bit of epoxy in the probe tip to give mechanical strength and to create better thermal contact with the probe. Additional epoxy is used to seal the back end. A probe may be simply a "straight stick" for laboratory use, or it may be welded to pipe-threaded fittings or other mountings for permanent installation.

Of course, thermistors may be mounted in other ways. For example, they may be epoxied into a drilled-out bolt for installation into a tapped hole. The possibilities are limited only by your imagination. For commercial and OEM customers, many thermistor manufacturers will build their thermistors into probes or other assemblies to meet users' needs.

Bridge circuits

If we connect an NTC (Negative Temperature Coefficient) thermistor in a Wheatstone bridge as shown in Fig. 11, we can generate a voltage that increases with temperature. If we choose our resistors properly, we can ensure that the voltage will vary fairly linearly with respect to temperature (if only over a narrow temperature range).

Figure 12 shows the output voltage of a Wheatstone bridge as a function of temperature. Note that the curve is S-shaped, approaching—but never reaching—the supply voltage at high temperatures (low thermistor resistance). The sensitivity is highest near the midrange, where the thermistor resistance is close to the resistance of R1.

While it is not possible to change the basic shape of this curve, you can choose R1 so that the center of your temperature range is on the most linear (center) portion of it. For narrow temperature ranges (not more than about 20 °C), you can achieve a quite linear output by making R1 equal to the thermistor's resistance at the center of the temperature range. Linearity becomes poorer as the temperature range gets wider.
Designing for best possible linearity requires a bit of algebra, but it's not at all difficult. Looking again at Fig. 12, note the "ideal" straight line drawn on top of the actual curve. The two cross at three temperatures, T1, T2, and T3. Best linearity is achieved when T1 and T3 are the end points of the desired temperature range and T2 is exactly in the middle. The equation for the output voltage is:

\[V_{\text{out}} = \frac{V_S \times R_T}{R_T + R_T} \]

We wish to select R1 so that \(V_3 - V_2 = V_2 - V_1 \) when \(T_3 = T_2 = T_1 \). All this may be solved algebraically to give us:

\[R_1 = \frac{R_T \times R_T + R_T \times R_T - 2R_T \times R_T}{R_T + R_T - 2R_T} \]

If you know the thermistor's resistance (\(R_T \)) at temperatures T1, T2, and T3, simply substitute them in this equation to find the optimum value of R1. The thermistor's values may be taken from the manufacturer's data or by measurement at the three temperatures.

You still need to choose R2, R3, and the supply voltage, \(V_S \). Choosing the resistors is easy—set R3 equal to R1, then make R2 equal to the thermistor's resistance at the temperature where you want zero output voltage from the bridge. You may want to make R2 adjustable for calibration purposes.

The supply voltage, \(V_S \), determines the output sensitivity (millivolts-per-degree). You may need to do some trial-and-error here. Choose a reasonable voltage—say, one volt—and calculate the output voltage from the bridge at T1 and T3. This will give you a sensitivity for that particular supply voltage. Next, raise or lower \(V_S \) in proportion to the increase or decrease in sensitivity needed.

Remember that making the supply voltage too high will cause the thermistor to self-heat, causing measurement errors. For a typical small thermistor in air, one milliwatt of dissipation will cause a 1°C error. The power dissipation will be highest when the thermistor equals R1 and will be:

\[P_D = \frac{(0.5V_S)^2}{R_1} \]

where \(P_D \) is in watts. For precise work you will want to keep the power dissipation to 0.1 milliwatt or less.

Table 2 lists the calculated resistor and supply-voltage values for three different temperature ranges. Notice that linearity is very good for narrow ranges, but gets worse rapidly as the temperature range widens. The thermistor used in this design is a Yellow Springs Instrument Co. (Box 465, Yellow Springs, OH 45387) model 44004, 4400-series probe. You will probably have to create series or parallel resistor combinations to obtain the calculated resistor values. Notice that the supply voltages have been chosen to give an output sensitivity of 10 millivolts-per-°C.

A circuit like this, made from a few resistors and an adjustable supply (or a battery and voltage divider), is handy in the laboratory for reading temperature. The 44004 thermistor itself is accurate to 0.2 °C or better. Since sensitivity is about 4% per °C, a resistor or supply error of one percent causes a temperature error of only 0.25%. The bridge output may be read directly on a DVM, or fed into a high-impedance differential amplifier for other instrumentation needs. Calibration may be checked by substituting a precision decade box for the thermistor and, if need be, changed by adjusting R2 or R3 to set the zero point. The supply voltage can also be adjusted to set sensitivity.

Differential temperature, the difference between two temperatures, is often useful. For example, the difference between the inlet and outlet temperatures of a solar collector, heat exchanger, heat pump or air-conditioner coil measures operating efficiency. To read relative humidity, we must know the difference between wet-bulb and dry-bulb temperatures. You can measure differential temperature with the Wheatstone bridge by simply replacing R2 with a second thermistor. The two thermists must be closely matched to obtain zero-bridge output at zero temperature difference. Precision interchangeable thermistors are recommended for this application.

Table 2—Examples of Bridge Designs

<table>
<thead>
<tr>
<th>Temperature range</th>
<th>10 to 30°C</th>
<th>0 to 50°C</th>
<th>0 to 70°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero output</td>
<td>10°C</td>
<td>0°C</td>
<td>0°C</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>10 mV/°C</td>
<td>10 mV/°C</td>
<td>10 mV/°C</td>
</tr>
<tr>
<td>Bridge supply (V_S)</td>
<td>946.2 mV</td>
<td>917.3 mV</td>
<td>947.0 mV</td>
</tr>
<tr>
<td>R1</td>
<td>2,168 ohms</td>
<td>1,763 ohms</td>
<td>1,952 ohms</td>
</tr>
<tr>
<td>R2</td>
<td>4,482 ohms</td>
<td>3,755 ohms</td>
<td>3,755 ohms</td>
</tr>
<tr>
<td>R3</td>
<td>2,168 ohms</td>
<td>1,763 ohms</td>
<td>1,952 ohms</td>
</tr>
<tr>
<td>Maximum nonlinearity</td>
<td>+0.07 °C</td>
<td>+0.85 °C</td>
<td>+2.0 °C</td>
</tr>
</tbody>
</table>

Note: Thermistor is a YSI 44004, 400 series probe of equivalent, 2,252 ohms at 25°C.

For precise work you will want to keep the power dissipation to 0.1 milliwatt or less.

Table 2 lists the calculated resistor and supply-voltage values for three different temperature ranges. Notice that linearity is very good for narrow ranges, but gets worse rapidly as the temperature range widens. The thermistor used in this design is a Yellow Springs Instrument Co. (Box 465, Yellow Springs, OH 45387) model 44004, 4400-series probe. You will probably have to create series or parallel resistor combinations to obtain the calculated resistor values. Notice that the supply voltages have been chosen to give an output sensitivity of 10 millivolts-per-°C.

A circuit like this, made from a few resistors and an adjustable supply (or a battery and voltage divider), is handy in the laboratory for reading temperature. The 44004 thermistor itself is accurate to 0.2 °C or better. Since sensitivity is about 4% per °C, a resistor or supply error of one percent causes a temperature error of only 0.25%. The bridge output may be read directly on a DVM, or fed into a high-impedance differential amplifier for other instrumentation needs. Calibration may be checked by substituting a precision decade box for the thermistor and, if need be, changed by adjusting R2 or R3 to set the zero point. The supply voltage can also be adjusted to set sensitivity.

Differential temperature, the difference between two temperatures, is often useful. For example, the difference between the inlet and outlet temperatures of a solar collector, heat exchanger, heat pump or air-conditioner coil measures operating efficiency. To read relative humidity, we must know the difference between wet-bulb and dry-bulb temperatures. You can measure differential temperature with the Wheatstone bridge by simply replacing R2 with a second thermistor. The two thermists must be closely matched to obtain zero-bridge output at zero temperature difference. Precision interchangeable thermistors are recommended for this application.

Multiple-thermistor linear networks

The linear range may be widened considerably by using two thermistors. Figure 13 shows a two-thermistor bridge circuit that is linear to within ±0.22°C from 0 to 100°C.

At very low temperatures, the resistance of thermistor \(R_{T_3} \) is so large (95K at 0°C) that it has very little effect on the circuit. The circuit behaves much like a 6K thermistor in series with a 6.25K fixed resistor, which has a linear range centered around 15°C. As the temperature increases, the resistance of thermistor \(R_{T_2} \) drops and begins to shunt the \(R_{T_3} \)-R2 combination. Thus, while the output sensitivity provided by \(R_{T_1} \) is dropping off (the high end of the S curve in Fig. 12), \(R_{T_3} \) begins providing an additional "boost". In the middle of the temperature range, both thermists are influencing the output.

At higher temperatures, \(R_{T_1} \) becomes so much smaller than the 6.25K resistor (408 ohms at 100°C) that its effect is unimportant. Now the circuit behaves as if thermistor \(R_{T_1} \) was in parallel only with \(R_2 \). This combination has a linear region near 100°C. Overall, as we raise the temperature from 0 to 100°C, the influence of \(R_{T_1} \) gradually decreases while the influence of \(R_{T_2} \) increases, providing a linear output over a much wider range.

Selection of an optimum set of resistors and thermistors for the circuit shown in Fig. 13 is not easy. A lot of trial-and-error calculation is needed to find the best values, and it helps to use a computer program with the circuit equations and thermistor tables (or the Steinhein and Han equation, discussed last month) built in. Fortunately, you don't have to do this. That's because at least two manufacturers sell preselected sets of resistors. We'll tell you who, and look at some more thermistor topics, next time.
DESIGNING WITH DIGITAL IC'S

A look at logic families, logic levels, and other digital electronics basics.

JOSEPH J. CARR

IT DOESN'T TAKE A LOT OF INSIGHT TO SEE that digital electronics has really come into its own over the past ten years. Where that field was once the sole province of a few wild-eyed computer "hackers" stuffed into the backrooms of corporate engineering departments, digital electronics now seems to be "a game for all." Unfortunately, training has not kept pace with demand, and there are many out there who would benefit from some basic material on the subject. So much of what is published these days, especially in magazines dedicated to microcomputers, seems to assume prior knowledge; beginners are left out in the cold.

Digital electronics

Unlike analog circuits, voltages in digital circuits are constrained to be one of two values. Those values are referred to as logic high and logic low; other names for those two values are logic 0 and logic 1, and, even more simply, on and off. In most practical IC logic circuits, the high and low states are voltage ranges that are separated by an "invalid" or undefined zone. That is shown in Fig. 1. In that figure, the valid low is the voltage range between zero and V1, while a valid high is any voltage from V2 to V3. Of course, voltages greater than V3 represent a dangerous condition. If such voltages are applied to the IC, its life expectancy would likely be shortened.

The invalid logic-level zone between V2 and V3 is critical. In that area, the IC does not know what to do. You may even find, for any given type number, different responses according to the manufacturer of the device. Three alternatives are possible: the invalid logic level is seen as a valid high, a valid low, or it will create no change in the output from the previous state.

Common Logic Levels

Logic levels vary according to the logic family that a device belongs to. Transistor-transistor logic (TTL or TIL) is probably the most common single family. Those devices bear type numbers in the 74xx and 74xxx series for commercial devices, and 54xxx in military quality devices.

The TTL family operates from a monopolar regulated DC-supply of +5 volts. The low logic-level is represented by a voltage of 0 to 0.8 volt, while the high is represented by a voltage that is greater than +2.4 volts (but less than the TTL maximum supply voltage). Reverse voltages (negative), or voltages greater than +5 volts, are dangerous to the TTL device. In most cases, a TTL device output will be less than 4 volts, so this is no problem.

CMOS devices work from power supplies of ±4.5-volts DC to ±15 volts DC. In many cases, we find CMOS devices operating from TTL power supplies, especially where a circuit contains mixed TTL and CMOS devices. In those cases, we can use a 12-volt DC bipolar power supply for CMOS circuits. Since CMOS devices draw considerably less current than TTL, we can use current levels of ±100 mA to ±1 ampere.

A variable output-voltage, DC power supply may seem like something nice to have, but they have a hidden potential for disaster. If the output voltage-level is adjusted too high, especially for a TTL device, the IC can be ruined.

A breadboard can prove to be very useful, especially if it contains built-in DC power-supplies. Heath offers several of which the ET-3300 is a good choice. Also recommended is the AP Products Powerace-J02. That breadboard contains a ±5-volt DC power supply, a squarewave clock (1 to 100 kHz), a pulse source, logic level sources, and logic level detectors.

The breadboard may look expensive on first glance, but is well worth the price if you plan to go into digital electronics in any depth. With the breadboard you can build, modify, and troubleshoot digital circuits before committing them to more permanent configurations such as wire wrap or printed circuit boards. You will find that breadboard circuits are a lot easier to modify.

Perhaps the principal advantage of logic breadboards is that they contain one or more multi-dozen pin IC socket blocks that can be used to mount components. Interconnections are made with No. 22 to No. 28 solid hook-up wire pushed into socket holes. The somewhat less than permanent nature of such connections is one reason circuits built on breadboards are so easy to modify.

Another nice to have (and highly recommended) device is a logic probe. Those probes are used to detect either high or low states. In addition, some models can detect whether or not a pulse has occurred or generated pulses of their own at the push
of a button. Such probes are exceptionally useful for troubleshooting and debugging circuits. The cost may be high, but the usefulness is a compensating factor.

An oscilloscope is also nice to have, even though high cost tends to limit the number of hobbyists who can own such an instrument. The selected model should have a wide bandwidth. We recommend bandwidth of 4.5 MHz or better as a minimum—but get one with a wide bandwidth as possible.

A voltmeter is always useful. Since digital circuits operate on pulses, however, the meter will only be useful during the static tests of logic levels and DC power-supply voltages. Use any electronic voltmeter (digital or analog), or VOM with a sensitivity of 30,000 ohms/volt or more.

CMOS devices can be operated from either bipolar (−V, 0, +V) power supplies, or a monopolar (0, +V) power supply. In most cases of monopolar operation, the −V-power supply is set to zero (−V = 0).

The high logic-level is represented by a voltage close to the V+ supply, while the low by a voltage close to the −V supply. The transition between states occurs near the mid-point between −V and +V (or, where monopolar supply is used, at ½ +V). The value of −V and +V can be any voltage between ±4.5 volts and ±15 volts; the two voltages do not have to be equal.

High noise immunity logic (HNL) devices, like TTL, are made using bipolar transistors. The difference is that it takes larger voltages (+12 in one series, +15 in another) to supply HNL, and, consequently, higher voltage logic levels. Those higher voltages are what creates the improved noise immunity.

We'll look a bit more at these and the other logic families a bit later in this article.

Positive vs. negative logic

The terms “positive logic” and “negative logic” tend to confuse the newcomer to digital electronics. It becomes especially unerving when you see the same devices designated both ways. The TTL 7400 NANO gate, for example, is listed some places as a NAND/NOR gate. That designation means that that device is both a positive logic NAND gate and a negative logic NOR gate.

The difference between positive and negative logic is as follows: Positive logic uses a positive voltage for high (i.e., logic 1), and either zero or a negative voltage for low (i.e., logic 0). Negative logic, on the other hand, uses a negative voltage for high (logic 1) and either zero or a negative voltage for low (logic 0).

Unless otherwise specified by the manufacturer, IC logic device function names reflect positive logic. Thus, the 7400 is generally called a NAND gate.

You will, of course, require one of more DC power-supplies that are compatible with the digital IC logic families that you intend using. For TTL devices, which are probably the most common, you will need at least one +5-volt DC regulated power supply. Since TTL devices tend to use high currents (10-30 mA per device), plan on a DC supply of at least 1 amp at +5-volts DC; it is not unreasonable to obtain supplies of 1 to 5 amperes.

Logic families

An IC logic family is a group of digital logic devices that share a common fabrication technology and are matched as to input and output voltage and current levels. Thus, interconnection of logic devices within any one family is grossly simplified. A TTL device, for example, can drive up to ten TTL devices without the need for impedance matching and other niceties that plague analog circuits.

In the remainder of this article we will look at the common IC logic families. For purposes of comparing the families, we will center our discussions around a single device, the simple inverter. That device is also called a non-gate. Figure 3-a shows the usual logic symbol for inverters as used in schematics. The circle at the output is the standard way an inverter function is noted.

An inverter is a circuit that will produce an output level that is the opposite of its input signal level (see Fig. 3-b). In other words, a high at the input produces a low output, while a low input produces a high output. We consider inverters in our discussions of logic families because they are simple circuits that easily demonstrate the differences between families.

Resistor-transistor logic (RTL)

The RTL family was one of the earliest to become commercially available in IC form. It is, however, now completely obsolete. RTL is not used in new designs, and is currently stocked only for replacement purposes in repairs. Figure 4 shows the standard RTL inverter circuit. This device operates from a monopolar DC power supply; the largest power supply that can safely be used is +4 volts DC, with +3.6-volts DC being more common.

Note in Fig. 4 that there are resistors in both input (i.e., base) and power supply (i.e., collector) leads. An advantage of RTL is that no combination of opens or shorts will destroy the device, provided that no voltage greater than +4 (DC) exists on the circuit board. A disadvantage of RTL, however, is that the operating frequency is limited to 4 or 5 MHz.

Diode-transistor logic (DTL)

The DTL family was also among the earliest types available in IC form. Figure
5 shows a typical DTL inverter circuit. Like the RTL inverter, DTL inverters use a single transistor in the common-emitter configuration. The main difference between the two is the diode (D1) connecting the input to the base of the transistor.

If the input is high, diode D1 is reverse biased, so it does not affect the circuit. Under that condition, resistor R2 forward biases transistor Q2 forcing it into saturation and the output of the circuit is low. If, on the other hand, the input is low, the transistor is cut off, so its collector voltage rises to +V and the output is high.

DTL devices operate from DC voltages of 5 to 6, and are now regarded obsolete expect for repair purposes.

Transistor-transistor logic (TTL)

The transistor-transistor-logic family is, perhaps, the most common of all digital IC logic families. These are the devices that carry type numbers of 74xx and 74xxx.

A principal advantage of TTL devices is speed of operation. Almost all TTL devices operate to 18 or 20 MHz, while some trip along nicely at 80 MHz or so. A disadvantage is that goes along with high speed, however, is high power dissipation and high current requirements.

Logic levels of TTL devices are 0 to +0.8 volt for low, and +2.4 to +5 volt for high. TTL devices typically require 10-40 mA of current per device from the DC supply. All TTL devices must operate from a regulated 5-volt (nominal) DC power supply. Officially, the +5 volt supply must provide a voltage between +4.75 and +5.25 volts DC. Our experience, however, suggests that narrower limits are sometimes prudent. If the voltage is greater than about +5.05 volts DC, then reliability is reduced. Under about +4.80 volts DC, on the other hand, certain TTL devices operate in a flaky manner.

A typical TTL inverter stage is shown in Fig. 6. Note that NPN bipolar transistors are used. A TTL output operates as a current sink. In the high-output condition, Q3 is cut off and Q4 is turned on, connecting the output terminal to +V. When the output is low, however, Q4 is turned off, and Q3 is turned on. In that condition, the output line is connected to ground through the saturated collector-emitter path of Q3.

The input of a TTL device is a current source formed of emitter follower Q1. The standard TTL Input will source 1.6 mA of current.

Normally, electronic amplifier circuits can be cascaded only by considering matters such as drive power and impedance matching. In TTL, however, cascade interfacing is greatly simplified by standardizing input/output conditions. An implication of this is that we can standardize loads ("fan-in") and output drive capacity ("fan-out"). Thus, the standard 1.6 mA at 5-volts DC, TTL current-source input is defined as a fan-in of 1.

Every output can be specified as to fan-out rating, which is the number of standard TTL inputs the device will drive. The standard TTL output on 74xx/74xxx devices has a fan-out of ten. That means that it will drive up to ten standard TTL inputs. A fan-out of ten means that the output will sink 10 x 1.6 mA, or 16 mA.

Fig. 7 shows an alternate form of TTL output called an open-collector TTL. The output transistor, Q3, does not have a collector load. An external "pull-up" resistor (R4), or other pull-up load, must be connected between the output terminal and +V.

There are several different TTL open-collector devices. The 7405, 7406, 7407, 7416, and 7417 devices are open-collector hex inverters. Table 1 shows the output specifications for those devices. Note that several of those devices can handle voltages higher than the +5 volts DC used on other TTL devices. Those devices must be connected to +5 volts DC at the package +V terminal. We can, however, use the output stage to drive higher voltage loads than +5 volts DC. Those limits are, once again, shown in Table 1.

Figure 8 shows how TTL devices accommodate multiple inputs. The input transistor (Q1) is essentially the same, except that there are two or more emitters, each of which is an input.

There are several sub-families of TTL devices: high-power, low-power, Schottky, and low-power Schottky. Those differ a little from ordinary TTL, but generally can interface with standard TTL and each other. The sub-families use variations on the 74xx/74xxx numbering.

High-power TTL devices carry part numbers in the 74Hxx series. High-power TTL fan-out ratings are typically 10-12, but the fan-in is 1.3 or so. That means that a 74H device input sources 2.08 mA. In general, a regular TTL output can use its fan-out of 10 to drive 6-7 74H inputs.

