Now! Tek quality and expert advice are just a free phone call away!

Our direct order line gets you the industry's leading price/performance portables... and fast answers from experts! The 60 MHz single time base delay 2213A, the 60 MHz dual time base 2215A and the 100 MHz dual time base 2235 offer unprecedented reliability and affordability, plus the industry's first 3-year warranty* on labor and parts. CRT included.

The cost: just $1200 for the 2213A, $1450 for the 2215A, $1650 for the 2235.† Even at these low prices, there's no scrimping on performance. You have the bandwidth for digital and analog circuits. The sensitivity for low signal measurements. The sweep speeds for fast logic families. And delayed sweep for fast, accurate timing measurements. All scopes are UL Listed and CSA approved.

You can order, or obtain literature, through the Tek National Marketing Center. Technical personnel, expert in scope applications, will answer your questions and expedite delivery. Direct orders include comprehensive 3-year warranty*, operator's manual, two 10X probes, 15-day return policy and worldwide service backup.

Order toll free: 1-800-426-2200, Ask for Rick.
In Oregon, call collect (503) 627-9000. Or write Tektronix, Inc. P.O. Box 500, Delivery Station Y6-088 Beaverton, OR 97077

Copyright © 1984 Tektronix, Inc. All Rights Reserved. †Price F.O.B. Beaverton, OR. *3-year warranty includes CRT.

100 MHz dual time base scope. Easy-to-read CRT; bright, full-sized 6x10 cm; 14 kV accelerating potential complete with BEAM FIND, separate A/B dual intensity controls, FOCUS and TRACE ROTATION.

Wide range vertical sensitivity. Choose from 2 mV/div (1x probe) to 50 V/div (10x probe); color-keyed for 1x and 10x probes, variable control increases scale factor by 2.5 to 1.

Two 100 MHz, high sensitivity channels. 3.8 ns rise time; dc to 100 MHz bandwidth from 5 V/div to 5 mV/div. extended sensitivity of 2 mV/div at 90 MHz.

A/B sweep selection. Calibrated A sweeps from 50 ns/div to 0.5 s/div; B sweeps from 50 ns/div to 50 ms/div, variable control for up to 2:5 to 1 reduction; and 10x magnification for sweeps to 5 ms/div.

Dual time base measurements. Select either A or B sweeps, or both alternately with A intensified by B.

B trigger slope and level. Use B trigger slope to select B-triggered or run-after-delay modes; use B TRIGGER SLOPE to select transitions.

Our direct order line gets you the industry's leading price/performance portables... and fast answers from experts! The 60 MHz single time base delay 2213A, the 60 MHz dual time base 2215A and the 100 MHz dual time base 2235 offer unprecedented reliability and affordability, plus the industry's first 3-year warranty* on labor and parts. CRT included.

The cost: just $1200 for the 2213A, $1450 for the 2215A, $1650 for the 2235.† Even at these low prices, there's no scrimping on performance. You have the bandwidth for digital and analog circuits. The sensitivity for low signal measurements. The sweep speeds for fast logic families. And delayed sweep for fast, accurate timing measurements. All scopes are UL Listed and CSA approved.

You can order, or obtain literature, through the Tek National Marketing Center. Technical personnel, expert in scope applications, will answer your questions and expedite delivery. Direct orders include comprehensive 3-year warranty*, operator's manual, two 10X probes, 15-day return policy and worldwide service backup.

Order toll free: 1-800-426-2200, Ask for Rick.
In Oregon, call collect (503) 627-9000. Or write Tektronix, Inc. P.O. Box 500, Delivery Station Y6-088 Beaverton, OR 97077

Copyright © 1984 Tektronix, Inc. All Rights Reserved. †Price F.O.B. Beaverton, OR. *3-year warranty includes CRT.
VIDEO ACCESSORIES

- Highest quality
- Highest performance
- Lowest prices

bp VIDEO-CINE CONVERTER

The BP Video Cine Converter is an optical device that allows the easy transfer of slides, 8mm or 16mm movie film to VCR tape. The Video-Cine Converter's precision optics put the image from your movie or slide projector on a high-contrast, rear projection screen. Your video camera shoots that image, can color-correct faded pictures, add narration to other sound, and can be used with any video camera or slide projector. If your video camera lacks close-up capability, you will need a macro lens attachment.

MODEL V-1701 $34.95

FOR ULTIMATE VIEWING

TEKNIKA

WIRELESS REMOTE CONTROL TV TUNER & CABLE CONVERTER WITH VOLUME CONTROL

Model 6510 $169.95

Wireless remote control with volume for cable TV, VHF-UHF antenna systems upgrades any TV to 81 channel capability.
- Works with any TV set
- Quick, easy installation
- Off-air and cable compatible
- Quartz frequency synthesizer tuning
- Direct access/memory scan selector
- Ultra-compact, hand-held wireless remote control

61 CHANNEL WIRELESS REMOTE CONTROL

Model V7661 $79.95

Wireless remote control on/off, channel selection and fine tuning.
- Works with any TV
- 61 channel capability
- Microcomputer controlled PLL operation
- Converter panel controllable for channel up/down, on/off, fine tuning
- LED display
- Compatible with CATV systems

STABILIZER/IMAGE ENHANCER/RF CONVERTER/VIDEO FADE 1/2 WAY DISTRIBUTION AMPLIFIER

Model V1880 $99.95

The most versatile, all-in-one video processor. Can be used as a video guard remover for video tapes, enhancer, video to RF converter, professional video fade in and out and a dual output distribution amplifier.

Hook-up cable kit $11.75

bp VIDEO TAPE REWINDER

Model V7777 VHS $49.95

Reduce wear and tear of your VCR heads with the AC powered circuit protected rewinders, LED power-on indicators.

Model V7778 BETA $49.95

Charge it with VISA/MASTERCARD. Phone orders accepted.

Fordham

260 Motor Parkway, Hauppauge, NY 11788

Toll Free 800-645-9518
In NY State 800-832-1446

Service and Shipping Charge Schedule

<table>
<thead>
<tr>
<th>FOR ORDERS</th>
<th>ADD</th>
</tr>
</thead>
<tbody>
<tr>
<td>$25-250</td>
<td>$4.50</td>
</tr>
<tr>
<td>$251-500</td>
<td>$6.50</td>
</tr>
<tr>
<td>$501-750</td>
<td>$8.50</td>
</tr>
<tr>
<td>$751-1,000</td>
<td>$12.50</td>
</tr>
<tr>
<td>$1,001 and up</td>
<td>$15.00</td>
</tr>
</tbody>
</table>

www.americanradiohistory.com
NEW! Bearcat® Rebate Offer

Get a coupon good for $35.00 rebate when you purchase a Bearcat 210XL, $20.00 rebate when you purchase a Bearcat 201 or 100, $10 rebate on models DX1000 or 300, 15% rebate on models 20/20 or 201. To get your rebate, mail your complete order form to Uniden Communications Electronics. The rebate program is subject to Uniden's Terms and Conditions. The terms and conditions may be modified at any time without notice.

FREE Bearcat® Rebate Offer

Get a coupon good for $35.00 rebate when you purchase a Bearcat 210XL, $20.00 rebate when you purchase a Bearcat 201 or 100, $10 rebate on models DX1000 or 300, 15% rebate on models 20/20 or 201. To get your rebate, mail your complete order form to Uniden Communications Electronics. The rebate program is subject to Uniden's Terms and Conditions. The terms and conditions may be modified at any time without notice.

NEW! Bearcat® 201-G

List price $259.95/CE price $164.00/$20.00 rebate
Your final cost is a low $155.00
3-Band, 18 Channels • AC only
Priority Channel • Scan Delay • One Key Weather
Frequency range: 30-50, 138-174, 400-512 MHz.
Price includes all taxes, handling and shipping.

NEW! Bearcat® 180-G

List price $259.95/CE price $164.00/$20.00 rebate
Your final cost is a low $155.00
3-Band, 18 Channels • Priority Channel • Scan Delay
Frequency range: 30-50, 138-174, 400-512 MHz.
Price includes all taxes, handling and shipping.

NEW! Bearcat® 100-G

List price $259.95/CE price $164.00/$20.00 rebate
Your final cost is a low $155.00
C-Band, 8 Channels • AC only
Priority Channel • Scan Delay
Frequency range: 406-512 MHz.
Price includes all taxes, handling and shipping.

Bearcat® 100XL-G

List price $359.95/CE price $259.00/$35.00 rebate
Your final cost is a low $224.00
10-Band Channels • Crystal Clear AC/DC
Price includes all taxes, handling and shipping.

Bearcat® 200XL-G

List price $399.95/CE price $274.00/$40.00 rebate
Your final cost is a low $239.00
10-Band Channels • Priority Channel • AC/DC
Price includes all taxes, handling and shipping.

Bearcat® 260-G

List price $399.95/CE price $274.00/$40.00 rebate
Your final cost is a low $239.00
10-Band Channels • Priority Channel • AC/DC
Price includes all taxes, handling and shipping.

Uniden® PC55-G

List price $89.95/CE price $59.00
The Uniden® PC55-G Channel-911 radio is a feature-packed single channel emergency scanner. It includes a built-in tone and digital display, 911 priority reception, an emergency beacon bracket, dimensions 6.5" x 5.5" x 2.25", weight 1.8 lbs., and a special low price.

Uniden® PC322-G

List price $159.95/CE price $99.00
The Uniden® PC322-G is a 22-channel mobile CB radio. It includes both the same features as the Uniden® PC322-G, plus an external speaker, 100% increase, 15% more display, 25% faster sweep, 10% more features, 20% more power, and a special low price.

For more information call
1-800-SCANNER
For credit card orders call
1-800-USA-SCAN

4 COMMUNICATIONS ELECTRONICS

Consumer Products Division
P.O. Box 1045 D.A. Arbor, Michigan 48104 104 U.S.A.
Call 1-800-USA-SCAN or outside U.S.A., 313-973-8888

www.americanradiohistory.com
APRIL 85

BUILD THIS

<table>
<thead>
<tr>
<th>43</th>
<th>REAL-TIME SPECTRUM ANALYZER</th>
<th>Learn more about your stereo system, and how to get the most out of it, with this useful tool. Roger Cota and Lloyd Addington</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>VIDEO SYNC SEPARATOR</td>
<td>This oscilloscope upgrade lets you really see what those video signals look like. Steve Pence</td>
</tr>
<tr>
<td>59</td>
<td>THREE HIGH-COMPONENT SCANNER ANTENNAS</td>
<td>Pull in those signals that you’ve been missing with one of these high-performance designs. Loren Freburg</td>
</tr>
</tbody>
</table>

TECHNOLOGY

8	**VIDEO NEWS**	Tomorrow’s news and technology in this quickly changing industry. David Lachenbruch
12	**SATELLITE TV**	Today’s satellite receivers. Bob Cooper, Jr.
48	**CELLULAR MOBILE TELEPHONES**	All about the system that is revolutionizing mobile telephone communications. Marc Stern

CIRCUITS AND COMPONENTS

40	**NEW IDEAS**	Making electronic music.
63	**HOW TO DESIGN MICROPROCESSOR-BASED PROJECTS**	Add some “intelligence” to your next project. Tom Fox
75	**DESIGNING WITH DIGITAL IC’S**	Part 2. A look at CMOS and CMOS devices, and the special handling that they require. Joseph J. Carr
78	**HOBBY CORNER**	A simple antenna tuner. Earl “Doc” Savage, K4DS
84	**DRAWING BOARD**	Automatic data sequencing. Robert Grossblatt

VIDEO

67	**SERVICING VIDEODISC PLAYERS**	Part 4. This month, we conclude our series on videodisc players and how to troubleshoot and service them. John D. Lenk
90	**SERVICE CLINIC**	What’s “new” in TV. Jack Darr
90	**SERVICE QUESTIONS**	Radio-Electronics’ service editor answers readers questions.

RADIO

| 82 | **COMMUNICATIONS CORNER** | Odds and ends. Herb Friedman |
| 88 | **ANTEQUE RADIOS** | Restoring those antiques. Richard D. Fitch |

COMPUTERS

| 30 | **MFJ Enterprises MFJ-989 Antenna Tuner** |

EQUIPMENT REPORTS

| 27 | **Alden Model 9321 Weatherchart Recorder** |
| 38 | **New Products** |

DEPARTMENTS

112	**Advertising and Sales Offices**
112	**Advertising Index**
113	**Free Information Card**
20	**Letters**
95	**Market Center**
6	**What's News**

Radio-Electronics (ISSN 0033-7862) Published monthly by Gemsback Publications, Inc., 200 Park Avenue South, New York, NY 10003. Second-Class postage paid at New York, NY and additional mailing offices. Second-Class mail authorized at Ottawa, Canada. One-year subscription rate U.S.A. and possessions $15.97, Canada $20.87, all other countries $25.47. Subscription orders payable at U.S. funds only, International Postal Order or check drawn on a U.S. bank. Single copies $1.95. © 1985 by Gemsback Publications, Inc. All rights reserved. Printed in U.S.A.

A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs (their return is desired should they be rejected). We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.
COVER 1

It never seems to fail: Those brand new speakers, that sounded so wonderful in the showroom, sound so disappointing when you set them up in your listening room. The explanation for that is simple: Your system has to be adjusted to accommodate your listening room. An equalizer can help, but only if it's adjusted properly to correct the response of the loudspeakers. That's where our real-time spectrum analyzer comes in. It can turn the job of adjusting an equalizer from a frustrating one to an easy one. Find out more about it, including how to build it, starting on page 43.

NEXT MONTH

ON SALE APRIL 11

COMPUTER-CONTROLLED ROBOT
Use a popular personal computer to operate a robot arm.

SERVICING CORDLESS PHONES
All about those devices and how to troubleshoot and repair them.

OPTOCOUPERS
Learn how to use those versatile devices in your circuit designs.

STEREO POWER METER
More than a meter, it also disconnects your speakers from your system at the first sign of trouble.

AND LOTS MORE!
It holds.

$129* gets you the world's first handheld digital/analog multimeter with "Touch Hold."

The Fluke 77

Its unique "Touch Hold"** function automatically senses and holds readings, leaving you free to concentrate on positioning test leads without having to watch the display.

Then, when you have a valid reading, it signals you with an audible beep.

The Fluke 77 is perfect for those test situations where accessibility is a problem, or when extra care is needed for critical measurements.

It's the top model in the world champion Fluke 70 Series line — the first industrial quality autoranging multimeters to combine digital and analog displays. These tough, American-made meters feature a three-year warranty and 2000+ hour battery life.

So call now for the complete story on the Fluke 77 with "Touch Hold." Because if you don't deserve the world's first, who in the world does?

For the name of your distributor or a free brochure, call our toll-free hotline anytime 1-800-227-3800, Ext. 229.

From outside the U.S., call 1-402-496-1350, Ext. 229.

* Suggested U.S. list price. Effective July 1, 1984
** Patent pending
Comsat, Mitsubishi announce agreement

Comsat Technology Products (CTP), the equipment manufacturing arm of Comsat Satellite Corp, has signed a teaming agreement with Mitsubishi Electric Corp of Tokyo, Japan, to manufacture and market low-cost, small-aperture Ku-band earth stations for use in high-speed document distribution and private data-networks.

Mitsubishi will produce the RF portion of the terminals, and CTP will be responsible for making the digital, signal processing components, and for integrating and marketing the complete earth stations.

According to CTP president A.W. Perigard, the introduction of small-aperture, low-cost earth stations has led many U.S. companies to begin planning for large electronic mail and data networks to take advantage of the efficiencies of satellite communications. The combination of Mitsubishi's price-competitive microwave components and CTP's signal-processing equipment and system integration, he believes, should ensure the success of the venture.

New magnesium batteries hold promise for future

A dry cell with a shelf life of at least five years and a voltage output of 1.9 is promised as a result of research in magnesium battery design culminating in a recent patent application by ACR Electronics of Hollywood, FL. In addition, the new battery would have greater capacity for its size, lower Internal resistance, and a higher peak discharge rate than present dry cells.

Magnesium's greater tendency toward chemical reaction—which is the cause of its higher voltage—also forms a protective layer on its surface when the battery is idle. This inhibits the "local action" or spontaneous internal discharge, that runs down a zinc-carbon battery when not in use. But this film, which so greatly increases shelf life, takes time to break down when the circuit is "turned on." The delay can last as much as a minute before the load breaks down the protective film and current rises to normal. A second problem is that the chemical reaction in the cell builds up gas, which must be vented.

Research by ACR has reduced or eliminated those problems. An improved electrolyte produces water instead of gas, and other improvements have reduced the "current-on" delay to less than 0.3 seconds.

A unique feature of the magnesium batteries is their "inside-out" construction. Instead of the negative zinc can, the carbon positive element is cast in one piece to serve both as container and positive center pole. The negative element is an extruded magnesium cylinder that fits concentrically between the center carbon electrode and "can." This positioning also reduces the length of the electrical paths in the cells, reducing internal resistance.

Although magnesium batteries have been used for some years in special applications, such as marine markers and rescue lights, and in several space programs, they are not yet quite ready for general consumer use. A number of problems remain—among which are adaption of radio equipment or flashlight bulbs to the 1.9-volt rating of the new cell. But it is reasonable to suppose that we will in time have a flashlight that can remain idle in the car for years and still supply top performance. R-E
New from B&K-PRECISION, for telephone service, test and repair

COMPLETE TELEPHONE PRODUCT ANALYZER. A total self-contained system for diagnostic testing, servicing and calibration of corded and cordless telephones, answering machines and automatic dialers. Performs every test you’ll ever need to test and repair any phone product including verification of pulse and touch-tone numbers, measurement of frequency error and modulation deviation. MODEL 1050 $1695

CORDLESS TELEPHONE TESTER. Provides full servicing and calibration capability for base and portable phone units. All rf test and measurement functions replaces expensive FM generators and modulation monitors, yet performs all tests required for cordless phone system analysis and repair. Including full frequency testing and alignment. Generates all prior and recently approved frequencies. MODEL 1047 $895

TELEPHONE PRODUCT TESTER. For in-store consumer or service use. Tests handset cord, phone line cord, dial/relay functions, voice and dial number levels, ring function and voice quality at corded and cordless phones, answering machines and automatic dialers. MODEL 1045 $395

TELEPHONE LINE ANALYZER. Quickly identifies a problem as external or in the phone itself. Tests for condition of external phone line, phone line cord, ring and line voltage levels and polarity. Easy to use, no batteries or external power needed. MODEL 1042 $19.95

TELEPHONE TESTER. For in-store consumer or service use. Tests handset cord, phone line cord, dial/relay functions, voice and dial number levels, ring function and voice quality at corded and cordless phones, answering machines and automatic dialers. MODEL 1045 $395

These test instruments cover every possible level of service required for telephone products. They are equally useful for training. The instruction manuals provided offer a comprehensive course of training for service personnel and students. Call your nearest B&K-PRECISION distributor for off-the-shelf delivery or additional information, or contact B&K-PRECISION.

DYNASCAN CORPORATION
640 W. Cortland Street • Chicago, Illinois 60633 • 312-889-9087

CIRCLE 77 ON FREE INFORMATION CARD
VIDEO NEWS

DAVID LACHENBRUCH

CONTRIBUTING EDITOR

- **Here comes Super Beta.** Around midyear, Sony and other Beta VCR manufacturers are scheduled to introduce "Super Beta," a new version of the Beta system, which is claimed to achieve a 20% increase in picture resolution. Super Beta recorders use standard Beta cassettes, but shift the carrier signal frequency upward by 800 kHz resulting in a wider luminance bandwidth for a sharper picture with more detail. In addition, the system has special video noise reduction and emphasis circuitry.

Super Beta produces a picture with more than 300 lines of horizontal resolution and about 45dB signal-to-noise, according to Sony estimates. Thus it falls short of the super-high-band VCR's mentioned previously in this column as being in the works. However, the picture is extremely good, and it particularly excels for home editing—demonstrations showed that a fourth-generation Super Beta tape was at least as good as a second-generation tape made on a standard Beta recorder. The Beta group claims complete compatibility—that is, tapes recorded on Super Beta can be played back on standard Beta recorders and standard tapes can be played on Super Beta machines.

- **More 8mm VCR's.** The first VCR's in the new 8mm video format to be sold here were combination camera-recorders, or camcorders, by Eastman Kodak, General Electric, and Polaroid. Now along come the first "separates"—tiny portable decks designed for use with miniaturized video cameras and with separate tuner-timers.

The little decks weigh about four pounds or so, including battery, and use the new 8mm cassettes. The Sanyo unit, priced at $1,100, including tuner-timer, has a two-speed switch to double the playing time of a 90-minute cassette. Canon's Canovision deck is priced at $900, the companion programmable tuner-timer at $300.

- **35-inch color tube.** The world's biggest direct-view color picture tube, a 35-inch model, will be introduced in the United States this fall in a new set by Mitsubishi. The TV console will sell for around $3,000, but the company promises future models at lower prices. The tube is 22.4 inches deep, weighs 110 pounds, has center brightness of 170 foot-lamberts with resolution comparable to Mitsubishi's best 25-inch-330 lines horizontally on broadcast TV, 400 on video input. Power consumption of the set will be 160 watts as compared with 160 watts for Mitsubishi's 25-inch models.

The largest picture tube in any set previously offered in the United States was 30 inches in a special Sony 35th Anniversary model console produced in a limited run of 1,000 sets, retailing at $10,000. The biggest tubes scheduled for production in the United States measure 27 inches diagonally and won't be available until 1986.

- **TV extenders.** Two new gadgets are designed to make it easy to add more TV sets to your home without having to string up cable. Rabbit, by Envision Systems, Santa Monica, Cal., connects to a VCR's video and audio outputs and puts them on an FM carrier for transmission to television sets throughout the house via the electrical wiring. One transmitter and one receiver cost $100, extra receivers are $40. Quantec International, Salt Lake City, offers a low-power transmitter that connects to the RF output of a VCR, game, computer, or videodisc player and is said to permit tuning on any rabbit-eared equipped TV set up to 40 feet away.

R-E

www.americanradiohistory.com
ADVANCE ELECTRONICS
IS PROUD TO INTRODUCE

*Beckman Industrial™ 9000 SERIES
HIGH PERFORMANCE PROFESSIONAL OSCILLOSCOPES*

9060 60 MHz • Dual Trace with Delayed Sweep • 1mV Vertical Sensitivity • 8 Traces • 12KV Acceleration Voltage • XY Mode • Channel 1 Output • 3 Vertical Inputs • Service Manual included

9100 100 MHz • Dual Trace With Delayed Sweep • 1mV Vertical Sensitivity • 8 Traces • 3.5nS Rise Time • 18KV Acceleration Voltage • XY Mode • Channel 1 Output • 3 Vertical Inputs

ENGINEERED SO THAT SPECIFICATIONS ARE MET IN THE FIELD NOT JUST ON THE DRAWING BOARD

SPECIAL 3 YEAR EXTENDED WARRANTY

Circuitmate™
model FG2 function generator.
• 7 Ranges: 0.2 Hz to 2 MHz.
• Outputs: Square, Triangle, Sine, Waves and TTL Pulses.
• Duty Cycle Control.
• VCF Input.
• Variable/Fixed Attenuators.
• Variable DC Offset Control.
• Inversion Feature.

Circuitmate™
model UC10 universal counter.
• 5Hz to 100MHz.
• Two Input Channels.
• Measures Frequency, Period, Frequency Ratio, Time Interval, and Unit Count.
• 20mV Input Sensitivity to 100 MHz.
• 4 Selectable Gate Times.
• 14 LED Indicators.
• 8-Digit LED Display.

AVAILABLE NOW
CALL FOR PRICES

THE TEST EQUIPMENT SPECIALISTS

TOLL FREE HOT LINE
800-223-0474

212-730-7030
26 WEST 46th STREET. NEW YORK. N.Y. 10036
FLUKE SERIES MULTIMETERS 70

- Analog Display
- Rotary Knob
- Volts AC & DC
- Resistance to 32 MΩ
- 10 Amps
- Diode Test
- 3200 Counts
- Fast Autoranging
- Function Annunciators In Display
- Power-Up Self Test
- 2000 + Hour Battery Life w/ Power Down
- “Sleep Mode”
- New Test Leads
- VDE & UL Approval

WE CARRY A FULL LINE OF FLUKE MULTI-METERS. IN STOCK NOW

$119.95

$99.00

$7995

Sale ends April 85

4½ DIGIT MULTIMETERS

FLUKE

- Frequency measurements to 200kHz
- dB measurements
- Basic dc accuracy 0.4%; 10µV, 10 nA and 10 mΩ sensitivity
- Relative measurements
- True RMS
- High speed Beep

WE CARRY A FULL LINE OF FLUKE MULTI-METERS. IN STOCK NOW

THE NEW FLUKE 27 SERIES WORLD'S TOUGHEST METER

NOW IN STOCK!

INDUSTRIAL TRANSISTOR TESTER

$199.95

$995.00

CAPACITANCE METERS

MODEL 830

- Automatically measures capacitance from 0.1pF to 200mF
- 0.1pF resolution
- 0.2% basic accuracy
- 3½ digit LCD display

MODEL 820

- Resolves to 0.1pF
- 4 digit easy-to-read LED display
- Fuse protected against charged capacitors
- Overrange indication
BECKMAN'S CIRCUITMATE
ALL UNDER $100

AVAILABLE NOW...

$64 95
Circuitmate DM 20—
3½-digit, pocket-size
multimeter; 0.8% Vdc accuracy,
diode test, auto-zero,
10 amps AC and DC
ranges, auto-polarity,
auto-decimal!

$69 95
Circuitmate DM-40—
3½-digit multimeter;
0.8% Vdc accuracy,
diode test, auto-polarity,
auto-zero, auto-decimal

The DM73 is the smallest digital
multimeter on the market. Its
probe-style design makes it ideal
for taking measurements in hard-to-reach test areas.

$79 95
Circuitmate DM 25—
3½-digit, pocket-size
multimeter; 0.5% Vdc accuracy,
capacitance, continuity,
beeper, conductance,
10 amps AC and DC
ranges, auto-polarity,
auto-zero, auto-decimal

SALE
$59.95
$76 95
Circuitmate DM 45—
3½-digit multimeter;
0.5% Vdc accuracy,
diode test, continuity
beeper, 10 amps AC
and DC ranges, auto-zero,
auto-decimal

$79 95
Circuitmate DM-77 gives you
the convenience of
authoranging plus 10
amps ac/dc measurement
accuracy, you simply
select the function
you want, and the
DM 77 automatically
sets the required
range.

...Quality and Performance
Beckman and 4½ Digits...

True RMS
$239.00
AVAILABLE NOW
BEC-KMAN does it again, a true RMS
4½ DMM with year-
calibrated cycle all
in a 3½ digit once!

NEW
Beckman
Circuit-mate
DM10
$39.95
in stock now

POWER SUPPLIES

MODEL 1601
$299.95
- Isolated 0-50VDC, continuously
variable; 0-2A in four ranges
- Fully automatic shutdown,
adjustable current limit
- Perfect for solid state servicing

MODEL 1650
$329.95
- Functions as three separate
supplies
- Exclusive tracking circuit
- Fixed output 5VDC, 5A
- Two 0 to 25VDC outputs at 0.5A
- Fully automatic, current-limited
overload protection

FUNCTION GENERATORS

MODEL 3010
$189.95
- Sine, square and triangle output
- Variable and fixed TTL outputs
- 0.1 Hz to 1MHz in six ranges
- Push button range and function
selection
- Typical sine wave distortion
under 0.5% from 1 Hz to 10kHz

MODEL 3020
$319.95
- Sweep function
- Four Instruments in one package
- Sweep generator, function
generator, pulse generator, tone
burst generator
- Covers 0.2Hz to 2MHz
- 1kHz tuning range
- Low-distortion, high-accuracy
outputs

THE TEST EQUIPMENT SPECIALISTS
ADVANCE ELECTRONICS

TOLL FREE HOT LINE
800-223-0474
212-730-7030
26 WEST 46th STREET, NEW YORK, N.Y. 10036

www.americanradiohistory.com
TVRO receivers and remote controls

As we began to see in last month's column, the TVRO receiver of today has changed greatly over the past five years or so.

The IF portion of the receiver, for example. The basic receiver must develop a significant "bulk gain" in the lowest IF segment—as much as 50 dB gain at 70 MHz (in 1980). In the IF section, we also find single-channel filtering networks that eliminate (with bandpass filter sections) any signal energy on adjacent satellite channels. Up to 50% of the total receiver in 1980 was wrapped up in parts in the IF segment.

The 1984/85 TVRO receiver uses amplifier stages constructed from a few IC's; gone are the discrete transistors, and associated resistors and capacitors. The mixture of coils and capacitors that once made up elaborate bandpass filters have been replaced by SAW-filter devices. As a result, today's IF stages may have only a dozen (or fewer!) parts.

As we all know, fewer parts usually mean fewer dollars per receiver (in parts and labor). And any reduction in parts typically results in an improvement in mean-time-between-failures and, eventually, lower cost to the consumer. Before the end of 1985, we can expect to see a complete single IC that accepts the 70-MHz IF and "spits" out demodulated video and audio.

Enter remote control

The early TVRO terminals of 1979/80 not only lacked remote-control capabilities, but they were probably impossible to control even locally (manually)! At that time, all TVRO-system components (dish mover, receiver, etc.) were manufactured by different companies, who made no effort to make their respective products capable of communicating with the other components that made up the system.

That meant that every function was separate, requiring separate (unrelated) pieces of hardware to accomplish each task. For example: Channel selection was one function; audio selection was another (although the circuitry might have been located in the receiver cabinet; fine tuning was a separate function (within the basic receiver); polarity selection was another function, and satellite selection, yet another.

As TVRO systems progressed, synthesized tuning eliminated the need for a manual fine-tuning control, and memories made audio subcarrier tuning a thing of the past—you tuned it but once when the receiver was first set up. Polarization selection also went away when receivers were either "hard wired" or equipped with memory tied to the receiver's channel-selection switch. That allowed the correct polarization to be automatically selected when a new channel was tuned.

Now we're left with satellite selection and the basic channel selection. In many modern receivers, those two functions are combined into a single step; you tell the receiver what satellite you want and which transponder (channel) all in a series of strokes on a keypad. The receiver's memory, interfaced to the antenna drive unit, along with polarization switching does it all for the user. The system can be infrared controlled or (UHF) wireless or hardwire controlled.

What's available

A number of receiver packages, like those from Arunta and Con-
ECG® LED Lamps

Philips ECG® has LED lamps in shapes and sizes for virtually any application. They’re available in round, rectangular, triangular and square shapes. They come in red, yellow, green, or even in two colors. And there’s a choice of clear and diffused reds. Some have jeweled lenses. And some are even available as flashing LEDs with the flasher circuit built in.

In addition, long-life, shock-resistant, vibration-resistant, LED replacements for incandescent cartridge indicator lamps are also available in red, yellow or green. Common applications include all LED indicator applications. LED cartridges are ideal replacements for cartridge-type incandescent lamps.

ECG® A-STAT Material

Philips ECG® has two sizes of anti-static foam that will prevent damage to semiconductors from static electricity. The A-STAT 12 measures 12” x 12” and is perfect for bench use. The A-STAT 2 measures 3” x 5” and can be carried in the tool box. When semiconductors are kept in A-STAT foam, static electricity is shunted through the foam instead of into the semiconductor, where it could have caused damage.

Common applications: Essential for semiconductor protection on the workbench or in the field.

The one thing we make that you have to replace every year.

Your new Master Guide will be looking as dog-eared as the old one before long. Because this year the Master Guide has been expanded to include more than 400 new products and almost 25,000 new cross references. The Master Replacement Guide for 1985 has 656 pages. Over 3,500 different ECG devices that provide replacement coverage for more than 237,000 industry types. And everything in the book is cross-referenced so you can find what you’re looking for fast, and be sure it fits. Plus, everything we make meets or exceeds the original JEDEC or application specs. So it works. It’s the only book you’ll need. But you’ll need a new one every year.

To get a copy of the new Master Guide, go to your nearest Philips ECG distributor. For his name and location, just call: 1-800-225-8326 (in Mass., 617-890-4207).

If it’s ECG, it fits. And it works.

PhilipsECG

A North American Philips Company

Dedicated to Excellence.

Circle 271 ON FREE INFORMATION CARD
iter, have the complete control system built into the basic receiver. Intersat and Arunta provide handheld remote-units that allow full system control from your favorite easy-chair, or any other place within "sight" of the receiver.

The makers of the more sophisticated dish-mover systems, recognizing that not all receivers are equipped with remote-control capabilities, designed expandable dish-control units—like the Tracker IV, from Houston Tracker Systems—that offer remote control. (See Fig. 1.) Such units feature (UHF wireless) remote control over the antenna-drive system—like other systems—allow otherwise unavailable full system remote-control.

Like any relatively high-end package, such frills do not come in at low-end prices. And that has created a far broader marketplace for TVRO systems than existed back in 1979/80. Let's take a quick look at what you get in the various home TVRO-system price ranges—from low-end, no-frills packages to the more sophisticated high-end systems.

Price range

Starting with the least expensive install-it-yourself systems, the market starts off with packages that feature 4.5-6-foot antenna dishes, equipped with non-motorized mounts and simplistic electronics that retail for just under $1,000 ($995) in many sections of North America. Many marketing experts feel that such systems may be the wave of the future (offering 20 to 30 channels of satellite 1V to the "average" user.)

The next sizable range of systems comes in around $1995. These systems, usually dealer-installed, are simply slight upgrades of the no-frills packages. The system may contain a slightly larger antenna with polar-mount, and hand-operated dish mover. Dealers who know what they are doing seldom install the lower priced system.

Then we have the motor-driven systems—priced in the $2995 region—that feature higher-quality receivers, but few remote-control functions. An industry study in the late spring of 1984 showed the average system selling for just under $3000 nationwide.

Now we come to the high-end packages, selling for as high as $5995 in some parts of the country, that feature full remote control, receivers with memory, and stereo audio, with all the frills and do-dads that American and Japanese engineers have been able to create. Between the low-end and high-end price ranges ($995-$5995), there is an extremely wide selection of systems. Next time, we'll see how all of what has happened shapes up in the marketplace.
Electricity and water don't mix. At least not in our Heavy Duty Digital Multimeters. Because these Oops Proof" instruments are protected by a system of seals to ensure contamination-free dependability in even the cruddiest conditions.

Other abuse-proof features include the best mechanical protection ever built into a precision Digital Multimeter. In fact, every one of our Oops Proof multimeters will survive a drop from ten feet onto a concrete surface!

All the Heavy Duty series meters measure up to 1000 volts AC and 1500 volts DC, with full overload protection to those maximum voltages even on the lowest range settings. Overload circuitry also provides transient protection to 6KV on all voltage ranges and up to 600 volts on all resistance ranges.

We also invented a unique, long-life rotary switch for our Digital Multimeters. You can actually feel the difference just by rotating the function selector knob.

You'll find these features in a full line of Heavy Duty DMMS that offer a 4½ digit readout, 0.05% VDC accuracy, a 10-amp current range, a 2000-hour battery life, diode test, true RMS and temperature measurement. All this and a no-questions, one-year warranty.

You'll want to try one out, of course, so drop into your nearest electronics distributor and drop one.

Our lips are sealed.
NRI Trains You At Home—As You Build

GET THE KNOW-HOW TO REPAIR EVERY COMPUTER ON THIS PAGE... AND MORE.
Your Own IBM-Compatible Computer

Learn the Basics the NRI Way—and Earn Good Money Troubleshooting Any Brand of Computer

The biggest growth in jobs between now and 1995, according to Department of Labor estimates, will occur in the computer service and repair business, where demand for trained technicians will actually double.

You can cash in on this opportunity—either as a full-time corporate technician or an independent service-person—once you’ve learned all the basics of computers the NRI way. NRI’s practical combination of “reason-why” theory and “hands-on” practice building skills starts you with the fundamentals of electronics, then guides you through advanced electronic circuitry and on into computer electronics. You also learn to program in BASIC and machine language, the essential languages for troubleshooting and repair.

You Build—and Keep—a Sanyo MBC-550-2

The vital core of your training is the step-by-step building of the 16-bit Sanyo MBC-550-2 computer. Once you’ve mastered the details of this state-of-the-art machine, you’ll be qualified to service and repair virtually every major brand of computer, plus many popular peripheral and accessory devices.

With NRI training, you learn at your own convenience, in your own home. You set the pace—without classroom pressures, rigid night-school schedules, or wasted time. You build the Sanyo MBC-550-2 from the keyboard up, with your own personal NRI instructor and the complete NRI technical staff ready to answer your questions or give you guidance and special help whenever you need it.

Learn MS/DOS Operating System

Praised by critics as the “most intriguing” of all the IBM-PC compatible computers, the new Sanyo uses the same 8088 microprocessor as the IBM-PC and features the MS/DOS operating system. As a result, you’ll have a choice of thousands of off-the-shelf software programs to run on your completed Sanyo.

Your NRI course includes the Sanyo MBC-550-2 Computer, with 128K RAM, monitor, disk drive, and “intelligent” keyboard: the NRI Discovery Lab®, teaching circuit design and operations; a Digital Multimeter; Bundled Software for BASIC and Word Processing Software worth $1500 at retail—and more.

100-Page Free Catalog Tells More

Send the postage-paid reply card today for NRI’s big 100-page color catalog on NRI’s electronics training, which gives you all the facts about NRI courses in Microcomputers, Robotics, Data Communications, TV/Video/Audio Servicing, and other growing high-tech career fields. If the reply card is missing, write to the address below.

NRI SCHOOLS

McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue, NW
Washington, DC 20016

We’ll Give You Tomorrow.
LETTERS

INTERFACING THE ZX81

This letter is in response to the article “Interfacing the ZX81,” (Radio-Electronics September, 1984). The writer makes the following statement in reference to interfacing a relay to a microprocessor system: “The disadvantage of this configuration is... mechanical relays that can be controlled with logic-levels signals typically can only handle loads up to 0.5 amp at 120 volts.” While that is what I’d call a close guess (assuming you use a relay with a coil voltage of five volts), the following circuit may be helpful to readers who have a variety of relays available.

In my area of the country there are many high current relays (3–10+ amps) available at surplus stores for peanuts. While it is true they do not all operate at five volts, by the circuit shown in Fig. 1, I have been able to control various relays with coils of 5–30 volts DC. That circuit will energize the relay (or other load) if a logic one is written to the base of Q1 via a 8155, 8755, etc.

The first step is to determine the collector current, Ic, required. That, of course, is simply the current needed to energize the relay. To be on the safe side, choose a value that is twice that for Ic. Pick an NPN transistor that will satisfy that requirement, and use that...
Others say, "Buy this or that and it will double your production or, your money back in thirty days'. But the fact is, when it comes to troubleshooting start up, shut down, hi-voltage, or any type of flyback related problem - - - including open or shorted B+ paths for video, vertical, audio, chroma, matrix, tuner circuits, etc., any circuit that relies on flyback generated B+ voltage or, any type of a dynamic short in a CRT - - - in any set that uses a horiz output transistor (any brand, any age, any chassis that you can come up with):

JUST ONE

SUPER TECH

WILL OUT PERFORM ANY AMOUNT OF OTHER EQUIPMENT

BY SEVEN TO ONE

$10,000 CHALLENGE

Let a third party choose 24 various brand TV sets that have bonifide major problems in any of the above circuits. Let our competitor bring all of the test equipment that he has ever sold, as well as his entire engineering staff. If one man with a Super Tech can't troubleshoot 21 of these sets down to circuit level faster than their entire team can do likewise to just three sets, we will hand them $10,000 in cash. If they get beat, they give us permission to publicize the results! This offer is not limited to our competitors. Factory engineering teams or anyone else for that matter is welcome to try. The one using the Super Tech won't even need a schematic! Are we serious about this challenge? -- - - You bet we are!!

