INFORMATION EXPLOSION ON YOUR TV—VIDEOTEX!

Radio-Electronics

How speech synthesis works
New car telephone technology
Build a digital thermometer

Build a hi-fi sub-woofer
Using IC voltage references
Dolby HX for hi-fi

BUILD THIS PROM PROGRAMMER AND ZAP YOUR OWN PROM’S

www.americanradiohistory.com
The line of professional soldering stations that gives accurate temperature control all the time!
The EC 1000, 2000, 3000, 4000 soldering stations respond automatically to soldering load variations and maintain the temperature you select to within ±10°F.

from Cooper The Toolmaker.™
We gave solderless breadboarding a new name.

Proto-Board® breadboards by Global Specialties. The leading name in solderless breadboarding.

You find them wherever electronics is important. From labs to production lines to classrooms to home workshop benches. Their name—synonymous with solderless breadboarding—has good reason.

Proto-Board breadboards introduced engineers, technicians, and hobbyists to a new way of designing and building electronic circuits as fast as they can think. Testing, modifying and expanding as quickly as new thoughts occur.

Saving precious time and money by freeing creativity from manual labor.

Global Proto-Board products are arrays of solderless sockets and bus strips that emulate PC board layouts while permitting instant insertion and removal of components from the largest DIP to the smallest discretes. With a rugged construction built to provide positive connections and withstand day-in, day-out professional use— even as test fixtures. And mounted on sturdy metal backplanes, for extended high-frequency use and extra durability.

Their value and versatility are why so many professionals and hobbyists are "Proto-Boarding". And why you should be too.

Available with precision, fixed and variable regulated power supplies, or in unpowered versions. Proto-Board breadboards come in a variety of sizes and configurations, to meet virtually any circuit design challenge.

Call toll-free for details 1-800-243-6077

During business hours

GLOBAL SPECIALTIES CORPORATION

© Copyright 1981 Global Specialties Corporation

CIRCLE 8 ON FREE INFORMATION CARD

ww.americanradiohistory.com
Listen to your planet on a short-wave receiver!

Communications Electronics, the world's largest distributor of radio scanners, is pleased to introduce Panasonic Command Series shortwave receivers. Panasonic lets you listen to what the world has to say. Unlike a scanner, a Command Series radio lets you listen to shortwave broadcasts from countries around the world, as well as the U.S.A. It's the space age shortwave performance you've been waiting for, at a down to earth price you can afford.

All Panasonic shortwave receivers sold by Communications Electronics bring the real live excitement of international radio to your home or office. With your Command Series receiver, you can monitor exciting radio transmissions such as the BBC, Radio Moscow, Ham Radio and our own Armed Forces Radio Network. Thousands of broadcasts in hundreds of different languages are beamed into North America every day. You can actually hear the news before it's news. If you do not own a shortwave receiver for yourself, now's the time to buy your new receiver from CE. Choose the receiver that's right for you, then call our toll-free number to place your order with your credit card.

We give you excellent service because CE distributes more scanners and shortwave receivers worldwide than anyone else. Our warehouse facilities are equipped to process thousands of orders every week. We also export receivers to over 300 countries and military installations. Almost all items are in stock for quick shipment, so if you're a person who needs to know what's really happening around you, order today from CE.

Panasonic® RF-6300

Allow 30-120 days for delivery after receipt of order due to the high demand for this product.

List price $749.95/CE price $499.00

Bands: LW 150-410 KHz, MW 520-1610 KHz, SW1-1.6-30 MHz, SW2-88-108 MHz.

The new Panasonic RF-6300 Command Series PLL synthesized 8-band portable communications receiver, lets you hear the world. The RF-6300 has facilities such as a microcomputer pre-set tuning and PLL synthesized digital tuner. Microcomputer stores up to 12 different frequencies for push-button recall. Tuning control knob. Wide/Narrow bandwidth selector. Double superheterodyne system. Fast/Slow manual tuning. Built-in quartz digital alarm clock. 5 inch dynamic PM speaker. 3 antennas. Multi-voltage Detachable AC cord. Operates on 6-D batteries (not included). Made in Japan.

Panasonic® RF-4900

List price $549.95/CE price $389.00

Bands: MW 525-1610 KHz, SW1-1.6-30 MHz, FM 88-108 MHz.

The Panasonic RF-4900 shortwave receiver features a 6-digit fluorescent display for all 8 SW bands, as well as for AM/FM AC or battery operation. Full coverage from 1.6 to 30 MHz on SW. Covers SSB and CW. Prema Double Superheterodyne system. Fast/Slow 2 speed tuning. AFC Switch on FM. Narrow wide selectivity switch for AM and SW. Antenna gain control. FET RF circuit. Mode switch for AM-CW/SSB. PBO Pitch control. ANL switch for AM. RF gain control. Tuning battery meter with meter function switch. Separate bass and treble tone control. Dial light switch. Digital display on/off switch. Separate power switch. Rack type handle. Made in Japan.

Panasonic® RF-3100

Allow 30-120 days for delivery after receipt of order due to the high demand for this product.

List price $369.95/CE price $269.00

Bands: MW 525-1610 KHz, SW1 5.2-30 MHz, SW2-88-108 MHz.

The Panasonic RF-3100 portable 31-Band portable radio has PLL Quartz-Synthesized tuning that "locks" onto SW stations. Operates on AC or battery. SW frequencies from 1.6 to 30 MHz are in 29 bands. All SW frequencies are pre-set. Horizontal design with front mounted controls for shoulder strap operation. Double superheterodyne for clean SW reception. BFO pitch and RF gain controls. Separate bass and treble controls. Wide/Narrow bandwidth selector. Meter for tuning and battery strength. LED shortwave indicator. Dial switch 3 1/2" FM dynamic speaker. Comes with detachable shoulder belt. Battery power (8-D batteries not included). Made in Japan.

Panasonic® RF-2900

List price $349.95/CE price $249.00

Bands: MW 525-1610 KHz, SW1 3.2-30 MHz, SW2 88-108 MHz.

The Panasonic RF-2900 is a portable five-band shortwave radio with digital display fluorescent frequency display. Full coverage from 3.2 to 30 MHz on SW. Covers SSB and CW. Double superheterodyne receiver. Fast/Slow two speed tuning. AFC switch on FM. Narrow wide selectivity switch for AM and SW. FET RF circuit. BFO pitch control. RF Gain control. Tuning battery meter. Separate bass/treble tone control. SW calibration control. Dial light switch. Digital display on/off switch. Separate power switch. Detachable dial hood included. Rack type handle. Includes whip antenna and ferrite core antenna, speaker, earphone, recording output jacks, AC line and detachable adjustable shoulder belt. Made in Japan.

Panasonic Command Series

RF-4900

TEST ANY RECEIVER

Test any receiver purchased from Communications Electronics for 31 days before you decide to keep it. If for any reason you are not completely satisfied, return it in original condition with all parts in 31 days, for a prompt refund (less shipping and handling charges).

NATIONAL WARRANTY SERVICE

All Panasonic receivers listed in this ad are backed by a two-year limited warranty on parts and labor. In addition, this warranty is backed by a broad network of Panasonic service centers. For two years after original purchase, Panasonic will repair or replace your receiver if purchased and retained in the U.S.A. Customer must take it to an authorized service center. Warranty does not cover damage from abuse, misuse, or commercial use. Proof of purchase is needed for in-warranty service.

BUY WITH CONFIDENCE

To get the fastest delivery from CE of any receiver send or phone your order directly to our Consumer Products Division. Be sure to calculate your price using the CE prices in this ad. Michigan residents please add 4% sales tax. Written purchase orders are accepted from approved government agencies and most well rated firms at a 10% surcharge for net 10 billing. All sales are subject to availability, acceptance and verification. Prices, terms and specifications are subject to change without notice. Out of stock items will be placed on backorder automatically unless CE is instructed differently. International orders are invited with a $20.00 surcharge for special handling in addition to shipping charges. All shipments are F.O.B. Ann Arbor, Michigan. No COD's please. Non-certified and foreign checks require bank clearance. Mail orders to Communications Electronics; Box 1002, Ann Arbor, Michigan 48106. Add $12.00 per receiver for U.P.S. ground shipping and handling. If you have a MasterCard or Visa, you may call anytime and place a credit card order. Order toll-free in the U.S.A. Dial 800-521-4414 Outside the U.S.A. (313) 994-4444 Dealer inquiries invited. Order your Panasonic Command Series receiver today at no obligation.

CE logos are trademarks of Communications Electronics.

Panasonic is a registered trademark of Panasonic Company. A Division of Matsushita Electric Corporation of America.

We're first

With the best.
ON THE COVER

A completely self-contained PROM programmer for storing your programs in reusable 2716 EPROM’s. This project is a must for experimenting with microprocessors and designing microprocessor based projects. Construction details start on page 45.

ANNUAL INDEX
JANUARY—DECEMBER

1981

To present the maximum number of articles to our readers, we have not published the Annual Index as part of this issue. A 4-page brochure containing this index is available for those who need one. To get your free copy, send a stamped self-addressed envelope (legal size) to:

Radio-Electronics
Annual Index
45 East 17th Street
New York, NY 10003

Any requests postmarked on or before April 30 are free. After that date there is a 50¢ fee. Questions and comments about anything other than the Index that are included with your request cannot be handled. Send them separately to our Editorial Offices.

Subscription Service: Mail all subscription orders, changes, correspondence and Postmaster Notices of undelivered copies (Form 3579) to Radio-Electronics Subscription Service: Box 2520, Boulder, CO 80322.

A stamped self-addressed envelope must accompany all
submitted manuscripts and/or artwork or photographs if their return is desired should they be rejected. We
 DISCLAIM any responsibility for the loss or damage of
manuscripts and/or artwork or photographs while in our
possession or otherwise.

FEBRUARY 1982 Vol. 53 No. 2

As a service to readers, Radio-Electronics publishes available plans or information relating to newsworthy products, techniques and scientific and technological developments. Because of possible variances in the quality and condition of materials and workmanship used by readers, Radio-Electronics disclaims any responsibility for the safe and proper functioning of reader-built projects based upon or from plans or information published in this magazine.
VIDEO ELECTRONICS

TUBELESS CAMERA

Video cameras have entered the all-solid-state age in the United States with the start of marketing of Hitachi's MOS camera, which uses a single ½-inch metal oxide silicon IC as an image sensor. The MOS sensor has 180,000 picture elements, providing a claimed 260-line horizontal resolution. The camera weighs 3.96 pounds. The most noticeable aspect of the camera is its small size and light weight—indeed, the lens and viewfinder combined are larger than the camera itself. The picture differs from any made with a Vidicon pickup tube in that there is no lag, smear, or burn-in even when the camera is aimed directly at a light. Hitachi claims that the MOS is good for 100,000 hours, as compared with 5,000 hours' average life of a Vidicon. Among its advantages are low power consumption (3.3 watts), rapid start (picture appears in a half second), reliability, and ruggedness. The suggested list price is $1,995.

MINI-VHS

While Japanese manufacturers were meeting to standardize on the portable VCR of the future using quarter-inch tape, it was revealed that JVC has developed a miniature cassette compatible with the VHS system that can be in production as early as next spring. It will record for up to an hour at the slowest VHS speed in a new ultra-compact portable VCR developed by JVC that weighs about 5.5 pounds and is about 20% smaller than the Technicolor VCR, which uses non-standard quarter-inch cassettes. The mini-cassettes can be played back through the portable recorder or, with an adaptor, through any VHS recorder. JVC is understood to be talking with other companies in the VHS group to adopt its new system as a standard for portables. The new mini-VHS development isn't expected to deter Japanese companies from working on a new quarter-inch standard, but it could take some of the urgency out of their efforts.

NEW MINI-VCR

The smallest and lightest VCR to date made its debut in Germany this past September, and will be headlined this way soon. Ironically, it's made in Japan, not Germany, but will bear the Grundig label in this country. The new recorder is made by Funai Electric and is compatible with the small recorder Funai makes for Technicolor, but it has been completely redesigned. Weight and battery has been trimmed to five pounds (four pounds without battery) as compared with Technicolor's seven pounds, and the entire recorder is about the size of a cigar box. It provides slow and fast speeds, freeze-frame, and records for up to an hour on a quarter-inch cassette only slightly larger than an audio cassette. The price will be about $1,000 in the U.S., including power supply.

HIGH-DEFINITION TV

There have been plenty of proposals for high-definition television, most of them centering on 1,000-plus-line standards requiring about 30 MHz of bandwidth per channel. Now, along comes Imagevision, developed by Compact Video, which requires 10 MHz, is claimed to be "ready for delivery," and uses modified conventional equipment. Imagevision was demonstrated before the Society of Motion Picture and Television Engineers, where it received favorable comment.

Imagevision uses a new television standard called "PALAF" (for Phase Alternate Line Alternate Frame) and has 665 lines, claimed to provide the definition of 1,250 lines in other systems, with 24 non-interlaced frames per second. All the equipment used (such as cameras and videotape recorders) was commercially available gear modified for the system. The most successful demonstration of Imagevision was the projection of part of a movie being made using the system. The movie had been transferred to 35-mm film and was projected on a theater screen. Most observers agreed it looked every bit as good as a movie made directly on 35-mm film. Somewhat less successful were satellite-relayed video pictures projected by light-valve projection-TV systems—but that may be because the projectors became the limiting factors.
Introducing a direct line to a 60 MHz Tektronix scope built for your bench!

From the world's most respected name in oscilloscopes: a new scope, plus a new direct order number, that finally makes it practical to put Tektronix quality on your bench...at work or home.

Among professional engineers and technicians there is no substitute for the performance and reliability of Tektronix oscilloscopes.

Now, for the first time, Tektronix is offering an advanced scope at an unprecedented low price — and has a direct order line that lets you get your order processed today!

The scope: the 2213. Its radical new design brings you Tektronix quality for well below what you would pay for lesser-name scopes.

The 2213's practical design includes 65% fewer mechanical parts, fewer circuit boards, electrical connectors and cabling. Result: a lower price for you plus far greater reliability.

Yet performance is pure Tektronix: there's 60 MHz bandwidth for digital and high-speed analog circuits. The sensitivity for low signal measurements. The sweep speeds for fast logic families. A complete trigger system for digital, analog or video waveforms. And new high-performance Tektronix probes are included!

2213 PERFORMANCE DATA

Bandwidth: Two channels, dc—60 MHz from 10 V/div to 20 mV/div. (50 MHz from 2 mV/div to 10 mV/div)

Sweep speeds: Sweeps from 0.5 s to 50 ns (to 5 ns/div with X10 mag).

Sensitivity: Scale factors from 100 V/div (10X probe) to 2 mV/div (1X probe). Accurate to ±3% A/C or DC coupling.

Delayed sweep measurements: Standard sweep, intensified after delay, and delayed. (Need dual time-base performance and timing accuracy to ±1.5%? Ask about our 2215 priced at $1400.)

Complete trigger system: Modes include TV field, normal, vertical mode, and automatic; internal, external, and line sources; variable holdoff.

Probes: High performance, positive attachment, 10-14 pF and 60 MHz at the probe tip.

The price: Just $1100 complete. Order direct from Tektronix National Marketing Center. Phones are staffed by technical people to answer your questions about the 2213.

Your direct order includes a 15-day return policy and full Tektronix warranty.

Now it's easier than ever to get your hands on a Tek scope!

ORDER TOLL-FREE

800-547-1845

Ask for Department 100

(In Oregon, Alaska and Hawaii: 1-503-627-5402 collect.) Lines are open from 8 am EST to 5 pm PST.

Price F.O.B. Beaverton, OR.
Educators confer on microcomputers

Microcomputer Week '82, the third annual conference co-sponsored by the Center for Advancement of Teaching and Learning (CATALYST) of Jersey City State College, will be held at the college from the 3rd to the 7th of March 1982.

The conference centers on microcomputers in education. Some 66 all-day seminars or short courses will be offered for professional development and improved performance. Each will include eight hours of instructions. Some seminars will extend over two or three days. There will also be 24 informal evening sessions—during dinner and continuing after dinner—for groups with special interests and problems.

Cost of the seminars range from $95 for one day to $73 per day for the whole week. A brochure with complete details, registration forms, etc., has been prepared. Further information is obtainable by phone from 201-434-2154 or 201-547-3994, or by mail from CATALYST Conference, H 112, Jersey City State College, 2039 Kennedy Boulevard, Jersey City, NJ 07305.

TV standards converter for video recorders

Early international television broadcasts were hampered by differing television standards. Systems using the 525-line frames of the United States, Japan, and other countries were incompatible with the 625-line standard of most of Europe. (At one time, France had a 815-line system.)

Those difficulties were overcome in a number of ingenious ways for the first few broadcasts, and very soon "system converters" were designed to input the signals of one system and change the number of lines, modulation method, sync signals, etc., to those of the system to which the signal was being relayed.

Color, with its NTSC, PAL, and SECAM systems, brought new difficulties, which were also quickly ironed out with new converters. Video recording raised the problem anew, an unfortunate circumstance, since videotapes can be shipped more easily than international broadcasts can be set up.

But now a company called Instant Replay (2980 McFarlane Rd., Coconut Grove, FL 33133), has put on the market an Image Translator, in two models. The SMT-1 permits a viewer with a PAL recorder and receiver to play NTSC tapes, without modifying the receiver. The SMT-2 permits a viewer to play back tapes recorded in the PAL format in full color on an NTSC VCR, using an American TV receiver, without modification. It can be used with either direct-view or large-screen projection TV. Thus international video broadcasting's objective of cultural exchange is being extended to video recording.

The Image Translator is an extension of the publishing efforts of the manufacturer. Instant Re-Play Video Magazine, "the world's first video magazine," a two-hour tape published bi-monthly at a price of $59.95 per issue. Believing the television image to be the most nearly perfect medium of international cultural exchange, and the videotape the most nearly universal unit for such exchange, owner and editor Chuck Azar developed the Translator to internationalize the videotape. To promote the internationalization further, a printed list of all Image Translator owners will be sent to all subscribers, to enable them to swap tapes between countries.

Improved approach in auto-focus camera

A new Pentax 35-mm SLR camera, the ME-F, expected on the market in early 1982, introduces a new computerized through-the-lens electronic focusing system. Measuring the actual focal contrast at the center of the field of vision, in a manner similar to that of the human eye, the system is claimed to be far more accurate than those that cover the whole field, or range-finder electronic systems that measure the image-field distance.

PENTAX ME-F single lens reflex camera with new 35-mm-70-mm Zoom lens.

The new camera focuses correctly on complex patterns, subjects behind glass, and over the whole depth-of-field range.

The ME-F lets the photographer know when the subject is in focus by means of a dual-signal indication: an LED lights in the viewfinder at the point of optimum focus and a beep signal sounds.

The list price of the ME-F—with zoom lens—is expected to be about $1,000.

New VideoDisc features demonstrated in France

Dr. Jon K. Clemens, co-recipient of the Rhein Prize 1979, and Director of VideoDisc Systems at RCA's research laboratories, demonstrated the advanced capabilities of the new RCA CED (Capacitance Electronic Disc) system at the recent Vidcom convention in Cannes, France.

Dr. Clemens showed such features as programmable random access, high-speed visual search, repeat picture, and automatic repetition of selected program segments.

In demonstrating the visual-search feature, Dr. Clemens used the prototype system's two search speeds, 16× and 120×. He also programmed the player to repeat sections of the disc, demonstrated its repeat-picture capability, and proved its wear-free feature by playing a still picture from a single groove for 20 minutes—amounting to 9,000 replays of the same groove.

No date was set for the introduction of those advanced VideoDisc player features to the market.

FAA renovating nation's air traffic control

The Federal Aviation Administration is undertaking a program to upgrade air-traffic control computers throughout the country. The program is aimed at meeting projected air-traffic demands of the 1990's and beyond. It will call for replacement of the 23 Air Route Traffic Control Center computers with an advanced system.

RCA has been awarded a $4 million contract to provide system engineering and technical analysis in the program. RCA's work will cover five areas: requirements specification and allocation, cost, schedule, and

continued on page 12
Compact enough to fit under an airplane seat, the Heathkit IO-3220 represents outstanding value in its class. Weighing only 16 pounds, the IO-3220 is designed for field service troubleshooters who need a light, portable battery-operated scope for use where AC power is not available.

Dual-trace versatility: The IO-3220 allows you to compare two different signals simultaneously – to make input/output comparisons, check phase relationships and accomplish other complex measurements. Algebraic functions add versatility.

Special invert display function: Enables you to compare two waveforms that are nearly 180 degrees out of phase – by inverting one of the waveforms.

FREE CATALOG
Complete details on Heathkit oscilloscopes – and nearly 400 other electronic kits for your home, work or pleasure – are in the new Heathkit catalog. Send the coupon at right for yours today, or pick one up at any of the 65 convenient Heathkit Electronic Centers* located throughout the U.S. and Canada.

If coupon is missing, write Heath Co., Dept. 020-866, Benton Harbor, MI 49022.

MAIL TO: Heath Company, Dept. 020-866
Benton Harbor, MI 49022

☐ YES, Please send me your free Heathkit Catalog.
I'm not currently receiving your catalog.

Name

Address

City ______________________ State _____ Zip ____________

GX-387

*Mail Order, F.O.B. Benton Harbor, MI. Also available assembled, mail order priced at $995.00 F.O.B. Prices, specifications and product availability subject to change without notice. * See the white pages of your telephone book for the Heathkit Electronic Center near you. Heathkit Electronic Centers in the U.S. are operated by Veritechology Electronics Corporation, a wholly-owned subsidiary of Zenith Radio Corporation.

X-Y inputs for Lissajous measurements:
Feed two separate input signals to the IO-3220.

Wide DC-20 MHz bandwidth: The IO-3220 can measure a very wide range of input signals.

Outstanding sensitivity: Vertical signals as low as 2 mV can be accurately measured by the very sensitive IO-3220. Accuracy is as high as 3 percent (from 20-30 deg. C), on both vertical and horizontal measurements.

Save more than 30% when you build it yourself: The IO-3220 Portable 20 MHz Oscilloscope Kit is value-priced at just $689.95.

Easy to build: Thorough Heathkit assembly manuals take you step-by-step, from unpacking to final plug-in. Anyone can do it. And experienced service techs are just a phone call away, to help you during building or servicing.
Now NRI takes you inside the new TRS-80 Model III microcomputer to train you at home as the new breed of computer specialist!

NRI teams up with Radio Shack advanced technology to teach you how to use, program, and service state-of-the-art microcomputers.
It's no longer enough to be just a programmer or a technician. With microcomputers moving into the fabric of our lives (over 250,000 of the TRS-80™ alone have been sold), interdisciplinary skills are demanded. And NRI can prepare you with the first course of its kind, covering the complete world of the microcomputer.

Learn At Home in Your Spare Time

With NRI training, the programmer gains practical knowledge of hardware, enabling him to design simpler, more effective programs. And, with advanced programming skills, the technician can test and debug systems quickly and easily.

Only NRI gives you both kinds of training with the convenience of home study. No classroom pressures, no night school, no gasoline wasted. You learn at your convenience, at your own pace. Yet you're always backed by the NRI staff and your instructor, answering questions, giving you guidance, and available for special help if you need it.

You Explore the New TRS-80 Model III Inside and Out

NRI training is hands-on training, with practical experiments and demonstrations as the very foundation of your knowledge. You don't just program your computer, you go inside it...watch how circuits interact...interface with other systems...gain a real insight into its nature.

You also work with a precision 26-scale, 6-function LCD Beckman multimeter featuring full portability and a 3½ digit display. Using it along with the exclusive NRI Discovery Lab and your TRS-80, you perform over 60 separate experiments in all. You learn how to troubleshoot and gain greater understanding of the information your tests give you.

Advanced Technology Microcomputer Is Yours to Keep

As part of your training, NRI sends you the new, state-of-the-art TRS-80 Model III microcomputer. This functional unit is complete with 65-key keyboard and 12″ display in one desk-top unit. It features high-speed cassette loading, built-in interface for parallel printer, and provisions for optional disk drive. Its 4K RAM is internally expandable to 16K or 48K and its BASIC language is compatible with most Model I software.

Along with your multimeter and the NRI Discovery Lab, this latest concept in advanced microcomputers is yours to learn with, yours to keep and use for your own personal programs, business use, and other applications.

Send for Free Catalog...No Salesman Will Call

Get all the details on this exciting course in NRI's free, 100-page catalog. It shows all equipment, lesson outlines, and facts on other electronics courses such as Complete Communications with CB, TV and Audio Servicing, Digital Electronics, eleven different interest areas in all.

Send today, no salesman will ever bother you. Keep up with the latest technology as you learn on the world's most popular computer. If postcard has been used, write to NRI Schools, 3939 Wisconsin Ave., Washington, D.C. 20016.

(TRS-80 is a trademark of the Radio Shack division of Tandy Corp.)
risk analysis, performance analysis, simulation, and modeling, as well as trade studies and technical management standards and practices.

Super circuit chips speed data tenfold

"Super chips," that Hughes Aircraft call "electronic circuits that resemble an array of 100 Los Angeles street maps on a thumb tack," are now being developed at Hughes' laboratories. Called Very High Speed Integrated Circuits (VHSIC), they will be more reliable and require less power than integrated circuits now in use.

The chip technology used in the program includes CMOS (Complementary Metal Oxide Semiconductor) and SOS (Silicon On Sapphire). The SOS technology is especially significant for military systems, because it is inherently hardened against radiation.

Hughes has also received an Army contract to develop a high-speed electron-beam lithography system that will focus beams of electrons to write circuit patterns in submicron dimensions. Those circuit patterns will be converted into transistors and interconnects smaller than any now in production.

Yankee chess computer is new world champion

Chess Champion Mark V, made by SciSys Computer Inc. of New York City, emerged as the winner in the Commercial Division. World Micro Computer Chess Championships, held last fall in Travemunde, Germany. The tournament was held under the auspices of the International Chess Association and the World Chess Federation. It was open to all chess programs executed by readily available one-chip microprocessors.

The Chess Champion Mark V is an AC-powered chess computer with an integral LCD chessboard. Its 32K memory is many times more powerful than the average home computer, and its variable time control enables it to play any form of chess, from Speed to Tournament. It can play 12 games simultaneously against humans, other computers, or even against itself. On request, it can analyze, comment, or advise on the game in progress, and can provide a complete game history or predict the outcome.

Sony Corp sets up a U.S. laboratory

Sony Consumer Electronics Laboratories (SOCEL), a division of Sony Corp of America, will be located in the Century Plaza in Paramus, N.J. reports Sony Corp, executive vice president Kenji Tamura. The laboratories will conduct research, development, and design work particularly the areas of CATV systems and terminals, receivers for direct satellite broadcasts, and videotext/teletext systems and terminals. "The laboratories will offer a unique opportunity for interaction between American and Japanese engineers," said Mr. Tamura.

The new laboratory is the latest in a number of Sony "firsts" in America. In 1972 Sony opened the first U.S. color TV plant owned by a Japanese-based company, in San Diego, CA. In 1977, it established what is now one of the largest magnetic tape plants in the world, in Dothan, AL. The Sony Technology Center in Palo Alto, CA, carries out broadcast equipment research, development, and manufacturing, and was the first Sony facility to be located outside Japan.

Electronic newspaper debuts in Chicago

NITE-OWL, a full-channel teletext publication, is now being broadcast on WFLD-TV, Channel 32, Chicago. Designed for late-night information, it supplies up-to-the-minute news, sports, weather, and other information, and advertising. Information is presented in text form (teletext) on the screen. Teletext was first developed in Great Britain and is now being offered commercially in the United States by Field Electronic Publishing.
SENDING GOOD CW

Fie on Herb Friedman, and a fig in his ear! He seems to be showing an infirmity of old age—intolerance—and maybe even a lack of good sense in “Communications Corner.” Radio-Electronics, October 1981

As a ham, from my earliest days, I tried diligently to send good CW, first on a straight key, then on a swapper (homebrew) and then on the ultimate (for those days): a bug (also homebrew). And, I, too, share his view that handwrought CW is a pure performing art.

First ticketed in 1933, I am now (after a long layoff) a reconstituted ham. Once I got back on the air, I was thunderstruck by the bad straight key fists, the miserably misadjusted and misrun bugs, and that ultimate abomination: the key running its operator instead of the other way around. Do you ever hear a “6” sent with four dots any more?

Then, I, too became aware of the beautiful CW coming from microprocessor keyboards, whether at 20 or 60 wpm. What a joy! As with good writing, I believe that CW should be sent with clarity and intelligibility, and to hell with dialects or accents. If it takes a machine to do it, so be it! It’s all right with me.

So come on, Herb. Don’t display the length and condition of your teeth. Get a good keyboard and join the fun. I have one (homebrew) and it’s better than crackerjack.

C.H. FRERES, KJ6G
San Diego, CA

NIKOLA TESLA

I would like to associate myself with the thoughts expressed in the letters by Marc Seifer and Vince Marasco in the June 1981 Radio-Electronics about Nikola Tesla.

Tesla is one of my favorites. I can turn on my Edison light bulb and visualize, in some vague manner, Tesla’s rotating magnetic field at some remote point miles away. Yes, it is truly Tesla’s rotating magnetic field—the one he discovered before he invented a device wherein the field could reside and produce rotating power: the induction motor. And subsequently, he was forced to invent a device to generate that magnificent field—the polyphase alternator.

Had Edison’s proposal for electric power distribution prevailed, we would now have direct-current generating power plants spaced about every mile where electricity is in use today. And we would know no such thing as the sealed motor-compressor system used in modern refrigeration and air-conditioning systems. Edison’s DC voltage could not be stepped up or down with transformers, and the losses in his system would be great.

What about electric-power transmission without wires? Some large company—I would suggest Westinghouse—should embark upon a research project to rediscover that lost art.

I could go on and on. I am interested in Tesla and his discoveries. A machinist friend of mine is also fascinated, as are others in the electronics field. Had Nikola Tesla never existed, nevertheless, civilization would have required one like him just the same.

Knowledgeable people have been made aware of most of the other great men of the past—so why not the unique Nikola Tesla?

ALFRED C. POWELL
Pensacola, FL

Why not, indeed? Well, you’re doing your part.

LED VU METER ENCLOSURE

Reading through the May 1981 Radio-Electronics, I was struck by the appearance—in the article, “Build This LED VU Meter”—of an enclosure produced by our client, PacTec Corp., subsidiary of LaFrance Corp. I checked carefully for a reference to the PacTec Enclosure, to no avail. In fact, I noted that the kit for the VU-1 available from BFA Electronics actually includes no case at all.

Your readers might like to know that the case seen in the article is available from PacTec, Enterprise and Executive Avenues, Philadelphia, PA 19153. It is one of the series CM enclosures, and appears specifically to be a CM 5-200.

We have many prototyping kits in our line. The kits are particularly useful to designers and hobbyists, and are available in a wide range of sizes. I hope that you and your readers will find this material useful.

JON H. CLINCH
Larwin/Livers Associated, Inc.

RADAR DETECTORS

In reading the “Letters” department in Radio-Electronics, and being the owner of one of the best “Super Het” radar detectors on the market, I can only feel sorry for those people who must constantly challenge the right to own and operate such devices. It is a shame that, for once, the foxes were “outfoxed themselves” by allowing a hole in the law big enough to...
Introducing the Sinclair ZX81

If you’re ever going to buy a personal computer, now is the time to do it.
The new Sinclair ZX81 is the most powerful, yet easy-to-use computer ever offered for anywhere near the price: only $149.95* completely assembled.

Don’t let the price fool you. The ZX81 has just about everything you could ask for in a personal computer.

A breakthrough in personal computers
The ZX81 is a major advance over the original Sinclair ZX80—the world’s largest selling personal computer and the first for under $200.

In fact, the ZX81’s new 8K Extended BASIC offers features found only on computers costing two or three times as much. Just look at what you get:

- Continuous display, including moving graphics
- Multi-dimensional string and numerical arrays
- Mathematical and scientific functions accurate to 8 decimal places
- Unique one-touch entry of key words like PRINT, RUN and LIST
- Automatic syntax error detection and easy editing
- Randomize function useful for both games and serious applications
- Built-in interface for ZX Printer
- 1K of memory expandable to 16K

The ZX81 is also very convenient to use. It hooks up to any television set to produce a clear 32-column by 24-line display. And you can use a regular cassette recorder to store and recall programs by name.

NEW SOFTWARE: Sinclair has published pre-recorded programs on cassettes for your ZX81, or ZX80 with 8K BASIC. We’re constantly coming out with new programs, so we’ll send you our latest software catalog with your computer.

ZX PRINTER: The Sinclair ZX Printer will work with your ZX81, or ZX80 with 8K BASIC. It will be available in the near future and will cost less than $100.

16K MEMORY MODULE: Like any powerful, full-fledged computer, the ZX81 is expandable. Sinclair’s 16K memory module plugs right onto the back of your ZX80 or ZX80, with or without 8K BASIC.

Cost is $99.95, plus shipping and handling.

ZX81 MANUAL: The ZX81 comes with a comprehensive 164-page programming guide and operating manual designed for both beginners and experienced computer users. A $10.95 value, it’s yours free with the ZX81.

If you already own a ZX80
The 8K Extended BASIC chip used in the ZX81 is available as a plug-in replacement for your ZX80 for only $39.95, plus shipping and handling—complete with new keyboard overlay and the ZX81 manual.

So in just a few minutes, with no special skills or tools required, you can upgrade your ZX80 to have all the powerful features of the ZX81. (You’ll have everything except continuous display, but you can still use the PAUSE and SCROLL commands to get moving graphics.)

With the 8K BASIC chip, your ZX80 will also be equipped to use the ZX Printer and Sinclair software.

Order at no risk**

We’ll give you 10 days to try out the ZX81. If you’re not completely satisfied, just return it to Sinclair Research and we’ll give you a full refund.

And if you have a problem with your ZX81, send it to Sinclair Research within 90 days and we’ll repair or replace it at no charge.

**Does not apply to ZX81 kits.

*Plus shipping and handling. Price includes connectors for TV and cassette, AC adaptor, and FREE manual.

**
Introducing the ZX81 kit

If you really want to save money, and you enjoy building electronic kits, you can order the ZX81 in kit form for the incredible price of just $99.95*. It’s the same, full-featured computer, only you put it together yourself. We’ll send complete, easy-to-follow instructions on how you can assemble your ZX81 in just a few hours. All you have to supply is the soldering iron.

How to order
Sinclair Research is the world’s largest manufacturer of personal computers. The ZX81 represents the latest technology in microelectronics, and it picks up right where the ZX80 left off. Thousands are selling every week.

We urge you to place your order for the new ZX81 today. The sooner you order, the sooner you can start enjoying your own computer.

To order, simply call our toll free number, and use your MasterCard or VISA. To order by mail, please use the coupon. And send your check or money order. We regret that we cannot accept purchase orders or C.O.D’s.

CALL 800-543-3000. Ask for operator #509. In Ohio call 800-582-1364. In Canada call 513-729-4300. Ask for operator #509. Phones open 24 hours a day, 7 days a week. Have your MasterCard or VISA ready.

These numbers are for orders only. For information, you must write to Sinclair Research Ltd., 2 Sinclair Plaza, Nashua, NH 03061.

To order, simply call our toll free number, and use your MasterCard or VISA. To order by mail, please use the coupon. And send your check or money order. We regret that we cannot accept purchase orders or C.O.D’s.

MAIL TO: Sinclair Research Ltd., One Sinclair Plaza, Nashua, NH 03061.

NAME

ADDRESS

CITY/STATE/ZIP

1 U.S. Dollars

www.americanradiohistory.com
At CIE, you get electronics career training from specialists.

If you're interested in learning how to fix air conditioning, service cars or install heating systems – talk to some other school. But if you're serious about electronics... even earning an Associate Degree... come to CIE – The Electronics Specialists.

John E. Cunningham
Special Projects Director
Cleveland Institute of Electronics

www.americanradiohistory.com
My father always told me that there were certain advantages to putting all your eggs in one basket. "John," he said, "learn to do one important thing better than anyone else, and you'll always be in demand."

I believe he was right. Today is the age of specialization. And I think that's a very good thing.

Consider doctors. You wouldn't expect your family doctor to perform open heart surgery or your dentist to set a broken bone, either. Would you?

For these things, you'd want a specialist. And you'd trust him. Because you'd know if he weren't any good, he'd be out of business.

Why trust your education and career future to anything less than a specialist?

You shouldn't. And you certainly don't have to. FACT: CIE is the largest independent home study school in the world that specializes exclusively in electronics.

We have to be good at it because we put all our eggs in one basket: electronics. If we hadn't done a good job, we'd have closed our doors long ago.

Specialists aren't for everyone.

I'll tell it to you straight. If you think electronics would make a nice hobby, check with other schools.

But if you think you have the cool — and want the training it takes — to make sure that a sound blackout during a prime time TV show will be corrected in seconds — then answer this ad. You'll probably find CIE has a course that's just right for you!

At CIE, we combine theory and practice. You learn the best of both.

Learning electronics is a lot more than memorizing a laundry list of facts about circuits and transistors. Electronics is interesting because it's based on some fairly recent scientific discoveries. It's built on ideas. So, look for a program that starts with ideas — and builds on them.

That's what happens with CIE's Auto-Programmed® Lessons. Each lesson uses world-famous "programmed learning" methods to teach you important principles. You explore them, master them completely... before you start to apply them!

But beyond theory, some of our courses come fully equipped with the electronics gear to actually let you perform hundreds of checking, testing and analyzing projects.

In fact, depending on the course you take, you'll do most of the basic things professionals do every day — even use a Digital Learning Laboratory to apply the digital theory essential today to keep pace with electronics in the eighties.

Plus there's a professional quality oscilloscope you build and use to "see" and "read" the characteristic waveform patterns of electronic equipment.

You work with experienced specialists.

When you send us a completed lesson, you can be sure it will be reviewed and graded by a trained electronics instructor, backed by a team of technical specialists. If you need specialized help, you get it fast... in writing from the faculty specialists best qualified to handle your question.

People who have known us a long time, think of us as the "FCC License School."

We don't mind. We have a fine record of preparing people to take... and pass... the government-administered FCC License exams. In fact, in continuing surveys nearly 4 out of 5 of our graduates who take the exams get their Licenses. You may already know that an FCC License is needed for some careers in electronics — and it can be a valuable credential anytime.

Associate Degree

Now, CIE offers an Associate in Applied Science Degree in Electronics Engineering Technology. In fact, all or most of every CIE Career Course is directly creditable towards the Associate Degree.

Find out more! Mail this card for your FREE CATALOG today!

If the card is gone, cut out and mail the coupon.

I'll send you a copy of CIE's FREE school catalog, along with a complete package of independent home study information.

For your convenience, I'll try to arrange for a CIE representative to contact you to answer any questions you may have.

Remember, if you are serious about learning electronics... or building upon your present skills, your best bet is to go with the electronics specialists — CIE. Mail the card or coupon today or write CIE (and mention the name and date of this magazine), 1776 East 17th Street, Cleveland, Ohio 44114.
LETTERS
continued from page 13

squeezing my Q-1000 detector through.
I don't believe for one moment that the
cop operating the radar unit is
primarily interested in saving my life on the
roadways, or is instructed and know-
edgeable enough to use the device with-
out error. When I see a cop just
sitting behind a bush, operating those
objectionable devices, I see my state and
local tax money being wasted.

With crime the way it is today, I think
that speeding is the lowest rung on the
ladder when it comes to breaking the law.
I pass as much time spent into committing
other areas of crime as is spent in playing
"cat and mouse" with the motorist. I
think we would see a sharp decline in crime
in those really important areas. Besides, if it
were not for the high revenue collected
by ticketing motorists for their deeds, I
would doubt whether we would see police-
men just sitting around, relaxing in their cars
with their radar units.

To say that every radar-detector owner
has it solely for the purpose of speeding
without getting caught is like saying that
anyone who owns a gun is planning a
bank job or an assassination. The
complainers need is to be tagged by
radar; then their attitudes will change. I
have seen so many radar traps that were
cleverly set up, that I hate to think about
how much money was collected that way.

Let us face the facts: As long as radar is
used the way it is, and radar detectors are
legal—as they should be—then the game
will continue on the highways. I, for one,
will continue to plug in my detector for
protection.

M.J. RYSICKI
Berwyn, IL

THE PIANOCORDER

We read Warren Baker's article about
the Pianocorder in your November 1981
issue with much interest. It is certainly a
fascinating development, and we are pleased
that you have licensed Superscope to
reproduce many of our piano rolls on
their casettes.

I do object to a few minor points,
however. The so-called "old-fashioned"
players are still being manuf-
acted by the thousands, and so are the
rolls, which are not nearly as "fragile" as
you might be led to believe. Some of our
products are 80 years old, and still per-
forming well.

In addition, rolls bear not only the
music but the printed lyrics as well, posi-
tioned to appear simultaneously with
their corresponding notes. Grouping
around an "old-fashioned" player, and
singing along with the rolls, is a pleasure
that no electronic update has yet sur-
passed.

QRS MUSIC ROLLS, INC.
Robert J. Berkman, Adm. Assistant

BACKSCATTER

I'd like to comment on the article by Mr.
Stanley Leinwoll, "Why Radio Moscow is
continued on page 103
NEW! WP-709. Double-slot Supplies

Power supply: 13V or 5V, adjustable ± 1½V at each range. Output is laboratory quality. Ripple less than 10mV, peak to peak. Regulation better than 0.1%. Up to 7.5 amp. at each voltage—plenty for computer circuits, PA systems, mobile transmitters, autos, boats, planes.

HERE’S REAL CONVENIENCE
Front panel controls for instant voltage adjustment and precise fine adjustment to within 0.1V. Two 3-digit LED displays permit continuous monitoring of both voltage and current during use. Current limiting control with instant pushbutton reset.

HERE’S REAL PRECISION
Select the precise voltage you want: 5V or 13V, adjustable ± 1½V at each range. Outputs: 5V or 13V DC, adjustable ± 1½V Zero to 7.5 amp., each voltage. Two LED displays, monitor V or A—or two DC voltmeters Adjustable current limiting

Only $299.75.

DC power to test logic or mobile equipment. Another VIZ Value

Fully regulated, adjustable current limiting power supplies, PLUS two built-in digital DC voltmeters in a single quality unit. Digitally monitor output voltage or current, or two external voltages.

VIZ Supplies

VIZ Supplies

Power supplies with digital displays of voltage and current

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP-705</td>
<td>$289.95</td>
<td>Single output 0-50VDC, 0-2A.</td>
</tr>
<tr>
<td>WP-706</td>
<td>$295.95</td>
<td>Single output 0-25VDC, 0-4A.</td>
</tr>
<tr>
<td>WP-707</td>
<td>$374.75</td>
<td>Dual output Two 0-25VDC, 0-2A.</td>
</tr>
<tr>
<td>WP-708</td>
<td>$424.95</td>
<td>Triple output Two 0-20VDC, 0-2A. One 5VDC, 0-4A.</td>
</tr>
</tbody>
</table>

VIZ DC power supplies

Fully regulated, continuously adjustable voltage outputs with short circuit protection. Analog meters and overload indicators.

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP-702A</td>
<td>$150.75</td>
<td>Dual output Two 0-20VDC, 0-200mA</td>
</tr>
</tbody>
</table>

Want full technical details and a demonstration? Call toll-free: 1-800-523-3696, for the VIZ distributor nearest you

Look to VIZ for value, quality, availability. Over 70 instruments in the line—PLUS full accessories.

VIZ Mfg. Co., 335 E. Price St., Philadelphia, PA 19144

CIRCLE 7 ON FREE INFORMATION CARD

www.americanradiohistory.com
Although line 21 of the vertical blanking interval is used primarily for closed captions for people with impaired hearing, a number of new activities are making that channel look more like teletext. Dozens of programs on ABC, NBC, and PBS are transmitted with those closed captions each week, a special TeleCaption decoder is required.

But in the past few months, several projects have gotten underway to add more text services. For example, early in the year the networks began transmitting "InfoData," which is a text sequence, used initially to announce which programs will be captioned during the coming week. More recently, KCET-TV Channel 28 in Los Angeles began carrying "Newsline," a version of the Associated Press news "ticker" used by cable TV systems. In that service, electronic versions of the news wire scroll across the screen of TV sets keyed into the captioning system. WHA-TV in Madison Wisconsin, KWCM-TV in Appleton, Minnesota and WNET in Newark, NJ are planning similar news and information systems on line 21. All are public-TV stations.