The power consumption of the 74H-series devices is approximately twice that of regular TTL. The operating speed is also about twice that of regular TTL. Thus, counters and flip-flops typically operate at speeds in the 40-60 MHz region. High-power TTL devices have less noisy
outputs than regular TTL, so they are particularly useful for data converters and other such applications.

Low-power TTL devices carry type numbers in the 74Lxx/74Lxxx series. The power consumption is roughly one-tenth that of regular TTL, but that advantage costs us a reduction in operating speed. Thus, 74L counters and flip-flops operate only to about 3 MHz.

One of the factors that inhibits the operating speed of a logic device is the minimum storage time of the electric charge in a saturated transistor. In Schottky TTL devices there are special “Schottky diodes” connected across the inputs. Those diodes have a voltage drop of 0.3-volts DC so the input voltage is clamped to that value. As a result, the transistors never saturate so operating speeds increase. In Schottky TTL devices, operating speeds can approach 125 MHz.

Devices in the schottky-TTL sub-family carry type numbers in the 74Sax/74Sxxx series. Figure 9 shows a typical 74S input stage.

Low-power schottky TTL devices, which carry part numbers in the 74Lxxx/74LSxxx series, sacrifice some of the blistering speed of the Schottky sub-family in favor of lower operating power. Typically, 74L devices consume about one-fourth to one-sixth the power of 74S devices.

FIG. 9—INPUT CIRCUIT for a Schottky inverter (74S series). The balance of the inverter is standard TTL, as shown in Fig. 6.

FIG. 10—FOR IMPROVED noise immunity, HNIL circuitry can be used.

TABLE 2

<table>
<thead>
<tr>
<th>CS</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
<td>X</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>X</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>H</td>
</tr>
</tbody>
</table>

HIGHER-NOISE-IMMUNITY LOGIC (HNIL)

A problem sometimes seen in TTL logic is lack of noise immunity. The difference between high and low thresholds is so small that noise impulses riding on the signal can drive a device to the incorrect logic level. For example, a low TTL level with noise can be made to appear during the noise impulse as if it were high. Similarly, a noisy high may look low.

A solution to that problem may be High Noise Immunity Logic (HNIL), also called High Threshold Logic (HTL). Figure 10 shows an HNIL inverter stage.

Notice in Fig. 10 that transistors Q1 and Q2 form an interesting circuit. When the base of Q1 is high, its collector is low, so Q2 is turned off. A current-source input (similar to TTL) will allow current to flow to ground through D4 and the saturated collector-emitter path of transistor Q1. If the base of Q1 is low, on the other hand, its collector is high, so D4 is turned off and Q2 is turned on. In that case, the output terminal is connected to +V through R3 and the saturated collector-emitter path of Q2—forming a high.

The high threshold required to turn on Q1 (which is what gives this device its high noise immunity) is a function of D2, a 5.6-volt Zener. Other than that, the circuit is similar to the DTL logic family.

There are two general classes of HNIL logic. One uses logic levels of 0 and +12 volts DC, while the other uses 1 and +15 volts DC.

TRI-STATE LOGIC

Digital logic is said to be “binary” because it responds to two input states—high and low. In TTL, for example, the output will be either 0 to +0.8 volts, or +2.4 to +5 volts. But there are some cases where we want to disconnect the output terminal from the internal circuitry. One such case is in computers, where a large number of outputs are busied together on the same line. Damage to the circuitry could occur if some of the outputs were high while others were low.

A solution to that problem is what we call tri-state logic. Such devices have three states—high, low, and disconnected (i.e., high impedance).

In the “third state,” the output terminal sees a high impedance to both +V and ground. That state is entered upon the receipt by the device of a CS signal at the appropriate terminal. Figure 11 shows how a tri-state inverter works. Switch S1 represents the inverter. When the input is low, S1 will be in the position shown—the output is connected to +V (i.e., high) through a low resistance. Similarly, if the input is high, S1 will be in the other position so the output is connected to ground through a low resistance.

The “tri-state” function is provided by switch S2. When S2 is closed, the output terminal is connected to the S1 circuitry. Alternatively, if S2 is open, then the output terminal is disconnected (that's because the value of R1 is, of course, extremely high). The output state is controlled by an active-low chip select terminal (CS). When CS is high, the output is floating (disconnected). If CS is low, on the other hand, S2 is closed and the output is connected to the S1 circuit.

A tri-state inverter will follow the truth table shown in Table 2. Examples of tri-state devices are the 74125 and 74126.

Next time, we'll take a look at CMOS devices.
EQUIPMENT REPORTS
continued from page 36

Beckman DM10
Multimeter

Here's a low-priced
multimeter that's made for
electronics hobbyists.

Most "pocket" digital multimeters won't fit in your pocket. We've recently come across one that will: the DM10 from Beckman Industrial Corporation (630 Puente Street, Brea, CA 92621). Despite its small size, the DM10 has many of the features you'd expect only in a bigger meter.

The DM10 is part of Beckman's Circummet series of multimeters. It can be used to measure DC volts in five ranges (200 mV to 1000 V) and AC volts in two ranges (200 V and 500 V). There are five resistance ranges (200 ohms to 2 megohms) and 4 DC-current ranges (200 µA to 200 mA). The meter also features a handy diode-testing function.

We mentioned that the DM10 is small—it's approximately 5 x 3 x 1 inches. That means that it really will fit in your shirt pocket. And because it weighs only 5½ ounces (with battery!), carrying it there should not prove to be at all uncomfortable.

The DM10 features a 3½-digit liquid-crystal display with easy-to-read ½-inch high digits and automatic negative-polarity indication. Overranging is indicated by a display of only a leading "1," and a low-battery annunciator tells you when to replace the 9-volt battery (which has an expected lifetime of 150-200 hours).

As is common with many meters, the function/range selector switch is a rotary type that dominates the front panel. Three input jacks (com, v, and dca) also share the front panel. (You have to switch a test lead to measure current.)

When measuring DC volts, you can expect an accuracy of ±0.8%, +1 digit. With an input impedance...
Hobby Corner

Building a simple power supply

The most important part of any electronic device is the power supply—ranging from the simple to the elaborate. After all, without power, electronic circuits serve no useful purpose. Although power supplies are available commercially, it is just as easy to build one and better yet, it's often cheaper!

One of our readers, Carl Muller (CA), is looking for a power supply to operate a 24-volt, 2-amp DC motor. He specifies that the circuit contain a full-wave bridge rectifier. Well, Carl, because the voltage and regulation do not appear to be critical, the circuit in Fig. 1 should fill the bill.

Note the ratings given for the components. If you can't find those values, use the next largest values you can find (except the fuse, of course). The bridge itself can be made of individual diodes (arranged in the same way) or you may prefer the packaged type (which is nothing more than a four-diode arrangement sealed in a plastic case). In the latter category, a 4-amp, 100-PIV (Peak Inverse Voltage) full-wave bridge like the Radio Shack 276-1171 shown in Fig. 1, will probably work all right. But we'd prefer the extra margin of safety provided by 6-amp diodes.

AC-operated devices

Dexter Kaloo (West Indies), you are exactly right: most electronic devices do operate on direct current (DC), while alternating current (AC) does come out of the wall socket. Therefore, it is necessary to convert the AC to DC before it is applied to an electronic circuit.

That conversion is called "rectification." There are several rectifier arrangements that may be used—half-wave, full-wave, and full-wave bridge. The power supply shown in Fig. 1 is a good example; it uses the full-wave bridge arrangement. Note that the circuit does two jobs: First, the transformer reduces the 117-volt AC to 24 volts. Second, the bridge rectifier takes in that lower AC and "spits out" a proportionate DC voltage. The capacitor simply smooths (filters) out the ripple a bit.

Where you mount the power supply is up to you. You can mount it externally with wire running to the device it is to power or it may be built right into the device so that you don't even know it's there! Be warned that circuits requiring a DC voltage can be ruined if AC is applied, and the same holds true if DC is applied in reverse (i.e., the positive lead connected to the negative terminal). That is true whether the supply is a battery or a rectifier circuit.

One diode in the power lead of the device will protect it from reverse-voltage damage. Figure 2 shows how the diode should be inserted in the line. It is a good practice to put a diode in the supply line of each device you build, whether it uses a battery or external power supply. Doing so is really cheap insurance and can save you headaches in the future.

A new service

As the new year starts, it's appropriate that we take a look at where we are and where we want to go. My thoughts along that line have led me to the point of suggesting a new service for our readers. After all, the entire point of "Hobby Corner" is to help you. Judging from the letters we've received, that job is getting done in a reasonable manner. But, as we all know, there always room for improvement—"Hobby Corner" definitely included!

I am very much aware that there is one group of readers who could be getting a great deal more. They are the ones asking for help in
learning about electronics, transistors, IC's, or some other phase of our hobby. Sorry to say, there is no way I can correspond with everyone who needs a bit of special attention. There simply isn't enough time in the day. I regret it, I wish that I could do more, but that's the way it is.

Therefore, my proposal is to list the names and addresses of readers who need help, and would like to correspond with others who are a little farther along in our hobby. I'll try to find space to list a name or two each month and when you see someone who wants information that you have, drop him or her a line and offer to share your knowledge. Of course, the success or failure, and the value of the program depends entirely on your willingness to share what you've already learned with someone who has hit a snag.

Remember when you needed help and someone provided it just in time to boost your interest even higher? Well, now it's your turn to return the favor. I'm reminded of a fellow years ago who pulled me out of the ditch in the wee hours of the morning. (Boy, was I desperate.)

While traveling cross-country with the family, my car ran into a ditch. Two hours went by without any response from a wrecker in either direction. Finally someone came by and offered his assistance. As we put the chain back in his car, I offered to pay him for his trouble. "Oh no," he replied, "I'll be paid when you do the same for someone else some day." (That unknown gentlemen might be surprised to know that I still carry a tow line in my trunk.)

We in ham radio used to call the guys on whom we leaned when the going got rough as our "Eimers." I've had several "Eimers," and in turn, I've been an "Elmer" to many others. What we need is more "Eimers." I am sure that many of you will be willing to be an "Elmer" by mail to another reader.

All you have to do is to pick a name next month, or the month after, and offer to help. Those of you who would like to have an "Elmer," write and tell me the general area in which you need help getting started. But because our policy is not to print a name and complete address without permission, be sure to give that permission in your letter.

There is, however, one slight catch: I would like one or both of the learning partners to let me know how the process is working.

Voice-activated switch
M. Kuszmaj (NY) wants a circuit for a voice-activated switch to control his recorder by sound from a police scanner. Well, that is no great problem, but I surely would not build one today!

Several suppliers advertising in this publication have been offering such devices for just a few dollars. At such a low cost for something already built and ready to use, I would spend my construction time making the interconnections and building another project. R-E
COMMUNICATIONS CORNER

Computers and communications

THE WAYS IN WHICH WE COMMUNICATE have changed dramatically over the years. For instance, I grew up in an era when radiotelephone was replacing CW (Continuous Wave) for communications. In those days, almost everyone, including children, could recognize an S-O-S when listening to the radio, or while watching a movie in which the ship's operator pounded out his S-O-S on a brass key. There was no fractured French to produce a “mayday.” An S-O-S was an S-O-S—even when spoken into a microphone.

Back then, I sat through endless ham-radio club meetings, while "old timers" argued—and proved—that radiotelephone would never replace CW. Similarly, I've sat through numerous meetings as the new "old timers" argued and proved that SSB (Single SideBand) would never replace AM. But today, I sit through seemingly endless seminars listening to arguments proving that digital will never replace voice communications.

In reality, we are probably the last generation that will ever use voice communications for anything other than low-cost local traffic. (That does not include the police and fire departments—they are local.) For long-distance communications, or when there is no room for error or misinterpretation, digital is the modern way to go.

Then there's the question of convenience. For convenience, time zones, and Ma Bell. With businesses and families spread out across the world, there's a good chance that the person with whom you want to communicate is asleep, out to lunch, or on vacation. And with Ma Bell planning to start charging for long-distance calls that are never completed (even if the line is busy or there's no one at home, etc.), communication costs are going to skyrocket even though you never complete a single exchange of information.

For many years, businesses have handled hard-copy convenience and the moderate cost aspects of communications through teletype or terminals connected to a Telex network; a dial-up communications system that either communicates in real-time with another Telex terminal or uses a store-and-forward technique. (By "store-and-forward" we mean that the message or document is stored in a computer for automatic transmittal at a predetermined time, or when reliable circuits are available.)

With the boom in personal computing, we've seen adaptations of Teletype communications evolve...
into a kind of everyman’s (or everywoman’s) electronic mail system. For example, CompuServe has a computer-to-computer electronic mail system for its subscribers. Unfortunately, there are less than 100,000 CompuServe subscribers—so it’s a safe bet that the person or business with whom you want to communicate is not using CompuServe’s electronic mail-service. Although you could get a special program to convert your computer’s 8-level ASCII code to 5-level Baudot for standard Telex use, you’d have to subscribe to a Telex service to communicate with other Telex-connected stations.

Fortunately, there is always someone who sees the next horizon before he really gets to it. In this instance, it’s RCA or, to be more precise, RCA Global Communications (which just happens to run a Telex network). Of course, there are other systems as well—Western Union, ITT, and MCI are among the most recognizable names. Having more-or-less anticipated the need for digital communications, RCA has instituted a special Telex service for personal computers—all personal computers, not just a few well-known brands or models. Not surprisingly, it’s called the RCA Computer-Originated Telex Service.

Computer-originated Telex

Figure 1 shows most of the services provided by RCA’s personal-computer Telex service. The key to everything is RCA’s computer, which provides the electronic mailbox, store-and-forward, the intersystem Telex interconnect, and the 8-level to 5-level conversion. Basically, RCA automatically converts the normal 8-level ASCII code from a personal computer into 5-level Baudot. It then transmits the message to its own or some other Telex system, stores and forwards, or provides an electronic mailbox for personal-computers connected to their Telex service.

The electronic mailbox works this way: Let’s assume you transmit a message via 8-level ASCII to the RCA system and direct it to another personal computer station by entering the RCA-assigned Telex number. Once a day, that person (or station) can dial into RCA and get the electronic mail. If the receiving station replies to your message, you will find the message waiting when you call into your mailbox. When you access your mail, RCA automatically converts the message to 8-level ASCII code for your personal computer.

Alternately, RCA will convert your 8-level computer signal to 5-level Baudot for transmittal to standard Telex stations using RCA or other Telex networks; and will reverse the process, converting their 5-level to 8-level. (Yes, you can direct communicate, via RCA, with Western Union, ITT, etc.)

Whether you’re originating a message or accessing your mailbox, the call to RCA is toll-free both ways; the only charge is for the length of messages input from you to RCA. If you get tangled up in the protocol—which is as simple as one can imagine—you are not charged for connect- or use-time. In addition, there is at this time no charge of any kind for accessing your mailbox, or for special software. Plus another bonus is that any ASCII communications software that you may already be using will work.

Note: At the time this article was prepared there were no charges for RCA registration, minimum fee, or use other than for the Telex message itself. But, as with all other successful communication enterprises, we can fully expect that some charges will creep in along the way.

With 10-million personal computers already in use in the U.S. alone, it seems that here is the way that personal and small-business communications will be handled in the immediate future. Even now, through RCA, you can send an error-free Telex message that was originated on a personal computer to California for less money than it would cost to accomplish the same thing by voice. Plus, you don’t have to wait three hours for the California office to open—and what would be more convenient than that?

Enter A Whole New World of TV Entertainment

Regency invites you to enter the exciting world of home satellite television. Imagine being able to choose from over 100 channels, including movies, sports, news, and educational programs, all at the touch of a button. Regency offers a complete selection of satellite system components including the new SR5000 remote controlled satellite receiver pictured here. For more information on the whole line of Regency satellite products, see your Regency dealer or write us at the address below.

Regency Electronics Inc. • 7707 Records Street • Indianapolis, IN 46226

CIRCLE 258 ON FREE INFORMATION CARD
computer corner

Printer literacy

THE MOST POPULAR PERIPHERAL DEVICE used with personal computers is a printer. (You may argue that video monitors and disk drives are more popular, but they are so essential that it's hard to consider them to be add-on peripherals.) Because so many computer applications require a hardcopy output, most personal computers in use today are linked to a printer.

Businesses deal with large volumes of paper; and without printers, everything would grind to a halt. But even hobby- and home-computer applications often require a printer. Though a computer may be a great "tool" for storing and retrieving information, or for processing data, the final output almost always has to be in printed form. And even though you can sometimes get by without a printer, it is always more convenient and desirable to have one.

The great demand for personal computers has created an equally large need for printers. As the demand has grown, so has the number of printer manufacturers and types of printers available. The competition in the marketplace and several significant technological developments have given us some extremely high-quality, good-performance, and low-cost printers.

While that may be great for the consumer, it has only served to make the job of selecting a printer more difficult. Given all the choices and complexities of printers, it is just about as difficult to select one as it is to make your first personal-computer purchase. What you need is some kind of "printer literacy" before you go searching for your first printer.

Printer classification

Printers are classified by the way they put copy onto paper. First, there's the impact type, in which a print element(s) of some kind strikes an inked ribbon to imprint a character (like a typewriter). Then there are the thermal units that use a heat-sensitive paper. Here, the characters are formed by increasing the temperature of a particular area on the paper. Next we have electrostatic printers: This type uses a special electro-sensitive paper to form characters by burning them into the paper. And finally, ink-jet printers, which, as the name implies, spray ink onto the paper.

By far, the most popular type is the impact printer. Impact printers are fast, and the print quality can be outstanding. And better still, no special paper is required. About the only disadvantage of impact printers is that they are noisy. While a significant amount of engineering goes into noise reduction, the noise has not been (and never will be) eliminated.

In contrast, thermal and electrostatic printers are almost silent and low in cost. But they require special paper and the print contrast is usually poor. The output of many of the low-cost types is not truly suitable for professional applications; therefore, the impact type is generally preferred. Their speeds are reasonably high and the output print-quality is excellent. Even multiple copies can be made when carbon paper is used. For most applications, an impact printer is the way to go.

Impact printers

There are two basic types of impact printers: dot-matrix and formed-character printers (such as daisywheel types). A dot-matrix printer forms characters on a page by printing them as patterns of tiny multiple dots. The characters are created with a grid (matrix) of dots that are printed on the paper. The greater the number of dots used, the higher the definition and the better the quality of the printed character. The big advantage of dot-matrix printers is their high speed and low cost. When a small dot matrix (5 x 7, 7 x 9, or 9 x 9) is used, character quality is only moderate. Larger dot grids (9 x 18, 9 x 24, 18 x 48) give superb definition and print quality.

A relatively new type of impact printer, called Near Letter Quality (NLQ) printer, is really a dot-matrix machine that is capable of creating a letter-quality output. Figure 1 shows an example an NLQ type printer—the Printek (1515 Towline Road, Benton Harbor, Michigan 49022) models 910 and 920. Dot-
matrix printer technology now permits printing with far more dots in the matrix. In addition to using more dots, the dots are printed twice and are also slightly overlapped.

The result is an exceptionally high-quality character that is often hard to distinguish from the characters printed by a daisywheel unit. Of course, there is a price to pay for the high quality of the print: the speed is reduced when compared to other dot-matrix units—although it's still much faster than a formed-character printer. However, most NLQ printers allow you to print in several modes. For example, a draft mode will print with a less-dense matrix, but at higher speeds than the denser "letter-quality" mode. While such printers are higher in price than more conventional dot-matrix units, you get so much more for your money. And most of those printers also have graphics-output capabilities as well.

The highest quality printers available today are the formed-character printers, or Letter-Quality Printers (LQP). These devices work in much the same manner as a typewriter, in that a fully-formed character is printed on the paper (no dots). Each character is formed on one leaf or petal of a print wheel, thimble, or daisywheel. (We should not neglect to note that the daisywheel is usually interchangeable—it can be replaced with a wheel that prints a different font.) The daisywheel (or thimble) rotates to select the desired character, while an electrically driven solenoid hammer taps the appropriate petal against the ribbon, which then contacts the paper. The result is a high-quality typewriter-like output. But, while the print quality is exceptional, the speed is slow. It takes time to rotate the daisywheel into position and print the character. As a result, formed-character printers are significantly slower than dot-matrix types.

However, formed-character printers are widely used in business where a high-quality output is required. The choice between a dot-matrix or a formed-character printer will largely depend on your needs. If you are going to use the printer for word-processing applications, where you must create letters, memos, reports and other such documents, a letter-quality printer is probably your best choice. But remember, you pay for the quality in lower speeds and higher prices.

If your application does not require maximum print quality, you can probably get by with a dot-matrix machine. For example, if your output is mostly numerical in nature, a dot-matrix printer is more than adequate. Its lower cost and higher speed are ideal for printing large volumes of tabular numerical data.

There are, of course, other factors that may influence your choice of printers. For instance, there's the type of printer interface, either serial or parallel, that your computer uses. Make sure that the printer you select is equipped to communicate through that type of interface. Otherwise, you'll get nowhere. R-E

Buy Name Brand Parts At The Lowest Prices!

![Image of parts and prices]

Consolidated Electronics, Incorporated

Your Complete Electronic Parts Source

You can count on Consolidated Electronics to have thousands of name brand parts you need at the lowest prices. Common or hard to find, we have what you want when you need it. Your order is quickly and accurately expedited by our Staff. Call today for a free catalog.

