SOLAR TRACKING SYSTEM
A guide to building a system that controls solar energy panels so they track the sun.

WIRE WRAP JUNGLE
New construction technique combines PC and wire-wrap assembly to get the best of both worlds.

AUDIO TEST STATION
Construction details for a high-quality audio test instrument that combines several important test instruments into a single cabinet.

CASES AND CABINETS
A roundup of commercially available off-the-shelf enclosures that add a professional look to your projects.

PLUS:
★ Two Hi-Fi Test Reports From R-E's Audio Lab
★ New IHF Amplifier Standards
★ Jack Darr's Service Clinic
★ State-Of-Solid-State
★ Computer Corner
★ Hobby Corner
★ CET Test

Build A Pro Quality STRING SYNTHESIZER
It's A Bargain

RETAILER: SEE PAGE 97 FOR SPECIAL DISPLAY ALLOWANCE PLAN
The President base station.
In the manner to which you've become accustomed.

People have come to associate superb quality with President CB. And rightly so. When we build a base station, we go all out.

Every President base station is a masterpiece of performance, with a full complement of controls and indicators for your enjoyment of CB at its absolute best.

The Madison is a good example: the finest 40 channel base yet achieved by the President engineering art.

It's a single sideband CB, with a full 4 watts output on AM, 12 watts peak envelope power on single sideband for extraordinary performance, range and total talkpower.

Despite unsurpassed receiver sensitivity, bleedover just isn't a problem. Our adjacent channel rejection sets a standard for the industry. And you can set your own standard of sensitivity with a variable RF gain control.

A digital clock turns on the radio at a pre-selected time. An alarm reminds you of scheduled calls.

Two big meters read signal strength received, relative RF output, modulation and standing wave ratio.

There's a digital LED channel indicator. Three more LEDs to indicate when you're on upper sideband, lower sideband or AM. Still another LED glows when you're transmitting.

A built-in variable mike gain control eliminates the need for a separate power mike.

We've even given the Madison's big speaker its own separate cabinet, so you can put it where it sounds best.

Your local CB specialist is the place to find President equipment. Plus the best in accessories and service, including installation, warranty back-up and the most expert advice in town.

Ask him about the new Madison base station. It's unequivocally President.

In the grand manner.
The Age of Affordable Personal Computing Has Finally Arrived.

Ohio Scientific has made a major breakthrough in small computer technology which dramatically reduces the cost of personal computers. By use of custom LSI microcircuits, we have managed to put a complete ultra high performance computer and all necessary interfaces, including the keyboard and power supply, on a single printed circuit board. This new computer actually has more features and higher performance than some home or personal computers that are selling today for up to $2000. It is more powerful than computer systems which cost over $20,000 in the early 1970's.

This new machine can entertain your whole family with spectacular video games and cartoons, made possible by its ultra high resolution graphics and super fast BASIC. It can help you with your personal finances and budget planning, made possible by its decimal arithmetic ability and cassette data storage capabilities. It can assist you in school or industry as an ultra powerful scientific calculator, made possible by its advanced scientific math functions and built-in "immediate" mode which allows complex problem solving without programming! This computer can actually entertain your children while it educates them in topics ranging from naming the Presidents of the United States to tutoring trigonometry all possible by its fast extended BASIC, graphics and data storage ability.

The machine can be economically expanded to assist in your business, remotely control your home, communicate with other computers and perform many other tasks via the broadest line of expansion accessories in the microcomputer industry.

This machine is super easy to use because it communicates naturally in BASIC, an English-like programming language. So you can easily instruct it or program it to do whatever you want, but you don't have to. You don't because it comes with a complete software library on cassette including programs for each application stated above. Ohio Scientific also offers you hundreds of inexpensive programs on ready-to-run cassettes. Program it yourself or just enjoy it, the choice is yours.

Ohio Scientific offers you this remarkable new computer two ways.

Challenger 1P $349
Fully packaged with power supply. Just plug in a video monitor or TV through an RF converter to be up and running.

Superboard II $279
For electronic buffs. Fully assembled and tested. Requires +5V at 3 Amps and a video monitor or TV with RF converter to be up and running.