Several teletext packages, intended primarily for cable-TV usage, are going aloft via satellite during the coming months. The most ambitious is one that will supplement "The Weather Channel," a new all-day weather-information service due to get under way in 1982. The teletext portion will include local weather reports transmitted from the Weather Channel's Atlanta headquarters to "Weather STAR" addressable teletext receivers in various cities. Meanwhile, another 24-hour text-only weather-information service, "View Weather," is being transmitted as part of the CableText package on Salcom 1 Transponder 6.

Perhaps the most substantial teletext-via-satellite project is the one now under way at Time Inc. About 4,000 pages of information are being sent over a full transponder from Time Inc. headquarters in New York to Southwestern Cable TV in San Diego (owned by a Time subsidiary) as part of a major teletext test.

Blonder-Tongue Laboratories, a long-time respected supplier of cable-TV hardware, is getting into the earth-station business with a new dish and earth-station modulator.

Forget any ideas about using satellites to collect solar power and beam it down to earth as the next big wave of satellite activity after communications satellites. The U.S. Department of Energy gave a tentative approval to such a concept, which would probably take 50 years to put into place. But a few months ago the National Research Council recommended against such a plan, saying it would be far too costly—as much as 3 trillion dollars. Furthermore, such a solar-power satellite would probably create interference with communications satellites and there would be other technical and political problems in developing such a system. But, just in case, NASA is going to continue keeping an eye on the idea....

Metromedia is now sending the Merv Griffin Show to TV stations; Merv's show is transmitted on Westar III every morning, to be taped by stations which run it later in the day.

A British Columbia judge has found an apartment-house manager "not guilty" of accusations that he operated a private satellite dish to provide video programming to tenants. The decision is seen as a victory for backyard satellite-receiver users in Canada, where the federal government has been trying to crack down on use of such private terminals. The ruling, however did not resolve the question of reception of video transmissions via satellite from across the border.

Meanwhile, prosecutors in other Canadian provinces are continuing their cases against other private-terminal owners—both commercial operators (such as the apartment-house manager) and personal users. The Canadian Radio-Television Commission requires earth-station operators to have a technical certificate and a broadcast license.
Just what you expect from Data Precision.

A Better Way to Get A Better Meter.

If you've been holding off getting a digital meter until the right deal came along, it's here!
Data Precision is offering better-than-ever prices on its most popular high-performance hand-held 3½ digit meters. It's the ideal time to get rid of finicky, hard-to-read analog meters—or even digital meters that have seen better days.
No matter what you measure, now's the time to upgrade your bench. With Data Precision.

3½ DMMs
Model 936: $145 with coupon
Model 935: $135 with coupon
Get 29 ranges with all the functions, with 0.1% basic accuracy, protection up to 6kV spikes and hi/lo ohms excitation. All in a one-hand case toughened for the field, yet accurate enough for most bench needs.
Both models read 10mV-1000VDC, 100mV-700VAC; 1µA-2A AC or DC; and 100mΩ-20MΩ.
The 936 also features audible continuity beep and overvoltage alarm, for faster "eyes-off" testing.

CAPACITANCE METER
Model 938: $199 with coupon
Measure from 0.1pF to 2000µF with 3½ digit 0.1% accuracy. This surprisingly economical meter offers immediate direct reading, and simple pushbutton operation, outperforming capacitance meters, DC time constant meters, and even bridges costing 2 to 5 times as much.

TEMPERATURE METER
Model 940: $175 with coupon
You can read -65°C (-85°F) to 150°C (302°F), with 0.1° resolution below 200°. You also get a detachable 6" semiconductor probe with 4' cable. The 940 offers an extremely short settling time, and maintains 0.4°C (0.7°F) accuracy.

Every one of these high-performing LCD meters operates up to 200 hours on a standard 9V transistor battery, and is warrantied for 2 full years.
We want you to discover Data Precision quality, so from now through March 31 we are offering a $20.00 saving when you present this coupon to one of our distributors.
Visit your local Data Precision distributor. Or call toll free (800) 343-6150 or (800) 892-0528 in Massachusetts for the name of the distributor nearest you.

Save $20.00 on a Data Precision 935-6 DMM, Capacitance Meter or Temperature Meter (any quantity)

Name _________________________________ Address _________________________________

Offer expires March 31, 1982.

Data Precision Division of Analogic Corporation

Prices USA

Data Precision, Division of Analogic Corporation, Electronics Avenue, Danvers, MA 01923, (617) 246-1600, TELEX (0650) 921819

CIRCLE 17 FOR DEMONSTRATION

www.americanradiohistory.com
Two ways to find replace

When you think about the number of new electronic gizmos that come off the boat every year, it's staggering.

If you happen to be a repairman, it's enough to drive you crazy. It seems there's absolutely no way for you to keep on top of all those new electronic components required.

But don't worry. There's a very easy way to keep up. Get a Sylvania ECG®
replacement Guide from your ECG distributor:

- references more than 170,000 part numbers to over 2,500 devices including most of the industrial and foreign parts.
- set concise descriptions on each part, illustrations of packaging and its diagrams. And, you have the full technical resources of Philips at your disposal for any tricky replacements you might have questions about.

What's more, the ECG parts you receive are of the highest quality. Specifications on these devices are equal to, and usually exceed, those of the original part. To maintain quality and performance levels, all of the ECG's are checked in accord with military standard testing procedures.

But the best part is that you don't have to go every which way to get them. You just go to your nearest ECG distributor.
COMPLETE ELECTRONIC WORKSHOP CATALOG

SEND TODAY!

64 PAGES OF ELECTRONIC BARGAINS!

FREE 1982 SUPPLY CATALOG

CIRCLE 13 ON FREE INFORMATION CARD
MXR INNOVATIONS, INC. (740 DRIVING Park Avenue, Rochester, NY 14613) offers an interesting line of audio accessories. Their latest one is a CX decoder, the model 156.

As you must be aware by now, CX is a compatible companding system for CX-encoded records. Without a decoder, the records sound normal. With a decoder, they attain a dynamic range of about 85 dB, with the extension being at the "quiet" end. That means that the noise floor drops by 20 dB, resulting in virtually noise-free playback and a much more natural-sounding reproduction of the recorded material.

My first experience with the model 156 decoder was uncanny. I cued the turntable arm, stepped back, and waited for the music to begin. Nothing happened. Thinking that maybe I had switched my speakers off, I went up to check them. As I was looking, the music began. There'd been no noise when the stylus contacted the record, and no noise from the lead-in groove.

Nothing.

And the quality of the sound! Loud passages were, of course, loud—CX doesn't concern itself with headroom. What was amazing was that during quiet passages, I could hear things that I would otherwise have missed because of record surface-noise. And, between cuts, there was nothing to indicate that a record was on the turntable—just dead silence. It was like being present at a performance in a hushed room. The only thing you heard was what you were supposed to hear, and then, you heard it all. It's something that has to be experienced to be believed.

About the time you read this, CBS is expected to have about 50 CX-encoded records on the market, and a number of other recording companies have signed agreements with CBS to also use the CX companding system.

The MXR decoder

The model 156 is extremely simple to connect and use. Two sets of audio cables connect it to the tape-recorder loop of your preamp or receiver; it obtains its power from a 117-volt power line. (My early-model decoder did not have provisions for restoring the use of the jacks that it occupied; MXR tells me that this will be remedied in later models. In any event, the fact is that the decoder can be placed just about anywhere in the loop with other equipment, thus still allowing your sound system full flexibility.)

All the controls are located on the small unit's front panel (the jacks are on the rear apron). A 7-inch calibration record is included with the decoder, and calibration is simply a matter of playing the record and adjusting the Reference Level control until neither of the two LED's mounted in the front panel is on. That's all there is to it. The adjustment isn't even critical—an error of as much as 6 dB will not be noticeable.

After the unit has been calibrated, nothing has to be adjusted until a different phono cartridge or amplifier is brought into the system.

Aside from the Reference Level control, there are only two others—one for Display that brings the LED's into the circuit, and one to switch the decoder into or out of the system. There's no power switch—the device draws only 2.4 watts when in use and the assumption is made that it will probably be connected to a switched outlet on your equipment, anyway.

The frequency response of the decoder is given as 20 Hz-20 kHz, +0.5 dB. THD is less than 0.09% over that range, with 0.05% typical at 1 kHz.

...
Total dynamic range available is specified as 100 dB.

The manual, while short, explains everything you'll need to set up and use the decoder.

One word of caution: The decoder works only for CX-encoded records. If a CX-encoded record is recorded on tape and played back through the decoder, only the characteristics of the material on that record will be modified: any tape hiss that was present before will still be there.

Finally, while CX records are on the shelves, they may be hard to locate—the fact that a recording is CX-encoded is shown on the back of the jacket, not the front. (That may be due to the fact that, since the records can also be played on ordinary equipment without a decoder, the record companies don't want to scare away record buyers who don't know about the system and don't have special equipment.) Once CX gets a foot in the door, though, the CX logo will probably move to the front, where it can easily be seen.

The MXR model 156 decoder is a good example of how simple it is to improve the pleasure you can get from a good recording. It has a suggested list price of $99.95...and don't forget to watch for the CX logos on the back of the record jackets.

Get MORE in capacitor types and ratings at a Sprague Q-LINE™ Distributor

No matter what type of capacitor you're looking for, look for it on a Q-MART® capacitor display. You'll find exactly what you want. That's because the Sprague Q-LINE features a computer-selected inventory of most-frequently-used capacitors. And blister-pak packaging keeps the capacitors clearly visible and fully protected.

For detailed information on all Q-LINE products (capacitors, switches, chassis boxes, optoelectronic devices, DIP/SIP components, resistors, wiring components, etc.) write for 40-page Catalog C-652 to Sprague Products Co., Distributors' Division of the Sprague Electric Co., 509 Marshall St., North Adams, Mass. 01247.

Sprague Q-LINE™ Distributor

Where MORE is more than a promise.

Sabtronics Model 8610A 600-MHz Frequency Counter

For anyone—whether he's a technician, ham, or designer—who has to measure signal-frequencies, a frequency counter is a necessity. For a long time I tried getting along without one. I'd borrow one from friends or, more usually, take the equipment to be checked out—usually an amateur radio handie-talkie or a piece of digital equipment I'd put together—to someone who had a counter.

Eventually that became too much. The stuff I was building was getting too awkward to carry, and frequently required more than a simple yes-or-no frequency check. So, I finally broke down and purchased a counter of my own.

My choice was the Sabtronics model 8610A 600-MHz counter. Although it has a smaller brother (the model 8110A, good to 100 MHz) and a bigger one (the model 8000B, that goes up to 1 gigahertz), the 600-MHz version offered just what I needed, with a little bit to spare. It covers all the radio bands I use and has a low-frequency limit of 20 Hz; some of my projects involve audio frequencies and the model 8610A is ideal for that end of the spectrum, too.

Putting it together

The counter is available either as a kit or assembled. Naturally, I chose the kit form. I was very pleasantly surprised with the quality of the components—and of the manual—that came with the kit. The main PC board is silk-screened and solder masked. The 600-MHz prescaler board is not, but very clear diagrams make it difficult to go wrong.

The construction manual is excellent. There are plenty of diagrams and (literally) step-by-step instructions with continued on page 32
You're on the spot. Any set you tell your customer about has a chance of failing sometime. But though we're not saying we're perfect, we'd like you to recommend RCA. Because we're sure your customer will love its picture performance.

You can find the problem and repair it quickly if anything does go wrong. Because with RCA's unitized chassis, failures are easy to handle.

RCA gives frequent hands-on workshops, as well as lectures. So when failures do occur, you'll be ready.

RCA has more than 500 parts distributors nationwide. We have this large network because we don't want you to have to wait too long for parts.

We also keep your inventory expenses lower by using components instead of modules, in most circuits.

We know your customers think you're responsible for everything about their sets. Good and bad.

And that's why we here at RCA are doing everything possible to make sure that when you finish a service call, everybody's smiling. Your customer's happy with your recommendation. And you're still the expert.

RCM IS MAKING TELEVISION BETTER AND BETTER.

For your free subscription to RCA COMMUNICATOR, our magazine of news and advice for service technicians, write RCA, Dept. 1-455, 600 North Sherman Drive, Indianapolis, IN 46201.
“Fast and accurate readings. That’s why we use the AWS EZ-Meter™ DMMs.”

“...At ITS, we maintain and service hundreds of pieces of computer equipment used by over 200 airline companies throughout the world. If even one piece of equipment goes down, serious back-up problems can occur. So our job is not only to make the proper repairs, but to make them fast. That’s why we use the AWS EZ-Meter series of Digital Multi-Meters. With their Autoranging feature (volts & ohms) we can count on quick, accurate readings hundreds of times a day — both on the bench and in the field. And with their Five-Year warranty, we think they’re the best hand-held DMMs you can buy.”

“EQUIPMENT REPORTS” continued from page 30

a space for you to make a mark indicating that you’ve successfully completed that step.

There are also a number of construction hints along the way, just places where a novice builder might find himself wondering exactly what he was supposed to do. There’s even an introductory section on how to make good solder connections. The manual includes a table showing what readings should be obtained with different switch settings and, finally, provides troubleshooting hints. Sabtronics leaves nothing to chance!

Calibration of the unit is easy. An internal SENSITIVITY control is adjusted using a voltmeter, and a small variable capacitor trimmed to bring the counter right on frequency. That calibration can be performed in two ways. The first is conventional — input a 10-MHz signal from a known-to-be accurate source. The second method requires a short-wave receiver, but is just about as accurate. A receiver tuned to WWV at 10 MHz is used as a standard, and the counter, placed close to the receiver, adjusted to read the same frequency. The accuracy of the receiver isn’t crucial — when the National Bureau of Standards says it’s transmitting on 10 MHz, who’s to doubt it?

Construction went quickly, and the unit worked the first time it was turned on.

Features
The model 8610A has an 8-digit LED display. The decimal point, which adjusts its position automatically, also serves to indicate the gate time: 0.1, 1, or 10 seconds, by flashing at that rate. There is also an overflow indicator on the display to indicate an out-of-range condition.

Three switches on the front panel select frequency range, gate time, and turn the counter on and off. A single BNC connector is used for input. Power is supplied either by four "C"-type nickel-cadmium rechargeable cells (optional) or from a power supply/charger, also available as an option. The counter can be used while the batteries are being charged.

Earlier, I mentioned a low-frequency limit of 20 Hz. I should clarify that by stating that the guaranteed operating range is 20 Hz–600 MHz. Typical operating range, though, is specified as being from 10 Hz to 750 MHz. Resolution is claimed to be 0.1 Hz up to 10 MHz, 1.0 Hz to 100 MHz, and 10 Hz to 600 MHz.

The counter features input protection — from 150-volts RMS up to 10 MHz to 4-volts RMS above 100 MHz. Its sensitivity is 10-mV RMS up to 100 MHz, 70-mV RMS up to 450 MHz, and 150-mV RMS to 600 MHz.

The unit uses a temperature-controlled crystal oscillator and, while there is some drift — under 200 Hz during the first few minutes of operation — the counter is essentially rock stable after less than half an hour. Temperature stability is given as 0.1 ppm (Parts Per Million) per °C, with an aging rate of less than 5 ppm per year. According to the specifications, setability is claimed to be ±2 ppm; I found it even better.

The counter measures 8 x 6.5 x 3 inches and weighs 1.2 pounds without batteries. A bail is provided to tilt the unit up for better visibility. There’s quite a lot of empty space in the enclosure, which leads me to wonder what other items Sabtronics has in mind to put in there.

I feel that the model 8610A frequency counter is one of the best equipment choices I could have made for my bench. It’s available from Sabtronics International, Inc., 3709 N. 50th Street, Tampa, FL 33610 for $119.00 in kit form and $149.00 assembled, plus $5.00 for shipping and handling.

Bob Murray, ITS Equipment & Leasing Corp.

For more information on the EZ-Meter series or any of the other fine AWS instruments call your local distributor or contact A.W. Sperry Instruments, Inc., 245 Marcus Blvd., Hauppauge, N.Y. 11786.

• 800-645-5398 Toll-Free (N.Y., Hawaii, Alaska call collect 516-231-7050).

A.W. SPERRY INSTRUMENTS INC.
The Measurable Advantage.

CIRCLE 21 ON FREE INFORMATION CARD

www.americanradiohistory.com
If you can beat these prices, you must have a brother-in-law in the business.

16 K RAM KITS 13.95
Set of 8 NEC 4116 200 ns GUARANTEED ONE FULL YEAR.

DISKETTES
ALPHA DISKS® 21.95
SINGLE SIDED, CERT. DOUBLE DENSITY 40 TRACKS, WITH HUB-RING. BOX OF 10. GUARANTEED ONE FULL YEAR.

VERBATIM DATALIFE
MD 525-01, 10, 16 26.50
MD 550-01, 10, 16 44.50
MD 577-01, 10, 16 34.80
MD 577-01, 10, 16 45.60
FD 32 OR 34-9000 36.00
FD 32 OR 34-9000 45.60
FD 34-4001 48.60

PRINTERs
ANADEX DP 9500 1295.00
ANADEX DP 9501 1295.00
CENTRONICS 739 765.00
C-ITO H 25 CPS PARALLEL 1440.00
C-ITO H 25 CPS SERIAL 1495.00
C-ITO H 45 CPS PARALLEL 1770.00
C-ITO H 40 CPS SERIAL 1870.00
C-ITO H TRACTOR OPTION 195.00
EPSON MX-80 $CALL
EPSON MX-80 F/T $CALL
EPSON MX-100 GRAPHIC $CALL
EPSON GRAPHICS ROM 90.00
IDS-445G PAPER TIGER 779.00
IDS-460G PAPER TIGER 945.00
IDS-560G PAPER TIGER 1195.00
NEC SPINWRITER 3510 Ser. RO 2195.00
NEC SPINWRITER 3530 Par. RO 2195.00
NEC SPINWRITER 7710 Ser. RO 2645.00
NEC SPINWRITER 7730 Par. RO 2645.00
NEC SPINWRITER 7700 D Seiium 2795.00
NEC SPINWRITER 3500 Seiium 2295.00
OKIDATA MICROLINE 80 389.00
OKIDATA MICROLINE 82A 549.00
OKIDATA MICROLINE 83A 849.00
OKIDATA MICROLINE 84 1199.00
OUME 9415 2149.00
MALIBU 200 DUAL MODE 2695.00

APPLE SOFTWARE
MAGIC WINDOW Word Processor 89.00
MAGIC WAND 275.00
WORDSTAR 259.00
MAILMERGE(Req. WORDSTAR) 90.00
SPELLSTAR(Req. WORDSTAR) 169.00
DATASTAR 199.00
EXPEDITOR II Applesoft Compiler 89.00
PPS PERSONAL FILING SYSTEM 79.00
PPS REPORT GENERATOR 79.00
ASCII EXPRESS Terminal Program 59.95
Z-TERM CP/M® Comm. Software 89.95
MICROSOFT FORTRAN 165.00
MICROSOFT COBOL 550.00
DB MASTER 3.0 179.00
VISICALC 3.3 165.00
VISIPOINT 149.00
VISIDEX 159.00
CCA DATA BASE MANAGER 98.00
A-STAT COMP. STATISTICS PKG. 119.00

MODEMS
NOVATION CAT ACOUSTIC MODEM 145.00
NOVATION D-CAT Direct Connect 165.00
NOVATION AUTO-CAT AUTO ANSI 219.00
NOVATION APPLE-CAT 349.00
UDS 103 LP DIRECT CONNECT 175.00
UDS 103 LJP AUTO ANSWER 209.00
D.C. HAYES MICROMODEM II(Apple)299.00
D.C. HAYES 100 MODE(MS-100) 325.00
D.C. HAYES Smart Modem(RS 232) 249.00
LEXICON LX-11 MODEM 109.00

APPLE HARDWARE
VERSA WRITER DIGITIZER 249.00
ABT APPLE KEYPAD 119.00
MICROSOFT Z80 SOFTCARD 299.00
MICROSOFT RMCARD 159.00
VIDEX 80 x 24 VIDEO CARD 299.00
VIDEX KEYBOARD ENHANCER 99.00
M & R SUPERTERM 80 x 24 Video Bd. 315.00
NEC 12" GREEN MONITOR 199.00
SANSO 12" MONITOR(B&W) 249.00
SANSO 12" MONITOR(Green) 269.00
SANSO 13" COLOR MONITOR 469.00
SSM AIO BOARD(INTERFACE) 165.00
SSM AIO BOARD(INTERFACE)KIT 135.00
ZENITH 13" HI-RES Green MON. 139.00

CP/M SOFTWARE
MICROSOFT BASIC-80 299.00
MICROSOFT BASIC COMPILER 319.00
MICROSOFT FORTRAN-80 369.00
PEACHTREE SYSTEMS CALL
MICROSOFT WINDS(Requires CP/M®) 275.00
WORDSTAR(Requires CP/M®) 325.00
MAILMERGE(Requires WORDSTAR) 110.00
SPELLSTAR(Requires WORDSTAR) 199.00
CALCSTAR 239.00
DATASTAR 249.00
SPELLGUARD 239.00

We built a reputation on our prices and your satisfaction.

We guarantee everything we sell for 30 days. If anything is wrong, just return the item and we'll make it right. And of course, we'll pay the shipping charges.

We accept Visa and Master Card on all orders. COD orders accepted up to $300.00.

Please add $2.00 for standard UPS shipping and handling on orders under 50 pounds, delivered in the continental U.S. Call us for shipping charges on items that weigh more than 50 pounds. Foreign, FPO and APO orders please add 15% for shipping. California residents add 6% sales tax.

The prices quoted are only valid for stock on hand and all prices are subject to change without notice.

31245 LA BAYA DRIVE, WESTLAKE VILLAGE, CALIFORNIA 91362
CIRCLE 10 ON FREE INFORMATION CARD
NEW 23 K PERSONAL COMPUTER $239

SPECIAL FACTORY SALE PRICE!!
You get this new APF IM-1 full size, extra featured Computer:
Includes a powerful 6800 Motorola Microprocessor, 14,000 Bytes ROM with a simplified LEVEL 11 BASIC built in, 9,000 Bytes user RAM, Color, Sound, Full 53 professional keyboard.
Two 10 key numeric pads, two controllers, high speed built in cassette that operates at 1200 baud, loads and reads 4 times faster than other computers. Has built in speaker with volume control, microphone jack, and 3-digit counter, high resolution graphics 256x192 (LIKE APPLE), Test display is 16 lines, 32 characters. It has 8 colors, will accept TAPE-DISK or PLUG IN CARTRIDGES. Includes owners manual and BASIC language book, 90 days parts and labor warranty, UL listed, FCC approved. All this in a beautiful black and white CONSOLE CASE. Weighs 20 pounds, list price $599.95.

15 DAY FREE TRIAL Return within 15 days complete and undamaged for refund of purchase price.

DON'T MISS THIS FANTASTIC SALE!! Phone 312/382-5244 to order and get delivery in 7 days, or send a certified check, money order or personal check to PROTECTO ENTERPRISES, BOX 550, BARRINGTON, ILLINOIS 60010. We honor Visa and Master Charge, Ship C.O.D. Add $15.00 for shipping, handling and insurance. Illinois residents add 6% tax.

CIRCLE 27 ON FREE INFORMATION CARD

Stereo Expanders. Two great solutions to spotty FM car radio reception

You know the problem. Station fading...picket fencing...generally poor and frustrating FM car radio reception in the country and suburbs. We've ended all that with our great little space-age Stereo Expander devices. Hooked up between the radio and the broadcast antenna, they create a tremendous boost in sensitivity—over 15 db—bringing in far-away FM stations sharp and clear. Simple, effective. Model ASC-100 hides completely out of sight, Model ASC-100DX mounts neatly anywhere underdash, has an off switch when the boost isn't needed.

circle the antenna specialists co.
a member of The Allen Group Inc.
23 Grove of Quality
2922 Euclid Avenue, Cleveland, OH 44116
International Dr., 2200 Sherman Dr.
Westbury LI, New York 11590
Canada A C Simmons & Sons, Ltd.

CIRCLE 28 ON FREE INFORMATION CARD

Grove Enterprises
Model DSC-2
Code Breaker

CIRCLE 103 ON FREE INFORMATION CARD

EQUIPMENT REPORTS
continued from page 32

WITH THE CASUAL MONITORING OF VHF/ UHF frequencies at an all-time high, it is not surprising that many law-enforcement agencies, among others, are concerned with the privacy of their communications. While many of those agencies prefer to use a simple "10" code, or a variation of it, still others prefer the additional protection of a voice privacy system.

There are many ways to garble a voice transmission including speech inversion, rolling code, spread spectrum, frequency hopping, and voice digitizing. The new model DSC-2 from Grove Enterprises restores intelligibility to speech-inverted communications.

In speech inversion, high voice-frequencies and low voice-frequencies are transposed by the mixing action of a local audio-oscillator. A descrambler simply takes the inverted speech and restores it by passing it through a circuit that is identical to the one that originally scrambled it. That is what this unit does.

Since an agency that wishes to scramble its transmissions can choose any oscillator frequency it wants, the unit has a control to "fine tune" the restored speech. Often, a speech-inverted signal will also have an audio tone superimposed over it for increased security. That technique, called tone masking, reduces the intelligibility of even restored speech. The Code Breaker has a tunable audio notch-filter to re-
move such an audio tone, leaving the restored speech out in the clear. The unit can also be used with shortwave receivers to remove heterodyne interference that is often heard on broadcast transmissions as well as when monitoring single-sideband and CW signals.

The unit requires 12-volts DC for operation. There is an optional power supply available from the manufacturer, or you can use any mobile power supply. The power jack is of the recessed coaxial variety, eliminating the possibility of a short circuit while plugging in the power supply. There is also an internal diode that is used to prevent damage if the power-supply connections are accidentally reversed. Although designed for 12-volt operation, in our tests (more on that later) we noticed that the unit operated at power inputs ranging from 8 to 16 volts without any noticeable degradation of the audio signal. Incidentally, all of the required interconnection cables are included with the unit.

The unit has an internal speaker. If you wish, an external speaker, earphones, or a recording device can be connected using the rear-panel-mounted external speaker jack. Other rear-panel jacks allow you to connect up to two receivers to the descrambler.

Our test

The notch-filter control allowed for considerable rejection (up to 60 dB at midrange) over the 800-3000-Hz frequency range. Tuning was sharp, permitting the removal of distracting tones without destroying the audio character of the speech. Incidentally, the audio quality of the speaker seemed quite good; that may be because the rugged metal cabinet provides a favorable acoustical housing. The local oscillator for the speech descrambler was tunable from 2600 to 4000 Hz, defeating all types of single-inversion speech-scrambling systems.

Quiescent current during idle (no input driving the unit) was measured at 55 mA. The current increased to approximately 200 mA during high-level audio transients. Since the audio circuitry is designed around a 2.5-watt LM380N, no appreciable heating or distortion was evident.

At normal volume levels, a 2N3904 twin-T oscillator injects a sine-wave tone into a Motorola MC1496P balanced-mixer IC. The output is passed through the notch filter to the audio stage. Signals can be processed by the audio filter even when the unit is not in the descramble mode, allowing for greater flexibility.

The decoder sells for $97.95, plus $2.25 shipping, with the AC adaptor: $89.95, plus $2.25 shipping, without. It is available from Grove Enterprises, Brasstown, NC 28902.
EQUIPMENT AND TRAINING
NO OTHER SCHOOL CAN MATCH.

NTS HOME TRAINING INVITES YOU TO EXPLORE MICROCOMPUTERS,
DIGITAL SYSTEMS AND MORE, WITH STATE-OF-THE-ART EQUIPMENT
YOU ASSEMBLE AND KEEP.

Without question, microcomputers are the
state of the art in electronics. And NTS is the
only home study school that enables you to
train for this booming field by working with
your own production-model microcomputer.

We'll explain the principles of trouble-
shooting and testing your microcomputer and,
best of all, we'll show you how to
program it to do what you want.

You'll use a digital multimeter, a
digital logic probe and other
sophisticated testing
gear to learn how to
localize problems
and solve
them.

We
believe
that training
on production-
model equipment,
rather than home-made learning devices,
makes home study more exciting and rele-
vant. That's why you'll find such gear in most
of NTS's electronics programs.

For instance, to learn Color TV Servicing
you'll build and keep the 25-inch (diagonal)
NTS/HEATH digital color TV.

In Communications Electronics you'll be
able to assemble and keep your own
NTS/HEATH 2-meter FM transceiver, plus test
equipment.

But no matter which program you choose,
NTS's Project Method of instruction helps you
quickly to acquire practical know-how.

Send for the full color catalog in the elec-
trons area of your choice—discover all the
advantages of home study with NTS!

NTS also offers courses in Auto Mechanics,
Air Conditioning and Home Appliances. Check
card for more information.

1.

2.
1. The NTS/Rockwell AIM 65 Microcomputer A single board unit with on-board 20 column alphanumeric printer and 20 character display. A 6502-based unit 4K RAM, expandable.

2. The NTS/KIM-1 Microcomputer A single board unit with 6 digit LED display and on-board 24 key hexadecimal calculator-type keyboard. A 6502 based microcomputer with 1K RAM, expandable.

FEBRUARY » SPECIAL «

New Portable Digital Capacitance Meter

MODEL 820
Call For Our Price

KEITHLEY MODEL 130 DIGITAL MULTIMETER

<table>
<thead>
<tr>
<th>DC VOLTAGE</th>
<th>RANGE</th>
<th>ACCURACY</th>
</tr>
</thead>
<tbody>
<tr>
<td>200mV, 2V, 20V, 200V, 1000V</td>
<td>.5%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AC VOLTAGE</th>
<th>RANGE</th>
<th>ACCURACY</th>
</tr>
</thead>
<tbody>
<tr>
<td>200mV, 2V, 20V, 200V, 750V</td>
<td>1%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DC CURRENT</th>
<th>RANGE</th>
<th>ACCURACY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2mA, 20mA, 200mA, 2000mA, 10A</td>
<td>2%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AC CURRENT</th>
<th>RANGE</th>
<th>ACCURACY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2mA, 20mA, 200mA, 2000mA, 10A</td>
<td>3%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RESISTANCE</th>
<th>RANGE</th>
<th>ACCURACY</th>
</tr>
</thead>
<tbody>
<tr>
<td>200Q, 2kQ, 20kQ, 200kQ, 20MΩ</td>
<td>.5%</td>
<td></td>
</tr>
</tbody>
</table>

CALL FOR OUR PRICE

PORTABLE OSCILLOSCOPES
BATTERY OPERATED

MS-15
Single Trace 15MHz

MS-215
Dual Trace 15 MHz

MS-230
Dual Trace 30MHz

New Sweep/Function Generator

CALL FOR OUR PRICE

MODEL 3020

- Four instruments in one package—sweep generator, function generator, pulse generator, tone-burst generator
- Covers 0.02Hz-2MHz
- 1000:1 tuning range
- Low-distortion high-accuracy outputs
- Three-step attenuator plus vernier control
- Internal linear and log sweeps
- Tone-burst output is front-panel or externally programmable

V-151B 15 MHz Single Trace
V-152B 15 MHz Dual Trace
V-202 20 MHz Dual Trace
V-301B 30 MHz Single Trace
V-302B 30 MHz Dual Trace
V-352 35 MHz Dual Trace
V-550B 50 MHz Dual Trace, Dual Time Base
V-1050 100 MHz Dual Trace, Dual Time Base

Call For Special Intro Price Offer

HITACHI

We carry a full line of multimeters, oscilloscopes, frequency counters, audio and RF generators, power supplies and accessories. Just call our Toll-Free number and one of our experts will answer all your questions about test equipment.

www.americanradiohistory.com
CAR TELEPHONES
Cellular Technology Promises More Channels

DANNY GOODMAN

Long waiting lists for phones and a lack of channels have limited the usefulness of the mobile-telephone system. A sophisticated new system is about to change all of that.

AN EXECUTIVE HEADS FOR HIS CAR parked in a downtown Chicago office-building garage, hoping to make it home to suburban Lake Forest in time to entertain dinner guests. Weighing heavily on his mind are sensitive negotiations taking place in California with which he must be in constant touch during his drive up the expressway.

Still in the garage, he dials the number of his Los Angeles contact on the pushbutton mobile phone, just as he would from his office upstairs. In a couple of seconds the phone in L.A. is ringing, and our busy executive starts his drive. During his hour-long mobile conversation, neither he nor his associate will notice that their full-duplex communications channel will have shifted frequency three times, with the mobile call going through three separate base-station sites.

The entire process is channelled through one of the most sophisticated land-based communications systems available to the general public, cellular mobile telephone. A cellular mobile-telephone system divides a metropolitan area into a mosaic of small cells, each with its own low-power transceiver, so that the same channel can be used for different conversations in non-adjacent cells. The result is more available channels for mobile-phone customers. To accomplish that, cellular telephone uses a remarkable system of computer-controlled radios that “hand off” a mobile call from one cell to the next as a vehicle travels across town. The hand-off is done so smoothly that the caller will probably not even notice it.

In a conventional mobile-telephone setup, with a high-power base transmitter covering an entire metropolitan area, our executive would have just a 50% chance of getting an open channel at some time during his hour drive. If he did manage to get on the air, he would be occupying one of the 23 valuable channels in the Chicago area. (There are only 12 such channels in New York City!) But with the cellular system, there is a 99% chance that his call would go through on the first try. And, as he moves from one cell to another, our friend's telephone call shifts to a different channel on that other cell's transmitter/receiver, and the original channel opens up for another caller.
Additionally, the cellular system makes portable telephones feasible.

This is not a science fiction dream, but a real system proven in two trials in congested areas: Chicago, sponsored by an AT&T subsidiary called AMPS (Advanced Mobile Phone Service), and Washington, D.C./Baltimore, sponsored by Motorola and operated by American Radio-Telephone Service Incorporated. Because of the success of those tests last year, the FCC, in a preliminary action, allocated two 20-MHz segments of the 800-MHz band for cellular-telephone communications. If final approval is granted (a decision was expected just after this issue went to press early last December), within two years the first fully operational systems could be in place; the system should be available in 70 cities within five or 6 years. When that happens, a cellular network will allow so many more people to have mobile phones in their automobiles and trucks, that the usual waiting list for those phones will all but disappear.

Basic cell systems

A cellular mobile phone system consists of a deceptively simple network of remote duplex transceivers. Cells are connected by landlines (telephone lines) to a central MTSO (Mobile Telecommunications Switching Office). It is at the MTSO that mobile calls are automatically patched into the regular telephone network, without the need for mobile operators.

A typical cell site, like AMPS’ Lyons, Illinois site, is little more than a small building (about 20 feet by 20 feet at Lyons) to house the equipment racks, and a 150-foot tower for the antenna system (see Fig. 1). In more urban areas, cell sites can be located on building roofs.

The base station’s receiving antennas are two vertical monopoles set up in a diversity reception mode. Two antennas are used for diversity reception so that a moving vehicle can maintain contact with the base station at all times. In that mode, the base-station’s receiver is able to choose between the stronger of the two signals coming from the antennas; if a car is temporarily shielded from one antenna, the receiver simply switches over to the other.

The base station’s transmit antenna, which is also a vertical monopole, is capable of handling up to eight transmissions on different frequencies at once. Since line losses at 800 MHz can be incredibly high with conventional cables, all antennas are fed with Helfax gas-filled coaxial cables that are maintained at a constant pressure.

Equipment in the small building is completely automated. One typical site that we visited recently with an AMPS official had two racks of transceivers, each rack with eight channels in operation (see Fig. 2). Small fans on the 45-watt air-cooled amplifiers hummed quietly. Each cell site performs repeated self-testing of its equipment and reports irregularities to a central AMPS office. Only then is a service technician dispatched to a site. In addition, an outside transmitter tests the voice quality of each channel throughout the system by sending a 1-kHz tone and comparing the signal coming through the radios and phone lines to the original. That, too, is automated, with a central printer logging the results of each test at approximately one-minute intervals.

In the event of power failures at the site, a wet-battery back-up power supply can operate the communications gear for about eight hours. Part of that back-up is also a power inverter to keep the automatic test gear in operation.

Mobile installations

Vehicle installations are quite simple affairs. A one-piece trunk-mounted unit is a combination 800-MHz duplex FM-transceiver and sophisticated logic unit. Installation in most vehicles takes about 4½ to 5 hours, including complete testing. The vehicle’s phone number is entered into the radio by way of a PROM chip that is programmed at the installation site. Because of the 45-MHz separation between the transmit and receive frequencies, cellular mobile phones use two 2.5-dB gain antennas at the car; one each for transmit and receive. The antennas are precisely tuned for the proper segment and can be either roof or trunk-lid mounted; roof-mounted antennas are ½ wavelength, while the longer trunk-lid antennas are ¾ wavelength-center-fed verticals.

Control heads vary somewhat with manufacturer. In the Chicago test, for example, mobile equipment was supplied by Motorola, Oki, and E.F. Johnson. Some heads have a Touch-Tone pad and resemble a standard desk phone (see Fig. 3). The deluxe model has a pushbutton pad and digital display built into the modern-looking angular handset.

Costs for cellular phone privileges have not been set, but the rates used in the Chicago test will give you an idea of how much is involved. Mobile equip-
ment is leased for $45-60 per month, depending on control-head style and options. For air time, there is a basic charge of $25 per month, which includes 120 minutes of air time. Additional minutes are 25 cents each.

The Chicago test divided the 2100-square-mile metropolitan area into ten cells, as shown in Fig. 4. While the downtown cell had the smallest geographical area, it also had the highest number of voice channels (26). Mobile units, used 10-watt transmitters, but when the operational system is permanently set up, there will be more and smaller cells, allowing the mobile units to communicate comfortably using 3 watts. In the test, cells at opposite ends of the city used the same nine channels.

Growing cells

Cell sites are assigned a number of channels, based on the projected number of calls within that cell. More congested sites, such as the central business district of a major city, will have perhaps three or more times as many channels as an outlying cell. Because the base transmitters run at a low power-level of about 40 watts, the signal does not cover the entire metropolitan area—channels can be used by several cells as long as those cells are far enough apart. Motorola uses a four-cell cluster, while AT&T prefers a seven-cell cluster before reusing a channel.

Moreover, as the number of users increases within a cell, or throughout the system, cells can be subdivided into smaller cells with lower-power transmitters and directional antennas allowing channels to be used even more times within the system. Theoretically, a cell can be as small as one mile in diameter. With the number of channels currently allocated to cellular telephones, a large city with 500 one-mile cells could serve a quarter of a million users.

Typically, a cell will go through three stages to accommodate greater traffic. In the first stage, a transceiver and omnidirectional antenna are centrally located within a cell. The second, or transitional stage, establishes additional cell sites, with directional antennas for some of the channels. The new cell sites will service a more localized area with a lower-power transmitter. More channels are switched over to the new cells until the original cell becomes a final-stage cellular system, consisting of a complete network of directional, low-power cell sites. In practice, the growing system will always be in a transition stage because service needs in any area will always be changing. And since the mobile units are capable of switching to any channel, as instructed by the MTSO, the user will be unaware of any of the changes in cell locations and frequencies.

How cellular phones work

The secret to the cellular system lies in two-way digital-data communications between car-and-cell, and cell-and-MTSO, plus one central computer at the MTSO keeping everything under control. Perhaps the best way to describe all the intricacies of the system is to follow a couple of telephone conversations from start to finish, with a cell hand-off added for good measure. This example is based on calls through the Chicago developmental system, operated since 1978 by Bell Laboratories and Illinois Bell Telephone, and used by about 2000 willing customers from a cross-section of professions and businesses.
You get in your car and turn on the engine as you always do. Then you switch on your deluxe telephone-control head mounted on the transmission hump. Using the Touch Tone buttons, you key in your own three-digit security code that makes sure you're the only one making calls from your mobile phone. Nothing is coming through the speaker, but the logic unit of the trunk-mounted transceiver scans through the control channels of all cell sites in your metro area and determines by Cell A's set-up channel's signal strength that you are in Cell A. The set-up channel is a data-only frequency pair, and is a critical link in cellular telephone. Your radio is then kept on Cell A's set-up channel as long as the data signal there stays strong enough. At the cell site, there is a back-up setup channel transceiver if one should fail. The setup process takes less than a second.

As you drive along, you want to call your friend to see if he needs your help with a personal-computer problem he's been having. Without picking up the headset, you enter his telephone number on the Touch Tone pad. An audible "beep" comes from the head's built-in speaker when each button is pushed, and the number appears in a display by the buttons. A quick glance at the display confirms you have properly entered the number, so you press the SEND button.

The following sequence takes place as quickly as if you were calling your next door neighbor from your kitchen: The mobile logic unit sends out a data burst on the setup channel that identifies your radio, sends the number you're calling, and alerts Cell A that you have an outgoing call. Cell A's receiver passes the information over a land-line channel to the Western Electric computer, which assigns an unused voice channel for the call. That frequency is passed back through Cell A to the mobile radio. The mobile transceiver obeys, and shifts frequency to the specified channel. When the MTSO senses the mobile unit's signal on that channel (the information is again relayed via Cell A's receivers), it places the call over the landline phone system.

The next sound you hear over the console speaker will be the ringing of your friend's phone. If the called number is busy, no problem. You will hear a busy signal, as you would expect. Simly press END, which alerts the MTSO to "hang up." Your channel opens immediately for other callers, as your radio shifts back to silently monitor the setup channel. Since that last number you dialed is still shown by the display, pressing SEND will automatically re-dial the call. The same instantaneous data exchange and frequency shift, though perhaps on a different channel, will take place.

Well, this time your friend answers the phone, and you become engaged in a long conversation. Unknown to you or him, your car is about to go from Cell A to Cell B. Here's what happens at a hand-off: The MTSO computer is busy monitoring the signal strength of every mobile signal coming through every cell site. It "sees" that your signal is starting to fall off from Cell A (though you don't realize it on your end) and it must find an open channel for you in Cell B. Since channels are not shared by adjacent cell sites, your hand-off involved a shift in both transmit and receive frequencies in addition to a change in cell sites.

The computer spots an open channel for you in Cell B. When your signal drops to a specified level, the MTSO sends a data burst (at a data rate of 10 megabytes-per-second) to your radio's logic unit via Cell A. In that one-quarter second, the audio is interrupted as the radio gets its instructions to shift channels—which it does without your even suspecting that brief "blank and burst" sequence.

When you hang up the handset, your radio goes back to the setup channel—but a different set-up channel, because you are now in Cell B. As you continue your drive, you decide that a quick call home may save you from having to go out later for milk. So you press a two-digit memory code to speed dial your home phone number, one of several frequently called numbers you previously stored. You find out that you are to pick up your children at a softball game on the way home.

At the field you find that the game is just about over, so you decide to park the car nearby and watch the last inning. Meanwhile, the Western Electric computer has sensed the signal from your radio, and assigns a seven-digit number to your phone number. This number is now assigned to your radio, which then assigns a voice channel in Cell B for your wife's call. Your radio shifts to that channel, and your phone rings. Fortunately, you select the option that honks your horn when the phone rings.

As in that example, business users in the AMPS Chicago test found that the system saved them time and gas. A survey found that 84% of them were "very satisfied" with the service provided by the cellular telephone system.

Our test
To test for ourselves the voice quality of the AMPS system, we took a ride in a car with a specially equipped mobile telephone. In addition to the telephone control head, that unit had a little box under the dash called a System Access Monitor, which gives a readout of the channel currently being used and has a signal-strength meter.

Local and long distance calls were as easy to make as if from a desk. Audio quality of the mobile phone was equal to any land-line, except when going through very low-elevation tunnels and extended viaducts. Even then, a couple of static crackles at the mobile end were at a very low level—perhaps inaudible to someone who did not know what he was listening for. None of those we called suspected we were talking on a mobile phone until we let them in on the secret. Communication was consistently flutter-free, even when the System Access Monitor meter showed that there were extreme changes in signal level.

The next test was to force a hand-off to an adjacent cell to detect the blank-and-burst used to shift frequencies. As the channel readout changed on the System Access Monitor, we heard a slight electronic "click," and that was all. Again, we were listening for it with a tuned ear; otherwise we would have missed it. And since normal installations don't have the Monitor readout or meter, you would never know when to expect a hand-off—or when one had occurred.

