IMPROVE YOUR AUDIO SYSTEM!
BUILD R-E's HIGH-PERFORMANCE
500-WATT AUDIO AMP
$1.95 JAN. 1985
IN CANADA S2.25

TECHNOLOGY - VIDEO - STEREO - COMPUTERS - SERVICE

Build R-E's Video Switcher. Add push-button control to your video entertainment center.

Build R-E's Atari duplicator and transfer your game cartridges to cassette tape.

How to service your own Videodisc player.

All about thermistors and how to use them effectively.

What's available in add-on accessories for your satellite-TV system.

How to design sinewave, squarewave, and triangular waveform generators using op-amps.

Special 16-page tear-out section.

Computer Digest

PLUS:

Computer Digest Report on Satellite TV

Drawing Board ★ Service Clinic
100 MHz scope, counter, timer, multimeter: All one integrated system.

Now make measurements faster, easier, with greater accuracy and user confidence. The Tek 2236 makes gated counter measurements, temperature, time, frequency, resistance and voltage measurements pushbutton easy. You see results concurrently on the 9-digit numeric readout and CRT display.

Its complete trigger system includes pushbutton trigger view, plus peak-to-peak auto, TV line. TV field, single sweep and normal modes.

At just $2650 the 2236 includes the industry's first 3-year warranty on all parts and labor, including the CRT.

Integrated measurement system. 3-year warranty. 15-day return policy. And expert advice. One free call gets it all! You can order, or obtain literature, through the Tek National Marketing Center. Technical personnel, expert in scope applications, can answer your questions and expedite delivery. Direct orders include probes, operating manual. 15-day return policy, full warranty and worldwide service back-up.

Order toll-free: 1-800-426-2200
Extension 57

In Oregon call collect: (503) 627-9000 Ext. 57
Or write Tektronix, Inc
P. O. Box 1700
Beaverton, OR 97075
When you need to hear the action from wherever you are, Regency delivers. Our portable scanners keep you in touch with the local news. Whether it's bank hold ups, three alarm fires, weather, business, marine radio, or aircraft calls, Regency portables bring you the on the scene action. While it's happening from where it's happening... in your neighborhood.

PROGRAMMABILITY WITH A CHOICE
Regency offers you two new exciting keyboard programmable hand held scanners. First there's the HX2000 20 channel, no crystal scanner. It offers UHF and VHF ranges with the important addition of 800 MHz and aircraft frequencies. And with features like search and scan, priority, liquid crystal display, and selectable search increments, the HX2000 is a sure winner. If you don't need the extended coverage, there's the HX1000. It let's you cover your choice of over 15,000 frequencies on 30 channels at the touch of your finger. No crystals are necessary. Six band coverage, search and scan, priority control, and a liquid crystal display with special programming messages and clock are all part of the package. And with the sealed rubber keyboard and die-cast aluminum chassis, the HX1000 is the most rugged and durable hand held on the market.

CRYSTAL-CLEAR
If you don't need all the features of programmables, but you want the convenience of portability, we've got you covered. Our two crystal controlled hand held scanners, the HX650 and HX750, offer six channels, individual channel lock outs, LED channel indicators, step control, two antennas and an adaptor/charger. Both cover VHF high and low, UHF and "T" public service bands, with the HX750 offering the additional coverage of VHF aircraft band.

DECIDE FOR YOURSELF
Your Regency Scanner dealer would be happy to give you a free demonstration of these and other new Regency Scanners. Stop in today. Or, write Regency Electronics, 7707 Records St., Indpls., IN 46226.

CIRCLE 261 ON FREE INFORMATION CARD
NEW! Bearcat® 201-E
List price $279.95/CE price $179.00
9-Band, 16 Channel • Crystalless • AC only
Priority Channel • Direct Access
Frequency range 30-50, 116-136 AM, 145-174, 405-512 MHz.
The Bearcat 201 performs any scanning function you could possibly want, with the added convenience of being able to program up to 16 channels for automatic monitoring. Push another button and listen for frequencies. There are no crystals to limit what you want to hear.

NEW! Bearcat® 180-E
List price $249.95/CE price $149.00
8-Band, 16 Channel • Priority • AC only
Priority Channel • Direct Access
Frequency range 20-50, 136-174, 405-512 MHz.
Police and fire calls, ham radio transmissions, business and government undercover operations. You can hear it all on the Bearcat 180. Not only is the Bearcat 180 a Bearcat to your hearing, but it also provides the security of bearing a major news event unfold even before the news organizations can report it. And the security of knowing that’s happening in your neighborhood by hearing police and fire calls in time to take precautions.
There’s nothing better than tuning to keep you informed, and no better way to get scanner radio performance at a value price than with the Bearcat 180.

Bearcat® 100-E
The first no-crystal programmable handheld scanner.
List price $219.95/CE price $119.00
8-Band, 16 Channel • Liquid Crystal Display
Search • Limit • Hold • Lockout • AC/DC
Frequency range 30-50, 136-174, 405-512 MHz.
The world’s first no-crystal handheld scanner has come 20 dB down and is compressed into a scanning power that is found in many base or mobile scanners. The Bearcat 100 has a full 16 channels with frequency coverage that is ideal for police, fire, highway, High, UHF and “T” bands, the 2-Meter and 70 cm. Amateur bands, plus Military and Federal Government frequencies. Bearcat’s chrome-plated keys for functions that are user controled, such as lockdown, manual and automatic scan. Even search is provided, both manual and automatic. Wow...what a scanner!
The Bearcat 100 produces audio power output of 300 milliwatts, a transmission power of better than 50 dB down and sensitivity of 0.6 microvolts of VHF and 3 microvolts of UHF. Power consumption is kept extremely low with automatic scan or exclusive low power integrated circuits.
Included in our low CE price is a sturdy carrying case, earphone, battery charger/AC adapter, sixteen AA ni-cad batteries and flexible antenna. The Bearcat 100 is in stock for quick shipment. So order your scanner today.

NEW! Bearcat® DX100-E
List price $649.95/CE price $489.00
Frequency range 30-50, 116-136 AM, 145-174, 405-512 MHz.
The Bearcat DX100 shortwave radio makes tuning in London as easy as dialing a phone. It features PLL synthesized accuracy, two time zone 24-hour digital quartz clock and a built-in timer to wake you to your favorite shortwave station. You can also program peripheral equipment like a tape recorder to record up to five different broadcasts, any frequency, any mode, any channel, any time.
With a built-in volume control, AM, LSB, USB, CW and FM broadcasts are at your command. Bearcat’s name implies national and international tuning. Please call to hear what the world has to say. With the Bearcat DX100 shortwave receiver, you now have direct access to the world.

Uniden® PC22-E
List price $159.95/CE price $99.00
The Uniden PC22 is a 40 channel AM remote mobile CB radio. It is the answer for today’s smaller cars which don’t always provide adequate space for mounting. Since all the controls are on the microphone, you can stash the “guts” in the trunk. The microphone has up/down channel selector, digital display, TX/RX indicator and extra loud speaker. The PC22 has a 3" x 2", D x 1½"; H. 13.6 VDC, positive or negative ground.

QUANTITY DISCOUNTS AVAILABLE
Order two scanners at the same time and deduct $25.00 each. For orders of four, five or more, deduct 3%, five scanners deduct 4% and six or more scanners purchased at the same time earns you a 5% discount off our super low single unit price.

Uniden® PC33-E
List price $59.95/CE price $44.00
The Uniden PC33 boasts a super-case compact and versatile scanning radio, perfect for those guys smaller cars. Controls: Power & Volume, Squelch, Switches: ANL. All features of the PC33 include Grafix" LED display, volume control, automatic monitoring. Dimensions: 6” W x 6” D x 1½” H. ±13.6 VDC.

Uniden® PC55-E
List price $89.95/CE price $59.00
The full featured Uniden PC55 front-panel mike connector allows for connection to an external scanner. It has ANL, PA/CA, Channel 9 and RF Gain switches. LED indicator, 7-MHz, 25-channel Mini-Tuner, external speaker jacks. Dimensions: 6” W x 6” D x 1½” H. ±13.6 VDC.

Banding° Radar Detectors
Now that everyone else has taken their best shot at radar detection, the Uniden® Bandit° has done them one better...with E.D.I.T.°, the Electronic Data Interference Terminator that actually eats false alarm signals.

Bearcat° 200, 200-E, 201, 201-E, 180, 180-E, 100, 100-E, DX100, DX100-E, PC22, PC33, PC55 are trademarks of Uniden America Corporation. All other trademarks are the property of their respective owners. Copyright © 1984 Communications Electronics. All Rights Reserved.

BUY WITH CONFIDENCE
To get the fastest delivery from CE of any product in this ad, send or phone your order directly to our Scanner Distribution Center. Michigan residents please add 4% sales tax or supply your tax I.D. number. Written purchase orders are accepted from approved government agencies. Air freight charge at a 10% surcharge for net 10 billing. All sales are subject to availability, acceptance and verification. All sales on accessories are final. Prices, terms & specifications subject to change without notice. All prices are in U.S. Dollars. Out of stock items will be placed on backorder automatically unless otherwise noted. When prices change, orders are invoiced at the new price. We will not honor old prices.

Consumer Products Division
1816 Phoenix Drive • Box 1002 • Ann Arbor, Michigan 48106
Toll FREE call 800-521-4414 or outside U.S.A. 313-973-6888

Order Toll Free...call 800-521-4414

Communications Electronics

ORDER FORM

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Price</th>
<th>Mail Order Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearcat® 201-E</td>
<td>$179.00</td>
<td>PC22-E</td>
</tr>
<tr>
<td>Bearcat® 180-E</td>
<td>$149.00</td>
<td>PC33-E</td>
</tr>
<tr>
<td>Bearcat® 100-E</td>
<td>$119.00</td>
<td>PC55-E</td>
</tr>
<tr>
<td>Bearcat® DX100-E</td>
<td>$489.00</td>
<td></td>
</tr>
<tr>
<td>Uniden® PC22-E</td>
<td>$99.00</td>
<td></td>
</tr>
<tr>
<td>Uniden® PC33-E</td>
<td>$44.00</td>
<td></td>
</tr>
<tr>
<td>Uniden® PC55-E</td>
<td>$59.00</td>
<td></td>
</tr>
</tbody>
</table>

CIRCLE 79 ON FREE INFORMATION CARD
SPECIAL FEATURE: 63 SERVICING VIDEODISC PLAYERS
Part 2. This month, we turn our attention to the CED system with a look at how a CED player works. John D. Lenk

BUILD THIS 41 RF SWITCHER
Gets rid of your video-switching woes and that jumble of cables at the back of your set. Bob Grossblatt

51 ATARI GAME RECORDER
Part 2. This month we look at the software you need to operate the game recorder. David A. Chan and Guy Vachon

59 HIGH-POWER FET AUDIO AMPLIFIER
Part 2. More on this high-performance, high-fidelity FET amplifier. Reinhard Metz

TECHNOLOGY 8 VIDEO ELECTRONICS
Tomorrow's news and technology in this quickly changing industry. David Lachenbruch

14 SATELLITE TV
TVRO components. Bob Cooper, Jr.

75 SATELLITE-TV ACCESSORIES
Add-on devices. Marc Stern

CIRCUITS AND COMPONENTS 33 NEW IDEAS
Multiple-outlet control circuit.

47 ALL ABOUT THERMISTORS
Learn more about how thermistors work, and how they are used. This month, we'll look at the basics. Harry L. Trietley

67 DESIGNING WITH LINEAR IC's

79 HOBBY CORNER
A versatile expansion module for your calculator. Earl "Doc" Savage, K4SDS

85 STATE OF SOLID STATE
Get rid of some of those house keys with an electronic lock. Robert F. Scott

87 DRAWING BOARD
Doing division with the 4089, and more!

89 DESIGNER'S NOTEBOOK
How to protect audio circuitry from overloads. Robert Grossblatt

VIDEO 91 SERVICE CLINIC
A look at kit building. Jack Darr

RADIO 83 COMMUNICATIONS CORNER
"Phantom" power. Herb Friedman

COMPUTERS

DEPARTMENTS

ANNUAL INDEX
JANUARY—DECEMBER 1984
To present the maximum number of articles to our readers, we have not published the Annual Index as part of this issue. A 4-page brochure containing this index is available for those who need one. To get your free copy, send a stamped self-addressed envelope (legal size) to:

Radio-Electronics
Annual Index
45 East 17th Street
New York, NY 10003

Any requests postmarked on or before April 30 are free. After that date there is a 50¢ fee. Questions and comments about anything other than the Index are included with your request cannot be handled. Send them separately to our Editorial Offices.
Introducing a broad new line of multi-feature, cost-competitive instruments from Beckman Industrial Corporation.

They're in stock now and as close as your local Beckman Industrial Corporation distributor. Just walk in and choose the instruments that provide the features and functions you need. Then buy them and take them home, or to work. No more ordering and waiting.

Whichever instruments you choose, you'll be buying our reputation for high quality and reliability, plus straightforward, easy operation.

And you'll be getting it all for a very affordable price. In fact, you'll have a hard time finding comparable instruments that offer as much functionality and quality.

All of which makes this line of instruments an exceptional value.

Choose between our 100MHz or 60MHz advanced design oscilloscopes. Both provide professional grade performance. Both also feature dual time base and three channels.

The UC10 Universal Counter measures unit count, period, time interval and frequency to 100MHz. And the FG2 Function Generator produces sine, triangle and rectangular waves up to 2MHz and at continuously variable duty cycles.
Our new circuit-powered LP10 Logic Probe is the ideal, low cost way to check TTL, DTL, HTL and CMOS signals.

The CM20 Capacitance Meter is a low cost, hand-size meter that lets you measure capacitance up to 2000µF easily and quickly.

The CT233 AC/DC Current Clamp enables you to use your digital multimeter to measure AC or DC current without breaking the wire.

Plus every instrument is designed, manufactured, and tested to ensure years of trouble-free, reliable operation.

And whichever products you buy, service and parts will be available close to home from your local Beckman Industrial Corporation distributor.

Now it's easier than ever to buy the name with a reputation for the best quality—and value—in electronic and electrical instruments: Instrumentation Products Division, Beckman Industrial Corporation, A Subsidiary of Emerson Electric Co., 630 Puente Street, Brea, CA 92621, (714) 773-8111.
These days, the home TV has become much more than a device for viewing broadcast TV. Cable-TV, pay-TV, videocassette recorders, videodisc players, videogames, and personal computers all make use of the TV for display. That means a tangle of wires, and a constant hooking up and unhooking of connectors—unless you have a device like our RF switcher. To learn more about the switcher, including how to build it, turn to page 41.

ON SALE JANUARY 17

STEREO-TV
Stereo TV is here at last! Next month, we'll look at the technical standards that have been adopted to make it all possible.

OSCILLOSCOPE UPGRADE
Add a video-sync separator to your oscilloscope.

UNIVERSAL CASSETTE INTERFACE
Record your programs on cassette tape via your computer's RS-232 port.

RESISTOR AND CAPACITOR SELECTION
All about the many different types of resistors and capacitors, and when and where each type should be used.

AND LOTS MORE!
FLUKE SERIES MULTIMETERS

- Analog Display
- Rotary Knob
- Volts AC & DC
- Resistance to 32 MΩ
- 10 Amps
- Diode Test
- 3200 Counts
- Fast Autoranging
- Function Annunciators in Display
- Power-Up Self Test
- 2000 + Hour Battery Life w/ Power Down “Sleep Mode”
- New Test Leads
- VDE & UL Approval

WE CARRY A FULL LINE OF FLUKE MULTI-METERS.
IN STOCK NOW

Sale $119.95

Sale ends Jan. 85

BECKMAN'S CIRCUITMATE®
ALL UNDER $100
AVAILABLE NOW....

$64.95
Circuitmate DM 20—3½-digit, pocket-size multimeter; 0.8% Vdc accuracy, diode test, nF test, conductance, 10 amps AC and DC ranges, auto-polarity, auto-zero, auto-decimal

$79.95
Circuitmate DM-25—3½-digit, pocket-size multimeter; 0.5% Vac accuracy, diode test, capacitance, continuity beeper, conductance, 10 amps AC and DC ranges, auto-polarity, auto-zero, auto-decimal

$69.95
Circuitmate DM-40—3½-digit multimeter, 0.8% Vdc accuracy, diode test, auto-polarity, auto-zero, auto-decimal

$89.95
Circuitmate DM-45—3½-digit multimeter, 0.5% Vdc accuracy, diode test, continuity beeper, 10 amps AC and DC ranges, auto-zero, auto-polarity, auto-decimal

$99.00

$79.95
and free C70 holster 73

NEW!
BECKMAN CIRCUITMATE DM10
$39.95
IN STOCK NOW

The DM73 is the smallest digital multimeter on the market. Its probe-style design makes it ideal for taking measurements in hard-to-reach test areas.

Small Size
Complete Autoranging
“Touch Hold”
Audible continuity checking

THE TEST EQUIPMENT SPECIALISTS
ADVANCE ELECTRONICS
TOLL FREE HOT LINE
800-223-0474
212-730-7030
26 WEST 46th STREET, NEW YORK, N.Y. 10036

$63.95
Super VCR. Although some firms are now introducing VCR’s in the new 8mm video format, many Japanese video companies have lost their enthusiasm for the new small tape and instead are working to develop ¼-inch recorders of vastly improved quality, while retaining compatibility with existing formats. While the original thought behind 8mm was to develop miniaturized units that will provide quality equal to ¼-inch, those companies instead are seeking to apply the new 8mm specifications to ¼-inch tapes and come up with vastly better quality in the older compatible formats.

Those projects are still closely guarded secrets, but they are aiming at a home machine capable of 400 lines of horizontal resolution, as compared with about 250 on today’s VCR’s, and a 50–55 dB signal-to-noise ratio, up from 40–45 today. Being explored is the use of high-band color, similar to that used in broadcast VTR’s, along with metal tape, new heads, and highly integrated electronics. Both the VHS and Beta groups are working toward these super VCR’s, which could be ready in about two years. One of the goals is to make the new system far superior to anything that could be accomplished within the 8mm video format, thereby calming any fears that 8mm will take over as the standard for home decks and keeping it relegated to the status of a system for portable use only.

The key to any improved ¼-inch system must be compatibility, according to Shizuo Takano, Managing Director of Video Products for JVC, who is known as the “father of VHS.” Takano envisions the current ¼-inch formats existing for many years, and being flexible enough to encompass many signal improvements. Takano recently told us: “If a completely new format is ever necessary, it should be when the broadcasting system is changed”—for example, to a widescreen high-definition system.

Cassettes that communicate. Borrowing a page from 8mm, the Video 2000 VCR system developed by Philips and Grundig in Europe uses a notched cassette to let the recorder know how much tape it contains, so that the display panel on the VCR can show the time remaining in the cassette. The 8mm videocassette specifications, developed by a 122-company committee in Japan, provides for similar “recognition holes which make an automatic detection of such parameters as kind of tape and tape thickness possible.”

The use of notched videocassettes may soon become universal. The VHS group is now exploring whether to add such notches to standard ¼-inch cassettes, and undoubtedly the Beta proponents are working on a similar project. Such a notched cassette could tell the VCR of the future whether the tape is of an oxide or metal type and direct it to make automatic adjustments in bias and signal processing, retaining compatibility of any future “super VCR” with current tape types.

A new VHS recorder developed by Grundig for the European market uses a somewhat similar cassette identification system to cue a tape—remaining indicator on the VCR. Instead of notches, that system involves stick-on bar-code symbols, which are read by the machine as the tape is loaded. The Grundig VCR also contains a special security system—the user punches in any four-digit code on the keypad. After the cassette is loaded, the machine won’t play unless the code is re-entered—as a matter of fact, unless the code is re-entered the cassette can’t even be removed from the recorder. A user who forgets his security code can have the machine unlocked only by taking it to an authorized Grundig service station with proof of purchase. A sticker on the recorder notifies prospective burglars that the VCR is totally useless without the four-digit security code.

The Grundig recorder, which is compatible with other VHS machines but uses a “U”-type wrap—around the head drum instead of the standard VHS “M”-wrap—is expected to be available eventually in the U.S.
FREE Heathkit® CATALOG

450 kits and products: solar hot water systems, all-in-one 16-bit computers, test instruments, amateur radio gear, self-study courses in computer literacy and state-of-the-art electronics, energy conservation and home security devices, fine stereo components, color televisions, automotive or marine aids, home conveniences, robots and more—things you've always wanted and needed, right now at low kit prices from Heath.

For people with imagination, there's nothing to compare with the exclusive thrill of hand-built satisfaction.

Discover the fun of kitbuilding—it's a great way to relax in your spare time and share a rewarding pastime with your whole family. The great kits you build will reflect the pride of your craftsmanship, too. The famous Heathkit illustrated manuals make it easy for anyone to build reliable, professional-quality kits.

SEND FOR FREE CATALOG
Our colorful catalog is Free! If coupon is missing write: Heath Company, Dept. 020-254, Benton Harbor, MI 49022.

Heathkit products are also displayed, sold and serviced at 64 Heathkit Electronic Centers nationwide. Consult telephone directory white pages for location.

*Operated by Veritechology Electronics Corporation, a wholly-owned subsidiary of Zenith Electronics Corporation.
WHAT'S NEWS

Library of Congress receives Compact Discs

The Compact Disc Group—in a special presentation last July 25—presented more than a thousand compact digital-audio discs to the Library of Congress. The presentation included every compact disc released in the United States to that date.

The Compact Disc Group is composed of leading equipment and record manufacturers, united to educate the public and create further awareness of the distortion-free sound of the laser-read Compact Disc.

The discs were officially presented to Deputy Librarian William J. Welsh by Leslie Rosen, Director of the Compact Disc Group. An 1897 Berliner recording of John Philip Sousa's "Stars and Strips Forever," recorded just 13 days after Sousa composed the work, was compared with later renditions, the finale being a Compact Disc recording.

ARL wants volunteers as Amateur examiners

With the decision by the FCC to discontinue administering licensing exams to radio amateurs it becomes necessary to develop an organization of Voluntary Examination Coordinators (VEC's) and examiners to administer amateur license exams.

The American Radio Relay League will serve as a VEC in all the 13 FCC call areas of the United States. (More than one VEC may serve in a given call area.) The League is, accordingly, calling for volunteer examiners. Those must hold advanced or extra class licenses. Advanced class license holders may administer only the exam elements required for the technical license; extra class licensees may administer all written elements and international code tests. (Novice licenses will continue to be given by novice examiners under the new novice rules.) Applicants need not be members of the ARRL. They must be at least 18 years old, hold advanced or extra class licenses, and have no record of license suspension or revocation.

If you qualify and would like to be a volunteer examiner in ARRL's VEC program, you may request an application by writing to Volunteer Examiner Accreditation, American Radio Relay League, 225 Main St., Newington, CT 06111.

Semiconductor shortage eases up in 1984

The year-long semiconductor shortage, which peaked in January 1984—when orders overran shipments by more than 50 percent—was reported to be dropping off by early Fall 1984. Some parts, such as microprocessors, were still reported in short supply but the shortage of older products had declined sharply.

Part of the greater availability of many types of semiconductors may have been due to the seasonal summer slowdown in sales, especially of personal and home computers. In June, 1984, orders outstripped shipments by 15 percent—in July the difference was down to 6 percent.
LITTLE THINGS MEAN A LOT

Being the first company to make solderless breadboards isn't necessarily what makes us the best. It's all the little things you don't see, like our spring clip terminals, that make A P PRODUCTS ACEBOARDS so big on reliability.

From our largest ACEBOARD with over 5000 tie points, to a single tie point block, our spring clip terminals give you nothing but good, solid contact on every connection. They accommodate a wide variety of leads and have the best electrical properties, because our spring clips are solid alloy, not plated nickel. We've even developed enough normal force to break through any oxides which could occur on solder plated leads.

You've come to trust our test clips for the same reason. Since one bad connection can ruin a whole circuit, we pay close attention to how well our spring clip terminals sit within the insulator cell areas.

Spring clip edges are never exposed at the insertion window.

Leads won't buckle, clips won't oxidize, it all adds up to longer life.

Even from the outside there's more to an ACEBOARD than meets the eye. Our durable Acetal Copolymer plastic body is a good insulator with excellent dielectric properties.

And special manufacturing techniques in the insertion of the contacts into the plastic body insure that your Breadboard will always remain flat. No skimping or planned obsolescence here. Again, just good solid contact on every connection.

Turn our breadboard body over...and you'll discover another key to its reliability. The double-sided adhesive foam you'll see there is more than a pressure sensitive mount. It also insulates to prevent shorts and seals the bottom of the individual spring clip cells. If solder shavings from resistors or component leads drop into the cell, they can't spread into other cells to short them out.

Take a close look at our ACEBOARDS. A P PRODUCTS has the biggest and most complete line of ACEBOARD sizes. It's also our commitment to you that if your ACEBOARD doesn't work perfectly, bring it back to your A P PRODUCTS distributor. He'll replace it, no hassles.

To help you see for yourself what a big difference the little things make, we're offering you a 10% discount on the entire A P PRODUCTS ACEBOARD/Breadboard line.

Just fill out the coupon and present it to your A P PRODUCTS distributor.

This coupon is worth 10% off the purchase price of any size ACEBOARD or Breadboard product. Offer expires 2/28/85.

Your Name ___

Address ___

City __________________________ State ________ Zip ________

Dealer Name ___

ACEBOARD # __________________________

Limit 5 ACEBOARDS or Breadboards per coupon. Offer valid only at participating A P PRODUCTS distributors.
PORTABLE OSCILLOSOPES

MODEL V-212
DC to 20MHz, 1 mV/div, Dual Trace
Feature 6" Rectangular CRT
Full 2 year parts and labor warranty.

MODEL V-550F
DC to 60MHz, Dual Trace

MODEL V-1050F
DC to 100MHz, Quad Trace, Delayed Sweep
- All prices include full set of factory probes - up to $120.00 value.

Polaroid CR-10 Camera
Now you can get an instant picture in black & white or color from any oscilloscope screen.
Includes CRT hood.
* Large hoods also available to fit computer terminals and CAD/CAM screens.

GLOBAL SPECIALTIES

GLOBAL SPECIALTIES
TRIPLE OUTPUT POWER SUPPLY

MODEL 1301
- Fully regulated triple output
- Fixed 5VDC, 1A
- V1 + 5 VDC to 18 VDC, 5A
- Fully automatic current limiting

$219.00

TRIPLE OUTPUT POWER SUPPLY

MODEL 1650
- Functions as three separate supplies
- Exclusive tracking circuit
- Fixed output 5 VDC, 5A
- Two 0 to 25 VDC outputs at 0.5A
- Fully automatic, current-limited overload protection
- + and - terminals of each output are fully isolated, in all modes
- All three outputs may be connected in series or parallel for higher voltage or current

$319.00

DIGITAL PULSER
- Senses state of node, presets pulse polarity
- Short circuit protected, circuit powered
- Handheld digital signal injector

$83.00

PROTO-BOARD
- Length = 7.4"
- Width = 4.5"
- 14 pin IC capacity = 12
- Tie points = 1240

$34.95

DIGITAL LOGIC PROBE
- Use to 50 ns, 10 MHz
- Circuit powered, portable
- Compatible with most logic families

$19.95

DIGITAL CAPACITANCE METER
- Battery operated
- 3½ digit LCD display
- Range 1 PF to 2,000 UF
- 0.2% basic accuracy

$139.00

CALL US TOLL FREE
1-800-732-3457
IN CALIFORNIA TOLL FREE
1-800-272-4225

RAG ELECTRONICS, INC. / 21418 Parthenia Street / Canoga Park, CA 91304 / 1-818-998-6500

CIRCLE 269 ON FREE INFORMATION CARD
GIANT 14th ANNIVERSARY SALE!

FLUKE 70 SERIES MULTIMETERS

- Analog Display
- Rotary Knob
- Volts AC & DC
- Resistance to 32 MΩ
- 10 Amps
- Diode Test
- 3200 Counts
- Fast Autoranging
- Function Annunciators in Display
- Power-Up Self Test
- 2000+ Hour Battery Life w/Power Down

"Sleep Mode" • New Test Leads
- 0.7% Accuracy
- Autorange Only
- 10 Amp Only

73 $85.00
- 0.7% Accuracy
- Autorange Only
- 10 Amp Only

75 $99.00
- 0.5% Accuracy
- Manual or Autorange
- 10 A + 300 mA Range
- Beeper

77 $129.00
- 0.3% Accuracy
- Manual or Autorange
- 10 A + mA Range
- Beeper

"Touch-Hold Function"

WE CARRY A FULL LINE OF FLUKE MULTIMETERS, COUNTERS, AND DIGITAL TEMPERATURE METERS

4½ DIGIT MULTIMETER
- Frequency measurements to 200KHz
- dB measurements
- Basic dc accuracy 0.4%;
- 10μV, 10 nA and 10 mΩ sensitivity
- True RMS
- High-speed Beeper

MODEL 8060A $349.00

PORTABLE OSCILLOSCOPES

MODEL SS-5705 $899.00
DC to 40MHz
- Vertical and horizontal deflection accurate within ±2%
- CRT acceleration voltage 12KV
- 3 channels, 6 traces
- High precision calibrator (±1%)
- Fastest sweep rate: 10 ns
- High sensitivity 1 mV/div
- CH1 signal output
- Beam finder
- Delayed sweep
- Alternate time base

MODEL SS-5702 $535.00
DC - 20MHz, 5 mV/div
- Dual trace
- 6 inch rectangular internal graticule CRT
- Includes 2 each x1/x10 probes and full factory warranty; 2 years on parts, labor and CRT.

LEADER FUNCTION GENERATOR

Audio Sine/Square Wave Generator
- Distortion from <0.03%
- 10 Hz to 1 MHz
- LAG-120A
- $259.95

MODEL 3010
- Sine, square and triangle output
- Variable and fixed TTL outputs
- 0.1 Hz to 1 MHz in six ranges
- Typical distortion under 0.5% from 1 Hz to 100 kHz
- Variable DC offset
- VCO input for sweep tests

MODEL WD-755 $259.00
- 5 Hz to 125 MHz
- 8 Digit LED Display
- Period measurement 5 Hz to 2 MHz
- Totemizes to 99,999,999 plus Overflow
- Frequency Ratio Mode
- Time Interval Mode
- Switchable Attenuator & Low Pass Filter

MODEL WD-532A $49.00
- Fast relay opens input circuit on overload
- Lamp indicates when relay is open
- Easy-access battery compartment and test lead storage
- High accuracy: ±2% DCV, ±3% ACV
- 3-to-1 ranges (like VTVM)
- Large, 5½” mirror meter
- Front panel and meter scales coded in 3 colors for quick function identification
- Battery-condition indicator for overload protection circuit

VIZ MULTI-FUNCTION COUNTER

MODEL WV-532A
- Variable transformer

MODEL 3PM1010V $145.00
- RAG CARRIES THE COMPLETE STACO VARIABLE TRANSFORMER LINE
- CALLED WITH YOUR REQUIREMENTS.
Changes in the TVRO industry

Bob Cooper, Jr.*
Satellite Editor

In the last installment of this column, we looked at the business opportunities presented by the home-TVRO industry today. We also took a backward look at the basic hardware contained in the system with a sort of “then-and-now” comparison of how hardware developments have paced rapidly expanding equipment sales. This time we’ll look at the individual components that make up those systems.

TVRO components
The first home-TVRO systems, bought by genuine consumers (not “technology buffs” who’d purchase anything new and exciting) were extremely cumbersome to operate. Not only that, one segment of the system was missing from the equipment line-up: the “dish mover” or motor-drive unit.

* Publisher, CSD magazine

(It had not yet been invented, nor would it be until late in 1980.)

Early enthusiasts who built or assembled their own systems were seldom satisfied to watch programming from a single satellite for long. After all, part of the fun and excitement was being able to “cruise the skies” looking for action. With cable programming concentrated on a single satellite (FI in 1980), the 20 or so channels emanating from its transponders were entertaining, but were hardly all that was in the sky.

Those early TVRO owners talked glibly about picking up 30 or 40 channels as if they were all easily accessible from an easy chair. Of course, they were not. In fact, to receive programming beyond the first 20 or so channels, somebody had to go out in the yard and “wrestle” with the antenna because the original mount was of the fixed variety, as shown in Fig. 1-a (not exactly a “consumer friendly” product!).

Motor drives have been troublesome parts of TVRO systems since they first appeared commercially in the fall of 1980. The earliest drives (available as retrofit devices for virtually any polar-mount style dish) were simple devices that had a three-positions switch (OFF, EAST, and WEST).

The switch connected to a motorized jack-screw actuator (see Fig. 1-b) that mounted between the dish and the post portion of the polar mount. The post was stationary (they hoped!), while the dish would pivot when pushed or pulled by the motor-driven jack screw. If the dish and mount were capable of tracking the Clarke orbital belt, the motor would provide the remote-controlled push/pull action to drive the dish through the belt. Simple enough, but there were many problems.

The earliest motorized mounts were not designed for frequent use—moving the dish on the mount quickly proved they weren’t. Poor calculation of weights and loads resulted in extremely heavy strains on the small motors chosen to rotate the jack-screw actuators. The jack screws, in turn, proved too lightweight and they soon bound-up under the strain.

Needless to say, the first year of motorized dish-mounts was a disaster and those who purchased those units probably junked them within a few months. It took a mul...
Introducing the complete line of Flameproof Resistors from New-Tone Electronics.

NTE Flameproof Resistors are the latest addition to NTE's line of quality components. They're designed to provide you with a premium quality replacement device...that won't flame out or short even under the most severe overloads.

Our resistors range in capability from \(\frac{1}{4} \) Watts to 25 Watts with resistance values from .10 to 1.5 Megohms. They're totally noncombustible with a metallic resistance material between a nonresistant core and a special ceramic outer cover.

NTE Flameproof Resistors are the ideal replacement components for electronic games, telecommunications, medical, data processing, military, broadcast and home entertainment equipment. Don't take chances with your expensive equipment. Use NTE Flameproof Resistors...they handle the current. Look for NTE's full line of quality replacement parts in the bright green polybags and cartons at your nearest distributor.
Only NRI Gives You This Kind of Training and Equipment.

Only NRI Gives You So Much Professional Preparation For a TV/Audio/Video Servicing Career.

Build this 25" Heath/Zenith Color TV with 112 channel tuning system, infrared remote control, advanced sound system, and in-set space phone.

See servicing techniques demonstrated in close-up detail. Graphic presentations make theory and systems come alive on NRI Action Videotapes covering VCRs, disc players, and TVs.

Perform challenging state-of-the-art electronic experiments and demonstrations using your NRI Discovery Lab®.

Learn how to diagnose problems using a professional 3½-digit digital multimeter. Exclusive NRI Action Audio instructions talk you through its complete operation and use.

Get complete, thorough instruction in the theory, servicing, and repair of TV, VCR, video disc players, audio equipment, AM/FM receivers, antenna systems, home video cameras, projection TV, and more with 65 easy-to-digest, bite-size lessons.

Learn servicing and adjustment techniques with this 6-hour, remote control videocassette recorder you get as part of your training.
Only NRI gives you so much practical training with equipment you learn on and keep. You learn by doing. That's the way to make it interesting, that's the way to make it enjoyable, that's the way to get the hands-on experience and know-how you need.

Hands-On Training For Real Bench Experience and Priceless Confidence

You start with experiments and demonstrations on the unique NRI Discovery Lab. You learn basic circuit wiring and soldering techniques, and then quickly move on to more advanced concepts as you come to understand electronic theory, solid-state devices, digital systems, and microprocessors. You learn by actually building and observing the action of circuitry you'll be working with in real-life situations.

Exclusive NRI Training On Videotape

In addition to profusely illustrated lessons, you get NRI's Action Audio cassette to “talk” you through the use and operation of the professional digital multimeter you receive as part of your equipment. Even more exciting are your NRI Action Video-cassettes...videotaped lessons that show you graphic presentations of electronic systems, vivid closeups of servicing techniques and professional “shortcuts” to study and replay as often as you want.

You Get TV, VCR, DMM and More Equipment To Keep

You also build your own 25” Heath/Zenith color TV, a state-of-the-art unit that includes infrared remote control, a Time Control Programmer, and the incredible Advanced Space Phone that lets you telephone from your chair. Using the videocassette recorder that's included as part of your training, you learn how to adjust, service and repair these fast-selling units. Your front-loading VCR features up to 6-hour recording capacity, remote control, and programmable touch-button tuning.

The digital multimeter you receive is a truly professional instrument. You use it in the experiments throughout your course and as a key servicing tool on the job. Using the meter along with the NRI Discovery Lab, you'll learn how to measure voltage, current and resistance and how to diagnose all types of servicing problems.

Advanced Systems Demand Advanced Technicians for Service and Maintenance

The art of TV/Audio/Video servicing has taken quantum leaps into the future. Now, successful technicians must understand advanced concepts like digital control, electronic tuning, laser video discs, microprocessors, and more. NRI gives you the training you need for success...state-of-the-art concepts and practical, hands-on experience working with the kind of equipment you'll encounter on the job.

Send For Free Catalog Covering 12 Electronics Courses

Our 104-page catalog gives you all the details. In it, you'll find a summary description of every lesson, and photos and specifications for every item of equipment included in your course. You'll also learn about other fascinating career opportunities in the world of electronics...Microcomputers, Industrial Electronics including robotics, Communications, and more.

Mail the postage-paid card today for your free copy. See how completely and how thoroughly NRI gets you started on your tomorrow today.

NRI SCHOOL OF ELECTRONICS
McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue
Washington, DC 20016
programmed several satellite locations into the unit using a two- or three-digit code and the control box "remembered" where the satellites were.

As you might expect, that development brought with it an entire new wave of problems. Memories would fail (forget!) when there was a power failure or glitch. Dish positioning would be knocked off by a degree or two by a glitch. Power surges would wipe out memory entirely, and the user would be forced to re-program the memory. The problems seemed endless.

Fortunately, virtually all those early problems are now behind us. Modern drives have memories that remember, infrared or UHF wireless remote-controls, and "floating" gimbel-type brackets that transfer the load of the dish away from the motor-driven jack screw. They also have the ability to interface to fully remote-controlled receivers, as well.

As recently as 1983, dealers were reporting in annual TVRO-dealer surveys that "dish movers" were their most frequent problem causes. That's not true anymore. However, pricing still continues to be surprisingly high for that portion of the system.

At dealer pricing levels, simple "east-west" systems with a single switch control run in the $300 and up range. More elaborate systems with memories can cost twice that amount, while those with full remote-control capabilities may cost a dealer.

Perhaps the most significant signs of maturity in the TVRO industry are the warranties now attached to motor-drive and control systems. One year is standard, and some offer even longer full-coverage protection.

Next month, we'll look at more component changes.

Bob Cooper's CSD Magazine has arranged with a number of TVRO equipment suppliers to provide a single-package of material that will help introduce you to the world of TVRO dealership. A short booklet written by Bob Cooper describes the start-up pitfalls to be avoided by any would-be TVRO dealer, in addition, product data and pricing sheets from prominent suppliers in the field are included. That package of material is free of charge and is supplied to firms or individuals in the electronics service business as an introduction to the 1984/85 world of selling TVRO systems retail.