Standard Features

- Uses the ultra powerful 6502 microprocessor
- 8K Microsoft BASIC-in-ROM
- Full feature BASIC runs faster than currently available personal computers and all 8080-based business computers
- 4K static RAM on board expandable to 8K
- Full 53-key keyboard with upper/lower case and user programmability
- Kansas City standard audio cassette interface for high reliability
- Full machine code monitor and I/O utilities in ROM
- Direct access video display has 1K of dedicated memory (besides 4K user memory), features upper case, lower case, graphics and gaming characters for an effective screen resolution of up to 256 by 256 points. Normal TV's with overscan display about 24 rows of 24 characters; without overscan up to 30 X 30 characters.

Extras

- Available expander board features 24K static RAM (additional), dual mini-floppy interface, port adapter for printer and modem and an OSI 48 line expansion interface
- Assembler/editor and extended machine code monitor available.

ORDER FORM

Order direct or from your local Ohio Scientific dealer.

- I'm interested Send me information on your:
 - Personal Computers Business Systems
 - Send me a Superboard II $279 enclosed
 - Send me a Challenger 1P $349 enclosed
 - Include 4 more K of RAM (8K Total) $69 more enclosed

Name:__________________________
Address:_______________________
City:_________________ State:____ Zip:_________

Payment by: BAC(VISA) ______ Master Charge ______ Money Order ______

Credit Card Account #________
Expires: ______ Interbank #(Master Charge)
Ohio Residents add 4% Sales Tax

TOTAL CHARGED OR ENCLOSED

All orders shipped insured UPS unless otherwise requested FOB Aurora, OH

Interested in a bigger system? Ohio Scientific offers 15 other models of microcomputer systems ranging from single board units to 74 million byte hard disk systems.

OHIO SCIENTIFIC
America's Largest Full Line Microcomputer Company
1333 S. Chillicothe Road • Aurora, Ohio 44202 (216) 562-3101

CIRCLE 15 ON FREE INFORMATION CARD
GOULD PROFESSIONAL OSCILLOSCOPES AT PRICES YOU CAN AFFORD.

Whatever your interest in electronics, you know that a quality oscilloscope with a broad range of features and functions can make your work a lot easier. Gould oscilloscopes are built to solve your problems and priced so you can afford the professional equipment you need right now. All are complete, ready for use, including passive probes, input leads and a comprehensive maintenance and operation manual.

The OS245A is a compact, dual trace instrument with a 10MHz bandwidth and 5mV/div sensitivity. It has exceptional trigger performance and a full compliment of facilities for industrial, educational, and field service applications.

The OS253 is a 12MHz dual-channel scope with all the features of the OS245A plus a larger display area, more sensitivity and channel sum and difference.

The dual trace OS255 weighs only 15 lbs. yet offers features normally found in more expensive instruments such as flexible triggering facilities and 2mV/cm sensitivity across its full 15MHz bandwidth.

The dual beam OS260 gives true representation of two separate signals on the same time frame without beam chopping or alternating. Features include a high brightness CRT operating at 10kV allowing a clear display of all waveforms.

For additional information on this exciting new line of sensibly priced, professional oscilloscopes or for sales locations in your area: call toll free (800) 325-6400 Ext. 77. In Missouri call (800) 342-6600.

Gould also manufactures an additional line of general purpose oscilloscopes for industrial, scientific and laboratory applications.

CIRCLE 7 ON FREE INFORMATION CARD
Because of possible variances in quality and condition of materials and workmanship used by readers, Radio-Electronics disclaims any responsibility for the safe and proper functioning of reader-built projects based upon or from plans or information published in this magazine.
Videodisc mergers? Although many different noncompatible videodiscs have been demonstrated, as outlined previously ("Looking Ahead," Videodisc boxscore, November, 1978), the multiplicity of these systems may evaporate or dwindle as manufacturers face reality. The optical system, which basically was a compromise between similar Philips and MCA systems, is already being produced by Magnavox (videodisc players) and MCA Disco-Vision (videodisc records) in the United States. In Japan, the joint Japanese-American company, Universal Pioneer, plans to start player production this year.