As the demand for mobile communications increases, especially with the growth of microwave and teleports, a system is needed that will make every megahertz count. Cellular mobile telephone is such a system, and it will soon provide many of us with high-technology, reliable, two-way voice communications that will be as convenient as dialing your home or office telephone.
THE 2716 EPROM (ERASABLE PROGRAMMABLE READ ONLY MEMORY)—currently available for ten dollars or less—is ideal for microprocessor-based projects. It permits storage of 2K (2048 bytes) of user program and operates from a single 5-volt supply. Because it can be erased by strong ultraviolet light, its contents can be changed if a modification must be made to the program it contains, or it can simply be erased for reuse in another project.

The programmer described here allows the project designer to program the 2716, using hexadecimal code, at each memory location by entering the required data with two thumbwheel switches and pressing a single PROGRAM switch. After programming a given memory location, the device automatically selects the next highest one. It also has a SINGLE STEP or CONTINUOUS RUN option to provide access to address locations at a rate determined by the user. These options provide the control needed to verify the data contained by the EPROM. Both the memory location addressed and its contents are indicated by 7-segment LED’s.

Circuit operation

Figure 1 is a schematic of the EPROM programmer. Refer to it as we discuss how the circuit works.

The programming sequence begins when the PROGRAM switch, S3, is pressed. That switch is debounced by IC11-c, and the resulting pulse is used to clock one-shot IC7-b. The output of the one-shot enables NAND gate IC8-c and allows the 40-Hz oscillator—IC9-b—to clock counter IC14.

Initially, the counter’s output is set at 0. As it is clocked by IC9-b its outputs go to a logic-high (+5 volts) state one at a time, in sequence. Note that only five of the ten possible outputs are used—pins 1, 4, 5, 7 and 11; they correspond to counts of 5, 2, 6, 3 and 9, respectively. As the outputs of IC14 change state, they control the actions of latches IC13-a and IC13-b.

When pin 4 of IC14 goes high, pin 1 of IC13-a is latched high. That, through the buffer IC2-c, brings pin 20, CS (Chip Select—as sometimes referred to as “data enable”) of SO1, which contains the EPROM, high, and reads the EPROM for programming.

The output of IC14’s pin 4 also turns on Q1 and Q2, which provide the programming voltage (25.5 volts) to pin 21 of SO1 and enables the three-state drivers, IC1 and IC2. The inputs of those two IC’s are connected to S1 and S2, the BCD-output thumbwheel switches used to provide the programming data. The outputs of the two IC’s are connected to pins 9-11 and 13-17 of SO1 which correspond to the eight data lines of the 2716 EPROM.

After 25 milliseconds—1/40-second, equal to one period of the 40-Hz clock—pin 7 of IC14 goes high and IC13-b is also latched high. That, in turn, takes pin 18 (CE/PGM—CHIP ENABLE/PROGRAM) of SO1 high and the data from the thumbwheel switches is programmed into the EPROM. The address programmed usually starts with 0, but can be selected by S4. (SINGLE STEP), and S5 (RUN).

When 50 milliseconds have passed, pin 1 of IC14 goes high. That resets IC13-b, removing the logic-high from pin 18 of the EPROM. After another 25 milliseconds, pin 5 of IC14 goes high, resetting IC13-a. That removes the CS voltage, removes the 25.5 volts from pin 21 by turning Q1 and Q2 off. and disables IC1 and IC2. thus removing the thumbwheel-switch data from the EPROM’s data lines.

When pin 11 of IC14 goes high, it resets one-shot IC7-b, disabling NAND gate IC8-c and cutting IC14 off from the 40-Hz clock. Pin 11’s going high also resets IC14 to 0 and advances counter IC3 to the next address to be programmed.

The remainder of the logic circuitry provides RESET, SINGLE STEP, and RUN functions.

Switch S6 (RESET) is used to reset the cascaded address counters IC3, IC4, and IC5, to zero. Switch S4 provides SINGLE STEP capability—every time the switch is pressed, IC7-a, a one-shot, supplies a pulse to counter IC3, causing the memory location being addressed
to be incremented by one. Finally, S5 (RUN) allows the variable-frequency oscillator formed by IC9-a and controlled by R10 to clock counter IC3 at a rate determined by the user.

The three switches provide the user with several means for accessing EPROM memory addresses to enter or verify data. The LED displays on the address and data lines provide a continuous indication of the memory address being accessed and of its contents.

Power supply

The power supply shown in Fig. 2 provides all the voltages required by the programmer. Power switch S7 has two sections—one for 117-volts AC (Fig. 2) and one for 28-volts DC (Fig. 1). That is necessary because when the AC voltage is cut off by S7-a, an induced current in the secondary of the transformer will cause a pulse to appear on the 28-volt DC line. Since that pulse can be transmitted to pin 21 (Vpp) of the EPROM—a pin used in the programming process—erroneous data may be entered into the IC. Therefore, S7-b is used to cut off the 28-volt supply at the same time the main 117-volt supply is turned off.

Construction

The 2716 EPROM programmer can be constructed on perforated construction
This IC can be used to make a great remote volume-control. But what's even better is that the device can be operated by either analog or digital means.

MARTIN BRADLEY WEINSTEIN

THERE'S AN INTEGRATED CIRCUIT AVAILABLE from Motorola, the MC3340P, capable of effectively attenuating an audio signal by 90 dB or introducing up to 13 dB of gain (or anything in between) while exhibiting a total harmonic distortion of about 0.6%. Attenuation can be controlled by either a DC voltage (between 3.5 and 6.0 volts) or a resistance (0-33 kilohms) applied to its control pin and referenced to ground. Suggested for use with approximately 100-millivolt RMS input-signals, it can be used with signals up to 0.5-volt RMS. The supply-voltage range is wide—9-18 volts DC. And it's priced in the $1.00-$1.50 range.

This little wonder can accomplish a number of remarkable wired-remote-control functions. For example, a radio receiver in the trunk of your car feeding a rear-deck speaker can be easily modified by using the circuit shown in Fig. 1 in place of its volume control; a single wire to a dash-mounted pot then provides complete control of its volume. But there's an even better way to use this device.

Digital control

The circuit shown in Fig. 2 gives you complete control over attenuation using a set of resistors arranged in a network. Grounding any combination of four (or fewer) lines (labelled A, B, C, and D) provides a specific degree of attenuation.

Getting the circuit to perform properly is harder than it appears. The control characteristics of the MC3340P are far from linear. Another complication is getting a reasonably linear analog control characteristic starting with binary values and off-the-shelf resistors.

www.americanradiohistory.com
The technique required is common to a number of digital-to-analog conversion schemes. You can get a fairly linear response by using resistors with a 1:2-4:8 (powers-of-two) relationship. But there are no combinations of standard resistors with that relationship, although the 15K-33K-68K-120K-ohm combination used here (for R1, R2, R3, and R4) comes very close.

Trial-and-error had a great deal to do with establishing the final component values, but there were also a few educated guesses involved. The parallel combination of R1, R2, R3, and R4, for example, is itself in parallel with a 33K resistor (R5) because that value is the maximum control resistance and corresponds to the maximum attenuation of the IC. It took a very long night with a scientific calculator to double-check the calculated performance of the circuit, and that's why R6 is there—to adjust the performance so that it is slightly more linear. Table 1 gives the calculated net resistance for each control code and Fig. 3 plots both net control-resistance and calculated attenuation values against the binary control codes.

Unfortunately, errors can occur almost anywhere in this design. For one thing, the manufacturer's curves, while accurate enough when you're controlling the IC with a potentiometer, aren't very precise as far as determining actual attenuation vs. resistance performance when you're using fixed values. Another problem is that even 5% -tolerance resistors can vary enough to cause jarring nonlinearities in their combined performance in this network. For example, one combination can easily yield a lower net resistance than another combination representing a higher binary value. The solution is either expensive precision resistors or a dash-mounted potentiometer.

FIG. 1—THIS SIMPLE ATTENUATOR CIRCUIT allows you to control the volume of a receiver hidden in the trunk of your car with a dash-mounted potentiometer.

FIG. 2—SCHEMATIC DIAGRAM of a digitally-controlled attenuator circuit. Lines A, B, C, and D, can be driven by the simple circuit shown in Fig. 4.

PARTS LIST

Resistors 1/4 watt, 5% or better
R1 — 15,000 ohms
R2, R3 — 33,000 ohms
R4 — 68,000 ohms
R5 — 120,000 ohms
R6 — 5100 ohms (see text)
Capacitors
C1 — 1.0 µF
C2 — 20 µF, electrolytic
C3 — 680 pF
Semiconductors
IC1 — MC3340P (Motorola)

TABLE 1

<table>
<thead>
<tr>
<th>D</th>
<th>C</th>
<th>B</th>
<th>A</th>
<th>Net resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7650Ω</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>8040Ω</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>8370Ω</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>8860Ω</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>9330Ω</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>9950Ω</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>10500Ω</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11310Ω</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12960Ω</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>14290Ω</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>15510Ω</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>17500Ω</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>19750Ω</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>23220Ω</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>26880Ω</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>34000Ω</td>
</tr>
</tbody>
</table>
QUESTIONS

D.H., often.
The problem turned out to be calculated. The problem turned out to
were measured but it was not as
performance of the performance was required. A serial latch.
A hexadecimal thumbwheel switch (or any 4-bit binary-encoded switch) can be used without drivers.
A four-channel optical system could be used where isolation was required.
A SPO (Serial In, Parallel Out) shift register could also be used. A serial Baudot or ASCII code, for example, following a specific control-character

or—as you’ll probably choose—hand-

of 5% resistors.

Even with selected resistors, the performance of the breadboarded circuit was not as predicted by the graph in Fig. 3 when input and output signals were measured and actual attenuation calculated. The problem turned out to be R6: the value I had chosen was too small and the circuit had some gain when it should have had 0-dB attenuation. That made the whole system’s performance nonlinear. Increasing R6 to 5100 ohms helped performance significantly, but note that the value of R6 will vary from device to device. You wouldn’t think a circuit this simple could have caused so many problems. But the end result was worthwhile.

Driving the control lines

There are several ways to provide the digital control-signals the circuit requires. Most computers and digital control-systems can easily drive a PNP transistor (Fig. 4), possibly using a latch. A hexadecimal thumbwheel switch (or any 4-bit binary-encoded switch) can be used without drivers. A four-channel optical system could be used where isolation was required.

A SPO (Serial In, Parallel Out) shift register could also be used. A serial Baudot or ASCII code, for example, following a specific control-character

when it should have had 0-dB attenuation. That made the whole system’s performance nonlinear. Increasing R6 to 5100 ohms helped performance significantly, but note that the value of R6 will vary from device to device. You wouldn’t think a circuit this simple could have caused so many problems. But the end result was worthwhile.

Driving the control lines

There are several ways to provide the digital control-signals the circuit requires. Most computers and digital control-systems can easily drive a PNP transistor (Fig. 4), possibly using a latch. A hexadecimal thumbwheel switch (or any 4-bit binary-encoded switch) can be used without drivers. A four-channel optical system could be used where isolation was required.

A SPO (Serial In, Parallel Out) shift register could also be used. A serial Baudot or ASCII code, for example, following a specific control-character

on a teletypewriter circuit could raise the volume of an alert tone-generator or monitor receiver in a network or a remote-control application.

Perhaps more exciting is the prospect of full keyboard control of a communications system, including volume levels, with or without the assistance of a computer. A single dashboard-mounted keypad could select synthesizer frequencies or channels, set volume and squelch levels, adjust mike gain, and more—even for several transceivers. All the valuable hardware could then be secured in the trunk.

Most exciting of all is the fact that this simple circuit makes computer coordination of our living and working environments possible. With the attenuators installed and the proper control bussing routed, the “turn-it-up” and “turn-it-down” nuisances in life might be eliminated. If the phone should ring, for example, the computer might use the circuit to turn down the volume automatically on the TV or stereo. If your clock radio wasn’t quite rousing you, the computer could make it louder; or at night, it could fade the music down as you fell asleep.

You could also program maximum volume levels for any number of devices and vary them with the time of day—to let the kids blast the stereo from, say, 4 to 5:30, but to keep it under control at other times. (The prospects for fading in romantic mood-music are also promising.)

Basically, this circuit is just an elaborate volume control (although the MC3340P responds very well to signals up to 600 kHz, and fairly well through 2 or 3 MHz)—a potentiometer with “bells” and “whistles.” I’m sure you can think of quite a few places to use something like this.

—R-E

TUBE BURNOUT

In a GE M704 (a Canadian model) the horizontal-output tube went out too often. I wrote to you and you said that the problem could be caused by the failure of the horizontal oscillator to start, resulting in overload of the output stage. You suggested that I change the capacitors across the oscillator coil. I did, and that did the trick. Thanks.—D.H., London, Ontario

SNOW, NO AGC

I’ve got a CTC-43A with far too much snow on all channels. The RF AGC control has no effect at all. The plate of the 2DS4 RF-amp tube reads +250 volts and the grid reads –30 volts. The 16K resistor isn’t shorted, and a new tube didn’t help.—P.B., Ewa Beach, HI

I think you’ve got your finger on it. Note that the plate voltage on the RF tube is the same as the supply voltage—+250 volts. You’re not drawing any current. That must be due to the excessive grid voltage. The normal RF-AGC voltage with no signal should be only +0.79 volts. Check the AGC keyer collector; also the 10-megohm resistor that feeds it from the +270-volt supply. Also check the 2.2-megohm resistor between that point and the tuner.

I’d be inclined to suspect a leaky AGC transistor. Check to see whether the IF-AGC voltage works. If so, something is wrong in the resistors in the RF-AGC circuit and I am inclined to suspect the 10-megohm one (we’ve had problems with that resistor changing value before).

DAMPER DIODES

This RCA EP454W portable works fine for a while, then the horizontal-output tube gets red hot and blows the damper diode. I suspected the oscillator stopping, but every time I check, it’s running. I am totally confused, do you have any ideas?—J.O., Mentone, IN

I think you’ve got one thing reversed. Probably, the damper diode shorts and that blows the tube. Check the solid-state damper. If it’s a single unit, Part No. 125932, it’s the original. That part has been known to cause problems. RCA recommends replacing it with a dual “piggy-back” type. Part No. 120818.

By the way, the parts list you’re using is incorrect. It recommends using a GE-504 as a replacement. That’s a plain sine-wave type, but you must use a fast-recovery type here and in all horizontal-frequency circuits.

—R-E
Precision Voltage References

An electronic instrument or circuit can only be as accurate as the reference used to calibrate it. Build your own low-cost, high-precision voltage references using the information presented here.

JOSEPH CARR

PRECISION VOLTAGE-REFERENCE CIRCUITS are constantly needed by anyone who works with electronics. They are needed in an electronics workshop, for example, to calibrate voltmeters and oscilloscopes. In the laboratory, they can be used to troubleshoot, test, and calibrate instruments such as pH-meters. Computer applications include A/D and D/A converters; most of the popular circuits that are used for those applications require an external voltage reference to make them reasonably accurate. In addition, projects such as electronic thermometers, and anything based on the Wheatstone bridge (and that includes quite a few electronics instruments) will require a precision voltage-reference.

Commercially available voltage references can be very expensive, but we can make references that are precise enough for all but the most demanding applications for a small cost. The technology that is available today allows us to do things that a hobbyist could only dream about a decade ago. In this article, we will discuss some of the more common precision voltage-references, and offer both finished projects and design notes for those who would like to "roll their own."

Why does a hobbyist need a precision voltage-reference? Let's say, for example, that you want to build an A/D or D/A converter. We all know that the greater the bit-length of those converters, the better the accuracy and resolution of the measurements made, or voltage produced. But no data converter is better than the analog voltage-reference used to make the conversion. All data converters produce an output that is the product of a binary word and an analog reference voltage (or current, in some cases). In practical terms, that means that an error in the voltage reference will foul up the accuracy of the conversion.

Let's consider two data converters that a hobbyist might use: 8-bit and 10-bit D/A converters. The resolution of the 8-bit converter is 0.391%; the resolution of the 10-bit converter is 0.098%. Those figures are the maximum possible resolution based only on bit-length. If the reference voltage for both is 10.00 volts, then the actual reference voltage must fall within the range of 10.00 volts ± 391 mV in the 8-bit case and 10.00 volts ± 98 mV in the 10-bit case. A 12-bit D/A converter, which is now available at relatively low cost, requires an analog reference of 10.00 volts ±24 mV. Clearly, as the bit length of the converter increases, the voltage reference must become more precise. Reference voltage sources for 8-, 10-, and 12-bit D/A converters are easily constructed at a low cost using components available today.

Zener diodes

One of the most important voltage references used in electronics is the Zener diode. Figure 1 shows the basic circuit for a Zener-diode regulator; a graph of the voltage-versus-current characteristic for a typical Zener diode is shown in Fig. 2.

The Zener diode acts much like an ordinary PN-junction diode as long as the applied voltage is less than a specified value of reverse bias (Vz), or when the diode is forward biased. In the range between Vz, and a forward bias of approximately 700 mV (the actual figure is usually 600 to 700 mV), the current through the diode is a small reverse current called leakage. The diode is essentially turned off in that region. When the voltage exceeds a forward bias potential of 700 mV, the
positive current increases in the same manner as in an ordinary PN junction. The Zener acts quite differently, however, when the reverse bias exceeds V_Z. When that voltage is reached, the negative current rapidly increases. No matter how much more negative the applied voltage becomes, the voltage across the diode remains relatively constant.

But the Zener diode is not the best voltage reference for many applications. The Zener's voltage rating is nominal, not absolute. When the package says "6.2 volts," it may mean some potential in the neighborhood of 6.2 volts. It is also true that the Zener's voltage tends to change a little bit with changes in temperature—hardly something that you would want a voltage reference to do!

Figure 3 shows a circuit that overcomes the temperature-drift problem of Zener diodes. Two Zeners are used in that circuit; the output is the difference between their two V_Z potentials. The circuit works reasonably well as long as both Zener diodes are kept in the same thermal environment. It is common practice to bond the two diodes together and coat them with silicone grease in order to keep them at the same temperature.

Several manufacturers once offered four-terminal "Zener diode" packages that used four to eight Zeners, in two series circuits, to form the output potential. Those devices were arranged like the circuit in Fig. 3, except for the number of diodes and the fact that all were on a common substrate, thus tracking each other in temperature.

Op-amp voltage-reference sources

One problem with Zener references, even precision Zener's that have been trimmed to a specific, accurate voltage, is that they are limited to values selected by the diode manufacturer—often not the voltage required in some particular application. We can, however, use an op-amp circuit to scale the voltage to a needed value. Such a circuit will also keep the load across the Zener at a constant, low level. Almost any op-amp will do for that type of circuit, but it is generally best to use a premium-grade type. Some of the best are BIMOS and BiFET op-amps, such as the RCA CA3140 device.

The basic properties of an operational amplifier tell us that applying a voltage to one input will cause a voltage to appear at the output. In the circuit of Fig. 4 we apply the voltage from a Zener diode to the non-inverting input of the op-amp. That means that the output voltage will have a value equal to that voltage times the gain of the operational amplifier. or:

$$V_O = V_Z (R_2 + R_3) / (R_1 + 1)$$

If we make the gain larger than one, then the output voltage will be greater than the Zener voltage. Similarly, if we make the gain one (i.e. if we short out R2 and R3, causing the output to be connected directly to the inverting input), then the output voltage is the same as the Zener voltage.

We can trim the value of the output voltage by making the feedback resistance variable. To keep tight control over the feedback resistance, a series combination of a fixed resistor and a potentiometer (R2 and R3) is used. It is generally good practice to make the resistance of potentiometer R3 approximately 10 percent of the total resistance (R2 + R3), and to make it a 10-, or 15-turn trimmer pot.

Special devices

In the past couple of years, semiconductor manufacturers have brought out several different types of voltage references. Some of those are two-terminal devices that act like diodes in the circuit, even though they are complete integrated circuits in themselves.

An example of such a device is the LM199 from National Semiconductor (2900 Semiconductor Dr., Santa Clara, CA 95051); the functional block diagram of that IC is shown in Fig. 5. That reference is a four-terminal device that combines a 6.95-volt Zener diode with an on-chip heater element. The Zener diode is maintained at the same temperature as the heater because it is buried on the same IC die (silicon chip) as the heater element.

The heater is not an actual resistance element, but is a Class-A amplifier with the input shorted. One property of such an amplifier is that it will dissipate a constant power, so that the amplifier will maintain a constant heat level after the die comes to equilibrium.

Burying the Zener in the same die as the heater element has many benefits including lower noise operation and thermal stability. Ordinary discrete Zener diodes have a drift specification on the order of 5 mV/°C, while for the LM199 devices the drift is specified in terms of microvolts per degree.
Zener diodes, but they use band-gap technology to produce a stable output voltage. Ferranti offers versions with output voltages of either 2.45 or 1.26 volts. The internal circuitry for the different types is essentially the same, and is shown in Fig. 6.

The Ferranti band-gap devices are available in five versions: ZN404, ZN458, ZN458A, ZN458B, and ZN423. The first four of these are 2.45-volt reference devices, while the last is a 1.26-volt reference device. All of the devices except the ZN423 are capable of sinking anywhere from 2- to 120-mA DC; the ZN423 can sink 1.5- to 12-mA DC.

The long-term stability of the Ferranti devices is 10 ppm per 1000 hours. Temperature coefficients range from 30 ppm to 200 ppm, depending on the device.

As in ordinary Zener-diode operation, a single series current-limiting resistor is used with the Ferranti regulators (see Fig. 6 for the formula to calculate the value of that resistor). For example, using a 2.45-volt regulator (VREF=2.45), a 5-volt DC power supply (+V=5), and a current of 3.75 mA (IREF=0.00375), the resistance required would be 680 ohms.

The Intersil (10710 N. Tantau Ave., Cupertino, CA 95014) ICL8069 diode shown in Fig. 7 is another of a band-gap reference source. That device is a 1.2-volt temperature-compensated voltage reference that features very low-noise operation. As a result, it is suited well to applications in high-speed data-conversion projects, as Zener currents up to 50 microamperes.

Various versions of that device are made with differing temperature coefficients and temperature ranges. Of course, the selection of a particular device depends upon the nature of the application it is to be used for. A device that would be suitable for an 8-bit A/D converter would not be suitable for a 12-bit converter.

Two applications for the ICL8069 are shown in Figs. 8 and 9. The application shown in Fig. 8 is similar to the operational amplifier circuit shown earlier. That circuit uses the ICL8069 in the feedback loop of a premium-grade LM108 op-amp. A potentiometer is used to trim the output to exactly 10.00 volts. That circuit can be used in a wide variety of applications. The circuit in Fig. 9 uses the ICL8069 device in a data-converter application. While an Intersil ICL7107 is used in that specific circuit, the ICL8069 can be used with any similar device whose output voltage is within the operating range of the diode.

Precision Monolithics, Inc. (1500 Space Park Dr., Santa Clara, CA 95050) offers two different IC voltage references, the REF-01 and REF-02. The REF-01 is a 10.00-volt device. It is housed in an eight-pin TO-99 case although just four of the pins are used. The REF-02 is a 5.00-volt device. It is also housed in a TO-99 case, but in this instance five of the pins are used. The fifth pin is a temperature-dependent terminal so that the REF-02 can be used as a temperature sensor.

The simple circuit shown in Fig. 10 contains a potentiometer that lets you set the output of either the REF-01 or REF-02 to exactly 10.00 volts. Either device can be used in a number of A/D or D/A converter circuits.

Selectible output supplies

All of the circuits presented thus far supply just a single output voltage. Even in the devices and circuits that use a potentiometer, it is used to adjust the output to a single value and then left alone. Sometimes however, a multiple-output voltage reference is needed. An example of that might be a voltage calibrator used with oscilloscopes and voltmeters.

The simplest way to make a multiple-output voltage reference is to place a resistance network between the output of one of the circuits presented in this article and the load. A typical network is shown in Fig. 11. In that network, each tap is a decade higher in voltage than the next lower tap. The lowest value shown is 10 ohms, but that might
be too low for some applications. In that case, make the lowest value 100 ohms, and increase each of the other resistances by a factor of ten (i.e. make the sequence 100-900-9000-90,000 etc.). With the resistances used in Fig. 11, the voltages found at the taps would be as follows:

A—10.00 volts
B—1.00 volts
C—100 millivolts
D—0 volts

We can also make a digitally selectable reference source by using a D/A converter. Figure 12 shows how such a converter can be used to control the output voltage (V0) of a reference supply. The output current of any D/A converter is the product of the input current (I1) and the binary word, divided by the maximum possible value of the binary word:

\[I_2 = I_1 \times \frac{1}{2^n} \]

Where: \(I_1 \) is the reference current.

FIG. 12—A DIGITALLY SELECTABLE voltage reference. Once the input current (I1) to the D/A converter is set, the output from the circuit (V0) is determined by digital input (pins 5-12) to the D/A converter.

We can also make a digitally selectable reference source by using a D/A converter. Figure 12 shows how such a converter can be used to control the output voltage (V0) of a reference supply.

The output current of any D/A converter is the product of the input current (I1) and the binary word, divided by the maximum possible value of the binary word:

\[I_2 = I_1 \times \frac{1}{2^n} \]

Where: \(I_1 \) is the reference current.

FIG. 11—A RESISTOR NETWORK can be used to get a multiple-output voltage reference. The voltage at each tap is 10 times higher than the voltage at the tap below it.

\[I_2 = \frac{I_1}{2^n} \]

In the equation, \(I_2 \) is the output current, \(I_1 \) is the reference current, \(n \) is the decimal value of the binary word input, and \(n \) is the bit-length of the D/A converter.

Try this problem out as an example:

Find the output current \(I_2 \) when \(V_{ref} \) is +10.00 volts, and R1 is adjusted so that \(I_1 \) is exactly 2 mA. Assume that the binary word applied to the output is 10111110 (i.e. decimal 150), and that the D/A converter is 8-bits (as in Fig. 12).

The solution would be found as follows:

\[I_2 = \frac{2 \times 150}{2^8} = 1.875 \text{ mA} \]

The output voltage from the circuit \(V_0 \) in Fig. 12 is the product of the D/A converter current and the feedback resistors, so:

\[V_0 = (I_2) \times (R_4) \]

Once the reference current \(I_1 \) is set, the output from the D/A converter is determined by the digital input to the converter. It is a simple matter to vary that input to give us precisely the reference voltage that is needed. There are many ways to do that, including connecting the D/A converter’s digital input to the output port of the microcomputer or to binary-output thumbwheel switches.

Solid State News

Power FET’s data sheets

Power MOS Field-Effect Transistors is the title of a 30-page booklet from Motorola. It includes data sheets, cross-references, and operating theory for the company’s enhancement-mode N-channel silicon-gate TMOS FET—Motorola Semiconductors Products, Box 20912, Phoenix, AZ 85036.

RCA COS/MOS product guide

COS/MOS Digital Integrated Circuits (COS-278H) is a 30-page product guide written to aid the user in selecting the optimum types of devices for specific applications. It provides maximum ratings, recommended operating conditions, static electrical-characteristics, selection charts, and functional diagrams for the complete line of RCA A-Series (15-volts maximum rating) and B-Series (20-volts maximum rating) COS/MOS devices. Devices covered include gates, buffers, inverters, encoders, decoders, multiplexers, flip-flops, and triggers. Also included are IC’s intended for use in microprocessor, memory, and timekeeping circuits.—RCA, Solid State Division, PO Box 3200, Somerville, NJ 08876.

RF diodes catalog

RF Signal-Processing Diodes Selector Guide is a 6-page listing of all Motorola tuning diodes for frequency control, hot-carrier diodes for mixing and detection, and PIN diodes for switching. Included are design curves and package outlines.—Motorola Semiconductors Products, PO Box 20912, Phoenix, AZ 85036.

RF transistor catalog

Transistor Designers 1981 Catalog is a 159-page VHF/UHF/microwave transistor selection guide. Included are detailed data on low-noise, general-purpose, and linear power silicon-transistors, and low-noise and linear power GaAs FET’s for use between 60 MHz and 18 GHz. Charts show performance curves and typical contours for the constant-gain and noise-figure functions. Some devices are available both packaged and unmounted chips.—Avantek, 3175 Bowers Ave., Santa Clara, CA 95051.
AN EYE-CATCHING AND USEFUL PROJECT need not cost a great deal of money. The device described here is a combination digital clock/outdoor thermometer; the total cost of project as shown is less than fifty dollars.

To make things more interesting visually, the project was housed in a clear case—an acrylic butter dish—so that the entire circuit can be seen. Three reed switches are used to set the time or turn on the thermometer; that is done by bringing a magnet near the case, close to where the appropriate switch is located. Although standard subminiature panel mounted switches can be used, we choose the reed switches because it simplifies the construction and gives the completed project a modern appearance. As a thermometer, the project displays temperature in either °C or °F over a range of -40°C to +90°C or -40°F to +193°F. The temperature sensor does not require a separate power supply and is not affected by lead length.

About the circuit

The heart of the circuit is a National Semiconductor MA1026 digital LED alarm clock/thermometer module as is shown in Fig. 1. That module features a 0.7-inch LED display, snooze alarm, 24-hour alarm, 12/24 hour mode, 50/60 Hz select, fixed/flashing colon, and sleep cycle. The sleep cycle can be used with external circuitry, to turn off a radio or appliance after a time period of 59 minutes or less.

For this project, the module can be treated as a "black box," requiring just a transformer for input power, switches for display selection, and sensors for temperature measurement. The transformer has three windings—a 120-volt primary, a 6-volt center-tapped secondary (125-milliampere current-handling capability on either side of the tap), and a 10.5-volt secondary capable of supplying 25 milliamperes. Power consumed by the module is minimal; therefore the power-handling capacity of the switches is not important. An LM334 adjustable current source is used as the temperature sensor; that three-legged device looks like a small plastic transistor. A 220-ohm resistor, R1, is used to scale the output of the LM334 so that the IC will supply a current of one microampere-per-°C. Because the output from the sensor is a current, lead length is not critical. Note that a low temperature-coefficient resistor should be used for R1 (either a metal-film or, if you can find it, wire-wound unit), and that it should be part of the sensor package so that it will change temperature with the IC. To make the sensor package mount the LM334 and the resistor on a small piece of perforated construction board.

In the basic clock/thermometer shown in Fig. 2, pin 8 is tied to pin 16, letting you set the time using the FAST SET and SLOW SET switches. Closing the TEMP switch puts the device in the "thermometer mode." In that mode, if pin 10 on the clock module is left unconnected, the temperature readings will be in °F; if pin 10 were tied to pin 8, the temperature readings would be in °C.

The basic clock/thermometer can also be adapted for battery operation. If you want to do that, the schematic shown in Fig. 3 should be used. In that circuit, a

Know the time and temperature instantly with this easy-to-build project. The clear, acrylic case makes it an interesting conversation piece.

MICHAEL RIGSBY

FIG. 1—THE COMPLETE PIN-OUT for the National MA1026 clock module is shown here.
oscillator draws less than 1.5 milliamperes.

Construction

While such things as wire size and lead length are not critical, certain precautions should be taken with component placement. Traces on the module must not be shorted by the transformer case, temperature-sensor input jack, fastening bolts, or uninsulated wires. Since the reed switches are operated magnetically, they should be placed close to the edge of the acrylic case as possible. Also keep in mind that the transformer generates a magnetic field, and could affect the operation of the reed switches if they are placed too near it.

When drilling the case, it is very easy to scratch or shatter the acrylic material unless you are careful. To make holes, place the case on a cloth and drill a "pilot" hole using a 1/16-inch bit. When you enlarge the hole, it is best to reverse the direction of the drill just before breaking through; use the friction of the moving bit to melt the remaining plastic. That technique avoids the danger of a snap and the resulting damage.

Fast-drying epoxy is clear and forms an excellent bond for mounting the module and other components to the acrylic—do not use glue on the face of the module as it will appear as a trapped drop of water. Avoid "super" glues; their fumes will create a permanent cloudiness in the clear plastic.

Before closing up the case, you will need to calibrate the module so that it reads the correct temperature. The temperature-sensor assembly should be stabilized in a known environment. To do that, prepare an ice-point bath of water and ice. Place a mercury thermometer in the bath, and watch the temperature until it drops to 32°F (or 0°C). Once that happens, the temperature of the bath should remain constant until all of the ice melts. Before then, however, place the sensor in the bath, and adjust the module potentiometer (the blue knob on back of the module) until the temperature reading is precisely 32°F (or 0°C). Once that is done, remove the sensor from the bath and close up the case. If you use epoxy, use only small drops—you might want to open up the case again someday. The completed project is shown in Fig. 4.

Options

As we mentioned earlier, the MA1026 module is loaded with features and

PARTS LIST

Resistors ¼ watt, 5%
R1—220 ohms, metal film or wire wound
R2—10 megohms

Capacitors
C1, C2—47 pF, ceramic disc

Semiconductors
IC1—MA 1026 clock module (National)
IC2—LM334 adjustable current source/temperature sensor
IC3—MM5369 oscillator/divider
J1—miniature phone jack, panel mount
PL1—miniature phone plug
RY1-RY3—reed switches
T1—dual secondary; 10.5 volts at 25 mA,
6 VCT at 25 mA
XTAL1—3.58 MHz crystal

Miscellaneous: acrylic case, small piece of perfboard, wire, solder, hardware, epoxy glue, etc.

NOTE: If you are unable to obtain IC1, T1, or XTAL1 from your usual dealer, they can be ordered from Digi-Key Corporation, Hiway 32 South, PO Box 577, Thief River Falls, MN 56701

58

www.americanradiohistory.com
Part 3 EARlier in this series we discussed the data that’s transmitted on the vertical-blanking interval lines, preparing the videotex decoder for the video data that is to follow it, but did not talk about that information itself.

The actual display data—the alphanumericics and graphics—is placed on a video line on a “space-occupying” basis, in accord with the North American Broadcast Teletext Standard proposal. That’s the reason for the bytes in the headers that indicate where the next information is to be found. The data contained in the headers also allows the control information to be multiplexed with the display information.

The videotex decoder separates the two and stores them in RAM. At the appropriate time, the alphabetic (display) information is called up by the decoder and acted upon by the control information to determine character size, color, etc. That system is known as the parallel-attribute format.

Prestel—which has also filed with the FCC for acceptance—does it differently. As mentioned earlier, Prestel data is transmitted sequentially—the first character is sent first, and the last one last, and that’s how they appear on the screen. The character-attribute data is sent along with the alphabetic data. That means that when an attribute (such as color) is changed, a pixel (picture element) is sacrificed and nothing is seen in the space that would otherwise be occupied by a character. Because one character or control element follows the other, the system is known as serial-attribute transmission.

(Editor’s note—This is known as Level-1 Prestel. There are a total of five levels of Prestel, each more advanced than the previous one. Level 1, while the most “primitive,” is also the most common at this stage. The proposal before the FCC includes all five levels.)

Alphabeticics are sent using the ASCII (American Standard Code for Information Interchange) code—the one that is used by most computers. In it, each character is represented by a 7-bit word. For example, the letter “A” is represented by the decimal value 65, and a space by the decimal value 32. Since the information is transmitted in digital form, the “A” becomes “1000001,” and the space “0100000.” Table 1 shows videotex alphanumericics and their ASCII values. A switchable control byte allows the same numbers to be used to obtain other characters.

In the simplest forms of videotex (see Fig. 5 in Part 1 of this series in the November 1981 issue of Radio Electronics), the ASCII data is sent to a character-generator ROM. That IC contains the information needed to display all the letters and graphic symbols. A PDI’s (Picture Description Instructions) allow the supplier of videotex information even more flexibility. Table 2 shows the PDI’s described in the North American Broadcast Teletext Standard proposal. Since they are downloaded into the decoder’s memory, they make possible very complex graphics with very little effort. For instance, the LINE command could be used to instruct the decoder to display the text “This is used for graphics.”

Once the PDI’s are loaded into memory, they make possible a wide variety of high-quality graphics, such as the illustration shown in Fig. 16. PDI’s also require RAM (typically 16K) but can make a PDI-equipped decoder worth its expense when graphics are of the essence.

Alpha-photographic

An example of alpha-photographic videotex is shown in Fig. 17. Alpha-photographic videotex allows the transmission not only of text, but also of still images.
video frames—something that will be very important when shopping-by-videotex becomes widespread and the buyer wants to see not a drawing, but a real picture of the item he is interested in.

Figure 10 in the December 1981 issue of Radio-Electronics shows an alpha-photographic system. Several layers of RAM are overlaid, and their contents taken as a whole to provide varying brightness levels, which are not available in less sophisticated forms of videotex. As an example, let’s take a look at bit-1 of each of the four planes of RAM shown in that figure. If we consider the four planes together, we can build values ranging from 0 to 15, depending on whether the bits are “1” or “0”s. That means that each pixel can be assigned one of sixteen brightness levels, if the values are converted into voltages that will control the electron beam of the video display.

Scanned sequentially, the contents of the bit-plane memory appear as a series of brighter or darker pixels—a photograph! Even color is possible.

Of course, there is a tradeoff involved. Depending on the baud rate at which the data is sent, it can take several seconds for the picture to be completed. (Actually, that process would not be apparent to the user because the data would be loaded into RAM and not displayed until everything was present.) That’s one reason why the “photograph” in Fig. 17 fills only part of the screen—a small picture requires less memory and can be transmitted and displayed more quickly (about two seconds for the one shown). Despite its apparent disadvantages, though, alpha-photographic videotex can be quite useful.

Which is best?

We’ve presented several levels of videotex—alpha-mosaic, alpha-geometric, and alpha-photographic. Which one is going to win out?

That’s difficult to say. Eventually, of course, we’ll be using the alpha-photographic mode, and every level below it. For the immediate future, however, we’re faced with a conflict between a rather simple (although technically sophisticated) alpha-mosaic system, typified by Level-I Prestel, and a more expressive but more complex—and, initially, more expensive—alpha-geometric system of the Antiope/Telidon-type.

Proponents of both systems have petitioned the FCC for acceptance of their method as the North American standard. Those backing the Prestel system claim that it is simple, inexpensive, and has a proven history. Those in favor of the Antiope/Telidon...
system say that its flexibility outweighs its apparent complexity, and that component prices will decrease rapidly once it is accepted and decoders are produced in volume.

At the moment, the decision lies with the FCC. Recent developments in FCC policy, however, indicate that the ultimate decision may be up to the user: both systems may be allowed, and the winner will be the one with the most subscribers. It's even possible that the two systems will coexist, one in some areas, and one in others.

That, however, invokes memories of "quad" sound, and the controversy and confusion that surrounded it before it more or less disappeared. Whatever the outcome, videotex—in one form or another—will be with us, and will make life a bit simpler and more rewarding.

Using videotex

Let's take a look at a not-so-hypothetical videotex system. We'll assume that the system used is that proposed to be the North American Broadcast Standard and that the videotex data is being sent over the air on two lines of the vertical-blanking interval. The equipment involved is an ordinary television receiver equipped with a videotex decoder and a small numeric keypad like a Touch-Tone pad. Also attached to the decoder is a modem, through which information can be sent back by telephone to the videotex computer.

A good videotex information-system will be constructed like an onion—the outside layer of information will be general. More detailed information can be obtained by requesting pages indicated by the first level. Still more detailed information will be available by selecting pages indicated by the second level. Also available will be an alphabetical directory—it might tell you that the page numbers for categories beginning with the letters "VAA" through "ZZZ" can be found on page number such-and-such.

Let's assume that you want to make an airline reservation from New York to San Francisco. The first thing you will do will be to find out what page carries airline information. Upon entering the page number, a directory to various airlines will appear on the screen within about 10 seconds.

When the airline you select appears on the screen, it may present a menu showing the cities served, with each city identified by a number. By keying in that number, you will find another page showing the line's flights to that city, and possibly the status of each flight ("BOOKED FULL," "STAND-BY ONLY," or even "SEATS AVAILABLE").

By keying in the number associated with the flight you want, a menu will be presented for you to "fill out" to make your reservation and, at that time, you will be instructed to set up your telephone link to transmit that information to the videotex or airline computer.

You will be asked for your videotex account number, which may be confirmed on the screen. That not only automatically tells the airline just who is buying the ticket, but can also be used for direct-billing purposes. You'll then fill in the blanks on the screen to indicate what class your people will be traveling, what class of service is desired, departure date, etc.

Finally, you will be given the option of committing yourself to that reservation, or—and sometimes more important—simply telling the computer to forget the whole matter.

Getting detailed news would also be done through a series of ever-more-detailed menus. The first page would be an index by subject ("WORLD," "NATIONAL," "SPORTS," "COMICS," etc.) and would also contain the latest headlines. By unpeeling layers of the information "onion," you could scan the items of interest to you, or read about them at length.

Who pays for it?

There's no such thing as a free lunch. Videotex equipment is not cheap, and the time that goes into programming the system also costs money. Where does the money come from?

In some instances, the company selling a service or product (such as an airline) pays out of its own pocket—it's probably less expensive than running a sales office. In other cases, such as financial reports like the Dow Jones index, a charge of 10 or 25 cents would be made to your account each time you accessed the service, or you would be billed for the time that you used.

Finally, to encourage the use of the system, some services, like news headlines or weather, might be provided without charge. After all, if you're going to use your videotex terminal for that, you'll also eventually find yourself using it for services that you (or someone else) pays for.

How we'll use it

Technically, videotex is quite an achievement. What, though, will it do for you? Some ideas were presented above; here are a few more.

Initially, interactive videotex—where the user can communicate with the service—will be limited. Broadcast videotex, using a full video-frame occupying all of a TV channel will predominate, presenting a continuously scrolling display of information. But the viewer will have no opportunity to take advantage of it except as a non-selective information source.

At the beginning, interactive videotex will probably be available at selected public terminals (in airports, offices, and other places where its capabilities can justify the initial expense).

Our world, though, is changing. We are, more and more, becoming a "wired society." Right now that pertains primarily to telephone service—you can speak to anyone in the world for what would have been considered, a few years ago, a ridiculously low price.

Now, cable-TV is becoming a part of our lives and, if one channel were used to receive videotex, and another to transmit multiplexed viewer response (at a relatively low-data-rate), interactive videotex over cable could easily become a reality.

In the near future we'll see two more developments that will further the interactive aspect of videotex.

The first is fiber optics. By using light, rather than RF, as a transmission medium, it will be possible to have an almost unlimited number of channels for information interchange. Fiber optics, using hair-thin transparent light-guides instead of cables, is their logical replacement. We'll be seeing a lot more of that technology soon.

The second could very well be DBS (Direct Broadcast Satellites). They could replace any wired—or light-piped—information service and, although it may take a while, they may become two-way. Not only would you be able to receive the programs or data they sent, but a relatively-low-power transmitter might transmit your information into the system.

continued on page 103
SPEECH SYNTHESIS Techniques

Electronic speech-synthesis has come a long way from the Voder, which took seven people to operate when it was demonstrated at the 1939 N.Y. World's Fair. Now all you need are a couple of IC's.

"Toys" such as Texas Instruments' Speak & Spell have been recognized as effective learning tools. Through the electronics mouths of those machines, children are exposed to new words in an exciting interactive way. Talking calculators and timepieces have expanded the horizons for the blind; pilots and drivers are relieved of the need to watch their meters and gauges continuously; alarms can be given with instructions as to what actions should be taken. Speech-synthesis devices are finding a myriad uses in communications, appliances, automotive applications, clocks, instrumentation, language translators, and annunciators. It is estimated that the speech-synthesis market will grow to hundreds of millions of dollars in the next five years.
Fundamentals

Human speech begins in the cortex of the brain but, so far, that creative process has been imitated only crudely. The mechanics of speech, though, have been simulated with uncanny precision.

The human speech process begins in the lungs and proceeds through the larynx to create the noises and tones that correspond respectively to unvoiced and voiced human speech output. The wideband hissing “s,” “f,” and “sh” are unvoiced sounds, created by the random flow of air particles through the voice tract, but the voiced consonants like “b” and “l” are constructed of discrete narrowband frequencies: the vibrating vocal cords generate the voiced sounds. Fricatives like “v” and “z” combine the two types of sources and the plosives, such as “p,” “t,” and “k” are produced by the controlled release of air from the mouth.