You may obtain your TVRO Dealer Starter Kit free of charge by writing on company letterhead, or by enclosing a business card with your request. Address your inquiries to: TVRO STARTER KIT, P.O. Box 100588, Fort Lauderdale, FL 33310. That kit not available to individuals not involved in some form of electronics sales and service.
OK's Hot Tip for Desoldering Problems

SA-6 DESOLDER IRON

Revolutionary new electric desoldering iron combines the ease and portability of a hand-held, manual, desolder pump, with performance of an industrial desolder station. This unique AC powered compact tool features portable, one-hand desoldering eliminating the need for separate soldering iron and desolder pump. No shop air required. Essential for all tool kits, field service technicians, and repairmen, as well as production applications. Vacuum chamber is easily removed for cleaning or replacement. Replacement tips available. Tool is supplied with SAT-6-059 tip; diameter .059 inch (1.5mm)

FEATURES:
- Self contained suction power and heating element.
- Economical
- Lightweight 4oz. (113gms)
- Compact size 10¼ inches (26cm).
- Replacement nozzles available.

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>INPUT VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-6-115</td>
<td>115V AC 50/60Hz</td>
</tr>
<tr>
<td>SA-6-230</td>
<td>230V AC 50/60Hz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOZZLE</th>
<th>NOZZLE HOLE DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INCH</td>
</tr>
<tr>
<td>SAT-6-059</td>
<td>.059</td>
</tr>
<tr>
<td>SAT-6-070</td>
<td>.070</td>
</tr>
</tbody>
</table>
LETTERS

CORRECTION

In "All About Power Supply Circuits", *Radio-Electronics*, July 1984, I believe an error exists in the schematic shown in Fig. 4. The caption for that figure states that Figs. 3 and 4 are equivalent. Please note that diodes D1 and D2 are connected "across" the whole secondary of T1, whereas diodes D3 and D4 are "across" only one-half the winding. Therefore, +V out will be one-half that of +V out, supposedly. However the circuit shown in Fig. 4 would not work well because the cathode of D3 is grounded.

I enjoy your magazine very much, as long as you do not go "computer happy." I was a fan of *Popular Electronics*, but they went crazy over computers and that turned me right off (I'd rather switch than fight)! Please, minimize your articles on computers. Let's continue to have good material on phone accessories, control circuits, timer circuits, and such, along with explanations of how various circuits function. For example, the "All About Power Supply Circuits" article was great.

EDWARD BALASKI

Torrington, CT

An error certainly does exist in Fig. 4. The caption describes what was supposed to be there. But, as you indicate, diode D3 is shown incorrectly. Its cathode should be connected to the bottom of the transformer.—Editor

SERVICE MANUAL NEEDED

I enjoy your magazine very much and I eagerly await the first of the month for the latest issue so that I can see what new projects I can build and find what new information I can use.

Perhaps some of your readers can help me. I have a Sansui AU

Versatile Lab Power Supply

MODEL 3002A

- 0-30 VDC at 0-2A
- Excellent Regulation
- Ripple & Noise - 500 uV RMS
- Built-in Short-Circuit and Overload Protection

Model 3002A features continuously adjustable current limiting and precision constant voltage/constant current operation with "automatic crossover". This lab-grade unit can also be used as a current regulated power source. Options: 10-Turn Voltage and Current Controls, $25.00 ea. (can be ordered individually).

Also available...TRIPLE MIGHTY-MITE LAB POWER SUPPLY: Three Fully Regulated DC Outputs; two 0-25V/0.5A and one fixed 5V/3A, Variable Tracking & Independent Modes, Dual Panel Meters. Other models to 60 VDC, to 12A.

TERMS: Check, Money Order or COD. COD's $2.00 extra. Add $3.50 for shipping & insurance in 48 states. Please contact our Sales Department for other shipping rates. Illinois residents add 7% sales tax.

Free Literature On Request

ELECTRO INDUSTRIES

4201 W. IRVING PK., CHICAGO, IL 60641

312/736-0999

CABLE CONVERTER PRICE SLASHERS

ONLY $59.95

- 60 Channel Capacity
- P.L.L. Tuning
- 6 Channel Memory
- TV On-Off Feature
- Infra-Red Wireless Remote Control

FACTORY REFURBISHED

- MasterCard & Visa Add 5%
- Checks - Allow 14 Working Days
- Freight Charges: Sent Collect
- Order 20 or More - Freight Prepaid
- Special Price on New Factory Fresh Units - $69.95
- Warranty Not Valid After 15 Days From Receipt

OTHER MODELS ALSO AVAILABLE

- Jerrold JRX-3 - $49.95*
- Jerrold RSC-3 - $39.95*
- Jerrold DRX-3 - $69.95*

*Reconditioned Units With 30 Day Warranty

Phoenix Electronics

1 Midwood
Allendale, NJ 07401
(201)848-8229
The most wanted Oscilloscope...

Hitachi

35 MHz Dual Trace

Hitachi Cat. No. V-355

$599.95

With Probes

OFF-THE-SHELF DELIVERY

Description

Its thin, light, compact design features a large 6 inch rectangular, internal graticule CRT with percent calibrations, autofocus, scale illumination and photographic bezel.

Reward

Eliminates distortion and parallax. High performance. Most cost effective scope around.

MasterCard VISA C.O.D. MoneyOrder Check

C.O.D.'s extra (required 25% deposit) • Add $8.50 for shipping and insurance • N.Y. State residents add appropriate sales tax

Fordham TOLL FREE (800) 645-9518

260 Motor Parkway, Hauppauge, New York 11788 In New York State Call 800-832-1446
EXPANDING THE ZX81

I was working on a project in which an output line is turned alternately high and low under computer control using a Timex/Sinclair 1000. When Neil Bungard’s article on interfacing the ZX81 appeared in the July 1984 issue of Radio-Electronics, I felt a modification of his circuit was just what I needed.

I sat down at my computer to test the program I wrote to accomplish the task. Immediately I ran into trouble. In spite of using only even-numbered addresses as Neil has advised, my program crashed. Experimentation finally revealed that the program ran fine using odd-numbered addresses. Had Neil mislead his readers? No! The problem arose because he only told half the story.

There exists somewhere in the innards of the ZX81 an NMI (non-maskable interrupt) generator. That generator must be on in the slow mode, but off in the fast mode. Evidently Sinclair uses the address line A0 to turn that generator on and off. I was operating in the fast mode, so every time the computer executed an OUT instruction to an even address, it turned on the NMI generator, causing a crash. Neil must have been operating in a slow mode, so every time his computer executed an OUT instruction to an odd address, it turned off the NMI generator, causing a crash.

The rule then is: In the fast mode, our instructions should use only odd addresses, but in the slow mode, our instructions should only use even addresses.

Another caution: The monitor uses hexadecimal output addresses FF, FE, and FD, and hexadecimal input address FE. That means that it will activate output 8 on IC3 and IC4. That could result in undesired outputs and inputs by the normal running of the monitor. Neil has guarded against that by the decoder circuit using IC9 and IC1-c. He also has left open output 8 on IC3 and IC4.

WALTER E. STYLES
Richmond Area Timex/Sinclair Users Group
Chester, VA

MANUAL NEEDED

I received some old equipment from friends, but they did not have the operating manual. Perhaps there are some Radio-Electronics readers who know where I can get a manual and hopefully a schematic for an Electronic Measurement Corp. tube and transistor tester, model 215.

TOM BRACLETT
22258 Gregory
Dearborn, MI 48124
SATELLITE STEREO DEMODULATOR

The correct telephone number of Video Control, who is offering kits of parts for the satellite stereo demodulator described in the October issue of Radio-Electronics, is (206) 693-3834.

ANTIQUE RADIO CLASSIFIED

There is now a publication that may interest the growing number of antique-radio collectors. Beginning in September, 1984 Antique Radio Classified will feature free classified ads for buyers, sellers, and traders of old radios and related items.

Antique Radio Classified will be published nationally each month and will also contain coverage of upcoming radio conventions, meetings, and flea markets for the antique-radio collector.

GARY B. SCHNEIDER
Publisher
Antique Radio Classified
9951 Sunrise Blvd.
Cleveland, OH 44133

INFORMATION EXCHANGE

The Data Processing Amateurs Society of Quebec is the oldest such association in Eastern Canada.

The goal of the association is to have an interesting hobby, and together to increase our knowledge and experience. We do our best to help beginners with meetings, courses, demonstrations, etc.

Our members asked us to try contacting other clubs or associations in Quebec and surrounding areas to exchange experiences, information, and friendship. As over 30% of our members are using modems, we succeeded in organizing our own telecommunications system: TELESAIQ II. We are learning a lot with this project, and it is not over, because we do not have full services.

We are negotiating with other systems and networks to exchange services.

Since yours is one of the most popular publications in the field, we thought of turning to you for assistance. We would appreciate if you could help us by publishing our address so that other similar organizations could contact us.

GERALD BOULET
SIAQ
Societe D’Informatique Amateur du Quebec
C.P. 9242
Sainte Foy, Quebec, Canada G1V 4B1

SCHEMATIC NEEDED

I recently acquired a B&K model 1075 TV Analyst in need of repair. I know it needs a horizontal width/ frequency coil, but I have no other information on the unit itself. I would hope that one of your readers has a schematic and parts list for that older device. I am a student in electronics and would greatly appreciate any and all help other readers could provide.

TERRY B. SCHWARTZ
1864 Eleanor Ave.
St. Paul, MN 55116

POWER-SUPPLY CORRECTIONS

The article, “All About Power-Supply Circuits,” (Radio-Elec-
tronics, July, 1984) contained several significant errors and omissions:

1. The VA rating calculation for a power-supply transformer is not correct for the circuits shown. It should be: Secondary RMS voltage * DC current * 1.2 (CT) or 1.8 (bridge). Also, the transformer regulation factor for the typical small hobbyist transformer is 15-20\%, not the 10\% stated.

2. The PIV rating for the rectifiers is at least twice the secondary voltage, allowing for a safety factor.

3. 3-terminal regulators can rarely be used for their rated current unless “bolted to an anvil sitting on a block of ice.” Without any heat sink, those popular 1-amp “tab” regulators are only good for about 100-200 mA. The heat sink is what really determines the rating of most regulators.

4. A good-quality filter capacitor is important. Audio-grade capacitors, identified by their flimsy leads, are not suited for output currents above ½ amp.

5. Allow adequate ventilation, especially around the power transformer. Keep the filter capacitor and regulator away from it.

6. To prevent current surges from blowing the rectifiers, put a very small resistor in series with one side of the transformer secondary (or center-tap, if you are using it). The value to use is approximately: (secondary RMS voltage)/(20 * rectifier current rating).

7. Safety first! Use a fuse, and locate it before any switch. Ideally, use a grounded power cord, and put the fuse and switch on the “hot” side of the line.

Finally, a construction tip: for low-current supplies, a wall-plug transformer is the safest and usually the cheapest approach.

ALVIN H. NICHTER
New York, NY

ZX81 DESIGN—OKAY!
I’ve just built the ZX81 Interface, (Radio-Electronics, July, 1984). It’s an excellent design, but there is an error in the schematic. For address inputs through IC8 (74LS373), A2 comes in on pin 7, and should leave via pin 6, not pin 5, as shown.

Thank you for the article on the ZX81. Let’s have many more, please!
MERLIN TINKER
Casper, CA

MORE MEDICAL ELECTRONICS
Since you have started printing articles about medical electronics, I’d appreciate some more about the repair of the instruments used in that field. There seems to be a dearth of information about their repair as I have, to this point, only been able to locate one book on the subject. Any articles that could enlighten me further about the care and repair of electronic medical instruments, or even just a suggested reading list, would be most helpful.

ALBERT SHUGZDIS
Arkadelphia, AR

BACKWARD X-RAY
I have read the article by Dr. Fish, “Electronic Measurement in Medicine,” (Radio-Electronics,
September 1984) with interest. On the whole someone outside medicine might not find the article interesting. It is, however very informative. There is one error of note in Fig. 5, page 57. The radiograph (X-ray), is printed backward, making some of the labeling incorrect.

I mention that because I am a Radiographer by profession and things like backward X-rays really stick out.

Keep up the good work. I really enjoy your magazine.
RONALD J. BOHLLAND, R.T.(R)
Toledo, OH

EDITORIAL “AMEN”
I saw your editorial in RadioElectronics, September 1984, “When is a Change not a Change?”, and I say AMEN! There are plenty of magazines that tell about computers—seems like they all do—and that is the sole reason I changed to RadioElectronics a few months ago from another similar magazine. I am a circuit guy, not a button pusher. I realize that computers are great for the non-technical, but there are a lot of us who are technical. Anyhow you get the point.

That particular issue really rang the bell on articles. I liked “Sonic Motion Detector,” (I have been looking for years for this), “Electronic Measurements in Medicine,” “What’s New in Batteries,” “Squarewave Generator Circuits,” and the departments were also of interest.

Congratulations! I think your courage will pay off!
CHARLES DEMING
Mariposa, CA

AMPLIFIER SCHEMATIC NEEDED
A few years ago, I brought a Lafayette LA-324A stereo amplifier from a friend. Last week it burned up due to a power overload. I am interested in rebuilding that amplifier, but the schematic diagram is missing from my records. Is there any reader that can help? I need a copy of the service manual or the schematic diagram. I’d appreciate any help from any source.
ARTURO OTERO BRACERO
P.O. Box 2821-5,
San Juan, Puerto Rico, 00903
Radio Shack Model 4 Computer

An 8-bit, Z80-based personal computer

THE RADIO SHACK (ONE TANDY CENTER, Ft. Worth, TX 76102). Model 4 is a personal computer that will run both TRSDOS and CP/M programs without the need to get into the guts of the computer and attempt some rather hairy and complex circuit retrofits. As such, essentially the Model 4 is a merger of the best features of Radio Shack’s Model III and Model II computers.

The computer is available in three configurations: tape-based at $799; one disk drive for $1099; and two disk drives plus the optional RS-232 I/O for $1299. We will concern ourselves only with the...
The Book-Sized Microcomputer
That’s A Hands On Library Of Hardware And Software Instruction.

MEET THE MICROPROFESSOR

A portable learning center.
Learning shouldn’t be limited to the classroom. That’s why we made the MicroProfessor lighter and less bulky than the average textbook. Supported by easy-to-understand documentation, the MicroProfessor leads you through dozens of experiments. And with a wealth of accessories to choose from, including a printer, EPROM programming board and sound and speech synthesis, there’s virtually no limit to the kinds of applications you can try your hand at.

Custom tailored to a variety of educational needs.
Whether you’re a computer novice or prodigy, interested in guided instruction or independent learning, the MicroProfessor will meet your educational objectives. A teaching tool without peer, the MicroProfessor puts hundreds of hands on lessons in programming, system architecture and circuit design right at your fingertips. Your computer skills will increase dramatically as the MicroProfessor translates important concepts into practical experience.

The most cost-effective instructional microcomputer on the market.
Today, tight budgets are a fact of life and doubly so for educators and students. At under $200.00 including Instruction Manual and AC Power Supply—less than half the price of any competitive product—the MicroProfessor is a very attractive educational resource.

For more information about putting the MicroProfessor advantage to work in your computer education, please write or call:

195 West El Camino Real, Sunnyvale California 94097
Outside California call (800) 538-1542
In California call (408) 773-8400

CIRCLE 265 ON FREE INFORMATION CARD
two-disk model because that offers the user the best value; the others are but way-stations on the way to two disk drives.

Highlights of the two-disk Model 4 include 64K of RAM that can be user-upgraded to 128K, automatic operation in the Model III mode by simply using Model III disks, and a Model 4 mode that features an 80-column × 24-line screen with normal and reverse video, a 4-MHz Z80 CPU, and the ability to run CP/M. Also, the computer will read and write tapes for the Model 100 "briefcase" computer.

The Model 4 is very similar in appearance to the Model III except for color and minor, though important, keyboard improvements. Replacing the "Mercedes gray" color of the previous models—which looks great on a car but awful on a plastic cabinet—is the light beige color common to most modern "high-tech" equipment. The keyboard, though similar to the earlier computers, now features a real control key—there is no longer a need to hold down the shift key simultaneously with an up-arrow or down-arrow key in order to simulate the function of the control key. Also, there are three software-definable function keys, labeled F1, F2, and F3.

The two-disk configuration consists of the basic computer with TRS-80 Version 6.0 and TRS-80 Version 6.0 BASIC, two double-density 5¼ inch disk drives, 64K of RAM (an additional 64K of RAM can be added), and the ROM set from the Model III.

If you are wondering about the Model III ROM set, it's there to let the Model 4 act like a Model III computer. It works this way: The Model 4 is meant to handle both the new TRS-80 Version 6.0 and the CP/M disk-operating systems, both of which require that the full RAM be available from memory address 0000H. Earlier Radio Shack computers, on the other hand, located their operating (driver) routines and BASIC, in ROM, in the first 16K of memory; thus the unavailable RAM was located only in the upper 48K of memory. When the user inserts a Model III disk, the Model 4 senses the fact and automatically switches out the first 16K of RAM and switches in the Model III ROM's, causing the Model 4 computer to function as a Model III. In that way, Radio Shack has retained complete compatibility with the software for their earlier computer. When the computer is run in the Model 4 mode, the full 64K of RAM is available.

Since the Z80 microprocessor can only address 64K of memory at a time the 64K RAM upgrade (for a total of 128K) is bank-switched in

A breakthrough... Global Data Breakout Breadboards.

Now, reroute data transmission lines in any pattern... faster than ever before!

Data Router Breakout Breadboards from Global Data represent a significant breakout box design innovation. With our solderless breadboard interface area, rewiring, testing and monitoring data transmission lines is as quick and easy as slipping a wire lead into a contact point. To change the routing, simply pull out the wire and insert it into another contact point. That's all there is to it.

You can reroute signals in any configuration, even split signals and multiple loopback connections. There is a wide variety of possible interface connections for up to 24 lines.

Choose from three Data Router models: Our basic 125 with the unique Global breadboard interface area, the 225 with 8 LED's for monitoring signals on any 8 lines, and the 325 with all of these features plus a gigantic patchboard area for building test fixtures, modems, timers and switches.

- All Data Routers have two sturdy mounted 25 pin RS-232 standard connectors for simple, fast installation. The solderless breadboarding area has nickel-silver contact points, which assures sound electrical connections and trouble-free performance indefinitely. EIA signal mnemonics are screened on the face of each Data Router for ready reference.
- And, our breakout breadboards are priced so low that you can always have several on hand.
- Save time, save energy and save money. Call our Product Availability Line: 1-800-243-6077 for the name of your local distributor.

GLOBAL-DATA
A DIVISION OF GLOBAL SPECIALTIES
An Interface Electronics Company
70 Fulton Terrace, New Haven, CT 06512
(203) 624-3103 TWX: 710-465-1227

CIRCLE 62 ON FREE INFORMATION CARD
and out by the software. It can be used as straight additional memory, or all or part can be used to function as a simulated disk (RAM disk), or as a printer spooler. If you don’t install the optional 64K RAM expansion, the computer’s TRS80’s operating system can use part of the basic 64K of memory for both RAM disk and spooling. (Spooling is a way to print and use the computer at the same time; it avoids tying up the computer when printing.)

By itself the Model 4 is a formidable machine, but a complete package consisting of the Model 4, CP/M (from Montezuma Micro, Box 32027, Dallas, TX 75232), and Newdos 80 (for those who use Model III and Model I software) is hard to beat. Newdos 80 is available from Apparit Inc. (4401 South Tamarac Pkwy, Denver, CO 80237). The complete package is ideal for schools, small businesses, or anyone who needs a lot of computing power at a reasonable price. R-E provides line conditioning to guard against powerline glitches.

The power director
The power director provides three functions. First of all, it is a six-outlet power strip. Most computer installations have a common problem—the number of power cords exceeds the number of available power outlets. The power director allows your computer and all of its peripherals to be plugged into one central location, eliminating powerline tangles in the process. A single line leads from the unit and is to be plugged into a grounded outlet.

Each of the outlets is individually controlled by front-panel mounted rocker switches. If you leave the computer’s and/or peripherals’ power switches permanently on, you can use those rocker switches to turn any device connected to the power director on or off. Each of the rocker switches has a pilot light to help

Computer Accessories

P12 Power Director

End powerline woes, add powerline conditioning, and centralize control of your computer system with this device.

CIRCLE 6 ON FREE INFORMATION CARD

A QUALITY TRIPLE-REGULATED POWER SUPPLY AT A LOW, LOW PRICE!!

This DC triple regulated variable power supply has all the features you could ask for plus a full 1 year guarantee. Fully adjustable from 1½V to 35VDC! Three completely independent supplies that offer many advantages! They can be either a pc’s, supply or a neg. supply...they can also be stacked in series so that a 5V and two 15V supplies can total a 35VDC supply or any combination of the three...after one of the terminals is grounded to give it a reference)...for the first time you can now purchase this American made fully adjustable power supply at a price that is one-half of what you’d expect to pay!

SPECIFICATIONS—

- Protection built in, current limiting, with thermal shutdown.
- Power: 108-135 VAC.
- Dimensions: 8½” x 3¼” x 7¼” (WxHxD)
- Wood grain finished metal case.
- Weight: 4 lbs. 9 ozs.
- Lighted on/off power switch, easy-to-read Voltmeter and large binding posts.
- Warranty: one year full replacement warranty from date of purchase.

MODEL PS101 FULLY ASSEMBLED & TESTED!
- Made In The United States -

$119.88
- Year 1 Replacement Warranty -

DISTRIBUTOR AND REPRESENTATIVE INQUIRIES INVITED

E.W. ENGINEERING, INC.

VISA, MASTERCARD, AMEX TELEPHONE ORDERS ACCEPTED!
6 Herman Drive, E. Granby, CT 06026 □ 203/651-0285

CIRCLE 250 ON FREE INFORMATION CARD
you quickly identify which switches are on or off. Finally, there is a master switch that can be used to turn on or off the entire system.

Last, and perhaps most important, the power director contains line-conditioning circuitry. The level of protection afforded by the unit exceeds that specified by the 1983 IEEE industry guide for surge voltages in low-voltage AC circuits (IEEE-587). The surge-suppression device used in the power director is General Semiconductor's TranZorb. That device responds in less than a nanosecond to suppress transients. An RF filter is used to handle RF noise. Each outlet has line-to-line and line-to-ground protection against voltage spikes, surges, RF noise, etc.

Other features of the unit include a digital clock and a media (5½-inch floppy disk) storage slot. An option available is a Data Director switch box. That switch box can direct the data from your computer's serial or parallel port to any of up to 3 peripherals.

The unit is rated for a maximum current of 15 amps and a maximum power capacity of 1800 watts. A circuit breaker is used to protect against problems caused by equipment overloads. The line-conditioning circuitry is rated for a maximum transient peak-current of 4500 amps. The RF filter has a frequency response (stop band) of 0.15 to 30 MHz. The peak-to-peak power dissipation of the the unit is rated at 10,000 watts. Maximum transient voltage is 6000. Clamp voltage is 276 volts, maximum, at 102 amps. Clamping time, as indicated earlier is less than one nanosecond.

Computer Accessories

<table>
<thead>
<tr>
<th>OVERALL</th>
<th>PRICE/VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASE OF USE</td>
<td>Poor</td>
</tr>
<tr>
<td>INSTRUCTION MANUAL</td>
<td></td>
</tr>
</tbody>
</table>

The P12 power director measures $19\frac{1}{2} \times 2\frac{1}{4} \times 13\frac{1}{2}$. It is sized to fit atop an IBM PC system. Other models of the power director, sized to be stacked with disk drives, or to serve as a monitor stand, are available. Those units have fewer outlets and differing specifications however. No weight was specified for the unit, but it is heavy, as the beige cabinet is made primarily of steel.

The one major complaint we had about the unit was the stiffness of the switches. Because of that stiffness, they were exceptionally difficult to operate. Perhaps that stiffness will ease with time and use, but we would have liked to have seen better quality switches used.

The “manual” that accompanied the unit was also quite skimpy, offering little besides some basic operating instructions, specifications, and warranty information.

The P12 power director certainly does make your computer setup more attractive and easier to use, and it has a suggested retail price of $199.
NEW IDEAS

Multiple-outlet control circuit

Almost every electronic device is used with one or more different accessories. For example, an AM/FM receiver might have a tape deck, equalizer, and turntable connected to it. Or you may have a video system consisting of a TV set, VCR, video enhancer/stabilizer, and so on.

Each of those units has its own power-on switch, which means that if you want use one or more of those components in conjunction with the main unit (receiver or TV set), you'll have to turn on each component individually. That means that there is always the possibility that one or more components will be accidentally left on when you're finished.

There are many ways to get around that problem—for instance, you could use one of several commercially available switched outlet-strips, which can cost $15 and up. Those products (often containing a surge suppressor) are fine for things like computers; but for other electronic devices, like stereos or TVs, they're simply not needed. There is, however, another way to go about it and save some bucks in the process.

Outlet control circuit

Figure 1 shows a circuit that can be used to turn on several components of an audio or video system at the same time. The beauty of that scheme is that it can be built using a handful of easy-to-get parts. But that's not all: With a little imagination and some experimenting, it can be made to do the same things that the commercial products do, making it more than worth the parts cost and time spent building it.

First you should note that the circuit draws no standby current; in other words, when a device plugged into socket SO1 is turned off, no power is supplied to SO2. You may be wondering why no switch is included in the 110-volt AC line. Well, the answer to that question will become clear as we discuss the circuit's operation.

One more point: TI is a 6-volt transformer with its primary and secondary connected in reverse (i.e. the secondary in parallel with R1 and the primary feeding the Triac gate). Resistor R1 is chosen according to the load connected to SO1: If the SO1 load is 125-150 watts, R1 should be a 1-ohm, 10-watt unit. For loads of 250-300 watts, R1 should be a 0.25-ohm, 2.5-watt unit.

I agree to the above terms, and grant Radio-Electronics Magazine the right to publish my idea and to subsequently republish my idea in collections or compilations of reprints of similar articles. I declare that the attached idea is my own original material and that its publication does not violate any other copyright. I also declare that this material has not been previously published.

Mail your idea along with this coupon to: New Ideas Radio-Electronics, 200 Park Ave. South, New York, NY 10003
watts, use a .5-ohm, 10-watt resistor or you can parallel two 1-ohm, 10-watt units if desired.

When the device connected to SO1 is turned off, no current will flow because that leg of the circuit is open and therefore, there is no voltage developed across R1. (Remember the power switch on any device is used to complete a circuit.) Because there is no voltage drop across resistor R1, no voltage is fed to transformer T1. When the device plugged into SO1 is turned on, current flows to SO1 through resistor R1 causing a small voltage to be developed across the resistor.

The voltage across R1 is then applied to the secondary of T1 (which is used as a step-up transformer), resulting in a higher output voltage at its primary. The output from T1 is fed to the gate of Triac TR1. When TR1 is turned on, power is supplied to the load at SO2. That means that the on-off function of any device connected to SO2 is controlled by the power switch of the SO1 load. Therefore, it is not necessary to include one in the AC power line.

Additional sockets may be placed in parallel with SO2 so that any other device that you may want to use in conjunction with the main unit at SO1 may be powered up in the same manner. Just keep the 6-amp limitation of the Triac and the total current requirements of the load in mind when adding extra sockets. Also, the current rating of the Triac assumes proper heat sinking. If the 6-amp limit is a problem, you may want to check into some of the higher rated Triacs, like those listed in the ECG Replacement Guide.

Although it is not necessary, you may want to add switches in series with the extra sockets, so that any device connected to those sockets may be turned off from a central location as needed. A final note: The circuit should be mounted in a case for safety’s sake. —Theodore Stern
The fast, easy and low cost way to meet the challenges of today’s electronic innovations. A unique learning series that’s as innovative as the circuitry it explains, as fascinating as the experiments you build and explore.

From digital logic to the latest 32-bit microprocessor, the McGraw-Hill Contemporary Electronics Series puts you into the electronic picture one easy step at a time. Fifteen unique Concept Modules, sent to you one every 4-6 weeks, give you a handle on subjects like optoelectronics, robotics, integrated circuits, lasers, fiber optics and more.

Each Concept Module goes right to the heart of the matter. You waste no time on extraneous material or outdated history. It’s a fast, efficient, and lively learning experience...a non-traditional approach to the most modern of subject matter.

Unique Interactive Instruction

With each module, you receive a McGraw-Hill Action Audio Cassette. Each tape is a dynamic discussion that drives home the key facts about the subject. Your learning experience is reinforced through interaction with vividly illustrated text, audio cassettes, and actual electronic experiments. Indexed binders preserve backup material, notes, and tapes for convenient referral.

Perform Experiments in Contemporary Electronics

Throughout your series, laboratory experiments reinforce every significant point. This essential experience...dynamic, hands-on demonstrations of theory in practice...will help you master principles that apply all the way up to tomorrow’s latest VLSI (Very Large Scale Integrated) circuitry.

In your very first module, you’ll use integrated circuits to build a digital oscillator, verifying its operation with a light emitting diode (LED). You’ll learn to identify passive and active components, understand concepts common to all electronic circuits.

For Anyone Interested in Electronics

The Contemporary Electronics Series is designed for anyone from hobbyist to professional. It’s for you if you’re looking for new fields of interest...if you’re a teacher who wants an update in contemporary circuits...a manager or supervisor in an electronics plan...a doctor, an engineer, a chemist who finds electronics playing an increasingly important role in your work. It’s even for electronics engineers or technicians who feel their training needs freshening up. It’s the quickest, most convenient, probably least expensive way to do it. And the only one that gives you hands-on experience.

15-Day No-Risk Trial

To order your first module without risk, send the postage-paid card today. Examine it for 15 days under the terms of the order form and see how the Contemporary Electronics Series gets you into today’s electronics. If card has been used, write us for ordering information.

McGraw Hill
Continuing Education Center
3939 Wisconsin Ave.
Washington, D.C. 20016
Measures frequency to 1.2GHz

With period, period average and totalize functions too, for only $750

The B&K-PRECISION Model 1855 is a high accuracy multifunction counter with ±1 ppm temperature stability (TCXO), with all these features:

- 5 Hz to 1.2GHz range
- 0.5 µS to 200,000 µS period range
- Totalizes to 99,999,999
- Selectable resolution • 8 digit LED display
- Low pass filter • Display hold
- Switchable X1 X10 attenuator
- Remote start-up
- kHz, MHz, µSEC, Gate and overflow indicators

For measurements to 520MHz, the Model 1851, with the same features as the Model 1855, sells for $575.

Both Models are available for immediate delivery from B&K-PRECISION distributors.

DYNASCAN CORPORATION
6460 West Cortland Street
Chicago, Illinois 60635 • 312-889-9087
International Sales: 800-848-6259

The model HX750, is a six-channel hand-held scanner that can monitor activity in six popular bands—including such services as police, fire, public safety, aircraft, business, and amateur 2-meter bands. Channels can be scanned automatically at about 15-per-second, or stepped manually.

Individual channel lock-out switches temporarily skip over unwanted channels. LED's indicate which channel is being monitored.

The model HX750 comes with an AC adapter/charger, a flexible (“rubber ducky”) antenna, and a wire antenna. It offers both a built-in speaker and an earphone jack for private listening. It can be operated from a 6-volt external DC power-supply, or four standard or rechargeable AA batteries (not included). Current drain is 16 mA (stand-by, squelch on) to 70 mA at full audio output. The unit is FCC-certified (part 15, subpart C); it measures 3¼ × 5½ × 1 inches and

CIRCLE 11 ON FREE INFORMATION CARD
MICROCONTROLLER, programmable electronics, ounces weighs approximately nine ounces (without batteries). It is priced at $159.95.—Regency Electronics, Inc., 7707 Records St., Indianapolis, IN 46226-9989.

MICROCONTROLLER, the model K8E is an enclosed, stand-alone programmable-control system that features real-world inputs and outputs. It is configured as a programmable controller, data logger, or interface device; both transducers and AC devices may be connected directly. Included are high and low level A/D inputs (8 channels), numerous digital-control lines, parallel and serial ports, and solid-state power relays. The controller is programmed in its resident BASIC interpreter through any terminal or CRT; no "programmer" or host system is needed. Sockets for up to 16K of ROM/EPROM or RAM are provided.

The model K8E runs on 2-volts DC or 24-volts DC and is priced at $599.00.—HHS Microcontrollers, 5876 Old State Road, Edinboro, PA 16412.

100-MHZ OSCILLOSCOPE, model 1580 features dual time-base circuitry and 5 mV/div vertical sensitivity over the 100-MHz bandwidth with 1-mV/div vertical sensitivity to 50 MHz in the × 5 mode. The V mode can be used to display two signals unrelated in frequency. Other features include Z-axis input; Channel-1 output; calibrated delayed sweep; X-Y operation; Channel-2 invert; 20-MHz bandwidth limiter, and a variable trigger hold-off that permits stable observation of complex pulse trains.

The user can select from 23 calibrated sweep-time ranges from 0.5 s/div to 20 ns/div in a 1-2-5 sequence. Sweep time is fully adjustable between calibrated ranges. To allow closer examination of waveforms, a ×10 sweep-magnification feature is provided.

The triggering circuitry offers five trigger sources: CH1, CH2, external line, and V MODE. In the V MODE, each waveform displayed becomes its own trigger, thereby allowing steady display of two signals unrelated in frequency. Signals are displayed on an 8 × 10 div (1 div = 10mm) rectangular CRT with internal graticule and 16-kilovolt accelerating potential.

The model 1580 is priced at $1,595.00.—B&K Precision/Dynascant Corporation, 6460 West Cortland Street, Chicago, IL 60635. R-E
Where's Your ELECTRONICS Career Headed?

The Move You Make Today Can Shape Your Future

Yes it's your move. Whether on a chess board or in your career, you should plan each move carefully. In electronics, you can move ahead faster and further with a

B. S. DEGREE

Put professional knowledge and a COLLEGE DEGREE in your electronics career. Earn your degree through independent study at home, with Grantham College of Engineering. No commuting to class. Study at your own pace, while continuing your present job.

The accredited Grantham non-traditional degree program is intended for mature, fully employed workers who want to upgrade their careers...and who can successfully study electronics and supporting subjects through

INDEPENDENT STUDY, AT HOME

Free Details Available from:

Grantham College of Engineering
10570 Humboldt Street
Los Alamitos, California 90720

Independent Home Study Can Prepare You

Study materials, carefully written by the Grantham staff for independent study at home, are supplied by the College, and your technical questions related to those materials and the lesson tests are promptly answered by the Grantham teaching staff.

Recognition and Quality Assurance

Grantham College of Engineering is accredited by the Accrediting Commission of the National Home Study Council.

All lessons and other study materials, as well as communications between the college and students, are in the English language. However, we have students in many foreign countries; about 80% of our students live in the United States of America.

Grantham College of Engineering
R-1-85
10570 Humboldt Street, Los Alamitos, CA 90720

Please mail me your free catalog which explains your B.S. Degree independent-study program.

Name________________________ Age__________

Address________________________

City________________________ State__________ Zip__________
Get rid of switching woes, and that “pile of spaghetti” in back of your TV set, with the “Select-A-Matic” RF switcher.

In the dim pre-history of the electronic age, just after the disappearance of the dinosaurs, the family television set had but one simple job—displaying broadcast TV signals (although many of you probably thought that it was to keep your children from doing their homework).

Not any more.

Today’s family television set has a whole new set of functions. And it sometimes seems that not a day goes by without the development of yet another device that uses the tube for a display. Computers, videotapes, VCR’s, and videogames all compete with the simple antenna for access to the back of the set. But since the input on most television sets is limited to the two little screw terminals for the antenna, you can find yourself doing a lot of wire swapping anytime you decide to watch a tape or blast a few aliens.

That is, unless you build the Select-A-Matic. That device can take any one of eight inputs and assign it to any one of four outputs. Not only will that make it much easier to organize things, it will also help eliminate the usual pile of “spaghetti” found at the back of the set. Keyboard entry and a visual display make operation of the Select-A-Matic a snap. And even if you don’t have a lot of interest in RF switching, the theory and design can easily be incorporated into audio, appliance control, or just about any area where you need to choose among several devices.

The theory behind the Select-A-Matic is evident when you take a look at Fig. 1, the block diagram of the circuit. One input and one output are selected from a keyboard, and the control signal that results is stored in a latch at the selected part of the circuit. It’s really that simple. There’s nothing exotic in the parts list and the basic design of the Select-A-Matic is easy to adapt to a whole host of other uses.

The simplicity of the circuit can be seen further in Fig. 2, the schematic. Since we’re dealing with eight inputs and four outputs, there are 32 possible combinations we have to be able to select. Although there are several ways to handle it, the most straightforward approach is to arrange the I/O in a matrix with the inputs on the columns and the outputs on the rows as shown in Fig. 3. Selecting an input turns on the whole column and selecting an output turns on a whole row. That scheme routes the selected input exclusively to the selected output.

The easiest way to see how that theory is translated from ink to electronics is to go
FIG. 2—SCHEMATIC DIAGRAM of the unit. Note that the unit is built on five PC boards; which components mount on which boards is clearly noted in this illustration. Refer to the text for grounding considerations.
The operation of the row selector is much the same as the column selector. Closing one of the OUTPUT SELECT switches S11 to S14, causes the selected IC to store whatever information is presented at its inputs. Since the outputs are always enabled, they follow the inputs, and the selected control signals are available on the appropriate line of the 32-bit-wide output bus. Selecting one input and one output, therefore, will turn on one of the output control lines. Since the outputs are grouped in four rows of eight lines, selecting an output for IC4, for example, won't change the information stored in IC5 to IC7, the other output latches.

Turning off the outputs can be done one of two ways. You can press the CLEAR in key and then select the output you want to turn off. That will store a low in each cell of the output latch and turn off everything controlled by it. Closing switch S10 will turn off all the outputs as well as clearing the input latch, IC3. That happens because all the CLEAR pins of the 4508's are tied together and pressing S10 brings them all high. Ordinarily they're controlled by IC1-c. That gate is set up as a power-on reset to make sure that all the latches are cleared when the Select-A-Matic is first turned on. Resistor R5 and capacitor C2 generate a negative pulse at power up. The pulse is cleaned up and inverted by IC1-c, causing a short positive pulse to be sent through R3 to all the clear pins of all the latches. After that, the clear pin is held low unless S10 is closed.

Each of the output control lines goes through a 1N914 diode and an LED. Both of these devices help isolate the digital control circuitry from the things they're controlling. The LED's also serve to show which outputs are turned on, but it's interesting to note that they're also used as old fashioned diodes. The great majority of the circuits that have LED's in them use them only as status indicators of one kind or another and it's easy to forget that they're really diodes, not some kind of long lasting light bulb. One side benefit of using them like this is they don't have to have their own current limiting resistors. You can't forget about that altogether because some other part of the circuit can take care of it.

The RF switching of the Select-A-Matic is a straightforward application of diode switching. Figure 4 makes it a lot easier to see what's going on. The input signal passes through a capacitor to isolate the source of the signal from the DC control voltages generated by the Select-A-Matic. The next thing the signal sees is a Schottky diode that does the actual switching in the circuit. As long as the Select-A-Matic has the output turned off, the diode is turned off. When the output is turned on, the diode is forward biased and starts conducting. The input RF passes through the diode, the output capacitor, and shows up at the output connector of the Select-A-Matic. The resistor not only provides the DC return for the Schottky diode, it also serves as the current limiter for the LED.

The layout
As you can see, the basic operation of the Select-A-Matic is easy to understand and, although we're using it to switch RF, the same approach can be used to switch just about anything. The PC layout (the foil patterns for the boards are shown in Figs. 5, 6, and 7) was designed with the aim of making the Select-A-Matic as versatile as possible. All the digital control circuitry is located on the main logic board (see Figs. 5 and 6). The output bus shows up at the far end of that board and is grouped conveniently in four groups of nine solder pads—the ninth connection is system ground. If you want to switch audio signals, for example, you only have to design your analog I/O (to replace the RF I/O used by this project) and connect it to the logic I/O on the logic board of the Select-A-Matic.