Call Your Order Toll Free

1-800-543-3568
1-800-762-3412

705 WATERVLIET AVE, DAYTON, OHIO 45420
CIRCLE #1 ON FREE INFORMATION CARD

www.americanradiohistory.com
ANTIQUE RADIOS

Collecting antique radios

COLLECTING OBJECTS FROM A BYGONE era is as old as time itself. Such objects are often referred to as either antiques or junk—depending, of course, on whether you’re buying or selling. Since World War II, all kinds of collectables have come into their own—coins and stamps, for instance, are old favorites. But that’s not what we’re going to talk about—after all, this is an electronics magazine!

The antique-radio hobby is different from other “collecting” hobbies. With radios, unlike other collectables, you are not as likely to get ripped off by unscrupulous characters who deal in “fakes.” While making an authentic-looking reproduction of an antique-radio cabinet is possible, the same doesn’t hold true for the tubes and other chassis components!

American antiques are objects considered by knowledgeable collectors to be over a hundred years old. Clearly, if that time frame were applied to old radios, there would be slim pickings for collectors. Even the set used by Marconi in 1886 won’t be considered a true antique for a few years!

Many antiquaries—those who deal in or study antiques—divide the items into categories: antiques, semi-antiques, and collectables. (Although there are no hundred year-old radios in my limited collection, there are a few that can be called semi-antiques!)

A look at early radios

It wasn’t until the mid-1920’s that complete radios, like the Crosley Model 51 shown in Fig. 1, became available to the general public. Corporate contention seemed to hamper the growth of the industry. Designs, innovations, and patents were not generously shared by the early radio manufacturers—huge lawsuits, which tied up production for months, were not uncommon in the early days of radio.

Improvements and new inventions came fast in those early pioneer days. But, then, the average person had a better working knowledge of radios than now. Those people who got in at the beginning were able to follow advances in the industry. Any radio receiver was pretty much a do-it-yourself project: anyone interested in radio could read a schematic in those developing days.

The early enthusiast knew if he wanted to hear what was “on the air,” he had to build his own set. Therefore, what he wound up with was a custom-built set. A wealth of information and parts was available in early radio publications. And as radio progressed, complete information and schematics were offered.

In the early 1900’s there was little commercial interest in radio—despite the development of the two- and three-element tubes (diodes and triodes).

After World War I, there were a number of production portables on the market that came complete with cabinet and tubes (two WD11 tubes). While those sets appeared to be small portables, their portability was certainly limited. The aerial, ground, as well as batteries and earphones, were connected to terminals on the front panel. The Crosley Model 51, (shown in Fig. 1) was one such set. That boxy-looking radio (with a cabinet measuring about ten inches across) contained one 1.5-volt DC tubes and was battery-operated. Even at that time, only about a quarter of the homes in America were “wired.” So the need for battery-operated sets prevailed through most of the late 1920’s and well into the 1930’s!

The stock market crash and great depression of that era had little effect on the evolution of radio. By 1929, most new homes and many old ones were being wired. And with the licensing of more and more broadcast stations, the sale of commercially-built radios began to grow. The big corporations settled many of their differences (Some went all the way to the Supreme Court.)

By 1920, Grigsby-Grunow, for example, sold 1,000,000 Majestics (see Fig. 2). Most old radios, as well as other manufactured products, had character right through the 1930’s. (Civilian radio-production was reduced during the early 1940’s—the years of World War II).

There were small AC-powered models with cabinets less than a foot wide that could fit on top of a bread box (fine collectors’ items or...
conversations]. Those small antique radios, called "midget receivers" are much in demand—the small cabinets are relatively easy to restore.

During the 1930's the midget radio was the industry's answer to the depression. While fidelity may have been sacrificed in those models (with their smaller speakers), by today's standards, their sound quality is above average. The midget radio is the forerunner of the modern table models.

The radio industry in the early 1930's hoped the midget radio would replace the millions of "antique" radios of that era. (But with its cost of around $100.00, listeners were holding on to their older models.) Those custom mail-order or kit radios that were considered antiques in the early thirties will be hard to come by today. The set shown in Fig. 3 is an early antique radio. However, unlike the set in Fig. 1, its terminals for connecting the batteries, earphones, etc., are inside the box.

The radio industry hoped to induce those not enjoying modern radio to discard their obsolete equipment, and join the listeners of modern radio. For radio dealers, the big profit was in the console. At least half of the market still wanted, or could afford the big-console radios. The massive cabinet with huge dynamic speakers and two shortwave bands was a prestigious addition to the home in the thirties. (How many tubes you had in your radio became as important as how many cylinders you had in your car!)

Buying antique radios

Old radios that can be called antiques can be bought for as little as $5.00! You might even find a free
continued on page 112

This unique line of 12 lightweight and comfortable Precision cutters, pliers and crimpers are specially adapted to meet the demanding requirements of the electronic industries. All the tools feature custom contoured ribbed handles which provide a non-slip gripping surface, and specially designed lifetime return springs which eliminate operator fatigue.

Precision Pliers, Cutters and Crimpers

- Flush cutters
- Semi-flush cutters
- Reverse cutters
- Cutter/crimper
- Cutter/bender
- Pliers

CIRCLE 268 ON FREE INFORMATION CARD

3455 Conner Street, Bronx, New York, 10475, U.S.A.
Telex 126091 OK NYK 232395 OK NY UR
Phone (212) 994-6600

FEBRUARY 1965
NEW IDEAS

Musical telephone ringer

THE DEVELOPMENT OF IC'S HAS brought with it many novelty circuits and gadgets. And often those circuits serve no purpose other than to entertain. Although this telephone-ringer circuit is a novelty, it doesn't fall into that category. The melody ringer can be used in place of, or as an extension to, your present ringer system.

When the phone rings, the circuit will play one of twenty-eight tunes (as selected by the user). The tunes are certainly a step above the old clanging bell—which at times can be quite startling. Some of the tunes, which are listed in Table 1, are ideal for special occasions, adding another dimension to the circuit's many uses.

FIG. 1

NEW IDEAS

This column is devoted to new ideas, circuits, device applications, construction techniques, helpful hints, etc. All published entries, upon publication, will earn $25. In addition, for U.S. residents only, Panavise will donate their model 333—The Rapid Assembly Circuit Board Holder, having a retail price of $59.95. It features an eight-position rotating adjustment, indexing at 45-degree increments, and six positive lock positions in the vertical plane, giving you a full ten-inch height adjustment for comfortable working.

I agree to the above terms, and grant Radio-Electronics Magazine the right to publish my idea and to subsequently republish my idea in collections or compilations of reprints of similar articles. I declare that the attached idea is my own original material and that its publication does not violate any other copyright. I also declare that this material has not been previously published.

Title of Idea

Signature

Print Name

Date

City

State

Zip

Mail your idea along with this coupon to: New Ideas Radio-Electronics, 208 Park Ave. South, New York, NY 10003

www.americanradiohistory.com
SEIKO'S NEW WRIST-WATCH COMPUTER SYSTEM
An in-depth look at the world's first wrist-watch that forms part of a complete computer system.

HIGH-RESOLUTION MONITORS
How to unscramble all those specifications.

RECEIVING COMPUTER PROGRAMS VIA BROADCAST RADIO
Standards are being proposed that will enable you to receive computer programs from your radio receiver.
CONTENTS

Vol. 2 No. 2 February 1985

7 Seiko's New Wrist Computer
When Dick Tracy takes a look at this newest innovation from Seiko—a "wrist computer"—he's sure to turn green with envy. Mark Stern

10 Basicode
Get free software via shortwave radio! Herb Friedman

13 High-Resolution Color Monitors
There's more to computer displays than meets the eye. Herb Friedman

4 Letters

5 Computer Products

ON THE COVER

Just about everyone knows about Dick Tracy's wrist radio. Well, a new innovation from the people of Seiko has left that once speculative device in the dust. The innovation is a tiny "wrist computer" complete with an LCD wrist-watch-like readout, a pocket-sized keyboard, and 2K of RAM. See page 7.
NO COMMODORE PRINTER PROBLEMS

Our company, Martec Associates, Inc., sells a dot-matrix printer together with the Cardco, Inc. Card + Interface for the Commodore 64 and VIC 20 computers. Naturally, we were very interested by Herb Friedman's article in the September issue of Computer Digest, "Printer Delay for the Commodore 64."

A phone call to Cardco yielded the following information. In 1983, Cardco changed their ROM due to a problem like the one described in the article. However, since then, they have not had any problems. Is it possible that Herb Friedman used an old Cardco CARD?—Arthur Kingsnorth, Vice President, Martec Associates, Elk Grove Village, Illinois

Although both the Commodore computer and Cardco interface were bought shortly before the article was prepared, it is possible that the Cardco interface was sitting around in stock for some time and therefore contained the old ROM. The Customer Service Department at Cardco assures us that all problems have been connected with the printer adapter. If anyone runs into a situation like the one Herb Friedman did, Cardco will gladly replace the defective interface if it is sent to the Customer Service Department at Cardco (300 S. Topeka, Wichita, KS 67202) along with proof of purchase and a description of the problem.

TI COMPUTERS

You say that you're not "just another computer magazine." Well, so far all you do is talk about the same things that the other computer magazines do. I have a TI 99/4A, and I haven't seen anything written about it in Computer Digest. For that matter, I haven't seen much written about it in any of the other magazines. That is one of the reasons that I'm writing this letter. I would like to know how to make a phone modem, and a few other things for my computer. I'm sure that there are many more people like me that have a TI 99/4 computer. I enjoy Radio-Electronics, but if Computer Digest is going to be like the rest of the computer magazines, then we can do without it. —Brian E. Sparling, Northfield, IL

If you're a TI owner and think you have an article for publication, consider this an open invitation for you to let us know about it.

PUBLISH YOUR PROGRAMS

The Blacksburg Group writes and produces books about using small computers. Since 1977, we have developed over 60 titles on electronics and computer subjects, and our books are published by major U.S. publishers.

One of our new projects is the collection and publication of useful engineering and scientific routines and subroutines. We know that many people have written interesting programs to solve a specific problem or because they couldn't find a special routine they needed. Our book gives these people a way to share their programs with other scientists and engineers so that others can benefit.

Useful programs include those that do graphing, numerical analysis, statistics, equation solving, 3-D plotting, controlling real-time clocks, controlling analog converters, and so on. We are interested in almost all programs that could be used by scientists and engineers to answer specific or general needs. We know from
personal experience that most people don't want to become professional programmers just to be able to use a computer, so we strongly feel that a collection of useful program segments will be invaluable.

If readers are interested, they should write or call us first, and we will send them guidelines and other information about submitting a program or subroutine. Our number is 703-951-9030 (which is in the Eastern time zone).

Right now, we're particularly interested in BASIC-language programs for popular desktop computers. This is NOT a vanity publication, and authors retain the copyrights to their material.—Jonathan A. Titus, Ph.D., President, The Blacksburg Group, Inc. PO Box 942, Blacksburg, VA 24060

Thanks for the information—we're happy to pass it along to our readers.

Competition

I'd like to make what I think is an important point that we'd all better understand. I know nothing at all about spectator sports, and could not care less. I think that it was for that reason alone that my young son developed his own interest, and learned to quote the batting averages of every football player in the major leagues. It gave him the opportunity to know something that I didn't. He once challenged me to ask him any question about baseball, so I asked him how far it was between first base and home plate, and he became angry. "What kind of question is that?"

Being an old electronics nut myself, he shed away from that field until he realized that my knowledge of computers was miniscule. He jumped on that too. He became an overnight computer "expert" and kept asking questions of a technical nature that he already knew the answers to. I quickly caught on to the game, and began to seriously read—and wonder of wonders—to understand, thanks to...

ComputerDigest.

Things are beginning to settle down now around the house. We're starting to learn more together, and we're enjoying it more all of the time. Just thought you'd like to know. Keep up the good work—J.P., San Francisco, CA.

COMPUTER PRODUCTS

For more details use the free information card inside the back cover

PRODUCTIVITY TOOL, Speed Key is designed for business software programs and languages. It makes them easier to learn and to be customized to each user's special needs. Speed Key supports the following business-application programs: Lotus 1-2-3, WordStar, MultiPlan, SuperCalc, VisiCalc, dBASE II, and IBM's DOS and BASIC programming language.

With Speed Key and Koala's touch tablet, a user can bypass the standard computer keyboard to run the leading business-software programs. Speed Key converts the Koala touch tablet into a custom keyboard with up to 37 programmable function keys and a cursor controller with the features of a "mouse" pointing device.

Each Speed Key overlay has 36 squares, with each square representing a softkey designed to give specific keyboard. Thus, the user does not have to remember lengthy commands and multiple keystrokes required by conventional keyboards.

Speed Key has a suggested retail price of $99.00.—Koala Technologies Corp., 3100 Patrick Henry Drive, Santa Clara, CA 95052 8100.

GRAPHICS SUBSYSTEM, the model DT2750, is a full-color raster subsystem that allows any Q-Bus processor to generate and display mixed graphics and alphanumeric on a monochrome or standard RGB color monitor. The model DT2750 contains a 192K graphics-display memory that organized as two independent display buffers with 512 x 512 x 3 pixels each. The frame size may be jumpersed to 512 x 156 x 3 pixels. The 3-bit depth permits display of eight colors at one
A defense against cancer can be cooked up in your kitchen.

There is evidence that diet and cancer are related. Follow these modifications in your daily diet to reduce chances of getting cancer:

1. Eat more high-fiber foods such as fruits and vegetables and whole-grain cereals.
2. Include dark green and deep yellow fruits and vegetables rich in vitamins A and C.
3. Include cabbage, broccoli, brussels sprouts, kohlrabi and cauliflower.
5. Cut down on total fat intake from animal sources and fats and oils.
6. Avoid obesity.
7. Be moderate in consumption of alcoholic beverages.

No one faces cancer alone.

AMERICAN CANCER SOCIETY

CIRCLE 23 ON FREE INFORMATION CARD

on the map. The state appears to "march" across the country as the player moves and charts its course.

In the "traits" portion of the game, a map and a question appear on the screen. State capitals, neighboring states, historical facts, and current events are all fair game. To answer, the user draws a road to the correct state. For example: "What state claims fame as the boyhood home of Abraham Lincoln?" The player must point to the state of Illinois. States & Traits is priced at $44.95.

Designware, 185 Berry Street, San Francisco, CA 94107.

DATA-ACQUISITION BOARD, the DASH-16, is a high-speed, plug-in data-acquisition board for the IBM PC and other bus-compatible computers.

DASH-16 provides 12-bit A/D conversion and speeds up to 40,000 samples per second, with transfer to memory at that speed using DMA (level 2 or 3). Sixteen single-ended or eight differential analog input channels are available (switch selectable), as is an instrumentation amplifier with switch-selectable gains of 0.5, 1, 2, 5, 10, and a special "user gain" for specific application gain requirements. Data conversions may be initiated by the program, an internal timer, or by an external trigger. Converted data may be transferred by program interrupt or DMA. The interrupt and DMA modes support background operation. Input voltage range is ±10 to ±0.5 volts.

The DASH-16 is priced at $895.00. - Metabyte Corp.
254 Tosco Drive, Stoughton, MA 02072.

CIRCLE 24 ON FREE INFORMATION CARD
SEIKO'S NEW WRIST COMPUTER

It had to happen, and Seiko did it... Here's a look at the new Wrist Computer.

Marc Stern

If you've been following Dick Tracy through the years, you've probably seen him talking to Sam, his sidekick, on his wrist radio. Well, today that can be updated. Instead of talking to Sam on his wrist radio, Dick Tracy will probably use his wrist computer to exchange information with him.

Although that may sound like science fiction, it really isn't because of a recent development from Seiko, the people who normally bring you high-quality watches and mini-televisions, among other things.

Seiko does it

The Seiko Datagraph system, which consists of a wrist module, pocket keyboard, and controller is the result of several years of development by the Japanese electronics giant Hattori Corp. It relies on large scale integration (LSI) techniques and the first use of inductive wireless transmission technology in the computer industry.

When you first look at the wrist module, you'll notice that it isn't especially unique-looking. In fact, it looks just like a watch (which is what you'd expect from Seiko). It's what the company has done with technology and how they have managed to squeeze some computing power into a wrist-sized package that sets it apart from all the other wrist watches of the world.

The wrist module

The basic component of the information system is the wrist module. It contains five CMOS LSI IC's (which include a four-bit central processing unit, a 2K RAM, and three display drivers for the liquid-crystal display). A block diagram of the wrist module is shown in Fig. 1.

The LCD readout consists of a 10-column by four-row matrix that has a resolution of 1,400-pixels. The LCD not only serves as the display for the computer, but—as you would expect of a watch manufacturer—it also displays all the timekeeping functions, including day, date, chronograph, and alarm. It is powered by a lithium battery that Seiko claims will supply power to the wrist module for 15 years.

The keyboard module

Data is entered into the wrist module by a pocket-sized keyboard unit. The keyboard measures only $5\frac{1}{2} \times 2\frac{1}{4} \times 7$ inches, and contains 61 keys through which data is input to the wrist module. The wrist module itself has only four buttons that are used to access pre-programmed functions. So, as you can see, the keyboard is an important device. You can use the keyboard unit to input notes, calculations, etc. into the wrist module. You can even store telephone numbers, appointments, and just about anything else in the device.

Data is transferred from the keyboard unit to the
the UC-2200 controller. Communicating inductively, the controller uses the wrist module as its display device. As shown in Fig. 3, the UC-2200 controller contains an 8-bit CMOS Z80-equivalent microprocessor. It boasts not only a complete, typewriter-style QWERTY keyboard with function keys, but also a dot-matrix mini-printer. The controller also features 4K of RAM memory and a ROM applications pack that includes scheduling, a 26K BASIC interpreter, as well as other programs. The ROM can contain as much as 32K. The entire unit measures only 5 x 7-inches and it can be powered by alkaline batteries.

The importance of the Seiko Datagraph system lies equally in its size and capability, as well as its method of transferring data from one device to another. It is the first system in the industry to employ inductive transmission and reception techniques.

It brings major computer capability to a unit whose key part—the wrist module—is intended to be worn.

Master control

Rounding out the Datagraph system is the module that turns this system into a true 8-bit microcomputer.
on your wrist. And, the system itself is small enough that it can be easily used by the "man on the go." Ten years ago, when the first microcomputers were making their appearance, it was impossible to have a computer at your fingertips wherever you went. Of course, that situation changed about four years ago with the introduction of such transportable computers as the Osborne I and the Kaypro. But, let's face it; those computers were far from conveniently sized for hauling. Briefcase computers did put true computing power at your fingertips wherever you went, but they were still fairly large. However, the Seiko Datagraph system now puts computing power on your wrist—a very convenient package.

Inductive coupling

Rather than relying on traditional radio transmission techniques, Seiko chose to use inductive coupling to transfer data between the various modules. Figure 4 shows the basic approach.

Each module contains an antenna coil that resonates at 32 kHz. That frequency was chosen because the other clock frequencies contained within each of the modules could be easily filtered out. The bit stream modulates a 32-kHz signal that is applied to the transmitting antenna. If the bit is at a logic 1 level, then the 32-kHz signal is applied to the antenna, if the bit is at a logic 0 level, then no signal is applied to the transmitting antenna. The magnetic field produced by the transmitting antenna cuts across the windings in the receiving antenna. The receiving antenna produces a current in response to the magnetic field. The output of the receiving antenna is an exact duplicate of the original signal applied to the transmitting antenna. The 32-kHz signal is filtered out of the received signal and the original bit stream is recovered.

An eight-bit digital word is transferred in very much the same format that is used when two computers communicate via a modem. The actual transfer of the eight-bit digital word consists of a start bit, followed by eight data bits, a parity bit, and finally, a stop bit.

Seiko chose inductive technology for several reasons. First, it could keep everything inside a hermetically sealed unit so it is humidity resistant. Second, it helps to keep the unit portable because of its small size. Third, the company chose this method because of the ease of interfacing the units. There are no cables to worry about and it allows duplex communication through one loop. Last, but not least, the technique is easy to implement and since the circuitry needed to accomplish it is simple, few parts are needed. In fact, the data transmission and receiving circuits can be connected to one antenna coil.

Packaging

None of this would have been possible without developments in LSI packaging. For instance, all parts of the transmitting-receiving circuits, other than the coils and tuning capacitors, are located on a single integrated circuit.

Look at Fig. 5 and you'll see how the wrist module is put together. The main substrate—epoxy glass resin—contains three LSI packages. In turn, a ceramic substrate, which contains the wrist module's 4-bit CPU and 9K RAM, is soldered to the rear. In other words, two substrates contain the five LSI chips needed for the entire module. This was made possible by a breakthrough that allowed Seiko to combine two display and control functions onto an individual substrate.

Even the pickup loops have been carefully merged into this plan. They are wound around the battery frame, eliminating the need for extra space.

With all this, the day of the wrist information system has dawned and just like Dick Tracy, we can now have our own "wrist radios," but they're really computers, of course.

Fig. 4—**Antenna Coils** are used for inductively transferring data between the various modules.

Fig. 5—**Construction of the Wrist Module**.
BASICODE

You can get free software via shortwave radio.