The speech process is completed by articulation—changing the shape of the throat, and the shape and positioning of the teeth, tongue, palate and lips. Together, those parts of the mouth and respiratory system form an adaptive filter that alters the resonances of the vocal tract.

While there are more similarities than differences among the approaches to speech synthesis, they can be separated into three general groups: direct waveform-digitization, phoneme synthesis, and linear-predictive coding.

Direct waveform-digitization

Direct waveform-digitization is the process of taking a live or recorded speech-waveform and passing it through an analog-to-digital converter. The final quality of the reconstructed speech (obtained by passing the digitized data through a digital-to-analog converter) depends on several factors, including the rate at which the speech waveform is sampled (how many times each second the waveform is “looked at”) and its value digitized and the number of amplitude levels into which it is segmented. As the number of levels increases, more information must be processed and stored in memory; as the number of levels decreases the memory and processing requirements decrease—at the expense of intelligibility.

It is necessary to sample the waveform at a frequency that is at least twice as high as the highest frequency in the original waveform. If the sampling frequency is too low, aliasing, which causes the higher frequencies to appear falsely as lower frequencies, takes place.

Playback of the digitized signal is (in theory) a simple matter of recalling the sequences of data stored in memory and processing them with a digital-to-analog converter.

Direct waveform-digitization of human speech is highly redundant: it wastes a lot of memory storing, for example, drawn-out sounds like “ooooooh.” Methods used to reduce the memory requirements and rate of processing of redundant information may actually cause this synthesis technique to be classified in one of the other simulation groups.

National Semiconductor (2900 Semiconductor Dr., Santa Clara, CA 95051) uses a direct-digitization method that reconstructs the speech using pulse-coded modulation. It calls its system the Digitalker. Compressed speech data is stored along with frequency and amplitude information in a read-only memory (ROM). Figure 1 shows a typical configuration connected to a microprocessor bus complete with an output filter, amplifier, and speaker. Figure 2 shows a block diagram of the speech processor chip, referred to as the SPC.

It cannot be overemphasized that the key to the practicality of this, as well as the other systems, is speech-compression—coding of the signals that minimizes the redundant information. National points out that its system produces speech quality far better than the crude sound you may associate with early demonstrations of speech digitization. In terms of memory space, the result is that male voices require about 100 bits per word and female voices somewhat more. The system is more like a digital recorder that digitizes actual voices, stores, and then plays back, than the other methods which model the vocal tract.

The compression method combines three techniques. First, redundant pitch periods are removed. Then, adaptive delta-modulation, which uses the difference between two successive sampling points rather than the values at those points, is used to conserve memory space by storing only the difference information. Phase adjustments and half-period zeroing, remove the “direction” component of the waveform; that information is not needed for intelligibility. so can be safely done away with. Computer processing is used to accomplish the compression. National claims that its compression scheme, combined with waveform digitization, is very competitive with other systems, including linear-predictive coding.

The Digitalker is programmed with control information that instructs it how many times to repeat a specific waveform. A programmable frequency-generator is used to add inflection. The system is easy to use because it requires only a start pulse and an 8-bit address to trigger any message. Simple switches can be used if a microproces-
which includes a speech processing IC, two speech ROM's containing 138 words, and an erasable programmable ROM (EPROM). The DT1000 board can be connected to an external control system through a 22-pin edge connector. A demonstration package is available with a vocabulary aimed at several industrial markets. The 5 × 6-inch DT1000 evaluation board is priced at $495. The DT1050 three-piece IC set is $85. Write directly to National Semiconductor for more information.

Phoneme synthesis

Phoneme synthesis works by combining basic sound elements (phonemes) that are made up into complete words and sentences. In theory, any spoken word can be synthesized by stringing phonemes together. The quality of the resulting speech depends on the extent of the phoneme library. To cover a wide range of speech, typically large number of phonemes are used.

The phoneme method is particularly suitable when the extent or type of vocabulary required is not fixed: When there is no definite vocabulary list, speech cannot be constructed from stored words and phrases but must be generated from the more elemental phoneme sounds.

General Instruments (600 W John St., Hicksville, NY 11802) has taken the approach just described, combining phoneme synthesis with a digital filter. The design is versatile enough to operate in a linear-predictive filter mode (more about that shortly). GI has released a product specification that describes the SP0256 speech-processor IC: it is an LSI n-channel metal-gate device that can synthesize up to 256 sound sequences.

Figure 3 shows a block diagram of the processor. The speech process is started by addressing the ROM location that contains the phoneme desired. Up to 256 phonemes can be stored in the 16K bits of the on-board ROM, but that can be extended to as many as 3825 phonemes (or, more usually, complete words or phrases) through the addition of up to 491K bits of ROM.

The device includes a controller and a vocal-tract model (VTM). The VTM is a digital filter similar to that used in linear-predictive coding. The system generates complex sound-sequences under the control of 15 slowly varying parameters including: repeat count, pitch period, source amplitude, and 13 digital filter-coefficients. The controller is a sequential processor that gets its instructions and data from the ROM and alters the contents of the 15 parameter-registers controlling the VTM.

One-byte inputs specify 256 entry points. The entry points in the internal ROM are spaced by 8-byte increments, meaning that each phoneme can be defined by 8 bytes (64 bits). Expanding
the input format to 2 bytes increases the number of entry points to 3825, assuming that the full complement of ROM has been added. The controller has 16 executable instructions and supports one level of subroutine nesting. JMP (Jump) and JSR (Jump to Sub-Routine) instructions are included to allow chaining of program segments and the reuse of code sequences.

External ROM interfaces to the speech-processor device through serial input and output lines. Sixteen-bit serial addresses are used for addressing. Serial-to-parallel conversion is handled internally by the SP0256. The analog output is developed by a 7-bit pulse-width modulation, digital-to-analog converter. The output is passed through a 5-kHz-cutoff low-pass filter and is then amplified externally. The single-unit price for the SP0256 is $26.70. The price will probably be even lower from a General Instruments distributor.

Votrax's phoneme system

Votrax, Div. of Federal Screw Works (500 Stephenson Highway, Troy, MI 48084) offers another phoneme-based system. Votrax uses a switched capacitor filter in its CMOS-technology SC-01 LSI integrated circuit. Phonemes require an average of 6 bits and each phoneme is 40 to 200 milliseconds long. The device has a 64-phoneme library accessed by a 6-bit code. Typical speech-data uses 70 bits per second. Votrax plans to provide a text-to-phoneme translator algorithm that will let the user do his own programming. Figure 4 shows a block diagram of the system. The price of the SC-01 is $55.00 each in quantities of five (single units may be available from distributors).

Linear-predictive coding

Linear-predictive coding—used extensively by Texas Instruments (P.O. Box 225012, Dallas, TX 75265)—is a combination of techniques that model the vocal tract electronically. Noise and tonal sources generate signals that are processed by the LPC filter. The method derives its name from the fact that it predicts the parameters of the next speech sample using a linear combination of the preceding speech samples. That results in a major reduction in the amount of memory required for the storage of speech data.

Speech-synthesis techniques using that method require as few as three integrated circuits: a digital lattice-filter, a ROM, and a controller. Present systems are based on the 10-stage filter shown in Fig. 5; its output is set by pitch, amplitude, and filter coefficients.

The lattice-filter structure includes multiplication, summation, and delay blocks. Digital filters are constructed of memory-register delay components, and of summers and multipliers connected in either feedback or nonrecursive, direct path configurations. Multiplication takes longer than addition, so pipeline techniques are used to synchronize the filter's operation to the sampling rate of the system. The all-pole filter is described by the equation:

$$H(z) = \frac{G}{1 + \sum_{k=1}^{10} a_k z^{-k}}$$

The a_k terms are the ten filter-coefficients. G is a gain factor, and the z^{-k} terms represent time delays.

The voice-synthesis processor performs about 400,000 multiplications and additions each second. A frame (complete set of speech data) is supplied to it about every 25 milliseconds. Data from adjacent frames is interpolated about every 3 milliseconds to generate a smooth output. Once again a tradeoff is made among flexibility, fixed or variable vocabulary, speech quality, and cost per-second of speech output.

A computer program is used to produce an optimal set of coefficients for the vocal tract filter, the 8-bit energy and pitch information, and to generate the one-bit repeat codes. A technician corrects any audible deficiencies.

Texas Instruments' TMS5100 speech-processing computer, which includes a 50-milliwatt power amplifier, is a key component in its speech-synthesis line. The TMS5220 is designed for easy 8-bit data bus interface. It is used in the TI-99/4 home computer speech-synthesizer peripheral. Single-unit prices for the TMS5100 and TMS5220 are $32.00 and $48.00 respectively.

FIG. 4—VOTRAX’S SC-01 is a single-IC, phoneme-type, speech synthesizer intended for computer control.

FIG. 5—TEN-STAGE LATTICE FILTER used in Texas Instruments’ linear-predictive-coding synthesizer simulates the resonant effects of the mouth and nasal cavities.

www.americanradiohistory.com
A subwoofer allows your sound system to reproduce very-low bass, such as that found in organ recordings. This SAFE subwoofer may be small, but it's mighty where it counts.

GEORGE PAPPANIKOLAOU

The heart of the system is an 8- or 10-inch speaker in a cabinet with a volume of under six cubic feet. It uses no special devices, such as passive radiators, to increase the effective size of the speaker, and the SAFE design provides an extremely rigid enclosure.

The SAFE principle

The SAFE principle is an outgrowth of the labyrinth-type enclosure invented by Benjamin Olney in the 1930's. A labyrinth-type enclosure is simply a long tube placed behind a speaker and into which the low-frequency back wave from the speaker is propagated. The length of the tube is used to provide "reflex action," causing the back wave to emerge from the tube in phase with the front wave. This boosts the low-frequency output of the system over a specific range of frequencies. The longer the effective length of the tube, the lower the frequencies that will be boosted.

The reason for using the term "effective length" is that friction between the air set in motion by the speaker and the internal surface of the labyrinth causes the velocity of the back wave to be decreased and making it take longer to pass through the tube than would be the case if there were no friction. The fact that it takes the sound wave longer to traverse the labyrinth than it normally would, makes it appear that the wave has traveled a longer path than it actually did.

Two methods commonly used to increase effective length of the labyrinth are to line its interior with acoustic padding such as fiberglass, or to completely fill it with the same material.

Many designs usually fold the tube (run it back and forth instead of in straight line) to keep the size of the enclosure

LEN FELDMAN
CONTRIBUTING HI-FI EDITOR

WE PUT AN EIGHT-INCH SAFE SUBWOOFER through extensive listening tests in our laboratory and also subjected it to several measurements. We drove it using an amplifier rated at about 40-watts per-channel and a passive crossover network.

Based on our sensitivity measurements, we would classify this speaker as being low-to-medium in efficiency (an electronic crossover would have helped). Nonetheless, we noted a fundamental output from the subwoofer down to 25 Hz. We measured relatively uniform response from the system from 30 Hz up to the 100-Hz cutoff frequency and were able to produce sound-pressure levels in excess of 100-db SPL before any significant doubling or distortion was observed.

The unit was tested using both single-tone signals and musical material. In reproducing the music, the improvement in bass reproduction was apparent only when the program source contained a fair amount of low-bass energy. Not too many program sources do, but when you find one that does, the added impact of the low, low bass contributed by the subwoofer made the project decidedly worthwhile.

One word of caution. Trying to reproduce ultra-low bass in a small room can prove to be a frustrating experience. Standing waves set up in the room are responsible for that, and it is possible to move about the room and hear thunderous bass in one location while hearing virtually none in another spot, where virtually complete cancellation of bass frequencies takes place.

We used close-miking techniques in our sound-pressure measurements, placing the microphone both at the upper back-wave ports of the enclosure and at close proximity to the driver itself. Below 40 to 50 Hz, most of the energy, as might have been expected, came from the back-wave ports rather than from the front of the woofer.

R-E
down. Also, the effective length of the tube and the free-air resonance of the speaker are chosen so that the speaker is damped at its free-air-resonance frequency, avoiding objectionable excess output at that frequency.

There are, however, two other factors that can be used to increase air friction, and thereby the effective length of the labyrinth. These factors are what's involved in the SAFE principle. First, the internal surface area—not the length—of the tube can be increased; second, the back-wave path can be made longer by increasing the number of bends in it.

A SAFE enclosure uses a number of small chambers in series (see Fig. 1) to both increase the internal surface area and to insert more bends in the path of the speaker back-wave. The small chambers are constructed by alternating two types of partitions within the tube as shown in Fig. 2. The first type completely blocks the tube, except for a square hole in its center. The second is smaller and is centered so that the area between it and the inside perimeter of the tube is equal to that of the hole in the first type. This forces the back-wave from the speaker to be alternately spread out and combined as it passes through the tube. (It is obvious that this design increases the internal surface area of the tube and

FIG. 1—SIDE VIEW OF SAFE ENCLOSURE showing speaker back-wave path. Path is symmetrical between points A and B.

FIG. 2—SPEAKER BACK-WAVE is alternately combined and separated as it passes through and around SAFE enclosure's baffles.

FIG. 3—PARTITIONS USED IN SAFE ENCLOSURE (a) affect its effective cross-sectional area (b).
FIG. 4—EXAGGERATED PERSPECTIVE VIEW of first chamber. Note mountings of first and second behind-the-speaker partitions.

FIG. 5—NON-PERSPECTIVE VIEW from front of enclosure. Note construction of partition 1/partition 2 assembly.

PARTS LIST—ENCLOSURE

<table>
<thead>
<tr>
<th>Qty</th>
<th>Size (inches)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>15 1/2 x 15 1/2 x 3/4</td>
<td>Front and rear panels</td>
</tr>
<tr>
<td>2</td>
<td>17 x 34 x 3/4</td>
<td>Side panels</td>
</tr>
<tr>
<td>1</td>
<td>15 1/2 x 15 1/2 x 3/4</td>
<td>Bottom</td>
</tr>
<tr>
<td>1</td>
<td>15 1/2 x 17 x 3/4</td>
<td>Top</td>
</tr>
<tr>
<td>1</td>
<td>15 1/2 x 15 1/2 x 1/2</td>
<td>Partition 11</td>
</tr>
<tr>
<td>5</td>
<td>15 1/2 x 15 1/2 x 1/4</td>
<td>Partitions 1, 3, 5, 7, 9</td>
</tr>
<tr>
<td>5</td>
<td>13 1/2 x 13 1/2 x 1/4</td>
<td>Partitions 2, 4, 6, 8, 10</td>
</tr>
<tr>
<td>40</td>
<td>1 x 1 x 1 1/4</td>
<td>Strips for mounting odd-numbered partitions to even-numbered ones</td>
</tr>
<tr>
<td>12</td>
<td>1/2 x 3/4 x 15 1/2</td>
<td>Partition-to-cabinet mounting strips</td>
</tr>
<tr>
<td>12</td>
<td>1/2 x 3/4 x 14 1/2</td>
<td>First behind-the-speaker partition</td>
</tr>
<tr>
<td>1</td>
<td>15 1/2 x 7 x 3/4</td>
<td>Second behind-the-speaker partition</td>
</tr>
<tr>
<td>1</td>
<td>15 1/2 x 8 x 3/4</td>
<td>Mounting strips for first behind-the-speaker partition</td>
</tr>
</tbody>
</table>

Speaker—JBL LE8T (8-inch) or LE10A (10-inch) or similar
Miscellaneous: Two binding posts, screws, hot-melt glue and glue gun, acoustic insulation, crossover network, etc.

FIG. 6—SIMPLIFIED CUTAWAY VIEW of enclosure showing mounting details of first and second behind-the-speaker partitions.

FIG. 7—FIRST BEHIND-THE-SPEAKER PARTITION has cutouts to accommodate mounting strips.

Other factors

There are two other factors that have to be considered when designing a speaker enclosure: the free-air resonant frequency of the speaker used, which limits the low-frequency response, and the reflex action of the enclosure, which boosts the low-frequency output of the system.

The two factors are interrelated and an enclosure that does not increase the free-air resonant-frequency of the speaker (desirable) but doesn't provide any reflex action (undesirable), or one that does increase the speaker's free-air resonant frequency (undesirable) but does provide reflex action (de-
FIG. 8—PARTITION MOUNTING STRIPS for the front are shown in (a), rear are shown in (b), left side are shown in (c) and right side are shown in (d).

FIG. 9—SPEAKER SHOULD BE MOUNTED slightly off-center to prevent standing waves. Center figure shows distance between partition 1 and top of enclosure.

FIG. 10—EVEN-NUMBERED PARTITIONS (a) have "top hat" structure caused by using center piece cut out of odd-numbered partitions.

FIG. 11—SIDE VIEW of even-numbered partition mounted atop odd-numbered partition using partition mounting strips. Each strip is located as shown in Fig. 10 and measures 1 x 1 x 1½ inches.

The SAFE subwoofer enclosure is designed so that it does not significantly restrict the action of an 8-inch speaker (which would increase its free-air resonant frequency) while providing good reflex action. A 10-inch speaker can also be used. A 10-inch speaker would offer the advantage of increased power-handling capacity and, perhaps, better efficiency.

Construction

The choice of a speaker is not critical. Almost any 8- or 10-inch open-frame woofer will do; an 8-inch unit should have a ceramic magnet weighing about 20 ounces. JBL's LE8T is a good choice for an 8-inch system; the same firm's LE10A should do nicely in a 10-inch one.

While detailed step-by-step instructions will not be provided, the figures and the captions accompanying them should be studied closely; they will allow you to construct the enclosure with little difficulty. (The only tricky part—the area behind the speaker—will be explained below.)

Like all subwoofers, the SAFE enclosure should be constructed from solid, heavy material, such as ¾-inch particle board, to prevent cabinet vibrations that will decrease the output of the system. The partitions can be made from ¼-inch plywood, with the exception of partition 11, which should be ½-inch thick.

Use plenty of screws and glue! The former will add mechanical integrity and the latter will make the enclosure

continued on page 106
Join the Electronics and Control Engineers' Book Club and...

- Keep up with current technology
- Sharpen your professional skills
- Be ready for new career opportunities
- Boost your earning power

New members! Any one of these great professional books for only... as a premium with your 1st selection!

Spectacular values up to $75.00

INTUITIVE IC ELECTROONICS: A Sophisticated Primer for Engineers and Technicians. By I. M. Friedrikson. 285 pp., illus. Covering both the simplest and the most complicated IC designs, this lively, easy-to-read volume provides a sophisticated, nonmathematical explanation of the basic internal mechanisms common to all semiconductor devices. Gives you a solid understanding of devices like MOS transistors, the new IGFET designs, the bipolar digital logic families, JFETs, and much more. 216/230 Pub. Pr., $14.50 Club Pr., $11.50

HANDBOOK OF SEMICONDUCTOR AND BUBBLE MEMORIES. By W. A. Triebel and A. D. Chun. 316 pp., illus., over 50 worked-out problems. This detailed, comprehensive guide brings you right up to the minute on such newly developed devices as the PLA, FIFO, CAM, CCD, and magnetic bubble memory— as well as all the standard storage devices from ROMs and RAMs to shift registers. Analyzes, categorizes, and explains in full working detail more than 75 different semiconductor ICs and MBM devices. 582764 Pub. Pr., $24.95 Club Pr., $18.50

MICROPROCESSOR APPLICATIONS HANDBOOK. Editor-in-Chief, D. F. Stout. 472 pp., 294 illus. A reference guide to microprocessor applications to help you make your systems timely, versatile, and cost-effective. Emphasizing applications that are immediately useful, the 16 experts provide in-depth treatments of each topic so you can completely analyze, design, construct, and program. Both hardware and software are thoroughly discussed. 617/988 Pub. Pr., $35.00 Club Pr., $26.50

Just Published

ELECTRONICS ENGINEERS' HANDBOOK, 2/e

Edited by D. G. Fink; D. Christiansen, Assoc. Editor

2,772 pp., 2,189 illus., 43 photos

Hot off the press, this updated and enlarged Second Edition prepared by 173 expert contributors, covers the entire body of knowledge in the field, including new advances in integrated circuits (particularly those related to microprocessors), pulsed and logic circuits, laser technology, digital recording of music and voice, computer systems, telecommunications (especially switching and data transmission) and much, much more. 209/812 Pub. Pr., $75.00 Club Pr., $57.50

ELECTRONIC FILTER DESIGN HANDBOOK. By A. B. Williams. 576 pp., 408 illus. The book is organized so that you can start from practically any set of requirements and follow a sequence of clearly outlined steps and design filters ranging from simple networks to very complex configurations. Each design technique is illustrated with step-by-step examples and is accompanied by a wealth of applicable schematics, graphs, and tables of normalized numerical values. 76/389 Pub. Pr., $57.50 Club Pr., $42.50

ELECTRONICS CIRCUITS NOTEBOOK. Proven Designs for Systems Applications. By S. Weber. Editor-in-Chief. 344 pp., illus. Containing 268 ready-to-use or adapt circuits—each a proven solution—this book brings you the best of the best articles published in Electronics' popular Designer's Casebook section. Covers display circuits, encoders and decoders, filters, function generators, logic and memory circuits, microprocessors, and more. 192/448 Pub. Pr., $37.50 Club Pr., $27.50

INTRODUCTION TO RADAR SYSTEMS. 2/e. By M. I. Skolnik. 668 pp., 244 illus. This new edition of a widely used text on radar from the systems engineer's point of view brings you full discussions of all major changes that have occurred in the field recently. 579/697 Pub. Pr., $26.50 Club Pr., $18.50

USER'S GUIDEBOOK OF DIGITAL CMOS INTEGRATED CIRCUITS. By E. R. Hnatek. 339 pp., 245 illus. Providing the first comprehensive overview, this practical guide covers CMOS logic performance characteristics and selected circuit applications, data conversion and transmission circuits, CMOS memories, and commercially available CMOS microprocessors. 280/679 Pub. Pr., $24.50 Club Pr., $18.50

RADAR TRANSMITTERS. By W. A. Triebel. 252 pp., 211 illus. This all-around reference provides complete, up-to-date details on device capabilities and design procedures—with plenty of specific design examples. Helps you know your radar transmitter capabilities inside out—brings you abreast of latest design techniques to improve your designs—cuts your design time in half. 198/438 Pub. Pr., $24.50 Club Pr., $18.50

MODERN ELECTRONIC CIRCUITS REFERENCE MANUAL. By J. Mark. 1,264 pp., 3,666 circuit diagrams. This 103-chapter guide means you can speed up the production of new electronic devices with ease and thereby lower your production costs. Complete with values of components and suggestions for revisions, plus the original source of each circuit in case you want additional performance or construction details. 404/461 Pub. Pr., $61.50 Club Pr., $48.50

456/533 Pub. Pr. $24.50 Club Pr. $18.95

DIGITAL HARDWARE DESIGN By J. B. Pearlman. 428 pp., over 400 illus. Taking you beyond the microcomputer, this guide re-examines traditional techniques and focuses maintainability as a key goal, on the design of circuits too fast for the microcomputer alone, and on designing for usefulness. It covers everything from algorithmic state machines to separately clocked circuits—with scores of examples.

49/1321 Pub. Pr. $31.95 Club Pr. $24.95

INTRODUCTION TO THE THEORY AND DESIGN OF ACTIVE FILTERS. By L. P. Huelsman and P. E. Allen. 430 pp., illus. Once you add active filter design to your repertory of specialties, you’ll possess a skill that’s in great demand today. Here’s one of the best texts we know on the theory, design, application, and evaluation of modern active filters and the various techniques used today.

399/543 Pub. Pr. $28.50 Club Pr. $21.50

ELECTRONICS ENGINEERING FOR PROFESSIONAL ENGINEERS’ EXAMINATIONS By C. R. Hafer. 236 pp., more than 200 illus. Actually two books in one—a quick preparation manual to help you pass your P. E. exams on the first try and a rich source of practical electronics information and know-how.

254/383 Pub. Pr. $22.50 Club Pr. $17.50

ELECTRONIC COMMUNICATION 4/e. By R. L. Shradler. 801 pp., 870 illus. This thoroughly updated edition offers all the theory and fundamentals you need to prepare yourself for the FCC commercial and amateur grade license examinations—and pass them the first time!

517/503 Pub. Pr. $21.95 Club Pr. $16.95

STANDARD HANDBOOK FOR ELECTRICAL ENGINEERS, 11/e. By D. G. Fink and H. Beatty. 2,448 pp., 1,414 illus. Today’s most widely used source of electrical engineering information and data serves you as no other single work when you need detailed, timely, and reliable facts and how to use them. Transmission, distribution, control, conversion, and application of electric power.

209/144 Pub. Pr. $59.95 Club Pr. $44.95

DIGITAL CIRCuits AND MICRO-PROCESSORS. By H. Taub. 698 pp., heavily illus. This fast-paced, carefully written guide gives you thorough explanations of all the basic principles of digital systems and logic design—plus a solid introduction to microprocessors and microprocessor-based designs. Anticipates every conceivable question you could have to make sure you understand every detail.

629/455 Pub. Pr. $24.95 Club Pr. $22.50

MAIL THIS COUPON TODAY

McGraw-Hill Book Clubs
Electronics and Control Engineers’ Book Club
P.O. Box 582, Hightstown, New Jersey 08520
Please enroll me as a member and send me the two books indicated, billing me for the $1.80 premium and my first selection at the discounted member’s price, plus local tax, shipping, and handling charges. I agree to purchase a minimum of two additional books during my first year of membership as outlined under the Club plan described in this ad. A shipping and handling charge is added to all shipments.

Signature
Name
Address/ Apt. #
City
State Zip

This order subject to acceptance by McGraw-Hill. All prices subject to change without notice. Offer good only to new members. Orders from outside the U.S. cannot be accepted.

Write Code No. of first selection here

Write Code No. of $1.80 selection here

FEBRUARY 1982

73

www.americanradiohistory.com
Stereo and multichannel TV programming is already a reality in several countries. Here's the latest on what's happening here.

LEN FELDMAN
CONTRIBUTING EDITOR

By the time you read this, all the tests should have been completed. Even the report prepared by the Electronic Industries Association's Broadcast Transmission Standards (BTS) Committee may already be in the hands of the FCC, and we will be a step closer to having stereo audio for television broadcasts in the U.S. And, with two (or more) audio channels available, not only will stereo be able to be broadcast, but the second channel can also be used for the transmission of a second monophonic program—perhaps a soundtrack or commentary in a second language, for viewers whose native tongue is not English.

No matter how soon a multichannel audio system is adopted for U.S. TV, and no matter which system is chosen, the U.S. will still be a late starter in adopting stereo for TV. In Japan, that type of service has been available since 1978. In fact, of the three basic systems being proposed for use in the United States, one is the Japanese system that was developed and tested over a period of four years by the Technical Research Laboratories of NHK, the Japanese Broadcasting Corporation.

The two other systems currently being considered for use in this country are by Telesonics Systems, Inc. and by the Zenith Radio Corporation. The Japanese system under consideration is officially known in this country as the EIAJ system, since it is being sponsored in the U.S. by the Electronic Industries Association of Japan. Finally, a fourth system, developed—and just being introduced—in Germany, may have some influence on what method is finally adopted. (That system will be discussed in detail soon in a future issue of Radio-Electronics).

Further complicating the decision-making process is the fact that, in addition to the three basic transmission-systems just referred to, there are also three noise-reduction systems being proposed for use with them, making a total of nine possible combinations. The incorporation of more audio channels in the bandwidth now assigned to a single TV audio channel will degrade the audio signal-to-noise ratio, regardless of which of the three stereo systems is selected. That is what has prompted Dolby, dbx, and most recently, CBS, to propose noise-reduction encoding/decoding systems. Those, coupled with any of the proposed multichannel TV-audio systems, would reduce background noise to acceptable levels and allow broadcasters to maintain the quality of fringe-area signals.

Since multichannel TV-audio will eventually be with us, it would be a good idea to understand how the three basic transmission-systems that have been proposed work. The principles involved in audio companding are familiar to most readers of Radio-Electronics so we will not include a description of the three noise-reduction schemes in this discussion.

The EIAJ system

The components of the signal used by the Japanese system are shown in Fig. 1. Note that the “x” axis (horizontal) serves two purposes—it shows both the audio-frequency response of each channel and the frequency of the
The subcarrier, located at a frequency of 31.47 kHz (twice the TV horizontal line-frequency) above the main carrier, is used for the second channel of a multichannel transmission, or for the L-R component of a stereo transmission. That frequency was chosen because it minimizes interference between the video signal and the subcarrier in intercarrier-type receivers. When frequency-modulated, the subcarrier has a maximum deviation of 10 kHz on either side of the center frequency. In Japan, the frequency response of that channel is from 50 to about 12 kHz, but the system has been modified for use in the U.S. to extend the response to 15 kHz.

The subcarrier is used to modulate the main carrier—a technique known as injection. When stereo is being transmitted, the amount of injection is ±20 kHz, giving the main carrier a total deviation of ±45 kHz; in the multichannel mode, the amount of injection is ±15 kHz, producing a total deviation of ±40 kHz.

An amplitude-modulated control signal having a bandwidth of 2 kHz is transmitted at a frequency 55.07 kHz (3½ times the horizontal line-frequency) above the main carrier. Its purpose is to inform the decoding equipment at the receiver which mode is being used. A 982.5-Hz tone indicates that a stereo program is being transmitted; a 922.5-Hz tone indicates that a multichannel program is being broadcast. The absence of a tone means that the program material is monophonic. The control signal can also be used to activate a visual indicator to inform viewers/listeners which audio mode was being used with the video they were watching.

Tests made by the developers of the Japanese TV multiplex-system have shown that a second subcarrier can be added without making it necessary to change the parameters of the first subcarrier. In tests conducted by the EIA last summer in Chicago, such a system—as shown in Fig. 2—was used. The characteristics of the second subcarrier were the same as those of the first, with the exception that the audio-frequency response was restricted to an upper limit of 8 kHz. It is expected that that subcarrier would be used for services where limited frequency-response would not pose a problem.

The Telecions system

The Telecions system, whose arrangement is shown in Fig. 3, uses a double-sideband, suppressed-carrier AM subcarrier similar to that used in stereo-FM broadcasting in the United

The text contains a table and diagrams that are not transcribed in the natural text representation. The table includes frequency and deviation information for subcarriers and main carriers. The diagrams show the frequency response and deviation of subcarriers in the EIAJ system.

subcarrier and pilot tone relative to that of the main audio carrier. The "y" axis (vertical) shows the frequency deviations of the main and sub-carriers.

The main audio carrier—used for monophonic transmissions, for one channel of multichannel transmissions, or for the L+R component of a stereo transmission—has a maximum deviation of ±25 kHz (just like the NTSC system used in the U.S.) and a frequency response from 50 Hz to 15 kHz.
FIG. 3—TELESONICS SYSTEM uses amplitude modulation for its subcarriers. The scheme allows as many as four subcarriers.

FIG. 4—ZENITH RADIO CORPORATION'S system uses the horizontal line-frequency, 15.734 kHz, for the pilot tone.

States and many other countries. (The EIAJ system, with the exception of the control signal, is all-FM.) Such an arrangement requires a pilot signal, which is used at the receiving end to restore the suppressed carrier. In the Telesonics system, the pilot signal has a frequency of 19.668 kHz, or 1.25 times the TV horizontal line-frequency. The double-sideband suppressed-carrier used for transmission of L-R information is 39.939 kHz, or 2.5 times the horizontal line-frequency, away from the audio carrier center-frequency. Tests of the system have been proposed using three different levels of deviation of the main carrier by the subcarrier: 11.25 kHz, 25 kHz, and 33.75 kHz. Tests using additional FM subcarriers at other frequencies, in order to provide a second subchannel for sound transmission; a third carrier for ENG (Electronic News Gathering), telemetry, or another service, and a fourth subcarrier for telemetry alone have also been suggested. The additional FM subcarriers are impressed upon the main carrier at very low levels and with highly restricted audio-frequency ranges, as shown in Fig. 3.

The Zenith Radio system

Frequency allocations and subcarrier arrangements used in the Zenith Radio Corporation system are shown in Fig. 4. Like the Telesonics system, the Zenith system also uses a double-sideband, suppressed-carrier AM subcarrier. Instead of using a separate pilot signal, the Zenith system uses the horizontal line-frequency itself for that purpose, with the center frequency of the suppressed subcarrier falling at twice the horizontal line-frequency, or 31.47 kHz. Provision for a separate audio program (such as a second-language summary of the news) is made using an FM subcarrier having its center frequency at four times the video horizontal-line rate, or 62.94 kHz, while other FM subcarriers at 5.5 and 6.5 times the horizontal frequency can also be included for telemetry or other telecommunications purposes.

Signal-to-noise ratios

As we noted earlier, all the stereo/multichannel TV-audio systems involve some degradation of the signal-to-noise ratio. In Japan, where the system employed uses a frequency-modulated subcarrier for transmission of the L-R information (or the second-channel information), results at station JOAX (the anchor station of the national network, based in Tokyo), using an 85 kW audio carrier, show that the signal-to-noise ratio is about 60 dB on both the main and subchannels at receiving points within the city, fairly close to the transmitter site. In fringe areas, of course, that figure would be worse.

Experiments have already shown that the systems using AM subcarriers (Telesonics and Zenith, so far) for their difference (L-R) information or second-channel transmissions suffer a greater reduction in signal-to-noise ratio than do all-FM subcarrier systems. That's especially true in fringe areas, where the main audio-carrier is of insufficient strength to send the receiving circuitry into full FM-limiting. It is for that reason that the EIA Broadcast Television Standards Committee deemed it advisable to incorporate the companding system proposals mentioned earlier in the test recently completed.

Several critical listeners, none of whom knew which companding systems were being used (or, for that matter, that they were being asked to judge the merits of three competing systems), were asked to listen to a variety of recorded material and to judge which "sounded best." Having monitored some of the tests myself on behalf of the EIA, I can report that, while each companding system was judged effective for certain kinds of music, the difference in background noise between all the uncompanded transmissions and those using noise reduction was obvious, regardless of which system was used for the test. That was particularly true when "fringe area" reception conditions were simulated.

Audio enthusiasts have complained for many years about the poor quality continued on page 102
JUST ABOUT TWO AND A HALF YEARS ago, Dr. Ray Dolby, of Dolby Laboratories, introduced a new signal-processing scheme that he called Dolby HX; the HX stood for “headroom expansion.” That circuit was Dolby Laboratories’ first attempt at signal processing that had nothing to do (at least directly) with noise reduction. While Dolby noise reduction has been very widely accepted by tape-deck manufacturers, the Dolby HX system was not greeted with the same sort of enthusiasm.

At least one manufacturer, however, must have been fascinated by the ideas behind Dolby HX—enough so to have developed a version of the headroom-expansion idea that overcomes earlier objections to the HX approach, and provides benefits that were not part of Dolby’s original system. That manufacturer is the Danish firm of Bang & Olufsen, and, with the unqualified blessing of Dolby, their version is called Dolby HX Professional.

In order to appreciate the improvements in this new version of Dolby HX, it will be helpful to review the concepts behind Dolby’s original version of the headroom-expansion system. The underlying concept is based on the fact that there is an ideal level of tape bias for every audio frequency. As can be seen in Fig. 1, the bias level that provides the highest output level and acceptably low distortion levels for a mid-frequency tone of 333 Hz is quite different from the optimum bias level needed when recording a 10-kHz signal. Figure 1 also shows that as we attempt to record higher and higher frequencies, lower and lower levels of bias are required. Generally, most makers of cassette decks choose a bias level that, of necessity, is a compromise—one that covers reasonably well as much of the audio range as possible. Usually, that bias level is set so that it is a bit lower than optimum for best low-frequency/mid-frequency maximum output level (MOL), and for a reasonable output level at high frequencies. Since such compromise settings of bias tend to favor low and mid frequencies, the phenomenon known as high-frequency tape saturation is common in cassette decks.

The earliest version of Dolby HX worked on the assumption that, if the bias level of a recorder is made variable and allowed to change dynamically with changing input-signal content, it should become practical to record high-frequency signals at higher levels by reducing the bias levels when high-level, high-frequency signals dominate the program content being recorded. Furthermore, since the headroom expansion takes place entirely during the recording process, no “decoding” or correction circuitry is needed during playback to get the benefits of such a variable bias system.

A block diagram of the original system is shown in Fig. 2. For the system to work, there must be a control signal that is sensitive to amplitude and frequency content. But such a control signal already exists in any Dolby B-equipped deck. All Dolby B noise-reduction circuits generate a voltage signal that depends on the strength and frequency content of the stronger of the two input channels. That voltage is used to control the amplifiers in the Dolby B noise-reduction circuits.

But, while the Dolby B control signal may be ideal for noise-reduction companding, it is less than ideal for bias level control. In Dolby B, the control signal is derived without regard to the recording pre-emphasis curve. That curve shapes the frequency response of the signal that, after processing for noise reduction, reaches the recording head. As the bias level changes, the frequency response of the system also changes. The problem of varying frequency response during recording was dealt with in the original Dolby HX system by allowing the control signal to alter pre-emphasis at the same time that it alters bias. If everything was adjusted perfectly, the bias and pre-emphasis changes were supposed to balance each other out to provide the flat response and expanded headroom for which the system was designed.
Self biasing and mutual biasing

While studying how Dolby HX works, and the dynamics of magnetic recording in general, the engineers at Bang & Olufsen noted two phenomena. They noted that any signal fed to a recording head acts as bias for the signal to be recorded, with high-frequency signals being more effective as a bias than low-frequency signals. A signal even acts as a bias for itself (self-biasing), though that effect is quite small for audio signals. Nevertheless, self bias may be a small part of the reason why high-frequency signals require a much lower bias setting than low-frequency signals.

Much more important, however, is the biasing effect of the high-frequency content of an audio signal on the low-frequency part of the same signal. While that effect is only a small part of the total bias applied to the recording head, it is enough to alter the bias conditions for low frequencies. That is shown dramatically in Figs. 3 and 4.

Figure 3 is a spectrum analysis of a single 300-Hz tone, recorded at a level of 250 nanowebers-per-meter (nWb/m). That is about 2 dB above the Dolby calibration level—not an exceptionally high level. The bias on the recorder used was adjusted to a conventional level: slightly below optimum for the best low-frequency MOL. The tall spike at the left is the 300-Hz signal. The spike at around 900 Hz is the third-order distortion component and its level is about 46 dB below that of the 300-Hz signal, which corresponds to a third-order harmonic distortion level of 1.58%. Those are not unusual values for a good-quality cassette recorder. (In Figs. 3 and 4, each vertical division is 10 dB, while the horizontal scale is logarithmic and runs from 20 Hz at the left to 20 kHz at the right; key frequency points are shown at the top of the scope display).

In Fig. 4, the 300-Hz signal has been kept at the same input level, but a pair of tones with frequencies of 9 and 10 kHz have been mixed into the signal at a level some 50 dB below that of the lower-frequency signal. You'll note that there is a dramatic reduction in third-order distortion of around 6 dB, while the recorded level of the 300-Hz signal actually rises about 2 dB. The net third-order distortion is now 8 dB lower than before (relative to the 300-Hz fundamental), or 0.63%. Both the reduced third-order distortion and the increased level of the recorded signal are caused by the additional biasing effect of the high-frequency signals; that additional biasing has raised the total effective bias level for the low-frequency signal to near its optimum value. The biasing of one part of an audio signal that is being recorded by another part of the same signal can be called mutual biasing.

It follows that the flat frequency-response obtained under static test conditions (using a single-tone test signal) may not be so flat when complex musical signals are recorded on tape. When such musical signals are recorded on a machine with fixed bias, the frequency response changes continuously due to mutual biasing, depending upon the instantaneous high-frequency content of the overall signal. Such dynamic changes in frequency response are present not only in cassette recorders, but in any tape recorder using high-frequency bias, such as studio tape decks and high-speed duplicating machines used to produce prerecorded tapes.

Dolby HX Professional

Dolby HX Professional was developed jointly by Bang & Olufsen and Dolby Laboratories. Although the principles of Dolby HX and Dolby HX Professional are similar, the aims of the two systems are different. In Dolby HX, the chief aim was to allow high-frequency signals to be recorded at higher levels on cassette tape. Dolby HX Professional has the more fundamental aim of keeping the active or effective bias constant, regardless of signal content. Active bias is defined here as the effective bias seen by each frequency in the audio spectrum. In keeping the active
bias constant, all of the recording parameters that would normally be affected by a change in bias under static conditions, will remain stable under the dynamic conditions that prevail during the recording of more complex music signals. For example, the frequency-response changes shown in Fig. 4, which were caused by mutual biasing, would not occur if active bias were kept constant for all audio frequencies.

Dolby HX Professional and Dolby HX are similar to the extent that both systems change the level of the bias signal dynamically, but the reason for doing it and the method used are different. As things worked out, all of the original aims of Dolby HX are fulfilled by Dolby HX Professional, but that is a secondary benefit of the latter system. Dolby HX Professional has other advantages over Dolby HX. It is a dedicated system; one that is completely independent of Dolby noise-reduction modules or other electronic circuits within the recorder. (Remember, the original Dolby HX system uses the same control voltage that was developed by the Dolby B noise-reduction circuits.) That makes the system suitable for professional applications, such as in studio recorders, as well as for use in high-quality cassette decks.

Figure 5 is a block diagram which shows how Dolby HX Professional works. Unlike Dolby HX, which only measures the audio signal to determine the bias compensation required, Dolby HX Professional measures the sum of the audio signal, including any preprocessing, and the bias at the tape head. The signal from the recording head is fed to a processing circuit consisting of an accurately designed static filter. Once that filter has modified the signal, the signal is rectified to form a control voltage that is an accurate replica of the total biasing effect of the processed audio signal, plus the bias at the recording head, or the “active bias.” By measuring those signal components at the recording head, the system insures that the control voltage is always an accurate representation of the flux across the air gap in the recording head, regardless of signal strength or of any signal processing that may have taken place in previous stages. All processes and signals are carefully accounted for when the control voltage for bias compensation is derived from Dolby HX Professional. The control voltage is compared with a reference voltage that is adjusted for the static bias needed for the particular type and brand of tape being used, and a correction signal is generated. That signal is used to adjust a voltage-controlled amplifier that in turn alters the amplitude of the bias voltage supplied to the recording head. That maintains a constant active bias for the signal recorded. Once the circuit is correctly designed and installed, there is no need for any further adjustments for any tape or any signal-processing circuitry. Furthermore, since effective bias remains constant, no changes in pre-emphasis with changing bias are required; with Dolby HX, such changes in pre-emphasis were needed. Dolby HX Professional can be used with any noise-reduction circuitry currently available, or, for that matter, no noise-reduction circuitry at all.

If an audio signal having only low frequencies is fed to a recorder equipped with Dolby HX Professional, the circuit will “recognize” that fact and the bias level will remain fixed; since there are no high frequencies present in the signal, no bias-level change is required. If high frequencies are added, the Dolby HX Professional circuitry reduces the bias signal from the bias oscillator. The amount of reduction is determined by the passive filter, which monitors the entire signal applied to the tape head. That reduction in bias level will be almost exactly equal to the mutual biasing caused by the high frequencies. Thus, low frequencies see a constant bias level, but bias is reduced for high frequencies since they receive no added bias from the audio signal; low frequencies and high frequencies both see their optimum bias levels.

Should the signal consist of high frequencies only, the Dolby HX Professional circuit will reduce the bias from the oscillator even more; to a level that is very close to ideal for that type of signal. In that way, the original purpose of Dolby HX—namely, substantially increased headroom for high-frequencies—is also a characteristic of Dolby HX Professional. With Dolby HX Professional, the bias setting is adjusted to give the lowest possible distortion at low- and mid-frequencies, and the best MOI—compromises are no longer required.

Figure 6 shows the difference in high-frequency capability between a fixed-bias machine and one with Dolby HX Professional. The machine equipped with Dolby HX Professional delivered an output that was attenuated only 1.4 dB with respect to our 0-dB reference (250 nWb/m) at 13.5 kHz. A conventional machine of equal quality, on the other hand, delivered an output that was attenuated 8.6 dB at the same 13.5 kHz frequency, or fully 7.2 dB poorer response at that relatively high frequency. The same type of tape was used in both machines.

Dolby HX Professional includes another refinement. It functions totally independently on each of the two stereo channels of a tape deck. That means that bias for each channel is always optimally adjusted for the signal being applied to that channel, even though the signal applied to the other channel may have a completely different content, requiring a totally different bias level.