THE ABOVE FIGURES ARE CONSERVATIVE!

In about 15 seconds, you can hook up a Super Tech to almost any TV set. All you do is pull the horiz output transistor, plug Super Tech into the empty socket, then make one ground connection. In the time it takes to push four buttons, you know exactly which circuit has failed with 100% accuracy! (That's 9 points of the game when you're working on late model sets.)

THE ENTIRE TEST - - - INCLUDING HOOK-UP
TAKES ABOUT 30 SECONDS!!

SHOULDN'T YOU BE USING A SUPER TECH
AT ONLY $995°° -- - - CAN YOU AFFORD NOT TO?

Call and give us your Visa or Master Charge card number. We'll send your Super Tech prepaid. Use it for thirty days. If Super Tech doesn't do everything we say it will, send yours back and call your bank to cancel the sale. You have nothing to lose! The thing is, if we can only get a Super Tech in your hands, it will make your job so much easier, you won't even consider being without it. The manual that comes with your Super Tech even explains how the circuit that you are working on operates. C.O.D. orders welcome, prepaid orders deduct 5%.

DIEHL ENGINEERING • Ph. (806) 359-1824

6004 Estacado Lane • Amarillo, TX 79109

CIRCLE 269 ON FREE INFORMATION CARD

www.americanradiohistory.com
transistor's base current, I_B, and beta, h_{fe}, to determine the value of R_B. That can be found from:

$$I_B = I_C/h_{fe}$$

$$R_B = V_L/I_B$$

where V_L is the worst case logic voltage. For TTL circuits, the value of V_L is 2.5 volts.

ROBERT PARENT
Boyceville, Wi

EASY PC BOARD REPAIRS
"How to Repair PC Boards," by Robert Grossblatt, (Radio-Electronics, July 1984) was an interesting and helpful article on repairing damaged PC boards. However, preferably one should try not to damage a PC board, thereby avoiding the repair tasks outlined in your article. We have found, from experience, that a lot of damage to PC boards is caused by inconvenient desoldering methods, especially those that use an idling soldering iron and excessive temperature influence over a prolonged period of time while removing components.

A product that might be of help to your readers is desoldering braid. Desoldering braids, well known in industrial applications, and to do-it-yourself electronics hobbyists, do avoid many problems. The desoldering braids allow only a gradual increase of the temperature level when the desoldering operation is being made. The solder joint is "protected" by the original cold wick and the laminate therefore is not exposed to severe heat stress.

ERNEST SPIRIG, PRESIDENT
S.A.T. INC.
Agawarm, MA

ADDRESS CHANGE

The article "Build the Tele-Toll Timer", published in the November 1984 issue of Radio-Electronics, listed the address of Menden- dota Products, Ltd., supplier of a kit of parts for the project, as PO Box 20HC, 1920 W. Commonwealth Ave., Fullerton, CA 92633. Readers may now write to Menden- dota Products Ltd., at their new address: PO Box 2296, 1001 W. Imperial Highway, La Habra, CA 90631.—Editor

LONGER VCR WARRANTIES

There are a couple of interesting items in your November issue. One is the Editorial. The problem reminds me of the one some years ago with garage-door openers. That was solved by having an arrangement where an individual code was picked by each user. Application of that method to VCR's might be a little more difficult, but it can be done. That method could also solve another potential problem: if I have two VCR's in the same location, and they are of the same make, how can I select one of the two to the exclusion of the other? That would not be solved by standardization of codes, as you suggest, but might be if I could choose the codes myself.

The other item is in "Video News." The statement is made that the service record of VCR's already compares with that of color TV. If this is true, then the manufacturers more generous with their warranties? Color TV's come with a one-year warranty on the set continued on page 26
SS-5705, THE ALL-NEW 3-INPUT 6-TRACE 40 MHz OSCILLOSCOPE FROM IWATSU

- H and V axes accurate to within ±2%
- CRT with 12 kV accelerating voltage for bright traces
- Three input channels, six traces: an enlarged delayed sweep waveform can be displayed for each channel for a total of 6 simultaneous traces. Each channel has its own position control.
- Maximum delay jitter of 1/20,000
- Fastest sweep rate of 10 ns/div
- Jitterless circuitry for stable high frequency signals observation.
- High sensitivity: 1 mV/div
- CH 1 signal output: 50 mV/div (into 50 Ω)
- High-stability calibrator with frequency and voltage accurate to within ±1%
- Stable observation of video signals possible
- Traces do not shift when the attenuator is switched
- Pushbutton controls for easier operability and improved reliability.
- Accuracy guaranteed in temperatures ranging from 10 to 35°C (50 to 95°F).
- Variable holdoff for triggering when observing complicated waveforms.
- FIX triggering
- Beam finder

- Frequency response extends beyond 40 MHz rating
- Superb trigger sensitivity freezes even low level signals.
- Single sweep: essential if waveforms are to be photographed.
- Trace rotation control allows compensation for inclination of traces due to terrestrial magnetism.
- Two probes provided as standard accessories: both switchable between 10:1 and 1:1.
- Wide range of optional extras for more diverse applications.
- Compact and lightweight: 282W x 152H x 403D mm (11-1/8" x 6" x 15-7/8"), 7.2 kg (15.9 lbs).

IWATSU INSTRUMENTS INC.
430 Commerce Boulevard, Carlstadt, NJ 07072 Phone: (201) 935-5220 TLX: 7109890255

CIRCLE 64 ON FREE INFORMATION CARD
Polaroid DS-34

Now you can get an instant picture in black & white or color from any oscilloscope screen. Includes CRT hood.

*Large hoods also available to fit computer terminals and CAD/CAM screens.

$369.00

POWER SUPPLIES

GLOBAL SPECIALTIES

TRIPLE OUTPUT POWER SUPPLY

MODEL 1301

- Fully regulated triple output
- Fixed 5 VDC, 1A
- V1 + 5 VDC to 5 VDC, 0.5A
- V2 – 5 VDC to 10 VDC, 0.5A
- Fully automatic current limiting

$219.00

MODEL 3002A/0-30 VDC/0-2A

$125.00

MODEL 1550

- Functions as three separate supplies
- Exclusive tracking circuit
- Fixed output 5 VDC, 5A
- Two to 25 VDC outputs at 0.5A
- Fully automatic current-limited overload protection
- + and – terminals of each output are fully isolated, in all modes
- All three outputs may be connected in series or parallel for higher voltage or current

$319.00

Oscilloscope Probes

<table>
<thead>
<tr>
<th>MODEL</th>
<th>ATTENUATION</th>
<th>BAND WIDTH (MHz)</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2904</td>
<td>10X</td>
<td>100</td>
<td>$35.00</td>
</tr>
<tr>
<td>2901</td>
<td>10X/1X</td>
<td>100/5</td>
<td>$39.00</td>
</tr>
<tr>
<td>2205</td>
<td>10X</td>
<td>250</td>
<td>$59.00</td>
</tr>
<tr>
<td>2960</td>
<td>10X</td>
<td>60</td>
<td>$30.00</td>
</tr>
</tbody>
</table>

CALL US TOLL FREE

1-800-732-3457

IN CALIFORNIA TOLL FREE

1-800-272-4225
PORTABLE OSCILLOSCOPES

Model V-212
DC to 20 MHz, 1 mV/div, Dual Trace
Features 6" Rectangular CRT
Full 2 year parts and labor warranty (w/two X10 probes).

$461.00

Model V-222
DC to 20 MHz, 1 mV/div, Dual Trace. D.C. offset for
DMM Output, Vertical Mode Trigger
6" CRT (w/two X1/X10 probes).

$536.00

Model V-422
DC to 40 MHz,
other features same as V-222 (w/two X1/X10 probes)

$694.00

Model V-1050F
DC to 100 MHz, .5 mV/div, Quad Trace, Delayed
Sweep, Full T.V. Triggering, alternate time base
(w/two X1/X10 probes)

$1276.00

Model V-650
DC to 60 MHz, 1 mV/div, triple trace, delayed sweep,
Full T.V. Triggering, variable trigger hold-off

$956.00

Model V-650F
DC to 100 MHz, .5 mV/div, Quad Trace, Delayed
Sweep, Full T.V. Triggering, alternate time base
(w/two X1/X10 probes)

$1695.00

CIRCLE 254 ON FREE INFORMATION CARD

MODEL SS-5705
DC to 40 MHz
Vertical and horizontal deflection accurate within ±2%. CRT acceleration voltage 12 KV, 3 channels.
3 traces. High precision calibrator (<1%). Fastest sweep rate: 10 ns.
- High sensitivity 1 mV/div
- CH1 signal output
- Beam finder
- Delayed sweep
- Alternate time base
- 2 ea. X1/X10 Probes

$899.00

MODEL 5711
DC to 100 MHz (typically over 120 MHz), 5 mV/div, True 4 channel Input, eight trace. Delayed sweep, alternate time base, CRT acceleration voltage 20 KV, (w/saddle bag, front cover, 2 ea X1/X10 probes)

$2495.00

MODEL 5711D
(5711 with counter and DMM)
and two years on the picture tube. Audio recorders also usually have a one-year warranty. That contrasts with the “generous” 90 day one for the VCR’s. In recent years models that are programmable for three or more weeks with up to eight programs have become available. In fact, I believe some new ones claim one year. If the three-week capability is defective, the buyer cannot be sure in less than six or eight weeks, if he makes careful tests. Then there is the time spent in servicing, and then again time to test, as well as the need to check all the other functions. I don’t believe most purchasers expect to spend a lot of time trying out the special features. It seems that a one-year warranty would be fair.

DAVID C. HESS
Downers Grove, IL

Because they are built to last...

Global breadboarding sockets are guaranteed for a lifetime.

For more than a decade, Global Specialties’ solderless breadboarding has set the standard for quality, durability and dependable performance. Now, we offer a lifetime guarantee. If a Global breadboarding socket fails to perform according to your needs, you merely return it to Global Specialties. We will send you a replacement free of charge. No questions asked.

This unconditional guarantee is offered because our breadboarding sockets provide outstanding performance, indefinitely. All of our sockets are made in the United States in our own factory, employing the latest equipment, manufacturing methods, and quality control procedures. Each socket and bus strip is molded of high quality plastic material to provide superior strength and durability. Precision-formed contacts and tine points made of nickel-silver assure excellent contact every time.

Seven sockets and three bus strips are included in our QT Series. Our new UBS-100 and UBS-500 models and our Experimentor line include socket and bus strip contact arrangements in single modular breadboards.

The industry’s largest selection, unmatched quality and economy have earned Global solderless breadboarding sockets the reputation for being number one with professionals, hobbyists and students. Now, the unconditional lifetime guarantee is your assurance that when you buy from Global you receive maximum durability and trouble-free performance. Unlike some manufacturers who require that you purchase by mail, our nationwide network of distributors permits you to see and inspect our products before you buy.

See your electronics distributor or for the name of your local distributor, call our Customer Service Department, toll-free 1-800-572-1028.

Introducing the UBS Series

Two new solderless breadboarding sockets have been added to the Global line. The new UBS-100 is the largest socket in the line, with 40 holes and the smaller UBS-500 has 15 holes. Each includes two rows of bus strips on either side (power and ground connections) and the UBS sockets are made of the highest grade plastic material to ensure maximum resistance to warping and breaking.

GLOBAL SPECIALTIES
An Interplex Electronics Company

ADDITIONAL BATTERY INFORMATION

As a Reliability Engineer for a minicomputer manufacturer who uses large quantities of lead-acid type rechargeable batteries, I enjoyed seeing the articles on “Rechargeable Batteries” (Radio-Electronics, September and October 1984). My experience has been with lead-acid “gell cell” and “sealed lead-acid” types, which are also manufactured by Globe-Union and Gates in addition to the sources you listed. I wish to contribute additional information.

Safety: First and foremost, those batteries have very high current capacity and, if shorted, will cause the shorting conductor to heat to the point of melting or ignition. The battery may melt the object across the terminals, may explode, or ignite any flammable materials nearby. Never use hot-melt glue, cardboard, or similar flammables to fabricate batteries from lead-acid cells. Use extreme care to protect exposed terminals from accidental contact across metal surfaces (including metal shelves and table tops). Batteries or cells shorted in this manner are usually destroyed in seconds.

Shelf life: Shelf life is long on lead-acids, but not infinite. Our procedures call for six-month testing of shelf-stored batteries and recharging if the battery measures below 2.0 volts per cell (2.15 volts per cell is considered full charge and 1.5 volts after storage is unusable and will not recharge.) Shelf life is best insured by fully charging any battery prior to prolonged storage, generally at a 24-hour charging rate, and by maintaining a temperature suited to shelf storage. Six months is the shelf figure normally used at 75°F or room temperature. That figure is greatly extended at lower temperatures such as 40-50°F or reduced at elevated temperatures of 90-100°F.

Usage: Another point about lead-acids: if they are used in a deep-discharge cycle, recharging must begin within six hours of the discharge time. Most batteries held in deep discharge for longer periods cannot be recharged and must be replaced.

JAMES V. GREER
Perkin-Elmer Oceanport, NJ
Alden Model 9321 Weatherchart Recorder

Keep an eye on the weather with this chart recorder. It's available in kit form, too.

This unique line of 12 lightweight and comfortable precision cutters, pliers and crimpers are specially adapted to meet the demanding requirements of the electronic industries. All the tools feature custom contoured ribbed handles which provide a non-slip gripping surface, and specially designed lifetime return springs which eliminate operator fatigue.

Precision Pliers, Cutters and Crimpers

- Flush cutters
- Semi-flush cutters
- Reverse cutters
- Cutter/crimper
- Cutter/bender
- Pliers

Does your mind come to attention when you hear weather reports of storms brewing at sea? If you are an avid sailor, or you're just into weather forecasting as a hobby, you need to know about what's happening "out there."

One way to keep track of the ocean's surface weather, ice formations, the condition of the Gulf Stream, or anything else having to do with the "big ponds," is through the Alden model 9321 Weatherchart Recorder (Alden Electronics, Washington St., Westborough, MA 01581.)
The Alden Weatherchart Recorder is a facsimile printer specifically designed to recreate the charts broadcast on shortwave frequencies by marine radifacsimile stations throughout the world. The North and South Atlantic and Pacific oceans, the Indian ocean, the Antarctic, the Red Sea, the Persian Gulf, and coastal waters are all served by the radiofacsimile broadcasts.

The charts are broadcast on many different frequencies, from 4 MHz to approximately 20 MHz. (A directory of the stations, frequencies, and time of operation is supplied with the recorder.) The facsimile signals, which are easily recognized by their distinctive ding-dong sound, can be received on any shortwave receiver capable of upper-sideband reception. The tones are converted to hard-copy printouts by the Alden Weatherchart Recorder.

The chart recorder is housed in a plastic cabinet that measures 17⅞ x 3⅛ x 10¼ inches. It weighs a shade over 10 pounds. It is powered by 117-volts AC. The input to the recorder is 600 ohms balanced, available at a terminal strip located on the rear. An accessory matching transformer is provided for unbalanced receiver outputs, such as a headphone jack. However, we connected the recorder's 600-ohm input directly to a receiver's 4-ohm headphone output and had no difficulty of any kind in driving the recorder. It is possible that some receivers might require the matching transformer, but we tried several, ranging from a budget-priced "shortwave radio" to a top-of-the-line communications receiver, and always got good results without the matching transformer.

The top of the recorder has the main power switch, the start switch, two LED's that serve as tuning indicators, and a framing switch that centers the pictures on the paper. The charts are created on a roll of 11-inch wide electrosensitive paper that is supplied in a cylindrical cassette that mounts near the front of the machine. (You tear off the charts as needed.) Motor-driven rollers located in front of the cassette feed the paper out. The image is traced on the paper by a stylus assembly located between the cassette and the rollers that "burns" the image into the paper. As you would expect from the method of creating the image, the paper is damp because it contains a conductive fluid. The electric current representing the image passes through the paper and the stylus, causing a burn where they touch.

The recorder responds to FSK

OLD RELIABLE
JUST GOT MORE RELIABLE.
(Frequency Shift Keying) frequencies of 1500 Hz (“white”) and 2300 Hz (“black”). While the machine can be started and stopped manually, it also operates under tone control, broadcast from the radiofacsimile stations.

How it works

The receiver is first pretuned to the desired station by adjusting the receiver’s tuning control until the “white” tuning indicator flickers most of the time and the “black” indicator flickers occasionally. The actual tuning adjustment isn’t critical; as long as the tuning indicator lights appear to be “in the ballpark” the recorder works properly. Once the tuning is set for a particular station, it does not have to be readjusted because the recorder can accommodate a rather broad receiver drift. (We got excellent results from a low-cost receiver.) Prior to broadcasting weather charts, the radiofacsimile station transmits an automatic start signal that shifts 1500 Hz and 2300 Hz at a 300 Hz rate for 5 seconds. The recorder starts, prints the chart, and is automatically stopped when the station broadcasts the same tones, but at an alternating rate of 450 Hz for 5 seconds.

Part of the initial setup procedure requires adjusting the framing so the picture is “centered” on the paper, thereby avoiding loss of part of the picture. That is done by observing the print as it is made by the stylus and pressing the FRAME switch until the chart is centered on the paper. The FRAME switch causes the framing to change in small discrete increments, and we found about five to seven increments was all it normally took to center the chart.

Once the chart is framed, the framing procedure does not have to be repeated as long as the same station is received.

The recording rate is 120 spm (Scans Per Minute). It takes approximately 15 minutes to receive a 10- x 12-inch chart. A station might broadcast several charts followed by an “end” tone, which stops the recorder. The cycle will be repeated the next time a chart is broadcast.

The Alden Weatherchart Recorder (which is also available in kit form) is supplied with two paper cassettes, three spare stylus belts, the audio matching transformer, two spare fuses, and a selection of notably good manuals. The operator’s manual is superb; it is clear, concise, unwordy, and is well illustrated. Also supplied is a directory of worldwide facsimile stations, a guide to understanding radiofacsimile weather charts, and a technical manual that includes the step-by-step kit assembly.

Like all other professional equipment, the Alden Weatherchart Recorder doesn’t come cheap. The kit version is priced at $995, the wired version (the model we tried) sells for $1995. This is such highly specialized equipment that its value can only be judged in terms of its necessity. But, if you’re into weather studies for business or a hobby it’s worthwhile looking into.

RCA’s new SK Guide. More pages. More solid state replacements.

When it comes to replacement semiconductor sources, RCA is one of a kind. RCA is actually in the business of manufacturing semiconductors and we publish a new cross-reference every year. This new RCA SK Guide to Reliable Replacement Semiconductors has everything you need to make fast, accurate replacements. More than 2,500 SK and KH types replace over 206,000 Industry types. RCA is the line of Integrity with unsurpassed engineering excellence.

So when you need to make a solid state replacement, reach for reliability. Reach for the RCA SK Guide, SKG202D, available at your RCA SK Distributor, or mail $2.95 in check or money order to RCA Distributor and Special Products Division. Box 597, Woodbury, N.J. 08096.
MFJ Enterprises MFJ-989
Antenna Tuner

Get peak performance at almost any frequency with almost any antenna, feedline combination.

AS ANY RADIO AMATEUR OR SHORT-wave listener knows, for best performance, the antenna-feedline system and receiver or transmitter must be matched as perfectly as possible. If you operate at only a single frequency, that does not present that much of a problem, as an antenna can be cut and tuned for peak performance at that frequency.

But if you operate over a wide variety of frequencies, or worse, several bands, things prove to be a bit more difficult. Antennas may be cut for use over an entire band of frequencies, such as 40 meters, but such an antenna will only provide peak performance over a narrow range of frequencies, with performance dropping off markedly at the ends of the band. That effect is even more pronounced if a trapped multi-band antenna is used.

Those problems can be minimized through the use of an antenna tuner. Those devices let you tune almost any type of antenna system to maximum efficiency. One such tuner is the MFJ-989 Versa-Tuner V, from MFJ Enterprises, Inc. (921 Louisville Rd., Starkville, MS 39759).

The MFJ-989

The unit is intended for amateur radio use, but could also be used by the SWL who demands top performance from his receiving setup. A match for today's smaller transceivers, the unit measures 10.5 x
CALIFORNIA-DC REGULATED SWITCHING POWER SUPPLY 15V dc & 5 amp 12V dc & 2.8 amp 12V dc & 2 amp 10-12V dc 5 amp 115-30V ac input. Transistorized, EMI filtered. Removable DC Power Harness and Schematics. Included. 7.4" x 6.2" x 1.7". Visa/M/C/O check when clear. $37.50 ea. (Free shipping in U.S.) 1-800-322-7182/2055-830-8686. POWER PLUS 130 Baywood Ave., Longwood, FL 32750. (Call for quantity price).

CIRCLE 125 ON FREE INFORMATION CARD

ONE MAN CRT FACTORY, easy operation. Rebuild CRT's for TV's, bus. machines, monitors, scopes, etc. Color, b&w, 20mm, foreign or domestic. 3 x 8 ft space required. Profits? Average CRT rebuilding cost—$5. Sell for $100 = $95 profit; x 5 CRT's = $475 daily; x 5 days = $2375 weekly profit. Higher profits overseas. Investigate this opportunity today. We service the entire world. Contact: CRT FACTORY, 1909 Louise St., Crystal Lake, IL 60014, (815) 459-0666.

CIRCLE 263 ON FREE INFORMATION CARD

THE MOST EXCITING KIT YOU WILL EVER BUILD The model WAT-50 miniature FM transmitter uses a 4-stage circuit NOT to be confused with a simple wireless microphone. Up to 1 mile range. So sensitive, it will pick up a whisper 50 feet away! Use with any FM radio. Complete kit only $29.95 tax incl. FREE SHIPPING. DECO INDUSTRIES, Box 607, Bedford Hills, NY 10507.

CIRCLE 263 ON FREE INFORMATION CARD

CIRCLE 264 ON FREE INFORMATION CARD

IntelliBurner EPROM-EEPROM & MICRO-CONTROLLER programmer $299 Communicates through the serial port of any personal computer. Use your PC's software to read, verify, or program all popular EPROMs, EEPROMs, 80x86 series microcontrollers. Custom software included for IBM, CPM or Radio Shack PCs. Other programmers from $149. Bare PC boards with software from $39. ROSS CUSTOM ELECTRONICS, 1307 Darlene Way #12, Boulder City, NV 89005, 702-293-7262.

CIRCLE 266 ON FREE INFORMATION CARD

SUBSCRIPTION TV MANUAL. This information packed book details the methods used by subscription TV companies to scramble and descramble video signals. Covers the Sinewave, Gated Pulse, SAVI system, and the methods used by most cable companies. Includes circuit schematics, theory, and trouble-shooting hints. Only $12.95 plus $2.00 first class P&H. ELECTRONICS INC., (formerly Random Access) Box 41770-R, Phoenix, AZ 85080.

CIRCLE 120 ON FREE INFORMATION CARD

R & D SHEET METAL WORKER new multipurpose machine now with 6" male dies and removable female dies. A complete R&D in-house shop at 1/2 the cost. Over (100) worldwide industrial government/educational. Call today—TELEX 4996168 POC NPT, PACIFIC ONE CORP., STE K510 513 Superior Ave., Newport Bch., CA 92663. (714) 645-5962.

CIRCLE 118 ON FREE INFORMATION CARD

SATTELLITE TELEVISION RECEIVER SEMIKIT with dual conversion downconverter. Features infrared remote control tuning, AFC, SAW filter, RF or video output, stereo output. Polorator controls. LED channel & tuning indicators. Install it factory assembled circuit boards to complete. Semikit $400.00. Completed downconverter add $100. Completed receiver and downconverter add $150. JAMES WALTER SATEL­LITE RECEIVER, 2897 Nickel, San Pablo, CA 94806. Tel 415-724-0587.

CIRCLE 124 ON FREE INFORMATION CARD

TELTONE'S TRK-957 KIT makes breadboarding a low-power, central office quality DTMF detection system easy and inexpensive. The included M-957 receiver decodes 12 or 18 digits and operates from 5 to 12V dc. Its sensitivity, wide dynamic range, noise immunity, and low power consumption are ideal for telephone switching, computer and remote control applications. Only $5.24.75. To order, call: TELTONE, 1-800-227-3800, ext. 1130.

CIRCLE 122 ON FREE INFORMATION CARD

www.americanradiohistory.com
NO OTHER DMM GIVES YOU ALL THIS...

SMALLEST SIZE
Out now AWS Model DM-2000 is the smallest Rotary Switch DMM available today. (4.5" x 2.8" x 0.9", Wt. 7 oz.) Size was a prime consideration in the design of the DM-2000. Its compact size fits comfortably in one hand, easily in a toolkit, and of course, right in your pocket. Still, the LCD incorporates large 0.5" easy to read digits.

MORE FUNCTIONS
The truly unique 3½-digit AWS DM-2000 is capable of reading 8 functions: DC Volts • AC Volts • DC Current • Resistance • Conductance • Diode Test • HFETest • Battery Test.

MORE RANGES

PLUS A.W. SPERRY INSTRUMENT QUALITY
The AWS DM-2000 boasts 0.5% basic DC Volt accuracy and an "OFF" position, making it ideal for the professional engineer, technician or hobbyist. All ranges are overload protected. Special solid state protection on all resistance ranges protects the instrument and end-user up to 250Vvac/dc without blowing the fuse.

FOR JUST $54.95!
So put the new AWS DM-2000 to work for you now. Call your local distributor or contact A.W. Sperry Instruments Inc., P.O. Box 900, Smithtown, N.Y. 11787. 800-653-5988 Toll Free (N.Y., Hawaii, Alaska call collect 516-231-7030).

CONSUMER CORNER

New solid state and digital TV, note, science, and videorecorders are tougher to repair than add-fashioned tube type sets and require special training for the service technician who works on them. Only a few states have laws requiring competency tests for licensing technicians who repair consumer electronics, but fifteen years ago the Internationa1 Society of Certified Electronic Technicians (CET) began its own certification program to qualify those technicians and those in industry. To carry the CET designation, technicians must have four years experience and pass a rigid examination on general electronics and a specific area of expertise such as audio or radio TV.

Many consumers look for a Certified Electronic Technician in the shop when they need an electronic item repaired.

Free Consumer Checklist
A consumer checklist for selecting a service shop is an.

Modern electronic equipment such as digital TV's or stereos should be repaired by specially trained competent personnel.

Available free by sending a stamped, self-addressed envelope to: Checklist, 2208 West Berry, Furth, TX 76108. The list reminds consumers to check such items as "Does the business have the parts for your particular brand?" "Did you get an estimated price?" and "Did you check this company with the Better Business Bureau?"

The MFJ-989 is housed in a sturdy aluminum box. The capacitors and roller inductor are all set from the front panel. The inductor features a turns indicator.

The unit can handle 50-ohm coaxial cable and balanced 300-ohm feedlines, as well as end-fed longwire antennas. The type of feed or antenna is selected by a front-panel switch. That switch also allows you to bypass the tuning circuit, if so desired.

Also built into the unit is a 300-watt, 50-ohm dummy load. That dummy load is rated at 300-watts for 30 seconds and 100 watts for 1.5 minutes.

The unit also features an accurate VSWR/power-meter. That meter can be user-calibrated via two controls on the front panel.

Overall, we have found the unit to be an excellent performer. It will tune an antenna system for peak performance for both transmission and reception. In all fairness, the unit seems a bit pricey at $329.95, but the quality of construction seems equally high.

One last note, MFJ's documentation appears brief, but it is readable and provides you with more than enough information about the unit. It even provides you some brief operating hints, as well as some theory of operation. R-E

4.75 x 14.5 inches and uses a 99-turn roller inductor. That 36-μH inductor is made of 14-gauge plated wire with a silver-plated roller contact. The balance of the tuning circuit is made up of two 250-pF variable capacitors. That circuit will allow you to tune an antenna for top performance at just about any frequency in the HF amateur or SW bands. The components are rated to handle transmitter output powers to 3 kilowatts.

A.W. SPERRY INSTRUMENTS INC.
The Measurable Advantage.

See us at National Plant Day Show Booth #43

CIRCLE 50 ON FREE INFORMATION CARD
The family of Dip Clip test clips we manufacture grows larger every year. With that kind of selection to choose from, you're sure to find just the right one to fill the bill for your particular test needs.

Also, be aware that the Dip Clips we design and manufacture are considered by electronic design engineers to be right at the top. No questions.

A superior product? You know you've got that. And you should know, also, that we make sure you receive fast service and specified quantity through your favorite electronic parts distributor.

After all, we wrote the book.

And it's free. Our products are described and illustrated in our 1985 general catalog. Just call (714) 623-3463 or 623-6751. Or, write to us at ITT Pomona Electronics, a division of ITT Corporation, 1500 E. Ninth St., Pomona, CA 91769.

ITT Pomona Electronics

Pomona wrote the book on Dip Clips. Don't miss it.
IF YOU WANT TO GET YOU HAVE TO GET INTO

Learn PC Servicing By Building Your Own NTS/HEATH HS-151 Desk-Top Computer, Circuit-By-Circuit

NTS Intronic Home Training Takes You Below The Surface
NTS gets you right down into the heart of computer circuitry. You learn how microprocessors function, how they are designed, how they operate and are used to solve problems. Your program includes a wide variety of tests and projects, as you assemble your PC. You experience the excitement of seeing your own skills grow, the security of knowing you really understand what makes a computer tick.

A Career in PC Servicing
The world of computers is constantly expanding. Applications have spread from business to manufacturing, from industry to medical and scientific fields. Computer-aided design, engineering, and production have revolutionized drafting, graphics, and prototyping. Computer sales figures point to a continuing need for service technicians as well as installation and maintenance specialists. The type of training you receive will largely determine your ability to take advantage of these opportunities...and nothing beats the practical, down-to-earth training you get from NTS.

The NTS/HEATH 16-Bit HS-151
This desk-top PC is the most powerful and versatile ever offered in any home training program. Check the advanced features listed below:

1. 128 KB RAM user memory on board, expandable to 512 KB
2. 16-bit 8088 Microprocessor accepts advanced software, speeds word processing; also allows selection from the huge library of IBM software.
3. 5.25-inch floppy disk drive, double density, IBM formatted, stores up to 360 KB. (Expandable to dual disk drive, and optional 10.5 MB hard-disk drive.)
4. MS-DOS operating system, IBM compatibility, make a wide choice of software programs available.
5. Four open IBM-compatible slots provide for future expansion, printer, modem, etc. Will accept most peripheral boards designed for IBM-PC.
6. Two video outputs for color or monochrome display monitor. Your NTS course includes a high resolution monitor displaying 80 characters by 25 lines, or graphics.
7. Editing capabilities help you insert or delete characters and lines, erase, jump or smooth scroll, etc.

Your NTS training course will teach you to program on this outstanding PC, using lessons, texts, and diagrams to make full use of its capabilities. Catalog contains complete details.

Learning circuitry through the construction of this equipment offers practical training for which there is no substitute. Test equipment is included.

Field servicing is interesting and rewarding. Technicians may work for a service company, manufacturer, or major users.

The NTS/HEATH HS-151 PC completed, including monitor and full-function keyboard with calculator style keypad, and typewriter format.

www.americanradiohistory.com
NTS COURSES COVER MANY AREAS OF SPECIALIZATION IN ELECTRONICS:

Robotics: Build the NTS/HEATH Hero 1 Robot as you learn robotic programming. Robot is complete with arm and gripper, voice synthesizer. Robotics is becoming increasingly important in industry as almost daily news features attest.

Video Technology: Build one of the most advanced Color TV sets in America as you learn circuit diagnostics, and the use of digital test instruments. Course covers color TV, video tape recorders, computer fundamentals, solid-state devices.

Industrial and Microprocessor Technology covers circuit analysis, microprocessors and automation applications, lasers, and basic industrial robotics.

TV & Radio Servicing is a specialized course offering an excellent foundation in the use and application of both analog and digital test equipment as applied to the TV servicing field. Learn circuits, adjustments, troubleshooting, and servicing of Color and monochrome monitors.

Digital Electronics offers the student the opportunity to get involved with computer concepts, computer technology fundamentals, and digital equipment by training on the NTS Compu-Trainer.

Basic Electronics is a course designed for those wishing to have an overview of electronics in many of its aspects including radio receivers, solid state devices, and electronic components.

NTS Intronic training programs include a variety of superb equipment, most of which is classified as field-type, making the training practical and career-oriented. Texts and lessons have been tested in our Resident School in Los Angeles to assure home study students their courses of training are easy to understand. NTS, now in its 80th year, continues to be at the leading edge in Electronics home training.

Installing the disk-drive in the PC is one of the final stages in the assembly of the microcomputer. Learning the use of test equipment to check circuits is an integral part of the training which, with field experience, develops invaluable career skills.
THIRD-OCTAVE STEREO EQUALIZER, is designed to handle the problem of balancing in-out signal levels, which is especially import-
tant with compact discs because of their increased dynamic range. The stereo equalizer minimizes phase shift and assures that there
is no degradation of the tonal qualities of the music.

The same balancing requirement extends to Direct-to-Disc record-nings, where the dynamic range is substantially higher than FM broadcasts and ordinary records and tapes. The new equalizer is also suited for use with dbx and other types of expander/com-
pander accessories, where dynamic range is increased, thus making the signal-level balancing function so critical.

The Third-Octave Stereo Equalizer is priced at $599.00—Sound-
VHF PORTABLE RADIO, model 70-152, is a 2-way FM portable radio with an RF power output of 5 watts (switchable to 2 watts). It has a one-piece molded 500-mAH battery pack and an earphone jack. The radio measures 6 3/4 inches high x 2 3/8 inches wide x 1 1/2 inches deep and weighs approximately 24 ounces with battery pack and 6-inch helical antenna. It has an FM range of 150-174 MHz, the model 70-152 is available with optional tone-coded squelch, leather carrying case, and optional 3-inch "stubby" helical antenna. A vehicular charger is available in addition to one-unit, two-unit, and eight-unit desktop chargers. The model 70-152 is priced at less than $350.00.—Midland International Corp., 1690 N. Topping, Kansas City, MO 64120.

LASER POWER METER, model LPM-8000 provides a fast, convenient method of measuring the power output from laser devices used in many compact audiodisc and videodisc players.

Two wavelength and three power-measuring ranges are available on the model LPM-8000, giving the instrument versatility. This laser power meter, which consists of a main body and a sensor connected by cable, is small-size, lightweight, and battery-operated for portability. It is priced at $225.00.—Leader Instruments Corporation, 380 Oser Ave., Hauppauge, LI, NY 11788.

www.americanradiohistory.com
NEW IDEAS

Making electronic music—automatically!

IC3 are divided evenly between the two 7404's. Since there are six inverters in each package, there will be four left over for you to play with. What you do with them is up to you. The outputs of IC4 and IC5 are input to control pins on IC6 and IC7 (CD4016 CMOS quad bilateral switches). As those switches open and close, different resistances (as set by potentiometers R3-R10) are inserted into the sound-generating circuit made up of IC8 and its associated components. Note that IC8, which is a 3909 LED flasher also makes a fine sound generator.

The frequency at the outputs of IC6 and IC7 are adjusted to various rates, using potentiometers R3-R10, to produce the desired tones. Capacitors may be placed in series with the potentiometers to produce a sloping sound instead of a straight tone.

Two other tones may be added using the pin 5 and pin 6 outputs of IC3. To do so, simply route those two outputs through inverters and switches as done with the other eight. If you include the extra outputs, it will be necessary to add another CD4016 bilateral switch with potentiometers connected in the same way as the others.

The negative-going output signals of IC6 and IC7 are fed through a common bus to pin 8 of IC8. Filtering for the input signal is provided by capacitor C2. Capacitor C3, connected across the output at pin 2 and the supply controls the speaker output. C3 may be replaced by a potentiometer if desired—Artur Manhica
You say you're already trained in electronics but that you're not making enough money?? Well then, maybe you don't have an accredited bachelor's degree to prove that your education is up to snuff! Check out the Grantham Independent-Study B.S. Degree Program. It could make a dollars and sense difference in your electronics career.

Grantham offers this program, complete but without laboratory, to electronics technicians whose objectives are to upgrade their level of technical employment. Since the field of electronics is so enormous, opportunity for advancement is always present. Promotions and natural turnover make desirable positions available to the man who is ready to move up.

Grantham College of Engineering
10570 Humbolt Street
Los Alamitos, California, 90720

Do You REALLY Want to Make More Money?
Yes it does take work and a few sacrifices to climb up the electronics ladder to where the bigger money is. But, if that's where you want to be, then that's what you must do — work harder at learning and getting the right credentials, even if it takes a few sacrifices. A B.S. degree and the knowledge that rightly goes along with it can give you powerful ladder-climbing equipment in your search for success in electronics.

The accredited Grantham non-traditional B.S. Degree Program is intended for mature, fully-employed workers who want to upgrade their electronics careers.

Put Professional Knowledge and a COLLEGE DEGREE in your Electronics Career through Independent Home Study

Study materials, carefully written by the Grantham College staff for independent study at home, are supplied by the College. Your technical questions related to these materials and the lesson tests are promptly answered by the Grantham home-study teaching staff.

Recognition and Quality Assurance
Grantham College of Engineering is accredited by the Accrediting Commission of the National Home Study Council, as a degree-granting institution.

All lessons and other study materials, as well as communications between the college and students, are in the English language. However, we have students in many foreign countries; about 80% of our students live in the United States of America.

Grantham College of Engineering
10570 Humbolt Street, Los Alamitos, CA 90720

Please mail me your free catalog which explains your B.S. Degree independent-study program.

Name:
Address:
City State Zip

This booklet FREE!

This free booklet explains the Grantham B.S. Degree Program, offered by Independent study to those who work in electronics.
Regency Scanners bring you all the action...as it happens!

Regency Scanners bring you the local news...as it happens. From bank hold-ups to three alarm fires. It's on-the-scene action. While it's happening, from where it's happening...in your neighborhood.

You can even listen to weather reports, business and marine radio calls. Plus radio telephone conversations that offer more real life intrigue than most soap operas. And with some models, there's even more.

The Z family
Introducing the Z series scanners from Regency. Four exciting new programmable scanners that offer you a variety of options to fit your personal needs.

First, there's the Z 10, a basic ten channel scanner that covers the six public service bands. It lets you hear your choice of over 15,000 frequencies at the touch of a finger. Or, if you prefer, locate new, active frequencies using the search function.

If you like the Z 10 but need more channels, step up to the Z 30. It gives you all the same features with a thirty channel memory and, surprise, a programmable alarm clock that stays on even when the power switch is turned off.

For the guy who wants to tune into the aircraft and tower transmissions, we've got the Z 45. It's got the same coverage as the Z 30 with the addition of the aircraft band with forty-five total channels.

