SAVE MONEY!
REPAIR YOUR OWN VCR

$1.75 FEB. 1984
U.K. 85p

CABLE-TV DESCRAMBLING
techniques and circuits

Build a working
MHD ELECTRIC GENERATOR
Energy source of the future?

How to use
DIGITAL PANEL METERS
in your projects

What you need to know!

CP/M
for your computer

How to design
SWITCHING CIRCUITS
using T's, UJT's, SCR's, etc.

PLUS:
★ Hobby Corner ★ Equipment Reports ★ Drawing Board
★ Service Clinic ★ New Idea ★ State-Of-Solid-State
Now there's a new breed of Beckman hand-held DMMs tough enough to withstand accidental drops, input overloads and destructive environments. The new HD100 and HD110 DMMs are drop-proof, packed with overload protection and sealed against contamination. You won't find more rugged meters than the Beckman HDs. Inside or out.

Drop Proof

Constructed of double-thick thermoplastics, the HD100 series DMMs resist damage even after repeated falls. All components are heavy-duty and shock mounted.

Contamination Proof

The HD series meters are designed to keep working even around dirt, heavy grime, water and oil. The special o-ring seals, ultrasonically-welded display window and sealed input jacks protect the internal electronics of the HD meters. The drop-proof meters are sealed so tightly, they even float in water.

Accidental Overload Protection

All DC voltage inputs are protected up to 1500 Vdc or 1000 Vrms. Current ranges are protected to 2A/600V with resistance ranges protected to 600 Vdc. Transient protection extends up to 6KV for 10 microseconds.

More Meter for Your Money

For starters you can get 2000 hours of continuous use from a common 9V transistor battery. You can run in-circuit diode tests and check continuity. You even get a one year warranty.

The 0.25% basic dc volt accuracy HD meters serve you with 7 functions and 27 ranges. The HD 110 also gives you 10 AMPS ac and dc. With one simple turn of the single selector switch, you can go directly to the function and range you need. There's less chance of error.

Also available is the electrical service kit. It includes the meter of your choice, a current clamp, deluxe test leads and a heavy-duty case designed to carry both meter and accessories, conveniently.

Feature for feature you can't find a more dependable meter with prices starting at just $169 (U.S. only).

To locate your nearest distributor, write Beckman Instruments, Inc., Instrumentation Products, 2500 Harbor Blvd., Fullerton, CA 92834 or call (714) 993-8803.

BECKMAN
AN INNOVATIVE 20 MHz OSCILLOSCOPE THAT EMPHASIZES OPERABILITY

$535*

The SS-5702 has flexibility and power which make it ideal for the maintenance and troubleshooting of TVs, VTRs, audio equipment and a wide range of other electronic systems by hobbyist as well as professionals. At the top of its class, the SS-5702 uses a 6-inch rectangular, parallax-free CRT.

IWATSU SS-5702
DC-20 MHz OSCILLOSCOPE

IWATSU makes more than 20 oscilloscopes as well as an impressive lineup of other instruments including logic analyzers and digital memory scopes. The fastest oscilloscope has a maximum frequency of 350 MHz. And the same technological expertise and product quality that make this super high-frequency oscilloscope possible are incorporated in the SS-5702.

* User price, including probes.
NEW! Regency® MX3000
List Price $299.95/CE price $199.00
6-Band, 30 Channel No-crystal scanner
Search & Lockout Selectivity with AC/DC
Bands: 30-50, 144-174, 440-512 MHz.
This is an elaborate, compact, lightweight scanner for use at home or on the road. Enter your favorite public service frequency by simply touching the numbered pressure pads. You'll even hear a "beep" tone that lets you know you've made contact.

NEW! Regency® MX7000
List Price $199.95/CE price $84.00
5-Band, 6 Channel Handheld crystal scanner
Bands: 30-50, 144-174, 440-512 MHz.
Now you can tune in any emergency around town, from wherever you are. The second it happens. Advanced circuitry gives you the world's smallest scanner. Our low CE price includes battery charger/AC adapter.

NEW! JIL SX-200
CE Price $256.00/NEW LOW PRICE
8-Band, 16 Channel scanner
Curtis Clock * AM/FM * AC/DC
Tune Metal and Aluminum, Police & Fire, D.E.A., Defense Department, Aeronautical AM Band, Aero Navigation Band, Fish & Game, Immigration, Park Police, Justice Department and State Police. Over thousands of other restricted radio frequencies no other scanner is capable of picking up.

NEW! JIL SX-100
CE price $34.00/NEW LOW PRICE
6-Band, 16 Channel Crystal Scanners
Search & Lockout with AC/DC
Frequency range: 30-64, 144-174, 440-512 MHz. The JIL SX-100 scanner is a mobile keyboard programmable scanner that puts you in the seat of the action at home or in your car. Compact and good looking, the SX-100 even gives you the time and date. It's small size will easily fit in most domestic or foreign cars and it's AC/DC adaptable for easy use.

Regency® HX1000
Allow 90-180 days for delivery after receipt of order due to the high demand for this product. List price $329.95/CE price $208.00
6-Band, 30 Channel No-crystal scanner
Search & Lockout Selectivity with AC/DC
Bands: 30-50, 144-174, 440-512 MHz. The Regency Touch MX3000 provides the ease of operation of a push button programing - in a compact, easy-to-carry scanning unit. Then, if you need the flexibility of a portable scanner, the MX7000 is the one to choose. It's AC/DC adaptable for use at home or on the road. Enter your favorite public service frequencies by simply touching the numbered pressure pads. You'll even hear a "beep" tone that lets you know you've made contact.

NEW! Regency® D810
List Price $399.95/CE price $250.00
8-Band, 60 Channel Crystal Scanners
Search & Lockout Selectivity with AC/DC
Bands: 30-50, 144-174, 440-512 MHz. The Regency D810 is a mobile keyboard programmable scanner that puts you in the seat of the action at home or in your car. Compact and good looking, the D810 even gives you the time and date. It's small size will easily fit in most domestic or foreign cars and it's AC/DC adaptable for easy use.

Regency® R1040
List Price $199.95/CE price $129.00
10-Band, 20 Channel Crystal Scanners
Search & Lockout Selectivity with AC/DC
Frequency ranges: 30-50, 144-174, 440-512 MHz. The Regency R1040 lets you in on all the action of police, fire, weather, and emergency calls. You'll find out that the Regency R1040 is the best scanner available. Programming the R1040 is easy. Simply touch the keyboard and enter any of over 15,000 channels that are available. Your choice of 10 channels.

TEST ANY SCANNER
Test any scanner purchased from Communications Electronics' to be returned if you are not completely satisfied. Return it with your credit card for a 14-day money-back guarantee. A prompt refund less shipping/handling charges and return credits.

CIRCLE 35 ON FREE INFORMATION CARD

Consumer Products Division
618 Phoenix C-Box 1062 Ann Arbor, Michigan 48106 U.S.A.
 Toll-free 800-521-4414 or collect 313-763-6888
ON THE COVER
To say that cable-TV has undergone tremendous growth over the past few years would be an understatement. One of the biggest reasons for that growth is the presence on cable of first-run movies and live sporting events. Of course, that programming is most often offered as a premium service, which means that the viewer must pay a charge to receive it. To prevent unauthorized reception, the material is scrambled. This month, we'll use an experimental descrambling circuit to illustrate the theory behind the techniques used to encode video signals. The story begins on page 47.

SPECIAL FEATURE
A look at cable-TV scrambling and descrambling techniques by investigating a descrambling circuit. Fred Means

BUILD THIS
51 MHD GENERATOR
Build a working model of a magnetohydrodynamic generator. John Iovine

TECHNOLOGY
4 VIDEO ELECTRONICS
Tomorrows news and technology in this quickly changing industry
David Lachenbruch

CIRCUITS AND COMPONENTS
67 HOW TO USE DIGITAL PANEL METERS
A look at digital panel meters and how you can successfully use them in your projects. Ray Marshall

VIDEO
58 VCR REPAIRS AND ADJUSTMENTS THAT YOU CAN DO
Part 3. Repairing or adjusting a VCR isn't easy, but there are some things you can do yourself. John D. Lenk

RADIO
102 COMMUNICATIONS CORNER
Getting rid of noise. Herb Friedman

COMPUTERS
79 CP/M
All about one of the most popular computer operating-systems. Abe Isaac

EQUIPMENT REPORTS
22 OK Industries inc. Model FG-201 Function Generator
26 Heath EH-702 TTL/CMOS Course
30 Coin Controls Model 9000 Pro Joystick
32 Global Specialities Corporation Model 5000 Counter-Timer

DEPARTMENTS
6 Advertising and Sales Offices
115 Market Center
141 Advertising Index
112 New Books
142 Free Information Card
38 New Products
10 Letters
6 What's News

Electric Power Generation is among the most important areas of electronics. One method of power generation that has received quite a bit of attention is MHD. This month, we'll show you the theory behind that technique and build a working model of an MHD generator. The story starts on page 51.

Coming Next Month
- Video Test Generator. A valuable instrument for video servicing.
- Airplane Landing Systems. A look at landing systems and the electronics behind them.
- And lots more!

POSTMASTER: Please send address changes to RADIO-ELECTRONICS, Subscription Dept., Box 2520, Boulder, CO 80302.

A stamped, self-addressed envelope must accompany all submitted manuscripts and/or artwork. If artwork is not returned, we will save it for a certain amount of time. If you wish to remove any responsibility for the loss of any manuscript and/or artwork or photographs while in our possession or otherwise, please so indicate at the time of submission.
VIDEO ELECTRONICS

DAVID LACHENBRUCH
CONTRIBUTING EDITOR

DIGITAL TV

The digital TV age has arrived. ITT announced at the Berlin show that it would start marketing color sets whose signal-processing was completely digital in October, producing some 30,000 for the rest of 1983 and 400,000 in 1984, converting its entire production to digital in three years. Also in Europe, Grundig, and Blaupunkt plan to start production in 1984 using the same VLSI ICs, made by ITT.

In the U.S., General Electric and Zenith are buying the ITT IC sets and are expected to introduce digital TV sets by 1984. Panasonic says it will have digital sets in 1984 as well. It, Sony, and Sharp are also buying the ICs from ITT.

ITT's TV design uses five basic VLSI ICs and two peripheral ones. However, early digital sets won't do much more, if anything, than conventional analog sets. Their main attraction is in their ability to accommodate new features easily, either by means of additional ICs or by peripheral IC design. Peripheral features will include teletext, ghost-eliminators, "picture-in-picture" (permitting the insertion of a second picture from VCR or videodisc in the corner of the screen), higher resolution through increasing the number of displayed lines, still picture, zoom, picture-improving dynamic comb filtering, multi-standard (PAL-SECAM-NTSC) sets, and so forth.

SELF-PROGRAMMING VCR

Here's another thing you can do with a digital TV set: ITT displayed a simple VCR programming system—still developmental—for use with teletext-equipped digital TV sets. The user dials up the teletext page that lists future TV programs and feeds it into the TV set's memory. Then he calls up the page and by means of the set's remote control manipulates a cursor to the program he wishes to record, and pushes the "enter" button.

After he is finished entering all the programs he wishes to record, he can call up a display listing his program recording schedule, in sequence, and the screen will warn him of any impossible situations—such as overlapping programs. Another push of a button and the VCR is programmed.

TV STUDY

A major research project, initially funded at $3,000,000, has been established at MIT to look at the entire American TV system to determine how it can be improved. The study will concentrate on basic research, including such aspects as how people perceive television, developing an ideal display system, and identifying and analyzing changes that will be required in the present TV system to achieve that ideal.

What is particularly unusual about the research is its auspices—a new consortium called the Center for Advanced Television Studies, financed jointly by 10 American companies involved in broadcasting, cable TV, and equipment manufacture, including all four networks. The new combine received an OK from the Department of Justice's Antitrust Division. One of the new group's bylaws limits membership to government agencies and private companies whose ultimate ownership is American. The avowed purpose of the research venture is to head off domination of the American TV industry by foreign companies that get technical research support from their governments. The new group is expected to fund other studies that could lead to a complete rethinking and redesign of the American television system.

VCR UPDATE

Quite possibly the reason that Philips is so interested in the 8-mm video format is the failure of its late-arriving Video-2000 format to achieve notable penetration in Europe. Video 2000 uses a cassette with ¼-inch tape, about the size of a VHS cassette, but records on a ¼-inch track, using only one half the width of the tape as it does. Then it can be turned over and played in the other direction, like an audio cassette. The longest tape originally available was eight hours, playing four hours in each direction. Now Philips and Grundig (which also makes Video-2000 recorders) have introduced new VCRs with a second, half-time, tape speed, bringing total recording time to 16 hours per cassette—by far the longest of any consumer VCR.

Both Philips and Grundig, however, are now planning to manufacture VHS recorders as well as the Video-2000 type—the VHS units for sale in markets where Video 2000 is not used. In Japan, Funai, which originated the ill-fated CVC ¼-inch cassette format used by Technicolor in its unsuccessful effort to market home VCR's in the U.S., is changing over to VHS.
Now 60 MHz or 100 MHz Tek quality is just a free phone call away!

New lower price! 100 MHz 2235 now just $1650.

Tek has expanded its best-selling 2200 scope line up to 100 MHz. And brought it all as close as your phone. Tek's revolutionary, reduced-component architecture brings unprecedented quality, reliability and affordability to the 60 MHz 2213 and 2215, and now, the 100 MHz 2235.

All three of these lightweight (13.5 lb.) scopes feature 2 mV/div vertical sensitivity and 5 ns/div sweep speeds, plus a complete trigger system for stable triggering on digital, analog or video waveforms.

Scopes with a comprehensive 3-year warranty*... probes...and expert advice. One free call gets it all! You can order, or obtain literature, through the Tek National Marketing Center. Technical personnel, expert in scope applications, will answer your questions and expedite delivery. Direct orders include operating and service manuals, two 10X probes, 15-day return policy, and worldwide service back-up.

Call toll-free: 1-800-426-2200, Extension 127.

In Oregon, call collect: (503) 627-9000, Ext. 127.

*Price F.O.B. Beaverton, OR.

**Scopes are UL Listed, CSA and VDE approved.

Copyright © 1983, Tektronix, Inc. All rights reserved. 12A-407.1
Color oscilloscope uses liquid-crystal shutter

Tektronix has placed on the market the S116 Color Display Oscilloscope, the first commercial application of its Liquid-Crystal Color Shutter. Color, says the company, results in increased productivity due to faster analysis, ease of use, and reduced operator error.

Radio-Electronics

Color traces act as encoding devices for separating information, emphasizing important features, enhancing pattern recognition, and, perhaps most important, improving the user interface.

Coupled with the S116 Waveform Digitizer (a plug-in for all 5000-series oscilloscopes) Tektronix calls it the world’s first liquid-crystal-color-shutter display digital storage-oscilloscope, with the ability to store transients with frequency components up to 1,000 kHz for single-channel acquisition and up to 50 kHz for dual-channel acquisition.

Digital X-ray system may change diagnostics

A new digital X-ray imaging system unveiled by Raytheon at the recent Chicago meeting of the Radiological Society of North America may “dramatically change the way physicians and radiologists are able to perform diagnostic angiography.”

Angiography is a specialty that allows doctors to use advanced X-ray techniques to diagnose problems in the body’s vascular system. It is done by introducing a chemical into the patient’s bloodstream with a catheter inserted in a main artery, then taking a series of X-rays in rapid succession.

The new system uses a specially designed high-speed computer to produce five frames per second, as many images a second as can be taken with the best equipment now available. The new equipment can take 50 X-ray pictures per second, as compared to six with present-day equipment. That can capture the motion of fast-moving material in the arteries, which was not previously visible in digital studies.

The injection can now be made in a vein, rather than in an artery as previously required. That makes for shorter hospital stays and far less risk. In many cases the procedure can be handled on an outpatient basis, making it much less costly to the patient.

The new system consists of a high-resolution X-ray camera, a dual-console video monitor, and Raytheon’s new RDL 3000 digital computer. That computer uses two central-processors in tandem to process and store X-ray images at 50 frames per second, with an image resolution of 512 X 512 pixels. At a lower-speed—2.5 frames per second—the RDL-3000 will produce super-high-resolution of 1024 X 1024 pixels. That added capability will be available by mid-1984.

COMSAT and NBC join in satellite broadcasting

Comsat General Corp. and the NBC Television Network have signed an agreement to begin an advanced satellite distribution system, using a K-band satellite to deliver programs to NBC affiliates. Programming is expected to begin early this year and will become fully operational by January 1985.

The national distribution system will begin operating with transponders on a Satellite Business Systems satellite. The agreement calls for NBC and Comsat General to use RCA America K-Band satellites when they become available in early 1986.

Unlike C-band transmission, K-band frequencies permit broadcasters to put earth stations right at their studio locations—anywhere within sight of the satellite. By adding transmitters, downlinks can be converted into uplinks, and the affiliate can then be an interactive participant in uses other than normal reception of network programs.

Newscast sees blur in videotex future

The future of videotex is blurred, pessimistically reports the Chicago publicaion Electronic Media. “Once heralded as a mass medium of the future with volume by 1990 estimated at $10 billion, a sober realism has settled over industry as providers begin to confront the problems of selling their services to the public.”

Knight-Ridder newspapers launched a videotex system—Viewtron—in southern Florida, the paper says. The company hopes to sign up 5,000 homes by the end of the year. With Viewtron, customers must buy or rent equipment to connect their TV sets to videotex receivers and having to make such a purchase is the biggest criticism of the system, says Electronic Media.

Other information services that can be received on a home computer are seen as having the edge,” the article concludes.

New directory to help users of facsimile equipment

A new directory is intended to make it easy for facsimile machine users to reach each other. It will list the corporate firm names, exact locations of the facsimile machines, backup telephone numbers, hours in use, and contact names.

The directory is being prepared with the cooperation of major facsimile companies, including Canon, Exxon, NEC America, Panafax, Pitney Bowes, Sharp, Telephotograph, 3M, and Xerox, and is published by Greenfield Information Service of New York City.

The first edition of the new directory is expected to be on the market early in 1984.

Single-mode fiber-optic transmission service is announced by ITT

The first commercial fiber-optic transmission system in the western world was inaugurated last September, by ITT Telecommunication Network Systems and Continental Telephone Co. of New York. ITT announced the system is claimed to be the first capable of carrying enormous amounts of telephone traffic without intermediate amplifiers (repeaters). That first-of-its-kind fiber-optic system links Continental’s digital central offices in Norwich and Sidney, New York, about 23 miles apart. The system can carry 1344 telephone channels. A similar 23-mile (37 km) link-up is planned between the Sidney central office and one in Greene, NY.
HI-PERFORMANCE PORTABLE OSCILLOSCOPES

ALL FEATURE 6" RECTANGULAR CRT

V-422
DC to 40 MHz, 1mV/div.
dual-trace, DC offset function

$599.95

V-222
DC to 20 MHz, 1mV/div.
dual-trace, DC offset function,
Alt. magnify function

$499.95

V-212
DC to 20 MHz, 1mV/div.
dual-trace

$439.95

PRICE DOES NOT INCLUDE PROBES. $50. A PAIR WHEN PURCHASED WITH SCOPE. $10 SHIPPING WITHIN CONTINENTAL U.S.

BECKMAN'S CIRCUITMATE
ALL UNDER $100.

DM77
Auto-ranging plus
10 AMPS ac/dc
measurement capabilities
$76.95

DM73
smallest DMM—complete
auto-ranging, audible
continuity checking
$63.95

DM20
3½ digit,
pocket-size, 0.8% Vdc accuracy
$64.95

DM25
3½ digit,
0.5% Vdc accuracy,
diode test,
capacitance
$79.95

DM40
3½ digit,
Vdc: 0.8% accuracy,
diode test,
hFE test
$69.95

DM45
3½ digit,
0.5 Vdc accuracy,
continuity beeper
$89.95

THE TEST EQUIPMENT SPECIALISTS

800-223-0474

26 WEST 46th STREET, NEW YORK, N.Y. 10036 212-730-7030

www.americanradiohistory.com
SATI ELLITE/TELETEXT NEWS

GARY ARLEN
CONTRIBUTING EDITOR

FIRST DBS SERVICE

USC1 Home Satellite Television, a division of United Satellite Communications, Inc., has begun this nation's first direct-broadcast satellite service. The service, which was available in the 26-county area surrounding Indianapolis beginning this past November, is beamed from Canada's Aries III Ku-band bird.

Five channels of programming are being offered, with two of those being movie channels (named Movietime and Showcase). Other channels feature Entertainment and Sports Programming Network (ESPN), children's programming, music video and entertainment specials, and UP! news. The subscription rate to the service is $39.95 a month, and there is a $300 installation charge.

MORE SATELLITES GOING UP

The race to put more satellites in orbit continues, with replacement birds going up and a series of new higher-powered satellites planned. The third advanced RCA Satcom domestic satellite, called Satcom II, (replacing the original Satcom II) bird went into orbit last fall; the replacement satellite sits at 66° west longitude, a considerable distance from the original Satcom II, which has operated for nearly eight years at 119°.

Meanwhile, RCA Astro Electronics is building a three-satellite system of dual-band (C and Ku Band) birds for American Satellite Co. The first is due to be launched in September 1985, and the birds are designed for 10 years' life in orbit.

And Ford Aerospace has announced plans for two large-scale satellites to be launched in 1987. The Ford birds will also be dual-band satellites, and Ford plans to lease transponders to individual programmers. Each of the Ford satellites will have 54 transponders that provide interconnection C-and Ku-band service, with bandwidth of 36 MHz on each transponder—a total of 1,944 MHz. The footprint for the satellite signal on each band will cover all 50 states, and spot-beam coverage for eastern and west coast sites will be available with higher power.

HOME COMPUTERS TO TAP INTO TELETEXT

KSL-TV, the Salt Lake City television station that pioneered teletext in the U.S., is making its teletext database directly available to personal-computer users. The same data that is transmitted as Teletext 5, the experimental KSL service on vertical blanking interval lines 15 and 16, can be accessed by calling a Salt Lake City phone number and, through a modem, hooking a home computer into the KSL teletext host computer. TV station executives hope that the system will help area residents keep in touch with teletext until true teletext decoders can be built and sold in sufficient quantity in the Salt Lake City area. Meanwhile, that alternative delivery method allows KSL to build a new research tool. It can keep track of what teletext database categories are accessed most often, including time of use and type of information sought by users.

AROUND THE SATELLITE CIRCUIT

International Satellite Inc. has become the second contender to go into competition with Intelsat in the bid to deliver video and data between the U.S. and Western Europe. ISI's bid comes on the heels of a similar plan by Orion Satellite. Like Orion, ISI wants to handle business communications plus cable-TV video programming, especially transatlantic sports shows. The company wants to be up and running by the time European cable-TV services go into operation. Among the owners of ISI are Satellite Syndicated Systems (the U.S. cable programming carrier) and United Brands.

Hospital Satellite Network has started its programming service, sending medical information to hospital personnel and entertainment to patients. About 50 hospitals have signed up for the service, which is uplinked from Bannewville Satellite Corp.

EQUIPMENT HIGHLIGHTS

The Luxor satellite receiver (model 190-97-39) is a high-performance model that can access all 24 transponder signals directly through the hand-held infrared remote controller. It features vertical and horizontal polarization, and fine tuning on each channel can be stored in memory. (Precision Satellite Systems, Route 2, PO Box 117A, Oakley, KY 47748.)

Hanover's Linear Actuator lets users steer satellite dishes through a Commodore VIC 20 home computer. Up to 18 satellite locations over a range of 250 steps can be programmed into the VIC. (Hanover Systems, 1217 Washington, Waterloo, IA 50702.)
Learn How to USE A COMPUTER
Train at home in spare time. No previous experience needed.

Be your own computer expert... learn computer applications, programming, and operations... no experience needed.

Now at home in spare time, you can learn everything you always wanted to know about personal computers. How to write your own computer programs. How to use many programs already available. See how they fit into your home or business operations... budgeting, real estate, bookkeeping, inventories, expenses, pricing, profit margins, investments, interest, taxes, shopping lists, vacation planning, addresses, phone numbers, routing... hundreds more. Even programs on foreign languages, computer games and graphics. Never again be at the mercy of a so-called "computer expert." Know what really happens when you have a computer problem with a bank, store, loan company, oil company, utility or anyone else. You'll be able to talk their language... understand why and how things happen.

Experts Show You What To Do... How To Do It
Everything is explained in easy-to-understand language with plenty of examples. Step-by-step directions teach you the fundamentals of basic computer programming. You learn BASIC language... how to use and understand more than eighty BASIC commands and functions. This is not a computer manual. It's a comprehensive 11-lesson course. Yet, because it was especially written for independent study, you learn everything right in your own home without taking time off your job or changing your lifestyle... without attending a single class.

Now... all this in one course
• Computer Training
• Computer Programming
• Computer Applications
• Computer Games

An Ideal Way To Learn
Our students tell us they like independent study because it's so convenient. We send all lessons and training materials— including your computer—directly to your home. You choose your own study hours... go as fast or as slow as you want. You waste no time traveling to class... are never turned away because the class is full! As soon as you enroll, you can use our toll-free home-study hotline whenever you need a better understanding about something in your lessons.

NO POSTAGE NECESSARY when you mail this ENTIRE Postage-Paid ad

To Mail—Fold ad in following manner:
1. Remove entire page—tear of cut on dotted line to left
2. Fold page in half on 1st fold lines
3. Fold page again on 2nd fold lines
4. Tape of glue the 3 open sides and drop in the mail box today.

We send You Your Own Computer... Included With Course
To give you practical, hands-on experience, you get your own personal computer—the Times 1500 with 16K memory... plus a cassette recorder that lets you store your programs on tape.

Find Out Everything You Want To Know About This COMPUTER TRAINING COURSE AND EXCITING CAREERS IN THE WORLD OF COMPUTER—THERE'S NO OBLIGATION!

YES, rush me free facts and color brochure that tells me how I can learn computer applications, programming and operations at home in spare time. I understand there is no cost, no obligation and NO SALESMAN WILL CALL.

Dept. D1914

Name ________________________________ Age ________
Address ______________________________
City/State/Zip ________________________

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 1000 SCANTON, PA 18515
Postage will be paid by addressee

FEBRUARY 1984
LETTERS

Address your comments to: Letters, Radio-Electronics,
200 Park Avenue South, New York, NY 10003

ANTIQUE RADIOS

I was pleased to read of Mr. David B. Ward's (Radio-Electronics, July 1983) interest in my article, "Antique Radios." His hint about the electrolytics is well taken. Unlike the tubes, resistors, and transformers in the old sets, the electrolytic "condensers" (the old term) are almost always bad. However, removing them—whether they're tube type, can, etc.—can leave a gap in the chassis. That will be noticed quickly by admirers of your antique; they always have to stick their heads into the back to see what an old chassis looks like.

Solution: Leave the old "condensers" in place, disconnected from the chassis, of course. The much smaller replacements can then be wired in and hidden under the massive chassis. Then the admirers who just have to inspect the inside of the cabinet to see the old chassis will never be the wiser. To be safe from running other parts, as Mr. Ward suggests, replace all the electrolytics when restoring an old radio.

RICHARD D. FITCH
Baltimore, MD

ON NIKOLA TESLA

The historical article in the August 1983 issue of Radio-Electronics, "The Life and Times of Nikola Tesla," is a welcome piece of literature in what I have always considered as one of the best magazines in electronics publishing.

Insofar as that article was a reprint from another publication, my comments are addressed only to the text as it appeared in your magazine.

In the early 1900s, Hugo Gernsback published many articles in his magazines. Practical Electrics. The Electrical Experimenter, Modern Electrics. The Experimenter, and Science and Invention all carried feature articles about Nikola Tesla's pioneering work. Mr. Gernsback was one of Tesla's most ardent fans of the time, and all of those publications were destined to become the forefathers of your present-day Radio-Electronics. Extensive reading among those articles, as well as Tesla's Colorado Springs notebook and the published patent wrappers, reveal key discrepancies in E. J. Osborn's article.

The paragraph under the heading "World's Most Powerful Transmitter," on page 53, and the drawing in Figure 2 on page 54, are misleading—and are, in fact, not what Tesla actually constructed at Colorado Springs. The Tesla Coil at the experimental station actually consisted of a three-coil or helix air core transformer. The primary consisted of two

GET THE SAME VIDEO TRAINING
THE PEOPLE AT SONY GET.

Now you can be trained by Sony even if you aren't employed by Sony.

Because we're making our vast library of training videotapes available to you. The very tapes that train our own engineering, service and sales personnel.

The tapes cover the products and concepts of video and its related technologies. You can learn the basics of video recording. Color systems. Digital video and electronics. Television production. And more.

Plus you can learn how to service cameras, VTRs, and other video products. As professionally as Sony does.

The tapes are produced entirely by Sony and contain up-to-the-minute information. They communicate clearly and simply. And some of them are even programmed for interactive learning.

And learning through video can be done at your own pace, in the convenience of your home, shop or school. Reviewing is quick and easy. And the tapes are always available for reference.

Send for your catalog, which lists more than 250 titles in your choice of 3/4" or 1/2" formats.

Of course, there's no obligation. Except the obligation you have to yourself: to find out about the best training available in one of the country's fastest-growing, most lucrative fields.

SONY.

Video Communications, Sony is a registered trademark of Sony Corp.
Don't touch that connection!

New Zenith push-button VIDEO ORGANIZER permits switching from one program source to another without changing cable connectors. Let's you select up to six different program sources for viewing. Up to three different sources for recording. Even lets you view one program source while simultaneously recording another. All this without changing cable connections!

At last the nuisance of manually changing cable connections is a thing of the past!

With Zenith's new video Organizer, separate input and output jacks enable you to make a complete connection of TV and VHF antenna or cable TV antenna, subscription TV decoder, video disc player, video cassette recorder, video game and home computer or other auxiliary video equipment.

So you switch from one program source to another with push-button ease - without changing connections.

Equally important, the video organizer's advanced engineering design by Zenith results in low insertion loss and high isolation. Eliminates electromagnetic interference for maximum picture quality. And permits greater flexibility in use and ease of operation for more hours of uninterrupted home video enjoyment.

See it at your Zenith dealer's now!

Zenith Radio Corporation/Service, Parts & Accessories Division/11000 Seymour Avenue/Franklin Park, Illinois 60131

The quality goes in before the name goes on

www.americanradiohistory.com
Introducing the analog/digital handheld multimeter.

Fluke 73
$85
Analog/digital display,
With suit, 10A docket
Autorange
25% below to 2000, 50% basic to accuracy
1 year warranty

Fluke 75
$99
Analog/digital display,
With suit, 10A docket
Auto-range
25% below to 2000, 50% basic to accuracy
3 year warranty

Fluke 77
$129
Analog/digital display,
With suit, 10A docket
Auto-range
25% below to 2000, 50% basic to accuracy
3 year warranty

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS
The Professional Test Equipment Source

Sales, Service, Rent/Leasing Programs
... and Pre-Owned Test Equipment also Available
NEW Tech VOM
WV-547C

- Rugged, accurate taut-band meter.
- Sensitivity 20,000 ohms-per volt DC
 9,000 ohms-per volt AC
 21 color coded ranges.
- Snap action, dual detent range switch.
- Temperature scale (optional accessory)
- User oriented "right angle" test leads.

For $35.50
Here's your best VOM value.

It's compact, drop-proof (3 feet) and provides 21 color-coded ranges—volts, milliamps, ohms, temperature scale and decibels. True quality instrument for your portable applications. Tough, accurate, taut-band meter, fuse-protected. Sensitivity 20,000 ohms/volt DC. High-Impact case, colored bright orange. Snap action, dual-detent range switch. Range limits: 1000V DC and AC, 250 mA DC, one megohm, +200°C. Battery Test provision. Meter OFF position. Temperature scale (special probe optional).

WV-547D. Same instrument in impact-resistant carrying case. Handle converts to tilt stand.

$39.95

Want full technical details and a demonstration? Call toll-free. 1-800-523-3696, for the VIZ distributor near you.

Look to VIZ for value, quality, availability. Over 70 instruments in the line—PLUS full accessories.

VIZ Mfg. Co., 335 E. Price St., Philadelphia, PA 19144

CIRCLE 91 ON FREE INFORMATION CARD

www.americanradiohistory.com
Tone buttons on the base of the phone still operate exactly as before. Yes, it's really legal to replace the phone-company microphone. The FCC says it's OK.

We are particularly proud of our "wait-for-tone-dial-tone" circuit. That makes calls through SPRINT or MCI as easy as a local call. Just pick up the phone, push 2-4, and let the Soft-Touch listen for dial tone; dial the local number after SPRINT or MCI answers. The circuit listens for the new dial tone, then dialed your code and the long-distance number you are calling. Our Chief Engineer, Bill Stender, does, is particularly proud of this feature, which many "computerized big box in the closet" systems don't offer.

All pocket tone beepers, including our Porta-Touch (plus) have to get through the carbon make in the handset. Distortion is minimized by holding the handset vertically (straight up and down). If the call doesn't go through, tap the mike end of the handset against the phone gently, that will loosen the carbon and reduce the distortion that reduces the reliability of all beepers.

LEO CORBALIS
Technical Director,
Buscom Systems, Inc.

SUGGESTIONS NEEDED
With the millions of monthly readers of Radio-Electronics like myself out there, I'm sure that at least one can help me with a problem that will ultimately save the rest of my hair being pulled out by the roots.

Living in a rural area has made my dreams of getting cable TV just that—dreams! So, being very electronically inclined, I decided to take the plunge into satellite TV reception. To say that I'm a do-it-yourself freak would be an understatement, but I'm in the process of building my own system from A to Z. Problem: Even though I have the necessary front-end components (assembled and tested), I can't seem to find a schematic diagram of a 70-MHz IF amplifier and detector using discrete components.

Although using IC's could simplify construction markedly, I'm attempting to do the whole thing (receiver unit) from discrete parts, because I have a junkbox full of active and passive devices that have frequency tolerances far beyond 500 MHz.

So, how about it, fellow readers? Here's a chance to put your ideas to good use, not to mention the gratitude I'll have for the response.

What I'm asking for is a workable circuit of a 70-MHz IF amplifier with a 20-MHz bandwidth and a 70-MHz phase detector capable of handling the wide swing of the IF bandwidth. The catch is that they have to be designed using discrete components.

LeROY SMITH
Rt. 3, Box 479,
Wetumpka, AL 36092

APPRECIATION
Thanks for a normally good-to-very-good magazine. And thanks especially for the reprint of Mr. Quinby's article on Nikola Tesla! How about comparable coverage of Charles Proteus Steinmetz?

One more suggestion: How about some in-depth coverage of EMP (Electromagentic Pulse)? I don't read widely, or pay any attention to the commercial electronics media (AM & FM radio and TV), but have never seen really good coverage of the phenomenon.

JAMES C. CAVE
Princeton, TX

COMMON ERROR
I enjoyed reading about Nikola Tesla in the August 1983 Radio-Electronics, very much. As stated in the article, he is an almost forgotten genius. For those who would like to learn more about him, I suggest the book, Tesla: Man Out of Time, by Margaret Cheney.

Incidentally, Mr. Quinby made a very common error in his article. He said that one of the giant radio-frequency alternators has been preserved at the Smithsonian Institute. Not so; the proper name is the Smithsonian Institution.

ROBERT J. RUFLENAS
Dorchester, MA

EXTRACTING COMPONENTS
Once I tried pulling components from old PC boards. But, unfortunately, I found that retrieving the components wasn't quite that simple. The desoldering tool never "gobbled up" all the solder, and the remaining traces held the component as firmly as before. Then I tried this simple technique; and, believe me, the results were astounding.

The PC board is placed on a tripod, with the components down. Two soft springs are attached, one end to the component to be extricated, and the other end stretched to the
If you're an engineer working with video, a service technician brushing up on repair and installation, or a musician who wants to tune in more than MTV, you need Sams books. Because when it comes to video technology, Sams knows all about it.

People trust Sams for books that are easy to read and understand, no matter what the subject is. Fact is, Sams has been a leading publisher of technical books since 1946.

So turn to Sams and get in tune with the subject you need Sams books. Because when it comes to video technology, Sams knows all about the books you need!

THE SATELLITE TV HANDBOOK

Shows you how to legally and privately cut your cable TV costs in half; see TV shows that may be blacked out in your city, pick up live, unedited network shows, start a mini-cable system in your apartment or condo, plug into video-supplied college courses, and more. Also covers how to buy, build and aim your own satellite antenna, and includes a handy guide to all satellite programming. No. 22055, $16.95.

THE BIRDS OF BABEL—SATELLITES FOR THE HUMAN WORLD

Explains how satellites work and how they are changing our lives. It looks at the social and political importance satellites have in science, law, medicine, finance and other fields, as it investigates the domestic and international issues surrounding their use. No. 22053, $12.95.

INTRODUCTION TO SATELLITE TV

Provides an engrossing insight into the technical side of satellite TV. So if you want to purchase a home satellite system, or you already own one, you need this book. With it you'll learn about receivers, antennas, mounts, feeds, amplifiers, converters, and more. No. 21798, $9.95.

THE HOME VIDEO HANDBOOK

3rd Edition shows you how to simply and successfully enjoy your home TV camera, video cassette recorders, videodisc system, large-screen TV projectors, home satellite TV receivers and all their accessories. Also tells you how to hook everything up and how to buy the best equipment. No. 22052, $13.95.

For a down-to-earth look at video, get the books you need from Sams today. Visit your local Sams dealer. Or call Operator 103 or 317-298-5566 or 800-422-SAMS.

SAMS

HOWARD W. SAMS & CO., INC.

4300 West 62nd Street, P.O. Box 7092, Indianapolis, IN 46206

Offer good in USA only. Prices and availability subject to change without notice. In Canada, contact Leduc Electronics, Markham, Ontario L3R 1M2.

Win a complete home satellite receiving unit from Sams Satellite Sweepstakes. Coming to your Sams dealer SOON!

CIRCLE 44 ON FREE INFORMATION CARD
Go on line in the world's fastest growing technology.

NEW! DATA COMMUNICATIONS TRAINING FROM NRI

Practical training includes computer, modem, test instruments, and access to exclusive NRI communications network

Satellites...microwave...fiber optics...dedicated land lines. Suddenly the world is communicating in a new and different way, via digital data systems. People talking to computers...computers to computers...information is stored, retrieved, and relayed in nanoseconds. And an entirely new kind of communications is born.

Industry, opportunities to triple

Data and telecommunications is already a $150 billion industry and is expected to triple over the next five years. One typical company has grown from $85 million to $650 million...a 765% growth since 1978 alone. The need for qualified technicians to install, maintain, and service this enormous investment in high-tech equipment is tremendous even now. Opportunities and salaries can go nowhere but up and up.

NRI will train you at home

You can learn at home in your spare time to become a data communications technician with NRI at-home training. NRI will start you with the basics, build upon your knowledge with easy-to-follow, bite size lessons to take you into the world of digital data communications. You'll learn what it takes to work on satellite, microwave, fiber optic, and telephone data links.

And you'll learn at your own comfortable pace, without classroom pressures or evenings away from your family. Over the past 70 years, NRI has taught the latest high-tech skills to almost 2 million students to become the world's largest and most successful school of its kind.

Hands-on training includes computer, modem, breakout box and much more

NRI takes you beyond "book learning." As part of your course, you receive plenty of practical...

Training includes all this equipment you keep...16K computer, modem, breakout box, digital multimeter and the exclusive NRI Discovery Lab.
hands-on training that gives you real-world skills. You get the Radio Shack Color Computer, with 16K memory to teach you the systems and language of data communications plus you get an operating modem to let you tie in with world-wide communications networks.

You build your own RS-232C interface breakout box, an indispensable installation and troubleshooting instrument you'll use throughout your career.

You receive a professional digital multimeter and the NRI Discovery Lab, where you construct solid-state circuits and demonstrate practical applications of the theory you've learned.

Learn on-line with the exclusive NRI data network

You'll learn what data communications is all about by actually becoming part of an operating network. Using your computer, modem, and terminal software, you'll go on line to "talk" to your instructor, take your final exam by computer link, communicate with other NRI students and leave messages on the NRI "bulletin board."

As part of your course, you'll also receive membership in THE SOURCE™, a regular $100 value. A phone call ties you into computers loaded with instant news, stock quotes, electronic mail, educational programs, games, even discount shopping and travel reservations.

Move into the future, send for Free Catalog

You can't find training like this anywhere else...only NRI trains you at home for an exciting and rewarding career in the brilliant new world of Data Communications. Mail the postage-paid card right now for our big catalog of high-tech electronic careers showing all the equipment you get, detailed lesson descriptions, and career opportunities. Look it over and decide where you want your future to grow. Act now. There's a real need for trained data communications technicians.

NRI SCHOOLS

McGraw-Hill Continuing Education Center
3939 Wisconsin Ave.,
Washington, DC 20016

WE GIVE YOU TOMORROW.
lower end of the tripod. The solder is then softened with a soldering iron. As the solder softens and becomes liquid, the component is heated from the PC board by the now-relaxing spring. The method takes a fraction of the time required by other techniques, and using two soldering irons and both hands, extracting components from old PC boards can be quite fun.

If, on the other hand, you are extracting ICs, remember that all terminals must be heated at the same time, for which you will need a special soldering iron. Note, too, that in this method, a desoldering tool is not required. And that no "gobbling up" of solder before or during the extraction process is necessary.

KRISHNA BALDEO
Bronx, NY

PREFERRED CHOICE

Since I've received my bachelor's degree in June, I've had more time to read some of the smaller articles and departments in Radio-Electronics. The "Letters" section is one that I've caught up on, and I would like to make a comment.

I receive both Radio-Electronics and a computer magazine, and I agree with Stephen F. Wilkie (August 1983 "Letters") on keeping Radio-Electronics. I feel, as many others do, that the variety, quality, practicality, and feasibility of the articles and projects especially make Radio-Electronics what it is. Stephens comment: "The occasional overview of computer technology and markets in your magazine is welcome as general information, but I would not like to see heavy emphasis on computer circuitry and accessories." My question is: How heavy is heavy emphasis? Computer circuitry and accessory is one of the leading areas of markets today! Projects of that nature which show practical and feasible ideas that help many readers with their projects should not be emphasized any less. I don't think that computer circuitry articles have been emphasized too heavily.