HERB FRIEDMAN

Some things are carved in stone. For example, we all know that as a general rule, cassette-based BASIC computer programs aren't interchangeable. A program recorded on a Radio Shack computer won't run on an Apple, while an Apple program won't run on a Commodore 64, etc. Until the introduction of a software system called BASICODE, the non-compatibility of tape-based computer software was an accepted fact for two reasons: first, there is the cassette tape format. With few exceptions, no two computers use the same kind of electrical signals to store the programs or data. Second, there are variations in the BASIC commands themselves; i.e., the CLEAR SCREEN command for one computer isn't necessarily the same for another computer.

When one knows the facts, the problems associated with exchanging software between different computer models often appear insurmountable. But as with many things, facts tend to get in the way of real life.

For many years, computer hobbyists and users in Europe have routinely exchanged cassette-based BASIC programs on almost every imaginable subject. These included software for games, arithmetic skills, reading skills (particularly useful for people with dyslexia), and some rather high-level stuff such as titrations (chemistry), and even a program that creates a 555 timer circuit on the screen and then calculates the required values for user-selected frequencies. And there's even software for computerists interested in music, such as a graphics program that shows the correct fingering for guitar chords. (The screen photographs that appear later in this article illustrate two of the typical exchange programs.)

“Aha!” you say, “This is too good to be true. There must be a catch!” Yes, there is a catch. Here in the U.S. you can't exchange software unless you have a short-wave receiver and a cassette recorder, because the programs are broadcast as part of an English language radio program called “Media Network,” which is transmitted worldwide via short-wave radio by Radio Netherlands, the independent international short-wave station of the Netherlands.

And after you have recorded the broadcast, you must use a special translator program to convert the broadcast into the hardware and software format required by your computer.

Difficult? No. It only appears to be difficult. For most commonly-used computers, it's as simple as pressing the PLAY button on the cassette machine. The translator program—which is available for many popular computers—works on two distinct levels, hardware and software. It processes the received electrical signals into the format required by your computer, and then interprets the handful of non-standard BASIC statements into the format required by your computer's particular version of BASIC.

Hobbyscoop

The translator software is part of a system called NOS-BASICODE, which was developed by Dutch and other European hobbyists for the “Hobbyscoop” (Hobbyscope) radio program NOS—the Dutch

FIG. 1—REPRESENTING ONE FULL CYCLE of 1200 Hz, it's a “0” (low), while a “1” (high) is represented by two full cycles of 2400 Hz. A byte of data uses standard teletypewriter format of 1 start bit (logic 0), 8 data bits (logic 1), 2 stop bits (logic 1).

FIG. 2—THE LETTER 'E' shows the byte sequence code. You'll find a start bit, seven character bits, the eighth bit and two start bits, a total of eleven bits.
Broadcasting Corporation. Hobbyscoop features news of new and unusual developments in electronics which would be of interest to hobbyists. When personal computers came along in 1977, it was natural for Hobbyscoop to cover the subject and to broadcast software for the few home/hobby computers available at that time.

Originally, Hobbyscoop broadcast individual computer programs. A single program for three different computers required three separate broadcasts. As more computer models were introduced, the amount of time needed to broadcast a single program for the various computers became burdensome, and so a "universal language" called BASICODE, which incorporated a translator, was developed. The purpose of the BASICODE system was to use a single broadcast to transmit a program to many different computers, all having different electrical and software requirements. Eventually, BASICODE would translate for 20 different computers.

The broadest tones

Transmitted at 1200 baud, the tone frequencies of 1200 Hz and 2400 Hz are used to broadcast the software to the receiver/cassette recorder. As shown in Figure 1, a "0" (low) is represented by one full cycle of 1200 Hz, while a "1" (high) is represented by two full cycles of 2400 Hz. A byte of data uses the standard teletypewriter format of 1 start bit, 8 data bits, and 2 stop bits. All characters are represented in ASCII (American Standard Code for Information Interchange). Since only seven bits are used to represent an ASCII character, the eighth bit is always automatically set high (1). The complete character consists of a start bit, seven character bits, the eighth bit, and two stop bits. A total of eleven bits is used to represent data as used for a standard 110 baud teletypewriter. Figure 2 shows how the tone sequence used for the actual broadcast transmission, which is eventually recorded by the user. The complete tone sequence consists of: Leader, 5 seconds of 2400 Hz; Start text, ASCII "Start Text" (Hex 82); Program, BASIC in ASCII; Checksum, and Trailer; 5 seconds of 2400 Hz. The checksum at the end is derived from the bit indication of exclusive-OR of the previous bytes, and is expressed as an 8-bit term. The purpose of the Checksum is to allow the user to test whether the program has been read from the tape without error. Even if the Checksum is not correct—indicating an error—BASICODE will load the program and permit a listing of what has been read. Since the program is in BASIC, the user can correct the errors and then SAVE the program in the usual way.

The translator converts

Since no computer reads the transmitted cassette format directly, the user must first load the translator program into his or her computer. (The translator is written in the precise software and hardware format required by the computer.) Then the BASICODE cassette program is loaded. The translator, which is already in the computer, causes the computer to read the BASICODE cassette signals, and then converts the BASICODE into the format required by the computer.

Obviously, not all BASICODE cassette programs can be loaded in the usual way because some of the cassette interfaces used in home computers are going to reject anything that isn't precisely formatted, and the translator can't do anything until the signals get into the computer.

Generally, if the computer refuses to load non-conforming cassette signals, a hardware accessory will get the received cassette signal into the computer. For example, while the BASICODE cassette tape can be fed directly into an Apple or Commodore computer, a TRS-80 requires a simple interface such as the one shown in Figure 4. On the other hand, an OSI Model 1P computer (an early hobbyist model) requires only the addition of a three-way switch and a wire jumper, while for CP/M computers, the BASICODE signal is fed into what is normally the computer's parallel printer output.

A few computers require a somewhat extensive accessory interface. Circuits for those computers that require accessory interfaces are given in the BASICODE Handbook. We'll tell you how to get one later in this article.

Once the BASICODE program has been loaded into the computer and translated it can be SAVED as a standard cassette file—albeit as a disk file. As far as the computer is concerned, the translated program is a "standard" program for that particular computer and can be used on any similar computer without need for the translator.

FIG. 3—THE TONE SEQUENCE used for the actual broadcast transmission, which is eventually recorded by the user.

FIG. 4—A SAMPLE INTERFACE for the TRS Model VIII as shown in the BASICODE Handbook.
Universal basic

BASICODE is not an "all bells and whistles" version of BASIC; instead, BASICODE is more like the high-performance time-share BASIC from the era when schools used teletypewriter terminals connected via the telephone system to mainframe computers. The supported statements in BASICODE are: ABS, AND, ASC, ATN, CHR$, COS, DATA, DIM, END, EXP, FOR, GOSUB (GO SUB), GOTO, IF, INPUT, INT, LEFT$, LEN, LET, LOG, MID$, NEXT, NOT, ON, OR, PRINT, READ, REM, RESTORE, RETURN, RIGHTS, RUN, SGN, SIN, SQR, STEP, STOP, TAB, TAB, THEN, TO, and VAL.

The translator automatically accommodates the various idiosyncracies of BASIC through special BASICODE software routines located in the reserved area of program lines 0-999. (Since lines 0-999 are reserved for the translator, user written code starts at line 1010.)

The program translation works this way: Assume you want to write a program that will be used by others having different computers and a BASICODE translator. You want your program to clear the screen first. Since the CLEAR SCREEN statement varies from computer to computer, a BASICODE program would not use the "normal" CLEAR SCREEN command for your computer; instead, the program would use the statement: GOSUB 100.

Each translator program has the correct CLEAR SCREEN routine for a specific computer at line 100. The GOSUB command sends the program to line 100 for the correct CLEAR SCREEN statement, and then returns to the program. Another example is a random number variable. That's a GOSUB 960, which the translator uses to generate the correct "random" statement for each computer. Actually, there's not more than a handful of conversions. Having lines 0-999 available insures that BASICODE has room to grow.

It's all in a kit

A kit consisting of the BASICODE handbook (with English translation) and an English-language cassette of translators for 17 popular or commonly-used computers (the ZX-81 is not one of them) is available (sent airmail) for $38. *(1 = Dutch guilders), payment in an international money order (IMO). The kit can be ordered from: BASICODE, Administratie Algemeen Secretariaat, NOS, PO Box 10, 1200 JB Hilversum, The Netherlands. Since the translators are updated periodically, information regarding the availability of specific translators should be addressed to: Jonathan Marks, Media Network, English Section, Radio Netherlands, PO Box 229, 1300 JG Hilversum, The Netherlands.

You're on the air

All programs broadcast by hobbiescoop and Media Network are submitted by listeners and are in the public domain. Many programs are in Dutch and/or English, or only English. It depends on who submitted the program. While you might not be able to read the Dutch labels of non-English programs, you can certainly understand or figure out what's going on. You can also rewrite the listed programs because the BASIC function statements—not necessarily the PRINT statements—are usually in English.

If you have some favorite programs you would like to share with others around the world you can submit them to Media Network, or hobbiescoop for consideration. The BASICODE programs are presently received throughout a good part of Europe from NOS. They are also part of the BBC's computer-training broadcasts. Local transmitters broadcast the programs in Australia and New Zealand; and finally, they can be received in this country via English language short-wave broadcasts at 0830-0325 UTC on 9590 and 6165 kHz, and at 0530-0625 UTC on 9715 and 6165 kHz.

The Media Network program will shortly be available to radio stations in the U.S. for local broadcast, but until then, you'll have to get your "free" software via shortwave.
HIGH
RESOLUTION
COLOR MONITORS

There's more to computer-display resolution than meets the eye!

HERB FRIEDMAN

Almost from the beginning of personal computing, we have referred to color displays in terms of resolution; there is low resolution, medium resolution, and high resolution. The individual picture elements that make up the display have been described in terms of dots, pixels, PELS, and total resolution of dots x lines.

What is resolution?

In fact, the picture resolution—meaning the number of individual picture elements that can be displayed—is relative to the existing technology: Yesterday's "high resolution" is today's "medium resolution," while today's "high resolution" is tomorrow's "low resolution."

Unlike a monochrome monitor, whose apparent visual sharpness depends almost entirely on the unit's bandwidth, color-monitor resolution is presently a combination of several variables, the most important being the size of the triad (a triad is made up of one red, one green, and one blue phosphor), the number of triads in a picture element, and the size of the displayed characters in terms of the number of active scanned lines. "Active lines" are those lines used for the computer display; it does not include the lines left unused to compensate for overscanning.

For multi-color reproduction, approximately 390 individual horizontal picture-elements per line is about the best we can do under normal circumstances. (That used to be considered high-res, but today, it's medium resolution.) The primary limitation on the number of horizontal elements is the size of a single dot of a character's matrix on standard color CRT's used for personal computer monitors, which translates into the maximum number of horizontal characters.

For example, characters for the so-called 80 x 25 screen are usually formed from an 8 x 8 dot matrix. In non-technical terms, it means each character is 7 dots high and 6 or 7 dots wide; the unused dots providing the spacing between characters and rows. Therefore, 80 columns of characters require 80 x 8 or 640 dots per horizontal line. A 40-character display requires 40 x 8 or 320 dot resolution.

It is the same thing going vertically. 25 lines requires 25 x 8 or 200 horizontal lines. (Aha! Now you see how screen resolution values are derived.) Therefore, a high-res screen—80 characters x 25 lines—requires 640 x 200 resolution. A medium-res screen—40 characters x 25 lines—requires 320 x 200 resolution. Anything less, such as 32 characters x 16 lines is low resolution.

Standards

How did we come to more or less standardize on 32 x 16, 40 x 25, etc.? Mostly, to accommodate existing monitor equipment such as overscanned TV sets; sometimes because it's the most that can be safely put on the screen. To increase the size of the characters by going to a 9 x 9 or 10 x 10 matrix would reduce the number of columns or rows, or would require special monitors if the display wasn't to be "stretched" right off the top, bottom, and sides of the screen.

TV is a compromise

Until very recently, personal computer color displays were intended to be viewed on a TV receiver (through an RF modulator), or on a composite monitor originally intended for TV viewing; hence, the computer's color resolution was designed to function within the limitations of TV equipment, for which a resolution of 240 elements (dots) per line was—and still is—excellent. In relative terms, however, it is "low resolution."

Also, a computer's vertical resolution is designed for approximately 100-200 lines, depending on whether it
is intended for viewing on a CRT. (For our discussion, let's assume an even greater visual contrast because of the larger-than-normal lines that make up the display.)

Half a frame

A standard TV picture uses 625 lines. The receiver first scans a field of lines. During the vertical retrace, the video signal is represented by a series of pulses transmitted to the start of the next field—until the start of the next field is reached. This process is repeated for the other field. The field lines for the two fields are slightly different. The field line spaces are slightly different. The field lines are less than 100%. This is because some horizontal scanning is required to keep the display in focus. Unfortunately, both monitor manufacturers have designed their systems to work this way. The result is a slight horizontal stretching of the display. If you turn up the monitor's brightness or contrast controls, you will actually see a complete rectangle on the CRT, right down to the corners. (Try this on a modern Radio Shack or IBM monitor—you'll see why their displays are uniformly sharp from corner to corner.)

By keeping the color guns away from the edge of the CRT, the focusing and overall convergence error is reduced. And while the display might be smaller in size than an overscan on the same CRT, the overall uniformity is higher.

By the way, the 500-line non-interlaced scanning is how one form of "high definition" is created. Imagine for a moment a screen display of a word processing document. The normal character intensity is produced by scanning the characters for two fields per frame. For "highlighting"—actually reduced intensity—the highlighted characters are only scanned for one field. Simple but effective.

Good but not great

While the lower-cost monitors—those usually called "home and family"—use TV sets or composite-video monitors for the computer's display, the business computers, almost without exception, use the so-called RGB monitor, even if they also have a composite video output connection. The problem with RGB monitors is that some of the characters are not equal in size to the characters on the computer's display. These characters are controlled individually by the computer.

The RGB monitor

As shown in Figure 1—a block diagram of the RGB high-performance, high-resolution Princeton SR-12 monitor—the computer outputs digital data for each individual color gun along with a digital signal representing intensity. A matrix interpolates the digital data into individual R, G, and B drive signals, which produce 8 colors: black, green, red, blue, brown, cyan, magenta, and white. (There's no error in the preceeding.)

While RGB should produce yellow, not brown, in a high-performance monitor such as an IBM, a Quadram HX-12, or a Princeton SR-12, the base color is brown, and the intensity-modified brown is yellow.)

When the intensity bit is combined with the computer's RGB data in the monitor's color mixing circuit, the result is more colors: dark grey (intensified black), light blue, light green, light red, light cyan, light yellow, and light magenta (where the latter color is often provided by some monitors), light magenta, yellow (a true yellow), and pure white (a super white). Altogether, 16 colors.

Tiny dots

But whether the monitor is mono or color, the average monitor is still 200 lines, so the apparent sharpness is determined by the size of each dot, and

the smaller the dot, the sharper the apparent.

High-resolution monitors appear to be so much better than conventional high-performance monitors because they use a smaller dot size. For example, the Quadram HX-12 and Princeton SR-12 have a 0.31mm dot compared to IBM's 0.43mm dot size. Thus, the Quadram monitor appears sharper than those of the IBM monitor. Unfortunately, both Quadram and Princeton stretch the screen display to make the character appear sharper when fully stretched, which could be interpreted into the corners of the CRT. The end result is that you would want a high-resolution display because of the reduced focus and convergence, and the diagonal stretch caused by the size of the display.
"full frame" the display; that is, the monitor's scanning is adjusted so the actual corners of the display barely touches the sides of the CRT, creating a complete picture rectangle on the CRT with dark (no picture) areas at the top, bottom and sides. If you turn up the monitor's brightness or contrast controls, you will actually see a complete rectangle on the CRT, right down to the corners (Try this on a modern Radio Shack or IBM monitor—you'll see why their displays are uniformly sharp from corner to corner.)

By keeping the color guns away from the circumference of the CRT, the focusing and overall convergence error is reduced. And while the display might be smaller in size than an overscan on the same CRT, the overall definition is higher.

By the way, the 200-line non-interlaced scanning is how one form of "highlighting" is created. Imagine for a moment a screen display of a word processing document. The normal character intensity is produced by scanning the characters for two fields per frame. For "highlighting"—actually reduced intensity—the highlighted characters are only scanned for one field. Simple but effective.

Good but not great

While the lower-cost computers—those usually called "home and family"—use TV sets or composite-video monitors for the computer's display, the business computers, almost without exception, provide for the so-called RGB monitor, even if they also have a composite video output connection. The problem with using composite monitors with computers is that they use analog video signals. While they can do a good job of creating computer displays, they are not the equal of an RGB monitor whose three color guns are controlled individually by the computer.

The RGB monitor

As shown in Figure 1—a block diagram of the RGB high-performance, high-resolution Princeton SR-12 monitor—the computer outputs digital data for each individual color gun along with a digital signal representing intensity. A matrix interposes the digital data into individual R, G, and B drive signals, which produce B colors: black, green, red, blue, brown, cyan, magenta and white. (There's no error in the preceding. While RGB should produce yellow, not brown, in a high-performance monitor such as an IBM, a Quadram HX-12, or a Princeton SR-12, the base color is brown, and the intensity-modified brown is yellow.)

When the intensity bit is combined with the computer's RGB data in the monitor's color matrixing circuit, the resultant colors are: dark grey (intensified black), light blue, light green, light cyan, light red (which is the only red provided by some monitors), light magenta, yellow (a true yellow), and pure white (a super white). Altogether, 16 colors.

Tiny dots

But whether the monitor is mono or color, the average monitor is still 200 lines, so the apparent sharpness is determined by the size of each dot, and the smaller the dot, the sharper the apparent image.

High-resolution monitors appear to be sharper than conventional high-performance monitors because the dot size is smaller. For example, the Quadram HX-12 and Princeton SR-12 have a 0.31mm dot compared to IBM's 0.43mm dot size. Thus, the Quadram/Princeton characters appear sharper than those of the IBM monitor. Unfortunately, both Quadram and Princeton stretch the screen display to make the characters larger than they would appear when full-framed, which puts some of the display into the corners of the CRT—the last place you would want a high-resolution display because of reduced focus and convergence, and diagonal stretch caused by even minimal pincushioning.

400 lines

Within the limits of moderate cost, there is only so much resolution that can be attained from a conventional high-performance monitor. For a further increase in apparent resolution, we must still fill in the gaps in the display so the eye is tricked into believing the display has more information than is actually there. This is accomplished through a 400-line display.

Since the computer's normal character and graphics generators produce 200 lines per field, we obtain 400 lines by generating artificial lines of information. The "extra" lines are positioned directly between the normal scanning lines in the normal "interlace" location. The inherent "bloom" of each dot blends the lines together, and the eye sees a continuous character.
If it were possible to fill each of the 200 lines with the original 200 lines, while the edges of the characters are not as sharp as those on the 200-line monitor, visually the display appears sharper and seems to have greater resolution because there are no spaces between the scanning lines.

FIG. 3—THE SAME DISPLAY from a Princeton 512/640 x 400 high-performance monitor shows no spaces because an additional 200 lines repeating the same data have been interleaved with the original 200 lines. While the edges of the characters are not as sharp as those on the 200-line monitor, visually the display appears sharper and seems to have greater resolution because there are no spaces between the scanning lines.

get sufficient time to scan two lines in the conventional horizontal scanning period? By using a device known as a scan doubler—a plug-in adapter board for IBM-compatible computers (see Fig. 4). It works this way. The horizontal scan rate of the SR-12 monitor runs at a nominal 31.4 kHz, which is twice the conventional horizontal scanning rate of 15.75 kHz. During the conventional horizontal scan period, the SR-12 scans two lines, but the computer still puts out its signal at 15.75 kHz. If fed directly to the SR-12, the single-line display would be spread over two lines and the screen would be a scramble of "garbage.

That's where the scan doubler comes in. Instead of the computer's RGB signal being fed to the monitor, it is fed to the scan doubler, which contains two memory banks and an output switcher. The computer's first line of data is stored in the scan doubler's first memory bank. When memory is full, its data is output twice to the SR-12 at twice the normal horizontal scanning frequency, so two complete lines are scanned in the same time period of one standard scan; hence, the computer's first display line is scanned on two sequential monitor lines—scan line 1, and what we will call scan line 1a—for repeat line 1.

While the monitor is scanning line 1 and 1a—each of which corresponds to a single line of data from the computer—the scan doubler's second memory bank is being filled by the computer with the second line of data. When the monitor is finished scanning the first line of data for the second time, the scan doubler switches its output to its second memory bank, which provides the data for monitor lines 2 and 2a.

As the scan doubler's second memory bank is being dumped into the monitor, the first memory bank is overwritten by the computer with the data for line 3 and 3a.

By continuously switching its output between memories 1 and 2, the scan doubler creates a 400-line monitor display from only 200 lines of data. The visual effect is spectacular. The display has no visible lines; it is continuous.

Voodoo resolution

Nothing stands still. If equipment has reached the stage beyond which there is no improvement in performance, then someone will invent improvements.