And then there's the top of the line Z 60. It covers all the public service bands plus aircraft and FM radio broadcasts with sixty total channels.

Common to all the Regency Z scanners is a contemporary simulated wood grain cabinet and a bright, easy-to-read vacuum fluorescent display with prompting messages. They even come preprogrammed with frequencies so you can scan "right out of the box".

Backed by Regency
Regency stands behind the Z family with a full one year parts and labor warranty. And a tradition of building great scanners. So stop in your Regency dealer today for a demonstration, or write us at the address below for a full line color brochure.

Regency ELECTRONICS, INC.
7707 Records Street
Indianapolis, IN 46226-9989

CIRCLE 268 ON FREE INFORMATION CARD
After you set up and listen to your stereo speakers in your living room, you realize that they don't give the full, just-right sound that you were hoping for. They don't sound nearly as good as they did in the stereo showroom. That situation has become a much-repeated one because your stereo system requires help in obtaining a correct response depending on the room in which it's placed.

That's why the equalizer has become a standard component of the audio system. But the equalizer isn't of any help unless it's adjusted properly to correct the response of the loudspeakers. Adjusting the equalizer for maximum performance can be a tedious and frustrating job. But it doesn't have to be. Proper equalizer adjustment can be done easily in the stereo listening room by using a real-time analyzer.

We'll show you how to build an audio spectrum analyzer that displays a picture of any audio signal spectrum in 10 octaves. It is an economical, lab-style measuring tool capable of calibrating a wide variety of levels. For those of you with rack-mounted systems, rest assured that the PC board fits into a 19-inch rack-mountable chassis.

Why use an analyzer?

The addition of the real-time audio analyzer to your stereo system, PA, or recording console allows you to see what you're hearing. You can use it as a tool when taping to match tapes with the original source, or to discover the playback characteristics of a tape machine. Because it reveals the spectral content of the music played, it can be used as an educational, entertaining, and colorful display. Total system/environment control can be realized by using the analyzer with an equalizer. Analyzing the frequency response of your listening area and adjusting your equalizer is simplified because the ten octave filters are tuned to the standard ISO center frequencies that are used in most equalizers. Music can be analyzed, tape copies can be compared to originals, and equalization of live vocal or instrumental sound can be optimized. Because unwanted extraneous noise will be displayed, it can be removed. When using a microphone with a known frequency response, the built-in diagnostic signal generator provides a visual display of the reproduction characteristics in the listening environment.

The analyzer, with its several input connectors and selectable input mode, allows a variety of hookup options. For example, you can use it with a receiver, preamp, tape recorder/player, equalizer, microphone, compact disc player, home satellite receiver, mixing board or recording console. The 81-LED display forms a picture of any audio signal over a 21-dB range of energy in 3-dB steps in each of the ten standard ISO octaves.

Once you can see the response of your stereo system, you can control it better with your equalizer and flatten your speaker response.

ROGER COTA and LLOYD ADDINGTON

The basics of our analyzer

Figure 1 is a block diagram of the analyzer. As you can see, there are two possible input sources, line and microphone. (As we'll soon see, there is really a third possible input source that can be selected by a front-panel rotary switch.)

In the LINE mode, the analyzer will accept standard line-level (1-volt nominal) signals from devices such as preamps, receivers, tape machines, consoles, etc. In the MIC mode, the analyzer accepts the output of a dynamic microphone, which is fed into the built-in preamp. We'll see how and when to use that input shortly.

The front-panel LEVEL control sets the level of the input signal so that the highest level is in the range of the LED display. The input signal is amplified by the input driver and separated into the ten octaves by the analog bandpass-filter networks. The signals are then rectified and filtered so that the RMS amplitudes can be determined. Next the signals are multiplexed together by the diode analog multiplexer, amplified, and fed to an analog-to-digital (A/D) converter.

Logic circuitry is used to control both the diode multiplexer and the multiplexed display driver. The control logic consists of a timer, a divider, and a 1-of-10 decoder.

The A/D converter takes the analog voltage and drives the 80-LED display. Each LED-step vertically represents a gain in amplitude of 3 dB. The horizontal axis of the LED matrix represents frequency. When a signal in any frequency range drives the device higher than the 21-dB range, the OVERSCALE LED lights. When that happens, simply use the LEVEL control to bring the signal back into the range of the analyzer.
A diagnostic sweep signal, which is used to calibrate the equalizer, is controlled by the clock and the divider. A 555 timer is used as an oscillator, which is filtered to obtain frequencies for testing at all 10 octaves. The generated signals are mixed together, filtered, and then sent to the oscillator output. That output can be fed to speakers (via the stereo system) and picked up by a microphone in order to calibrate the equalizer. That diagnostic signal can also be chosen as an input by the front-panel mode switch. That lets you view the response of the analyzer for all the frequencies are swept.

How the circuit works

Figure 2 is the schematic of the analyzer. As you can see there, a three-position rotary switch, S1, selects the appropriate input. The line input is configured to allow either separate right- and left-channel inputs or a balanced input. In other words, the input can be the right channel and ground, the left channel and ground, or the right plus left for balanced line in. In either case, the input signal goes into a line buffer or mixing amplifier made up of R11–R15, C6, C7, and IC1-b.

A microphone input is also included for low-impedance dynamic microphones. Since the output of a dynamic microphone is at a very low level, the signal must be preamplified. The microphone preamp section is made up of R2, R3, R8, R9, C2, C56, IC1c, and IC1-d. If you want to use a condenser microphone, then you’ll have to add R1, R4, R5 and C1, as shown in the dashed box in Fig. 2.

The 100K front-panel level control, R113, sets the input level for the input driver stage (which consists of R16, R18, R19, C13, and IC4-a.) That stage supplies a low-impedance signal source for the analog filters. Each basic filter has the same configuration, but the frequency is selected by the value of the capacitors. Figure 3 shows the basic filter, while Table 1 gives the values of C and corresponding filter frequencies.

The rectifier filters and the diode multiplexer network are identical for all frequencies. The output of the analog filter op-amp is rectified by a small-signal diode in series with a 10k resistor and a 1-uF capacitor connected to the negative supply. For the 30-Hz frequency, for example, the rectifier filter is D5, R52, and C14. The diode multiplexer buffer amp IC4-b is driven by the diode network and consists of R17, R20, R21, and IC4-b.

The control logic determines which frequency’s signal is presented to the multiplexer buffer amp. The 555 timer, IC8, is controlled by R74, R75, and C44 to operate as a 16-kHz oscillator, triggered and reset on the trailing edge of each pulse. The output of the 555 feeds IC9, a 4040 12-stage ripple-carry binary counter. As the counter counts up, resets and repeats, the output pin 1 is fed back through R80 and C3 to the frequency-modulating pin 5 of IC8. That causes the oscillator’s output to warble up and down about 1/2 octave. The output pins of IC5 (pins 2, 3, 4, and 13) are fed to IC6, a 74C42 BCD-to-decimal decoder. The 74C42 converts the signal at its A, B, C, and D inputs to a decimal zero on the appropriate output from 0–9.

Those outputs are connected both to the diode multiplexer and the display multiplexing network. As the 74C42 counts from 0-9 it enables each of the frequencies in turn to feed through the multiplexer buffer amp, thereby presenting each octave’s analog voltage to IC7, an A/D converter. Resistors R77 and R78 form a voltage divider to provide IC7 with a reference voltage: the IC senses the analog voltage input and fires the output LED corresponding to that voltage. Each output corresponds to a 3 dB step in a 21 dB range.

At the same time, the 74C42 enables the particular octave to be sensed by the A/D, it also enables the display driver for that frequency. The multiplexed display driver consists of PNP transistors Q2–Q11, which are biased by R81–R90. Overselect is indicated by Q1, R76, and D36. The base of Q1 is enabled by the 4040 (IC5), and the collector is connected to the output of the A/D converter corresponding to the highest analog level. When that output is activated the transistor is forward biased and turns on D36, the OVERSELECT LED.

The diagnostic sweep signal is generated and controlled by the logic circuitry as well. Ten oscillator filters are formed by R91–R110 and C26, C29, C32, C35, C38, C41, C45, C48, C51, C54. Those filters convert the square wave outputs of IC5 to ramp waves. Table 1 shows the relationship between filter capacitance and frequency.

The 555 timer fires and pulses a signal to the first filter then, as the counter counts, the 16 kHz is divided down to produce a center oscillating frequency for all the octaves. The resulting signals are presented to the mixing amp formed by:

Table 1: Filter Capacitance Values

<table>
<thead>
<tr>
<th>Capacitor Value</th>
<th>Corresponding Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1K</td>
<td>3 dB step in 21 dB range</td>
</tr>
<tr>
<td>2K</td>
<td></td>
</tr>
<tr>
<td>4K</td>
<td></td>
</tr>
<tr>
<td>8K</td>
<td></td>
</tr>
<tr>
<td>16K</td>
<td></td>
</tr>
<tr>
<td>32K</td>
<td></td>
</tr>
<tr>
<td>64K</td>
<td></td>
</tr>
<tr>
<td>128K</td>
<td></td>
</tr>
<tr>
<td>250K</td>
<td></td>
</tr>
<tr>
<td>500K</td>
<td></td>
</tr>
<tr>
<td>1M</td>
<td></td>
</tr>
</tbody>
</table>

FIG. 1—AUDIO ANALYZER BLOCK DIAGRAM. The diagnostic output can also be used as an input to the analyzer for calibration purposes.
R10, R112, C12, and ICl-a, and then to the output terminals and the input-select switch. Since the top-octave frequency is beingwarbled, all the octave frequencies warble, giving a diagnostic signal with energy across the audio band from 25 Hz to 19 kHz.

The 1081 uses a standard ± 15 volt supply. A 22-volt, 50-mA center-tapped transformer is used to step down the line voltage to a useable value that is rectified by D1-D4, and filtered by C8-C11 along with R6 and R7.

Building the audio analyzer

The foil pattern for the "component" side of the circuit board is shown in Fig. 4. The "solder" side is shown in Fig. 5. It is not entirely correct to call one side the solder side and the other the circuit side because each side has components soldered to it. The display LED's are mounted on the "solder" side.

Since the parts count is high and parts are very close together be very careful not to cause solder bridges. It also helps to install the lower-profile parts first to be sure the larger parts are not damaged by trying to solder around them. However, at this time, do not install R91, R93, R95, R97, R99, R101, R103, R105 and R109.

You can put them in position, but do not solder them. We will return to those devices when you calibrate the unit.

We should remind you that the 74C42 and 4040 (IC6 and IC5) are CMOS devices. Because CMOS devices can be easily damaged by static discharges, they must be handled with proper care.

A parts-placement diagram for the audio-analyzer circuit board is shown in Fig.

6. Note that the LED's are mounted on the "solder" side of the circuit board so that they'll be seen from the front of the cabinet. As with any diodes, be sure to install them in the proper direction.

Note that you'll be installing some off-board jacks such as the line and microphone inputs and the oscillator output. Be sure that the wires you mount in the circuit-board holes are long enough!

FIG. 3 — THE BASIC ANALOG FILTER configuration is the same for all frequencies. However, the values of the capacitors change as shown in the table.

<table>
<thead>
<tr>
<th>FREQUENCY</th>
<th>CAPACITANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.5 Hz</td>
<td>0.047 µF</td>
</tr>
<tr>
<td>62 Hz</td>
<td>0.022 µF</td>
</tr>
<tr>
<td>125 Hz</td>
<td>0.01 µF</td>
</tr>
<tr>
<td>250 Hz</td>
<td>0.0054 µF</td>
</tr>
<tr>
<td>500 Hz</td>
<td>0.0022 µF</td>
</tr>
<tr>
<td>1000 Hz</td>
<td>0.0011 µF</td>
</tr>
<tr>
<td>2000 Hz</td>
<td>0.00068 µF</td>
</tr>
<tr>
<td>4000 Hz</td>
<td>0.00032 µF</td>
</tr>
<tr>
<td>8000 Hz</td>
<td>0.00016 µF</td>
</tr>
<tr>
<td>16000 Hz</td>
<td>0.00008 µF</td>
</tr>
</tbody>
</table>

FIG. 4 — THE COMPONENT SIDE of the analyzer circuit board is shown here half-sized.

FIG. 5 — THE SOLDER SIDE of the analyzer circuit board is shown here half-sized.
All resistors are 1/4 watt, 5% carbon-film types unless otherwise indicated.
R1—3300 ohms (Optional)
R2, R3, R13—4700 ohms
R4—2200 ohms (Optional)
R5—1000 ohms (Optional)
R6—10 ohms, 1/2 watt, 5%
R7—100 ohms, 1/2 watt, 5%
R8-R17—10,000 ohms
R18—390,000 ohms
R19-R21—one megohm
R22-R31—20,000 ohms
R32-R51—680,000 ohms
R52-R61—10,000 ohms
R62-R72—47,000 ohms
R74—39,000 ohms
R76, R77—270 ohms
R78—2200 ohms
R79—220 ohms
R80—680 ohms
R81, R82, R83, R87—990, R102, R103
R105, R109—Put in 470,000-ohm units
but do not solder them! These are calibrating resistors. See the text for details.
R91, R92, R93, R94, R95, R97, R99, R101, R103
R111—5.6 megohms
R112—1000 ohms
R113—100,000 ohms, linear potentiometer

Capacitors
C1—22µF, optional
C2, C3—10µF
C4, C5, C12—220 µF, C56—1µF, 50 volts, electrolytic
C6, C7—39 pF, ceramic disc
C8-C11—470 µF, 35 volts, electrolytic
C14, C25, C35—0.047 µF, Mylar
C27, C28, C29—0.022 µF, Mylar
C30, C31—0.01 µF, Mylar
C32—0.0056 µF, Mylar
C33—0.0027 µF, Mylar
C39, C40, C41—0.0015 µF, Mylar
C42, C43, C44, C45—680 pF, ceramic disc
C46-47—330 pF, ceramic disc
C49, C50, C51—180 pF, ceramic disc
C52, C53—82 pF, ceramic disc
C55—0.1 µF, ceramic disc

Semiconductors
IC1—C4—μA4136 quad op-amp (Fairchild, or Exar XR4136)
IC5—4040 ripple-carry binary counter
IC6—74C42—4-to-10 line decoder
IC7—3915 octal bar display driver
IC8—555 timer
D1—Q11—T1593 (ECG159)
D1-D4—1N4004
D5-D35—1N914
d6—D16—miniature red LED

Other components:
S1—2 pole, 3 position rotary switch
T1—transformer, 22 volts, 50 mA center-tapped

The following are available from COTA:
3314 H Street, Vancouver, WA 98663
(206) 693-3834: Circuit board and 28 page manual, $38.50. All orders should add $4.50 shipping and handling.

The front-panel components, such as the mode switch and level potentiometer also have to be wired. All the details are shown in the parts-placement diagram of Fig. 6. The same is true for the connections to switch S1.

The circuit board bolts onto a chassis using the same type of bolts that hold the faceplate on a standard 3 1/2" x 19" rack mount chassis. Since everything but the select switch and level control are circuit-
continued on page 93
Thanks to cellular telephone, the capacity of our mobile telephone systems has increased dramatically. Here’s a look at the technology that makes cellular telephone possible.

MARC STERN
for the cellular industry were issued. In 1983, the first commercial cellular system started operation.

The cellular telephone system

To understand how cellular telephone works, it is necessary to discard some long-held ideas about mobile telephone. In conventional mobile telephone systems, a single central base-station is used to transmit a powerful signal over an area of up to 50 miles (see Fig. 1). In that system, only a single conversation may be held over a given frequency or channel in the service area.

In cellular systems, several low-power transmitters, with their associated receivers, are scattered about an area. Each transmitter operates at a power level sufficient only to cover a small area, called a cell (hence the name). If cells are sufficiently far apart, they can simultaneously use the same set of frequencies. (To ensure proper separation, adjacent cells are assigned different sets of frequencies.) Thus, where only one conversation could occur at a time over a given frequency in a service area, now hundreds could take place over the same coverage area.

Also, instead of using fairly high-powered mobile units—25 watts or more—to carry on conversations, each cellular mobile unit is lower powered, ranging from 0.6 to 3 watts. In addition, the cellular system makes handheld portable phones both practical and possible.

Finally, the last notion that must be discarded about traditional mobile-phone systems is a low number of users. In traditional VHF-based radiotelephone systems, due to the low number of conversations that are possible at a time, the saturation level for the system is about 1,200 mobile units. That means that there are few people who can actually use the mobile phone system, and there is usually a long waiting list in any urban area. With cellular telephone, though, as many as 100,000 can make use of the system.

A Cell Is Born

Central to the cellular radiotelephone system is the concept of a cell. That is the service area of one transmitter/receiver and it is just one part of a larger network. As shown in Fig. 2, at the center of the cell is the cell site, which consists of a low-power transmitter, a receiver, and an electronic switching center that links the cell to the rest of the cellular system. Each of those sites, in turn, is linked to a Mobile Telephone Switching Office (MTSO), which is the ultimate arbiter of the entire cellular network. The MTSO, in turn, links the cellular system with the wire telephone system run by the local phone company.

The electronics that makes the cellular system possible is located at the cell site. In addition to the transceiver (transmitter-receiver) needed for the cellular system, at each site is a sophisticated computer system that not only controls the transceiver, but also the mobile units—in conjunction with the mobile unit's internal microprocessor and circuitry—as well as the local switching operation to the MTSO.

For the cellular system to work, when a car moves from cell to cell, there must be an orderly transition, communications must be transferred cleanly from cell to cell, and the mobile unit must only communicate via one cell site at a time. To achieve that aim, each cell site is assigned a set-up channel, which only handles data signals, in addition to a given number of voice channels. The set-up channel, which is used by all of the mobile units in the cell, is used to initiate calls and assign a user to a voice channel. The receiver in a subscriber's mobile unit scans all of the set-up channels in a system and selects the one that is the strongest. Communications then commence via that cell site and only that cell site.

Transitions between cell sites (see Fig. 3) are handled by the cell site electronics. The mobile unit monitors the voice channel for a "hand-off" signal. That signal is sent by the cell site when the signal strength at the cell site drops below a certain level and it has been determined that another cell site is receiving a stronger signal (each cell site has a scanning receiver for that purpose). The hand-off signal instructs the mobile unit to change frequencies. During the change, the audio

![Image 1](https://www.americanradiohistory.com/)

![Image 2](https://www.americanradiohistory.com/)

FIG. 1—CONVENTIONAL MOBILE TELEPHONE SERVICE uses one central base station to transmit a powerful signal over an area of up to 50 miles in diameter. Only one two-way conversation at a time can be held over a given channel in the coverage area and the number of channels is limited.

FIG. 2—CELLULAR MOBILE TELEPHONE SERVICE is provided through a system that is composed of three major elements: cell sites, a mobile telephone switching office (MTSO), and dedicated interconnecting circuits. In the cellular system, the coverage area is divided into small areas called cells, hence the name.
A closer look

Let's look more closely at the cellular radiotelephone system to see how all the electronics and computers do their tasks.

And what better way to look at the system than walking through a typical call?

To initiate a call, a mobile user has to dial the handset of this radiotelephone and dial the number he wants. At that time, the microprocessor-controlled unit sends a brief burst of digital information to the transmitter, alerting the cell site that the user wants to make a call and that it is present in the site's coverage area.

Next, the cell site equipment sends a digital signal back to the mobile unit telling it to standby while it is assigned a frequency pair from the frequency allotment assigned to the central site. (Cellular phones operate in the full-duplex mode, which means that both the caller and person called can hear and talk at the same time. To do that, discrete frequencies are used for transmission and reception. The typical frequency separation between transmit and receive is 45 MHz. Spacing between channels is 30 kHz and there are 666 duplex channels in all.)

Continuous contact

One of the interesting capabilities of the cellular radiotelephone system is its ability to provide continuous coverage across a large geographic expanse.

In order to do that, as a mobile station moves from one area to another, the entire cellular system must know the exact location of that mobile system and it must be ready to enable a hand-off of that mobile between cell sites—all without the user being aware of it.

To do that requires some interesting computerized gyrations. Look at a cell site tower, such as the one used in the Motorola system and shown in Fig. 4, and you will see something interesting—the transmit and receive antennas are located on different parts of the tower. In a typical installation, such as the ones used in Motorola systems, there are six 60-degree directional receiving antennas spaced around the tower, each with a gain of about 17 dB (see Fig 4-b). Diversity reception techniques are used. In diversity reception, signal strengths at the antennas are monitored, with the one receiving the strongest signal being used for the communications. Computers handle the task of analyzing the signal strengths and making the antenna selection.

The receiving antennas and computer equipment also team up to handle another task—determining the position of each communicating mobile unit in the cell. To do that, the computer samples the received signal strength at each antenna, and uses a special direction-finding algorithm to determine the exact location of the mobile unit.

Monitoring continuously that information is constantly updated and is fed back to the master computer at the MTSO. The computer at the MTSO is the arbiter that takes the information on the location of the mobile unit and if the signal strength falls below a certain level—about 17 dB (carrier-to-interference and noise)—the MTSO decides its time for a hand-off between cells.

While all of that is going on, the computer in the MTSO is also polling nearby cell sites, asking them which one is receiving the mobile unit the strongest. The cell sites, in turn, look for the signal and reply. Using the information received from the cell sites, the MTSO orders the call to be switched to the most appropriate cell. At the same time, the mobile unit switches frequencies to a pair that is available in the new cell site. The frequency pair in the old cell site is then freed.

Monitoring the received signal strength is not only important in determining the location of the mobile unit, but it is also important in keeping the power levels within the cellular system down. Signal strength is monitored by the cell site, and when it exceeds a certain level, the cell site orders the mobile unit to cut back on the output power. Thus, the potential for interference is very small.

Cost

At the moment, cellular service isn't inexpensive. Most units are selling in the $2000–3300 range, though prices for equipment will likely drop as more and more units come on the market. As you might expect at that price, most cellular telephones are loaded with bells and whistles. Multi-phone-number memories, last number redial, digital readouts, horn alert (used to alert the user to a call while he is out of the car), and LED status lights used to indicate such things as no service in a particular area are all found on typical cellular phones. As to monthly charges, including access charges and time on the system, those are currently averaging out at about $150.

Overall, cellular radio is an exciting concept whose time has come. It promises truly portable telecommunications, which will keep anyone in touch wherever they go.
With this oscilloscope upgrade, you can stabilize your display of video signals and see what they really look like.

If you’ve ever worked with televisions or video recorders, you know how difficult it can be to trigger an oscilloscope to provide a really stable display—especially if you want to examine one line of video. And what’s even more frustrating is that when you do finally obtain a good display, the part of the waveform you want to examine seems to be just beyond reach. It seems that no combination of position control, sweep rate, and expansion will get you just where you want to be.

If you own a triggered-sweep oscilloscope, there is a solution! We’ll show you how to add a video-sync separator and delayed-trigger capability to your oscilloscope. With your upgraded oscilloscope, you’ll really get to see those video signals.

The circuit can be broken down into four major sections:
- Input buffer/amplifier and video clamp circuit.
- Video-sync separator.
- Digital vertical-pulse separator.
- Trigger-delay section.

The block diagram of Fig. 1 shows the various sections of the circuit and how they relate to each other. The basic concept of the circuit is to extract the vertical-sync pulse from the video signal and use it to trigger a scope. However, the trigger pulse is not applied directly to the scope. Instead, it is first delayed by a user-adjustable period of time.

Since the scope will not begin its trace until it is triggered at the end of the delay time, and since we have control over the length of the delay after the trigger event (which is a vertical-sync pulse), we can examine any part of the waveform that occurs after that event in great detail.

A useful feature of this upgrade is a clamped video output. The clamp circuit forces the tips of all the sync pulses to line up at the same DC level. So even as the brightness of the scene changes and the average video-voltage level changes, the displayed waveform will remain on exactly the same baseline, making amplitude measurements much easier.

A look at the circuit

The schematic of the sync-separator circuit is shown in Fig. 2. We’ll start our description of the circuit at J1, the video...
What can you do
Just about

CIE can show you how.
Computer technology. Satellite communications. Cable television. Cellular radio. Digital electronics. Robotics. Just a few of the hottest career areas in electronics. The ones everybody is talking about. The ones that are changing the way we live, the way we do business, the way we entertain ourselves. The best way to start a career in any of them? By learning the basic electronics theory and principles of how they work from CIE.

Join a leader.
Leading the world in specialized electronics training, CIE is the largest school of its kind with over 25,000 students at home and abroad. And with over 50 years of experience teaching electronics to thousands of men and women through proven methods of independent study without classroom sessions.

Learn as much as you want, when you want.
Whether you’re interested in learning new skills or upgrading old ones, earning a diploma or an A.A.S. degree, CIE can match your needs with courses and programs that let you start where you want, go as far as you want from a basic beginner course all the way to CIE’s Associate in Applied Science Degree in Electronics — a comprehensive program that prepares you for advanced electronics careers.

Custom training equipment helps you learn.
CIE believes in the importance of learning by
with electronics? anything.

doing. So most of our courses include special-
ized training laboratories keyed to specific less-
ons for practical experience through teaching
experiments. Our CIE Microprocessor, for
example, comes fully assembled and ready to
use to teach you how a computer CPU works
through a series of experiments you perform
on your own.

Are you ready?

If you’re ready to do something now about your
future, there’s no waiting to enroll with CIE. Get
all the information you need to enroll simply by
calling us toll-free at 1-800-321-2155 (in Ohio,
1-800-362-2105). Or mail in the handy reply
coupon or card to Cleveland Institute of
Electronics, 1776 East 17th Street, Cleveland,
Ohio 44114.

CIE
Cleveland Institute of Electronics, Inc.
1776 East 17th Street • Cleveland, Ohio 44114

☐ Please send me your CIE Off-Campus Studies Catalog,
including details about the Associate Degree program.
I understand there is no cost for the catalog and a CIE
representative may call, but there is no obligation.

Print Name __
Address __ Apt. No. ____________
City ____________________ State ____________________ Zip ____________
Age ________ Area Code/Phone No. __________________

☐ Veteran ☐ Active Duty

Check box for G.I. Bill bulletin on Educational Benefits

MAIL TODAY!

RE-07
FIG. 1—THIS BLOCK DIAGRAM shows the main sections of the oscilloscope upgrade. The circuit extracts the vertical-sync pulses from a video signal and then delays its application to the external-trigger input of the scope. Note that a clamped-video output is also available.

FIG. 2—SCHEMATIC OF THE SYNC SEPARATOR. The "heart" of the circuit is made up of IC2-IC5. The composite-sync output of IC2 is fed to IC3, a dual flip-flop, which outputs vertical-sync pulses. Those pulses are then delayed by IC4 and sent to IC5, which is configured as a one-shot. The output pulse of IC5, which is 100 microseconds, is sent to the scope's trigger circuit.
The C2-R12 time constant is quite long (.1 second) with respect to one horizontal time period. Because of that, the bias voltage remains essentially constant for the full period of the line. The effect of the bias is to force all of the sync pulse-tips to line up at the same level. Resistor R4 and diode D4 provide a +0.6-volt reference level for D3, which prevents the clamped signal from going below ground potential.

Transistor Q2 and Q3 form a singleband high-input-impedance buffer/amplifier that couples the clamped video output to the oscilloscope’s vertical-input channel.

As we go through the discussion of the rest of the circuit, you’ll find it helpful to study the timing diagrams of Figs. 3 and 4.

IC2 is a straightforward differential comparator that separates the sync pulses from the video information. The bias voltage on pin 2, the non-inverting input of IC2, is set by trimmer potentiometer R9. With the bias voltage properly set, the output (pin 7) will switch or change state only during the sync-pulse time, effectively stripping off the video and leaving only composite sync signals, as shown in Fig. 3.

From IC2, the composite sync goes to IC3-a and IC3-b, both halves of a dual D-type CMOS flip-flop. That circuit separates the vertical-sync pulses from the horizontal by detecting the duty cycle change that occurs during the vertical-sync pulse time. Since IC2 is set up as an inverting comparator, the composite-sync pulses at its output are now positive-going. The rising edge of each horizontal-sync pulse clocks the input (pin 11) of IC3-a. Since the B input is tied to a high logic-level, those rising edges clock a high level into the Q output and a low logic-level into the Q output. When the Q output goes high, capacitor C4 begins charging up through R15. Diode D12 is reverse biased at this time and has no effect.

After about 10 microseconds, the voltage across C4, and thus the voltage at pin 10 (reset) will be high enough to reset the flip-flop, forcing the Q output low again. That allows C4 to discharge rapidly through D12, bring the sequence to an end. The result is that IC3-a is actually a one-shot with a period of approximately 10 microseconds—about twice as long as a standard horizontal-sync pulse.

The Q output of IC3-a drives the clock input of IC3-b. That means that the rising edge seen at the clock input corresponds to the end of the 10-microsecond time period. Note that the B input of IC3-b is not tied high. Instead, it is connected to the composite-sync output of IC2. As a result, whenever IC3-a is triggered by the horizontal-sync pulses, the B input of IC3-b will be low when the rising edge occurs at its clock input. Since the B input of IC3-b is low when the clock pulse occurs, no change takes place at the Q output.

The duty cycle of a vertical-sync pulse is much wider than that of the horizontal pulses. Therefore, when a vertical-sync pulse triggers IC3-a, the B input of IC3-b will still be high at the end of the 10-microsecond period. Since the B input is at a high logic-level when the clock pulse occurs, Q of IC3-b will go low. The Q output will stay low as long as the duty cycle seen at the B input is longer than that of a horizontal-sync pulse.

So, at the Q output of IC3-b we will see a negative-going pulse that corresponds to vertical sync. The falling edge of that pulse is differentiated by C6 and R17 and is used to trigger the delay one-shot IC4. With the delay potentiometer R22 at minimum resistance, IC4 has a time period of 16.5 milliseconds—just about the same length of time as one complete field. With R22 at maximum resistance, the time period is 40 milliseconds, which is equivalent approximately to 2½ fields.

At the end of IC4’s time period, wherever it might be set, the output at pin 3 goes low. This edge is differentiated by C10 and R19 and used to trigger the last one-shot IC5. The period of that monostable is fixed at 100 microseconds. The pulse is routed to J3 and used to trigger the externally triggering input of the oscilloscope.

Resistor R16 and capacitor C5 help reduce jitter on long delays. A slightly delayed version of the delay one-shot’s output is applied to the reset input (pin 4) of IC3-b. That guarantees that no spurious pulses will appear at its output until well after the delay period.

A minimum time delay of 16.5 milliseconds is used to ensure that the scope is not triggered on consecutive fields. If that were allowed to happen, the display would show the even and odd fields superimposed on one another.

Building the sync separator

The sync separator/delay can be built in a free-standing, self-contained unit. Of course, you also have the option of installing the circuit inside an oscilloscope. The layout of the circuit is not critical, and if you’re careful, you can build it on perforated construction board and use point-to-point wiring. Using a printed-circuit board is a better way to go, however. A foil pattern for a single-sided board is shown in Fig. 5. (See the Parts List for information on availability of a pre-etched and drilled board.)

Figure 6 shows a parts-placement diagram, including both on-board and off-board components. Figure 7 shows a photograph of the author’s prototype that can be used as a guide. As indicated in the parts-placement diagram, be sure to con-
Do not forget to install the 5 jumper wires connecting a wire from the board's ground to one of the transformer's mounting screws. Don't forget to install the 5 jumper wires on the PC board.

FIG. 5—THE SINGLE-SIDED BOARD is small enough to fit inside many oscilloscopes.

FIG. 6—PARTS PLACEMENT DIAGRAM. Note that before you install Q1 or Q2, you should cut the case lead. Also note that the board's ground should be connected to a transformer mounting screw.

Checkout and setup

After the unit is assembled, apply power and check the power-supply voltage. If that's correct, proceed by connecting a source of video to the input. An ideal source is the video output of a VCR. If you don't have a VCR or other video source available, then the output of your TV's video detector will do nicely. Determine whether the sync pulses are positive- or negative-going and set the SYNC switch accordingly. Connect the CLAMPED VIDEO output of the project to the vertical input of the oscilloscope. You continued on page 94

Resistors, 1/4-watt, 5% unless otherwise noted
- R1, R12, R13—1 megohm
- R2, R3, R5, R7, R11—1000 ohms
- R4, R8, R14—4700 ohms
- R6—220 ohms
- R9, R21—10,000 ohms, trimmer potentiometer
- R10, R17, R18, R20—10,000 ohms
- R15—2000 ohms
- R16—20,000 ohms
- R22—100,000 ohms. 10-turn potentiometer

Capacitors
- C1, C2, C7, C11—0.1 µF, ceramic disc
- C3—470 µF, 35 volts, electrolytic
- C4—0.0047 µF, 10%, polyester film
- C5—0.1 µF, 10%, polyester film
- C6, C8, C10, C12—0.001 µF, 10%, polyester film
- C9—0.22 µF, 10%, polyester film
- C13—0.01 µF, 10%, polyester film

Semiconductors
- IC1—7415 15-volt regulator
- IC2—LM311 comparator
- IC3—4013 dual D-type flip-flop
- IC4, IC5—555 timer
- Q1, Q2—2N3923
- Q3—2N3906
- D1, D2, D5—1N4001
- D3, D4, D9—1N4148

Other components
- F1—fuse, 1/4 amp
- J1—J3—FEMALE BNC jack
- NE1—neon lamp, 110 volts
- S1—SPDT toggle switch
- S2—SPST toggle switch
- T1—110:18 volts AC, 300 mA

Miscellaneous: fuse holder, line cord, printed-circuit board, ground lug, case, etc.

The following are available from Elephant Electronics, Box 41776-P, Phoenix, AZ 85080. A complete kit (DT-1) consisting of all items listed above, $49.95. The printed-circuit board is available separately for $12.95. Arizona residents must include 6% sales tax.
3 High-Performance Scanner Antennas

Are you still using your scanner's built-in antenna? Build one of these custom antennas and pull in those weak signals you've been missing!

LOREN FREBURG

IF YOU'VE RECENTLY BOUGHT A SCANNER/MONITOR, you've probably become hooked on eavesdropping. You have also probably come to the realization that the skimpy little antenna that screws into the top of the unit has serious limitations. Reception from highway-patrol mobile units may come and go. Fire department transmissions from portable units may be inaudible from just a few miles away. And sometimes you may hear only the base station side of a conversation in a neighboring town.

If you've had similar experiences, an external antenna may be just what you need. Not the general-purpose (do-everything-half-way) type, but one designed to be optimum for the frequency you are most interested in, and yet provide good reception on the other frequencies!

There are three limitations to the built-in antenna. First, the height is too low. High-frequency radio waves tend to travel in straight lines, so low positioning limits the antenna's performance. Rooftop mounting allows the antenna to "see" farther because the horizon is more distant. The higher you can get your antenna, the better. Second, the length of the filaments are arbitrarily chosen and possibly too short. A correctly designed antenna is of a particular length. If an antenna isn't made to that particular length then, generally speaking, the longer the antenna, the better. Built-in antennas obviously don't meet that criterion. A third problem with built-in antennas is that reflections from nearby objects upset performance. Anything that is electrically conductive can absorb radio-frequency (RF) energy and then re-radiate it, causing interference or signal drop out. Such re-radiators include anything metallic from house-wiring to pipes, and even metal picture frames.

A well-designed outdoor antenna can overcome all these problems. The three antennas that we'll be describe, ground plane, extended double-Zeppelin, and coaxial collinear, offer the best perfor-
Electromagnetic radiation travels at a velocity of 186,000 miles per second (C) in free space or a vacuum, and more slowly through other substances—for example, about 2/3 the free-space velocity through solid polyethylene. (The velocity in a particular medium divided by the velocity in free space is termed the velocity factor.)

That radiation travels in a wave-like motion; the distance between successive waves is defined as a wavelength. (The symbol for wavelength is \(\lambda \).) Frequency is defined as the number of waves passing a given point in one second. So a wavelength (in miles) is equal to 186,000 miles per second divided by the frequency or number of waves per second.

One wavelength, in miles, is expressed as \(\lambda = 186,300f \), where \(\lambda \) is the wavelength in miles and \(f \) is the frequency in hertz. Likewise, wavelength can be expressed in meters: \(\lambda = 3 \times 10^8f \), where \(\lambda \) is the wavelength in meters and \(f \) is the frequency in hertz.

Because we're working with distance measured in feet and frequency in megahertz (MHz), the formula can be rewritten as: \(\lambda = 984/f \), where \(\lambda \) is expressed in feet and \(f \) in MHz. For example, a frequency of 964 MHz has a wavelength of one foot. (As the frequency increases the wavelength decreases. The opposite is true as frequency decreases.)

Resonance is another point that we should consider. Resonance is defined as a state in which the natural response frequency of a circuit coincides with the frequency of the applied signal. In other words, it's a condition in which a minimum amount of energy is needed to maintain current flow. That condition exists in an antenna when its length is exactly one-half wavelength (0/2) long. Only a small amount of additional energy is needed to overcome losses in the conductor.

Let's take the analogy of a playground swing (a rather crude example of resonance, but it will illustrate our point). If a swing is pushed gently once every pass, its motion is sustained indefinitely with little additional energy. But, if the swing is pushed at a rate that doesn't exactly coincide with its movement, the smooth-flowing motion is interrupted. (You might say that it has met some resistance.) Thus, maximum performance is obtained when the antenna is at, or at least near, resonance.

Before we leave our swing, let's consider polarization from the simplest point of view. Although not a strict mathematical explanation, the similarity gives some idea of its importance. A properly timed push, whether from the back or the side, will maintain motion. However, our swing is designed for front-to-back motion (you might say it's polarized). Likewise, an antenna is polarized. Current should flow along a conductor, not across it.

Antenna impedance is a difficult concept to grasp because it doesn't really exist. It is only the mathematical quantity obtained by dividing the instantaneous voltage by the instantaneous current, which varies along the antenna conductor. In a theoretical antenna in free space, the current at the end is zero and the voltage is at maximum. Thus, the impedance seems to be infinite.

At a point on the conductor where the voltage is zero and the current at maximum, the impedance is zero. The importance of antenna impedance becomes apparent when we attempt to transfer energy in a antenna to a feedline and then to a receiver or scanner. Maximum energy transfer occurs when the impedances are matched—ideally, a 50-ohm monitor connected via 50-ohm feedline to the point on the antenna where the impedance is also 50 ohms.

That allows all energy picked up by the antenna to be transferred to the scanner, assuming there are no other losses. The same applies for transmitting antennas, except for power differences. A proper transmitting antenna is a proper receiving antenna, and visa versa.

The radiation pattern of a transmitting antenna is a three-dimensional representation of its relative efficiency in radiating power in different directions, as shown in Fig. 1. (Don't be concerned with the terminology, which appears to be describing a transmitting, rather than a receiving, antenna; the functions and terminology are interchangeable.)

An antenna that radiates equally well in all directions can be represented by a sphere, with the antenna being a point at the very center. Such an antenna, which exists only in theory, is called an isotropic radiator.

The fundamental resonant antenna (one-half wavelength long) is called a dipole when the feedline is connected to its center. Such antennas radiate energy in a figure-8 pattern, with a tiny hole in the center as shown in Fig. 1-a. The dipole runs through that hole.