I feel that Radio-Electronics is doing a fantastic job on determining which projects to publish, and when.

EDWARD W. LOBERKAMP
New York, NY

ROBOTIC ARMS

Recently I walked into a Radio Shack store to pick up their 1983-1984 catalog, and was astounded by what I saw. There, lying on the front counter of the store, was a real, live, and fully operational robotic arm.

I have always been interested in computers, but below that is a craving to build electronic peripherals for them; and one of my goals has been to assemble and run a computer-controlled robotic arm.

Robotic arms are now heavily used in the auto industry in Japan, and have been introduced to North American auto manufacturers. All are used to execute a series of preprogrammed movements to build a specific part of an automobile.

The robotic arm now on sale at Radio Shack, as a Christmas toy, caught my eye because of its price: $44.95. (It's probably cheaper in the United States than in Canada.) I was wondering if you at Radio-Electronics could publish a project that uses the immense capabilities of the Apple II (or Ile) computer to operate such a robotic arm. It would be great for a Christmas edition of the magazine, or a major feature in a forthcoming issue of Special Projects. A project of that sort would be for the computers, electronics, robotics hobbyist.

DEANE VENEMA
Ontario, Canada

We agree. However, there may be better approaches than attaching the arm to an RS-232 port. Perhaps a dedicated controller board would be the way to go. I, for one, think that an inexpensive chess game built around the arm would be terrific.

If any of our readers develop a construction project based around the robotic arm, please drop us a line. —Editor

ULTRASONIC PEST REPELLER

A few words about the ultrasonic pest repeller in the August 1983 issue of Radio-Electronics ("New Ideas"). Although the circuit works—don't work. By that, I mean that it fails to repel bees, ants, or flies. I believe that the project is grossly underpowered. But if anyone still wants to build it, the Q1 emitter circuit should be R1 (not Rc), and though its value is not critical, a value of at least 56 ohms will keep the LED current to a safe value, assuming a 12-volt supply.

C.B. OHMAN
San Diego, CA

Diskette Users...

When you've heard from all the animals in the diskette zoo, but you need fast delivery and high quality diskettes...

Call Communications Electronics

Diskette order desk
800-521-4414
In Canada 800-265-4828

Choose your brand
Choose your price

<table>
<thead>
<tr>
<th>Brand</th>
<th>Ultra diskettes</th>
<th>3M diskettes</th>
<th>Memorex diskettes</th>
<th>Burroughs diskettes</th>
<th>Dymo diskettes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wabash</td>
<td>$1.29 each</td>
<td>$1.94 each</td>
<td>$1.94 each</td>
<td>$2.09 each</td>
<td>$2.99 each</td>
</tr>
<tr>
<td>Diskette</td>
<td>$1.39 each</td>
<td>$2.19 each</td>
<td>$2.19 each</td>
<td>$2.29 each</td>
<td>$3.29 each</td>
</tr>
</tbody>
</table>

For more information about this brand call:

800-323-9888

www.americanradiohistory.com
GET SMART. QUIK.
JOIN THE INFORMATION REVOLUTION — TODAY

For Only $249

Press a button and join the world

The QuiK-Link 300 provides you with a one button auto modem which: auto dials, auto I.D., auto password, and auto log-on to all these services.

The QuiK-Link 300 can bring you the exciting world of telecommunications knowledge, information and services — today.

With the simple touch of a button on your QuiK-Link 300 you can:
- Read up-to-the-minute news, sports and weather reports 24 hours a day.
- Obtain current stock quotes, complete company profiles, Wall Street Journal articles, weekly economic reports and other business and financial information.
- Make all your travel arrangements with a complete listing of all airline flights, tour schedules and more.
- Send your mail electronically and open your own electronic mailbox.
- Shop for more than 50,000 name brand products at discounts of up to 50 percent.

The QuiK-Link 300 is not a computer so there's no complicated computer language to learn before using your QuiK-Link 300 immediately. All you need is a telephone and a telephone line.

QUIKON using the world through a button

QUICKON

Please add $5.00 for shipping in the contiguous U.S.

26 W. 46th St., N.Y., NY 10036
(212) 730-7030 (800) 223-0474

www.americanradiohistory.com
One of the mainstays of a well-equipped electronics workbench is a function generator. Those devices are useful in a wide variety of applications, most notably in the troubleshooting of linear circuits such as audio amplifiers. Other applications include finding the impedance of a resistor, capacitor, or inductor, and finding the operating parameters of an op-amp. We recently had a chance to review a popular-priced function generator, capable of outputting sine, triangular, and square waveforms, that would be a valuable addition to any test bench. The unit is the FG-201 from OK Industries Inc. (3455 Conner Street, Bronx, NY 10475) and we would like to tell you about it.

One glance will tell you that the FG-201 is a quality instrument. That's because, rather than the plastic we've become so used to, the $2.5 \times 8 \times 6$-inch...
Here's How You Can Learn 16-Bit Technology. And Graduate To One Of Today's Most Powerful And Advanced Microcomputers.

Now you can master 16-bit technology with an all-new Advanced Microprocessor course. And build hands-on experience with the only 16-bit microcomputer specifically designed for the hobbyist, working engineer and student.

Advanced Microprocessor Course
This all-new self-study course (EE-8088) provides in-depth coverage of 16-bit, state-of-the-art technology. You will gain a thorough understanding of microprocessors from this 1200 page course. In 10 easy-to-understand units, starting with microcomputer basics, you'll cover all phases of 16-bit microprocessing, Assembly language, Program writing, Addressing modes, Dynamic and static RAM. And hardware interfacing.

And by using your 16-bit Trainer/Learning Computer for hands-on experiments (over 60 included), you'll gain actual circuit interface and software programming experience with an 8088 microprocessor system.

Trainer/Learning Computer
A unique combination of design features makes this versatile microprocessor system much more than a "teaching machine." Use it as a trainer with the Advanced Microprocessor course. Use it as an experimental design computer. And use it to run a wide variety of 16-bit software – including Z-Dos, Multiplan, Z-Basic, Concor File Manager, and much more.

In its most basic form, the Trainer/Learning Computer is a 16-bit, cassette-based microcomputer. Its unique design features access ports and solderless breadboards to allow you to build interfaces, design and modify circuits, or simply experiment with the inner workings of the microprocessor system. The basic system has an 8088 processor, 32K ROM (including assembler, editor and debugger) and 16K RAM.

The unit also features a serial I/O printer port, cassette interface and a detached 95-key keyboard (including 16 function keys and a numeric keypad) which generates a full ASCII character set. It's available either in kit form or factory assembled.

And you can take advantage of the system's H/Z-100 computer design heritage by easily upgrading it to a disk-based, 16-bit microcomputer that will run H/Z-100 series software and many other forthcoming programs.

Fully Upgradeable
The powerful upgrade package and variety of accessories allow you to make the basic 16-bit system more powerful and versatile. You can add 128K or 192K bytes of RAM, Floppy disk controller, 48TPI double-sided, double-density, single or dual floppy disk drive, Bmpmapped video graphics or full-color graphics, Two RS-232 ports, Programmable timer, And a Centronics-compatible printer port.

Learn on it. Design with it. Use it as a 16-bit computer.

It's the only 16-bit microprocessor system specifically designed to integrate theory with a hands-on understanding of how 16-bit computers work. And it's from Heathkit/Zenith Educational Systems, the world leader in problem-solving courses, trainers and accessories to help you learn state-of-the-art technology.

Get more information in the
FREE
HEATHKIT CATALOG
Mail to: Heath Company, Dept. 020-134
Benton Harbor, MI 49022

Name ____________________________
Address _________________________
City ____________________________
State __________________________
Zip ____________

CIRCLE 15 ON FREE INFORMATION CARD

www.americanradiohistory.com
Four New Simpson U.S.-Made DMMs!
FOR THE MAN ON THE JOB...

These professional-grade Simpson test instruments each feature full measurement capability plus continuity beeper, diode test, wide temperature/humidity operating ranges, transient protection, double fusing systems. UL Recognized test leads and a full line of optional accessories.

The 470™ is our low-cost, full-function 3½-digit hand-held DMM with 25 ranges, 0.15% basic accuracy, thumbwheel knobs and a two-way foldout stand. The 474™ 4½-digit DMM features phenomenal 0.03% basic accuracy: 10 µV...01 Ω and ±1 µA resolution, audible/visual continuity indicator.

The 467E hand-portable 3½-digit DMM has 0.1% basic accuracy, peak hold, true rms and 26 ranges. The 360 Series 3 3½-digit digital VOM (with world famous 260* styling) has 0.1% basic accuracy, 26 ranges, a bright LED display and rechargeable batteries.

These new DMMs will soon join the family of 30 other UL Listed Simpson test instruments... available from leading electrical/electronic distributors worldwide.

SIMPSON ELECTRIC COMPANY
A Kelly industries, Inc. Subsidiary
853 Dundee Avenue, Elgin, IL 60120
(312) 697-2260 • Telex 72-2416 • Cable SIMELCO

3½-Digit 470™ $139

4½-Digit 474™ $219

467E $225

MANUFACTURED IN USA.
Where's Your ELECTRONICS Career Headed?

The Move You Make Today Can Shape Your Future

Yes it's your move. Whether on a chess board or in your career, you should plan each move carefully. In electronics, you can move ahead faster and further with a

B. S. DEGREE

Put professional knowledge and a COLLEGE DEGREE in your electronics career. Earn your degree through independent study at home, with Grantham College of Engineering. No commuting to class. Study at your own pace, while continuing your present job.

The accredited Grantham non-traditional degree program is intended for mature, fully employed workers who want to upgrade their careers... and who can successfully study electronics and supporting subjects through

INDEPENDENT STUDY, AT HOME

Independent Home Study Can Prepare You

Study materials, carefully written by the Grantham staff for independent study at home, are supplied by the College, and your technical questions related to those materials and the lesson tests are promptly answered by the Grantham teaching staff.

Recognition and Quality Assurance

Grantham College of Engineering is accredited by the Accrediting Commission of the National Home Study Council.

We are located at 2500 S. La Cienega Blvd., Los Angeles, California, but for faster response please use our mailing address: P. O. Box 35499, Los Angeles, CA 90035.

Grantham College of Engineering

2500 South La Cienega Blvd.
P. O. Box 35499
Los Angeles, CA 90035

Please mail me your free catalog which explains your B.S. Degree independent-study program.

Name ____________________________ Age ______

Address ________________________________

City ___________________ State _______ Zip ______

Grantham College of Engineering 2-84
P. O. Box 35499, Los Angeles, CA 90035

Free Details Available from:

Grantham College of Engineering
2500 South La Cienega Blvd.
P. O. Box 35499
Los Angeles, CA 90035
R-2000
SSB, CW, AM, FM, digital
VFO's, 10 memories, memory/band scan, optional 118–174 MHz coverage...

The R-2000 is an innovative all-mode SSB, CW, AM, FM receiver that covers 150 kHz–30 MHz, with an optional VC-10 VHF converter unit to provide coverage of the 118–174 MHz frequency range.

R-2000 FEATURES:
- Covers 150 kHz–30 MHz in 30 bands. UP/ DOWN band switches. VFO’s tune across 150 kHz–30 MHz.
- All modes: USB, LSB, CW, AM, FM.
- Digital VFO’s. 50 Hz. 50 Hz or 5 kHz steps. F-Lock switch.
- Ten memories store frequency, band, and mode data. Each memory may be tuned as a VFO. Original memory frequency may be recalled.
- Lithium battery (back up: 10½ yr. life).
- Memory scan. Scans all or selected memories.
- Programmable band scan. Scans within programmed band(s).
- Flat-top tube display of frequency (100 Hz resolution) or time. DTMF switch.
- Dual 24-hour quartz clocks, with timer.
- Three built-in IF filters with NARROW/ WIDE selector switch (50 filter optional).
- Squeel circuit, all mode, built-in.
- Noise blanker built-in.
- Tone control.
- Large front mounted speaker.
- RF step attenuator. 00, 10, 20, 30 dB.
- "S" meter, with SINPO "S" scale.
- High and low impedance antenna terminals. 500/600/200/240 VAC. or 13.8 VDC. (Optional operation.
- RECORD output jack.
- Timer/REMOTE output (not for AC power).
- "Beeper".
- Carrying handle.

R-1000
High performance receiver
- 200 kHz–30 MHz digital display/eveke/ timer + 3 IF filters + PLL UP conversion.
- noise blanker • RF step attenuator • 120/240 VAC (Optional 13.8 VDC).

R-600
General coverage receiver 150 kHz–30 MHz digital (display) • 2 IF filters.
- PLL UP conversion • noise blanker • RF attenuator • front speaker • 100–240 VAC.
- Optional 13.8 VDC.

Optional accessories:
- VC-10 118–174 MHz converter.
- HS-5, HS-5, HS-5, HS-5, HS-5, 12-7 headphones.
- DCE-1 DC cable kit.
- YG–155C 50 MHz CW filter.
- HIC–10 Works digital quartz clock.
- Al-2 Surge Shunt.

KENWOOD
611 West Walnut/Campbell, CA 95020
Telephone (213) 638-3000

CIRCLE 45 ON FREE INFORMATION CARD

Scan the World.

RADIO/ELECTRONICS

It doesn't matter how much theoretical information you have tucked away, it's still the practical, hands-on, day-to-day routine which teaches us much of what we know. This is why the Heath (Benton Harbor, MI 49022) TTL/CMOS Practical Learning Experiments Course (EH-702) is so worthwhile. It's a course that emphasizes hands-on training and when you are through with it you should be thoroughly familiar with TTL/CMOS circuitry.

There are 48 hands-on experiments presented in this two-unit (chapter) course. Each of those experiments takes the knowledge gained in earlier experiments one step further.

TTL circuits
The first experiment in the 26-experiment TTL chapter deals with a simple TTL crystal-oscillator. That is followed by an experiment that deals with a decade divider. Moving on, you experiment with a utility clock, a pulse generator, and an inverter.

Once you have built and tested the
ELECTRONIC GIFT IDEAS!

NEW!
NO INSTALLATION REQUIRED

$109.88
Model ULTRAR
SP-1212 External
Horn OPMeter $24.88

BURGLAR ALARM
Ideal for home or office, this electronic burglar alarm requires no installation. Just plug it in, enter your secret code through the push buttons for operation. Red battery back-up. Covers up to 2000 square feet. Uses 20 feet square. Low input. Has own internal alarm, or add the external horn (shown) as an accessory. Entry and exit delay—5-minute automatic shut-off and alarm memory.

SPECO
MI-FI/STEREO/3-WAY CROSSOVER NETWORK

$10.88
$16.88
$29.88
booms and cases included

SPECO
PROFESSIONAL QUALITY PA AMPLIFIERS

Model PAT-30
50 watts Music Power
50-18,000 Hz Frequency
6 Controls (BASS, TREBLE, AUX, TONE)

$117.88

Model PAT-35
60 watts Music Power
100-20,000 Hz Frequency
5 Controls (BASS, TREBLE, AUX, TONE)

$147.88

Model PAT-129 (shown)
120 watts Music Power
100-20,000 Hz Frequency
6 Controls (BASS, TREBLE, AUX, TONE)

$277.88

ELECTRONICS
WAREHOUSE

Halls Rd. - P.O. Box 624 - Old Lyme, CT 06371

TELEPHONE ORDERS FILLED FAST ORDER DESK OPEN FROM 9 A.M. TO 5 P.M. EST. CALL (203) 434-8308.

CIRCLE 33 ON FREE INFORMATION CARD
LEARN COMPUTER REPAIR

Train at home in spare time... no previous experience needed

Savvy's of small computers are running over a billion dollars a year. And the need for skilled small computer repairs is already being felt. That's why a whole new business is starting up—devoted entirely to small computer repair. And right now is the time to get in on the ground floor—either working for someone else or in your own computer repair business.

Start now toward a money-making career in electronics...no need to take time from your job or family!

Now you can learn this microcomputer technology the same way that people in the computer industry do. So if you'd like to work with your hands—even if you have no previous knowledge of electrical circuits—you should be ready for an entry-level job repairing small computers even before you finish this course. The ICS Microcomputer Repair Course is designed for beginners—people with no previous experience who want to get started fast. And you get the same electronics training used by companies in the computer industry to train their own employees. You learn all at your own pace...at home in spare time so there's no need to quit your job, change your daily routine or leave family responsibilities. And you don't wait time going to and from class. When you have a question about something in your lesson, simply call our 24-hour hotline or write home-study notes for a prompt authoritative answer.

Experts show you what to do...how to do it...guide you every step of the way!

We start you with basic electricity and electronics—simple things like understanding volts, amperes, resistance. Everything is explained in easy-to-understand language complete with plenty of diagrams, drawings and illustrations. In addition, you get the basics of microcomputer operation so you can check the repair work you do. And your. 100% satisfaction is a proof of your achievement!

SEND FOR FREE FACTS!
- No obligation. - No salesman will call!

MAIL COUPON NOW

ICs SCHOOL OF COMPUTER REPAIR. Dept. DEU6 Scranlon, Pennsylvania 18071

* Mail this coupon free of charge to I.C.S. and I will send you a free equipment kit worth $37.95! If you want to land a high-paying computer repair job at home in your spare time, this is the kit for you. Just send me free facts and color brochure without cost or obligation.

Name______Age______Date______
Address______City-State-Zip______

RADIO-ELECTRONICS

CMOS circuits

Once you have mastered the material in the first chapter, it's time to move on to the 22-experiment CMOS segment of the course. In that part of the course, you'll be dealing with essentially the same types of circuits you deal with in the first unit, but with particular emphasis on the special requirements and characteristics of CMOS devices.

Getting to the experiments, you will find yourself again dealing with AND/OR, NAND/NOR, and EXCLUSIVE-OR logic. From there, you move on to a look at the CMOS 4067 decoder. The next section of experiments deals with counters and BCD-to-seven-segment decoder/drivers. From there you move on to CMOS R-S, J-K, and D-type flip-flops.

The final series of experiments covers topics such as finding the output frequency of a 12-stage ripple counter divider, how to use a dual D-type flip-flop as a divide-by-four counter, and how to use a CMOS 4016 bilateral switch as a digital selector and a data distributor.

Once again, a unit exam is provided (again, complete with answers) so that you can assess your progress and pinpoint any areas that need extra work or review. There is also a final exam that covers all of the material presented in the course. If you wish, that final exam can be mailed back to Heath for grading. Overall, the Heath TTL/CMOS Practical Circuits Course is a good effort. It is presented in a highly readable style and all the materials are first-rate. Like all other Heath courses, the company supplies all the components that you will need for the experiments.

You should be aware, however, that you will need to have, or purchase, a few additional items in order to get the maximum benefit from the course; that is also true of the other offerings in the series. For one thing, you will need Heath's ET-3300B board (or a similar device) to build the experimental circuits. That trainer costs $99.95 as a kit ($79.95 fully assembled) and is used in many of Heath's courses. You also should have access to an oscilloscope as well as to a good digital multimeter.

Considering the fact that the additional items needed are things that should be on any reasonably equipped workbench, the Heath TTL/CMOS Practical Circuits Course, which sells for $59.95, has to be rated as a worthwhile investment. It is not only appropriate for the professional who may need a refresher course, but also the novice who is just getting his feet wet in electronics.

continued on page 30
THE ULTIMATE SCANNER RADIO HAS ARRIVED.

Starting today, we're standing the scanner radio on its ear. Because we've forged ahead—way ahead—in radio frequency and digital technology.

Introducing the Bearcat® CompuScan™ 2100.

It's the first scanner radio designed to put the power of a personal computer to work for you. Now you can scan up to two hundred channels. Stack levels of priority so you'll hear vital calls in order of importance. Automatically search, store and count transmissions for accurate "pictures" of activity within frequency limits you select.

And with automatic video memos you'll know more than you've ever known before. The channel user, special codes, jurisdictions, phone numbers, alternate frequencies—any information you've programmed is automatically displayed when the channel is active.

With ten bands including 70-centimeter, 2, 6 and 10 meter FM Amateur, Military Land Mobile, AM Aircraft, plus Low, High, UHF and UHF-T bands.

For a real earful—and eyeful—see your Bearcat scanner dealer. For the name of the dealer nearest you, just call 1-800-S-C-A-N-E-R.
the name that comes to mind is Atari. For a couple of years (and that's a long time in the volatile videogame industry) the VCS was the runaway sales leader, and for good reason—it offered good gameplay, a wide selection of titles, and was popularly priced.

Of course, the system has a few well-known problems. For one thing, the graphics, never really outstanding to begin with, cannot be compared to what is available on most recent models. And then there's the joystick. That joystick has created more than its share of sore wrists, sore thumbs, missed scoring opportunities, blown games, and frazzled nerves. It has also given rise to a whole new group of products specifically aimed at relieving the gamer from many of those miseries.

Needless to say, we're talking about replacement joysticks for the VCS. In just a short time a multitude of joysticks and joystick enhancers have appeared on the market. Those products range from hand shock absorbers to wireless remote-control devices.

We've recently had a chance to try out a new joystick that definitely merits your consideration. It is the model 5000 joystick from Coin Controls (2609 Greenleaf Ave., Elk Grove, IL 60007), and we would like to tell you more about it.

Value-Packed Components.

In just a few years NTE semiconductors have become the industry standard for quality and value.

That's because, before being packaged in their bright green polybags and cartons, they've been tested on state-of-the-art equipment to ensure they meet or exceed the specs of original devices. And to back up that claim of quality, we back NTE replacement parts with an exclusive two-year warranty.

So, next time you need to replace or design, look for the big green and white NTE. You'll find device type, rating limits, diagram and competitive replacement listed right on the package!

Ask your local NTE distributor for our new Replacement Master Guide, available early in 1984. It lists more than 3,000 quality NTE types cross-referenced to over 280,000 Industry part numbers! Or for more information write:

NTE

New-Tone Electronics, Inc.

44 Farrand Street • Bloomfield, New Jersey 07003

(Formerly TCG)
BECKMAN

Circuitmate® DMM

- Model DM73
 - $72.95
 - 3½-digit pocket-style multimeter
 - 0.08% readacy
 - Auto-test
 - High test accuracy
 - 10 prune AC and DC ranges
 - Auto-zero
 - Auto-range

- Model DM20
 - $64.95
 - 3½-digit pocket-size multimeter
 - 0.08% readacy
 - Auto-test
 - High test accuracy
 - 10 prune AC and DC ranges
 - Auto-zero
 - Auto-range

- Model DM25
 - $79.95
 - 3½-digit pocket-size multimeter
 - 0.08% readacy
 - Auto-test
 - High test accuracy
 - 10 prune AC and DC ranges
 - Auto-zero
 - Auto-range

B&K PRECISION

100 MHz FREQUENCY COUNTER

- Model 1003
 - $144.50
 - 6 Hz to 100 MHz range
 - 6 digit LED display
 - LeCroy zero suppression
 - Low pass tare.
 - Range
 - BNC Connector
 - Built-in AC adapter
 - Selsplitter included with Model 1603.

NTSC COLOR BAR GENERATOR

- Model 1251
 - $849.95
 - Generates a set of bars for TV signals and patterns for comprehensive testing servicing and adjustment of virtually all types of television and video equipment.

FORDHAM

550 MHz FREQUENCY COUNTER

- Model FM-8
 - $149.95
 - 550 MHz high frequency counter with a switch selectable input using single BNC.

BP DIGITAL CAPACITANCE METER

- Model DCM-901
 - $79.95
 - Digital display and accuracy.

LEADER

NTSC WAVEFORM MONITOR

- Model LBO-S850
 - $1850
 - For displaying vertical intervals and reference signals by front panel.

NTSC VECTORSCOPE

- Model LV5-S850
 - $1850
 - Convenient method for observing and measuring the noise patterns and a multitude of colorimeter signal components.

FLUKE 70

- Model 73
 - $85.00
 - 10 MΩ Input
 - 200 MΩ/Ω
 - 10 Amps
 - Diode Test
 - Auto-range
 - 8½ digit display

- Model 77
 - $129.00
 - 10 MΩ Input
 - 100 MΩ/Ω
 - 10 Amps
 - Diode Test
 - Auto-range
 - 8½ digit display

WELLER SOLDERING STATION

- Model EC1000
 - $109.95
 - Continuously variable temperature range 300 to 800°F

VIZ DC TRIPLE POWER SUPPLYST

- Model WP-706
 - $399.95
 - Dual DC Meter
 - Triple DC Power Supply

HITACHI PORTABLE OSCILLOSCOPES

- Model V-222 (20 MHz)
 - $590.75
 - New series of scopes provide high performance and light weight.

- Model V-422 (40 MHz)
 - $765.00
 - New series of scopes provide high performance and light weight.

SOLDERING STATION

- Model EC2000
 - $139.95
 - Continuously variable temperature range 300 to 800°F
 - Physician temperature control logic with temperature feedback control to maintain temperature at set point.

B & K PRECISION 100 MHZ FREQUENCY COUNTER

- Model 1003
 - $144.50
 - 6 Hz to 100 MHz range
 - 6 digit LED display
 - LeCroy zero suppression
 - Low pass tare.
 - Range
 - BNC Connector
 - Built-in AC adapter
 - Selsplitter included with Model 1603.

FORDHAM 550 MHZ FREQUENCY COUNTER

- Model FM-8
 - $149.95
 - 550 MHz high frequency counter with a switch selectable input using single BNC.

BP DIGITAL CAPACITANCE METER

- Model DCM-901
 - $79.95
 - Digital display and accuracy.

LEADER NTSC WAVEFORM MONITOR

- Model LBO-S850
 - $1850
 - For displaying vertical intervals and reference signals by front panel.

NTSC VECTORSCOPE

- Model LV5-S850
 - $1850
 - Convenient method for observing and measuring the noise patterns and a multitude of colorimeter signal components.

FLUKE 70

- Model 73
 - $85.00
 - 10 MΩ Input
 - 200 MΩ/Ω
 - 10 Amps
 - Diode Test
 - Auto-range
 - 8½ digit display

- Model 77
 - $129.00
 - 10 MΩ Input
 - 100 MΩ/Ω
 - 10 Amps
 - Diode Test
 - Auto-range
 - 8½ digit display

WELLER SOLDERING STATION

- Model EC1000
 - $109.95
 - Continuously variable temperature range 300 to 800°F

VIZ DC TRIPLE POWER SUPPLYST

- Model WP-706
 - $399.95
 - Dual DC Meter
 - Triple DC Power Supply
 - Three separate completely regulated DC power supplies, 0.020v at 0.7A or 1000 at 4A.

B & K PRECISION 100 MHZ FREQUENCY COUNTER

- Model 1003
 - $144.50
 - 6 Hz to 100 MHz range
 - 6 digit LED display
 - LeCroy zero suppression
 - Low pass tare.
 - Range
 - BNC Connector
 - Built-in AC adapter
 - Selsplitter included with Model 1603.

FORDHAM 550 MHZ FREQUENCY COUNTER

- Model FM-8
 - $149.95
 - 550 MHz high frequency counter with a switch selectable input using single BNC.

BP DIGITAL CAPACITANCE METER

- Model DCM-901
 - $79.95
 - Digital display and accuracy.

LEADER NTSC WAVEFORM MONITOR

- Model LBO-S850
 - $1850
 - For displaying vertical intervals and reference signals by front panel.

NTSC VECTORSCOPE

- Model LV5-S850
 - $1850
 - Convenient method for observing and measuring the noise patterns and a multitude of colorimeter signal components.

FLUKE 70

- Model 73
 - $85.00
 - 10 MΩ Input
 - 200 MΩ/Ω
 - 10 Amps
 - Diode Test
 - Auto-range
 - 8½ digit display

- Model 77
 - $129.00
 - 10 MΩ Input
 - 100 MΩ/Ω
 - 10 Amps
 - Diode Test
 - Auto-range
 - 8½ digit display

WELLER SOLDERING STATION

- Model EC1000
 - $109.95
 - Continuously variable temperature range 300 to 800°F

VIZ DC TRIPLE POWER SUPPLYST

- Model WP-706
 - $399.95
 - Dual DC Meter
 - Triple DC Power Supply
 - Three separate completely regulated DC power supplies, 0.020v at 0.7A or 1000 at 4A.
because the throw distance of the shaft is much shorter, and the arcade-like leaf switches are much more sensitive than what you might be used to. As a result, you'll be able to change directions much more quickly, but a light touch is required to prevent "overcontrolling."

The other problem is the one that this reviewer found the most disconcerting. The twin red fire buttons are oversized and hair-trigger sensitive for sure action and quick response. The problem is that both of them are always active. It is very easy to accidentally brush the one you are not using during the heat of battle. Because of the button's sensitivity, more often than not that results in a shot, or what have you, being fired.

Thus, you should expect that your scores will decline at first. Rest assured that this is only temporary. Once you're accustomed to the joystick, you'll be easily passing your previous bests.

One thing is certain: Coin Controls has done its best to produce a product that will stand up to the rigors of even the heaviest use. That is evident by such things as the decision to use a steel rather than plastic shaft, and then there's the two-year warranty—if the joystick or its components prove to be defective due to workmanship or materials, the company will repair the joystick free of charge.

All-in-all, the model 5000 grades out as a good buy. Once you're used to its sensitivity, it will help maximize your scores. In addition, it is well made and backed by its manufacturer. The device is compatible with the Atari VCS, 400, and 800; Sears Arcade Game; Commodore VIC, and any other videogame or computer that uses the Atari joystick. It carries a suggested retail price of $19.95. R.E

Global Specialties Corporation Model 5000 Counter-Timer

CIRCLE 104 ON FREE INFORMATION CARD

Electronics Paperback Books Projects For Project Builders CHECK OFF THE BOOKS YOU WANT

PROJECTS

- ELECTRONIC TECHNOLOGY TODAY INC.
 203 So. 246th St., Massapequa Park, NY 11762

- Global Specialties Corp., (70 Fulton Terrace, New Haven, CT 06509) has introduced a novel instrument, their model 5000 Counter-Timer. It will measure frequency, period, and pulse width of any signal up to 50 MHz. What makes this device so novel is not what it does; there many instruments on the market that perform the same functions. Instead, this continued on page 113
What if there were a faster way to build and test circuits?
There is. Circuit-Strip from AP PRODUCTS makes circuit building a snap, giving you more time to experiment, to create. With a Circuit-Strip solderless breadboard, all you have to do is plug in components and interconnect them with ordinary #22 AWG solid hook-up wire. If you want to make a circuit change, just unplug the components involved and start over. It's just that easy. Circuit-Strips feature 610 plug-in tie-points and have a capacity of up to 6 14-pin DIPs. Four separate distribution buses of 35 tie-points each give you access for power, ground or signal.

What if it were easier to identify tie-point locations in a circuit?
It is. Circuit-Strip has a molded-in alpha-numeric grid for instant identification of every tie-point. Schematics can be labeled with each tie-point location to make circuit building faster and troubleshooting easier. Circuit-Strip is ideal for electronic training programs as well as laboratory use.

What if Circuit-Strip had a new low price?
It does. Circuit-Strip now carries a suggested resale price of only $12. That means that the best tool for the job now has the best price ever.

What if you need more information?
That's easy, too. Just call toll free 800-321-9668 for the name of the distributor near you. In Ohio, call collect (216) 354-2101.
NTS Electronics

Learn Robotics, Microcomputers, Microprocessors, Digital Video, Test Equipment and more with NTS INTRONIC™ home training. Courses include state-of-the-art equipment, lessons and texts to make your hands-on programs exciting and down-to-earth practical.

HERO 1 is included in two courses, one basic and one advanced. You'll cover principles of industrial electronics, microprocessor troubleshooting, fundamentals of mechanics, and robotic applications in industry. You'll learn analog and digital skills, radio control, fluidic, pneumatic and servo-mechanisms, as well as computer interfacing and robotic programming.

HERO 1, complete with arm, gripper and speech synthesis board, is a fully self-contained electro-mechanical robot—the featured unit in the most exciting training programs ever offered in home study.
Training

FIRST WITH TOMORROW'S TECHNOLOGY

1. Advanced "Z Chassis" NTS/HEATH "Smart Set" with computer space command remote control and space phone. Originate or receive telephone calls through this set and the number appears on the screen—store your police and other emergency numbers into memory which may be recalled and auto-dialed at any time. Traditional and incomparable picture quality. Unit has Quartz Controlled Tuning, 178 channel capacity, remote antenna switch accessory for reception of VCR, VDR, Broadcast, Cable, Video Games, and Personal Computer Input (no cable change) plus computer-controlled color. Featured in all-new Video Technology Course.

2. NTS/HEATH HN89A Microcomputer is included in two programs. This famous and reliable unit features Floppy Disc Drive, 48K Memory on Board, CRT Terminal with its own Z-80 Processor, and standard keyboard as well as Numerical Input Keyboard. The growing importance of computer knowledge and skills have made these programs increasingly significant. The experience gained in assembling these kits is invaluable in the understanding of computer troubleshooting skills.

3. NTS Microprocessor Trainer is included in our Industrial and Microprocessor Technology Course. It is a portable unit, contained in a convenient high-impact carrying case. Hardware/Firmware includes Monitor Operating System-Expandable User Memory-User Experimental On-Board Section-Breakpoint Editor-Single Step Trace-Cassette I/O.

NO OBLIGATION — NO SALESMAN WILL CALL

NATIONAL TECHNICAL SCHOOLS

TECHNICAL TRADE TRAINING SINCE 1905
Resident and Home-Study Schools
4000 So. Figueroa St., Los Angeles, CA 90037

Use the mail-in card or fill out and mail the coupon, indicate the field of your choice. (One, only please.) FREE full color catalog will be sent to you by return mail.

NATIONAL TECHNICAL SCHOOLS
4000 South Figueroa Street, Los Angeles, CA 90037

Please send FREE color catalog on course checked below:

☐ Robotics ☐ Computer Electronics
☐ Digital Electronics ☐ Video Technology
☐ Auto Mechanics ☐ Home Appliances
☐ Air Conditioning/Solar Heating

Name ____________________________ Age: ____________________________
Address ____________________________
Apt. _______ City _______ State _______ Zip _______

☐ Check if interested in G.I. information.
☐ Check if interested ONLY in classroom training in Los Angeles.
NEW PRODUCTS

For more details use the free information card inside the back cover

DESOLEDING TOOL, the PA 1707, combines the speed of powered desoldering with the economy of single-stroke hand pumps. It is designed for low-volume applications, and incorporates a ceramic substrate heater, replaceable tips, and an easy-to-clean solder-removal applications; there is a 4-wire set of leads as a standard supplied accessory. The model 3205A is priced at $725.00. An optional BCD output, Option 01, permits logging of data and going-go checks to be made; the BCD Option 01 adds $125.00 to the price.—Ballantine Laboratories, Inc., PO Box 97, Boontown, NJ 07005.

PERSONAL COMPUTER, model HP 150, featuring a touchscreen display, allows business professionals to run computer programs with the touch of a finger or a pen. Instead of memorizing commands, typing in menu-selection numbers, or using a mouse, the user simply touches the display screen to operate this personal computer and its application programs.

The model HP 150 uses an Intel 8088 16-bit microprocessor to run Microsoft's MS-DOS 2.0 operating system. That allows many popular programs to run on this personal computer.

Model 240

Video Generator

- Video output for all VCR, CCTV and Monitor Applications; 1 volt into 75 Ω load
- RF output: CH 2, 3, 4
- Scope trigger output for V or H sync
- 10 step gray-scale staircase signal for video circuit analysis
- 10 bar and 3 bar gated rainbow pattern
- 8 other dot, bar and line patterns
- Operates from 2 std. 9V batteries or 115VAC
- Single slide switch control
- Complete with test leads, protective cover, AC adapter, comprehensive instruction manual

PRICED UNDER $200. THE 240 DOES SO MUCH FOR SO LITTLE!!

HICKOK

RADIO-ELECTRONICS

THE HICKOK ELECTRICAL INSTRUMENT CO
10254 Euclid Avenue - Cleveland, Ohio 44108
(216) 349-8060 - TWX 910-401-8068

650-MHz FREQUENCY COUNTERS, model 6500 (shown) and model 6500, feature two front-panel BNC input connectors to allow flexibility in frequency measurement. The A input accepts signals from 5 Hz to 1 MHz with an input impedance of 1 megohm at 25 picorads. A switchable lowpass filter, with an LED indicator light, provides a 3-dB-per-octave rolloff at 50 kHz to facilitate audio and
Regency Scanners

Bring you the Excitement of Police, Fire, Emergency Radio, and more.

Our radios deliver the local news. From bank hold-ups to three alarm fires. It's on-the-scene action. While it's happening from where it's happening...in your neighborhood.

You can even listen to weather, business and marine radio calls. Plus radio telephone conversations that offer more real life intrigue than most soap operas. And with our new model MX5000, there's even more.

UNIQUE CAPABILITIES

Introducing the all new Regency MX5000, a 20 channel, no-crystal scanner that receives continuously from 25 MHz to 550 MHz. That's right! Continuous coverage that includes CB, VHF and UHF television audio, FM Broadcast, and civil and military aircraft bands. Plus a host of other features like keyboard entry, a multifunction liquid crystal display that's sidelit for night use, selectable search frequency increments, and a digital clock.

PRACTICAL PERFORMANCE

Another new addition to the Regency line is the 30 channel MX3000. It's digitally synthesized so no crystals are necessary, and the pressure sensitive keyboard makes programming simple. What's more, it has a full function digital readout, priority, search and scan delay, dual scan speed, and a brightness switch for day or night operation.

AT HOME OR ON THE ROAD

With the compact design, slanted front panel, and mounting bracket the MX3000 and MX5000 are ideal for mobile* use. But we also supply each radio with a plug-in transformer and a telescoping antenna so you can stay in touch at home.

See your Regency Scanner Authorized Dealer for a free demonstration on these and other new Regency Scanners. Or, write Regency Electronics, 7707 Records Street, Indianapolis, IN 46226.

*Mobile use subject to restriction in certain localities.
ultrasonic measurements. The B input is used for signals from less than 40 MHz to over 850 MHz, with an input impedance of 50 ohms at 10 picofarads. Selection of A or B input is through a pushbutton control with LED indicators.

CIRCLE 115 ON FREE INFORMATION CARD

Both models also feature three-switch selectable gate times, with pushbutton operation and LED indicators. That enables the user to choose gate times of 0.1 second with 10-MHz resolution, 1 second with 1-Hz resolution, or 10 seconds with 0.1-Hz resolution. LED indicators for "gate open" and "overflow" provide additional convenience.

The model 6000 has a timeline front panel with easily-accessible controls, pushbutton operation, and accurate frequency measurement from 5 Hz to more than 850 MHz. It is priced at $2,250.

The model 5000 has an oven-oscillator time base, and is priced at $4,499.95. - Global Specialties Corporation, 70 Fulton Terrace, Box 1942, New Haven, CT 06509.

PRINTER, the TRS-80 CGP-220, inkjet printer, is a drop-on-demand printer that quietly prints text and graphics. It prints up to 2600 dots per second in graphics mode, with a resolution of 640 dots per line. The text mode offers 12 cpi at 37 (7 by 5) characters per second.

Parallel and Color-Computer-compatible serial interfaces (600/2400 baud) allow use with any TRS-80 computer. A screen-print utility for the Color Computer will allow the model CGP-220 to create multi-color printouts of color graphics screens produced from any graphics program.

The CGP-220 is priced at $689.99. - Tandy Corporation/Radio Shack, 1900 One Tandy Center, Fort Worth, TX 76102.

DIGITAL SWITCHES—five new series of miniature pushbutton switches featuring safety-lock actuators to prevent accidental actuation and insure data security. They include a special pushbutton that is set with a pointed instrument such as a ballpoint pen, and a flip up pushbutton that holds flush with the switch surface when not in use. Also offered are standard pushwheel and thumbwheel actuators. (All actuation styles are not available in each series.)

There is a variety of sizes. The Series 1000 have a width of 236 inches and a height of .551 inches, with front mounting. The Series 1100 have a width of 236 inches and a height of .705 inches, with front mounting. The Series 1200 have a width of 300 inches and a height of .705 inches, with front mounting.

CIRCLE 116 ON FREE INFORMATION CARD

The Series 1300 have a width of 300 inches and a height of .945 inches, with front mounting, and the Series 1400 have a width of .315 inches and a height of .945 inches, with front mounting. The prices for the switches range between $2.00 and $4.66, depending on series and configuration. - EECO Incorporated, 1601 Chestnut Avenue, PO Box 659, Santa Ana, CA 92702-0659.

VOLT-OMMETER, model 3525 Digi-Probe is battery-operated, and shirt-pocket size. It uses a 5mm easy-reading 3.5-digit LCD display with a "data hold" feature to facilitate continued on page 43.
Amazing new solid-state oscilloscope... fits in the palm of your hand

CRT oscilloscopes just became obsolete! The revolutionary new solid-state digital LED Pocket-O-Scope does it all, in a 4-ounce package you can put in your pocket.

Easy to use. Ideal for the hobbyist or the technician. The Pocket-O-Scope is 100% solid-state, focus and brightness on the 210 point, high-intensity illuminated screen are electronically self-controlled. The trace is always in sharp focus. Zero and sweep positions are maintained automatically. Zero-reference, or cross-over line is always centered for full trace minimum on the screen. Automatic internal circuitry always assures a properly positioned waveform.

Focus. Zero and sweep positions are maintained automatically. Zero-reference, or cross-over line is always centered for full trace minimum on the screen. Automatic internal circuitry always assures a properly positioned waveform.

Pocket-O-Scope are for positive and negative sensitivity and for coarse and fine synchronization of the frequency of operation. The easiest to use, full capability scope available!

Years in development. The Pocket-O-Scope is the culmination of years of development in high technology, micro-electronic components and digital design.