The I/O boards of the Select-A-Matic (see Fig. 7) have female connectors (see Fig. 8) to mate with right-angle male connectors on the logic board making the assembly of the whole unit a plug-in operation. The connectors used are header strips with 0.1-inch spacing. Of course you can replace the board connectors with wire, but since we're switching RF, you'll have to be really careful about length, layout, and shielding. The frequencies being switched by the Select-A-Matic can go up as high as 800 MHz, the top of UHF, and signal behavior can get really strange when you get up in that kind of rarified atmosphere. Stray capacitance, leakage, and some unplanned-for resonance are only a few of the pitfalls that can completely foul up the operation of the circuit. If you take a look at the foil pattern for the I/O boards, you'll see that component leads are kept as short as possible and several options are provided for handling
A ground plane is provided for both the RF ground, (at the top of the board), and logic ground, (at the bottom of the board). The answer to how you should handle this is a resoundingly unsatisfying "it depends." There are as many theories about grounding as there are about why the dinosaurs disappeared. The best approach is to try various things and decide what works best. It pains us to say this, but as far as this problem is concerned, a logical approach is no help whatsoever. Anyone who uses a simple dipole antenna for FM knows that there is a prescribed way to orient it. They also know that the best orientation is usually found by bunching it up and throwing it on the floor.

Pads are provided on the I/O board to connect RF and logic ground as well as mounting holes if you want to surround all the components on the RF circuit with a metal shield. You should use shielded cable to go from the chassis-mounted F-connectors at the back of the unit to the I/O boards. There are places on the I/O board to connect the cable shield (see Fig. 9). But whether connecting the shield there, elsewhere, or nowhere works best is something you'll have to find out by experiment.

For what it's worth, here's what happened in our case. We had a lot of trouble with crosstalk when we first assembled the Select-A-Matic. We got rid of it completely by lining the inside of the case with aluminum foil (see Fig. 10). That tied together all the RF grounds at the chassis-mounted F-connectors. We connected the shield of the cable on the case side but left it unconnected at the I/O boards. Jumprers on the I/O boards were used to connect the RF and logic ground. That eliminated all of our crosstalk problems. If it had not, the next step would have been to build shields for the I/O boards—probably with aluminum foil at first and then with copper foil so we could solder a connection from the shield to the board. Fortunately, that nightmare was unnecessary in our case.

Since signal strength in our location is very good, the slight loss of signal through the Schottky diodes didn't present us with any problem. You may find that to be different—it all depends where you live. In general, signals that come in well won't be degraded much by putting the Select-A-Matic in the signal path. If, however, you're looking at reception that's marginal even on a good day, you've got a problem. You can use the Select-A-Matic to handle home-grown RF from such things as VCR's, videogames, and the like, but broadcast signals are probably out of the question unless you add an RF amplifier to the Select-A-Matic output lines. That can be a one-transistor circuit or anything you need to get the job done.

Construction

There's nothing especially difficult about constructing the Select-A-Matic if you use PC boards. As previously mentioned, the foil patterns for that board, one of which is double-sided, are shown in Figs. 5, 6, and 7; the parts placement diagrams are shown in Figs. 9 and 11. Wirewrapping or breadboarding are unsuitable because of the frequencies running around the circuit. The breadboarded version we built worked, but the performance of the circuit was terrible. When it was put on PC boards, noise, crosstalk, rejection, and all the other things that had been a problem completely disappeared. Remember, CMOS digital signals are just about noise immune—even if you grind the wires into the ground with your heel. Look cockeyed at RF and the whole circuit can go bananas.

The power supply for the Select-A-Matic is designed to be located elsewhere. All you've got is a jack for a small wall unit that puts out more than 5- but less

![Diagram](image-url)
than 7-volts DC with a reasonably small amount of ripple. If you use one that’s really noisy, you can put a nice chunky capacitor across the pins of the jack on the chassis. If it’s really a problem isolate the circuit by putting a resistor in series between the power supply and the Select-A-Matic—you can use the power jack for that as well. Since the whole circuit draws less than 20 mA, a value around 200 ohms should be in the ballpark. You can also leave out the protection diode on the +V line, but it’s always better to be safe than sorry.

The switches used in the Select-A-Matic are soldered directly to the logic circuit board. They’re made by Oak Switches and the pin spacing on the board was designed to accommodate them.

Those switches are brand new (and a special thank you to Henry Richter, Inc. for providing them to us for use in this project), but should be available from most Oak distributors by the time you read this. If you have a hard time finding them, you can make up a wiring harness and locate the switches off the board. That’s true of LED33, the power pilot-light. Just make sure you keep the leads straight and remember that the current limiter for that LED, R14, is located on the board.

When you’re assembling the board, watch the polarity of all the diodes, especially the Schottky diodes. These are a lot more expensive than your garden-variety diodes and it’s distressing, to say the least, to break one when you solder it. We used those diodes because they’re fast enough and have a low enough turn on voltage to be perfect for UHF mixing. Although we haven’t tried it, IN914 or IN34A germanium diodes could be used as well, but we don’t know how far up the spectrum you’ll be able to go before signal loss gets excessive. All we can tell you is they work for channel three but we don’t know if they can even make the frequency jump found around Channel 6. If you want
to try them, go ahead.

Since the logic board is double-sided, you'll have to solder feedthroughs from one side of the board to the other. Thread hookup wire back and forth through the indicated holes (marked with an asterisk in Fig. 11), solder on both sides and then cut it off. We tried to do all the side jumping on component legs, but there aren't a lot of components on the board so there are quite a few stand alone feedthroughs.

Use IC sockets, caution, and common sense to keep potential problems from the board. And make sure you use a low-wattage iron when you're soldering the diodes—glass-cased diodes are really fragile.

One note on the I/O board. While there are four such boards required, only one is shown in the interest of space. All four boards are identical. In other words, where board 1 (shown) uses eight 12-pF capacitors (C3-C10), board 2 (not shown) uses eight 12-pF capacitors (C11-C18) and so on. A quick look at the schematic (Fig. 2) should help remove any confusion, which components go on which board is clearly shown there.

Troubleshooting

If the unit doesn't work when you get it all assembled, and it probably won't the first time, use all the standard troubleshooting techniques. The most suspect things are mechanical—solder bridges, bad joints, components in backwards, and all of the rest of the usual stuff. If everything seems OK as far as that goes, then start suspecting the components. Is the clock clocking? Are signals showing up where they should?—but you've heard all of that before. Exercise simple caution and you shouldn't have any major problems (famous last words). Actually, though, the circuit is simple enough to severely limit the number of problems you can have. Save all your energy for figuring out how to take care of the ground.

If you find that nothing you do will solve the kinds of RF problems we talked about before, you always have the option of substituting small relays for the Schottky diodes and capacitors (RF). That kind of last resort solution should work no matter what the problem is. And you'll be able to switch anything—including audio and video. Another benefit you'll get is that the coil resistance of the relay will probably be great enough to work as a current limiter for the LED's.
WE ALL KNOW WHAT THERMISTORS ARE. The name "thermistor" itself gives us a good idea: THERmal resISTOR—a device whose resistance changes with temperature. While you might be familiar with those devices from building one of the projects you’ve seen in Radio-Electronics that used them, do you really know how to design with them?

Thermistors are highly nonlinear—and often only loosely defined—devices. That’s the reason why even many experienced engineers and circuit designers do not feel at ease with them. But once you get familiar with them, you’ll find that thermistors are actually quite straightforward. That’s what this article is for: to help you become familiar with thermistors. This month, we’ll study the basics of thermistors—how they’re made, what types are available, the equations and specifications that describe them, and how they typically behave. After we go through the basics, we’ll present design techniques, circuit examples, and applications ideas.

Thermistor basics

We should start off by saying that not all devices that change resistance with temperature are called thermistors. For example, resistance thermometers are made from small, wirewound coils or from deposited metal films. While they are temperature dependent, they don’t behave like thermistors. The term thermistor is generally reserved for thermally sensitive semiconducting devices.

There are two general classes of thermistors: NTC (Negative Temperature Coefficient) and PTC (Positive Temperature Coefficient). There are two distinctly different types of PTC thermistors manufactured. One is produced by means similar to NTC thermistors, the other is made of silicon. We will cover PTC’s only briefly, reserving most of the space for the much more common NTC’s. In fact, from this point on, unless we specify otherwise, we will be talking about NTC-type thermistors.
NTC thermistors are narrow-range, highly sensitive, nonlinear devices whose resistances decrease with increasing temperature. Figure 1—a curve relating resistance change to temperature—shows typical resistance-temperature characteristics. The sensitivity is about 4–5%/°C (1°C = 2.5°F). A wide range of resistance is available, and resistance changes may be many ohms or even kilohms per degree.

![Graph of Negative Temperature Coefficient Thermistors](image)

FIG. 1—NEGATIVE TEMPERATURE COEFFICIENT thermistors are very sensitive and highly nonlinear. Res may be ohms, kilohms, or megohms.

Basically, thermistors are semiconducting ceramics. They are formed from powdered metal oxides (usually nickel and manganese oxides), sometimes with small amounts of other oxides added. The powdered oxides are mixed with water and various binders to form a slurry, which is formed into the desired shape and sintered (fired) at temperatures above 1000°C (1832°F). A conductive metal coating (generally silver) is fired on, and leads are added. The finished thermistor is usually coated with epoxy or glass, or otherwise packaged.

![Thermistor Assemblies](image)

FIG. 2—A BROAD VARIETY OF thermistor styles and assemblies are available. Shown here are some of the more common.

As you can see from Fig. 2, there is a wide variety of thermistor styles available. Those styles include discs and washers from under 0.1 inch to an inch or so in diameter, and rods of various dimensions. Some thermistors are formed first as large, flat sheets, then diced to form squares. Very small bead thermistors are made by firing a drop of the slurry directly on a pair of high-temperature platinum alloy lead wires, then dipping the thermistor in glass to coat it.

Typical Specifications

To say “typical specifications” is misleading—there are very few typical specifications for thermistors. The wide variety of thermistor styles, sizes, shapes, resistances, and tolerances that are available creates an equally wide variety of specifications. What’s more, thermistors offered by different manufacturers often are not interchangeable with one another.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>100Ω @ 25°C</th>
<th>1Ω @ 25°C</th>
<th>10K @ 25°C</th>
<th>1MEG @ 25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>-80°C (−112°F)</td>
<td>14.47K</td>
<td>278.80K</td>
<td>3558K</td>
<td>3966K</td>
</tr>
<tr>
<td>-70°C (−94°F)</td>
<td>7475</td>
<td>132.60K</td>
<td>1694K</td>
<td>2314K</td>
</tr>
<tr>
<td>-60°C (−76°F)</td>
<td>4066</td>
<td>66.78K</td>
<td>845.3K</td>
<td>1299K</td>
</tr>
<tr>
<td>-50°C (−58°F)</td>
<td>2315</td>
<td>35.39K</td>
<td>441.3K</td>
<td>825.3K</td>
</tr>
<tr>
<td>-40°C (−40°C)</td>
<td>1374</td>
<td>19.64K</td>
<td>239.8K</td>
<td>479.8K</td>
</tr>
<tr>
<td>-30°C (−22°F)</td>
<td>846.0</td>
<td>11.35K</td>
<td>135.2K</td>
<td>278.8K</td>
</tr>
<tr>
<td>-20°C (−4°F)</td>
<td>538.9</td>
<td>6815</td>
<td>78.91K</td>
<td>157.8K</td>
</tr>
<tr>
<td>-10°C (14°F)</td>
<td>354.1</td>
<td>4232</td>
<td>47.54K</td>
<td>95.05K</td>
</tr>
<tr>
<td>0°C (32°F)</td>
<td>239.2</td>
<td>2710</td>
<td>29.49K</td>
<td>58.95K</td>
</tr>
<tr>
<td>10°C (50°F)</td>
<td>165.9</td>
<td>1785</td>
<td>18.79K</td>
<td>37.49K</td>
</tr>
<tr>
<td>20°C (68°F)</td>
<td>117.7</td>
<td>1206</td>
<td>12.26K</td>
<td>25.95K</td>
</tr>
<tr>
<td>30°C (86°F)</td>
<td>85.4</td>
<td>834.0</td>
<td>8.194K</td>
<td>16.49K</td>
</tr>
<tr>
<td>40°C (104°F)</td>
<td>63.1</td>
<td>589.5</td>
<td>5.592K</td>
<td>11.49K</td>
</tr>
<tr>
<td>50°C (122°F)</td>
<td>47.5</td>
<td>424.8</td>
<td>3.893K</td>
<td>7.792K</td>
</tr>
<tr>
<td>60°C (140°F)</td>
<td>36.4</td>
<td>311.9</td>
<td>2.760K</td>
<td>5.592K</td>
</tr>
<tr>
<td>70°C (158°F)</td>
<td>28.3</td>
<td>233.0</td>
<td>1.990K</td>
<td>4.190K</td>
</tr>
<tr>
<td>80°C (176°F)</td>
<td>22.3</td>
<td>176.9</td>
<td>1.456K</td>
<td>2.890K</td>
</tr>
<tr>
<td>90°C (194°F)</td>
<td>17.8</td>
<td>136.2</td>
<td>1.084K</td>
<td>2.190K</td>
</tr>
<tr>
<td>100°C (212°F)</td>
<td>14.3</td>
<td>106.4</td>
<td>0.8168</td>
<td>1.790K</td>
</tr>
<tr>
<td>110°C (230°F)</td>
<td></td>
<td></td>
<td>0.6235</td>
<td>1.490K</td>
</tr>
<tr>
<td>120°C (248°F)</td>
<td></td>
<td></td>
<td>0.4818</td>
<td>1.093K</td>
</tr>
<tr>
<td>130°C (266°F)</td>
<td></td>
<td></td>
<td>0.3764</td>
<td>0.834K</td>
</tr>
<tr>
<td>140°C (284°F)</td>
<td></td>
<td></td>
<td>0.2972</td>
<td>0.634K</td>
</tr>
<tr>
<td>150°C (302°F)</td>
<td></td>
<td></td>
<td>0.2370</td>
<td>0.504K</td>
</tr>
</tbody>
</table>

TABLE 1—RESISTANCE-TEMPERATURE CHARACTERISTICS OF TYPICAL NTC THERMISTORS

![Graph of Resistance vs Temperature](image)
Inexpensive thermistors usually have fairly loose specifications. For example, resistance tolerances (again at 25°C) range from ±20% down to ±5%. At higher or lower temperatures, those specifications loosen further. For a typical thermistor with a sensitivity of 4% per degree C, the corresponding temperature measurement tolerances are around ±5 to ±1.25°C (±9 to ±2.2°F) at 25°C. Much higher precision is available at costs generally ranging from $2.00 on up, depending on specifications. We will explore high-precision thermistors later in this article.

We stated earlier that thermistors are narrow-range devices. That should be clarified: Most thermistors operate from −80°C to +150°C (112 to +302°F), and units are available (generally glass coated) which work to -400°C (752°F) and beyond. For practical purposes, however, the high sensitivity of thermistors limits their useful temperature range. A typical thermistor’s resistance may change by 10,000 or 20,000 to one between −80 and +150°C. You can imagine the difficulty of trying to design a circuit that will accurately measure both ends of such a range (unless you use range switching). A thermistor having a useful resistance at zero degrees will be no more than a few ohms at 400°C.

Most thermistors use solder to attach their leads internally. Obviously, you can’t use such a thermistor to measure temperatures higher than the melting point of solder. Even without solder, their epoxy coatings are good only to around 200°C (392°F). For higher temperatures it is necessary to use glass-coated thermistors with welded or fired-in lead wires.

Stability considerations also limit high-temperature use. Thermistor structures tend to change when left at high temperatures, and the rate and type of change is greatly affected by the oxide mix and the way that the thermistor is manufactured. Epoxy-coated thermistors begin to drift a bit at temperatures above 100°C (212°F) or so. If such a thermistor is operated continuously near 150°C, it may drift by several degrees in a year. Low-resistance thermistors (below, say, 1000 ohms at 25°C) often are worse—they can drift noticeably when used at about 70°C (158°F) and become unreliable by 100°C. Excessive, loosely specified devices are produced with less attention to detail and can give even worse results. On the other hand, some properly constructed glass-coated thermistors have excellent stability at even higher temperatures. Glass-coated bead thermistors show excellent stability as do the glass-coated disc thermistors that have recently become available. Remember that drift depends on time as well as temperature. So, for example, you can generally use an epoxy-coated thermistor for brief times at 150°C without significant shifts.

When using thermistors you must be aware of the specification for dissipation constant. A small epoxy-coated thermistor, for example, will have a dissipation constant around one milliwatt per degree C in still air. In other words, one milliwatt of power in the thermistor will raise its internal temperature by one degree C: two milliwatts will raise it by two degrees, etc. If you apply one volt to a 1K thermistor with a dissipation constant of 1 mW/°C, you will produce a measurement error of 1°C. Thermistors will dissipate more power if they are immersed in liquids. The same small epoxy-coated thermistor we used in our example will dissipate 8 mW/°C in well-stirred oil.

Larger thermistors have better dissipation constants than smaller devices. For example, a one-inch disc or washer may dissipate 20 or 30 milliwatts per °C in air. Keep in mind that as the thermistor’s resistance changes with temperature, so does its power dissipation.

Thermistor equations

There is no such thing as an exact equation to describe a thermistor’s behavior: there are only approximations. We will look at two commonly used approximations.

The first approximation, an exponential, is reasonably good over limited temperature ranges, especially when using non-precision thermistors. The second, known as the Steinhart and Hart equation, provides excellent precision over ranges as wide as 100°C.

The resistance of an NTC thermistor decreases approximately exponentially with increasing temperature. Over limited temperature ranges its R-T curve is described reasonably well by:

$$R_{T2} = R_{T1}e^{\frac{T_2 - T_1}{\beta}}$$

where T_1 and T_2 are absolute temperatures in degrees Kelvin ($°+273$); R_{T1} and R_{T2} are the thermistor’s resistances at T_1 and T_2, and β is a constant, determined by measuring the thermistor at two known temperatures.

If β and R_{T1} are known, this equation can be rearranged and used to calculate temperature by measuring the resistance:

$$\frac{1}{T} = a + b \ln R + c (\ln R)^3$$

where T is the absolute temperature (in degrees Kelvin), R is the thermistor’s resistance, and a, b, and c are experimentally determined constants.

Rewriting the equation to show resistance as a function of temperature results in a rather messy-looking equation. However, it is easily handled using a computer or programmable calculator:

$$R = \exp \left[\left(\frac{-a}{2} + \left(\frac{a^2}{4} + \frac{b^2}{27} \right)^{1/2} \right)^3 \left(\frac{1}{2} + \frac{a^2}{4} + \frac{b^2}{27} \right)^{1/2} \right]$$

Beta is a large, positive number whose units are degrees Kelvin. Typical values run from 3000 to 5000°K. Manufacturers often include a value for beta in their specifications but, since the exponential equation is only an approximation, the value of beta depends on the two temperatures used to calculate it. Some manufacturers use 0 and 50°C; others, 25 and 75°C.

Other temperatures may be used: you can compute your own values for beta from the manufacturer’s resistance-temperature tables. The equation will typically agree with measured values to within ±1°C over a span of 100°C. The equation should not be trusted very far beyond the temperatures used to find beta.

Before going on to the Steinhart and Hart equation let us look at two other terms often used to specify thermistors: alpha (α) and ratio. Alpha is simply the slope of the R-T curve—the sensitivity, at some particular temperature. Alpha is usually specified as a “percentage per degree.” Typical values run between 3% and 5%°C. Like beta, alpha depends on the temperatures at which it is measured. Its value decreases somewhat at higher temperatures.

The ratio term is simply the ratio of the resistance at one temperature (usually 0 to 25°C) to the resistance at a second, higher temperature. For example, the 0°/50°C ratio of the 10-kilohm thermistor shown in Table 1 is 7.58. Beta may be computed from this ratio and vice versa. Typical values of the 0°/50°C ratio are between 5 and 10.

When using precision thermistors, you generally will have a degree-by-degree chart of resistance versus temperature furnished in the manufacturer’s data. Sometimes, however, it is handy to have a precise equation when doing design calculations or (especially) when using a computer to convert the thermistor’s resistance to temperature. Except for very narrow temperature spans, the single-term exponential is not good enough: more terms are needed.

The best approximation in common use today is known as the Steinhart and Hart equation:

$$\frac{1}{T} = a + b \ln R + c (\ln R)^3$$

where T is the absolute temperature (in degrees Kelvin), R is the thermistor’s resistance, and a, b, and c are experimentally determined constants.

Rewriting the equation to show resistance as a function of temperature results in a rather messy-looking equation. However, it is easily handled using a computer or programmable calculator:

$$R = a \exp \left[\left(\frac{-a}{2} + \left(\frac{a^2}{4} + \frac{b^2}{27} \right)^{1/2} \right)^3 \left(\frac{1}{2} + \frac{a^2}{4} + \frac{b^2}{27} \right)^{1/2} \right]$$

where a, b, and c are experimentally determined constants.
We should point out that these values of alpha and beta are not related to the alpha and beta used with the single-term exponential equation.

Although the Steinhart and Hart equation is more complex, it generally agrees with the actual thermistor to within a few thousandths of a degree over spans as wide as 1000°C. Of course, it can be that good only if the experimental thermistor data is equally accurate. Temperatures accurate to thousandths of a degree can be provided only in top-grade laboratories. You will probably want to rely on the manufacturer’s tables rather than try to provide your own measurements.

To find \(a, b, \) and \(c \) it is necessary to know the thermistor’s resistance precisely at three temperatures and substitute each set of data \((R\) and \(T)\) into the Steinhart and Hart equation. In three unknowns. \((a, b, c)\) Algebra must then be used to simultaneously solve the three equations to find the three constants. Using the manufacturer’s tables, choose \(R \) versus \(T \) data at each end and at the middle of the temperature range you plan to use. Manufacturer’s generally do not provide specified values of \(a, b, \) and \(c, \) since they vary depending on your temperature range.

Precision thermistors

Ordinary thermistors are specified only to between ±5% and ±20% at 25°C, with looser tolerances at other temperatures. With proper manufacturing control and measurement, however, much better precision is possible. Three types of precision thermistors are available: precision interchangeable discs, precision beads, and matched-curve bead pairs. Precision thermistors allow readout instruments to be electronically calibrated without the need for precise temperature sources. Interchangeable thermistors also allow replacement of the thermistor without recalibrating the electronics.

Precision interchangeable disc thermistors are manufactured with careful control and measurement of the R-T characteristics and stability of the oxide mixture. Mixes that don’t conform to precise specifications are discarded. The thermistors are mixed, shaped and fired using normal techniques. Then, in a fluid bath at a carefully controlled temperature, each thermistor is ground to bring its resistance to a specified value. Before shipment, each thermistor is measured at two or three temperatures and discarded if it does not meet specifications.

You can buy stocked, cataloged tolerances between 0 and 70°C of ±0.2°C or ±0.1°C, with accuracies loosening to about ±1°C at −80 and +150°C. Special high-stability glass-coated disc thermistors are offered with tolerances as tight as 0.05°C. Figure 3 shows the resistance and temperature-tolerance characteristics for typical interchangeable thermistors.

Those high-precision, interchangeable thermistors are available only as small size discs or squares coated with epoxy or (for higher stability) glass. Several manufacturers offer some or all of the following resistances at 25°C: 100, 300 and 500 ohms, 1.0, 2.252, 3.0, 5.0, 10.0, 30.0, 50.0, 100.0, and 300.0 kilohms and 1.0 megohm. The 2.252, 3.0 and 5.0K thermistors are interchangeable among manufacturers, the other generally are not. A variety of temperature probes that use 2.252K thermistors are available.

Bead thermistors can be very precise and very stable, but their small size and methods of construction make it impossible to grind them to an exact value. If you need to make precision measurements with beads (which offer the ultimate in small size and high-temperature operation), you can ask the manufacturer to provide a measurement and printout of each thermistor’s R-T curve. Or, you can specify thermistors selected to a specific resistance and tolerance at one temperature.

Another way in which bead manufacturers provide precision and interchangeability is to routinely measure each thermistor, then connect selected matched pairs in series or parallel to match a specific curve.

Thermal behavior

Thermistors are resistors. They obey Ohm’s law \(E = 1 \times R \)—until you change their temperature. Remember that it takes only a few milliwatts to raise a thermistor’s temperature by one degree or more and that the resistance will drop by about 4% per degree C. If you connect a current source to a thermistor, and slowly increase the current, you will see the voltage rise more and more slowly as the thermistor’s resistance decreases. Eventually the voltage will stop rising al-
Part 2

Last month, we looked at the basic approach we'll follow to store the contents of Atari 2600 game cartridges on audio cassette tape. We also looked at the hardware that's required, and briefly studied how cassette I/O is handled. This time, we'll look at the software in more depth. Then we'll see how we can build the game recorder and put it to use.

Game-recorder software

The complete software listing for the game recorder's operating system appears in Table 1. Note that it is written in Z80 mnemonics. Although we won't be discussing the software line by line, you might want to study Table 1 to get the details.

When we left off last time, we were discussing cassette I/O. Figure 5 showed a flowchart that described the cassette-read algorithm. Let's look at the software in more detail to see how it's used to detect the data and sync pulses. (Remember that sync pulses are sent out every 2 milliseconds. Data pulses are sent between the sync pulses—a pulse represents a 1 bit, while the lack of a pulse represents a zero bit.)

When the contents of a game cartridge is written to a cassette tape, a header of 2000 zero bits precedes the actual beginning of the program bits. After the header, the game recorder also writes a (user-selected) label before each game. When the game recorder reads the contents of a cassette tape, its software looks for fifty consecutive zeros to decide that it has found the beginning of a game program. You might wonder why we write 2000 zero bits and look for only 50. There's a very practical reason: It allows the automatic gain control (AGC) of most recorders enough time to settle down.

After the recorder finds 50 consecutive zero bits, it keeps on looking until it finds a 1 bit. It then checks the name tag, which is output to the last game found display. If the name tag matches the name of the game you selected, it keeps on reading bytes and storing them in the RAM. If the tag doesn't match, the game recorder keeps looking for another start-of-game header. (We'll give more details on that—and other operation aspects of the computer—a little later on in this article.)

You may recall that a parity bit is added to each instruction so that the game recorder will recognize when something...
At CIE, you get electronics career training from specialists.

If you're interested in learning how to fix air conditioning, service cars or install heating systems—talk to some other school. But if you're serious about electronics... even earning an Associate Degree... come to CIE — The Electronics Specialists.
Why trust your education and career future to anything less than a specialist?
You shouldn’t. And you certainly don’t have to.
If you talked to some of our graduates, chances are you’d find a lot of them shopped around for their training. They pretty much knew what was available. And they picked CIE as number one.

Be sure to shop around. Because, frankly, CIE isn’t for everyone.

There are other options for the hobbyist. If you’re the ambitious type— with serious career goals in electronics— take a close look at what we’ve planned for you at CIE.

What you should look for first.
Part of what makes electronics so interesting is it’s based on scientific discoveries—on ideas! So the first thing to look for is a program that starts with ideas and builds on them!

That’s what happens with CIE’s Auto-Programmed Lessons. Each lesson takes one or two principles and helps you master them—before you start using them!

How practical is the training?
This is the next big important question. After all, your career will be built on what you can do— and on how well you do it.

Here are ways some of CIE’s career courses help you get your “hands-on” training...
With CIE’s Personal Training Laboratory... you learn and review the basics— perform dozens of experiments. Plus, you use a 3-in-1 precision Multimeter to learn testing, checking, analyzing!

When you get your own 5MH. solid-state oscilloscope, you take some real professional steps. You use it as a doctor uses an X-ray machine— to “read” waveform patterns... lock them in... study, understand and interpret them!

When you get your Digital Learning Laboratory, you’ll be into digital theory— essential training today for anyone who wants to keep pace with the state of the art of electronics. With CIE’s Digital Lab, you’ll be applying in dozens of fascinating ways the theory you’ve learned. For example, you’ll compare analog and digital devices. You’ll learn to make binary to decimal conversions and to work with semiconductor devices and circuits. You’ll see how digital equipment is vital to today’s exciting, growing fields such as security... where digital theory provides the brains for space-age alarm and protective devices.

You’ll build your Microprocessor Training Laboratory, a working microcomputer— from “scratch.” You’ll also learn how to program and interface it with displays, memories, switches, and more.

Earn An Associate Degree from CIE.
One of the best credentials you can have in electronics— or any other career field— is a college degree. That’s why CIE gives you the opportunity to earn an Associate in Applied Science in Electronics Engineering Technology. Any CIE career course can offer you credit toward the degree... more than half of the number needed in some cases.

You can also prepare for the government-administered FCC (Federal Communications Commission) Radiotelephone License, General Class. It can be a real mark in your favor... government-certified proof of your specific knowledge and skills.

Shop around... but send for CIE’s free school catalog first!
Mail the card. If it’s gone, cut out and mail the coupon. If you prefer to write, mention the name and date of this magazine. We’ll send you a copy of CIE’s Free School catalog— plus a complete package of independent home study information! For your convenience, we’ll try to have a representative contact you to answer your questions.

Mail the card or coupon— or write: CIE, 1776 East 17th St., Cleveland, OH 44114.
TABLE 1—GAME-RECORDER SOFTWARE

CURRENT_GAME_OUT EQU 8000H
GAME_SEL_OUT EQU 0A000H
INPUT_ EQU 0C000H
RAM_FIRST_BYTE_ADD EQU 4000H
ROM_FIRST_BYTE_ADD EQU 2000H
LAST_PlUS_1_BYTE_RAM_HIGH EQU 50H
LAST_BYTE_ADD_RAM EQU 4FFFH
;START OF INITIALIZATION

START OF MAIN PROGRAM
LOOP1: LD A,(INPUT) ;SEE IF INC GAME PUSHED
AND 01H
JP NZ,LAB1
LD A,0FFH ;WAIT AND CHECK
JP NZ,LAB1
EXX

LOOPA: DEC A
JP NZ,LOOPA
LD A,(INPUT)
JP NZ,LAB1
EXX

LD IY,XX1
JP CONVERT
XX1:
EXX
LD C,A
EXX
LD (GAME_SEL_OUT),A
LD DE,7FFFH ;WAIT HALF A SECOND
LOOPB: DEC A
ADD A,D
JP NZ,LOOPB
JP C,LOOPB

;CONTINUATION OF MAIN PROGRAM
LAB1: LD A,(INPUT) ;SEE IF COPY PUSHED
AND 02H
JP NZ,LAB2
LD A,0FFH ;WAIT AND CHECK
JP NZ,LAB2

LOOPC: DEC A
JP NZ,LOOPC
LD A,(INPUT)
AND 02H
JP NZ,LAB2
LD DE,RAM_FIRST_BYTE_ADD ;START OF COPY
LD HL,RM_FIRST_BYTE_ADD
LD BC,1000H
LDIR

;CONTINUATION OF MAIN PROGRAM
LAB2: LD A,(INPUT) ;SEE IF DOWNLOAD PUSHED
AND 04H
JP NZ,LAB3
LD A,0FFH ;WAIT AND CHECK
JP NZ,LAB3

;CONTINUATION OF MAIN PROGRAM
LAB3: LD A,(INPUT) ;SEE IF RECORD PUSHED
AND 08H
JP NZ,LAB4
LD A,0FFH ;WAIT AND CHECK
JP NZ,LAB4

LDIR
LPLP;
DEC A
<table>
<thead>
<tr>
<th>TABLE 1 (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP NZ,LOOP1</td>
</tr>
<tr>
<td>LD A,(INPUT)</td>
</tr>
<tr>
<td>AND 08H</td>
</tr>
<tr>
<td>JP NZ,LAB4</td>
</tr>
<tr>
<td>EXX</td>
</tr>
<tr>
<td>;START OF RECORD</td>
</tr>
<tr>
<td>;PROGRAM</td>
</tr>
<tr>
<td>;TURN ON DECIMAL</td>
</tr>
<tr>
<td>;POINT</td>
</tr>
<tr>
<td>EXX</td>
</tr>
<tr>
<td>OR 80H</td>
</tr>
<tr>
<td>LD (GAME_SEL_OUT),A</td>
</tr>
<tr>
<td>LOOP:</td>
</tr>
<tr>
<td>AND 0FHF</td>
</tr>
<tr>
<td>;OUTPUT 2000 ZEROS</td>
</tr>
<tr>
<td>LD HL,XX7</td>
</tr>
<tr>
<td>JP BITOUT</td>
</tr>
<tr>
<td>XX7:</td>
</tr>
<tr>
<td>DEC DE</td>
</tr>
<tr>
<td>LD A,E</td>
</tr>
<tr>
<td>ADD A,D</td>
</tr>
<tr>
<td>JP NZ,LOOPJ</td>
</tr>
<tr>
<td>JP C,LOOPJ</td>
</tr>
<tr>
<td>EXX</td>
</tr>
<tr>
<td>;OUTPUT BLOCK</td>
</tr>
<tr>
<td>;ADDRESS</td>
</tr>
<tr>
<td>LD A,B</td>
</tr>
<tr>
<td>EXX</td>
</tr>
<tr>
<td>OR 0F0H</td>
</tr>
<tr>
<td>LD IX,XX9</td>
</tr>
<tr>
<td>JP BYTEOUT</td>
</tr>
<tr>
<td>XX8:</td>
</tr>
<tr>
<td>LD DE,0FFFH</td>
</tr>
<tr>
<td>;WAIT ONE SECOND</td>
</tr>
<tr>
<td>LOOP:</td>
</tr>
<tr>
<td>DEC DE</td>
</tr>
<tr>
<td>LD A,E</td>
</tr>
<tr>
<td>ADD A,D</td>
</tr>
<tr>
<td>JP NZ,LOOPL</td>
</tr>
<tr>
<td>JP C,LOOPL</td>
</tr>
<tr>
<td>EXX</td>
</tr>
<tr>
<td>;TURN OFF DECIMAL</td>
</tr>
<tr>
<td>;POINT</td>
</tr>
<tr>
<td>LD A,C</td>
</tr>
<tr>
<td>EXX</td>
</tr>
<tr>
<td>LD (GAME_SEL_OUT),A</td>
</tr>
<tr>
<td>JP LOOP1</td>
</tr>
<tr>
<td>;START OF SUBROUTINES</td>
</tr>
<tr>
<td>;BYTEIN SUBROUTINE - GETS ONE BYTE FROM TAPE</td>
</tr>
<tr>
<td>;XL = RETURN ADDRESS</td>
</tr>
<tr>
<td>;GIVEN: A IS BYTE</td>
</tr>
<tr>
<td>;USES: B</td>
</tr>
<tr>
<td>;CALLS: BITIN</td>
</tr>
<tr>
<td>;CANNOT AFFECT: DE</td>
</tr>
<tr>
<td>BYTEIN:</td>
</tr>
<tr>
<td>LD HL,XX10</td>
</tr>
<tr>
<td>JP BITIN</td>
</tr>
<tr>
<td>;GET ENTIRE BYTE</td>
</tr>
<tr>
<td>XX10:</td>
</tr>
<tr>
<td>RLA</td>
</tr>
<tr>
<td>DEC B</td>
</tr>
<tr>
<td>JP NZ,BYTEIN</td>
</tr>
<tr>
<td>AND 0FHF</td>
</tr>
<tr>
<td>;COMPUTE PARITY</td>
</tr>
<tr>
<td>EX AF,AF’</td>
</tr>
<tr>
<td>JP 08H</td>
</tr>
<tr>
<td>LD HL,XX11</td>
</tr>
<tr>
<td>JP BITIN</td>
</tr>
<tr>
<td>XX11:</td>
</tr>
<tr>
<td>JP C,LAB5</td>
</tr>
<tr>
<td>;SEE IF ERROR BY</td>
</tr>
<tr>
<td>;CHECKING 'CARRY'</td>
</tr>
<tr>
<td>;THEN</td>
</tr>
<tr>
<td>EX AF,AF’</td>
</tr>
<tr>
<td>JP PE,PERROR</td>
</tr>
<tr>
<td>JP (IX)</td>
</tr>
</tbody>
</table>

| LAB5: |
| EX AF,AF’ |
| ;RECALL BYTE & |
| ;FLAGS AND CHECK |
| ;PARITY |
| JP PO,PERROR |
| JP (IX) |
| JP A,94H |
| ;ERROR, DISPLAY |
| LD (CURRENT_GAME_OUT),A |
| JP (IX) |
| JP DE,LAST_BYTE_ADD_RAM |
| JP (IX) |
| JP DE,07D0H |
| ;BITIN SUBROUTINE - GETS ONE BIT FROM TAPE |
| ;HL = RETURN ADDRESS |
| ;RESULT: BIT IS CARRY |
| ;USES: D,E,H’ |
| ;CANNOT AFFECT: DE,B,A |
| BITIN: |
| EXX |
| ;START OF BITIN |
| ;PROGRAM |
| ;EXCHANGE REGISTERS |
| ;STORE A |
| LD D,A |
| LOOPM: |
| LD A,(INPUT) |
| AND 10H |
| JP Z,LOOPM |
| LD E,8FH |
| ;WAIT 1MSEC |
| LOOPN: |
| DEC E |
| JP NZ,LOOPO |
| CCF |
| JP NZ,LOOPO |
| XXX: |
| JP NZ,LOOPN |
| LD E,0CH |
| ;SEE IF 1 OR 0 FOR |
| ;0.25MSEC |
| LOOPQ: |
| LD A,(INPUT) |
| AND 10H |
| JP Z,LOOPM |
| LD E,5DH |
| ;WAIT 0.65MSEC |
| LOOPPP: |
| DEC E |
| JP NZ,LOOPQ |
| LD A,D |
| ;RECALL A, |
| ;EXCHANGE REGS & |
| ;RETURN |
| EXX |
| JP (HL) |
| ;BYTEOUT SUBROUTINE - WRITES A BYTE ONTO TAPE |
| ;IX = RETURN ADDRESS |
| ;GIVEN: A IS BYTE |
| ;USES: B |
| ;CALLS: BITOUT |
| ;CANNOT AFFECT: DE |
| BYTEOUT: |
| LD HL,XX12 |
| JP BITOUT |
| XX12: |
| DEC B |
| JP NZ,LOOPQ |
| AND 0FFH |
| ;COMPUTE AND |
| ;OUTPUT PARITY |
| LAB7: |
| LD HL,XX13 |
| JP BITOUT |
| XX13: |
| JP (IX) |
| ;BITOUT SUBROUTINE - WRITES A BIT ONTO TAPE |
| ;HL = RETURN ADDRESS |
| ;GIVEN: CARRY IS BIT |
| ;USES: C |
| ;CALLS: PULSE |
| ;CANNOT AFFECT: DE,BA |
![Image of the page]

TABLE 1 (continued)

<table>
<thead>
<tr>
<th>BITOUT:</th>
<th>EX</th>
<th>AFAF</th>
<th>;START OF BITOUT</th>
<th>LD A,06H</th>
<th>LAB: CP (IY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCF</td>
<td>STORE ORIGINAL PROGRAM</td>
<td>CR:</td>
<td>JP (IY)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD IY,XX14</td>
<td>OUTPUT 1ST PULSE</td>
<td>LABB: CP 02H</td>
<td>JP NZ.LABC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP PULSE</td>
<td>LAB: CP 02H</td>
<td>JP A,59H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XX14: LOOPR:</td>
<td>DEC C</td>
<td>JP IY</td>
<td>JP (IY)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP NZ.LOOPS</td>
<td>GET ORIGINAL FLAGS AND BYTE</td>
<td>LABD: CP 04H</td>
<td>JP NZ.LABE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EX AFAF</td>
<td>STORE ORIGINAL BYE ONLY</td>
<td>LD A,66H</td>
<td>JP (IY)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD C,A</td>
<td>LABE: CP 05H</td>
<td>JP NZ.LABF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EX AFAF</td>
<td>LABF: CP 06H</td>
<td>JP A,6DH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD IY,XX15</td>
<td>OUTPUT 2ND PULSE</td>
<td>JP (IY)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP PULSE</td>
<td>LABM: CP 07H</td>
<td>JP NZ.LABG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XX15: LOOPS:</td>
<td>DEC C</td>
<td>JP A,7DH</td>
<td>JP (IY)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP NZ.LOOPS</td>
<td>RECALL ORIGINAL BYE AND RETURN</td>
<td>LABN: CP 08H</td>
<td>JP NZ.LABH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EX AFAF</td>
<td>LABO: CP 09H</td>
<td>JP A,07H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP (HL)</td>
<td>LABP: CP 0A8H</td>
<td>JP (IY)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>;SUBROUTINE PULSE - WRITE A PULSE ONTO TAPE</td>
<td>LABQ: CP 0B8H</td>
<td>JP NZ.LABJ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>;Y = RETURN ADDRESS</td>
<td>LABR: CP 0C8H</td>
<td>JP A,6FH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>;GIVEN: PULSE IF CARRY</td>
<td>LADB: CP 0D8H</td>
<td>JP (IY)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>;USES: C</td>
<td>LABC: CP 0E8H</td>
<td>JP NZ.LABK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>;CANNOT AFFECT.DE.B</td>
<td>LABD: CP 0F8H</td>
<td>JP A,77H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PULSE:</td>
<td>LABE: CP 10FH</td>
<td>JP (IY)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD A,0OH</td>
<td>START OF PULSE PROGRAM</td>
<td>LABF: CP 11FH</td>
<td>JP NZ.LABL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP NC.LAB8</td>
<td>SET OUT IF REQUIRED</td>
<td>LABG: CP 12FH</td>
<td>JP A,7CH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR 808</td>
<td>LABH: CP 13FH</td>
<td>JP (IY)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAB8</td>
<td>LABI: CP 14FH</td>
<td>JP NZ.LABM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CURRENT GAME OUT),A</td>
<td>LABJ: CP 15FH</td>
<td>JP A,39H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUT AND WAIT</td>
<td>LABK: CP 16FH</td>
<td>JP (IY)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD C,24H</td>
<td>LABL: CP 17FH</td>
<td>JP NZ.LABN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOOPT: DEC C</td>
<td>LABM: CP 18FH</td>
<td>JP A,5EH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP NZ.LOOPT</td>
<td>LABN: CP 19FH</td>
<td>JP (IY)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD A,00H ;TURN OFF</td>
<td>LABO: CP 1AFH</td>
<td>JP NZ.LABO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD (CURRENT GAME OUT),A</td>
<td>LABP: CP 1BFH</td>
<td>JP A,7AH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP (IY)</td>
<td>LABQ: CP 1CH</td>
<td>JP (IY)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>;SUBROUTINE CONVERT - CONVERTS DATA TO 7 SEGMENT</td>
<td>LABR: CP 1DH</td>
<td>JP NZ.LABC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>;Y = RETURN ADDRESS</td>
<td>LABS: CP 1EH</td>
<td>JP A,5FH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>;GIVEN: A IS TO BE CONVERTED</td>
<td>LABT: CP 1FH</td>
<td>JP (IY)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>;RESULT: A IS CONVERTED DATA</td>
<td>LABU: CP 20H</td>
<td>JP NZ.LABD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONVERT:</td>
<td>LABV: CP 21H</td>
<td>JP A,7FH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP 00H ;START OF CONVERT PROGRAM</td>
<td>LABW: CP 22H</td>
<td>JP (IY)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP NZ.LABA</td>
<td>LABX: CP 23H</td>
<td>JP NZ.LABC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD A,3FH</td>
<td>LABY: CP 24H</td>
<td>JP (IY)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LABA: CP 01H</td>
<td>END</td>
<td>JP (IY)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

has been misrecorded. If incorrect parity is detected when the computer is reading from the tape, it will stop reading, and the LOST GAME FOUND display will show a message of three horizontal bars to indicate an error.