TABLE 1

<table>
<thead>
<tr>
<th>Band</th>
<th>Frequency</th>
<th>Wavelength</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHF-low</td>
<td>30-50 MHz</td>
<td>33 ft. - 20 ft.</td>
</tr>
<tr>
<td>VHF-high</td>
<td>118-136 MHz</td>
<td>8 ft. - 7 ft.</td>
</tr>
<tr>
<td>UHF-low</td>
<td>410-470 MHz</td>
<td>4 ft. - 3 ft.</td>
</tr>
<tr>
<td>UHF-high</td>
<td>470-512 MHz</td>
<td>2 ft.</td>
</tr>
</tbody>
</table>

TABLE 2

<table>
<thead>
<tr>
<th>Band</th>
<th>Ground Plane</th>
<th>Extended Double-Zepp</th>
<th>Coaxial-Comline</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHF-low</td>
<td>8 ft. + radials</td>
<td>32 ft.</td>
<td>80 ft.</td>
</tr>
<tr>
<td>VHF-high</td>
<td>11 ft. + radials</td>
<td>8 ft.</td>
<td>20 ft.</td>
</tr>
<tr>
<td>UHF</td>
<td>6 inches + radials</td>
<td>2½ ft.</td>
<td>6½ ft.</td>
</tr>
</tbody>
</table>
A high-gain antenna has a radiation pattern that's highly directional. Antenna gain is expressed in decibels (dB): $\text{dB} = 10 \log \frac{P_R}{P_T}$, where P_R is the power density or field strength of the antenna being compared and P_T is the field strength of the reference antenna. But how do we get a gain with our antenna if we need reception from all directions? We don't really need reception from all directions, just all compass directions. Signals from above or below us are not needed, and that's the key to unlocking better performance.

If the dipole antenna is positioned vertically as shown in Fig. 1-a, its radiation pattern wraps around it (like a coil wrapped around a stick) and there is 2.14 dB gain relative to the theoretical isotropic radiator. To obtain more gain the pattern must be compressed, making it flatter and wider. One way to flatten out the pattern is to stack half-wave dipoles and connect them so that the currents are additive (in phase).

Both the extended double Zeppelin and the coaxial-collinear antennas are variations of the stacked-dipole technique. Their radiation patterns are shown in Fig. 1-b, along with that of the dipole type. (Note that the ground plane antenna, which is our third antenna type, is simply a dipole that has been modified).

Antenna design

Until now, we've been talking only theory; but, in the real world, there are additional considerations. The antenna diameter itself must be taken into account at the higher frequencies. That's because a "fat" antenna acts electrically as though it were physically longer. Thus, the antenna must be made shorter than theory indicates. Table 3 shows the correction factor that the calculated wavelength must be multiplied by to obtain more accurate results.

Another factor affecting antenna performance is the presence of the ground beneath an antenna, which acts like an "electrical mirror." The reflected RF reaches the antenna later than the signal strike the antenna directly. Those late-arriving signals are added to the first, and either increase or decrease antenna current, depending upon the length of the delay.

That delay depends on the proximity of the antenna to reflective materials like nearby buildings, metal objects, bodies of water, and ground. All have similar reflective properties, and their effect is a function of their conductivity. Because of the complex and often unpredictable nature of reflections, they are best avoided.

One way to minimize ground reflection problems is to make an artificial ground an integral and therefore predictable part of the antenna system. That's an important feature of the ground plane antenna.

Design theory must be combined with the available materials to make an antenna. The antennas described here use commonly available materials, and building them requires a minimum amount of tools. The antenna elements themselves are made from brass brazing rods, aluminum tubing, or coaxial cable.

Brazing rods are available from welding supply houses or someone who does brazing (such as auto repair or machine shops). Aluminum tubing can be bought in most hardware stores and home improvement centers. Coaxial cable and connectors can be obtained from electronics supply houses and the miscellaneous materials may be picked up at your local hardware store.

It should be emphasized that when designing an antenna, the dimensions are only a starting point. Use your imagination to combine the measurements with materials that you feel comfortable with or have on hand. Remember, materials can be modified. For instance, two brazing rods are easily soldered together to make longer elements so long as the joint is first wrapped with copper wire (see Fig. 2). Likewise, two pieces of tubing may be telescoped if necessary.

Ground plane

One of the most common communications antennas is the ground plane. (Fig. 3 shows how dipole evolves into a ground plane antenna.) In Fig. 3-a, we have the basic dipole. An artificial ground (ground-plane) replaces the lower half of the dipole in Fig. 3-b and functions much like a reflector. It has about 1.8 dB less gain than a dipole, but often outperforms a dipole in spite of that. That's because it is less affected by reflections from the ground, which can cancel out antenna current.

The ground plane itself is usually made of wire extending from the base of the vertical element. The ideal antenna would have a continuous ground, perhaps made from a sheet of copper. A series of wires, or radials, approximates that condition. The more radials used, the closer we approach the ideal.

The wires can be self-supporting if made from a stiff rod or tubing. The impedance of a ground plane antenna is about 30 ohms when the plane is flat. By lowering the radials by 45° (as shown in Fig. 3-c) its impedance is made close to 50 ohms, which matches available coaxial cable and typical scanner/monitors. Also, lowering the radials lowers the radiation pattern, which effectively increases its gain.

A ground plane may be made from a coaxial chassis connector and wire. Figure 4 shows how to find the correct length for the radials and antenna element to be mounted on the connector. The antenna element and radials are made from brass brazing rods, which are available in 3-foot lengths and in diameters from ¼" to ½" inch. The rods are fairly rigid, yet may be bent as needed. They're easy to solder, certainly an advantage when elements longer than 3 feet are needed. Use thinner rods for extensions and thicker rods next to the coaxial connector.

TABLE 3

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Wavelength</th>
<th>Correction Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1.0</td>
<td>0.945</td>
</tr>
<tr>
<td>70</td>
<td>1.0</td>
<td>0.950</td>
</tr>
<tr>
<td>100</td>
<td>1.0</td>
<td>0.955</td>
</tr>
<tr>
<td>200</td>
<td>1.0</td>
<td>0.960</td>
</tr>
<tr>
<td>400</td>
<td>1.0</td>
<td>0.965</td>
</tr>
<tr>
<td>1000</td>
<td>1.0</td>
<td>0.970</td>
</tr>
<tr>
<td>4000</td>
<td>1.0</td>
<td>0.970</td>
</tr>
</tbody>
</table>
Don’t forget to correct the lengths of the various elements for the diameter of material you’re using.

Figure 5 shows how the radials and element are connected. It is best to use eight radials as shown. Four radials will work but not as well. Bend them downward 45° and space evenly around the fitting. Solder the vertical element to the center pin of the fitting.

Now prepare the mast by making four 1½ inch lengthwise cuts in a piece of tubing. The inside diameter of the tubing should be close to the diameter of the plug (about ⅛ inch). The plug will be held in the end of the tubing. Connect the plug to the cable and insert the assembly in the slit end of the tubing, as shown in Fig. 6. Then secure the assembly in place with a hose clamp.

The antenna may now be screwed onto the plug and moved to its final location. The ground plane is easily self-supporting when designed for the VHF (high) and UHF bands. However, when the lengths of the elements are 6 feet, as with the VHF low band, a little wind can really whip those rods around.

That problem is easily solved by adding a little bracing. The radials may be supported by 1 x 1 inch piece wood or lightweight tubing. Support is not needed all the way to the ends, about half to a third of the length should do. The vertical element must be braced with non-conductive material like a wooden dowel, 1-inch square piece of wood, plastic PVC tubing or similar material.

Extended double-Zeppelin

The extended double-Zeppelin antenna is a frequently-used modification of the design originally used in World War II Zeppelins, is where the antenna got its name. The Zeppelin, or Zepp antenna is a resonant, end-fed antenna with a two-wire transmission line. The design presented here has an antenna element connected to each conductor, hence the name double-Zeppelin.

In the double-Zeppelin design, three half-wavelength sections are connected end to end, as shown in Fig. 7. The induced currents in the two outside elements flow toward the center conductor. Any induced current in each of the center ¼ sections (phase-reversing stub) flow in opposite directions relative to each other, so their sum is zero.

That means that resulting current in the center section will be due only to the current induced in the antenna itself. When the antenna elements are close together, as shown in Fig. 7-a, those elements interact, reducing the total current flow and the gain of the antenna.

That problem is overcome by wider spacing (see Fig. 7-b). Of course, the element is now longer than a half-wavelength. That means that part of the current is out of phase, which reduces the total current and gain. When the spacing between the ends of each element is 0.28 of a wavelength, the increased gain, due to wider spacing, more than makes up for the lower gain caused by the short, out-of-phase sections. So the gain of the antenna is at maximum.

Figure 7-c shows the extended double-Zeppelin with an opening in the center conductor, which is the low-impedance point. However, its impedance is still several times greater than the desirable 50 ohms. A closer match may be obtained by using a standard television transformer-balun, the type used to connect 75-ohm coaxial cable to either a 300-ohm antenna or 300-ohm television input.

The vertical, center-fed Zeppelin is made of tubing, which allows the feedline to be run down its center where it cannot affect antenna performance. The tubing’s diameter must be large enough to handle the coaxial cable, and the bolts that will hold it to the mast. A tubing diameter of ¼ inch is fine.

Unfortunately, while there’s still much more we want to show you, that is all we have room for this month. When we continue, we will conclude this look at the extended double-Zeppelin by showing you how to calculate the length of the various sections for the frequencies of interest, and how to efficiently build that antenna.

Also, we’ll look at what criteria you should consider when selecting which antenna to use, and at some installation notes.
How to Design Microprocessor-based Projects

Make your next project "intelligent." Use a single-chip microcomputer to control it.

TOM FOX

Are you fascinated by microprocessor-controlled, semi-intelligent gadgets like robots that avoid obstacles, microwave ovens that monitor the food as it cooks, and cars that adjust the engine so that it's working as efficiently as possible? Have you come up with hundreds of control-computer applications that you'd like to try? (But you can't picture tying up your powerful personal computer for control applications?)

There is a way to design computer-controlled "smart" devices without tying up your expensive personal computer. It's easy if you use a device called a micro interpreter.

In this article, we'll show you how to design almost any computer-controlled device your imagination can dream up—even if you've never worked with microprocessors before! That's because you don't have to learn machine or assembly language and you don't have to invest gobs of money in expensive and complex development systems in order to design a computer-controlled machine. As long as you have some knowledge of electricity and digital logic circuits you should be on your way. But some familiarity with the BASIC programming language, as well as binary and hexadecimal numbers will come in handy too.

To get you on your way toward designing practical, semi-intelligent machines, we will describe, in detail, the design of a single device: a "burglar outwriter." As its name implies, the purpose of the outwriter is to fool a potential burglar into thinking someone (or something) is home when actually no one is there.

What's a micro interpreter?

If you have ever used today's microcomputers, you probably realize that they're fairly easy to use. However, microprocessors—the brains of the microcomputer—have a notorious confusing nature about them. What is it that turns a complex, often mind boggling, microprocessor into an easy-to-use microcomputer? Software! Although it seems at times you can do magic with it, there is nothing magical about software. It's merely a list of detailed instructions that tell the microprocessor exactly what to do.

That's the same thing that makes a micro interpreter easier to use than a microprocessor. A micro interpreter is basically a single IC that contains both a microprocessor and software. The software in microinterpreters is contained in ROM (Read-Only Memory).

Before we go any further, we should point out that microprocessors with a built in high-level language are not universally called "micro interpreters." A few semiconductor companies refer to those IC's as single-chip microcomputers. However, that name is not only clumsy, it is unnecessarily vague since many of those same companies call microprocessors that have no built in high-level language "single-chip microcomputers." National Semiconductor refers to their INS8073—the device that we'll examine in detail—as a micro interpreter. This seems to be the best name available, and we will stick to it.

You might be thinking that there must be a catch somewhere. Microinterpreters...
FIG. 1—BLOCK DIAGRAM OF THE INS8073 from National Semiconductor. Note that the microinterpreter contains 2.5K of ROM and 64 bytes of RAM.
The INS8073 microinterpreter

As we mentioned earlier, a microinterpreter is basically a microprocessor that understands a high-level language. Such microinterpreters fall into two general categories: ones that understand Tiny BASIC and ones that understand a form of stripped-down Forth.

Forth was developed in the early 1970's for real-time control of astronomical equipment. Because of that, it is an excellent language for microinterpreters since one of its primary uses is in control applications. Forth's main advantage, compared to Tiny BASIC, is that it is faster. However, unless you have already programmed in Forth, you'll have to spend a considerable amount of time learning the language. While Forth enthusiasts might write some letters to the contrary, most people would agree that Tiny BASIC is easier to learn than Forth.

Even if you have never programmed a computer before, you'll be able to write a program that works using BASIC in less time than with just about any computer language there is. It's true that many BASIC programs might not be very elegant. Nonetheless, if the program does what we want it to, then it's just fine. After all, that's what we're after—to get the job done.

Another advantage of BASIC is that it is the most widely used language among microcomputer users. (Apple II, Times, Sinclair 1000, Commodore 64 and many other popular computers all have a form of BASIC built-in.) So there is an excellent chance that you are at least mildly acquainted with BASIC. And if you are, your job in learning how to design smart machines with microinterpreters is nearly half done.

In our quest for simplicity, we will examine only one microinterpreter: the INS8073. However, you will be able to apply much of what we say to other devices. The INS8073, though relatively simple in architecture, has noteworthy features like 16-bit hardware multiply and divide. However, the best thing about the INS8073 is that its language (National Semiconductor's Tiny BASIC) is a true gem. While we will describe that language in more detail later in this article, a few highlights will be given here.

National Semiconductor's Tiny BASIC includes DO-UNTIL commands. That type of loop control was borrowed from Pascal and is unusual for Tiny BASICs. The ON command simplifies the handling of interrupts, which is important when designing smart machines. Another convenient instruction is DELAY, which can be used to pause program execution for a user-determined length of time. This BASIC includes a RND function, which we will use extensively when we design our burglars-outwit.

National Semiconductor's Tiny BASIC handles strings and uses the operator (which simplifies transferring data back and forth between the program and memory locations or input/output ports). There are other unusual features of a Tiny BASIC, which we'll discuss in more detail later. Actually, if it were not for its restriction to integer numbers and 26 variable names, National Semiconductor could have continued the adjective "Tiny" from the language's name and hear few complaints.

The INS8073 has already been chosen by designers for a number of commercial applications. For instance, it is the "brain" of RB Robot Corp's RBSK robot and has been used for precision measurement of conditions in oil wells and testing the feasibility of the digital design of FM tuners.

Inside the INS8073

The INS8073 microprocessor is an INS8072 8-bit microprocessor that contains Tiny BASIC in its 2.5K on-chip ROM. It has a 16-bit address bus and requires a single 5-volt supply voltage. Other features of interest to us include an on-board clock, TTL compatibility and 64 bytes of on-board RAM. (Yes, more RAM would be nice.)

There are some attributes of the 8070 series of microprocessors that affect us only indirectly. Those include 8 and 16-bit arithmetic, logic and stack-manipulation instructions, hardware multiply and divide, and single-instruction ASCII-to-decimal conversion. The 8072/8073's multiprocessing feature will not be used.

A feature of the IC that simplifies its use as a stand-alone, real-time controller, is the provision for automatic execution of ROM (or EPROM) at power-up or on reset. The INS8073 also contains firmware that allows easy interfacing to a RS-232 terminal.

The INS8073 "understands" ASCIl (the American Standard Code for Information Interchange) so programs can be simply and quickly modified without the need for costly and awkward assemblers, text editors, debuggers and development systems—all you really require is a terminal (or a computer and terminal software) to enter a program into the microinterpreter's RAM.

Figure 1 is a block diagram that shows the architecture of the INS8070. Since this article is primarily concerned with the design of microprocessor-controlled equipment using only Tiny BASIC, we will ignore the fact that the 8073 has a machine-level instruction set. However, if we are to design real working circuits, we must examine the IC's pin configuration as well as the function of each pin in some detail.

Pin functions of the 8073

Figure 2 shows the pinout of the INS8073. While we could go through the pins, starting at pin 1 and explaining each pin's function in sequential order, we will start at the easy part first—the power supply connections.
In order to use the on-board oscillator, an external crystal must be connected to pins 7 and 8. Figure 3 shows how. If you prefer to drive the IC with an external clock, (it must be TTL compatible), connect the signal to pin 8. Pin 7 provides a buffered clock output with either an external or internal clock.

Pin 37 is the reset pin. It is simple in concept, but extremely important. When it is brought low (below 1 volt) several things happen. Any in-process operations are aborted, the data and address bus are disconnected, the program counter, stack pointer, and status register are cleared. As far as we’re concerned, however, the most important thing that happens upon the resetting of the microinterpreter is that the program we stored in EPROM will start automatically. (Provided the program in EPROM starts at hex address 8000.) Since that pin is buffered by a TTL compatible Schmitt trigger, we do not have to be overly concerned about rise and fall times. Figure 4 shows one way of connecting this pin so that the device automatically resets when we turn on the power.

Pin 4 is the read data strobe output. It is a three-state output that goes low when the microinterpreter is reading from external memory.

Other than those times, the output is effectively disconnected from the rest of the circuit. In some circuits, a 10K pull-up resistor should be connected from +5V to pin 4. The read data strobe output is connected to some address-decoding circuits so that input data is present on the data bus only during an external read operation.

Pin 6, the write data strobe, is similar in function to pin 4. The primary difference is that this pin goes low during external-memory write operations. Like pin 4, a 10K pull-up resistor is sometimes connected to this pin. That output is required so that external memory (or output) devices know when the information on the data bus is valid.

Pins 38 and 39 are the INS8073's two interrupt pins. Both act as interrupt-request pins. (The 8073 does not have the equivalent of a non-maskable interrupt.) In order for an interrupt to be serviced, first the input to one of these pins must go from high to low. (It is edge, not level triggered.) Also, the least-significant bit in the status register must be 0. (The status register is accessible through the NSC Tiny Basic STAT function.) Pin 38 has priority over pin 39 if both interrupts occur at roughly the same time.

In addition to acting as inputs for interrupts, both pins serve as sense inputs. Here we are mainly concerned with pin 38, which will accept serial ASCII input data. The input data must first be converted to TTL levels.

The remaining pins will be briefly described in sequential order. Don't worry if the description is a bit confusing, the functions these pins provide will not be implemented in our project. Nonetheless, some of these pins must be connected to ground or +5V for proper operation of the microinterpreter. Refer to the notes given in the description of each pin for their proper use in our project.

Pin 1: Enable output. The 8073 controls that output as follows. 1) If pin 3 (reset request) is low, but the 8073 is not holding it low, then pin 1 is brought to the same logic level as pin 2, the enable input. 2) If pin 3 is low because the 8073 is holding it low, pin 1 goes high. 3) Pin 1 is always high if pin 3 is high. Note: Pin 1 can be left unconnected.

Pin 2: Enable input. 1) If this pin is high, the 8073 sets pin 1 high and is denied access to the bus. 2) If pin 2 is low and the 8073 is holding pin 3 low, pin 1 goes (or stays) high and the 8073 has access to the bus. 3) If pins 2 and 3 are both low and the 8073 is not holding pin 3 low, pin 1 is set low and the 8073 is denied access to the bus. Note: Pin 2 should be connected to ground.

Pin 3: Bus request. This is the bidirectional bus request input/output. It already has been referred to. Like pins 1 and 2, pin 3 is used in direct memory access (DMA) and multiprocessing applications. This pin should be connected to a +5V power supply through a 10K pull-up resistor.

Pin 5: Hold input. The primary application of pin 5 is to allow the use of slow memories and peripherals. It is also used for single memory cycle extension. Setting that pin low causes the 8073 to extend an external read or write cycle. Note: In the burlgar outliner that we’ll describe, pin 5 is connected to +5 volts through a 10K pull-up resistor.

Pins 34, 35 and 36: Fingers 1, 2, and 3 outputs. These flag outputs can be set by writing into the appropriate flag bits located in the status register. These pins can be left unconnected.

Next month, we’ll describe, in some detail, the language of the 8073 microinterpreter—National Semiconductor’s Tiny BASIC. We will also take a look at a commercially available demo/development board, which greatly simplifies designing with this exciting microinterpreter.

MICROINTERPRETER MANUFACTURERS

Fairchild Camera and Instrument Corp.
Semiconductor Groups
464 Ellis Street
Mountain View, CA 94042

Fujitsu America
910 Sherwood; Suite 23
Lake Bluff, IL 60044

Hitachi America, Ltd.
1800 Berry Drive
San Jose, CA 95131

National Semiconductor Corp.
2900 Semiconductor Drive
Santa Clara, CA 95051

NEC Electronics USA Inc.
Microcomputer Division
One Natick Executive Park
Natick, MA 01760

OKI Semiconductor, Inc.
1330 Lawrence Expressway, Suite 401
Santa Clara, CA 95051

Panasonic
Matsushita Electric Corp., Industrial Division
1 Panasonic Way
Secaucus, NJ 07094

Rockwell International
Microelectronic Division
PO Box 3659, 3310 Miraloma Avenue
Anaheim, CA 92803

Texas Instruments
Semiconductor Group
PO Box 225012, MS 308
Dallas, TX 75265

Zilog, Inc.
1315 Delta Ave.
Campbell, CA 95008

FIG. 4—POWER-ON RESET. If pin 37 of the INS8073 is connected as shown, it will automatically execute a program stored in EPROM (starting at address 8000) at power-up.
Servicing Videodisc Players

Part 4 Let's continue our look at troubleshooting typical CED player failures. For your convenience, we've reprinted Fig. 14 and Table 2 from February's issue.

Pickup electronics. As shown in Fig. 14, the pickup electronics (resonator, preamp, AFT) are part of the arm assembly. Generally, the preamp and AFT circuits are serviceable, but the resonator is not.

The disc signal causes a 915-MHz resonator signal to be amplitude modulated and peak detected to produce the FM video and audio carrier signals. Those signals are preamplified from about 10 mV to about 300 mV, and applied to the demodulators. An AFT voltage is also returned to the resonator, and keeps the resonator on frequency.

If the player is operating, but you get neither video or audio, look for a 3-MHz FM signal at the input and output of the preamps, and for an AFT voltage at the resonator. If there is no 5-MHz FM at the preamp output, the problem is in the arm. If the preamp output is good, check the wiring between the arm and the demodulators.

If you get both audio and video playback, but there is interference, try applying an external AFT signal and see if that clears the problem. The external AFT should be taken from a variable 0 to 12-volt DC supply. If you get a good signal with an external AFT, the AFT circuits are the likely culprits.

Audio demodulator circuits. As shown in Fig. 14, to recover disc audio signals, the 716 and/or 905 kHz carrier is

If you want to learn more about videodisc players and how to service them, this article is for you. This month we conclude our look at CED players.
separated from the 5-MHz video carrier and then demodulated by the audio demodulator. The demodulated audio is passed through a sample-and-hold circuit that removes noise spikes when a loss-of-carrier is detected. The audio is then applied to the RF modulator. The audio demodulator includes 716 and/or 905-kHz VCO's that are usually adjustable. In addition to the 5-MHz carrier, the audio demodulator also receives a squelch signal developed by the microprocessor. Generally, that is the same signal used to operate the stylus lifter. Both the audio and video circuits are squelched when the stylus is not in contact with the disc.

If you get good audio, but no audio, check for audio at the output of the sample-and-hold circuit. If the audio is good at that point, trace the audio to the RF modulator. If there is no audio to the sample-and-hold, check for audio at the demodulator output (usually about 1.5 volts). Also check that the squelch line is not cutting the demodulator off. Next, check for any adjustments in the audio.

As previously mentioned, the 716/905 VCO's are generally adjustable. Likewise, the demodulator output is usually adjustable (through a modulation-level adjust, or similar control). If you get audio, but it is noisy or weak (but with good video), suspect the sample-and-hold circuit, or that you are getting excessive defect-gate-pulses from the demodulator.

NLAC circuits. The arm output (Fig. 14) is applied to the video demodulator through the NLAC circuits which, in turn, are controlled by the NLAC detector. Those circuits eliminate the 716/905-kHz audio signals that cause soundbeats (a constant pattern in the picture). If the NLAC circuits are defective, the soundbeats can get through to the video demodulator or, in some cases, the NLAC circuits can be cut off so no video signal is applied.

If the problem is one of soundbeats, try correcting the condition by adjustment. Usually, there is an NLAC-phase-adjustment (to zero out the undesired beat) and a control-voltage level or bias (to set the control voltage amplitude to the NLAC). If that adjustment fails to cure the problem, trace the various NLAC signals. There should at least be one baseband and audio-carrier inputs to the detector, and a control-signal output from detector to NLAC. Also look for 5-MHz video from the preamp to the NLAC, and from NLAC to the video demodulator.

Video demodulator-circuits. Video signals are placed on a disc by frequency modulating a 5-MHz carrier with the video signal. The video demodulator contains a 5.25-MHz VCO that combines with the arm output (passed through the NLAC) to produce both video and defect pulses. The video demodulator also receives the squelch signal from the microprocessor, so that there is no video when the stylus is lifted from the disc.

If you get good audio, but no video, check for baseband video at the demodulator output. If the video is good at that point, trace the video to the comb-filter/defect-connector. If there is no video at the demodulator output, but video from the NLAC, check that the squelch line is not...
cutting the demodulator off. Next, check for any adjustments in video. Generally, the 5.25-MHz VXCO is adjustable. Likewise, the demodulator output is usually adjustable (through a video-level adjust, or some similar control).

If you get video, but it is noisy and weak, with dropouts (but with good audio), check for excessive defect-gate pulses from the video demodulator to the comb filter.

Comb-filter/defect-corrector circuits. Those circuits prevent dropouts in the displayed picture that result from momentary loss of video carrier (caused by contamination or defects in the disc). That is done by recirculating the previous horizontal line of the video signal when a defect occurs. The circuits also separate the 0- to 3-MHz luminance signals from the 5.11-MHz buried-subcarrier chroma signals.

If you get no video or chroma, but audio is good, check for proper inputs. There should be both baseband video and defect-gate pulses from the video demodulator, and a 5.11-MHz signal from the video converter. If the inputs are present, but there are no chroma and/or luminance outputs (typically about 1 volt) to the video converter, the comb-filter/defect-corrector is probably at fault (although there are buffer circuits between the corrector and converter in some players).

If you are getting both luminance and chroma, but there are excessive dropouts (but with good audio), try adjustment. Generally, there is a delayed-video adjust or similar control. Note that that adjustment controls the amplitude of the recirculated horizontal line, not the delay time (which is provided by a fixed delay line, typically 63.6 μs or 1 Hz).

Video converter circuits. Once the buried-subcarrier-chroma signals are separated from the luminance signals by the comb filter, the 1.53-MHz chroma signals are up-converted to the standard 3.58-MHz color subcarrier. That is done in the converter by heterodyning the 1.53-MHz chroma signal with a 5.11-MHz VXCO. The result is then added to the color subcarrier, producing the composite video (which is applied to the RF modulator through buffers).

The 1.53-MHz signal is also used by the system control and DAXI circuits. So, before you get too far into the converter circuits, check that the 1.53-MHz signal is present, and on-frequency. You will need a 7-digit counter, and should get 1.5355625 ± 225 Hz (with the player in PAUSE).

If the 1.53 MHz is absent or abnormal, check for 5.11 MHz and 3.579545 MHz signals at the converter. Adjust those signals if necessary. In some players, the 3.58 MHz is adjustable, but not the 5.11 MHz. If the 1.53 MHz clock is good, but you are having video problems, start tracing circuits as follows.

Check for luminance of about 400 mV and chroma of about 200 mV to the converter, and a composite video of about 2.5 volts peak-to-peak to the RF modulator. In most units, the composite video from the converter to the RF modulator can be adjusted by a modulation-depth-adjust or similar control. Likewise, either the chroma and luminance from the comb filter to the video converter can be adjusted (on most players).

Time-base corrector circuits. The video-converter circuits also provide time-base correction. During playback, eccentricities and warpage of the disc cause phase and frequency modulation of the recovered video signal. Such modulation can result in tint and color changes in the chroma, and horizontal instability in the luminance signals. The time-base correction circuits moderate the frequency and phase of the 5.11-MHz VXCO, and maintain the disc-to-stylus velocity (by moving the stylus forward or backward along the disc groove). High-frequency and static time-base errors in chroma are corrected by controlling the 5.11-MHz VXCO. During severe distortions (0 to 300 Hz), correction of both luminance and chroma is done by the armstretcher circuit. Instability or wiggles in the picture can be caused by incorrect armstretcher gain. So the first step is to try correcting horizontal instability problems by setting the armstretcher gain according to the service literature. If that does not cure the problem, make sure that there is an armstretcher error signal between the armstretcher and armstretcher transducer on the pickup arm. If not, start at the converter and trace the signal to the transducer (through a series of drivers and amplifiers).

If you are getting an error signal to the transducer, see if the signal varies when the disc speed is changed. Monitor the voltage at the transducer (about 2 to 10 volts), and slow the disc down by touching the edge of the disc with your finger. (Touch only the edge and do not press hard!) The voltage should change. You can also check the armstretcher-transducer function by confirming that the stylus moves (about 0.01 inch) when you touch the disc.

Before you tear into the time-base circuits, try locating a wrong-color, changing-tint, or picture-not-in-sync fault. Make sure that the timebase circuit is locked to the line frequency. You can make a quick check of time-base speed by inserting a test disc and operating the player under a fluorescent light. The inner diameter of most CED test discs has black and white wedges on the label. If the turntable is turning at 450 rpm, the strobe effect causes the white wedge to appear at the same point with each flash of the light, producing a stable image. If the white wedges revolve, the turntable is not in sync. The most common causes of that problem are mechanical. With power off, and disc removed, spin the turntable by hand (gently). If you hear grinding or dragging, or if the turntable does not revolve easily, check for dry bearings, or other mechanical binding (such as bent motor-magnet poles).

RF-modulator circuits. The RF-modulator circuits are usually easy to troubleshoot (if you have audio/video inputs, but no RF output, the problem is in the RF modulator). Of course, you must make sure the antenna switch is good, and that the set you are watching is tuned to the correct channel. However, the matter of adjusting the RF-modulator circuits is not that simple. The Channel 3/4 tank-circuits are external from the modulator IC, and must be adjusted separately. The same is true for any sound trap and band-pass filter-circuits. Always use the recommended procedures for those adjustments. For example, you should recheck tank-circuit frequencies after an RF-modulator IC has been replaced, but it is generally not necessary to adjust the trap and filter circuits (unless you have replaced parts in the traps and filters). Keep in mind that those trap and filter circuits prevent undesired player signals from passing to

TABLE 2—CED TROUBLESHOOTING GUIDE

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Circuits To Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply and switch control</td>
<td></td>
</tr>
<tr>
<td>Mechanical adjustments</td>
<td></td>
</tr>
<tr>
<td>Mechanical adjustments</td>
<td></td>
</tr>
<tr>
<td>Stylus after cleaner and pickup electronics</td>
<td></td>
</tr>
<tr>
<td>Audio demodulator</td>
<td></td>
</tr>
<tr>
<td>Video demodulator and video converter</td>
<td></td>
</tr>
<tr>
<td>Time-base corrector</td>
<td></td>
</tr>
<tr>
<td>Comb filter/defect corrector</td>
<td></td>
</tr>
<tr>
<td>NLAC circuits</td>
<td></td>
</tr>
<tr>
<td>RF modulator</td>
<td></td>
</tr>
<tr>
<td>DAXI signal circuits</td>
<td></td>
</tr>
<tr>
<td>DAXI, system control, time display</td>
<td></td>
</tr>
<tr>
<td>Stylus kicker and servo control</td>
<td></td>
</tr>
</tbody>
</table>
Why YOU should join now!

- BEST AND NEWEST BOOKS IN YOUR FIELD — Books are selected from a wide range of publishers by expert editors and consultants to give you continuing access to books published by hundreds of publishers.

- BIG SAVINGS — Build your library and save money too! Savings ranging up to 30% on most of publishers' list prices—usually 20% to 25%.

BONUS BOOKS — You will immediately begin to participate in our Bonus Book Plan that allows you to save up to 70% on the publishers' prices of many professional and general interest books.

- CONVENIENCE — 12-14 times a year (about once every 3 weeks) you receive the Club Bulletin FREE. It fully describes the Main Selection and Alternate Selections. A dated Reply Card is included. If you want the Main Selection, simply do nothing—it will be shipped automatically. If you want an Alternate Selection—or no book at all—you simply indicate it on the Reply Card and return it by the date specified. You will have at least 10 days to decide. If, because of late delivery of the Bulletin, you receive a Main Selection you do not want, you may return it for credit at the Club's expense.

As a Club member you agree only to the purchase of three books including your first selection during your first year of membership. Membership may be discontinued at any time after you have purchased the first selection plus one additional book.

MAIL THIS COUPON TODAY

McGraw-Hill Book Clubs
Electronics and Control Engineers' Book Club
P.O. Box 382, Hightstown, New Jersey 08520

Please enroll me as a member and send me the two books indicated, billing me for the $2.89 premium and my first selection at the discounted member's price. Add local tax, shipping, and handling charges. I agree to purchase a minimum of two additional books during my first year of membership as outlined under the Club plan described in this ad. A shipping and handling charge is added to all shipments.

Write Code No. of first selection here

Write Code No. of $2.89 selection here

Signature:

Name:

Address/Apartment:

City:

State:

Zip:

This order subject to acceptance by McGraw-Hill. All prices subject to change without notice. Offer good only to new members.

$33719

www.americanradiohistory.com
The TV set (and to the antenna!)

Time-indication circuits. Elapsed program-time, shown on an LED time display, is developed when the microprocessor decodes the DAXI signal, and produces a corresponding binary code. A decoder/driver decodes the binary information and activates the LED's. During rapid access (when the stylus is lifted), there is no DAXI. Instead, the microprocessor receives pulses from an optical sensor that produces an output as the arm moves rapidly across the disc.

If there is no signal, the display will not show the time properly. If the display is incorrect, only using rapid access, the problem is likely in the optical sensor.

DAXI-signal circuits. Operation of the entire player is controlled by the microprocessor, which decodes the DAXI signal to determine the video field being played and the elapsed time. The pulses are determined by checking the DAXI code for a repeating or decreasing DAXI number (indicating a "skip back"). The microprocessor causes the stylus to exit locked grooves by activating stylus-kicker circuits. If the stylus is not retrieved properly, the problem is likely in the optical sensor.

Typically, the control signals from the microprocessor to the DAXI IC are 100ms and about 400µs in width. Wider DAXI control (DCNT) signals (say 1000µs) usually indicate DAXI problems (most likely in the DAXI IC or YVO—vertical detail—IC, or possibly in the circuits between the comb-filter/defect-corrector and the DAXI IC). The DAXI-status (DSTAT) signals from the DAXI IC to the microprocessor are also 100ms, and the width is not critical. Again, the problem can be in the DAXI IC or microprocessor.

Stylus-kicker circuits. Those circuits are used to move the stylus (two grooves on the disc (either forward or reverse), and occur during a locked groove condition and in visual search. When the microprocessor senses a locked groove condition (the DAXI numbers keep repeating or decreasing), the microprocessor applies kicker pulses through a ramp generator (Fig. 16) and amplifier circuits to the stylus-kicker coils on the arm to move the stylus forward out of the locked groove. The direction of the pulse (and corresponding stylus movement) is determined by direction-switch circuits. When the microprocessor receives visual-search commands from the front-panel controls (forward or reverse), the microprocessor produces a series of stylus-kick-pulses that are timed to maintain two grooves of movement with each kick. Failure in the kicker circuits usually shows up as a failure to escape from a locked groove, or no visual search, or visual search in one direction only. To make a quick check of both the kicker and visual-search circuits, look for pulses at the kicker coils on the arm while pressing the visual-search buttons. If you get no pulses, make sure that the microprocessor is getting visual-search commands, and then trace the signals from the microprocessor to the kicker coils.

If you get pulses at the coils, but the pulses have no overshoot, the kicker coils are possibly open. (On most players, you must replace the entire arm if the kicker coils are bad.) If you get no pulses at the coils, trace the circuits between the microprocessor and coils. If the coils are operative, but the arm does not move during visual search, the problem is probably with the servo control rather than the kicker.

Servo control-circuits. The servo control-system moves the arm (through gears and microprocessors) in response to signals applied through the error-amplifier/servo-control circuits shown in Fig. 14. In normal play, the servo motor receives drive signals generated by stylus sensors (on the arm) and a servo detector. The servo drive-signal is generated by sensing the position of the stylus relative to the center of the arm assembly. A 260-kHz signal from the detector is applied to two stylus sensors. The signal is inverted by one sensor, generating a 180-degree out-of-phase signal. As the stylus moves closer to one sensor, the stylus picks up the 260-kHz signal from that sensor. The stylus signal from the stylus is compared to the original 260-kHz signal to generate an error signal that decreases as the stylus moves closer to the sensor. The error signal is amplified to drive the servo and, thus, control arm movement.

During either visual search or rapid access, the error signal is overridden or inhibited by the microprocessor (which applies continuous drive signals to the servo motor). In visual search, the microprocessor produces the servo drive-signals to move the arm forward or reverse. The microprocessor produces kicker-pulses to move the stylus (two grooves per kick) as described. In rapid access, the microprocessor produces servo drive-signals that move the arm rapidly, and also removes the stylus-lifter voltage, allowing the lifter spring to raise the stylus. This prevents damage to the stylus and disc during rapid movement. (Also note that when the stylus lifts automatically when power is removed, and during load/unload by a switch that is actuated when the spine is not in the normal play position.)

If the arm does not move during play, operate the visual-search-forward controls and monitor the voltage to the servo motor. Typically, one motor lead will be grounded while the other lead is "hot" (about 20 volts). Then operate the visual-search-reverse control. The previously grounded motor lead should now be at 20 volts, while the previously hot lead should be grounded. If the voltages are not present, but the motor does not operate, you have found the problem. If the voltages are absent or abnormal, trace the voltage back to the microprocessor (through the error amplifier/servo control-circuits).

If the arm moves during visual search, but not during play, the problem is likely in the stylus sensors and/or servo detector. First check if there is a 260-kHz signal (that frequency is approximate: the precise frequency is not too important) at the detector and/or sensors. If the 260-kHz signal shows that the detector oscillator is working. Next, monitor the error voltage from the detector to the servo drive while manually rotating the main servo reduction gear (that is usually the largest gear in the servo assembly). The error signal should change in (and amplitude). If not, check for bent or damaged servo-sensor leads, and for incorrect servo adjustments. Usually there are at least two servo adjustments (servo position and detector balance). Carefully straightening a bent sensor lead may restore proper operation. If the sensor leads look fine, suspect defective varistor diodes in the sensor. If the diodes are bad, you must replace the entire arm assembly.

If the arm moves during visual search and normal play, but not in rapid access, first make sure that the microprocessor is getting rapid-access commands from the front-panel controls. Then trace signals from the microprocessor to the servo motor and lifters. That is essentially the same system that's used during play and visual search. It is the input to the error-amplifier/servo-control circuits that is different for rapid access.

Mechanical problems. As in the case of LV, use the manufacturer's procedures for all mechanical adjustments and dis-assembly/reassembly. Generally, the servos and other mechanisms are very good in this respect. Also, unless there has been excessive wear or outright physical damage, CED players are usually more rugged than LV ones, and do not require extensive mechanical adjustment. One exception to that is when you must replace major mechanical components, such as the arm assembly, servo-gear mechanism, or caddy-door load/unload components.