For reasons we have mentioned earlier, a business computer display is more or less standardized at a maximum of 640 dots x 200 lines in order to put everything on the screen within the area of maximum definition. Naturally, if it were possible to fill each complete horizontal line end-to-end, and if it were possible to use the unused vertical lines at the top and bottom of the screen, theoretically, the screen would resolve more dots. And that's precisely the assumption being used to create the illusion of even greater monitor resolution. Manufacturers are now starting to include the "phantom" data in the overall screen specifications, and we get claimed resolutions of 690 dots, 900 dots, 360 lines, 480 lines.

Yes, all that is possible, but not with conventional "business" computer equipment. Some specially-designed graphics and "text" adapters are capable of generating those seemingly unbelievable displays, but their common use is somewhere down the road. We'll cover them when they are generally available and cost-effective. Meanwhile, keep those magic figures in mind:

640 x 200 and 320 x 200. For "medium resolution," multi-color displays, a 320 x 200 resolution is required. And though we call that "medium" resolution, it is actually high resolution for color, because the so-called high resolution display of 640 x 200 is used for only two colors, which happens to be monochrome (black-and-white is two colors, as is any monochrome display). Presently, within the constraints of moderate costs, we cannot generate higher multi-color resolution than approximately 320 x 200 lines unless we artificially create a 400-line display through the use of a scan doubler.

FIG. 4—THE SCAN DOUBLER is a special adapter board that generates 400 lines of display from what is normally a 200-line screen. The computer's normal signal is fed into the lower jack instead of to a monitor. The synthesized 400-line display exits at the top connector to the monitor.
When connecting the circuit to the telephone line, it's a good idea to use a meter to distinguish the positive side of the line from the negative. That's important for proper operation. Pin 1 is the positive (tip) input and pin 8 is the negative (ring) input, as shown in Fig. 1.

The desired tune is selected using two double-pole, 6-position switches, S1 and S2. Each tune is assigned a letter/number combination. To select a tune, dial the switches to the combination that corresponds to the tune desired as shown in Table 1. For instance, if the theme from Star Wars is desired, S1 is dialed to “D” and S2, to “4.”

All components are available from a wide range of sources (including Radio Shack). Potentiometer R1 controls the pitch of each note, while R2 is used to set the speed at which the tune is played. Therefore, each can be set to satisfy personal taste (which is what the circuit is all about).—John P. Keyerleber

TABLE 1

A	— Toreador
B	— William Tell
C	— Hallelujah Chorus
D	— Star Spangled Banner
E	— Yankee Doodle
F	— John Brown's Body
G	— Clementine
H	— God Save the Queen
I	— Continental Body
J	— Marceline
K	— Americana, America
L	— Deutschland Leid
M	— Wedding March
N	— Beethoven's 5th
O	— Auguste
P	— O Solo Mio
Q	— Santa Lucia
R	— The End
S	— Blue Danube
T	— Brahms Lullaby
U	— Hall's Bells
V	— Jingie Bells
W	— La Vie en Rose
X	— Star Wars
Y	— Beethoven's 9th
Z	— Westminster Chime

How it works

As we can see from the ringer schematic in Fig. 1, the heart of circuit is IC1. General Instrument's 123-1350 melody-synthesizer IC. Since power consumption is extremely low in the standby mode, the entire circuit can be powered by a small 9-volt transistor-radio type battery. IC2 is a TCM1512 telephone ring detector IC that is powered by the telephone line.

The circuit's operation begins when IC2 senses a ring pulse on the telephone line. The detector (internally) rectifies the ring signal and then outputs a voltage to relay [IC 3 (a SPST reed-type relay with 5-volt contacts), causing its contacts to close. That pulls pin 12 (the on/off control) of IC1 low (logic “0”), causing it to output a signal—the selected tune—to transistor amplifier Q2. The amplified signal is then fed to the speaker.

The melody continues to play either until the tune is finished (at which time IC1 returns to the standby mode), or until someone takes the phone off the hook. Taking the phone of the hook continues the ring pulses to IC2, which opens IC1. When the relay contacts open, pin 12 of IC1 goes high, returning the circuit to the standby mode to wait for the next incoming phone call.
DRAWING BOARD

Understanding memory IC's

THERE'S NO DOUBT THAT THE ELECTRONIC superstar of the 1980's is the computer. People are buying them like umbrellas in a rainstorm, whether they need them or not. In what has to be the classic case of consumer brainwashing, the public has been convinced that the list of life's basic necessities now includes a 64K memory. Well, it just ain't so!

There's a lot more to electronics than just computers. Did in the wool "hardware hackers" like you and me should look at computers the same way we look at any other piece of electronic equipment—as "hardwired databooks."

Understanding a few of the techniques used in putting those machines together can go a long way in solving problems that show up in our own designs. The nice part about dealing with computers on that level is that you don't have to buy one. All you really need is a good databook that describes computer circuitry and explains its operation.

Computers are heavily memory-dependent machines, and plenty of design time has gone into developing memory techniques that are as efficient as possible. Memory can make your life on the bench a lot easier as well, so it's definitely worth the time to take a good look at memory devices.

Computers use both ROM, (Read-Only Memory) and RAM (Random-Access Memory). We'll start with the RAM since it's a lot more fun to play around with your own data. (We'll talk about ROM in a future discussion.)

RAM comes in two flavors—static and dynamic. The difference between the two has to do with how data is stored. Static RAM will hold data as long as its powered up, while dynamic RAM must be refreshed every so often. But before we get into the details, take a look at Fig. 1, a block diagram of a typical static RAM.

Static RAM

There are three main parts to the static RAM IC: The memory-cell array, the address decoders, and the input/output (I/O) block. The heart of the device is the memory array (a matrix of storage cells). Each cell is capable of storing one bit of data (either a one or a zero). The actual construction of the cell depends on the logic being used, but the basic idea is the same for all families.

Figure 2 shows the basic storage principle; two inverters are set up as a simple latch with switches at the outputs to control read and write operations. The cells are arranged in a matrix. The number of rows and columns in the matrix are what determine the size of the memory.
When you want to do something to one cell, you put the address on the address bus, and the row and column decoders are used to close the switches surrounding the cell you’ve selected. The thing to note here is that as long as any cell remains unselected, it’s not connected to anything; and whatever data you have there will stay there.

The same operation that picks a particular cell also connects it to the I/O logic in the IC, giving you the option of reading or writing data to that cell. Reading is simple because merely selecting the cell connects it to the I/O block and the data that’s there to be read.

Of course, the data from that cell has to be conditioned before it can be used in the real world, since the inverters used in each cell won’t have enough punch. That conditioning takes the form of an amplifier called, naturally enough, the sense amplifier. That amplifier has a very high input-impedance so it doesn’t load down the cell and run the risk of glitching the data that’s already stored there.

Writing new data into memory is just as simple; select the location, set up the data, and then flash a write pulse to the IC. The “nuts and bolts” of it is really no different from writing to a home-made latch. Since the two outputs of the storage cell will always be opposite in sense (remember that it’s just a simple latch), a write operation is accomplished by grounding the column decode lines.

Figure 3 is a simplified representation of what happens. To keep the design of the device as simple as possible, the column lines are used to carry the cell outputs to the I/O block. Data is read off one line, but both lines are needed to write. If you want to store a zero, you ground the A line and for a one, ground the B line.

The I/O block has a few other jobs to do as well. It selects the line that is to be grounded during a write, and it also has the circuitry that controls the overall status of the IC. How extensive the block is depends on the particular memory you’re using. Most RAM’s have a chip enable pin that will let the outputs be three-stated. That is important if you have several memories sharing the same data.

Versatile Lab Power Supply

MODEL 3002A

- 0-30 VDC at 0-2A
- Excellent Regulation
- Ripple & Noise – 500 µV RMS
- Built-in Short-Circuit and Overload Protection

Model 3002A features continuously adjustable current limiting and precision constant voltage/constant current operation with “automatic crossover.” This lab-grade unit can also be used as a current regulated power source. Options: 10-Turn Voltage and Current Controls, $25.00 ea. (can be ordered individually).

Also available...TRIPLE MIGHTY-MITE LAB POWER SUPPLY: Three Fully Regulated DC Outputs: two 0-25V/0.5A and one fixed 5V/3A, Variable Tracking & Independent Modes; Dual Panel Meters. Other models to 50 VDC, to 12A.

TERMS: Check, Money Order or COD. COD’s $2.00 extra. Add $3.50 for shipping & insurance in 48 states. Please contact our Sales Department for other shipping rates. Illinois residents add 7% sales tax.

Free Literature On Request

ELECTRO INDUSTRIES

4201 W. IRVING PK., CHICAGO, IL 60648

312/736-0999

PRICE SLASHERS

CONVERTERS

ONLY $5995

- 60 Channel Capacity
- P.L.L. Tuning
- 5 Channel Memory
- TV On-Off Feature
- Infra-Red Wireless Remote Control

OTHER MODELS ALSO AVAILABLE

- Jerrold JRX-3 $49.95
- Jerrold DRX-3 $69.96
- Reconditioned Units With 30 Day Warranty

VIDEO SWITCHERS

FEBRUARY 1985

- New Factory Fresh Units – 15% off
- Warranty: 1 year
- Sales Tax: 7%
- Free Literature: $3.50
- Add $3.50 for shipping & insurance in 48 states.

Phoenix Electronics

1 Midwood • Allendale, NJ 07401

(201)848-8229
What other kinds of "goodies" you find in the I/O block depends on the logic technology the memory is using. CMOS memories have a low-power mode that lets you "put the chip to sleep," while saving all data. Some of the memories we'll be looking at need as little as 1 mA (or less) to save data! That should bring all sorts of battery-backup schemes to mind. (You can be sure that we'll get into that in some detail in a future discussion, but for now, let's stick to memories.)

Memories that are organized to handle more than one bit at a time (256 × 4, 512 × 8, etc.) have to have a separate memory matrix for each data line. A 256 × 4 memory will be four arrays deep, and each of them will have its own set of I/O circuits. When you get to the point where you are stacking things eight layers deep, the design is getting really hairy and, as you would expect, it shows up in the price. That's why a 2048 × 1 memory is a lot cheaper than a 256 × 4. The total storage is the same but the complication of the internal design is much greater.

Static RAM's are easy to use; most modern designs are really forgiving of the screw-ups that always manage to show up during breadboarding. When you start talking about dynamic RAM, however, all notions of friendliness have to be thrown out the window.

Dynamic RAM

Because of the way a dynamic RAM stores data, it can be a nightmare to use: Instead of nice stable inverters, it uses a single capacitor...and nothing else! (See Fig. 4) Since the leakage time is usually measured in microseconds, some scheme is necessary to make sure that the data stored in memory stays put. That problem is solved is by periodically rewriting the data in each cell. That process, called refresh, is handled by the sense amplifier that's connected to each column.

When a row and column are selected, the first thing the sense amplifier does is to read the data from each cell in the row and then write it back in. Since only one column is selected, only that cell has its output channeled to the data bus. Every read, then, refreshes the entire row. Modern RAM has built-in circuitry to refresh the entire IC during a read, and a whole row can be refreshed by just addressing it. However, that doesn't make refreshing any better—just a little bit easier!

Many popular dynamic RAM's use the same pin for both row and column addressing. Two control pins—the row and column strobes—are used to tell the RAM which addresses are on the bus. It's still up to us, however, to make sure that the right stuff is at the right place at the right time.

Figure 5 is a block diagram of a
dynamic RAM and if you study it you'll be able to see how its pins relate to each other. Keep in mind that there's plenty of detail in the IC that has not been drawn in. If you're morbid enough to want to get into the anatomy of a dynamic RAM, you can find a complete diagram in any good databook. (You might also drop me a line and give me your reason.)

The question that should come to mind at this time, however, is: Why in the world would anybody decide to use dynamic, rather than static, RAM? The answer is simple—it makes more economic sense: Because the cells are smaller, you can stuff more of them into the same size IC. That means that more memory is available for a lot less money.

By now you probably know more than you ever wanted to know about what goes on inside RAM...and believe me when I tell you that there's a lot more we could talk about. But, being practical minded, let's end the whole discussion here. After all, what we're interested in is not so much how those things work, but how we can use them.

Over the next few months we'll see how memory IC's can cut "brain-blasting" circuit hassles down to nothing, and we'll also design some circuits that you can adapt for your own purposes. You'll find that memories are good for a lot more than just remembering! And if you want to use huge amounts of memory, we'll design refresh circuitry that can not only handle any amount of memory you want, but is completely transparent as well.

So that you can get ready for it, let me remind you of a short corollary to Grossblatt's 18th rule: Get it in writing. In other words, pick up a databook containing the specifications for both static and dynamic RAM. The timing diagrams are invaluable design aids and are sure to prove their worth since there won't be room to print them in the column. You'll find that having well-drawn timing diagrams in front of you as you're working is the only known cure for the dreaded memory disease known as "electronic amnesia" or, more technically, "silicon senility."
STATE OF SOLID STATE

High power FET's

UNTIL A FEW YEARS AGO, FET'S COULd handle only about 1 watt and, therefore, could not compete with SCR's or bipolar power devices. That's because, as shown in Fig. 1, the planar technology used has the drain, gate, and source on the top surface of the die.

High-power devices require relatively large metalized terminals to handle the high drain and source currents. Therefore, for increased power-handling capacity, the die size must be increased. Unfortunately, increasing the size results in high inter-electrode capacitances that severely limit the high-frequency response of the device. Further, the high current traveling through the narrow lateral channel develops a significant voltage drop (producing a correspondingly high on resistance).

However, about seven or eight years ago, a new technology aimed at increasing the current density of the MOSFET was developed. In that structure (dubbed VMOS), the gate and source are side-by-side on the top surface of the die, while the drain is on the bottom.

Impurities are added (by a process called doping) to an epitaxial (single crystal) layer of silicon to promote vertical current flow. In addition, some versions of the VMOS device have a V-shaped notch etched through the source and channel regions to enhance vertical current flow.

Enter TMOS

The TMOS name identifies the technology of Motorola's vertical-channel MOSFET's. Its structure is illustrated in Fig. 2. The unique TMOS design, with thousands of "source" sites connected in parallel on a single die, makes possible a very short vertical channel that carries heavy currents, but still has a low on-state voltage drop. A polysilicon gate material enhances switching speed, while an oxide layer electrically isolates the gate from the source.

The input resistance of TMOS devices is extremely high—10⁹ ohms—resulting in a leakage current of only a few nanoamperes. Source-to-drain current is controlled by applying a positive voltage to the gate that's just slightly higher than the gate-to-source threshold voltage, V_Gsth.

The graph in Fig. 3 shows the transfer characteristics for Motorola's MTMSN35/40 devices, which is typical of N-channel, enhancement-mode FET's.

The extremely high input-impedance and the relatively low gate-drive voltage requirement make the TMOS ideally suited for control of high-power directly from low-level CMOS and TTL logic circuits, if enough current is supplied to charge the input capacitance, C_{iss}.

The TMOS FET has inter-electrode capacitances—gate-to-drain (C_{gd}), drain-to-source (C_{ds}), and gate-to-source (C_{gs})—similar to those of a triode vacuum tube. The input capacitance is C_{iss} = C_{gd} + C_{gs}; output capacitance, C_{oss} = C_{gd} + C_{ds}; and the reverse trans-
fer capacitance, $C_{ds} = C_{gd}$. Figure 4 shows the relationship between those capacitances, which are a function of the drain voltage.

The input capacitance of a MOSFET is important and must be considered in circuit design. On a transient basis, gate current flows to charge C_{gs} before the gate gains control over drain current. The driving (or generator) impedance, R_{gen}, and C_{gs} affect the switching speed. The lower R_{gen} the faster the switching speed.

For additional information on TMOS technology and device characteristics, refer to Motorola's 28-page Power MOSFET Selector Guide and Cross-Reference (SG56, Rev. 5). Request your copy from Motorola Semiconductor Products, PO Box 20912, Phoenix, AZ 85036.

RCA Solid-state product guide

The Solid-State Devices Product Guide is a new 56-page publication covering basic descriptions of RCA's extensive product line of solid-state devices. It includes power MOSFET transistors and ultra-fast recovery rectifiers (two new additions to RCA's family of semiconductors).

Other selections include bipolar power transistors, thyristors, IR emitters, injection lasers, linear and digital logic ICs, microprocessors, and numerous other devices. The guide summarizes the devices in each product category and highlights their pertinent features and applications.

Single copies of the Solid-State Devices Product Guide (No. SPG-201M) are available from RCA distributors and from RCA, Solid State Div, Route 202, Somerville, NJ 08876 or by calling toll-free number (800) 526-2177.

Low bias-current op-amps

The 1346 and 1347 are two new high-performance op-amp IC's that combine JFET and bipolar technologies with dielectric isolation to provide superior AC and DC characteristics. Their 2-MHz unity-gain bandwidth and 7 V/μs slew rate make them ideal for such applications as high-impedance, high-performance buffers, precision track/hold amplifiers, and long-term precision integrators.

Available in TO-99 packages, the 1346 and 1347 are specified over a temperature range of 0°C to +75°C, while the 1346-01 and 1347-01 are specified for the -55°C to +125°C temperature range. Each unit features ±250 mA bias current, ±0.5 millivolt maximum offset, 2 μs settling to ±0.1%, and 300 millivolt maximum power consumption.—Teledyne Philbrick, Microcircuits, Allied Drive at Route 128, Dedham, MA 02026.
SERVICE CLINIC

Servicing electronic test equipment

EVERY NOW AND THEN, WE ALL FEEL THE need to check up on some of our test equipment. (Nagging doubts about the accuracy of test instruments are bound to crop up ever so often.) Contrary to what you've been led to believe, verifying the accuracy of test instruments is really a simple task—although that can't always be said for repairing them.

Perhaps the easiest measuring devices to check and repair are VOM's (volt-ohmmeters) and DVM's (digital voltmeters)—the most basic and widely used test instruments in any collection. Once you know that your basic instruments are working accurately, you can go a long way in repairing other equipment as well, so let's start there.

Meter repair

There are several ways to verify voltimeter accuracy. The quickest is with a known voltage source (batteries). A new battery, even the common Leclanche (dry cell), has a relatively stable voltage—close to 1.56 volts—if it hasn't been used. A mercury cell is a better voltage source in test procedures where a reference is needed; it will hold its open-circuit voltage for an amazingly long time. Various voltages are available in mercury cells, so check to make sure that you're getting exactly what you want.

Let's assume that we are using a standard dry cell, whose voltage is usually around 1.56 volts. In checking your meter's accuracy, set it to the voltage range and apply the dry-cell voltage directly to the meter's input. If the meter indication agrees with the reference (1.56V), then it's a safe bet that range is OK! If not, then you'll have to find the voltage-divider network, locate the resistor that's causing the problem, and replace it.

A word of warning: The resistive elements in a meter are wired-wound, precision types—so replacements should be the exact values specified. Also, the resistors called for are usually not standard values; that can be handled by paralleling several resistors to obtain the value needed.

You can also check the higher meter ranges to make sure that the resistors in the voltage-divider network have not changed in value. To check higher ranges, remove the back of the meter and locate the divider network, using the schematic of your unit. Change the meter setting to the next higher range and apply the reference voltage to the point that corresponds to the input of to that range.

If your unit is a DVM, the reading will be about 156, because of its 10 x ratio. Analog meters, on the other hand, may show a slightly reduced voltage. However, a difference of a few microvolts in both cases is OK.

In checking the resistance ranges, set the switch to ohms and check the swing of the needle to see that it travels all the way over past zero and then swings back freely. If it sticks anywhere, look out; you've got a problem!

One thing that makes the needle stick is "foreign matter," a small piece of iron, for example, lodged in the small gap between the coil and the core. Such objects physically impair the swing of the needle, or block it by getting caught up in the field around the movement's magnetic core. Carefully take the face plate off the meter and look inside the gap with a jeweler's loupe or strong magnifying glass.

The chances are you will be able to spot the obstruction. If so, take a small piece of tape, and carefully slip it into the gap; you should be able to catch particles on the sticky side. Caution: Never use a high-pressure air hose to remove tiny particles around the movement. A high-pressure air hose will scatter parts all over the bench and the meter will never be the same.

Signal-generator repair

Signal generators are probably the easiest instruments to check (and the hardest to fix). To check them, all you need is a radio! Simply zero-beat the signal generator with a broadcast station's carrier. Connect the signal generator to the receiver's antenna terminals.
and set the unit's attenuator to a low output. Tone the receiver to a station of known frequency.

Now vary the generator frequency in the direction of the station's carrier frequency. You should hear a descending or ascending tone, depending on whether you're headed toward or away from the carrier frequency. As the generator frequency nears that of the carrier, the tone will fade and, at some point, completely disappear. The tolerance of the calibration should be held to within ±5 cycles of the assigned carrier frequency. (I've had to wrestle with a few that wouldn't reach that tolerance.)

If you can get your hands on a communication-type receiver, you can check several other things. By tuning to the fundamental frequency, you can use the second harmonic, 1250 kHz, 2950 kHz, and so on, to get a more accurate indication.

Similarly, a TV station's video carrier may be used. Here the object is to set the generator for the lowest number of "bars" on the screen. Simply follow the same hookup procedure used with the radio receiver, and watch the bars on the screen. When you reach the point where the least number of bars are shown, you're right on the station's frequency.