Before we go any further, we should talk a little about the memory mapping used in the game recorder. The system ROM resides from 0000H to FFFFH. (Note that a capital "H" indicates that a number is written in hexadecimal.) The game cartridge occupies the second 8K block—2000H to 3FFFH. The game recorder’s RAM is located from 4000H to 5FFFH. Cassette I/O and the displays are also memory mapped. The block from 0000H to 0FFFH is used for the LAST GAME FOUND display and the cassette data output, while the block from A000H to BFFFH is used for the GAME SELECTED display and for the remote cassette control. The cassette data input and the switches are memory mapped from C000H to DFFFH. Note that two 8K blocks (6000H–7FFFH and E000H–FFFFH) are not used.

The easiest job that our computer has to do is to read the program ROM. As it operates now, the computer can copy all 2K × 8 ROM’s and 4K × 8 ROM’s. As you might expect, it is possible to modify the recorder to copy 8K × 8 ROM’s. Note, for example, that although an 8K block was left available for program storage RAM, the hardware as presented has provision for only 4K.

We’ll talk more about how to expand the unit to record larger programs, and show how to build and use it, when we continue our look at the Atari game recorder next time.
High-Power FET Audio Amplifier

Get high performance and high fidelity from this FET stereo amplifier. It feels equally at home in your living room or in a disco!

Before we begin with the construction details, we should point out that the values shown in the schematic are for 1%-tolerance resistors. For most applications, it is not essential that you use such parts. Thus, the parts list also shows acceptable values for 5%-tolerance resistors. (One source for 1% resistors is Digi-Key Corporation, Highway 32 South, P.O. Box 667, Thief River Falls, MN 56701.)

Once you have your boards and components, you can begin construction by referring to the parts-placement diagram in Fig. 8 and by installing the fixed resistors. Check the values with an ohmmeter as you go and be sure that the leads are sufficiently far from the ground plane.

Next, install capacitors, carefully checking values and ensuring that the polarized electrolytic types are properly oriented. Follow by installing the diodes, except for D3-D5. (Those three diodes mount on the output-transistor heat-sink; and should not be installed yet.) Again, be careful of the polarity—the diode band indicates the cathode. Next, install the transistors (except for the output transistors Q21-Q28). Transistors Q19 and Q20 should be mounted with insulators and heatsink compound. (If you look closely at Fig. 9, you'll see some heatsink compound around those transistors.) Transistors Q12, Q13, Q15, and Q18 use TO-5 type heat sinks.

Adjust potentiometers R8 and R19 to their middle positions and install. (For R19, which is a multiturn potentiometer, you will need to use an ohmmeter.) You will have to make L1: Wind 16 turns of 16-gauge magnet wire on R42. Solder to the leads of R42, and install the assembly. The PC boards are now complete.
Preparing the heat sink

The Wakefield heat sinks that are used for the output transistors (see Fig. 10) were not chosen arbitrarily. Their design is almost 100% more efficient for natural convection applications than conventional designs of equivalent volume.

You can use other heat sinks but a minimum surface area of 800 square inches per channel is required. A flat-backed heat sink is desirable for the TO-220 package, but is not essential.

The Wakefield type 512 is available in a 14-inch long extrusion, which needs to be cut in half to yield the two 7-inch pieces called for. After you cut it, drill holes for the output transistors according to the layout shown in Fig. 11. To keep the transistor-mounting hardware to a minimum, you might want to drill and tap the heat sink. However, screws with nuts may also be used. The optional over-temperature sensor and thermal-compensating diodes D3-D5 should also be glued to the heat sink as shown in Fig. 11.

If you have a confined-space application, you can mount the two heat sinks back to back; they will then readily accept a muffin fan for forced convection. For home applications, however, we recommend natural convection—to eliminate the noise, filter, and/or temperature-sensing aspects typically associated with fans. We should make a final note that wiring length should be kept to a minimum, with less than 2 inches from transistor to PC board. Even with that length, a ferrite bead is necessary on each gate lead, and using coaxial cable is recommended.

Preparing the chassis

The design and construction of a chassis for the amplifier is not critical. The author’s prototype was built with rack mounting in mind. It consists of an 8 X 17 inch bottom plate with 1 inch turned up at the front and back. The front plate is 19 X 17 inches. As shown in Fig. 10, the two heat sinks mount on the back of the unit, leaving a 2½ X 7-inch strip for a small plate where the input and output jacks and fuses are mounted. Finally, an 8½ X 31-inch U-shaped piece of perforated metal makes up the cover.

Begin mounting the components with the transformer, bridge rectifier, filter capacitors, and fuse-holders. Then, mount the power switch, pilot lights, and level controls on the front panel.

Next you will have to make up a suitable mounting plate and install output jacks that are insulated from their mountings. Install the input-fuse holder and the power cord with a strain relief. Then wire the transformer primary and secondary as shown in the schematic. If you plan to use the optional thermal cutouts, leave a pair of wires to go to the heat-sink area. Use 18-gauge (minimum) wire in the power supply. We recommend that you use some simple color code for the DC wiring—it will help reduce the possibility of errors during subsequent tests.

Locate a suitable single-point ground, such as a screw through the bottom of the chassis near the power supply, and attach the filter capacitors’ common power-supply ground to it. If you use a 3-wire power cord, do not ground or terminate the cord’s ground lead.

Checkout procedures

The amplifier checkout is by far the most important part of building this amplifier, so shift into low gear and proceed with great care through the following steps:

First we strongly advise you to make a final visual check of all parts placements on the circuit boards and the power-supply wiring. Then, before applying any power, measure each supply terminal with an ohmmeter to ground. An initial low reading should slowly move up to high resistance as the capacitors charge. Install the main power fuse and, with the DC fuses F2-F5 not installed, apply power. Check the supplies for ± 75 volts. Remove power, and discharge the filter capacitors through a 1K resistor.

Next, install a pair of 1/4-amp fuses for F2 and F3. Measure the resistance from each power-supply input to ground on both driver boards. The reading should be greater than 100K. If it is, temporarily connect one board to F2, F3 and ground. Connect a clip-lead from the collector of Q1 to the collector of Q3. Connect another clip-lead from the collector of Q7 to the collector of Q8. Temporarily clip-lead D3, D4, and D5 into the circuit. Apply power, and measure the voltage between the bases of Q16 and Q17. It should be near 7 volts. Adjust R19, and observe this voltage changing. Leave it at 6.8 volts. Measure the voltage from the emitter of...
FIG. 8—PARTS-PLACEMENT DIAGRAM for the amplifier board. Refer to the text for information on mounting the output transistors (Q21–Q28) on a heat sink.

FIG. 9—AMPLIFIER BOARD is shown here mounted on a heat sink. Note that Q12, Q13, Q15, and Q18 use TO-5 type heat sinks.

FIG. 10—COMPLETE STEREO AMPLIFIER with cover removed. The chassis configuration is not at all critical.

Q19 to the +75-volt supply, and the voltage from the emitter of Q20 to the -75-volt supply. One should be around 7 volts and the other about .6 volt. Remove power, discharge the filter capacitors, remove chip leads, and repeat with the other driver board.

Next, solder the output transistors to the driver board. Note that it is important that the transistors be matched (within each particular type) so that they will share the output current equally. A simple circuit for checking the matching is shown in Fig. 12. They should be matched to be within 100 millivolts of gate voltage at 50 mA of drain current and 200 millivolts of gate voltage at 2 amps of drain current. Make the 2-amp measurement quickly, or with the transistor heat-sinked.

To mount the transistors, first bend the leads up at a 90-degree angle right at the point where their width changes. Spread the leads a bit and insert in board. Solder carefully while aligning the transistors as much as possible in a common plane. (They may temporarily be screwed to the heat sink as a holding fixture for this operation.) Solder short leads (from D3–D5 to the bottom of the driver board, carefully observing polarity. Apply heat-sink compound and insulators to the transistors, and screw the driver and output-transistor assembly to the heat sink, using insulating shoulder washers. Tighten carefully.

Measure each transistor’s tab (or case, if you are using TO-3’s) to the heatsink. The readings should all be infinite, indicating no insulator shorts. (If you are using TO-3 output parts, it will be necessary to run individual leads to each transistor. When doing that, be extremely cautious: Double-check all your connections and keep your leads as short as possible. Don’t forget to install a ferrite bead on each gate lead if you are using TO-3’s. In no case should the wiring to the transistors be more than 2 inches in length.) Install the heatsink and driver assemblies.
Wire one channel to F2 and F3 with 18-gauge (minimum) wire. Connect a wire from the circuit board ground, near the output, to the chassis single-point ground. Install a 0.5-amp fuse for F3, and a 1-mA fuse for F2. Apply power, and check for a current through F3 of less than 500 mA. Also check that the output voltage at L1 is between ±1 volt. If either of those tests fail, immediately turn off power, and look for the source of the problem before proceeding. Adjust R19 to set the current through F3 to about 250 mA, corresponding to an output idle current of about 150 mA. Next, adjust R8 carefully to bring the output voltage at L1 as close as possible to zero. Turn off the power, and repeat for the second channel, using fuse positions F4 and F5.

PARTS LIST—BARGRAPH DISPLAY and CLIPPING INDICATORS

All resistors are 1/4 watt, 5%, unless otherwise specified.

<table>
<thead>
<tr>
<th>Resistance Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R43 – R48</td>
<td>24,000 ohms</td>
</tr>
<tr>
<td>R44 – R45</td>
<td>12,000 ohms</td>
</tr>
<tr>
<td>R47 – R48</td>
<td>1000 ohms</td>
</tr>
<tr>
<td>R48 – R55</td>
<td>470,000 ohms</td>
</tr>
<tr>
<td>R49 – R51</td>
<td>53,000 ohms</td>
</tr>
<tr>
<td>R52 – R60</td>
<td>1200 ohms</td>
</tr>
<tr>
<td>R61 – R62</td>
<td>53,000 ohms</td>
</tr>
<tr>
<td>R62 – R69</td>
<td>500 ohms</td>
</tr>
<tr>
<td>R64 – R65</td>
<td>1500 ohms</td>
</tr>
<tr>
<td>R67 – R68</td>
<td>20 watts</td>
</tr>
<tr>
<td>R68 – R69</td>
<td>15,000 ohms</td>
</tr>
<tr>
<td>R69</td>
<td>2200 ohms, 5 watts</td>
</tr>
</tbody>
</table>

Capacitors

<table>
<thead>
<tr>
<th>Capacitance</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C18, C19</td>
<td>1 µF, electrolytic</td>
</tr>
<tr>
<td>C20 – C22</td>
<td>10 volts, electrolytic</td>
</tr>
<tr>
<td>C23 – C25</td>
<td>10 µF, electrolytic</td>
</tr>
</tbody>
</table>

Semiconductors

- **IC1** – LM139 Quad op-amp
- **Q30** – EC291
- **D17, D18** – 1N4001
- **D19, D20** – 1N4741A 11 volts, 1-watt, Zener
- **D21** – 1N4735A 6.2 volts, 1 watt, Zener
- **D22** – 1N4744A 15 volts, 1 watt, Zener
- **D23** – 1N4750A 27 volts, 1 watt, Zener

Other Components

- **S2, S3** – SPDT
- **S30** – ETCHED, DRILLED, PLATED-THROUGH PC BOARDS, $22 each; Power transformer, $69 each; Set of 8 matched power FET’s, $66; Drilled heatsink (type S12), $27. Add 5% shipping and handling, 12% for transformer. Illinois residents include 5-1/4% sales tax.

FIG. 12—TO CHECK THE MATCHING OF TRANSISTORS, you might want to use this simple circuit. Start by setting the potentiometer’s wiper voltage to zero. Then turn it up to the desired drain current and measure the voltage as shown. For N-channel devices (IRF9630), V should be ~5 volts. For P-channel devices (IRF9630), V should be ~5 volts.

FIG. 13—CLIPPING INDICATORS can be added to your amplifier, if desired.

Upon completion of those initial tests, finish wiring the remainder of the chassis. Run at least 18-gauge wire from each driver-board output, along with a ground from the board to the output binding posts. Shielded cable should be used from the level controls to the input jacks. The input coupling capacitors mount at the level controls.

For continuous full-power applications, it will be necessary to use 5-amp fuses for F2–F5, and 8-amp output fuses for F1. However, for normal, or even loud general listening situations, it is advisable to use much smaller fuses to protect the speakers. It is usually sufficient to use 2-amp supply and 1- or 2-amp output fuses, and work up from there if necessary.

You may want to add clipping indicators and/or bar-graph power meters to your amplifier. The clipping indicator is shown in Fig. 13, the power meter, in Fig. 14, and the power supply needed for the two additions is shown in Fig. 15.
Part 2

Last time, we began our look at servicing videodisc players with a discussion of how LV players worked. Let's finish that discussion now and then move on to an overview of the CED system.

Referring to Fig. 6 (see P. 68, December 1984 Radio-Electronics), the prism is designed to deviate the path of the reflected beam so that the beam passes through the cylindrical lens to the photodiodes, which generate (or control) three voltages in response to the three light beams returning from the disc. The center beam generates the FM signal and the focus error-voltage. As shown in Fig. 7, if the disc is too close or too far from the objective lens, the reflected beam becomes elliptical in shape. If the disc moves too close to the objective lens, diodes A and B receive more light, and conduct more than C and D. The opposite is true if the disc moves too far from the lens. If the light bundle is not perfectly focused on A, B, C, and D, a focus error-voltage is generated to move the objective lens up or down as required to maintain correct focus. (The objective lens is attached to a coil of wire and is surrounded by a permanent magnet, similar to a loudspeaker. Current through the coil, as determined by the photodiodes, moves the lens up or down as necessary.)

The light beams striking diodes A and B serve to maintain correct radial tracking. If the beams shift to the left or right, A receives a different amount of light than B, and a radial error-voltage is generated to move the radial-tracking mirror as necessary to deflect the beam back onto the center of the track. The movable tangential-mirror operates in an identical manner, but receives the error correction-voltage from the video circuits.

We will not go further into the LV op-
tical system here, except to say one thing: The optical system of an LV player (or more properly the optical/mechanical system) is the critical part of the player from a servicing standpoint. You must follow the manufacturer's instructions regarding adjustment and/or replacement. Even a minor misadjustment can result in poor player performance (and possibly no performance).

The basic CED videodisc system

Let's begin our look at CED with a review of user controls. Again, remember that the controls described here are "typical" for most CED players.

With CED, the disc is stored in a protective plastic sleeve or caddy, which is inserted into the player as shown in Fig. 8. The CED disc is mounted on a rigid spine (Fig. 9) that holds the disc in place, both in the caddy and in the player.

In some players, a function lever (or some similar control) must be in the load position to insert and remove the disc. Many of the more recent CED players have some form of automatic load function, and do not include such a lever.

The caddy ensures that the CED disc is always correctly loaded, as well as protected when not being played. Once the disc is loaded, the function lever is set to play (or the automatic mechanism places the player in play). At that time, a system control, typically a microprocessor, takes control of the player. At the end of the program, the user sets the function lever to unload (or the player puts itself into unload) and the user reinserts the caddy into the player to remove the disc. The caddy now serves as a safe, convenient storage container for the CED videodisc mounted on the spine.

In players equipped with a function lever, throwing the function lever to load applies power and opens the caddy door, allowing the caddy to be inserted into the player. After the caddy has been removed, leaving the disc and spine inside the player, the function lever is placed in the play position. That causes a stylus to be lowered onto the disc, allowing the player to begin detecting signals on the disc and generating a display on the TV screen. Note that the CED stylus is somewhat similar to that of an ordinary phonograph pickup, in that the stylus must be driven across the grooves by means of an arm and drive motor (although not a true tracking servo as in the case of LV).

To operate a player equipped with auto-load, you apply power by pressing the on/off button, which places the player in load (caddy door open). A loaded caddy is then inserted into the player (gently) until the player's automatic loading mechanism takes hold and pulls the caddy into the player. (In any type of CED player, do not force the(data into the player.) When the caddy is latched, the loading mechanism reverses and returns the empty caddy out beyond the door. You then remove the empty caddy and the player places itself in play. In about 10 seconds, a picture appears on the TV screen. In most players, a digital readout displays the elapsed playing time in minutes.

About 10 seconds after play is completed, the player places itself in unload. The caddy door then opens, and you insert the empty caddy to retrieve the disc and spine.

In a typical CED player, the user controls also include rapid-access to rapidly move in both forward and reverse directions for quick location of a particular program segment and visual-search controls (which do the same thing). The difference is that with forward, the stylus is lifted and you get no display on the TV (you use the elapsed time indicator to find a program segment), and with the latter, you get a video display in fast motion (but no audio). Most CED players also have a pause feature that raises the stylus (no video display) and cuts the audio at any point during the program.

A special code is recorded at the end of the program on each side of the disc. That code causes the player to go into and "end" mode. When the code is detected, the stylus is lifted and the elapsed-time readout will display a flashing E. The player remains in the end mode until the disc is removed, or until rapid access of visual search are selected.

Capacitance pickup theory

The CED disc is somewhat like a typical phonograph record in that the signal information is placed in grooves. However, there are many differences. One such difference is the density of the grooves. There are about 10,000 grooves in a 1-inch radius of the CED disc (that density is about 40 times that of a phonograph record).

In CED, the audio and video signals are placed on the disc via FM carriers by varying the groove depth. As the stylus travels over the grooves, the vertical position of the stylus remains constant (unlike that of a phonograph record). A thin metalized electrode is placed on the trailing surface of the stylus. That electrode acts as one plate of a "capacitor." The CED disc, which is made of a conductive plastic with a thin lubricating coating, acts as the other plate. As the disc rotates, the distance between the bottom edge of the stylus electrode and the modulation in the groove varies as a function of the modulation, even though the stylus does not move vertically. That action varies the distance between the plates of the "capacitor" at the modulation frequency, and thus modulates the capacitance of the stylus capacitor.

The changing of stylus-to-disc capacitance, in turn, modulates a UHF signal in the pickup-arm resonator assembly. The resultant AM UHF signal is peak-detected, generating an output signal that is a voltage replica of the FM audio and video carrier signals recorded on the disc. Those FM carriers are then demodulated to re-
cover the video and audio signals.

Note that the stylus is part of a cartridge. Many CED player cartridges are provided with handles, and are easily removable. That makes it possible to replace the stylus/cartridge simply, often from the outside of the player through an access door. (But do not count on such easy access to the stylus/cartridge on all CED players. Also, do not assume that all CED cartridges are interchangeable with all other CED cartridges.)

CED signals

The CED system uses a vertical field rate of 60 Hz, and is phase-locked to the AC power line. The CED system also uses the conventional black-and-white TV horizontal rate of 15.750 Hz. The color signals from a CED player are at the NTSC standard of 3.579545 MHz. The video signal recorded on the CED disc is an FM 5-MHz video carrier. As shown in Fig. 10, the black level of the video signal causes zero deviation of the carrier, or a frequency of 5 MHz. Sync tips cause the video-carrier frequency to deviate to 4.3 MHz. Peak white in the video signal causes the video-carrier signal to deviate to 6.3 MHz. The sidebands from that frequency modulation extend from 2 to 9.3 MHz.

On monaural CED videodiscs, one channel of audio is placed on a FM carrier at 716 kHz. On stereo or two-channel independent CED discs, the two channels of audio are at 716 and 905 kHz. Audio signals generate a frequency deviation of ±50 kHz.

Prior to modulating the 5-MHz video carrier, the 3.58-MHz chroma subcarrier, and resultant sidebands are down converted to 1.535562 MHz (usually called 1.53 MHz), as shown in Fig. 11. Down-converted chroma is developed by heterodyning the 3.58-MHz chroma with a 5.115170-MHz oscillator signal. The resultant 1.53-MHz chroma subcarrier is then sideband-limited to ±500 kHz. Luminance information is then added to the down-converted chroma to generate a composite video signal.

CED player operation

As shown in Fig. 12. The operation of a CED player is controlled entirely by a microprocessor. User functions such as play, pause, search, visual search, etc., are input to the microprocessor through the corresponding user function switches. In turn, the microprocessor decodes the commands and controls the player's electronics to carry out the functions. Note that when the squeak line from the microprocessor is low, all electronic circuits are disabled (to provide an automatic shutoff feature).

The microprocessor also controls the pickup arm electronics, including the stylus lifter operation (which raises and lowers the stylus as various functions are initiated) and the kick operation (which enables the system to provide visual search, and to prevent the stylus from being stuck in a groove). The microprocessor also decodes the digital auxiliary information (DAXI) code recorded on the disc. The DAXI code contains a field identification number that is decoded to display the elapsed play time of the program (in minutes). Since DAXI is not available during rapid access (the stylus is lifted from the disc) a photo interrupter circuit provides the approximate elapsed time by tracking the relative position of the pickup arm with respect to the disc.

The pickup arm assembly contains components that are responsible for detecting video information on the disc. The arm also contains stylus-kicker coils that cause the stylus to skip grooves in the disc (to prevent a locked groove condition and to provide for visual search). Also located in the pickup arm is the armstretcher transducer, which corrects for timebase variation in the recovered chroma and luminance signals (the variation may be due to warpage, eccentricity, and/or changes in turntable speed).

The main function of the pickup electronics is to detect the video signals on the disc. That is done by modulating a 910-MHz resonator circuit (a UHF tuned line) with capacitance changes on the disc surface. The variations in capacitance cause the 910-MHz resonator center frequency to be modulated. The video and audio carrier signals from the arm are applied to two FM demodulator stages. The sound demodulator decodes one of the audio carriers and generates an audio signal that then FM-modulates a 4.5-MHz carrier in the RF modulator. The sound demodulator also contains a defect corrector or
dropout corrector (DOC) similar to that in a VCR.

Before demodulation, the FM video-carrier is passed through a nonlinear aperture correction (NLAC) circuit that eliminates the 716- and/or 905-kHz sound beats in the video due to sound-carrier phase modulation of the recovered video-carrier information. The video demodulator also contains a DOC circuit that allows a portion of the previous horizontal line to be inserted when a dropout occurs.

The output of the video demodulator is applied to a comb-filter circuit that separates chroma, luminance, and DAXI information from the composite video. The DAXI signal is supplied through a DAXI buffer/decoder to the microprocessor. The chroma luminance information is applied to the video converter, which up converts the 1.53-MHz data to 3.58 MHz, and combines the chroma-luminance signals. The composite-video signal is then supplied to the RF modulator (along with the audio).

The video converter also develops a drive signal for the armstretcher time-base correction circuits. Any phase or frequency difference produces an error signal, which is applied to the armstretcher solenoid and moves the stylus as necessary to maintain a constant disc-to-stylus velocity. The armstretcher output is also coupled to the video-converter oscillator in order to maintain phase lock between the up-converted 3.58-MHz color signal and the 3.58-MHz reference.

Test equipment

The test equipment used in videodisc player service is basically the same as that used in TV service. In addition, a test, or reference disc, and a video monitor can prove to be most valuable.

Most player manufacturers provide test discs as part of their recommended test equipment and/or tools. A test disc is essentially a standard videodisc with several very useful signals recorded at the factory using very precise test equipment and signal sources. You play the test disc on a player being serviced, and note the response, and/or use the signals to perform alignment and adjustment. With the proper test disc, you can generally eliminate the need for your own signal sources (signal generators, audio generator, color generator, etc.). There is no standardization in test discs. Also, the alignment procedures found in most service literature calls for signals and displays not available on all test discs. The only way around that problem is to use the recommended test disc.

A video monitor has no tuner; it is designed to accept video and audio inputs from some source such as a separate tuner, VCR, or videodisc player. There are also some TV receivers on the market that can accept video and audio inputs. A monitor or receiver with video/audio inputs is very useful in videodisc-player service as they make it possible to examine the audio and video signals from the player before they are applied to the RF modulator so you can check the baseband signals independently from RF. Without such connections, it is difficult to tell if faults are present in the audio/video circuits or in the RF unit. If you use a TV receiver as a monitor, it is helpful to adjust the vertical-height control to underscan the picture (so you can see the video switching point in relation to the start of vertical blanking).

Maintenance

Videodisc player manufacturers disagree considerably about routine maintenance. For example, one manufacturer recommends that the laser be replaced at 5000 hours, the motors at 3000 hours, and the tunable components after 9000 plays. Another manufacturer recommends “fix it if it breaks down.” Nevertheless, remember the following points.

The picture quality of an LV player can be degraded if too much dust or dirt accumulates on the objective lens. Dust can be removed with an air blower (as used on a camera lens). Never touch the lens surface. Keep the lid closed, except when inserting or removing a disc. If an LV disc becomes very dirty, hold the disc by the edges, and wipe both sides with a clean, soft, dry cloth. Check for warped LV discs since a warped disc can cause skipping, loss of picture, and even hit the lens or lid. Some manufacturers recommend removing scratches on an LV disc with polishing compound (but never use rubbing compound). If LV discs are very cold (frozen), allow about 45 minutes for the disc to return to room temperature before playing. Store LV discs in their jackets on the edge in a standard phonograph record rack. Do not stack LV videodiscs, and avoid storage in hot areas.

Keep CED discs in their caddy. Never remove a CED disc from the caddy (except in the player). Never try to clean a CED disc.

Next time, we'll show you how to service LV and CED players.

FIG. 12—SIGNAL PROCESSING CIRCUITS. This simplified block diagram shows the circuitry used to playback a CED videodisc.

[Diagram of signal processing circuits with various components labeled: armstretcher, sound demodulator, RF modulator (channel 3/4), video converter, DAXI signal, etc.]

66
A look at op-amp based sinewave, squarewave, and triangular wave generators.

JOSEPH J. CARR

Part 8

This month, we'll turn our attention to squarewave, triangular wave, and sinewave generator circuits based on operational amplifiers. The heart of each circuit is a comparator. While there are several different types of IC comparators available, for the purposes of our discussion we will consider only op-amp-based comparators.

Op-amp comparators

One author once called the comparator "an amplifier with too much gain." The purpose of the comparator is to provide unique outputs to indicate the relative values of two voltages, V1 and V2. The three possible conditions are: V1 = V2, V1 less than V2 and V1 greater than V2.

Figure 1 shows a simple comparator circuit. Note that the operational amplifier has no negative feedback circuit. That fact means the gain is essentially the open-loop gain (A_{OL}) of the op-amp. Depending upon type, A_{OL} might be anything from 20,000 to over 1,000,000. An implication of that is that very small input voltages will saturate the output of the op-amp. Let's assume, for example, an op-amp with 12-volt power supplies that permits ±10-volt output signals. With a gain of 100,000 (moderate for an op-amp), the input voltage that will saturate the output is ±10 volts/100,000, or 0.001 (i.e., 100µV).

If V1 equals V2, then output V_{out} will be zero. If V1 is greater than V2, we get the same result as applying a positive voltage to an inverting amplifier: the output saturates at a positive voltage. The last situation, V1 less than V2, is the same as applying a negative voltage to an inverting amplifier: the output saturates at a positive voltage.

Diodes D1 and D2 are sometimes used to limit the output voltage V_{out} to some value. That limitation might be to protect a following circuit, or to sharpen the output waveform (saturated amplifiers don't always recover quickly). Diode D1 limits the output of positive excursions to V_{D1} + 0.7 volts, while diode D2 limits negative excursions to -(V_{D2} + 0.7 volts). In both cases, one diode is in the reverse-bias Zener region, while the other is forward biased (which accounts for the 0.7-volt term).

If we ground the noninverting input of a comparator, then V2 = 0. By applying a sinewave to the inverting input we will generate a squarewave (V_{out}) in Fig. 3 at the comparator output. Because of their ability to convert a sinewave into a squarewave, comparators are used sometimes as the input stage of frequency counters, Modem's and other devices.

A comparator can also be used as a zero-crossing detector by differentiating the comparator output; that is the function of R1 and C1 in Fig. 2. The waveform at V_A is the differentiator output. The time-constant formed by R1 and C1 should be very, very short (e.g., 0.01) compared with the duration of waveform V_{out}. We can select either positive-going (as shown) or negative-going transitions by placing diode D1 in series with the signal line. That diode will clip the spikes of one polarity or the other. (As shown in Fig. 2, it clips the negative spikes (see Fig. 3); reverse it to clip positive spikes.)
Monostable multivibrators

A monostable multivibrator, or one-shot, is a circuit that has but one stable state. When triggered by an input pulse, the one-shot switches to the unstable state for a predetermined period of time before reverting to the stable state.

Figure 4 shows a one-shot circuit based on the op-amp, while Fig. 5 shows the timing waveforms for that circuit. There are two feedback paths in the circuit of Fig. 4. The negative feedback path consists of R1 and C1, in which C1 charged by the current in R1 is generated by potential VD1. The positive feedback loop consists of R3 and R4: V1 is the positive feedback voltage.

When a negative-going trigger pulse is applied to differentiator C2-R5, the op-amp output will snap to -V1, and remain there. The voltage will be negative, so capacitor C1 will begin to charge to a negative voltage. When V1 = -V0, the op-amp output snaps high again, ending the output pulse period. Capacitor CI is then discharged because V1 is positive. Diode D1 clamps V0 to +0.7 volts.

The period T of the output pulse is:

\[T = R1C1 \ln \left(\frac{1 + 0.7V/V0}{1 - R4/ (R3 + R4)} \right) \] (1)

If we put some constraints on values, then Equation 1 can be simplified. If V0 is much larger than 0.7 volts (it almost always is), and R3 = R4, then Equation 1 reduces to:

\[T = 0.69R1C1 \] (2)

Normally, we know the required period T, and will select C1 from tables of standard values. We will thus want to rearrange Equation 2 to find R1:

\[R1 = \frac{T}{0.69C1} \] (3)

When designing the circuit, try several values of C1 in order to find a value for R1 that is close to a standard value.

The circuit of Fig. 4 cannot be retriggered until both period t and the refractory period (i.e. time to discharge C1) expire. Figure 6-a shows the timing operation of such a circuit. When the first trigger pulse is received at time t1, the output V0 drops to -V0 for period t. The second trigger pulse (at t2) has no effect. The third trigger pulse (at t3) effects the output because the period has expired, as has the refractory period. That type of one-shot is sometimes called a nonretriggerable monostable multivibrator.

Figure 6-b shows the timing diagram for a retriggerable monostable multivibrator. The output drops low (i.e. to -V0) at time t1 when the first trigger pulse is received. If no other pulses are received, the output will snap high (i.e. to +V0) after time period t. But before t expires, a second trigger pulse is received. That pulse resets the timing for another period t. The total period the output remains low is t plus the previously expired portion of the other pulse. In other words, t = t + (t1 - t1).

Figure 7 shows a method for making the one-shot circuit of Fig. 4 into a retriggerable one-shot. Transistor Q1 is connected across timing capacitor C1. In the dormant state, the positive voltage on the trigger input keeps Q1 reverse biased, thereby turned off. But when a negative triggering pulse is received, however. Q1 is momentarily forward biased, discharging C1 that restarts the timing period. A subsequent trigger pulse will discharge C1 again, provided the pulse is received prior to the end of t (or after the refractory period).
Squarewave generator

A squarewave generator produces a train of equal duration pulses that alternately snap between positive and negative extremes. A perfect squarewave is symmetrical in two ways: amplitude and period. In other words, the positive and negative excursions have equal durations and equal amplitudes. A perfect squarewave will also have extremely fast rise and fall times (which requires high-frequency op-amps). An implication of that latter characteristic is that the squarewave is rich in upper harmonics (which is why squarewave oscillators are used in frequency multipliers and crystal frequency-markers).

FIG. 8—A SIMPLE op-amp based squarewave generator.

Figure 8 shows a typical squarewave generator based on an IC operational amplifier; Fig. 9 shows the timing diagram for the circuit.

The squarewave-generator circuit bears a certain resemblance to the one-shot circuit shown previously. There are two feedback paths. The negative feedback path consists of timing components R1 and C1. That circuit causes capacitor C1 to be charged by a current in R1, which is generated by output voltage V_f.

The positive feedback path consists of resistor voltage-divider network R2/R3.

Voltage V_f (see Fig. 8) is the feedback voltage, and is equal to V_o × R2/(R2 + R3).

Looking at Fig. 9, output waveform V_o is superimposed on capacitor charging voltage V_c. Let’s assume the output V_o snaps high (i.e. +V_f) at turn-on. Capacitor C1 will start charging in a positive direction at a rate determined by the values of R1, C1, and V_f. When capacitor voltage V_c rises to +V_f, the op-amp essentially sees a zero-voltage differential input, so the output snaps low again. At this point, V_o is negative so capacitor C1 begins to charge in the negative direction. When −V_o = −V_f, the output will snap high again.

A generator whose output alternates back and forth, as is the case for the circuit in Fig. 8, is called an astable multivibrator; in other words, it has no stable states.

The period of the waveform in Fig. 9 is the sum of high and low times, and can be expressed by:

\[T = 2R1C1 \ln \left(1 + \frac{2R3}{R2} \right) \]

where T is in seconds. If R2 = R3, we can simplify Equation 4 to the form:

\[T = 3.2R1C1 \]

As with many textbook equations, Equations 4 and 5 are not in the most practical format. In most cases, we will know T and will select C1 from a table of standard values. Thus, we need to rearrange Equation 6 to solve for R1. The value of R1 can be calculated from:

\[R1 = \frac{T}{3.2C1} \]

For example, let’s find the value of R1 if T is 0.2ms (2x10⁻³ seconds) and C1 is 0.01µF:

R1 = 7.32k
R1 = 0.0002 sec/3.2(1x10⁻⁸ farads)
R1 = 2 × 10⁻⁴ sec/3.2 × 10⁻⁸
R1 = 6250 ohms

The circuit of Fig. 8 produces the symmetrical waveform of Fig. 9. Both positive and negative excursions occupy equal time durations. That situation occurs because \(I + V_o \) = \(I - V_o \), and C1 is charged through R1 on both sides of the waveforms. Unfortunately, however, symmetry is not always desired. The modifications to Fig. 8 shown in Figs. 10 and 11 provide asymmetry in a controlled manner.

The method shown in Fig. 10 uses two feedback resistors and a pair of switching diodes to accomplish the job. The polarities of the diodes are such that D3 is forward biased by negative V_o, while D4 is forward biased by positive V_o. As a result, the capacitor is charged by −V_o via R2, and by +V_o through R3. If R2 and R3 are not equal, then the durations of positive and negative excursions of waveform V_o are not equal.

An alternate to varying the symmetry is shown in Fig. 11. An offset voltage (either positive or negative) is provided by setting potentiometer R2. Since varying R2 will vary the voltage across C1, it can be used to modify the charging time required for V_o to reach either −V_o or +V_o (depend-
In Computer Electronics...

NTS INTRONIC™ HOME TRAINING GIVES YOU THE EDGE

The competition for High-Technology careers is strong, and the rewards are great. Give yourself the edge you need by training with NTS.

NTS INTRONIC home training provides you with a special kind of “Hands-On” experience that prepares you better, develops your skills faster. You advance as quickly as you wish, working with actual circuits, diagrams, schematics, and state-of-the-art hardware. There are a dozen different NTS programs in electronics to help you develop and reach your potential. They range from basics to advanced areas in several fields. And the ALL-NEW NTS course catalog spells it all out. It’s free, and does not obligate you in any way. Send for it today.