So the optical system is the one manufacturers wish to stop, if they want to field simpler nonlaser players. Nonlaser systems have been demonstrated by RCA, Matsushita, JVC, Toshiba and Telefunken—the latter now being on limited sale in both Europe and Japan in a 10-minute-per-disc version. The RCA and JVC versions are capacitance systems. Matsushita and Telefunken are classified as mechanical systems. Except for RCA and Toshiba, which are compatible, the systems have little in common except that they're nonoptical. They all use grooved discs (except for JVC) and spin at 450, 900, or 1800 rpm. Even the center-hole diameters are different.

Although it's not official yet, there's strong evidence to suggest an effort will be made to bring all these systems into compatibility before commercializing them. The resulting system—if there is one—is expected to have some features of the optical version, such as being able to provide slow and fast motion but to be potentially less expensive in terms of players and perhaps discs. The result could be a sort of "stop-Philips" effort; In effect, optical vs. nonoptical systems. Although this situation isn't ideal, two "standards" are preferable to five or six.

New watch display: Electrochromic displays are claimed to be price-competitive with LCD's, but have some major advantages. The first company to announce the commercialization of this technique is Sharp, which says it will have a line of ECD's this spring.

Several companies have been working on ECD's for four or five years. These displays use metallic chemicals that change to a dark color when a voltage is applied. Once changed, they retain their color until the voltage is reversed—a power-saving feature. They have considerably higher visibility than LCD's, primarily because their image is nondirectional. They can be manufactured in any color, and the numerals stand out clearly against a contrasting background. The color of Sharp's initial displays will be blue. Electrochromic displays are relatively slow and, in their initial development, at least, it was felt they were not fast enough for calculators. Sharp hasn't stated whether its product will have a calculator display.

TV developments: A new single-gun color tube, scheduled to be sold this year in small-screen battery-powered sets manufactured by Matsushita, is claimed to have an extremely low power drain, making it possible for a set to operate for three hours on nine flashlight batteries. Its color phosphors are separated by black control stripes that emit ultra-violet rays for beam indexing. If this sounds familiar to some color TV oldtimers, it bears a striking similarity to Philco's widely demonstrated (but never produced) "Apple" tube of the 1950's.

Photochromic glass has been used in windows and sunglasses, and now it may be adapted to black-and-white TV. The Corning Glass product darkens under strong light and lightens when ambient light is less intense. For outdoor viewing of a portable TV, the glass darkens enough to eliminate the need for a separate plastic sunshield. For indoor viewing, the glass lightens—providing proper contrast under all viewing conditions. Corning is now working on the development of a glass that darkens enough to provide these contrast-enhancing features.

"Picture-in-picture" TV is offered in Europe as a special feature that lets the viewer watch two channels simultaneously, the supplementary channel being superimposed in a corner or at the bottom of the large-screen color picture. The only trouble is, the secondary picture is in black-and-white. Now, Hitachi says it has changed all that and will be selling a two-picture color set in which both the main and the superimposed pictures are in color. A digital semiconductor memory makes it possible to provide the second-channel insert in color.

In-flight video: Video tape is about to take over for film in the airborne movie business. Bell & Howell has sold American, Continental and Laker Airlines on a new technique that uses a modified VHS 3/4-inch videocassette recorder and a projection TV system. Among the advantages of a VHS system is the size of the cassette, as contrasted with the large 16-mm movie reel used in film systems. And with film systems, the reels generally are changed by engineers on the ground. Flight attendants can easily flip a cassette in the VCR, which is mounted in a luggage rack. The projector uses three side-by-side 5-inch monochrome projection tubes, weighs 65 lbs. and is installed in the cabin ceiling. The picture is projected onto a standard 30- by 40-inch pull-down screen. Bell & Howell says it plans to introduce a home version of the projector this year for built-in and conventional installations. Its advantages over other home systems, as claimed by the manufacturer, are: it's bright enough to be able to use any flat movie screen, or even a light-colored wall, instead of a parabolic directional screen.

Another new Bell & Howell "why-didn't-they-think-of-it-before" system for the airlines is a wireless headphone for stereo music or movie sound. For the high-ceilinged new planes, Bell & Howell will also supply wireless attendant-call and light-switch systems.

DAVID LACHENBRUCH
CONTRIBUTING EDITOR
Automotive "brain" astounds the experts, puts both computer and cruise control at your fingertips!