Often, signal generators (like the one in Fig. 1) have a built-in crystal, sometimes on 4.5 MHz, etc., which can be used for checking. Others have 1,000 kHz (1.0 MHz) crystals, which can be checked by tuning for "birdies" every 1.0 MHz. If a signal generator is badly off, (which seldom happens) you can reset it. Look in the owner's manual for the location of the trimmer capacitors for the different bands.

You can also tune in WWV (the standard time and frequency station) on 2.5, 5.0, 10.0, and 15.0 MHz. For audio checks, the tone modulation is the standard 440 Hz, which can be very handy. Follow the calibration procedure to the letter, especially the adjustment sequence. Doing so will make the job a breeze.

In addition, lower frequencies can be checked using harmonics. For example, you can check 1.25 MHz (1250 kHz) by beating its second harmonic against 2.5 MHz from WWV, or some other source.

Oscilloscope repair

Oscilloscopes can be checked using a squarewave audio signal. That is done by feeding the squarewave signal to the input of the vertical amplifiers, and watching the display for signs of rounding corners, or any other distortion. If the display shows a good clean squarewave, those stages are all OK. But if they're not, the trouble is most likely in the coupling capacitors! I speak with the voice of experience. (I've fixed many old scopes in the past.)

SERVICE QUESTIONS

INTERMITTENT STARTING

I've got an RCA CTC 68 that's giving me the fits. Sometimes it starts, sometimes it doesn't. When it fails to start, I hear a squeal, and then the circuit breaker trips. I've changed the two SCR's and diodes CR401 and CR402.—C.M., Franklyn, KY

The solder connections under T401, 402, and 405, especially T405, have been known to give a great deal of intermittent problems. I would also not overlook the possibility of an intermittently open filter capacitor.

HOT SET

On a GE 10HD chassis, I have bottom foldover and poor linearity. The vertical tube and the linearity control both run too hot. The oscillator grid reads —25 volts instead of the —35 volts I should have.—R.D., Greenville, SC

I would be more interested in the reading on the output grid. If that is too low, the output section of the twin-triode tube will draw too heavily, accounting for all that heat. My first suspect would have to be the coupling capacitor, C203, followed by the grid return resistors.
of 1 megohm, circuit loading should be minimal in most cases. The DM-10 is protected against excessive voltage to 500 volts DC and 350 volts AC on the 200 mV range. On the higher ranges, the protection ratings are twice those figures.

The AC voltage accuracy specification is ±1.2%, +1 digit. The input impedance is 450 kilohms in the AC-volts mode, and the meter is protected up to 500 volts AC or DC.

The accuracy specifications for the resistance mode should also please any hobbyist: ±1%, +3 digits is the worst-case specification. The open-circuit voltage is less than that needed to turn on a semiconductor junction, so you can make some in-circuit measurements without sacrificing accuracy.

The accuracy of the meter in the DC current mode is ±1.2%, +1 digit. Overload protection is provided by a 800-mA, 250-volt fuse in that mode, and the voltage burden is 325 mV.

The final mode of the DM-10 is its diode-test mode, which lets you quickly test semiconductor p-n junctions. The maximum open-circuit voltage is 3.2 volts, and the maximum current is 1.2 mA—just enough to dimly light a standard LED.

The manual
The manual we received with the DM-10 was not what we’d normally expect from Beckman. While that manual did contain acceptable operating instructions and a specifications sheet, it did not have any calibration instructions, parts list, or circuit schematic. In fairness, we should point out that our manual was only a preliminary copy. We hope that the finished manual is much more informative.

The DM-10 may not have all the features you want: It does not include an audible continuity beeper, a high-current range, a tilt stand, or autoranging, for example. However, even without those features, it is a good, basic meter for most hobbyists. The meter should also be at home in a technicians toolbox—it’s small size makes it ideal for field work. Perhaps the best feature of the DM-10, however, is its price, which is just $39.95. Beckman was able to keep the price down by not including the “extra” features that we mentioned. They also kept manufacturing costs down: Most of the circuitry is contained on a VLSI analog-to-digital converter chip, and all of the circuitry—including the switch contacts—is contained on a single PC board.

R-E
MARKET CENTER

FOR SALE

CABLE-TV Secrets—the outlaw publication the cable companies tried to ban. HBO, Movie Channel, Showtime, descramblers, converters, etc. Supplies list included. $5.95. CA-BLOCK FACTS, Box 711-R, Pataskala, OH 43062.

RESISTORS, 1044A-5% 3 cents, 1% metal films, precision carbon resistors, $1.00 refundable to JR INDUSTRIES, 5834-B Swantree, Toledo, OH 43614.

FREE catalog featuring scanner accessories, cameras, subcarrier detectors, voice scramblers, unusual kits. CAPRI ELECTRONICS. Route 1R, Canon, GA 30027.

CABLE-TV equipment, tunable notch filters for “beeping” channels, Information $1.00 DK video, PO Box 830252, Margate, FL 33063.

RECONDITIONED test equipment. $1.00 for catalog JAMES WALTER TEST EQUIPMENT, 2567 Nica, San Pablo, CA 94806.

DIGITALK Speech Synthesizer has 138 word vocabulary interfaces with parallel port of your computer. PCB and plans $12.00. JIM RHODES, INC., 1025 Ransom Lane, Kingsport, TN 37660.

WHOLESAL E F-59 cable connector $0.00/1000. Free MATV catalog. S.A.S.E., (212) 897-0509, D&D TV, 68-121 10 Street, Flushing, NY 11375.

WANTED: RCA, Cunningham, Western Electric, Gates, Telefunken, GE, Sylvania, Minitube, Marantz, Astatic, Altec, Tandy tubes, amplifiers, speakers, (713) 728-4343, MAURY, 11124 Atwell, Houston, TX 77096.

TUBES, new, unused. Send self-addressed stamped envelope for list. FALA ELECTRONICS, Box 1376-2, Milwaukee, WI 53201.

FREE, Pay-TV reception, “How-To” book. HBO, Snowcone, Clansman, DIPTRONICS, Box 80 (E3), Lake Havasu, AZ 85034.

RADAR JAMMER!

- Coveny spread spectrum jam. to react to either a percentage of your true speed, or whatever speed you dial in.
- Activated by your Escort and most other detectors.
- Essentially effective against fast, instant-on radar.
- Operates on both X and K bands (not FCC approved)
- MONEY BACK GUARANTEE. Free catalog.
- The device described in this literature is not legal for use against police radar.

Complete literature and plans package, send $4.95 to:

Philips Instrument Design Inc.
9510 SW Barbee Blvd, P.O. Box 1059, Portland, OR 97214

VISA and M/C order line (503) 269-6764

NICHIA batteries, G.E. Gold Top premium cells 250 MAH for ICOM Handle-Talkie, cordless phones, memory-backup, audio control, etc. $1.00 ea. Oak cassette recorders with plugs for VIC-20 and C-64 computers $3.00 ea. Battery home computer mother board $35.00 E & O.E. & CO. & R.L. #1 Box 37, Dallas, TX 75233.

3,000 tips color TV repairs, 31 bands, 116 pages. Send $2.00. TONY FERNANDEZ, Box 54-5190, Surtick, FL 33154.

SURPLUS test equipment, oscilloscopes, B & K, Leak test, HP Teletext, catalog $2.00. ROTARY CONVERTER SPECIALISTS, Box 1389, Washington, DC 20013.

ALPHANUMERIC vacuum fluorescent display Model SGV2. Includes all timing, refresh and character generation circuitry. YTU/CMOS compatible. Serial and parallel port. 5VDC power, $55.00 in single quantity. Free manual. TOMANTRON, INC., 17942 So. 66th Ave., Tinley Park, IL 60477.

CONVERT videotapes, PAL - SECAM - NTSC (overseas), 110-220 Audio, VCR, televisions, Canon copying machines, discovered, APPLE AUDIO, 24x18, 37th Ave. Queens, NY 11372, (718) 507-5800.

QUALITY WIRELESS TV SYSTEM COMPLETE SYSTEM FOR $39.95 & up LAKE ORV with 60 Day Warranty

19" SPECIAL QUANTITY PRICING DEALERS WANTED C.O.D. A.C. TO APPEAR.

ACE RECEPTION

1025 Ransom Lane, Kingsport, TN 37660.

CLASSIFIED RATES

15 word minimum: $2.50 per word. Commercial, minimum $37.50. $2.00 per word personal minimum $30.00. Expanded type ad. $3.75 per word. Ads set in bold-face type at 20% premium. Ads set in black-ground screen at 25% premium. Display ad $1 x 2", $20.00/2", $50.00/3", $80.00/4". General Information: frequency listings and payment discounts are available. Payment must accompany order. Copies subject to publisher’s approval. Must be typewritten or printed. Only first word and name set in bold caps. Additional of bold face (not available as ad caps) at 25¢ per word. Advertisers using P.O. Boxes must supply permanent address and telephone numbers. Orders are not acknowledged. They will appear in the next available issue after receipt. Copy to be in our hands on the 20th of the third month preceding the date of issue (i.e. August issue closed May 20th). At your discretion date. Send order, and remittance to Classified Advertising Radio-Electronics, 200 Park Avenue South, New York, New York 10003. For your convenience a simplified order form is provided on this page.

ORDER FORM

PLEASE INDICATE in which category of classified advertising you wish your ad to appear. For special headings, there is a surcharge of $2.00.

() Plans/Kits () Business Opportunities () For Sale
() Education/Instruction () Wanted () Satellite Television

() Special Category: $20.00

PLEASE PRINT EACH WORD SEPARATELY. IN BLOCK LETTERS.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

31 32 33 34 35

MAIL ORDER WITH CHECK TO: Radio-Electronics Classified Ad Department, 200 Park Avenue South, New York, New York 10003.
STOP DREAMING
START BUILDING

HANDY MAKES IT EASY!
Build anything from computers to LED flashers... any project you want the fast, easy, fun way. Use HANDY solderless breadboards to build, test, modify and expand your ideas.

SATISFACTION GUARANTEED OR YOUR MONEY BACK!

<table>
<thead>
<tr>
<th>Item Code</th>
<th>Description</th>
<th>Features</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HB-0100.1</td>
<td>1 Buss Strip</td>
<td>100 tie points, 914-pin IC capacity</td>
<td>$2.25</td>
</tr>
<tr>
<td>HB-1000.1</td>
<td>1 Socket Strip</td>
<td>640 tie points, 14-pin IC capacity</td>
<td>$9.95</td>
</tr>
<tr>
<td>HB-4714.4</td>
<td>4 Socket Strips</td>
<td>7 Buss Strips, 4 Binding Posts, 3,260 tie points, 14-pin IC capacity</td>
<td>$63.95</td>
</tr>
<tr>
<td>HB-2312.2</td>
<td>2 Socket Strips</td>
<td>3 Buss Strips, 3 Binding Posts, 1,580 tie points, 14-pin IC capacity</td>
<td>$31.00</td>
</tr>
<tr>
<td>HB-2112.2</td>
<td>2 Socket Strips</td>
<td>1 Buss Strip, 2 Binding Posts, 1,380 tie points, 14-pin IC capacity</td>
<td>$24.95</td>
</tr>
<tr>
<td>HB-1110.1</td>
<td>1 Socket Strip</td>
<td>1 Buss Strip, Ground plate, 740 tie points, 14-pin IC capacity</td>
<td>$11.95</td>
</tr>
<tr>
<td>HB-1210.1</td>
<td>1 Socket Strip</td>
<td>2 Buss Strips, Ground plate, 840 tie points, 14-pin IC capacity</td>
<td>$13.95</td>
</tr>
<tr>
<td>HB-3514.3</td>
<td>3 Socket Strips</td>
<td>5 Buss Strips, 4 Binding Posts, 2,420 tie points, 14-pin IC capacity</td>
<td>$47.95</td>
</tr>
</tbody>
</table>

FOR LESS!

Available at Selected Distributors throughout the USA and Canada
HANDY PRICES ARE UP TO 25% LESS THAN COMPETITORS!

SEND FOR FREE Colorful Brochure!

CIRCLE 71 ON FREE INFORMATION CARD
SATELLITE TV Viewers
Get the most complete view of events. Send $1 for full color copy.

SATELLITE TV Week
P.O. Box 308, Fortuna, California 95540
800-339-1999 (U.S.) • 800-339-3787 (Can.)
707-735-5474 (all others)

SATELLITE TELEVISION
SATELLITE TV receiver breakthrough! Build your own system and save! Instruction manuals, schematics, circuit boards! Send stamped envelope.

SATELLITE-ICTRAL ALG. WESTFIELD, MA 01036

INVENTORS!
IDEAS have value! Ever think of an idea, forget it, and later come to mind? Many people don’t forget, act quickly, and are rewarded by American industry. Write down your idea! We offer free discip- linary registration and full consultation regarding your idea’s potential value. Call or write without delay for your free information package. AMERICAN INVENTORS CORPORATION, 82 Brook Street, Dept. RE, Westfield, MA 01086, (413) 588-3750. A free based marketing company. Offices coast to coast.

NEW L S T E R S
ELECTRONIC SYSTEMS NEWSLETTER is a monthly publication written especially for the electronics hobbyist/experimenter. Fascinating projects, new ideas, sources. Free details, AF PUBLISHING, Dept. RE, PO Box 924, So. Hadley, MA 01075.

DO-IT-YOURSELF TV REPAIR
NOW! Repair any TV. Easy! Anyone can do it. Write: RESEARCH, R. Box 601 GR, Culver, WA 99114.

US P L E D’ S
20% more/less than list
MSI 1% 5% 15% 50% 100%
$4.95 each

MEMORY SALE
4164 qty 100 $3.90
300 4.00 8.00
150 4.50 9.80
100 5.50 11.50
50 6.50 13.00
25 7.30 15.60
10 8.90 21.80
5 11.50 41.50
1 23.95

BUY A POUND
200 UNTESTED DIGITAL INTEGRATED CIRCUITS TRENDS. GOOD FOR TROUBLE SHOOTING. LOW BURGERS. WE HAVE EIGHT OF A GOOD FIELD OF FUNCTIONAL AND DIGITAL ICs. ANYTHING OF INTEREST PAYS. HUNDREDS OF ICs $10

SILICON SIGNAL DIODES
HIGH QUALITY (ALL PINS). SIGNAL DIODES. MARKED WITH DATE OR ON COLOR COAT. FULL RANGE 10 OUNCES OVER 1000 $7.95

BABYLON ELECTRONICS
4811 Myrtle Ave., SACRAMENTO, CA 95821

SATELLITE Television Information Service: 104 channel program guide, existing satellites, satellite launches, next few years. Basic system theory, recommended dish sizes. LNA’s. Send $2.00 to SAT-FLORIDA INFO, 2910 SE 19 Ave., GAINESVILLE, FL 32601.

SATELLITE-MART • SATELLITE Screwdriver~orientation catalog

RADIO/TELEVISION

NEW ITEMS... NEW BARGAINS!
FREE UPON REQUEST!
Send today for FREE copy of OUR BIG CATALOG, Dept. RE

FAIR RADIO SALES
1119 EUREKA • BAY 1105 • LIMA, OHIO • 45802

EDUCATION & INSTRUCTION
UNIVERSITY degrees by mail. Accredited Bachelor’s, Master’s, PhD’s. Free facts revealed. CAREERS. 222, Box 470886, Tulsa, OK 74147.

WANTED

INVENTIONS, ideas, new products wanted! Industry present information and exhibition, California. Free (1-800) 528-6050. Arizona: (1-800) 352-0458. X831.
Radio Shack Parts Place

Over 1000 Items in Stock. The Store for Builders and Fixers!

Computer/Game Connectors

<table>
<thead>
<tr>
<th>Type</th>
<th>Positions</th>
<th>Cat. No.</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socket Sub-Male</td>
<td>9</td>
<td>276-1537</td>
<td>1.99</td>
</tr>
<tr>
<td>Socket Sub-Female</td>
<td>9</td>
<td>276-1538</td>
<td>2.49</td>
</tr>
<tr>
<td>Hood for Above</td>
<td>9</td>
<td>276-1539</td>
<td>1.99</td>
</tr>
<tr>
<td>Socket Sub-Male</td>
<td>15</td>
<td>276-1527</td>
<td>2.49</td>
</tr>
<tr>
<td>Socket Sub-Female</td>
<td>15</td>
<td>276-1528</td>
<td>3.49</td>
</tr>
<tr>
<td>Hood for Above</td>
<td>15</td>
<td>276-1529</td>
<td>1.99</td>
</tr>
<tr>
<td>Socket Sub-Male</td>
<td>25</td>
<td>276-1547</td>
<td>2.49</td>
</tr>
<tr>
<td>Socket Sub-Female</td>
<td>25</td>
<td>276-1548</td>
<td>3.89</td>
</tr>
<tr>
<td>Hood for Above</td>
<td>25</td>
<td>276-1549</td>
<td>2.49</td>
</tr>
<tr>
<td>Solledless Sue-D-Male</td>
<td>25</td>
<td>276-1556</td>
<td>4.99</td>
</tr>
<tr>
<td>Solledless Sue-D-Fem</td>
<td>25</td>
<td>276-1565</td>
<td>4.99</td>
</tr>
<tr>
<td>Printer Connector</td>
<td>36</td>
<td>276-1534</td>
<td>8.09</td>
</tr>
<tr>
<td>Cable Sockets</td>
<td>34</td>
<td>276-1505</td>
<td>3.19</td>
</tr>
</tbody>
</table>

Tantalum Capacitors

<table>
<thead>
<tr>
<th>Value</th>
<th>UF WVDC</th>
<th>Cat. No.</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>35</td>
<td>272-1432</td>
<td>.49</td>
</tr>
<tr>
<td>0.47</td>
<td>35</td>
<td>272-1433</td>
<td>.49</td>
</tr>
<tr>
<td>1.0</td>
<td>35</td>
<td>272-1434</td>
<td>.59</td>
</tr>
<tr>
<td>2.2</td>
<td>35</td>
<td>272-1435</td>
<td>.69</td>
</tr>
<tr>
<td>5.6</td>
<td>16</td>
<td>272-1436</td>
<td>.79</td>
</tr>
</tbody>
</table>

Monolithic Ceramic Capacitors

Epoxy Dipped ± 50 WVDC

<table>
<thead>
<tr>
<th>Value</th>
<th>Temperature Coefficient</th>
<th>Cat. No.</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 pF</td>
<td>272-123-52</td>
<td>272-156-69</td>
<td></td>
</tr>
<tr>
<td>470 pF</td>
<td>272-123-53</td>
<td>272-156-69</td>
<td></td>
</tr>
<tr>
<td>1000 pF</td>
<td>272-123-54</td>
<td>272-156-69</td>
<td></td>
</tr>
<tr>
<td>100 pF</td>
<td>272-123-55</td>
<td>272-156-69</td>
<td></td>
</tr>
<tr>
<td>0.01 pF</td>
<td>272-123-56</td>
<td>272-156-69</td>
<td></td>
</tr>
<tr>
<td>1 pF</td>
<td>272-123-57</td>
<td>272-156-69</td>
<td></td>
</tr>
</tbody>
</table>

Replacement Transistors

<table>
<thead>
<tr>
<th>Type</th>
<th>Cat. No.</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N3905</td>
<td>276-2007</td>
<td>1.19</td>
</tr>
<tr>
<td>MPS2222A</td>
<td>276-2008</td>
<td>2.99</td>
</tr>
<tr>
<td>MP2446</td>
<td>276-2010</td>
<td>1.99</td>
</tr>
<tr>
<td>MPS2804</td>
<td>276-2011</td>
<td>1.99</td>
</tr>
<tr>
<td>MPS2904</td>
<td>276-2012</td>
<td>1.99</td>
</tr>
<tr>
<td>MPS2808</td>
<td>276-2013</td>
<td>1.99</td>
</tr>
<tr>
<td>MPS2809</td>
<td>276-2014</td>
<td>1.99</td>
</tr>
<tr>
<td>MPS2810</td>
<td>276-2015</td>
<td>1.99</td>
</tr>
<tr>
<td>MPS2804</td>
<td>276-2016</td>
<td>1.99</td>
</tr>
<tr>
<td>MPS2805</td>
<td>276-2017</td>
<td>1.99</td>
</tr>
<tr>
<td>MPS2806</td>
<td>276-2018</td>
<td>1.99</td>
</tr>
<tr>
<td>MPS2807</td>
<td>276-2019</td>
<td>1.99</td>
</tr>
<tr>
<td>MPS2808</td>
<td>276-2020</td>
<td>1.99</td>
</tr>
<tr>
<td>MPS2809</td>
<td>276-2021</td>
<td>1.99</td>
</tr>
</tbody>
</table>

Monolithic Ceramic Capacitors

Epoxy Dipped ± 50 WVDC

<table>
<thead>
<tr>
<th>Value</th>
<th>Temperature Coefficient</th>
<th>Cat. No.</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 pF</td>
<td>272-123-52</td>
<td>272-156-69</td>
<td></td>
</tr>
<tr>
<td>470 pF</td>
<td>272-123-53</td>
<td>272-156-69</td>
<td></td>
</tr>
<tr>
<td>1000 pF</td>
<td>272-123-54</td>
<td>272-156-69</td>
<td></td>
</tr>
<tr>
<td>100 pF</td>
<td>272-123-55</td>
<td>272-156-69</td>
<td></td>
</tr>
<tr>
<td>0.01 pF</td>
<td>272-123-56</td>
<td>272-156-69</td>
<td></td>
</tr>
<tr>
<td>1 pF</td>
<td>272-123-57</td>
<td>272-156-69</td>
<td></td>
</tr>
</tbody>
</table>

Monolithic Ceramic Capacitors

Epoxy Dipped ± 50 WVDC

<table>
<thead>
<tr>
<th>Value</th>
<th>Temperature Coefficient</th>
<th>Cat. No.</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 pF</td>
<td>272-123-52</td>
<td>272-156-69</td>
<td></td>
</tr>
<tr>
<td>470 pF</td>
<td>272-123-53</td>
<td>272-156-69</td>
<td></td>
</tr>
<tr>
<td>1000 pF</td>
<td>272-123-54</td>
<td>272-156-69</td>
<td></td>
</tr>
<tr>
<td>100 pF</td>
<td>272-123-55</td>
<td>272-156-69</td>
<td></td>
</tr>
<tr>
<td>0.01 pF</td>
<td>272-123-56</td>
<td>272-156-69</td>
<td></td>
</tr>
<tr>
<td>1 pF</td>
<td>272-123-57</td>
<td>272-156-69</td>
<td></td>
</tr>
</tbody>
</table>

CMOS and Bipolar Timers

TLC555. New CMOS design with very low power consumption—typically only multivib. with 5V supply. Same pinout as 555 but works with smaller, less expensive capacitors. 3.7V-18V.