Features:* All-solid-state, digital design • Hand-held or bench operation • High resolution 210 point, 1.5" square display • Battery or A/C operation with adapter • Factory calibrated - never requires recalibration • Full function, single trace capability plus ½ channel dual trace and signal inverter • Full overload protection to prevent damage to scope • Automatic zero voltage centering • Automatic free run or locked image • Automatic full horizontal sweep circuit • External input/output for add-on capability

Specifications:
5 Megahertz bandwidth • Sensitivity - vertical, 10MV • Accuracy ± 3% on wave forms - sweep linearity ± 5% • Time base - 1 microsecond to 5 seconds • Vertical gain - 0 to 120 volts • Continuous free run to locked image response • Power supply 9VDC - dual polarity

Controls: Single or dual trace • On-off, battery-A/C • Sensitivity; separate pos. & neg. controls • Sync C & Sync F controls

Limited, 90-day warranty

No risk introductory offer. The revolutionary Pocket-O-Scope is a development of Calvert Instruments, Inc., for 25 years a manufacturer of electrical equipment. As an introductory offer for a limited time only, you can buy the Pocket-O-Scope including a carrying case, A/C adapter, 3 standard "grabber" probes and 2 high voltage probes for only $249.95, a $321 value. If you act now, you will also receive FREE Calvert's 200-page Comprehensive Oscilloscope Training Manual, a limited 90-day offer.

Put your Pocket-O-Scope to the test for two weeks. And if you decide, for any reason, that the Pocket-O-Scope is not for you, return it within the 14-day trial period for a prompt refund. The training manual will still be yours to keep.

Mail this coupon today, or call toll-free* while the introductory offer is still in effect.

![Pocket-O-Scope](image)

*CALL TOLL-FREE 800-362-2246 EXT. 118 to order by phone, request further information or to inquire about becoming a distributor. In Kansas, call 800-362-2341 Ext. 118. Allow 6-8 weeks for delivery.
The best 60MHz scope costs only $1150. It's from Kikusui.

That's right. Only $1150 for Kikusui's top-of-the-line 5060 model oscilloscope. And we also have four other scopes for as low as $600 in our new 5000 Series.

Not only that, we're offering a two year warranty on each of them, compared to other big name companies' limited one year warranties.

When it comes to performance, our 5000 Series has the edge over the Tektronix 2200 Series in lab quality, chop frequency, and trigger view. Ours also have more display modes, higher acceleration for better brightness, and sharper focus for better resolution.

Each scope in our 5000 Series is crafted so that it can be used for production, field service, consumer electronics servicing, or even personal use. The 5060 is a 60MHz scope with 3 channels, eight traces, delayed sweep, delay line and alternate sweep, and priced at $1150. Models 5040 and 5041 are 40MHz, dual channel scopes, featuring peak-to-peak automatic triggering, automatic focus control and a delay line. If you're interested in a 20MHz scope, we have our 5020 and 5021 models with features similar to our 40MHz scopes. Both the 5041 and 5021 also have delayed sweep. Prices at $920 for the 5041, $795 for the 5040, $690 for the 5021 and $595 for the 5020. So, whatever model suits you best, you can't get a better scope for the money.

Of course, there's a reason we're able to offer these bargains and quality. We're one of the biggest manufacturers of scopes in the world, with over 30 years in the business. Another reason is KIK's nationwide network of lab quality maintenance facilities.

Write us and we'll send complete specifications back to you. Or just take a little time to call us, it's a small price to pay to get big time quality and service.

For sales and technical information call toll free 800-421-5334
(In Calif., Alaska, Hawaii 213-515-6432)

Order Toll Free 800-421-5334

Kikusui INTERNATIONAL CORP
17819 Figueroa Street
Gardena, Calif. 90248
TMX 910-366-7648

Order Toll Free 800-421-5334

Kikusui INTERNATIONAL CORP
17819 Figueroa Street
Gardena, Calif. 90248
TMX 910-366-7648

In Canada call Interfax Systems, Inc., 314-366-0392

Subsidiary of Kikusui Electronics Corp., 3-11-75 Shinnakato Higashi, H prohibited

CIRCLE 48 ON FREE INFORMATION CARD
NEW PRODUCTS

continued from page 40

measurements in low ambient light or in confined areas. It also enables the user to "hold" the reading for later review. An instant-tone

The model 3526 has 13 ranges, and range selection in all functions is fully automatic. Blinking-digit overrange indication and low-battery visual indication are provided. Internal overload protection is to 750-volts AC/DC in voltage ranges and 250-volts AC/DC in ohms and continuity ranges. The Digit-Frobe is priced at $65.00.—Triplet Corporation, One Triplet Drive, Bluffton, OH 45817.

HEX KEYS AND DRIVERS are now available in five new popularity-sized pouched assortment sets. There are three "L" style hex key sets: No. BLMK6 is a 6-piece metric set containing sizes from 1.5mm to 5mm, and is priced at $11.46. No. BLMK9 is a 9-piece metric set with sizes from 1.5mm to 10mm, and is priced at $19.90. No. BLMK9 is a 9-piece inch set with sizes from 1/16th inch to 3/8ths inch, and is priced at $19.90.

There are two drive-style hex key sets: No. HBLKM7 is a 7-piece metric set with sizes from 1.5mm to 8mm, and is priced at $22.60. No. HBLKM7 (shown in photo) is an 8-piece inch set with sizes from 7/64ths inch to 5/16ths inch, and is priced at $24.60. The keys allow easy access in restricted or hard-to-reach areas. They set or remove Allen-type screws at angles up to 30 degrees.—Vaco Products Company, 1510 Skokie Blvd., Northbrook, IL 60062.

POWER AMPLIFIER. The Delta/Omega FM2000, actively controls the voice coil to develop precision in your sound system. It reduces ERD (Effective Radiation Distortion) and selects compensation needed to reproduce the realities of the original music being played.

The FM2000 can deliver 600 watts continuous average output power into 8 ohms from DC to 45 kHz with no more than 0.05% THD. Power at clip point (less than 0.01% THD) is 2000 watts RMS into 2.2 ohms, 10 to 500 Hz; 50 Hz, 50% duty cycle tone burst. The slew rate is 32 volts per microsecond; IM distortion (60 Hz-7kHz 4:1) is less than 0.05% from 1 watt to 600 watts into 8 ohms; and less than 0.1% at 600 watts into 8 ohms, and 1200 watts into 4 ohms. The harmonic distortion (true RMS) is less than 0.05% from DC-45kHz at

NEW

Universal Keyboard Controllers

The new Series V Digital Analog Keyboard Controllers from PA/A offer enough standard features and options to fill every need from stage to studio. Standard features include Pitch & Modulation Wheels, Gate and Re-trigger Outputs. Low Note Rule Priority. Smooth Pret-Read Action. Light weight and only 2" high.

You have your choice of:

- 37 or 61 Note Actions
- Exponential Or Linear C.V.
- Mf Di or Parallel Digital
- Mono or Poly
- Factory Assm. or Low Cost Kits

Best of all prices start at less than $160

call our toll-free line
1-800-654-8657
9AM-10PM EST MON-FRI

for price & ordering details & get your free PA/A catalog!

Direct mail orders and inquiries to: Dept. 11R

PA/A Electronics, Inc.
120 W. Whippoorwill, Oklahoma City, OK 73116 140/149/929

CIRCLE 52 ON FREE INFORMATION CARD

FREE

McIntosh STEREO CATALOG and FM DIRECTORY

Get all the newest and latest information on the new McIntosh stereo equipment in the McIntosh catalog. In addition you will receive an FM station directory that covers all of North America.

SEND TODAY!

McIntosh Laboratory Inc. RE
East Side Station P.O. Box 96
Binghamton, N.Y. 13904-0096

NAME ____________________________
ADDRESS ____________________________
CITY ____________________________ STATE ZIP ____________

If you are in a hurry for your catalog please send the coupon to McIntosh. For non rush service send the Reader Service Card to the magazine.

CIRCLE 93 ON FREE INFORMATION CARD
600 watts into 8 ohms; less than .001% from 20Hz-400Hz, increasing linearly to .05 at 20 kHz, 600 watts into 8 ohms.

Output impedance varies from +8 ohms to -8 ohms; input impedance is 25K ±5% with standard balanced bridging input: 44.76K ± 5% at unbalanced remote-protect connector input. Hum and noise (20Hz-20kHz) is 120 dB below 600 watts into 8 ohms; typically 126 dB. The turn-on is switch-selectable for instantaneous or 4-second delay.

The Omega TM2000 is priced at $2,995.00.—Crown International, 178 W. Mishawaka Rd., Elkhart, IN, 46517.

ANALOG MULTIMETERS - model DP-300, model DP-306, model DP-310, and model DP-316 all feature shock-absorbing PCB mounting; taut-band meter; low 25-ohm and 30-ohm mid-scales. They measure up to 1200 volts AC and DC, and feature a 0.3-volt DC scale. They will withstand a 5-foot drop.

The model DP-300 and DP-306 also feature an 80°F to 140°F temperature range, while the model DP-310 and the model DP-316 feature a continuity buzzer for test up to 500 ohms, a built-in FET tester (0-1200), and a dB range of to +23/31/45/51/63.

The model DP-300 is priced at $40.00; the model DP-306 is priced at $45.00; the model DP-310 is priced at $47.50; and the model DP-316 costs $52.50.—A.W. Sperry Instruments, Inc., 245 Marcus Boulevard, Hauppauge, NY 11786.

VIDEO TUNER—model AVS-2100, combines an electronically tuned, digitally synthesized, 133/134 channel, cable-ready tuner; a pre-amplifier with special signal-processing capabilities, and a microprocessor-controlled input/output switcher.

The model AVS-2100 also features random-access tuning via the remote-control unit. The direct-access remote-control unit allows the user to select one of two video-input sources, in addition to a home computer or videogame. The user may also select synthetic radio via remote control.

The model AVS-2100 is priced at $590.00.—Jensen Sound Laboratories, 4136 North United Parkway, Schiller Park, IL 60176.

CALL NOW AND RESERVE YOUR SPACE

- 6 x rate $60/p each insertion.
- Reaches 235,323 readers.
- Fast reader service cycle.
- Short lead time for the placement of ads.
- We typeset and layout the ad at not additional charge.

TELTONE'S TRK-957 KIT makes it easier and less expensive to breadboard a low-power, central office quality DTMF detection system. The included M-957 DTMF Receiver decodes 12 or 16 digits and operates from 5 to 12V dc. The sensitivity, wide dynamic range, noise immunity, and low-power consumption make it ideal for telephone switching, computer and remote control applications. The TRK-957 DTMF Kit is only $24.75. To order call: TELTONE, 1-800-227-3800, ext. 1130. CIRCLE 5 ON FREE INFORMATION CARD

TELTONE'S TRK-957 KIT makes it easier and less expensive to breadboard a low-power, central office quality DTMF detection system. The included M-957 DTMF Receiver decodes 12 or 16 digits and operates from 5 to 12V dc. The sensitivity, wide dynamic range, noise immunity, and low-power consumption make it ideal for telephone switching, computer and remote control applications. The TRK-957 DTMF Kit is only $24.75. To order call: TELTONE, 1-800-227-3800, ext. 1130. CIRCLE 5 ON FREE INFORMATION CARD

STOPSLIP® PADS eliminate sliding of parts and acts as "third hand." Extremely high friction coefficient. Available in convenient desktop sizes, 2mm thick, green color, can be cut with scissors. Simple clean-up with soap and water. StopSlip® pad 25mm x 250mm x 2mm priced under $10. Free sample. SOLIDER ABSORBING TECHNOLOGY INC., South End Bridge Circle, Agawam, MA 01001. Toll free 1-800-628-8862. CIRCLE 14 ON FREE INFORMATION CARD

SURPLUS ZENITH SAVI TV DE-SCRAMBLER - This is the real McCoy manufactured by Zenith and used by UHF Station operators in: Ann Arbor Ch 31, Baltimore Ch 54, Chicago Ch 68, Dallas Ch 27, Minneapolis St. Paul Ch 23, San Jose Ch 48, St. Louis Ch 30, Tulsa Ch 41, Washington Ch 50, Boston Ch 27. This unit delivers picture & sound out of TV, no internal connections. Complete with power adapter (24 & 12 volt dual). Fast shipping, insured direct to you from Detroit. To order send check or money order $189.00. VIDEO ELECTRONICS, 3083 Forest Glade Dr., Windsor, Ontario N8R-1W6. Quantity Orders (519) 944-5443. CIRCLE 12 ON FREE INFORMATION CARD

SHEET METAL WORKER - The 24" TRIK is a Press Brake, Shear and Slip Roll machine-perfect for research and development or maintenance shops. Over a thousand machines world wide in little to the largest companies. For free literature on this and our other sheet metal working machines contact PACIFIC ONE CORPORATION, 513 Superior Ave., Suite K404, Newport Beach, CA 92663, (714) 645-5962. CIRCLE 78 ON FREE INFORMATION CARD

CIRCLE 120 ON FREE INFORMATION CARD

CIRCLE 121 ON FREE INFORMATION CARD

CIRCLE 122 ON FREE INFORMATION CARD

CIRCLE 123 ON FREE INFORMATION CARD

CIRCLE 124 ON FREE INFORMATION CARD

www.americanradiohistory.com
CALL NOW AND RESERVE YOUR SPACE

- 6 x rate $605 per each insertion.
- Reaches 235,323 readers.
- Fast reader service cycle.
- Short lead time for the placement of ads.
- We typeset and layout the ad at no additional charge.

ONE MAN CRT FACTORY, easy operation. Process new or rebuild old CRT's for TV's, bus. machines, monitors, scopes, etc. Color, b&w, 20mm, foreign or domestic, 3x5 ft. space required. Profits ??? Average CRT rebuilding cost = $5. Sell for $100 = $95 profit. x 5 CRTs = $475 daily. x 5 days = $2375 weekly profit. Higher profits outside U.S.A. Investigate this opportunity today. We service the entire world. Write or call: CRT Factory, 1909 Louise St., Crystal Lake, Ill. 60014, (815) 459-0656.
CIRCLE 57 ON FREE INFORMATION CARD

VIDEO CASSETTE REMINDER VHS and BETAMAX—Prolongs the life of tapes and tape heads. Saves time and is fully automatic. $49.95 plus 5% shipping and handling. Check or money order. No COD's please. Send $2.00 for catalog on Video, Computers, and telephones. Bay State Electronics, P.O. Box 263, Accord, Mass. 02018. For records: Fred Means, 1 Tick Tock Ln., Weymouth, MA 02190, (617) 335-6249.
CIRCLE 32 ON FREE INFORMATION CARD

SUBSCRIPTION TV MANUAL: This information packed book details the methods used by subscription TV companies to scramble and descramble video signals. Covers the sinewave, gated pulse, SSALI system, and the methods used by most cable companies. Includes circuit schematics, theory, waveforms and trouble shooting hints. Only $12.95 plus $1.50 first class shipping and handling RANDOM ACCESS, Box 41770R, Phoenix, AZ 85080.
CIRCLE 17 ON FREE INFORMATION CARD

MOBILE ELECTRICS: Miniature souvenir of the first publication ever produced by Gemsback Publications. This issue appeared in April 1903—just 75 years ago. You can own your own reprint of this unique first edition for just $2.50 plus 75c PSF. It's available from R.E. BOOKSTORE, Radio-Electronics, 200 Park Avenue South, New York, NY 10003.

COVER STORY AUDIO KITS from Radio Electronics S-678, 280 and 3-481. Our $89 Graphic Equalizer (90% THD, 12 bands, 90dB S/N), $40 PLM-1, and $120 ASRU (Noise Filter/Expander increases dynamic range by 18dB) are attractive, excellent performers. Free shipping with prepaid orders. Free catalog with lots more. SYMMETRIC SOUND SYSTEMS, 856J Lynn Rose Ct., Santa Rosa, CA 95404. (707) 546-3895.
CIRCLE 55 ON FREE INFORMATION CARD

45-PIECE COMPACT ELECTRONIC TOOL KIT
A complete assortment of high quality tools. Includes: 13 screwdrivers, 10 pc. hex key set, adjustable wrench, groove-joint plier, cutter, chain & long nose pliers, wire stripper, pliers and replacement blades; soldering iron; solder; desoldering wick; soldering aid; heavy-duty padded zipper case. Model K-73 $99.00 postpaid. We accept Mastercard, Visa and American Express or check. 100% satisfaction guaranteed or full refund. To order, call 1-800-225-5370. (In MA call (617) 272-5051.) Contact East, Inc. P.O. Box 160 Burlington, MA 01803.
CIRCLE 56 ON FREE INFORMATION CARD

MINIATURE 14W 5% CARBON FILM RESISTORS offer superior overall performance characteristics compared to carbon composition resistors at significant cost savings! EIA color coding. 1 ohm thru 10 megohm. $3.75 per hundred per value. Mastercard, Visa, American Express, accepted. Please add $2.00 for shipping. California residents add 6% Sales Tax. No C.O.D. ACORN INDUSTRIAL ELECTRONICS P.O. Box 10345, SANTA ANA Ca. 92711, 1300-D E. Edinger Ave., Santa Ana, Ca. 92705. (714) 547-8424.
CIRCLE 46 ON FREE INFORMATION CARD

RCA Manual Details Video Systems Installations. New 52 page video manual, including 36 simplified connection diagrams, guides layman and professional in hook-up of all makes of VCR, Video Disc, TV games, home computers, video cameras and TV sets. Get the handbook (1791)3 from your RCA Distributor-Dales, or send $1.50 postage handling to RCA Distributor and Special Products Division, P.O. Box 527, Woodbury, NJ 08096.
CIRCLE 26 ON FREE INFORMATION CARD
This will be coming to you when you subscribe to Radio-Electronics:

- HELPFUL CONSTRUCTION ARTICLES
 - Test Equipment
 - Hi-Fi Accessories
 - Telephone Accessories
 - Music Synthesizers
 - Computer Equipment
 - Automotive Equipment
 - Intruder Alarms
 - Home & Car
 - Video Accessories

- NEWS ON NEW TECHNOLOGY
 - Computers
 - Microprocessors
 - Satellite TV
 - Teletext
 - Automotive Electronics
 - Speech Synthesizers
 - IC Applications

- FASCINATING "HOW TO DO IT" ARTICLES
 - Build Your Own Projects
 - Make Your Own PC Boards
 - Wiring Techniques
 - Soldering and Desoldering
 - Design and Prototyping

Radio-Electronics covers all aspects of the fast moving electronics field...featuring

COMPUTERS • VIDEO • STEREO
TECHNOLOGY • SERVICE
COMMUNICATIONS • PROJECTS

Get it all!

Subscribe today to Radio-Electronics. Don't miss a single issue and...you save as much as $7.03 off the newsstand price.

When you select one of the subscription offers listed on the handy coupon—you'll be assured of having your copy reserved, even if it sells out on the newsstand. Make sure you get all the excitement in every issue of Radio-Electronics by filling in and mailing the coupon today.

Mail to: Radio-Electronics
PO. Box 2520, Boulder, CO 80322

□ 1 year—12 issues only $14.97 (You save $3.03 off newsstand price.)
□ 2 years—(Save More)—24 issues—$28.97 (Save $7.03 off newsstand price.)

Name ____________________________ [please print]
Address __________________________
City ____________________________ State __________ Zip Code ________

□ Payment Enclosed
□ Bill Me

Every Month!
Get the Best—Mail Today!

Canada—Add $3.00 per year
All other countries—Add $7.50 per year

P.O. Box 2520, Boulder, CO 80322

(please print)

Allow 6-8 weeks for delivery of first issue

Ottawa—Add $7.50 per year
CABLE-TV DESCRAMBLING

Learn the theory behind cable-TV signal-scrambling techniques by investigating a descrambling circuit.

FRED MEANS

IT IS ESTIMATED THAT BY THE END OF THIS DECADE, ALMOST NINETY PERCENT OF ALL HOUSEHOLDS WILL BE W IRED FOR CABLE TELEVISION. ONE REASON FOR CABLE TV'S POPULARITY IS THE EXCELLENT RECEPTION OF LOCAL TELEVISION BROADCASTS THAT IT PROVIDES. ANOTHER REASON IS THAT SEVERAL PREMIUM (PAY) CHANNELS—THAT CANNOT BE RECEIVED WITH-OUT CABLE SERVICE—ARE OFFERED. TO PREVENT UNAUTHORIZED PERSONS (OR NON-SUBSCRIBERS) FROM VIEWING THOSE PREMIUM CHANNELS, THE SIGNALS ARE OFTEN SCRAMBLED. THAT IS, THE VIDEO SIGNALS ARE PROCESSED SO THAT THEY CAN'T BE VIEWED ON A NORMAL TV—even one that is wired for cable—UNLESS SOME DEVICE IS USED TO DECODE OR DESCRAMBLE THEM.

THERE ARE SEVERAL TECHNIQUES THAT CABLE-TV COMPANIES ARE NOW USING TO SCRAMBLE THEIR SIGNALS. IN THIS ARTICLE, WE'LL TAKE A LOOK AT ONE OF THE MORE POPULAR METHODS USED TODAY: THE INBAND GATED-SYNC METHOD. WE WILL EXPLAIN THE THEORY BEHIND INBAND GATED-SYNC SCRAMBLING/DESCRAMBLING, AND TO FURTHER HELP YOU TO UNDERSTAND AND BECOME FAMILIAR WITH THE THEORY, WE'LL DISCUSS A DESCRAMBLING CIRCUIT THAT YOU CAN EXPERIMENT WITH.

HOW IS A SIGNAL SCRAMBLED?

BEFORE WE CAN UNDERSTAND WHAT A SCRAMBLED SIGNAL IS, WE HAVE TO TAKE A LOOK AT A NORMAL SIGNAL. SUCH A NORMAL SIGNAL CONTAINS HORIZONTAL- AND VERTICAL-SYNCHRONIZING PULSES THAT ARE SENT DURING THE HORIZONTAL- AND VERTICAL-BLANKING INTERVALS RESPECTIVELY. (DURING THOSE BLANKING INTERVALS, THE VIDEO PICTURE'S ELECTRON BEAM IS CUT OFF AS IT RETRACES HORIZONTALLY OR VERTICALLY.) THESE SYNCHRONIZING PULSES ARE AMONG THE MOST IMPORTANT PARTS OF A STANDARD TV SIGNAL. THEY ARE PICKED UP BY SYNCHRONIZING CIRCUITS IN THE TELEVISION SET AND ARE USED TO STABILIZE THE PICTURE.

FIGURE 1-AI SHOWS PART OF A NORMAL, DE-MODULATED, TELEVISION SIGNAL THAT YOU WOULD SEE, FOR EXAMPLE, AFTER THE TV'S VIDEO-DETECTOR STAGE. THE HORIZONTAL-BLANKING PULSE CAN BE SEEN IN ITS PROPER PLACE IN THE SIGNAL. (THE VERTICAL-BLANKING INTERVAL—WHEN THE ELECTRON BEAM SNAPS BACK TO THE TOP LEFT CORNER OF THE SCREEN TO BEGIN A NEW PICTURE FIELD—is NOT SHOWN.)

WARNING

The legality of the use of privately owned or built devices to receive or decode cable TV broadcasts is currently a subject of much controversy, debate, and litigation.

In certain instances, the TV cable companies and the FCC have taken the position that receiving and decoding cable TV broadcasts without paying for them is "theft of service."

This article merely explains how one decoding device functions and is constructed. Prior to your using such a device, however, you are advised to obtain independent advice as to the propriety of such use based upon your individual circumstances and jurisdiction.
Now we can explain how the inband gated-sync scrambling method works. In that scrambling method, the level of the horizontal-sync and colorburst information is changed so that it is the same as that of the video information, as shown in Fig. 1-b. The suppressed information is still within the signal's 6-MHz bandwidth, thus the word "inband." The "gated-sync" portion of the term means that during the horizontal blanking interval, a gating signal is used to change the level of the signal.

Because of the change (about 6 dB) in the level of the horizontal-sync pulses, the TV's horizontal- and color-synchronization circuits do not pick up the pulses they need for synchronization. Therefore, the picture that you see is not stable—it is out of horizontal sync and the picture's color is also poor. The audio is not affected, though. Unlike many of the over-the-air scrambling schemes, the audio is not scrambled in the inband gated-sync method; it is simply passed through.

Descrambling the signal

We can see that to descramble the signal, it will be necessary to place the horizontal-blanking and -sync pulses back into their proper location. But first we must locate the hidden pulses. In the inband gated-sync signal, the horizontal-sync pulses are modulated on the sound carrier of the video signal. And because the sound carrier is 4.5 MHz above the picture carrier, we know where to look for the hidden sync pulses. For example, channel 3, whose picture carrier is at 61.25 MHz, has its sound carrier at 65.50 MHz. Therefore, if you wanted to decode signals from a cable system that used channel 3 as its output, you would have to locate the horizontal-sync pulses at 65.50 MHz. However, for a cable system that has its output on channel 2 (65.25 MHz), the horizontal-sync pulses are on 59.75 MHz, and so on.

Once we extract the horizontal-sync pulses, they can be used, along with the aid of some time-delaying circuits, to create a correction signal. The correction signal can then be added to the input signal to put the horizontal-blanking and -sync pulses back where they are supposed to be. What we want to do is to add a small DC voltage to the input signal but only during its video portion, not during the blanking interval.
the blanking interval. That process is shown in Fig. 2. The result of the descrambling process should be the original waveform shown in Fig. 1-a.

Circuit description

The schematic of a circuit that will do what we want is shown in Fig. 3. First we'll look at the power supply. The circuit can be powered by an AC adapter that has an output from 14 to 18 volts DC at 100 mA. The 7812 regulator, IC3, provides 12 volts DC to the rest of the circuit. The input and output of the regulator are filtered by capacitors C20 and C21. Zener diode D1 is used to provide +5 volts for IC2, a 74123 dual retriggerable monostable multivibrator.

Transistor Q1 provides a small amount of gain to the input signal—that compensates for any losses caused by the descrambling circuit. Transistor Q2, a BFQ85, is also used as an amplifier. But it will amplify only signals of a certain frequency. That frequency is determined by the setting of two tuned circuits. The first tuned circuit is made up of T1 and C3. Its resonant frequency will be set to shunt the video portion of the input signal to ground, while letting the audio portion of the signal through. The other tuned circuit is made up of T2 and C1. That is set to pass only the audio portion of the input signal. Potentiometer R1 can be used to vary the level of the signal at the output of the tuned circuit. Adjustment may be necessary because the inputs to the decoder from different cable-TV systems often are at different voltage levels.

After being amplified by Q2 and passed through the CI-T2 filter, the signal is fed into IC1, an MC1330A0P low-level video detector. (That signal contains the audio information of the input signal—where the sync pulses are hidden.) The tuned circuit (L2 and C18) associated with IC1 is also tuned to the frequency of the audio carrier of the input signal. That is, 65.50 MHz for channel-3 operation, 59.75 MHz for channel-2 operation. So, if operation on channel 3 is required, the value of C18 must be 68 pF. Operation on channel-2 requires C18's value to be 82 pF.

By changing the resonant frequency of the tuned circuits, the descrambler can be used at other frequencies than those of channel 2 or 3. For example, if your TV is "cable-ready" you might want to descramble the output of the tuner section. The output of the tuner is usually at 45.75 MHz (video carrier). The audio carrier is therefore located at 50.25 MHz. The tuned circuits could be adjusted for those frequencies by changing capacitors C1 and C3 to 10 pF, and changing the value of C18 to 130 pF.

The output of IC1 (pin 5) is the demodulated horizontal-sync pulses, as shown in Fig. 4. Most of the video on pin 5 of IC1 should be filtered by C13 and the input of Q3 (providing that the video is below the level that is needed to turn Q3 on). However, there will still be a small amount of video present between the horizontal-sync pulses. That video has to be reduced—which can be done by fine-tuning L2. (The result of too much video at pin 5 is false triggering of IC2. That shows up as streaking horizontal lines across the picture.)

When watching non-scrambled signals, we do not need the sync pulses from pin 5 of IC1. Therefore switch S1 is provided to shunt the sync pulses to ground. When the switch is open, however, the sync signals are sent to transistor Q3, which is used as a buffer. From there, the horizontal-sync signals are sent to IC2, a 74123 dual monostable multivibrator.

We use IC2 to form the horizontal-blanking interval from the demodulated sync signals. (The horizontal-sync pulses from IC1 are not the proper pulse width that we need.) The two R-C timing circuits associated with IC2 (at pins 6 and 7 and at pins 14 and 15) determine the pulse width of the output. Potentiometer R17 can be adjusted to "fine tune" the output for the pulse width that is needed—11 microseconds.

Once the proper pulse width is obtained for horizontal blanking, the signal from pin 5 of IC2 is fed to a voltage divider made up of R10 and R11. (The value shown for R11 works well when the input signal's level is between 50 to 70 millivolts. However, because different cable systems have different signal levels, it may be necessary to increase or decrease the value of R11.) From the voltage divider, the signal is fed to diode D2, where it is used to raise the DC level of the signal—but as we mentioned before, only during the video portion of the signal.

During vertical blanking and horizontal blanking, no DC level is added to the signal. In effect, by increasing the DC level on the video—and only during the video—we are returning (with the help of the DC-restoration circuit in the TV) the horizontal-blanking pulse and colorburst information to their proper location on the composite-video signal.

Building the circuit

For those of you who want to experiment with the circuit we have been describing, we have included foil patterns for a double-sided board in Figs. 5 and 6. Although a double-sided printed-circuit board is used, plated-through holes are not necessary. That's because there are only seven connections that need to be
FIG. 6—THE FOIL SIDE of the decoder board is shown here.

FIG. 7—PARTS-PLACEMENT and off-board connections are shown here. Note that the jacks used depend on your power source and RF connections. (We used a 1/4-inch jack and F-type connectors.)

soldered on both sides. Figure 7 is a parts-placement diagram for the board. Mount the components as close to the PC board as possible. When installing the electrolytic capacitors (C19, C20, and C21), be careful to check for proper polarity. The same holds true for the two diodes.

Transformers T1 and T2 must be modified so that they will fit into the holes on the PC board. That is, one of the pins—the one on the side of the transformer with the part number—on each has to be cut off. Be sure that when you install the transformer, the pin that you cut does not contact the PC-board's ground trace that runs under it.

To provide the regulator (IC3) with a heat sink, it should be mounted with its flat portion soldered to the board's foil. The leads of transistor Q2 (BFQ85) do not need to be placed through holes in the board. You can simply place it flat on the PC board and solder the leads to the foil (jack solder). Note that the dot on the parts-placement diagram indicates the collector lead. (Note that there is a dot on the transistor's package, too.) When we assembled our prototype, we mounted it in a plastic box and used an 1/4-inch jack for the input from the AC adapter, and F-type connectors for the signal input and output. The connectors that you use in your setup depend on what type of plug your AC adapter has, and what type of RF connectors you need to connect to your TV and cable converter.

Checkout and alignment

Do not hook up this device unless you are properly authorized to do so. As we continue, we will presume that you have received the proper authorization.

The first step is to plug the output from the AC adapter into IC3. Using a voltmeter, check for +12 volts at the positive side of C20. Then check that you have +5 volts at pin 16 of IC2.

The next step is to tune to a scrambled station and connect the circuit between a cable-TV converter and your television. (Jack J1 is the input jack, and J2 is the jack for output to your TV.) Make sure that switch S1 is in the open position (not shorting the output of IC1 to ground). Then adjust potentiometers R1 and R17 to approximately the "12 o'clock" position.

To set the coils in their approximate location, turn the slugs counterclockwise until the top of the slug is even with the top of the coil. Then turn the slugs clockwise as follows: T1, 2½; T2 and L2, 3 turns. With these adjustments in their approximate locations, you can go on to the fine tuning of the circuit.

Using an oscilloscope, check the input signal level. If it is between 50 to 70 millivolts, adjust R1 so that you have about 4 volts on the collector of Q2. (As mentioned previously, the value of R11 may also have to be changed.) If the input signal is higher than 70 mV or lower than 50 mV, you will have to increase or decrease the voltage on the collector of Q2 proportionally. Next use an oscilloscope to look at the signal at pin 5 of IC1. Adjust the 3 coils to keep the level of the video to a minimum between the horizontal-sync pulses. (See Fig. 4.) When adjusting the coils, adjust them only ¼ turn at a time. Those adjustments are critical and have to be accurate. If you see streaking horizontal lines through the television picture at this point, it's because you are getting too much video and are false firing IC2.

Now, using an oscilloscope, look at the signal at pin 5 of IC2. Adjust R17 until the signal has a pulse width of 11 microseconds. When the pulse width is correct, you will be correctly gating the video sig-
John Iovine

This article will show you how to build a working model of an MHD (MagnetoHydroDynamic) generator for under $30.00. You're probably thinking, "Great! What's that?"

Before we can answer that question, we have to give a brief definition of what magnetohydrodynamics is: it's the study of the effects of magnetic fields on ionized gases or fluids. (It is often also called magnetogasdynamics or hydromagnetics.) An MHD generator uses an ionized gas and a magnetic field to generate an electric current. And it does it more efficiently than conventional power plants do. We don't expect to see commercial MHD power plants until the end of this century. But you can learn about MHD technology now as we discuss the basic theory and even build a working model of an MHD generator.

The power output of the model we will experiment with is on the order of one milliwatt. That certainly is not a lot of power, but it is enough to demonstrate some of the principles of MHD power generation—the same principles that will be used in full scale MHD power plants. We will give you some pointers on how to improve on the basic design. But we encourage you to have the simple model working properly before you try to make improvements.

It is beyond the scope of this article to deal with all of the mathematical formulas that can determine performance of MHD generators. But you will be working empirically with the factors that are involved. They include magnetic field strength, gas velocity, ion-seed concentration and the Hall effect.

MHD Basics

The basis of the magnetohydrodynamic generator is the same as conventional generators: A voltage is induced across a conductor that is moving in a magnetic field. Unlike conventional generators, however, the moving conductor in a MHD generator is not wire. Instead it is a high-velocity electrically-conductive gas (or fluid) stream. As shown in Fig. 1, the gas travels through a duct or channel in which a transverse magnetic field is present. An electric field is generated perpendicular to both the magnetic field and the direction of motion of the gas: \(E = u \times B \); where \(E \) is the electric field strength, \(B \) is the magnetic flux density, and \(u \) is the velocity of the gas. (Note that bold, italic letters indicate vector quantities.) If electrodes are placed in contact with the gas
Now you can meet the challenges of today's incredibly rapid changes in electronics quickly and easily. This professional level electronics learning series is as innovative as the circuitry it explains and as fascinating as the experiments you build and explore!

From digital logic to the latest 16-bit microprocessor, you master one subject at a time with McGraw-Hill Concept Modules sent to you one at a time, once a month, to make up the complete CONTEMPORARY ELECTRONICS SERIES. Each module of the fifteen in the Series is a unique blend of "hands-on" experience, interactive audio cassettes, and vividly illustrated printed support materials. Together they will prepare you for tomorrow's better jobs or advancement in your present position by staying current with today's electronics revolution.

Understand Digital Logic... Microprocessors...Optoelectronics

Here's an extraordinary opportunity to update your understanding of today's most important technological changes in electronics. You can start from scratch or use the Series to update yourself. You cover the latest integrated circuits, including TTL, CMOS, and ECL digital circuits; op-amps; phase-locked loops; microprocessors; and opto-devices such as LEDs and LCDs.

Perform Electronic Experiments

With your first module you'll use the latest digital integrated circuits to build an oscillator circuit that demonstrates digital signals—verified visually by the flash of light emitted by diodes (LEDs).

You'll learn concepts applicable to all electronic circuits. With the first module, you will be able to identify the major passive components, like resistors, capacitors, inductors, diodes and transformers, and active components such as transistors and integrated circuits.
Each Concept Module goes right to the heart of the matter. You waste no time on extraneous material or outdated history. It’s a fast, efficient, and lively learning experience, a nontraditional approach to the most modern of subject matter.

Construct And Use New Explorer Design Lab
What’s more, laboratory experiments you perform as you expand your Explorer Design Lab system reinforce every significant point. All projects are designed to enhance and support your interaction with the cassettes and specialized materials. This essential hands-on experience with actual electronic components gives you a clear and simplified understanding of contemporary electronics. Every module will include additional components that you mount on your expanding Explorer Lab system. You’ll use your Lab throughout the Series, and later to design, build, and test your own circuits.

With your first module you’ll use this solderless breadboarding system. As you add additional boards to your Explorer Design Lab system you retain the ability to connect and build increasingly complex circuits easily and quickly.

When you have received Module 15, you also have a wide variety of contemporary components you can continue to use for your own design projects. The principles you have mastered in your Series will apply to all contemporary electronic circuits, right up to tomorrow’s latest /LSI’s (Very Large Scale Integrated) circuitry.

Unique Interactive Instruction Makes Learning Easy
With each new module you will receive a McGraw-Hill Action Audio Cassette, a remarkable technique of interactive instruction. Each tape creates a dynamic discussion that not only quickly communicates the facts, but makes you feel that you are participating in a lively dialogue with experts in contemporary electronics who provide you with first-hand information in a warm and provocative way.

Your ability to rapidly make this knowledge your own is further aided by a strikingly original method using diagrams, explanations, illustrations, and schematics to drive home and reinforce the meaning of all important points. Carefully indexed binders contain this material as well as the instructions to guide you through your “hands-on” lab experiments. Finally, having completed the Series, you can be awarded a Certificate of Achievement from McGraw-Hill upon passing an optional final examination.

Update Your Knowledge of the New Electronics
This program is for anyone who has an interest in electronics. It’s designed for you whether you are someone looking to find new directions in this wide open field . . . or the kind of person who wants to understand what’s going on in the world around you . . . you could be a teacher who would benefit from a refresher course in contemporary circuits, components, and applications . . . a manager or supervisor in an electronics-related business or industry . . . an engineer in another field who finds electronics playing an ever more important role in your work. It’s even for the electronics engineer or technician, or people with similar backgrounds who feel their training is out-of-date.

McGraw-Hill’s Contemporary Electronics Series offers you the quickest and probably least expensive learning method available today, and the only one with “hands-on” experience.

15-Day Trial
To order your first module under our 15-day trial examination, simply complete the card and send today! If card is missing, write us for ordering information.

McGraw-Hill Continuing Education Center
3339 Wisconsin Avenue
Washington, DC 20016

YOU COVER EVERY SUBJECT IN CONTEMPORARY ELECTRONICS
- Digital logic
- Digital gates (TTL, CMOS, ECL, NMOS)
- Flip flops
- Counters and Registers
- Op-amps and Applications
- Combinational logic circuits (ROMs, PLAs, decoders, etc.)
- Circuit analysis, LCR networks
- Transistors (bipolar and FETs), diode and thyristor
- Integrated circuits (linear and digital)
- Oscillators
- Optoelectronics
- Microprocessors
- Voltage Regulation
- Advanced Digital Concepts
jet, energy can be extracted and delivered to an external load.

We see that some of the major factors that govern the voltage and current generated include the gas velocity and the magnetic field strength. Also important are the electrical conductivity of the gas, and the design and placement of the electrodes. Once you build the basic model and have it working properly, those are the factors that you should vary if you want to try to improve the performance.

Minimizing losses

The design of an efficient MHD generator is not an easy task. The study of electromagnetics, fluid mechanics, and heat transfer are involved. However, let's look at some of the ways to design a generator to keep losses to a minimum.

One of the most important loss factors is that of the Hall effect. When electrons move through the magnetic field, they are subject to a force, \(F \) (called a Lorentz force), that is perpendicular to both the direction of electron flow, \(u_e \), and to the magnetic field: \(F = e_u_e \times B \), where \(e \) is the charge of an electron. As a result of that force, the electrons do not move in a straight path between the electrodes. Instead, they tend to flow to one end of the collecting electrode, thus, an electric field is generated. However, the electrode simply short the electric field, and so short-circuit currents flow in the electrodes and dissipate power. Those Hall effect losses can be reduced by using a segmented electrode, as we will do in our model. That is, instead of using one pair of plate-like electrodes as shown in Fig. 1, we will use three smaller, independent sets of electrodes.

End loss is another factor that can reduce the efficiency of an MHD generator. End loss occurs because a short circuit between the electrodes is provided by the gas at the entrance and exit points of the generator channel. If the conductivity of the gas is high, the shunt currents at each end can introduce significant losses. End losses are reduced as the length of the channel increases with respect to its width. They can also be reduced by extending the magnetic field past the electrodes.

There are also electrode losses due to the fact that the gas at the electrodes is cooler than that of the rest of the chamber, and thus its conductivity is low. Those losses can be reduced in our model by keeping the flame as large and as hot as possible.

There are losses due to skin friction (fluid dynamic loss) and there are also losses due to heat transfer (which can be reduced by increasing the ratio of channel volume to surface area). Because we are using permanent magnets in our model, we will not concern ourselves with losses due to producing the magnetic field. However, in a commercial MHD plant, those losses would be an important consideration.

How does a gas conduct?

The gases used in the MHD generator become conductive through a process known as internal ionization. As the temperature of the gas is increased, the kinetic energy of the bound electrons increases until it reaches a point where the electrons are no longer bound to the atoms of gas. At that point, because of the free electrons, the gas becomes electrically conductive. That high-temperature, electrically conductive gas is called a plasma. In the plasma, along with the free electrons, there are also positive ions of gas (the atoms from where the electrons were originally bound). It is those free electrons and positive ions that are captured by the electrodes in the plasma, thus inducing the load voltage.

The temperature required to ionize a gas is usually extremely high, about 4500°C. We can reduce the ionization temperature by seeding the gas with an alkali metal that readily ionizes at much lower temperature. (An alkali metal is antimony—it has only one outer-shell electron, so it ionizes at a relatively low temperature.) Potassium nitrate (which we'll use) and cesium nitrate are two alkali-metal salts that are commonly used for that purpose. We will use a small butane torch (with an output of about 1370°C) to achieve the temperature needed to ionize the seed gas.

Why MHD?

New research is being conducted on the MHD generator for several reasons. First, the MHD generator promises to use fuel more efficiently than conventional generators do, especially when it is used as a topping cycle in a generating plant. In other words, MHD generators will not be stand-alone plants. Let's see how they'll be set up.

After the hot gas passes through MHD the channel, it is too cold to be sent to another MHD generator. However, that gas is hot enough to operate a conventional steam turbine, thus producing additional electricity. A commercial power plant using an MHD generator as a topping cycle is expected to be able to work with an efficiency of over 45%. Present-day coal-fired plants that use scrubbers obtain an efficiency of about 34%.