Finally, we have covered only the highlights of videodisc service here. If the procedures described do not cure the fault, you may have other, possibly serious problems and you must consult the manufacturer's literature.
DESIGNING WITH DIGITAL IC'S

Here's a look at CMOS, one of the most popular of the logic families, and the special handling that CMOS devices require.

JOSEPH J. CARR

Part 2

LAST TIME WE DISCUSSED several of the popular digital IC logic families. This time, we will continue our discussion of logic families by looking at the complementary metal oxide semiconductor (CMOS) logic family.

Before we get into the details on the internal workings of CMOS devices, we should mention some of the benefits of the CMOS logic family. CMOS circuits are very forgiving with regards to noise, they use extremely small amounts of power when they're in standby, and their power-supply requirements are very uncritical. That makes them very easy to work with.

MOSFET transistors

The transistors used in CMOS devices are Metal Oxide Semiconductor Field Effect Transistors (MOSFET). Those transistors differ markedly from the NPN and PNP bipolar transistors used in other IC digital logic families.

There are two basic types of MOSFET—depletion mode and enhancement mode—each of which are found in two different polarities, N-channel and P-channel. All of those terms are explained below.

Figure 1 shows a cross section of a basic depletion-mode MOSFET. There are three electrodes on that device: drain, source, and gate. The drain and source are ohmic contacts at either end of a "channel" of semiconductor material. In this example, an N-type semiconductor is used, so the device is an N-channel depletion-mode MOSFET. The gate is a metalized contact that is separated from the channel by a thin layer of insulating oxide material (hence we can see where the names "insulated gate" and "metal oxide semiconductor" come from).

A depletion-mode transistor is a normally-on device. That is, when the voltage applied to the gate is zero, current will flow in the channel at a level determined by the drain-source applied voltage and the channel resistance.

Applying a potential to the gate (of correct polarity, depending upon channel material) causes charge carriers to be driven away from the gate region leaving a depletion zone that is essentially free of carriers. Thus, the material in the depletion zone becomes a high resistance insulator. The depletion zone is created by the effect of the electrical field generated by the gate voltage. Changing the size of the depletion zone effectively changes the size (thus the DC resistance) of the charge-carrier channel. We find, therefore, that the resistance between drain and source varies with the voltage applied to the gate.

Figure 2 shows an enhancement-mode MOSFET (N-channel) under two conditions. In Fig. 2-a the gate voltage is zero. Since this type of MOSFET is normally off, the enhancement (conductive) zone is minimized, and the drain-source channel resistance is maximum. In Fig. 2-b, on the other hand, a voltage is applied to the insulated gate, which creates an electric field within the channel. That voltage draws charge carriers toward the gate, thereby decreasing the drain-source resistance (i.e. the channel is "enhanced").

In both types of MOSFET's, the channel resistance is varied by the voltage applied to the gate. In an analog circuit, that resistance may vary continuously between limits according to the applied signal voltage. Digital circuits, however, have only two signal levels (high and low), so the MOSFET's used in CMOS devices tend to...
be all the way on, or all the way off.

The usual schematic symbols for depletion-mode and enhancement-mode transistors are shown in Figs. 3a and 3b, respectively.

CMOS devices

The term "complementary" in CMOS implies that those digital IC logic devices contain complementary MOSFET transistors (i.e. one or more transistor pairs consisting of an N-channel and a P-channel device). Figure 4 shows a typical CMOS inverter, which consists of one N-channel and one P-channel MOSFET. The drain-source paths (channels) are connected in series, while the gates are in parallel.

In essence, the CMOS inverter consists of a pair of electronic resistors in series across the DC power supply. Those "resistors" are configured such that one is a high resistance when the other is a low resistance: which one is which is controlled by the voltage applied to the gate.

That situation is shown in Fig. 5. Note that the output signal of the inverter is the voltage between ground and the junction of R1 and R2. If one were to happen, R1 (i.e. the channel resistance of Q1) is very low, while R2 (the channel resistance of Q2) is very high. Thus, +V is connected to the output terminal.

When, on the other hand, the input is high, the output needs to be low. For that to happen, R1 must become the high resistance, while R2 becomes the low resistance. Thus, −V is connected to the output terminal.

The transition point (input voltage) that causes either high-to-low or low-to-high output changes is the mid-point voltage between −V and +V. In many practical situations, we find that the absolute values of −V and +V are equal. There is no reason, however, why we can't use unequal voltages for −V and +V. In fact, in many cases CMOS devices are operated from TTL-style power supplies and thus will use approximately −V and +V volts DC for −V and +V volts DC for +V. Some designers set +V to zero and then use a negative voltage for −V. The normal range of ±V is ±10 to ±15 volts DC with some operating at ±18 volts DC.

CMOS part numbers

The generic type numbers for CMOS devices consist of a letter (A or B) followed by a number. CMOS IC's contain internal zener diodes that shunt high voltage static charges around delicate gate insulators. That reduces (but does not eliminate) the potential for damage from electrostatic discharge (we'll talk more about that problem in a moment).

There are also other differences. The B-series devices generally have higher operating frequencies, faster rise-times, and greater drive capability than A-series devices.

Electrostatic discharge damage

All semiconductor devices potentially can be damaged by high voltage static charges. CMOS devices and other MOSFET semiconductors seem particularly sensitive to electrostatic discharge (ESD) damage.

Static electricity is created by the "triboelectric effect," that is, by creating excess electrons on the surface of an insulating material by mechanical rubbing. Because of that, static electricity can be generated without conscious effort. Table 1 shows typical voltages generated by ordinary activities. With 35 kilovolts generated by walking across a carpet, it's no wonder that you get a shock when you grab the doorknob!

Note that working at the bench on a dry carpet can generate 6000 volts of static. Let's compare that figure with the typical voltages that will damage electronic devices. Table 2 shows those values. Note that many of these devices can be severely damaged by potentials that are generated even under "muggy" (70% relative humidity) conditions.

Figure 6 shows the anatomy of a CMOS failure. Figure 6-a shows an enlarged drawing of the MOSFET-gate region. When a static charge hits, it punches a hole in the insulating oxide (Fig. 6-b). Normally, the failure is immediate and catastrophic. Metal from the gate electrode and semiconductor material from the channel fill the void and short the gate to the channel.

At other times, the failure is delayed, often for many months or even years. In those cases, the metallization of the pin is not initially sufficient to short out the device. As time goes on, however, metallic ions and semiconductor material will migrate into the void. When that process goes on long enough, a short will develop and the IC or MOSFET will be destroyed. To the user, the result is what appears to be merely a premature failure of the IC; the real culprit, a static discharge, is rarely blamed.

ESD protection

Damage from static electricity can be controlled or even eliminated through the use of proper strategy. The aim of most techniques is to keep all pins of the device at the same potential. If excessive voltages cannot develop between pins of the
and become ineffective—or very dangerous.

For years, hospitals faced a similar problem in operating rooms. Explosive anesthetic agents (ether, cyclopropane, etc.) could be set off by sparks from an electrostatic discharge. To counter that problem, they used conductive, high resistance-to-ground floors; conductive, high resistance shoes or shoe covers, and all cotton garments. That may be extreme for most electronics situations, but may be appropriate in very dry regions if electrostatic discharge seems to be an otherwise unsolvable problem.

Tools such as soldering irons should have a grounded tip in order to prevent electrostatic charge build-up. Also, the finished product (printed wiring boards that contain CMOS devices) should be handled in the same way that you would handle the IC’s themselves. Store the PC boards on conductive foam, or in static treated plastic bags. It is a myth that all CMOS devices become safe to handle when “in the circuit,” some do, some

IC, then damage will not occur. Other methods are just common sense. One basic rule that should be followed is don’t handle CMOS or Schottky devices more often than is necessary.

CMOS devices are usually shipped in containers that serve to reduce the chance of static discharge damage. Since the aim is to keep all pins at the same potential, in some cases, especially in the hobbyist market, devices or groups of devices are shipped wrapped in aluminum foil. Most commercial sources, plus those amateur/hobbyist dealers who sell in quantities, will ship CMOS either mounted on black conductive foam, or inside of sleeves made of anti-static plastic. Blister-pack distributors often use a tiny-piece of conductive foam material to hold pins at the same potential. It is prudent to keep the

steam starts to form on the bathroom mirror, you can begin to install the CMOS devices in their sockets.

A better alternative is to ground yourself, and separately ground your work surface, through a high resistance. A resistance of 2 to 10 megohms will serve to drain off electrostatic charges while also limiting current flow to a relatively safe value in the event of an accidental contact with the AC power. Use a 2-watt (or higher) resistor for that. We are not really worried about the wattage rating in this case, but rather, the voltage rating (yes, that’s right, resistors carry a voltage rating). Lower wattage resistors have lower voltage ratings, so may short out

CMOS TECHNOLOGY MAKES POSSIBLE this low-power RAM with internal battery backup.

TABLE 1

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>STATIC VOLTAGE GENERATED (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15% Relative Humidity</td>
</tr>
<tr>
<td>Walking Across Carpet</td>
<td>35,000</td>
</tr>
<tr>
<td>Handling PVC Bag</td>
<td>20,000</td>
</tr>
<tr>
<td>Sitting In Polyurethane Chair</td>
<td>18,000</td>
</tr>
<tr>
<td>Working at Workbench</td>
<td>6,500</td>
</tr>
</tbody>
</table>

TABLE 2

<table>
<thead>
<tr>
<th>Device</th>
<th>Breakdown Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMOS IC</td>
<td>30-1500</td>
</tr>
<tr>
<td>MOSFET Transistor</td>
<td>100-200</td>
</tr>
<tr>
<td>GaAs FET Transistor</td>
<td>100-300</td>
</tr>
<tr>
<td>JFET Transistor</td>
<td>140-7000</td>
</tr>
<tr>
<td>Bipolar Op-amp</td>
<td>200-2000</td>
</tr>
<tr>
<td>CMOS IC</td>
<td>250-3000</td>
</tr>
<tr>
<td>Bipolar Transistor</td>
<td>380-7000</td>
</tr>
</tbody>
</table>

FIG. 6—ANATOMY OF A static-discharge caused CMOS failure. In a, we see the discharge striking the CMOS device. In b, the hole that results is shown. Either immediately, or after several months or years, metal from the gate and semiconductor material will fill the hole, shorting the gate to the drain.
Tuning antennas

UNDER ORDINARY CIRCUMSTANCES most people think only transmitting antennas require tuning. Many believe that any old piece of wire or built-in antenna serves well for receiving. There are, however, times when you'll need to tune a receiving antenna to get the best signal strength (reception) possible.

John Owen (MI) wants to put up an especially effective AM antenna. Well, John, you didn't give me enough information to provide a specific answer to your problem, but here are a few principles of antenna design that should help get you headed in the right direction.

First, however, I should point out that the subject of antennas is indeed a complex one. The most complete treatment I know is contained in The ARRL Antenna Book published by The American Radio Relay League (Newington, CT 06111). Perhaps you can find that publication at your local library. The examples given therein are for amateur (ham) frequencies but the theory, explanations, and formulas apply to any frequency, including AM.

To make a long story short (oversimplified), an effective antenna should be: Mounted high above ground and as clear of surrounding objects as practical; its electrical configuration correct for the frequency at which it's to be used, and finally, its impedance should match that of the receiver or transmitter to which it is connected.

Getting a wire high and clear is simply a matter of putting it up as best you can. Sometimes, the highest and clearest you can get is in the attic or under the eaves of your house—if that's the best you can do, use it. Other than special cases, making an antenna both resonant and impedance-matched is usually accomplished with an "antenna tuner." There are many designs for tuners.

Figure 1 shows an antenna tuner that's variable over a wide range. The coil, L1, is wound on a cardboard or plastic form about three inches in diameter. There should be 40 turns of wire, evenly spaced over a span of five inches. Use a switch with at least 12 positions and connect it as shown in Fig. 1-a.

If you cannot find a switch with that many contacts, you can use two (or more) switches connected as shown in Fig. 1-b. Actually, you can get even better results by having a lever run across the top of the coil, thereby, providing a "tap" on every turn of the coil.

To use the tuner, place it between the receiver and the antenna as shown. Then find a weak station and manipulate the controls for greatest signal strength (volume). You may have to repeat the procedure with weaker stations to find the best setting. The settings won't change unless you change the antenna, although you may have to vary them a bit in rain, snow, or ice conditions. If you are using a multi-band radio, you will have to find the proper settings for each band.

Oh yes, let us not overlook an essential part of a good antenna system—the ground. The best reception (or transmission) occurs when the antenna has a good ground. Where possible, an earth ground (a long rod driven into the ground) is best. If that's not practical, connect the ground wire to a water pipe (be sure it is metallic all the way to the earth).

Good luck, John. I hope you can now receive many DX (distant) stations.

Stacked antennas

Jad Sherbo (MD) has asked about connecting two or more TV antennas to pick up some of the more distant stations. Indeed, antennas can be "stacked," as it is called, to increase their effectiveness. Yagi antennas, for example, (the type usually used for TV reception) can be mounted one above the other and connected to a common coax or twin-lead feed line. Wiring harnesses are available for some commercial TV antennas.

There are too many variables in determining optimum separation of the antennas and the proper
Now electronics technicians can get into VCR Servicing quickly and easily

Learn professional VCR servicing at home or in your shop with exclusive videotaped demonstrations

Covers Beta and VHS systems with actual instruction on videotape.

Today, there are more than 10 million VCRs in use, with people standing in line to have them serviced. You can bring this profitable business into your shop with NRI professional training in VCR servicing. This top-level training supports the industry's claim that the best technicians today are those who service VCRs.

Integrated Three-Way Self-Teaching Program

In one integrated program, NRI gives you a study guide, 9 instructional units, 2 hours of video training tapes accompanied by a 32-page workbook that pulls it all together. At home or in your shop, you'll cover all the basic concepts of video recording, mechanical and electronic systems analyses, and the latest troubleshooting techniques. Your workbook and instructional units also contain an abundance of diagrams, data, and supplementary material that makes them valuable additions to your servicing library.

The "How-To" Videotape

Your NRI Action Videocassette uses every modern communications technique to make learning fast and easy. You'll enjoy expert lectures and see animation and video graphics that make every point crystal clear. You'll follow the camera eye into the heart of the VCR as step-by-step servicing techniques are shown. Both electronic and mechanical troubleshooting are covered including everything from complete replacement and adjustment of the recording heads to diagnosing microprocessor control faults.

Plus Training On All The New Video Systems

Although your course concentrates on VCRs covering Beta, VHS, and 1/2 U-Matic commercial VCRs, NRI also brings you up to speed in other key areas. You'll get training in capacitance and optical video disc players, projection TV, and video cameras. All are included to make you the complete video technician. There's even an optional final examination for NRI's VCR Professional Certificate.

The Best Professional Training

This exclusive self-study course has been developed by the professionals at NRI. NRI has trained more television technicians than any other electronics school! In fact, NRI has consistently led the way in developing troubleshooting techniques for servicing virtually every piece of home entertainment equipment as it appears in the marketplace.

Satisfaction Guaranteed

15-Day No-Risk Examination

Send today for the new NRI Self-Study Course in VCR Servicing for Professionals. Examine it for 15 full days. Look over the lessons, sample the videotape. If you're not fully satisfied that this is the kind of training you and your people need to get into the profitable VCR servicing business, return it for a prompt and full refund, including postage. Act now, and start adding new business to your business.

Special Introductory Offer

This complete VCR training course with two-hour videotape is being offered for a limited time only, on orders received from this ad, at our low introductory price of $179.95. Save $20 by acting now!

NRI Training For Professionals
McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue
Washington, DC 20016

Get me started in profitable VCR servicing. Rush me my NRI self-study course in VCR Servicing for Professionals. I understand I may return it for a full refund within 15 days if not completely satisfied.

Enclosed is my charge to

Name (please print)

Company

Signature

(Required for credit card sales)

Interbank Number

Expiration Date

Charge to

Visa

MasterCard

Enclosed is my $179.95 check

Enclosed is my $179.95 money order

Phone: 202-626-7500

Fax: 202-626-7501

www.americanradiohistory.com 77
There are different ways to approach this situation. Second, the load varies from 5 to about 10 volts. All you have to do, David, is to set the wiper of R2 for 6 volts and connect your cassette machine. If your recorder draws 0.5 amp or more, be sure to mount the 7805 on a heat sink.

While you are making that little circuit, though, why not add a few more components and make it more versatile? By adding a switch and two more resistors, you can have a choice of three commonly used voltages: 6, 7.5, and 9 volts as shown in Fig. 2-b. The values of the two additional resistors are determined in the same way as the first.

Also, slightly modifying that arrangement, you can string the resistors in series and tap off the needed voltages at different points along the divider. In that way, R1 sets the voltage level to 6, the sum of R1 and R2 determines the next, and all three take care of the finally tap. Just be sure to check the output voltages before closing the unit and using it.

R-E

Fig. 2

Illustration:

- A circuit diagram showing components R1, R2, R4, R5, and R7, with voltages at various points labeled.

McIntosh Laboratory Inc.

East Side Station P.O. Box 96

Binghamton, N.Y. 13904-0096

SEND TODAY!

If you are in a hurry for your catalog please send the coupon to McIntosh. For non rush service send the Reader Service Card to the magazine.

CIRCLE 67 ON FREE INFORMATION CARD
THE NEW HIGH-SPEED MODEMS
How they work, how they evolved, all you need to know

RESONANT CIRCUIT DESIGN
Involved in designing resonant circuits? Let your computer do the work.

INEXPENSIVE IBM’S
Our cost-conscious Herb Friedman shows how to shave expenses
ZORBA PORTABLE COMPUTER

THE EXPERTS’ CHOICE

FEATURES:
- 9" GREEN OR AMBER CRT
- 19 INDEPENDENT 55 PROGRAMMABLE FUNCTION KEYS
- TWO 400K DSQD DRIVES
- 64K BYTES 200 NS RAM
- C BASIC COMPILER
- IEEE 486 BUS MASTER PORT
- 24.6 LB.
- CPM 2.2 OPERATING SYSTEM
- M60 (L60, L160, C6F60)
- SOURCE CODE OF THE BIOS
- PLUS UTILITIES
- DATA COMMUNICATIONS SETUP PACKAGE
- SERIAL & PARALLEL PRINTER PORT
- DATA COMMUNICATION PORT

OPTIONS:
- 16 BIT 256K RAM UPGRADE
- 800K DSQD 96TPI DRIVES
- COMPOSITE VIDEO OUTPUT
- SOFT VINYL CASE
- TUTOR KIT
- SCHEMATIC SET
- 10MB HARD DISK DRIVE

BUNDLED WITH

WORDSTAR, MAIL MERG, SPELLSTAR,
DATA STAR, REPORTSTAR, CALCSTAR

$799.00

W/O Bundle

DEALER INQUIRIES INVITED

$999.00

With Bundle

Specifications

General Mechanical and Electrical

Width: 17.5 inches (44.45 cm)
Height: 19.0 inches (49.87 cm)
Depth: 18.0 inches (45.72 cm)
Power: 80-130 VAC or 190-245 VAC

Display

Display Tubes: 5 diagonal, Green or Amber

Interfaces

- Full synchronous RS232 port with modem control
- Full asynchronous full duplex RS232 port with hardware handshake
- IEEE 488 Bus Interface

CPU Board

Z80A CPU running at 4 MHz with
no wall states
64K bytes of 200 ns RAM (256 after
CPM) (8088 CPU)
16K bytes of E PROM (2732)
10MB hard disk drive

General Specifications

ZORBA is the lowest cost full featured
portable computer. This light weight computer
is ruggedly packaged in a convenient
carrying case. The case surrounds
a strong inner chassis which further protects
the ZORBA based computer with its
two double sided double density disk
400K drives, large easy to read diskette.
All software and system diskette is supplied
with all diskettes.

Bundled with:

WORDSTAR, MAIL MERG, SPELLSTAR,
DATA STAR, REPORTSTAR, CALCSTAR

$999.00

With Bundle

Options:

- 16 BIT 256K RAM UPGRADE
- 800K DSQD 96TPI DRIVES
- COMPOSITE VIDEO OUTPUT
- SOFT VINYL CASE
- TUTOR KIT
- SCHEMATIC SET
- 10MB HARD DISK DRIVE

VISA/MC
CONTENTS

Vol. 2 No. 4 April 1985

7 The New High-Speed Modems
Bring your knowledge up to date with this in-depth study on how
the new modems evolved, how they work, and what their
applications are. Marc Stern

12 Resonant Circuit Design
If you're involved in designing resonant circuits, why not put your
computer to work and save a lot of time and effort?
Lawrence G. Friedman

13 Inexpensive IBM's
Obsolete doesn't necessarily mean "worthless." Here's how you can
take advantage of "built-in obsolescence to get many years of
excellent service at a lower price. Herb Friedman

4 Editorial
5 Letters
5 Computer Products

ON THE COVER

The 2400 BPS Smartmodem transfers data across regular telephone
lines and offers a link between mainframe and personal computers.
The unit has expanded capabilities to monitor the progress of a
call, distinguishing between a busy signal, no dial tone or no
answer. For additional information on modems, see page 7.
Computers and the CB Syndrome.

Let's face it—Electronics swings in wide patterns of interest that flare up almost simultaneously, set the world afire, and then ignominiously die out. The business got a swift boost out of high fidelity when that first burst on the scene, and this was taken up, in turn, by stereo. Audio-type magazines flourished to cater to the interests of those who followed these trends. Then there was a stabilization, and a wide-spread moderating.

Just about that time, reverberation came into being, and the artificial echo chamber was added to audio systems. Audio came back to life. Things lay quiet for some time. Oh, the die-hards and purists continued to pursue their hobby, but it wasn't quite like the "good old days." Then Citizens Band Radio came along, and it was bigger than audio ever was. Everybody got involved. Every car had a CB rig. Housewives were forming networks to gossip over the air. Teenagers were making dates over the CB. And CB, once the realm of truckers alone, was now everybody's property.

You could hear the bands bristling with phony southern accents as the kids tried to emulate the truckers. The language the CB'ers developed was as unique as some of their "handles." And of course, magazines catering to the new interest flourished as well.

Then, as suddenly as it appeared, the interest in CB died off. People who once craved an occasional "Good buddy, how's it look over your shoulder," as they drove down the road, were just as happy listening to the BC radio. Now when you see a car ahead of you on the road, you begin by asking "Hey good buddy, got your ears up?"

Now it's computers, and again, everybody from school kids that have just learned how to read, on through graduate engineers, are taking up the computer cudgel. Magazines have sprung up and died out. Is the computer to face a fate like all its forebears? No. The computer, thanks to its innate value, will never exhaust the interest that holds its practitioners spellbound. Because of its extreme versatility, the computer is going to be with us for many, many years to come, and we at Computer Digest hope to continue to bring you the latest news and developments in this astounding field. ▶️

Byron G. Weis
Editor

Hugo Gernsback (1884-1967)
founder
M. Harvey Gernsback, editor-in-chief
Larry Steckler, CET, publisher
Art Kleiman, editorial director
Byron G. Weis, editor
Brian C. Fenton, technical editor
Carol Jaron, associate editor
Robert A. Young, assistant editor
Ruby M. Yee, production manager
Robert A. W. Lowndes, production associate
Dianne Osiak, production assistant
Karen Tucker, production assistant
Jocqueline P. Weaver, circulation director
Arline R. Fishman, advertising coordinator

Gernsback Publications, Inc.
900 Park Ave. South
New York, NY 10003
Chairman of the Board:
M. Harvey Gernsback
President: Larry Steckler

ADVERTISING SALES 212-777-6400
Larry Steckler
Publisher

EAST/SOUTHEAST
Stanley Levitan
Radio-Electronics
200 Park Ave. South
New York, NY 10003
212-777-6400

MIDWEST/Texas/Arkansas/Oka.
Ralph Bergen
Radio-Electronics
540 Frontage Road—Suite 325
Northfield, Illinois 60093
312-446-1444

PACIFIC COAST
Mountain States
Marvin Green
Radio-Electronics
15335 Morrison St., Suite 227,
Sherman Oaks, CA 91403
818-986-9001

Computer Digest is published monthly as an insert in Radio-Electronics magazine by Gernsback Publications, Inc., 300 Park Avenue South, New York, NY 10001. Second-Class Postage Paid at New York, N.Y., and additional mailing offices. All rights reserved. Printed in U.S.A.

A statement with address and evidence must accompany all submitted manuscripts and all artwork or photographs if their return is desired should they be rejected. We assume any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.

4 Computer Digest — APRIL 1985
LETTERS

LIKES "PRINTER PROBLEMS"
I found the "Printer Problems" articles in Computer Digest to be very useful. How about more hardware and interconnect related articles?—Warren W. Munro, Airea, HI.

Right, Warren. We've got lots of those in the works right now. Keep watching for them; they'll be appearing regularly.

A ROBOT NAMED "BYRON?"
I named my robot Byron immediately after soldering in the last connection and powering him up. This in recognition of a kindred spirit. Hope you don't mind. Byron isn't finished yet as he has a total lack of mobility. At least he knows who his maker is! WORKING!! —T.E. Desjide, Boyerton, VA

We all had a good laugh here in the office over that one, T.E. The general impression is that you did well. I don't have too much in the way of mobility either, but at least your Byron works!

BUILD YOUR OWN COMPUTER?
I have good skills, have been an electronics hobbyist all my life, and was wondering about the idea of building my own computer from scratch. Would I save money on this? How would it best go about it? By the way, I don't want to build from a kit, either—J. Mahoney, Sioux Falls, S.D.

We can't really recommend this course of action. While it could be done, it would not be economically feasible, compared with buying a used or refurbished unit. We're here to help you decide, and share what you learn with our readers. We'll all be very interested.

UNUSUAL REQUEST!
I know a lot of people have been buying Radio-Electronics and ripping out and throwing away Computer Digest. You may not believe this, but I buy the magazine, rip out Computer-

Digest and throw Radio-Electronics away! I hate to see it go to waste each month, and was wondering if one of your non-readers might like to split the cost with me for a subscription?—S. Brandt, Casper, WY

Any takers?

PROTECTING INVENTIONS
I've invented a computer-oriented device I'd like to protect, but can't afford a patent. Any suggestions?—Sam Dixon, San Francisco, CA

There are several "ideas." If it's sufficiently interesting, get it published in a magazine like Computer Digest. The magazine and its contents are copyrighted, and it gives you proof of prior published art. Another old saw is to write up a description and mail it to yourself in a sealed, registered letter to later be able to prove earlier discovery. The smart money suggests investing in a good patent attorney and playing it really safe! ☑️

COMPUTER PRODUCTS

For more details use the free information card inside the back cover

SURGE/SPIKE SUPPRESSOR, model 061. Is designed to protect computers, microprocessor-based instruments, sensitive electronic and audio equipment, and scientific instrumentation from high-voltage transients and surges by instantaneously sensing and suppressing them.

The model 061 features suppression capabilities of 6000 amperes maximum surge current, with an energy absorption of 70 joules. It is designed for use on any standard 120-volt AC line, and responds to common and differential mode transients and surges at once. There are 4 three-wire grounded outlets and a main ON/OFF lighted rocker; the unit plugs directly into any 3-prong grounded outlet to provide maximum convenience. It is priced at $59.95.—PMC Industries, Inc., 9353 Activity Road, San Diego, CA 92126.

DAISY-WHEEL PRINTER,
The AlphaPro 101, is a 90 character-per-second printer that uses standard Diablo and Qume-compatible print wheels and ribbon cartridges. It uses an intelligent printer cartridge to adapt it to all popular personal computers, including those with Centronics.
ports—such as the IBM, PC, PCjr, and compatibles; those with RS-232 ports, such as the Apple IIc and the IIc, and others, such as Apple’s Macintosh.

The Alphaprobe 101 features backtrack and backspace logic to maximize printing speed and a 93-byte memory buffer (4000 bytes optional). True proportional spacing, boldface, double strike, strikeout, phantom face, superscripts and subscripts, and reverse line feeds are also supported. It is priced at $399.95.—Alphacom, Inc., 2363 Bascom Ave., Campbell, CA 95008.

EDUCATIONAL PROGRAM.

Bumblebee, is designed to introduce children age 6 and up to the disciplines of computer programming in a game-like format.

The player controls Bartholomew (“Bart”) the bee by giving him instructions that enable him to move from flower to flower and pick up “pollen points.” The bee’s flight must be carefully designed, or he will bump into walls or be caught by “Olga,” the evil garden spider. If Bart returns safely to the beehive, the screen lights up in a colorful graphic display.

Bumblebee features increasing levels of difficulty, some of them requiring the construction of more complicated flight patterns. The disk-based program is priced at $59.95.—Creative Software, 230 East Caribbean Drive, Sunnyvale, CA 94089.

RADIO INTERFACE CARD, model PCI-9000, is a plug-in card for the IBM PC, which interfaces the computer to a shortwave radio for copying radio-teletext and Morse-code signals. Examples of signals that could be copied include weather information, news services, and amateur radio communications. The model PCI-9000 can also transmit Morse and teletype signals in applications where two-way radio communications are required. It is priced at $595.00, including software.—HAL Communications Corp., Box 365, Urbana, IL 61801.

CO-PROCESSOR BOARD, for the IBM PC and XT, the Trackstar supports Apple DOS 3.3, Pro-DOS, Apple Pascal and Apple CP/M 2.2. With the addition of the Trackstar, the IBM user can access the vast library of Apple games, educational and business programs, and the extensive library of CP/M business software.

The Desk Organizer is priced at $195.00.—Warner Software, 666 Fifth Avenue, New York, NY 10103.

DATA COMMUNICATIONS BOARD, the model WD4025, features the universal CCITT X.25 LAPB protocol, and is designed to be compatible with the IBM PC, XT, AT, and compatibles. It will link computers at the same site, or scattered across the country via dial-up or leased lines through a packet switching network. It will also provide a gateway connection for the Local Area Networks (LAN).

TAX SOFTWARE, the Personal Planner, can calculate tax liabilities for 1984 through 1987. It organizes all relevant tax information, keeping everything available for instant evaluation. It can be used for such tasks as retirement planning, investing, IRA contributions, home buying, two-income planning, and even checking a federal tax return.
MODEMS

All about the newest high-speed modems; where they are and how they work.

MARC STERN

...For those who maintain that the higher the baud (communications) rate the more bandwidth is needed, 9600-baud communications may seem like an impossibility over the standard phone system, which is limited to 3 KHz of bandwidth, or the range of average voice conversation. After all, 9600-baud is a 3900 percent increase over 300-baud. But, modern manufacturers have done it.

Frequency Shift Keying

As recently as three years ago, the state of the art in digital communications was 300-baud. The typical 300-baud 103A modem of 1981 used two pairs of arbitrary frequencies for send and receive (originate and answer), 1070 to 1270 Hz for originate and 2025 to 2225 Hz for answer. (See Fig. 1). These are the tones emitted by both modems during a call. You can hear them if you listen closely during dial-up. The 300-baud modem also used Frequency Shift Keying (FSK) to represent the digital data being transmitted. The 103A standard defined the originate-answer tones needed for data transmission, as well as the parameters needed for communication. All modems which adhered to this standard could communicate, one in the originate mode and the other in the answer mode.

Fig. 2 shows a graphic representation of FSK. In this type of data transmission, the modem’s circuitry modulates the carrier frequency to one level to represent a ‘digital 0’ and to another to represent a ‘digital 1’. You can actually hear the data stream of 1s and 0s if you listen to the phone line during a low-speed (300-baud) transmission. This type of transmission relies on a UART (Universal Asynchronous Receiver/Transmitter) as well as the circuitry which takes the digital signals from the UART and transforms them into audio signals which are compatible with the phone system.

The reason digital data must be turned into audio is that the phone system is geared toward voice audio with its bandwidth of 3 KHz. Since it is, data must be turned into its audio analogs and FSK is used to produce those analogs.

Let’s see what happens when you begin digital communications at 300-baud (300-bits-per-second). First, your computer establishes a connection with the remote computer system or terminal with which you want to communicate. With today's intelligent modems, you just call up a program in your computer and command it to dial the remote system. After the dialing and the call are completed, you will hear a tone emanate from your modem. It is the originate carrier and is transmitted for a length of time as your modem patiently waits for the answer tone. When it hears the answer tone, the modem latches onto it and your system is connected to the remote system. These tones are generated by the modulator section of the modem.

Now the communications program in your computer waits for your action. If you are the originator of the call, the chances are good you will either be uploading or downloading information. Let’s say you are sending—Uploading—a file to the remote system. If you are, you will be asked for the filename which you select. You then hit the appropriate keys on the keyboard and the transmission begins. While you were choosing the file, unknown to you, the program was putting the modem’s UART into a ready state.

(A computer works in a parallel mode within the confines of its box with all data moving along in 8-bit chunks, unless you have a 16-bit computer and it moves along in 16-bit or 24-bit chunks.)

With the UART ready, the file transfer session begins. The UART takes the parallel data and turns it into serial data, holding each piece of data in place until it is ready to be sent by the transmitter section of the modem. The UART has the necessary storage registers to do this.

At this point, the UART begins releasing the data to the transmitter section, where the data are changed from their digital forms into their audio analogs and it is then frequency modulated through the phone system.

FIG. 1—THE 300-BAUD ORIGINATE/ANSWER modem uses two sets of discrete frequencies to establish communications. When the modem originates a call, the tone is between 1070 and 1270 KHz. The answering modem emits a tone in the 2025 to 2225 KHz range. The top and bottom frequencies correspond to mark and space, two timing parameters used in asynchronous communication.
Receiving

Let's see what happens when audio information is received.

On the receiving side, the modem takes the audio information it is receiving and turns it back into digital form. The receiving circuitry sends this information to its own UART, where each bit of information is held in storage until the particular digital word is formed. When that 8-bit word is formed, it is sent to the computer's information bus and on into digital storage. The action of the UART and its associated circuitry is so fast that you think everything is happening instantly, but it isn't. If you could slow this circuitry's time reference enough you would see that each digital event is distinct in itself. However, the speed with which each event occurs is so high—microseconds—that it appears instantaneous.

In the 1981-1982 period, data transmission was limited to the 300-baud rate because the circuitry for higher-speed transmission still hadn't migrated to the average microcomputer user. It was beginning to make its appearance, but was still too expensive for the average computer. It took developments in large-scale integration (LSI) to make this possible. These developments included UARTs which could handle data at 1200-baud asynchronously, as well as microcircuitry which could create the proper modulation needed so the modem would recognize high-speed transmission.

Asynchronous transmission

Asynchronous simply means data transmission without tight timing constraints and it is important to note it here. At this time, the highest speed thought possible for asynchronous communication was 300-baud (300 bits per second). At higher speeds, it was thought that tight timing requirements were needed so both the transmitting and receiving modems could operate reliably. It was also believed that you needed a specially dedicated, conditioned—clean—phone line so that data transmission would be error-free. It was assumed the phone system was too noisy for reliable high-speed data transmission. Therefore those high-speed links which existed—there were 1200-baud and higher systems—were synchronous and used dedicated lines. Synchronous systems required special timing codes to be inserted as “header” information for each packet of data that was sent. The timing requirements were quite strict.

Phase Shift keying

Phase Shift Keying (PSK) takes advantage of the natural period of an audio frequency wave and, rather than using a set of discrete frequencies to define digital 1s and 0s, PSK represents data bits by using the changing phase of the signal and superimposing two or more data bits for each cycle.

Visualize a sine wave

The best way to envision this is to think of a sine wave, showing the entire period of an audio signal. Now, put a dot at the 0 point and another at the 180-degree point. These two points represent the digital 1 and 0, or the binary system used in data communications. This system is called Coherent Phase Shift Keying and relies on defined reference points to represent data. It differs from FSK in that FSK relies on using the carrier frequency to represent one digital bit of information—0, for instance—and a higher frequency to which it shifts to represent the other—1, for example.

To explain this more fully, let's say you are using traditional FSK to transmit data. Since you are using an audio-frequency range, you are also creating sidebands, or the sum and difference of the carrier and the modulation rate. For example, let's say the modem uses an 1800 Hz carrier and you are sending data at 1200-baud. Because the modem is using this set of parameters, you will find sidebands at 3000 Hz—1200 + 900—and 600 Hz—1800-1200—and therefore higher-speed transmission can fit within the constraints imposed by the phone system.

With low-speed (300-baud) and FSK, you are simply using one-half the cycle to define the data you are transmitting. This is the key difference between modes. FSK uses the 1800 Hz point, for example, to define 0 and the 2100 Hz point, or upper sideband (1800 + 300) to define 1. The lower sideband or 1500 Hz point is unused. Further, this type of modulation does not take full advantage of the 3000 Hz bandwidth of the phone system, while higher speed and PSK do. Low-speed and FSK only uses about 600 Hz of bandwidth—2100-1500 Hz—leaving 2400 Hz unused.

Another way to go

Coherent Phase Shift Keying isn't the only way of handling high-speed data communications. There are two others which are equally as valid and interesting, Amplitude Modulation (AM) and Differentially Coherent

FIG.2—FREQUENCY-SHIFT KEYING uses shifts in frequency to denote digital information. One frequency level denotes digital 0 and the second denotes digital 1.

FIG.3—WITH AMPLITUDE MODULATION, the difference in amplitude of the modulating signal determines the digital information flow.
Phase Shift Keying (DCPSK).

With Amplitude Modulation, the amplitude of the carrier is the determining factor. By varying the amplitude of the carrier, with one level representing a digital 1 and another representing a 0, you can have effective data communication.

To represent this, think of the traditional AM sine wave and then superimpose a modulating signal upon it. The difference in amplitude of the modulating signal determines the 1 and 0. (See Fig. 3).

Another form of Amplitude Modulation, is simple on-off keying where the digital 1 or 0 is determined simply by switching the carrier on and off. While we call this Amplitude Modulation, it's really Interrupted Continuous Wave (ICW).

DCPSK

With this said, let's move on to Differentially Coherent Phase Shift Keying (DCPSK). It is unlike Coherent Phase Shift Keying in that the necessity of identifying specific locations on the sine wave is discarded in favor of encoding data using the phase change between two signal elements. And because there's an almost unlimited potential for encoding data during phase changes (See Fig. 4), you can see it would be possible to increase data transmission speed without increasing bandwidth. Large-scale integrated circuitry handles the necessary detection and decoding of data.

How DCPSK works

Let's take a closer look at DCPSK for a better understanding of this concept by first comparing it to coherent PSK. As we have noted, coherent PSK relies on establishing reference points on the sine wave's cycle. For instance, this type of modulation technique may use the 0 and 180 degree points, with a 0 degree phase shift representing the digital 0 and a 180 degree shift representing the 1. The circuitry in the receiver requires phase coherence capability so it can demodulate the signal. DCPSK, on the other hand, does away with the necessity of absolutely identifying the reference points in the shift of an audio wave cycle. Instead, data are encoded in terms of the phase change between successive parts of the audio wave.