A GROWTH INDUSTRY

High-Technology is a growth industry. The evidence is clear, and most observers predict a steady expansion due to a relatively strong flow of investment capital into computers, electronics and precision instruments. Sales of computers alone will reach an estimated ten million units this year. This means challenges and new employment opportunities, especially in servicing and maintenance. Computer servicing skills can best be learned by working directly on field-type equipment. NTS electronic hardware is selected and developed especially for the training program with which it is associated. You learn by doing, by assembling, by performing tests and experiments, covering principles of computer electronics, microprocessor troubleshooting, and circuitry.

MICROCOMPUTERS

NTS offers three programs in computer electronics. You will receive training covering solid-state devices, digital logic circuitry, and the fundamentals of the computer itself. Instruction includes micro-control technology and detailed operation of microcomputers. These courses will prepare you for entry-level in many facets of the computer industry such as field service and customer engineering as well as programming. In addition to written texts your course includes the NTS/HEATH disc-drive computer which you assemble as part of the training process. The assembly and use of the computer will serve to reinforce practical application of principles.
MICROPROCESSOR TECHNOLOGY

The field of industrial and microprocessor technology encompasses the application of electronic microprocessor control principles. Your course takes you from fundamentals of digital electronics and associated circuitry through the application of the microprocessor as a control device. You will learn how to move and manipulate instructions and information. The microprocessor trainer included in your course is a microcomputer system designed as a practical tool for learning the use of software and hardware techniques utilized in the linking of microprocessors to various systems.

DIGITAL ELECTRONICS

The NTS Compu-Trainer is a fascinating solid-state device which you will build in order to perform over ninety logic circuit experiments. These experiments serve to emphasize an area of electronics which is essential to the understanding of state-of-the-art control equipment; they are also extremely important to those wanting to pursue a career in computer servicing. Separate courses involving the Compu-Trainer are also available in Microcomputer Servicing and Digital/Analog Electronics.

ROBOTICS & VIDEO TECHNOLOGY

Other NTS courses cover a wide range of specialization. In Robotics, the NTS/Heath Hero I is included to train you in robotic applications in manufacturing processes. In Video technology, a new course features the advanced NTS/Heath Z Chassis "Smart Set" color TV with computer space command remote control and space phone. This is an excellent program for those interested in a career in video servicing with microcomputer basics.

EARN CEU CREDITS

America's industrial giants are turning more and more frequently to home study as an effective way to upgrade employee skills. You benefit from the experience NTS has gained in its 79 years as a leader in technical training. The skills and experience gained in the building of kits and test equipment provide you with training that cannot be duplicated. And, depending on the program you select, you can earn up to 30 CEU credits for successful completion. Complete details included in the catalog.

Use the mail-in card or fill out and mail the coupon. Indicate the field of your choice. (One, only please.) FREE full color catalog will be sent to you by return mail.

NATIONAL TECHNICAL SCHOOLS

4000 South Figueroa Street, Los Angeles, CA 90037

Please send FREE color catalog on course checked below.

☐ Robotics ☐ Computer Electronics
☐ Digital Electronics ☐ Video Technology
☐ Auto Mechanics ☐ Home Appliances
☐ Air Conditioning/Solar Heating

Name ____________________________________ Age ______
Address ____________________________________
City ___________________ State ____________ Apt ______
Zip ___________________ Phone (______

☐ Check if interested ONLY in classroom training in Los Angeles
☐ Check if interested in G.I. Bill Information.

NO OBLIGATION

NATIONAL TECHNICAL SCHOOLS

TECHNICAL TRADE TRAINING SINCE 1905
Resident and Home-Study Schools
4000 So. Figueroa St., Los Angeles, CA 90037

JANUARY 1985
ing upon the polarity of \(V_x \). An advantage of the circuit shown in Fig. 11 is that it includes a potentiometer that allows you to continuously vary the relative duration of the positive and negative excursions of the waveform.

Triangular waveform generator

There are several ways to generate a triangular waveform. Figure 12 shows one very common method—drive a Miller integrator with a squarewave generator. The timing waveform is shown in Fig. 13.

The triangle wave circuit is modified in Fig. 14 to include a self-generating squarewave source. The frequency of the output of that circuit is given by:

\[
 f = \frac{R_2}{4R_3 R_1 C_1}
\]

Sinewave oscillators

Sinewaves can be generated either by filtering a square or triangular waveform, or by using a feedback oscillator circuit.

The filtering method uses a very sharp cut-off low-pass filter, or a notch filter, to remove the harmonics from a complex waveform such as a triangular wave or squarewave. Of course, the amplitude is greatly reduced, but that problem is easily overcome through the use of fixed-gain amplifiers.

An advantage of the filtering method is that it is easy to maintain amplitude stability over a wide range of frequencies. Where fixed frequency operation is used, however, one might want to use a feedback oscillator.

There are two criteria that must be met by a feedback oscillator: The loop gain must be one or greater, and the feedback must be in-phase with the input signal only at the desired frequency of oscillation. Two different sinewave oscillator circuits are presented here—the RC phase-shift oscillator and the Wien-bridge oscillator.

The RC phase-shift oscillator is shown in Fig. 15. The inverting amplifier IC1 provides 180 degrees of the required 360 degrees of phase shift. The remaining 180 degrees of phase shift is provided by a three-stage RC network (each stage provides 60 degrees). The frequency of oscillation is given by:

\[
 f = \frac{1}{2\pi 6RC}
\]

The circuit will oscillate provided that the gain, which is set by \(-R_f/R\), is sufficient to overcome the losses of the RC phase-shift network. Analysis shows that the attenuation factor of the network \((V_f/V_o)\) is 1/29, so the gain must be 29 or more.

The Wien-bridge oscillator is shown in Fig. 16. The “bridge” is a frequency-selective AC version of the old-fashioned Wheatstone bridge. If \(R_1 = 2R_2 \), the circuit will oscillate at a frequency of \(f = 1/(2\pi RC) \).
Satellite-TV Accessories

Once you have your basic TVRO system set up, it's time to look for add-on devices to make your viewing more enjoyable, or simply more convenient. Here we'll take a look at some of those accessories.

MARC STERN

While a basic TVRO system—made up of a receiving antenna, LNA, downconverter, and receiver—will certainly bring you much enjoyment, there are many accessories that can make your setup even more pleasant. For example, you can add a stereo synthesizer or stereo processor, a remote antenna actuator, and a host of other devices.

In this article, we'll tell you about some of the many of the satellite add-ons that are available and how to choose them. We'll also describe what they can do for your system. Let's begin our look at these items with the stereo synthesizer and the stereo processor, both of which will add to your listening pleasure.

Stereo synthesizers and processors

A stereo synthesizer, as its name implies, creates synthetic stereo sound from the mono signal that may be transmitted by a satellite's transponder. It is pseudo stereo, not true stereo sound. However, when you use such a synthesizer with a good stereo amplifier, you can achieve rather good results.

A stereo processor, on the other hand, is used to decode stereo signals from satellites. The result is true stereo, not pseudo stereo. We recommend stereo processors over stereo synthesizers, especially since the price of decoders has dropped rather dramatically. In fact, stereo synthesizers are becoming increasingly difficult to find, because their price advantage has slipped away.

A stereo processor should have a tuning range from 5.5 to 8 MHz—that will permit you to tune in the whole range of possible audio subcarrier frequencies. If you're a regular Radio-Electronics reader, then there's a good chance that you'll want to build a stereo processor yourself. If so, check our October 1984 issue for construction details for a stereo decoder.

Many stereo processors feature selectable bandwidths (150 and 500 kHz, for example). Selectable audio bandwidth can be a useful feature to help increase the signal-to-noise ratio of many signals. But remember that as you decrease the band-
width, you lose some of the high-fre-
cency music information. However, in noisy
conditions, that is often a worthwhile
tradeoff.

IF filter

Another useful add-on component for
your TVRO setup is an IF filter. There are
several kinds. One type is a passband fil-
ter—it filters out those frequencies above
and below the satellite-TV IF. It also nar-
rows the IF bandwidth. Thus, it can be
useful to pull some weak signals out of the
snow (but you don't want to use it with
stronger signals).

Another type of filter is the notch filter.
Its main purpose is to eliminate annoying
black and white spots (sparklies), which
are usually caused by terrestrial inter-
ference. (Transcontinental telephone mi-
crowave transmissions have carriers at
±10 MHz from the transponder's center
frequency.) When connected between the
downconverter and receiver, the filters can
eliminate the interference at 60 and/or 80
MHz.

Do you really need a filter? We think
that you should put off buying one until
you set up your TVRO system. You may
find that your reception is adequate with-
out a filter. Anyway, they are easy enough
to install (they just connect in-line be-
 tween the downconverter and receiver) so
that you can add them at any time.

Antenna positioners

Because of their popularity, it is be-
coming hard to think of antenna posi-
tioners as TVRO add-ons. Since few
people are willing to run outside to crank
their dishes to a new position, antenna
positioners are becoming more like stan-
ard equipment! In general, an antenna
positioner consists of two parts: a control
unit and an antenna actuator. The control
unit is mounted indoors at the satellite
receiver. It controls the actuator, which is
mounted at the dish.

The two units are connected by a cable,
and the control voltage is low, usually
around 24 volts DC. Many control units
feature digital displays that let you return
the antenna to a particular satellite. Those
displays, typically from 2 to 4 digits, are
not true indicators of position. They are
guide numbers so that you can return to a
particular satellite. In other words, when
you locate a satellite (such as SATCOM
F3), you make note of the display (say,“247”). Then, whenever you want to re-
turn to SATCOM F3, you simply press the
direction controls until the display shows
“247.” Some positioners allow you to
store satellite positions in memory so that
you can return to them, with a single com-
mand. And some units let you store the
satellite name in memory as well.

When shopping for an antenna posi-
tioner, make sure that the actuator is pro-
tected against damage from overtravel. If

Video switching

It is quickly becoming true that the
average television set isn't just receiving
an input from a VHF or UHF antenna
anymore. Instead, it may have inputs from
a video cassette recorder, a cable-televi-
sion system, a home computer, as well as
a home satellite-signal receiving system.
A video switcher is almost a necessity to
eliminate the familiar "rat’s nest" of wire
and cable, and the confusion that grows as
the TV is called upon to handle so many
items.

There are two things you want to look
for when buying a switcher: High isola-
tion between inputs, and a lot of inputs.
(You should get more inputs than you
think you have need for—yes, you're sure
to need them eventually.) As an added con-
venience, you might want to buy one with
two or more outputs as well.

There are other accessories that you can
can get for your TVRO. Signal splitters, dis-
tribution amplifiers, remote control,
outboard signal-strength meters and tun-
able audio (if your receiver is not so
equipped), etc. can all be found along
with a host of other goodies. Let's now take
a look at just some of those add-ons you
will find in the marketplace:

Arunta

Arunta has three IF filters available for
$165. The 47022 threshold extension filter
passes 59 to 81 MHz with fairly sharp
skirts. It helps to reduce interference on
weak transponders. The 47019 notch filter
features dual notches at 60 and 80 MHz. It
is most useful for eliminating terrestrial
(intercommunications) interference. The
narrow-bandwidth 47015 enhances recep-
tion of INTELSAT feeds. (While most
TVRO systems have bandwidths of about
27-30 MHz, INTELSAT signals have
 bandwidths of about 18 MHz.) Each filter
 can be simply turned on or off with the
touch of a button (especially important
with the 47015).

Arunta also offers their SSP-318 satel-
lite-stereo processor, which can be used to
listen to mono signals as well as those
broadcast in multiplex, adaptive deviation
 multiplex, matrix, and discrete formats. It
features dual tuners, a 5-8 MHz range, an
daptive deviation, dual tuning meters,
noise reduction, dynamic-range expand-
ion, and AFC. Dual IF bandwidths (300
kH and 130 kHz) are also offered.

Burr Equipment

Burr's Sat-Trol I satellite actuator and
positioner control box, is available for
$479.95. The Mini-Trol is available for
$399.95.

The Sat-Trol I uses membrane-type
east-west control keys; it has dual scan
rates and a position indicator. The act-
uator uses zinc-plated tubes, a die-cast alu-
minum powerhead, and a special
weatherproof boot.

R.L. Drake

Drake offers several add-on TVRO ac-
cessories; among them an APS24 anten-
a positioner ($499), their VS35 video
selector ($165), and their NF60/80 notch
filters.

The APS24 makes it easy to relocate a
polar-mount antenna. The console fea-
tures a two-digit LED display and east-
west actuator buttons. The control motor
operates on 36-volts DC, and can be used
with most antennas that require a maxi-
mum linear travel between 18 and 36
inches.

R.L. Drake VS-35 video switch.

The VS35 video selector takes inputs
from 5 program sources. It offers push-
button source selection and isolation is
better than 60 dB. Its frequency response
(0 dB to 3.5 dB) is 50-400 MHz. Three
outputs are offered: TV, remote, and
vcr. All active inputs and outputs are indicated by front-panel LED's.

The NF60/80 notch filters, available for $79.95, cut out terrestrial microwave interference. The NF60 is for removing interference at 60 MHz, while the NF80 is for 80 MHz. For each filter, the notch depth is 45 dB, and the 3-dB bandwidth is ±1.5 MHz of the center frequency.

Dynasat

The DT-200 Power Tracker, available for $289, combines a weather-sealed, maintenance-free actuator and an electronic control unit that features two-speed east and west controls. An LED readout and Polarotor I control are also included. The 24-volt DC system uses Hall-effect sensors. It features an 18-inch stroke, hardened steel gears, stainless steel extension tube, and a rated thrust of 2,000 pounds.

Earth Station Accessories

A weatherproofing boot for satellite actuators/positioners is available for $21.50. It can be used to protect many positioning jacks. A two-piece boot protects motor and gear works.

Houston Tracker Systems

The Tracker IVplus is a top-of-the-line antenna positioner with remote control ($610 with remote, $439 without). The computer-programmable drive system features UHF wireless remote control (up to 200-feet away). Other features include a 16-character, blue fluorescent display that gives instructions while programming, and parental lockout capability.

The Tracker IVplus offers control of the Chaparral Polarotor I, and can interface directly to many receivers for automatic polarity selection. (Some receivers require an interface board.) The east-west over-travel limits are user programmable. The unit is supplied with an 18-inch, ball-screw actuator and 100 feet of wire.

The Tracker II ($305) is a manual-drive antenna and positioner that features an LCD readout of satellite "location" and user-adjustable over-travel limits. It features a self-contained 6-amp power supply. The suggested system load is 800 pounds or a 10-foot lightweight dish. The Tracker II is supplied with an 18-inch actuator and 100 feet of wire.

ICM/Video

The VP-300C ($349) is a completely automatic video processor. It regenerates synchronizing signals, and a clamp circuit removes hum and flicker. It features a copyguard stabilizer, four video and audio outputs, NTSC and PAL compatibility, AGC, and a 6-MHz bandwidth. Its S/N is specified at 50 dB.

The VE-200C ($495) is also automatic. It regenerates all sync signals and features a copyguard stabilizer, four audio and video outputs, image enhancement and noise reduction, fade to black, a 5-MHz bandwidth, and its S/N is specified as 60 dB. It has controls for video level, color level, burst phase, and noise level.

The SA-50 Signal Purifier ($150) is a filter/amplifier containing a five-pole bandpass filter to reduce out-of-band interference. The SD-40 ($325) stereo matrix decoder is used to decode matrix-stereo transmissions. The TA-30 ($115) is a tunable-audio device—it allows you to tune all subcarrier frequencies from 5.5 to 8.5 MHz (but not in stereo).

Kent Research

The Surveyor Seven, available for about $320, is a programmable (12-memory) antenna positioner that offers an optional remote control. It features an LCD antenna "position" indicator; east-west travel and limit indicators. Up to 12 positions can be set in its non-volatile memory, and recalled by turning a 12-position rotary control.

The Surveyor-167, which sells for about $700, is perhaps the most sophisticated controller on the market. It is interfaced directly with your receiver. That is done by your dealer—or by yourself, if Kent is convinced that you are capable of doing it yourself. One disadvantage is that interfacing the Surveyor-167 will void your receiver warranty.) Once the 167 is installed, your complete station can be controlled by a handheld unit. That includes channel, scanning, polarity, audio-frequency (and stereo) selection; video inversion, power and volume control, antenna position, fine tuning, bass and treble, AFC, etc. The 167 also features a parental lock-out system.

There are no knobs, dials, or readouts on the unit—all controls are on the handheld remote. Another impressive feature is that you can display in color, on your TV screen, the satellite that you are watching, the channel you are watching, the date and time, the channel lock-out status and total system status.

The Surveyor-167 features a 36-satellite memory, two-speed drive, up and down scanning, a timer, parental lock-out, a key lock to prevent unauthorized programming, polarity control, non-volatile memory, LED indicators, skew compensation, and a scan function. The actuator has an...
18-inch stroke and its thrust is rated at 1,500 pounds. Skew, tilt, and format correction are chosen automatically, and audio frequencies are automatically selected. It also features stereo decoding, volume mute, bass-treble adjustment, AFC, and dynamic noise reduction.

KLM

KLM station-accessory offerings include their Memory Trak ($550) and a stereo processor ($360). Memory Trak is an antenna positioner featuring a 50-satellite-position memory, digital readout of relative position and satellite name, polarity control, full east-west manual dish control, and 80-hour memory retention.

KLM's stereo processor works with standard receiver video outputs or unfiltered, unclamped video outputs. It features discrete and matrix modes, A and A+B subcarriers, narrow and wide deviation, individual A and B tuning controls, a 5.3–8.3 MHz range, center tuning edgometers, noise reduction, an interference filter, expansion switch, LED multiplexer indicator, video output jack, and mono-audio output jack. The decoder includes an amplifier section (5 watts per channel) with volume control, left and right speaker terminals, headphone jack, and bass boost.

Luxor

The model 9534 remote-controlled antenna actuator is available for $699. It features wireless remote operation, microprocessor control, 30-satellite memory; battery backed-up memory, 175-feet of cable, and automatic polarity switching. The unit can be manually controlled for programming setup and override. An LED satellite readout and position readout is included. The 9536 infrared remote control sensor is available for $99.

Newton Electronics

Newton offers satellite-TV test equipment, including the $995 GBS 2600, which features a 3.7–4.2 GHz output. It is calibrated in transponder numbers and the output can be modulated with audio and video to test LNA's, LNC's or downconverters. It features an RF-transmitting horn antenna, and selectable signal level at 70 MHz and 3.7–4.2 GHz. Audio (mono, discrete or matrix stereo) and composite video outputs, as well as a color-bar output are available. The unit contains a built-in battery charger.

The GBS 2000 ($2,995) features a microwave output that is tunable from 3.7–4.2 GHz. Its power level is equivalent to 11 dB CNR. Its LNA feed has a nominal level of ~30 dBm. The 70-MHz output, which can be used to align IF and detector

REGENCY electronic video switchover

matic pushbutton switching of four inputs (labeled ANT, SAT, VCR, and GAME) to two outputs (TV and VCR). The inputs are indicated by LED's.

Sat-Tec

The $159 S-5000 stereo demodulator decodes matrix or discrete stereo. It features 5–8 MHz subcarrier tunability. The bandwidth is selectable (150 or 500 kHz)

SAT-TEC S5000 stereo demodulator.

and its frequency response is 15 Hz to 15 kHz. Its harmonic distortion is specified as less than 1 percent. Standard line outputs, for connection to stereo amplifiers, are included.

Satellite Reception Systems

A variety of devices are available, including the Speedster trailer ($1885),

NEWTON ELECTRONICS GBS 2000 satellite-TV test set.

systems, has a power level of ~10 dBm. It contains an internal audio generator, and the four most commonly used subcarrier frequencies (5.8, 6.2, 6.8, and 7.4 MHz) are front-panel selectable.

Quantum Associates

The $395 Quanta Q-7 programmable satellite scanner can be programmed for 12 satellites and has a 2-digit LED position readout as well as a liquid-crystal clock display. It features manual and automatic scanning capability. Two drive units are available: The short unit extends 18 inches, the long drive one 52 inches.

Regency

The VDS-5000 electronic video switcher, available for $119.95, features auto-

SAT-TREC RECEPTION SYSTEMS Speedster trailer and dish.

which includes an 8-foot dish and feed. The trailer, which weighs 875 pounds, can be taken with you when traveling! It uses a 3-inch pole polar mount.

Superwinch

Superwinch offers their $470 Sky-walker II programmable antenna controller and actuator. It features an LED readout, a 16-position satellite memory, illuminated satellite-position display, a limit indicator (which shows antenna is at end of travel), one-week memory protection, overvoltage protection, and full automatic and manual operation. R-E
A versatile module

ONE OF THE MORE INTERESTING THINGS in the fast-paced world of electronics is to discover a small company starting up on the basis of a new idea or product. The fascinating part is to watch what happens to the company after it has started up. Many such fledglings last only a short time and then fade away. You can't always predict whether they'll be able to make a go of it, because there are so many factors involved.

Many emerging companies with good products or ideas have gone down the tubes because their service, dependability, and responsiveness to customers has been somewhat less than desirable. Don't get us wrong: We're not saying that an occasional new product or idea doesn't make a difference in the success or failure of the company. What we are saying is that there's more to the creation of a successful business than the product itself.

Ben Johnson's Kaltek is one of those enterprises that seems to be doing the right things and turning out useful new products. You may recall a discussion back in March 1982 in which I told you about their small module—the RC-111—which, along with a calculator and a handful of common components, can be used to build a capacitance meter, ohmmeter, and so on. That original module is still available ($14.62, postage paid). But now, there is an advanced version of the original device.

The RC-103 (which sells for $18.00 postage paid) is an RC-111 with Schmitt-trigger inputs for increased precision. Using the RC-103 along with a half-dozen common components and a simple calculator, you can build an instrument to measure resistance, capacitance, temperature, RPM, length, or angles. A stopwatch or a light meter may be constructed just as easily. So that you will know just how simple the whole thing can be, the basic circuit is shown in Fig. 1.

That circuit may be used, too, in a variety of applications depending on the component used at R2. For instance, by replacing R2 with a photodiode, you can build a light-intensity meter. The circuit may also be used to construct a capacitance meter, ohmmeter, and so on. (For more information and/or applications contact Kaltek at the address below).

Another item that should be of special interest to many of you are several circuits, developed by Kaltek, which use the RC-103 along with an inexpensive Timex Sinclair computer. One circuit forms a signal conditioner for reading "difficult" tapes. Others provide on-screen readouts of resistance, capacitance, and frequency. (Though I haven't tried it yet, I see no reason why the same circuits shouldn't work equally well with other computers—Commodore, Radio Shack, etc.—provided appropriate changes are made in the short machine-language and BASIC programs.)

As you would expect, using a computer for the calculations and display opens up all sorts of possibilities. For example, the measurements can be displayed just in numbers, but why not graphs or words, or both for convenience (which would be especially useful to the young student)? And how about a "lie detector" measuring skin resistance and showing a thermometer-like readout rising from "True" through "Are you sure?" to "Why not tell the truth?"

If you have been looking for low-cost test instruments, give some thought to the RC-111 and RC-103 with a calculator or computer. James Pennington (FL) could make a device for tuning his musical instrument. Kaltek will send you the application notes for $1.00 and an SASE, then give you a buck credit on your subsequent order.

The saga of Kaltek is not yet up to date. They've developed another module, the SL-6. With a couple of components (included with the SL-6 for $17.46, postage paid), it
makes a touch-sensitive switch that holds "on" for about one second. Of course, the hold time can be changed by substituting another capacitor for the one that is supplied.

So what good is a short delay circuit? The SL-6 was developed as an addition to the keyboard of the Timex Sinclair 1000 computer (also known as the Sinclair ZX81). In small inexpensive computers, like the Timex 1000, many keys serve several functions, depending on which mode the computer is in.

For example, a single key might be used to enter a letter, a graphics character, and the cosine function. To enter the function you first press the shift key and then the alphanumeric/function-control key. In the function mode, the alphanumeric keys become function keys.

The short delay allows you to press the shift key and then use the same hand or finger to hit the control key. That greatly increases the convenience and speed of keyboard operation. It can be especially valuable for certain handi capped individuals.

While the SL-6 application notes refer to the Timex 1000 and its shift key, it should function equally well on other keys and other machines. I am just beginning to experiment with the SL-6 on other computers, and I'll let you know the results of my efforts.

Certainly, use of the SL-6 is not limited to computer keys. Instead of completing a circuit around a computer key, it could complete a circuit to energize a small relay. That could make a dandy compact and portable alarm to sound off when someone touches a door knob or a car, for example.

Perhaps now you can understand why I find Kaltek an interesting company. I suspect that more and more applications will be found for the RC-111, RC-103, and SL-6 modules. (If you discover one, be sure to let me know about it.) There is also a rumor that Kaltek is on the development trail that will soon lead to another useful module.

Oh yes, please note that I own no stock in Kaltek (wish I did!). And if you wish to contact them, be aware that they are planning to move. The current address is Box 7462, Rochester, NY 14615. After January 1, it will be Box 971, Adjuntas, PR 00601.

Help!

A request has come in from Jack Agueros (NY) for information that I have been completely unable to find. He is looking for a means of getting in touch with others interested in old radio receivers. There must be clubs and newsletter publishers for collectors and hobbyists. If you know of one (or more), let me know and I'll pass the word to Jack and others who are interested in that subject. (Editor's note: You might try these: The Horn Speaker, PO Box 53012, Dallas, TX 75253, Bruce Kelley, Secretary, Antique Wireless Association, Holcomb, NY 14469, and Niagara Frontier Wireless Association, Box 68, Central Park Station, Buffalo, NY 14215.)
Select 5 Books for Only $2.95
Save up to $108.75 when you join

Electronics Book Club

• A wealth of Troubleshooting & Repair tips!
• Hundreds of Projects!
• State of the Art Technology!
• Exceptional Savings!
• The Choice of Hobbyists and Professionals for over 19 years!

FREE BONUS!
The Mail Order Guide to Electronic Parts and Components

See other side for more exciting selections!

Electronics Book Club
P.O. Box 10, Blue Ridge Summit, PA 17214

Please accept my membership in Electronics Book Club and send the 5 volumes circled below, plus my free copy of the Electronics Buyer's Guide billing me only $2.95 plus shipping and handling charges. If not satisfied, I may return the books within ten days without obligation and have my membership cancelled. I agree to purchase 4 or more books at reduced Club prices (plus shipping/handling) during the next 12 months, and may resign any time thereafter. Order subject to acceptance by Electronics Book Club. Valid for new members only.

800 1183 1199 1211 1218 1409 1431 1449 1474
1487 1498 1532 1536 1537 1542 1553 1561 1575 1577
1605 1616 1670 1673 1679 1682 1719 1765 1820

Name ___________________________ Phone ________
Address __________________________
City _____________________________ State ________ Zip ________

Foreign applicants will receive special ordering instructions. Canada must remit in U.S. Currency.

RE-185
Build Your Electronics Skills . . . Join Now!
No other book source offers so much for such low cost!

Take 5 Books for Only $2.95

The Electronics Book Club puts you in the mainstream of today’s electronics practice . . .

- Access to the latest state of the art developments in lasers, microcomputers, holography, robotics, test instrumentation, and more!
- Step-by-step how-to’s for building your own electronic games, gadgets, home control devices, solar energy units, more!
- Expert guidance in every phase of electronics practice!
- Time- and money-saving tips on choosing, installing, maintaining all kinds of electronic equipment!
- Practical advice on how to turn your electronics knowledge into a profitable full- or part-time career!
- No other electronics information source offers you so much at such low cost . . . Save now, save every time you order the latest electronics and microcomputer titles from the Electronics Book Club!

If card is missing, use this address to join:
Electronics Book Club, P.O. Box 10, Blue Ridge Summit, PA 17214

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 9 BLUE RIDGE SUMMIT, PA 17214
POSTAGE WILL BE PAID BY ADDRESSEE

7 very good reasons to join Electronics Book Club
P.O. Box 10
Blue Ridge Summit, PA 17214

- Big Savings. Save 20% to 70% on books sure to increase your know-how.
- No Risk Guarantee. All books returnable within 10 days without obligation.
- Club News Bulletins. All about current selections—mains, alternates, extras—plus bonus offers. Comes 13 times a year with hundreds of up-to-the-minute titles you can pick from.
- “Automatic Order.” Do nothing, and the Main selection will be shipped automatically! But if you want an Alternate selection—or no books at all—we’ll follow the instruction you give on the reply form with every News Bulletin.
- Bonus Books. Immediately get Dividend Certificates with every book purchased and qualify for big discounts of 60% to 80%.
- Bonus Specials. Take advantage of sales, special events, and added-value promotions.
- Exceptional Quality. All books are first-rate publisher’s editions selected by our Editorial Board, filled with useful, up-to-the-minute information.
MACHINE CODE DEVELOPMENT SYSTEM
Build this and put your Sinclair ZX-81 to work as a machine code development system, PROM programmer, and PROM emulator.

COMPLETING THE BIOBOX
Build our Biofeedback Monitor and use your computer to keep calm.

EXPANDING THE COMMODORE VIC-20
Enjoy the convenience of additional expansion ports for more memory or games.
7 Machine Code Development System
 Turn your Timex Sinclair 1000 into a machine-code development system, EPROM programmer, and EPROM emulator.
 Mark W. Latham

12 Build The Bio-box
 Part 2. This month, we show you the software needed to drive our biofeedback monitor. Jim Barbarello

15 VIC-20 Expander
 Add three or more expansion ports to your Commodore VIC-20 computer. Jim Steele

4 Editorial

5 Letters

5 Computer Products

ON THE COVER

If you own a Sinclair ZX81 or a Timex Sinclair 1000, you already know that programs written in BASIC execute very slowly on those machines. What’s more, programming those computers in machine-code can be somewhat less than convenient. This month, we’ll show you a project that can make writing and storing machine-code programs a lot easier. What’s more, it can double as an EPROM programmer for the ZX81/1000, or an EPROM emulator for another computer system. See page 7.

Our VIC-20 Expander is shown here ready to go. To find out more about it, see page 15.
EDITORIAL

Here we go again!

It's 1985. You know what that means... For the next few weeks, you're still going to be writing "1984" on your checks and letters. A new year takes a little getting used to. But the number of the year isn't the only thing that changes.

We're going to be seeing some changes—drastic changes—in our business, too. It seems that there will be drastic new developments announced this year. That computer that you bought because it was the latest, the best, the most up-to-the-minute model, is suddenly going to pale by comparison, and you're going to wonder if you shouldn't trade it in on one of those newer units. Suddenly, the features announced on the new machines will seem essential to you, and you'll wonder how you manage to get along without them.

Don't misunderstand—This is called "built-in obsolescence," and we're in favor of it. It helps keep the economy moving, keeps the money circulating (your money) and the challenge to produce the new and unique in order to compete, keeps the manufacturers on their toes. This results in technological advancement that benefits us all.

Timing is usually a critical factor, too. Remember when the Christmas Season began on December 25th? Now it seems to start on Thanksgiving Day. And the people in Detroit introduce their next year's models during the previous Summer. Happily, computers haven't fallen prey to that gambit as yet. The 1985 models will be coming out now—in 1985. That has both its good and bad aspects. On the positive side of the ledger, those who plan to buy new computers will now be ready to spend their bucks, now that they can shop for the new lines. And others who have been looking for a traded-in "bargain" will therefore find the shelves loaded with choices. And many of us, our Christmas-present money burning a hole in our pockets, will be ready to spend.

People who had been planning to change their jobs waited until after the holidays so they could collect their time off and those Christmas bonuses, but since that's behind us, they will be changing jobs now. That's probably going to mean more money for them, a chance to advance for others, and still more openings for those looking for jobs.

Yes, 1985 bodes well for the economy.
And for all of us too.

We, the staff of ComputerDigest wish all of our friends a healthy, happy and prosperous 1985

Byron G. Wels
Editor
LETTERS

DESIGN THOSE AUDIO NETWORKS CORRECTLY!

It was a pleasure to see my article “Computer-Designed Audio Networks” in the November issue of Computer Digest. It was not as pleasant to see that some errors crept into the program listing. The corrected lines follow:

5 CLS: PRINT
115 ON N GOTO 120,150: PRINT "ERROR - DO OVER": GOTO 110
125 RA = INT((K-1) (K - 1)):
RC = INT(I2 - K)
(KZ - 1)): A = Z.B = Z
145 GOSUB 2000: GOSUB 2025:
GOSUB 2055: GOTO 3000
160 RA = INT(((A - B) KA) -
(A - B) Z)
220 GOSUB 1000: GOSUB 1030:
GOSUB 1050
310 RA = INT((A SQU(A B))
((K-SQ(R(A B))-1) K))
530 DB = CINTABS(20 - LOG(ISOR
1 (A B)) (1 - SQ(R(1 - 1 (A B))))
LOG(10)) - 1)
2055 X = 60: FOR Y = 16 TO 19:
SET(X,Y): NEXT Y

2060 X = 60: FOR Y = 24 TO 28.
SET(X,Y): NEXT Y

In line 135, the quotation marks were omitted after the last word, but the program will run without them.—Frank Gardes, Murrysville, PA.

Sorry, Frank. Program listings are inherently subject to typesetting transcription errors—even more so than schematics! If anyone has plans to submit a listing with an article, sending it on an 8-inch SSD (IBM 3740 format) disk is the best way to avoid any prob ems.

FLYING ENTHUSIAST

I’ve become enchanted with the flight simulator on my computer and want to know how valuable this can be toward getting a pilot’s license?—Frank Stembo, Dallas, TX.

Frank, as a pilot: myse f, I can tell you it’s very valuable! Student pilots spend a lot of time in the air (and dual instruction costs plenty!) learning the rudiments of instrument flight and navigation. Your flight simulator is saving you a fortune in that way alone. But as one of the old great aviators once said, “If you want to learn about flying, watch the birds.” If you want to learn to fly, get into an airplane!

COMPUTER VERSATILITY

Most people buy computers to solve one particular problem in their lives and only rarely do they look for other applications outside their immediate sphere of interest. Your magazine has made me aware of some of the other things computers can do, and you’ve broadened my own computer usage. Thanks!—Mort Sabin, Yonkers, NY ▶ ▶ ▶

COMPUTER PRODUCTS

For more details use the free information card inside the back cover.

EDUCATIONAL SOFTWARE. The Notable Phantom teaches children ages 5–10 basic keyboard (musical) and note-reading skills as they compete against a slew of specters, spiders, and the famous phantom himself.

Haunted-house ghouls lead players through exercises to identify note names and positions on a music staff and keyboard, and to train the ear to identify different tones, depending on which lesson plan the user selects. Children learn to read music using a songbook of favorite tunes that is included in every game. Budding composers can save their own song creations and play them back later.

The software comes with a realistic key board overlay of black and white notes, more than an octave and a half. The suggested price of The Notable Phantom is $49.95—Designware, 185 Berry Street, San Francisco, CA 94107

PRINTER, the ThinPrint 80, is designed for use with portable computers. It is battery-powered, weighs only four pounds, and supports either serial or parallel interfacing to most computers (including Tandy 100 & PC-B, Epson FX-80, IOX Telecomputer, IBM PC XT, Jr and many others).

The ThinPrint 80 has 80 or 136 columns per line, 40 character-per-second bi-directional printing, 2K buffer memory, and 120 dot-per-inch graphics. It holds 80 pages of 8-1/2 wide paper, produces silent thermal printing, and fits into less than half a
briefcase. Its suggested retail price is $279.00, complete with rechargeable batteries, AC adapter, and one roll of paper—Aronix Corporation, 417 Wakara Way, Salt Lake City, UT 84108.

FILING SYSTEM, Dial 'N File, is designed for 5¼ diskettes. It is made of high-density, molded plastic and holds up to ten 5¼-inch diskettes and one PerfectData drive head cleaning disk. When opened, the plastic cover swings into an easel position and becomes a display stand. A clockwise turn of the dial operating the fanning action, places individual diskettes at the user's fingertips, with all diskette labels clearly visible. The Dial 'N File case closes with a counterclockwise turn of the dial, and locks securely to protect diskettes from damage and contaminants. Its suggested retail price is $6.95—PerfectData Corporation, 9174 Deering Ave., Chatsworth, CA.

SPREADSHEETS, the VisiCalc Package, is a two-in-one product containing both a single and a double disk-drive spreadsheet program—VisiCalc and VisiCalc Advanced Version—for users of the Apple II family of personal computers.

The VisiCalc disk includes models in home management and finance that can be expanded by the user. They are: checkbook balancing, household budget, individual retirement account analysis, future value of an investment, income averaging, and car-loan payment analysis.

The VisiCalc Advanced Version features full word prompts and variable column-width capabilities, as well as date functions, print commands that produce presentation-quality reports, and both 40- and 80-column displays.

The VisiCalc Package is priced at $179.00—Software Arts Inc., 27 Mica Lane, Wellesley, MA 02181.

COMMUNICATIONS INTERFACE is IEEE-696 (S-100) compatible. It provides a means to connect up to 8 RS232-C devices, regardless of their baud rate, stop bit, and parity configuration. Up to eight of these cards can be used in one system, for a total of 64 channels, with data rates up to 38.4 baud. Also featured are a calendar/clock, switch register, and an encryption device. The calendar/clock is battery backed-up and the device may be disabled in systems requiring several cards. The encryption device is an MMi PAL, and its use is generally for software protection. The interface is priced at $695.00—Inner Access Corporation, PO Box 888, Belmont, CA 94002.
MACHINE CODE DEVELOPMENT SYSTEM FOR YOUR TIMEX SINCLAIR 1000

MARK W. LATHAM

By now you may have seen dozens of Timex Sinclair 1000/Sinclair ZX81 add-on projects in various electronic magazines. It’s not surprising considering that at one time, Timex was shipping 100,000 units a month. While some people are content to fool around with whatever they can hook up to the back of the unit, others have bought real keyboards and extra RAM, hoping to turn their computers into real business or entertainment machines.

If you’ve ever used a Timex Sinclair 1000 (which we’ll simply call a TS 1000 from here on), you know that speed keeps that computer from serving any useful purpose. You could take a short nap while the computer is loading even a 16K program from cassette. Once it’s loaded, you run into the other speed problem—execution time. That’s because the Z80A CPU spends most of its time updating the video, and, let’s face it, the BASIC is too slow, even in the FAST mode. The simplicity of the TS 1000, which is one of its virtues, is also its downfall.

If you own a TS 1000 and want to turn it into a useful device, why not consider the following: 1) run high-speed machine-language level programs and 2) store those programs in EPROM.

This project, a machine-code-development-system/EPROM-programmer, will let you do just that. With it, you can use your TS 1000 to load programs from EPROM’s, and program EPROM’s with data anywhere in the RAM. You will be able to store and recall 4K bytes of battery-backed-up external CMOS RAM. Also, the unit can be disconnected from the TS 1000 and used to emulate an EPROM for a different microprocessor.

You will be able to use the EPROM programmer as a general I/O port, each line of which is monitored by LEDs. The LEDs are great if you are just learning machine language commands. Of those lines, 20 are available for input/output, while four others are configured as output-only lines capable of sinking 500 mA each. All those lines are available through a socket in the back of the unit and, if you hook them up with a test clip, you will have a five-volt, multi-channel logic monitor with both LED and on-screen viewing. Best of all, the whole EPROM I/O system operates under machine-language level software control, which is, of course, stored in EPROM.