Bipolar: Resealable timing from one second to one hour.

Dictionary of Microcomputer Terms

NEW!

Defines over 1200 modern day microcomputer terms with clear and concise descriptions. Large, easy-to-read typeface. Over 100 illustrations. Special up-front section contains over 200 common abbreviations, acronyms and special symbols. 96 pages, 6.25 x 9.25.

CONTINUITY TESTER CHASSIS

SPECIAL PURCHASE 10$ 10$ Circuitry continues a popular feature. Many possible uses including security circuits, checkables, testable checker, more. Operates from 6V transistor battery. Great for experiment's item at a bargain price.

TV RF MODULATOR CHASSIS

SPECIAL PURCHASE 40$ 40$ Selectable video output. 5-pin DIP plug accepts video, audio and power inputs. On/off switch with built-in video signal modulation. Auto shutdown circuit, in case of signal input overload.

POWER SUPPLY CHASSIS

SPECIAL PURCHASE 40$ 40$ Our big buying power brings you a compact switching power supply for an incredible low 440 watt input 24V (use our #273-1515 transformer). Only 12 x 13 x 4.40 in. at 4.40A. 24V at 1.70 amp and -5V at 20 mA. 277-1016

Radio Shack

A DIVISION OF TANDY CORPORATION

Prices apply at participating Radio Shack stores and dealers

CIRCLE 75 ON FREE INFORMATION CARD
FREE KIT Catalog
FUNCTION GENERATOR KIT 559-95
Audio/Video Car audio kit 879-95
Phone 209-772-2076
Write or Phone for FREE CATALOG
DAGE
PRINTED-circuit boards. Quick prototypes, production, design, repair, solder. Send print or description for quote to KIT CIRCUITS, Box 235, Claysville, PA 15625.
FREE catalog, 99-cent kits—audio, video, TV, computer parts. ALLKIT, 435 West 4th Street, West Islip, NY 11795.
Hi-Fi speaker kits, audio printer and speakers. Components from the worst manufacturers. For beginners and experts, Prix Lithograph, A & S SPEAKERS, Box 7462R, Denver, CO 80211.
CABLE-TV converters: Jernold, Hohm, SB-3, AN-3, Mini-Cable, Zenith, & more. UHF converters: Deluxe television kit B-500, gaged pulse add-on $75.00. Complete units $195.00, with gaged pulse $255.00 (Quantity discounts). Repairs of converters & cable boxes. Send S.A.S.E. or call toll 1: (312) 637-4408. HIGGINS ELECTRONICS, 501 W. Nelson, Chicago, IL 60634. No. Illinois orders accepted.
PROJECT TV... Convert your TV to project 7 feet picture. Results comparable to $5000 projectors. Total cost less than $300. Plans and parts $19.95. Illustrated information free. MACROCOMA-GF, Washington Crossing, PA 18977.
ALUMINUM EQUIPMENT CABINET 9" x 12" x 8" (300) $4.50. 9" x 12" x 8" (300) $3.50. Heavy gauge aluminum 1/16" sidewalls with attractive black finish. Great for all sorts of test and computer parts. Panel kit is punched for counter/drawer use. Easily covered, rear panel has openings for line plug. Switch, etc. 8-9009 WT 5 Lb. $9.95, (12) $89.50, (100) $59.50.
MINIATURE NO-9009 IS A COMPLETE DC POWERED CLOCK WITH KEYBOARD TIME/DATE ENTRY. THE BASIC CONSISTING OF AN 8.5369 AND 3.579 MHZ CRYSTAL, ALL IN A 2-1/8 X 3-1/8 X 1/8" CUBE. BRAND NEW, 100% FUNCTIONAL. DATE-254. $2.50
CIRCLE 254 ON FREE INFORMATION CARD
MICROWAVE TV ANTENNA SYSTEMS
FREQ. 2.1 TO 2.7 GHZ... 34 DB GAIN +
COMPLETE SYSTEMS:
(As Pictured)
Commercial 40" $99.95
Parabolic 20" $79.95
Dish Style $79.95
COMPONENTS
Down Converters [either style] $39.95
Power Supplies $24.95
Data In/Out $9.95
CALL OR WRITE FOR KITS, PARTS, OR MORE INFORMATION
Shipment & Handling Add $3.50
We Accept Most Types of Down Converters & Power Supplies
PHILIPS-TECH Electronics
P.O. Box 38778
Phoenix, AZ 85069
(602) 967-8972
Special Quantity Pricing
Dealers Wanted
CIRCLE 118 ON FREE INFORMATION CARD
UHF, CABLE-TV UNITS

ZENITH VHF-UHF "Super Z" kit In stock (also works on Zenith cable units) Z-Tac only $179.95.
Put a little string into those faraway UHF stations with our 25dB gain "Scorpion." $29.95. Large quantity discounts on cable units.
N-12B, SB, MD, Or-1000's, filters. We buy surplus parts at discount rates. We now have over 50 million dollars in parts stocked. Resistors/capacitors/costs keeps many more. Check out our low prices. Dealers give us a call on quantity pricing. Will ship anywhere. COD/Balt. COD welcome. Caro Blank/Insite/Cable supplies. UPS. Add 3% shipping. Maryland residents 5% state tax. Credit card orders. Information, CODs and dealer pricing call (301) 789-2131 or 789-7583.
Cable or write TO CROSS, P.O. BOX 152-12, BALTIMORE, MD 21237.

SCANNERS

JOIN 30,000 other scanner owners in the nation's largest not-for-profit association of scanner owners. 8-month publication with tech tips, fascinating true stories, news of new scanning activities. Plus member benefit package including car rental discounts, 5% discount insurance, cable service, classified ads service, and more. Send just $5.75 for 10-month trial membership to SCANMASTER, 1120 W. 14th St., Arlington, TX 76011.

CABLE TV NOTCH FILTERS

CABLE CONVERTERS & ACCESSORIES

HAMLIN OAK JERROLD SCIENCES YVELIAH

ALL TYPES OF CABLE TV EQUIPMENT MICROVANE ANTENNAS & ACCESSORIES — FREE ILLUSTRATED BROCHURE — CALL HAMLIN OAK JERROLD 2311 CABLE HAVEN 1, (203) 997-0399

BUSINESS OPPORTUNITIES

US $5.00 including disk thousand brand program for Apple IBM PC compatible. RELIANT, PO Box 55166, Seattle, WA 98104. Hong Kong.

PROJECTION TV. Make SSS's assembly projectors. Easy... Results comparable to $2,500.00 projectors. Your total cost less than $200.00. Plans, $7.00 & dealer's information $17.00... illustrated Instruction manual... MACROCOMA GXX, Washington Crossing, PA 19077: Credit card orders 24 hours (215) 730-2880.

YOUR own audio station! AM, FM, cable. Home operation possible. BROADCASTING, 130-26, Pasadena, CA 91103.

BURGLAR alarms—boom ing business. Get in now. Starting information $2.00. DYNAMIC SECURITY, PO Box 1455, Grand Rapids, MI 49501.

QUALITY ELECTRONICS, 2305 Old Biscayne Rd., Coral Gables, FL 33134, (305) 444-0651, Miami or bring in service for Comdor Phone Mate. Portable computer distributor, inquiries invited for other electronic service offers.

CB MODIFICATIONS

Increase channels, range, privacy. Specialized in frequency expanders, speech processors, FM converters, PLL & VHF channels, how-to books, plans, kits. Expert mail-in repairs & conversions. 18-page catalog $2.

CIRCLE 109 ON FREE INFORMATION CARD

PRINTED CIRCUIT BOARDS

PRINTED circuit boards, double sided plated through holes or single sided. No set up charge. GAUDILL INC., 205 East Westminster Ave., Highland, NC 27262. (919) 894-0229.

SINE WAVE QUESTIONS?

TROUBLE shooting, alignment, updating, hook-up, improvements, manuals. $10.00, $50.00, $100.00, SIGNAL 2516-1, Colver, CA 90231.

DESCRAMBLERS

AMERICAN—CANADIAN

New Release: C-1000 ZENITH TYPE

Available in the unit and "Cable Sync" suppressed active video input. Ready to go C-1000. $125.00 Complete kit C-1000X. $25.00 Complete kit C-1000L $25.00

SEND 4 FOR COMPLETE INFORMATION CATALOG TO Q. L. D. ENGINEERING P.O. Box 9699

Attention: Gainesville, Maine 04345 (617) 857-8431

Complete Kits C-1000X $25.00

Send 97 for complete information/catalog to determine what type you need.

GRAPHIC EQUALIZERS, ETC.

NOISE eliminators, expanders, power meters, others. Twelve 24 boards (Converter) equalizers from $89.00 kit see R-5 REV 2.00. Catalog: SSS 856 R Lynnrose, Santa Rosa, CA 95404, (707) 546-3985.

24" DEEP DISH MICROWAVE TV ANTENNAS

1.9 to 2.6 GHz

Frequency Range

SPECIAL $74.95

ORION ELECTRONICS

2210 E. Main St.
Temple, Texas 76502
(214) 445-4800

Suggested retail $129.00

www.americanradiohistory.com
<table>
<thead>
<tr>
<th>Ref.</th>
<th>Qty</th>
<th>Price</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74F00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74ALS00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

74LS

74HC

74AC

74HC

LINEAR

ELECTRONICS

MasterCard

Visa

DT1050 - Applications, Teaching aids, appliances, clocks, electronics, telecommunication, wireless communications, language translation, etc.

The DT1050 is a digital clock and calculator designed for use in schools, businesses, and homes. It features a large display, easy-to-use keypad, and a variety of functions including time, temperature, and currency conversion.

Shipping - Add $6.50 for orders under $25.00. Orders over $25.00 ship free.
COMMODOR® ACCESSORIES

RS232 ADAPTER FOR VIC-20 AND COMMODORE 64

- JE882C
 - Over 1500 selectable functions allow you to output all sorts of sounds and music, including 39000 Hz, 250 Hz, 1 kHz, 5 kHz, 10 kHz, etc. Requires 9V DC to power. Plug-in your computer and start creating music! Price: $119.95
- JE225CM
 - Includes.mid data, custom data or any other format you desire. Price: $43.95

VOICE SYNTHESIZER FOR APPLE AND COMMODORE

- JES250C
 - Enables you to create music and customized messages in your home, office, or anywhere you go. Price: $69.95

PRODEM 1200 AND OPTIONS

- Intelligent 300/1200 Baud Telephone Modem with Real Time Clock/Calendar
 - This ProDEM• is a 5-bit EIA 1200/300 baud intelligent modem. It features an enhanced hardware configuration, making it perfect for home, office, or professional use. Price: $39.95
- OPTIONS FOR ProDEM 1200
 - $79.95

KEYBOARDS

- Altium's 54-Key Unencoded Keyboard
 - Single-stroke operation. Specially designed for the Apple II family of products. Price: $69.95

POWER SUPPLIES

- TRANSACTION TECHNOLOGY INC.
 - SYDC 1 A Regulated Power Supply
 - Interchangeable with Apple II power supply. Price: $199.95

DISK DRIVES

- UV-EPROM Eraser
 - 8 Chip - 21 Minutes

APPLE® ACCESSORIES

- JES280AP
 - iPod Speakers" "Sprint"
 - $39.95

COMPUTER MEMORY EXPANSION KITS

- IBM PC, PC XT and Compatible
 - Ideal for increasing your computer's memory capacity. Price: $119.95
- Apple
 - £169.95

JE66A EPROM PROGRAMMER

- 8K to 64K EPROMS - 24K to 47K EPROMS

Document Supported:

- IBM

JES64-A

- $99.95

PROFUMO

- $119.95

SOFTWARE

- $59.95

JAMECO® ECONOMY POWER SUPPLY

- $119.95

JAMCO® Trac IV

- $39.95

SALES SURETHING SHIPMENT

- $29.95

FREE PHONE ORDERS

- 1-800-328-4969

JE66A-AR5

- $119.95

SOURCE TECHNOLOGY

- www.americanradiohistory.com
TOP QUALITY, CURRENT DATE CODE PRODUCTS

Did you receive our new 1985 catalog?

NAME
ADDRESS
CITY
STATE
ZIP

FREE: COUPON TO:

Mail orders shipped within 48 hours
STORES OPEN AT 8:00 a.m.

ANTIQUE RADIOS

continued from page 89

one if you're in the right place at the right time. (The right place at the right time is when someone is cleaning out old junk.) The price you pay depends on how much you want to pay, how badly you want the set, and the radio's age, condition, and classic value.

Antique-radio collectors will have more in common with each other than most other collectors. Many (or most) will have some formal electronics training. Besides being able to repair and restore the chassis, they will have to learn how to restore cabinets. (Some radio and TV servicemen may have at least some ability in this area. Repairing minor scratches or marks often went with being able to repair a chassis.)

Bringing back the deep rich tone of an antique radio will be a satisfying experience. While everything has its price, a collector will find it difficult to part with a set that he has spent many tedious hours restoring. That's true even with a handsome profit in sight. And those who do a good professional restoring job can ask their own prices.

If you are going to have only one antique radio, the console is the only way to go. Of course it will take up some room. But like expensive cars, most of those large sets had better care and less misuse than their cheaper counterparts of the same era.

There is a market developing for antique radios for those other than collectors. Homeowners who want to decorate their houses in a 1930's motif need all the furnishings from that era. Restoring an antique radio is not something the average home decorator can do. An expertly restored antique radio is a fine addition to the rest of the decor.

There is really no age bracket for antique-radio collectors. I have often seen antique radios go to young persons who get to a sale before me. And older folks, of course, will feel nostalgic about having an antique radio that they might have owned or had at a younger age.

R-E
WE HAVE WHAT YOU NEED AT THE PRICES YOU WANT!
CALL TOLL FREE
1-800-543-4330
(IN OHIO, 1-800-762-4315)

Tenmar

- **3 1/2 DIGIT LCD MULTIMETER**
 - DC input impedance 10M ohms
 - Diode and HFE Transistor tests
 - Overload protection
 - Auto polarity
 - 2 year limited Warranty
 - #72-050 $36.80
 - $39.80 (1-4)

Tenmar

- **20MHZ DUAL TRACE OSCILLOSCOPE**
 - Two High Quality 101 probes included.
 - Backed by our 2 year limited warranty.
 - For specifications see MCM Catalog #8 page 118
 - #72-320 $389.95

Tenmar

- **COMBINATION DMM/ CAPACITANCE METER**
 - User can easily read Voltage, AC and DC current, resistance up to 20M ohms.
 - Capacitance up to 20 microfarads.
 - HFE on a clear ½ inch, 3½ digit LCD display.
 - 2 year limited Warranty
 - #72-045 $69.95
 - $74.95 each

WOOFER

- **6 1/2" POLYPROPYLENE WOOFER**
 - Magnet Weight: 15 oz.
 - Structure Weight: 3 lbs.
 - Voice Coil: 1.5" with 8 ohms.
 - Power Handling: RMS-peak 45w-90w.
 - Free Air Resonance: 30 Hz.
 - Frequency Response: 35-3500 Hz.
 - Sensitivity: 1 WATT/METER
 - $15.90 (3-3)
 - $14.90 (4-10)

PYLE WOOFER

- **10" PYLE WOOFER**
 - Magnet Weight: 18 oz.
 - Structure Weight: 4.5 lbs.
 - Voice Coil: 1.5" with 8 ohms.
 - Power Handling: RMS-peak 75w-150w.
 - Free Air Resonance: 40 Hz.
 - Frequency Response: 30-50,000 Hz.
 - Sensitivity: 95 DB.
 - $219.90

Oscilloscope

- **OSCILLOSCOPE PROBE KIT**
 - Bandwidth: 10; 1 position: 100MHz at 3dB into 50 ohms.
 - Rise Time: 10; 1 position: 500ns.
 - Kit contains: 10" earth lead, refraction hook, ½ inch hook, BNC adapter, slimming tool.
 - #72-010 $26.95

Audio Technica

- **CARTRIDGE AT11E**
 - Bi-Radial elliptical shape, diamond stylus.
 - Thinnest stylus ever designed.
 - Excellent tracking performance.
 - #39-020 $9.95

BE SURE TO CALL FOR YOUR FREE 128 PAGE CATALOG! OVER 4,800 ITEMS

Terms:
- Items available for immediate delivery.
- Items available for free shipping to qualified addresses.
- Items available for special orders.
- Terms and conditions apply.
- Items available for immediate delivery.
- Items available for free shipping to qualified addresses.
- Items available for special orders.
- Terms and conditions apply.

We Also Have:
- Audio components:
 - Amplifiers
 - Cables
 - CD Players
 - Cassette Players
 - CD changers
 - Control amplifiers
 - Receivers
 - Speakers
 - Turntables
- Video components:
 - DVD players
 - DVD recorders
 - Game consoles
 - Laptops
 - Monitors
 - Projectors
 - Televisions
- Accessories:
 - Antennas
 - Cables
 - Connectors
 - Speakers
 - Subwoofers
- Telephony:
 - Consumer
 - Business
 - Contact us for details on our current selection.