Another reason for renewed interest is that the MHD generator can use all conventional fuels, and it can use high-sulfur coal in an ecologically safe manner. (The particular fuel choice for an MHD power plant would depend on where the plant was located. For example, to make use of its large coal reserves, coal-fired generators would probably prevail in the United States.) Scrubbers, which remove sulfur from the smokestack emissions of coal plants, are not needed for MHD generators because the sulfur combines chemically with the ion seed and can then be separated and sold. In a coal plant, the sulfur is left in a useless limestone sludge.

There are some problems that have yet to be overcome. First the cost of MHD generating plants has become economically competitive with other types of electric plants. And the reliability and life expectancy of MHD generators has to be increased. The major problem is that the electrodes deteriorate quickly because of the extremely high temperature of the gas in the generator. However, work has been done at AEC's (Army Engineer Corps) Sandia National Laboratories) to suggest that water-cooled copper electrodes with stainless-steel and platinum cladding could have a lifetime of up to 8000 hours.

But, a question that remains unanswered is: How close is the MHD power generation to being commercially viable? The goal of the National MHD Program is to have commercial MHD power stations in the early 1990's. Technologically, that is a fair timetable. But because of a lack of available funding, it is doubtful that commercial plants will appear that soon. However, the USSR is currently constructing their U500. That 500-megawatt, natural-gas-fired MHD generator is expected to be completed before the end of this decade.

Building the MHD generator

All the materials that you'll need to build an MHD generator model are shown in Fig. 2. We'll begin construction with the segmented-electrode assemblies. First mold and cut a block of
clay approximately 3/4 inch thick by 3/4 inches wide by 2 1/2 inches long. Then center a piece of perforated construction board (about 1 inch square) on the clay block. The perforated board, whose holes are spaced on 3/16-inch centers, is used merely as a template for spacing and inserting the graphite electrodes. You'll want to make sure that the top and bottom electrode sets are spaced similarly. Although the actual spacing is not important, start by leaving 3/16 inch between each electrode segment.

Next gently insert the electrodes through the board and clay as shown in Fig. 3. Use three electrodes to begin with. You want about 1/4-inch of the graphite to be sticking out on top (for connecting to clip leads), and about 1/4-inch into the channel. If an electrode is too long, simply pinch and snap it at the desired length.

To make the second (bottom) segmented electrode, form some clay into a rectangular shape, 3/4 x 3/4 x 2 inches. (The thickness of the clay should match the thickness of the center magnet that you'll be using.) Now insert three graphite electrodes. Use the perforated board to help set the spacing between electrodes the same as in the top electrode set. The bottom segmented electrode should be similar to that shown in Fig. 4.

When you have completed making the segmented-electrode assemblies, remove the perf-board template. Wrap the units loosely in aluminum foil and bake them in an oven at 375°F for an hour and a half, leaving the door of oven open approximately 2 inches. After baking, remove the assembly and allow to cool. Connect an alligator-clip lead to each of the electrodes. If you want, you can connect all of the top segments together and all of the bottom segments together, although in a commercial MHD generator, each set of electrodes is connected to its own load (or its own inverter to be converted to AC) as we show in Fig. 5. If an electrode breaks when you're connecting the test leads, use a straightened paper clip to push the electrode out of the clay, and replace it with a new one. You can also use that technique when the electrodes wear out from use.

The next unit to construct is the seeder, which is used to feed the alkaline-metal salt solution into the flame. Almost any small
Operation

Caution: Before you even turn the unit on, keep in mind that the generator can get very hot, so be careful.

To operate the generator, fill the seeder unit with the alkalai-salt solution. Make sure that the electrodes are between the two pole pieces and not touching either side. Place the seeder unit at the entrance of the channel with the wick facing into the channel. You want the wick to feed into the flame just ahead of the nozzle of the torch.

Connect one set of output leads to your voltmeter. Start on a scale that reads about one volt. Following the manufacturer’s instructions, start the torch and position it so that the base of the flame is just touching the wick, with the main flame projecting straight into the channel. Allow 20 seconds for the unit to heat up, and try to obtain as large and as hot a flame as you can. You should then observe a voltage reading on your meter. With the generator operating, cautiously move the torch one degree in each direction. You will hit a point where the voltage-output peaks. Don’t forget this rule of thumb: The larger and hotter the flame you’re able to maintain in the MHD generator, the higher your voltage output will be.

Troubleshooting

Using your voltmeter, measure the potential between the electrodes in each piece of clay. If a voltage is present, it is due to moisture in the clay. (The voltage is coming from some electrochemical reaction.) Either bake the clay again or wait 12 hours for the moisture to evaporate. A simple check for moisture is to set your meter to read resistance. If you get a reading between electrode segments of anything other than infinity, there is some moisture left in the clay.

If you fail to show any voltage when the unit is operating, use an ohmmeter to check that none of the electrodes are broken in the clay; also check all the test leads to be sure that they’re in good working condition. Check the seeder unit to be sure that part of the wick is touching the flame. Otherwise it cannot feed the salt solution to the generator. Also, double check the dimensions of unit against the parts list and the photos.

Now that you have your MHD generator working, why not experiment? For instance, try using more electrodes for better coupling to the gas, or changing the electrode spacing. A different torch with a hotter output could be used. You could also try using metals other than steel for the support pieces, or using larger magnets to obtain a stronger magnetic field. After you’ve experimented with changing all of the variables, why not let us know what you come up with!
Repairs and aligning VCR's isn't easy, but it is possible to do some of the work yourself if you know how! In this article we'll tell you what repairs and adjustments you can make using standard test equipment.

Part 3 In this month's article we'll be looking at some VCR symptoms, and their likely causes. We'll also look at the steps that should be followed to be sure that your VCR is properly aligned.

Precautions when installing a VCR

In addition to all precautions described in the service or operating literature for the VCR, keep the following points in mind. Avoid placing the VCR in areas of high temperature or high humidity. Exposure to those environmental factors can harm the VCR and (especially) the cassette tape. The rear of the VCR should be at least 4 inches from the wall to maintain adequate heat dissipation. Make certain that the TV fine-tuning has been properly adjusted for either channel 3 or 4. The VCR output is displayed on the selected channel, but since that channel is not ordinarily used the fine tuning may not be precisely adjusted. Play back a tape that you know is good, and adjust the TV fine-tuning to get the best picture. Also make sure that the VCR fine tuning is properly adjusted.

If you have the job of demonstrating use of the VCR to someone, go over the operating instructions of the instruction manual in boring detail. Although operation of a VCR is simple to those familiar with electronic equipment, it may not be so to the general public, especially since a VCR has many more capabilities, and controls, than a TV. As a minimum, describe how to do the following: watch the TV, record a TV program, record one program on the VCR while watching another on the TV set, use the automatic recording timer to record while away from home, play back a recorded tape. If you can not do any of those yourself, do not attempt to service that VCR until you have studied the instructions, please!

One point often confused by those familiar with Beta or VHS, but not both, is in loading and unloading the cassette. With Beta, when the cassette compartment lid is closed, the tape is automatically loaded. For VHS, tape loading occurs after the lid is closed and the PLAY button is pressed.

To remove a Beta cassette, make sure that the power is turned on, and that the VCR is in the STOP mode. Press EJECT, remove the cassette, and close the lid. When a Beta compartment lid is raised by pressing the EJECT button, the tape is automatically unloaded, and the cassette supply and take-up reels disengage from the tape drive motors. On some Beta VCR's, the EJECT button cannot be pressed except in the STOP mode. In other Beta VCR's, the EJECT button can be pressed, but does not actuate the circuit unless the VCR is in STOP.

For VHS, when the STOP button is pressed, the tape is unloaded. The cassette can then be removed by pressing the EJECT button to release the cassette holder.

Checkout procedures for a VCR

Before we get into the detailed service notes where we discuss specific problems related to the major functional sections of
a VCR, let us go over some simple, obvious steps to be performed before you start any service (and long before you tear into the VCR).

If the video playback or the TV picture is bad, set the program select switch to TV and check picture quality for each TV channel (using the TV channel selector). If the picture quality is still bad, check for defective antenna connections (or a faulty TV). Also check the TV fine tuning.

If the TV picture is good when the program select switch is set to TV, but the video playback is not good, set the program select switch to VCR, turn the TV to the inactive channel (3 or 4), and check reception on each channel by changing the setting on the VCR channel selector. If picture quality is bad, or there is no picture on all channels, it is possible that the TV fine tuning is not properly adjusted. If the problem appears only on certain channels, the VCR fine tuning is suspect (as is the VCR tuner).

If picture quality is good when viewing a TV broadcast through the VCR, try recording and playing back the program.

If noise is apparent (resulting in poor picture quality on playback but not when viewing through the VCR) it is possible that the video heads are dirty (head gaps are slightly clogged). If there is sound but no picture, the video head gaps may be badly clogged. If the playback picture is unstable with a new TV set (never previously used with the VCR), it is possible that the TV's AFC circuits are not compatible with the VCR. (We'll discuss that problem latter on.) If there is color beat (rainbow-like stripes on the screen) the problem may be interference rather than a failure in the VCR or TV.

Let's now go over specific symptoms and possible causes for some basic VCR troubles.

Record button cannot be pressed
Check that there is a cassette installed and that the safety tab has not been removed from the cassette. If necessary, cover the safety tab hole with tape. (The safety tab engages a plunger rod or switch when the cassette is inserted and the lid closed.) In most Beta systems, the record button cannot be pressed unless the rod is pushed down by the tape. In VHS, the tab prevents a switch from closing. Closing the switch disables the record operation. If you want to keep a recorded program from being accidently erased, you break off the tab so that the plunger is not pushed down. For Beta, or the switch can close, for VHS, the record function is disabled. If you want to record on a cassette with the tab removed, cover the tab hole with vinyl tape.

No E-E picture
If there is no E-E picture, check that the VCR program select switch is in the correct position. Also check the fine tuning on the TV. (The term E-E, or Electric-to-Electric, can be explained as follows. When the VCR is in the record mode, the output signal is connected to the TV fine tuning circuit and the video signal to be recorded can be monitored on the TV. Since the magnetic components (head, tape, etc.) have nothing to do with this signal, and the signal is passed directly from one electrical circuit to another, the function is called E-E mode. When the heads and tape are used in the normal record/playback cycle, the term V-V, or Video-to-Video, is sometimes used."

No color, or very poor color
If there is no color on playback, check the fine tuning on the TV. If the VCR fine tuning is misadjusted during record, color may appear while recording, but may not appear during playback. Always check the fine tuning of both the VCR and TV as a first step when there are color problems.

Playback picture is unstable
If you have periodic problems of picture instability, check the following. Has the VCR been operated in an area having a different AC line frequency? While recording, it is possible that a fringe-area signal was weak (intermittently) so that the video sync signal was not properly recorded. During recording, there have been some interference or large fluctuations in the power supply voltage? Could the cassette tape be defective? Could the tracking control be improperly adjusted.

Both Beta and VHS machines have some form of tracking control that adjusts for minor variations between tapes recorded on one machine and played back on another machine. The physical distance between the control head and video heads is different for the two machines, the playback signals are not synchronized, even though the servo is locked to the CTL signal. That condition can be corrected by physically moving the control/audio head stack in relation to the can. (That is one of the recommended service adjustment procedures for some VCR's.) But it is more practical to use the front panel tracking control, which shifts the relationship of the CTL signal to the video tracks electrically.

Snow or noise during playback only
Check the tracking control!

Sound but no picture
Check for very dirty video heads. The same holds true for excessive black-and-white snow.

Tape stops during rewind
If the VCR has a memory counter, is the counter switch on? If the memory switch is on, the tape stops automatically at 999 during record (on most VCR's).

Rewind and fast-forward problems
If the rewind and fast-forward buttons can not be locked or operated, check to see if the cassette tape is at either end of its travel. If the tape is at the beginning, rewind does not function. Fast forward does not function if the tape is at the end.

Cassette will not eject
Is the power on?

Feedback when using a microphone
Keep the microphone away from the TV. Turn down the TV volume.

Tape-speed-related problems
Those include such things as a noise band in the playback picture and picture instability with too high or too low pitched sound.

In some VCR's, the tape is automatically locked to the correct speed by the servo. However, many VCR's also require some manual switching. For example, certain Beta VCR's have a front-panel switch to select between Beta II and Beta III, as well as a rear panel switch for Beta I.

Some VCR service suggestions
The following points summarize some practical suggestions for servicing any VCR.

Initial setup
When a VCR is first connected to a TV, it is likely that the unused channel (3 or 4) of the TV is not properly fine tuned. When fine tuning the TV, operate the VCR in the playback mode using a known good cassette, preferably with a color program. If you try to fine tune the TV in the record or E-E mode, both the VCR and TV tuners are connected in the circuit, and the picture is affected by either or both tuners. With playback, the picture depends only on the TV tuner. Once the normally unused channel of the TV is fine tuned for best picture, the VCR tuner can be fine tuned as necessary.

Replacing a tuner
In many VCR's, the entire tuner is replaced as a unit in the event of failure, although some manufacturers supply replacement parts for their tuners, and include adjustment procedures for the tuner in the service literature. As a point of reference, a typical VCR tuner (including the IF) produces 1 volt P-P of video into a 75-ohm load. Typically, the audio output from the tuner is in the -10- to -20 dB range.

Replacing an RF modulator
In most VCR's, the RF modulator must be replaced as a package in the event of
failure. No adjustments or parts replacement are possible. If you have proper audio and video inputs (and power) to the modulator, but there is no output (or low output), the modulator is most likely defective. As a point of reference, a typical RF modulator produces 100 microvolts into a 75-ohm load (or 200 microvolts into a 300-ohm load) on the selected channel.

Black-and-white picture circuits

Although the black-and-white (or luminance) circuits of any VCR are very complex, they are not the major cause of trouble. Mechanical problems are on top of the list, closely followed by servo and system control troubles. Almost all circuits are involved, so three or four IC's. If all else fails, you can replace the few IC's, one at a time, until the problem is solved. (If only mechanical problems were that simple!)

The first step in servicing luminance circuits is to play back a known good tape, or an alignment tape. That will pinpoint the problem to playback or record circuits, or both. Then run through the electrical adjustments that apply to luminance, or picture, using the manufacturer's procedures.

If playback from a known good tape has poor resolution (picture lacks sharpness) look for an improperly adjusted noise canceler circuit, and for bad response in the video-head preamps. When making the manufacturer's adjustments, study the waveform or color-bar signals for any transients at the leading edges of the white bars.

If the playback has excessive snow, try adjusting the tracking control, since mistrack can cause snow. Then try cleaning the video heads before making any electrical adjustments. (Cleaning the video heads clears up about 50% of all noise or snow problems.) If neither of those do the trick, then try electrical and mechanical adjustments. Make mechanical adjustments only as a last resort (even though snow and mistracking can be caused by mechanical problems).

If playback of a known good tape produces smudges on the leading edge of the white parts of a test pattern (from an alignment tape) or a picture, the problem is usually in the preamps, or in adjustments that match the heads to the preamps. The head-preamp combination is not reproducing the high end (5 MHz) of the video signals. The adjustment procedures usually show how the head/preamp response characteristics.

If you see a herringbone (beat) pattern in the playback of a known good tape, look for carrier leak. There is probably some unbalance condition in the FM demodulators or limiters, allowing the original carrier to pass through the demodulation process. If very excessive carrier passes through the demodulator, you may get a negative picture. Recheck all carrier lead adjustments.

Most adjustment procedures include a check of the video output level (typically 1 volt P-P). If the VCR produces the correct output level when playing back an alignment tape, but not from a tape recorded on the VCR, you probably have a problem in the record circuits. The record current may be low (one symptom of low record current is snow), or the white-clip adjustment may be off. Look for details of those two adjustments in the manufacturer's literature.

Servicing color circuits

As in the case of black-and-white, the color (or chroma) circuits of a VCR are very complex, but not necessarily difficult to service (or do they fail as frequently as the mechanical section). Again, the first step in color-circuit service is to play back an alignment tape, followed by a check of all adjustments pertaining to color. As in the black-and-white circuits, when performing adjustments, you are tracing the signal through the color circuits. (At least at that in most well-written VCR service literature.)

There are two main points to remember in regard to VCR color circuits. First, most color circuits are contained within IC's, possibly the same IC's as the black-and-white circuits. Also, both circuits are interrelated. If you find correct inputs and power to an IC, but an absent or abnormal output, you must replace the IC. A possible exception in the color circuits are the various filters and traps located outside the IC.

Second, in most VCR's, the reference signal input to the color converters comes from the have playback comb and record (from crystal-controlled oscillators). If you get good color on playback, but not on record, the problem is definitely in the record circuits. However, if you get no color on playback of a known good tape, the problem can be in the color playback circuits or in the common reference signal. A good place to start color circuit signal tracing is to check any common source reference signals. Then check the AFC signals. If any of those signals are missing (or abnormal), the color will be absent or abnormal.

The following describes a few VCR color circuit fault symptoms, together with some possible causes.

If you get a "barber pole" effect, indicating a loss of color lock, the AFC circuits are probably at fault. Check that the AFC circuit is receiving the horizontal-sync pulses, and that the AFC voltage-controlled oscillator (VCO) is nearly on-frequency, even without the correction circuit. (Most electrical adjustments include such a procedure.)

If the hue control of the TV must be reset when playing back a tape that has just been recorded, check the color subcarrier frequency using a frequency counter.

If you get bands of color several lines wide on saturated colors (such as alternate blue and magenta bands on the magenta bar of a color-bar signal), check the automatic phase-control circuits, as well as the 3.58-MHz oscillator frequency.

If you get the herringbone (beat) pattern during a color playback, try turning the color control of the TV down to produce a black-and-white picture. If the herringbone is removed on black and white, but reappears when the color control is turned back up, look for leakage in both the color and luminance circuits.

If you get flickering of color during playback, look for failure of the automatic color-control system. It is also possible that one video head is bad (or that the preamps are not balanced), but such conditions show up as a problem in black-and-white operation.

If you have what appears to be very severe color flicker on aBeta VCR, you may be losing color on every other field. That can occur if the phase of signal is not shifted 180° at the horizontal rate when one head is making its pass. The opposite head works normally, making the picture appear at a 30-Hz rate.

If you lose color after a noticeable dropout, look for problems in the dropout-compensation circuit. Most VCR's have some form of dropout compensation circuit to sense any dropout of recorded signal. Those circuits compensate for dropout by using the preceding horizontal line signal. It is possible that the phase-reversal circuits have locked up on the wrong mode after a dropout. In that case, the color signals have the wrong phase relation from line to line, and the comb filter is canceling all color signals.

It's usually easy to spot total failures in the servo system. If a servo motor fails to operate, check that the power is applied to the motor at the appropriate time. If power is there, but the motor does not operate, the motor is at fault (burnt out, open windings, etc.). If the power is absent, trace the power-supply line back to its source. See if the system control circuits (usually a microprocessor) are delivering the necessary control signals.

The problem is not so easy to locate when the servo fails to lock on either (or both) record and playback. If the control signal is not recorded (or is improperly recorded) on the control track during record, the servo cannot lock properly during playback. So your first step is to see if the servo can play back a properly recorded tape.

There are usually some obvious symp-...
When recording or playback involves looking at some point in the rotating scanner or video-head assembly under fluorescent light. When the servo is locked, the fluorescent light produces a blurred pattern on the scanner that appears almost stationary. When the servo is not locked, the pattern appears to spin. Try observing the scanner of a known-good VCR under fluorescent light. Stop and start the VCR in the record mode. Note that the blurred pattern spins when the scanner first starts, but settles down to almost stationary when the servo locks.

Once you have studied the symptoms and checked the servo playback with a known-good tape, you can use the results to localize the trouble in the servo. For example, if the servo remains locked during playback of a good tape, you can assume that the circuits between the control head and servo motors are good.

Keep in mind that servo troubles may be either mechanical or electrical, and may be the result of either improper adjustment or component failure (or both). As a general guideline, if you suspect a servo problem, start by making the electrical adjustments that apply to the servo. That may cure the servo problem. If not, you will at least see if all of the servo-control signals are available. A block diagram of a servo-control system is shown in Fig. 16. That diagram shows where in the servo system the control signals are found. If one or more of the signals are missing or abnormal, you have a starting point for servo troubleshooting.

If the VCR has rubber belts to drive servo motors, the belts may stretch (or be otherwise damaged) and cause servo problems. If you have replacement belts available, compare the used VCR belts for size. Hold a new and used belt on your finger under no strain. If the used belt is larger, or does not conform to the new belt, install the new belt and recheck the servo for proper locking.

Keep in mind that the servo adjustments may be so far from normal that the servo simply cannot lock up. The only sure way to check that is to run through the servo adjustments.

Interchange operation

When a VCR plays back its own recordings with good quality, but the playback of tapes recorded on other machines is poor, the VCR is said to have interchange problems. Such problems are almost always located in the mechanical section of the VCR (usually in the tape path) and are often the result of improper adjustment. The simplest way to make interchange adjustments is to monitor the RF output from the video heads during playback and adjust elements of the tape path to produce a maximum, uniform RF output from a factory alignment tape. Generally, the output is measured at a point after head switching so that both heads are monitored. But always follow the manufacturer's alignment procedures.

Wow and flutter

As is the case with audio recorders, wow and flutter are almost always present in all VCR's. To find out how much wow and flutter are present, use the low-frequency tone recorded on the alignment tape and a frequency counter connected to the audio line at some convenient point. Typically, the low-frequency tone is on the order of 333 Hz, and an acceptable tolerance is ±0.03%. You will probably use the period mode of the frequency counter to make that measurement. You can also use the special wow-and-flutter test equipment found in audio and hi-fi shops, but it is not really necessary. Any wow and flutter that does not show up when using the alignment tape and frequency counter is most probably not objectionable. The cause of wow and flutter can be either electrical or mechanical in origin.

Servicing systems-control circuits

Each VCR has its own system-control functions, and you must learn those functions to properly service any VCR. However, all system-control circuits have elements in common. In most VCR's, microprocessors accept logic-level control signals from the VCR operating controls, and from various tape sensors. In turn, the microprocessor sends control signals to the various circuits, as well as drive signals to solenoids and motors. We will concentrate on the stop control functions here, since those stop (or failure) functions are most likely to confuse those not familiar with VCR's.

Figure 17 shows the basic circuits of a VHS-system stop control. The VCR is stopped when the stop button is pressed, when the tape runs to either end (forward and reverse), or when there is mechanical trouble.

Both ends of a VHS tape are transparent. The tape passes between the end-sensor lamp and two end-sensor phototransistors. When the tape reaches either end (supply or take-up), the light passes through the transparent portion of the tape onto one of the phototransistors. When either phototransistor receives light, it applies a signal to the IC, which stops and unloads the VCR. The VCR also stops should the end-sensor lamp fail. Without that feature, the tape could break at either end. If the lamp burns out, the cathode voltage of the Zener diode increases, and the increase is applied to

![FIG. 16-BLOCK DIAGRAM of a VHS servo system. This diagram shows the location of all of the typical servo control signals.](www.americanradiohistory.com)
the stop-system IC through the OR gate. The end-of-tape condition can be simulated by exposing the phototransistors to light that should result in an immediate stop and unload. The end-of-tape function can be disabled (for service) by covering the phototransistor with opaque tape or a cap. Do not remove the light source for the end-of-tape sensor on a VHS machine! That is sensed as a lamp-failure condition by most VHS units.

When changes of temperature and humidity cause condensation of dew on the surface of the video scanner, that is detected by the dew sensor, and the stop mode is produced to prevent damage to the tape and mechanism. In Fig. 17, the dew-sensor output is applied to the IC through the OR gate. When relative humidity is less than about 80%, the resistance of the dew sensor is about 100 megohms. When humidity increases above about 80%, the resistance drops to about 3 megohms, and the voltage at the junction of the sensor and the resistor increases. That increase is applied to the IC through the OR gate, and stops the VCR.

The reel-lock circuit detects when the reel motor has stopped rotating, except when the tape should not be running at the normal speed (unloading, loading, pause, step slow, etc.). The NAND-gate output is high when the reel disk is rotating, or when operating mode signals are applied to the OR gate. When reel rotation stops, the NAND-gate output goes low, and the IC

causes the VCR to unload and stop. That can be prevented by applying an override signal to the OR gate. The rotation-detection signal is developed by diode detectors, a Hall-effect element, and magnets (usually embedded into the reel counterpuly). When the reel is rotating, the magnetic field also rotates, and causes the Hall element to produce a current. That current is rectified and doubled by the detector to become the rotation-detection signal. If rotation stops, the alternating current stops, and the IC removes power to the tape-drive motor, preventing damage to the tape. The detector can be checked by holding the take-up reel. That causes the take-up clutch to slip (to prevent damage) but the detector senses that the reel is not turning, and produces an automatic stop.

The cassette-hold trouble-detection circuit detects if the cassette holder is in the eject condition (by sensing a switch that is operated by the holder). If the eject button has been pushed, the VCR is placed in the stop mode by the switch. To disable the cassette-holder-trouble function (that is often necessary to do during service), locate the mechanism that actuates the switch and hold the mechanism in place with cellulose tape. In many cases, it is possible to operate the VCR through all its modes (without a cassette installed). If the switch can be actuated manually. Always check that all automatic-stop functions work, and that all bypasses and simulations (covers on lamps, tape on switches, etc.) are removed after service.

Beta VCR's have similar stop functions (in the event of trouble) but the circuits are different. The two major differences are in the end-of-tape and reel sensors. Both ends of Beta tape are covered with foil. When the foil at the start of the tape approaches a forward sensor coil (the coil of an oscillator), the Q of the sensor coil decreases, as does the oscillator output (indicating that the tape is at the start position). The rewind sensor operates the same way, except that the rewind-circuit oscillator-signal output drops when the foil at the end of the tape passes the oscillator coil (placing the VCR in the stop mode, and indicating that the tape must be rewound). For Beta, the end-of-tape foil can be simulated by placing a piece of foil near the coil of either sensor.

The reel-sensor circuit of a Beta VCR usually consists of a phototransistor and an LED, arranged around the base of a take-up reel as shown in Fig. 18. The phototransistor receives light from the LED; the light passes through the slots at the bottom rim of the take-up reel base while the reel is in motion. When the take-up reel stops rotating, the light is blocked off from the phototransistor. When that happens, the sensor circuit produces a signal that places the VCR in its automatic-stop mode to prevent the damage to the tape.

Most VCR's have some form of tape-skill sensor. Slack tape can cause damage (as can condensation, belt rupture, a sudden stop of the reel motor, etc.). Tape-silk sensors can be checked by visual inspection and by pressing on the switch with your fingers to simulate slack tape. If the tape-skill sensors include a microswitch (as is the case with most Beta VCRs), the sensor circuit can be disabled by covering the switch with a sticker or piece of tape. In many cases, it is possible to operate the VCR through all its modes without a cassette inserted if the switch can be actuated manually. Always check that all automatic-stop functions work, and that all bypasses and simulations (covers on lamps, tape on switches, etc.) are removed after service.

The reel-sensor circuit of a Beta VCR usually consists of a phototransistor and an LED, arranged around the base of a take-up reel as shown in Fig. 18. The phototransistor receives light from the LED; the light passes through the slots at the bottom rim of the take-up reel base while the reel is in motion. When the take-up reel stops rotating, the light is blocked off from the phototransistor. When that happens, the sensor circuit produces a signal that places the VCR in its automatic-stop mode to prevent the damage to the tape.

Most VCR's have some form of tape-skill sensor. Slack tape can cause damage (as can condensation, belt rupture, a sudden stop of the reel motor, etc.). Tape-silk sensors can be checked by visual inspection and by pressing on the switch with your fingers to simulate slack tape. If the tape-skill sensors include a microswitch (as is the case with most Beta VCRs), the sensor circuit can be disabled by covering the switch with a sticker or piece of tape. In many cases, it is possible to operate the VCR through all its modes without a cassette inserted if the switch can be actuated manually. Always check that all automatic-stop functions work, and that all bypasses and simulations (covers on lamps, tape on switches, etc.) are removed after service.
Video-camera sync

If you have trouble using a video camera (perhaps one not designed for the VCR, possibly an inexpensive surveillance camera) you may have an interface problem. Most cameras designed for use with VCR's—even those from different manufacturers—are compatible with any VCR. That's because such cameras have a 2:1 interface. Some inexpensive cameras have a random-interface, where the horizontal and vertical sync are not locked together. The playback of a recording made with a random-interface camera usually has a strong beat pattern (herringbone effect). One way to confirm a random-interface condition is to watch the playback while observing the last horizontal line above the vertical-blanking bar. Operate the TV's vertical-hold control as necessary to roll the picture so that the blanking bar is visible. If the end of the last horizontal line is stationary, the camera has a 2:1 interface and should be compatible. If the end of the last horizontal line is moving on a camera playback, the camera is not providing the necessary sync and probably has random interface.

TV AFC compatibility

If the AFC circuits of a TV are not compatible with a VCR, skewing may result. In most VCR literature, the term “skew” or “skewing” is used to indicate that the upper part of the reproduced picture is being bent or distorted by incorrect back-tension on the tape (caused by improper mechanical adjustment). However, you can get that same effect if the TV's AFC circuits cannot follow the VCR playback output. That condition is very rare in newer TV sets (designed for VCR's and videodiscs), and appears only in about 1% of older TV sets (and almost never when the TV and VCR are made by the same manufacturer). So do not go into the TV's AFC unless you are absolutely certain that there is a problem. First try the VCR with a different TV, then try the TV with a different VCR.

Once you are convinced that there is a compatibility problem, the easiest cure is to reduce the time constant of the integrating circuit of the TV's AFC (see Fig. 19): that's done by changing the circuit values.

To reduce the time constant, reduce the values of either or both capacitors C1 and C2, reduce the value of R1, or increase the value of R2. It is generally not necessary to change all four values. Be sure to check the stability of the TV's horizontal sync after changing any of the values in the AFC circuit.

Maintenance

We'll end this article by describing some typical maintenance procedures for VCR's. Keep in mind that those procedures do not necessarily apply to your specific VCR. When servicing VCR's, be sure that you follow the manufacturer's instructions exactly. Also, the procedures here are only the highlights, and only cover those areas common to most VCR's. All VCR's have many special-purpose adjustments that apply to their particular circuits. However, by studying the examples here, you should be able to relate the procedures to a similar set of adjustment points on any VCR, and to identify typical signals found in most VCR's (even though the signals may appear at different points in your particular unit).

Cleaning and lubrication

Table 1 shows the recommended maintenance intervals for most VCR's. However, never lubricate or clean any part not recommended by the manufacturer. Most VCR's use sealed bearings that do not require lubrication. A drop or two of oil in the wrong places can cause damage.

<table>
<thead>
<tr>
<th>Component</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video Heads</td>
<td>Clean every 500 hours</td>
</tr>
<tr>
<td>Audio/Control Heads</td>
<td>Clean every 500 hours</td>
</tr>
<tr>
<td>Pinch Head</td>
<td>Clean every 500 hours</td>
</tr>
<tr>
<td>Erase Head</td>
<td>Clean every 500 hours</td>
</tr>
<tr>
<td>Supply Head</td>
<td>Clean and lubricate every 2000 hours</td>
</tr>
<tr>
<td>Take-up Reel</td>
<td>Clean and lubricate every 2000 hours</td>
</tr>
<tr>
<td>Fast-Forward Roller</td>
<td>Clean and lubricate every 1000 hours</td>
</tr>
<tr>
<td>Clutch Pulley</td>
<td>Lubricate at 2000 hours, then every 1000 hours</td>
</tr>
<tr>
<td>Reel Rewind</td>
<td>Lubricate at 1000 hours, then clean and lubricate every 1000 hours</td>
</tr>
<tr>
<td>Capstan Assembly</td>
<td>Clean every 1000 hours</td>
</tr>
<tr>
<td>Loading Gear</td>
<td>Clean and lubricate every 1000 hours</td>
</tr>
</tbody>
</table>

Clean off any excess, or spilled, oil. In the absence of a specific recommendation, use a light machine oil, such as sewing-machine oil. Although there are spray cans of head cleaner, most manufacturers recommend alcohol and cleaning sticks or wads for all cleaning. Methyl alcohol does the best cleaning job but can be a health hazard. Isopropyl alcohol is usually satisfactory for most cleaning.

Video-head cleaning

Turn the power switch off, and pull out the power cord. Rotate the video-head disk by hand to a position convenient for cleaning the video heads, as shown in Fig. 20. Moisten a cleaner stick with alcohol, lightly press the backskin portion of the stick against the head drum, and move the head disk by turning the motor back and forth. Clean both heads (on opposite sides of the drum) following the same procedure. CAUTION: Do not move the cleaner stick vertically while in contact with the heads. Always clean the heads in the same direction as the tape path. Cleaning across the tape path can damage the heads.

Audio control and erase-head

Moisten the cleaner stick with alcohol, press the stick against each head surface, and clean the heads by moving the stick horizontally, as shown in Fig. 20. Moisten a cleaner stick with alcohol, press the stick against each head surface, and clean the heads by moving the stick horizontally, as shown in Fig. 20. Moisten a cleaner stick with alcohol, press the stick against each head surface, and clean the heads by moving the stick horizontally, as shown in Fig. 20.
to move the head away from the spot to be cleaned.

Tape-path adjustments

The tape path for most VCR's is critical to proper operation. For that reason, the position and height of the tape guides and heads are precisely adjusted at the factory. Since those components greatly affect normal tape running, never touch them unless necessary. First check operation of the VCR using an alignment tape and a known good monitor or TV. If the playback is good, quit while you are ahead. If you have playback problems, then (and only then) make the following adjustments (which are typical for VCR's with a tape path similar to that shown in Fig. 22).

1. Connect a good monitor or TV to the VCR, and an oscilloscope to a test point that monitors the video-color signal output of the playback amplifier circuits.

2. Play back an alignment tape (video portion) and observe the waveform (envelope) on the scope. Figures 23 and 24 show some typical envelopes.

3. Adjust the VCR tracking control for the maximum waveform amplitude on the scope.

4. Observe the running state of the tape around the back-tension lever (Fig. 22). If you see any slack at the top or bottom edges, slightly bend the back-tension lever (with the appropriate tool) to eliminate the slack.

5. Adjust screw B (see Fig. 22-b) so that the top edge of the tape does not hit against the guide at the side below the screw.

6. Observe the waveform on the oscilloscope, and adjust screws A and B so that the amplitude of A is equal to one-half of the amplitude at B, as shown in Fig. 23. Note that A is measured at the video-head-switching point, and B is measured at 40% of the video-head-tracing span. Check that slack does not develop along screw A, screw B, or the lead section during those or any other adjustments.

7. Adjust screw C so that the tape top edge does not hit against the guide below. Then adjust screws D and E to make the waveform amplitude at C equal to one-half that at B, as shown in Fig. 24. While doing that adjustment, check that the tape-bottom edge is steadily in contact with the flange shoulder below screw D. Also, use an inspection mirror to check for slack along screws C, D, and the lead section. The type of mirror used by dentists is very handy for checking tape slack at inaccessible points. The proper adjustment of screw C will give you the optimum waveform as described with no slack.

8. Ideally, the center portion of the video-head waveform should be flat after all the adjustments are complete. For acceptable performance, the minimum amplitude should be no less than 60% of the maximum amplitude at the center portion of the waveform.

9. Switch the scope from the video-head test point to the audio-output test point.

10. Play back the alignment tape (audio portion) and monitor the audio-signal output waveform. Adjust screw E for maximum amplitude.

11. Switch the scope back to the video-head test point. Set the tracking control at the center position (at the click stop).

13. Turn the tracking control to the right and left, and make sure that the waveform changes symmetrically.
14. Check operation of the VCR by recording and playing back a program. If the playback is good, you have made all of the adjustments correctly. Either that or you have fantastic luck!

Video-head-switching adjustments

Most VCR’s have some form of video-head-switching adjustments. Before we get into some typical adjustments, let us consider how the switching circuits operate. The playback signals from the video heads are amplified and mixed to produce a continuous noise-free signal as shown in Fig. 25. Note that the overlap of the signals from channel 1 (head A) and channel 2 (head B) at the heads is eliminated by pulses that switch the channel 1 and 2 outputs so that channel 1 is off at the instant channel 2 is on (and vice versa). The switching pulses are called by various names (RF switching pulses, drum FF pulses, etc.) and originate in the servo system.

The video-head-switching adjustments for Beta and VHS are essentially the same, but with minor variations. In both cases you connect a scope to the video output of the VCR, and trigger the scope with pulses from the servo. Then you insert an alignment tape, and play back a color-bar signal. For VHS, the display is something like that shown in Fig. 26 on both channels, except that the switching pulse is inverted on one channel. Generally, it is necessary to set the scope’s trigger slope to “+” for one channel, and to “−” for the other channel. With VHS, you set the switching adjustment so that head switching occurs 6.5 horizontal lines (6.5 H) before the start of the vertical sync pulse, as shown in Fig. 26. (If you don’t know the difference between the vertical-sync pulse and the equalizing pulses of a TV signal, please stay away from my VCR!) Because it is difficult to measure 6.5 H, you may want to measure for about 220 microseconds between the start of the scope triggering and the equalizing pulses instead.

Most Beta service literature recommends that the switching pulse occurs so that there is a 7-H (±0.5 H) difference between the edge of the switching pulse and the front edge of the vertical-sync signal, as shown in Fig. 27. Often, there are two adjustments (one for trailing and one for leading edge of the switching pulse).

No matter what is recommended by the VCR service literature, keep the following in mind when you make the head-switching adjustments: If head switching occurs too soon, a narrow band of noise may appear at the bottom of the picture on the TV being used to monitor the VCR. If the head-switching pulse is late, noise can be introduced during vertical sync, possibly resulting in vertical-sync problems.

Video-head resonance adjustments

Since the playback signal from the video heads is on the order of a few millivolts, their output is amplified by one or more preamps. The preamp circuits are provided with controls that make it possible to adjust video-head resonance and Q to produce an overall flat response (or some particular response). Figure 28 shows the response of a typical preamp. It was obtained by playing back the RF-sweep portion of an alignment tape. Typically, you set the adjustments so that the response is flat between about 2 and 5 MHz, and so that the signal levels on channels 1 and 2 (heads A and B) are equal. In some VCR’s, you need to set the controls to get a peak response at one frequency.

Other adjustments

Although we have been through the major adjustments found on all VCR’s, you will find many more adjustments in VCR literature. We will not cover those since they are unique to each model of VCR, or are similar to adjustments in other equipment. For example, all VCR’s have power-supply adjustments where you set the various outputs to given voltage levels, and all VCR’s have tunerIF adjustments that are usually quite similar to those of a TV set. Both Beta and VHS continued on page 96
DIGITAL PANEL METERS

Modern digital panel meters can easily be used to measure voltage, current, resistance, capacitance, frequency, temperature—and a whole lot more.

RAY MARSTON

TAKING A LOOK AT THE TEST-EQUIPMENT market these days and you're sure to notice one thing—just about every VOM, or any other type of meter for that matter, uses a digital display. It's really not all that surprising considering the advantages that digital displays offer in the way of easy readability and better resolution.

But what about your own projects? There's really no reason not to use a digital display in any application that requires measuring an analog quantity such as voltage, resistance, current, temperature, or what have you. That's especially true now that easy-to-use digital panel meters are available from a number of manufacturers. In this article, we're going to take a look at those devices, and how to use them in a variety of applications.

Most digital panel meters combine an analog-to-digital (A/D) converter IC, a 3-1/2-digit LCD or LED readout, a voltage reference, and a few other components, into a compact module that costs little more than a good-quality moving-coil meter. As supplied, the meters typically have an input range of +1.999 to -1.999 volts DC, 1-mV resolution, and a typical calibrated accuracy of 0.1% ±1 digit. They can easily be used to read any desired voltage, current, or resistance range. However, by connecting the appropriate external circuits,

Several companies manufacture digital panel meters. The meter we'll be looking at here is the DM-3100U1 from Datel-Intersil (1 Cabot Boulevard, Mansfield, MA 02048). Generally, however, digital panel meters differ only in details of their internal circuitry and displays, and in the number and notations of their user-available terminals. As such, our discussion, and the circuits we'll present, can be easily generalized and applied to almost any of the other units on the market.

The DM-3100U1

Figure 1 shows a block diagram of our device. The pinout of its rear card-edge connector is shown in Fig. 2. The device normally operates on +5 volts DC and typically draws just 12 mA; power can be provided by either alkaline batteries or an inexpensive 5-volt regulated DC supply. Also, if an external reference (more on that later) is not required for a particular application, the meter can be simply powered from a 9-volt alkaline battery.

The heart of this particular meter is an LSI circuit that includes a dual-slope A/D converter and the necessary 7-segment display drivers all in one unit. In essence, that IC automatically compares the relative values of an input voltage and a reference voltage, and uses the ratio of the two to generate the readout.

To ensure maximum versatility, provision has been made to allow for the use of an external reference when the meter is in the +5-volt mode. That reference is connected between pins B1, REFERENCE IN, and A15, EXTERNAL REF. LOW. The panel meter also has a built-in internal reference available at pin A1, REFERENCE OUT. That reference is approximately +1 volt above the analog return input, pin B2. To use the internal reference, pins A1 and B1 are simply jumpered together. When we look at some sample applications for the device, we will show examples using both the internal and an external reference.

Before you use any digital panel meter in a project it is a good idea to know a bit about it. While we have already touched upon several important points, there are a few more that bear mentioning.

As supplied, and when configured as shown in Fig. 3, the meter has a full-scale input range of -1.999 to +1.999 volts DC. Claimed accuracy at 25°C is ±0.1% of reading, ±1 count. The resolution is 1 mV. The calibration can be adjusted using a multiturn screwdriver potentiometer.
mode voltage range $-V_d + 0.5$ volts to $-V_d + 1$ volt, where $+V_d$ is the positive rail (pin B15) and $-V_d$ is the negative rail (pin A15)—they must be externally tied to analog return, or power common (A14) if the device is +5-volt powered.

Three decimal points (pins B8-B10), the vertical and horizontal portions of the polarity indicator (pins A13, B13, A12, and B12), and a variety of function annunciators (pins A3-A10) are available to the user. To select a decimal point or a function annunciator, simply connect it to the decimal point common, pin B11. All unused decimal points and function annunciators should be connected to backplane ext, pin A11.