To see this more clearly, envision the coherent PSK waveform with data points at 0 and 180, or the type of waveform you might see if you scoped a 1900-baud modem. Change the waveform slightly to encode data at different spots on the wave. The difference in phase between these insertion points is what defines the digital 1s and 0s needed for data communication. For instance, with DCPSK, you may have data inserted at 0 degrees, 90 degrees, 180 degrees and 270 degrees, or a two-fold increase in communication speed since two full digital bits are represented on the wave. This is called a digit, with 0 and 180 representing one set of 1s and 0s and 90 and 270 representing the second set. We only used these points for easy reference because there is no hard and fast rule defining where the information is to be inserted. It can be anywhere on the waveform. (See Fig. 5)

On the receiving side, the DCPSK discards the necessity for fixed reference points, relying, instead, on the relationship between the changing phase between the signal elements.

By now you should be able to see the possibilities inherent with DCPSK. By using the change in phase, you can take advantage of as many as four, eight or 16 phases on the signal and this, in turn, allows you to group two, three and four bit groups of data. It gives you a fourfold increase in the amount of data transmitted within the constraints imposed by the phone system. You are taking full advantage of the bandwidth available and all the while the phone system still thinks you are using a 1200-baud modem because you are still relying on the same bandwidth we noted in our earlier example (600 and 3000 Hz or the sum and difference of the 1800 carrier and 1900 Hz modulating signal.)

Since this type of communication relies on timing shifts, it requires synchronous operation. It also uses multilevel data coding in the modem. Research has found a relationship between the amount of data you send per signaling period, also called the bandwidth compression ratio. It is log M, where M is the number of levels (signal elements per cycle). This type of coding can be applied to any form of modulation.

The one drawback with DCPSK is that as you increase the amount of digital data within a waveform, you need a higher signal-to-noise ratio in the receiver. This is usually handled by either increasing the power of the transmitter or lowering noise levels.

Introducing Quadrature AM

It is possible to combine Amplitude Modulation with DCP. Also known as Quadrature Amplitude
This type of modem is capable of recognizing both FSK and PSK.

Dibits and Tribits

The jump from 1200 to 2400 is achieved by using a dibit—two bits of data. The dibit—00, 01, 11, 10, for instance—is used to encode one of four specific phase shifts. For instance, a 2400-baud modem will function using four-level DCPSK modulation with a phase change of 45 degrees between bits. Pictorially, it can be seen in Fig. 6. Since there are now four bits of information, rather than two, the amount of information is effectively doubled, though the phone system thinks the modem is communicating at 1200-baud.

Inserting another data bit and increasing the number to three—a tribit—means you can effectively double the speed of the communications once again. This makes it 4800-baud. This type of modem relies on eight-level or diagonal DCPSK and requires three bits of information to define the eight specific phase shifts. The tribit pattern can be seen in Fig. 7. Again, you are adding one extra piece of information at each phase shift point—compressing data—allows a manifold increase in speed. This type of scheme operates using eight data patterns which look much like triangles when superimposed on one another. Although it would seem that you would only be increasing speed to 3600 baud, you now have eight levels of data and six bits of information per cycle, $8 \times 6 = 48$.

Moving from this point, speed again doubles to 7200-baud. This type of modem uses Quadrature Amplitude Modulation and uses four consecutive data bits to define both the amplitude of the signal and phase changes. It also determines the absolute phase of the signal element. You can see the relationship of all the elements in this realm in Fig. 8.
Peachpak 4 — A complete accounting package for small business

Designed for the small business with limited microcomputer capacity. Peachpak 4 consists of three interactive business application packages: General Ledger, Accounts Receivable, and Accounts Payable. It is designed for a dual floppy disk drive system.

General Ledger is the center of the Peachpak 4 system. Used with the other Peachpak 4 modules, General Ledger gives you the ability to maintain a complete financial picture of your business. The flexible chart of accounts menu allows you to incorporate your current accounting books, the automatic posting of transactions from other Peachpak 4 modules minimizes errors and saves time.

General Ledger offers the following features:
- Allows five-digit account number
- Offers you automatic journalizing entries
- Allows up to 99 departments
- Identifies transactions posted to General Ledger by eight user-defined source codes
- Allows year-to-date total up to $2,000,000.00

General Ledger provides these reports: Balance Sheet, Income Statement, Trial Balance, Examine Account Status Report, Transaction Register, Chart of Accounts List, and various other reports.

Accounts Receivable helps you prepare bills for and obtain timely collections from your customers. It prints invoices, statements, and aging reports and maintains customer account information, sales taxes, and the accounting detail for posting to General Ledger.

By closely monitoring your customer due-paying activity, you can achieve better cash flow control. The system eliminates duplication of efforts since statements or invoices are generated at the information is entered. The automatic posting of summary transactions eliminates reentering errors.

Accounts Receivable:
- Prints statements and invoices
- Provides detail or summary Aging Report
- Posts summary transactions to the General Ledger
- Allows automatic customer billing option

Accounts Receivable helps you keep track of your customers. It uses Peachpak's powerful accounting package to help you manage your cash flow. Accounts Receivable are integrated with Peachpak's General Ledger to provide you with the most accurate accounting information.

By allowing you to select automatic payment of invoices based on your selection of discount and due dates. Accounts Payable helps you manage your cash flow better.

Accounts Payable:
- Prints checks with a detailed check stub listing all invoices paid by this check
- Automatically calculates discount allowed
- Stores amounts due each vendor classified into six time periods on aging report
- Allows you to enter monthly items for automatic posting of recurring invoices
- Allows entry of prepaid invoices to properly maintain accurate vendor information
- Allows optional automatic posting to Peachpak 4 General Ledger in summary
- Distributes each invoice to a maximum of eight General Ledger expense accounts
- Has an option to prohibit deletion of invoices
- Allows year-to-date total up to $2,000,000.00

Accounts Payable provides these reports: Cash Requirements Report, Aged Payables Report, Open Invoice Report, Examine Vendor Status Report, Vendor File List, Check Register, Transaction Register, General Ledger Transaction Register, and various other reports.

Available for (MS-DOS 16-bit hardware) Columbia MPC, COMPAC", Portable Computer, Corina PC", Eagle*PC (IBM*PC), Texas Instruments Professional Computer", Zenith Z-100; (Apple 8-bit hardware) Apple II+", Apple IIe

Memory: MS-DOS (version 1.0 or later) with 64K RAM. In addition, special versions are available for the Apple II computer with 16K RAM and Microsoft Z80 Softcard, both 40-column and 80-column displays.

Language: Runs on compiled Microsoft BASIC version. The Apple version requires Microsoft BASIC 5.2

Disk: Requires two floppy disk drives

- list price $395.00
- pay only $296.00

Check one:
- Peachpak 4 — MS-DOS
- Peachpak 40 — Apple II with 40-column card
- Peachpak 80 — Apple II and Apple IIe with 80-column card

Total Price of Software $________

Sales Tax (NY State Residents Must Include) $________

Shipping ($2.00 per item) $________

TOTAL ENCLOSED (Sorry, no CODs) $________

Name ____________________________

Address ____________________________

City ___________________ State _______ ZIP ________

SAYYR - NO CREDIT CARD OR COD ORDERS

Radio-Electronics Software Store
200 Park Avenue South
New York, NY 10003

A R 1 9 8 5 — Computer Digest
If you're designing resonant circuits, try putting your computer to work!

LAWRENCE G. FRIEDMAN

"Resonant Circuit Design" is a generic BASIC program specifically intended for technicians and experimenters who work with RF circuits or RF filters. "Resonant Circuit Design" will calculate the f, C, and L (frequency, capacitance, and inductance) values for a resonant circuit and then go on to calculate the design of an air-wound coil using the calculated or a preselected inductance value.

The program automatically recycles. If the calculated inductor and capacitor values aren't to your liking, you can substitute different known values over and over until you get practical answers.

Finally, you select the coil's dimensions and the program will calculate the required number of turns and the maximum size solid enamel-insulated wire that can be used to wind the coil. This part of the program also recycles, so if you don't like the answer(s) you can specify other dimensions and the computer will automatically recalculate the number of turns and the maximum size wire.

If you want to use a specific size wire you can recycle the parameter section and vary the dimensions of the coil until the desired wire size is indicated.

The program listing is for clarity and universality—rather than memory conservation or "pretty printing." In some instances I have taken the "long way round" to ensure the program will run on most, if not all, modern personal computers—including the pocket-sized portable models.

Possible "translation" problems are indicated in lines 10 and 20. If your computer uses different commands or symbols for CLEAR SCREEN and exponentiation, make the required changes to the program.

To keep the program reasonably short error-trapping is used only for line 110 where there is the possibility of an incorrect keyboard entry. Other than the keyboard entries ahead of line 140, if you deliberately try to trick the computer with false entries or data the computer will respond with a false answer but give the program the data it asks for and it will crank out correct values as fast as you can handle them.

```basic
10 REM CLS = "CLEAR SCREEN"
20 REM SOME COMPUTERS USE [ INSTEAD OF ^ FOR EXPONENTIATION
30 CLS
40 PRINT "RESONANT CIRCUIT DESIGN"
50 PRINT "By Lawrence G. Friedman"
60 FOR X = 1 TO 500:NEXT X
70 CLS
80 PRINT "RE-ENTER":PRINT
90 PRINT "TO DETERMINE L, C, OR F ENTER 1"
100 PRINT "TO CALCULATE COIL PARAMETERS"
110 INPUT A
120 IF A = 1 GOTO 160
130 IF A = 2 GOTO 320
140 CLS:PRINT "RE-ENTER":PRINT:GOTO 90
150 IF A = 2 GOTO 320
160 CLS:CLEAR
170 INPUT "ALSO CALCULATE COIL PARAMETERS"
180 CLS
190 PRINT "ENTER A'0" FOR UNKNOWN VALUE"
200 PRINT
210 INPUT "ENTER F IN MHZ > " : F
220 INPUT "ENTER L IN UH > " : L
230 INPUT "ENTER C IN PF > " : C
240 IF F = 0 THEN PRINT 1000*(6.238 * SQR(L+C)/C) "MHZ"
250 IF L = 0 THEN Z = 25330/((F/2)+C)
260 IF L = 0 THEN PRINT 25330/((F/2)+C):"UH"
270 IF C = 0 THEN PRINT 25330/((F/2)+L):"PF"
280 IF AS = "N" THEN 200
300 IF AS = "Y" GOTO 200
310 GOTO 390
320 CLS:CLEAR
330 PRINT "COIL PARAMETERS"
340 FOR X = 1 TO 100:NEXT X
350 PRINT PRINT:PRINT
360 IF R$ = "Y" GOTO 390
370 INPUT "ENTER L IN UH > " : L
380 LET Z = L
390 IF R$ = "Y" GOTO 390
400 IF R$ = "Y" GOTO 200
410 GOTO 390
420 T = SQR((Z*6.238/(4+G)))/G
430 PRINT T: "TURNS"
440 W = 1/G
450 CS = "IS THE LARGEST WIRE SIZE."
460 IF W < 18.9 THEN PRINT "#16":CLS:GOTO 540
470 IF W < 21.6 THEN PRINT "#18":CLS:GOTO 540
480 IF W < 29.4 THEN PRINT "#20":CLS:GOTO 540
490 IF W < 37 THEN PRINT "#22":CLS:GOTO 540
500 IF W < 46.3 THEN PRINT "#24":CLS:GOTO 540
510 IF W < 50 THEN PRINT "#26":CLS:GOTO 540
520 IF W < 72.7 THEN PRINT "#28":CLS:GOTO 570
530 IF W < 80.5 THEN PRINT "#30":CLS:GOTO 540
540 PRINT PRINT:PRINT "REPEAT PARAMETER DESIGN"
550 IF PS = "Y" GOTO 390
560 IF PS = "Y" GOTO 390
570 INPUT "REPEAT L,C,F CALCULATION" END
580 IF PS = "Y" GOTO 160
590 IF PS = "Y" GOTO 160
600 END
```

program
INEXPENSIVE IBM'S

Third-party hardware can mean big savings and added performance for your IBM PC.

HERB FRIEDMAN

While calling the IBM PC a home-and-family computer stretches the limits of the imagination (because of its price, for one thing), it is true that for business use—even for a kitchen-table operation—the IBM PC is the way to go. Why? Because most high-performance software is written first for the IBM PC. This makes the PC a very attractive machine in the eyes of many. And if you require some highly-specialized software, chances are that you'll find it ready and waiting if you have a PC to run it.

Unfortunately, an IBM PC is expensive, and gets more so as you add accessories. In fact, you cannot even use an IBM PC until you have spent several hundred, or even a thousand dollars for peripherals and accessories. Essentially, the PC works on the same principle as the Barbie Doll: the basic doll is relatively inexpensive or affordable, it's Barbie's clothes and accessories, not to forget the boyfriend Ken doll and his accessories, that eat up the budget. (Barbie and Ken dress better than I do!)

But there are ways you can save anywhere from $300 to over $1000:
- Plan carefully so you don't duplicate features.
- Be patient and shop around.
- Have a moderate (at least) understanding of what you need and what you can substitute for.
- Assemble your own IBM PC system, substituting third-party components—hardware not manufactured by IBM—wherever it won't affect, or will actually improve overall performance.

Besides saving money, you'll end up with a PC having many more features than IBM offers and a model that's customized for your particular needs. The minimum IBM PC configuration that can be purchased (at the time this article was prepared) has 64K RAM and one double-sided disk drive. It retails for $1815. But for real computing power you'll need a second disk drive ($425, IBM's price). And if you intend to run a printer you'll need at least one printer adapter, which costs $75 (parallel) or $100 (serial). Something missing? Right! There's no video output or monitor. An IBM color/graphics adapter, which has a composite output suitable for color or monochrome, will cost $245, and the least expensive "recommended for IBM" monochrome monitor will cost about $150. So for a computer with two drives, a video monitor and a printer output you would have spent at least $2710.

only to discover that few programs run in 64K RAM, you'll often need at least 128K, preferably 256K. IBM charges $100 for each 64K of RAM, so your total bill will be $3010, and you won't even have a serial output for a modem, or a printer. Now if you have read the advertisements in the big city newspapers and the mail order catalogs, you have probably discovered you can purchase a "standard" PC system for well under IBM's price, often saving in the area of $300 to $700 depending on the specific hardware you select—or what the dealer insists you must purchase.

Is this a discount on the IBM computer? Usually not. In many instances the dealer is using an IBM "bare system," which comes with only 64K of RAM, a keyboard and nothing else. He fills the system out using third-party hardware and peripherals. Third-party hardware is the stuff that isn't sold by IBM. For example, IBM charges $425 for a single disk drive with the IBM logo etched on the front panel. You can purchase a Tandon 100-2 or CDC-9409 disk drive without the IBM logo for about $200, a savings of approximately $225 per drive. Let's look at another example. IBM gets $500 per 64K RAM. The Great Salt Lake Computer Company (1780 West 9300 South, Salt Lake City, UT 84119) sells the 64K kits for about $50, or $150 for three kits, a savings of $150 when expanding the system from 64K to 256K. As you can see, this isn't one of those articles on how to save pennies: we're talking about a lot of money, often the difference between whether you, your business, or your school can afford an IBM PC, and we haven't even started discussing extra features yet.

The basics

First things first, you must get a bare system, officially called "System Unit 64K," whose part number 5150104 is often shortened to simply "...104." This isn't the easiest of things to locate. At the time this article was prepared it was no longer on the price list of some IBM
product centers, and neither the local Computerland nor Sears Business Systems would sell one to an individual. (They don’t want to sell you one because they don’t want you building up a complete computer system for less money than they will charge you.) However, business is business, and advertisements offering a “bare PC” are appearing with increasing frequency.) Even some IBM product centers suggest they will be selling them in early 1985 when the anticipated demand for the IBM PC slackens.

If you are offered a bare PC at any price—list or discounted—take extreme care to be certain you are getting a PC—the latest version—which is socketed for 256K RAM in 64K modules, each module consisting of nine (yes, 9) ICs (only 64K is provided in the bare unit). The earlier PC, often called the PC1, was socketed for only 64K RAM in 16K modules. Do not accept a PC1. You want a PC2.

Okay, you now have a computer, but there’s no display. First thing you’ll need is a monochrome monitor. Amber screens are all the rage, but many users find them difficult to use hour after hour. We suggest the monochrome green-screen Zenith ZVM-121, which sells in the discount price range of $90–$115. It has excellent bandwidth, delivers sharp characters from corner to corner, and is the monitor we use when photographing real-time computer video displays. It is in no way the equal of the IBM monochrome display, but it doesn’t sell for the IBM’s price of $660 (the cost of the IBM monitor plus the required monochrome adapter).

You’ll need something that generates an output from the computer for the video display. For that we suggest the $245 IBM Color/Graphics Monitor adaptor, which provides either a 40 or 80 character “composite” (color output also suitable for monochrome), and an RGB color output. Just connect your monochrome monitor to the composite output’s phono-type jack. While there are third-party color/graphic monitor boards, they aren’t all that much better and they cost about the same as the IBM. And why not go with IBM when the price is about the same? There are other boards that deliver a better graphic display, but they are much more expensive and justified only if you have a need for graphics.

Disk drives

Next, you’ll need disk drives and a disk controller. Many sources sell the Tandon 100-2 and/or CDC-9409 drives for about $200. Find the least expensive source, but if possible—even if it costs a few dollars more—buy them from an outfit that provides installation instructions on how to set the drives’ internal jumpers, and which terminating resistor block to remove. If you try to go-it-alone you can spend weeks trying to determine what’s wrong, and the IBM service center isn’t going to help you with third-party hardware. For this article we obtained the drives from Conroy-Lapoint (19060 Garden Place, Portland, OR 97233), who provides notably good instructions for their disk drives and user-installed RAM upgrades.

The disk controller

Disk drives need a disk controller to tell them what to do. IBM’s own disk controller (called a “disk adapter”) now costs only $100—a fantastic value. However, the disk controller takes up one of the five available slots, while the color/graphic monitor adapter takes up another slot; leaving three slots for everything else. If you add a printer and a serial output adapter there’s just one slot left for future expansion inside the main cabinet. But the disk controller is a plug-in board, and like other plug-ins such as the parallel and serial adapters, calendar/clocks, and RAM upgrades, they are available from third-party sources.

In fact, greater computer flexibility is attained—though it costs a few dollars more—by using multifunction boards (adapters) from third-party sources. For example, a Maynard disk controller, which can be purchased for as little as $169, is also available with a serial or a parallel printer adapter. Or—and this is preferable—you can use Maynard’s Sandstar disk interface (approximately $200), which can accept any combination of up to three additional modules: serial or parallel interfaces, a battery-powered clock/calendar, or a game port. The Sandstar interface equipped with a serial and parallel interface is the one we used and recommend. At the minimum, it saves a
least two, possibly three slots. The extra position on our Sandstar controller was used for a battery-powered clock/calendar. We actually had four functions in a single slot. (Because of recent IBM price cuts for their disk controller, we anticipate third-party controllers will be discounted for additional savings.)

Still more computer power

Before you run out to purchase your hardware, stop and reflect on what kind of system you'll want to end up with. Will you want a RAMdisk—memory that can function as a disk drive? For that you'll need extra memory and the software. If all you need is extra RAM you can get just a memory expansion adapter from IBM, assuming you have an available slot.

On the other hand, a board called the Captain, from Tecmar, Inc. (6955 Cochran Rd., Cleveland, OH 44139) provides the extra memory as well as serial and parallel ports, and a battery clock/calendar. But be careful not to duplicate existing functions. If you started out with a Sandstar disk controller you might already have the needed ports. You might only need extra memory, which is available as a separate memory-only board. To avoid the extra costs of duplicate functions, determine the kind of computer system you hope to end up with before you make any purchases. If you think you'll want or need the extra memory, use the Tecmar board with its serial and parallel ports, and the basic (no ports) Maynard disk controller, or the IBM controller—which is a best buy at $100. There are several other sources for memory/port/calendar boards, among them Quadram and AST. More or less, they offer the same features: extra memory serial and parallel ports, a game (paddle) port, and a battery-powered clock/calendar.

An extra "plus" for the non-IBM multi-function boards is that they are usually supplied with a "free" software package that often includes high performance utilities. But there is software, and then there is good software.

For example, some of the "free" software which partitions part of RAM into a disk emulator (RAMdisk) simply assigns a drive letter to the partitioned memory. On the other hand, The Tecmar software lets the user substitute the RAMdisk for an existing drive, and then automatically moves the assignment of the existing drives up one notch. If the user assigns the RAMdisk as the B: drive, the software automatically makes the original B: drive into drive C.

This doesn't sound like much, but if your software is always looking for a data file on drive B: it will default correctly if you copy the necessary files from what is now drive C: to RAMdisk B: If the RAMdisk is any old assignment, software that defaults to B: will never work correctly out of the RAMdisk. (You can pull off the same trick using PC DOS 2.0 and 2.1, but it's easier if done automatically by the RAMdisk software.)

Software for multi-function memory boards also often permits the RAM to serve as a printer spooler. Again, there is software, and then there is good software. Some spooler software doesn't permit disk access for the foreground program while the spooler is in the background. Other software programs the extra RAM on the multi-function card to function as an independent spooler, allowing disk access by the foreground program. Make certain you understand exactly what you are getting in the way of spooler software. As a general rule of thumb, the multi-function boards are primarily super-high resolution graphics adapters, or memory boards with I/O ports, calendars and game ports. If you don't anticipate needing more than the basic 956KB of RAM it's questionable whether a multi-function board will be worth the money. You might be better off with a multi-I/O board—an adapter with any combination of up to four serial or parallel ports. Just eliminating the memory capacity (empty sockets) from a multi-function board can save $50 or more.

Putting it all together

We have wandered around a little to give you an idea of the kinds of savings to be made, and the various kinds of hardware available from third-party sources. It's now time to assemble our PC.

First things first. Take the cover off the bare PC by removing the six screws on the rear apron and sliding the cover forward. Then remove the covers for the disk drive compartments: simply pop the two speed nuts off the plastic posts on the rear of the covers. The RAM and other ICs used on the plug-in boards are extremely
sensitive to static voltage surges; any static electricity in your body must be discharged to ground before you handle any components. Before you do anything else make certain you have a grounding bracelet connected from your wrist to a true electrical ground. If you don't have a grounding bracelet, make one by splicing a 1-megohm resistor in series with a length of wire, solder a small clip to one end of the wire and and connect the opposite end to the electrical ground. Attach the clip to your metal watchband, or the metal buckle if your watch has a leather or plastic band. If you don't wear a watch, make some provision to ground yourself because the RAM and the accessory boards usually lose their warranty if they are "blown" by static electricity. Handle nothing if you aren't grounded.

The next step in assembling your "cheaper and better" PC is to install the extra RAM into the empty sockets, making certain the notch on the end of the IC faces the rear of the chassis. Once again, we suggest you make 956 KB of RAM the minimum configuration; so fill the three rows of empty sockets.

Next, install the graphics/monitor adapter in any slot except the one closest to the power supply and check out the computer before you install any other boards or accessories. At each step of the way you must be certain the computer works before you go on to the next step. The monitor adapter installs the same as all the other boards: Select a slot, install the small plastic guide that's supplied with the adapter by simply pressing it into the matching holes on the front of the chassis, and seat the board in its slot. (Note, you must remove the matching slot cover on the rear apron before you seat the adapter in its socket.)

There are two internal DIP switches that must be set to correspond to the amount of memory and the number of disk drives. Remember, at this stage you have no drives. The instructions supplied with IBM's color/monitor board show how to set the switches. Plug in the monitor and fire up the computer. If it works, install the disk drives and their controller board. The disk controller board must be installed in the slot nearest the power supply.

The standard controllers are supplied with the necessary connecting cables and notably excellent installation instructions, so there's no necessity to go into details here. Take note, however, that the cable is twisted at one of the two drive connectors: this is normal. It accommodates a clever system IBM used to avoid errors when programming each drive's disk selection jumpers.

Unlike the programming of the drive-select jumpers for other computers, IBM programs both drives exactly the same with a "shorting bar" across drive select #2. Do not use any other shorting bars on the drive-select socket. Only drive A uses a terminating "resistor block" that resembles an IC. Pull the block from the B: drive. Some disk suppliers such as CONROY-LAPoint provide complete instructions on how to set up the drives.

Install the drives in their compartments. Secure any modules you plan to use with the controller on the disk adapter board along with all connecting cables, then install the controller in the last slot, the one immediately adjacent to the power supply. Connect the power plugs (part of the bare PC) to the drives, and then the ribbon cable from the controller. The cable goes to drive B first; the end of the cable goes to drive A. It might appear reversed but that's the way to do it.

FIG 5—OUR MINIMAL DO-IT-OURSELVES configuration before further upgrading. The disk drives have been installed, along with the disk controller and graphics/monitor adapter boards. Both parallel and serial modules are installed on the disk controller card, which now provides four functions in a single slot. What appears to be a rat's nest of ribbon wire from the parallel and serial modules is just fine; don't try for neatness—just position the wire wherever it will fit.

FIG 6—MORE SLOT CONSERVATION. The parallel and serial connectors are installed on a single mounting adapter to avoid "killing" a slot position just for a connector.

Set the DIP switches on the motherboard for two disk drives. Next, using IBM's DOS 2.0 or 2.1 (which you must purchase), check that everything works correctly. There will be a long delay after you turn the power switch on as the computer checks its RAM. After what seems like an eternity (actually a few seconds), disk drive A will start and load the DOS (Disk Operating System).

If everything checks out, install your multi-function boards one at a time, testing every function before installing the next board. If you have done your planning carefully you will probably have every feature you want or need and still have at least one slot open for future expansion. ☻
B&K OSCILLOSCOPES

CALL TOLL FREE FOR FAST DELIVERY

800-645-9518

In New York State 300-532-1446

B&K 100 MHz DUAL TRACE, DUAL TIME BASE OSCILLOSCOPE

Model 1580

$1249.95

(Reg. $1,595.00)

FEATURES: 1 mV/div sensitivity • 23 calibrated sweeps • Rectangular CRT with internal graticule and scale illumination • Signal Delay Line • Video Sync Separators • 20 MHz Limiter • X-Y Operation • Z axis input • 16 kV Accelerating Voltage • X10 Sweep Magnification • Delayed Sweep/Dual Time Base • Single Sweep • V Mode • displays two signals unrelated in frequency • Sum and Difference Capability • Channel 1 Output • Includes Probes

B&K 80 MHz QUAD INPUT DUAL TIME BASE OSCILLOSCOPE

Model 1570

$1095.00

(Reg. $1,159.00)

FEATURES: 1 mV/div sensitivity to full bandwidth • 500 V/div cascade sensitivity to 40 MHz • 22 calibrated sweeps • Rectangular CRT with internal graticule and scale illumination • 12 kV Accelerating Voltage • Mode - display four signals unrelated in frequency • Alternate timebase operation • Signal delay line • 20 MHz bandwidth limiter • Lighted pushbutton function switching • Video sync separators • Includes probes

B&K 60 MHz TRIPLE TRACE OSCILLOSCOPE

Model 1560

$899.95

(Reg. $1,150.00)

FEATURES: 1 mV/div sensitivity • 22 calibrated sweeps • Rectangular CRT with internal graticule and scale illumination • Signal delay line • Video sync separators • X-Y operation • Z axis input • 16 kV Accelerating Voltage • X10 Sweep Magnification • Delayed sweep • Single sweep • Auto focus • V mode • displays two signals unrelated in frequency • Sum & difference capability • Channel 1 output • Includes probes

B&K 40 MHz DUAL TRACE OSCILLOSCOPE

Model 1540

$799.95

(Reg. $950.00)

FEATURES: 1 mV/div sensitivity • 21 calibrated sweeps • Rectangular CRT with internal graticule and scale illumination • Signal delay line • Video sync separators • X-Y operation • Z axis input • 12 kV Accelerating Voltage • X10 Sweep Magnification • Delayed sweep • Dual time base • Single sweep • V mode • displays two signals unrelated in frequency • Sum & difference capability • Channel 1 output • Includes probes

B&K 20 MHz DUAL TRACE TRIGGERED SLOW OSCILLOSCOPE

Model 1522

$569.95

(Reg. $595.00)

FEATURES: 1 mV/div sensitivity • 20 calibrated sweeps • Rectangular CRT with internal graticule and scale illumination • Video sync separators • X-Y operation • Z axis input • 8 kV Accelerating Voltage • X10 Sweep Magnification • Auto sweep • V mode • displays two signals unrelated in frequency • Sum & difference capability • Channel 1 output • Includes probes

MASTERCARD/VISA ACCEPTED

PHONE ORDERS ACCEPTED

Fordham

260 Motor Parkway, Hauppauge, New York 11788

Service and Shipping Charge Schedule

<table>
<thead>
<tr>
<th>Charge Schedule</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>$501-750</td>
<td>$8.50</td>
</tr>
<tr>
<td>$751-1000</td>
<td>$12.50</td>
</tr>
<tr>
<td>$1001 and up</td>
<td>$15.00</td>
</tr>
</tbody>
</table>

www.americanradiohistory.com
COMMUNICATIONS CORNER

Communication odds-n-ends

THE MAILBAG USUALLY BRINGS A steady stream of information, devices, and procedures that by themselves would not justify a full column, or even half a column for that matter. But because they are often things that may be useful to communications technicians, every once in a while we put them all together even if they're unrelated. This time we'll start out with a look at portable telephones.

A few years ago telephone manufacturers were almost climbing the walls because there were only four authorized channels for mobile telecommunication services. The way they told it, the switched telephone system—the thing I usually call the dial-up system—would eventually sound like the Tower of Babel as neighbors accessed each other's phone.

From the rock-bound coast of Maine to the sunny shores of California, newspapers have entertained us with articles telling of people cruising through neighborhoods trying to determine whose portable telephone they could access to make free long-distance calls.

I've tried to track down that elusive service thief, but each report that I've followed turned out to be ninth hand. And as you might expect, I've never located anyone whose phone was actually accessed by the "phantom of the portable telephone." (No doubt, tomorrow's mailbag will bring in a stack of mail from people whose best friends have illegally accessed their portable telephones.) In addition, there is another problem: People are constantly being harassed by the interminable clicking caused by some one else's portable telephone or other device in the same building.

Well, as the FCC said when petitioned for more channels: "Technology will take care of the problem." And that's just what happened. The most modern portable telephones use digital encoding—a digital burst transmitted when any key on the unit is pressed. The base unit (which contains the dialer) doesn't respond until it senses the correct code. Therefore, no one can creep through the neighborhood looking for free access to long-distance service, and the folks watching "Dallas" on the TV won't be disturbed by dial-clicking (from the telephone relays) or calls intended for their neighbors.

Figure 1 is a representation of the waveforms you might expect to see for one encoding system used in portable telephones. Whether it's the base unit transmitting to the portable handset or vice-versa, a digital identifier is automatically transmitted when the device is first keyed, which activates the receivers in both the headset and base.

The receiver responds only after the correct code is sensed, and only then is the system ready to handle the normal telephone chitchat. At the end of the call, hanging up the phone causes the decoder to automatically reset the system. If either the base or remote unit does not receive the correct code it remains in the standby or muted condition.

While I haven't seen tone-encoded versions of portable telephones, some readers have inquired about them, so I expect they do exist. They would work the same as the tone-encoded walkie-talkies, using either a continuous subaudible tone, or DTMF (Touch-Tones). Speaking personally, digital is probably cheaper, and certainly the wave of the future.

New modem uses old idea

Every once in a while I get letters suggesting that I leave the stone age. And a recent column on new uses for carrier-current transmissions—signals broadcast through electric power lines—was no exception! That discussion brought with it the usual assortment of letters taking me to task for trying to resurrect ideas from the 1930's. Well, this time we're resurrecting old ideas to enhance modern communications systems.

The latest modem for computers is the Line Carrier Modem (LCM), which uses the powerline to carry the computer signals. The LCM contains a miniature transmitter and receiver whose I/O connects to the powerline through the same linecord that powers the modem; the computer connects to the LCM through the standard RS-232 connector. It works the same way as the conventional computer and modem setup used with the dial-up telephone system.

The primary functional dif-

![Digital Identifier Waveform](FIG. 1)
ference between standard arrangements and the LCM system is that the signals in an LCM system travel from computer to computer through the powerline rather than telephone wires. That means that for communications between computers, you don't have to make a telephone call, and neither do you have to stretch direct wires between two computers. Instead, you simply plug the LCM into the nearest convenience outlet.

For more information on the powerline modems, write to Global Computer Supplies, 9138 Hemlock Drive, Hempstead, NY 11550. (They also have a nifty fiber-optic modem. How's that for the other extreme?)

Telephone repair

Since the government's smashing victory over AT&T—giving them exactly what they wanted in the first place—the consumer is left with a telephone system that provides poorer service, charges higher rates and, more important, is difficult to get repairs from.

In a brilliant move, AT&T split its telephone hardware between two separate companies. That means if a customer—like some sweet little old lady with no knowledge of telephone electronics—calls the wrong people, she not only doesn't get her telephone repaired, but also gets smacked with a bill for $40 or $50 because she called the wrong people!

In short, AT&T managed to unload all responsibility for their products by making repair a gamble; guess wrong and it will cost you a good part of your weekly salary or monthly pension. The elderly or infirm, the poor, and anyone just getting by on a small fixed income are going to need help from someone when their telephones won't work.

Given a vacuum, someone must fill it and it is conceivable that they'll turn to the people who keep their TVs running. It's very likely that the TV serviceman will eventually double as a telephone repairman because his is the only service people can rely on.

Think it's farfetched? Then take a look at the latest advertisements for B&K test instruments. Their model 1042 telephone line analyzer ($19.95) will test the incoming line for proper voltages and ring signals, as well as the loop. Carry one of those in your tool box along with a "real telephone" (a Bell Systems model 500 or equivalent) and you can help any customer get a service call straightened out while AT&T and the local operating company play their little game.

Since it's likely that everyone will eventually purchase telephone equipment from third-party sources (what AT&T was after from the beginning), B&K's 1042 can put you in a position to handle your own household telephone service.

Undoubtedly I'll be receiving mail from B&K in the next few days with information on their model 1045 tester, which tests just about everything having to do with wired and wireless phones. Because of its nearly $400 price tag, I feel that it deserves a little more space. So, we'll save it for another time. R-E
Automatic data sequencing

In our last discussion of memories, we mapped out the design criteria for our demonstration circuit. We've taken care of keyboard data entry with the binary keyboard encoder that we've already built. This time, we'll see what must be added to that circuit to make it do something useful. After all, what good is the encoder without having some way of storing and/or manipulating its output data.

Since one of the design criteria is automatic sequencing of the address and data, we'll need something in the circuit that automatically does one thing after another. The problem of data sequencing was addressed when we built the binary keyboard encoder, which was designed to continuously scan a series of switches in search of a depressed key.

Automatic sequencing scheme

Since we'll be sequencing both address and data, we also need some way to let the circuit know which is which. The easiest way to keep track of what's stored where is to store the low and high order halves of the address, plus the data separately. Given all that, let's take a look at Fig. 1, a tentative solution to the problem.

The data coming out of last month's keyboard are fed to a series of latches, each of which is four bits wide. Since the 5101 (the
static RAM that we'll be using for storage) has eight address pins and four data inputs, we'll need three latches to handle the job. You can get IC's that are 4-bit latches, but a "neater" way is to use a 4508. It's a 24-pin IC that is really two 4-bit hold-and-follow latches in one package. By using that IC, we'll only need two 4508's and have one latch left over for any brainstorming we might come up with in the future.

The easiest way to sequence things is to use a 4017 binary counter, an IC you should be really familiar with by now. We spent some time discussing that IC in November and December, 1983. Now that we have the cast of characters for this portion of the circuit, let's put them together and see how they fit into our design.

How it works

Figure 2 is a schematic of the circuit we'll use to sequence the binary in information from the keyboard encoder that we built last month. It consists of a 4017 counter/driver and two 4508 dual 4-bit latches. (If you're wondering about the parts numbering, I'm keeping things in line with last month's circuit to avoid confusion.)

The action of the 4017 is (or should be) self explanatory. One thing that does deserve a bit of attention, however, is the way the clocking is being done. The 4017 sequences on the positive going (ground to +V) half of the incoming clock pulse.

Note that the four data lines (0-3) of the 4017 are connected to the strobe inputs of the latches. This is done to sequentially enable each latch. Also notice that the disable pins of each latch is tied to ground. That means that the outputs of the 4508's are permanently enabled. However, there is no data output unless the strobe input is high.

The 4508 can provide a three-state output, but there is no need for it because there's no common output-bus. Each latch will be used to control different parts of the memory and will, therefore, be connected to different pins. But keep the three-state option in mind because many applications
Learn micro-processing with the new MICRO-PROFESSOR IP

Students, engineers or technicians—upgrade your micro-processing skills with the new MICRO-PROFESSOR IP.

The MPF-IP features:
- extensive software support
- more built-in memory
- improved keyboard
- larger display

Three tutorial guides help cover all capabilities. The ideal training tool! MPF-IP will deliver you into the growing world of micro-processing. Invest now!

Plus—FREE GIFT Only $179.95

Plus Check this box for FREE
7-90 Microprocessor Programming and Interfacing' textbook when you order within 7 days.
$12.95 value, (field text)
$5.00 postage & handling

For immediate action call TOLL FREE:
1-800-426-1044

Full money back guarantee.

CIRCLE 111 ON FREE INFORMATION CARD

DESCRAMBLER PARTS

We stock the exact parts and PC Board for Radio Electronics February Article on building your own Cable TV Descrambler.

#707 PARTS PACKAGE $29.95
Includes all the original resistors, capacitors, diodes, transistors, integrated circuits, coils and IF transformers (SKA 9550JAXI)

#707 PC BOARD $12.95
Original etched & drilled silk-screened PC board used in the article.

#707 AC ADJUSTR $12.95
(4. volts DC @ 285mA)
Both #701 & #702 $39.00

FREE: A reprint of Joel's Electronics Article on building Your Own Cable TV Descrambler with any purchase.

Add $4.00 Postage & handling

TOLL FREE
1-800-227-9528 (Orders Only)
1-617-339-5372 (Information)

J & W ELECTRONICS, INC.
P.O. Box 800
Mansfield, MA 02048

CIRCLE 65 ON FREE INFORMATION CARD

require that feature, which is not found on all latches.

When power is turned on, all four latches are cleared by the R-C pulse generated by R3 and C2. Also at turn-on, pin 3 (output "0") of the 4017 goes high and enables the inputs of the first latch. The circuit then sits there and waits patiently for you to press a key on the keyboard. In other words, any data presented to the input of IC5-a will now be transferred to its output.

When a key is pressed, encoded data enters IC5-a and is passed on to its outputs (which is connected to 4 address inputs on the 5101 CMOS static RAM). At the same time, the strobe line goes from high to low and remains in that state so long as the switch is held down.

After the key is released, the strobe line returns to the high state and the 4017 advances by one count. That disables the first latch (IC5-a) and enables IC5-b, the next latch in the chain. The same action is repeated for each successive latch.

When putting the circuit together (and you should), note that the 4017 counts on the release of the switch rather than on the pressing of the switch. You could make things happen when the key is first pressed if you want, but it would take a bit more hardware and, quite honestly, I can't think of one reason for doing things that way.

When data comes off the keyboard, they are sequentially stored in each latch automatically. Now, automation is a wonderful thing, but there are times when you want a little more control. In our case, automation means that there's no way to go back. Put another way, if you hit the wrong key, there's no way to correct it. That's the penalty you pay for not designing things to work with an "enter" key.