FEBRUARY 1995

CIRCLE 87 ON FREE INFORMATION CARD

SOURCE NO. RE-6

113

www.americanradiohistory.com
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>047</td>
<td>Electrolytic Capacitor</td>
<td>100321</td>
</tr>
<tr>
<td>121</td>
<td>Ceramic Capacitor</td>
<td>100322</td>
</tr>
<tr>
<td>804</td>
<td>Rectifier Diode</td>
<td>100323</td>
</tr>
<tr>
<td>702</td>
<td>Power Transistor</td>
<td>100324</td>
</tr>
<tr>
<td>606</td>
<td>MOSFET</td>
<td>100325</td>
</tr>
</tbody>
</table>

Voltag Reulators

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7408</td>
<td>CMOS Octal Buffer</td>
<td>100326</td>
</tr>
<tr>
<td>7414</td>
<td>CMOS Dual D-Type JK Flip-Flop</td>
<td>100327</td>
</tr>
<tr>
<td>7417</td>
<td>CMOS Quad 2-Input NAND Gate</td>
<td>100328</td>
</tr>
<tr>
<td>7430</td>
<td>CMOS Octal 2-Input AND Gate</td>
<td>100329</td>
</tr>
<tr>
<td>7432</td>
<td>CMOS Hex 2-Input OR Gate</td>
<td>100330</td>
</tr>
</tbody>
</table>

DIP Switches

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400</td>
<td>DIP Switch</td>
<td>100331</td>
</tr>
<tr>
<td>7401</td>
<td>DIP Switch</td>
<td>100332</td>
</tr>
<tr>
<td>7402</td>
<td>DIP Switch</td>
<td>100333</td>
</tr>
<tr>
<td>7403</td>
<td>DIP Switch</td>
<td>100334</td>
</tr>
<tr>
<td>7404</td>
<td>DIP Switch</td>
<td>100335</td>
</tr>
</tbody>
</table>

EPROMs

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6264</td>
<td>256K x 8 SRAM</td>
<td>100336</td>
</tr>
<tr>
<td>6272</td>
<td>256K x 16 SRAM</td>
<td>100337</td>
</tr>
<tr>
<td>6284</td>
<td>512K x 8 SRAM</td>
<td>100338</td>
</tr>
</tbody>
</table>

Crystal Oscillators

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7050</td>
<td>Crystal Oscillator</td>
<td>100339</td>
</tr>
<tr>
<td>7051</td>
<td>Crystal Oscillator</td>
<td>100340</td>
</tr>
<tr>
<td>7052</td>
<td>Crystal Oscillator</td>
<td>100341</td>
</tr>
<tr>
<td>7053</td>
<td>Crystal Oscillator</td>
<td>100342</td>
</tr>
</tbody>
</table>

Interface Chips

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7404</td>
<td>Interface Chip</td>
<td>100343</td>
</tr>
<tr>
<td>7405</td>
<td>Interface Chip</td>
<td>100344</td>
</tr>
<tr>
<td>7406</td>
<td>Interface Chip</td>
<td>100345</td>
</tr>
<tr>
<td>7407</td>
<td>Interface Chip</td>
<td>100346</td>
</tr>
</tbody>
</table>

5V Regulators

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7805</td>
<td>Positive Regulator</td>
<td>100347</td>
</tr>
<tr>
<td>7809</td>
<td>Positive Regulator</td>
<td>100348</td>
</tr>
<tr>
<td>7811</td>
<td>Positive Regulator</td>
<td>100349</td>
</tr>
<tr>
<td>7812</td>
<td>Positive Regulator</td>
<td>100350</td>
</tr>
<tr>
<td>7815</td>
<td>Positive Regulator</td>
<td>100351</td>
</tr>
</tbody>
</table>

20L8/1 Economy Model

- **CPU**
 - 8088: 848-8000
 - 8086: 538-8000

MOSFETs

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7404</td>
<td>MOSFET</td>
<td>100352</td>
</tr>
<tr>
<td>7405</td>
<td>MOSFET</td>
<td>100353</td>
</tr>
<tr>
<td>7406</td>
<td>MOSFET</td>
<td>100354</td>
</tr>
<tr>
<td>7407</td>
<td>MOSFET</td>
<td>100355</td>
</tr>
<tr>
<td>7408</td>
<td>MOSFET</td>
<td>100356</td>
</tr>
</tbody>
</table>

Vintage

- **IC Master**
 - 8080: 848-8000
 - 8086: 538-8000

Easy IC Selections

- **FREE**
 - **8080**
 - **8086**

Order Today

- **PRODUCTS**
 - **COMPATIBLE**
 - **DOCKOY**

www.americanradiohistory.com
DISKETTES

5¼" - ATHANA
- SS/DD...... 15.90
- SS/DD...... 16.90
- DS/DD...... 22.90

SOFT SECTOR with HUB RING

BULK 5¼" DISKETTES (NO LABEL)
- SS/DD ... 10 for 14.90
- 100 up...... 139.00

(Lifetime Warranty)

The FLIP SORT™
The new Flip Sort™ has all the fine qualities of the original with some added benefits: a new design and 50% greater capacity. Holds 75 diskettes and the price is now lower than ever — $16.95

The Flip Sort PLUS™
The new Flip Sort PLUS™ adds new dimensions to storage. Its smoked acrylic elegance holds over 100 diskettes with all the features you expect from the Flip Sort Family — $24.95

IC SOCKETS

IBM ACCESSORIES

MEMORY EXPANSION KIT

4164 150ns 9 for $45.00

MULTIFUNCTION CARD

- 8K to 384K RAM
- Parallel Port
- Serial Port
- Clock Calendar
- Software Included
- 1-Year Warranty

$249.95

MEMORY CARD

- Expandable to 128K
- Fully compatible with IBM software
- Fully compatible w/IBM diagnostic utilities
- Serial Port Available
- 1-Year Warranty

$199.95

COOLING FAN

38.95

APPLE ACCESSORIES

APPLE COMPATIBLE

POWER SUPPLY

74.95

- Powers Apple type systems
- +5V @ 5A
- +12V @ 3A
- -5V @ .5A
- -12V @ .5A
- Includes Instructions

16K RAM Card — Apple II+
- 2-Year Warranty

Assembled & Tested — 39.95

APPLE COMPATIBLE

DISK DRIVE

299.00

- Full bit-mapped Color Graphics
- Printer Port (LPT1, LPT2, LPT3)
- Serial Port (Com1, Com2)
- IBM PC XT and Portable compatible
- Full software compatibility
- Compatible with Lattice 1-2-3, Multi-Program and Flight Simulator
- Full 2-Year Warranty Parts and Labor

APPLE COMPATIBLE

JOYSTICK

29.95

APPLE COMPATIBLE

RF MODULATOR

38.95

Cooling Fan

29.95

Reg. Power Supply Model 4A/PS (99/4)
- 3 DC Outputs:
- 12V @ .4A
- 5V @ .1A
- 5V @ .2A Highly Filtered

6.95

64K RAM Upgrade

40.00

64K RAM Upgrade

40.00

TERMS: Minimum order $10.00
For shipping and handling, include $2.50 for UPS ground or $3.50 for UPS Blue Box. For each additional air bound, add $1 for UPS Blue Box. California residents must include 8% sales tax. Bay area and LA residents include 8.25% sales tax. Prices are subject to change without notice. We are not responsible for typographical errors. We reserve the right to reject quantities and to substitute manufacturers. All merchandise subject to prior sale.

CALL for VOLUME Quotes

HOURS: Mon - Fri 7:30 to 5:00

Saturdays 10:00 to 3:00

VISIT OUR RETAIL STORE
2100 De La Cruz Blvd
Santa Clara, CA 95050
(408) 988-0597

ALL MERCHANDISE IS 100% GUARANTEED

CIRCLE 110 ON FREE INFORMATION CARD
Table 1: Component List

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC 74151</td>
<td>74151, 700 mA, 5V, 15V</td>
<td>10 each</td>
<td>$10.00</td>
</tr>
<tr>
<td>IC 74306</td>
<td>74306, 700 mA, 5V, 15V</td>
<td>10 each</td>
<td>$10.00</td>
</tr>
<tr>
<td>IC 7574</td>
<td>7574, 700 mA, 5V, 15V</td>
<td>10 each</td>
<td>$10.00</td>
</tr>
<tr>
<td>IC 4075</td>
<td>4075, 700 mA, 5V, 15V</td>
<td>10 each</td>
<td>$10.00</td>
</tr>
<tr>
<td>IC 74C154</td>
<td>74C154, 700 mA, 5V, 15V</td>
<td>10 each</td>
<td>$10.00</td>
</tr>
<tr>
<td>IC 74C903</td>
<td>74C903, 700 mA, 5V, 15V</td>
<td>10 each</td>
<td>$10.00</td>
</tr>
<tr>
<td>IC 74C905</td>
<td>74C905, 700 mA, 5V, 15V</td>
<td>10 each</td>
<td>$10.00</td>
</tr>
<tr>
<td>IC 74HC03</td>
<td>74HC03, 700 mA, 5V, 15V</td>
<td>10 each</td>
<td>$10.00</td>
</tr>
<tr>
<td>IC 74HC04</td>
<td>74HC04, 700 mA, 5V, 15V</td>
<td>10 each</td>
<td>$10.00</td>
</tr>
<tr>
<td>IC 74HC05</td>
<td>74HC05, 700 mA, 5V, 15V</td>
<td>10 each</td>
<td>$10.00</td>
</tr>
<tr>
<td>IC 74HC06</td>
<td>74HC06, 700 mA, 5V, 15V</td>
<td>10 each</td>
<td>$10.00</td>
</tr>
</tbody>
</table>

Table 2: Component List (Continued)

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC 74HC306</td>
<td>74HC306, 700 mA, 5V, 15V</td>
<td>10 each</td>
<td>$10.00</td>
</tr>
<tr>
<td>IC 74HC3154</td>
<td>74HC3154, 700 mA, 5V, 15V</td>
<td>10 each</td>
<td>$10.00</td>
</tr>
<tr>
<td>IC 74HC3903</td>
<td>74HC3903, 700 mA, 5V, 15V</td>
<td>10 each</td>
<td>$10.00</td>
</tr>
<tr>
<td>IC 74HC3905</td>
<td>74HC3905, 700 mA, 5V, 15V</td>
<td>10 each</td>
<td>$10.00</td>
</tr>
<tr>
<td>IC 74HC5306</td>
<td>74HC5306, 700 mA, 5V, 15V</td>
<td>10 each</td>
<td>$10.00</td>
</tr>
<tr>
<td>IC 74HC53154</td>
<td>74HC53154, 700 mA, 5V, 15V</td>
<td>10 each</td>
<td>$10.00</td>
</tr>
<tr>
<td>IC 74HC5903</td>
<td>74HC5903, 700 mA, 5V, 15V</td>
<td>10 each</td>
<td>$10.00</td>
</tr>
<tr>
<td>IC 74HC5905</td>
<td>74HC5905, 700 mA, 5V, 15V</td>
<td>10 each</td>
<td>$10.00</td>
</tr>
<tr>
<td>IC 74HC6306</td>
<td>74HC6306, 700 mA, 5V, 15V</td>
<td>10 each</td>
<td>$10.00</td>
</tr>
<tr>
<td>IC 74HC63154</td>
<td>74HC63154, 700 mA, 5V, 15V</td>
<td>10 each</td>
<td>$10.00</td>
</tr>
</tbody>
</table>

Diagram

The diagram illustrates the circuit layout and component connections for the described electronic project. It includes labeled parts, connections, and functional blocks. The circuit is designed to perform specific functions, such as signal processing and control, as described in the accompanying text. The components are arranged in a logical sequence to ensure proper operation of the system. The diagram provides a clear visual representation of the design, aiding in the understanding of how the various parts interact to achieve the intended outcome.

Notes

- All components are rated for operation within their specified voltage and current limits.
- The circuit design considerations include power supply efficiency, noise reduction, and signal integrity.
- The diagram is a key resource for assembly and troubleshooting, as it outlines the steps and connections necessary for proper setup.
- Component values and specifications are adhered to ensure reliability and performance.
WE HAVE QUALITY PARTS, DISCOUNT PRICES AND FAST SHIPPING!

TRANSFORMERS
120 volt primaries
- 8 VOLT @ 160 MA $0.95
- 12 VOLT @ 160 MA $0.95
- 15 VOLT @ 20 MA $0.30
- 18 VOLT @ 20 MA $0.40
- 24 VOLT @ 20 MA $0.20
- 24 VOLT @ 1 AMP $0.50
- 30 VOLT @ 1 AMP $0.60
- 40 VOLT @ 1 AMP $0.75
- 50 VOLT @ 1 AMP $0.80
- 60 VOLT @ 1 AMP $0.85

MICROSWITCHES
3 station NON-INTERLOCKING
- 16 MA $0.20
- 32 MA $0.25
- 64 MA $0.30
- 120 MA $0.35

EACH
- SOLDER TYPE PLUGS AND CONNECTORS USE EARLY BURNING KESTER MOUNTS $0.75 EACH
- 1/4" MOUNTS $1.00
- 1/2" MOUNTS $1.25
- 5/8" MOUNTS $1.50

MIKE CONNECTOR
SOLDER TYPE PLUGS AND CONNECTORS USE EARLY BURNING KESTER MOUNTS $0.75 EACH
- 1/4" MOUNTS $1.00
- 1/2" MOUNTS $1.25
- 5/8" MOUNTS $1.50

METER - 0 - 15 V.D.C.
- 3 1/2-DIGIT
- 1/2" MOUNT $1.75
- 3/4" MOUNT $2.25
- 1 1/4" MOUNT $2.75

MINIATURE D TYPE CONNECTOR
- 3 STATION
- EACH $0.35
- EACH $0.30

SOLDER TYPE PLUGS AND CONNECTORS USE EARLY BURNING KESTER MOUNTS $0.75 EACH
- 1/4" MOUNTS $1.00
- 1/2" MOUNTS $1.25
- 5/8" MOUNTS $1.50

MINIATURE D RELAY CONNECTOR
- EACH $0.25
- EACH $0.20

PARALLEL PRINTING CONNECTOR
- 5 STATION NON-INTERLOCKING
- SAME AS ABOVE EXCEPT EACH SWITCH OPERATES INDEPENDENTLY $0.40 EACH
- EACH $0.35

EACH
- 1/4" MOUNTS $0.50
- 1/2" MOUNTS $0.60
- 5/8" MOUNTS $0.70

FREE LINE CORDS
- 5' $0.00
- 15' $0.10
- 30' $0.15
- 50' $0.20

FREE! FREE! FREE! SEND FOR LARGER FREE! FREE! FREE!

FREE GEL BATTERY
- 12 VOLT @ 1.2 AMP HOUR
- 3/4" D x 1 1/4"" L $1.25
- 1 1/4" D x 2 1/4" L $1.50

FREE GEL BATTERIES
- 10 FOR $10.00

FREE POWER SUPPLY W/ PRE-AMP
- THIS SUPPLY WAS USED TO POWER AN 8 TRACK/8 TRACK CASSETTE UNIT. IT WILL SUPPLY 18 VDC AND INCLUDES A SMALL PRE-AMP TO RISK SIGNAL LEVEL TO RCA PLUGS FOR LINE INPUT.
- $49.00

FREE SLIDE 1 POT
- 1000 K linear tape
- 1 1/2" long
- 6" travel
- 1/8" shaft
- 5' stand
- 10 FOR $10.00

FREE! FREE! FREE! SEND FOR LARGER FREE! FREE! FREE!

FREE METAL OXIDE VARISTOR
- 50 VDC @ 15 AMP MAX.
- 1/2" D X 1 1/2" L
- 5% TOLERANCE
- 10 FOR $6.50

FREE! FREE! FREE! SEND FOR LARGER FREE! FREE! FREE!

FREE! FREE! FREE! SEND FOR LARGER FREE! FREE! FREE!

FREE COMPUTER GRADE CAPACITORS
- 2000 mfd, 200 VDC $2.00
- 300 mfd, 400 VDC $1.50
- 100 mfd, 1000 VDC $1.25
- 22 mfd, 2500 VDC $1.00

FREE! FREE! FREE! SEND FOR LARGER FREE! FREE! FREE!

FREE! FREE! FREE! SEND FOR LARGER FREE! FREE! FREE!

FREE ALL ELECTRONICS CORP.
905 S. VERNON AVE. P.O. BOX 20406 LOS ANGELES, CA 90006
310 340-9900

FEBRUARY 1985

117
QUALITY SPECIALS

DELUXE 46 CHANNEL CABLE TV CONVERTER

With Fine Tuning Dial

$24.95

BICYCLE COMPUTER

A Dashboard for your Bike

$49.95

NEW DIGITAL SCALE

Lab accuracy at an every day price

Reads 1 gram or 1 oz.

Best Value $74.95

GOLDSMITH

GOLD SMITH

CORPORATION

175 E Industrial Park Dr Mattawan, MI 49069

FREE CATALOG OF NEW DEVICES

 Satisfaction Guaranteed

CIRCLE 251 ON FREE INFORMATION CARD

DON'T BLAME THE SOFTWARE!

Our Isolators eliminate equipment interaction, clean up interference, cur dashing power line spikes and lightning bursts.

ISO-1 ISOLATOR

3 isolated sockets; quality spike suppression; basic protection... 881.95

ISO-3 SUPER-ISOLATOR

3 dual isolated sockets; suppressor; commercial protection... 812.95

ISO-17 MAGNUM ISOLATOR

4 quad isolated sockets; suppressor; laboratory grade protection... 8213.95

Electronic Specialists, Inc.

171 S Main, North Manchester, IN 46960 (219) 653-1932

FREE ORDER DEPT 1-800-225-4876

CIRCLE 60 ON FREE INFORMATION CARD

HIGH QUALITY 75dB GAIN

MICROWAVE TV SYSTEM

Variable from 1.9 to 2.5 GHz

The latest advance in microwave technology with a SNOW-FREE PICTURE.

Two Models to choose from:

Both Models Include:

- Power Supply and Coax Switch
- 50' of RG-59/U coax with Connector
- Transformer for 75 to 300 Ohms
- All Mounting Hardware for Fast and Easy Installation

20' Fiberglass Dish

Special $98.95

20' Aluminum Dish

Up to 55dB Gain

Low Price $98.95

Add 10% for Foreign orders or U.S. Parcel Post

PROFESSIONAL VIDEO, Inc.

4970 Hollywood Blvd., Hollywood, Calif. 90027

For C.O.D. Orders Call (213) 219-0227

CIRCLE 119 ON FREE INFORMATION CARD

ACTIVE RECEIVING ANTENNA

Gives excellent reception, 50 KHz to 30 MHz.

New MFJ-1024 Active Receiving Antenna mounts outdoors away from electrical noise for maximum signal.

Price for standard units dipping below $100 in June of this year, and by September, even the higher-grade, 100-degree units dropped below $100 (to dealers, in modest quantities).

Through all that, the dealer is more confused than ever. When prices were in the $250 to $300 region for standard 120-degree units, lower-priced (no-isolator or lower-gain) LNA's seemed like worthwhile alternative components. However, with the price of standard units dropping below $100, the pricing advantage for lower-gain or non-isolator models has eroded.

The four major component areas (antenna, LNA, receiver, and motor drive), the motor-drive remains the last area where intense competition and traditional price-cutting has not been applied. That will, of course, change during 1985 since there's significant profit left there for OEM's or importers who are able to reduce costs while not getting the industry back to the "dog-days" of 1981 (when motor-drives were the bane of every dealer's existence).
THE FIRST NAME IN ELECTRONIC TEST GEAR

20 MHz DUAL TRACE OSCILLOSCOPE
$399.95*

45 MHz DUAL SWEEP OSCILLOSCOPE
$799.95*

NEW RAMSEY 1200 DIGITAL MULTIMETER
$24.95 incl. leads and battery included

NEW RAMSEY D-1100 VOM MULTITESTER
$19.95 incl. leads and battery included

ACCESSORIES FOR RAMSEY COUNTERS

PHONE ORDERS CALL
716-586-3950
TELEX 466735 RAMSEY CI
ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

<table>
<thead>
<tr>
<th>Free Information Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>282</td>
</tr>
<tr>
<td>112</td>
<td>96</td>
</tr>
<tr>
<td>27</td>
<td>116</td>
</tr>
<tr>
<td>106</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>264</td>
</tr>
<tr>
<td>108</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>119</td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Gernsback Publications, Inc.
200 Park Ave. South
New York, NY 10003
(212) 777-6400
Chairman of the Board:
M. Harvey Gernsback
President: Larry Steckler

ADVERTISING SALES 212 777-6400
Larry Steckler
publisher
Shelli Weinman
advertising associate
Arline Fishman
advertising coordinator
Lisa Strassman
credit manager
Dona Sala
credit associate
Naoma Mattrin
advertising assistant

Sales Office

EAST-SOUTHEAST
Stanley Levitan
Radio-Electronics
200 Park Ave., South
New York, NY 10003
(212) 777-6400

MidWEST/Texas/Arkansas-Okl.
Ralph Berg
Radio-Electronics
540 Frontage Road, Suite 325
Northfield, IL 60093
312-446-1444

PACIFIC COAST/Mountain States
Marvin Green
Radio-Electronics
15635 Morrison St., Suite 227
Sherman Oaks, CA 91403
818-996-2001

www.americanradiohistory.com
Our book has more adapter varieties and combinations than you'll care to count. The point is, we want to make sure that one or more of our adapter models will suit your design and test requirements to a tee.

And now that you have an idea of our depth and variety, you should also be aware that the adapters we design and manufacture are considered by electronic design engineers to be right at the top. No question. A superior product? You know you've got that. And you should know, also, that we make sure you receive fast service and specified quantity through your favorite electronic parts distributor.

After all, we wrote the book.

And it's free. Our products are described and illustrated in our 1985 general catalog.

Pomona wrote the book on adapters. Don't miss it.

ITT
Pomona Electronics

Just call (714) 623-3463 or 623-6751. Or write to us at ITT Pomona Electronics, a division of ITT Corporation. 1500 E. Ninth St., Pomona, CA 91769.

Pomona wrote the book on adapters. Don't miss it.

www.americanradiohistory.com
Digital Capacitance Meter
8 ranges with full scale values to 2000 uF

FEATURES
- Broad test range - 1 pF to 2000 uF
- LSI circuit provides high reliability and durability
- Lower power consumption
- Clear readout even in bright light
- Crystal time base
- Easy to operate, compact, lightweight
- Protected from charged capacitors
- Frequency range - 800 Hz to 8 Hz

Model DCM-602
$7995

Digital Multimeters
- DC Voltage 100 uV - 1000 V
- AC Voltage 100 uV - 750 V
- AC/DC Current 200 uA - 10 Amps
- Resistance 20 Megohms
- Capacitance (DVM 636/638) 1 pF - 20 uF

Model DVM-634
$4875

- 7 functions, 32 ranges
- Transistor measurement included

Model DVM-638
$7995

- 11 functions, 38 ranges
- Includes logic level detector, audible visual continuity, capacitance and conductance measurement

Model DVM-636
$6275

- 8 functions, 37 ranges
- Capacitance measurement included

Charge it with VISA/MASTERCARD. Money orders, checks accepted. C.O.O.'s require 25% deposit.

Fordham
260 Motor Parkway, Hauppauge, NY 11788

Toll Free
800-645-9518
In NY State 800-832-1446

Service and Shipping Charge Schedule

<table>
<thead>
<tr>
<th>For Orders</th>
<th>ADD</th>
<th>$50-250</th>
<th>$251-500</th>
<th>$501-750</th>
<th>$751-1,000</th>
<th>$1,001 and up</th>
</tr>
</thead>
<tbody>
<tr>
<td>$25-250</td>
<td></td>
<td>$4.50</td>
<td>$5.50</td>
<td>$8.50</td>
<td>$12.50</td>
<td>$15.00</td>
</tr>
</tbody>
</table>

SCAPE HAND-HELD DIGITAL
CAPACITANCE and MULTIMETERS

- 0.5% DC Accuracy
- Highest Quality
- Highest Performance
- Lowest Prices