There are two points we should mention concerning the function annunciators. First of all, they are only display labels. The meter cannot measure resistance, current, or AC without the appropriate user-added circuitry. We'll be looking at some of that circuitry shortly. Second, you'll notice in Fig. 2 that some of the annunciators are identified with one of the letters underlined. When those annunciators are selected, only the underlined portion is displayed.

Turning to the polarity indicator, for normal auto-polarity operation, pins A12 and B12, as well as pins A13 and B13, are jumpered together. For reverse-polarity sensing, pins A12 and B13 are jumpered together (no other connections). If the polarity sign is not wanted, the unused pins are again connected to backplane out, pin A11.

The meter uses a 3½-digit LCD readout. The readout is not backlit, so sufficient room light is required. The digits themselves are ½-inch high. Overrange is indicated by a blanked display with the exception of the leftmost digit (1) and the polarity indicator. The sampling rate as supplied is 3 conversions-per-second, but that can be changed by the user up to 20 conversions-per-second.

The DM-3100Ul's input impedance is rated at 100 megohms minimum, and its input bias current is rated at 5-μA typical, 50-μA maximum. Those last two factors are significant because they mean that the meter will not load down any sensitive circuitry that is connected to its inputs.

Physically, the panel meter measures a compact 2.53 x 3.25 x 0.94 inches and weighs 5 ounces. It can be mounted in any...

and the recommended recalibration period is 90 days.

Differential input signals are applied to analog hi and analog lo, pins B5 and A2, respectively. To prevent the voltages at those inputs from exceeding the commen-
includ ed to ensure proper auto-zeroing. It is optional and can be omitted if you desire.

Figure 4 shows how to set up the panel meter so that it acts as a simple ratiometric voltmeter. In that configuration, when two input voltages (V_A and V_B) are identical, the meter will read 1000.

It's relatively simple to configure the DM-3100U1 to act as a precision ohmmeter. Such a circuit is shown in Fig. 5.

The circuit takes advantage of the meter's ratiometric measuring capabilities. An external reference resistor—whose resistance, accuracy, and drift with temperature is known—is connected in series with the unknown resistance and a current limiting resistor. You'll recognize the fact that the series resistors form a voltage divider. The voltage to the three, a regulated 6.9 volts, is supplied via the divisor to output pin B7, note that that pin is used only in resistance-measuring applications. The voltage drop across R_X and R_{REF} is compared by the meter and the result is used to calculate the resistance of the unknown. The current-limiting resistor is selected to keep the current through the series combination to a maximum of 1 mA; it serves no other function in the circuit. The values for R_{REF} and R_{LIMIT} for different ranges of R_X are also shown in Fig. 5.

Finally, Fig. 6 shows how an offset voltage can be applied to the basic "DVM" circuit so that the display reads zero when the input voltage and the offset voltage are identical. That can be useful in a number of applications. Consider, for instance, a temperature-sensing application in which the sensor is scaled to produce an output of 1 mV/K. In other words, that sensor will produce an output of 273.2 mV at $0\degree\text{C}$ and 373.2 mV at $100\degree\text{C}$. By feeding the output of the sensor between pins B5 and B2, and applying a 273.2 mV offset voltage between A2 and B2, the meter can be made to give a direct reading of temperature in degrees Centigrade.

DC voltage and current meters

As was mentioned earlier, provision has been made in the panel meter we are

TABLE 1—SUPPLIERS

In addition to the manufacturer mentioned in the article, digital panel meters are available from a wide variety of sources. Some of those sources are listed below.

Ametek
2 Station Square
Palo Alto, PA 15301

Analog Devices
PO Box 280
Norwood, MA 02062

Analogic Corporation
Audubon Rd.
Wakefield, MA 01880

API Instruments
1601 Trapelo Rd.
Wayland, MA 02245

Balantine Labs
90 Farm Rd.
Bosoxton, NJ 07005

Data Precision Corporation
Electronics Ave.
Danvers, MA 01923

Fluke Manufacturing Company
Box C3090
Everett, WA 98206

Non-Linear Systems
503 Stevens Ave.
Sokana Beach, CA 90275

Sigma Instruments
170 Pearl St.
Braintree, MA 02184

Simpson Electric Company
853 Dundee Ave.
Egin, IL 60120

Weston Instruments
614 Frelinghuysen Ave.
Newark, NJ 07114
If you have put off learning more electronics for any of these reasons, act now!

☐ I don’t have the time.

☐ High school was hard for me and electronics sounds like it may be hard to learn.

☐ I can’t afford any more education.

☐ I have a family now.

☐ I’m here. You’re there. I’ve never learned that way before. I’m not sure it will work for me.

Read the opposite page and see how you can get started today!
If you want to be needs more than theory. That's why some of our courses include the Personal Training Laboratory, which helps you put lesson theory into actual practice. Other courses train you to use tools of the trade such as a 10MHz, solid-state, triggered-sweep oscilloscope. Or a Digital Learning Laboratory to let you apply the digital theory that's essential today for anyone who wants to keep pace with electronics in the eighties. Or a Microprocessor Training Laboratory you learn to program and interface with displays, memories, switches, and more.

Your credentials can impress employers.

One of the best credentials you can have in electronics—or any other career field—is a college degree. That's why CIE gives you the opportunity to earn an Associate in Applied Science in Electronics Engineering Technology. Any CIE career course can offer you credit toward the degree...more than half the number needed in some cases.

You can also prepare for the government-administered FCC (Federal Communications Commission) Radiotelephone License, General Class. It can be a real mark in your favor...government-certified proof of your specific knowledge and skills.

Find out more! Today. Now.

There's a card with this ad. Fill it in and return. If some other ambitious person has already removed it, use the coupon.

You'll get a copy of CIE's free school catalog, along with a complete package of personal home study information.

For your convenience, we'll try to arrange for a CIE representative to contact you to answer any questions you may have.

If you are serious about a rewarding career, about learning electronics or building on your present skills, your best bet is to go with the electronics specialists — CIE.

Mail the card or coupon today or write CIE (please mention the name and date of this magazine), 1776 East 17th Street, Cleveland, Ohio 44114.

This could be the best decision you've made all year.
using to allow the use of an external reference of from +100 mV to +2 volts, referred to -V5. In several of the following examples we will make use of that feature. The external reference that we've chosen to use is shown in Fig. 7. The output of that circuit, which is built around a 1.2-volt band-gap reference (an Intersil IC13069 is used here, although any similar device may be substituted), is a stable 100 mV.

The DVM module is supplied ready-calibrated to give a full-scale reading of ±1.999 volts DC. It is relatively simple, however, to add external circuitry that will extend that range. Consider, for example, the circuit shown in Fig. 8. It uses a simple voltage divider and an external 100-mV reference to allow the meter to measure voltages from 199.9 mV to 1.999 kilovolts full-scale over five ranges. Appropriate values for R1 and R2 are given for each range in the table in Fig. 8.

One note about the resistors before we go on. Some of the values may be difficult to obtain. If you cannot find the appropriate resistors, simply combine two standard-valued units in series.

The DM-3100U1 can also be made to act as a DC current meter by wiring a suitable shunt resistor across the input terminals, as shown in Figure 9. Once again, the values for R1, the shunt resistor, are given in the table in the figure.

It is a simple matter at this point to take one of the circuits we've discussed and add the appropriate switching for range selection. That's what we've done in Fig. 10, a five-range voltmeter. Note that in multi-range applications the circuit should be provided with some form of overload protection. That has been taken care of in this circuit by fuse F1 and by placing a voltage-dependent resistor (varistor) across the divider. That varistor ensures that the voltage to the meter does not exceed the meter's rating (250 volts DC, 175 volts rms continuous). Also note that on the 1.999-kV range the maximum input is therefore limited to 240.

Ohmmeter

The easiest way to use a digital panel meter as an ohmmeter is to use it in the ratiometric configuration shown in Fig. 5. That technique has two major advantages. First, it is very stable and inherently self-calibrating, the meter reading being equal to Vx/Rref. Secondly, very low test voltages are generated across Rx, the maximum voltage being constrained to 100 mV by the presence of Rlimit.

As with the voltmeter and ammeter, it's relatively easy to set up a multi-range ohmmeter by expanding upon the basic circuit. Such a multi-range circuit is shown in Fig. 11.

There is still much more that can be done with a digital panel meter. We will look at some of those applications next time when we continue this article.
Build this interface/buffer and use your IBM typewriter as a low-cost letter-quality computer printer. The 30K buffer can be used with the typewriter or any parallel printer.

Part 3

We've nearly completed our look at the typewriter-to-computer interface. All that remains for us to do is to see how it's installed into a Selectric.

Selectric Installation

Adapting the Selectric for use as a printer is more difficult than adapting the Electronic; that is because the typewriter must be adapted mechanically as well as electrically.

The first thing to check if you're going to be using a Selectric is the the voltage at jumper JU1. If it's not between 17 and 18 volts or if the fuse blows when you turn the interface on, double check all your work. Check especially carefully for solder bridges and incorrectly installed components (diodes, voltage regulation, etc.). If that voltage is correct, we're ready to connect the interface to your typewriter. The first thing you have to do is to remove the Selectric's cover. To do that, you must position the carriage near the center and move the margin stops clear of the carriage. Then unplug the typewriter.

Pull the paper bail forward, raise the cover, and pivot the paper table (with the various scales printed on it) to the rear. At each end of the platen is a latch, as shown in Fig. 16. Press down on both latches and simultaneously pull up on the platen. Pull the cover-release levers forward. They are located on either side of the inside of the case, about 3 inches forward of the platen. Lift the carriage pointer and both of the margin levers up. Now lift the cover straight up and reinstall the platen. Pull the assembly-release lever, located under the bell, forward. Lift the typewriter assembly by the shafts protruding from the main and POWER switches and pull forward...

FIG. 16—TO REMOVE THE COVER of the Selectric model II or III, you first must remove the platen.
about 3 inches. Tilt the assembly back and let it rest on the support brackets. Your typewriter should look something like what’s shown in Fig. 17, except that the solenoids and their printed-circuit boards should not be installed yet. With a 1/4-inch nutdriver or socket, loosen the two screws holding the right hold-down bracket and pull it all the way forward. Tighten the screws. Then remove the left hold-down bracket.

Now we have to prepare three adapter boards by installing ten 12-volt DC solenoids on them. Figures 18, 19, and 20 show the foil diagrams for the code, shift, and the space/return boards. Figures 21, 22, and 23 show the placement of the solenoids on those boards.

Install and solder the ten solenoids on the three boards as indicated in Figs. 21, 22, and 23. Then cut 9 three-inch lengths of the plastic covered steel cable. (You can get that cable, often called leader cable, at a fishing-supply store, where you can also get the crimp sleeves that we’ll use next.) Prepare six of those cables as follows. Slip one end through a crimp sleeve and loop it back through a small amount. (See Fig. 24.) Pull the long end until there is a loop about 1/4 inch diameter, and crimp the sleeve with pliers. Install a sleeve in the clevis of each of the nine solenoids (except the shift solenoid) and crimp each sleeve very slightly to keep it in place.

Loop one of the remaining 3-inch cables around the silver key-pressed bail (Fig. 25) and crimp the sleeve. Install the remaining two cables, on the space and carriage-return latches (Fig. 26) and crimp. Referring back to Fig. 25, remove one of the screws in the latch guide bracket and replace with one of the threaded spacers. Tighten it and repeat with the other screw. Then mount the code board on those spacers and secure with 2 flathead screws as shown in Fig. 27.

Using needle-nose pliers, open the clevis on the left-most adjusting link (Fig. 27) and slip one of the cables that you prepared with a loop over the clevis pin. Allow the clevis to close. Repeat with the other 5 adjusting links. Slip the free end of the cable on the left-most link into the sleeve that you installed in the clevis of the left-most solenoid and pull up the slack. Repeat with the other 5 adjusting-link cables. Slip the free end of the cable that you mounted on the key-pressed bail into the key-pressed solenoid. Be sure that this cable goes below the power-lockout bail (the bail that moves with the power switch).

Now we have to adjust the length of those cables. Follow each of the 6 adjusting links down to the interposer latches they are attached to. Pull on the cable attached to the left-most solenoid until the left-most latch just starts to move up. Allow the latch to just seat and then crimp the sleeve on the solenoid clevis. Pull up on the clevis. The latch should raise about 0.15 inch. That is the correct adjustment—it will allow the link to clear the ridge just behind it. Repeat with the remaining five solenoids.

Now plug the power cord in and turn the power on. Pull up the slack in the cable to the key-pressed bail until printing starts. Slack the cable until it just stops. Crimp the sleeve. Briefly push up the key-pressed clevis. Several print cycles should occur and printing should stop when the clevis is released.

Unplug the power cord again for safety’s sake. Install the space/return board as shown in Fig. 28. Use two 1/4-inch screws—but do not tighten them yet. Form some 0.031-inch music or piano wire as shown in Fig. 29—it will be used as a guide for the cables—and cut off and save the excess. Install this wire under the screws and tighten. Install the 6-32 hex nut as shown and tighten. Route the cable from the space interposer over the left piece of music wire and slip it into the sleeve in the clevis of the bottom solenoid. Do the same with the other cable, slipping it into the top solenoid. Turn the power on. Pull up the slack in the bottom cable until spacing starts and release until spacing just stops. Crimp the sleeve at that point. Adjust the carriage-return interposer cable in the same way.

Now we have only one solenoid, the shift solenoid—to install. Remove the two large screws from the typewriter frame and install the shift solenoid using them. (See Fig. 30.) Bend the remaining music wire as shown in Fig. 31. Install it under
clevis. Insert it in the clevis. With power on, test the shift solenoid by pushing down on the clevis and releasing. Shift up and down should occur as appropriate. Check the shift key on the keyboard to make sure it operates properly and bend the wire, if necessary, for proper solenoid and keyboard response. Trim the excess leader cable from all solenoids.

Now we’re ready to hook the interface up to the boards you have installed in your typewriter. Referring to the schematic in Fig. 1, note the pinout of the header you installed at SOL. Prepare a cable (with a socket that will mate with the header at SOL) to go from the interface to the Selectric. The odd-numbered pins are the outputs to the solenoids and the even pins are the returns. That is, pins 1 and 2 connect to solenoid 1, pins 3 and 4 connect to solenoid 2, etc. (Those “RS” and “TS” are IBM designations that stand for Rotate and Flip—the direction that the ball element is moved in.) Split the ribbon cable as was shown in Fig. 17 and connect to the boards. Attach the cable to the typewriter frame with wire ties. Be sure the wires or the ties do not interfere with any moving part of the machine. Lower the machine into its normal position.

Now we’re ready for the test. Connect the interface to your computer and plug the cable from the typewriter into SOL. Apply power to the interface, the typewriter, and then your computer. Press the Reset switch and then enter some text into your computer and dump it to the interface. Be sure the Pause switch is off. If you are not using buffer memory, the text will be printed out. If you are using buffer memory, press the Print button. Examine the characters on the paper. If they are not as they should be, try typing all the characters with the keyboard (with the interface turned off). That should indicate which solenoid is not operating properly. Make adjustments as needed to the clevises. After all is working well, re-
install the left hold-down bracket and pull it all the way out before tightening. Lower the typewriter down in the case and slide back until the holes in the two hold-down brackets drop onto the pins on the bottom cover. Run the adapter cable out through the hole in the vent cover beside the power cord. Push the assembly-release lever back to lock the frame down. Remove the platen and reinstall the cover and lock it in place. Reinstall the platen, flip the margin levers forward and the carriage pointer down. Pivot the paper table forward and down, and of course, lower the top cover.

When printing with a Selectric, it is good practice to press reset after printing is completed if the shift solenoid is energized. You'll avoid trouble if you press the pause switch only during a carriage return. (You can lose some characters otherwise.)

The buffer memory

Now that we've discussed how to use the interface with the different machines, it's time to look at how to use the printer buffer option.

The interface has a maximum capacity of fifteen 2K x 8 memory IC's. When memory is used, the first four bytes of IC13 are used by the microprocessor for a scratchpad. This leaves us with room for 30,716 bytes. If the data from the computer does not exceed the amount of available memory, the interface will not send data

continued on page 92
What you need to know about CP/M

CP/M confuses a lot of people. It doesn’t have to—read on and ease your fear of it.

ABE ISAACS

If you have recently purchased—or are contemplating purchasing—a “serious” computer system, you have no doubt come into contact with the term “CP/M.” And, unless you’ve had some previous exposure to computers, you are almost certainly wondering just what CP/M is, how you use it, and whether you really do have to use it.

Fortunately, with most of today’s high-end computers coming with bundled software (programs included) as part of the computer system and ready to run with it, it is not necessary to have a deep knowledge of how CP/M works, or of how to use it.

Some of the software that comes with today’s computers will even auto-load—that is, you put the disk into the drive, close the drive door, and the program will start to run by itself—and more or less isolate you from CP/M.

On the other hand, when you read the manuals that come with your computer, you’ll undoubtedly find numerous references to CP/M, and, on occasion, despite the efforts of the computer and software suppliers, may find yourself face-to-face with it. For the uninitiated, panic often sets in at that point, and the computer, the programs, and everybody you ever dealt with in purchasing your system are—at least in thought—condemned to a fate worse than death.

In the hands of an experienced (or adventurous) programmer, CP/M can be a powerful tool; but to someone who just wants to get his correspondence out on time, a confrontation with it can be traumatic. In the pages that follow, we’ll try to explain a bit about what CP/M is, and how to cope with it.

What is CP/M?

CP/M stands for Control Program for Microcomputers. (Its original meaning was Control Program/ Monitor—which explains where the dash came from—but somewhere along the line the name got changed.) While it is primarily a DOS (Disk Operating System) that coordinates the workings of the computer and the disk drive(s), it also takes care of communications between the computer and other peripherals like the terminal you use to talk to the computer, and other input/output devices like printers and modems.

CP/M works on any computer that uses an 8080, 8085, or Z80 microprocessor. It is considered a universal operating system because programs written on one computer to run under CP/M will run on any other computer using CP/M. That means that—within limits, of course—CP/M software doesn’t care what computer you’re using, as long as its operating system is CP/M.

For that reason, CP/M software is considered “portable”—it can be created on one system, and run on another. (Such portable software is also called “machine-independent.”)

Because of its universal nature, CP/M has been responsible for the creation of a large number of programs.

Consequently, you may find yourself staring at a hefty volume of CP/M manuals and wondering, “How did I ever let myself in for this?” but things aren’t as bad as they may seem.

Introduction to CP/M

The first thing you’ll see on your display when you “bring up” (load into memory and run) CP/M is the “A” prompt on your screen. That tells you that you are now using CP/M from disk drive “A.” If you type “B:,” you will find yourself on drive “B,” and the prompt will change to “B:.”

When you see the “A” prompt (or the prompt for another drive), you can run a program that’s on a disk mounted on that drive just by typing the name of the program and hitting the return key. Programs that work that way can be identified by their “.COM” extension (the last three letters of the file name). The names of the files on a disk can be seen by typing “DIR,” for “directory.”

CP/M has a number of commands that allow it to perform a variety of functions. Unfortunately, many of those commands are somewhat obscure, and can intimidate the first-time user. For example, the command that allows you to copy files or programs, is “PIP” (which stands for Peripheral Interchange Program). Not only does it have a strange name, but its language appears cryptic and awkward: PIP B:EASY.COM = A:AWKWARD.COM tells CP/M to copy a .COM-type file named “AWKWARD” on drive “A” to drive “B,” and to rename it to “EASY.COM” in the process.

That’s probably enough to scare people off by itself, but CP/M has other commands like “STAT” and “REN” that can be equally confusing. Actually, CP/M is fairly easy to work with after you get to know it; but if you’re interested only in using your word processor or spreadsheet program, you may not want to get to know it that well. You should, but, happily, that doesn’t mean that you have to.

Friendly utilities

A number of recent programs for word processing and other tasks are now menu-driven. That is, they display for you a menu of the things they can do, and all you have to do is indicate your choice. Usually included are options for such things as copying, renaming, and deleting files—functions that previously had to be performed directly from CP/M. Having them available from a menu, along with helpful prompts if they are needed along the way, isolates you from CP/M and can make your system much less intimidating.

There are several programs that make CP/M easy to use by acting as a “translator” between you and the operating system. One such program is Power! (Computing!, 2519 Greenwich, San Francisco, CA 94123). It has features for the neophyte, and also for the experienced computer user who just wants to make his life easier.

Power! is menu-driven, and when you instruct it to “COPY” (for instance), it presents a list of all the material on the disk on
your display screen. Each file shown has a corresponding number, and all you have to do is indicate the numbers of the files you want to copy from one disk to another.

That's a lot easier than something like CP/M's awesome "PIP B:INFO.TXT=A:INFO.TXT." It's faster too—once you start it doing something, Power! keeps going on until it's finished; CP/M's PIP utility requires you to type a whole command line for each file you want to copy. (The same comparison can be made between other Power! and CP/M utilities, like those for erasing and renaming files.) Working "by the numbers" is much easier, faster, and less likely to result in errors.

The program is smart, too. If it sees that a file with a particular name already exists on the disk you are copying to, it stops and asks you what you want to do with it. Answer the question with a single keystroke, and Power! is on its way again.

What do you do if you accidentally erase a file from a disk? That's something that happens more frequently than we would like to admit. Under CP/M there's nothing you can do to get that file back. Power!, though, offers a RECLAIM utility that makes it possible to bring back files from the dead. You simply type "RECLAIM," and as the name of each recoverable file is found and displayed, you indicate whether you want it reclaimed.

Power! is deceptively simple in appearance, but is worth a lot more than its $169.00 selling price.

Crashes

One of the most frightening experiences you can have is to have a program "crash" or "lock up" on you—the keyboard goes dead and no matter what you do, there's no way to communicate with the computer. That usually finds you with several hours' work inside the computer with no apparent way to get it out. Is it lost to you forever? It appears that the only thing you can do is push the reset button and start all over again.

That's not necessarily the case. Although it's commonly believed that pushing the reset button clears out the contents of the computer's memory, that material is frequently still there, and can be salvaged. Again, Power! comes to the rescue. It allows you to examine the computer's memory to see what's in it (and where it is), and to write the contents of that memory to a disk file that can be treated like any other file.

Crashes, at least the ones caused by things like giving the computer an unwanted jolt of static electricity (there's no way to recover your data if the power fails and the lights and everything else go dead), need no longer be fatal.

Control keys

Over at the left-hand edge of your keyboard is the CONTROL key. That key isn't found on ordinary typewriter keyboards and, for some reason, fills most newcomers to computers with a kind of fear. They just don't know what to make of it.

In actuality, the CONTROL key works just like a SHIFT key. As long as you hold the shift key down, every key that you press generates a character different from the one that you would get if it was not used. For instance, instead of a "g," you get a "G." Similarly, if you hold the CONTROL key down and press another key, you get a third character—usually invisible. A CONTROL-G for CONTROL-G—it doesn't matter whether the character is shifted or not—generates an audible signal.

Control characters, as they are called, are usually invisible, although some computers or terminals can display special symbols to represent them. Each control key has a specific function, though. The original control functions were defined back in the days when Teletype terminals were in widespread use (hence the use of a CONTROL-G to sound a bell). Frequently, the purpose a control key serves will be determined by the software that's being used.

In program listings and in computer documentation, a control function, such as a CONTROL-S, is often shown as "S." The caret (^) simply indicates that the CONTROL is to be pressed at the same time as the "S" key.

The most important control key is CONTROL-C. Its meaning is almost universal—in CP/M, in CP/M-based programs, and even in a lot of programs that don't require CP/M. Its meaning is simple—STOP! If you ever want to stop a program—almost any program—all you have to do is hit CONTROL-C.

As soon as you hit CONTROL-C, the computer will stop what it's doing and return you to a command level of some sort—to CP/M, to BASIC, or to a menu within a program. About the only time CONTROL-C won't help is when something like a "zap" from static electricity has caused the contents of the computer's memory to be scrambled so it no longer recognizes any input at all from the keyboard. There's a way to escape from that situation, too, as we'll show you shortly.

Consider CONTROL-C to be a kind of panic button. If you ever want to halt the execution of a program, or get out of it for any reason, use it. Even if the program doesn't mention it, CONTROL-C will probably bring it to a screeching halt. Remember, CONTROL-C is your friend.

Other keys

While we're on the subject of keys, another one that you may be wondering about is the ESCAPE key. That one isn't found on typewriters, either.

The ESCAPE is used to generate what are called escape sequences—that is, the ESCAPE key being pressed, followed by another key, or series of keys, being pressed.

Escape sequences are not normally entered from the keyboard, but are generated in software. They are widely used to control the operations of computer peripherals like terminals and printers. A word-processing program, for example, may send an escape sequence to a terminal to clear the screen, or to a printer to tell it to print bold-face or expanded characters.

The last key whose function you may be questioning is the BREAK key. Don't worry too much about it, it usually doesn't do anything. Its purpose was to cause about a 250-millisecond gap in data transmission, and it has little bearing on computer operations. It's a vestige of the Teletype days.

Error messages

CP/M is not known for the clarity of its error messages. Probably the one that occurs most frequently is "BDOS ERROR ON n." What CP/M is trying to tell you is that it's having a disk problem. The most likely cause of that is your having changed disks without having informed CP/M of the fact. The way out of that is CONTROL-C. That will cause the system to reboot, and the new disk will be recognized.

More help

After you've overcome your initial fears over using CP/M, you may even find that you like it and want to learn more about it. The best thing you can do is to read about it, and experiment with the things you study. Set aside a disk that you will use only for practice, and, when you want to take a break from processing words or juggling numbers, use it to "play around" with CP/M. That's the only way you'll learn. If you don't practice what you learn, it will go to waste. It's like trying to learn to speak French without moving your lips.

The CP/M manuals, while they are comprehensive, are not really intended for the beginner. The current version of the manuals is a lot clearer than the original one, but it still assumes that you know a lot more about computers than you probably do.

There are, however, several books that explain most of the CP/M commands and functions, and explain how to use them. Two such books are Osborne CPM User's Guide by Thom Hogan (OSBORNE/McGraw-Hill, 630 Bancroft Way, Berkeley, CA 94710) and The CP/M Handbook by Rodney Zaks (SYBEX, Inc., 2344 Sixth St., Berkeley, CA 94710).

Once you get involved with your computer and CP/M, you'll discover that there really wasn't so much to be worried about after all.
A COMMUNICATIONS SOFTWARE PACKAGE IS A PROGRAM THAT allows a computer to exchange data, programs, and information with other computers—either a personal computer or the mainframe of a database/information service such as The Source or Dow Jones. Essentially, communications software converts a computer into an intelligent terminal, a device that can exchange disk or tape files with other computers, as well as information entered directly on the keyboard. An intelligent terminal is also often called a smart terminal. A terminal that isn't smart is dumb, meaning it can only receive and send in real time. It cannot store incoming data for later viewing or use, nor can it send a data file or program that was previously stored on disk or tape.

Getting started

There are many different levels of communications software. You can get simple programs intended for the so-called "home computers," that do little more than allow the user to converse with one of the information services such as The Source. Or you can get communications packages for mainframes that, even when completely unattended, will establish communications with another computer, swap data back and forth, automatically check for errors, and then shut down both computers. We will limit ourselves to the less expensive, high-performance communications software available for personal computers—the type of software you might use in your own home or business. To start off, personal-computer communications software is almost universally intended for two types of circuits; either a telephone-system modem that connects computers through the dial-up telephone system (which accommodates voice-grade frequencies), or a direct connection between two computers through a multi-wire cable which we call a null modem.

Communications software is the program that converts your computer's electrical signals into a format that can be passed on to the outside world; that is, to other computers, printers, and peripherals that aren't part of your personal-computer system. Somehow, we must take the formatted electrical signals and get them to another computer. The way we normally exchange computer signals with other computers that aren't in the same general location is through the dial-up telephone system. Since the telephone system handles only a selected range of voice frequencies, the computer's electrical input and output signals must be converted to audio tones. The device that does the conversion from electrical to audio, and vice versa, is called a modem (MODulator/DEModulator).

To communicate with another computer there must be a modem at each end, one called an originate modem, the other an answer modem. In addition, in many instances the software must be configured for answer or originate operation that is usually independent of the modem; we can have answer software with an originate modem, and originate software with an answer modem.

Within the range of acceptable overall costs, for personal computers it is the dial-up telephone system's limitations that determines the maximum rate at which we can exchange information between computers. The unit we use to express the rate of information exchange is the baud, which happens to work out to the number of bits transmitted per second. For example, a 300 baud rate is the rate at 300 bits per second, 1200 baud is 1200 bits per second. By pure luck and mathematical relationships, 300 baud represents an exchange of 300 words per minute of text, while 1200 baud represents 1200 words per minute of text (assuming an average of six characters per word of text—the defacto American standard).

The typical low-cost (around $100) modem for personal computers will accommodate rates from 0 to 300 baud. More sophisticated modems (about $500) will accommodate 300 or 1200 baud. Because of cost and complexity, 1200 baud is presently the upper limit for the voice-grade dial-up telephone system.
On the other hand, if we wish to exchange data between computers in the same general location we can do it easily enough by passing the computer's electrical signals (without conversion to audio) through a multi-wire cable connected between the computers' RS-232 input/output connectors. That kind of multi-wire circuit is called null-modem. Within reason, there is virtually no limit to the character rate we can pass through the wires. The transmission rate from computer to computer can easily be 9600 baud or even 19,200 baud. As far as the communications software is concerned, it is working into a modem (the "null-modem"). The only limitation on how fast data can be transferred from one computer to another through a null-modem is the communications package and the computer itself. Will they support a higher transmission rate? For example, Heath computers easily support 9600 baud, while Osborne computers are limited to 1200 baud unless modified with non-factory hardware.

The degree of complexity of the program—its "sophistication"—depends on the particular computer and the application for which it's intended. Obviously, the software that automatically runs a high-speed data exchange or a dump between the mainframe computers of two international banks isn't exactly the kind of thing you would use for your KayPro II or Radio Shack's Color Computer.

Getting the message through.

The basic, least expensive form of communications software is intended primarily for sending or receiving ASCII-encoded messages or data. ASCII is an acronym derived from American Standard Code for Information Interchange. A complete ASCII set consists of 128 codes (0-127) that represent upper and lower case alphabets, 32 control codes such as the carriage return and linefeed, standard keyboard symbols, etc.

Simply typing on the computer's keyboard will send the message—text or data—in ASCII characters, which is received at the other end of the communications circuit. The difficulty with ASCII is that it can only handle text or data such as BASIC program listings, or anything else that's best converted to ASCII, though that is all you need for many applications. For example, if you are into using The Source or the Dow Jones information networks, or a local community or users' group bulletin board—which are accessed through the dial-up telephone system—the communication is usually done in ASCII. If you get a "terminal program" specifically prepared for your computer, such as those advertised at rock-bottom prices in the computer hobbyist magazines, it will probably be tailored specifically for your computer's screen. The words will wrap at the end of the line, or each line will be precisely the length sent by the information service...and that's about it, except for setting the baud rate. Budget, moderate, or gold-plated software—virtually all allow the user to easily change the baud rate to handle almost any communications situation. Most will cover from 300 to 9600 baud. Others go as low as 110 baud (for older teletype writers), while some go as high as 19,200 baud for high-speed null-modem communications.

Virtually all intelligent-terminal software allows the user to either save the incoming ASCII message in a portion of free RAM, called a buffer, or transfer it to disk (or tape), or to have the incoming data written directly to disk (or tape). The direct write is preferred because, as a general rule, if the RAM buffer fills, the incoming data writes over the beginning of the text and a save to disk (or tape) will not contain the complete file—the overwritten part no longer exists. Similarly, the software can either send an ASCII file directly from disk (the usual way), or transfer it from disk to RAM and then send it.

But what if you're interested in, or have need for, sending or receiving binary files such as machine language programs, which use 8-bits? That is quite another thing. Many communications programs can only transmit or receive 7-bit ASCII characters, so they have special routines for converting binary information into the ASCII character codes, and then back from ASCII to binary. It works but it's not the most dependable method of binary data exchange. Why? Because one single incorrect byte out of thousands can crash a program.

Protocols

Look at this way. Assume you're taking an ASCII transmission of a BASIC program from a friend and you get a glitch on a character. The program kicks out on a RUN with a "SYNTAX ERROR on LINE 140." You list line 140 and the statement reads: "140 PRINT A.$." You know you've got trouble, but it's easy to correct "PRlT" to "PRINT." Or suppose you are getting the latest news from UPI on The Source and your screen shows: "Inflation is 4 & for August." You know it should read: "Inflation is 4.8% for August."

But what if you're receiving a command file? One glitch on one byte and the program crashes and you'll never know what's wrong, or why. To overcome that, all decent modern communications software has some form of protocol exchange.

Protocol means that the sending terminal transmits some kind of testing signal such as a checksum or CRC after transmitting a block of information. It then waits for a response from the receiving terminal that indicates the "test" was received correctly. If so, the sending terminal transmits the next block. If the sending terminal receives an incorrect answer back "test" from the receiving terminal, it re-transmits the block, and will keep doing so until it receives an "OK" from the receiving terminal. In that way, it sharply reduces the possibility a binary file will be garbled at the receiving terminal.

The problem with a protocol exchange is that the terminal protocols must match; that is, the software at each terminal must recognize the protocols of the software at the other terminal. As a general rule of thumb, except for the "free" communications software available from CP/M bulletin boards such as Modern X and Modern 7 (and all its derivatives)—which use something called a "Christensen protocol"—there is no protocol standard that means that both the sending and receiving terminals must use the same software (a cute way to insure extra sales). While each communications package that can exchange binary files recognizes its own protocol, there are several communications packages that will match—or mate—with other protocols. For example, M.T.E., from Meyers Labs, Inc. (Box 6045, Tallahassee, FL 32304), will match the protocols of MODERN X, Crossstalk, D.C. Roses, IPAC (for text files), and Text (for mainframes). The relatively inexpensive but powerful Telecom II, from Mumford Micro Systems (Box 400-E, Summerland, CA 93067), for the Radio Shack computers, will also accommodate the LINK protocol. Matching protocols, however, is somewhat rare. Except for the "Christensen-based" software, most communications packages match only their own protocols.

Though many claims are made for each kind and brand of
communications software, except for auto-dialing, within a given type they all do more or less the same thing as far as communications are concerned.

Auto-dialing means the software in conjunction with a special modem is capable of dialing the telephone number of another computer from a telephone number or telephone index file in the computer. Sometimes it's as complex as dialing whatever telephone number has been typed on the computer's keyboard. Other times, the user simply types the user's name and the computer searches the correct number from a telephone file that's been stored in a disk file. Auto-dial modems, such as the D.C. Hayes, can pulse-dial a local telephone number and then automatically switch to touch-tones for an information service.

When running straight ASCII text or data communications, all packages will capture incoming data in RAM, all will dump, somehow, to tape or disk—either as the signal comes in or at the user's command—and all will transmit text or data from tape or disk, either directly or by first loading it into RAM and then sending it to the modem. The program can be an inexpensive plug-in module for the Radio Shack Color Computer such as the ColorcomE by Eigen Systems (Box 180006, Austin, TX 78718), or a moderately priced package such as Super 'Color Terminal,' by Nelson Systems, Inc. (Box 19006, Minneapolis, MN 55419) that will even change the display format to 32x26, or 51-64-85 X 21 or 24. (Interestingly, the Nelson software, which has the same or more features than communications software for CP/M, IBM, and CP/M-86 computers, costs about half their price. That makes one wonder whether software is priced at all the traffic can bear.)

The Nelson software is more or less representative of what most software packages for the 'high cost' computers offer. The precise feature will depend on the particular program, and depending on your particular interests one might prove of more value than another. For example, some, such as the CP/M-based M.I.T.E., or Omniterm, for the TRS-80 Models III/IIIA, by Lindberg Systems, Inc. (41 Fairhill Road, Holden, MA 01520), allows specific versions to be configured for The Source, CompuServe, or anything else if you would like the program to directly load with all the correct parameters and macros.

A macro is a complete set of commands, instructions, or whatever that is transmitted by touching a single key. It's as if the key itself was a separate memory—which it really is. For example, assume you have an auto-dialing modem—that is, a modem such as the D.C. Hayes (5923 Peachtree Industrial Blvd., Norcross, GA 30092) Smartmodem, that will automatically dial a telephone number. You might program your communications software in such a way that pressing the control key and the numeral 1 will send the telephone access number of The Source to the modem. When the screen shows the Source has connected and asks for your ID (identification), pressing control-2 will transmit your Source ID (identification number) and password. Similarly, you might have programmed control-3 as a macro to dial CompuServe's telephone access, and control-4 to transmit your CompuServe ID and password.

Macros can also be created for accessing particular areas of The Source, Dow Jones, or any other dial-up database or information service. The amount of information stored in each macro varies. It might be 25 characters, it might be 48 characters, or more.

If the software provides macros there are usually at least 8 or 10, corresponding to the numbered keys; or every alphabetic (A-Z) key might have the capacity for macro programming, as is available in the Hayes Smartcom II for the IBM personal computer. The Smartcom's macro definition is even carried to the point where there are individual sets (menus) of 26 pre-defined macros for The Source, for CompuServe, and for Dow Jones that allow direct access to different areas of the information services at the touch of a key.

Some of the newer software, such as Smartcom and M.I.T.E., provide for the recognition of prompts by the host computer of The Source, Dow Jones, community bulletin boards, etc. A macro can be defined, say, to dial The Source through Tymnet; upon receiving Tymnet's recognition to dial the Tymnet password; then when The Source "comes up" with its prompt, to answer with the user's ID and password, etc. It's actually possible to connect with and get into a selected area (service) of an information network by just a single entry on the keyboard. Exactly how the macros perform varies widely and depends on price, and, unfortunately, the imagination of the person writing the advertisement. So, if macros are an important function for your use of communications software, doublecheck every feature before you purchase the software.

Particularly for infrequent users of a communications software package, the overall complexity of operation is an important consideration. The most sophisticated software is worthless if you can't remember how to use it, or you forget a function and twenty minutes into an upload you discover you forgot to name the file. The receiving terminal is going to have a copy of your file but its directory will have no usable indication it exists. (A common problem when exchanging binary data.) Some software, such as Crossstalk, from Microstuff, Inc. (1845 The Exchange, suite 205, Atlanta, GA 30339), avoids the whole problem by automatically transmitting the name of the file: The receiving computer always knows what it got. It should not be necessary to spend any time mucking through an instruction manual to figure out how to do things. Unfortunately, price and sophistication have nothing to do with ease-of-operation.

Actually, some of the earlier superior communications software is virtually unknown today because simple procedures required reference to the documentation, and the documentation was a disaster.

Another desired feature for infrequent users of communications software is menu-driven function selection. The main functions are always displayed on the screen, or can be called up at the touch of a key. Similarly, the functions are also selected by the touch of a key. Teletel, Omniterm, and Crossstalk are examples of almost total menu-driven control.

There is probably no end to the functions that can be provided in a communications package. As fast as one package appears in the marketplace there is another with even more "sophisticated" functions. Actually, most do the same as the others, but in different ways and with different degrees of difficulty. Sometimes it's easier to use different kinds of software for different tasks simply to make communications more convenient. For example, videotext-type communications and use of The Source, Teletel is preferable, for binary data and program file exchange, Crossstalk does it with the least amount of hassle. But what works best for you and your computer may be other kinds of software. But regardless of the software's functions and features, for many users the most important consideration should be how often they will have to search through the documentation in order to use the software.
How to Design Semiconductor Switching Circuits

Here’s a look at UJT’s, PUT’s, SCR’s, triacs, and a host of other semiconductor switching devices.

Part 2 In the last part of this series, we saw how transistors are used in switching applications. Transistors, of course, are not the only solid-state devices that can be used in that way. Indeed, devices such as UJT’s, PUT’s, and SCR’s can all be used in switching circuits. This month, we’ll take a look at those devices, and others, and see what they are, how they work, and how you can use them in your own designs.

The UJT

The UJT (Uni-Junction Transistor) is a one-junction device that consists of a slab of n-type and a slab of p-type semiconductor material. In an n-type UJT, the two base terminals are connected to the n-type material. An emitter terminal is connected to the p-type material. The schematic symbol for the n-base UJT is shown in Fig. 1.

The n-type material connecting base terminal B1 to base terminal B2 has a resistance of between 5,000 and 10,000 ohms. It is convenient to think of that resistance as actually being made up of two resistances. One, RB1, is between the junction and B1; the second, RB2, is between the junction and B2. With that out of the way, we can now talk about an important characteristic of the UJT, the intrinsic stand-off ratio. That is defined as RB1/(RB1 + RB2) and denoted by the symbol η. The voltage at the junction, due to VBB, is equal to ηVBB.

Circuits

The UJT can be used in a simple circuit such as the one shown in Fig. 2. Pulses of sufficient voltage, Vp, must be applied between the emitter and ground for the UJT to conduct current from +VBB to ground through the n-type slab. When it conducts, output pulses that are in step with the input pulses are developed across R1 and R2, although R2’s main purpose is to keep the circuit operating properly despite variations in temperature.

We will show you how to choose the values of R1 and R2 shortly. In any event, the values of R1 and R2 are usually much less than RB1 and RB2. Because of that, the external resistors used around the UJT can be ignored when analyzing the action of the transistor.

Getting back to the performance of the circuit in Fig. 2, we want the UJT to conduct when the voltage at the emitter reaches VE. The device itself conducts when VE is about 1/2 volt higher than the voltage at the junction. That occurs when VE is greater than 0.5 + ηVBB. That is why the intrinsic stand-off ratio is a critical factor in determining the behavior of the UJT.

Using that information, a relaxation oscillator can be designed. To do that, only an R-C network need be added to the circuit shown in Fig. 2. The resulting circuit is shown in Fig. 3.

Let’s see how that circuit works. When the supply voltage is initially applied, 0 volts is across C1; that voltage increases with time. The time it takes for the voltage to increase to the level required to turn on the UJT is determined by R3, C1, and ηE, and is just about equal to the product of
The oscillator frequency is approximately equal to the reciprocal of \(R_3 \times C_1 \), or about \(\frac{1}{(R_3 \times C_1)} \).