If you feel that you'd like to be able to go back, or you want to actually strobe the data into the latch separately, all you have to do is put a clear switch into the circuit, or clock the 4017 with a separate switch. How to go about doing such things is a good exercise to see if you really have a clear understanding of all the things we've done so far. Design it yourself and try it out. As for me, I'm all in favor of automation.

When you add extra features to the circuit, keep in mind all the design rules we've discussed. Write everything down, from the criteria to the actual hardware you're putting in the circuit. As I said before, bad habits are hard to break, and any circuits designed with bad habits have a way of going up in smoke!

You'll notice that we have an extra latch left over. Since all we're handling is four data-bits and eight address-bits, the last latch seems to be an unavoidable waste of hardware. Why not put in some brain-burning time until next time; see if you can think of some use for it? I've already got something slick in mind—how about you?

Feedback

Before we end this month's discussion, there's a piece of important business that requires immediate attention. I thought that I'd taken care of it some time ago, but it seems that it needs a little bit of clearing up and now's as good a time as any.

I've received several letters lately that contain more or less the same comment. Several of you have said, "I like what you're doing but" (followed by): "I know a way to do it better;" "I know a way to do it easier;" "I can do it with fewer parts;" "My way uses a lot less power," and other such statements.

I guess there's some confusion about what you're supposed to get from this column. There are many schematics of workable circuits drawn and explained here, but the point of them isn't to compile a list of construction projects or, for that matter, anything like the sort of thing you'd see in the many books dealing with the 555 timer.

If you look over some of our past discussions, like the ones on the 4018, which began in January, 1984, you'll realize there's much more to it than just figuring out how to generate sine waves. After all, our final circuit only had a handful of parts and was far short of what is needed for any really serious audio measurements. Not only that,
but we spent three months or so putting it together!

Once and for all, let me state what I thought was obvious: The point of these discussions is not to show you how to build anything in particular, but merely to show you how to build anything in general. More often than not, the reason what works out well on paper falls apart in practice is because the approach to the project is wrong!

Getting something from brainstorm to breadboard must be done in a rigorous, systematic way, or the chances of success are just about non-existent. Listing design criteria and flowcharting the initial idea are as important to the final design as deciding how long the power cord should be. Without a scientific, well documented approach to the problem, you might as well forget the whole thing and take up stamp collecting.

Besides emphasizing the method of design, I’ve tried to pick areas that interest me and, I hope, you as well. Using neglected IC’s and coming up with the "bare bones" of useful circuits is only a side benefit. The main benefit is to show how any design problem is handled...in a very structured, step-by-step way.

Bad habits will do you in every time. Not keeping notes and listings of what you started out to do, are doing, and expect to wind up with is a guaranteed way to screw yourself up. Breadboards have a really nasty habit of turning into a "rat’s nest" of wires with parts placed on the board as you think about adding them.

Imagine getting a working, breadboarded version of some circuit and then being forced to leave it alone for a couple of weeks. When you finally get back to it, figuring out which wires go where, and why certain parts were used, is just about impossible unless you have taken good notes.

I’m sure that many of you out there can figure out better, simpler, or less power-hungry circuits than the ones finally developed here. In fact, I’d be surprised if you couldn’t, and somewhat disappointed if you didn’t. Remember Grossblatt’s Fifth Law: There’s always a better way! R-E

FREE famous high tech catalog

More than just a catalog, a trustworthy guide to what’s new in computers and electronics.

For many years, the Heathkit catalog has been a guide to new, exciting kit products for people like you to build. To enjoy. Learn from. And save money.

What sets this catalog apart is its range of high quality products and accurate information on every product. Over 450 interesting items - Computer hardware and software, Robotics, Precision test instruments, Computerized weather instruments, Solar hot water, Automotive and home energy products, Security devices, Color TV's, Video recorders, cameras and accessories, Stereo components, Amateur radio gear, Electronics courses leading from basic electronics to high tech.

With Heathkit, you'll discover a special pride of accomplishment by creating hand-built quality that is uniquely yours. You'll build your kit with confidence too, knowing you're backed by our simple promise, "We won't let you fail."

If you don't have the latest Heathkit Catalog, the whole family is missing something great.

Send NOW for your FREE Heathkit Catalog

Heath Company, Dept. 020-282
Benton Harbor, Michigan 49022

Please send me the latest Heathkit Catalog Free.

Name ____________________________
Address __________________________
City ___________________________ State ________ Zip ________

A subsidiary of Zenith Electronics Corporation

CIRCLE 86 ON FREE INFORMATION CARD
ANTIQUE RADIOS

Restoring antique radios

PREVIOUSLY, WE STEPPED BACKWARD IN
time a half century or so, and saw
that what was then new tech­
nology has today become an in­
triguing hobby. It's perhaps a new
adventure for the modern com­
puter genius, but it's a return of
old memories for the more mature
radio and TV servicemen, or hob­
byist. No matter what category you
fall into, the objective remains the
same—to make that old radio look
and work like new.

Once you've discovered that old
radio and TV servicemen, or hob­
treasure and taken it home, you'll
fall into, the objective remains the
same—to make that old radio look
and work like new.

Preparation for restoration

The first you should do is set the
unit outside your house or shop,
so that it can be cleaned and fumi­
gated—yes, fumigated. Any item
that has been just lying around
dormant—who knows where—for
over 30 years should be cleaned
before being brought into your
home or shop.

During that preliminary clean­
ing, take care not to destroy any
valuable information. Things like
tube diagrams, schematics, and
model numbers can be lost for­
ever because of carelessness. It's a
good idea to cover anything that
you may want to keep.

The unit should be treated with
insecticide inside and under the
cabinet, but try not to spray the
speaker cone. After that, it should
be covered for a few days to pro­
tect it from the weather and left
outside to ventilate. (Have you
ever smelled one of those old

units after it has been sitting in a
damp basement for a while?)

Once done, you can brush out the
loose dirt and "anything else" you
might find. Your radio should now
be presentable enough to go into
the house.

Once the set is reasonably
...
the-way as they could be, and there was no way to stick your hand into the cabinet without being burned. The old rectifier tubes were also favorite "get-burned-on" components. Most other components in radios, including the power transformer, shouldn't get hot enough to cause injury. If they are excessively hot, the parts are either shorted or in a faulty circuit.

Turning it on
Before plugging in a strange old radio, it's usually best to turn the power switch on. Then you can plug the line cord into a receptacle momentarily and not have to physically touch the set. If the panel light comes on when the set is plugged in, approach it cautiously, making sure the set is positioned so that you can look into the back of the cabinet to see the chassis.

If there is any smoke or a strange smell coming from the unit, unplug it immediately. All those who are experienced in electronics are familiar with the different odors emitted by various smoldering components. Find out where the smoke or smell is coming from and don't plug the radio back in before you've corrected the problem. If you do, you may burn up a component that's difficult to replace.

Further, if when the set is turned on you get no audio, there should at least be a slight audible hum coming from the speaker. If the hum is objectionable (excessively loud) or non existent, you have a problem. (The individual problems will be discussed in a future article.) No hum at all may not be as serious as an objectionable hum.

If the power supply seems to be working and there is no hum, check the speaker wires. Also check to make sure that the speaker is not unplugged. Even a damaged speaker with a torn cone and an off-center voice coil should emit some kind of sound. Check all wires going to the speaker array. That could be anywhere from two wires on up, depending on how many other components are mounted to or near the speaker.

With all the tubes and panel lamps lighted, you should—provided there is also a slight hum—hear some music (or something) through that old electro-dynamic loudspeaker. If not, try feeding a quick signal to the unit through a grid capacitor or the antenna terminal. For the best signals, check that the band switch isn't tuned to one of the shortwave frequencies.

Also, some old radios have separate volume controls and power switches. Make sure power is turned on and the volume control is turned all the way up. If the massive size and tube complement, many radios won't play without an external antenna (one that's outside the set, not necessarily outside the house). Any short piece of wire makes a fine temporary antenna. You don't have to be authentic and go out the window and across the roof (as was necessary in times past).

In the 1930's, some manufacturers went all out to include special features in their radios. Multiband, treble and bass controls, and tuning eyes can be found on many old radios. Any of those controls can contribute to a no-signal condition or excessive hum. Some of the smaller "budget-priced" sets produced during that era may not include extra features.

Those budget sets, like the one shown in Fig. 3, were designed to make it possible for almost everyone to own a radio during the depression era (1930's). While the chassis in those sets were adequate, the cabinets that the units were housed in didn't seem to hold up as well as their console counterparts. That might be the reason why old console-model radios seem easier to come by today than the smaller types. If you do find one of the smaller units, you'll need to have a little more patience when restoring the cabinet.

Before closing, we have an announcement to make. If you have old radio parts and/or information that you'd like to share, or perhaps are in need of the same, write to this column and let us know. We'll do our best to match up those that need with those that have something to share.
SERVICE CLINIC

Some "new" developments

Look at one of the newer sets on the market and you'll find lots of new circuits and devices, but you'll also find "new" circuits and devices that are merely redesigned old ones. One such device is an optocoupler. The first ones were pretty bulky; they used a pilot lamp and a selenium photoelectric cell located at opposite ends of a tube about 3 inches long and half an inch in diameter. When the pilot lamp was on, it generated a signal in the selenium cell.

The early optocouplers were fairly bulky, and were not too good when it came to frequency response. Those devices have been refined and miniaturized now. The newer ones are made in an IC package and use a LED as the light source and a phototransistor as the photoelectric cell. They are also more useful at higher frequencies.

With those devices, the isolation between input and output is extremely good. So, they are used in several new sets to couple the horizontal drive signal to the output stage. They are also used to isolate the two grounds—the AC ground of the line-connected DC supply, and the signal ground of the rest of the circuit.

Figure 1 shows the optocoupler used in a Sylvannia chassis. In that circuit you can see the two grounds. The emitter of the driver transistor is the power-supply ground. The other ground in the circuit is the signal ground and is isolated from the other ground in the circuit.

Testing an optocoupler for proper operation is simple. Just use a scope to look at the input and output signals. If they are the same, everything is fine.

Stereo TV

Now let's get to something that really seems to be new. That is stereo TV sound. But stereo sound is not really new, and stereo TV sound is basically just the same as the stereo FM we have been working on for a long time. The sound carrier, at 4.5 MHz, carries the L+R signal, as well as the pilot carrier for use in demodulation. It just that we are not used to seeing the circuitry in a TV chassis.

One new wrinkle that has been added is SAP, or Separate Audio Program. That can be used to provide a channel of "alternate" audio programming. It can be used to provide a second language sound track for a program, or for audio programming that has nothing at all to do with the video programming.

As to the stereo decoding process, the TV sound carrier is picked off at the video detector, as usual. The 4.5 MHz carrier is then fed to a buffer stage to build it up a little, then on to the FM detector, and, finally, to the stereo decoder module. The process of detection seems to be identical to that used in FM stereo, with a pilot carrier to help in the separation.

There doesn't seem to be anything new or radical in the decoder, and the servicing of which should be just as easy as any FM stereo system. That is, check for the presence of the pilot signal, and the two (L and R) outputs. Most of the circuitry is contained within IC's, so troubleshooting will mainly consist of seeing that the inputs and the outputs to all of the IC's is correct.

Be that as it may, it looks as if TV stereo sound has finally arrived, after years of complaining about the quality of TV sound. The new audio circuits should not be difficult to service, once you get used to the slightly different frequencies used. And, thank goodness, no new equipment will be needed for troubleshooting and servicing stereo TV's.

ROLLING, UNDERSIZED PICTURE

On a GE 19YA I replaced the horizontal output transistor and the flyback. When I finally got a picture, it was undersized and rolled intermittently. The voltage coming out of...
SEE THE LATEST
HIGH TECHNOLOGY SOLDERING
TECHNIQUES DEMONSTRATED
ON VIDEOCASSETTE!

Keep up to date with the newest techniques for soldering integrated circuits and chip components with this 15-minute, information-packed video-cassette prepared by the Electronic Industries Association/Consumer Electronics Group.

Produced under the supervision of professional electronics technicians and engineers from leading electronics manufacturers, the tape focuses up close on actual work bench situations. It shows you the latest tools and equipment... and step-by-step it demonstrates proper soldering techniques, showing you how to work more quickly, safely and efficiently while servicing even the most sensitive electronics products.

Produced by EIA/CEG as a service to the industry, the tape is available for only $15—one of the best investments you can make to stay on top in your own work or to train others in the rapidly changing electronics field.

Send in the coupon for your cassette today to
EIA/Consumer Electronics Group
Dept. PS, P.O. Box 19100
Washington, D.C. 20036

Make check or money order payable to
Electronic Industries Association.

Please send me
The EIA/CEG
High Technology
Soldering Tape @ $15 prepaid.

☐ VHS FORMAT ☐ BETA FORMAT

NAME
COMPANY
STREET
CITY STATE ZIP

QUANTITY $ TOTAL
the power supply is low. How can I isolate problems in the scan supply? What can I look for? —D.D., Huntington, WV

Your trouble is not in the scan supply, but in the low-voltage supply. You are getting 95 volts where you should be getting 140 volts. I have a strong feeling that C904A, the input filter, is open.

SNOWY PICTURE

An RCA CTC-143A that I'm working on has snow in the picture. The RF-AGC control has some effect, but not much. I checked all resistors in the RF Amp. and AGC circuits to no avail.—R.C., La Crosse, WI

Of course, you realize that a weak RF amp, 2054, would give you snow, and of course, because it's an expensive little bugger, you don’t want to go out and buy one just on a hunch. Hook an external DC supply to the AGC post on the tuner. Sweep up and down the operational voltage by a volt or two. If you cannot get rid of the snow, you have tuner trouble. If you do get rid of it, then go back to the AGC circuit to find out why it is not doing automatically what you can do manually.

BLOWING FUSE

On a Samsung TV, I replaced the open .8 amp fuse which blew again a week later. All components in the power supply checked good. Do you think something might be breaking down under load? —G.S., Philadelphia, PA

Sure, but it's not an easy thing to find until it breaks down for keeps. On the other hand, you might have one of those borderline cases in which the fuse is simply underrated. I am strictly opposed to playing around with circuit designs, but raising the fuse value by 0.2 amp to a 1 amp will give you that extra edge without compromising safety. If the new fuse blows again, then all doubt about breakdown will be removed.

HOT FLYBACK

The 6J6 current in this set is normal at 210 millamps. I have a good picture with good brightness and no picture shrinking. Yet, the flyback transformer runs hot to touch after 30 minutes of operation. What could cause this? —V.G.T., Philippines

In every instance that I can remember, a hot flyback meant a defective flyback, and that usually also meant shrinking picture, focus problems, and low high-voltage. Heat can be a relative thing. What you feel is “hot to touch” may be normal heat buildup after 30 minutes of play. My advice to you is to do nothing for now. Just observe. If the flyback is indeed on the way out, you'll know it soon enough. However, if nothing further happens, you are mis-diagnosing.

REPAIRING VCR’s

With the proliferation of VCR’s in the home, there seems to be a real opportunity growing. In your opinion, what equipment is basic in VCR servicing? —J.J., Haddon Heights, NJ

The basic equipment is what every TV repair shop should already have. A good meter is, of course, essential, as is a wide-band scope and color generator. Then there is a matter of quality: An NTSC color generator is more useful than a keyed-rainbow generator and a triggered scope more useful than a conventional one. For high-output and high-grade VCR servicing, one would need to go into a frequency counter and sweep/marker generator for alignment purposes. An analyzer, or signal-injector, would make the high-tech workbench complete.

SLOW GUNS

We are having a problem with an old Fleetwood color set that is defying logic. The symptom is all green on the left edge of the raster, caused by a slow coming on of the red and blue guns. Picture and color are otherwise perfect. We've checked every part in the RGB circuit, demodulator and video output.—P.D., Waterloo, Ont.

Anything that might be wrong in the signal circuits would be evident over the entire screen, not just one side. Your statement about the slow emission of the red and blue makes me think of a poor kine. Why not run a purity check to see if you can clean up the raster? Another thought: You might have defective blanking or filtering, showing up as green simply because that is the strongest component.

R.E
board mounted, the depth of the switch and potentiometer will determine the length of the standoff you'll require. If you use very low-profile parts for that section, you'll be able to bolt the circuit board very close to the faceplate. That will give excellent visibility to the LED's. A red plastic filter may be glued on the back of the window for a professionally finished display.

Calibrating the analyzer

The following resistors should be placed in position but not soldered: R91, R93, R95, R97, R99, R101, R103, R105 and R109. To calibrate the analyzer:

* The unit should be powered up with the selector switch in the oscillator output position (AUX). That will display the oscillator output.

* The level potentiometer, R113, should be adjusted until the LED's make the straightest possible horizontal line with one LED lit per octave. The level should be played up and down until the straightest line is achieved.

* It is normal for some of the LED's to be higher or lower than what is desired.

* Table 1 lists the resistors for each respective octave. Using the chart, replace the resistor for the lowest octave that has a LED too low with a 430K calibrating resistor. Be sure to remove power from the unit and if necessary replace resistors!

* Readjust the level control for the straightest possible line. Since all of these parts are interactive, each change may alter the line. Repeat the process for all of the LED's that are too low, lowest octaves first, until all that is remaining is a straight line and LED's that are too high.

* The procedure is again repeated for the high LED's, beginning with the lower octaves. The resistors removed for the high LED's are to be replaced with 520K calibrating resistors.

To re-iterate, the steps are to:

a) Find the lowest octave that has a LED too low.

b) Find the resistor number for that octave.

c) Replace that resistor with a 430K calibrating resistor.

d) Readjust level control for straightest line.

e) Repeat until only straightest line with LED's too high remain.

f) Find the lowest octave that has a LED too high.

g) Replace that resistor with a 520K ohm calibrating resistor.

h) Readjust level control for straightest line.

i) Repeat until only a horizontal straight line of LED's is visible.

The audio analyzer is now calibrated.

The calibration resistors can now be soldered in place and the leads clipped to proper length.

The addition of the real-time analyzer to a stereo system, PA, or recording console allows you to see what you're hearing (or what you're not hearing). It can be used as a tool when taping (to match tapes with the original source, or to discover the playback characteristics of a tape machine). As it reveals the spectral content of the music played it can be enjoyed as an educational, entertaining, and colorful display.

Find the resistor number for that octave.

Repeat the process for all of the LED's that are too low, lowest octaves first, until all that is remaining is a straight line and LED's that are too high.

The calibration resistors can now be soldered in place and the leads clipped to proper length.

The addition of the real-time analyzer to a stereo system, PA, or recording console allows you to see what you're hearing (or what you're not hearing). It can be used as a tool when taping (to match tapes with the original source, or to discover the playback characteristics of a tape machine). As it reveals the spectral content of the music played it can be enjoyed as an educational, entertaining, and colorful display.

TABLE 1

<table>
<thead>
<tr>
<th>Octave</th>
<th>Resistor</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.5</td>
<td>R99</td>
</tr>
<tr>
<td>62</td>
<td>R97</td>
</tr>
<tr>
<td>125</td>
<td>R95</td>
</tr>
<tr>
<td>250</td>
<td>R93</td>
</tr>
<tr>
<td>500</td>
<td>R91</td>
</tr>
<tr>
<td>1K</td>
<td>R101</td>
</tr>
<tr>
<td>2K</td>
<td>R103</td>
</tr>
<tr>
<td>4K</td>
<td>R105</td>
</tr>
<tr>
<td>8K</td>
<td>R109</td>
</tr>
</tbody>
</table>
TROUBLESHOOTING
PLAYER TROUBLESHOOTING AND REPAIR, by popular types of home entertainment VDP's—Laservision and both interpreting service literature, analyzing trouble symptoms, performing checkout procedures, isolating the trouble to a circuit, and more!

NAME
ADDRESS
CITY
STATE
ZIP
I prefer to charge my □ Visa □ Mastercard
Card Number
Expiration Date
Signature

To receive your FREE 15-day trial copies, mail this coupon to: PREN-TICE-HALL, INC., Book Distribution Center, Route 59 at Brook Hill Drive, West Nyack, New York 10995

CIRCLE 270 ON FREE INFORMATION CARD

Don't Forget

APIx

CIRCLE 256 ON FREE INFORMATION CARD

Sync Separator
continued from page 58

should see a DC level of about 2.5 volts with all of the sync-pulse tips lining up at that level.

Set the delay control and bias trimmer potentiometer R9 fully counter-clockwise. Remove the clamped video from the input to the scope and observe the signal at pin 2 of IC3. Slowly adjust R9 until you see a clean, negative-going pulse approximately 200 microseconds wide.

Next set R21 fully clockwise and observe the trigger output. Here you should see a positive-going pulse 100 microseconds wide. Adjust the amplitude of that pulse with R21 to a level compatible with the external-trigger input of your scope. (That's usually about 5 volts peak.)

Applications
To use the unit, apply a video signal to the input. Connect the clamped video output to the vertical input of the oscilloscope, set the sync switch to the appropriate polarity, and connect the trigger output to the external-trigger input of your oscilloscope. Adjust the scope's trigger level control for reliable triggering.

You should now see a clamped video waveform on the screen. By adjusting the delay control, you should be able to move the display to any part of the waveform you desire. The display can be expanded as much as you like by simply increasing the sweep rate of the timescale.

When powered up, the circuit will lock on to one or the other of the two fields in a random manner. In order to observe the other field simply flip the sync switch to the opposite position and back again. Do that until the desired field is locked in. (Flipping the switch disrupts the operation of the sync separator, allowing the circuit again to randomly select a field to lock onto.)

If your oscilloscope is a dual-trace model with an "alternate" mode, you can display both the odd and even fields at the same time. Replace R18 with a 220-ohm resistor to reduce IC4's minimum delay time to zero. That will allow the vertical pulse of each consecutive field to trigger the scope instead of every other field. If, for example, the vertical pulse of field 1 triggers channel 1 of the scope, it will be displayed on channel 1. The next trigger pulse will trigger the alternate scope channel (2) and field 2 will be displayed on channel 2.

A display of that type allows you to see the half-line offset between the two fields. It also allows you to compare the VITS waveforms that normally ride on lines 17 and 18 of both fields. (VITS stands for Vertical Interval Test Signal.) See if you can find VITS's on a local TV signal.

VCR
dictating technology

I prefer to charge my □ Visa □ Mastercard
Card Number
Expiration Date
Signature

To receive your FREE 15-day trial copies, mail this coupon to: PREN-TICE-HALL, INC., Book Distribution Center, Route 59 at Brook Hill Drive, West Nyack, New York 10995

Dept. 1
D-CMV-JW(3)

CIRCLE 256 ON FREE INFORMATION CARD

Sync Separator
continued from page 58

should see a DC level of about 2.5 volts with all of the sync-pulse tips lining up at that level.

Set the delay control and bias trimmer potentiometer R9 fully counter-clockwise. Remove the clamped video from the input to the scope and observe the signal at pin 2 of IC3. Slowly adjust R9 until you see a clean, negative-going pulse approximately 200 microseconds wide.

Next set R21 fully clockwise and observe the trigger output. Here you should see a positive-going pulse 100 microseconds wide. Adjust the amplitude of that pulse with R21 to a level compatible with the external-trigger input of your scope. (That's usually about 5 volts peak.)

Applications
To use the unit, apply a video signal to the input. Connect the clamped video output to the vertical input of the oscilloscope, set the sync switch to the appropriate polarity, and connect the trigger output to the external-trigger input of your oscilloscope. Adjust the scope's trigger level control for reliable triggering.

You should now see a clamped video waveform on the screen. By adjusting the delay control, you should be able to move the display to any part of the waveform you desire. The display can be expanded as much as you like by simply increasing the sweep rate of the timescale.

When powered up, the circuit will lock on to one or the other of the two fields in a random manner. In order to observe the other field simply flip the sync switch to the opposite position and back again. Do that until the desired field is locked in. (Flipping the switch disrupts the operation of the sync separator, allowing the circuit again to randomly select a field to lock onto.)

If your oscilloscope is a dual-trace model with an "alternate" mode, you can display both the odd and even fields at the same time. Replace R18 with a 220-ohm resistor to reduce IC4's minimum delay time to zero. That will allow the vertical pulse of each consecutive field to trigger the scope instead of every other field. If, for example, the vertical pulse of field 1 triggers channel 1 of the scope, it will be displayed on channel 1. The next trigger pulse will trigger the alternate scope channel (2) and field 2 will be displayed on channel 2.

A display of that type allows you to see the half-line offset between the two fields. It also allows you to compare the VITS waveforms that normally ride on lines 17 and 18 of both fields. (VITS stands for Vertical Interval Test Signal.) See if you can find VITS's on a local TV signal.
MARKET CENTER

PLANS AND KITS
PRINTED-circuit boards. Quick prototypes, production design, refer flow. Send print or description for quote to KIT CIRCUITS, Box 238, Clawson, MI 48017.
FREE catalog, 99-cent kits—radio, video, TV, computer parts. ALLKIT, 434 West 4th Street, West la, NY 11795.

CLASSIFIED AD ORDER FORM

To run your own classified ad, put one word on each of the lines below and send this form along with your check to:
Radio-Electronics Classified Ads, 200 Park Avenue, South, N.Y., N.Y. 10003

PLEASE INDICATE in which category of classified advertising you wish to your ad to appear. For special headings, there is a surcharge of $20.00.

<table>
<thead>
<tr>
<th>Plans/Kits</th>
<th>Business Opportunities</th>
<th>For Sale</th>
<th>Education/Instruction</th>
<th>Wanted</th>
<th>Satellite Television</th>
</tr>
</thead>
</table>

Special Category: $20.00

PLEASE PRINT EACH WORD SEPARATELY, IN BLOCK LETTERS.

(No refunds or credits for typographical errors can be made unless you clearly print or type your copy.) Rates are indicated for standard B/W classified ads only. See below for additional charges for special ads. Minimum: 15 words.

1 $3.75 2 $4.25 3 $4.50 4 $4.75 5 $5.00
6 $5.25 7 $5.50 8 $5.75 9 $6.00 10 $6.25
11 $6.50 12 $6.75 13 $7.00 14 $7.25 15 $7.50
16 $7.75 17 $8.00 18 $8.25 19 $8.50 20 $8.75

We accept MasterCard and Visa for payment of orders. If you wish to use your credit card to pay for your ad fill in the following additional information (Sorry, no telecopier orders can be accepted): Card Number: Expiration Date:

Signature

IF YOU USE A BOX NUMBER YOU MUST INCLUDE YOUR PERMANENT ADDRESS AND PHONE NUMBER FOR OUR FILES. ADS SUBMITTED WITHOUT THIS INFORMATION WILL NOT BE ACCEPTED.

CLASSIFIED COMMERCIAL RATE: (for times or individuals offering commercial products or services) $2.50 per word prepaid (no charge for zip code). MINIMUM 15 WORDS. 3% discount for same ad in 12 issues; 10% discount for same ad in 12 issues within one year; if prepaid.

NON-COMMERCIAL RATE: (for individuals who want to buy or sell personal items) $5.00 per word, prepaid. NO minimum. ONLY FIRST WORD ANS Minicected and for standard B/W classified ads only. Additional words are 25¢ per word additional (20% premium). Entire ad boldface, 20% premium to full price. TINT SCREEN BEHIND ENTIRE AD: add 25% premium to full price. TINT SCREEN BEHIND ENTIRE AD PLUS ALL BOLD FACE AD: add 45% premium to full price. DISPLAY ADS: 1' x 2': $27.00; 2' x 2': $540.00; 3' x 2': $810.00. General Information: Frequency rates and reprint discounts are available. ALL COPY SUBJECT TO PUBLISHERS APPROVAL. ADS USING PO BOX ADDRESS WILL NOT BE ACCEPTED UNTIL ADVERTISER SUPPLIES PUBLISHER WITH PERMANENT ADDRESS AND PHONE NUMBER. Copy to be lilt on our hands on the 15th of the month preceding the date of the issue. (i.e. August issue copy must be received by May 15th) When normal closing date falls on Saturday, Sunday or Holiday, issue closes on preceding working day.

HI-FI speaker kits, auto speaker systems and speaker components from the world's finest manufacturers. For beginners and experts. Free literature. A & S SPEAKERS, Box 7462R, Denver, CO 80207. (303) 598-6069

CABLE-TV converters: Jerrold, Hamlin, SB-3. Mini-Code, & more. UHF converter. Deluxe II sine-wave kits $39.95, gated pulse accur $70.00. Complete units $115.00, with gated pulse $255.00.

Hi-fi audio tape recorder also makes a fine tape deck. Free literature. Crystal Audio, Box 3236, La Verne, CA 91750.

(Quantity discounts) Repair of all converters & cable boxes. Send S.A.S.E. (4 cents postage) or call for info. (312) 637-4408. HIGGINS ELECTRONICS, 5143 W. Diversey, Chicago, IL 60639. Mail order only. No Illinois orders accepted.

PROJECT TV. Convert your TV to project 7 foot picture. Returns comparable to 5,000.00 program runs. Cost less than $30.00. Plans & parts 195.50. Illustrated literature free. MAC-HIDCOLA-GH, Washington Crossing, PA 18977. Credit card orders 24 hours. (215) 735-3797.

Hobby radio broadcasting, CB, antennas, Transmitters, lines, active antenas, converters, scramblers, building devices, more PANAXIS, Box 130-F, Paradise, CA 95461.

DIGITAL Klock Kit plays 1-12 melodies each quarter hour. Displays date, time, and other features. Send $2.50 for assembly plans and pricing to KERBER KLOCK AD, 98117th Street, Eastlake, OH 44094.

DIGITAL oscilloscope—build for $200. Plans $5.50, MIKE MCMINCHY, 2280 California, Apt #12, Mountain View, CA 94040.

EPROM programmer—2716/2732/2718-4. Operates alone (klap display, 2K RAM) or with computer. Download: RS232 Interface. Basic kit includes bare circuit board, system PROM and documentation. $70.00. See below for address.

DIGITAL SATellite Television info. 104 chain program guide, existing satellies, satellite launching dates, etc. SEND $3.50 or SEND FREE catalog.

FREE Survival Catalog—50 survival publications—electronics, computers, energy, weapons, medical, financial! CONSUMER ELECTRONICS, 551-RE Crescent, Alamongordo, NM 88310.

SATELLITE TELEVISION

SATELLITE-TV receiver breakthrough! Build your own system and save instruction manual, circuit board, software! Send stamped envelope: XANDI, Box 25647, Dept. 21K, Tempe, AZ 85284.

POL for Satellite Stereo Project in October article is now only $15.00. JM PHONES, INC., 1025 Ramsey Lane, Kingsport, TN 37660.

SATELLITE Television Information service. 104 chain program guide, existing satellies, satellite launching dates, etc. READER GUIDE TO SATellites, June 1974, 50 cents.

ENJOY SATELLITE TV

DO-IT-YOURSELF AND SAVE

Easy to build from our plans or kits. Complete kits, solderless circuit boards. Send $1 for catalog or $9 for

Consumer Guide to Satellite Television. Mail today to: GFD-14, Box 9108

MISSISSIPPI, MS 39407

SATTELITE TV VIEWERS

Get Two beautiful color postcards with this issue. Send $1 for sample copy.

A TELLEVISION Week TV

P.O. Box 3018, Fortuna, California 95540
Cable 370-3899 (FL 5-4200), 388-1878 (Calif.)

707-713-1474 (all others)

www.americanradiohistory.com
PROJECT TV. Make $50's assembling proj-
ec ts. Eady. Results comparable to $5,000 pro-
j ects. Your total cost less than $20. Plans in
w riter's details. For information froze... MACROCOM GHX,
Washington, Co 1787, Credit-card orders 24 hours (215) 736-2800.

EDUCATION & INSTRUCTION

FCC Commercial General Radiotelephone Li-
ence Certificate. Some time's individual

LESSON for 50. Payment plan. Results guar-
anteed. Details: AMERICAN TECHNICAL IN-
STUT. Po Box 203, Cedar Mountain, NC 28719.
FCC license test primer computer program. Learn
general radiotelephone license Q. All the fun and

easy way on the Apple II, IBM and Commodore

P.C. Special make and model, $34.50 ACETE-
TEST SYSTEMS, Po Box 268, Savage, MN 55378.

WANTED

INVENTIONS: ideas, new products wanted. In-
vention presentation/national exposition. Free. Call
to (1-800) 528-6050. Arizona, (1-800) 352-0450. X801.

PRINTED CIRCUIT BOARDS

PRINTED circuit boards, double sided with placed
through holes or single sided. No set up charge
CAUDILL, INC., 205 East Woodstock Ave.,
Highland, NC 27262, (919) 898-0282.
PRINTED circuit boards, 8" x 10" max. Send your
positive, any size (please notify), thru component

together, along with a certified check or money

order for $15.00 & $3.00 shipping, and we will send
you a fiberglass board, with your artwork, the same
day. Send your box, we'll grill it for free. Double
sided boards, $30.00. EJLS LABORATORY,
1100 West Ave., Cleveland, OH 44117, (216)
529-1611.

SUPER LED'S

2 comp. rating: 1.000,000 hr., 5/4. PUT
M2 -X 125 volts.
M21E XO - 9.49 each.

MEMORY SALE

we offer:

we offer:

1616 - 64 K x 164 300 - $4.00 $8.00
1616 - 16 K x 164 180 - 4.20 $8.40
1616 - 32 K x 164 150 - 7.75 $15.50
1616 - 64 K x 164 150 - 9.50 $19.00
2114 - 64 K x 164 150 - 7.50 $11.00

GERMANIUM SIGNAL DIODES

LOW FORWARD VOLTAGE - IDEAL FOR TTL
AND TECH LEADS, ALL DIODES
FREE.

I OUNCE OVER 100 $3.50

BUY A POUND

FEEDBACK DIGITAL INTEGRATED CIRCUITS
THAT ARE INTEGRATED AND HAVE COMING
BUDGET PRICE: ALL SOS HERE ARE
GOOD PRICE FROM FACTORY AND DHL.
PUT YOUR TETN TO PROFITABLE USE
HUNDREDS OF IC's $10

SILICON SIGNAL DIODES

RICEST QUALITY (ALL PRICES), SIGNAL
DIODES MARKED WITH FREE OR WITH
COLOR CODED. WELL LAM, DRL.

10 OWNS OVER 1000 $7.95

BABYLONIC

4138 Myrtle Ave.
Sacramento, CA

(916) 734-2792

WE DELIVER FREE-CALL TODAY.
OUR PRICES ARE A FAIRNESS TO THE
CONSUMER AND WILL NOT BE Exceeded.

DIGITAL COMPUTER SYSTEMS

ALL SALES SUBJECT TO OUR 90 DAY LIMITED
WARRANTY. FREE COPY UPON REQUEST.

DISK DRIVE SPECIAL: Remex #RFD 480 5/4 in.
2/3 Height. New In Box. 40 Track, DS-DD. Compare At Up To
$156 Ea. Our Price $59.85 or Two For $95.00. Limited Qty.

THE NEW ZRT-80 CRT TERMINAL BOARD

A LOW COST Z-80 BASED SINGLE BOARD THAT ONLY NEEDS

AS A KEYBOARD. POWER SUPPLY, AND VIDEO MONITOR TO MAKE A

COMPLETE CRT TERMINAL USE AS A COMPUTER CONSOLE. OR

WITH A MODERN FOR USE WITH ANY OF THE LINE COMPUTERS

FEATURES:

- Uses a Z80 and 6849 CRT
- Complete line with digital video
- Flexible software
- Expandability
- High speed
- Cheap
- Easy to use
- Long life

BLANK CDS WITH 2715 CHAR-ROM. 2715 MON. ROM
$49.95

SOURCE DISKETTE - ADD 110
SET OF 2 CRYS'TALS - ADD 7.50

THE BEST KIT - ZRT-80

$99.95

WITH A IN

DIN SOURCE DISK (CP/M COMPATIBLE)

Digital Research Computers
P.O. BOX 415865R • GARLAND, TEXAS 75045 • (214) 225-2309

Call or write for a free catalog on Z-80 or 6809 Single Board
Computers. SS-50 Boards and other S-100 products.

P.O. BOX 415865R • GARLAND, TEXAS 75045 • (214) 225-2309

Call or write for a free catalog on Z-80 or 6809 Single Board
Computers. SS-50 Boards and other S-100 products.

FREE CATALOG 42

CIRCLE 251 ON FREE INFORMATION CARD
DIGITAL MULTIMETERS

- **3½ DIGIT LDC MULTIMETER**
 - DC Input Impedance 10M Ωm
 - Diode and HFE Transistor Tests
 - Overload protection
 - Backed by our 2-year limited warranty
 - For more specifications see MCM Catalog #9, page 118
 - #72-050 $36.80 (1-4)
 - $39.80 (5-9)
 - $43.80 (10-up)

- **DROP PROOF DIGITAL MULTIMETER**
 - DC Input Impedance 10M Ωm
 - Shock-mounted LCD display
 - Overload Protection
 - Backed by our 2-year limited warranty
 - For more specifications see MCM Catalog #9, page 124
 - #72-057 $29.95
 - $33.80 each (2-up)

- **DIGITAL CAPACITANCE METER**
 - Measures capacitance from 0.1pF to 1999pF
 - Accuracy ±0.5%
 - Typical Fuse protection
 - Checks capacitance in both directions
 - Backed by our 2-year limited warranty
 - For more specifications see MCM Catalog #9, page 118
 - #72-040 $54.95
 - $59.80 each (2-up)

PORTSWITCHES

- **RS232 DROP-THROUGH SWITCH**
 - 25 pin RS232 female type
 - Connect up to 4 peripherals to a single I/O port
 - 36 pin Centronics type
 - Connect up to 2 printers or modems to a single port
 - All 36 conductors are switched pin for pin.
 - #83-600 RS232 type
 - $74.80 (1-5)
 - $69.95 (6-up)

- **15 MHz DUAL TRACE BATTERY OPERATED OSCILLOSCOPE**
 - Two High Quality 10:1 probes included
 - Backed by our 2-year limited warranty
 - For specifications see Supplement #4 of Catalog #5
 - #72-335 $549.95

BE SURE TO CALL FOR YOUR FREE 128 PAGE CATALOG! OVER 4,800 ITEMS!

Terms:

- $10 minimum order $1.00 charge for orders under $10
- E.O.D. minimum charge card order
- Orders shipped UPS CODE
- F.O.B. East Genoa, Ohio
- For prepaid orders add 8% for shipping and handling
- Name, shipping & handling charges included $2.50
- Credit cards accepted:MasterCard/Visa

SOURCE NO. RE-8
FOR SALE
CABLE-TV Secrets—the outlaw publication the cable companies tried to ban. HBO, Movie Channel, Showtime, descramblers, converters, etc. Suppliers for $1.00. CABLE FACTS, Box 711, P.O. Box 43026, Oakland, CA 94602.

RESISTORS: 1/4 watt 1/4 watt 5%, 3 cents each. 1% metalfilm. Precision custom wound resistors. $1.00 refundable to JR INDUSTRIES, 8534-8 Swan Creek, OH 43141.

FREE catalog featuring scanner accessories, car-hi/substitution detectors, voice scramblers, unusual kits. CAPRI ELECTRONICS, Route 1, Canol, GA 30520.