System architecture

The unit is interfaced to the TS 1000 with an 8255 PPI (parallel peripheral interface) I/O port. We could have treated the program socket as a memory space accessed directly by the Z80A, but then we would have had to insert many wait states during the program pulse. Unfortunately, there is no way the CPU can refresh dynamic RAM during waits so that option is out. What we must do then is create a second bus system as shown in Fig. 1, the schematic diagram.

Gates IC1-c and IC2-c allow the Z80A to access the 8255 when A7 and SO are low (A7 is included to ensure that there will be no erroneous writes to the 8255.) If we leave the 8255’s A0 and A1 lines set for all I/O operations, the computer’s monitor system won’t crash during I/O operations regardless of whether the computer is in the fast or slow mode. The A4 and A5 lines of the Z80A are used to control the 8255’s A0 and A1 inputs, so, in hexadecimal, the I/O addresses will be 03H, 23H, and 33H.

The 8255 has three eight-bit ports, one of which is bit-addressable. Port C (PB4–PB7) will function as the secondary bus control outputs. Port B (PB0–PB7) will function as the data I/O port, and ports C (PC3–PC0) and A (PA0–7) will function as address outputs 0–11, respectively. (The reason PC3–PC0 are used in reverse as A0–A3 is twofold; that both simplifies circuit board layout and arranges the bus and LED’s for use as a logic monitor, as you will see later.)

When the 8255 is reset (either by the computer or on power up) all the ports are configured as inputs. Any time those ports are changed from inputs to outputs, or vice-versa, all the port registers are reset. That presents a problem for the control lines in our secondary bus system because those lines must remain high (set) until a memory access is desired. Transistors Q1–Q4 are used to alleviate that problem. If a port’s input or output is low, the corresponding transistor output is high, holding the control line secure. If the data in the CMOS RAM is of no importance, then those transistors may be used as high current outputs, capable of sinking up to 500 mA each.

The CMOS RAM, IC9 and IC10, and the CMOS one-of-eight decoder IC7, provide 4K of data storage for program saving and ROM emulation. The decoder
FIG. 1—COMPLETE SCHEMATIC DIAGRAM. Reference the diagram carefully while reading the text, as it helps clarify some of the more-complicated points.
FIG. 2—FULL-SIZE CIRCUIT BOARDS are provided here for those readers who desire to duplicate the boards from scratch. Note that the main board is shown in a and the display board in b. The boards are double-sided; the side shown here is the component side.

PARTS LIST

Resistors
All resistors are 1/4 watt, 5%
R1—220 ohms
R2—R4, R32—R35, R37, R39—R43—12,000 ohms
R5—R7—18 ohms
R8—47 ohms
R9—R31—270 ohms
R36, R47—39,000
R38—1 megohm
R44—66,000 ohms
R45—10,000 ohms, potentiometer, PC mount
R46—2.2 ohms

Capacitors
C1—C4, C7, C13—0.1 µF, ceramic disc
C5—100 µF, 16 volts, miniature radial electrolytic
C6, C11—10 µF, 16 volts, miniature radial electrolytic
C8—470 µF, 16 volts, miniature radial electrolytic
C9—220 µF, 35 volts, miniature radial electrolytic
C10—2200 µF, 25 volts, miniature axial electrolytic
C12—10 pF, ceramic disc

Semiconductors
D1—D4—1N4001
D5, D6—1N914
DB1—RB151 1.5-amp, 50 volt, diode bridge
Q1—Q18—MPSA13
LED1, LED6—LED9, LED14—LED17, LED22—LED25—red LED, XC556R or equivalent
LED2—yellow LED, XC556Y or equivalent
LED3—LED5—tricolor LED, XC5491 or equivalent
LED10—13, 18—21—XC556G
IC1—74LS10 triple 3-input NAND gate
IC2—74LS27 triple 3-input NOR gate
IC3—PB255 programmable peripheral interface
IC4—IC6—74LS240 octal buffer
IC7—74HC138 3 to 8 decoder/multiplexer
IC8—2716 EPROM
IC9—723N positive adjustable regulator
IC10, IC11—HM6116LP-4 CMOS static RAM
IC12—7805 5-volt regulator

Miscellaneous
T1—12VAC, 1-amp, wall-plug transformer
P1—coaxial power plug
J1—coaxial power jack
S1—3PDT switch

reads RAM's (PC7) and A11 to select the appropriate memory IC. Those three IC's are powered by either the five-volt supply through D1 or the lithium three-volt battery through D2. Pin 6 of the decoder monitors the five-volt supply and disables the RAM when the power is off.
S2—SPST switch
S3—DPDT switch, center-off
H1—50-contact, right-angle header
H2—26-contact header
PROGRAM SOCKET—24-pin ZIF socket with extender pins (or wire wrap socket)
PC boards, IC sockets, enclosure, hardware, ribbon cable, card-edge connector, DB-25 connector, etc.

The following are available from Wildonics Computer Technologies, P.O. Box 1763, Boise, ID, 83701: Complete kit of all parts including power supply, all connectors, lithium battery, PC boards, and case (does NOT include 2716 EPROM with Operating System), $149.95; 2716 EPROM with Operating System, $19.95; set of drilled and etched PC boards only $19.95; Assembled and tested unit with Operating System Software, $219.95. Shipping, handling and insurance, $3.00 for EPROM with software or PC boards only. $6.00 for complete kit or assembled unit.

With S3 set for mimic and the 8255’s ports all configured as inputs, a secondary CPU can directly access the CMOS RAM through the program socket.

Setting S3 for mimic simply or-ties the RAMCS and the EPROMCS lines and bypasses V_{pp} blocking diode D5. Resistors R38 and R39, and transistor Q8, which normally act as an inverter for the reset signal, hold the 8555 reset if the EPROM-I/O unit is used apart from the ZX81 during a mimic operation.

When S3 is set to program, the output of the V_{pp} switching regulator, IC9, is connected to the appropriate EPROM I/O pin. V_{pp} (PC7) controls the regulator’s output by sourcing the base of the regulator’s current limiting transistor. For that application, that transistor’s emitter is connected to ground. Capacitor C12 is connected to the frequency-response pin to slow the V_{pp} rise and fall times. Diodes D3 and D4 and capacitors C8 and C9 act as a voltage doubler to provide 30 volts at 60 mA to the regulator’s input.

All the bus lines can be monitored with the display board. Three 74LS240s, IC4–IC6, power the LEDs. Red LED’s (LED6–LED9, LED14–LED17, and LED22–LED25) are used for the the address lines and the LED’s for the data lines (LED10–LED13 and LED18–LED17) are green. Those LED’s will light when the corresponding bus lines are high or high-impedance. The yellow LED (LED2) will light if the V_{pp} line is low.

While we are out of space, we’re not out of things to say. We’ll finish up next month.

FIG. 3—THE SOLDER SIDE OF BOTH BOARDS (the main board is shown in a; the display board in b) is given here, also full size. Both boards can be etched at once and then cut apart.
BUILD THE BIO-BOX

You can build this biofeedback monitor for your TRS Model I or Model III.

JIM BARBARELLO

Part 2 Last month, we described the BioBox and told you how to build it. However, while we gave you a brief idea of what software was involved, we still have a lot to say about it. We'll start there. Then we'll tell you how to put the BioBox in action.

The BASIC program

The BioBox BASIC program is shown in Program Listing 2. This version is for the Model I, cassette or disk based, 16K to 48K memory.

On the Model I, addresses 16561 (least significant byte or LSB) and 16562 (Most Significant Byte or MSB) point to the top of BASIC memory. Addresses 16597 (LSB) and 16598 (MSB) point to the single USR entry point in a cassette-based system. Also, address 16561 is always 255, but 16562's contents vary according to the available memory (127 for 16K, 191 for 39K and 255 for 48K). With this understood, we must protect memory for the machine-language subroutine that will be placed there by POKE-ing the individual data values. So our first command is to POKE the number 215 into location 16561. This reserves an ample 40 bytes for our subroutine. Next, we clear 1000 to reserve string storage space and reset BASIC pointers. Line 10 also defines an error handling routine starting at line 550.

Line 20 is valid for a disk system. J is set to two bytes past the protected memory start. The second statement adjusts J if it is greater than 32767, so it can be used in the POKE statements. Finally, we jump over line 30 (which is used only for cassette-based systems) and continue execution at line 40. If we run this program on a cassette-based system, the DEFUSR statement in line 20 will cause an error, branching execution to line 550.

Line 560 checks to see if the error has occurred in line 20 (indicating that this is not a disk system). If so, we resume execution at line 30. In this manner, we can have the program decide which line to use, based on the system configuration.

The first statement in line 30 is for older Model I's. Those units had a software error in the ROM which affected the DATA pointer, making DATA reads impossible. POKE-ing 255 into location 16553 corrects this. Line 30 then sets the USR entry point and calculates the starting location to begin POKE-ing the machine language code. Line 40 prints a heading, while line 50 POKEs the subroutine code into memory. Line 50 also performs a checksum and aborts the program if the sum of all placed bytes is incorrect.

Line 60 clears the working area of the screen (GOSUB 900) and prints the vertical graph axis. Lines 90 through 140 complete the screen presentation. Line 150 tests a flag (FLG) to see if this is the initial run of the program (as opposed to a restart). If FLG is not equal to 0, the option to view the instructions is skipped. Otherwise, the user is given the option to view the instructions contained in a subroutine starting at line 600. Line 170 sets the flag and asks for your initial mood. Line 180 allows only numbers between 2 and 9 as a valid input. Line 190 equates the number you enter to CC, which is then used to create string AB. Line 200 uses AB to reprint the graph presentation minus all boxes to the right of the row you specified. It also clears the message line (above the graph).

Initialization takes place in lines 210 through 240. Based on the user's individual skin resistance, the BioBox will produce a count between 1 and 65535. The initialization procedure obtains an average start reading, equating this to the initial mood you selected. It then sets upper (maximum calm) and lower (maximum tenseness) count limits and a change increment (INC). INC is the maximum change in count that will cause one box to be removed or added. The USR call in line 210 is not included in the average count, but simply insures that the BioBox is reset before sampling begins. Line 240 erases the INITIALIZING message before proceeding to the actual biofeedback monitoring of lines 250 through 410.

First we print a box at the present position, and a period (dot) directly above it. Then line 260 samples the BioBox and, if 0 is returned, creates an error to pass execution to the error-trap routine at line 550. Line 270 increments the time (XT) and line 280 polls the keyboard to see if a Restart or End was requested (GOSUB 740). If not, the current square is blanked out (this creates the blinking effect). Line 300 checks to see if the count change is less than one increment. If so, execution branches to line 410 where a delay proportional to the current count is created before returning to line 250 for the next sample.

If the change is greater than one increment, line 310 checks to see if the count is increasing (less tense) or decreasing. For an increasing count, line 330 increases XO by one increment. Then R and C are checked and adjusted if necessary to point to the top of the preceding column (if the last square in the current
PROGRAM LISTING 2

10 POKE 16561,215:CLEAR 1000:DEF STR A: DEF INT C: R: DIM (156) ON ERROR GOTO 550
20 J = 217 + PEEK(16562);;256: J = J + (J > 32737)
30 "6535: DEFUS = J + 1: GOTO 40
40 "6535
50 CLS:PRINTTAB(14);"I O F E D B A C K M O N I T O R";PRINTSTRINGS(63,131);"PRINTTAB(18);"(c) 1983 by J. J. BARBARELLO
50 FOR I = 1TO32:READ N:POKE J+1:N:K = K + N:NEXT:IF K < > 3647 THEN PRINT $536.. "CHECKSUM ERROR:" END
60 GOSUB 900:FOR I = 1TO10:PRINT "::CHR$(157)
60 NEXT:PRINT "::CHR$(141)
70 DATA 243,62,1,211,255,6,14,16,252,62,0,211,255,17,1,0.33
80 DATA 0.0,219,255,254,255,40,3,25,48,247,251,195,154,10
90 PRINT$(639,CHR$(140));FOR I = 1TO10:PRINTSTRING $2(1,140);CHR$(142);PRINTSTRING$(2,140);NEXT
100 AL = - A; INTEGER(G, 1, 13, 4) = **:FOR I = 1TO10:AL = AL + I:NEXT:AL = AL/10
110 FOR I = 1TO10:PRINT$(I + 1);[I+1]64 AL:;NEXT:PRINT$(905,.;FOR I = 1TO10:PRINTUSING"##
120 ";J: ;NEXT
130 PRINT$968;"CALM:TABLEPACES TENSE";
140 TS = ";TENSE:";FOR I = 1TO6:PRINT$ + 259 I;64.
150 MID$(TS,1,1):;NEXT
160 IF FLG < 0 THEN 170
170 PRINT$(980, "INSTRUCTIONS? (Y N)");;GOSUB 80.
;0 IF A = "N" THEN PRINT $(980, "STRING"$52,32):ELSE GOSUB 600
180 FLG = 2:PRINT$(145, "SELECT INITIAL MOOD (2-9)...:");
190 AR = INKEYS:IF AR = "THEN 180 ELSE GOSUB 760:IF VAL(AR) OR VAL(AR) < 9 THEN 180
190 PRINTAR;"";CHR$(34);"" Select INITIAL MOOD (2-9)...";CHRS(34);")
190 PRINT(,
200 Ar=CHR$(NU-91):IF AR = "" THEN GOSUB 530:IFN=0
210 IF "" AND "" THEN PRINT$(128, TAB(24);"R E S T A R T "TAST30):GOSUB 840:GOTO 60
210 IF TT = "" AND "" = "" THEN GOSUB 840:GOTO 990 ELSE RETURN
220 AI = INKEYS:IF AI = "" THEN 800 ELSE NU = ASC(AI)
230 IFN=0:IFN = 32 ELSE GOSUB 600:GOSUB 530:FLG = 2:GOTO 60
240 IF "" AND "" THEN RETURN
250 IF "" AND "" OR "" = "" THEN PRINT$(128, TAB(24);"R E S T A R T "TAST30):GOSUB 840:GOTO 60
250 IF = "" AND "" OR "" = "" THEN GOSUB 840:GOTO 990 ELSE RETURN
260 AI = INKEYS:IF AI = "" THEN 800 ELSE NU = ASC(AI)
270 IFN=0:IFN = 32 ELSE GOSUB 600:GOSUB 530:FLG = 2:GOTO 60
280 IF "" AND "" THEN RETURN
290 PRINT$(980, "CALM:TABLEPACES TENSE"
300 TS = ";TENSE:";FOR I = 1TO6:PRINT$ + 259 I;64.
310 IF X = XO THEN 400
320 IF X = XO THEN 400
330 PRINT$(R = C + 1,STRINGS$(50,32));XO = XO + INC.R = R + 64:IF R = 840 THEN R = 200,C = C - 5
340 IF C < 3 THEN GOSUB 500:GOTO 320
350 PRINT$(468, "MAXIMUM CALM ATTAINED.");;PRINT$(525, "PRESS <R> TO RESTART, OR <E>
360 IF R = 840:IF R = C + 136 THEN R = 776,C = C - 5
370 IF C = 45 THEN C = 45,R = 200:GOTO 400
380 XO = XO:INC.PRINT$(R = C + 1A.GOSUB 500:GOTO 310
400 For I = 1TO(X-XL))250:XL:NEXT:XT = XT + 1:.500:GOTO 250
500 FOR Z = 1 TO 50:NEXT:XT = XT + .5:RETURN
510 PRINT$(980, "PRESS ANY KEY TO CONTINUE:";
520 AI = INKEYS:IF AI = "" THEN 540 ELSE RETURN
530 IF ERR = 56 THEN PRINT$(985, "PRINTER ERROR:"; STOP ELSE IF ERL = 20 THEN RESUM 30
570 PRINT$(996, "ERROR OCCURRED. PRESS <R> TO
580 PRINT$(996, "ERROR OCCURRED. PRESS <R> TO
590 IF AR = INKEYS:IF AR = "" THEN 580 ELSE
590 IF AR = INKEYS:IF AR = "" THEN 580 ELSE
600 GOSUB 890:PRINT$(260, "The Biofeedback System 1
measures and displays your changes in mood. Before
beginning, check that the hardware interface is attached,
and power is applied.
620 PRINT" Next, attach one BioProbe to your index finger
above the first joint. Then place the remaining BioProbe
on your middle finger above its first joint.
630 PRINT" When you have finished reading these
instructions, you will be asked the question "CHR$(34);
SELECT INITIAL MOOD (2-9)..."CHRS(34);". Select a
number between 2 (CALM) and 9 (TENSE). ");
64C PRINT" If you're in an average mood, select 5. If you're
calmer, try a lower number (like 3). Otherwise, select a
higher number (like 8)."
65C GOSUB 530:GOSUB 890
66C PRINT" Next mood is represented by the 100
blocks. When you select your initial mood, the higher
tension-indicating blocks will disappear;"
67C PRINT" The object is to relax and in the process make
all the blocks disappear. If you increase tension the
blocks will begin reappearing. A blinking dot will remind
you where you currently are."
680 PRINT" The more tense you get, the faster it blinks. The
calmer you get, the slower it blinks."
690 PRINT" If a fault occurs in the BioBox (EX: BioProbes
come loose, power not applied), a message will appear
and allow you to re-start by pressing <R>. If you wish
to restart at any other time, press <R>.
700 PRINT" When you wish to end the session, press <E>."
710 GOSUB 530:FLG = 2:GOTO 60
750 AR = INKEYS:IF AR = "" THEN RETURN
760 IF "" AND "" OR "" = "" THEN PRINT$(128, TAB(24);"R E S T A R T "TAST30):GOSUB 840:GOTO 60
770 IF "" = "" OR "" = "" THEN GOSUB 840:GOTO 990 ELSE RETURN
800 AI = INKEYS:IF AI = "" THEN 800 ELSE NU = ASC(AI)
810 IFN=0:IFN = 32 ELSE GOSUB 600:GOSUB 530:FLG = 2:GOTO 60
820 AI = CHR$(NU):IF AI = "" THEN 800 ELSE NU = ASC(AI)
830 IFN=0:IFN = 32 ELSE GOSUB 600:GOSUB 530:FLG = 2:GOTO 60
840 IF = "" AND "" THEN RETURN
850 PRINT$(980, "STORE RESULT? (Y/N)"
860 IF "" = "" THEN RETURN
870 PRINT$(980, "STORE RESULT? (Y/N)"
880 IF "" = "" THEN RETURN
890 PRINT$(980, "STORE RESULT? (Y/N)"
900 IF "" = "" THEN RETURN
910 PRINT$(980, "STORE RESULT? (Y/N)"
920 IF "" = "" THEN RETURN
930 PRINT$(980, "STORE RESULT? (Y/N)"
940 IF "" = "" THEN RETURN
950 PRINT$(980, "STORE RESULT? (Y/N)"
960 IF "" = "" THEN RETURN
970 PRINT$(980, "STORE RESULT? (Y/N)"
980 IF "" = "" THEN RETURN
990 PRINT$(980, "STORE RESULT? (Y/N)"
1000 IF = "" THEN RETURN
1010 PRINT$(980, "STORE RESULT? (Y/N)"
1020 PRINT$(980, "STORE RESULT? (Y/N)"
1030 PRINT$(980, "STORE RESULT? (Y/N)"
1040 PRINT$(980, "STORE RESULT? (Y/N)"
1050 PRINT$(980, "STORE RESULT? (Y/N)"
1060 PRINT$(980, "STORE RESULT? (Y/N)"
JANUARY 1985 —ComputerDigest 13
column is being removed). If C has not been decremented past 0, we jump to the subroutine at line 500, where a fixed delay is created and the time is updated. Then we return to line 330. This procedure continues until the difference between X and XO is less than one increment. The same procedure is followed in lines 370 through 390 for a decreasing count.

If at any time, all squares are removed, execution passes to line 350 where the MAXIMUM CALM ATTAINED message is displayed, and we are allowed to (R)estart or (E)nd. Lines 500 through 710 contain various subroutines, including that to display the instructions. The Restart/End subroutine begins at line 740. This subroutine is used throughout the program and allows one to restart or end at almost any time. It also calls another subroutine that gives you the option to save the results of any trial for later presentation. (STORE RESULTS, beginning at line 840).

The END routine begins at line 990. Line 1000 passes execution to Line 1050 (Restart?) if no data are present, or branches to the error trap if any error occurs. Otherwise, line 1010 proceeds to display the results previously stored in the T array. Notice that the "Factor" is a relative measure of results, since it reflects number of squares removed per unit time. Since up to 50 trials can be stored, the FOR/NEXT loop starting at line 1020 prints results in groups of 10 maximum, waits for you to press any key, and then continues. Line 1050 allows you to restart or truly end. In this manner, you can select the END function at any time, review your results and then RESTART to continue monitoring.

Using the biobox

Select a quiet, comfortable area (around 70 degrees F). Relax by loosening tight clothing, removing your shoes, etc. Sit in a comfortable position that provides arm and elbow support. Make sure your hands are clean and dry.

Type in, save and then RUN the BIO program. After the initial screen has been displayed, place the black cassette cable plug in J2 (out) and the large grey cassette cable plug in J1 (in). The small grey plug is not used. Place S1 (power) in the ON position.

The display consists of a title at the top, an underline, an "option/status" line, the biofeedback graph and a command line. At this point, the status line contains a copyright notice and the command line is asking "Instructions? (Y/N)..." Press "Y": The screen will clear below the title and the first page of instructions will be displayed. When done reading, press any key to continue (as instructed at the bottom of the screen) to read the second page of instructions. When you press any key again, you are returned to the opening screen. But note that the copyright notice is replaced by the question "SELECT INITIAL MOOD (2-9)..." You would have been brought to this point immediately if you responded N (no) to the "INSTRUCTIONS" question.

Now place one bioprobe on your index finger, and the other bioprobe on the middle finger of the same hand. The bioprobe foil should contact the fingerprint. Set the BioBox's ON/OFF switch to the ON position, and press "5." Columns 6 through 10 will disappear. The message "INITIALIZING" will appear at the bottom, and a dot (period) will appear over the top box on the last row (5th row in this example). If the BioBox is not working properly, (power not on, bioprobe not attached, skin resistance too high, etc.) the message "ERROR OCCURRED. PRESS (R) TO RESTART, (E) TO END..." will appear at the bottom. Correct the problem (power up the BioBox, attach probes, clean fingers, etc.) and press (R) to try again. You will be asked if you want to "STORE RESULTS? Y/N..." If you have completed a valid session, you would select "Y". If you encountered an error (or simply do not want to store results) press "N." The message "R E S T A R T T" will appear at the top of the screen and the original display will be provided.

Select an initial mood between 2 and 9. The dot will blink five times, and the "INITIALIZING" message will then disappear. You are now in the biofeedback monitoring mode. Make a fist; boxes will begin to be added. Release the fist, boxes will disappear (in an actual session, you should keep your hand stationary). The object is to remove all boxes. If you do, the message "MAXIMUM CALM ATTAINED. PRESS (R) TO RESTART, OR (E) TO END..." will appear in the middle of the screen. Whichever you choose, the message "STORE RESULTS? (Y/N)..." will appear at the screen bottom. Note that during monitoring you may press (R) to restart or (E) to end at any time, but you may have to hold the key down for a second or so before it is recognized. When you select (E) you will see the RESULTS screen. The RESULTS display contains five columns, labelled TRIAL #, START, END, TIME and FACTOR. For each trial, the START and END columns show the number of squares you started and ended with. For instance, if you selected "6" as your initial mood and achieved maximum calm, the START indication would be 60 (6 columns x 10 squares/column = 60) and the END indication would be 0. The next column indicates the elapsed time of the session (not seconds, but relative units of time). The final column gives an indication of how well you did. It is a ratio of the number of squares removed per one unit of time. The object is to get this number as close to zero without going negative (which indicates squares were added, not removed.)

If there are more than 10 results stored, they will be shown in pages of 10. When all results have been displayed, you will be given the option to "RESTART? (Y/N)..." By pressing "Y" you can continue monitoring. (This allows you to periodically check your progress and then return to monitoring.) If you select "N," the program will end. As currently written, the data is not permanently saved. Depending on your individual system and requirements, a short subroutine may be added to save the data to a tape or disk file.

Summing it up

The BioBox can turn your Model I or III into a computerized biofeedback monitoring system, and may even help you to reduce everyday stress and tensions. But don't limit it strictly to biofeedback monitoring. Try it as a lie detector at your next party. Just make sure you don't become the subject!
VIC-20 EXPANDER

BUILD THIS EXPANSION PORT FOR YOUR VIC-20.

JIM STEELE

If you own a Commodore VIC-20, you’re probably tired of switching memory-expansion modules and game cartridges in and out of the user port. You might have considered buying one of those port expanders you’ve seen advertised. They are certainly a possible solution—you can switch between several cartridges at the flip of a switch—but they’re expensive. We’ll show you a less-expensive alternative—building your own port expander.

Additional ports

While the expander module shown here will provide three additional ports with another available for future expansion, there is no reason why this selfsame system could not be further expanded upon almost to an infinite number of ports, limited only by your own requirements and your own pocketbook. There are actually two ways to go.

FIG. 1—EXPANSION MODULE READY TO GO. Here, we’re looking down at the top of the board.

One way is to make additional expanders, as shown here, and simply plug the second expander unit into the open port on the first one. However, if you anticipate the need for several more ports than would be furnished by this unit, you can readily “expand the expander” by adding additional ports wired in the same configuration as these are.

The result will be even more versatility.

The justification for this expander is simply in its added conveniences to the user. Before the expander, it was necessary (within limitations) to pull a cartridge and replace it with another when cartridges needed changing. If you rarely if ever change cartridges, the expander will seem a mere nicety that you could probably do as well without. However, if you’re constantly changing cartridges, as would be the case when you’re using your computer predominantly for game-playing, the expander becomes a vital and important tool, as you leave all the cartridges plugged in, and flip switches to change from one to another. It makes life a great deal simpler.

You can put the expander together for about $20.00—perhaps less if you have some of the parts around. But it will work just as well as the commercial models that cost up to five times as much. The expander we’ll show you was built to accept three cartridges, with a fourth available for future additions. It is fully switchable and it’s fused to protect both the VIC and cartridges.

Easy to build

Even if you don’t have much experience building electronics projects, you shouldn’t have too much trouble with the expander. The hardest task is the point-to-point wiring, but you can get around that by designing a printed-circuit board. Whatever method you use, you should be able to finish everything up in a weekend.

To begin with, you will need a general-purpose plug board with a 22/44 edge connector. Such boards are available from many sources, including Radio Shack. Next, you will need three or four wire-wrap 44-pin card-edge connectors. Those, too, are easily available. You’ll also need some 30-gauge (or larger) insulated wire. Stranded wire works best, and you should try to use a color-coded arrangement. Finally, you will need a 2- or 3-amp fuse and three or four switches. I used an eight-position PC-board-mounted switch.

With one exception, the card edge and card-edge connector sockets are wired in parallel. Example: Contact “A” on the contact board is wired to contact “A” on each card-edge socket. Contact “B” is wired to contact “B” on each socket, etc. (See the diagram, Figure 2.) The only exception to that is contact No. 21, which is the +5 volt supply from the computer to the expander board. This contact is wired through a switch for each socket, and then to contact No. 21 of the expander board. Thus, what is plugged into the socket will be powered up only when the switch is closed. Contacts “Z” and No. 22 are common ground.

Another alternative for those who are of an experimental turn of mind, would be the use of a rotary switch mounted to a small panel. You’d want to use a switch with the same number of contacts as there are switches on the boards, or ports on the boards, and wire to the rotary switch instead of having individual switches at each port. While this might appear to complicate the circuit a bit, it would result in up-front control of the ports. Make sure you use a non-shorting rotary switch for this application, and the rotary switch can then be mounted in a small separate plastic box of its own and placed either atop or alongside the computer. The added convenience that this affords would make it worth looking into.
Check the wiring!

Once the wiring is completed, check the continuity of each circuit. This procedure is a must because any bad connection could cause your VIC to behave radically or crash memory at a most inopportune time. When you are sure that each connection is right, plug your unit into the VIC-20 expansion port, wire-side down, making sure the contacts line up. Plug in your game and/or your memory expansions. Check the operation of each of the expansion ports with a game you are familiar with or a memory expansion. If you turn on your VIC and it does not work properly, turn it off and recheck your wiring and make sure that the contacts from the plug line up with the expansion port contacts.

That's all there is to it! Unless you have more than three expansion modules and games you don't have to worry about plugging in a module every time you need one—just switch it on when you need it!
Phantom power

One of these days, someone is going to write a definitive book called *Reinventing the Wheel*. It will be a book containing all the ideas rediscovered by succeeding generations. If asked for suggestions about what wheels to include, I think phantom power should head the list. Each new generation of students and hobbyists with whom I've been involved has “discovered” phantom power. For those of you who haven't rediscovered it yet, phantom power is a means whereby the supply voltage for a device is carried along on the same line with the signal.

The first time I ever heard of phantom power was as an assistant radio-technician on my first remote broadcast. I was the guy who lugged around heavy cases containing boat anchors (better known as portable mixers). Maybe it was the free lunch that we were served, but my supervisor took ill and I was left hanging on by my fingernails with equipment I knew next to nothing about. Under such circumstances, everything will go wrong. (And everything did!)

First, the private phone line dropped out; then the head-phones wouldn't work. Finally, after locating a public telephone, I called the head honcho at the studio who mumbled something about us being on a solid-wire circuit. He then told me to bypass the resistive pad on my mixer's output, and connect a spare dial lamp from the center tap of the mixer's output transformer to an earth ground. I was told that when the light went on I was “on the air.”
Phantom-powered circuits

The phantom-power circuit used to light the signal lamp is shown in Fig. 1. It’s almost a text-book circuit. Back then, though, it was “the cutting edge of technology.” (Textbooks, however, forget to mention that between the transformer and the output lines, we usually place a resistive pad—the one I had to jumper.) Needless to say, the darn thing worked. And even though we had plenty of induced hum in the common-ground circuit, someone back at the studio was able to get rid of it with a notch filter.

In the years that followed, I’ve seen phantom power re-discovered to feed such devices as condenser microphones. If we were to look back and trace the history of phantom power, we would find that it originated with the telephone system (for their line amplifiers). Most of you are probably more familiar with phantom power for TV amplifiers and microwave converters.

Figure 2 shows the most common phantom-powered circuit that technicians are likely to run across: a mast-mounted TV “antenna amplifier.” Of course, in such an application, you do not want to run both a power line and antenna feed to the amplifier. Phantom power lets the amplifier gets its supply voltage from the transmission line. At the receiver end, a DC voltage from the power supply is coupled to the coaxial cable through an RF choke, L1. The choke isolates the RF circuit from the power supply.

At the amplifier/converter end (on the antenna mast), the DC voltage is stripped off the coaxial cable by another RF choke, L2, to power the solid-state devices. As far as the RF signal is concerned, the choke impedance is so high that no RF appears on the DC side.

Phantom powered modems

One of the inconveniences of a modem is the power supply. It can be internal (which requires a fairly large cabinet) or external (which requires a wall-mounted AC adapter—always an inconvenience.) The modem may have to be plugged into the terminal or computer so it can tap the equipment’s power supply; or the supply could be a battery, which is sure to fail when most needed.

The more modern (not really modern) way to get the power is the way it’s done in the Universal Data Systems 1003LP answer/ori-ginate modem, directly from the telephone system. The no-load voltage on a dial-up telephone line is 48-volts DC, which falls to nominally 6 volts when the handset is taken off hook, or any normal load is connected across the line.

Fortunately, micropowered solid-state devices—like modems—work very well on 5-6 volts, so we can phantom-power a complex active device directly from the telephone circuit. Figure 3 shows a simplified phantom-power source for a manual communications modem, therefore, no ring detector/automatic power circuits are shown.

Switch S1 connects the modem to the telephone line. The full-wave rectifier (consisting of diodes D1-D4) ensures against polarity problems with the telephone lines; regardless of the line connections, the rectifier’s output polarity is unchanged. A metal-oxide varistor, MOV1, is inserted on the line side of the bridge rectifier to prevent transients that may be on the line from entering the modem.

The modem’s I/O transformer, T1, is in series with the DC output of the rectifier. Capacitor C1 provides DC filtering and the AC return path for T1. (The signal current in T1 induces an input voltage to the modem, while the modem’s output varies the DC current, hence the current in the telephone circuit.) Zener diode D5 is used to clamp the DC at 5 or 6 volts; however, it can be replaced by a voltage regulator.

While the circuit in Fig. 3 looks simple enough, it is not seen in general use because it takes a lot of hardware when a high supply-current is required. In such a case, it simply isn’t cost effective. But if micropower devices are used, it’s possible to sell a modem—such as Universal Data System’s 103LP—for a list price of $150.

Image of the free McIntosh stereo catalog and FM directory.
The rapidly rising crime rate has forced us to go to the extremes to protect our valuables. For instance, it is not uncommon to see two and three locks on a single door.

If you use conventional locks to secure your home or valuables, you could find yourself carrying large numbers of keys. That means everytime you want to open a door or gain access to your property, you'll be saddled with the task of sorting through several keys to find the one you need at that particular moment. However, there is another way to get the needed security—replace some of those conventional locks with coded electronic types.

Two electronic locks worth your consideration are the LS7228 and LS7229 from LSI. Figure 1 is a block diagram of the innards of the LS7229 (the LS7228 is similar). Both units are ion-implanted, PMOS encoder circuits that include all the necessary logic to interpret the entry code and develop a momentary lock-control output. The LS7228 address decoder is keyed by two pulse trains of logic one's and zero's applied to the correct terminals. The LS7229 is keyed by two double-throw momentary pushbutton switches (which are used to enter one's and zero's).

Both units (housed in 16-pin DIP's) feature stand-alone lock logic, out-of-sequence disabling circuits, current-source lock-control outputs, externally controlled delay to set maximum time between pulses, and a 9-bit entry code determined by 9 parallel inputs. Each IC is powered from a single-ended 2.5- to 15-volt supply. Maximum standby current is 15 µA.

The locks are controlled by a 9-bit binary code that has 512 possible combinations. The leading or most significant bit is set by pin 1 and the end (least significant) bit is set using pin 9. Code terminals 1 through 9 control a 9-bit shift register. The entry code is programmed into the lock by either jumpering or floating (leaving open) certain pins. Refer to Fig. 2, a practical circuit for the LS7229.

To program any given input to accept a logic 1, the pin corresponding to that input is left open. Jumpering a pin to ground programs a zero into the device at the
The device is unlocked by entering the code (one's and zero's) in the correct sequence through switches S1 and S2. The zeros' and ones' entry ports are initially at logic zero (ground). As each key is pressed, its entry port goes to logic one and then returns to zero. When the first correct bit of the code is keyed in via S1 and S2, the external capacitor is discharged and an internal inhibit is removed so the circuit will be receptive to the second bit, and so on.

If all nine bits are in the correct sequence, a logic one passes through the shift register to the lock output at pin 11. An out-of-sequence entry or incorrect bit at any point in the entry code inhibits any further entry. After a delay period (determined by the time constant of an external R/C network) a new sequence of key pulses may be applied.

The lock-output (pin 11) switches from zero to logic one as the voltage on pin 9 returns to zero following the last pulse of the entry code. It remains at logic one for a period about 30% longer than the R/C time constant. To hold the output at logic one, apply a tenth entry bit to either pin 13 or pin 14 and hold it high for as long as is necessary.

The output control is a current source so a load must be connected between pin 11 and ground. The source-current range depends on the supply voltage and the voltage across the load. For example, the source current averages 9 mA with a 9-volt supply and 8.5 volts across the load. It sources 26 mA with 7.5 volts across the load.

The time constant of the external R-C network at pin 12 determines the duration of the output pulse and the maximum permissible interval between valid entry-code bits. The time constant in seconds is the product of the resistance of R1 in megohms and the capacitance of C1 in microfarads. When using a 9-volt supply, the minimum suggested value for R1 is 2200 ohms and the maximum value is 3.3 megohms.

The LS7228 and LS7229 binary lock circuits are available from LSI Computer Systems, Inc., 1235 Walt Whitman Road, Melville, NY 11747 at $2.70 each for 1 to 24 pieces. Include $5.00 for shipping and handling. New York State residents add sales tax. Data sheets are available on request.
LAST MONTH WE LEARNED A THING OR two about the 4089, but were not quite finished with that device. This time, let’s start off by seeing how it can be used to do division.

Division with rate multipliers

Since we treated multiplication as successive addition, let’s think of division as successive subtraction. In simpler terms, how many times can we subtract one number from another before we reach zero? To be practical about it, let’s take a look at the circuit from our last discussion.

What we want to do with the circuit this time around is to keep track of the multiplied-rate pulses and count the base-rate pulses (the opposite of what we did previously). In hardware terms, that means we have to switch two wires in the circuit!

Figure 1 can be considered an addendum to the circuit we did last month; it shows the extra hardware needed to switch between the multiplication and division modes. With the display added, all we need do is put a DPDT switch to change the operation of the circuit from multiplication to division.

Doing more complex forms of arithmetic, such as squares and roots, is possible as well. Virtually any arithmetic operation can be written as a series of operations that involve only multiplication and division. A good mathematics textbook will show you what has to be done.

Once you have that taken care of, arrange your circuit to do the necessary arithmetic and that should be that. Start out with square roots and continue from there. If any of you do breadboard such a circuit, send me the details and I’ll put them in the column for everybody else to see. Remember that the whole point of this column is to share information (you’ve got to give a little to get a little).

There are two problems left for us to talk about. The first is figuring out a way to make the circuit easier to use and the second is making the circuit more useful. Let’s tackle the second one first.

Cascading the 4089

The 4089, and all the other rate multipliers, are easy to cascade and there are two different ways of doing it. Which way you choose depends on the kind of arithmetic you want to do.

In Fig. 2-a, the IC’s are cascaded in what National Semiconductor calls the “add” mode. IC1 works just the way it did in our demonstrator circuit and if you were to check the output of IC1, you would see the same results we saw earlier. Things aren’t terribly straightforward when you’re in the “add” mode, however. Since IC2 has its cascade input connected to the output of IC1, its multiplied rate will be 16 times greater than that of IC1.

On the other hand, if you wanted to do division by—let’s say, 72—you would have to remember that IC1 is working with a base of 16 and IC2 is working with a base of 256 (16 times 16). In order to figure out what numbers to present to the inputs of the 4089, you have to do some additional work to reduce everything to a base of 256. If A is the most significant digit (at IC1) and B is the least significant digit (at IC2), then:

\[(A \times 16) + B = 72\]

The trick is to find how large you can make A without exceeding 73.
SAVE BY BUILDING
OUR RACK MOUNT
STUDIO EQUIPMENT

QUADRAFUZZ — for separate frequency bands of distortion are mixed for the smoothest fuzz you've ever heard.
no. 6720 $39.88

HYPERFLARE/CHORUS — the cleanest, widest range, most versatile flanger anywhere at any price.
no. 6750 $149.95

VOCODER — unmatched performance in a versatile, low cost rack package.
no. 6710 $99.95

HOT SPRINGS — user's agree, short of studio plate systems, you won't find a better reverb at any price.
no. 6740 $59.95
ADD $3 SHIPPING FOR EACH KIT ORDERED

Innovative, cost effective designs by Craig Anderton in easy to assemble kits from:

PAIA Electronics, Inc.
Direct mail orders and inquiries to: Dept. 11R
1020 W. Wilson Ave., Oklahoma City, OK 73114. 1-800-654-8657
MON-FRI 9AM to 5PM EST
FAX 405-443-8758

CIRCLE 90 ON FREE INFORMATION CARD

Minor brain burning gives us an answer of four for A; therefore, B has to be eight. To sum it up, we put a binary four (0100) and a binary eight (1000) at the weighted inputs of rate multipliers IC1 and IC2, respectively.