The ideal value for resistor \(R_3 \) is somewhere between:

\[
V_{\text{in}} \left(1 - \eta \right) - 0.5 \\
\frac{2p}{(V_{\text{in}} - V_\text{p})}
\]

Where \(I_p \) is the maximum current flow between the emitter and \(B_1 \); \(V_p \) is the valley voltage, the voltage between the emitter and \(B_1 \) just after the device has begun to conduct, and \(V_\text{p} \) is the valley current, the current between the emitter and \(B_1 \) when the voltage between those points is \(V_p \). In the equations, \(\eta \) and \(I_p \) are the maximum values specified by the manufacturer of the particular UJT being used, while \(V_p \) and \(I_p \) are the minimum specified values. The current reaches \(I_p \) when \(V_p \) reaches a peak, that peak voltage is called \(V_p \). Voltage \(V_p \) is significantly higher than \(V_{\text{in}} \).

The voltage and current between the emitter and \(B_1 \) continue to increase beyond \(V_p \) and \(I_p \) respectively because \(R_B \) decreases as the quantity of current flowing through it increases. When \(C_1 \) has discharged through the emitter-\(R_B \) circuit, conduction ceases. The capacitor then discharges and the sequence repeats.

Capacitor \(C_1 \) is selected to obtain the desired oscillator frequency, after \(R_3 \) has been determined. Because the value you select for \(C_1 \) depends upon \(\eta \) (as well as on other factors) of the specific UJT being used, that capacitor may have to be "tweaked" to get the exact desired time delay.

If the UJT is to operate properly, \(R_2 \) should be about equal to \((R_B + R_B) / 2n \) \(V_{BB} \). The value of \(R_1 \) should be less than \((R_B + R_B + R_B) \) \(V_{\text{out}}(V_{BB} - V_{\text{out}}) \). In the equation for \(R_1 \), the values of \(R_B \) and \(R_B \) are the minimum resistances for this particular device as specified by the manufacturer. Voltage \(V_{\text{out}} \) is the peak-to-peak output voltage across \(R_1 \). The value of \(R_1 \) is usually about 50 ohms and \(R_2 \) around 500 ohms, although at times the values chosen may radically differ from those. An ordinary bipolar transistor may be wired across the resistors used to deliver the output from the UJT, its purpose would be to provide sufficient push for the circuit to be driven by the pulse(s).

Because the UJT keeps on oscillating, repetitive voltages are developed across \(C_1, R_1 \), and \(R_2 \). The voltage across \(C_1 \) is a rising ramp, while \(C_1 \) charges and is a relatively fast-falling slope when it discharges. If that ramp is to be used to drive another circuit, a high impedance must be connected between the R-C network and the circuit that is being fed by the ramp, so that the driven circuit will not load the R-C network (and affect the frequency of oscillation).

The UJT can be used in a switching circuit because it does not conduct until the capacitor is charged to a specific level. If a mechanical switch is placed across the capacitor and shorts it, the capacitor remains discharged. Under those conditions, the UJT does not conduct. The capacitor begins to charge at the instant the switch is opened but the UJT does not conduct until the capacitor is charged to a voltage that exceeds \(0.5 + \eta V_{BB} \) volts; in other words, it behaves as a time-delay switch. Conduction ceases at the instant the switch is closed and the capacitor is discharged.

Designing a UJT Circuit

Let's see how we can calculate the values for the circuit shown in Fig. 3. As an example, assume that for the UJT being used, \(\eta \) is specified as 0.55, but can vary from 0.5 to 0.6. Similarly, \(V_p \) is specified as 2 volts, but can vary from 1 to 3.5, \(I_p \) is specified as 20 mA, but can vary from 10 to 30 mA, and \(I_p \) is specified as 8 \(\mu \)A, but can vary from 4 to 12. The internal resistance of the UJT, \(R_B \), is equal to 9000 ohms. What we are looking for is a 2-volt output across \(R_1 \) at a frequency of 500 Hz. For this circuit \(V_{BB} \) will be 10 volts.

Start by determining the value of \(R_1 \), the resistor in the timing circuit. Substituting into the equations for \(R_3 \) noted above, we find that the value of that resistor should be between 146,000 ohms and 1,800 ohms. A good choice for \(R_3 \) is 50,000 ohms. Since \(J = 1 / R \), \(C_1 \) should be equal to about \(0.04 \mu F \). Finally, substituting into our equations for \(R_1 \) and \(R_2 \), we find that they should be 2400 ohms and 820 ohms, respectively.

An interesting variation in the circuit shown in Fig. 3 would be to replace \(C_1 \) with a phototransistor. The resistance of the phototransistor increases as the amount of light reaching it decreases. Thus, when there is little light, the resistance of the phototransistor is high. Under those conditions, the UJT conducts and current flows. That current can be used to trigger a relay and turn on a light as night falls.

The PUT

The Programmable Uniunction Transistor, or PUT, performs much like an ordinary UJT. The big advantage with the PUT is that \(\eta \) is not predetermined by the internal characteristics of the device. Instead, it can be set to a value between 0 and 1 using external resistors.

The PUT is a thyristor. It has three terminals, as shown in Fig. 4-a. A positive voltage is placed between the \(A \) (anode) and \(C \) (cathode) terminals. No current flows between the \(A \) and \(C \) terminals until a pulse that is negative with respect to the anode is applied to the \(G \) (gate) terminal.

Structure of the PUT

The device consists of four semiconductor slabs shown in Fig. 4-b. To see how the PUT works, it is easiest to think of it as being split into two bipolar transistors—one NPN and the other PNP. The internal structure would then be as shown in Fig. 4-c. A schematic diagram of the two-transistor equivalent circuit is shown in Fig. 4-d.

Neither transistor is turned on when voltage is initially applied between \(A \) and \(C \) because current does not flow through either base-emitter junction. When \(G \) is made negative with respect to \(A \), the base-emitter junction of the PNP transistor is
turned on. Current can then flow through the collector lead of that transistor to the base of the NPN device. Because the voltage at the base of the NPN transistor is now positive with respect to the voltage at its emitter, current will also flow through the base-emitter junction of that device. The NPN transistor is therefore also turned on. Current from its collector flows through the base-emitter junction of the PNP device because its base voltage (and the collector voltage of the NPN section) is now negative with respect to its emitter voltage. Because of that, the PNP transistor stays on even after negative voltage has been removed from the gate terminal. Consequently, the NPN device also remains on. Because the paths between A and C have been completed, current flows from A to C. It ceases to flow when the anode current drops below 1N.

We can make a PUT act like a UJT by placing it in the circuit shown in Fig. 5. The maximum gate current, I_{G,MAX}, allowed for turning on the PUT is specified by the manufacturers of the device and may be in the vicinity of 50 mA. Just what I_G actually is in a particular circuit, depends upon V_{BB}, R_1, and R_2, and can be determined from

\[I_G = \frac{V_G}{R_2(R_1+R_2)} \]

where

\[V_G = V_{BB} \left(\frac{R_1}{R_1+R_2} \right) \]

The equations for calculating the time delay and the value of the resistor in the R-C circuit (in this case R4), are the same as the ones we used when we discussed the UIT. To determine R4, set \(\eta \) equal to RI/(RI+R2), use the values of I_G and I_G provided on the device's data sheet, and let V_G be equal to about 1/3 of V_F (the value of V_G, the forward voltage, can also be found on the data sheet). The value of V_G usually ranges somewhere between 0.6 and 1.2 volts so that 0.6 may be used for V_G in those equations without causing any unacceptable error.

Once the voltage across C1 is greater than 1/3 of V_F, the PUT conducts and current flows through R3. The output voltage that the current develops across R3 is called V_OUT. Voltage depends upon the voltage required to turn on the PUT, which, in turn, is about 1 volt higher than the voltage at the gate. That, in turn, is related to \(\eta \), which is determined by the values chosen for resistors R1 and R2.

After the capacitor has been discharged and anode current has dropped below 1N, current ceases to flow through the junctions between A and C. The capacitor then gets recharged so that the current pulses through the PUT keep repeating. As was the case with the UIT, this switch can be placed across the capacitor to make this arrangement perform as a time-delay switching circuit.

The SCR

The structure of the silicon-controlled rectifier (SCR) looks like that of the PUT, except that the SCR gate is near its cathode rather than its anode. The SCR is composed of four semiconductor slabs arranged as shown in Fig. 4-b. The gate is connected to the second p-slab (the one located between two n-slabs) rather than at the first n-slab (the one nearest the anode). The equivalent transistor arrangement shown in Fig. 4-d still applies, except that the gate terminal is now at the base of the NPN device. A positive pulse at the gate with respect to C will turn on the SCR and let current flow from A to C when the anode is positive with respect to the cathode. The SCR will keep on conducting even after the trigger pulse has been removed. Conduction stops after the anode-cathode current drops below a particular current level specified by the manufacturer of the SCR. That current is identified as I_{th}, the holding current.

Triggering methods and precautions

Although gate triggering is the best method of turning on the SCR, it is possible to do it using other methods. For example, the SCR will be turned on if it is placed in a very hot environment. It will also be turned on if a specified maximum voltage that may be applied between the anode and cathode is exceeded. It will also be triggered if a sharp-rising voltage pulse is applied between A and C. As for the last case, it is frequently desired that the SCR not trigger under those conditions. Manufacturers therefore supply a dV/dt specification that indicates the maximum voltage change in a specific period of time that may be applied to the SCR without triggering it. Thus, if dV/dt is specified as 150 volts-per-microsecond, the SCR will probably be turned on by a pulse that changes at the rate of 175 volts-per-microsecond. To reduce the dV/dt factor of the pulse and avoid triggering the SCR, a 50.000-pF capacitor may be wired between the C and G terminals of the device.

If a voltage pulse that's applied between the A and C terminals triggers the SCR no damage will be done to the device. But it is also possible to apply a fast current pulse between the A and C terminals. That pulse may be used to trigger the SCR or may simply be present after the SCR has been turned on. But if that current pulse is faster than the dV/dt limit specified by the manufacturer of the SCR, the device can be destroyed. You must be sure that such current pulses do not occur at any time. To prevent against such pulses, a series R-C network, can be connected between the anode and cathode of the SCR.

Some problems arise when normal gate-triggering methods are used. If the leakage current is high, the SCR may be triggered inadvertently. To avoid that, a resistor should be wired between the cathode and gate of the device. The value of that resistor is normally specified by the manufacturer and can be found on a data sheet.

Precautions must also be taken so that the gate does not dissipate more power. P_G > P_M, than is allowed by the manufacturer, or pass more current, I_{GM}, than it was designed to do. Care must be taken so that the reverse voltage limit, V_GRM, between the gate and cathode is not exceeded.

Avoid applying a positive gate-cathode triggering voltage while a large negative voltage is at the anode of the SCR with respect to its cathode. Otherwise, the SCR will dissipate an excessive amount of power. To prevent failure, if that condition should occur, be sure to connect the diode-resistor circuit shown in Fig. 6 between the gate and anode. That circuit clamps the gate to the anode thereby reducing the conduction between the gate and the cathode.

Circuits using SCRs

A simple circuit involving an SCR and using an AC supply is shown in Fig. 7. Voltage is applied between the anode and cathode of the SCR. During the positive half of the cycle, a positive pulse is fed through R1 and diode D1 to the gate of the SCR and the device is turned on. Current flows through R2; the voltage across R2 drops below 1N. During
the negative half of the cycle—when the anode is negative with respect to the cathode—the diode prevents any current from passing to the gate and the SCR remains turned off.

In the circuit shown, current flows for just about the full positive half of the cycle. Conduction starts when just enough current is available at the gate to turn on the SCR. The flow stops when the anode-cathode current falls below Ith, the holding current. But the circuit can be changed so that the conduction through the anode-cathode circuit can be made to start at any point during the rising 90° portion of the AC cycle and end when the current flow drops below Ith. Thus, the conduction of the SCR can be varied between a 180° period (when the SCR starts to conduct at the beginning of the positive half-cycle) and a 90° period (when it starts to conduct at the peak of the positive half-cycle).

The circuit in Fig. 8 can be used to set the conduction period. Variable resistor R2 sets the voltage applied to the R3-D1 series circuit. The voltage at the wiper of the potentiometer, in conjunction with R3, D1, and R1, determines the amount of current that flows into the gate of the SCR. When R2 is set so that sufficient gate current flows to turn on the device, the SCR conducts. That setting can be adjusted for conduction to start at any specific instant in the rising portion of the positive half-cycle.

The voltage being applied to the gate in the circuit in Fig. 8 is AC. In a similar fashion, a DC voltage can be used to determine the turn-on point of the SCR.

The turn-on points of the SCR do not have to be limited to between 0° and 90°. That range can be extended by adding a phase-shift network consisting of a resistor and capacitor to the original circuit. Doing so allows you to extend the range to from just above 0° to somewhat below 180°. Such a circuit is shown in Fig. 9.

Figure 10-a shows the phase relationship of the voltage across C1 (between the gate and cathode), VGC, with the voltage at the input to the R2-C1 circuit. The current in a capacitor leads the voltage across that component by 90°. The voltage across a resistor is in phase with the current flowing through it. Because of that, when an AC voltage is applied to a circuit consisting of a resistor connected in series with a capacitor, the voltage across the capacitor lags the voltage across the resistor by 90°. The sum of the voltages across the two components must be equal to the voltage applied to the R-C combination, VAC. But that is the case only if the addition takes the relative phases of the two voltages into account. That is all shown in Fig. 10-a. The voltage across C1, VGC, lags the applied voltage, VAC, by an angle α. When R2 is set equal to 0 ohms, the entire applied voltage is across the capacitor and α is equal to 0°. Thus, the voltage across C1 and at the gate-cathode junction of the SCR is in phase with VAC. That relationship is shown in Fig. 10-b. Also, because R2 is 0 ohms, the magnitude of VGC is just about identical to VAC.

When the value of R2 is made very large, the applied voltage is primarily across the resistor and there's just enough voltage across the capacitor. In that situation, α is equal to nearly 90°. The relationship between VAC and VGC is shown in Fig. 10-c.

Assume that the SCR will just trigger when a voltage equal to that at the peak of the VGC curve in Fig. 10-c is applied between the gate and cathode. Turning to Fig. 10-b, with that small voltage requirement, and noting the slope of the curves in Fig. 10-b, it's clear that the SCR turns on soon after the applied voltage passes 0° because VGC reaches the trigger point near 0°. In Fig. 10-c, the peak of the trigger curve must be reached, before the SCR turns on because of that curve's low amplitude. Triggering therefore does not occur until VAC is near 180°. Trigger points are made to vary between 0° and 180° by changing the setting of R2. In all cases conduction stops when the anode-cathode current drops to Ith. That is close to the 180° point on the VAC curve. Thus, the trigger-point setting is used to determine just how long the SCR will stay turned on.

Diacs

In a diac, whose schematic symbol is shown in Fig. 11-a, the arrangement of semiconductor slabs appears quite similar to that of an ordinary PNP transistor (see Fig. 11-b). But there are two big differences between the diac and bipolar transistor. First, there is no lead to the center slab of the diac. Second, the same amount of impurities due to doping are at both junctions of the diac, while quantities differ at the two junctions of an ordinary transistor.

If a very small voltage is applied between the two terminals of the diac, MT1 (Main Terminal 1) and MT2, the diac does not conduct. The applied voltage must exceed a specified value before the device will conduct. After the diac is turned on, current flowing through the device increases rapidly as the voltage across the diac decreases. Regardless of which terminal is made positive with respect to the other, the diac will turn on at the same breakdown voltage. Should an AC voltage be placed across the device (through a resistor, of course), so that the diac will not dissipate excess power, it will conduct during each half-cycle after the breakdown voltages have been exceeded.

Triac

As you can see in Fig. 12-a, the schematic symbol for a triac is very similar to that of a diac. The difference, of course, is that a gate has been added. The true differences between the devices can be seen, however, in the structural diagram shown in Fig. 12-b. If you just consider the connections that are made to the right halves of the MT1, MT2 and gate terminals, and ignore
anything that’s connected to the left half of those terminals, what you have is a PNPN SCR, with the gate connected to the lowest p-slab. Consider next the connections made to left side of those terminals, this time ignoring the connections to the right. What you have now is an NPSP SCR. Converting that into its equivalent circuit gives you the two-SCR combination shown in Fig 12-c.

When MT2 is positive with respect to MT1 and a pulse is applied to the gate, SCR1 in the equivalent circuit turns on. If MT2 is negative with respect to MT1, SCR 2 turns on. Thus, each SCR conducts on alternate halves of a cycle. Unlike the individual SCR, the triac conducts current in both directions. But the SCR has one important advantage over the triac: The SCR can operate over a properly long range of MTI for the cathode. The diode is not properly altered circuit is shown in Fig. 13.

The waveform output by the AC power supply is, of course, a sine wave. If a high-resistance potentiometer is used for R2, it can be adjusted so that the gate current will just barely turn on the triac when the applied signal is at its positive 90° point. It will stay on for the portion of the cycle from 90° to close to 180°. Near the 180° point, the positive voltage across the triac is just about zero, so that the current drops below Ith, the holding current and conduction ceases.

With the marginal turn-on signal available during the positive half-cycle, the triac will not turn on between 180° and 270°, the portion of the cycle when MT2 is negative with respect to MT1. That’s because it requires a larger signal to turn the triac on during the negative half-cycle than it does during the positive half-cycle. If sufficient current should be applied to just-about turn the triac on during that negative half-cycle, it will conduct for the negative portion of the cycle between 270° and 360°. As was the case in the positive half-cycle, conduction will cease when the negative current drops below Ith, the holding current.

Should resister R2 be set for a low value, sufficient current will be applied to the gate before the 90° point in the cycle is reached and the triac will be turned on at some point between 0° and 90°. Then current would flow for more than one half of each half-cycle.

There are four triggering modes used for turning on the triac. In two of those, MT2 is positive with respect to MT1. If the gate is positive with respect to MT1, relatively little gate current, Ith, is needed to turn on the triac. If it is negative with respect to MT1, at least five times that current is required to turn on the triac. Should MT2 be negative with respect to MT1, at least 20 Ith is needed to turn on the triac regardless of whether the gate current is positive or negative with respect to MT1. Considering that, it is obvious why when R2 is adjusted so that the triac will turn on just at the positive 90° point it is very unlikely that it will also turn on at the negative 270° point. That will be true unless a considerable amount of drive is added to the gate when the voltage goes negative.

In the case of the SCR, the 0° to 90° range of triggering points was extended to a 0° to 180° range through use of the R2-

CI network in the circuit in Fig. 9. In that example, we only needed triggering during the positive half of the cycle because the SCR does not conduct during the negative half-cycle. But the triac conducts during both the positive and negative half-cycles although that conduction can start at different points in the negative half cycle due to the device’s changing sensitivity to the gate signal. So, until R2 is set so that there will be sufficient voltage to trigger the triac in the negative half cycle, it will conduct only up to 180°. When R2 is set so that the triac triggers on both half-cycles, conduction will take place during a longer interval during the first half of the cycle than in the second half.

The range of triggering points can be increased through the use of the circuit shown in Fig. 14-a. That arrangement uses two R-C phase-shift networks. With it triggering can take place between 0° and 180° during positive half-cycle and between 180° and 360° during the second half-cycle.

The arrangement shown is similar to the one used for the SCR and shown in Fig. 9. But the circuit shown in Fig. 14-a will not do anything to offset the differences in gate sensitivity and the device will trigger over different intervals during the positive and negative half-cycles. That situation changes when we add a diac to the circuit as shown in 14-b.

In that circuit, both the gate and MT2 are either positive or negative with respect to MT1. When the triac is operated in that manner, a diac can be used to compensate for the differences in the triac turn-on currents. That is, if the characteristics of the diac matches those of the triac in the circuit, the triac will turn on at relatively equal points during both halves of the cycle and the periods of conduction will be more or less equal during either half-cycle.

Other switches

The switching devices described above are the ones most commonly used, but there are many other types of semiconductor switching devices.

The schematic symbol for a CSCR (Complementary SCR) is the same as that used for the PUT, but the two are quite different devices. The CSCR turns on when a negative voltage is applied to its gate with respect to its anode.

One big objection to use of the SCR, is that no means is provided to turn it off. The GSC (Gate Controlled Switch) is a device that overcomes that drawback. It behaves as an ordinary SCR when a positive pulse is applied to its gate. The difference lies in the fact that it turns off when a negative pulse is applied to the same gate.

The SCS (Silicon Controlled Switch) is continued on page 114
Great ideas in design: ours/yours

How many times have you looked at a clever piece of circuitry and thought
"I could have designed that." Or...
"I thought of that years ago, if only I had..."

Well now you can. Learn. Design. Create...your own electronic circuits.
The new Heathkit/Zenith Engineering Design Series Experiment/Trainer and Courses makes it easy.

If you enjoy the challenge of creating your own circuits or have the desire to learn...then, the new ET-1000 Analog/Digital Circuit Design Experiment/Trainer is for you. Designed to be a multi-purpose lab for experimental circuit design, the ET-1000 makes it easy to design, develop and experiment with circuits of your own design.

Unit features: large solderless plug-in breadboard, built-in power supplies, 1Hz to 100kHz signal generator, "no bounce" logic switches, LED indicators, logic probe and much, much more.

And if you need to learn circuit design before starting to create on your own, there are two self-study courses in passive and transistor circuits that will teach this exciting area to you right on the ET-1000.

Find out more about the new ET-1000 trainer and courses today. Complete specifications and details are in the new free Heathkit Catalog. The catalog also features more than 450 kit and educational products for your home, hobby and business. Circle reader service number below.

New Engineering Design Series
Heathkit
Heathkit/Zenith
Educational Systems

www.americanradiohistory.com
ORDERING INFORMATION

The following are available from Alpha Electronics, PO Box 1005, Merritt Is., FL 33332 (305-395-3534).

A complete kit of parts—including main PC board, memory PC board, cable, case—for printer conversion (does not include memory ICs): $129 plus $6 postage; complete kit for Electronic conversion (does not include memory PC board or memory ICs): $119 plus $6 postage; 2K x 8 static RAM ICs: $5.50 each postpaid; 13941 PROM, $25; memory PC board (PC-1832) $13 postpaid; main PC board (PC-1831), $18 postpaid; ABS plastic case, $12. A complete kit of all parts for Selectric conversion, complete kit (does not include memory board or memory ICs): $169 plus $6 postage. The mechanical adapter alone is $90 plus $6 postage. The ULN2813A or ULN2803A ICs are $3 each postpaid. Florida residents please add 5% sales tax. Canadian orders please add $2 additional to US postage; other foreign orders please add $6 additional to US postage.

FREQ COUNTERS TO 1.3 GHZ

INTERFACE

Excerpts from previous page:

- **EXCLUSIVE NEW FEATURE:**
 - **SIGNAL STRENGTH LED BAR GRAPH**
- **6 MODELS:** $150.00 to $499.
- **ALL ALUMINUM CASES**
- **FULL YEAR GUARANTEE**
- **OPTIONAL PRECISION TIME BASES**
- **AC, DC OR BATTERY PORTABLE**
- **CERTIFIED NBS CALIBRATION**
- **MADE IN U.S.A.—10TH YEAR**
- **LARGE SELECTION ACCESSORIES**

OPTOelectronics inc

5821 N.E. 14th Avenue
Ft. Lauderdale, Florida 33334
1-800-327-5912
FLA (305) 771-2050 TELEX 514849

FIG. 29—THE WIRE GUIDE is shown here full size.

FIG. 30—THE MOUNTING OF the shift board and solenoid and link is shown in this photo.

Launched on the printer until the print button has been pressed.

After the buffer contents have been printed, you can print extra copies of the document(s) simply by pressing the PRINT button.

If there is not enough memory to hold the data from the computer, the interface will, when the buffer is full, halt the data load and print the buffer contents. Then it will resume the data load until the buffer is full again or until the print button is pressed. If copies of the data are not required, press reset before dumping new data to the interface.

Although we haven't had the opportunity to examine it, an option that allows this interface to be used with a serial computer port can also be added. Contact Alpha for further information.

R-E

www.americanradiohistory.com
IBM PC
- **Flight Simulator** by Microsoft... List $49.95. Our price $43.00. Highly accurate simulation of flight in a single-engine aircraft. Working instruments. Out window graphics. Real-time fight conditions. (IBM P C, 64k, color graphics, disk)
- **EasyWriter II** by Information Unlimited... List $350.00. Our price $300.00. Turns your computer into a word processor. You see everything on the screen. There are no imbedded commands. (IBM P C, disk)
- **Deadline** by Information Unlimited... List $49.95. Our price $43.00. A locked door. A dead man. You have 12 hours to solve the mystery. One false move, and the killer strikes again. (IBM P C, 48k, disk)
- **Algebra, Vol. 1** by Eduware... List $39.95. Our price $34.00. A first year algebra tutorial covering definitions, number line operations, sets, etc. (IBM P C, 48k, color graphics, disk)
- **MicroTerminal** by Microcom... List $94.95. Our price $83.00. Allows access to remote mainframes and minis, animation data bases, and other personal computers. (IBM P C, disk)
- **PC Tutor** by Comprehensive Software... List $79.95. Our price $68.00. Interactive program teaches you how to use your IBM Personal Computer, including hardware and software. (IBM P C, 64k, disk)

APPLE
- **Prisoner** by Interactive Fantasies... List $32.95. Our price $28.00. Escape is hardly possible. The island keeps you under surveillance. Just try and get out! (Apple II, 48k, disk)
- **Prisoner** by Interactive Fantasies... List $39.95. Our price $34.00. (Apple II, 48k, disk)
- **The Mask of the Sun** by Ultrasoft Inc... List $39.95. Our price $34.00. An initialed adventure through a series of hi-res screens. An ultimate adventure challenge. (Apple II, 48k, disk)
- **MasterType** by Lightning Software... List $39.95. Our price $34.00. A typing instruction system in an exciting hi-res game format. Learn to type while batting waves at attacking enemy words. (Apple II, 48k, disk)
- **Graphics Magican** by Penguin Software... List $59.95. Our price $53.00. Make your own animated graphics. Handles up to 32 independent objects. Stores hundreds of color pictures. (Apple II, 48k, disk)
- **Rendezvous** by Eduware... List $39.95. Our price $34.00. In four phases, simulates an actual space shuttle flight from Earth through orbital rendezvous and approach to Alignment Docking with a space station. Hi-res graphics. (Apple II, disk)
- **Word Attack** by Education... List $49.00. Our price $43.00. A tutorial for mastering vocabulary, deciphering new or unfamiliar words, and taking tests. (Apple II, disk)

COMMODORE VIC-20
- **Pipes** by Creative Software... List $39.95. Our price $34.00. Connect a pipeline from the water supply tank to every house. Watch out for leaks! Use as little pipe as possible. 5 skill levels. (Commodore VIC-20 cartridge)
- **Shamus** by Human Engineered Software... List $39.94. Our price $34.00. Only you can stop the Shad ow's mad reign of terror. Two levels with 20 rooms each. A joystick challenge. (Commodore VIC-20 cartridge)
- **Household Finance** by Creative Software... List $17.95. Our price $16.00. Home utility program analyzes and budgets your monthly income, expenses, and budget in 15 categories. (Commodore VIC-20, cassette tape, 8k additional memory required)
- **Home Office** by Creative Software... List $29.95. Our price $25.00. Combines VICPROC, a flexible and efficient word processor with VICDATA, a powerful and sophisticated information storage and retrieval system. (Commodore VIC-20, cassette tape)
- **Submarine Commander** by Thom EMI... List $49.95. Our price $43.00. A submarine patrol simulator to hunt and destroy enemy ships. 8 skill levels. Plug-in cartridge. (Atari Cartridge 400/800)
- **Milliner 2049** by MicroLab... List $39.95. Our price $34.00. Chases into a Uranus mine thru 10 levels of traps and capture Yukon. 10 levels of traps. Scale ladders, jump from moving platforms, and win—if you can. (Apple II, 48k, disk)

Radio-Electronics Software Store
200 Park Avenue South
New York, NY 10003

<table>
<thead>
<tr>
<th>Number of Items Ordered</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Price of Software</td>
<td>$</td>
</tr>
<tr>
<td>Sales Tax (NY State Residents Must Include)</td>
<td>$</td>
</tr>
<tr>
<td>Shipping ($2.00 per item)</td>
<td>$</td>
</tr>
<tr>
<td>TOTAL ENCLOSED (Sorry, No CODs)</td>
<td>$</td>
</tr>
</tbody>
</table>

Name __________________________
Address __________________________
City __________ State ______ ZIP ______

FEBRUARY 1983

www.americanradiohistory.com
Realistic battery-voltage measurements

EARL "DOC" SAVAGE, KASDS, HOBBY EDITOR

BEFORE GETTING TO THE BUSINESS OF THE day, we want to thank each of you who has taken the time to write—and don't hesitate to write again. Your questions, comments, and suggestions have been quite interesting. We only regret that there isn't enough time to respond to each of you. For those of you who haven't written yet, why not get out the old pen and paper and let us know what you're doing.

Testing dry-cell batteries

David Patterson has raised the very practical question of testing batteries under "loaded" conditions (when current is being drawn). We're sure that you, too, have had the experience of having a battery die just a few minutes after it tested all right with a voltmeter. The reason for that is that a voltmeter has a high input impedance. As such, it draws no appreciable current from the device or circuit being tested.

In many situations that's a desirable characteristic, but not in this case. When measuring battery voltage using a meter (VOM, VTVM, etc.), the amount of current drawn is insignificant. In other words, the meter doesn't load the battery. Using a meter in that manner can produce very deceptive results. Without getting technical about battery chemistry, let's see what happens and why.

Within limits, carbon-zinc batteries have the ability to rejuvenate. Thus, after several hours, a nearly exhausted battery can muster up the strength to show a potential of 1.3 or 1.4 volts when measured with a VOM. That's great, but the battery has no stamina and soon quits when large currents are drawn from it. Since the VOM requires the battery to do little work, the measured voltage can stay high for a long time thus giving a false indication of battery status.

David's question shows us how we can get a meaningful voltage measurement. That is, to see how a battery will stand up under normal conditions, measure the voltage when the battery is "under load" and some current is being drawn.

There's no trick to loading a battery—all that you need to do is connect a resistor and a meter in parallel across the battery terminals as shown in Fig. 1. The resistor draws current from the battery so that a realistic battery-voltage measurement may be obtained. You've probably noticed that one small detail has been omitted: the load-resistor's value hasn't
been specified. The "trick" of the procedure is determining that value. Fortunately, it's not difficult to do.

A wide range of resistor values will suffice but we want to avoid the extremes. The idea is to draw enough current to simulate a real situation. Too great a value, and the resistor might as well be omitted—too small a value and you can drain the battery.

Let's suppose that we want to measure the voltage of a D-size cell. The first thing we have to determine is how much current is normally drawn from such a cell. That, of course, depends on the device that is to be powered. For example a battery-operated toy will draw several times more current than a flashlight. For our purposes, let's use a rate of about 40 or 50 mA.

With that information and our old friend, Ohm's Law (R = E/I), we can easily determine the needed resistor value. Dividing the battery voltage, 1.5 E, by the current, 0.050 (I), we get a resistor value of 30 ohms. A standard 33-ohm resistor will perform admirably, drawing about 0.045 A. Now, we have just one more calculation to make: the resistor wattage. Using the formula P = IE, we have 0.045 A \times 1.5 V = 0.0675 watts. A 1/4-watt resistor will handle the job with plenty to spare.

Obviously, the amount of loading on the battery can be set to any desired level simply by choosing the proper resistor value. If a non-standard value is needed, a combination of standard values in series and/or parallel will do the job. Now that we have all this information at our finger tips—why not design a circuit for a battery-test jig? In doing so, first consider the fact that 45 mA is a pretty heavy current for a little AAA-size cell to deliver. The smaller the battery, the less current it should be required to produce (that's why they make several sizes). So, let's make the loading variable by including several loading resistors.

Battery-test jig

Figure 2 shows a schematic for a battery-test jig consisting of four resistors and an SPST switch. Reading from the smallest to the largest resistor specified there, the switch positions can be labeled 100, 45, 22, and 8 ohms. You are now ready to realistically evaluate any standard-size dry-cell battery with that setup.

There's one other battery size that we should use—the familiar rectangular 9-volt battery. As long as you're making a test jig, you might as well include provisions to measure it, too. A typical small transistor radio draws about 3 or 4 mA from a 9-volt battery.

Following the previous calculations, a standard 680-ohm resistor pulls 13 I, and a 1000-ohm resistor will pull 0.9 mA. Either value will work fine. It can be substituted for one of the original four resistors, or you can use a five-position switch and add it to the others. Just don't forget to change the meter range when measuring a 9-volt battery. Well, there you have it. Now you can test your batteries under operating conditions.

Variable power supply

Glenn Anderson asks about building a variable power supply. Every experimenter should have a variable voltage source and you can build one without great expense. My first variable supply was homemade and it's still used occasionally when just one more "odd-ball" voltage is needed. That supply is nothing more than a small box and an old model-train transformer. The transformer has an output that's variable from 0 to 18 volts in two ranges.

The box has a pair of terminal posts on each end and contains a full-wave bridge rectifier (similar to Radio Shack 276-1161), a filter capacitors and a small bleeder resistor. The components are connected as shown in Fig. 3. When an odd voltage is needed, the transformer is connected to the input terminals on the box. The output terminals of the box are connected to a VOM and the circuit to be powered. The transformer is then adjusted to provide the desired output. That's all there is to it.

Of course, you can fancy it up with a
The professional breadboard.
(For professional, hobbyist or student.)

Global Specialties' PB-203A Proto-Board. The solderless breadboard that set the industry standard for speed, versatility and convenience. With a capacity up to twenty-four 14-pin DIPs and three regulated power supplies (one fixed, two variable), PB-203A features a large array of sockets and bus strips that emulates standard PC layouts. Permitting instant insertion and removal of virtually any component from the largest DIP to the smallest discrete.

Helping you design, assemble, test and modify circuits almost as fast as you can think! And built with professional durability, for all types of applications.

Our PB-203A. Only $174 (kit $149.95) or PB-203 with single 5V supply, $133. One more reason so many people say "Proto-Board" for solderless breadboarding.

GLOBAL SPECIALTIES CORPORATION

70 Fulton Ave., New Haven, CT 06509 (203) 824-3103 TWX 710-485-1227

DI+1 OFFICES: San Francisco (415) 648-5111, New York 910-372-7992, Europe: Prinon Sattion Addise 0799 21667, 14X 8747
Canada: Ian Press Ltd., Downsview Ontario

Call toll-free for details 1-800-243-6077 During business hours

*Cautions U.S. mail prices. Specifications subject to change without notice. © Copyright 1981 Global Specialties Corporation

ELECTRONIC COMPONENTS

CABLE TV

CONVERTERS DESCRAMBLERS

Largest Selection of Equipment Available

$ Buy Warehouse Direct & Save $

- 36 channel converter $45.95
- 36 channel wired remote converter only $118.95

Send 52 for complete catalog of converters and scramblers

Changi Discounts • Visa • Master Charge
Add 5% shipping - High, residents add 4% sales tax

C&D Electronics, Inc.
P.O. Box 21, Jenison, MI 49428
(616) 669-2440

VCR REPAIRS

continued from page 66

units have servo, video, audio, and system-control adjustments that must be performed according to the manufacturer's recommendations. However, keep the following points in mind no matter what the literature says:

If you get good performance on record and playback, leave the VCR alone!

If you make the adjustments for the three basic functions described here (tape path, switching, and head resonance/Q) with an alignment tape (using the video, audio, and RF-sweep portions of the tape), and get good performance after adjustment, all of the other adjustments are probably OK, and need not be made.

If you cannot get good response by adjusting the three basic functions, you have other problems (possibly terrible problems), and you must consult the manufacturer's literature.
ONE OF THE MOST CRITICAL FACTORS IN A plant's well-being is the amount of water it receives. A plant that receives too little, or, for that matter, too much water will soon be in poor condition. As for house plants, you, their owner, determines how much or how little water to give them. Just how do you know when to water them? When the soil is dry, the plant's roots begin to suffer, and if it receives too much water at one time, it could be put in jeopardy.

That's where this project idea comes in. It's a plant-water monitor and is used to test the moisture of the soil at root level. When the soil is moist, an LED glows. If the moisture falls below a certain predetermined level, the LED begins to flash. If there is still less moisture, the LED turns off.

The schematic diagram of the device is shown in Fig. 1. It can be built on a small piece of perforated construction-board and housed in a small plastic case or experimenter's box. The probes are two slender metal rods. They should be tin-coated to prevent corrosion. For convenience, you can mount the probes on the case.

Calibrating the monitor is easy. Just connect the battery and insert the probe into a container of dry soil. Set R1 to its maximum value then reduce that resistance until the LED begins to flash. The range over which the LED flashes before going out is adjusted using R2.

If you wish, you can reverse the operation of the circuit. That is, you can have the LED off when there is enough water, and on when more water is needed. That's done by simply switching the positions of R1 and the probes in the circuit. —Sreekumar J.
IC metal-sensing devices

ROBERT F. SCOTT, SEMICONDUCTOR EDITOR

RECENT DEVELOPMENTS IN THE FIELD OF electronics technology have given us some interesting semiconductors. This month we'll take a look at some of those devices and their applications.

First let's look at two bipolar IC's from Cherry Semiconductor—the CS191 and CS209. These IC's are metal-sensing devices and can be used in a wide variety of applications—including electronic ignitions and metal detectors. Figure 1 is a block diagram of the CS191 and Fig. 2 is the block diagram of the CS209.

Each IC contains a voltage regulator, oscillator, demodulator, and a level detector. The CS209, which we will look at, has only two high-level outputs (pins 4 and 5) for external loads. The output of pin 4 is normally open and pin 5 is normally closed (high). (The CS191 also has two low-level outputs with internal loads.) The saturation voltage for the high-level outputs is 0.2 volt at 124 mA (0.03 volt at 2 mA for low-level outputs). Both IC's require a supply voltage between 4 and 24 volts, and draw about 4.5 mA when operating from a 4-volt supply.

The internal oscillator, together with an external L-C network, provides an output signal whose amplitude is highly dependent on the Q of the external L-C tank circuit. To sustain the oscillations when the Q is very low, a variable low-level feedback signal is developed. Both IC's have transient suppressors to protect their internal circuitry against transients (spikes) that might develop in the tank circuit.

The demodulator rectifies the oscillator's output and the resulting DC voltage is fed to the level detector, where it's compared to an internal reference to produce an output signal.

The diagram in Fig. 3 shows how the CS209 can be used to build a pocket-size device for locating studs and joists in building walls and ceilings. The L-C network consists of coil L1 and capacitor C1. The “search” coil (L1) is passed over a wall or ceiling surface to locate a beam by pinpointing nails or screws. When the coil comes close to a nail or screw the Q of the tank circuit drops. Whenever that change in Q is detected, the LED lights showing the location of the screw or nail. A pencil line drawn through several nail positions shows the approximate center line of the beam you are looking for.

The sensitivity of the device is adjusted using potentiometer R1. To accomplish that, set R1 so that the LED lights when the search coil is well clear of any metal objects. Then slowly adjust the trimmer in the other direction until the LED just goes out. The LED should light when the device is brought close to a nail and go out immediately as it’s pulled away. If not, repeat adjustment procedure.

The search coil (L1) is a 100µh RF choke (Radio Shack 273-102 or equal), C1 is a silvered mica or polystyrene capacitor. The resistors are 1/4-watt, 5% types. Potentiometer R1 should be a multi-turn trimmer of about 6K but since that value isn’t readily available, we suggest that a 10K multi-turn potentiometer be used as a maximum.

You may want to try building an electronic ignition system for your car or a smaller engine, such as found on a snow blower or lawn mower. If so, try the circuit on the CS191/CS209 data sheet available upon request from Cherry Semiconductor Corp., 2000 South County Trail, East Greenwich, R.I. 02818.

Solid-state temperature sensor

The TDIA is the first in the Micro Switch line of temperature sensors using a nickel-iron alloy and thin-film technology. The TDIA is a linear device with a positive temperature coefficient (sensor resistance increases with temperature). Its applications include room, duct and refrigerant monitoring, motor-overload protection, electronic equipment overheating warning, and cooking-temperature settings for appliances.

The IC is constructed of nickel-iron alloy deposited on a 0.040-inch square silicon chip and is laser-trimmed to provide a stable room temperature resistance accurate to 0.4°C. It is then mounted on a 0.2-inch ceramic substrate and epoxy encapsulated for protection.

The TDIA has a higher resistance than that of platinum sensors—thus, making it well suited for use in low-power circuitry and for minimizing errors caused by volt-
Save!
Money • Time • Freight
Quality stereo equipment at lowest prices.
Your request for quotation returned same day.
Factory sealed cartons—guaranteed and insured.
Save on name brands like:
Pioneer
Kenwood
Marantz
Sansui
Technics
Sony
And more than 50 others buy the modern way by mail—From
ilinois audio
Bank cards accepted
12 East Delaware
Chicago, Illinois 60611
312-664-0020
800-621-8042
CIRCLE 84 ON FREE INFORMATION CARD

Attention technicians
Are you tired of being
"only a serviceman"
or
"just a technician"?
The letters "CET" after your name spells
"pride"

Try it.
Take pride in your profession—
Decide to be a Cet

For information about—Exam dates, requirements, study guides, other.
Send to: NASDA/ACE
2708 W. Berry St.
Fort Worth, TX 76109
(817) 921-3101
Name
Address
City__St._Zip

Low-current LED's

Hewlett-Packard has announced the latest in its series of low-current LED's. Those LED's use only 2 mA and are five times brighter than standard ones that draw 10 mA. Typical CMOS and low-power TTL circuits provide enough current to maintain high brightness without external drivers. The HLMP-4700, HLMP-1700, and HLMP-7000 are red LED's. The HLMP-4719, HLMP-1719, and HLMP-719 are yellow. The HLMP-4700 series come in T-1 3/4 (5mm) packages and the -1700's in T-1 (3mm) packages, and the -7000's are subminiature devices. Hewlett-Packard Corp., 640 Page Mill Rd., Palo Alto, CA 94304.

Transistor replacement guides

A four-page booklet, Direct Replacement for Texas Instruments Transistors, lists STI direct equivalents for 540 metal-canal small-signal and power transistors discontinued by Texas Instruments. Also available from STI are cross-references and data sheets of pertinent characteristics of replacement high-voltage power transistors in the DTS series of devices that was discontinued by Delco.—Semiconductor Technology, Inc., 3131 S.E. Jay St., Stuart, FL 33494.