THE Intelligence Library—Restricted technical information & books on electronic surveillance, surveillance-device schematics, lock-picking, investigation, weapons, identification documentation, covert sciences, etc. The best selection available. Free brochures. MENTOR, Dept. 2, 1353 5th Blvd., Flushing, NY 11354.

CABLE television, copy of Federal laws $1.00. ROBERTS, P.O. Box 63025, Margate, FL 33063.

DIGITALIZER Speech synthesizer. Has 136 words vocabulary, interfaces with parallel port of your computer. PCB and plans $1.00. JIM RHODES, INC., 1023 Ransome Lane, Kingston, NY 12401.

WHOLESALE F-59 cabinet component $0.00/1000. Free QTH Catalog, S.A.C.E. (212) 887-0509. D&W, 68-12 110 Street, Flushing, NY 11375.

TUBES. new, unused. Send self-addressed, stamped manuever for list. FALA ELECTRONICS, Box 3792, Milwaukee, WI 53201.

FREE Pay-TV reception. "How-To" book. HBO, Showtime, Cinemax. $5.00. DIPTRONICS, Box 80 (ESI Lake Hiawatha, NJ 07034)

HOOD LOCKS, glass detectors. Allow 4 weeks for delivery. or for rush $1.00. AUTOMOTIVE SECURITY EQUIPMENT COMPANY, Dept. 1, PO Box 382, Plaquemine, LA 70764.

COCO-owners—Fire color computer software and hardware catalogue. SPECTRUM, Box 3866, San Jose, CA 95157-0866.

INDIVIDUAL photo folders. No. 1 to no. 1400. $1.00 postpaid. LBF, 1st Chestnut Lane, East Mead, NY 10954.

DESCRAMBLERS for downconverters. High gain. Send $2.00. RB ELECTRONICS, PO Box 122, Kramer, CA 91745.

TOKO Coll set (four) $3.00. BFG5081 substitute transistor $2.00. JIM RHODES, INC., 1023 Ransome Lane, Kingston, NY 12401.

TOKO coils and printed circuits. Quantity discounts. JIM RHODES, INC., 1023 Ransome Lane, Kingston, NY 12401.

ELECTRONICS catalog, Over 4,500 items. Parts & components. Everything needed by the hobbyist or technician, $2.00 postage & handling (States only).

THIS IS A BOLDFACE EXPANDED AD. If you like this format, request it. Your cost is $3.75 per word, plus 45% for the boldface and tint background.

UNLOCK THE POWER OF YOUR TIMEX OR SINCLAIR COMPUTER

We can help you realize your computer's potential without spending a fortune.

Ask about our Floppy Drive Interface

CALL or write for free catalog to:

Amaryllis Service Labs
P.O. Box 19284
Oakland, CA 94619
(510) 654-932

WHY SHOULD YOU USE OUR PRODUCTS?

Because our products are the finest available. Period.

FINEST QUALITY SOLDER

Product: 8040/50 Rosin Core (RA)
18 oz. Retail $9.95
16 oz. (105) $7.95
16 oz. (104) $7.45
15 oz. (104) $7.05
20 oz. (104) $8.95
21 oz. (104) $8.95
15 oz. (104) $8.95
24 oz. (104) $9.05
24 oz. (105) $9.05
24 oz. (101) $7.95
2 oz. (101) $3.85
2 oz. (104) $3.85
2 oz. (105) $3.85
2 oz. (106) $3.85
2 oz. (107) $3.85

Send $2.00 for Mail Order Brochure.
Free Shipping w/ minimum order $10

SOLDERCAST

SN 80/40 Rosin Core (RA)
18 oz. (105) $7.95
16 oz. (104) $7.45
15 oz. (104) $7.05
20 oz. (104) $8.95
21 oz. (104) $8.95
15 oz. (104) $8.95
24 oz. (104) $9.05
24 oz. (105) $9.05
24 oz. (101) $7.95
2 oz. (101) $3.85
2 oz. (104) $3.85
2 oz. (105) $3.85
2 oz. (106) $3.85
2 oz. (107) $3.85

FREE Shipping w/ minimum order $10

SOLDERCAST

Call Toll Free 800-845-4808

WHEN ORDERING, please specify type of ROSE.

MICROWAVE TV ANTENNA SYSTEMS

Freq. 2.1 to 2.7 GHz .34 db Gain +

COMPLETE SYSTEMS:

[as Pictured]

Commercial 40" Rod Style $99.95
Parabolic 20" Dish Style $79.95

COMPONENTS

Down Converters (unlisted style) $34.95
Power Supplies $24.95
(12V to 18V, DC-1)
Data Info (Plans) $ 9.95

CALL OR WRITE FOR KITS, PARTS, OR MORE INFORMATION

Shipping & Handling $5.00
We ship parts types down converters & power supplies.

Phillips-Tech Electronics
P.O. Box 10772
Phoenix, AZ 85087
(602) 947-7770
Special Quantity Pricing
Dealers Wanted

MICRO-Mart

528 Central Ave
Westfield, N.J. 07090
(201) 566-0800

UNF-TV PREAMP

The separates univocal antenna mounted pre-

amp can add more than 23 dB of gain to your system. Lots of simplified instructions and receive orders for this high quality kit. This cancels all kit components. PC
to Case. Power, Supply and box. $26.95
Assembled $37.95

LIFE TIME LIMITED WARRANTY

PARTS & LABOR

LIFETIME LIMITED WARRANTY

PARTS & LABOR

CIRCLE 116 ON FREE INFORMATION CARD
CIRCLE 259 ON FREE INFORMATION CARD

www.americanradiohistory.com
<table>
<thead>
<tr>
<th>Product/Accessory</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple Compatible Peripherals</td>
<td></td>
</tr>
<tr>
<td>Apple Game Controller</td>
<td>$19.95</td>
</tr>
<tr>
<td>Apple Joystick</td>
<td>$19.95</td>
</tr>
<tr>
<td>Apple Video Game Adapter</td>
<td>$14.95</td>
</tr>
<tr>
<td>Apple Disk Drive</td>
<td>$19.95</td>
</tr>
<tr>
<td>Apple Printer</td>
<td>$29.95</td>
</tr>
<tr>
<td>Apple Scanner</td>
<td>$29.95</td>
</tr>
<tr>
<td>Apple Keyboard</td>
<td>$19.95</td>
</tr>
<tr>
<td>Apple Mouse</td>
<td>$14.95</td>
</tr>
<tr>
<td>Apple Modem</td>
<td>$29.95</td>
</tr>
<tr>
<td>Apple Mainboard</td>
<td></td>
</tr>
<tr>
<td>Apple Macintosh</td>
<td>$249.95</td>
</tr>
<tr>
<td>Apple iMac</td>
<td>$649.95</td>
</tr>
<tr>
<td>Apple PowerMac</td>
<td>$749.95</td>
</tr>
<tr>
<td>Apple PowerBook</td>
<td>$499.95</td>
</tr>
<tr>
<td>Apple eMac</td>
<td>$249.95</td>
</tr>
<tr>
<td>Apple iBook</td>
<td>$299.95</td>
</tr>
</tbody>
</table>

DISK CONTROLLERS

- IBM PC/AT compatible: $49.95
- IBM PS/2 compatible: $39.95
- Apple Macintosh: $39.95
- Apple eMac: $39.95
- Apple iMac: $39.95

VOLTAGE REGULATORS

- 5V: $29.95
- 12V: $29.95
- 5V and 12V: $49.95

SPECIAL PURPOSE CHIPS

- 5V Regulator: $19.95
- 12V Regulator: $29.95

LED LAMPS

- Blue LED: $19.95
- Green LED: $19.95
- Red LED: $19.95

EDGE CONNECTORS

- Apple Macintosh: $39.95
- IBM PS/2: $29.95

DYNAMIC RAM

- 256K: $19.95
- 512K: $29.95
- 1M: $49.95

DISKETTES

- 5.25" 360K: $8.95
- 5.25" 1.2M: $14.95
- 5.25" 720K: $19.95
- 3.5" 1.44M: $14.95
- 3.5" 2.88M: $19.95

SPECIALS OF THE MONTH

- IBM PC/AT compatible: $349.95
- IBM PS/2 compatible: $299.95
- Apple Macintosh: $449.95
- Apple eMac: $299.95
- Apple iMac: $549.95

CABLES/ACCESSORIES

- Apple Macintosh: $39.95
- IBM PS/2: $29.95
- Apple eMac: $39.95
- Apple iMac: $49.95

SUPER SAVERS

- IBM PC/AT: $199.95
- IBM PS/2: $149.95
- Apple Macintosh: $249.95
- Apple eMac: $169.95
- Apple iMac: $349.95

TOLL FREE

- 800-854-8230
- 913-595-1565
THIS IS AN EXPANDED TYPE AD. Notice how it stands out on this page. To get your ad set in this type style mark your classified ad order, "Expanded-type ad," and calculate your cost at $3.75 per word.

DESCRAMBLE cable-convert-the-air-programs—kits $9.95—details $1.00—MINUTE. Box 531, Westchester Station, Bronx, NY 10451.

VIDEO Hook-Up Diagram Manual—shows how to hook-up TV, VCR, satellite, stereo, multisets. $6.00. NORTHSTAR VIDEO SERVICES, Dept. R. PO Box 300, New Minn., MN 56067.

ALPHANUMERIC vacuum fluorescent display Model SG.20. Includes all timing, refresh and character generation circuitry. TTL, CMOS compatible. Serial and parallel port. 50-55 power. $55.00 in single quantity. Free manual. TOMANTRONIC, INC., 17942 S. 66th Avenue, Tinley Park, IL 60477. (312) 537-7432.

STATE-of-the-art: Topical power transformers and transmitter kits 50 types in stock. 20-600VA. Highest quality. Free catalog. TOROER CORP., La Plata, MO 64350.

MOTION control: Amazing selection (Steppers, DC & AC, Servo, Linear motors) etc., also Opto-Electronics. Send S.A.S.E. for free catalog. COMPUTER PARTS MARKET INC., Box 326 Park Blvd., Palo Alto, CA 94306. (415) 439-5930.

TAPE—We’re cheap! Ampex Scotch 2400” reels, first quality used once, .79 each. $7.95 per box. COMPUTER PARTS MARKET INC., Box 326 Park Blvd., Palo Alto, CA 94306. (415) 439-5930.

UHF descrambler, gated and silenced: Lowest price seminars. Free information. VISTA, 717 Front St., Lakeville, IL 62052.

CANADIAN Pay TV and Satellite descrambler manual. For all areas. All systems described. Schematics for both hobbyists and purchasers. $1.95 or send $1.00 for brochure. STERLING ELECTRONICS CORP., 1327 North St. Niagara Falls, NY 14303. C.O.D. call (716) 282-1001. Add $1.50.

3,000 tips color TV repair, 31 brands. 116 pages. Send $3.00, TONY PERNANOFF, BOX 54-6110, Surfside, FL 33154.

ZENITH SAVVY MANUAL. Original manual used by technicians. Theory of scrambling, schematics, parts list, repair. For UHF and cable. For speedy delivery send $5.00 cash or money order. BAY STATE ELECTRONICS, PO Box 263, Accord, MA 02601.

Your ad could be selling merchandise for you in this space. The price is a remarkable $2.50. To place your order, call any Radio-Electronics staff member: Stan Levitan (212) 777-7640, Marvin Green (618) 986-2001, Ralph Berger (312) 446-1444.

HOME ROBOTS PERSONAL robots, kits and books. Literature $1.00 (refundable). CAL ROBOT, 16300 Verona Blvd., #223, Enon, CA 91436, (818) 905-0721.

SINE WAVE QUESTIONS? TROUBLE shooting, alignment, antenna hook-up. Improvements manual. $6.00. TV antenna-hi-fi control, $3.75. $8.00. SIGNAL, Box 205, P.O. Box 1493, Mt. Airy, MD 20902.

CABLE TV DEALERS wanted: Channel 2, 3, and 4 notch filters. Money back guarantee. Send $5.00 for quantity price list. Specify channel(s).

GARY KURTZ, PO Box 291934, Davie, FL 33329.
ACTIVE

YOUR ELECTRONIC COMPONENTS CENTER

TOLL FREE: 1-800-343-0874

SERVICE - ORDERS PROCESSED IN 24 HOURS
QUALITY - CURRENT DATE CODES • LEADING MFGRs.
SAVINGS - VOLUME DISCOUNTS • TOLL FREE NO.
SELF SERVICE - STORES OPEN AT 8:00 AM

ORDERING INFORMATION
Use only 8, 9, and 10 DIGITS when ordering. Order quantities: 10 to 1000 quantities.
Most items ship immediately. Only items in stock will be transplanted. Price's don't apply to box 1 without interest indicated.

NAME:
ADDRESS:
CITY:
STATE:
ZIP CODE:
MAIL COUPON TO:

OS665 IN
APC 5-401 2 087 .
5-401 2 087 0 1 1 22
087 0 1 1 22
05-401 2 087 .

OS665 IN
APC 5-401 2 087 .
5-401 2 087 0 1 1 22
087 0 1 1 22
05-401 2 087 .

WRITE FOR
MCGEE'S

SPEAKER & ELECTRONICS CATALOG
1001 BARGAINS IN SPEAKERS

1001 MCGEE STREET KANSAS CITY, MO. 64109

YOUR ad could be selling merchandise for you in this space. The price is a remarkable $250. To place your order, call any Radio-Electronics salesman: Stan Levitan (212) 777-6400, Marvin Green (818) 986-2001, Ralph Berger (312) 446-1444.

TS-1000 SOFTWARE

TS-1000 2/B software. Loan breakdown, checkbook balance, savings balance, bar graph, robot design, addition, quizzard, multiplication quizzard, $3.99 each, postpaid check/M/C/Visa/MasterCard. Guaranteed, STURDIVANT LABORATORIES, Box 116RE, Bedford, MA 01730.

INVENTORS!

CAN you profit from your idea? Call us today regarding the marketing of your invention or write for your free information package. Over a decade of service. AMERICAN INVENTORS CORPORATION, 82 Broad Street, Dept RE, Westfield, MA 02090, (413) 566-3753. (Not answering service.) A free based marketing company, offices nationwide.

DO-IT-YOURSELF TV REPAIR

NEW! Repair any TV—Easy. Anyone can do it. While RESEARCH, Pt. 3, Box 601 BR, Covina, WA 91724.

SCANNERS

JOIN 30,000 other scanner owners in the nation's largest not-for-profit association of scanner owners. Bi-monthly publication with tech tips, fascinating true stories, news of new listening activities. Plus member benefit package including car rental discounts, no-extra-cost insurance coverage, free classified ad service, and more. Send just $4.75 for 10-month trial membership to: SCANNER ASSOCIATION OF NORTH AMERICA, 240-F Fend Lane, Hillsdale, IL 60542.

CABLE TV "CYLINDERS"

SUPER powered notch filters. Equivalent of cable company "Cylinders". Eliminate undesirable signals. Any channel 2 through 10 (A through 21) (Please specify). Send $20.00 each. Money back guarantee. Quantity discounts. CATV, Box 7627, Plantation, FL 33318.

THIS IS AN EXPANDED-TYPE AD WITH A TINT SCREEN. See how it jumps out on the page. To order your ad in this format calculate the cost at $3.75 per word for the expanded-type and add 25% for the tint background.

MASTERCARD AND VISA are now accepted for payment of your advertising. Simply complete the form on the first page of the Market Center and we will bill.
ProModem 1200 and Options

Intelligent 300/1200 Baud Telephone Modem with Real Time Clock/Calendar

The ProModem 10 and 20 Baud 232/SSDII 200 baud data modem is an intelligent stand alone modem featuring full featured programmable capabilities. It includes Auto Dial, Auto Dial, Help, Command, Programmable Intelligent Dial/Cal, Programming utilities and more. The command set is completely expanded plus an additional extended command set. Shown with optional modem accessories.

Options for ProModem 1200

- **PM-1200** 32 K Stand Alone Unit: $349.95
- **PM-1202** RS-232 Stand Alone Unit: $349.95
- **PM-1204** IBM PC and IBM compatible Interface unit: $349.95
- **PM-1206** IBM PC and IBM compatible Interface unit: $349.95
- **MAC PAC** Macintosh Package: $399.95
- **PM-Special** Inexpensive Option Package, 32K Memory and Application Specific $169.95

Keyboards

- **J500CM** $114.95
- **J500AP** $149.95

Power Supplies

- **TR-50 Model I & II** $99.95
- **TR-80 Model IV & AP** $230.00
- **KEPCO-TOX 4-OUTPUT SWITCHING POWER SUPPLY** $295.00
- **Switching Power Supply for Apple II, III & IV** $99.50

Apple Accessories

- **54" APPLE Direct Plug-In Compatible Disk Drive and Controller Card**

Disk Drives

- 5 1/4" DISK DRIVE $169.95

More Apple Compatibles

- **AP-1** $39.95
- **BMD-102** $39.95
- **BMD-103** $39.95
- **AP-2** $39.95
- **BMD-104** $39.95
- **BMD-107** $39.95
- **APPLE II Portable** $39.95

UV-EPROM Eraser

- **$19.95**

Apple II Accessories

- **EPROM Programmer** $955.00
Radio Shack Parts Place
We Have What You Need for Projects and Repairs

Replacement Transistors

<table>
<thead>
<tr>
<th>Type</th>
<th>Cat. No.</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N305</td>
<td>262-2007</td>
<td>1.59</td>
</tr>
<tr>
<td>MPS2220A</td>
<td>275-0999</td>
<td>0.79</td>
</tr>
<tr>
<td>2N2848</td>
<td>276-2010</td>
<td>0.89</td>
</tr>
<tr>
<td>2N3904</td>
<td>276-2016</td>
<td>0.65</td>
</tr>
<tr>
<td>TIP31</td>
<td>276-2017</td>
<td>0.99</td>
</tr>
<tr>
<td>TIP305</td>
<td>276-2020</td>
<td>1.59</td>
</tr>
<tr>
<td>MPS2207</td>
<td>275-2037</td>
<td>0.79</td>
</tr>
<tr>
<td>MJE34</td>
<td>276-2017</td>
<td>1.49</td>
</tr>
<tr>
<td>2N363</td>
<td>275-0999</td>
<td>0.79</td>
</tr>
<tr>
<td>MPS5038</td>
<td>276-2032</td>
<td>0.79</td>
</tr>
<tr>
<td>TIP120</td>
<td>276-2068</td>
<td>1.29</td>
</tr>
<tr>
<td>2N3055</td>
<td>276-2041</td>
<td>1.99</td>
</tr>
<tr>
<td>MJE2954</td>
<td>276-2063</td>
<td>2.19</td>
</tr>
<tr>
<td>2N4401</td>
<td>276-2066</td>
<td>0.59</td>
</tr>
<tr>
<td>MPSA42</td>
<td>276-2067</td>
<td>0.69</td>
</tr>
<tr>
<td>2N3919</td>
<td>276-2065</td>
<td>0.99</td>
</tr>
<tr>
<td>MPS109</td>
<td>276-2062</td>
<td>2.59</td>
</tr>
<tr>
<td>MJE351</td>
<td>276-2070</td>
<td>1.49</td>
</tr>
<tr>
<td>2SC1308</td>
<td>276-2055</td>
<td>7.95</td>
</tr>
</tbody>
</table>

4000-Series CMOS ICs

<table>
<thead>
<tr>
<th>Type</th>
<th>Cat. No.</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>4001</td>
<td>276-2401</td>
<td>0.99</td>
</tr>
<tr>
<td>4011</td>
<td>276-2411</td>
<td>0.99</td>
</tr>
<tr>
<td>4013</td>
<td>276-2413</td>
<td>1.19</td>
</tr>
<tr>
<td>4017</td>
<td>276-2417</td>
<td>1.39</td>
</tr>
<tr>
<td>4049</td>
<td>276-2449</td>
<td>1.19</td>
</tr>
<tr>
<td>4066</td>
<td>276-2456</td>
<td>1.19</td>
</tr>
</tbody>
</table>

TTL Digital ICs

<table>
<thead>
<tr>
<th>Type</th>
<th>Cat. No.</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400</td>
<td>276-1804</td>
<td>0.99</td>
</tr>
<tr>
<td>7404</td>
<td>276-1802</td>
<td>0.99</td>
</tr>
<tr>
<td>7408</td>
<td>276-1822</td>
<td>1.29</td>
</tr>
<tr>
<td>7447</td>
<td>276-1500</td>
<td>1.59</td>
</tr>
<tr>
<td>7490</td>
<td>276-1806</td>
<td>1.09</td>
</tr>
</tbody>
</table>

Operational Amplifiers

<table>
<thead>
<tr>
<th>Type</th>
<th>Cat. No.</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>741</td>
<td>276-007</td>
<td>0.89</td>
</tr>
<tr>
<td>MC1458</td>
<td>276-038</td>
<td>0.99</td>
</tr>
<tr>
<td>LM324</td>
<td>276-1711</td>
<td>1.29</td>
</tr>
<tr>
<td>TL062</td>
<td>276-1715</td>
<td>1.89</td>
</tr>
<tr>
<td>TL064</td>
<td>276-1714</td>
<td>2.99</td>
</tr>
<tr>
<td>LM3930</td>
<td>276-1713</td>
<td>1.39</td>
</tr>
<tr>
<td>LM393</td>
<td>276-1712</td>
<td>1.49</td>
</tr>
<tr>
<td>TLC271</td>
<td>276-1748</td>
<td>1.59</td>
</tr>
<tr>
<td>TLC274</td>
<td>276-1749</td>
<td>2.19</td>
</tr>
</tbody>
</table>

Power Transformers

<table>
<thead>
<tr>
<th>Type</th>
<th>Volts</th>
<th>Current</th>
<th>Cat. No.</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC Mini</td>
<td>12 V</td>
<td>100 mA</td>
<td>273-1360</td>
<td>2.99</td>
</tr>
<tr>
<td>Miniature</td>
<td>6.3 V</td>
<td>300 mA</td>
<td>273-1365</td>
<td>2.99</td>
</tr>
<tr>
<td>Miniature</td>
<td>12 V</td>
<td>300 mA</td>
<td>273-1365</td>
<td>2.99</td>
</tr>
<tr>
<td>Miniature</td>
<td>25 V</td>
<td>300 mA</td>
<td>273-1366</td>
<td>3.99</td>
</tr>
<tr>
<td>Miniature</td>
<td>50 V</td>
<td>300 mA</td>
<td>273-1366</td>
<td>3.99</td>
</tr>
<tr>
<td>Standard</td>
<td>6.3 V</td>
<td>12 A</td>
<td>273-1351</td>
<td>5.99</td>
</tr>
<tr>
<td>Standard</td>
<td>12 V</td>
<td>12 A</td>
<td>273-1352</td>
<td>4.99</td>
</tr>
<tr>
<td>Standard</td>
<td>25 V</td>
<td>12 A</td>
<td>273-1353</td>
<td>5.99</td>
</tr>
<tr>
<td>Heavy-Duty</td>
<td>12 V</td>
<td>3 A</td>
<td>273-1512</td>
<td>6.99</td>
</tr>
<tr>
<td>Heavy-Duty</td>
<td>25 V</td>
<td>3 A</td>
<td>273-1513</td>
<td>5.99</td>
</tr>
<tr>
<td>Heavy-Duty</td>
<td>50 V</td>
<td>3 A</td>
<td>273-1515</td>
<td>5.99</td>
</tr>
</tbody>
</table>

Fold-Up Autoranging Multimeter

Our Best! The DVM That "Thinks"£79.95

Digital Logic Probe

Simultaneous Tone Output Frees Eyes for Fast Testing£19.95

Digital Supply Chassis

Power Supply Chassis

Only £49.95

Why Pay More?£49.95

SPECIAL PURCHASE!

Computer Keyboard

Only £29.95

With enough parts to build a computer, Radio Shack is the perfect place to turn for all your computer needs. From power supplies to keyboards, we have everything you need to get started.

Plug-In PC Boards

Multi-Purpose Board. Poly-foam material withstands circuit mods. 4.1/4 x 4 with 1/4" grid.£276-152 2.99

Three-Voltage Source Board. SKS-Chef with 3 buttons. Ideas for op-amp circuits.£276-154 2.99

4x-Position Card Edge Socket. Solder type with mounting tabs. Accepts boards above.£276-1351 2.99

Voltage Regulators

<table>
<thead>
<tr>
<th>Type</th>
<th>Adjustable</th>
<th>Cat. No.</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM723</td>
<td>0 to 30 VDC</td>
<td>276-1760</td>
<td>0.99</td>
</tr>
<tr>
<td>LM3177</td>
<td>1 to 35 VDC</td>
<td>276-1728</td>
<td>2.79</td>
</tr>
</tbody>
</table>

Rockers Switches

Rated 6 Amps At 125 VAC

Size: 1-1/4 x 1-1/4". Mount in 1/4" round panel hole.$0.99

Understanding Data Communications

Only £39.50

An easy-to-understand step-by-step course covering methods of transmitting data electronically. Topics include local area networks, synchronous and asynchronous modes, optical links and more. Illustrated. 256 pages. 62-1389 3.95

CIRCLE 78 ON FREE INFORMATION CARD

Radio Shack
A DIVISION OF TANDY CORPORATION

Prices apply at participating Radio Shack stores and dealers.
Build this Satellite TV Stereo Processor and enjoy programs in stereo on your home satellite TV.

Anyone with a home satellite TV system can receive TV and audio programs in stereo. Much of the programming is in stereo. That includes all of CNN, all of CBN, all of National Geographic, all of Showtime and Bravo, all of CNN Headline News, all of Comedy Central, and all of Nickelodeon. Millions of dollars worth of sales to pay for the stereo equipment! Get it now for $99.95.

CALL TOLL FREE... 800-647-1800

HIGH QUALITY 75dB GAIN MICROWAVE TV SYSTEM

Varible from 1.9 to 2.5 GHz

The latest advance in microwave technology with a SNOW-FREE PICTURE.

Two Models to choose from:
- Both Models Include:
 - 20' Parabolic Dish
 - Pre-assembled Probe with Down Converter
 - Power Supply and Coax Switch
 - 60' of RG-59-U Coax with Connector
 - Transformer for 75 to 300 Ohms
 - All Mounting Hardware for Fast and Easy Installation

20' Fiberglass Dish
Up to 55dB Gain

Low Price: $98.95

Special: $99.95

20' Aluminum Dish
Up to 55dB Gain

Low Price: $98.95

Send $2.00 for Catalog. For best results with first purchase, pay $2.00 extra for better quality cables. Send $2.00 for catalog.

THE BEST PRICES

DON'T BLAME THE SOFTWARE!

Our isolators eliminate equipment interaction, clean up interference, curb damaging power line spikes and lightning bursts.

ISO-1 ISOLATOR
3 isolated sockets; quality spike suppressant; basic protection. $81.95

ISO-3 SUPER-ISOLATOR
3 dual isolated sockets; suppressor; commercial protection. $122.95

ISO-17 MAGNUM ISOLATOR
6 quad isolated sockets; suppressor; laboratory grade protection. $213.95

UNITECH

CIRCLE 257 ON FREE INFORMATION CARD

CIRCLE 60 ON FREE INFORMATION CARD

RADIO ELECTRONICS

CIRCLE 109 ON FREE INFORMATION CARD

CIRCLE 119 ON FREE INFORMATION CARD

CIRCLE 117 ON FREE INFORMATION CARD

MOSER ELECTRONICS

11433 WOODSIDE AVE. SANTA CLARA, CA 95071
PHONE: (408) 499-2222 TWX 910-331-1175

www.americanradiohistory.com
THE FIRST NAME IN ELECTRONIC TEST GEAR

20 MHz DUAL TRACE OSCILLOSCOPE

Un Frage makes 20 MHz dual-trace possible with this Ramsey oscilloscope. It comes complete with origins, counter and sweep back-up. Features include a convenient sweep control for relating, a separate digital input and output plus an auto zero. The scope is designed for loading up to 50 MHz. Ideal for laboratory use or scientific research. Complete with a high sensitivity probe. $399.95 with probe included.

45 MHz DUAL SWEEP OSCILLOSCOPE

The Ramsey 45 MHz dual-trace scope is designed to offer you maximum flexibility and ease of use. With a sweep frequency range up to 8 MHz, it provides excellent performance in transient and transient applications. The dual-trace function makes it ideal for applications such as 10 MHz and 50 MHz operation. The scope is protected by a high-quality 10-digit display. $799.95 with probe included.

RAMSEY D-1100 VOM MULTITESTER

Compact and reliable, the D-1100 is designed for all-around testing. Features include: - Resistance range: 0 to 999,999 ohms - Capacitance range: 0 to 999,999 microfarads - Diode test - Continuity test - Frequency range: 0 to 200 MHz - AC/DC voltage range: 0 to 999.9 volts

NEW RAMSEY 1200 VOM MULTITESTER

A 9-digit counter that will outperform units costing hundreds more.Gate indicator with digital display. $169.95 with probe included.

CT-70 7 DIGIT 525 MHz COUNTER

Ideal for a broadcast station, this counter has a counter-tic range of 1 to 999,999,999. Features include: - Frequency range: 0 to 525 MHz - Display format: 7-digit digital display - Frequency accuracy: 1 part in 10^7

CT-90 9 DIGIT 600 MHZ COUNTER

The most versatile of the CT-100 series, this counter has a frequency range of 0 to 600 MHz. Features include: - Frequency range: 0 to 600 MHz - Display format: 9-digit digital display - Frequency accuracy: 1 part in 10^7

CT-125 9 DIGIT 1.2 GHZ COUNTER

A 9-digit counter that will outperform units costing hundreds more. Gate indicator with digital display. $169.95 with probe included.

CT-50 8 DIGIT 600 MHZ COUNTER

A versatile laboratory counter with options for all applications. $169.95 with probe included.

DM-700 DIGITAL MULTIMETER

Professional quality at a reasonable price. Features include: - Frequency range: 0 to 700 MHz - Display format: 7-digit digital display - Frequency accuracy: 1 part in 10^7

PS-2 AUDIO MULTIPLIER

The PS-2 is designed for measuring audio signals from 10 to 600 MHz. It is designed to be used with any other Ramsey product or in conjunction with the Ramsey 2-counter preamp. $49.95 with probe included.

PB-2 COUNTER PREAMP

This 2-channel preamp with built-in filter options. $49.95 with probe included.

PS-18 600 MHZ PRESCALER

Extends the range of your preamplifier to 600 MHz. $59.95 with probe included.

ACCESSORIES FOR RAMSEY MOUTHERS

Telescopic whip antenna - $5.95
High-temperature probe, 300°C use - $5.95
Low-inductance probe, 100°C use - $13.95
Direct probe, general-purpose use - $5.95
Thick bank, for CT-70, 90, 125 - $4.95

PHONE ORDERS CALL

716-586-3950
TELEX 465335 RAMSEY CI

RAMSEY ELECTRONICS, INC.
2575 Bardin Rd.
Penfield, N.Y. 14526

RAMSEY

CIRCLE 70 ON FREE INFORMATION CARD

APRIL 1986

www.americanradiohistory.com
ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

<table>
<thead>
<tr>
<th>Free Information Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>264</td>
<td>31</td>
</tr>
<tr>
<td>59</td>
<td>32</td>
</tr>
<tr>
<td>108</td>
<td>265</td>
</tr>
<tr>
<td>114</td>
<td>101</td>
</tr>
<tr>
<td>106</td>
<td>125</td>
</tr>
<tr>
<td>107</td>
<td>266</td>
</tr>
<tr>
<td>72</td>
<td>119</td>
</tr>
<tr>
<td>77</td>
<td>110</td>
</tr>
<tr>
<td>251</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td></td>
</tr>
<tr>
<td>263</td>
<td></td>
</tr>
<tr>
<td>269</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td></td>
</tr>
<tr>
<td>259</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td></td>
</tr>
<tr>
<td>262</td>
<td></td>
</tr>
<tr>
<td>263</td>
<td></td>
</tr>
<tr>
<td>267</td>
<td></td>
</tr>
<tr>
<td>268</td>
<td></td>
</tr>
<tr>
<td>269</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td></td>
</tr>
<tr>
<td>271</td>
<td></td>
</tr>
<tr>
<td>272</td>
<td></td>
</tr>
<tr>
<td>273</td>
<td></td>
</tr>
<tr>
<td>274</td>
<td></td>
</tr>
<tr>
<td>275</td>
<td></td>
</tr>
<tr>
<td>276</td>
<td></td>
</tr>
<tr>
<td>277</td>
<td></td>
</tr>
<tr>
<td>278</td>
<td></td>
</tr>
<tr>
<td>279</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td></td>
</tr>
<tr>
<td>281</td>
<td></td>
</tr>
<tr>
<td>282</td>
<td></td>
</tr>
<tr>
<td>283</td>
<td></td>
</tr>
<tr>
<td>284</td>
<td></td>
</tr>
<tr>
<td>285</td>
<td></td>
</tr>
<tr>
<td>286</td>
<td></td>
</tr>
<tr>
<td>287</td>
<td></td>
</tr>
<tr>
<td>288</td>
<td></td>
</tr>
<tr>
<td>289</td>
<td></td>
</tr>
<tr>
<td>290</td>
<td></td>
</tr>
<tr>
<td>291</td>
<td></td>
</tr>
<tr>
<td>292</td>
<td></td>
</tr>
<tr>
<td>293</td>
<td></td>
</tr>
<tr>
<td>294</td>
<td></td>
</tr>
<tr>
<td>295</td>
<td></td>
</tr>
<tr>
<td>296</td>
<td></td>
</tr>
<tr>
<td>297</td>
<td></td>
</tr>
<tr>
<td>298</td>
<td></td>
</tr>
<tr>
<td>299</td>
<td></td>
</tr>
</tbody>
</table>

Gernsback Publications, Inc.

200 Park Ave. South
New York, N.Y. 10003

(212) 777-6400

Chairman of the Board:
M. Harvey Gernsback

President: Larry Steckler

ADVERTISING SALES 212-777-6400

Larry Steckler
Publisher

Shelli Weisman
Advertising associate

Allie Fishman
Coordinator

Lisa Strauss
Credit Manager

Donna Sala
Credit Associate

Noam Haten
Advertising Assistant

Sales Offices

EAST-SOUTHEAST

Stanley Levan
Radio-Electronics
200 Park Ave. South
New York, N.Y. 10003

(212) 683-5050, (212) 777-6400

MIDWEST-Texas/Arkansas/Okla.

Ralph Neier
Radio-Electronics
540 Frontage Road-Suite 125
Northfield, Ill. 60093

(312) 683-5050

PACIFIC COAST/Mountain States

Marvin Green
Radio-Electronics
1535 Morrison St.-Suite 227
Sherman Oaks, Cal. 91403

(818) 983-2001
Here's The Savvy-est True Dual Trace 10 MHz Digital Storage Scope You Ever Saw... At The Saving-est Price. Only $595.

The Handy New LogicScope™ 136

True Dual Trace • 10 MHz Real Time Bandwidth • 3 Input Channels • I/O Port
Digital Waveform Storage • Boolean Waveform Operations • Audio Functions
8.0 (L) x 4.5 (D) x 1.75 (H) Inches • 1.25 Pounds • 9 Volt Battery/AC Operation

Consider the LogicScope 136
- The LogicScope 136 is the next logical step in test instrumentation for you. It combines many of the features and capabilities of sophisticated logic analyzers and oscilloscopes... and it fits in your hand. Never before has so much technology been available in so small an instrument at such a low price.
- The pocket-sized LogicScope 136 is made possible by a patented breakthrough in display technology. The conventional CRT has been replaced by a unique array of 400 LED's that permits simultaneous display of two digital waveforms.
- The 136 can be used for viewing single shot events, or repetitive waveforms. It can be operated in real time mode, or in memory mode which permits acquisition and storage of up to 50-100 bit waveforms. These can be recalled, logically compared (AND, OR, EXCLUSIVE OR) to other input waveforms, or output to an external device via an I/O port. This I/O port will also accept future add-on 136 Modules.
- Its very low cost, convenience and ease-of-use make the LogicScope the ideal instrument for designing, troubleshooting or repairing digital systems. Made in U.S.A.

Consider its Engineering & Field Service Applications:
- On microprocessor-based systems, check the timing relationship of various parameters relative to the system clock and other key events. Its storage capability allows visual and logical comparison of non-repetitive waveforms to known reference signals. Output in the start-up of the digital device can be compared to reference signals to determine the operating state of the device. Questionable waveforms can be stored for analysis.
- Its light weight and small size make the LogicScope convenient to take on every service call. The 136 provides much more information for trouble shooting a digital system or peripheral than a logic probe or digital counter without having to lug an oscilloscope or logic analyzer along.

Contact us for the name of your local distributor

POCKET TECHNOLOGY INC.
7320 Parkway Drive, Hanover, MD 21076 U.S.A.
301-796-3300 TELEX 906207
Division of Renaissance Technology Corp.

CIRCLE 265 ON FREE INFORMATION CARD
SCOPE HAND-HELD DIGITAL CAPACITANCE and MULTIMETERS

- 0.5% DC Accuracy
- Highest Quality
- Highest Performance
- Lowest Prices

1. **Digital Capacitance Meter**
 - Model DCM-602
 - $79.95
 - 8 ranges with full scale values to 2000 uF
 - **FEATURES**
 - Broad test range, 1 pF to 2000 uF
 - LSI circuit provides high reliability and durability
 - Lower power consumption
 - Clear readout even in bright light
 - Crystal time base
 - Easy to operate, compact, lightweight
 - Protected from charged capacitors
 - Frequency range: 800 Hz to 8 Hz

2. **Digital Multimeters**
 - Model DVM-634
 - $48.75
 - 7 functions, 32 ranges
 - Transistor measurement included
 - **FEATURES**
 - Overload Protection
 - Auto-decimal LCD readout
 - Polarity Indication
 - 3000 hour battery life with 9V transistor battery

3. **Digital Multimeters**
 - Model DVM-638
 - $79.95
 - 11 functions, 38 ranges
 - Capacitance measurement included
 - **FEATURES**
 - Overload Protection
 - Auto-decimal LCD readout
 - Polarity Indication
 - 3000 hour battery life with 9V transistor battery

4. **Digital Multimeters**
 - Model DVM-636
 - $62.75
 - 8 functions, 37 ranges
 - Capacitance measurement included
 - **FEATURES**
 - Overload Protection
 - Auto-decimal LCD readout
 - Polarity Indication
 - 3000 hour battery life with 9V transistor battery

Charge it with VISA/MASTERCARD. Money orders, checks accepted. C.O.D.’s require 25% deposit.

Toll Free
800-645-9518
In NY State 800-832-1446

Service and Shipping Charge Schedule

<table>
<thead>
<tr>
<th>Service and Shipping Charge Schedule</th>
<th>FOR ORDERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD</td>
<td>$2.50</td>
</tr>
<tr>
<td>$251-500</td>
<td>$4.50</td>
</tr>
<tr>
<td>$501-750</td>
<td>$6.50</td>
</tr>
<tr>
<td>$751-1,000</td>
<td>$8.50</td>
</tr>
<tr>
<td>$1,001 and up</td>
<td>$12.50</td>
</tr>
<tr>
<td>$15,001 and up</td>
<td>$15.00</td>
</tr>
</tbody>
</table>