A much easier way to take care of that is to use the second method of cascading the 4089, which National Semiconductor refers to as the "multiply" mode. That configuration, shown in Fig. 2-b, is a standard cascading arrangement. It is more common than the "add" mode, but as we'll soon see, it is not as versatile.

The procedure is little different and a lot simpler than the previous method. Here the outputs of the ICs are multiplied together in a normal cascade arrangement, making the arithmetic a lot easier, as can be seen from the equation:

A × B = 72

Our only restriction in choosing values for A and B is the four-bit width of the ICs; 12 and 6 are the only choices.

You've probably noticed that not all numbers can be obtained using that method, which is why the add mode is more versatile. However, if we were doing multiplication, the restriction wouldn't apply and this method would be better, since it would mean fewer traces on the board.

Like almost everything else in digital circuitry, our description makes it sound much more complicated than it really is. If you try working with the rate multiplier, you'll find that it can provide easy solutions to what would otherwise be seemingly impossible circuit problems.

The second problem is designing some sort of circuit that would make it easy for us to select the numbers we want to use. Because the 4089 has binary inputs, the keyboard encoder covered in the February, March, and April 1983 installments of "Drawing Board" would be perfect.

If you're interested in the topic of keyboard data entry, check out those issues of Radio-Electronics (if you don't have them, try your local library). If there is enough interest in the subject, let us know; we'll spend some more time talking about it.

\[A \times B = 72 \]
Audio overload protection

In any contest to rate the most popular areas of electronics, audio circuits and projects would undoubtedly be among the top ten. There is probably more home "tinkering" done in the areas of equalization, noise reduction, amplification, and so on than in any other field. And, as we all know, hardly a day goes by without an announcement from one semiconductor manufacturer or another about a new audio IC.

Each successive generation of audio IC has more features packed into it than its predecessor and can handle really mind boggling amounts of power. For instance, it wasn't long ago that an LM386 driver-amp blew everybody away because, with just a handful of external parts, it could output a ½ watt of continuous power into an 8-ohm load. These days, however, IC power-amps need virtually no external components, and one with more than 10 watts of power-handling capability can be held on the end of your little finger!

Every amplifier (regardless of type) has maximum power ratings. If those limits are exceeded, the amplifier and any associated components may be destroyed, so you must be careful. (Remember overloading can cause lots of trouble.) Overloading is hard to guard against because a typical audio signal can have a really wide dynamic range—sometimes more than 30dB.

Overload protection scheme

Protecting audio circuitry against overload (accidental or otherwise) is an important consid-
Learn micro-processing with the new MICRO-PROFESSOR 1P

Students, engineers or technicians—upgrade your micro-processing skills with the new Micro-Professor 1P.

The MPF-1P features:
- extensive software support
- more built-in memory
- improved keyboard
- larger display

Three tutorial guides help cover all capabilities. The ideal training tool! MPF-1P will deliver you into the growing world of micro-processing. Invest now!

Plus—FREE GIFT
Only $179.95

[Box with instructions for checking the box for the free gift]

For immediate action call TOLL FREE: 1-800-426-1044

Full money back guarantee.

The best place to put the circuit is either in the feedback loop or shunted across the preamp input. Although the circuit tends to limit the gain of a preamp, keep in mind that it's meant to show you one way to approach the problem, and is by no means the only way to get the job done. Once you try it and become familiar with how it works, there are several "off-shoots" of that design, which you can make following the same basic idea.

Figure 1 shows a 500-ohm potentiometer (R1) sitting right on the line feeding power to the preamp. When the audio signal is increased, the preamp draws more power to handle the larger signal. That results in a greater amount of current through R1, which causes a proportionate voltage to develop across the potentiometer.

Transistor Q1 monitors the voltage supplied to the amp through resistor R1. Whenever that voltage reaches the VCE threshold, the transistor turns on, causing the LED in the optocoupler to light. That, in turn, causes the phototransistor to conduct. What you do with output of the optocoupler depends on how you design your audio circuit but (as already stated) the best place for it is either in the feedback loop or across the preamp input.

continued on page 112
SERVICE CLINIC

Kit building made easy

HANDS-ON ELECTRONICS IS A GOOD phrase. Everyone should have some experience in making things. Once you've actually built something, you'll know much more about how it works.

One thing every electronics hobbyist should have is some test equipment. But, as you probably know, the most desirable equipment can be expensive. There is, however, a way to get the test gear you need, and save a good deal of money in the process. Of course, I'm referring to test equipment in kit form.

Saving money isn't the only advantage—you can also gain much knowledge about how the device is made and what it can do. Kits range from the simplest (an analog VOM, for example) to things more complex than a digital frequency counter. I speak from much experience: at least ten instruments among my collection were made from kits, and they're darn good instruments, too!

One of the niceties of kit building is that the most complex instrument can be just as easy to build as the simplest one! Instruction and construction manuals (see Fig. 1) supplied with the kit tell you exactly how the instrument works and how to use it. Be warned, however, you must follow the construction manual to the letter. Don't take short cuts!

The manuals were written by people who have made and sold thousands of those devices. Therefore, what they tell you to do is always the best way to do that particular job. Follow them closely and you'll find that the job goes much faster, and you'll wind up with an instrument that stands a far greater chance of working the first time it's turned on.

Believe it or not, I've almost never had one work the first time—always because of some stupid mistake I'd made! And that's what this article is about: how to find and correct those mistakes. Not only will the information found here aid you in kit building, but it can help make any construction project or repair job go a bit smoother.

Correcting construction errors

In building any electronic device, you should check your work both during and after each phase of construction. For instance, when placing a part in a circuit board, make sure it's in the right place, correctly oriented, and is the value called for in the instructions before soldering. In that way, any mistakes—parts put in backwards, etc.—can easily be corrected.

After soldering, check for solder bridges—splashes of solder caused by sloppy workmanship—especially between closely-spaced, adjacent PC-board conductors (see Fig. 2). Solder bridges can be a real headache to locate, because they are the same color as the conductors of the PC board! A magnifying glass is a handy thing to have around when checking for solder bridges. It can help you locate those hair-line bridges, which often are undetectable to the naked eye.

I once wired up a fairly complex kit, taking extreme care (or so I thought) to avoid solder bridges. But when I powered it up, it did nothing! Checking over my work carefully with a big magnifying glass, I found no less than five bridges. After correcting the problem, my kit worked like a charm. So don't ever be too confident that you haven't made any bridges. Look your work over very closely, and if you find any bridges, take them out.

While you're checking for bridges, look for any unsoldered terminals or cold solder joints. Unsoldered terminals are a common occurrence in kit building. That is, after you've finished putting the kit together, a joint or two is still not soldered. That's usually...
caused by not reading the instructions carefully.

A good construction manual (from Heathkit, for example) will tell you to put in a part and then “S,” for solder or “NS,” for not solder—which should tell that there are more parts to be connected to that joint—so that terminal should not be soldered yet. After completing a section, make sure that each terminal is soldered or not soldered as instructed.

Cold solder joints are another common source of trouble. They can be identified by their frosty appearance. If you find one or more, simply reheat the joint and, if necessary, apply a bit more solder. A good solder joint usually shines like silver. Assuming that all appears well, you can power up the device.

If nothing happens, follow the same routine you would with any other piece of “dead” equipment. Go back and check the wiring, parts placement, and so on. Then if you find no errors, power it up again and check the DC voltage source and the places where DC voltages should be.

Chances are you’ll find that the voltage is missing in one or two places. When you find a place that should have voltage but does not, simply trace back through the circuit until you find the place where the trouble is. Fix that point and make sure that there are no more missing voltages. Once you get the DC voltages all straightened out, the device should work. If it doesn’t, you’ll have to recheck everything. Never be lulled into a false sense of security because you believe you’ve followed every step. Remember, overconfidence can be disastrous!

Suspect everything until you have double checked it. Go back, recheck the manual, and be sure the part in each position is the type and value called for. If you do that carefully, there’s a far greater chance of your project working the first time.

Kits are really very easy to assemble (as you will find out) if you follow the instructions. Take it very slow and easy, and be sure to check off each step as you go (using a red pencil, so the check marks will stand out).
SUBSCRIPTION TV MANUAL. This information packed book details the methods used by subscription TV companies to scramble and descramble video signals. Covers the Sinewave, Gated Pulse, SAVI system, and the methods used by most cable companies. Includes circuit schematics, theory, and trouble shooting hints. Only $12.95 plus $2.00 first class P&H. ELEPHANT ELECTRONICS INC. (formerly Random Access) Box 41770-R, Phoenix, AZ 85080. CIRCLE 120 ON FREE INFORMATION CARD

SATELLITE TELEVISION RECEIVER SEMIKIT with dual conversion downconverter. Features infrared remote control tuning, AFC, SAW filter, RF or video output, stereo output, Polarator controls. LED channel & tuning indicators. Install six factory assembled circuit boards to complete. Semikit $400.00. Completed downconverter add $100. Completed receiver and downconverter add $150. JAMES WALTER SATELLITE RECEIVER, 2697 Nickel, San Pablo, CA 94806. Tel 415-724-0587. CIRCLE 124 ON FREE INFORMATION CARD

ZENITH SAVI-1, STV-1, STV-2 COMPLETE DESCRLAMBER MANUAL Original Zenith schematics. Theory of operation and repair information. Modifications for use on cable and satellite systems. How to bypass addressing system. Replacement parts and power supplies available. $19.95 plus S&H C.O.D. Visa or Mastercard. S&L ELECTRONICS, 3800 Enterprise Drive, Allen Park, Michigan, 48101. (313)562-9747. CIRCLE 272 ON FREE INFORMATION CARD

FREE 1984 ELECTRONIC TOOL & INSTRUMENT CATALOG is packed with over 5,000 quality technical products for assembling, testing and repairing electronic equipment. All products fully illustrated with photographs, detailed descriptions and pricing to allow for easy ordering by phone or mail. Most orders are shipped within 24 hours. 100% satisfaction guarantee. CONTACT EAST, 7 Cypress Drive, Burlington, MA 01803. (617)272-5051. CIRCLE 55 ON FREE INFORMATION CARD

SCIENTIFIC ATLANTA Introducing the CM-04 cable TV descrambler. Compatible with Scientific Atlanta 6500 series cable systems. Total channel capability. Assembled and tested. Simple plug-in installation. Regular Price $180.00. Special Introductory Offer $145.00. C.O.D. orders accepted. Quantity discounts available. V.I.P. Electronics, P.O. Box 628, Forestdale, R.I. 02824, (617) 755-9778. CIRCLE 273 ON FREE INFORMATION CARD

FREE CATALOG OF HARD-TO-FIND TOOLS is packed with more than 2000 quality items. Your single source for precision tools used by electronic technicians, engineers, instrument mechanics, schools, laboratories and government agencies. Also contains Jensen's line of more than 40 tool kits. Send for your free copy today! JENSEN TOOLS INC., 7815 46th St., Phoenix, AZ 85040. (602) 968-6231. CIRCLE 115 ON FREE INFORMATION CARD

ZENITH SAVI-1, STV-1, STV-2 COMPLETE DESCRLAMBER MANUAL Original Zenith schematics. Theory of operation and repair information. Modifications for use on cable and satellite systems. How to bypass addressing system. Replacement parts and power supplies available. $19.95 plus S&H C.O.D. Visa or Mastercard. S&L ELECTRONICS, 3800 Enterprise Drive, Allen Park, Michigan, 48101. (313)562-9747. CIRCLE 272 ON FREE INFORMATION CARD

ZORBA 64K PORTABLE COMPUTER 9" Green or Amber CRT. Two 400 K DSDD Drives. CP/M 2.2 Operating System. $799.00. Gemini Electronics, Inc., 130 Baywood Ave., Longwood, FL 32750. 1-800-327-7182, 305-830-8866. CIRCLE 258 ON FREE INFORMATION CARD

FREE CATALOG OF HARD-TO-FIND TOOLS is packed with more than 2000 quality items. Your single source for precision tools used by electronic technicians, engineers, instrument mechanics, schools, laboratories and government agencies. Also contains Jensen's line of more than 40 tool kits. Send for your free copy today! JENSEN TOOLS INC., 7815 46th St., Phoenix, AZ 85040. (602) 968-6231. CIRCLE 115 ON FREE INFORMATION CARD

ZENITH SAVI-1, STV-1, STV-2 COMPLETE DESCRLAMBER MANUAL Original Zenith schematics. Theory of operation and repair information. Modifications for use on cable and satellite systems. How to bypass addressing system. Replacement parts and power supplies available. $19.95 plus S&H C.O.D. Visa or Mastercard. S&L ELECTRONICS, 3800 Enterprise Drive, Allen Park, Michigan, 48101. (313)562-9747. CIRCLE 272 ON FREE INFORMATION CARD

FREE CATALOG OF HARD-TO-FIND TOOLS is packed with more than 2000 quality items. Your single source for precision tools used by electronic technicians, engineers, instrument mechanics, schools, laboratories and government agencies. Also contains Jensen's line of more than 40 tool kits. Send for your free copy today! JENSEN TOOLS INC., 7815 46th St., Phoenix, AZ 85040. (602) 968-6231. CIRCLE 115 ON FREE INFORMATION CARD

ZENITH SAVI-1, STV-1, STV-2 COMPLETE DESCRLAMBER MANUAL Original Zenith schematics. Theory of operation and repair information. Modifications for use on cable and satellite systems. How to bypass addressing system. Replacement parts and power supplies available. $19.95 plus S&H C.O.D. Visa or Mastercard. S&L ELECTRONICS, 3800 Enterprise Drive, Allen Park, Michigan, 48101. (313)562-9747. CIRCLE 272 ON FREE INFORMATION CARD

FREE CATALOG OF HARD-TO-FIND TOOLS is packed with more than 2000 quality items. Your single source for precision tools used by electronic technicians, engineers, instrument mechanics, schools, laboratories and government agencies. Also contains Jensen's line of more than 40 tool kits. Send for your free copy today! JENSEN TOOLS INC., 7815 46th St., Phoenix, AZ 85040. (602) 968-6231. CIRCLE 115 ON FREE INFORMATION CARD

ZENITH SAVI-1, STV-1, STV-2 COMPLETE DESCRLAMBER MANUAL Original Zenith schematics. Theory of operation and repair information. Modifications for use on cable and satellite systems. How to bypass addressing system. Replacement parts and power supplies available. $19.95 plus S&H C.O.D. Visa or Mastercard. S&L ELECTRONICS, 3800 Enterprise Drive, Allen Park, Michigan, 48101. (313)562-9747. CIRCLE 272 ON FREE INFORMATION CARD
FOR SALE

CABLE-TV Secrets—the outlaw publication the cable companies tried to ban. HBO, Movie Channel, Showtime, descramblers, converters, etc. Suppliers listed included: $5.95. CABLE FACTS, Box 711-R, Pataskala, OH 43062.

RESISTORS 1W±5% 3 cents. 1% metalfilm, precision custom woundres, $1.00 refundable to: JR INDUSTRIES, 5834-B Swancreek, Toledo, OH 43614.

FREE catalog featuring scanner accessories, carrier/subcarrier detectors, voice scramblers, unusual kits. CAPRI ELECTRONICS, Route 1R, Canon, GA 30520.

CABLE-TV equipment, tunable notch filters for "beeping" channels. Information $1.00, DK VIDEO, PO Box 63-6025 RE, Margate, FL 33063.

DIGITALKER Speech Synthesizer has 136 word vocabulary. Interfaces with parallel port of your computer. PC8 and plans $12.00. JIM RHODES, INC., 1025 Pans Lane, Kingsport, TN 37660.

WANTED: RCA, Cunningham, Western Electric, Genalex, Telefunken, GE, Sylvania, McIntosh, Marantz, Altec, JBL, Tannoy. Tubes, amplifiers, speakers. (713) 728-4343. MAURY, 11122 Atwell, Houston, TX 77096.

CABLE-television facts and secrets. Now you can get the informative publication that CATV companies have been unsuccessfully trying to get banned for 15 years. Movie Channel, HBO, and Showtime converters, etc. Send $8.75 to: CABFAX, P.O. Box 091185, Bexley, OH 43209.

WHOLESALE MATV/CATV equipment, antenna, accessories, cartriges, radios, speakers, wires. (718) 697-0509, D&W, 68-12110 Street, Flushing, NY 11375.

GUARANTEED quality surplus for less! Free flyer ELECTRONIX LTD., 3214 South Norton, Sioux Falls, SD 57105.

CORDLESS- phone owners. Increase distance, reduce static on 1.749 MHz phones. Details $1.00 refundable. HP PHONES, Box 273, Mesa, AZ 85201.

DELUXE cable/ UHF converters. Zenith, SSAAV-1 $199.95. Zenith Cable—$229.95. Jerrol, Oakad, etc. Dealers wanted. $2.00 catalog—UNITED ELECTRONIC SUPPLY, Box 1323, Elgin, IL 60121-0119. (312) 697-0600.

COCO owners—Free color computer software and hardware catalogue. SPECTRUM, Box 9866, San Jose, CA 95157-0856.

INDIVIDUAL photocat folders. No. 1 to no. 1400, $3.00 postpaid. LBT, 414 Chestnut Lane, East Meadow, NY 11554.

This ad is set with a background screen. Notice how it stands out on the page. This ad incurs a 25% premium charge. Perhaps your next ad could have a screen background. For ordering information, see top of Market Center listing.

AUTOMOTIVE AM/FM stereo $49.95 up. 40 piece socket set. Lifetime warranty $39.95. Free catalog, NEPTUNES CAVE, Box 8837, Fort Worth, TX 76124-0637.

B&K 747B tube tester like new, $250.00—(702) 642-9706.
NOTCH filters for Cable-TV. Channels 2-6, 14-22, A-F. Send $20.00 for sample and quantity price list. Specify channel. Money back guaranteed. CATV, PO Box 17621, Plantation, FL 33318.

WALKMAN style headphones $7.00. Plezo super tweeter, 40,000 Hz $6.00. JAMES FIGIELSKI, PO Box 42, Florham Park, NJ 07022. No checks.

DESCRAMBLERS for downconverters. High gain. Send $2.00. RB ELECTRONICS, PO Box 643, Ke Amanda, MI 49005.

CABLE-TV converters, Zenith, Scientific Atlanta, Jerrold, Oak, others available. Fast service, UNITED ELECTRONICS SUPPLY, PO Box 1206, Elgin, IL 60121. (312) 977-0600.

PCB for Satellite Stereo Project in October article is now only $15.00. JIM RHODES, INC., 1025 Random Lane, Kingsport, TN 37660.

"SATELLITE descramblers"-lowest prices anywhere! Dealer inquiries welcome. Send $3.00 for catalog. We ship C.O.D. STARVIEW INC., PO Box 103, Redford, MI 48240. (516) 765-1288.

AUTOMATIC telephone dialing, programming unit, solid-state, auto-reset, drives cheap recorder, cassette tapes, monitors refrigeration etc. Alarm control module, patch cords, instructions, warranty, $39.95. HAROLD DAVIS, (601) 366-4112.

SAMS Photofacts, old radios, television, combos, $2.00 each. $10.00 set. SEASAW, 575 East Tremont, Bronx, NY 10457.

This ad is set with a background screen. Notice how it stands out on the page. It incurs a 25% premium charge. Perhaps your next ad could have a screen background. For more information, see top of Market Center listing.

CABLE-TV products, Jerrold, Hamlin, and Oak converters. Send $3.00 for information. ADDITIONAL OUTLET CORP., 1041 W. Commercial Blvd., Ft. Lauderdale, FL 33309.

ZENTH SAVI Manual. Original manual used by technicians. Theory of scrambling, schematics, parts lists, replacement parts, cable. For speedy delivery send $15.00 cash or money order. BAY STATE ELECTRONICS, PO Box 263, Accord, MA 02018.

INTEL model No. MDS225, Intel Dual Disk Drive model No. MDS220, Intel Universal Prom Programmer model No. UPPI03. Equipment in excellent condition. Call Ted Belbin, (414) 832-2244. EIRICH MACHINES LTD., PO Box 550, Maple, Ontario, Canada L1J 6E0.

TOKO coils and printed circuits. Quantity discounts. JIM RHODES, INC., 1025 Random Lane, Kingsport, TN 37660.

ELECTRONIC catalog. Over 4,500 items. Parts & components. Everything needed by the hobbyist or technician. $2.00 postage & handling (United States only), refundable with first $15.00 order. T & M ELECTRONICS, 472 East Main Street, Patchogue, NY 11772, (516) 289-2520.

OPTICAL character reader input any computer. Construction cost $75.00. Plans $29.95. 50 page catalog $3.00. DBE, Box G, Walhiki, MI 49815, MC/Visa orders (800) 396-7458.

RECONDITIONED test equipment. $1.00 for catalog. JAMES WALTER TEST EQUIPMENT, 2697 Nickle, San Pablo, CA 94806.

CABLE-TV converters, police radar detectors and scanners. Send $1.00 for catalog. GREAT LAKES COMMUNICATIONS, INC., 5-2026 Chicago Dr. Jenson, MI 49428.

CB MODIFICATIONS
Increase channels, range, privacy! We specialize in frequency expanders, speech processors, FM converters, PLL & slider tricks, how-to books, plans, kits. Expert mail-in repairs & conversions. 16-page catalog $2.

TIMEX/SINCLAIR 1000

This is an expanded type ad. Notice the increased visibility. Yes, you'll pay a premium for this kind of ad. But it will help your ad stand out from the rest. For ordering information, see top of Market Center listing.

APPLE SOFTWARE
ELECTRONICS made easy for Apple II users with Mentor, the proven theoretical circuit design package. Excellent learning aid too. $174.95. KORSMEYER ELECTRONIC DESIGN, INC., 5701 Prescott, Lincoln, NE 68506, (402) 483-2238.

ENJOY SATELLITE TV
Save money with easy, guaranteed, do-it-yourself antenna plans & kits. Electronic knowledge not necessary. Send $1.00 for catalog or $8.95 for 1984 Consumer Guide to Satellite Television. OFI9 Box 9108 Missoula, MT 59807.
Communications ICs

With Pin-Out And Data

<table>
<thead>
<tr>
<th>Type</th>
<th>Cat. No.</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>XR 2206</td>
<td>276-2338</td>
<td>595</td>
</tr>
<tr>
<td>XR 2211</td>
<td>276-2339</td>
<td>595</td>
</tr>
<tr>
<td>ICL8038</td>
<td>276-2340</td>
<td>595</td>
</tr>
<tr>
<td>LM565</td>
<td>276-1720</td>
<td>195</td>
</tr>
<tr>
<td>MC1488</td>
<td>276-2501</td>
<td>170</td>
</tr>
<tr>
<td>MC1489</td>
<td>276-2521</td>
<td>175</td>
</tr>
</tbody>
</table>

Computer / Game Connectors

<table>
<thead>
<tr>
<th>Type</th>
<th>Positions</th>
<th>Cat. No.</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solder Sub-D Male</td>
<td>9</td>
<td>276-1537</td>
<td>195</td>
</tr>
<tr>
<td>Solder Sub-D Female</td>
<td>9</td>
<td>276-1538</td>
<td>245</td>
</tr>
<tr>
<td>Hood for Above</td>
<td>9</td>
<td>276-1539</td>
<td>199</td>
</tr>
<tr>
<td>Solder Sub-D Male</td>
<td>15</td>
<td>276-1527</td>
<td>245</td>
</tr>
<tr>
<td>Solder Sub-D Female</td>
<td>15</td>
<td>276-1528</td>
<td>245</td>
</tr>
<tr>
<td>Hood for Above</td>
<td>15</td>
<td>276-1529</td>
<td>196</td>
</tr>
<tr>
<td>Solder Sub-D Male</td>
<td>25</td>
<td>276-1547</td>
<td>299</td>
</tr>
<tr>
<td>Solder Sub-D Female</td>
<td>25</td>
<td>276-1548</td>
<td>399</td>
</tr>
<tr>
<td>Hood for Above</td>
<td>25</td>
<td>276-1549</td>
<td>199</td>
</tr>
<tr>
<td>Soiltee Sub-D Male</td>
<td>25</td>
<td>276-1559</td>
<td>499</td>
</tr>
<tr>
<td>Soiltee Sub-D Female</td>
<td>25</td>
<td>276-1565</td>
<td>499</td>
</tr>
<tr>
<td>Printer Connector</td>
<td>36</td>
<td>276-1534</td>
<td>699</td>
</tr>
<tr>
<td>Cable Socket</td>
<td>34</td>
<td>276-1525</td>
<td>319</td>
</tr>
<tr>
<td>Disk Drive Connector</td>
<td>34</td>
<td>276-1564</td>
<td>495</td>
</tr>
</tbody>
</table>

Voice Synthesizer IC

SPO256-ALZ, MOS LSI. Uses a program stored in its built-in ROM to synthesize any English word. Requires low-cost support components and host computer. Easy to interface. Requires 3.12 MHz clock crystal (available through Radio Shack). 5 VDC, single supply, 28-pin DIP with detailed data. 276-1784.

4000-Series CMOS ICs

With Pin-Out and Specs

<table>
<thead>
<tr>
<th>Type</th>
<th>Cat. No.</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>4001</td>
<td>276-2401</td>
<td>99</td>
</tr>
<tr>
<td>4011</td>
<td>276-2412</td>
<td>99</td>
</tr>
<tr>
<td>4012</td>
<td>276-2413</td>
<td>1.19</td>
</tr>
<tr>
<td>4017</td>
<td>276-2417</td>
<td>1.49</td>
</tr>
<tr>
<td>4049</td>
<td>276-2449</td>
<td>1.19</td>
</tr>
<tr>
<td>4066</td>
<td>276-2466</td>
<td>1.19</td>
</tr>
</tbody>
</table>

TTL Digital ICs

With Pin-Out and Specs

<table>
<thead>
<tr>
<th>Type</th>
<th>Cat. No.</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400</td>
<td>276-1801</td>
<td>.89</td>
</tr>
<tr>
<td>7404</td>
<td>276-1802</td>
<td>.99</td>
</tr>
<tr>
<td>7408</td>
<td>276-1822</td>
<td>1.29</td>
</tr>
<tr>
<td>7447</td>
<td>276-1805</td>
<td>1.59</td>
</tr>
<tr>
<td>7490</td>
<td>276-1808</td>
<td>1.09</td>
</tr>
</tbody>
</table>

Operational Amplifiers

<table>
<thead>
<tr>
<th>Type</th>
<th>Cat. No.</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>741</td>
<td>(Single)</td>
<td>276-007</td>
</tr>
<tr>
<td>MC1458</td>
<td>(Dual)</td>
<td>276-038</td>
</tr>
<tr>
<td>LM354</td>
<td>(Quad)</td>
<td>276-1711</td>
</tr>
<tr>
<td>TL082</td>
<td>(Quad)</td>
<td>276-1715</td>
</tr>
<tr>
<td>TL084</td>
<td>(Quad)</td>
<td>276-1714</td>
</tr>
<tr>
<td>LM3900</td>
<td>(Quad)</td>
<td>276-1712</td>
</tr>
<tr>
<td>LM3939</td>
<td>(Quad)</td>
<td>276-1748</td>
</tr>
<tr>
<td>TCC271</td>
<td>(Single)</td>
<td>276-1749</td>
</tr>
<tr>
<td>TCC272</td>
<td>(Quad)</td>
<td>276-1750</td>
</tr>
</tbody>
</table>

Voltage Regulators

With Adjustable Output

<table>
<thead>
<tr>
<th>Type</th>
<th>Cat. No.</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM723</td>
<td>0 to 40 VDC</td>
<td>276-1740</td>
</tr>
<tr>
<td>LM3177</td>
<td>1.2 to 37 VDC</td>
<td>276-1778</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Fixed Output</th>
<th>Cat. No.</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>7805</td>
<td>+ 5 VDC</td>
<td>276-1767</td>
<td>1.59</td>
</tr>
<tr>
<td>7812</td>
<td>+ 12 VDC</td>
<td>276-1777</td>
<td>1.59</td>
</tr>
<tr>
<td>7815</td>
<td>+ 15 VDC</td>
<td>276-1772</td>
<td>1.59</td>
</tr>
<tr>
<td>7905</td>
<td>+ 5 VDC</td>
<td>276-1773</td>
<td>2.19</td>
</tr>
<tr>
<td>7912</td>
<td>- 12 VDC</td>
<td>276-1774</td>
<td>1.59</td>
</tr>
</tbody>
</table>

Compact SPST Reed Relays

Only **149 Each**

Perfect for use when space is limited. Approx. 1 x 3/8". Pins for PC mounting. Contacts rated 1 amp at 125 VAC. Sensitive, low-current coils. 5VDC Coll. 275-232 1.49 12 VDC Coll. 275-233 1.49

Fold-Up 25-Range Multimeter

- **Detended Hinge With 4 "Stops"**
- **Easy-to-Read 4" Mirrored Meter**

"Big meter" features at a "little meter" price! Fused, surge-absorber protected. Shunt protection of meter movement when shut. With leads, manual and scale: 5/16" x 9/16" x 1/16". Battery extra. 22-211 29.95

Digital Logic Probe

19.95

Simultaneous Tone Output For Faster Testing

The quick way to "peek inside" TTL, LS and CMOS digital circuits. Color-coded LEDs indicate high, low or unknown logic states. Simultaneous tone output. Overload and polarity protected 22-302 15.95

Regulated DC Supply

34.95

Breaker Protected

Converts 120 VAC to 12 VDC ideal test bench power source for autosound, CBs, ham rigs and more. Produces 13.8 VDC at 2.5 amps continuous load. 6 A surge. Rugged metal cabinet, 2 1/2 x 4 1/2 x 6 3/4". UL listed. 22-124 34.95

Compact 16-Range Digital Multimeter

49.95

High-contrast LCD display for precise readings at a glance. Fused, overload protected. Diode, transistor test and many other features. 5V x 3 1/2 x 1 7/8". With leads, manual. 22-189 49.95

Radio Shack

A DIVISION OF TANDY CORPORATION

Prices apply at participating Radio Shack stores and dealers

CIRCLE 78 ON FREE INFORMATION CARD
100 CHANNEL VMF TO UHF CATV/VCX CHANNEL CONVERTER
With Built in Antenna and Free Tuning
- Converts using FM antenna and Superheterodyne
- Channels can be selected on your TV using VHF channels 2-13 or sub-channel tuning
- Designed to enhance VHF tuning and cable TV reception
- Set to receive VHF and UHF signals, then change to CATV channel for operation
- Pre-wired, built-in all metal case
- High gain, low noise, high power output for CATV
- 3.5 mm stereo jack for external speaker
- Includes installation kit and owner's manual
- For Channels 14 - 83

CIRCLE 121 ON FREE INFORMATION CARD

DON'T BLAME THE SOFTWARE!

Our Isolators eliminate equipment interaction, clean up interference, curb damaging power line spikes and lightning bursts.

ISO-1 ISOLATOR
3 isolated sockets; quality splice suppression; basic protection. 881.95

ISO-3 SUPER-ISOLATOR
3 dual isolated sockets; suppressor; commercial protection. 882.95

ISO-17 MAGNOLIA ISOLATOR
4 quad isolated sockets; suppressor; laboratory grade protection. 821.95

RF ELECTRONICS

CIRCLE 60 ON FREE INFORMATION CARD

HIGH QUALITY 75dB GAIN MICROWAVE TV SYSTEM

Varible from 1.9 to 2.5 GHz

The latest advance in microwave technology with a SNOW-FREE PICTURE.

Two Models to choose from:
Both Models include:
- 20' Parabolic Dish
- Pre-assembled Probe with Down Converter
- Power Supply and Coax Switch
- 60' of RG-59/U Coax with Connector
- 75 to 300 Ohms
- All Mounting Hardware for Fast and Easy Installation

20' Fiberglass Dish
Up to 55dB Gain
Special $98.95

20' Aluminum Dish
Up to 55dB Gain
Low Price $98.95

provides 10% for Foreign orders or U.S. Parcel Post

High Gain Yagi Antenna with Down Converter and Power Supply. Complete System, Ready to Use.

Send $2.00 for Catalog. Returnable with first purchase. Available thru AGI and Phone Orders Only. 30% deposit for COD. CA Res. add 5% Tax. Send Cashiers Check or Money Order. (Personal Checks, at 2-3 weeks to clear)

PROFESSIONAL VIDEO, INC.

CIRCLE 118 ON FREE INFORMATION CARD

CONTROL your world with your computer! Control up to 48 devices easily with Controlplus, scheme programs $39.95. B.W. ELECTRONICS, 3821 Lowden, Kalamazoo, MI 49008.

FREE 44 page parts catalog available from HOSFELD ELECTRONICS, 2610 Sunset Blvd., St. Louis, MO 63152.

FREE KIT Catalog

FUNCTION GENERATOR KIT $59.95
Auto-Ranging Cap-meter kit $79.95
Phone 209-772-2076
Write or Phone for FREE KATALOG

DAGE SCIENTIFIC INSTRUMENTS
BOX 144 VALLEY SPRINGS CA 95252

APPLE II + compatible cards: ZBO $39.95, disk controller $35.95, EPROM programmer $49.95, RS-232C $42.95, 16K-ROM $34.95, 5 amp power supply $39.95, 8F. modulator $5.95. Great prices on IBM items too! Free listing. 3 month warranty. KOMPUTECH, Box 597, Alexandria Bay, NY 13607.

DESCRAMBLE cable over-the-air programs—kits $97.95—plans $9.95—details $1.00—MINUTE, Box 531, Westchester, S. Boro, N.Y. 11502.

TIMEX Sinclair brother EP20 interface plans and software package: $10.00 U.S., Michigan res. 4% tax, $1.00 S.H., check or M.O. OROZ, 1604 Pange, Lincoln Park, MI 48146.

GET more spatial realism with these kits. The KI-1 at $97.00 expands stereo sound to fill your room. The KVSP-1 at $95.00 creates full stereo from mono and improves your TV audio system. Prices alone $1.00 each. Prices include UPS to 48 states. Send check, Visa or M.C. TO SOUND CONCEPTS Box 135, Brockline, MA 02146.

PROJECT your TV to wall-size image for $19.95. Guaranteed! Details, VIDEOQUEST, Box 3212, Glenview, IL 60025.

COMMODORE 64 numeric keypad for use with MLX and numeric data entry. Plans and software $4.00—complete kit of parts $40.00, ck or M.O SYNTRONICS, 2324 Dennywood Dr. Nashville, TN 37214.

ELECTRONIC kits: Polyphonic digital synthesizer, digital sound sampler and accessories. Build a pro-

fessional system at low cost. The VMS synthesizer system is compatible with most microcomputers, (Apple, Commodore, Sinclair, etc.). Complete software packages available for the Commodore 64. Imported from West Germany. Send $5.00 for brochure and demo-cassette. Mail To: CEDOS ELECTRONICS, PO Box 101, Waukesha, WI 53187.

SINE WAVE QUESTIONS?

TROUBLE shooting, alignment, antenna hookup, improvements manuals for STV authorization control. $3.00. Both, $6.00 SIGNAL, Box 2512-R, Culver City, Ca. 90231.

GRAPHIC EQUALIZERS, ETC.

NOISE eliminators, expanders, power meters, others. Twelve-24 bands/channel equalizers from $69.00. Kit see R--E 5-67B, 2/80, 3-A/1. Catalog: $5.50, S&H. Lynrose, Santa Rosa, Ca. 95404 (707) 546-3985.

CABLE TV

DEALERS wanted: Channel 2, 3, and 4 notch filters. Money back guarantee. Send $15.00 for sample and quantity price list. Specify channel(s). LEE KURTZ, PO Box 291394, Dave, FL 33029.

CABLE CONVERTERS & DESCRAMBLERS

HAMLIN OAK JERROLD
SCIENTIFIC SYLVANIA ZENITH
ALL TYPES OF CABLE MICROPHONE ANTENNAS & ACCESSORIES
FREE ILLUSTRATED BROCHURE CALL OR WRITE

PROFESSIONAL VIDEOS, INC.
4670 Hollywood Blvd., Hollywood, Ca. 90027
For C.O.D. Orders Call (213) 219-0227
WE HAVE WHAT YOU NEED AT THE PRICES YOU WANT!

CALL TOLL FREE
1-800-543-4330
(IN OHIO, 1-800-762-4315)

$39.80
#72-050

3½ DIGIT LCD MULTIMETER
■ DC Input Impedance 10M ohm
■ Diode and HFE Transistor tests
■ Overload protection ■ Auto polarity ■ 2 year limited Warranty

$69.95 (2 or more)
#72-045

COMBINATION DMM/CAPACITANCE METER
(With Transistor Gain Tester)
■ User can easily read Voltage, AC and DC current, resistance up to 20M ohms, capacitance up to 20 microfarad, and HFE on a clear ½ inch, 3½ digit LCD display
■ 2 year limited Warranty

$26.95 (1-4)
$24.95 (5-up)
#72-010
#33-050

MATCHING TRANSFORMER
■ 75-300 ohm matching transformer
■ UHF/VHF/FM

29¢ (min 100)
#33-010
#33-070

OSCILLOSCOPE PROBE KIT
■ Bandwidth: 10:1 position: 100MHz at—3dB into 20pF
■ Rise Time: 10:1 position less than 3.5ns nominal
■ Kit contains: 10' earth lead, retractable hook, ic test tip, insulator, BNC adaptor and trimming tool.

$24.95
#33-200

PUSH ON BALUN
■ Quick connect matching transformer

30¢ (min 50)
#33-410

3-WAY SPLITTER
■ 75 ohm ■ UHF/VHF/FM
■ Comes with F-59 connector

$115 (min 10)
#33-200

F-59 CONNECTOR
■ Attached 1/2" ferrule

15¢ each
#33-410

LOGIC PROBE WITH MEMORY
■ Multi-family compatibility—DTL-TTL-HTL/CMOSIC
■ Detects pulses as short as 50 nanoseconds

$19.95
#72-190

20MHZ DUAL TRACE OSCILLOSCOPE
Two High Quality 10:1 probes included. Backed by our 2 year limited warranty. For specifications see MCM Catalog #8 page 108.

$389.95
#72-320

2-WAY SPLITTER
■ Zinc diecast construction
■ Power passive ■ 5-900MHz

89¢ (min 10)
#33-070

CHANNEL COMBINER
■ The 33-255 enables the user to combine a channel 3 output signal from an STV, MDS, VCR or video game device with an existing MATV system containing adjacent channels 2 and 4.

$9.85
#33-255

DELUXE CORDLESS CABLE CONVERTER BY JERROLD®
■ 58 channel capacity
■ Approved by the F.C.C., UL and C.S.A.
■ Wireless hand controller switches channels, turns TV set on and off and even fine tunes the picture
■ Compatible with all cable systems ■ "Jerrold" model #LCC-58-3

$89.95 each
#32-380

Be Sure to Call for Your FREE 120 PAGE CATALOG, OVER 4,500 ITEMS!!

We Also Have... a full line of test equipment, computer accessories, telephone accessories, speakers, television parts, flybacks, yokes, switches, fuses, lamps, capacitors, resistors, capacitors, styli, wire, CATV equipment and many more. Over 4,500 items at the lowest prices around!

Terms: • $10 minimum order • $1.00 charge for orders under $10 • $20 minimum charge card order • Orders shipped UPS C.O.D. • Most orders shipped within 24 hours • Sales office open 8:30am to 6:00pm Saturdays 10:00am to 3pm, EST

Mcm ELECTRONICS
858 East Congress Park Drive
Centerville, Ohio 45459
513-434-0031

SOURCE NO.RE-5

CIRCLE 87 ON FREE INFORMATION CARD

101
POWER SUPPLIES

TRADE IN, SAVE...