Isolated-feedback generator

The UC1901 series IC's from Unitrode feature an AM-carrier system that replaces the visible or infrared light path in optocoupler/isolators. An internal RF oscillator and amplitude modulator develop the signal that's coupled across the voltage-isolation boundary by a small RF transformer. The oscillator is usable up to 5 MHz. An external clock can be substituted for the oscillator to synchronize the device to a system clock or to the frequency of a switching power supply.

As an added feature—a status monitor that provides an active-low output when the sensed error voltage is within 10% of the 1.5-volt precision internal reference. The UC1901 operates on voltages between 4.5 and 40-volts. It's available in 14 pin plastic and ceramic DIP's—in military, commercial, and industrial versions. Price at $1.98 to $6.00 each in 100 lots.—Unitrode Corp., 5 Forbes Rd., Lexington, MA 02173.
Anyone who spends a lot of time hacking around with hardware soon finds out that there are certain kinds of circuit requirements that pop up over and over again. Forget the old axiom that there is nothing new under the sun—it’s only half right. There may only be a few new questions, but there are always lots of new answers. One of the words to keep your eyes peeled for when you’re browsing through data books is “programmable.” Whenever you see that word, pay special attention to what follows because there’s a good chance that the information there can save you all sorts of trouble.

The 4018 is billed as a “programmable” counter, meaning that it can be preset to perform division by any number up to ten. And, like the 4017, it can be cascaded to increase the range of division, that is, two IC’s will divide by 100, three by 1000, and so on. Now, those of you out there who have been following along for the last few months on our little trip through the “suburbs of counterland” will probably be wondering why the 4017 was called a “decade counter” while the 4018 enjoys the added adjective of “programmable.” Well, the answer is really simple.

When we used the 4017 for frequency division, there were lots of problems we had to overcome. Some of them, like fixing the reset, could be handled by adding a bunch of extra parts to the circuit. Other problems, like the duty cycle of the output, weren’t quite that simple to handle. Squaring up the output of the 4017 for any kind of division would have required the kind of hardware design that went out the window with 200-watt soldering irons and 12-gauge wire. What we mean is that the 4017 wasn’t really designed to handle the job of frequency division. Sure, if all you care about is knowing “how many” over a period of time, the IC will do the job. But if your application is finicky about the output waveform, you’ll have to turn to the 4018. The 4018 is a real “divide-by-n counter” while the 4017 is simply called a “counter.”

In order to appreciate that unique IC, let’s take a look at Fig. 2. Those are the waveforms you would see if you looked at various points in the circuit using an oscilloscope. Take a really good look at them because there’s more here than is readily apparent—a little imagination will open up all sorts of wild possibilities.

First of all, there are two ways we can use the 4018—let’s call them the “fixed” and “preset” modes; let’s talk about the fixed mode first. In that mode, the IC can do pretty much what the 4017 did—divide by any number from 2 to 10. The device requires a feedback loop to operate and the output is phase-shifted from the previous one by exactly one (incoming) clock pulse. The difference lies in the fact that the unused outputs of the 4017 only stay high for one clock pulse, causing the output of the 4018 to be driven low. In the fixed mode, the outputs are phase shifted with respect to each other so that the output of the 4017 can be used to drive other logic.

In the preset mode, the IC will divide by a particular number. (In our last column, we gave you a table showing which pins to use to divide by a particular number.) Since we’re not using the preset features of the IC, we have to ground the input as well as the reset and enable pins. That is standard practice for all unused CMOS inputs. Although the enable pin really controls the preset functions of the IC, you can think of it as somewhat similar to the enable pin of the 4017.

In any event, the proper feedback signal is provided by AND-ing the Q2 and Q3 outputs together and tying them back to the data input of the IC. Once we do that, the incoming frequency is fed into the clock input and, as we said, we can pick off the divided output from the feedback path.
put waveforms to be really spike-filled and irregular. As you can see from the figure, the 4018 has an output frequency equal to the incoming clock frequency divided by whatever number we selected to divide by. The duty cycle is always just about fifty percent. We say “just about” because division by odd numbers is going to throw the output duty cycle “out of square” by exactly one period of the clock frequency. That is really only a minor annoyance and easy to live with—especially if you remember what the output waveforms of the 4017 looked like.

If we look at the output waveform in Fig. 2, we can see that things turned out as we could have predicted. Since we’re AND-ing outputs Q2 and Q3 together, the output is high only when both Q2 and Q3 are high.

If you’re dividing by ten, you can get the same output symmetry from the 4017 by taking the output from pin 12, the CARRY OUT pin. What’s so special about the 4018 is that division by any number from two to ten will produce the same symmetry at the output. All that you have to do is feed the required Q outputs back to the DATA input. At most, the whole thing is going to cost you one AND gate, and that’s a pretty cheap price to pay. If you don’t have a spare gate on the board you can always accomplish the same thing with a pair of diodes and a resistor, or some other similar arrangement.

Preset mode

Now let’s see what happens in the preset mode—so we can use the programmable features of the 4018. The JAM and ENABLE pins allow us to preset the 4018 to divide by any number we want. What’s happening inside the IC is really very straightforward. Remember that what we’re dealing with is nothing more than a series of interconnected flip-flops. The 4017 is a “serial input-only” type of shift register while the 4018 has both serial and parallel inputs. When we use the 4018’s JAM inputs, what we’re really doing is presenting the appropriate information to the serial inputs of the internal flip-flops and then strobing that information into internal latches by taking pin 10, the ENABLE pin, briefly high.

If you remember the design of the keyboard encoder we did some time ago, you’ll realize that we used the same sort of strobing technique to latch the selected keyboard entry onto the data bus. What’s happening here with the 4018 is exactly the same sort of thing. The designer of the IC was kind enough to put the latches on the substrate for us, so we don’t have to go through the brain damage of hardwiring it ourselves. The code that we have to use to preset a number in the 4018 is, however, not a standard sort of code. That makes sense when we look at Fig. 3, a block diagram of the 4018’s guts.

As you can see, what we have is a series of five flip-flops daisy-chained together. The incoming frequency of the clock line controls the speed at which the data is going to be routed through the flip-flops. The actual data is just various combinations of the Q outputs of the flip-flops that are fed back to the start of the delay chain. If you think of that whole arrangement as a shift register, which is what it really is, you should have no trouble understanding exactly what’s going on. Parallel loading with the JAM inputs is exactly the same as loading a shift register with parallel inputs. As a matter of fact, you should be able to see that the code that has to be used to load a number into the IC is the same code that the Q outputs present for any particular number.

When you reset the IC using the JAM inputs, all you’re really doing is forcing the IC to start its count as if that number had already been reached by means of feeding the serial input. In other words, parallel loading a number is going to make the IC start its count at that number. Frequency division will have to be rethought a bit, since the IC is going to start out at a particular number and then reset to that same number when the count in the IC reaches 10. If you want to divide by four for instance, you’ll have to load a six into the IC. That way the IC will reset after $10 - 6 = 4$ counts. That may sound confusing but five minutes of actually playing with the IC will make it clear.

Parallel loading should make you think about what you have to do to make the operation switch-selectable. A simple rotary switch (if you’re lazy) or a keyboard select (if you’re ambitious) should allow you to divide by any number you choose, and the IC will provide glitch-free, highly symmetrical outputs. The added advantage of using that IC over the 4017 is that the output will be square, (or nearly square) regardless of the shape of the incoming wave. Think about that for a while.

Next month we’ll discuss trying out that IC in a “real-world” application. We’ll see how it can serve as the bridge for us to cross from the somewhat restrictive digital world to the occasionally flaky and always unpredictable world of analog circuitry.
COMMUNICATIONS CORNER

Communications noise

HERB FRIEDMAN COMMUNICATIONS EDITOR

No matter where you turn today, you are sure to find that digital technology will play an ever-increasing role. Consider, for instance, noise-free sound reproduction. Audiophiles look to digital systems for wow-free and noise-free discs and tapes, while the communications industry looks to digital advances to remove noise from signals.

Noise has always plagued AM broadcasts. That's because noise itself can amplitude-modulate a transmitted signal. So when the receiver detects the transmitted signal, it also detects noise. That noise can be either atmospheric or man-made, continuous or impulse. (The constant "grind" one hears from a mobile CB is impulse noise.)

![Noise Pulse](image1)

Figure 1 is a simplified illustration of how noise might be added to a transmitted signal. Note that the noise can be in-phase or out-of-phase with the desired signal. That makes it hard to eliminate—though the phase relationship makes no difference to the ear.

Until the CB era, most noise filters were simple clippers. The clipping level was set at or near the maximum detector output as shown in Fig. 1-a. Any impulse that exceeded the set clipping level was eliminated. The resultant output appeared similar to that shown in Fig. 1-b. (Notice that the noise pulses are still present but those above the clipping level are sharply attenuated.) Even those attenuated pulses were extremely annoying to the operator. Because of that, the clipping level was often set so that it actually clipped the signal. While that produced even greater noise attenuation, it distorted the desired signal (which can be clipped about 10 dB before becoming "muddy").

You've probably already figured out that a fixed clipping level has many problems associated with it. For instance, if the incoming signal is weak, its noise will be under the clipping level. On the other hand, if the clipping level is set low enough to affect weak signals, strong signals will be clipped excessively.

Eventually, the communications industry came up with the floating or self-adjusting clipper. Its clipping level is controlled by the average DC level of the detector. Say for example, the incoming signal is weak. The floating clipper automatically lowers the clipping level. In contrast, if the received signal is strong, the clipping level is raised. In that way the clipper won't cut too deeply into the desired signal. The fuzz over clipping levels eventually reached a point where only better quality and/or higher-cost receivers provided an adjustable noise limiter. That allowed the clipping level to be user-selected for a given signal.

It was CB that introduced really effective noise limiting into consumer equipment. That's because most CB gear was installed in some kind of vehicle (since it was originally intended for mobile use) and motor vehicles are among the worst noise generators around. The AM clippers simply couldn't handle the noise created by the ignition system—primarily impulse noise. (Though the vehicle's generator whine was just as annoying—it could be easily corrected using a few simple filter components.)

A much more effective noise-reduction system was needed. Engineers had developed one, called a noise blanker, but it was too expensive for consumer equipment that used vacuum-tubes. But with the introduction of transistors it became possible to build a noise blanker into moderate-cost receivers. The cost of noise blankers plunged even further because of the mass-marketing of CB equipment. In fact, by the end of the CB boom, virtually all CB transceivers were equipped with noise blankers.

How it works

Figure 2-a shows how an early noise blanker worked. The basic receiver used a double-conversion system—with the first conversion at a frequency of about 2.5 to 4 MHz. A noise gate—essentially a normally open electronic switch that is controlled by a DC voltage—is inserted between the first and second IF's. Some of the RF is split off at the amplifier's output and sent to a simple sidechain receiver. A sidechain receiver is one that is tuned to an unused frequency that's slightly different than the desired frequency. Say, for instance, that the desired signal frequency was 27 MHz. Then the sidechain receiver would be tuned to 25-26 MHz.

The sidechain receiver is used to detect noise pulses. (That makes the reasonable assumption that the noise at 25 MHz is essentially identical to the noise at 27 MHz.) The output of the sidechain receiver is detected and a DC voltage corresponding to each received noise pulse is generated. That DC voltage is used to control the gate in the main receiver. Whenever a noise pulse is received, the resulting DC is used to turn off the noise gate, thereby punching holes in the signal as it passes from the first IF to the second. The resulting audio signal is shown in Fig. 2-b. The signal is noise-free with "holes" where there would normally be noise pulses. The holes are shown in the conventional manner using little notches in the output signal. The notches are just for clarity—they represent discontinuities in the output.

The sidechain noise blanker performed superbly, but was limited in frequency range and used too many additional components. (To a manufacturer, if 10,000 components are used when 10,001 will continue on page 114
WHEN TESTING THE DECODER, look for the following signals: The input should look something like what's shown in a. The signal in b should be seen on pin 5 of IC1. The signals in c and d should be seen at the base and collector of Q3 respectively. The waveform shown in e should be seen at the junction of R10 and R11.

To return the horizontal-blanking pulse (which contains the horizontal sync and colorburst information) back into its proper location. The scrambled video should be clear.

Once the circuit is working properly on one scrambled channel, you will have to switch to other scrambled channels to see if the circuit is tracking properly. If it isn't (and some channels are not being properly descrambled), some minor, final touch-up adjustments will have to be made.

Remember that switch S1 has to be open to view a scrambled channel, and must be closed to view a non-scrambled channel. Unless you modify the circuit with a bypass-switch arrangement, it will be necessary to leave this circuit on whenever you watch TV.

Visit a Hospitalized Veteran

During the Week of Feb. 14

National Salute to Hospitalized Veterans

A Public Service of this Publication and the Veterans Administration
WE'VE TALKED ABOUT PULSE-MODULATED POWER SUPPLIES IN THE PAST—WELL, HERE'S ANOTHER ONE FOR YOU. THIS TIME WE'LL TAKE A LOOK AT SYLVANIA'S C3 COLOR-TV CHASSIS. BECAUSE OF THE INCREASED USE OF PULSE-MODULATED SUPPLIES, WE THOUGHT IT WOULD BE AN INTERESTING TOPIC TO DISCUSS IN THIS MONTH'S "CLINIC."

The power supply found in the C3 chassis is a bit more complex than some but a lot less than others. It does the same job as all the rest—that is, it controls the amplitude of the B+ voltage by varying the pulse-width of the driving signal.

HOW IT WORKS

The schematic shown in Fig. 1 is taken from the manufacturer's service notes on the C3 chassis. The power supply contains a half-wave doubler circuit. The half-wave doubler circuit outputs +310 volts that is needed to power the high-voltage circuits in the set. If that voltage is missing, check the 220-µF input capacitor to the voltage-doubler circuit (C402) and the doubler diodes (D400 and D402) for defects.

Referring to the schematic, note that the input signal is applied to Q400. That signal comes from IC500—the sync processor (not shown), which contains both the horizontal and vertical oscillators. The IC produces a positive-going 6-volt peak-to-peak sawtooth waveform at the horizontal frequency. It's powered by a 10-volt start-up voltage taken from a tap in the primary circuit of an integrated flyback-transformer or IFT (not shown). If that start-up voltage is missing—nothing works.

The sawtooth waveform is applied to the base of Q400, the pulse shaper. The duration of the pulses from Q400 is controlled by the pulse-width regulator (Q404) by using the B+ adjustment potentiometer R426. The output of Q400 is a controlled negative-going 4-volt spike and is applied to the base of the horizontal driver, Q402.

Transistor Q402 squares-up and inverts the signal and applies it to the switched-mode regulator, Q410. The switched-mode regulator has a 310-volt supply voltage applied to its collector. It steps-up the input signal and outputs a 310-volt square-wave. That output is applied to the switched-mode-regulator transformer, T402.

The 130 volts DC that powers the high-voltage circuitry is developed here from the switching waveform. That signal vol-

FIG.1

RADIO ELECTRONICS
age also drives the horizontal output transistor and that in turn drives the integrated flyback transformer (IFT). Note that the horizontal output transistor is not shown. The flyback transformer develops all the low-voltage DC supplies for the set's circuitry, except the audio stages. The audio circuitry is fed from a separate +20-volt DC supply.

Protective circuitry

The customary overvoltage/current protection is provided. We'll look at the overvoltage protection first. Overvoltage conditions are detected by transistor Q412, which receives its source voltage from an IFT-derived +12-volt supply. That voltage is regulated at +6.8 volts by Z402 at the base of Q412. The IFT's secondary provides approximately 6 volts to the emitter of transistor Q412. If that voltage rises, the error latch Q408 is turned on—producing an overvoltage condition that turns off the set.

An overcurrent condition is detected by diode D410. When that occurs the diode is forward biased causing current flow. That, in turn, causes the error latch Q406 to turn on and clamp the 6.8-volt bus to ground—turning off power to the set. Anytime Q406 is turned on, Q406 will be on because of the low signal level that's applied to its base.

Service tips

When servicing the C3 chassis, several points should be checked as indicated by the manufacturer. First, make sure that the 6-volt peak-to-peak sawtooth is present at the base of Q400. If it's not there, check the output of IC500; also check the 10-volt start-up voltage that powers the IC.

Verify the presence of the +310 volts that feeds the switch-mode regulator. If that voltage is missing or incorrect, check the 220-µF input capacitor to the voltage-doubler circuit C402 and doubler diodes D400 and D402.

The source voltage for Q402 should be about 50 volts DC during normal operation. If the above is true and Q402 is working, 6.8 volts will be developed from the switching waveform and diode Z400. (The presence of the switching waveform can be verified with a scope.) If Z400 is shorted, a constant overvoltage will occur and cause transistors Q400 and Q404 to be cut off.

If Q410 is shorted, the 310-volt supply will be shorted to ground through T402, R424, R426, and R428. Those three resistors form a voltage divider from the 310-volt source to ground. If the set is left on too long with Q410 shorted, those resistors could increase in value and cause B+ to be incorrect. So, be sure to check those resistors before powering the set again.

The circuit appears complex, but after a closer look you'll see many easily acces-

SERVICE QUESTIONS

BRIGHTNESS PROBLEMS

I've got an RCA CTC-40 with a dark raster; adjusting the brightness control has no effect. Looking around, I found that the control grids are +50 volts instead of the normal +105 volts. The voltage to those is applied through three 2.2-megohm resistors, one to each grid, so any problem there must be common to all three. The B+ voltage is OK, as is the CRT bias control and voltage.—F.K., Port Hope, MI

As you said, the problem must be common to all three resistors. The first thing I see are the three blanking diodes (X26, X33, X40). Since their anodes are connected directly to the grid circuits, they would normally be forward biased by the +105 volts at the grids. However, those diodes also have their cathodes connected to +180 volts at the slider of the bias potentiometer. Normally, that +180 volts continued on page 110
Professional Books That Help You Get Ahead—And Stay Ahead!

Join the Electronics and Control Engineers’ Book Club and...

- Keep up with current technology
- Sharpen your professional skills
- Be ready for new career opportunities
- Boost your earning power

New members!

Any one of these great professional books for only...

| Spectacular values up to $79.90 |

$2.89

as a premium with your 1st selection!
Why YOU should join now!

- **BEST AND NEWEST BOOKS IN YOUR FIELD** - Books are selected from a wide range of publishers by expert editors and consultants to give you continuing access to the best and latest books in your field.

- **BIG SAVINGS** - Build your library and save money too! Savings ranging up to 30% or more off publishers' list prices - usually 20% to 35%.

BONUS BOOKS - You will immediately begin to participate in our Bonus Book Plan that allows you to save up to 20% off the publishers' prices of many professional and general interest books.

CONVENIENCE - 12-14 times a year (about once every 3-4 weeks) you receive the Club Bulletin FREE. It fully describes the Main Selection and Alternate Selections. A dated Reply Card is included. If you want the Main Selection, you simply do nothing. It will be shipped automatically. If you want an Alternate Selection, you must indicate it on the Reply Card and return it by the date specified. You have up to 10 days to decide. If, because of late delivery of the Bulletin, you receive a Main Selection you do not want, you may return it for credit at the Club's expense.

As a Club member you agree only to the purchase of three books during your first year of membership. Membership may be discontinued by either you or the Club at any time after you have purchased the first selection plus two additional books.

MAIL THIS COUPON TODAY

McGraw-Hill Book Clubs
Electronics and Control Engineers' Book Club
PO. Box 582, Hightstown, New Jersey 08520

Please enroll me as a member and send me the two books indicated, billing me for $2.85 per book.

Signature: __________________________ Name: __________________________
Address/Phone: ____________________ City: ____________________________
State: __________________ Zip: ______

This order subject to acceptance by McGraw-Hill. All prices subject to change without notice. Offer good only to new members.

Write Code No. of first selection here: __________________________

Write Code No. of second selection here: __________________________

For more information, write to:
McGraw-Hill Book Clubs, P.O. Box 582, Hightstown, New Jersey 08520
Vital protection for PC Boards

Be safe. Desolder PC components with Endeco irons. Get proper HEAT TO MELT and strong VACUUM ACTION TO LIFT solder and cool both PC board and component without damage.

These PC components replaced fast with Endeco desoldering or soldering tools.

Endeco professional features include safely light that denotes high, low and off on switch mode. 60-construction for long life, light weight and balance for easy use.

Contact your distributor for Endeco desoldering and soldering irons, kits and equipment—or write us today.

Enterprise Development Corp.
5127 East 65th Street
Indianapolis, IN 46220
Phone: (317) 251-1231

CIRCLE 42 ON FREE INFORMATION CARD

CABLE TV
Buy Direct & Save

SUPER SPECIALS

40 CHANNEL CONVERTER $29.95
Advanced Solid State design and circuitry allows you to receive mid & super band channels. Restores programming to Video Recorders.

36 CHANNEL REMOTE CONTROL CABLE CONVERTER $69.95

JERROLD 400 THE ULTIMATE CABLE TV CONVERTER

60 CHANNEL INFRARED REMOTE CONTROL $129.95

Send $5 for Complete Catalog

DIRECT VIDEO SALES
P.O. BOX 1329
JEFFERSONVILLE, INDIANA 47130
CALL 1-812-292-4766

CIRCLE 53 ON FREE INFORMATION CARD

SERVICE QUESTIONS
continued from page 105

would reverse bias the diodes and they would not conduct. But what happens if the +180 volts is low? Why the diodes would conduct, pulling the grid voltage down.

Even though your note said that the bias control and voltage are OK, I would re-check both with the above in mind. In the past, similar situations have been caused by a shored blanking transistor that has pulled the +180 volts down to a much lower level. The effect is exactly as you described.

Then again, something could be causing the blanking transistor to conduct heavily, which would also cause the same symptoms.

REMOTE APPLIANCE CONTROLLERS

I would like to get some more information on those appliance remote-control modules. Those are the ones that work on a carrier frequency over your house wires.—J.P.K., Grand Rapids, MI

There’s nothing too unusual about those little modules. You already know how the signal is distributed to each outlet—by carrier current. That technique is anything but new, having been used even back in the 1930’s. Today, utility companies make use of that technique for communications between various substations, etc.

As far as the handheld remote control goes, that uses the same principles as your TV remote control, except that the communications medium is ultrasonic rather than infrared.

Incidentally, if you want an excellent, in-depth treatment of how the entire system works, including schematics, take a look at the September 1980 issue of Radio-Electronics.

SNEAKY PROBLEM

I’ve been working on an RCA CTC-55XX with problems in the vertical-sweep section. To make the bottom correct, the top oversweeps and compresses the bottom. I have changed the components on the vertical-sweep board and the vertical-output transformer and still can’t find the problem.—R.C. Vernon, B.C., Canada

From the voltage readings you supplied with your letter, it would appear that the grid of the vertical output section of your 13GF7 is too positive. That would cause the cathode to become too positive as well. That matter is also verified by your readings.

I’ll bet that what you are dealing with is a somewhat sneaky problem that comes up in many sets. Most likely there is leakage between the sections of the service switch. That can cause the grid to become too positive and create the symptom you have described. To check, disconnect the lead from the center terminal of S1-b to the grid of the 13GF7. If that returns the sweep to normal, then you can be sure that you’ve found your problem.

CB COIL

I’ve looked everywhere I can think of to find a replacement for 77, the 27-MHz transmitter driven coil in a Roice 1648 CB radio. The company is no longer in business, and no one I’ve tried can identify the part, or tell me who, if anyone has taken over their line. Can you?—S.W., Ottawa Lake, MI

If memory serves right, Roice was taken over, at least for a time, by Newcom Electronic Services, 1805 Macon St., North Kansas City, MO 64116.

Just out of curiosity, what happened to the original coil? It would seem that a 27-MHz coil would have little wire on it and thus cause little trouble. If you are just guessing that that coil is the cause of your problems try using a grid dip meter to check it out for sure.

Also, if you cannot get the coil from any other source, it should be a relatively simple matter to rewind it. Information on how to do that can be found in a number of sources, including the ARRL’s The Radio Amateur’s Handbook. That book and others with similar information should be available from your local library.

DOTTED RETRACE LINES

In the past you have always been able to help me when I’ve run into problems. This time I’ve got one that’s so confusing that I don’t even know where to begin.

The set I’m looking at works fine, except that on three or four of the twelve channels we receive there are six or seven horizontal lines that occupy the upper six to eight inches of the picture. The lines vary in spacing from channel to channel, and sometimes are accompanied by color dots. My question is: What is it that I am seeing, and how to I go about correcting it.—R.G., Coppemar Grove, TX

There may not be anything wrong with the set, at least as far as defective or malfunctioning parts go. The symptom you described has been seen many times in the past, with several common factors in each occurrence. First of all, most sets are not bothered by the problem, which seems to indicate that the ones that suffer from a design flaw. Second, I’ve never seen the problem on a tube-type set. Third, the stations that the effects are observed on usually fall into one of two types. They are either "premium" stations on which the programming is usually scrambled (the lines and dots would appear on some sets whenever a free glimpse at the programming was provided) or stations that are experimenting with teletext.

R.E
COMPUTER SECURITY HAS BECOME A POPULAR ISSUE. One of the reasons for that has been the popularity of the movie WarGames. In that film, a bright, teenage computer buff accidentally accesses the computer system of the U.S. Defense Department—and almost launches World War III. (A scene from the movie is shown in Fig. 1.) Although WarGames exaggerated the problem a bit, it did bring into focus an issue that becomes more important every day: computer security.

But computer security is not only one issue. For example, from a user's point of view, it involves protecting proprietary data from outside parties (who may decide to log into the data bank to steal or change the secret information—as the hero of WarGames did to change his high-school grades.) From a manufacturer's point of view, security concerns the protecting against the copying of copyrighted software (for data backup or any other purpose). Let's now look at each of the issues in more depth.

Unauthorized access

Of the two problems, securing data from undesirable third-party access is probably the easier to control—WarGames notwithstanding. Sophisticated encryption schemes (that make the data appear to be garbled unintelligibly) can be used. The most commonly used encryption algorithm—the Federal Information Processing Encryption Standard—alters 64-bit text words via a user-specified key. The result is a collection of 64-bit cipher words. Decryption works the opposite way—the encoded word is translated back into the original piece of data. Banks, government agencies, and other high-security institutions commonly use this scheme to prevent the disasters that could occur as a result of the wrong person entering the system (even accidentally).

When the security problem is not one of remote on-line access (for example, an on-premises computer used by several people), another protection scheme is possible. Passwords can be assigned to individuals so that someone who needs to access certain data can do so by entering the password. If you have a group that mutually needs access to a set of data, you can assign one password to the group, or an individual password to each member, so that the information can be accessed only by the proper people.

Still another security method is to store the data on separate disks and then to keep all disks under lock and key. Then a check-in/check-out system can be used. No method is 100% foolproof, of course. Code breakers have pulled off an alarming number of computer data thefts. And "lock-and-key" secured disks are subject to break-in.

Copy protection

The more controversial security issue seems to be the matter of copy-protected software. Much like the debates currently raging in the videocassette industry, the question becomes an ethical matter. When is copying OK? Is it ever OK?

To protect their copyrighted software from bootleg sales, many software manufacturers have used a technique that causes data on the disk to be scrambled if an attempt is made to copy it. It's understandable that a software company wants to protect its profits from being siphoned off (by sales of pirated copies of its software). But selling a disk that cannot be copied can present problems even for users that have no intention of stealing the manufacturer's profits—users who simply want efficient, problem-free operation from their investment.

First and foremost is the problem of backup disks. Because the user's copy can not be backed up, the company will sometimes provide one backup disk of the program (and sometimes not even that). Many users, however, do not feel satisfied with just one backup copy. They rightfully fear that data can be lost on more than one occasion. The choices are to pay for a complete new copy as a backup (sometimes as much as $500 or upwards), or resort to some copy-unlocking scheme.

A related problem is the matter of multiple copies in use by various people on the same premises. Say you have 20 employees at various workstations all using one word-processing program for the same basic project. Is it reasonable for the software company to expect you to pay $10,000 for one application? That example is admittedly extreme, but it does illustrate the problem. Some companies offer a discount on multiple copies, but there is an equal—or greater—number of companies that don't.

continued on page 114
For more details use the free information card inside the back cover.

NEW BOOKS

DATA BASE MANAGEMENT SYSTEMS—

The author explains what a data base is through two examples. You could buy a mailing-list program for your computer, to help you at Christmas time, but that program wouldn’t include many things you really need to know, such as clothing sizes, children’s names, and various personal preferences. That would require you to write your own program—which might take four days’ work. Once you have the program, however, you can manipulate it, adding new material and deleting old material whenever convenient.

Then, suppose you wanted to keep track of your phonograph record collection. You could write a program to do that by following the structure of the mailing-list program—making such changes as were necessary. That would take much less time than it took to do the first program.

Computer experts recognized the need, some time ago, to solve problems like the two noted above, without involving days of programming; thus they invented the data base. It was originally designed to help professional programmers: from that point it was developed for computer users. What a database does is to identify a set of data that a computer can access and operate on—a tool for handling problems that involve information stored on disk.

This book defines the capabilities of three categories of data base management systems: file, relational, and network/hierarchical. It gives you standards whereby you can evaluate data base software, and examines several available packages, as well as discussing future products and trends in data base management. There are many charts and examples of menus.

CIRCLE 131 ON FREE INFORMATION CARD.

**IC TIMER HANDBOOK with 100 projects and experiments, by Joseph J. Carr; TAB Books, Inc., Blue Ridge Summit, PA 17214; 308 pages, including index; 8 7/8 x 5 3/4 inches; softcover, $8.95.

This fully illustrated manual examines the world of IC timers and gives the reader all the theory and practical use-it-now information needed to tackle a wide range of applications—from ordinary bipolar integrated circuits to the XR-2240, CMOS timer circuits, TTL timer units, and even a 12-Volt power supply unit.

The section on bipolar IC’s and operational amplifiers covers inverting followers, noninverting followers, and differential amplifiers, as well as troubleshooting techniques for op-amps. The reader is then introduced to the 555 timer—the most popular IC timer available—and given a thorough explanation of its monostable operation, astable operation, and specific applications. With the wealth of circuits, projects, and experiments included in this book, the reader will be able to take just the nucleus of an idea and develop it into a complete working circuit.

CIRCLE 132 ON FREE INFORMATION CARD.

There are three principal sections in this book: Basic Concepts, Word-Processing, and Business Graphics. The first section introduces the reader to computers and how they are used in word processing and business graphics. Chapter one explains word processing and business graphics; chapter two examines the insides of a computer, while chapter three discusses mass storage of information, and chapter four deals with local networks.

The second section examines the equipment and software that is needed to process text. Chapter five shows how to select the right printer, chapter six deals with word-processing hardware; and editing procedures are discussed in chapter seven. Chapter eight covers the printing and formatting of the text.

The final section concentrates on those aspects of computer graphics that are most useful in business. Chapter nine covers some of the special devices that enter graphical information into a computer, and chapter ten deals with the various electronic displays and recording instruments that are used in graphics. Those two chapters are concerned with hardware; the final two chapters focus on software: the general features of graphics software (chapter eleven) and various applications for graphics in business (chapter twelve).

The appendices consist of a bibliography, a directory of manufacturers, and a glossary.

CIRCLE 133 ON FREE INFORMATION CARD.

CIRCUIT DESIGN USING PERSONAL COMPUTERS, by Thomas R. Cuthbert, Jr.; John Wiley & Sons, Inc., One Wiley Drive, Somerset, NJ 08873; 494 pages, including appendices and index; 9 1/4 x 6 1/4 inches; hardcover, $13.95.

This book is intended for practicing electrical engineers and for university students with at least senior-class standing. Its topics will also interest electronics engineers who design circuits derived in terms of complex variables and functions to provide impedance matching, filtering, and linear amplification. Circuits operating from very low frequencies all the way through millimeter waves can be designed using these techniques. The necessary numerical methods will also be of interest to readers who do not have specific applications.

A guide to designing electronic circuits using small computers and programmable calculators, the book makes easy to implement both classical and sophisticated design techniques. It is filled with clearly-presented diagrams and equations.

CIRCLE 134 ON FREE INFORMATION CARD.

THE VIDEO TAPE HANDBOOK, by Peter Lanzendort; Harmony Books, a Division of Crown Publishers, Inc., One Park Avenue, New York, NY 10016; 240 pages, including glossary, a list of video magazines, and index; 7 1/4 x 8 3/8 inches; $16.95 (hardcover); $7.95 (softcover).

This is a practical guide to making effective, high-quality video programs. It includes instruction on selecting the right video camera, special lenses, tripods, and optical accessories; preparing the script for shooting and taping people, places, and events; setting up for effective lighting and manipulating sound; and ensuring quality editing. There is also a guide on how one should take the proper care of the equipment.

The book is generously illustrated with the latest equipment photos and numerous helpful diagrams.

CIRCLE 135 ON FREE INFORMATION CARD.

DON LANCASER’S MICRO COOKBOOK Volume II: Machine-Language Programming, Howard W. Sams & Co., Inc., 4300 West 62nd Street, Indianapolis, IN 46286; 450 pages including appendix and index; 9 1/4 x 6 1/4 inches; softcover, $15.95.

This is the second of three volumes on the fundamentals of microprocessors and microcomputers; and since the pagination is continuous throughout the set, it starts with chapter six. (Volume one covered the fundamentals of microprocessors that are needed to start understanding machine-language programming.)

Machine language was chosen because nearly all the most efficient and popular microcomputer programs run only in machine language. The present volume will show the reader the basics of machine-language programming through a series of discovery modules, that he or she can apply to the microprocessor family and the microcomputer of his or her choice. Once the elements are
mastered, the reader can advance to assembly language, which is automated machine-language programming that is made much faster, more convenient, and more fun.

The ideas that the reader can draw from this book can be put to use in creative and profitable use, from the collection of 63 new microcomputer applications that are presented here.

CIRCLE 135 ON FREE INFORMATION CARD

RADIO ANTENNAS, by Stephen Gibson; Reston Publishing Company, Inc., A Pratice-Hall Company, Reston VA; 165 pages including appendix and index; 6 x 9 inches; softcover; $13.95.

This book thoroughly explains antenna systems for the beginning amateur radio operator. The various types of antennas are described with illustrations and photographs, and the advantages and disadvantages of each are noted. The reader is told how to design, construct, and erect antennas for use in the amateur bands.

The reader is given the basics of radio-wave propagation, and the effects of the sun and ionosphere are described. There is also information about antenna testing, measuring instruments and techniques, and possible sources of supply for the components needed.

CIRCLE 137 ON FREE INFORMATION CARD

BEGINNER'S GUIDE TO READING SCHEMATICs, by Robert J. Traister; TAB Books, Inc. Blue Ridge Summit, PA 17214; 134 pages including index; 6 1/2 x 9 1/4 inches; softcover; $8.95.

This is a guide to electronics schematic diagrams that will make even the most complex circuit or system as easy to decipher as an ordinary road map. The reader is taken step-by-step through every phase of understanding and using electronics-circuit diagrams or schematics. He or she will learn how and why schematics are used; how each symbol is derived, used, and drawn; and how individual symbols are combined to represent electronics circuits. Clearly shown is which symbols stand for capacitors, resistors, inductors, transformers, switches, conductors, cables, solid-state components, batteries, vacuum tubes, and every other basic electronics element.

CIRCLE 138 ON FREE INFORMATION CARD

PRACTICAL ELECTRONIC BUILDING BLOCKS Book 1, by R. A. Penfold; Electronic Technology Today, Inc., PO Box 240, Massapequa Park, NY 11762; 109 pages 4 1/4 x 7 inches; softcover; $5.75.

Nearly any electronic circuit will be found to consist of a number of stages, or building blocks, if it is analyzed carefully. Rather than gates, shift registers, and the like, linear circuits are usually composed of filters, amplifiers, oscillators, monostables, etc.

This book is designed to aid electronics enthusiasts who like to experiment with circuits and produce their own projects instead of simply following project designs published in books or magazines.

The circuits for a number of useful building blocks are included here. Where relevant, details of how to change the parameters of each circuit are given, so that they can be modified easily to suit individual requirements.

CIRCLE 139 ON FREE INFORMATION CARD

Don’t be in the dark about birth defects. Call your local chapter.

Support March of Dimes Birth Defects Foundation

FEBRUARY 1984

This space contributed by the Publisher

www.americanradiohistory.com
Gives excellent reception 50 KHz to 30 MHz.

The American Radio Historical Society

Continued from page 102

Continued from page 88

Power supplies

Give your choice power input to your equipment.

RF active antennas

50 MHz to 30 MHz. Gives excellent reception.

AMERICAN

ACTIVE

HUMANA

UNION

OF YOUR

SWITCHING CIRCUITS

CONTINUED FROM PAGE 102

COMPUTER CORNER

CONTINUED FROM PAGE 88

RADIO ELECTRONICS
MARKET CENTER

FOR SALE

CABLE TV SECRETS - the outlaw publication the cable companies tried to ban. HBO. Movie channels. Snowtime, descramblers, converters, etc. Suppliers list included. Send $8.95 to CABLE FACTS, Box 711-R, Pataskala, OH 43062.

RESISTORS, M4/MW/MFC, F. 3 co-il, 1k M, 1/2 W. All values. No minimums. Volume discounts. Write JR INDUSTRIES, 5834-B Swancreek, Toledo, OH 43614.

COLOR computer VIC-20 programs hardware Rf code EPROM Programmer RS-232 FRANK LYMAN, Box 209J, Nashua, NH 03061.

SCANNER monitor accessories - kits and lecture accessories. Free catalog. CAPRI ELECTRONICS, 43614.

MCGEE STREET cable companies tried to ban. HBO, Movie Channel, code E PROM programmer RS-232 FRANK LYMAN, Box 209J, Nashua, NH 03061.

COLOR computer VIC-20 programs hardware Rf code EPROM Programmer RS-232 FRANK LYMAN, Box 209J, Nashua, NH 03061.

$15.00. Send $3.00 for our catalog of books and electronics products. A.T.S., Dept. R, 61 Gaches St., Buffalo, NY 14212.

WRITE FOR

McGEE'S

SPEAKER & ELECTRONICS CATALOG

1001 BARGAINS IN SPEAKERS

Tel.: (816) 842-9992

401 MCGEE STREET KANSAS CITY, MO. 64102

QUALITY MICROHFE TV ANTENNAS

FREQUENCY 1.8 TO 2.4 G Hz

COMPUTER EMULATOR "Mini-A" for Commodore 64/128, or Apple II/II+ (special) - for Atari 8-bit computers. Mets electronics from $25.00. Write for information and price list.

For complete literature and free product list, send $4.00 to Philips Instrument Design Co., Inc., 155 F W Mathews, Building 111, Box 711 S, Oregon, 97035.

BAYTRONICS, Dept. RE, Box 591, Sandusky, OH 44870.

RF parts/Motorola Transistors, MRF454 $16.50, MRF455 $5.50. Catalog available. RF/PARTS CO., 1320 Grand, San Marcos, CA 92069. (619) 744-0720.

UP: $500.00 per month. Sell computer software in your home. Write to AM COMPUTER SERVICES, Box 7748, Tuscaloosa, AL 35403.

SAVE on guaranteed quality surplus! Free flyer. ELECTRONICS LTD., 3214 South Norton, Sioux Falls, SD 57105.

ELECTRONIC SURVEILLANCE INSTRUCTION manual, "Homemade Bugging" by several social techniques used by professionals (schematics included)

To run your own classified ad, put one word on each of the lines below and send this form along with your check for $2.15 per word (minimum 15 words) to:

() Plans/Kits () Business Opportunities () For Sale

() Education/Instruction () Wanted () Satellite Television

PLEASE PRINT EACH WORD SEPARATELY, IN BLOCK LETTERS.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

PLEASE INCLUDE FOR OUR FILES YOUR PERMANENT ADDRESS AND PHONE NUMBER.

CLASSIFIED COMMERCIAL RATE for firms or individuals offering commercial products or services: $2.15 per word prepaid (no charge for zip code). Minimum 15 words. 10% discount for 6 issues.

NON-COMMERCIAL RATE (for individuals who want to buy or sell a personal item): $1.50 per word prepaid.

ONLY FIRST WORD AND NAME will be bold caps. Additional bold face (not available as all caps, but at 20c per word. All copy subject to publisher's approval. ADVERTISMENTS USING P.O. BOX ADDRESS WILL NOT BE ACCEPTED UNTIL ADVERTISER SUPPLIES PUBLISHER WITH PERMANENT ADDRESS AND PHONE NUMBER. Copy to be in our hands on the 20th of the third month preceding the date of the issue (i.e., August issue closes May 20th). When normal closing date falls on Saturday, Sunday, or a holiday, issue closes on preceding working day.

FEBRUARY 1984

www.americanradiohistory.com
SANYO VHF AMPLIFIER KIT

For sale in AM/WB channels 91-133
Tuning voltage: 1 to 220VAC input resistance: 75 ohm with 7.14k ohm

Model 111-540BA: Video 6B5MH
Model 111-5400A: Video 6D5MH

Tuner is the most important part of the circuit. Do not mistake tuner transistors. All transistors are new from Sanyo. When ordering specify model number.

MARK IV - 15 STEP LED POWER LEVEL INDICATOR KIT

This new step indicator kit consists of 15 discrete LED's in 15 percent steps which indicates the sound level output of your amplifier from 30dB to 85dB. Comes with a white illuminated gray, pressed plastic push button. No need for battery orAC power. The 15 percent steps are clearly visible and can be seen from any distance. The kit includes a 15 LED display, 15 percent step switches, and a 15 percent step LED board. The LED's are all new from Sharp. The kit includes a 15 percent step board and a 15 percent step switch. The kit is easy to install and uses no external power source.

LOW TEMPERATURE THERMOCOUPLE KIT

This kit contains a thermocouple and a matching amplifier that can be used to measure temperature over a wide range. The kit includes a thermocouple, a matching amplifier, and a user's manual. The kit is easy to use and is suitable for a wide range of applications, including industrial and laboratory environments.

SANYO ANTENNA SIGNAL BOOSTER KIT

This kit contains a signal booster and a matching amplifier that can be used to improve the signal strength of a television or radio receiver. The kit includes a signal booster, a matching amplifier, and a user's manual. The kit is easy to install and uses no external power source.