At the moment, Bang & Olufsen is the only company making use of that refinement of the Dolby HX circuit. The new circuitry appears in their Beocord Model 8002 cassette recorder. If the circuit proves to be as effective as claimed, you are likely to see it used by quite a few manufacturers before too long.
This little IC can produce a great deal of sound.

EARL "DOC" SAVAGE, K4SDS, HOBBY EDITOR

IT IS ALMOST UNBELIEVABLE THAT SUCH a variety of sounds can be created by one small 28-pin IC. The Texas Instruments 76477 can generate anything from simple tones to very complex sounds. Best of all is the fact that you can create any sounds you desire by just adding a few resistors and capacitors.

Before we get into how to make some of those sounds, perhaps we should mention some of the ways you can use the 76477. There are, of course, sound effects. While I can't guarantee it, I believe that this IC can produce any sound you have ever heard. Further, I know that it will produce many that you have never heard before!

The more mundane uses for the 76477 are obvious. They include such things as chimes, musical "instruments," door bells, noise generators—indeed, just about anything that requires sound. Now, let's see how to make the IC perform.

For now, we'll treat the 76477 as a "black box." To explain what actually goes on inside the IC would require a book, so we'll largely ignore the "how" and discuss the "what" of the IC.

First, there is a matter of the power supply. Texas Instruments' has made this easy by providing two ways to power the IC. A voltage regulator has been built into the 76477 so you can apply anything from 7.5- to 9-volts DC to pin 14. If you do that, you can also take 5-volts DC at up to 10 mA from pin 15 for use with external circuits! The other way to power the IC is to apply a regulated 5-volts DC to pin 15. In either method, pin 2 is the ground connection.

The next thing is the audio output. A small audio amplifier is built into the IC, but further amplification is needed to bring the signal level up to a useful level. The manufacturer suggests the simple two-transistor amp shown in Fig. 1. For a permanent installation, that will do nicely. However, I prefer a different approach for experimentation (and you will be doing a lot of experimenting to find new sounds). What I did was to use a small all-purpose amplifier such as the Radio Shack 277-1008, and connect it to the IC as shown in Fig. 2.

There is also a master switch for the IC: pin 9. If pin 9 is connected to ground, the IC is on; if it is connected to 5-volts DC, the IC is off.

Now that we've discussed the power, audio, and master switch pins, that leaves us with just 21 more pins. Those 21 are the ones that are used to program the sounds you want. Seldom, if ever, will you use all of them at once but you do need to know what all of them do.

To make things a little easier, we'll group those 21 pins into functions.

Table 1 contains those functions and the pin numbers associated with each function. Note that most pins have an

| TABLE 1 |
|-----------------|-----------------|
| **Super Low Frequency Oscillator (SLF)** | **Voltage Controlled Oscillator (VCO)** |
| 20R 7500 ohms to 1 megohm | 18R 7500 ohms to 1 megohm |
| 21C 500 pF to 100 µF | 17C 100 pF to 1 µF |
| 19 Duty-cycle (normally +5-volts DC) | 15 Switch (5-volts DC = SLF) |
| 22 Switch (+5-volts DC = SLF) | 01 = pin 16 |
| 16 External (High voltage = Low frequency) | |
| Noise | Mixer |
| 5R 7500 ohms to 1 megohm | 25, 26, and 27 See text |
| 6C 150 pF to 0.1 µF | |
| 4R Switch (43,000 ohms) | One Shot |
| 24R 7500 ohms to 1 megohm | 23C 0.1 to 50 µF |
| | Envelope |
| 1 and 28 See text | |
| Attack/Decay | Attack/Decay |
| 10R Attack (7500 ohms to 1 megohm) | 7R Decay (7500 ohms to 1 megohm) |
| 8C Timing (01 to 10 µF) | |

www.americanradiohistory.com
Put Professional Knowledge and a COLLEGE DEGREE in your Electronics Career through HOME STUDY

Earn Your DEGREE

No commuting to class. Study at your own pace, while continuing your present job. Learn from easy-to-understand lessons, with help from your home-study instructors whenever you need it.

In the Grantham electronics program, you first earn your A.S.E.T. degree, and then your B.S.E.T. These degrees are accredited by the Accrediting Commission of the National Home Study Council.

Our free bulletin gives full details of the home-study program, the degrees awarded, and the requirements for each degree. Write for Bulletin R-82.

Grantham College of Engineering 2500 So. LaCienega Blvd. Los Angeles, California 90034

WE TAKE YOU BY THE HAND!

You'll learn all about computers: how to build, program, service, even play TV games—without knowing the first thing about it!

The New ELF II "Beginners" Package

Your own expandable micro-computer kit, 5 diagnostic analyzers plus circuit, programming, diagnostic manuals, even games you can play on TV. All only $139.95.

Even if you don't know bits from bytes, now it's easy and inexpensive to build your own micro-computer, learn how it works, program it, service it, even play games with it on your TV. It's here in the New ELF II "Beginners" Package, only from Netronics. Only $139.95. Here's the package: 1. your own micro-computer—the famous ELF II (featuring the RCA 1802 MOS microprocessor) in kit form with step-by-step instructions on how to build it. Diagnostic Analyzers including 2. your own Logic Probe, 3. Pulse Catcher, 4. 8-bit Test Register, 5. Logic Analyzer, 6. Gate Arrays, 7. Non-Technical Manuals on how to use analyzers, how to get into the guts of the computer, what makes it tick, how to service it. R. Sample Programs that teach you machine language programming plus how to correct or "debug" anything, eliminate mistakes. 9. TV games you can play. If your TV set has no video input, an optional converter (RF Modulator), is available. Then, once you've got this "Beginners" Package under your belt, keep expanding your ELF II with additions like the Typewriter Key Board, added RAM, Full Basic Interpreter, Electro Tone Module, Color/Mosaic, A/D/D/A Boards for Robot Controls and much, much more. We'll take you by the hand with the New ELF II "Beginners" Package. Only $139.95. Mail or phone in your order today and begin.

The mixer does just what you would expect—it allows you to mix the generated sounds in any combination. It is programmed by a binary control signal on pins 25, 26, and 27. The three pins give you up to eight possible combinations, ranging from binary 0 (000) to binary 7 (111). A logical high (1) is +5 volts and a logical low (0) is ground. The mixer code is as follows: 000 = VCO; 010 = SLF: 011 = Noise: 100 = VCO/Noise: 101 = SLF: 110 = VCO/Noise: 111 = SLF/VCO and 111 = inhibit all. For example, 011 (a binary 3) will cause the VCO and noise source to be mixed and passed on while inhibiting the SLF.

Let's pause for a minute and take stock. The SLF can generate a frequency—even a sound—that can be fed into the VCO or the mixer. The VCO can generate a sound that can be modulated by the SLF or an external voltage and fed into the mixer. The noise generator can also be fed into the mixer. continued on page 83

COMPUTERS

Texas Instruments

Invest. Anal. $42.00 + 5% $41.95

HEWLETT-PACKARD

HF-17D Computer...call us HF-17 D/New...call us HF-1200...call us HF-1200...

HEWLETT-PACKARD Specials

SCM TYPEWRITER SPECIALS

SCM 2200 $77.95 INTREPIS $77.94 Paine SCM 2200 $77.99

All units shipped in original cartons with accessories according to manufacturer's specification. Send money orders, personal checks 2 weeks to clear. In Illinois add 6% sales tax and $3 minimum shipping & handling charges per unit. We ship UPS. Subject to availability. Written warranty for specific products can be obtained free upon request. Above prices are for mail order and prepaid only. Prices and specifications subject to change without notice. Send mail orders...

$0.00 for postage, handling and insurance (Canada).

Netronics R&D Ltd. 333 Litchfield Road, New Milford, CT 06776

CALL TOLL FREE 800-243-7428 To Order From Connecticut Assistance, Inc.

CALL TOLL FREE 303-354-9375

Please send the items checked below:

ELF II "Beginners" Kit $139.95

RF Modulator $8.95

Plus $1.00 for postage, handling and insurance ($1.00 Canada)

Connecticut Residents add sales tax

Name

Address

City

State

Zip

$0.00 Personal Check

Cashier's Check/Money Order

Visa

Master Charge (Bank No.)

Acct. No.

Expiration Date

Netronics, Inc.

117 Davis, Evantillon, Ill. (309) 803-8144

WE TAKE YOU BY THE HAND!

If you don't know bits from bytes, now it's easy and inexpensive to build your own micro-computer, learn how it works, program it, service it, even play games with it on your TV. It's here in the New ELF II "Beginners" Package, only from Netronics. Only $139.95. Here's the package: 1. your own micro-computer—the famous ELF II (featuring the RCA 1802 MOS microprocessor) in kit form with step-by-step instructions on how to build it. Diagnostic Analyzers including 2. your own Logic Probe, 3. Pulse Catcher, 4. 8-bit Test Register, 5. Logic Analyzer, 6. Gate Arrays, 7. Non-Technical Manuals on how to use analyzers, how to get into the guts of the computer, what makes it tick, how to service it. R. Sample Programs that teach you machine language programming plus how to correct or "debug" anything, eliminate mistakes. 9. TV games you can play. If your TV set has no video input, an optional converter (RF Modulator), is available. Then, once you've got this "Beginners" Package under your belt, keep expanding your ELF II with additions like the Typewriter Key Board, added RAM, Full Basic Interpreter, Electro Tone Module, Color/Mosaic, A/D/D/A Boards for Robot Controls and much, much more. We'll take you by the hand with the New ELF II "Beginners" Package. Only $139.95. Mail or phone in your order today and begin.

The mixer does just what you would expect—it allows you to mix the generated sounds in any combination. It is programmed by a binary control signal on pins 25, 26, and 27. The three pins give you up to eight possible combinations, ranging from binary 0 (000) to binary 7 (111). A logical high (1) is +5 volts and a logical low (0) is ground. The mixer code is as follows: 000 = VCO; 010 = SLF: 011 = Noise: 100 = VCO/Noise: 101 = SLF: 110 = VCO/Noise: 111 = SLF/VCO and 111 = inhibit all. For example, 011 (a binary 3) will cause the VCO and noise source to be mixed and passed on while inhibiting the SLF.

Let's pause for a minute and take stock. The SLF can generate a frequency—even a sound—that can be fed into the VCO or the mixer. The VCO can generate a sound that can be modulated by the SLF or an external voltage and fed into the mixer. The noise generator can also be fed into the mixer. continued on page 83
BECAUSE OF THE MORE FREQUENT RESTRICTIONS ON THE USE OF ROOFTOP ANTENNAS, MANY HAMS, SWL'S, AND CB'ERS HAVE HAD TO RESORT TO THE USE OF SO-CALLED "PORTABLE ANTENNAS;" USUALLY AN INDUCTIVELY LOADED SHORT ANTENNA THAT IS INTENDED TO CLIP ON TO A WINDOW SILL OR LEDGE. UNFORTUNATELY, IF IT ISN'T SOME EAGLE-EYED BUSYBODY WHO CAN SPOT NO. 50 WIRE 100 FEET IN THE AIR AND RUN TO THE BUILDING'S MANAGER SCREAMING THEY HAVE FOUND THE SOURCE OF ALL TV INTERFERENCE (EVEN WHEN THERE ISN'T ANY), IT'S THE LACK OF READY ACCESS TO A WINDOW LEDGE THAT PREVENTS MANY "CLIFF DWELLERS" FROM USING SOME FORM OF "WINDOW ANTENNA."

The past summer, however, I discovered an effective "window antenna" for CB, while it's designed specifically for CB, any hobbyist that's reasonably handy with a soldering iron can fabricate a model for a VHF ham band.

The little gem that's the subject of this month's column is the Gold Line Intenna. Before I get into the details, let me tell you how I discovered it, since this will give you a better picture of what it can do.

I was standing in a CB/auto shop in a 4-block tourist town just chatting, and commented that when I pulled into a motel I can't keep in contact with the rest of the family when they take the car down the road to some stores and shops to pick up supplies. One of the customers breaks in to say that he had the same problem until he purchased a CB antenna that sticks to the window, even those that don't open, and he usually can get coverage up to one mile or so depending on what floor his room is on and which direction the window faces. You can just bet I had to try this gadget, but unfortunately, it wasn't the easiest to locate because CB is not the market it once was. But I finally did get hold of one, and it really works.

The Gold Line Intenna is essentially a half-wave loaded (dipole) antenna combined with a reflected power indicator of a standard VSWR meter. The main section is a lightweight metal cabinet that measures approximately 5 × 1.5 × 2 inches. On the back are two rubber suction cups that permit the box to be attached to the window. Coming from each end of the box is a 32-inch long antenna element, which is actually a flexible wire with a suction cup on each end. On the bottom end of the box is a UHF (coaxial) connector to which the output of a CB transceiver is connected. The box is first attached to the window and then the antenna elements are stretched out and also attached to the window.

On the control box are two knobs labelled TUNE and the meter, which is arbitrarily calibrated from one to five. The knobs are actually mounted on the tuning slugs of variable inductors that are used as "loading" coils for the antenna elements.

The complete circuit is shown in Fig. 1. The dashed lines represent the metal cabinet. The two tuning coils are L1 and L2. The reflected power indicator is made up of L3, D1, R1, C1, and M1. Inductor L3 is really an RF pickup coil that takes a sample of the reflected power from the transmission line. Notice that loading coil L2 is actually between the antenna element and the metal cabinet. There might be some inclination to eliminate L2 and convert the design into a loaded ¼-wave vertical. It could be done, but the tuning would be even more critical and the antenna would not be as efficient for keeping the signal low to the ground.

Using the Intenna
To use the Intenna, the CB rig is first connected to the control box with a length of coax cable long enough to let you keep the rig at least 10-feet from the antenna. (If you build a similar device for some other frequency, try to keep the transceiver at least ¼-wavelength from the antenna. I realize this is impossible at the lower VHF frequencies, so all you can do is try and hope. Sometimes it will work, but other times the RF feedback will do strange things to the signal—particularly to the modulation.)

Then the top antenna element is secured to the highest point on the window using the suction cup. The wire is stretched out and the control box is secured to the window. Finally, the lower element is allowed to hang down and is then secured to the window. If the element is longer than the window, the wire is simply left hanging free or it can be taped to the wall.

The transmission line must be oriented at right angles to the antenna, or as close as possible to a right angle for at least ¼-wavelength, or whatever you can squeeze in. A few strips of masking tape will easily support the RG-58 cable on a wall.

When the antenna is in place have someone key the rig. (You could do it yourself but it might prove somewhat difficult to adjust the antenna if you're also keying the transmitter.) Adjust each of the two tuning controls for the lowest meter reading. Step away from the antenna when you check the meter.
Power Line Filters

These filters protect any sensitive electronic equipment from power line transient damage and radio frequency interference. Both models offer common mode and differential mode surge suppression for power line "spikes." RF interference is suppressed using both inductive and capacitive components, ideal for computers, test equipment or TV.

LF2: a duplex outlet; 120V, 8 amps max... $39.95
LF6: three separately filtered duplex outlets; 120 V, total fused capacity 15 amps, power switch and indicator lamp... $59.95

Add $2.50 shipping and handling per order.

Send check with order and provide street address for UPS shipment. Ohio residents add Sales Tax. Charge card buyers may call toll free:

1-800-543-5613 in Ohio, or for information call: 1-513-866-2421

R. L. DRAKE COMPANY
540 Richard Street, Miamisburg, Ohio 45342

Institutional and dealer inquiries invited.

CIRCLE 34 on FREE INFORMATION CARD

The world of electronics gee-wizardry

Since the output of the mixer can be any combination of four control signals:

\(V_0 = VCO \), \(V_1 = \text{mixer} \), \(V_2 = \text{one shot} \), \(V_3 = \text{VCO alternating} \)

For example, \(V_2 \) (binary 2) would cause the one shot to shape the output of the mixer. Incidentally, the pulse duration of the one shot is determined by the resistor/capacitor combination on pins 23 and 24; its maximum duration is about 10 seconds.

Before the signal gets to the audio amp, there is one more opportunity to process it! You can set the speed of the leading edge (attack) and the trailing edge (decay) of the envelope by connecting resistors to pins 10, 7 and a timing capacitor to pin 8.

Finally, the signal is fed to the built-in audio amplifier and out of the 76477. With all of those possible combinations, is it any wonder that this little IC can produce very complex sounds?

Of course, there is much more that could be said but you have enough to go on to create your own sounds using the 76477. To give you a start, the circuit in Fig. 3 can be used to generate a "laser gun" sound.

IRS TAX TIP

Home Energy-Savings Credit—If you paid for insulation or other energy-saving devices, you may be able to claim a credit for these expenses.

Check your tax instructions for details.

CIRCLE 33 on FREE INFORMATION CARD

RECEIVE A GREAT TRANSMISSION FROM SAMS!

From its first printing in 1934 to today's newly revised 22nd edition, Sams highly popular RADIO HANDBOOK has remained the undisputed leader among textbooks in the field of short-wave radio communications.

This big, new 22nd edition explores the basic principles of radio communications, including signal propagation, equipment design and operation, and transistor and IC technology. You'll also find comprehensive comparisons of vacuum tubes and transistors, a complete discussion of amplifiers, power supplies, electronic test equipment, antenna designs, and construction techniques!

Order now and start taking the static out of your radio communication system today!

CIRCLE 23 on FREE INFORMATION CARD
LET'S BEGIN THIS MONTH WITH A LOOK at two new SCR arrays from Sprague. They are the UTN-2886B and UTN-2888A monolithic multiple-SCR arrays designed for coupling microprocessors, demultiplexers, and similar devices to high-current loads such as relays, solenoids, and lamps. The devices feature low input-current; TTL, LS-TTL, and CMOS compatibility; 35-volts minimum forward-blocking-voltage, and a 2-amp in-rush-current capability. They can be used with either full-wave or half-wave power sources.

The UTN-2886B consists of six individual SCR's and two pairs of paralleled SCR's (pins 1-16 and 8-9). Each separate SCR can handle 250 mA—the paralleled units at pins 9 and 16 handle 500 mA—at +50°C ambient temperature. Power dissipation can be increased by attaching an external heat sink. The UTN-2888A array contains eight isolated SCR's (see Fig. 1), each capable of continuous and simultaneous operation at +50°C.

Characteristics of any individual SCR (maximum limits are given unless otherwise specified) are: Forward blocking-current, 50 μA; gate-to-anode leakage, 250 μA; forward on-voltage, 1.2 volts at +25°C and 1.15 volts at +55°C; gate trigger-voltage, 2.5 volts; gate trigger-current, 300 μA; gate off-current, 10 μA; holding current, 10 mA at 0°C and 5.0 mA at +55°C, and anode off-voltage, 400 mV minimum.

The devices operate from unfiltered DC half-wave or full-wave-rectified sources. They cannot be used with raw AC. In operation, the SCR is triggered on by applying a positive voltage to its gate. It continues to conduct, even though the gate voltage is removed or made slightly negative, until the anode-cathode voltage is reduced to below 400 mV.

The diagram in Fig. 2 shows a typical application, using the SCR's as lamp drivers. When using multiple SCR's and a common V_A supply, gate-to-anode leakage currents (I_LA) can hold the supply voltage above the anode off-voltage, V_AKoff, and prevent proper turn-off. Resistor R is connected across the power supply to insure proper SCR operation.

The maximum value of the resistor can be calculated from the following formula:

\[\frac{400 \text{ mV}}{(n-1) \times 250 \mu\text{A}} \]

where \(n \) is the number of SCR's being used in the system. Be sure to add 2 to the SCR count if you use the paralleled devices connected to pins 9 and 16 of the UTN-2886B.

For further information, contact Sprague Electric Co., Semiconductor Division, 155 Northeast Cutoff, Worcester, MA 01606.

Circuit of the Month

Bar-graph displays are popular as replacements for analog meters in radios, audio equipment, etc. The bar-graph circuits are simple and easily adapted for use with existing equipment. The analog signal needs little processing before being fed to the bar-graph display.

The display may consist of a number of discrete LED's, arranged in a linear array, or you can use a 10-element device such as the HDSP-4820, HDSP-4830 or HDSP-4840 series from Hewlett-Packard. In those devices, the LED's have been matched for color and brightness. A cut-away drawing of a 10-element bar-graph is shown in Fig. 3. The light from each LED element is "stretched" by diffusion and reflection to form individual elements. The array series is available in standard red (HDSP-4820), high-efficiency red (HDSP-4830), and high-efficiency yellow (HDSP-4840); the pin-outs for all three are the same.

There are a number of rather simple display-drivers for use between an analog or digital source and the LED arrays. Some display drivers or decoder/drivers provide a logarithmic display with 2- or 3-dB increments. Other drivers provide a linear display with either fixed or variable voltage increments. The drivers are made by, among others, National, Texas Instruments, Exar, Siemens, and AEG-Telefunken.
Find exciting projects, troubleshooting and repair tips, and hands-on, do-it-yourself info, plus hundreds of time- and money-saving ideas in the Electronics Book Club.

Select 6 outstanding volumes for only $2.95 (total value up to $114.70)

GET TWO EXCITING PROJECT BOOKS FREE!

Join now... get two extra books absolutely free! Modern Transistor Radios and Modern Crystal Radios

7 very good reasons to try Electronics Book Club
Blue Ridge Summit, PA 17214

- Reduced Member Prices. Save up to 75% on books sure to increase your know-how.
- Satisfaction Guaranteed. All books returnable within 10 days without obligation.
- Club News Bulletins. All about current selections — mains, alternates, extras — plus bonus offers. Comes 14 times a year with dozens of up-to-the-minute titles you can pick from.
- "Automatic Order." Do nothing, and the Main selection will be shipped automatically! But... if you want an Alternate selection — or no books at all — we'll follow the instructions you give on the reply form provided with every News Bulletin.
- Continuing Benefits. Get a Dividend Certificate with every book purchased after fulfilling membership obligation, and qualify for discounts on many other volumes.
- Bonus Specials. Take advantage of sales, events, and added-value promotions.
- Exceptional Quality. All books are first-rate publisher's editions, filled with useful, up-to-the-minute info.

FEBRUARY 1982

CIRCLE 14 ON FREE INFORMATION CARD

www.americanradiohistory.com
A typical bar-graph decoder consists of a set of voltage comparators and a precision voltage-driver that supplies reference voltages to the individual comparators. Figure 4 shows a representative analog-input 5-stage bar-graph-display decoder. The decoder drives the display in a logarithmic or linear manner, depending on the scaling of the reference-voltage network.

Some decoders provide displays in either bar or dot-position modes. In the bar mode, the decoder lights all the LED's whose comparator voltage-thresholds are below the level of the applied input signal. In the dot-position mode, the display shows a moving dot whose positive is determined by the highest-threshold-voltage comparator triggered by the applied signal voltage.

Figure 5 shows a circuit that displays signal levels from zero to five volts in either a dot or bar pattern. It is based on the Hewlett-Packard 10-element bar-graph display and National Semiconductor's LM3914 dot/bar display driver. In this circuit, the display is a moving dot when the driver's MODE pin (pin 9) is tied to pin 11 and a bar graph when pin 9 is tied directly to +Vcc at pin 3. (The National Data Book recommends leaving pin 9 floating for a dot display. Try it both ways.)

The incremental voltage-steps and thus the full-scale voltage, are determined by the voltage developed by the internal reference source between pins 7 (REF OUT) and 8 (REF ADJ). That constant voltage forces a constant current through R1 and through an adjustable resistor, R2. Therefore the total voltage between the REF OUT pin and ground can be easily determined by using the following formula:

\[V_{OUT} = V_{REF} \times \frac{1}{R1 + R2} \times \frac{1}{I_{ADJ}(R2)} \]

where \(V_{REF} \) = 1.25 volts and \(I_{ADJ} \) is 75\(\mu \)A typical, 150\(\mu \)A maximum. The current drawn from the voltage-reference pin determines the LED current. Approximately 10 times this current passes through each lighted LED. The LED current, and thus the brightness, can be adjusted by resistor R2. With a 7-volt supply, the LM3914 dissipates approximately 110 mW in the dot mode, and around 720 mW in the bar mode.

A low-cost VU meter is shown in Fig. 6. The bar-graph display is driven logarithmically by a Texas Instruments TL480C 10-step logarithmic analog level-detector. The device uses ten comparators to detect the level of the analog signal applied to the analog input (pin 4). Output Q1 is switched to a log-lin, turning on the 0-dB indicator LED when the input signal reaches approximately 218 mV. The comparators switch in 2-dB increments until they are all low at an input value of approximately 1.732 volts.

In some systems, a BCD (Binary Coded Decimal) signal is the most convenient way to drive a bar graph. Figure 7 shows a 7442 BCD-to-decimal (1 to 10) decoder connected to drive a 10-element bar-graph display in the dot mode. In the case of that circuit, the LED's light singly to indicate the level of the BCD signal.

The material for these circuits came from National Semiconductor's Linear Databook and Hewlett-Packard's Bar Graph Array Applications. If you want to see other applications such as "chaining" for dot or bar displays of 20 or more LED elements, or interfacing to a 6800 or 8080A microprocessor, we recommend those two publications. The Linear Databook is available for $9.00 from National Semiconductor Corp., Literature Distribution, 2900 Semiconductor Drive, Santa Clara, CA 95051. The Hewlett-Packard literature is available from Hewlett-Packard Components, 640 Page Mill Road, Palo Alto, CA 94304; ask for Application Note No. 1007 and the 10-Element Bar Graph data sheet.
I WISH I HAD...

OUR WISH BOOK CATALOG HAS IT.

Why settle for 3 wishes. Pomona Electronics can grant you more than 660 — virtually every whim you could have for electronic test accessories.

With new products like an anti-static DIP remover and a spring-loaded binding post.

And favorites such as DIP CLIP™ test clips, GRABBERS™ test clips, black boxes, and shielded cables, breakouts and connectors.

Plus all those many unglamorous but indispensable items you’re always needing.

You couldn’t hope to find better quality anywhere.

So, let your first wish of the year be for an electronic test accessory wish book—the new, 1982 Pomona catalog. Just ask for one. Your wish is our command. Full catalog also contained in EEM.

ITT Pomona Electronics. 1500 E. Ninth St., Pomona, CA 91766.
Phone (714) 623-3463.

In Europe, ITT Industries Belgium S.A., Pomona Division, 250 Avenue Louise, Box 121, Brussels, Belgium. Phone 02/640. 34. 00.

PRODUCTS AVAILABLE FROM YOUR FAVORITE PARTS DISTRIBUTOR

Pomona Electronics ITT
WHEN A DISCUSSION ABOUT COMPUTERS of the future occurs, the conversation often discloses bizarre fears about a dehumanized society. In these cynical scenarios, students acquire their education awkwardly because they interact with a machine rather than a human teacher; patients have difficulty recovering from illnesses because their diagnosis is done by an unfeeling computer rather than a sensitive doctor, and social interaction suffers because people seldom have to leave their home for any purpose. Such predictions of doomsday are, of course, ridiculous. If anything, a computerized society is a more efficient society—with more leisure time for people to spend on social and recreational pursuits. A world linked via computer terminals has to do with more communication among more people—not social repression.

Computer data bases will provide much of the impetus for these improved communications by enabling a world of information to be instantaneously accessible to just about anyone. Whether practical or frivolous, vocational or recreational, social or clinical, information is immediately available from a data base. A computerized data base is essentially an electronic information file that is accessible to consumers that have a computer terminal and the necessary data communications peripherals.

They are currently over 600 commercial data bases in the U.S. alone providing students, lawyers, farmers, computer hobbyists, stockbrokers, home consumers, and all types of businessmen with a wealth of vital information. The essential benefit of accessing data this way is obvious: it eliminates the time and hassle involved in searching for information sources, scanning through the sources to find specific information, and copying or transcribing that information. With a terminal and a data base, the desired information is retrieved and printed out within minutes after the appropriate information has been keyed in.

To illustrate how a data base can aid the average computer user, let's consider two popular data-base networks geared towards the home user or small businessman: The Source, provided by Source Telecomputing Corp. (a subsidiary of Telecomputing Corporation of America, 1616 Anderson Rd., McLean, VA 22102) and CompuServe, Inc. (formerly MicroNet), 5000 Arlington Center Blvd., Columbus, OH 43220.

Both services were introduced in 1979 and both essentially thrive on the same premise: providing sophisticated networking capabilities to the average consumer at an affordable cost. The technology is scarcely new. Computer networking and timesharing have been used as methods of doing business for large corporations and government agencies for several years. What is revolutionary about the home-computer network concept, however, is that it demonstrates the potential for a world linked up electronically in the most widespread mass-communication network conceivable. Like television, radio, the telephone, and every other mass-communication technology that has come along, the home computer will not become a true social phenomenon or booming economic industry until it is affordable by the average consumer. The computer is now affordable to a large number of consumers, but the telecommunications technology must catch up.

What makes CompuServe and the Source work is the fact that it is offered at a discount rate during hours that are not marketable for "nine-to-five" business transactions. During peak hours, the mainframe computers are heavily in demand by corporate clients. By tapping the heretofore little used evening and weekend hours, which coincide with the ideal time for consumer usage, the networks can offer the mainframe computer capabilities—and the special consumer data bases—at a much lower price.

The CompuServe network is available between 6 PM and 5 AM weekdays, all day weekends and holidays. Cost is $5 per hour. At all other times, the rate is $22.50 per hour. For The Source, a one-time registration fee of $100 is required. From 7 AM to 6 PM on Monday through Friday, the fee is $15 per hour. From 6

Associate Editor, Interface Age Magazine
The Heathkit Earth Station includes a heavy-duty, 3-meter antenna, an integrated low-noise amplifier/down-converter, and a receiver with electronically-synthesized tuning for stable, drift-free reception. 24 channels let you receive just about everything the satellites have to offer. Special Earth Foundation Kit anchors your antenna firmly to withstand winds of up to 100 mph. And it's all yours at a very affordable price.

Complete computer system in one compact unit.
The Heathkit All-In-One Computer takes the guesswork out of selecting a balanced computer system. It includes built-in floppy disk drive, smart video terminal, heavy-duty keyboard, 12-key numeric pad, two Z80 CPUs, and 48K RAM—all in one compact unit. Save 30% over comparable assembled units. Heath makes it easy to build with detailed, step-by-step assembly manuals that anyone can follow. A complete line of software for home, work and play is also available.

The first fully programmable keyer stores commands as well as text.
You HAMs will love the Heathkit µMatic Memory Keyer with custom microprocessor to store up to 240 characters of text or commands. Variable-length buffers eliminate wasted memory space. Command strings take several text buffers and string them together in any sequence for most efficient use of memory. Command strings can also select speed, weight, spacing and auto-repeat count. Integral capacitive touch paddles unplug and store in their own compartment. Put the fun back in CW.

Solar Water Heater saves you up to 80% on hot water costs.
As fuel costs rise, the Heathkit Solar Water Heater keeps paying you back. Because you build it yourself, you build it better, for less. And with Federal and State tax credits, solar pays for itself in no time. Based on computerized data, we help you select the correct system size to produce 50 to 80 percent of the annual BTU requirement for water heating, based on available sunlight in your area. So you know it's practical before you buy. The system includes solar panels, pumps, heat exchanger, storage tank, and complete assembly and installation instructions.

Free Catalog
See all the newest innovations in build-it-yourself kits in the new, free Heathkit Catalog.

Send to: Heath Co., Dept. 020-862, Benton Harbor, MI 49022.
Yes. Send me a Heathkit Catalog.
I am not currently receiving one.

Name ____________________________
Address ___________________________
City ____________________________ State _________
CL-753 Zip _________

Heathkit Products are displayed, sold and serviced at Heathkit Electronic Centers* in major cities in the U.S. and Canada. See your telephone white pages for locations.

*Pricing of some satellite TV channels may require the customer to obtain permission from, or make payment to, the programming company. The customer is responsible for compliance with all local, state and federal governmental laws and regulations, including but not limited to construction, placement and use. For use only in Continental U.S.

CIRCLE 32 ON FREE INFORMATION CARD

FEBRUARY 1982

www.americanradiohistory.com
PM to 12 AM on weekdays and all day on weekends, the cost is $4.25 per hour. From midnight to 7 AM daily, the cost is $2.75 per hour.

For hook-up, the basic requirements for both networks include a terminal, a 300-baud modem (communications interface) and a telephone. Upon registration, the user receives an information packet including a user’s manual, an index of data bases and services, an account number, and a private password. The system is accessed by dialing an assigned phone number, waiting for the tone to commence, placing the receiver in the modem, then entering the I.D. number and password. The modem translates electrical signals into sounds, and vice versa, to communicate with the host computer, or other computers plugged into the network. When a set of instructions appears, the user is told how to proceed in order to access the services or data bases he desires. Now he is ready to begin his interaction with the network.

By providing the possibility of terminal-to-terminal communication among the various subscribers, the network has the potential to achieve a communication method with mass appeal. Beyond providing a fun communication source among users in true CB-radio tradition, the network can function as a virtual electronic library and shopping center. The subscriber can browse through merchandise catalogued into specific programs, and even order the products directly through the terminal. If computer art is of interest to him, for example, he can browse through CompuServe’s art-galley listing and order a computer-generated picture for future delivery. Also available are programs on stock market data, filing capabilities for information storage, financial advice, games, educational aids, theater and movie reviews, news, weather, and sports.

The advantages of such a time-sharing network for the home user or small business are numerous and varied. As the programs and subscriber services become more diverse and useful, it is not hard to imagine that having a personal computer in every home, hooked up to major mainframe data bases, will eventually be as commonplace as a television or a telephone.

Electronic mail, for instance, is no longer a service strictly for major corporations. Exciting new directions for inexpensive mass communication at all levels of business and consumer usage are now evident. Even personal correspondence can be less expensive through a computer network than by a long distance phone call; although the personal interaction, in some cases, is obviously preferable.

The process of ordering merchandise can be streamlined. The home consumer can do tedious shopping for groceries or household goods without ever leaving the home. Such services, of course, are still somewhat limited, but expansion in this area is certainly inevitable as more homes become equipped with computer terminals.

Both CompuServe and The Source emphasize their extensive stock market services. CompuServe’s MicroQuote includes information on over 32,000 stocks. A recent survey by The Source indicated that a large percentage of its subscribers sign up for the stock market facilities alone.

Because new data bases are constantly being added, both networks distribute a monthly news magazine to subscribers, detailing the latest services. The master index for CompuServe lists over 350 separate data bases with a wide range of subjects: adventure games, child care, want ads, tax advice, gold prices, text from various newspapers including the Washington Post, and photography. Among services described in the latest issue are a guide to admissions information and entrance...continued on page 102
Solve your perplexing paging problems...

No one microphone is correct for every paging situation—different circumstances require different and sometimes unique solutions. That's why Shure has drawn on its unparalleled knowledge of microphone design to create a series of paging microphones specifically designed to reduce or eliminate the most common paging problems.

- If you're facing high ambient noise levels, use the Model 562.
- Moderate background noise levels require Model 515SBG or 515EB-G1.
- For permanent mounts, Model 561.
- Mobility for paging or dispatching calls for Model 450.
- If you have limited space, use Model 414B.
- An excellent limited space model that can stand up to extreme abuse is Model 507B.
- And if these won't solve your problem, read on.

...by the book

For all the facts on Shure's full line of paging microphones fill out and return the coupon below for your FREE copy of our new 72-page catalog describing over 150 microphones. No matter what your needs, there's a Shure microphone right for you.

Yes, send me your new Full Line Microphone/Circuitry Catalog, AL700. (Outside the U.S., enclose $2.00 for postage handling.) PLEASE PRINT

Name

Address

City State Zip

N/2/82

CIRCLE 11 ON FREE INFORMATION CARD
HERE'S A DEVICE THAT CAN HELP YOU find out what's wrong when suddenly one morning your car refuses to start. The ignition substitute described here can even be used to verify that repair work done to your engine by someone else has been done correctly.

Basically, the ignition substitute provides a constant power-source for the ignition coil. Its frequency (0.5-1.0 kHz) is that used by an 8-cylinder engine with an idling speed of 650 RPM, and the unit provides a rapid spark at a 17% duty cycle, while nonetheless staying within the power-dissipation limits of the components.

Construction is straightforward, and any method can be used. The circuit, shown in Fig. 1, consists of a 555 timer IC configured as an astable free-running multivibrator that is used to drive a constant-current NPN transistor, such as 2N6384. (That transistor should be heavily heat-sunk because it may be drawing several amps over quite a long period of time.)

The coil ballast can be from 0.68 to 6.5 ohms, depending on what's available. The 2.5-ohm, 20-watt ballast shown in Fig. 1 works well. All the other resistors can be either 1/4- or 1/2-watt devices, and the capacitor between pins 1 and 5 of the 555 can range from 0.01 to 0.05 μF. Do not omit the 100-volt, 0.05 μF capacitor across the transistor; it prevents voltage spikes from damaging the device. Use 4-foot-long clip leads to obtain power directly from the automobile's battery: that length is suggested for convenience.

You can use either your car's own ignition coil, or a separate one. If you choose the latter, be sure to disconnect the one in the vehicle. A good coil will produce a spark between the high-tension lead and ground about 1/4- to 1/2-inch long, and a strong bright spark across a plug with a gap smaller than 0.040-inch. That, by the way, is the first test for ignition problems.

To determine whether there's a problem with the car's distributor, supply a spark derived from the ignition substitute to the center distributor lead leading to the rotor and slowly rotate the distributor cap. Crank the engine and, at some point, the engine should catch and run. If the engine cannot be started, but seems to be trying to, the problem is probably in the timing chain, valves, camshaft, or elsewhere. If the engine doesn't even try to start, inspect the rotor, cap, wires, and plugs for damage. Once the ignition problem has been found and corrected, the normal procedure for setting the timing and dwell should be followed.

Do not attempt to adjust the distributor using the ignition substitute. That can not be done because the spark the substitute produces is slightly different from that produced under normal conditions.

Although designed for an 8-cylinder engine, this device can be used with other types. In addition, a neon bulb can be added to the circuit to verify the presence of a spark, and, in fact, can be used as a timing light if placed close to timing marks that have been painted white with fingernail polish.

—Stu K. Stephenson II

NEW IDEAS

Automobile ignition substitute

This column is devoted to new ideas, circuits, device applications, construction techniques, helpful hints, etc.

All published entries, upon publication, will earn $25. In addition, Panavise will donate their model 324 Electronic Work Center, having a value of $49.95. It combines their circuit-board holder, tray base mount, and solder station (see photo below). Selections will be made at the sole discretion of the editorial staff of Radio-Electronics.

I agree to the above terms, and grant Radio-Electronics Magazine the right to publish my idea and to subsequently republish my idea in collections or compilations of reprints of similar articles. I declare that the attached idea is my own original material and that its publication does not violate any other copyright. I also declare that this material had not been previously published.

Title of Idea
Signature
Print Name Date
Street
City State ZIP

Mail your idea along with this coupon to: New Ideas Radio-Electronics, 200 Park Ave. South, New York, NY 10003

www.americanradiohistory.com
FEBRUARY Specials

We carry the complete line of Atari software, peripherals and accessories.

Interfaces & Cables
- Apple Interface & Cable $90.
- IEEE 555 RS-232 $70.
- TRS-80 Cable $35.

Price: $449.00 $159.00

PERSONAL COMPUTERS

<table>
<thead>
<tr>
<th>Computer</th>
<th>Price</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBM 8032 Computer</td>
<td>$114.00</td>
<td>NEC PC-8023 Printer</td>
</tr>
<tr>
<td>CBM 8050 Disk Drive</td>
<td>$134.00</td>
<td>NEC 5510 Spinwriter (7710)</td>
</tr>
<tr>
<td>CBM 4032 Computer</td>
<td>$102.00</td>
<td>NEC 5520 Spinwriter (7720)</td>
</tr>
<tr>
<td>CBM 4040 Disk Drive</td>
<td>$102.00</td>
<td>NEC 5530 Spinwriter (7730)</td>
</tr>
<tr>
<td>CBM 4022</td>
<td>$64.00</td>
<td>NEC JC 1201 M(A) — Color 12" Monitor</td>
</tr>
<tr>
<td>CBM VIC-20</td>
<td>$269.00</td>
<td>NEC 12" JB1201M Monitor</td>
</tr>
<tr>
<td>Amdek 100G</td>
<td>$169.00</td>
<td>Okidata Microline-80</td>
</tr>
<tr>
<td>Amdek Color — 1 1/3" Color Monitor</td>
<td>$329.00</td>
<td>Okidata Microline-82A</td>
</tr>
<tr>
<td>Microtek 16K Ramboard for Atari 800</td>
<td>$79.00</td>
<td>Okidata Microline-83A</td>
</tr>
<tr>
<td>Microtek 32K Ramboard for Atari 400 and 800</td>
<td>$149.00</td>
<td>Diablo 630</td>
</tr>
<tr>
<td>Qume Sprint 9/45 (Full Panel)</td>
<td>$2295.00</td>
<td>Apple II Plus 48K</td>
</tr>
<tr>
<td>Atari 400 16K</td>
<td>$349.00</td>
<td>Apple Disk w/3.3 DOS Controller</td>
</tr>
<tr>
<td>Atari 825 Printer</td>
<td>$599.00</td>
<td>Apple Disk w/o Controller</td>
</tr>
<tr>
<td>Atari 850 Interface</td>
<td>$139.00</td>
<td>Hazeltine 1420</td>
</tr>
<tr>
<td>Atari 810 Disk Drive</td>
<td>$449.00</td>
<td>Northstar Horizon II 32K QD</td>
</tr>
<tr>
<td>Atari 800 16K</td>
<td>$749.00</td>
<td>Anadex DP-9500/9501</td>
</tr>
<tr>
<td>Epson MX-70</td>
<td>$349.00</td>
<td>Telvideo 910</td>
</tr>
<tr>
<td>Epson MX-80</td>
<td>$449.00</td>
<td>Televideo 912C</td>
</tr>
<tr>
<td>Epson MX-80 FT</td>
<td>$549.00</td>
<td>Televideo 920C</td>
</tr>
<tr>
<td>Epson MX-100 FT</td>
<td>$729.00</td>
<td>Televideo 950</td>
</tr>
</tbody>
</table>

CALL OMEGA TOLL FREE!

WEST COAST
- **1-800-235-3581**
- OMEGA SALES CO.
 - 3533 Old Conejo Rd. #102
 - Newbury Park, CA 91320
 - 1-805-499-3678
- CA. TOLL FREE 1-800-322-1873

EAST COAST
- **1-800-556-7586**
- OMEGA SALES CO.
 - 12 Meeting Street
 - Cumberland, RI 02864
 - 1-401-722-1027

Prices are subject to change without notice.

Omega Sales Company

We accept C.O.D.'s • Stock shipments same day or next • No surcharge for credit cards
- All equipment factory fresh w/MFT warranty • We carry the complete line of personal software
- Prices do not reflect shipping charges
- Rhode Island and California residents please add 6% sales tax

Call Omega toll free!

OKIDATA MICROLINE 80
- **$379.00**

ATARI 810 DISK DRIVE
- **$449.00**

AMDEK COLOR-1 MONITOR
- **$329.00**

EPSON MX-100 FT PRINTER
- **$729.00**

CIRCLE 12 ON FREE INFORMATION CARD
Solid-state vertical-sweep circuits

JACK DARR, SERVICE EDITOR

TUBE-TYPE VERTICAL-SWEEP STAGES are familiar to all the old-timers, and to most of the younger gang. They generally consisted of a high-mu triode and power pentode (often in the same "bottle"), a matching transformer, and a fairly-high-impedance yoke. The tubes were coupled by a feedback loop, so they served both as oscillators and as output stages.

Solid-state sweep stages perform the same functions, of course, but their designs may vary from manufacturer to manufacturer. Furthermore, the symptoms that they show when something goes wrong are not usually what you used to see in tube-type circuits—about the only familiar one is the thin white horizontal line indicating a total lack of vertical sweep.

A solid-state sweep circuit uses several small-signal transistors as oscillators, wave-shapers, drivers, etc. The output stage is a type familiar to anyone who has worked on audio equipment—a two-transistor "stacked totem-pole," or complementary-symmetry type. The yoke is fed from the junction of the two power transistors; it's usually a fairly-low-impedance type, driven directly through a very large electrolytic coupling capacitor.