THE VENDORS TECHNOLOGY, INC.
5VDC @ 1.0A Regulated Power Supply
- Output: -5VDC @ 1.0A reg - +5VDC regulated - Input: 115VAC 60Hz
- Two input leads (Brown-black) - Red-black - Size: 141/4 x 11/2 x 11/2 - Weight: 2 lbs
- Price: $399.95

$579.95

Apple Keyboard and Case for Apple IIe II+ - Keyboard: direct connection - Includes Apple IIe II+ keyboard - Price: $59.95

$399.95

Apple INC. REGULATED POWER SUPPLY - Perfect for computer systems - Output: +5VDC @ 1.0A - +5VDC @ 1A - Price: $399.95

$579.95

TRANSACTION TECHNOLOGY, INC.
5VDC @ 1.0A Regulated Power Supply
- Output: -5VDC @ 1.0A reg - +5VDC regulated - Input: 115VAC 60Hz
- Two input leads (Brown-black) - Red-black - Size: 141/4 x 11/2 x 11/2 - Weight: 2 lbs
- Price: $399.95

$579.95

PowerMac Corp. REGULATED POWER SUPPLY - Price: $399.95

$579.95

4-CHANNEL SWITCHING POWER SUPPLY
- Microprocessor-controlled - 4 channels - 5VDC @ 1A - 5VDC @ 1A - 5VDC @ 1A - 5VDC @ 1A - 12VDC @ 1A - Price: $399.95

$579.95

Switching Power Supply for Apple IIe II+ - Price: $399.95

$579.95
MICROPROCESSOR COMPONENTS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400</td>
<td>N/A</td>
</tr>
<tr>
<td>74F00</td>
<td>N/A</td>
</tr>
<tr>
<td>74ALS00</td>
<td>N/A</td>
</tr>
</tbody>
</table>

DIGITAL TUBES

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT1050</td>
<td>N/A</td>
</tr>
<tr>
<td>MM54040</td>
<td>Processor Chip</td>
</tr>
</tbody>
</table>

74HC High Speed CMOS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>74HC10</td>
<td>N/A</td>
</tr>
<tr>
<td>74HC20</td>
<td>N/A</td>
</tr>
<tr>
<td>74HC30</td>
<td>N/A</td>
</tr>
</tbody>
</table>

DATA ACQUISITION

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
</tr>
</tbody>
</table>

LINEAR

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
</tr>
</tbody>
</table>

Applications: Teaching aids, appliances, clocks, automotive, telecommunications, language translations, etc. The DT1050 is a digitally displayed time clock with 127 separate and usable words. 2a.m. times, and 5 different alarm sounds. The word times are brought about by changing the time from 00:00 to 127:00. It is possible to output large words or words complicated into phrases or sentences. The DT1050 is a highly developed Digital Tube designed to meet the needs of a variety of applications. The vocabulary is chosen so that it is applicable to many practical uses and market needs.

The DT1050 comes as a 16 pin processor chip, MM54040, and the 16 pin SMD tube, 74HC10, and packed along with a Master Word list and a recommended schematic diagram on the data sheet. **$10.00 Minimum Order** — U.S. Funds Only. **S&H (2) QTY.** 11% Tax **FREE U.S./E. Canada. 2 QTY.** Send U.S.E.T. (E.U.E.T.) above price. **Specify Quantity** if not ordering above minimum. **Order Subject to Change.**
BUSINESS OPPORTUNITIES

US $8.00 including disk thousand name brand pro-
grams for Apple 8M-Pc details RELIANT, PO Box
33610, Shunghong, Hong-Kong.

MECHANICALLY inclined individuals desiring
ownership of small electronics manufacturing busi-
ness—without investment. Write BUSINESS,
92-R. Brighton 11th, Brooklyn, NY 11235.

PROJECTION TV. Make SSS's assembling pro-
ejectors. Easy. Results comparable to $2,500.00
projectors. Your total cost less than $20.00.
Plans, 8 lens & dealer's information $7.50. Illus-
trated information free... MACROMAX GEX
Washington Crossing, PA 19077. Creditcard orders
24 hours (215) 736-2980.

YOUR own radio station! AM, FM, cable. Home
operation possible. BROADCASTING, Box 130-F1,
Paradise, CA 93969.

BURGLAR alarms—booming business. Get In
now. Starting information $2.00. DYNAMIC SE-
CURITY. PO Box 1456-T, Grand Rapids, MI 49501.

PICTURE tube rebuilding business. Buy/sell,
used machinery. Full training. CHICAGO TELEVI-
SION, 633 North Semoran Blvd., Orlando, FL
32807, (305) 281-1260.

INVENTORS!

IDEAS have value! Ever think of an idea, forget it,
and see it later on the market? Many people don't
forget, act quickly, and are rewarded by American
industry. Write down your idea!

AMERICAN INVENTORS CORPORATION, 82 Broad
Street, Dept. ICAN ICAN, New York, NY 10013.

NEW!...Repair any TV, Easy. Anyone can do it.
Write, RESEARCH, Rt. 3, Box 601 BR, Covina, WI
99114.

REEL-TO-REEL TAPES

AMPEX professional series open reel tape, 1800-
2400-feet on 7-inch reel, used once. Case of 40,
$45.00. 100' x 3600 feet and cassettes available
MasterCard. Visa. VALTECH Electronics, Box 6-
REI, Flichboro, PA 18954 (215) 322-4866.

EDUCATION & INSTRUCTION

FCC General Radiotelephone License contain-
ence course, $59.50 for 60 individual lessons.
Payment plan, results guaranteed! Details free.
AMERICAN TECHNICAL INSTITUTE, Box 201,
Cedar Mountain, NC 28718.

ATTENTION

ELECTRONIC TECHNICIANS

Highly Effective Home Study BSEE Degree Pro-
xam for Experienced Electronic Technicians
Our New Advanced Program Earns you
Credit for previous schooling & Professional Ex-
erience. Advance Rapidly! Our Royal
FREE DESCRIPTIVE LITERATURE!
Cook's Institute of Electronics Engineering
P.O. BOX 20140, JACKSON MS 39209

WANTED

OLD tubes: 2A3, 103, 455, 505, 807, 211, 242,
845, VT-52, VT-62 WESTERN ELECTRIC
MATERIALS: (818) 576-2642, David POB 832, M-Park,
CA 91754.

OLD tubes, unused and boxed. Send your stocklist.
TSUTOM YOSHIIHARA, C-1105, Deguchicho-34,
Suita, Osaka 564, Japan.

INVENTIONS, ideas, new products wanted! Industry
presentation/national exhibition. Call free
(1-800) 528-6050. Arizona, (1-800) 352-0458. X831.

DATA FLOW SYSTEMS

FOR INVENTORS!

THE FIRST TIME 41/2 INCH, 101/2 TONALITY,
RELIANT SIREN MARKET! MAKE YOUR
OWN! FREE MACROMAX GEX
WASHINGTON CROSSING, PA 19077.

WANTED

OLD tubes: 2A3, 103, 455, 505, 807, 211, 242,
845, VT-52, VT-62 WESTERN ELECTRIC
MATERIALS: (818) 576-2642, David POB 832, M-Park,
CA 91754.

OLD tubes, unused and boxed. Send your stocklist.
TSUTOM YOSHIIHARA, C-1105, Deguchicho-34,
Suita, Osaka 564, Japan.
THE FIRST NAME IN ELECTRONIC TEST GEAR

20 MHz DUAL TRACE OSCILLOSCOPE

Unsurpassed quality at an unbelievable price! The Ramsey oscilloscope compares to others costing hundreds more. Features include a component testing circuit for resistor, capacitor, digital circuit and diode testing. TV video sync filter. wide bandwidth & high sensitivity. Internal gratitute. Front panel trace居民. 2 zaps. high sensitivity high mod. regulated power supply. Built-in counter. clock. 3x speed triggering. VISA-Add $5.00 per unit for postage. Overseas orders add 15% of total order for insured surface mail.

$399.95

high quality hook on probes included

RAMSEY D-1100 VOM MULTITESTER

Compact and reliable, designed to service a wide variety of equipment. Features include: mirror back scale. double-meshed precision moving coil. double overhead protection. an ideal low cost unit for the beginner or as a spare back-up.

$19.95

test leads and battery included

NEW RAMSEY 1200 VOM MULTITESTER

Check transistors. diodes and LEDs with this professional quality meter. Other features include: double scale. 20k volt matching system. 35mm mirrored scale. polarity switch. 20 measuring ranges. safety probes. high impact plastic case.

$249.95

test leads and battery included

45 MHz DUAL SWEEP OSCILLOSCOPE

The Ramsey 525 is a dual time-base. Nested sweep unit that includes a built-in signal delay line to permit clear viewing during very short time spans of high frequency waveforms. Other features include: variable trigger offset. 20 sample expanding sweep rate ranges from .1 S to 0.001 S. full adjustable zoom. full automatic triggering. dual trace. 20 MHz bandwidth. low pass. virtual dc filter. front panel 4 operation. dual inputs. dual type AC and DFM waveforms. labeled as single trace. sweep gate any sweep output. audio focus. single sweep.

$799.95

high quality hook on probes included

RAMSEY D-3100 DIGITAL MULTIMETER

Reliable, accurate digital measurements at an amazingly low cost. In-line color coded push buttons. 400 point range selection. 3x plastic tilt stand. recessed scale. plastic protection on all ranges. 3x digit LCD display. with auto zero, auto polarity & low BAT indicator.

$499.95

test leads and battery included

ACCESSORIES FOR RAMSEY COUNTERS

Telescopic whip antenna... BNC plug... $8.95
High impedance probe, light loading... 16.95
Low pass probe, audio use... 16.95
Direct probe, general purpose use... 13.95
Tilt ball for CT-70, 60, 125... 3.95

PHONE ORDERS CALL
716-586-3950
TELEX 466735 RAMSEY CI

January 1985

CIRCLE 70 ON FREE INFORMATION CARD
DISKETTES 5¼”

- **ATHANA**
 - SS/SD...... 15.90
 - SS/DD...... 16.90
 - DS/DD...... 22.90

SOFT SECTOR with HUB RING

BULK 5¼” DISKETTES (NO LABEL)

- SS/DD ... 10 for 14.90
- 100 up............139.00
- (Lifetime Warranty)

The FLIP SORT™

The new Flip Sort™ has all the fine qualities of the original with some added benefits: a new design and 50% greater capacity. Holds 75 diskettes and the price is now lower than ever — **$16.95**

The FLIP SORT PLUS™

The new Flip Sort PLUS™ adds new dimensions to storage. Its smoked acrylic elegance holds over 100 diskettes with all the features you expect from the Flip Sort Family — **$24.95**

APPLE ACCESSORIES

APPLE ACCESSORIES

80 Column Apple II+ ... 149.95

- 80 Column Apple IIE ... 129.95
- Z80 Apple II+ ... 89.00
- Z80 Apple IIE ... 89.00
- 16K Card ... 39.95
- Cooling Fan ... 38.95
- Power Supply ... 74.95
- Joystick ... 29.95
- RF Modulator ... 13.95
- Disk Drive ... 199.00
- Controller Card ... 59.95
- Paddles ... 7.95

MULTIFUNCTION CARD

- 64K to 384K RAM
- Parallel Port
- Serial Port
- Clock Calendar
- Software Included
- 1-Year Warranty

MEMORY CARD

- Expandable to 512K
- Fully compatible with IBM software
- Fully compatible w/IBM diagnostic utilities
- Serial Port Available
- 1-Year Warranty

$249.95

COOLING FAN

38.95

APPLE COMPATIBLE JOYSTICK

29.95

APPLE COMPATIBLE POWER SUPPLY

74.95

- Powers Apple type systems
- +5V @ 5A
- +12V @ 3A
- -5V @ .5A
- -12V @ .5A
- Includes Instructions

16K RAM Card - Apple II+

- 2-Year Warranty

Assembled & Tested... **39.95**

APPLE COMPATIBLE DISK DRIVE

$299.00

DISK DRIVES

- Tandem TM100-2
- 05/00 ... 199.00
- Teac FD-558
- 05/00 ... 159.00

KEYBOARD EXTENSION CABLE

$19.95

IC SOCKETS

- (1 to 99)

<table>
<thead>
<tr>
<th>8 pin ST.</th>
<th>14 pin ST.</th>
<th>18 pin ST.</th>
<th>20 pin ST.</th>
<th>22 pin ST.</th>
<th>24 pin ST.</th>
<th>26 pin ST.</th>
<th>40 pin ST.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>14</td>
<td>16</td>
<td>16</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>46</td>
</tr>
<tr>
<td>WW</td>
<td>WW</td>
<td>WW</td>
<td>WW</td>
<td>WW</td>
<td>WW</td>
<td>WW</td>
<td>WW</td>
</tr>
</tbody>
</table>

ST = Solderable

WW = Wirewrap

NOR SOCKETS

<table>
<thead>
<tr>
<th>16 pin ZIF</th>
<th>24 pin ZIF</th>
<th>28 pin ZIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZIF = TEXTOL (Zero Insertion Force)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IBM ACCESSORIES

MEMORY EXPANSION KIT

4164 150ns

9 for $45.00

MICROMAX VIEWMAX-80

149.95

- 80 Col. card for Apple II+
- Video Soft Switch
- Inverse Video
- 2 Year Warranty

MICROMAX VIEWMAX-80e

129.95

- 80 Col. card for Apple II+
- 64K RAM Expandable to 128K
- 64K RAM Upgrade ... **40.00**

VISTA AVENUE

199-219

800-472-9150

Reg. Power Supply

Model 4A/PS (99/4)

3 DC Outputs:

- 12V @ .4A
- +5V @ 1.1A
- -5V @ .2A

Highly Filtered **6.95**

TERMS: Minimum order $10.00

For shipping and handling, include $2.50 for UPS ground or $5.50 for UPS Blue (air). Each additional air port, add $1 for UPS Blue shipping and handling. California residents must include 6% sales tax. Bay area and LA residents include 8% sales tax. Prices are subject to change without notice.

We are not responsible for typographical errors. We reserve the right to limit quantities and to substitute manufacturers. All merchandise subject to prior sale.

CALL for VOLUME Quotes

HOURS: Mon - Fri 7:30 to 5:00

Saturdays 10:00 to 3:00

VISIT OUR RETAIL STORE

2100 Du La Cruz Blvd

Santa Clara, CA 95050

(408) 988-0697

ALL MERCHANDISE IS 100% GUARANTEED

Telex: 756440

DoKay

CIRCLE 110 ON FREE INFORMATION CARD
STATIC RAMS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2112</td>
<td>256x4 (40ns)</td>
<td>2.99</td>
<td></td>
</tr>
<tr>
<td>2114</td>
<td>1024x4 (200ns)</td>
<td>8.105</td>
<td></td>
</tr>
<tr>
<td>2114-25</td>
<td>1024x4 (250ns)</td>
<td>8.105</td>
<td></td>
</tr>
<tr>
<td>2114-25-35</td>
<td>1024x4 (350ns)</td>
<td>8.105</td>
<td></td>
</tr>
<tr>
<td>2114-35</td>
<td>1024x4 (500ns)</td>
<td>8.105</td>
<td></td>
</tr>
<tr>
<td>2114-45</td>
<td>1024x4 (500ns)</td>
<td>8.105</td>
<td></td>
</tr>
<tr>
<td>2114-55</td>
<td>1024x4 (500ns)</td>
<td>8.105</td>
<td></td>
</tr>
<tr>
<td>2114-65</td>
<td>1024x4 (500ns)</td>
<td>8.105</td>
<td></td>
</tr>
<tr>
<td>2114-75</td>
<td>1024x4 (500ns)</td>
<td>8.105</td>
<td></td>
</tr>
</tbody>
</table>

DYNAMIC RAMS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1411-25</td>
<td>16384x1 (200ns)</td>
<td>8.795</td>
<td></td>
</tr>
<tr>
<td>1411-200</td>
<td>16384x1 (200ns)</td>
<td>8.795</td>
<td></td>
</tr>
<tr>
<td>1411-500</td>
<td>16384x1 (500ns)</td>
<td>8.795</td>
<td></td>
</tr>
<tr>
<td>1411-1000</td>
<td>16384x1 (1000ns)</td>
<td>8.795</td>
<td></td>
</tr>
<tr>
<td>1411-2000</td>
<td>16384x1 (2000ns)</td>
<td>8.795</td>
<td></td>
</tr>
<tr>
<td>1411-5000</td>
<td>16384x1 (5000ns)</td>
<td>8.795</td>
<td></td>
</tr>
<tr>
<td>1411-10000</td>
<td>16384x1 (10000ns)</td>
<td>8.795</td>
<td></td>
</tr>
</tbody>
</table>

SPECTRONICS CORPORATION

EPROM ERASERS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7410</td>
<td>7410</td>
<td>.19</td>
<td></td>
</tr>
<tr>
<td>7400</td>
<td>7400</td>
<td>.19</td>
<td></td>
</tr>
<tr>
<td>7407</td>
<td>7407</td>
<td>.19</td>
<td></td>
</tr>
<tr>
<td>7408</td>
<td>7408</td>
<td>.19</td>
<td></td>
</tr>
<tr>
<td>7412</td>
<td>7412</td>
<td>.19</td>
<td></td>
</tr>
<tr>
<td>7415</td>
<td>7415</td>
<td>.19</td>
<td></td>
</tr>
<tr>
<td>7416</td>
<td>7416</td>
<td>.19</td>
<td></td>
</tr>
<tr>
<td>7417</td>
<td>7417</td>
<td>.19</td>
<td></td>
</tr>
<tr>
<td>7418</td>
<td>7418</td>
<td>.19</td>
<td></td>
</tr>
<tr>
<td>7419</td>
<td>7419</td>
<td>.19</td>
<td></td>
</tr>
<tr>
<td>7420</td>
<td>7420</td>
<td>.19</td>
<td></td>
</tr>
<tr>
<td>7421</td>
<td>7421</td>
<td>.19</td>
<td></td>
</tr>
<tr>
<td>7422</td>
<td>7422</td>
<td>.19</td>
<td></td>
</tr>
</tbody>
</table>

FREE CATALOG:

Visit our new expanded retail store at 1256 South Bascom in San Jose

PLEASE USE YOUR CUSTOMER NUMBER WHEN ORDERING

TERMS: Minimum order $10. For writing and handling include $1.50 for UPS Ground or $3.50 for UPS Air. Orders over $1,000 and foreign orders may require additional shipping charges—please contact our sales department. All sales are final. Sales tax, Bay Area and LA residents included 8.75%. Prices subject to change without notice. We are not responsible for typographical errors. We reserve the right to limit quantities and to substitute manufacturers. All merchandise subject to prior sale.

RADIO- ELECTRONICS

VISIT OUR NEW EXPANDED RETAIL STORE AT 1256 SOUTH BASCOM IN SAN JOSE

HOURS: M-W-F, 9-5 T-TH, 9-9 SAT, 10-3

JDR Microdevices

1224 S. Bascom Avenue, San Jose, CA 95128
800-538-5000 • 800-662-6279 (CA)
(408) 995-5430 • Telex 171-110

CIRCLE 113 ON FREE INFORMATION CARD

108
CAPACITORS

<table>
<thead>
<tr>
<th>Value</th>
<th>Type</th>
<th>Package</th>
<th>Qty</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>50µF</td>
<td>MONOLITHIC</td>
<td></td>
<td>0.1uF</td>
<td>150V</td>
</tr>
<tr>
<td>47µF</td>
<td>ELECTROLYTIC</td>
<td></td>
<td>0.1uF</td>
<td>150V</td>
</tr>
<tr>
<td>10µF</td>
<td>50V DISC</td>
<td></td>
<td>22</td>
<td>0.05</td>
</tr>
<tr>
<td>22µF</td>
<td></td>
<td></td>
<td>6800</td>
<td>0.05</td>
</tr>
<tr>
<td>27µF</td>
<td></td>
<td></td>
<td>820</td>
<td>0.05</td>
</tr>
<tr>
<td>33µF</td>
<td></td>
<td></td>
<td>0.001</td>
<td>150V</td>
</tr>
<tr>
<td>47µF</td>
<td></td>
<td></td>
<td>0.001</td>
<td>150V</td>
</tr>
<tr>
<td>68µF</td>
<td></td>
<td></td>
<td>0.002</td>
<td>150V</td>
</tr>
<tr>
<td>68µF</td>
<td></td>
<td></td>
<td>0.005</td>
<td>150V</td>
</tr>
<tr>
<td>82µF</td>
<td></td>
<td></td>
<td>0.01</td>
<td>150V</td>
</tr>
<tr>
<td>100µF</td>
<td></td>
<td></td>
<td>0.02</td>
<td>150V</td>
</tr>
<tr>
<td>220µF</td>
<td></td>
<td></td>
<td>0.05</td>
<td>150V</td>
</tr>
<tr>
<td>330µF</td>
<td></td>
<td></td>
<td>1</td>
<td>150V</td>
</tr>
</tbody>
</table>

IC SOCKETS/DIP CONNECTORS

<table>
<thead>
<tr>
<th>Leads</th>
<th>Description</th>
<th>Component</th>
<th>Text Zero Insertion</th>
<th>3 Level Wirewrap</th>
<th>Solder</th>
<th>Low Profile</th>
<th>1-999</th>
<th>1000-15,000</th>
<th>15000-100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDXX</td>
<td>RIBBON HEADER SOCKET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDXX</td>
<td>RIBBON EDGE CARD</td>
<td>2.36</td>
<td>2.65</td>
<td>3.25</td>
<td>3.50</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IDC CONNECTORS

<table>
<thead>
<tr>
<th>Description</th>
<th>Order By</th>
<th>Contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D-SUBMINIATURE

<table>
<thead>
<tr>
<th>Description</th>
<th>Order By</th>
<th>Contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9</td>
<td>18</td>
</tr>
</tbody>
</table>

LIGHT EMITTING DIODES

<table>
<thead>
<tr>
<th>Description</th>
<th>Order By</th>
<th>Contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRANSISTORS

<table>
<thead>
<tr>
<th>Description</th>
<th>Order By</th>
<th>Contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISCRETE

<table>
<thead>
<tr>
<th>Description</th>
<th>Order By</th>
<th>Contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RIBBON CABLE

<table>
<thead>
<tr>
<th>Contacts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>109</td>
</tr>
<tr>
<td>75</td>
<td>8.60</td>
</tr>
<tr>
<td>138</td>
<td>12.10</td>
</tr>
<tr>
<td>25</td>
<td>8.50</td>
</tr>
<tr>
<td>36</td>
<td>1.00</td>
</tr>
</tbody>
</table>

VOLTAGE REGULATORS

<table>
<thead>
<tr>
<th>Model</th>
<th>Order By</th>
</tr>
</thead>
<tbody>
<tr>
<td>7805T</td>
<td>.25</td>
</tr>
<tr>
<td>75</td>
<td>4.327</td>
</tr>
<tr>
<td>7805</td>
<td>45.406</td>
</tr>
<tr>
<td>7815T</td>
<td>45.453</td>
</tr>
</tbody>
</table>

CMOS

<table>
<thead>
<tr>
<th>Model</th>
<th>Order By</th>
</tr>
</thead>
<tbody>
<tr>
<td>4001</td>
<td>.25</td>
</tr>
<tr>
<td>4002</td>
<td>45.406</td>
</tr>
<tr>
<td>4003</td>
<td>45.438</td>
</tr>
</tbody>
</table>

ORDER TOLL FREE

800-538-5000
800-662-6279 (California Residents)
Designers Notebook
continued from page 90

You can build an optocoupler using a Light Dependant Resistor (LDR), a jumbo red LED, and some heatshrink tubing. To make the optocoupler, simply place the LED and LDR inside the tubing so that the light from the LED can strike the lens of the LDR. Don’t forget to allow the leads to extend beyond the tubing.

You can then use your optocoupler as you would any other pre-packaged type. Using that arrangement helps keep the active-component count to a minimum. The slow rise and fall times of the LDR actually work out for the best because it gives the action of the limiter a much more natural sound.

As I said, the general approach is more important to understand than the particular example. Figure 2 is an actual preamp using the familiar 741 as a non-inverting amplifier. As you see, the phototransistor (contained in the optocoupler) is connected in parallel with the feedback resistor. When an excessively high signal is pumped into the circuit, the amplifier draws more power to handle the increased input.

When the threshold voltage of the transistor is reached, it turns on and the LED inside the optocoupler lights causing the phototransistor to turn on and lower the gain of the amplifier.

You could just as easily have connected the phototransistor or LDR from the input leg of the preamp to ground. However connecting it in such a manner requires a bit of recalculation of the resistor values in the circuit. Since I don’t know what the change in voltage would be across your choice of optoisolator, you’ll have to work the values out yourself.

Remember, because our approach to the problem of audio limiting is a general one, you’ll have to tailor it to fit the specific needs of your circuit.

In Figure 3, I’ve put the limiter to work in an amplifier made from a 4049 CMOS hex inverter. Since the gain of the circuit is only a function of R2/R1, connecting the phototransistor in parallel with R2 will reduce amplifier gain whenever signal levels get excessive. The trigger for the circuit comes from the amp’s current draw, rather than from the audio itself. That means that the gain is decreased before the amp overloads.

Our approach to limiting has several advantages over more conventional ones. It’s has a built-in failsafe because if anything happens to the LED, the phototransistor will not conduct or the LDR will assume it’s in-dark resistance—usually well over 1 megohm.

Since what we’ve been talking about here is an idea rather than any one particular circuit, drop me a line and let me know how you were able to use this method of signal limiting. More than likely you’ll find a use for it that never occurred to me.

R-E
STOP DREAMING
START BUILDING

HANDY MAKES IT EASY!
Build anything from computers to LED flashers... any project you want the fast, easy, fun way. Use HANDY solderless breadboards to build, test, modify and expand your ideas.

SATISFACTION GUARANTEED
OR YOUR MONEY BACK!

JUST LOOK AT THESE SOCKET FEATURES...
- Full contact labeling — simplifies component layouts
- New durable clip design assures reliable, low resistance, corrosion-free interconnections
- High temp plastic — no warping or melting... ever!
- Self-adhesive backing — mounts anywhere
- Big 9 14-pin IC capacity per socket
- Expands horizontally and vertically

Clear, easy-to-read and identify contact markings simplify layout, wiring and documentation.

FOR LESS!
Available at Selected Distributors throughout the USA and Canada
HANDY PRICES ARE UP TO 25% LESS THAN COMPETITORS!

SEND FOR FREE Colorful Brochure!

a division of RSP Electronics Corp.
7 Business Park Drive • P.O. Box 699 • Branford, CT 06405
Telephone: (203) 488-6603 CompuServe: 71346, 1070
TWX: (910) 997-0648 Easy Link Mail Box: 62537580

Mail Orders: Please add $5 (Canada & Int'l) add $5) for shipping/handling.
Charge Cards: (Min $15) Please include Acct. No., Exp. Date and your signature.
Checks: drawn in U.S. Dollars on U.S. banks only; C.O.D.'s accepted.
Connecticut Residents: Add 7.5% Sales Tax.

CIRCLE 71 ON FREE INFORMATION CARD
ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

<table>
<thead>
<tr>
<th>Free Information Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>255</td>
<td>A.L.S. Satellite</td>
</tr>
<tr>
<td>108</td>
<td>AMC Sales</td>
</tr>
<tr>
<td>76</td>
<td>A P Products</td>
</tr>
<tr>
<td></td>
<td>Active Electronics</td>
</tr>
<tr>
<td></td>
<td>Advance Electronics</td>
</tr>
<tr>
<td>106</td>
<td>Advanced Computer Products</td>
</tr>
<tr>
<td>107</td>
<td>All Electronics</td>
</tr>
<tr>
<td>72</td>
<td>Amazing Devices</td>
</tr>
<tr>
<td>84</td>
<td>Appliance Service</td>
</tr>
<tr>
<td>77</td>
<td>B & K Precision</td>
</tr>
<tr>
<td>98</td>
<td>Beckman Instruments</td>
</tr>
<tr>
<td>81</td>
<td>CEl</td>
</tr>
<tr>
<td>56</td>
<td>CIE</td>
</tr>
<tr>
<td>79</td>
<td>Command Productions</td>
</tr>
<tr>
<td>55</td>
<td>Communications Electronics</td>
</tr>
<tr>
<td>57</td>
<td>Contact East</td>
</tr>
<tr>
<td>110</td>
<td>Coop’s Satellite Digest</td>
</tr>
<tr>
<td>99</td>
<td>Diamondback</td>
</tr>
<tr>
<td>60</td>
<td>Electronic Specialists</td>
</tr>
<tr>
<td></td>
<td>Electronic Technology Today</td>
</tr>
<tr>
<td>61, 260</td>
<td>Electronic Warehouse</td>
</tr>
<tr>
<td>120</td>
<td>Electronics Book Club</td>
</tr>
<tr>
<td>111</td>
<td>Elephant Electronics</td>
</tr>
<tr>
<td>112</td>
<td>Erroins</td>
</tr>
<tr>
<td>100</td>
<td>Firestik II</td>
</tr>
<tr>
<td>71</td>
<td>Fuji Manufacturing</td>
</tr>
<tr>
<td>258</td>
<td>Gemini Electronics</td>
</tr>
<tr>
<td>62</td>
<td>Global Specialties</td>
</tr>
<tr>
<td>259</td>
<td>Grantham College of Engineering</td>
</tr>
<tr>
<td>76</td>
<td>Hamig</td>
</tr>
<tr>
<td>86</td>
<td>Handy Prods./RSP Elect.</td>
</tr>
<tr>
<td>63</td>
<td>Heath Company</td>
</tr>
<tr>
<td>113</td>
<td>Instrument Mart</td>
</tr>
<tr>
<td>114</td>
<td>JDR Microdevices</td>
</tr>
<tr>
<td>115</td>
<td>Jameco</td>
</tr>
<tr>
<td>116</td>
<td>James Walter Satellite Rec.</td>
</tr>
<tr>
<td>117</td>
<td>Jensen Tools</td>
</tr>
<tr>
<td>118</td>
<td>KCS</td>
</tr>
<tr>
<td>105</td>
<td>MCM Audio</td>
</tr>
<tr>
<td>104</td>
<td>MFJ</td>
</tr>
<tr>
<td>67</td>
<td>McGraw-Hill Book Club</td>
</tr>
<tr>
<td>253</td>
<td>معدل Labs</td>
</tr>
<tr>
<td>177</td>
<td>Micro-Mart</td>
</tr>
<tr>
<td>119</td>
<td>Mouse</td>
</tr>
<tr>
<td>265</td>
<td>Multitech</td>
</tr>
<tr>
<td>267</td>
<td>NRI</td>
</tr>
<tr>
<td>268</td>
<td>NTS</td>
</tr>
<tr>
<td>257</td>
<td>Nemal Electronics</td>
</tr>
</tbody>
</table>

268 New Deal Electronics | 110
270 New-Tone Electronics | 15
252 OK Industries | 21
252 Omnition | 28
89 PHS | 32
90 Palia | 88
69 Phoenix Electronics | 22
69 Phoenix Systems | 92
264 Pocket Technology | CV3
125 Power Plus | 93
251 Print Products International | 25
119 ProfessionalVideo | 100
126 Qualitone Industries | 34
269 RAG Electronics | 12, 13
121 RF Electronics | 100
78 Radio Shack | 98
70 Ramsey | 105
261 Regency | 1
274 Research Service Lab | 92
247 Robotics Age | 24
272 S & L Electronics | 93
75 Spartan Electronics | 114
125 Tektronix | CV2
273 VIP Electronics | 93
131 Versi | 99
103 Wm. B. Allen | 96

Gernsback Publications, Inc.
200 Park Ave. South
New York, N.Y. 10003
(212) 777-6400
Chairman of the Board:
M. Harvey Gernsback
President: Larry Steckler

ADVERTISING SALES 212-777-6400
Larry Steckler
publisher

Shelli Weiman
advertising associate

Arline Fishman
advertising coordinator

Lisa Strassman
credit manager

Donna Goldstein
credit associate

Naomi Mitten
advertising assistant

Sales Offices

EAST SOUTHEAST

Stanley Levin
Radio-Electronics
200 Park Ave. South
New York, N.Y. 10003
212-426-6037, 212-777-6400

MIDWEST/Texas/Arkansas/Oklahoma

Ralph Bergren
Radio-Electronics
540 Frontage Road—Suite 325
Northfield, Ill. 60093
312-446-1444

PACIFIC COAST/ Mountain States

Marvin Green
Radio-Electronics
15335 Morrison St.—Suite 227
Sherman Oaks, CA 91403
818-896-2001
FOR FREE INFORMATION USE THESE POST-PAID CARDS

1 Print your name, address and Zip Code on one of the attached postage-paid cards.

2 Circle the number (or numbers) on the card that matches the number at the bottom of each ad or editorial item that you want information on. Advertisers' free information numbers also appear in the ad index on the facing page.

3 Mail the card. It's Postage-Paid.

The bottom free-information card is a BUSINESS/PROFESSIONAL CARD. If you use this card you MUST complete the spaces for Company Name, Title, and Phone Number. If these are not filled in, the card will not be processed.

NOTE:
Use the postcard address for Free Product Information only. Address all editorial inquiries to Editor, Radio-Electronics, 200 Park Ave. South, New York, NY 10003.

Radio-Electronics
Your favorite electronics magazine and still getting better

FREE INFORMATION CARD

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 597 BOULDER COLORADO

Radio-Electronics
SUBSCRIPTION SERVICE
P.O. Box 2520
BOULDER, COLORADO 80321

FREE INFORMATION CARD

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

Radio-Electronics
SUBSCRIPTION SERVICE
P.O. Box 2520
BOULDER, COLORADO 80321

FREE INFORMATION CARD

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

Radio-Electronics
SUBSCRIPTION SERVICE
P.O. Box 2520
BOULDER, COLORADO 80321
Radio-Electronics
FREE PRODUCT INFORMATION
P.O. Box 13775
PHILADELPHIA, PA. 19101

Radio-Electronics
Subscribe today to the magazine that keeps you up-to-date with the newest ideas and innovations in electronics. (If you already are a subscriber, do a friend a favor and pass this subscription card along to him.)

check offer preferred

☐ 1 Year—12 issues ONLY $15.97
 (You save $7.43 off single copy price)
☐ Canada—12 issues $20.97

☐ 2 Years (SAVE MORE)—24 issues $30.97
 (You save $15.83 off single copy price)
☐ Canada—24 issues $40.97

ALL SUBSCRIPTIONS PAYABLE IN US FUNDS ONLY.

☐ Payment enclosed ☐ Bill Me ☐ Check here if you are extending or renewing your subscription

Name (Please Print) ____________________________

Company Name (If applicable) ____________________________

Address __

City __________ State __________ Zip __________

Allow 6-8 weeks for delivery of first issue

For New Ideas
In Electronics
read Radio-Electronics
every month.

During the next 12 months

Radio-Electronics will carry up to the minute articles on:
- Computers
- Video
- Solid-state technology
- Outstanding construction projects
- Satellite TV
- Telephones
- Radio
- Stereo
- Equipment reports
- Test equipment
- VCR's
- Servicing
- Industrial electronics

NEW IDEAS AND INNOVATIONS IN ELECTRONICS APPEAR IN EVERY ISSUE OF RADIO-ELECTRONICS

KEEP UP TO DATE! DON'T MISS ANY ISSUES!

SUBSCRIBE TODAY!

USE THE ORDER CARD ON YOUR LEFT!

Delivers construction article after construction article.....Exciting columns including Jensen on DXing, Friedman on computers, Test bench tips, Noll with Calling All Hams, New Products and more.

SUBSCRIBE TODAY!

USE THE ORDER CARDS ON YOUR LEFT!

True Dual Trace • 10 MHz Real Time Bandwidth • 3 Input Channels • I/O Port Digital Waveform Storage • Boolean Waveform Operations • Audio Functions 8.25 (L) x 4.5 (D) x 1.75 (H) Inches • 1.25 Pounds • 9 Volt Battery/AC Operation

Consider the LogicScope™ 136

- The LogicScope 136 is the next logical step in test instrumentation for you. It combines many of the features and capabilities of sophisticated logic analyzers and oscilloscopes and it fits in your hand. Never before has so much technology been available in so small an instrument, at such a low price.
- The pocket-sized LogicScope 136 is made possible by a patented breakthrough in display technology. The conventional cathode ray tube has been replaced by a unique array of 400 LED's that permits simultaneous display of two digital waveforms.
- The 136 can be used for viewing single shot events, or repetitive waveforms. It can be operated in real time mode, or in memory mode which permits acquisition and storage of up to 24 128-bit waveforms. These can be recalled, logically compared (AND, OR, EXCLUSIVE OR) to other stored/input waveforms, or output to an external device via an RS 232 port.
- Its very low cost, convenience and ease-of-use make the LogicScope the ideal instrument, for designing, troubleshooting or repairing digital systems.

Consider its Engineering & Field Service Applications:

- On microprocessor-based systems, check the timing relationship of various parameters relative to the system clock and other key events. Its storage capability allows visual and logical comparison of non-repetitive waveforms to known reference signals. Output in the start-up of the digital device can be compared to reference signals to determine the operating state of the device. Questionable waveforms can be stored for analysis.
- Its light weight and small size make the LogicScope convenient to take on every service call. The 136 provides much more information for trouble shooting a digital system or peripheral than a logic probe or digital multimeter, without having to lug an oscilloscope or logic analyzer along.

Contact us for the name of your local distributor:

CIRCLE 264 ON FREE INFORMATION CARD

POCKET TECHNOLOGY, INC.

7320 Parkway Drive, Hanover, MD 21076
301-796-3300

LogicScope and Pocket Technology are trademarks of Pocket Technology, Inc.
$129* gets you the world's first handheld digital/analog multimeter with "Touch Hold"

The Fluke 77

Its unique "Touch Hold"** function automatically senses and holds readings, leaving you free to concentrate on positioning test leads without having to watch the display.

Then, when you have a valid reading, it signals you with an audible beep.

The Fluke 77 is perfect for those test situations where accessibility is a problem, or when extra care is needed for critical measurements.

It's the top model in the world champion Fluke 70 Series line — the first industrial quality autoranging multimeters to combine digital and analog displays. These tough, American-made meters feature a three-year warranty and 2000+ hour battery life.

So call now for the complete story on the Fluke 77 with "Touch Hold." Because if you don't deserve the world's first, who in the world does?

For the name of your distributor or a free brochure, call our toll-free hotline anytime 1-800-227-3800, Ext. 229.

From outside the U.S., call 1-402-496-1350, Ext. 229.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

FLUKE 73 $85*
Analog digital display
3.5 mm, 10M, 10A, ohm test
Autorange
0.7% basic dc accuracy
2000 - hour battery life
3-year warranty

FLUKE 75 $99*
Analog digital display
3.5 mm, 10M, 10A, mA, ohm test
Autorange/range hold
0.7% basic dc accuracy
2000 - hour battery life
3-year warranty

FLUKE 77 $129*
Analog digital display
3.5 mm, 10M, 10A, mA, volt test
Touch Hold function
Autorange/range hold
0.7% basic dc accuracy
2000 - hour battery life
3-year warranty

* Suggested U.S. list price, effective July 1, 1984
** Patent pending

Copyright © 1984, John Fluke Mfg. Co., Inc. All rights reserved. Ad No. 4701-77