HIGH POWER DC POWER STEREO AMP KIT

This powerful stereo amp kit is perfect for high-powered audio applications. The kit includes a high-power DC amplifier, a matching power supply, and a user's manual. The kit is easy to install and uses no external power source.

WHISTLE ACTIVATED SWITCH BOARD KIT

This kit contains a whistle switch board that can be activated by a whistle or a similar sound. The kit includes a whistle switch board, a user's manual, and a user's manual. The kit is easy to install and uses no external power source.

LOW TIME DC STEREO PRE-AMP KIT

This kit contains a stereo pre-amplifier and a matching power supply that can be used to boost the signal level of a stereo system. The kit includes a stereo pre-amplifier, a matching power supply, and a user's manual. The kit is easy to install and uses no external power source.

STereo MIC and Echo MIXER FOR STEREO AMPLIFIER SYSTEM

This kit contains a stereo microphone and an echo mixer that can be used to enhance the sound quality of a stereo system. The kit includes a stereo microphone, an echo mixer, and a user's manual. The kit is easy to install and uses no external power source.
HIGH QUALITY 55dB GAIN MICROWAVE TV SYSTEM
Variable from 1.9 to 2.5 GHz

The latest advance in microwave technology with a SNOW-FREE PICTURE.

Two Models to choose from:
Both Models Include:
• Pre-assembled Probe with Down Converter
• Power Supply and Coax Switch
• 80' of RG-59/U Coax with Connector
• Transformer for 75 to 300 Ohms

For All Mountain Area, or Fast and Easy Installation

CIRCLE 39 ON FREE INFORMATION CARD

Learn micro-processing with the new MICRO-PROFESSOR IP

Students, engineers or technicians—upgrade your micro-processing skills with the new Micro-Professor IP.

The MFP-IP features:
• extensive software support
• more built-in memory
• improved keyboard
• larger display

Three tutorial guides help cover all capabilities. The ideal training tool! MFP-IP will deliver you into the growing world of micro-processing. Invest now!

Plus—FREE GIFT

Only $179.95

Check this box for FREE CIRCLE 75 ON FREE INFORMATION CARD

NEW! Build electronic combination lock. Controls anything—intelligent car alarm, office, etc. Delivers $1000 (refundable). STARK ELECTRONICS, Security Division, Box 11653, Edmonton, Alberta, T6E 1L1.

Back and forth light tester similar to that seen on Knight Rider. (See ad in this issue.) Complete price $10. DON LUCAS, 14720 Cedar St, Alliance, OH 44601.

ROBOTS-world directory, plants, patents, MFGS. $3.00. WM. OLIVADOI, 2515 Santa Clara Ave., Alameda, CA 94501.

CIRCLE 39 ON FREE INFORMATION CARD

FREE: Get complete monthly listings, send for sample copy.

SATELLITE TELEVISION

SATELLITE TV receiver breakthrough! Build your own commercial quality receiver now! Instruction manual, schematics, circuit board, Send stamped envelope: XANDI, Box 25647, Dept. 21W, Tempe, AZ 85282.

$79.00! 21-channel receiver with built-in preamplifier, and $200.00 receiver! Send $5 for more information.

FREE: Information on 100 satellite-reception channels plus own catalog of proven do-it-yourself projects for easy, low-cost, attractive satellite antennas. Also, wholesale electronics components. GFI-5, Box 1584, Brookfield, MD 21710.

CIRCLE 75 ON FREE INFORMATION CARD

SATELLITE TV VIEWERS

SATELLITE TV NEWS

Stop for free information card

ROBOTS-world directory, plants, patents, MFGS. $3.00. WM. OLIVADOI, 2515 Santa Clara Ave., Alameda, CA 94501.

CIRCULATE 30 ON FREE INFORMATION CARD

BUSINESS OPPORTUNITIES

WHOLESALE TV CATV VCR equipment, antennas, audio cables, adapters, original replacement cartridges & stylus, telephone accessories, radio, cassette recorders, etc. Send letterhead for free catalog (212) 392-0509 D&W, 66-1211 St, Flushing, NY 11375.
NEW FROM RAMSEY 20 MHZ DUAL TRACE OSCilloscope

Unsurpassed quality at an unbeatable price, the Ramsey oscilloscope compares to units costing hundreds more. Features include a component testing circuit that will allow you to easily test resistors, capacitors, digital circuits and diodes. TV video sync filter, wide bandwidth & high sensitivity. Internal ground & high quality rectangular CRT. Front panel face plate rater, 2 x 2 high sensitivity x mode & very low power consumption, regulated power supply, built-in calibrator, automatic triggering, high quality hook-up probes.

$399.95 high quality hook-up probes included

RAMSEY D-1100 VOM-MULTITESTER

A compact and reliable design to service a wide variety of equipment. Features include: triple-digit, mirror back scale, double-polarized precision battery test, double polarity, over range indication & automatic decimal placement. A must for the beginner or as a spare back-up unit.

$199.95 test leads and battery included

RAMSEY D-2100 DIGITAL MULTITESTER

A compact, easy-to-use unit designed to operate like a pro. Featuring: 3 digit + .5 volt +.1 volt accuracy. In-line color-coded selection. Area plastic flip tested. Contains digital probes, over load protection, over range indication, automatic decimal placement. A must for the beginner or as a spare back-up unit.

$549.95 test leads, battery & vinyl carrying case included

CT-70 7 DIGIT 525 MHZ COUNTER

Led technology in a breakthrough price. Features include: 3 digit, 100 million count, 100 MHz max frequency, 50 MHz @ 10 MHz test sensitivity, 10 MHz time base, 1 MHz bandwidth, 10 ppm accuracy.

$119.95 wired includes AC adapter

CT-90 9 DIGIT 1.2 GHZ COUNTER

The most versatile for less than $200. Features include: 3 digit, 100 MHz max frequency, 50 MHz @ 10 MHz test sensitivity, 10 MHz time base, 1 MHz bandwidth, 10 ppm accuracy.

$149.95 wired includes AC adapter

DM-700 DIGITAL MULTIMETER

Professional quality at a competitive price. Features include: 20 different ranges and 5 functions: 3 digit, 1000 Mv, 10 Gv, 0.1 Vt, automatic or manual placement. Automatic polarity.

$119.95 wired includes AC adapter

PS-2 AUDIO MULTIPLIER

The PS-2 is handy for high resolution audio-resolution measurements, multiple channel use frequency, 10 digit, 10 Gv, 0.1 Vt, 500 Mv, 0.1 Vt, 0.1 Gv resolution & built-in signal generator/conditioner. For professional use, high accuracy.

$499.95 wired includes AC adapter

PR-2 COUNTER PRESCALER

The PR-2 is ideal for determining measurement signals from 10 to 1000 MHz, 10 digit, 10 Gv, 0.1 Vt, 500 Mv, 0.1 Vt, 0.1 Gv resolution & built-in signal generator/conditioner.

$449.95 wired includes AC adapter

ramsey

The First Name in Electronic Test Gear

Ramsey Electronics, Inc.
2575 Baird Rd.
Penfield, N.Y. 14526

Circle 79 on free information card

Phone orders Call
716-586-3950
Telex 66735 Ramsey ct
SUPERIOR UHF PREAMP KIT

Most advanced UHF preamp kit ever to be offered! Unit will drastically improve picture quality of all UHF-TV stations and even find stations you never thought existed. Great for generating that extra gain decoders need for maximum stability. Kit includes all parts, power supply, enclosure and instructions for only $29.95. Free postage handling for prepaid orders. COD’s $1.75, catalog $2.00. HOWARD RESEARCH AND DESIGN. PO Box 204, Ellicott City, MD 21043 (301) 485-8116.

Cable TV

Dealers wanted: Channel 2, 3, and 4 notch filters. Money back guarantee. Send $15.00 for sample and quantity price list. Specify channel(s). LEE KURTZ. PO Box 291374, Dade. FL 33329.

Communications Equipment

Videsocan 1000 slow scan TV—high resolution amateur phone line, surveillance, telecommunication. CODE STAR—decide Morse, RTTY, ASCII, Large LED display. Connect: VHF-20 computer printer. Troubleshoot power supply kit assembled. Free brochures. MICROCRAFT CORPORATION. Box 613-Re, Throntville, WA 98992. (414) 241-8144.

March of Dimes

Birth Defects Foundation

Help Fight

Birth Defects

MOVING?

Don’t miss a single copy of Radio-Electronics. Give us:

ATTACH
LABEL
HERE

Six weeks’ notice

Your old address and zip code

Your new address and zip code

name (please print)

address

city state

zip code

Mail to: Radio-Electronics

SUBSCRIPTION DEPT., P.O. BOX 2520.
BOULDER, COLO. 80322

When you put part of your savings into U.S. Savings Bonds you’re helping to build a brighter future for your country and for yourself.

Take stock in America.

A public service of the publication and The Advertising Bureau.

www.americanradiohistory.com
16K Apple™ Ramcard
LIST 195
ACP $49.95
• With 80 Columns
• Expand Apple II 48K to 64K
• Compatible with Z-80 Softcards

Top quality — gold fingers
Full 1 year warranty
64K Apple IIe Ramcard
• Also with 80 Columns . . . only $99 95

RAM UP-GRADES
64K D RAM (4164-200nS) 9 pcs for $50 00
16K D RAM (4116-200nS) 8 pcs for $12 95

REPEAT OF SELL-OUT
68 Key Unencoded Keyboard
$19.95 RL

Unencoded Key Pad
20 Key Switchable Pad $12.95 RL

R5232 SIGNAL TESTER
LOW COST R5232 LINE TESTER (5 LED indications)
Model DE-4
19.95

64K CMOS Ramcard
For Apple II • Compatable
Uses $11.95 RL CMOS RAM in
32k S-100 Static RAM Kit
96-KHz Users 2-114
$129.00

CORCOM FILTER
Popular CORCOM Filter
Compatible low cost as $6.95 RL

32K S-100 Static RAM Kit
96-KHz Users 2-114
$129.00

SUPE S suppressor
"Surgeonics" Power Sfrnty
For Apple II
Power Surge Suppression
Must be added to Apple II
$17.95 RL

CONNECTORS
3L WIRE WRAP SOCKETS (GOLD)
Bump type + Wires in parallel
12 pin x 20 Socket $18.55 RL
6 pin x 20 Socket $11.00 RL

MUFFIN® FAN
The...
ETCO ELECTRONICS
DEPT. 5919
Mailing List Control Center
Box 840
Champlain, N.Y. 12919

<table>
<thead>
<tr>
<th>Please rush postpaid</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 for 1 year subscription to the world famous ETCO catalog.</td>
</tr>
<tr>
<td>$2 Canadian & Foreign 1 year subscription to the ETCO catalog, 354 page handbook. "BUILD YOUR OWN EARTH STATION". (TAM) $10.00</td>
</tr>
<tr>
<td>$360 pages MASTER HANDBOOK OF TELEPHONES. (TAM) $11.00</td>
</tr>
<tr>
<td>FREE - sample copy of the bargain packed ETCO catalog. (USA only).</td>
</tr>
</tbody>
</table>

Name: _____________________________
Address: ___________________________
City: _____________________________
State: ____________ Zip: ____________

CIRCLE 51 ON FREE INFORMATION CARD

BEC Electronics
P.O. BOX 461244
GARLAND, TX 75046
(214) 487-9033

OVER 45,000 SOLD SINCE 1971!
SOUND EFFECTS KIT

This unit uses the TI 76677 IC and adds the easyability to complete your unit will be able to reproduce almost any sound you want. Comes complete with PC board and instruction. Components are provided. All you need to add is speaker. The circuitry of the kit provides you with a Poly Generation, NIX Oscillator & Comparator to make more complete sounds and loops. Programming examples provided to help you get used to the unit.

Special
SUPER MUSIC MAKER KIT
27.95

Includes Case & Output Box.

12 Volt A.C. (Optional)

A simple kit to wire applications. We include all components and quality PC board. You take the gage, to help you make the correct connections.

528a

WINDSHIELD WIPER DELAY
Complete assembled P.C. card with 3C relay and controls. Carries with custom molded pushers, on/off switch, and foot pedal. Special introduction price $11.95

Transformer
25 NC @ 2A
12 VAC @ 6 A
6 VAC @ 6 A

POWER SUPPLY
N 50 WATT 14 VAC @ 5 A

RED LED
10/32

TESTS: Battery Condition, Pickup, Output, Ground, and RV Coil

ASSEMBLE KIT, INSTALL MOUNTS.

ORDER AS-25 BEFORE FEB. 29, PAY AS 50 FOR BOTH!

The Best Deal! This hand built Automotive Tested checker and new the KITs listed below are all made by the same manufacturer. One used in the first unit made at least 11 months ago and the last unit made is over 6 months ago. This tester will last a lifetime in operation and for its price the first time used Units are all $35.

Soldercraft
P.O. Box 688
JERSEY CITY, N.J. 07302

SOLDER CRAFT
FREIGHT FREE On All Orders Over $25

To place your order call: TOLL FREE 800-645-4808

SN 60/40 Rosin Core (RA)
One lb. Reels
15 swg $9.75
18 swg $10.50
20 swg $10.95
24 swg $10.50

SN 52 (2% Silver) Eutectic Rosin Core
21 swg $9.95

Plus FREE Desoldering Wick

With each pound of solder

Special for the Month

www.americanradiohistory.com
Computer Connectors

<table>
<thead>
<tr>
<th>Type</th>
<th>Positions</th>
<th>Cat. No.</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID Card Edge</td>
<td>34</td>
<td>276-1551</td>
<td>9.99</td>
</tr>
<tr>
<td>ID Card Edge</td>
<td>50</td>
<td>276-1566</td>
<td>9.99</td>
</tr>
<tr>
<td>Card-Edge Socket</td>
<td>44</td>
<td>276-1551</td>
<td>9.99</td>
</tr>
<tr>
<td>ID-Sub Male</td>
<td>25</td>
<td>276-1566</td>
<td>9.99</td>
</tr>
<tr>
<td>ID-Sub Female</td>
<td>25</td>
<td>276-1566</td>
<td>9.99</td>
</tr>
<tr>
<td>Solder-Sub Male</td>
<td>9</td>
<td>276-1537</td>
<td>9.99</td>
</tr>
<tr>
<td>Solder-Sub Female</td>
<td>9</td>
<td>276-1537</td>
<td>9.99</td>
</tr>
</tbody>
</table>

Tantalum Capacitors

- 20% Tolerance
- Standard IC Pin Spacing

- **UF**
 - VSW: 271-1432 (DIN)
 - Each: 3.99

Power Transformers

- 120VAC Primaries
 - 6.3: 273-1385 (DIN)
 - 12: 273-1385 (DIN)
 - 24: 273-1385 (DIN)
 - 30: 273-1385 (DIN)
 - 450: 273-1385 (DIN)
 - 0.1: 273-1385 (DIN)
 - 1.0: 273-1385 (DIN)
 - 2.2: 273-1385 (DIN)
 - 10: 273-1385 (DIN)
 - 22: 273-1385 (DIN)

Save Money, Install Your Own Telephones!

- **1/4-Watt, 5% Resistors**
 - 5pk: 39¢

- **Ohms**
 - Cat. No.: 271-1301
 - Cat. No.: 271-1302
 - Cat. No.: 271-1303
 - Cat. No.: 271-1304
 - Cat. No.: 271-1305
 - Cat. No.: 271-1306
 - Cat. No.: 271-1307
 - Cat. No.: 271-1308

- **Price**
 - Each: 39¢

Semiconductor Reference Guide

- 349

- **Price**
 - Each: 39¢

Semiconductor Reference Guide

- 349

- **Price**
 - Each: 39¢
POPULAR TELEVISION CIRCUITS

WHY PAY MORE?

SINE WAVE SUPER BOARD

- K5W 1463 Sine Wave Kit $19.95 - 30 kHz
- K5G 1469 Sine Wave/RCB Kit $24.95
- PCB 6252 Sine Wave PCB Only $29.95 - $30.00

MICRO WAVE PROBE

- KMP 2000 Micro Probe Kit $24.65
- PCB 2000 Micro Probe only $4.95

INC

- 128 Micro Power Supply Kit $19.95 + $3.00

ANTENNA TV SERVICE TECHS

- 28 Pin luminescence/chroma integrated circuit as used in CTC-108 (1982) chassis. Equivalent to IC U-701. Replaces RCA #14568A. MICRO-MART #5008

REPLACEMENT IC BARGAINS

Any of the following for $1:
- 221-42, 221-69, 221-96, 221-105, 221-106, 5604 (ECG)
- Equiv. 714), 76-2 (ECG)
- Equiv. 714), LM1310, LM1800

RADIO ELECTRONICS

- ANY RADIO ELECTRONICS ITEM
- 4218 S. 36TH PL. PHOENIX ARIZONA 85040
- ORDER BY (800) 243-6700

IF YOU NEED QUARTZ CRYSTALS

- one or hundreds -

YOU NEED JAN

- High stability
- Prompt service
- Cost savings

JAN CRYSTALS

P.O. Box 60617
Fl. Myer, FL 33906-6017
All phones (813) 936-2397

CIRCLE 38 ON FREE INFORMATION CARD

CIRCLE 27 ON FREE INFORMATION CARD

CIRCLE 13 ON FREE INFORMATION CARD

CIRCLE 24 ON FREE INFORMATION CARD

MICRO-MART

UNF TV PREAMP

(Also featured in RadioElectronics March/May 1987)

This inexpensive taped mounted preamp can add more than 20 dB of gain to your system. Lots of satisfied customers and repeat orders for this high quality unit which includes all components parts, PC RCB, Complete Power Supply Module $34.50

Assembled Version $57.50

ATTENTION TV SERVICE TECHS

(Special New IC Purchase)

- 28 Pin luminescence/chroma integrated circuit as used in CTC-108 (1982) chassis. Equivalent to IC U-701. Replaces RCA #14568A. MICRO-MART #5008

PRICE: $10.95 (1-4) $9.95 (5-9) $8.95 (10+ pieces)

CIRCLE 38 ON FREE INFORMATION CARD

R.F. ELECTRONICS

10100 N. STATE COLLEGE BD. #244
ANAHIMI, CALIFORNIA 93530

PERSONAL CHECKS HELP FOR CLEARANCE

- 50% minimum order
- All ship paid orders 3 days on less $25.00 including 10% shipping & handling - Ships 3 days after received

CIRCLE 44 ON FREE INFORMATION CARD

www.americanradiohistory.com
<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATIC RAMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2101</td>
<td>256 x 4 (cmos)</td>
<td>1.95</td>
</tr>
<tr>
<td>5101</td>
<td>256 x 4 (cmos)</td>
<td>3.95</td>
</tr>
<tr>
<td>212L-2</td>
<td>1024 x 4 (cmos)</td>
<td>1.49</td>
</tr>
<tr>
<td>212L-2D</td>
<td>1024 x 4 (cmos)</td>
<td>6.40</td>
</tr>
<tr>
<td>212</td>
<td>256 x 4 (cmos)</td>
<td>8.80</td>
</tr>
<tr>
<td>2111</td>
<td>256 x 4 (cmos)</td>
<td>10.89</td>
</tr>
<tr>
<td>2112</td>
<td>256 x 4 (cmos)</td>
<td>11.25</td>
</tr>
<tr>
<td>2111-25</td>
<td>1024 x 4 (cmos)</td>
<td>12.45</td>
</tr>
<tr>
<td>2111-1</td>
<td>256 x 4 (cmos)</td>
<td>13.15</td>
</tr>
<tr>
<td>2111-4</td>
<td>1024 x 4 (cmos)</td>
<td>15.55</td>
</tr>
<tr>
<td>2114L-3</td>
<td>256 x 4 (cmos)</td>
<td>20.42</td>
</tr>
<tr>
<td>2114L-4</td>
<td>1024 x 4 (cmos)</td>
<td>20.95</td>
</tr>
<tr>
<td>2114L-8</td>
<td>256 x 4 (cmos)</td>
<td>22.30</td>
</tr>
<tr>
<td>2114L-16</td>
<td>1024 x 4 (cmos)</td>
<td>22.85</td>
</tr>
<tr>
<td>TC5516</td>
<td>2048 x 4 (cmos)</td>
<td>3.55</td>
</tr>
<tr>
<td>TC5518</td>
<td>4096 x 4 (cmos)</td>
<td>7.15</td>
</tr>
<tr>
<td>TM5404-4</td>
<td>4096 x 4 (cmos)</td>
<td>7.65</td>
</tr>
<tr>
<td>TM5404-4D</td>
<td>4096 x 4 (cmos)</td>
<td>7.95</td>
</tr>
<tr>
<td>TM5404-4D-2</td>
<td>4096 x 4 (cmos)</td>
<td>8.25</td>
</tr>
<tr>
<td>MK6118</td>
<td>4096 x 4 (cmos)</td>
<td>8.55</td>
</tr>
<tr>
<td>TM5728-160</td>
<td>2048 x 4 (cmos)</td>
<td>9.05</td>
</tr>
<tr>
<td>TM5728-16100</td>
<td>2048 x 4 (cmos)</td>
<td>9.45</td>
</tr>
<tr>
<td>HM1114-4</td>
<td>2048 x 4 (cmos)</td>
<td>9.75</td>
</tr>
<tr>
<td>HM1115-4</td>
<td>2048 x 4 (cmos)</td>
<td>10.15</td>
</tr>
<tr>
<td>HS1113-4</td>
<td>2048 x 4 (cmos)</td>
<td>10.45</td>
</tr>
<tr>
<td>HS1114-4</td>
<td>2048 x 4 (cmos)</td>
<td>10.75</td>
</tr>
<tr>
<td>HS1115-4</td>
<td>2048 x 4 (cmos)</td>
<td>11.05</td>
</tr>
<tr>
<td>HS1116-4</td>
<td>2048 x 4 (cmos)</td>
<td>11.35</td>
</tr>
<tr>
<td>HM1116-4</td>
<td>2048 x 4 (cmos)</td>
<td>11.65</td>
</tr>
<tr>
<td>HM1116-6</td>
<td>2048 x 4 (cmos)</td>
<td>11.95</td>
</tr>
<tr>
<td>HM1116-8</td>
<td>2048 x 4 (cmos)</td>
<td>12.25</td>
</tr>
<tr>
<td>HM1116-12</td>
<td>2048 x 4 (cmos)</td>
<td>12.55</td>
</tr>
<tr>
<td>HM1116-16</td>
<td>2048 x 4 (cmos)</td>
<td>12.85</td>
</tr>
<tr>
<td>HM1116-20</td>
<td>2048 x 4 (cmos)</td>
<td>13.15</td>
</tr>
<tr>
<td>LP</td>
<td>Low Power</td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td>CMOS</td>
<td>8.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>DYNAMIC RAMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM54027</td>
<td>4096 x 1 (cmos)</td>
<td>1.99</td>
</tr>
<tr>
<td>UPM420</td>
<td>4096 x 1 (cmos)</td>
<td>2.29</td>
</tr>
<tr>
<td>MM51280</td>
<td>4096 x 1 (cmos)</td>
<td>3.00</td>
</tr>
<tr>
<td>MK5165</td>
<td>1912 x 1 (cmos)</td>
<td>1.95</td>
</tr>
<tr>
<td>IR4761-4</td>
<td>1024 x 1 (cmos)</td>
<td>1.95</td>
</tr>
<tr>
<td>IN1160-4</td>
<td>1024 x 1 (cmos)</td>
<td>1.95</td>
</tr>
<tr>
<td>IN1160-8</td>
<td>1024 x 1 (cmos)</td>
<td>1.95</td>
</tr>
<tr>
<td>IN1160-16</td>
<td>1024 x 1 (cmos)</td>
<td>1.95</td>
</tr>
<tr>
<td>IN1160-32</td>
<td>1024 x 1 (cmos)</td>
<td>1.95</td>
</tr>
<tr>
<td>KI411A</td>
<td>128 x 1 (cmos)</td>
<td>0.50</td>
</tr>
<tr>
<td>KI412A</td>
<td>256 x 1 (cmos)</td>
<td>0.95</td>
</tr>
<tr>
<td>KI411A-8</td>
<td>128 x 1 (cmos)</td>
<td>0.75</td>
</tr>
<tr>
<td>KI411A-16</td>
<td>128 x 1 (cmos)</td>
<td>0.75</td>
</tr>
<tr>
<td>KI411A-32</td>
<td>128 x 1 (cmos)</td>
<td>0.75</td>
</tr>
<tr>
<td>Z-7112</td>
<td>128 x 1 (cmos)</td>
<td>0.75</td>
</tr>
<tr>
<td>HM1024X</td>
<td>128 x 1 (cmos)</td>
<td>0.75</td>
</tr>
</tbody>
</table>

EPROM ERASERS
- Computer managed inventory — virtually no back orders!
- Very competitive prices!
- Friendly staff!
- Fast service — most orders shipped within 24 hours!
<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
<th>Stock Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>74500</td>
<td>2.25</td>
<td>Available</td>
</tr>
<tr>
<td>74520</td>
<td>2.20</td>
<td>Available</td>
</tr>
<tr>
<td>74530</td>
<td>2.15</td>
<td>Available</td>
</tr>
<tr>
<td>74540</td>
<td>2.10</td>
<td>Available</td>
</tr>
<tr>
<td>74550</td>
<td>2.05</td>
<td>Available</td>
</tr>
<tr>
<td>74560</td>
<td>2.00</td>
<td>Available</td>
</tr>
<tr>
<td>74570</td>
<td>1.95</td>
<td>Available</td>
</tr>
<tr>
<td>74580</td>
<td>1.90</td>
<td>Available</td>
</tr>
<tr>
<td>74590</td>
<td>1.85</td>
<td>Available</td>
</tr>
<tr>
<td>74600</td>
<td>1.80</td>
<td>Available</td>
</tr>
<tr>
<td>74610</td>
<td>1.75</td>
<td>Available</td>
</tr>
<tr>
<td>74620</td>
<td>1.70</td>
<td>Available</td>
</tr>
<tr>
<td>74630</td>
<td>1.65</td>
<td>Available</td>
</tr>
<tr>
<td>74640</td>
<td>1.60</td>
<td>Available</td>
</tr>
<tr>
<td>74650</td>
<td>1.55</td>
<td>Available</td>
</tr>
<tr>
<td>74660</td>
<td>1.50</td>
<td>Available</td>
</tr>
<tr>
<td>74670</td>
<td>1.45</td>
<td>Available</td>
</tr>
<tr>
<td>74680</td>
<td>1.40</td>
<td>Available</td>
</tr>
<tr>
<td>74690</td>
<td>1.35</td>
<td>Available</td>
</tr>
<tr>
<td>74700</td>
<td>1.30</td>
<td>Available</td>
</tr>
<tr>
<td>74710</td>
<td>1.25</td>
<td>Available</td>
</tr>
<tr>
<td>74720</td>
<td>1.20</td>
<td>Available</td>
</tr>
<tr>
<td>74730</td>
<td>1.15</td>
<td>Available</td>
</tr>
<tr>
<td>74740</td>
<td>1.10</td>
<td>Available</td>
</tr>
<tr>
<td>74750</td>
<td>1.05</td>
<td>Available</td>
</tr>
<tr>
<td>74760</td>
<td>1.00</td>
<td>Available</td>
</tr>
<tr>
<td>74770</td>
<td>0.95</td>
<td>Available</td>
</tr>
<tr>
<td>74780</td>
<td>0.90</td>
<td>Available</td>
</tr>
<tr>
<td>74790</td>
<td>0.85</td>
<td>Available</td>
</tr>
<tr>
<td>74800</td>
<td>0.80</td>
<td>Available</td>
</tr>
<tr>
<td>74810</td>
<td>0.75</td>
<td>Available</td>
</tr>
<tr>
<td>74820</td>
<td>0.70</td>
<td>Available</td>
</tr>
<tr>
<td>74830</td>
<td>0.65</td>
<td>Available</td>
</tr>
<tr>
<td>74840</td>
<td>0.60</td>
<td>Available</td>
</tr>
<tr>
<td>74850</td>
<td>0.55</td>
<td>Available</td>
</tr>
<tr>
<td>74860</td>
<td>0.50</td>
<td>Available</td>
</tr>
<tr>
<td>74870</td>
<td>0.45</td>
<td>Available</td>
</tr>
<tr>
<td>74880</td>
<td>0.40</td>
<td>Available</td>
</tr>
<tr>
<td>74890</td>
<td>0.35</td>
<td>Available</td>
</tr>
<tr>
<td>74900</td>
<td>0.30</td>
<td>Available</td>
</tr>
<tr>
<td>74910</td>
<td>0.25</td>
<td>Available</td>
</tr>
<tr>
<td>74920</td>
<td>0.20</td>
<td>Available</td>
</tr>
<tr>
<td>74930</td>
<td>0.15</td>
<td>Available</td>
</tr>
<tr>
<td>74940</td>
<td>0.10</td>
<td>Available</td>
</tr>
<tr>
<td>74950</td>
<td>0.05</td>
<td>Available</td>
</tr>
</tbody>
</table>

Visit During Our Expanded Retail Store Hours: Saturday 10 to 3
FOR APPLE COMPUTER USERS

GET SUM IN 1984!
JDR HALF-HEIGHT DISK DRIVE
* 35 Track w/Apple Controller
* 40 Track Controller and DOS
Available (Call for Price)
$239.95

JDR 16k RAM CARD FOR APPLE II+
* 2 YEAR WARRANTY
$44.95

JDR COOLING FAN CLEARANCE SALE!
* With Surge Protection
* Quantities Are Limited!
$49.95

OTHER ACCESSORIES FOR APPLE II
THUNDERCLOCK
* Real-Time Clock Calendar * Software Included
* Mountain Software Compatible
* BSR Control Options Available
KRAFT JOYSTICK
$39.95

VIEWMAX-80 NOW ONLY $159.95
* 80 Column Card for Apple II+
* Video Soft Switch
* Reverse Video * 2 Year Warranty

VIEWMAX-80e NEW $129.95
* 80 Column Card for Apple IIe
* 64K RAM Expandable to 128K
* 64K RAM Upgrade
$47.60

GRAPHMAX
* Hi Resolution Graphics
* Printer Card
* Centronics Parallel Interface
Graphmax with Color
& Zoom Options
$149.95

VIEWMAX-80 NOW ONLY $159.95
* 80 Column Card for Apple II+
* Video Soft Switch
* Inverse Video * 2 Year Warranty

VIEWMAX-80e NEW $129.95
* 80 Column Card for Apple IIe
* 64K RAM Expandable to 128K
* 64K RAM Upgrade
$47.60

GRAPHMAX
* Hi Resolution Graphics
* Printer Card
* Centronics Parallel Interface
Graphmax with Color
& Zoom Options
$149.95

MA SYSTEMS
FD-35 DISK DRIVE
* Shugart Mechanism — Made In U.S.A.
* Direct Replacement for Apple Disk II • 1 Year Warranty
CONTROLLER CARD
* One Year Warranty
$69.95

APPLE COMPATIBLE POWER SUPPLY
* Use To Power Apple-Type Systems
* +5V @ 5A +12V @ 3A
-5V @ 5A -12V @ .5A
* Instructions Included
$79.95

PERISOFT PRINTLINK
* Low Cost Centronics Parallel Interface with Cable and Manual
* Serial Interface
* Connects Virtually Any Serial Device
* Includes Cable
$59.00

FEDERAL EXPRESS SERVICES AVAILABLE

TIMELINK
* Real-Time Clock Calendar with Alarm Feature
* ALL WITH ONE YEAR WARRANTY
$84.00

MONITORS
MONOCROME
BMC BM 12AUX GREEN 122 NEW
$89.95
BMC BM 12AUX 18 MHZ AMBER
$139.95
NEC JB1201M - 20 MHZ GREEN
$169.00
ZENITH ZVM-121 - 15 MHZ GREEN
$99.00
COLOR
BMC BM-AU911U COMPOSITE 13
$279.00
AMDEK COLOR 1 COMPOSITE
$335.00

NASHUA DISKETTES
5" WITH HUB RING
MDI SOFT SECTOR. 55/6D 19.95
MDI SOFT SECTOR. 55/0D 29.25
MDI2 SOFT SECTOR. 55/0D 30.75
MD2F SOFT SECTOR. 55/0D DENSITY 45.00
MD110 10 SEC SOFT HARD. 55/0D 19.95
MD210D 10 SEC HARD. 55/0D 29.95
8" WITH HUB RING
FDI SOFT SECTOR. 55/0D 24.75
FDI2 SOFT SECTOR. 55/0D 30.00
FDD2 SOFT SECTOR. 55/0D 36.75

VISIT OUR RETAIL STORE
HOURS: M-W-F. 9-5 T-Th. 9-9 Sat. 10-3
PLEASE USE YOUR CUSTOMER NUMBER WHEN ORDERING

Retail: Minimum order $15. For shipping and handling include $3.50 US (speed delivery) and $3.50 for UPS the order over $15. No charge to hold orders. We reserve the right to limit quantities and substitute merchandise. All merchandise subject to prior sale.

JDR Microdevices
1224 S. Bascom Ave. • San Jose, CA 95128
(408) 995-5430 • Telex 171-110

© Copyright 1983 JDR Microdevices
CIRCLE 49 ON FREE INFORMATION CARD

FEBRUARY 1984

www.americanradiohistory.com
This will be coming to you when you subscribe to Radio-Electronics:

- HELPFUL CONSTRUCTION ARTICLES
- NEWS ON NEW TECHNOLOGY
- FASCINATING "HOW TO DO IT" ARTICLES
- HOW YOU AND THE COMPUTER CAN BE FRIENDS
- NEW AUDIO DIMENSIONS FOR YOUR FUTURE
- TY WONDERS FOR YOUR FUTURE
- AND YOU also get the MONTHLY FEATURES

Radio-Electronics covers all aspects of the fast moving electronics field...featuring COMPUTERS • VIDEO • STEREO • TECHNOLOGY • SERVICE • COMMUNICATIONS • PROJECTS

Subscribe today to Radio-Electronics. Don't miss a single issue and...you save as much as $13.03 off the newsstand price.

Every Month! Get the Best—Mail Today!

Mail to: Radio-Electronics
P.O. Box 2520, Boulder, CO 80322

□ 1 year—12 issues only $14.97
□ Payment Enclosed
□ Bill Me
□ 2 years—(Save More)—24 issues—$28.97
(Save $13.03 off the newsstand price)

Name ____________________________
Address __________________________
City ____________________________ State ________ Zip Code ____________

Place masked item against wall and use as a counterbalance. Yearly subscription only $14.97. Enclosed

MAIL TO Radio-Electronics, P.O. Box 2520, Boulder, CO 80322

When you select one of the subscription offers listed on the handy coupon—you'll be assured of having your copy reserved even if it sells out on the newsstand. Make sure you get all the excitement in every issue of Radio-Electronics every month, by filling it and mailing the coupon, today.

Get it all!
Active Electronics

NUMBER ONE IN QUALITY SERVICE AVAILABILITY

THE WORLD'S MOST COMPLETE PROFESSIONAL AND HOME ELECTRONICS ENTHUSIAST INVENTORY

- Semiconductors + Memories
- Microprocessors & Support Circuits
- Microcomputer Systems + Peripherals
- Passive Electronic Components
- Hand Tools, Wire Wrapping, Soldering Equipment + Hardware

NOW AVAILABLE — FREE 1983 80-page catalog

A complete listing of products and specifications

Call, write or circle the inquiry card for your free copy today.

P.O. Box 8000, Westboro, Mass. 01581
CALL TOLL FREE: 1-800-343-0874

Mass customers call (617) 366-0590

CIRCLE 89 ON FREE INFORMATION CARD
ORDER TOLL FREE (800) 538-8800
(CALIFORNIA RESIDENTS) (800) 848-8008

TERMS: For shipping include $2.00 for UPS Ground or $3.00 for UPS Blue Air. $10.00 minimum order. Bay Area and Los Angeles Counties add 6% Sales Tax, other California residents add 8% Sales Tax. We reserve the right to limit quantities and substitute manufacturer. Prices subject to change without notice.

VISIT OUR RETAIL STORE
2100 De La Cruz Blvd. Santa Clara, CA 95050
(408) 988-0697
Voltage Regulators

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7805T</td>
<td>7805 Voltage Regulator</td>
<td>84</td>
</tr>
<tr>
<td>7812T</td>
<td>7812 Voltage Regulator</td>
<td>84</td>
</tr>
<tr>
<td>7814T</td>
<td>7814 Voltage Regulator</td>
<td>84</td>
</tr>
<tr>
<td>7809</td>
<td>7809 Voltage Regulator</td>
<td>84</td>
</tr>
<tr>
<td>78L05</td>
<td>78L05 Voltage Regulator</td>
<td>84</td>
</tr>
<tr>
<td>78M05</td>
<td>78M05 Voltage Regulator</td>
<td>84</td>
</tr>
</tbody>
</table>

Dip Switches

<table>
<thead>
<tr>
<th>Position</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-8</td>
<td>8 Position Dip Switch</td>
<td>88</td>
</tr>
</tbody>
</table>

IC Sockets

<table>
<thead>
<tr>
<th>Type</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-99</td>
<td>100</td>
</tr>
</tbody>
</table>

Crystals

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.67 Mhz</td>
<td>31.67 Mhz Crystal</td>
<td>9.90</td>
</tr>
</tbody>
</table>

Resistors

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9k</td>
<td>3.9k Resistors</td>
</tr>
</tbody>
</table>

Apple Accessories

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple Card</td>
<td>129.95</td>
</tr>
<tr>
<td>Mac Card</td>
<td>42.95</td>
</tr>
<tr>
<td>Fan</td>
<td>58.95</td>
</tr>
<tr>
<td>Power Supply</td>
<td>84.95</td>
</tr>
<tr>
<td>RF Mod</td>
<td>26.95</td>
</tr>
<tr>
<td>Joy Stick (Apple II)</td>
<td>26.95</td>
</tr>
<tr>
<td>Apple II Disk</td>
<td>19.95</td>
</tr>
<tr>
<td>SCSI Switch</td>
<td>29.95</td>
</tr>
<tr>
<td>Floppy Drive</td>
<td>24.95</td>
</tr>
<tr>
<td>Desk Drive</td>
<td>22.95</td>
</tr>
<tr>
<td>Computer Card</td>
<td>69.95</td>
</tr>
</tbody>
</table>

Z-80

<table>
<thead>
<tr>
<th>Model</th>
<th>Clock Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>8008</td>
<td>2.5 MHz</td>
</tr>
<tr>
<td>8080</td>
<td>4.0 MHz</td>
</tr>
<tr>
<td>8085</td>
<td>6.0 MHz</td>
</tr>
</tbody>
</table>

Discs

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>5¼" Diskettes</td>
<td>5.95</td>
</tr>
</tbody>
</table>

Messenger

<table>
<thead>
<tr>
<th>Interface</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel</td>
<td>8-232 Interface</td>
</tr>
</tbody>
</table>

TimeLink

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Time Clock</td>
<td>Connects to any RS-232 serial device</td>
</tr>
</tbody>
</table>

The Filp Sort™

The Filp Sort™ has all the fine qualities of the original Flip Sort™, with some added benefits. A new design has been created to add a new feature, its price is more reasonable than ever. $19.95 ea.

The Flip Sort Plus™

The Filp Sort Plus™ adds new dimensions to storage. Designed with similar elegant lines as the original Flip Sort™, it is a transparent smoked acrylite. The Flip Sort Plus™ has a storage capacity of over 100 diskettes and has all the outstanding features you have come to expect from the Filp Sort Family.
ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the Index below.

Free Information Number	Page
46	Avco...
46	Active Electronics...
80	Advance Computer Products...
75	Advance Electronics...
87	AP Electronics...
32	Bay State Electronics...
100	Beckman Instruments...
7	Calvert...
18	CAD...
34	CEI...
37	Cunliffe...
103	CIF...
64	Circuit Specialties...
99	Commercial Productions...
38,86	Communications Electronics...
46	Contact East...
105	Contemporary Electronic Series...
68	CPU...
97	CRT...
92	Hammondback...
53	Direct Video...
65	Digit Key...
11	Diggiron...
99	Doak...
54	DTI...

Electric	29
Electronic Specialties...
Electronic Warehouse...
Enterprise Development...
ETCO...
Euronix...
Fireside...
Fordham Radio...
Formula...
Glairdine...
Global Specialties...
Grumman College of Engineering...
Haltronics...
Health...
Hickok...
ICS...
Hilton Audio...
Instrument Mart...
Inram...
Jacob...
Jan Crystal...
JDR...
J&W...
KCSS/Phillips...
Kikuk...
McGraw Hill Book Club...
Mellin Labs...
MPC...
Micro-Mart...

S$39.95

CABLE TV ACCESSORIES

9".12", Commercial

Grade as low as...

SEMICONDUCTOR SPECIAL

ECG Equivalent—Thordarson

T7-75-15
T7-7-10B
T7-7-105
T7-15-20
T7-15-10
T7-15-105
T7-20-30
T7-20-105
T7-30-30
T7-30-105
T7-30-10

$64.95

STEREO SIMULATOR FOR TV & VCR

Jones TV (or VCR) to play through stereo to simulate stereo sound $34.95.

AUTO ALARM SYSTEMS

Kaybell Automatic PASSING—arms when ignition is turned off, automatic turn-off and reset timer $64.95.

10KM Cordless Telephone

Model 5000M (modified) $325.00 excludes external antenna required. For export use only.

TRENDLINE PHONE

Rotary $35.95

Touch-tone $45.75

STANDARD DESK PHONE

Motorola $29.55

Touch-tone $41.95

8 functions and 30 ranges - Diodeterm. test function - auto-polarity, auto-zero and auto-decimal - 10 Amps AC and DC Current Capability - Transistor Gain Test (RTF - Conductance

BECKMAN CIRCUITMATE 20

Jerrod 36 Channel Remote CATV Converter

On-wil Fune Tuning $49.95

58 Channel Wireless $109.95

40 Channel VHF to UHF Block Converter

Deluxe Version - Features fine tuning limits, machinery X Former & 2 cables $38.95

Volume Discounts

Use Order $25.00

International shipping Add $100.00

Extra Postage subject to change. Check shipping without notice

140