A variation on that is used in some sets—they use a complementary-symmetry pair, with a dual-polarity power supply. Figure 1 shows a circuit of that type, used in a General Electric QB chassis. The output pair there is Q267 and Q268. Note that there is no large coupling-capacitor. The reason for that is that the junction of the two transistors is at ground potential, or very close to it.

Both circuit-types do the same thing—they deliver voltage, in the form of a square wave, to the yoke. When you feed such a square wave into an inductance (like the yoke) you get a sawtooth wave, which is what's required.

Two-transistor circuits seem to be almost universal these days. In some early sets, though, a single transistor was used, with a "loading choke" for matching and for the DC supply, and a blocking capacitor. That circuit operated in the class-A mode, like the tube types; the two-transistor circuits operate in class-B fashion, with each device amplifying one half-cycle of the driving signal.

An oscilloscope is invaluable for working with transistor sweep-circuits. Begin with the oscillator; make sure it's running—and on frequency. There may be several amplifier (and other) stages between the oscillator and the output stage, so just follow the signal through them to the yoke.

You'll find one waveform at some points that you'll never see in tube-type circuits—a perfect sawtooth. With tubes, the signal on the oscillator (Fig. 2) shows the familiar rising curve with a spike at the top. Solid-state oscillators, on the other hand, show a...
series of pips, as can be seen in Fig. 1. A sawtooth wave is developed from them by a stage called a "wave shaper." The normal drive waveform on the bases of the output transistors is almost the same as in tube sets—a trapezoidal wave. In late-model sets you may find all of the stages, except for the output transistors, on a single IC. When checking this type of circuit, be sure that all of the waveforms are correct, that all of the external components are OK, and that the proper DC supply-voltages are present before changing the IC.

Yoke returns

The vertical-yoke winding must return to ground, or to a level defined as a common ground. In quite a few circuits, a large blocking-capacitor is used between the bottom end of the yoke and ground. If it opens, there's no sweep, so always suspect it in such cases.

In many sets using circuits like the one in Fig. 1, you'll find the yoke return coming back to the module and running to ground through a 1-ohm resistor (R286). You must see a sawtooth waveform at the top end of that resistor: it's developed by the sawtooth current flowing through it. That current is fed to the base of a separate transistor, Q261, labelled "Vert. Lin." The reason for that is that all solid-state stages of that type are slightly non-linear! They develop a slight bend in each half of the waveform, causing what is known as "S-bending." The extra transistor and the feedback network are used to correct for that, and the end result is a perfectly linear sawtooth wave. If you run into a linearity problem, always remember to check that feedback resistor. Leakage problems there can cause some weird problems.

The feedback from that stage is applied to the emitter of the first vertical amp. The troubleshooting logic is clear: If the problem is linearity, go to the stage that's supposed to correct it.

Dual-polarity DC power-supplies can cause a symptom that would not be believed by a strictly tube-type technician. I know that the first time I saw it I said, "That can't happen!" The symptom is a perfectly good raster, but with only the top half of the picture present. That's all—there's no severe compression or other effect, as there would be in a tube set with a similar problem. The bottom half just isn't there.

The problem is either a loss of the DC supply to the "bottom" transistor (Q268 in Fig. 1) or the loss of the 29-volt supply to it. One other possibility exists: In the set where I first saw the problem, the vertical-sweep circuit was on a small module. The output transistors were clamped to one end of it and their leads went into individual socket-pins on the chassis. That was fine, except for the fact that the emitter lead of the "bottom" transistor was not in its socket. It was leaning on the outside of the pin, and making contact intermittently. Plugging the module (and the transistor) in properly restored things to normal. You may find that type of situation in sets with bad solder joints at one of the pins of the output transistors, so check for it.

In quite a few popular circuits, you'll find the signal passing through little low-voltage electrolytic coupling capacitors. If you're getting no signal to the output stage, check to make sure that one of them isn't open. You can do that instantly with a scope: If a signal's going in but not coming out, you've found at least part of your problem.

Here's another problem that's also common in audio circuits: If your symptoms include distortion at the center of the screen—compression or stretching of the picture—check to make sure that the bias diodes in the output stages are good. Failure of one or more of them can cause crossover distortion in audio, and also in TV sweep circuits.

SERVICE QUESTIONS

VCR PLAYBACK PROBLEM

I have a Toshiba V-8000 VCR and an RCA CTC-25. If I record a program off the air, it will play back nicely. However, if I try to play back a pre-recorded tape, I can't get a stable picture. I had the set checked, and it's OK. Tried out the VCR with some newer sets, and it played fine. What's going on?—D.B., Memphis, TN

I've heard of that problem before. Apparently in older sets the horizontal AFC time-constant was considerably longer than the one used today, to make the set a little less susceptible to such things as airplane flutter, etc. However, the sync on pre-recorded tapes requires the shorter time constant. As a fix, try varying the size of C82/R124, or C23/R126 on the grid of the AFC tubes.

(Feedback: We tried both capacitors, and wound up taking them out completely. When we did that, the tapes played back perfectly, but we lost the sync on a broadcast signal after about five minutes. We took care of that by connecting the capacitors to a DPST switch so that they can be switched in and out of the circuit. Everything works fine now—thanks!)

COLOR BARS

This Magnavox T-982-12 makes its own color bars! The bars—blue, green, and red from left to right—divide the screen into thirds and are present all the time. When I

NOW, a mini-scope with the features most wanted by field engineers!

This new 15MHz dual-trace mini-scope was designed by B&K-PRECISION engineers to respond to the special needs of field engineers—a mini-scope with lab-scope features.

It easily fits into a standard attach case with plenty of storage room for a DMM, tools and accessories. The 1420 can be powered from the AC line, 10-16VDC or an optional internal battery pack.

The rugged 1420 features dual-trace operation and an honest 15MHz response, with useful response beyond 20MHz. An efficient rectangular CRT displays waveforms with good readability under all field service conditions.

There is no sacrifice of features or performance for compact size. The 1420 has 18 sweep ranges from 1 μs/div to 0.55s/div in a 1-2-5 sequence; variable between ranges. Sweep magnification is X10, extending the maximum sweep rate to 100mS/div. For use with computer terminals or video circuits, a video sync separator is built in. Automatic selection of chop and alternate sweep modes is provided, as is front-panel X-Y operation.

The Model 1420 measures only 4.5 X 8.5 X 12", weighs 7.75 lbs., with batteries and comes with two 10.1 probes.

FOR IMMEDIATE DELIVERY contact your local distributor or call TOLL-FREE, 800/621-4627 for a 16-page catalog brochure on the complete B&K-PRECISION oscilloscope line.

B&K-PRECISION
CORPORATION
6460 West Cortland Street
Chicago, Illinois 60635 • 312/889-5087

DYNASCAN CORPORATION
6460 West Cortland Street
Chicago, Illinois 60635 • 312/889-5087

FOR IMMEDIATE DELIVERY contact your local distributor or call TOLL-FREE, 800/621-4627 for a 16-page catalog brochure on the complete B&K-PRECISION oscilloscope line.

CIRCLE 22 ON FREE INFORMATION CARD
use a color-bar generator, all of the colors are wrong. Nothing I've tried, including purity, will get rid of the bars. Incidentally, the waveforms out of the demodulator module are normal. Can you shed some light on what's going on?—M.D., Aberdeen Proving Ground, MD

I ran into something like this in a Philco. In that case half the screen was blue and the other half gold. Eventually found the source to be an open bypass capacitor on the screen grid of the second color-bandpass amplifier. Since you've checked the DC-power supply with a scope, try checking all of the bypassed points in and around the color-amplifier stages, bandpass, etc. There should be no signal on any bypassed point, so look for a signal where it does not belong.

Since the three color-amplifier stages are separate, the cause of this should be something that is common to all. For example, check to see if there's anything odd in the video feed to those stages.

MORE ON "REDUNDANT" CAPACITORS

Here's a test that was shown to me by a technician for Hollander and Co. of St. Louis, Mo. This is for those Zenith chassis that use several parallel shunt-capacitors in the collector circuit of the horizontal-output stage. If the high voltage measures too high, one or more of those capacitors may be bad. To test, connect new capacitors in parallel with the ones already in the set. The high voltage should drop to normal, or lower. Now, disconnect the original capacitors one-by-one until you find one that has no effect on the high voltage—that's one of the bad ones. That procedure is almost as fast as using a capacitor tester and can be done under "normal" operating conditions.

Most of those capacitors are Zenith 22-5001's. Those are 0.0018 µF, 1600-volt units, but they use a special dielectric; ordinary 1600-volt units won't work. For an inexpensive replacement, use a Sprague PP16-D18. The Sprague catalog lists a lot of those; they are Metfilm and Filmtite types.

DEAD SHORT

This CB is driving me crazy. It's got a dead short somewhere but I can't find it. My tests show no short to ground anywhere. Any ideas that you might have would be appreciated—W.G., Kingston, NY

We've run into something like this before. Check the "protective diode" used in the crowbar circuit; it's a Zener. It will test out OK on an ohmmeter, but when voltage is applied it becomes a "0-volt Zener." A crowbar circuit is exactly what the name implies: If anything goes wrong, it is supposed to break down and short the DC supply to ground. That one may be getting a little bit too eager and breaking down too quickly.

FLYBACK SUBSTITUTE

I asked you about a replacement transformer for a Broadmoor 6911-C, and you said you didn't have any information on it. I wrote to Thordarson-Meissner, and they had one! (It's a FLY-677, if anyone else needs one.)—James E. Higley, Hanover Park, IL.

LEAN ON IT

I wrote you a while ago about a Sharp TV-96P with weak audio, and thought you'd like to know that I fixed it. I tried everything I could think of, and everything you suggested, without any luck. Then, while checking around the second IF tube, the sound suddenly came in loud and clear.

It seems that this happened when I inadvertently leaned on the chassis, which suggested a bad solder-joint. Even though the joints looked good, I reworked about 15 of them and turned the set back on. It worked perfectly. A simple—but not immediately obvious—solution.—L.P., Potomac, MD
NEW PRODUCTS

For more details use free information card inside back cover.

COLOR VDG CARD, the ColoRAMa, is a color video display generator/controller for SYSTEM-50 (SS-50, SS-50C), 680x computers. It permits software selection of any of 11 different display formats, including eight-color semigraphics, two- and four-color graphics, and two-color alphanumeric.

CIRCLE 111 ON FREE INFORMATION CARD

Two- and four-color displays may also be switched between primary and complementary color sets, either under software control or from the keyboard. Resolution of full-graphic displays ranges from 64 x 64 picture elements (pixels) to 256 x 192 pixels.

All of the 64 characters of the standard ASCII character subset are generated by the on-card character generator. The ColoRAMa is configured with one kilobyte of display RAM. One-kilobyte of RAM accommodates alphanumeric displays, eight-color semigraphic displays and two full-graphic displays modes. The ColoRAMa is priced at $219.95. — Percom Data Company, Inc., 211 N. Kirby, Garland, TX 75042.

INTEGRATED HARDWARE/SOFTWARE SYSTEM, Terminali (Model T1 and Model T3), converts the TRS-80 microcomputer (Model I or Model III) into a state-of-the-art communications terminal. It includes all the necessary computer-interfacing, audio-demodulating, AFSK tone-generating, and transmitter-keying hardware integrated in one cabinet. That reduces equipment interconnection to a minimum and allows the operator to be on the air receiving and transmitting Morse code or RTTY in minutes.

The user can plug it into the receiver headset jack and copy Morse code, Baudot, or ASCII; plug it into the CW key jack and send Morse code, or attach a microphone connector and send Baudot or ASCII using audio tones (AFSK). In addition, the Terminali is expandable: disk-based (mailbox) RTTY software may be added at any time.

Terminali model T1 requires Model I TRS-80, 16K RAM and Level II BASIC. Terminali model T3 requires Model III TRS-80, 16K RAM, and model III BASIC. Terminal model T1 or model T3 are priced at $499. — Macrotronics, 1125 N. Golden State Blvd., Suite G, Turlock CA 95380.

SUBWOOFER, model AS-1320, is designed to add bass to an existing small system, but will enhance the bass response of even 10-inch and 12-inch systems. By extending the low-frequency range of the audiophile's present system, the model

CIRCLE 113 ON FREE INFORMATION CARD

AS-1320 will reduce the bass distortion that occurs when the wing speakers try to reproduce the low-bass notes. A ported cabinet alignment uses computer-aided

CIRCLE 112 ON FREE INFORMATION CARD

In general, spring reverbs don't have the best reputation in the world. Their bassy "bang" is only a rough approximation of natural room acoustics. That's a pity because it means that many people will dismiss this exceptional product as "just another spring reverb". And it's not. In this extraordinary design Craig Anderton uses double springs, but much more importantly "hot rods": the transducers so that the muddy sound typical of most springs is replaced with the bright clarity associated with expensive studio plate systems.

Kit consists of circuit board, instructions, all electronic parts and two reverb spring units. User must provide power (±9 to 15 v) and mounting (reverb units are typically mounted away from the console).

FAX Electronics, Inc. Dept. 24X1025 W. Wilshire Bl, Oklahoma City, OK 73131 (405) 943-9628

| Send the 6740 REVERB KIT $59.95 plus shipping (s) enclosed or charged |
| Send Free Catalog |
name______________________
address____________________
city______________________state______zip_____
visa______mc______cardno

CIRCLE 37 ON FREE INFORMATION CARD

A Classroom in Your Mailbox!

STUDY

Two-Way Radio THROUGH THE REVISED

MTI Home Study Course

Send coupon below for free course outline
No obligation — No salesman will call

Professional Training in a Unique Career Field
Providing Training to the Industry Since 1960

Study FM two-way radio at home!

I am interested in learning more about professional FM two-way radio. Please send me full details on the MTI training program.

Name______________________
Address____________________
city/state/zip____________________

MTI
Mobile Training Institute
Box 735, Camp Hill, PA 17011-1130

CIRCLE 32 ON FREE INFORMATION CARD

FEBRUARY 1982

99

www.americanradiohistory.com
Vital protection for PC Boards

Be safe. Desolder PC components with Endeco irons. Get proper HEAT TO MELT and strong VACUUM ACTION TO LIFT solder and cool both PC board and component without damage.

These PC components replaced fast with Endeco desoldering or soldering tools.

Endeco professional features include safety light that denotes high, low, and off on switch models. SS construction for long life, light weight and balance for easy use.

Contact your distributor for Endeco desoldering and soldering irons, kits and equipment—or write us today.

Enterprise Development Corp.
5127 East 65th Street
Indianapolis, IN 46220
Phone: (317) 251-1231

100
CIRCLE 35 ON FREE INFORMATION CARD

Digital Multimeter

The Drake DM2350 Digital Multimeter is a convenient, small handheld liquid crystal display meter ideal for the servicer or hobbyist. This 3½ digit meter is auto-ranging auto-zeroing, has polarity indication, and an over-range warning signal. Battery life is greater than 300 hours with a "low battery" indicator. A continuity test sounds a signal when circuit resistance is less than 20 ohms. DC accuracy is a basic 0.8%.

Batteries, probes, 20 amp current shunt, spare fuse and soft carrying case all included at $95.95. Add $2.50 shipping and handling per order.

Send check with order and provide street address for UPS shipment. Ohio residents add Sales Tax.
Charge card buyers may call toll free: 1-800-543-5613

CIRCLE 35 ON FREE INFORMATION CARD

CIRCLE 100 ON FREE INFORMATION CARD

CIRCLE 116 ON FREE INFORMATION CARD

The overall length of the model PD-1610 is 44 inches. The fiberglass housing is 1.5 inches in diameter, and the aluminum support pipe is 12 inches long and 1.66 inches in diameter. Copper alloy is used as the radiating element material. The model PD-1610 attains a resistance to rated wind velocity of 200 miles per hour, with a lateral thrust at rated wind of 48 pounds. Bending moment 1 inch below the top of the support pipe is 47 foot pounds, and lightning protection is direct ground. Termination is direct with an 18-inch, flexible extension of RG-393/U, mounting hardware is supplied. The model PD-1610 is priced at $175.00.

— Phelps Dodge Communications Company, Route 79, Marlboro, NJ 07746.

ELECTRONIC CROSSOVER, model 6000, is housed in a compact aluminum chassis with its own power supply, and is fully compatible with both tube- and transistor equipment. A choice of 16 different crossover frequencies is standard, with custom frequencies available at additional charges. The model 6000 crosses-over from 200 through 10,000 Hz, contains two tweeter-level controls, and features very low distortion (0.02%) and noise (-90 dB). The 12 dB/octave slope is suitable for

CIRCLE 117 ON FREE INFORMATION CARD

CIRCLE 115 ON FREE INFORMATION CARD

CIRCLE 114 ON FREE INFORMATION CARD

CIRCLE 113 ON FREE INFORMATION CARD

CIRCLE 112 ON FREE INFORMATION CARD

CIRCLE 111 ON FREE INFORMATION CARD

CIRCLE 110 ON FREE INFORMATION CARD

CIRCLE 109 ON FREE INFORMATION CARD

CIRCLE 108 ON FREE INFORMATION CARD

CIRCLE 107 ON FREE INFORMATION CARD

CIRCLE 106 ON FREE INFORMATION CARD

CIRCLE 105 ON FREE INFORMATION CARD

CIRCLE 104 ON FREE INFORMATION CARD

CIRCLE 103 ON FREE INFORMATION CARD

CIRCLE 102 ON FREE INFORMATION CARD

CIRCLE 101 ON FREE INFORMATION CARD

CIRCLE 100 ON FREE INFORMATION CARD

CIRCLE 99 ON FREE INFORMATION CARD

CIRCLE 98 ON FREE INFORMATION CARD

CIRCLE 97 ON FREE INFORMATION CARD

CIRCLE 96 ON FREE INFORMATION CARD

CIRCLE 95 ON FREE INFORMATION CARD

CIRCLE 94 ON FREE INFORMATION CARD

CIRCLE 93 ON FREE INFORMATION CARD

CIRCLE 92 ON FREE INFORMATION CARD

CIRCLE 91 ON FREE INFORMATION CARD

CIRCLE 90 ON FREE INFORMATION CARD

CIRCLE 89 ON FREE INFORMATION CARD

CIRCLE 88 ON FREE INFORMATION CARD

CIRCLE 87 ON FREE INFORMATION CARD

CIRCLE 86 ON FREE INFORMATION CARD

CIRCLE 85 ON FREE INFORMATION CARD

CIRCLE 84 ON FREE INFORMATION CARD

CIRCLE 83 ON FREE INFORMATION CARD

CIRCLE 82 ON FREE INFORMATION CARD

CIRCLE 81 ON FREE INFORMATION CARD

CIRCLE 80 ON FREE INFORMATION CARD

CIRCLE 79 ON FREE INFORMATION CARD

CIRCLE 78 ON FREE INFORMATION CARD

CIRCLE 77 ON FREE INFORMATION CARD

CIRCLE 76 ON FREE INFORMATION CARD

CIRCLE 75 ON FREE INFORMATION CARD

CIRCLE 74 ON FREE INFORMATION CARD

CIRCLE 73 ON FREE INFORMATION CARD

CIRCLE 72 ON FREE INFORMATION CARD

CIRCLE 71 ON FREE INFORMATION CARD

CIRCLE 70 ON FREE INFORMATION CARD

CIRCLE 69 ON FREE INFORMATION CARD

CIRCLE 68 ON FREE INFORMATION CARD

CIRCLE 67 ON FREE INFORMATION CARD

CIRCLE 66 ON FREE INFORMATION CARD

CIRCLE 65 ON FREE INFORMATION CARD

CIRCLE 64 ON FREE INFORMATION CARD

CIRCLE 63 ON FREE INFORMATION CARD

CIRCLE 62 ON FREE INFORMATION CARD

CIRCLE 61 ON FREE INFORMATION CARD

CIRCLE 60 ON FREE INFORMATION CARD

CIRCLE 59 ON FREE INFORMATION CARD

CIRCLE 58 ON FREE INFORMATION CARD

CIRCLE 57 ON FREE INFORMATION CARD

CIRCLE 56 ON FREE INFORMATION CARD

CIRCLE 55 ON FREE INFORMATION CARD

CIRCLE 54 ON FREE INFORMATION CARD

CIRCLE 53 ON FREE INFORMATION CARD

CIRCLE 52 ON FREE INFORMATION CARD

CIRCLE 51 ON FREE INFORMATION CARD

CIRCLE 50 ON FREE INFORMATION CARD

CIRCLE 49 ON FREE INFORMATION CARD

CIRCLE 48 ON FREE INFORMATION CARD

CIRCLE 47 ON FREE INFORMATION CARD

CIRCLE 46 ON FREE INFORMATION CARD

CIRCLE 45 ON FREE INFORMATION CARD

CIRCLE 44 ON FREE INFORMATION CARD

CIRCLE 43 ON FREE INFORMATION CARD

CIRCLE 42 ON FREE INFORMATION CARD

CIRCLE 41 ON FREE INFORMATION CARD

CIRCLE 40 ON FREE INFORMATION CARD

CIRCLE 39 ON FREE INFORMATION CARD

CIRCLE 38 ON FREE INFORMATION CARD

CIRCLE 37 ON FREE INFORMATION CARD

CIRCLE 36 ON FREE INFORMATION CARD

CIRCLE 35 ON FREE INFORMATION CARD

CIRCLE 34 ON FREE INFORMATION CARD

CIRCLE 33 ON FREE INFORMATION CARD

CIRCLE 32 ON FREE INFORMATION CARD

CIRCLE 31 ON FREE INFORMATION CARD

CIRCLE 30 ON FREE INFORMATION CARD

CIRCLE 29 ON FREE INFORMATION CARD

CIRCLE 28 ON FREE INFORMATION CARD

CIRCLE 27 ON FREE INFORMATION CARD

CIRCLE 26 ON FREE INFORMATION CARD

CIRCLE 25 ON FREE INFORMATION CARD

CIRCLE 24 ON FREE INFORMATION CARD

CIRCLE 23 ON FREE INFORMATION CARD

CIRCLE 22 ON FREE INFORMATION CARD

CIRCLE 21 ON FREE INFORMATION CARD

CIRCLE 20 ON FREE INFORMATION CARD

CIRCLE 19 ON FREE INFORMATION CARD

CIRCLE 18 ON FREE INFORMATION CARD

CIRCLE 17 ON FREE INFORMATION CARD

CIRCLE 16 ON FREE INFORMATION CARD

CIRCLE 15 ON FREE INFORMATION CARD

CIRCLE 14 ON FREE INFORMATION CARD

CIRCLE 13 ON FREE INFORMATION CARD

CIRCLE 12 ON FREE INFORMATION CARD

CIRCLE 11 ON FREE INFORMATION CARD

CIRCLE 10 ON FREE INFORMATION CARD

CIRCLE 9 ON FREE INFORMATION CARD

CIRCLE 8 ON FREE INFORMATION CARD

CIRCLE 7 ON FREE INFORMATION CARD

CIRCLE 6 ON FREE INFORMATION CARD

CIRCLE 5 ON FREE INFORMATION CARD

CIRCLE 4 ON FREE INFORMATION CARD

CIRCLE 3 ON FREE INFORMATION CARD

CIRCLE 2 ON FREE INFORMATION CARD

CIRCLE 1 ON FREE INFORMATION CARD

www.americanradiohistory.com
both horn and dynamic drivers.

The model 6000 can be used either for bi-amping or tri-amping, and features a plug-in frequency module that allows changing frequencies readily. For tri-amping, a second model 6000 is needed to provide the bandpass filter for the mid-range speakers. The model 6000 is priced at $156.00.

— Ace Audio Co., 532 5th Street, East Northport, NY 11731.

GRAPHIC EQUALIZER, model SE-9, is a microprocessor-controlled, octave-band stereo graphic equalizer designed for either room equalization or recording. It features 4-curve memory storage, spectrum-analyzer display, and a built-in pink-noise generator; in addition, it comes supplied with an external electret condenser microphone.

CIRCLE 118 ON FREE INFORMATION CARD

A motorized fader-setting system, operating under CPU direction simplifies the digital-processing requirements; all 16 of the frequency controls are dual-slide potentiometers, one section of which can vary the boost or cut within its audio band by ±12 dB. The other section produces a varying DC voltage that is fed to comparator circuits that determine when the motors have positioned the sliders correctly. When the vertical motor has placed one slider properly, the horizontal motor shifts the adjustment mechanism to the next potentiometer, in turn. Using the automatic adjustment procedure minimizes fader-to-fader interaction, and requires only 30 seconds overall. Manually-derived settings, or factory-presselected equalizations, may also be stored in the 4-curve memory and recalled at any time.

The model SE-9 is available in brushed aluminum and is priced at $700.00 (Also available as model SE-9B in matte black with rack mounting, at the same price.) — Sansui Electronics Corp., 1250 Valley Brook Ave., Lyndhurst, NJ 07071.

SPEAKERS, model 5300, are 5-inch wedges, shaped for mounting in car doors and other surfaces. They feature a molded ABS plastic and are sold in kits containing two speakers and cables. The suggested retail price for the kits is $19.95 — BP Electronics, 855 Conklin Street, Farmingdale, NY 11735.

SOUND-ENHANCER, the Imager 801-A, can fit almost any size car or truck dashboard, and uses very little current. By connecting it to an auto, truck, or van's speaker system, the speakers' performance is improved dramatically. The sound appears to be coming from many speakers, surrounding the listener with an extra dimension of depth, clarity, and realism. It comes complete and with full instructions, so that it should not be difficult for the average do-it-yourselfer to install. The Imager 801-A is priced at $149.95. — Omissonix, Ltd., P.O. Box 420, Rt. 17, c/o Carrane Bldg., Northford, CT 06492.

CIRCLE 120 ON FREE INFORMATION CARD

Get A GNOME
the original micro-synthesizer

Every day more people discover that PAIA's GNOME is the most versatile, cost effective special effects device on the market today. John Simonson's time-proven design provides two envelope generators, VCA, VCO and VCF in a low cost, easy to use package. Use alone with it's built in ribbon controller or modify to use with guitar, electronic piano, polytonic keyboards, etc.

The perfect introduction to electronic music and beats of all, the GNOME is only $69.95 in easy to assemble kit form. Is it any wonder why we've sold thousands?

CIRCLE 36 ON FREE INFORMATION CARD

Radio- Electronics
REPRINT BOOKSTORE

REPRINT BOOKSTORE

Build Your Own Satellite TV Receiver $7.00
SS-B Satellite TV Antenna $5.00
Build Your Own Robot $12.00
TV Desamblner (January, February 1981) $3.00
Video Entertainment (January 1982) $2.00
Your Own Computer (October 1981) $3.00
Radio-Electronics Back issues (1981) (each)$3.00
Radio-Electronics Back issues (1983) (each)$3.00
and more...

To order any of the items indicated above, check off the ones you want. Complete the form below, include your payment—check or money order (CO NOT SEND CASH), and mail to Radio-Electronics, Reprint Department, 200 Park Ave. South, New York, NY 10003. Please allow 4 - 6 weeks for delivery.

If you need a copy of an article that is in an issue we indicate is unavailable you can order it directly from us. We charge 50¢ per page. Indicate the issue (monthly & yearly) and page and article desired. Include payment in full, plus shipping and handling charge.

MAIL TO:
Radio-Electronics
Reprint Department, 200 Park Ave. South, New York, NY 10003
All payments must be in U.S. funds

Mail or phone in your order.

Send Radios Microsynthesizer Kit
$69.95 plus $2.00 postage
Send Free Catalog

Name ____________________________
Address ____________________________
City ____________________________ State __________ Zip

Send your order to REPRINT BOOKSTORE

1620 W. Wilshire Blvd. Oklahoma City, OK 73116

Radio- Electronics
of TV sound. In fact, the NTSC system has always been capable of providing "high fidelity" FM sound, with response up to 15 kHz. Small-speaker TV sets, together with TV-station-owner apathy, has resulted in a vicious circle that has kept us from enjoying the kind of sound we get from FM radio and other high-fidelity program sources.

The coming of stereo-TV sound may change all that. If only for the reason that the TV tuners and adaptors needed to supply the two channels of audio will permit us to connect our stereo component systems directly to the line outputs of those new products. In that way, we will finally be able to bypass the sound systems contained in our TV sets. When will that happen? Best estimates suggest that the FCC’s decision will not come before mid-1982, and most likely, it will arrive later than that.

I am indebted to my friend William S. Halstead, who provided me with much of the background material used for this description of the stereo-multiplex TV systems being considered by the EIA and the FCC. R-E
Temperature Scales

I wish to point out two errors in Joseph J. Carr's discussion of temperature scales in the November 1981 Radio-Electronics.

Firstly, the absolute zero temperature is -273.15°C, relative to the freezing point of water, which is 0°C. The triple point of water, the point where gas, liquid, and solid exist in equilibrium at 1-atmosphere pressure, is defined as 273.16 K and the freezing point of water is found to be 0.01°C lower.

Second, all molecular motion does not cease at 0K. All molecules in a potential field, such as exists in a crystal of the solid, retain a zero-point vibrational motion due to the uncertainty principle, which prevents both the particle momentum and position from being known exactly at the same time.

David G. Henning, Ph.D.
Omaha, NE
NEW BOOKS

For more details use free information card inside back cover.

HOW TO BUILD YOUR OWN WORKING MICROCOMPUTER, by Charles K. Adams. Tab Books, Inc., Blue Ridge Summit, PA 17214. 308 pp including glossary, appendices, and index; 5¼ x 8½ inches; softcover; $9.95. (A hardcover edition is also available at $16.95.)

Compared to the monstrous computers of a decade or more back, the microcomputer is simple, inexpensive, and easy to use—facts well proven by its popularity and ubiquity. Microcomputers now control almost everything from toys to automobile combustion-efficiency; from games to microwave ovens, and from stop lights to numerically-controlled machines. And the microcomputer boom is just beginning.

This book is for the electronics hobbyist who would like to build and program a simple microcomputer, but doesn't know just how or where to begin. It is an easy-to-read manual, showing the way to get started...the right way. Whether one is a beginner or a seasoned electronics buff, building a microcomputer from scratch will give one a taste of the electronics world that can't be experienced any other way. The book shows how a computer works, and provides simple (and more advanced) programming exercises for use with a self-built computer after presenting a step-by-step outline of every aspect of construction, assembly, and testing. Diagrams and tables are presented clearly, as well as parts lists, layout, power-supply sources, keyboard and display circuits, and even plans for an EPROM programmer.

The book may be used in any one of three ways: as a general reference book, as a guide to building a computer, or as a guide to building and programming the specific computer described. CIRCLE 151 ON FREE INFORMATION CARD

Semiconductors used in modern electronic equipment and in computers are very sensitive to electrical interference, and due to their low thermal inertia, they are easily destroyed by overloads lasting even one millisecond. Many such devices normally operate at microwatt or milliwatt power-levels, so that even if destruction is avoided, false operations can easily be caused by interference. Computers are one of the most difficult devices to protect against interference, because the spectrum of signals they use is extremely wide.

The pulses used by the computer may have durations of a few tens of nanoseconds and rise times of a few nanoseconds; they will thus represent frequencies extending to 100 MHz or more.

HAMEG PRESENTS THE NEW HM 203

High performance at low cost.

$580

(Probes included)

A quality scope, made in the U.S.A., by a company with over 23 years experience.

HAMEG

38-90 Harbor Rd.

Port Washington, N.Y., 11050

Tel (516) 883-3837

CIRCLE 18 ON FREE INFORMATION CARD
Very short interference-pulses can easily be interpreted by the computer as instructions, and that may corrupt a program in storage, or inhibit the running of a program. This book is intended to be used in conjunction with other documents referenced, to aid immunity from interference by isolation, screening, filtering, and earthing—a scheme designed for use with electronic systems in electrically noisy environments. It is particularly concerned with the use of electronic equipment in high-voltage electricity substations and outlines the ways in which harmful interference may enter electronic systems within an electricity station, as well as indicating appropriate measures for controlling the effect of such interference. Although there is no index, the table of contents, which lists nearly every page, should suffice to enable the reader to find any particular material easily. There are many clearly printed diagrams, a section on the scope of the book and on how to use it, and a glossary of terms.

CIRCLE 152 ON FREE INFORMATION CARD

MUSICAL APPLICATIONS OF MICROPROCESSORS, by Hal Chamberlin. Hayden Book Company, Inc., 50 Essex Street, Rochelle Park, N.J. 07662. 661 pp including appendix, bibliography, and index; 6 1/4 x 9 1/4 inches; hardcover; $24.95.

This book covers digital-microprocessor sound and music synthesis comprehensively, featuring previously unpublished techniques that are practical only with microprocessors. Standard linear techniques for microprocessor applications are discussed and musical applications for the newer and more powerful 16-bit microprocessors are explained in non-mathematical language. All phases of waveform shaping and filtering, as applied by digital devices to music generation, are also covered.

In the first section, "Background," chapters 1 to 5 cover the fundamental material necessary for full appreciation of the sections to follow. The second section, chapters 6 through 11, deals with computer-controlled analog synthesis, and in section three, chapters 12 to 18 cover the principals of digital synthesis and sound modification. Throughout the discussions, mathematics is kept to a minimum and even then is limited to elementary algebra and trigo-

CIRCLE 152 ON FREE INFORMATION CARD

An enclosure as good as your idea.

You've turned a good idea into a piece of equipment—now you need a good enclosure. Here's how PacTec can help you with our versatile enclosures:

- Attractive yet inexpensive.
- Durable ABS construction.
- Many sizes, colors, accessories.
- Built in bosses and slots speed component mounting.
- Available off-the-shelf from single unit to production quantities. See them at your PacTec Distributor. And ask him for your free catalog.

PACTEC Corp.
subsidiary of La France Corp.
Enterprise and Executive Avenues
Philadelphia, PA 19153 (215) 365-8400

CIRCLE 29 ON FREE INFORMATION CARD
For truly superb FM-stereo reception...

The G.A.M. stereo one vertical antenna

- Transforms fuzzy stations into 'tape quality'
- Reduces multipath problems
- Up to twice the power of the conventional dipole antenna
- Receives from all directions
- Pulls in stations you never knew existed

Test it yourself! We offer a three-day-to-goodness 30 day MONEY-BACK guarantee if it doesn’t measure up to your standards; send it back for a refund of the purchase price.

The suggested list price for Stereo One is $69.95

BUY DIRECT AND SAVE $10.00
Send your check or money order for $59.95 + $5.00 (shipping and handling) to:
(N.Y. residents, please add 7% sales tax)

VISA & MASTER CARD buyers may call toll free 1-800-448-8490 Mon.-Fri.
N.Y. Residents please call 1-315-482-2989

SAFE SUB-WOOFER

continued from page 69

A hot-melt glue gun will make construction easier.

The rather elaborate construction of the initial chamber, behind the speaker, serves two purposes. First, it directs the back-wave from the speaker into the labyrinth. Second, it prevents standing waves from building up.

Three views of that first chamber are provided in Figs. 4, 5, and 6. It contains two angled partitions. The first behind-the-speaker partition, whose outline is shown in Fig. 7, is attached to mounting strips on the side panels; the second one is attached to the enclosure at all four of its edges.

The only acoustic insulating-material used in the system is in the first chamber, where indicated by asterisks in Figs. 5 and 6. It should be loosely-fluffed 1/4- to 1/2-inch fiberglass.

Two binding posts will be needed to connect the subwoofer to your amplifier. Locate them at the side or rear of the enclosure and make sure that there is an airtight seal where they pass through the panel.

Prepare the front, rear, and side panels by attaching partition-to-cabinet mounting strips at the positions shown in Fig. 8. On what will become their inside, cut out the hole for the speaker, bearing in mind that it is offset slightly from the middle of the front panel. Refer to Fig. 9 as you do this.

Prepare partitions 1-11 as shown in Fig. 10 and attach the even-numbered partitions to the odd-numbered ones as shown in Fig. 11. Now, join the sides at rear of the enclosure, leaving the front panel off for the time being. Install the first and second behind-the-speaker partitions, doing the second one first. Don't forget the acoustic installation where indicated. Attach the speaker to the front panel and connect it to the binding posts on the rear panel. Then attach the front panel to the rest of the enclosure and install partitions 1-10 on their mounting strips. Finally, add partition 11 and the top of the enclosure.

Use

The SAFE subwoofer is connected directly to your amplifier's output through a crossover network with a cutoff frequency of about 100 Hz. While an L-C-L "pi" network can be used, an electronic crossover would be better. With much program material, the benefits of the subwoofer will not be noticeable—music just doesn’t contain that much low-frequency information. When the low frequencies are present, however, you’ll hear your music as you’ve never heard it before.

CIRCLE 30 ON FREE INFORMATION CARD

CIRCLE 31 ON FREE INFORMATION CARD

PRINTED CIRCUIT KITS MAKE CARDS QUICKLY

ONLY Vector kits contain:
- Positive photo-resist coated AND uncoated copper laminate—no messy photo-reversal—no spraying, dipping, or baking.
- 4 types of art aids: rub transfers, ink, water-soluble paste, tape, cut and peel—use 1 or all.
- 1:1 circuit art rub transfers—IC sets, pads, lines, connectors, symbols, letters, and numbers.
- Everything included—just add water and sunlamp or bright sunshine.
- Liquid etchant and developer—no dry chemical mixing problems.
- Process choices—make circuit on copper and etch for 1 card. Make circuit on film, expose, develop and etch for 1 or many cards.

ART AIDS

+ mylar film + sunlamp + developer + etchant = 1 or many cards + card + etchant = 1PC

32XA-1 kit makes 7 PC cards, $4.41. 32X-1 starter kit makes 2 cards, $18.24.

If not available locally, factory order—include $3.00 shipping, U.S. only.

Prices subject to change without notice

Vector Electronic Co., 12440 Gladstone Ave., Sylmar, CA 91342

CIRCLE 31 ON FREE INFORMATION CARD

This new Fourth Edition provides a complete course in electrical and electronics drawing that reflects the latest drafting techniques, technology, and the National Electrical Code.

Presented in a logical, easy-to-master sequence, the text is designed to expand students' knowledge of electronics functions and systems. An up-to-date picture of electrical drafting is provided with basic "how-to" information, plus coverage of electronics, automation, micro-electronics, electric power, and architectural wiring. Included are new chapters on computer-aided design (CAD), microprocessors and industrial controls and new material on flow and logic diagrams, laying out circuits, using templates and drawing printed circuits.

The book is illustrated extensively and presents questions and problems at the end of each chapter.

CIRCLE 154 ON FREE INFORMATION CARD

SAFE SUB-WOOFER

continued from page 69

airtight. A hot-melt glue gun will make construction easier.

The rather elaborate construction of the initial chamber, behind the speaker, serves two purposes. First, it directs the back-wave from the speaker into the labyrinth. Second, it prevents standing waves from building up.

Three views of that first chamber are provided in Figs. 4, 5, and 6. It contains two angled partitions. The first behind-the-speaker partition, whose outline is shown in Fig. 7, is attached to mounting strips on the side panels; the second one is attached to the enclosure at all four of its edges.

The only acoustic insulating-material used in the system is in the first chamber, where indicated by asterisks in Figs. 5 and 6. It should be loosely-fluffed 1/4- to 1/2-inch fiberglass.

Two binding posts will be needed to connect the subwoofer to your amplifier. Locate them at the side or rear of the enclosure, and make sure that there is an airtight seal where they pass through the panel.

Prepare the front, rear, and side panels by attaching partition-to-cabinet mounting strips at the positions shown in Fig. 8. On what will become their inside, cut out the hole for the speaker, bearing in mind that it is offset slightly from the middle of the front panel. Refer to Fig. 9 as you do this.

Prepare partitions 1-11 as shown in Fig. 10 and attach the even-numbered partitions to the odd-numbered ones as shown in Fig. 11. Now, join the sides at rear of the enclosure, leaving the front panel off for the time being. Install the first and second behind-the-speaker partitions, doing the second one first. Don’t forget the acoustic installation where indicated. Attach the speaker to the front panel and connect it to the binding posts on the rear panel. Then attach the front panel to the rest of the enclosure and install partitions 1-10 on their mounting strips. Finally, add partition 11 and the top of the enclosure.

Use

The SAFE subwoofer is connected directly to your amplifier's output through a crossover network with a cutoff frequency of about 100 Hz. While an L-C-L "pi" network can be used, an electronic crossover would be better.

With much program material, the benefits of the subwoofer will not be noticeable—music just doesn’t contain that much low-frequency information. When the low frequencies are present, however, you’ll hear your music as you’ve never heard it before.

R-E
functions.' While the clock/thermometer described in this article does not make use of some of them, there is no reason you can’t expand the project to include them. For instance, with the appropriate additional circuitry you can turn the project into a full-feature alarm clock with a snooze alarm such as the one shown in Fig. 5. If you have a low-wattage soldering iron and a good eye, you might want to try accessing the traces going to individual segments of each digit. With a little ingenuity, doing that would let you build a time-of-day clock and temperature monitor for a computer. If you are interested in exploring the potential of the MA1026 further, be sure to order the data sheet and applications notes when you order the module (note that there is sometimes a small additional charge for those items). The module is simple and economical, but it has many features available to those who want to use it fully.

This Publication is available in Microform.
University Microfilms International

DIGITAL THERMOMETER
continued from page 58

Fig. 5—Expand the basic clock/thermometer project and make a full-function alarm clock with snooze alarm, using this circuit.

HITACHI DUAL TRACE PORTABLE OSCILLOSCOPES

- TV Sync-Separator Circuit
- High Sensitivity 1 mV/div (5 MHz)
- Sweep-Time Magnifier (10X)
- X-Y Operation
- Trace Rotation
- Z-Axis Input (Intensity Modulation)

Buy any of these instruments and get a FREE Bonus Gift!

Call for our prices TOLL FREE (800) 645-9518

FORDHAM
855 Conklin St. Farmingdale, N.Y. 11735

COD's extra

www.americanradiohistory.com
MARKET CENTER

BUSINESS OPPORTUNITIES

PROJECTION TV. Make $200.00+ per evening assembling projectors. Easy. Results equal to $2,500 projectors. Your total cost less than $15.00. Plans, lens & dealer’s information $14.00. Illustrated information free. MACROCOMFX, Washington Crossing, PA 18977. Credit card orders 24 hours. (215) 736-2880.

WINNERS! Build on your $14.00...Walnut Creek, CA 94597.

HIGHLY PROFITABLE ELECTRONIC FACTORY
Investment unnecessary, knowledge not required, sales handled by professionals. Ideal home business. Write today for facts! Postcard will do, Barta-RE-V, Box 248, Walnut Creek, CA 94597.

EDUCATION & INSTRUMENTATION
UNIVERSITY degrees by mail! Bachelors, Masters, Ph.D.’s. Free revealing details. COUNSELING, Box 317-RE-T Austin, CA 90660.

ATTENTION ELECTRONIC TECHNICIANS
Highly Effective Home Study B.S. Degree Program for Experienced Electronic Technicians. Our New Advanced Placement Program grants Credit for previous Schooling & Professional Experience. Advance Rapidly! Our 5th Year! FREE DESCRIPTIVE LITERATURE! Cook’s Institute of Electronics Engineering, DESK 15, P.O. BOX 20345, JACKSON, MS 39209.

To run your own classified ad, put one word on each of the lines below and send this form along with your check for $1.65 per word (minimum 15 words) to: Radio-Electronics, 260 Park Avenue South, N.Y., N.Y. 10003.

ORDER FORM

PLEASE INDICATE in which category of classified advertising you wish your ad to appear. For special headings, there is a surcharge of $10.

() Plans/Kits () Business Opportunities () For Sale () Education/Instruction () Wanted () Special Category: $10

(PLEASE PRINT EACH WORD SEPARATELY, IN BLOCK LETTERS.)

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35

PLEASE INCLUDE FOR OUR FILES YOUR PERMANENT ADDRESS AND PHONE NUMBER.

SCANNER/monitor accessories—kits and factory assembled. Free catalog. CAPRI ELECTRONICS, Route 11, Canton, GA 30520.

NEW 1982 CATALOG TREMENDOUS SAVINGS ON 1000'S OF ITEMS Call or Write for FREE S.A.S.E. JR NJ ELECTRONICS INC. Dept. A, Box 52875, Lindenhurst, N.Y. 11757.

POLICE/fire scanners, scanner crystals, antennas, radio detectors, HPR, Box 19224, Denver, CO 80219.

TEST equipment, new and used. Catalog $1.00, P.O. Box 8756, White Bear Lake, MN 55110, (612) 429-2975.

RESISTORS 1/4W, 1/2W 5% carbon films 3 ea. No minimums, 1% metal films. Send for details. Bulk pricing available. JR Industries, 5834-C Swanson, Toledo, OH 43614.

SAVE up to 50% on name brand test equipment. Free catalog and price list. SALEN ELECTRONICS, Box 82-F, Skokie, IL 60077.

TELEPHONE or office bugged? Latest detection equipment finds out fast for $1.00. CLIFTON, Box 220-M, Miami, FL 33168.

TV antennas. New designs solve problems. Free list. TELE-COMM, Box 2910, Station A, Champaign, IL 61820.

SPEAKERS by Electro-Voice and others. Build your own speaker system and save. Also microphones, mixers, amps, etc. Free list. SONIX CO., Dept. SRE, Indian Head, MA 02154. Phone (301) 753-6432.

TRS-80C computer mouse morse code and Rtty programs. FSA and hardware. Free info. FRANK LYMANN, 12 Reservoir St., Cambridge, MA 02138.

CABLE TV block converter. A must for videotaping from cable TV. Standard 2-13, mid and super bands on UHF. Converter only $29.95. With installation kit 34.50. $2.50 Size $4. CAD add 6% sales tax. M/C, Visa, money order. Video accessories: Copyguard stabilizers/detailers/video fader/switchers/etc. Send $1.00 for catalog. ACCESORY SPECIALISTS, P.O. BOX 71089, Los Angeles, CA 90079.

PICTURE tube rebuilding equipment—we sell and buy new and used equipment. Free training. ATOLL TELEVISION, 6425 Irving Park, Chicago, IL 60634. Phone 312-945-6667.

ANALOG delay, audio and music synthesizer IC’s plus more! Free flyer. PGS ELECTRONICS, P.O. BOX 7358, Terre Haute, IN 47804.

MICROWAVE 2 GHz. Best in the West! Downconverters: kits $39.95, complete with antenna and control box $99.00. Factory assembled—90-day warranty $159.00. GALAXY ELECTRONICS, P.O. BOX 1167, N. 61st Ave., Glendale AZ 85301 (602) 247-1157.

American Heart Association
SATELLITE TELEVISION
SATELLITE TV antenna, 10 ft. fiberglass, complete, polar mount. $1920.00; electronics at cost also. TRI-STAR COMMUNICATIONS, Box 843. Erie, MI 48133. (419) 726-1095

SATELLITE TV
• SYSTEMS • COMPONENTS • LNA'S
• ANTENNAS • RECEIVERS

HIGH FRONTIER
2230 E. Indian School Rd., Phoenix, AZ 85016
(602) 954-6008

Enjoy Satellite TV Now

Better than Cable TV—Over 200 TV and radio services. Why waste money? Learn the whole story and build a video system the family can enjoy. No commercials, FREE movies, sports and Vegas shows—worldwide, crystal clear reception connects to any TV set. Big (8 x 11 in.) book loaded with details, photos, plans—TELLS EVERYTHING! Satisfaction Guaranteed. Send $7.95 TODAY! (Add $1.90 for 1st class air mail) or call our 24 hour C.O.D. rush order line (305) 862-5068.

GLOBAL ELECTRONICS, P.O. Box 219-E, Maitland, Florida 32751

SATELLITE Receiver kit. Antenna Kit: IF Strips, Mixers, I.C., LNA's, Hardware. Alignment service. LANLEY SCIENTIFIC INSTRUMENTS, Box 20131, Jackson, MS 39209

GEOSTATIONARY satellite TV antenna aimering angles. Azimuth and elevation (true and magnetic) coordinates calculated by digital computer for your location. 23 satellites. Send name, address, your location's latitude and longitude (deg, min. sec.); or distance and direction from nearby town; or explicit geographical location in your city; plus $5.00 to: HUTSON INDUSTRIES, INC., P.O. Box 155, Scooba, MS 36758

SATELLITE TV FOR THE HOME
Sick of Network TV?
Our receiver lets you get over 75 channels of television directly from earth-orbiting cable TV satellite HDE. Shows local super stations, sports and movies worldwide.

We don't just sell information! We Manufacture Hardware!

From offshore oil rigs, data links to hotels and backyard installations, we wrote the book. Conveniently updated, our 94 Page technical information book and catalog gives you all the facts. Inexpensive dishes, feeds, telemetry software, kits and more. Recommended reading by NASA. The Office of Consumer Affairs and Quality companies are Rockwell/Collins. Send $7.95 today!

CALL 24-hrs. C.O.D. Holman
(305) 339-7600

SATELLITE antenna: build your own low cost lightweight, low wind resistance 12 ft. dish. For engineered drawings and instructions, and bill of materials, send $15.00 to KULICK ANTENNA, 88 Standford Ave., Sayreville, NJ 08872

SATELLITE Earth Station
complete systems from $2,200.00
Send $4.00 for our complete 50 page color catalog
TEI ELECTRONICS
P.O. Box 181108, Dept. 2626, Memphis, TN 38118
901-795-4504

SATELLITE equipment catalog. Over 25 of the best manufacturers and suppliers, LNA's, receivers, antennas and complete systems covered in detail. Four different sections. $12.00. TMS CO. P.O. Box 8369, Roseville, MN 55113

SATELLITE TV
Makes your first investment in Satellite TV the intelligent one.
• Complete Handbook & Buyers Guide - detailed, yet simple to understand, includes equipment costs, kits, turnkey services, etc. $2.00
• Complete Location Analysis - 8-page computer printout makes it easy to find the exact location of your satellite. $19.95
• Bulky Dat Processors - $95.00
• Installation Instructional Manual - $19.95

INTERNATIONAL COMMUNICATIONS CO.
P.O. Box 2524, Charlotte, N.C. 28212

MCKAY SETS THE STANDARD FOR COMPACT AM RECEIVING ANTENNAS
DA100D OUTDOOR ANTENNA and DA-6D LOOP ANTENNA.
For specs & details contact these dealers:
AMERICAN RADIO HISTORY a New York City
RADIO SERVICES, INC. Dept. 11
2240 BROADWAY, NEW YORK, N.Y. 10023
HUGH O'SULLIVAN INC.
123 Third Ave., New York, N.Y.
EDMOND SCIENTIFIC CO. 3 Metuchen St., Metuchen, N.J.
PRIMAR TRADES 1451 W. Sacramento St., Metuchen, N.J.
F. H. BARBER ELECTRONICS INC. 2123 Woodrow Wilson Blvd., Washington, D.C.
SATELLITE TELEVISION WORKS 446-14 W. Madison St., Chicago, Ill.
COAST ELECTRONICS 1733 S.7th Rd., Jacksonville, Fla.
SATELLITE TV 3131 S. 7th Rd., Jacksonville, Fla.
SATELLITE TV 135 W. 12th St., New York, N.Y.
SATELLITE TELEVISTION 305 W. 55th St., New York, N.Y.
SATELLITE TV 83-34 3rd Ave., Long Island City, N.Y.
SATELLITE TV 123 E. 10th St., New York, N.Y.
SATELLITE TV 235 E. 57th St., New York, N.Y.
SATELLITE TV 212-777-6400.

SATELLITE WALL chart: 32" x 24" color. Communications satellite programming and look angles. $4.50 unframed. GILLASPIE, 350 Bencia Ave., Sunnyvale, Calif. 94086. Visa, Mastercard (408) 730-2500

SATELLITE TELEVISION EARTH STATION KIT
LOW COST COMPLETE SYSTEM
Special Offer $399.00 KIT includes all electronic and mechanical parts needed to assemble a complete satellite Earth Station. You provide the labor and hard tools. Included in the kit are: 3 ft. 4.4 foot fully steerable parabolic dish low noise amplifier. antenna, rotator receiver, modular necessary cables/connectors and complete assembly/ operating instructions. Everything—down to the last nut, bolt and screw is provided.

Illustrated Brochure with Complete Details — $2.00

MICROTECNICA ASSOCIATES
2335 South, 2300 West
Salt Lake City, Utah 84119

FREE $200 value TVRO P.C. board set, when you join our development group. Complete systems as low as $700. New lower cost designs, antennas, group purchasing, more info $1.00, membership
$50. 509-534-8888 6-9 PM PST COMPUTER SATELLITE SERVICES, 1604 N. Smith St. Spokane WA 99207

COMPUTER MARKET CENTER

COMPUTER MARKET CENTER ADVERTISING RATES
1" by 1 column (1 5/8") $550.00. 1/2" by 1 column
(1 5/8") $820.50. 2" by 1 column (1 5/8") $110.00. All ads must be prepaid. Send order and remittances to Computer Market Center, Radio-Electronics Magazine, 200 Park Avenue South, New York, New York, 10003. Address telephone inquiries to 212-777-6400. Frequency rates are available.

TEXAS

USED COMPUTER TERMINALS, PRINTERS, MODEMS, SURPLUS ELECTRONIC PARTS. CATALOG $1.00
RONDOLE COMPANY
THE COMPUTER ROOM
2525 BUTLER ST. 776-7414
DALLAS, TEXAS 75235
(214) 630-4621

ED McMAHON, here to wish USD a Happy Birthday. Thanks, USD for 40 years of chairmanship service.

ED McMAHON
40th Anniversary

SUPPORT MARCH OF DIMES
9 DIGITS 600 MHz $129.95 WIRED

SPECIFICATIONS:
- **Range:** 20 Hz to 600 MHz
- **Sensitivity:** Less than 10 MV to 150 MHz
- **Resolution:** 0.1 Hz (10 MHz range)
- **Power:** 8.15 VAC @ 250 mA

The CT-90 is the most versatile, feature packed counter available for less than $300.00. Advanced design features include three selectable gate times, nine digits, gate indicator and a unique display hold function which holds the displayed count after the input signal is removed. Also, a 100 MHZ TCXO time base is used which enables easy zero beat calibration checks against WWV. Optionally, an internal nicad battery pack, external time base input and Micro-power high stability crystal oven time base are available. The CT-90, performance you can count on!

PRICES:
- CT-90 wired, 1 year warranty $99.95
- CT-90 Kit, 90 day parts warranty $84.95
- AC-1 AC adapter $3.95
- BP-1 Nicad pack + AC adapter/charger $12.95

7 DIGITS 525 MHz $99.95 WIRED

SPECIFICATIONS:
- **Range:** 20 Hz to 525 MHz
- **Sensitivity:** Less than 50 MV to 150 MHz
- **Resolution:** 1.0 Hz (5 MHz range) 10.0 Hz (50 MHz range) 100.0 Hz (500 MHz range)
- **Display:** 9 digits 0.4" LED
- **Time base:** 1.0 ppm TCXO 20-40°C
- **Power:** 12 VAC @ 250 mA

PRICES:
- MINI-100 wired, 1 year warranty $79.95
- AC-2 Ac adapter for MINI-100 $3.95
- BP-2 Nicad pack + AC adapter/charger $12.95

7 DIGITS 500 MHz $79.95 WIRED

SPECIFICATIONS:
- **Range:** 20 Hz to 500 MHz
- **Sensitivity:** Less than 25 MV to 150 MHz
- **Resolution:** 1.0 Hz (60 MHz range) 10.0 Hz (600 MHz range) 8 digits 0.4" LED
- **Time base:** 2.0 ppm 20-40°C
- **Power:** 110 VAC or 12 VDC

PRICES:
- CT-50 wired, 1 year warranty $159.95
- CT-50 Kit, 90 day parts warranty $119.95
- RA-1 receiver adapter kit $14.95
- RA-1 wired and pre-programmed (send copy of receiver schematic) $29.95

8 DIGITS 600 MHz $159.95 WIRED

SPECIFICATIONS:
- **Range:** 20 Hz to 600 MHz
- **Sensitivity:** Less than 25 mv to 150 MHz
- **Resolution:** 1.0 Hz (60 MHz range) 10.0 Hz (600 MHz range) 8 digits 0.4" LED
- **Time base:** 2.0 ppm 20-40°C
- **Power:** 110 VAC or 12 VDC

PRICES:
- DM-700 wired, 1 year warranty $99.95
- DM-700 Kit, 90 day parts warranty $79.95
- AC-1, AC adapter $3.95
- BP-3, Nicad pack + AC adapter/charger $19.95
- MP-1, Probe kit $2.95

DIGITAL MULTIMETER $99.95 WIRED

SPECIFICATIONS:
- **Input Impedance:** 10 Megohms DC/AC Volts: 1000V to 1 KV 5 ranges
- **DC/AC:** 0.1% to 2.0 Amps 5 ranges
- **Resistance:** 0.1 ohms to 20 Megohms 6 ranges
- **Accuracy:** 0.1% basic DC volts
- **Input Impedance:** 10 Megohms DC/AC Volts
- **Power:** 4 C° cells

PRICES:
- DM-700 wired, 1 year warranty $99.95
- DM-700 Kit, 90 day parts warranty $79.95
- AC-1, AC adapter $3.95
- BP-3, Nicad pack + AC adapter/charger $19.95
- MP-1, Probe kit $2.95

new-read frequency

ACCESSORIES
- **Telescopic whip antenna - BNC plug** $3.95
- **High impedance probe, light loading** $3.95
- **Low pass probe, for audio measurements** $9.95
- **Direct probe, general purpose usage** $3.95
- **Tilt ball, for CT-70, 90, MINI-100** $3.95
- **Color burst calibration unit, calibrates counter against color TV signal** $14.95

COUNTER PREAMP

For measuring extremely weak signals from 10 to 1,000 MHz.

- **Small size, powered by plug transformer-include.d.** $24.95 Kit $44.95 Wired
- **BN C Connectors**
- **Great for sniffing RF with pick-up loop** $29.95 Kit

PHONED DRES CALL 716-686-3950

CIRCLE 49 ON FREE INFORMATION CARD
Someday you’ll need a computer;
that’s when you should remember the best way to buy a stereo.

When buying a stereo, you pick and choose the best components available.
Computers are like stereos. You can buy all-in-one models that are great for the kids; but for business, scientific, and industrial computer applications, the only way to protect your investment and optimize performance is with a component system.

CompuPro makes the fastest most reliable, highest quality S-100 components in the industry; the same components chosen by companies like IBM can solve your computing problems too.

CompuPro, division of GODBOED ELECTRONICS, OAKLAND AIRPORT, CA 94614-0355 (415)562-0636

Our nationwide network of authorized sales centers will be glad to introduce you to CompuPro quality computing.
Call 415-562-0636 today for the center nearest you.

SATELLITE TV Books, parts, low-noise micro-wave transistors. Specs and catalog $2.00 ELITE ELECTRONICS. RR1: St. George, Ontario. Canada. NDE 1N0

JAMESCOMM Publications
P.O. Box 31
Crate, Illinois 60417

MICROWAVE TV SYSTEM
- Precision 25" Parabolic Antenna
- Fullview Converter and Primo Assembled Power Supply
- 2-Watt Coaxial Cables
- Complete Install & Teledex

DATA SERVICE CO.
310 Young St.
Roseville, MN 55113
612-626-5469

PLANS & KITS
OSCILLOSCOPE performance from your unmodified television for less than $25. Super simple, accurate, practical. Order Tele-Scope circuit board and plans $8.50. Get two for dual trace $15. MICROGRID, Box 613, Ithaca, NY 14850

SATELLITE TVRO parabolic aluminum dish local materials $500. Plans, formulas $10.00. WARD MICROWAVE, Box 100, Conway, NC 27812

DECODE Morse, RTTY, and ASCII signals from airwaves with new CodeStar. LED readout or connect with your computer printer. Keyboard. Other items also available. Kits or assembled. MICROCraft, Box 513R, Thiensville, WI 53092 (414) 241-8144

FREE KIT Catalog

FREE KIT Catalog

MICROPROCESSOR trainer, learn by constructing and programming a microcomputer for under $70.00. Instructions/plans $6.00. MICRO

COMMERCE CORPORATION, Box 419, Edwardsburg, MI 49112

MINI FM MIC
Compact size, only 2"x1" x 1.7. Transmits to FM radio 88-108 MHz. Exceptional audio quality. Transmits stable signal up to 100 ft. Complete kit incl. trans. battery & instructions. Only $1.95. Assembled $18.95. Add $1.55 S&H w/ S&H 18c stamp for brochure.

FREE INFORMATION CARD

CIRCLE 66 ON FREE INFORMATION CARD

MUSICAL car horn 64 tunes. No chips to buy. Kit with case less horn. $31.95. Factory assembled with horn. $41.95. Add $2.50 shipping. ELECTRONIC SOUND, P.O. Box 401951, Garland, TX 75040

MICROWAVE television "downconverters" under $50.00. High quality, easily assembled. Catalog $2.00 (refundable) NDS, Box 12652-R, Dallas, TX 75225

PROJECTION TV. Convert your TV to project 7 foot picture. Results equal to $2,500 projector. Total cost less than $250.00. Plans & lens $16.00. Illustrated information free. Credit card orders 24 hrs. (800) 724-7310. MACROCOMGF Washington, DC 20077

COAXIAL CABLE SALE
POLYETHYLENE DIELECTRIC
RG-113/U non-conducting 19% shield $1.50 each
RG-114/U 95% shield 10c/ft.
RG-7/U 95% shield $2.00 each 100 ft.
RG-5/U 95% shield $2.50 each 100 ft.
RG-58/U 50% shield $4.00 each 100 ft.
RG-59/U 95% shield $4.50 each 100 ft.
RCK-50 25 pairs in a 27" insulator
Cable shipping $1.00 1st 100 ft. $0.02 each additional 100 ft.

CONNECTORS
PL-259 & SO-239 10 for $2.00
Reducer UT-15 or UT-17a 10 for $1.50
RS-25 29 ft to NMO 10 for $1.50
RS-25 29 ft to NMO Connector- shipping 10% add'l. $1.50 minimum

FREE CATALOG
COD add $1.50 - P.L.A. Res. add 4% Sales Tax

NEMAL ELECTRONICS
5685 SW 80th Street, Miami, FL 33143
Call (305) 661-5534

PCB, 15c sq-in. Free drilling. Satisfaction guaranteed. INTERNATIONAL ENTERPRISE, 5452 Hazel Circle, Simi Valley, CA 93063

PRINTED circuit boards from sketch or artwork. Kit projects. Free details. DANOCINThS INC., Box 261, Westland, MI 48185

112

www.americanradiohistory.com
There's no place like Radio Shack's Parts Place

No waiting! Huge selection! Top quality and value!

A SPDT DIP relay
5 VDC, 56-ohm coil, ideal for transistor projects and low-power switching. Contacts rated 1 amp at 125 VAC. For socket or PC board mounting. Just $0.47
275-216 2.99

B Mercury switch
Subminiature size, rated 100 milliamperes at 24 VDC. Great for anti-tamper alarms and position sensing. 275-02596c

C Lighted switch
SPST. Looks great in projects or vehicles. Red LED in handle glows when "on." Rated 5 amps. 12 VDC only. 275-6802.99

D DPDT knife switch
For model railroads, reversing polarity, antenna switching, and many other low-voltage uses. 275-153796c

E Six mini red lamps
Cute incandescents for model railroads, winker-blinkers boxes and more. 60 milliamperes at 6 volts. 5" leads. 272-1144 Pkg. of 6/99c

F "Helping Hands"
This sturdy, fully adjustable holder frees your hands for easier building and repair. Cast iron base, nickel-plated clamps. 64-20937.95

G 25-range VOM
Ready-to-use Micronta multimeter features a mirrored scale and 20,000 ohms per volt DC sensitivity. Measures 0 to 1200 volts DC in seven ranges, 0 to 1200 volts AC in five ranges. DC current, 0 to 250 milliamperes in four ranges. Resistance in four ranges. Decibels, 20 to +63 in five ranges. 5½" x 3½" x 1½". Requires "AA" battery. 22-20227.95

H IF amplifier
MC1350. Operates from DC to beyond 60 MHz. 6-pin DIP with specs. 276-17582.19

I Video detector
MC1330. Excellent linearity. Used in many late-model TV receivers. Separate video and AFT outputs. 6-pin with specs. 276-17572.49

K FM detector
MC1358/CA3005. IF amp, FM detector, audio driver in a 14-pin. 276-17591.79

L Ohm's law guide
Pocket slide rule solves Ohm's law and parallel resistance problems—a real timesaver for your workbench! 271-121149c
LOW TIM DC STEREO PRE-AMP KIT TA-10 20
Incorporates brand new D.C. design that gives a frequency response from 0Hz to 1000Hz ± 0.5dB. Added features like tone deaf control and loudness control. Built in your own frequency supplies to eliminate power fluctuations!
Specifications: ± T.H.I.D. less than 0.005% T.M.I. less than 0.005% Frequency response: DC to 1000Hz = 0.5dB ± RAA deviation: ± 0.5dB S/N ratio: better than 80dB Sensitivity: Phono 2MV/50K ohms/100V LEVEL: 0.1W output: level 1.5V Max. output: >10V Tone control: bass 50Hz @ 50 ohms treble: ±10dB @ 15kHz
Power supply: 110V/AC transformer included. Kit comes with regulated power supply, all you need is a 4KV C.T. transformer @ USA.
ONLY $44.50
Kit former: $4.50 ea.

100W CLASS A POWER AMP KIT
Dynamic Bias Class 'A' circuit design makes this unit unique in its class. Crystal class 100W power output will satisfy the most picky listeners. A perfect combination with the TA-1020 low T.I.M stereo pre-amp.
Specifications:
- Output power: 100W RMS into 8-ohm 125W RMS into 4-ohms
- Frequency response: 10Hz-100kHz
- T.H.I.D. less than 0.005%
- S/N ratio better than 80dB
- Input sensitivity
- Power supply: 41V @ 5amp
- One channel needs two for stereo

POWER TRANSFORMER
$51.95
Power transformer:
$24.00 each

50 WATTS AUTO STEREO BOOSTER BY VERTRONIX
Specifications:
- 50 watts RMS total (25W + 25W)
- Frequency Response: ± 0.5dB 20Hz-20kHz
- T.H.I.D. 0.2% at full rated output
- Input Impedance: 20k ohms
- Crossovers: Better than 90dB
- Sensitive: 1.5V for full rated output
- S/N Ratio: Greater than 95dB
- Speaker Load: 2 x 8 ohms
- Voltage Supply: 110VDC

Model V/Amp-500
REG. PRICE $119.00 EACH
OUR SPECIAL PRICE $55.00 EACH

“FISHER” 30 WATT STEREO AMP
MAIN AMP (15W x 2)
Kit includes 2 pcs. Fisher PA-301 Hybrid IC electronic parts with PC Board. Power supply: 12V DC (not included). Power band with (Kit 1 £ 2 £ 364). Voltage gain: 34dB. 20Hz-20kHz

5W AUDIO AMP KIT
2 LM 380 with Volume Control
Power Supply 6V 1.5A
ONLY $6.00 EACH

2 WATT AUDIO AMP
Pre assembled units. All you need is to hook up the speaker and the volume control. Supply voltage from 5v to 15v D.C. measures only 2 ½ x 3½”. making a good for portable discrete applications. Comes with hook up data.
BUY 2 FOR $4.99

1 WATT AUDIO AMP
All parts are pre-assembled on a mini PC board. Supply Voltage: 9V DC.
SPECIAL PRICE $1.95 ea.

NEW MARK III 9 STEPS 4 COLORS LED VU
Stereo level indicator kit with arc-shape display panel
This Mark III LED level indicator is a new design PCB board with an arc-shape display panel. 4-colors (range color from red, yellow, green and the peak output indicated by rose). The power range is very large from -30dB to +5dB. The Mark III indicator is applicable to 1-watt 20W amplifiers operating voltage is 3V-9V DC at max 500MA. The circuit uses 10 LEDs per channel. It is very easy to connect to the amplifier. Just hook up with the speaker output!

IN KIT FORM $18.50

MARK IV 15 STEPS LED POWER LEVEL INDICATOR KIT
This new stereo level indicator kit consists of 36-4-color LED (15 per channel) to indicate the level sound output of your amplifier from -30dB +5dB. Comes with a well-designed silk screen printed plastic panel and has a selector switch to allow floating or gradual output indicating. Power supply is 6-12V D.C. with THG on board input sensitivity controls. This unit can work with any amplifier from 1W to 200W.
Kit includes 70 pcs. diode transistors, 38 pcs. matched 4-color LED all other electronic components. PCB board and front panel.

MARK IV KIT $31.50

MARK V 15 STEPS LED POWER OUTPUTINDICATOR KIT
All functions similar to Mark IV kit but with heavy duty aluminum front plate and case. Can be easily slotted into the front panel of your auto truck or boat. Operates on 12V DC
Power supply: 12V D.C.

$41.50 EACH KIT

SOLID STATE STEREO GRAPHICAL EQUALIZER PRE-AMP KIT TA-2500
Specifications:
- Total Harmonic Distortion: Less than 0.05%
- Intermodulation Distortion: (70Hz-7kHz = 4.1SMPE Method) Less than 0.03%
- Frequency Response: Overall 10Hz ~ 100kHz +0.5dB -1dB
- RIAA Curve Deviation (Phono) +0.2dB, -0.2dB (30Hz ~ 15kHz)
- Channel separation (at rated output: 1kHz)
- Phono: Tuner, Aux and Tape Monitor better than 70dB
- Input sensitivity and impedance (1kHz rated output)
- Phono: 2MV 47K ohms Tuner: 130MV 50K ohms Tape: 130MV 50K ohms
- Graphic Equalizer control: 10 Band Slide Control
- Frequency Bands: 31.5Hz, 63Hz, 125Hz, 250Hz, 500Hz, 1kHz, 2kHz, 4kHz, 8kHz, 16kHz also with on panel selector for Phono, Tuner, Aux 1 and Aux 2
- Power Supply: 117V AC
- Kit comes with all electronic components, transformer, instructions and a 19" rack mount type metal cabinet.

MODEL TA-2500
$119.00 PER KIT

ELECTRONIC DUAL SPEAKER LED DISPLAY KIT
Cut off when circuit is shorts or over load to protect your ear and to keep your speaker. A must for OCL circuits.
KIT FORM $8.75 EA.

FORMULA INTERNATIONAL INC.
2/82
Send $1.00 4. Extra Detailed Catalogue

FORMULA INTERNATIONAL INC.
2/82
Send $1.00 4 Extra Detailed Catalogue

FORMULA INTERNATIONAL INC.
2/82
Send $1.00 4 Extra Detailed Catalogue

PROFESSIONAL REGULATED VARIABLE D.C. POWER SUPPLY KIT
All solid state circuitry with high efficiency power transistor 250388 and IC voltage regulator MC1733. Output voltage can be adjusted from 0-30V at 1 amp current limited or 0-15V at 2 amp current limited. Internal resistance is less than 0.005 ohm, ripple and noise less than 1% MV reading or panel meter for voltage and amp reading, also with on board LED and audible overload indicator. Kit comes with predrilled PC board, instructions, all necessary electronic components, transformer and a professional look metal cabinet. The best project for school and the most useful instrument for repairman. Build one today.
MODEL TR 88A 0 ~ 15V D.C. 2 amp
MODEL TR 885 0 ~ 30 DC 1 amp

$59.50 PER KIT

REGULATED DUAL VOLTAGE POWER SUPPLY KIT
$4 ~ 30V DC 800MA adjustable fully regulated by Fairchild 78MG and 79MG voltage regulator IC. Kit includes all electronic parts, filter capacitors, I.C. heat sinks and PC board.

$12.50 PER KIT

POWER SUPPLY KIT
$31.50
0-30V D.C. REGULATED
Uses UA723 and ZN3655 Power TR output can be adjusted from 0-30V, 2 AMP. Complete with PC board and all electronic parts. Transformer for Power Supply. 2 AMP 24V x 2 $9.50

$29.50 PER KIT
$10.50 EACH

TA-323 6 WATTS TOTAL
30W + 30W STEREO AMP KIT

* SPECIAL * EXCELLENT PRICE!

MODEL 001-0034
Transmitter (Optional)

This is a solid state all transistors circuitry on board stereo pre-amp for most microphone or phone input. Power output employs 2 pairs matching Darlington Transistors. Driven by the popular ZN3653 Driver Transistor. Four built on board controls for: volume, balance, treble and bass. Power supplies 48 VET 2.5 amp transformer. T.H.D. of less than 0.01% between 600 to 10KHz at full power. (30 Watts + 30 Watts loaded by 8-10)

MODEL SWM-33
OUR DIRECT IMPORT PRICE
$67.50

POCKET STEREO CASSETTE PLAYER WITH STEREO HEAD PHONE

This unit is a high fidelity stereo player which will give you years of lasting pleasure and follow you wherever you go. Made by the same company in Japan who use the “Big Name” in the US.
Complete set comes with 1 Stereo head phone, 3 AA size al kaline batteries, I leather like carrying case for player and 1 carrying case for storage of 4 cassette tapes and 1 demo tape.

MODEL SWM-33

$295.00 PER KIT
$10.50 EACH

CIRCLE 42 ON FREE INFORMATION CARD

www.americanradiohistory.com
Ideal pre-drilled 6C Tuner $125.00

We sell MC Trim boards complete with all parts ready to play. Requires Pots: $19.00 Caps Set $8.99 A band will make a perfect gift for yourself or friends. It is the most important part for these games. The modules are brand new and made by LITRONIX. Designed for a man's watch. Can be used for many applications. Comes with 2 silver batteries and the ceramic round sound transmission.

SANYO UHF VARACTOR TUNER

For UHF CH 14-83

Tuning voltage +11V+ -28V D.C. Input impedance 75 OHM I.F. band width 7+16 MHz. Noise figure (at 3.5 DB) MAX. Size 2" x 1 1/4" x 3/4". Supply voltage 15V D.C. Sound I.F. + 580 MHz. Video I.F. - 625 MHz.

All units are brand new from Sanyo. MODEL 115-B-405A $35.00 EACH

Tuner is the most important part for the circuit. Don't let those $19.00 tuners fool you!

TV GAME BOARD

PLAYS 4 GAMES. TENNIS, HOCKEY, HANDBALL AND JAI ALAI!

All boards complete with all parts ready to play. Requires 6C size batteries and a small speaker for sound effects. The boards were surplus from a famous game manufacturer. They will play on all US standard black and white or color TV sets. (Regular price for these games were $39.50 each)

OUR PRICE ONLY $6.00 EACH

TENNIS

JAI ALAI

PART #57456

HOCKEY

HANDBALL

ELECTRONIC PIN BALL MACHINE

That sounds and plays like the real thing. All units are brand new but without the case. Functions of the game include double flipper control, kicker control, 1-4 players, 3 speed ball control, tilt switch, automatic score, bonus mode, extra home and many more. All solid state with LED panel and no moving parts. Requires 9V battery to operate. Speaks not included.

A perfect gift for yourself or friends

SPECIAL $8.99 EACH SPEAKER $1.25 EACH

ELECTRONIC MUSICAL TELEPHONE TEST KIT

This telephone rest can be used as a door chime, an audible indicator and for many other sound projects. The special custom made I.C. is pre-programmed with 4 musical tones. Kit comes with a nice looking plastic case. It is pre-drilled P.C. board, volume control, speaker and all electronic components and instructions ideal for home or school projects.

BUY NOW!

SPECIAL PRICE! ONLY

$15.50 PER KIT

MODEL FH-3000

DIGITAL TIMER/CLOCK

• 24 Hour preset time to turn on or off
• 12 Hour green 0.5" dial for time
• Operated on 12V AC

The whole timer is self contained in a plastic case (as seen in photo). Designed for VTR with push button switch for easy setting. Limited quantity available.

NOW ONLY $12.94

MODEL VEQ 0143

SANYO ANTENNA SIGNAL BOOSTER

This Booster is specially designed for UHF Channels (14-83). After installed this unit (between the antenna input cable and the UHF tuner) will have a minimum of 100 gain, that is approximately 2 times better than what you are seeing now. Ideal for those who live in apartments that cannot put up outdoor antenna. Size is so small: only 2" x 1 1/4" x 1". Supply voltage 15 VDC

NEW ITEM

MODEL 001-0076

$12.50 EACH

13 FUNCTIONS LCD TIME MODULE

• Displays month, day and time of the week
• Shows hour: minute and seconds
• AM, PM Indicator
• Alarm 1 and Alarm 2 (Independently)
• 10 Hours Stop Watch
• 12 Hours presettable countdown
• Hour, Day Indicator
• Back light by touch of the switch

MODEL 001-0662

$7.94 EACH

These modules are brand new and made by LITRONIX. Designed for a man's watch. Can be used for many applications. Comes with 2 silver batteries and the ceramic round sound transmission.

MATCHED PAIR POWER TRANSISTORS

BY MOTOROLA

MJE2955 PNP 150 Watts BV=60 V $3.50

2N3055 NPN 15V IC = 15 A per pair

MJE2955PFPN90 Watts BV=60 V $3.00

J5503 NPN 50 Watts BV=140 V $12.00

JN15004 NPN 50 Watts BV=140 V $12.00

All above parts are guaranteed to prime and come with data sheets.

MUFFIN FANS FOR EQUIPMENT COOLING

These fans were pulled out from used computers. But carefully cleaned by ultrasonic cleaner for use in "like-new" condition. Size 4 11/16" x 1 1/2" x 4 11/16". MODEL M5050

$9.50 EACH

FLUORESCENT LIGHT DRIVER KIT

12V DC POWERED Lights up 8+15 Watt Fluorescent Light Tubes. Ideal for camper, outdoor, auto or boat. Kit includes high voltage coil, power transistor, heat sink, all other electronic parts and P.C. Board. Light bulb not included. $6.50 Per Kit

PRESS-A-LIGHT SELF GENERATED FLASHLIGHT

Never worry about battery, EXCLUSIVE $3.95 ea.

It generates its own electricity by squeezing grip lever. Put one in your car, boat, camper or anywhere. You may need it some time!

Model F-179

CIRCLE 42 ON FREE INFORMATION CARD

CRYSTAL CONTROLLED WIRELESS MICROPHONE SYSTEM

Transmitter: FET mic for flat 30 MHz 140 MHz response extra controlled 49 MHz AM Band for drift-free performance. 150 NW output (range approx. 1/4 mile) for reliable long range transmission. Powered by a 9V radio battery (included).

Receiver: Extra controlled locks on 49 MHz transmitter signal. With on push button VU meter monitors the signal strength from the microphone. Standard jack will make a connection to A.P.A. or other phone input. 9V battery included. This professional set is ideal for on stage, in field, church, in house or outdoor use.

SUPER FM WIRELESS MIC KIT-

MARK III

This new designed circuit uses high FEQ, FET transistors with 2 stages pre amp. Transmits FM Range (88-120 MHz) up to 2 blocks away and with the ultra sensitive condenser microphone that comes with the set allows you to pick up any sound within 15 ft. Kit includes all electronics, PC board, cord, and P.C. Board. Power supply 9V D.C.

FMC-105

$11.50 PER KIT

WEM-36 FM WIRELESS MICROPHONE

TEET MODEL WEM-36 is a facrory assembled FM wireless microphone powered by two AA size batteries. Transmits in the range of 88-108 MHz with 3 transistor circuits to meet with F.C.C. part 15 regulations. Element is built in a plastic tube type case with an omnidirectional electret condenser microphone unit. By using a standard FM radio signal, can be heard anywhere on a one-are lot. Sound quality was judged "very good".

MODEL WEM-36

$16.50 EACH

WHISTLE ACTIVATED SWITCH BOARD

All boards are pre-assembled and tested. Your whistle to its FET condenser microphone from a distance, as far as 30 feet away (sensitivity can be easily adjusted) will turn the switch on or off. This whistle to the system or unit works very well and will cut out for ideal for remote control of lights, electrical appliance such as lights, coffee pots. TV, Hi-fi radio or other projects. Unit works on 9V D.C.

MODEL 968

$4.50 EACH

ULTRASONIC SWITCH KIT

Kit includes the Ultra Sonic Transducers. 2 PC Boards for transmitter and receiver. All electronic parts and instructions. Easy to build and a lot of uses such as a remote control for TV, garage door, alarm system or counter. Unit operates by 9-12V DC.

$15.50

CIRCLE 43 ON FREE INFORMATION CARD

FORMULA INTERNATIONAL INC.

2/82

Formaldehyde based anaerobic adhesives for Immediate Bonding. No Viscous No Curing! Best Molding, Tooling, Sealing, Custom Molds & Custom Work. Orders over $50 to California are pre-tax! By Credit Card, Phone, Telewire, Mail, Fax, or E-mail. Inquire about our special prices on large orders or for custom projects. Please provide specifications and quantity.

FAX (916) 925-0666

1263 CRENSHAW BLVD. HAWTHORNE, CA 90250

Phone (213) 973-1925 • (213) 679-5162

CIRCLE 42 ON FREE INFORMATION CARD

FEBRUARY 1982

115

www.americanradiohistory.com
Components Express, Inc.

"Have you kissed your computer lately?"

1380 E. Edinger, Unit CC Santa Ana CA 92705 (714) 558-3972

BROAD BAND MICROWAVE RECEPTOR SYSTEM

1.8GHz to 2.4 GHz

only $295.

With built-in converter to channel 2, 3, or 4 of any standard TV set.

- 24" Dish
- Fixed-From Receiver
- Mounting Bracket
- Mounting Clamp
- 300 Ohm to 75 Ohm Adapter
- 750 Ohm to 300 Ohm Adaptor
- 60 Feet Coax Cable with Connectors
- 3 Feet Coax Cable with Connectors

PHONE 12:00 **ALARM**

DON'T FORGET

ADD CURVE-Plotting to your ohmmeter (VOM, TVM, VTVM). Simple mod. Details. $3.50. HOCOLO LAB., PO Box 176, Waltham, MA 02254

30 tune melody microprocessor $6.95 ea. for $25.00 ea. or $5.50 ea. Add $1.50 shipping. Specs only. 50c: SJR INTERNATIONAL CORP., 1936 Hillman Ave., Belmont CA 94002

ELECTRONIC ORGAN KITS

3-4 Manuals
- THEATER and CLASSICAL
- IRON-CLAD and OPERA

Wurlitzer reproductions.
- Refundable Parts Manual $2.00. Catalog $1.50.
- DEVTROX ORGANS, INC., Dept. 60
- 6010 WAREHOUSE WAY, SACRAMENTO, CA 95826

BURGLAR alarm: home or auto. Optically sensed, no switches. Electronic police type siren. Schematic $4.50. THIE'S ENTERPRISES, 29 Ivy Ct., Maple Shade, NJ 08052

WRITE FOR McGEE'S

SPEAKER & ELECTRONICS CATALOG

1001 BARGAINS IN SPEAKERS

Tel: 1 (816) 842-5092

1901 Mcgee Street Kansas City, MO. 64102

SUPER class-A preamp. 120W power amp and many other high-power audio kits. Free flyer, Florida agent wanted. AUDIOVISION, 578 Marlee Ave., Toronto, Canada M6B 3J5

CABLE TV converters and equipment. Plans and parts. Build or buy. For information send $2.00. C & D ELECTRONICS, PO Box 21, Jenison, MI 49428

CASSETTES/REEL-TO-REEL TAPES

OPEN reel tape—mostly Ampex, used once, unspliced, unboxed, 1800' 50 reeis. P66.00. Sample: $2.00, 3600' 10 reels; $25.00. Sample: $2.50. New, premium C-60 cassettes: sample: $1.00. AUDIO TAPES, BOX 9584-G, Alexandria, VA 22304

PROFESSIONAL MUSIC SYNTHESIZER PLANS

This manual contains complete plans and schematics for 5 professional synthesizers. Included are a polyphonic, monophonic, 2 voice duophonic, 4 voice duophonic and 4 bass synthesizer. Additional circuitry like glide, noise, LFD's, etc., is also included. Send $15 to SYNTEX, 702 117th Pl. SW, Everett, WA 98204

COMPUTER SOFTWARE

HP-41C Software. Electronics, engineering, business applications. Free information. SOFTWARE SPECIALISTS, INC., Dept. RE/1, Box 329. Springboro, OH 45066

SAMS SCHEMATICS

PHOTOFACTS for televisions. Complete set through number 1941 with 6 heavy-duty cabinets all in excellent condition. Only $2,300.00 but hurry: they won't last long at this price. Call collect 503/389-4157

American Heart Association

WE'RE FIGHTING FOR YOUR LIFE

SAVE TIME AND MONEY!

6100 UNIVERSAL DESIGNER

- Easy transition from prototype to wiring diagrams
- Auto digital circuitry
- Save on digital breadboards

SAVE 10.43

$29.95
towards
kits

SELF-TEACHING AID:

6101 DIGITAL LOGIC COURSE $29.95

- Learn digital logic with 26 self-teaching experiments.

0101 SOLID STATE CLOCK/CALENDAR UNIT

BIG 2¼" DISPLAY!

- 12/24 hour selectable
- Alarm output
- Kit $49.95
- Assembled $79.95
- Oak Case $29.95

NEW! JUMPER WIRE DESIGN ASST.

Contains 350 wires cut to 14 different lengths. To fit breadboards and modules. Pre-cut, pre-formed and individually color-coded. All wire sold tinned, 22 gauge with PVC insulation. Packed in convenient, sectioned box. $9.95

Satisfaction Guaranteed on All Assembled Units

ETRONIX

13803 N. E. 40th. Rd.
Redmond, WA 98052

NAME
ADDRESS
CITY, ST, ZIP
CARD NO.
EXP.
SIGNATURE
FOR FAST DELIVERY CALL FREE TOLL-FREE
1-800-426-1044

CB RADIO

GET more CB channels and range! Frequency expanders, boosters, speech processors, how-to books, plans, modifications. Catalog $2. CB CITY, Box 31500PFE, Phoenix, AZ 85046

LIVE VIA SATELLITE

- DISH ANTENNA & PRE-AMPLIFIER $399
- RECEIVER
- NO COMPLETE RECEIVING SYSTEM

Our book takes the mystery out of the sophisticated technology of satellite transmission and reception. This volume represents all the essential knowledge made easy to understand, and will show you how easy it is to have a 90 channel reception system so that you can enjoy first run movies, foreign films, live Vegas entertainment, live sports, and much more. Everything being telecast in the world could be yours at a twist of a knob!

LIVE VIA SATELLITE, INC.

P.O. Box 2567, Dept. RE-2, Delray Beach, Fl. 33444

Send $9.95 plus $2.50 shipping & handling or call our 24 hr. C.O.D. order line 405-885-8447

DON'T FORGET

ADD CURVE-Plotting to your ohmmeter (VOM, TVM, VTVM). Simple mod. Details. $3.50. HOCOLO LAB., PO Box 176, Waltham, MA 02254

30 tune melody microprocessor $6.95 ea. for $25.00 ea. or $5.50 ea. Add $1.50 shipping. Specs only. 50c: SJR INTERNATIONAL CORP., 1936 Hillman Ave., Belmont CA 94002

ELECTRONIC ORGAN KITS

3-4 Manuals
- THEATER and CLASSICAL
- IRON-CLAD and OPERA

Wurlitzer reproductions.
- Refundable Parts Manual $2.00. Catalog $1.50.
- DEVTROX ORGANS, INC., Dept. 60
- 6010 WAREHOUSE WAY, SACRAMENTO, CA 95826

BURGLAR alarm: home or auto. Optically sensed, no switches. Electronic police type siren. Schematic $4.50. THIE'S ENTERPRISES, 29 Ivy Ct., Maple Shade, NJ 08052

WRITE FOR McGEE'S

SPEAKER & ELECTRONICS CATALOG

1001 BARGAINS IN SPEAKERS

Tel: 1 (816) 842-5092

1901 Mcgee Street Kansas City, MO. 64102

SUPER class-A preamp. 120W power amp and many other high-power audio kits. Free flyer, Florida agent wanted. AUDIOVISION, 578 Marlee Ave., Toronto, Canada M6B 3J5

CABLE TV converters and equipment. Plans and parts. Build or buy. For information send $2.00. C & D ELECTRONICS, PO Box 21, Jenison, MI 49428

CASSETTES/REEL-TO-REEL TAPES

OPEN reel tape—mostly Ampex, used once, unspliced, unboxed, 1800' 50 reeis. P66.00. Sample: $2.00, 3600' 10 reels; $25.00. Sample: $2.50. New, premium C-60 cassettes: sample: $1.00. AUDIO TAPES, BOX 9584-G, Alexandria, VA 22304

PROFESSIONAL MUSIC SYNTHESIZER PLANS

This manual contains complete plans and schematics for 5 professional synthesizers. Included are a polyphonic, monophonic, 2 voice duophonic, 4 voice duophonic and a bass synthesizer. Additional circuitry like glide, noise, LFD's, etc., is also included. Send $15 to SYNTEX, 702 117th Pl. SW, Everett, WA 98204

COMPUTER SOFTWARE

HP-41C Software. Electronics, engineering, business applications. Free information. SOFTWARE SPECIALISTS, INC., Dept. RE/1, Box 329. Springboro, OH 45066

SAMS SCHEMATICS

PHOTOFACTS for televisions. Complete set through number 1941 with 6 heavy-duty cabinets all in excellent condition. Only $2,300.00 but hurry: they won't last long at this price. Call collect 503/389-4157

American Heart Association

WE'RE FIGHTING FOR YOUR LIFE
Microprocessor Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC64491AB</td>
<td>8-bit Microcomputer System Unit (MCUS)</td>
</tr>
<tr>
<td>MC64491C</td>
<td>8-bit Microcomputer System Unit (MCUS)</td>
</tr>
<tr>
<td>MC64491D</td>
<td>8-bit Microcomputer System Unit (MCUS)</td>
</tr>
<tr>
<td>MC64491E</td>
<td>8-bit Microcomputer System Unit (MCUS)</td>
</tr>
<tr>
<td>MC64491F</td>
<td>8-bit Microcomputer System Unit (MCUS)</td>
</tr>
</tbody>
</table>

Data Acquisition

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC1000</td>
<td>10-bit Analog-to-Digital Converter</td>
</tr>
<tr>
<td>ADC1100</td>
<td>10-bit Analog-to-Digital Converter</td>
</tr>
<tr>
<td>ADC1200</td>
<td>10-bit Analog-to-Digital Converter</td>
</tr>
<tr>
<td>ADC1300</td>
<td>10-bit Analog-to-Digital Converter</td>
</tr>
<tr>
<td>ADC1400</td>
<td>10-bit Analog-to-Digital Converter</td>
</tr>
</tbody>
</table>

Features

- **Input/Output**
 - 8-bit data input/output
 - 8-bit address input/output
 - 16-bit data input/output

- **Control**
 - 8-bit control input/output
 - 16-bit control input/output

- **Address**
 - 8-bit address input/output
 - 16-bit address input/output

- **Control**
 - 8-bit control input/output
 - 16-bit control input/output

- **Register**
 - 8-bit register input/output
 - 16-bit register input/output

- **Data**
 - 8-bit data input/output
 - 16-bit data input/output

- **Address**
 - 8-bit address input/output
 - 16-bit address input/output

- **Register**
 - 8-bit register input/output
 - 16-bit register input/output

- **Data**
 - 8-bit data input/output
 - 16-bit data input/output

- **Address**
 - 8-bit address input/output
 - 16-bit address input/output

- **Register**
 - 8-bit register input/output
 - 16-bit register input/output

- **Data**
 - 8-bit data input/output
 - 16-bit data input/output

- **Address**
 - 8-bit address input/output
 - 16-bit address input/output

- **Register**
 - 8-bit register input/output
 - 16-bit register input/output

- **Data**
 - 8-bit data input/output
 - 16-bit data input/output

- **Address**
 - 8-bit address input/output
 - 16-bit address input/output

- **Register**
 - 8-bit register input/output
 - 16-bit register input/output

- **Data**
 - 8-bit data input/output
 - 16-bit data input/output

Specifications

- **Power Supply**
 - 5V DC

- **Throughput**
 - 10 MHz

- **Pin Count**
 - 40 pins

- **IC Type**
 - CMOS

Applications

- **Industrial Control**
- **Consumer Electronics**
- **Medical Equipment**
- **Telecommunications**
- **Automotive**

Ordering Information

- **Part Number**
 - MC64491AB
 - MC64491C
 - MC64491D
 - MC64491E
 - MC64491F

Contact Information

- **Phone**
 - (415) 592-8007

Website

- www.americanradiohistory.com
BULLETION KIT

Sound Effects Kit $18.50

The Bullet is a complete line of reproduction speakers. The new Bullet features the latest in sound reproduction. Dressed in a rugged, die-cast aluminum housing, the Bullet is designed for use in a variety of applications. It is also available in a 10" model. The Bullet offers a flexible, versatile audio system that can be used in a number of ways. For more information, please contact us today.

SEE SPECIAL WINTER PRICES BELOW

The Super Music Minit Kit

Model number: 22-04

Cost: $24.95

Description: This kit is designed for the home enthusiast who wants to build their own audio system. It includes all necessary components for a complete stereo system. The kit is simple to assemble and includes detailed instructions. The Super Music Minit Kit is perfect for anyone looking to build their own audio system.

7 Watt Audio Amp Kit $6.95

Small, single hybrid IC and components kit on a 2 x 2 PC board included. Runs on 9 volts. Great for any project that needs a inexpensive amp. Less than 3% THD, 3 watts. Compatible with SE 801 sound kit.

Doomsday Alarm Kit $9.95

If you have trouble sleeping and you would like the rest of the neighborhood to share your misery then this little kit will be for you. This system contains a non-magnetic, perfect for the neighborhood, alarm clock. The alarm is settable and cancelled at any time. 10 watts of crazy sounds. A great fun kit or a practical burglar deterrent. Comes with all necessary parts.

FUJITECH AUDIO KITS

LATEST AUDIO TECHNOLOGY FROM JAPAN

Model A501 Power Amp

- Pure Class A 25W + 25W
- Switchable to Class AB 100W + 100W
- Switchable to Bridge Class A 100W mono
- Switchable to Bridge Class AB 300W mono
- Frequency Response 5-200kHz (-1dB)
- Signal-to-Noise Ratio 120dB

Model A502 DC Stereo Control Center

- Direct DC coupling from Input to Output
- DC servo circuitry
- Cascade FET Input in all stages
- Separate Moving Coil RIAA amplifier
- Distortion below 0.005% (3W)
- Maximum Output 15V
- Frequency Response 20Hz-20kHz 7.02 dB
- Maximum Phono Input MC = 16mV RMS (1kHz)
- MM = 270mV RMS (1kHz)
- Built-in Headphone amplifier
- Relay Output Muting

Model A013 Integrated Tube Amplifier

- Latest Japanese Design
- Distortionless Output Transformer using special winding techniques
- Most circuitry on PCB for easy assembly and humidfree performance
- Output 30W x 2 Ultra Linear
- 15W x 2 Triode Output (near class A performance)

THD under 0.4%

- Frequency Response 30-30,000 Hz (-1dB)
- Separate Pre-Out and Mute-In

KIT ONLY $499.00

Send $5.00 for each assembly manual, refundable with order.

- Monarchy Engineering, Inc.
 380 Swift Avenue, Unit 21
 South San Francisco, CA 94080

Visa or Mastercharge acceptable.
Special

2SC1308K 2SC1308K 2SC1308K

POPULAR HORIZONTAL OUTPUT TRANSISTOR

$2.60 (10-99)
$2.29 (100-up)

1500V 7A 50W—This original Sanyo transistor replaces most horizontal outputs in the market today.

ERS

Exact Replacement Semiconductors. Now for a limited time you can take advantage of quality replacement semiconductors at a special introductory price. Sale ends April 1, 1982. Minimum order 10 pieces.

ERS 123A ... 28¢
ERS 128 ... 95¢
ERS 129 ... 90¢
ERS 154 ... 1.29
ERS 162 ... 3.90
ERS 163A ... 3.90
ERS 165 ... 2.40
ERS 238 ... 3.40
ERS 283 ... 3.90
ERS 712 ... 1.50

ERS

The Professionals Choice. Why pay more for others when you can get **QUALITY** replacement semiconductors **DIRECTLY** from MCM? Each ERS semiconductor is backed by a **TWO** year warranty.

mcm distributes ERS semiconductors as well as thousands of electronic parts you use everyday—at prices that are too low to pass up. □ Japanese and American semiconductor listings by the hundreds! □ CATV Supplies □ Chemicals and solvents for the technician □ Replacement and original speakers for hi-fi and musical instrument reproduction □ Ceramic and magnetic replacement cartridges □ Connectors □ High Voltage Triplers □ Test Equipment □ Video and Audio Replacement Heads.

Call **MCM** toll-free to place your order and ask for our latest catalog.

CALL OUR TOLL-FREE LINES TODAY FOR IMMEDIATE DELIVERY!

1-800-762-4315
Ohio Watts Line

1-800-543-4330
National Watts Line

858 Congress Park Drive, Centerville, Ohio 45459
Business Office 1-513-434-0031

CIRCLE 52 ON FREE INFORMATION CARD
VIDEO
36 Channel Up Converter for TV & VTR
- cable VHF to UHF
1-3 pieces
$29.95 ea.
4 pieces & up
$24.95 ea.
Model V5735
- Allows complete program viewing of VTR without VCR.
- Watch or record any combination of standard or Pay-TV programs.
- Includes Midband and Superband channels on UHF.
For Beta/VHS type recorders.
BRUCE 37- Channel Wireless Remote Control
TV Tuner
Commander 500
1-5 pcs.
$109.95 ea.
6 pcs. & up
$99.95 ea.
Reg. $199.95
- For all channels, for all TVs.
- Red LED channel readout 1-99.
- Master power switch and fine tune controls on remote O.Easy to install.
- Scan channels up and down.

TEKNIKA Wireless Remote Control TV Tuner
$109.95 ea.
Reg. $169.95
Model 6301
- Easy to install; just 4 wires.
- Electronic channel selection and indication. VHF: 2-12, UHF: 14-83.
- Ultra-Infrared Beam Control.
- Master power switch.

Video Control Center
Model VTS-157
$59.95
- No need to change cable to access input to TV set.
- One output, 4 inputs.
- No AC power required to operate.
- Auxiliary input and output.

CATV 30-Channel Remote Control
Model RSC-6C
$79.95
- Consists of 2 units: remote control channel selector with fine tuning, ON/OFF switch, and converter body.

TV Accessories
7002 2 Set VHF AM Amplifier...$9.95 ea.
7004 4 Set VHF/FM Amplifier...$12.95 ea.
Coax Accessories
DSC-A/B CATV/MATV Switch...$9.90 ea.

AMAZING DEVICES
PHASORS/SKUNKWAVE
- PPP-1: PHASOR PAIN FIELD GENERATOR - Is being tested by Sev for toy control. Sev came under unexpected circumstances in an interior fringe. Last effects were quite periodic - Use with discretion. SOLD FOR ANIMAL CONTROL.
PPP-2: $35.00
- IPG-1: INVISIBLE PAIN FIELD GENERATOR - Produces directional field of moderately intense sound pressure level of about 45 dB at 20 ft. Caution: avoids contacts.
IPG-2: $79.95
- WWG-1: HIGH POWERED TELESCOPIC GUN - Produces directional field(less than 3000 watts of sound energy at 20 ft). Hand-held, intended for tea use.
WWG-2: $109.95
- PARTICLE BEAM WEAPON
- PLANS...$15.00
- LCP-1: LOW-POWERED RED NON-HAZARDOUS OPTICAL BOMB
- PLANS...$7.00
- LF-1: PHOTOLUMINESCENCE LASER, PISTOL, AND RIFLE COMBINATION - 7-24 watts of sound energy.
LF-2: $30.00
- LG-1: HIGH POWERED RED LASER GUN for holography. Special effects, cloud control...
LG-2: $8.00
- LG-3: $10.00
- LC-1: BURNING/OUTGUARD ROD - 40 watts continuous.
LC-2: $15.00
- WC-1: WELDING/RUBRY LASER, internal ret.
WC-2: $15.00
- WPS-1: HIGH POWERED PORTABLE ENERGY SOURCE FOR LASERS & MAGNETIC WEAPONS exposing wires, stick models, etc.
WPS-2: $10.00
- WPS-3: $15.00
- SECUTY/PERSONAL PROTECTION
- INF-1: INFINITY TRANSMITTER - Transmits fine text for selective names or offensive itemizing while aboard or at dentication.
INF-1: $10.00
- SD-1: SEE IN THE DARK, Device. Longer range, SD-2. PLANS...$10.00
- VPM-5: WIRELESS TELEPHONE TRANSMITTER - Long range.
VPM-5: $10.00
- VWP-5: $25.00
- TF-1: WIRELESS MICROPHONE - Transmits a...pack,
TF-1: $7.00
- FBT-1: $7.00
- MACT-1: TELEPHONE TRACKING AND RAISING DEVICE
MOD-1: $10.00
- MAD-1: $7.00
- MAD-2: $10.00
- MAD-3: $12.00
- TAM-1: TALK AND FIELD 控制器 configuration...
TAM-1: $5.00
- TAT-1: $2.00
- TAT-2: $5.00
- TAT-3: $10.00
- TAT-4: $15.00
- PRASHN COOK MAN... Prolongs energy capable of burning flesh...
PRASH-2: $10.00
- PRASH-3: $15.00
- PRASH-4: $20.00
- PRASH-5: $25.00
- PRASH-6: $30.00
- PRASH-7: $40.00
- Send for new catalog descriptions of above items, kits, parts, also hundreds...will we accept. Master Charge and VISA on your order.

MANUFACTURERS OF QUALITY ELECTRONIC COMPONENTS
- Cable Sets, Connectors, Capacitors, Displays, LED Fuses, Jacks & Plugs, Knobs, Lamps, Potentiometers, Resistors, Switches, Semiconductors, Speakers, Test Equipment Transformers, Tools

FORDHAM
555 Conklin St. Farmingdale, N.Y. 11735
- Master Charge
- BankAmericard
- VISA + COD
- Money Order
- Check
- N.Y. State residents add appropriate sales tax
Minimum order $25.00
- Toll Free (800) 645-9518

Mouser Electronics
14433 Woodside Ave., San Jose, CA 95070
P/N: 4222-2922 T: 910-331-1115

MITSUMI VACARATOR
UHF Tuner
Model UES-065F
$34.95
Freq. Range: UHF470 - 1500 MHz
Antenna Input 75 ohms
Cables: 14-3x Output Channel 3

SIMPLE SIMON ELECTRONIC KITS, Inc.
7 + 11 SWD PARTS KITS

UYessen
VHF-UHF WIDEBAND ANTENNA AMPLIFIER
MODEL ALL-1
- 50 MHz - 900 MHz
- 12 dB GAIN ± 0.5 db
- A Revolution! New One Stage HYBRID IC Broadband Amplifier

This unit is not available anywhere else in the world. One unit serves many purposes and is available in Kit or Assembled form, ideal for outdoor or indoor use. Input-output impedances is 75 ohms. Amplifier includes separate coax feed power supply. Easily assembled in 26 minutes. No coils, capacitors etc. to tune or adjust.
- ALL-1: Complete Kit plus Power Supply...$24.95
- ALL-1: Assembled/Tested plus Power Supply...$34.95

INTRODUCING OUR NEW
14 ELEMENT — 14.5 dB GAIN
YAGI ANTENNA

STRA-3 Yagi-Antenna, 14.5 dB, 75 ohm, Chan. 50-68...$19.95
STRA-4 Yagi-Antenna, 14.5 dB, 75 ohm, Chan. 64-12...$19.95
STRA-1 Yagi-Antenna, 11.5 dB, 75 ohm, Chan. 42-64...$19.95
STRA-2 Yagi-Antenna, 11.5 dB, 75 ohm, Chan. 26-64...$19.95
STRA-5 Yagi-Antenna, 7.95 dB, 75 ohm, Chan. 64-12...$19.95

RJ-RF-11 75 ohm Low Loss Coax Cable...$12.95
RF-PL Special VHF 75-200 mm Matching Transformer, etc...$1.95
ALL-1 HYBRID-IC Wideband UHF-IF-AM Amplifier...$28.95
ALL-1 HYBRID-IC Wideband UHF-IF-AM Amplifier...$34.95

Mail Order Only - Send Check or Money Order To:
SIMPLE SIMON ELECTRONIC KITS
Calif. Orders: 3871 S. Valley View, Suite 12, Las Vegas, Nevada 89103 Tel: (702) 866-3134
All Other Orders: 11650 S. Hawthorne Blvd., Hawthorne, Calif. 90250 Tel: (310) 996-0001
Minimum Order $19.95. Add 10% Shipping and Handling. For Orders over $100.00. Add 5% Sales Tax. Catalog $1.00.
- VISA and Mastercard Acceptable.

www.americanradiohistory.com
JE215 Adjustable Dual Power Supply

General Description: The JE215 is a Dual Power Supply with independent adjustable positive and negative output voltages. A separate adjustment for each of the supplies provides applications for IC current voltage requirements. The supply can also be used as a general all-purpose variable power supply.

Features:
- Adjustable regulated power supplies, positive and negative DC voltages from 12V to 15VDC.
- Power output: up to 5VDC, 100mA.
- 5VDC output at 0.5A.
- 10VDC output at 0.1A.
- Two, 3-terminal IC regulators with internal fuse protection.
- Heat sink regulator for improved heat dissipation.
- Printed Board Construction.
- Dual 5-15VDC output.

JE215 Adj. Dual Power Supply Kit (as shown) $24.95

JE210 Var. Pwr. Spak. Kit, 5-15VDC, 1.5amp $19.95

Desk Top Enclosures

CONNECTORS

LINEAR

LM301N 0.59 LM7805T 1.75
LM431C 0.75 LM7812T 1.75
LM307N 0.75 LM7815T 1.75
LM308N 1.19 LM380N 1.49
LM309N 2.25 LM348N 2.25
LM310N 2.63 LM356N 2.63
LM311T 1.39 LM357N 1.39
LM312K 0.59 LM357N 0.59
LM313T 1.75 LM348N 1.75
LM314T 1.75 LM315T 1.75
LM317T 1.75 LM318N 1.75
LM319T 1.75 LM319N 1.75
LM323K 0.59 LM348N 0.59
LM324N 1.29 LM348N 1.29
LM329N 1.39 LM348N 1.39
LM330N 0.59 LM348N 0.59
LM331T 1.75 LM321T 1.75
LM332T 1.75 LM322T 1.75
LM337T 1.75 LM323T 1.75
LM338N 1.29 LM324N 1.29
LM339N 1.39 LM325N 1.39

JE305 $39.95
Audiophile & Professional 2 CH. 1/3 Octave Equalizers. Unique Linear Mirror Image Circuitry. Totally eliminates snap-on. Generates a TRUE +15dB Boost and Cut on EVERY BAND without band to band phase cancellation or rainbow effect.

- Super Low Noise J-Fets ON ALL BANDS. - Regulated Power Supply
- Slew Rate: 13 Volts per microsecond - Built-in Record Switching. No need to re-patch.

And as always with Aaron-Gavin Instruments, Lowest Noise, Lowest distortion and Great-All PROFESSIONAL Quality.

GRAPHIC EQUALIZERS

<table>
<thead>
<tr>
<th>Description</th>
<th>Kit</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 Band Mono EQ</td>
<td>1279 56</td>
<td>1044 54</td>
</tr>
<tr>
<td>31 Band Stereo EQ</td>
<td>1279 05</td>
<td>1042 53</td>
</tr>
<tr>
<td>21 Band Mono EQ</td>
<td>1279 02</td>
<td>1042 03</td>
</tr>
<tr>
<td>21 Band Stereo EQ</td>
<td>1279 02</td>
<td>1042 03</td>
</tr>
<tr>
<td>11 Band Mono EQ</td>
<td>1042 00</td>
<td>1038 00</td>
</tr>
<tr>
<td>11 Band Stereo EQ</td>
<td>1041 94</td>
<td>1038 00</td>
</tr>
<tr>
<td>5 Band Mono EQ</td>
<td>1039 50</td>
<td>1048 80</td>
</tr>
<tr>
<td>5 Band Stereo EQ</td>
<td>1049 14</td>
<td>1058 27</td>
</tr>
</tbody>
</table>

DOT or BAR Pattern, 3 position range switch.

Order with this Coupon or send for product specifications.

Check box for the item of your choice send check, money order, COD or Visa. Master Charge. Your card number: ___________ Exp. date: ___________

Add 97.00 for shipping and handling. Check Free, Range: 1961-1962. 20Hz-20KHz.

Check style: Rock Mount! Flat Cabinet! Upright Cabinet.

NAME

ADDRESS

CITY STATE ZIP

Aaron-Gavin, 1901 E. Dede St., Dept. 18, San Diego, CA 92705. Phone: (714) 697-870

CIRCLE 58 ON FREE INFORMATION CARD

About Discussed Items withAaron-Gavin Equilizers, Mixers, LED Meters

COMPAR! 31 BANDS

Fall & Winter '81 — TEST EQUIPMENT

Electronic Component Catalog

We carry the Following:

- **TEST EQUIPMENT**
 - B & K
 - LEADER
 - VIZ
 - BECKMAN
 - HITACHI
 - GLOBAL SPECIALTIES
 - DATA PRECISION
 - HICKOK

ELECTRONIC COMPONENTS

- **JAPANESE & MOTOROLA Transistors**
- **IC's, FET, Diodes**
- **Capacitors**
- **Resistors**
- **Connectors, Cables**

TOOLS

- Weller, Uniw, Xcellile, Vacoc, etc.

- Over 10 million components in stock to serve you
- Over 20,000 sq. ft. of warehouse in the East & West
- NO MINIMUM ORDER!

FUJI-SVEA ®

CALL TOLL FREE

800-421-2841

Local: 513-874-0220
Telex: 182 392

DYNAMIC RAMS

4K x 1 300 ns
D2104A 16 Pin
TMS 4096 22 Pin
95¢

PROM

Harris PROM
512 x 8 V/OC
24 Pin
$1.75

UART

COM 3200 25kHz
40 Pin
5 + 12
$1.45

COMPUTER GRADE CAPS

- 5,200 MFD 25VDC
- 11,000 MFD 35VDC
- 22,000 MFD 25VDC

DATA Cassettes

- Made for Datapoint
- Made by Maxell
- 90 min. with case
- 3 screw high strength shell

ALTEX ELECTRONICS

618 W. Sunset
San Antonio, Texas
78216
In Texas Call (512) 828-0503

1-800-531-5369

CIRCLE 59 ON FREE INFORMATION CARD
$24.95 TRS-80/APPLE $24.95
MEMORY EXPANSION KITS 416, 16K (200/250 ms)
8 pins for $2.50 Specify Computer
Specify Comput
DIRECT FROM TOMAR: THE RIGHT DMM AT THE RIGHT PRICE.

$49.95 kit
$54.95 assembled & tested

Four function: D.C/AC, ACV, Ohm & D.CmA. Battery powered for field or laboratory. All functions protected against overload. Excellent resolution in all modes. Factory direct. By eliminating the middle man, Tomar is able to offer the DMM813 digital multimeter at these remarkably low prices. Satisfaction is guaranteed by a 30-day money back offer.

Ordering. Send your check or money order ($49.95 for a complete kit, $54.95 for the DMM813 assembled and tested) to Tomar, Ltd. Allow 30 days for delivery. Add 6% tax for delivery in California.

TOMAR, LTD.
6322 Mojave Drive
San Jose, CA 95126

CIRCLE 62 ON FREE INFORMATION CARD

A 10 HOUR TAPE RECORDER
NOW only $9500*

Modified Panasonic Slimline, high quality AD-DC Recorder produces 5 continuous hrs. of recording at playback level of top quality tape on each side of cassette for a total of 10 hrs. Build in is included. Voice level control, & tape stop. Digital counter, etc. Included.

PHONE RECORDING ADAPTER
Records calls automatically. All Solid state. 99% retained. Adjustable volume. Automatic activation & control. All remote mike. $24.50*.

VOX ACTIVATED CONTROL SWITCH

COMPONENTS

CONCORD COMPUTER PRODUCTS

1971 SO STATE COLLEGE
ANAHEIM, CALIF. 92806
(714) 937-0637

$10 MIN ORDER / CA RES ADD 6%

SPECIALS

ZENITH ZVM-121 Video Monitor/ Green Phosphor
12 inch 15*MHz 134.00

3 inch MUFFIN FAN w/card 9.95

3155 RAM 911.50
3155 PPI 17.25
2211 Static RAM 11.75
8030A CPU 10.50
MC6801-CPU 47.75
CR 2501- CARROM 4.95

MONITORS

AMDEK

12 inch. B/W 112900
12 inch. Color 155.00
3 inch Color 36500

BOOKS!!!

128

CIRCLE 72 ON FREE INFORMATION CARD

www.americanradiohistory.com
SURPLUS ELECTRONICS CORP.

7294 N.W. 54th Street
Miami, Florida 33166

WHOLESALE/RETAIL

EQUIPMENT/COMPONENTS/WIRE & CABLE/ACCESSORIES

C.B. SPECIAL
CONVERT THESE TO 10 METER FM
New HY-GAIN printed circuit board assembly with PLL02A chip and 3 crystals. (Squelch pot, volume control and channel switch not included.) Boards sold as is, the way we bought them from the manufacturer. Board dimensions 6" x 6½".

1-9 $7.50 50-99 $6.00
10-49 $6.50 100-UP $5.50

“TANK BATTLE” TV GAME
In just a short time and with a few minor parts, the most novice hobbyist can complete this exciting Tank Battle game. Create a fun-filled evening for the whole family. Two independent tanks rumble thru field mines, shoot ships and fragment when hit. Four distinct engine sounds are produced for the different sounds. Sounds of gunfire, shell bursts and tank explosions are realistic. Automatic on-screen scoring. Supplied with schematic drawing.

SOLD AS IS $9.95 ea.

COPPER CLAD BOARD

Size 9.25 x 10.75

Thickness .062

$2.00 ea.

TRIMMER CAP

1-5-20pf

(ARCO PC-432)

500 ea.

DIP SWITCH

5 POSITION $1.00 ea.

8 POSITION $1.50 ea.

10 POSITION $2.00 ea.

12 POSITION $2.50 ea.

5/32" square, no shunt required. Easy-to-read dial. Movements: 0-6, 0-10, 12 POSITION.

SOLD AS IS $2.00 ea.

COAX CONNECTORS

UG-273/U BNC-F/UHF-M $2.50

UG-255/U BNC-M/UHF-F $3.00

UG-146/U-N/U-F-1/2/UHF-F $4.50

UG-88B/U-N/U-F-UHF-M $4.50

UG-175/U-58-Adapt $2.00

UG-176 RG-59 Adapt $2.00

UG-194 BNC-F/Panel $1.00

50/60 $0.20

COAXIAL CABLE

50 OHM RG-174 $4.95/100' $3.00/50'

SCREW DRIVER KIT

Part # Movement

J-60 7101 SPDT

L-3 J-60 SPDT

L-3 J-60 SPDT (momentary)

J-3 7201 DPOT (special large rocker)

$1.00 ea. $6.50

TERMS: All material guaranteed unless otherwise stated. If you are not satisfied with our product, it may be returned within 10 days for a refund (less shipping). Please add $4.00 for shipping and handling on all orders. ACC's accepted orders totaling $30 or more. All orders shipped UPS unless otherwise specified. Florida residents please add 4% sales tax. Minimum order $15.00. Foreign orders - U.S. funds only, add 20% for shipping and handling.

COMPUTER GRADE ELECTROLYTICS

VALUE/MFD

VOLTS

DIAM./LNGTH.

PRICE

63,000 @ 15V 3" x 5½" $4.00 ea.

10,000 @ 20V 1½" x 5¼" $3.00 ea.

2,700 @ 25V ½" x 2½" $2.00 ea.

2,900 @ 25V 1½" x 2½" $2.00 ea.

100,000 @ 30V 3" x 5½" $6.00 ea.

39,000 @ 30V 1½" x 5¼" $4.00 ea.

34,800 @ 50V 3" x 5½" $3.00 ea.

450 @ 75V 1½" x 2½" $2.00 ea.

500 @ 100V 1¼" x 3½" $2.00 ea.

50 @ 450V 1¼" x 2½" $2.00 ea.

TELEPHONE & TTY INTERFACE MODEN

Mfg By American Precision
DAA Model No DDA236 with A-36 Telephone Coupler

$69.95

NEW REPLACES THE POPULAR 9V TRANSISTOR BATTERY

MANHATTAN PROJECT BOX

$1.50 ea.

HAS A TIP FOR RECESS FACE PLATE AND A LEFT TOP

IC SOCKETS

GOLD-PLATED WIRE WRAP

$3.95 ea.

14 pin 40c ea.

16 pin 45c ea.

POWER SUPPLY

+12 volts 1 amp +5 volts 4 amps

NEW SPRITE FAN
Mfg By Rotron Inc.
Model SU25S
115V AC. 19 amps.
(Impeance protected.)
$12.00 ea.

POWER CABLE

CIRCLE 48 ON FREE INFORMATION CARD

10 x 1/2" x 6 ft. + 12" - 45V12/350

MUFFIN FANS

MFG By Rotron Inc.
3 Blades 4¾' Square

$4.75 ea.

NEW

230 VAC Model M3A1

$12.00 ea.

7 POWER CABLE

HEWLETT PACKARD TYPE

$3.00 ea.

24-VOLT POWER SUPPLY

MFG By ADC Electronics Inc
Model DEM 2ANS. 4-1

Input 106-125 vac 50/60 Hz. Has volt ag & 0-10 adj. Output terminals contain + out. - +, out. - out ac neat, ac line and GND-13 LBS.

$45.00

www.americanradiohistory.com
HAMEG Oscilloscopes to meet every need

10 MHz SINGLE TRACER
DC-10 MHz
LPS-Triggering
Component Test
Built-in
Timebase
The HKM03 is a compact lightweight single trace oscilloscope which has been especially designed to meet the demands of both the laboratory and industrial technician and advanced amateurs. A principal feature of the HKM03 is its high-performance AC, DC and DC-02 dual trace oscilloscope, which incorporates built-in timebase and special features to make the HKM03 a versatile instrument.

20 MHz DUAL TRACE
Over-scan
LPS Trigger up to 40 MHz
Delayed Sweep
DC-20 MHz
Internal stabilized power supplies. Both vertical and horizontal circuits incorporate stabilized power supplies.

70 MHz DUAL TRACE
DC-70 MHz
Swept Delay 0-1 ms
Graticule Rs 10cm
General frequency range designed for both laboratory and industrial applications. The HKM1050, even though a swept delay of 0-1ms is used, has a sweep range of 0.1-1000ms. Two non-synchronous signals, or a composite signal with a time base of 0.1-1000ms can be triggered. Single shot operation is also possible. The wide sweep range from 0.1-1000ms allows a maximum magnification of 1:10000 for an accepted resolution. These features and others make the HKM03 an instrument of great flexibility in all fields.

15MHz SINGLE TRACER
1 mV SENS.
1 ms/DIV.
with PROBE
V-1518
$750.00

30MHz SINGLE TRACER
14 mV SENS.
1 ms/DIV.
with PROBE
V-3023
$950.00

SPECIAL 20% DISCOUNT WITH COUPON

Universal Oscilloscope
Probe $36.00

SWITCHABLE X1 and X10 Attenuation Factor

Z-80 SERIES MICROPROCESSOR IC's

5600 SERIES MICROPROCESSOR IC's

Full ASCII Encoded Keyboards

www.americanradiohistory.com
THE ETCO MICRO 1000 36 CHANNEL VCR PROGRAMMER & CABLE TV CONVERTER

Equivalent to or better than:
- VIDEODISK MX-400C - LINDSAY TVU - PHILIPS CTC-2 - WINEGARD VC-700 and others.

As above - with Vernier Tuning: adjustable tuning insures total tracking compatibility with all TV sets. 448VC477...

THE ETCO COMMANDER 5000 37-CHANNEL WIRELESS REMOTE CONTROL CABLE TV CONVERTER!

24 MONTH WARRANTY!

ONLY $169.95

GET THE MOST out of your cable TV system! Easy hookup — completely safe — and you get up to 30 channels! Converted channels appear on the UHF portion of your set; channels 2 to 13 can also be seen on the VHF portion of the tuner. Easy to install — with instructions. 448VAE047.

NEW — As above, 58 channel version. 448VA017...

INCREDIBLE ETCO COPYGUARD STABILIZER AND VIDEO IMAGE ENHANCER SELLS AT A PRICE BELOW WHAT YOU WOULD PAY FOR EITHER UNIT IF PURCHASED SEPARATELY!

ONLY $99.95 AT ETCO

An ETCO exclusive! Combines both instruments in one. It works like a charm! Try one on our 30 day money back guarantee! DEALERS WANTED 448ZA021.

NOTE: Converters on this page work only if you have cable TV. Number of extra channels available differ from cable system to cable system. Use of cable converters may be subject to rules by your local cable company.
Get it all! Subscribe today to RADIO-ELECTRONICS. Don’t miss a single issue and ... you save as much as $7.50 off the newsstand price.

When you select one of the subscription offers listed on the handy coupon—you'll be assured of having your copy reserved, even if it sells out on the newsstand. Make sure you get all the excitement in every issue of RADIO-ELECTRONICS, every month, by filling in and mailing the coupon, today.

This will be coming to you when you subscribe to RADIO-ELECTRONICS:

- **HELPFUL CONSTRUCTION ARTICLES...**
 - Test Equipment
 - Hi-Fi Accessories
 - Telephone Accessories
 - Music Synthesizers
 - Computer Equipment
 - Automotive Equipment
 - Intruder Alarms—Home & Car

- **NEWS ON NEW TECHNOLOGY...**
 - Android Design (Robots That Think and Do)
 - Automotive Electronics
 - Speech Synthesizers
 - IC Applications
 - Video Disc Players
 - Video Tape Recorders

- **FASCINATING "HOW TO DO IT" ARTICLES...**
 - Build Your Own Projects
 - Make Your Own PC Boards
 - Wiring Techniques
 - Soldering and Desoldering
 - Design and Prototyping

- **HOW YOU AND THE COMPUTER CAN BE FRIENDS**
 - Getting Started Programs, Circuit Design, Games A/D-D/A Interfacing Peripheral Equipment

- **NEW AUDIO DIMENSIONS FOR YOUR PLEASURE...**
 - Noise-Reduction Devices
 - Correct Bias for Your Tape Deck
 - How to Connect that Extra Add-On
 - Monthly Features by Len Feldman

- **TV WONDERS FOR YOUR FUTURE...**
 - Latest Receivers and Circuits
 - Projection TV Today
 - Satellite TV Receivers
 - Jack Darr's Monthly Service Clinic
 - Service Problems and Solutions

AND you also get these regular MONTHLY FEATURES:

- **LOOKING AHEAD by Dave Lachenbruch**
- **HOBBY CORNER by "Doc" Savage**
- **WHAT'S NEWS, new products, stereo news**
- **and NEW IDEAS, STEREO PRODUCTS, NEW COMPUTER PRODUCTS FOR HOME/JOB and MUCH MORE!**

YES! please send me

□ Payment enclosed, **13 issues for $13.00**
 (You save $3.25 off newsstand price.)

□ Payment enclosed, **26 issues for $25.00**
 (Save More! $7.50 off newsstand price.)

□ Bill me, 1 year—**12 issues only $13.00**
 (You save $2.00 off newsstand price.)

□ Bill me, 2 years—**24 issues only $25.00**
 (Save more! $5.00 off newsstand price.)

Extra postage: Canada $3.00 per year.
 All other countries $7.50 per year. U.S. Funds Only

Name: ___________________________ (please print)

Address: ___________________________

Cty. ___________________________ State ________ Zip Code: __________

Mail to: RADIO-ELECTRONICS
 P.O. Box 2520,
 Boulder, Colorado 80322

Allow 6-8 weeks for delivery of first issue.
BUY of the YEAR!!!
Parallel, TTL Input WORD PROCESSOR I/O "Selectric"® TYPEWRITER/PRINTER

The manufacturer put em into storage to appreciate em... Now they’re FINALLY AVAILABLE! Removed from stockpiling systems, these fantastic machines have built-in driver and decoder circuitry and take TTL level 6-bit character, plus 4-bit function input signals. Easily driven by TTL or micro (use as a typewriter (with minor repeat circuitry)) or as a KSR I/O printer to both. Requires 115, 60Hz for typewriter motor. 5 VDC for TTL and 24 VDC for solenoids. "Table top" style case. Each "Selectric" I/O machine is complete and operates. Includes schematics, data, case, platen and ribbon. (Type element not included).

New Type Element 2100.00 I/O Selectric Add 5.00 for Packaging and Handling - Pay Shipping on Delivery

UNBELIEVABLE!

HITACHI
30 MHZ DUAL TRACE OSCILLOSCOPE
AT THE LOWEST PRICES YOU CAN FIND!

Signal delay line
5° CRT
12 ns rise time
TV sync separator
1 mV/division sensitivity (max.)
Vertical magnifier (x5)
X-Y operation
Front panel trace rotation
CH1, CH2. Add. Diff. display modes
"Z" axis (intensity) modulation
Two years parts and labor warranty
Two -X10 probes included!

Model V302B
List 995.00
Sale 815.00

15 MHz dual trace
AN EVEN GREATER VALUE!

Model V152B
List 735.00
Sale 599.95

ALL OTHER HITACHI SCOPES ON SALE
50 MHz. 100 MHz. 35 MHz. 20 MHz. Call for details
Also available:
Leader Instruments, Beckman, Univolt, Fluke, and other quality test equipment

To order call toll free: (800) 423-5336
In Calif. (800) 423-5336
Local, Alaska, Hawaii (213) 701-5848
A DIV. OF ALLIANCE RESEARCH CORP
18215 Parthenia St. Northridge, CA 91325

All items are subject to prior sale. Limited quantities on hand. Payment: Visa, Mastercard accepted. Exact freight and insurance will be added. COD orders accepted from recognized business. Prepaid orders: Payment must be made with U.S. currency. Orders paid with personal or company check will be held for check to clear. Free freight policy: Prepaid orders by cashiers check will be shipped UPS freight free to any point in the continental U.S. (Alaska, Hawaii, Canada excluded)

CIRCLE 56 ON FREE INFORMATION CARD

CIRCLE 70 ON FREE INFORMATION CARD

www.americanradiohistory.com
ADVERTISING INDEX

Radio-electronics does not assume any responsibility for errors that may appear in the index below.

Free Information Number Page

1. AMC Sales 128
2. ATN Research 112
3. Active Electronics 109
4. Advance Electronics 40
5. Alfa Electronics 126
6. Alfa Electronics 28.29
7. Alfa Electronics 65
8. Allie Electronics 138
9. Alpha Brand 33.105
10. AIlex 125
11. American Antenna 13
12. Aire Electronics 34
13. Varicor UHF Tuner 107
14. Bullet Electronics Group 120
15. CIE, Cleveland Institute of Electronics, Inc. 18.21
16. Castle Marketing 106
17. Chanley Electronics 124
18. Channellock 92
19. Command Productions 108
20. Communications Electronics 3
21. Computer Peripherals Unlimited 137
22. Components Express 116
23. Concord Electronics 128
24. Cook's Institute of Electronics 106
25. Cooper Group 2
26. Dake Corporation 117
27. Dr. Micro Instruments, Inc. 16
28. Eco 83
29. Electronic Book Club 85
30. Electronic Specialists, Inc. 134
31. Electronic Technology Today 96
32. Enterprise Development 106
33. Eco Electronics 116.35
34. Etronix 116
35. Fair Radio Sales 138
36. Fish Radio Sales 107.122
37. Formula International 114-115
38. Fuji Sva 125
39. Godbout Electronics 112
40. Global Specialties 1
41. Global TV 110
42. Gruen College of Engineering 81
43. Haltronics 120
44. Hamag 104
45. Ham Radio 95
46. Information Unlimited 122
47. International Communications 110
48. JDR, Microdevices 130-131
49. Jameco Electronics 118-119
50. James Electronics 137
51. Jim-Pak 123
52. Komac 125
53. Live Via Satellite 116
54. MCM Audio, Inc. 121
55. MCR 99
56. McGee's Radio 116
57. McKay Dyneak 110
58. Millen-Hill Book Co. 70-73
59. Microtech 112,110
60. Milton 124
61. Monarchy Engineering, Inc. 120
62. Mountain West 134
63. Mouser Electronics 122
64. N-R-A, Schools 8-11
65. NTS, Schools 36.39
66. Nabihs, Inc. 81
67. Netronics 112
68. Netronics 81
69. Omega Sales 95
70. Ora Electronics 137
71. PAM 110
72. PA Corp. 105
73. P.C.I. 36.37
74. Peregrine Corp. 26.27
75. Po fak 170
76. Pomona Electronics 87
77. Protec Enterprises 34
78. RCA 35.31
79. RNJ Electronics, Inc. 108
80. Radio Shack 113
81. Ramsey Electronics 111
82. Rondure 110
83. SCR Electronics, Inc. 119
84. SMP, Inc. 105
85. Subadiva Exports 112
86. Turners 111
87. Simple Simon Electronics 122
88. Sinclair Radio 14.15
89. N.A. Soar 22
90. Solid State Sales 132
91. Sound Video Research 116
92. Sprague Components, Inc. 30
93. A.W. Sperry Instruments, Inc. 32
94. Sunny Manufacturing 138
95. Surplus Electronics 129
96. Tektronix 5
97. Tennessee Electronics 110
98. Tomat Ltd. 128
99. Tri - Tek 134
100. Vector Electronics 106
101. Viz Mfg. Co. 23
102. Wersis 112
103. Westland Electronics 132
104. Zenith Radio Corp. Cover 4

MOVING? Don't miss a single copy of Radio-Electronics. Give us:
Your old address and zip code
Your new address and zip code
ame (please print)

ATTACH LABEL HERE

FREE UO" REQUEST! Send today for FREE copy of CATALOG W5-81 and Supplement. Dept. RE

Govt. SURPLUS ELECTRONIC EQUIPMENT CATALOG
New ITEMS . . . New BARGAINS!

FAIR RADIO SALES
1016 E. EUREKA - Box 1105 - LIMA, OHIO 45802

Six weeks' notice
Your old address and zip code
Your new address and zip code

(name (please print))

CIRCLE 65 ON FREE INFORMATION CARD

www.americanradiohistory.com
Introducing the TECH™ 360 DMM. Never has it been so easy to do so much for so little.

Beckman's TECH 360 bench/portable DMM puts unmatched capability and convenience at your fingertips.

You can select from 8 functions and 31 ranges with one turn of the single selector switch. On or off the bench, you can accurately measure all complex waveforms with True RMS AC functions. Extend resistance measurement to 1/100 ohm resolution. Read temperatures from −20°C to 1265°C. Perform continuity checks quickly, with audible and visible indications. Measure up to 10 amps without adding special adaptors. All with 0.1% basic Vdc accuracy.

12,000 hour battery life

Designed for ultimate ease of operation, the TECH 360 delivers 12,000 hours continuous service (up to 4 years of normal use) from standard heavy-duty batteries. You'll never have to search for power outlets or contend with ground loop errors. The expense of rechargeable battery packs is eliminated.

The TECH 360 is available for just $289 (U.S. only), including batteries. The companion TECH 350 (without RMS and temperature measuring capability) is priced at $229.

For information on the complete line of Beckman DMMs and accessories, call your local distributor today. For the one nearest you call: (714) 993-8803 or write Beckman Instruments, Inc., Electro-Products Group, 210 South Ranger Street, Brea, California 92621.

Convenient storage and multiple viewing angles are featured in the new line of Beckman bench/portable DMMs.

CIRCLE 4 OR

BECKMAN

www.americanradiohistory.com
VIDEO ORGANIZER permits switching from one program source to another without changing cable connectors. Let's you select up to six different program sources for viewing. Up to three different sources for recording. Even lets you view one program source while simultaneously recording another. All this without changing cable connections!

At last the nuisance of manually changing cable connections is a thing of the past!

With Zenith's new Video Organizer, separate input and output jacks enable you to make a complete connection of TV and VHF antenna or cable TV antenna, subscription video disc player, video cassette game and home other auxiliary equipment. So you switch from one program source to another with pushbutton ease — without changing connections.

Equally important, the Video Organizer's advanced engineering design by Zenith results in low insertion loss and high isolation. Eliminates electromagnetic interference for maximum picture quality. And permits greater flexibility in use and ease of operation for more hours of uninterrupted home video enjoyment.

Write now for more information!

Zenith Radio Corporation/Service, Parts & Accessories Division/11000 Seymour Avenue/Franklin Park, Illinois 60131

CIRCLE 3 ON FREE INFO CARD