For the first time ever, you can put a true computer in your car, truck or RV which gives you the most effective and functional cruise control ever designed, plus complete trip computing, fuel management system, and a remarkably accurate quartz crystal time system. It is called CompuCruise™.

So simple a child can operate, the new CompuCruise combines latest computer technology with state-of-the-art reliability in a package which will not likely be available on new cars for years to come.

CRUISE CONTROL WITH A MEMORY, UNIQUE SEEK-AND-HOLD CAPABILITY.

CompuCruise remarkable cruise control performs in a totally different manner than any other unit because it is more than a simple speed maintaining device. With CompuCruise, you establish your desired cruising speed even before you reach the highway and activate the system any time by simply pressing a button. CompuCruise then seeks and maintains the desired speed until you override or shut off the system. You resume cruise control again at any time by pressing the same button. CompuCruise, unlike most vacuum-mechanical systems, is fully electronic, more accurate and more reliable than any other unit you can buy.

AIRLINE PILOTS COMPARE COMPUCRUISE™ TO SOPHISTICATED AVIONICS EQUIPMENT.

Similar to types of computers used on modern airliners, the CompuCruise slim panel-mounted control module contains a digital readout and back-lighted control buttons, both readily visible in the dark. By quickly learned systems of inquiry, the driver can elicit virtually any information relating to time, distance, fuel and performance of his vehicle.

There are a number of digital type instruments on the market which can be purchased for your car, purporting to provide functional data on performance, but all are basically calculators, operating on fixed information provided by the driver.

CompuCruise is a true computer, operating from automatic data sensors which constantly react to changing conditions, automatically recomputing vital data every second. Each function operates independently, with data displayed and updated constantly until you change your request of the computer.

Fuel management takes on new significance because CompuCruise tells you the most effective driving speeds, the type and brand of gasoline most suitable for your vehicle. It will tell you the effects of different types of tires and different tire pressures, road conditions, and engine tune-up condition. You can get instantaneous computations on current gas mileage, fuel required to arrival, and actual fuel remaining.

Battery condition can be checked regularly, saving you from the potential embarrassment of being stranded without warning.

TYPICAL DATA:

- Cruise Control
- Time, E.T., Lap Timer, Alarm
- Time, Distance, Fuel to Arrival
- Time, Distance, Fuel to Empty
- Time, Distance and Fuel on Trip
- Current or Average MPG, GPH
- Fuel Used, Distance since Fillup
- Current and Average Vehicle Speed
- Inside, Outside or Coolant Temperature
- Battery Voltage
- English or Metric Display

A5 COMPUCRUISE™ DIGITAL QUARTZ CRYSTAL TIME SYSTEM IS INCREDIBLE.

CompuCruise digital time system performs four independent time functions encompassing (a) stop watch and lap timer functions, (b) hours, minutes and seconds, (c) alarm or warning function and (d) trip time indicator. The time system operates full time, whether your vehicle is operating or not. It will even wake you up after a short roadside nap.

YOUR COMPUCRUISE™ IS SMART! IF YOU PUSH THE WRONG BUTTON IT WILL LET YOU KNOW BY DISPLAYING "ERROR".

COMPUCRUISE™ WORKS ON FOREIGN OR AMERICAN CARS; IS PRICED FOR THE AVERAGE MAN’S BUDGET

You do-it-yourselfers can readily install the unit, but complete and detailed instructions are also included for the automotive service facility. CompuCruise units are fully operable on most foreign or American cars, trucks or RV’s. At $199.95 the unit is only a few dollars more than the cost of cruise control alone on most vehicles, yet offers a whole new world of computerized management functions.

This is an exclusive system, fully warranted for 90 days from installation, delivered to you complete with all required hardware. You need only basic tools for the total job.

When you receive your unit, inspect it completely. If you are not 100% satisfied, return the complete unit before installation and your money will be refunded without question.

TO ORDER YOUR UNIT, complete the coupon below, enclosing $199.95 (ADD $5.50 if front-drive). This covers all shipping, insurance and handling costs. Your unit will be shipped within three weeks.

NOTE: Mountable on foreign or domestic vehicles including standard trans. EXCEPT FOR DIESEL OR FUEL INJECTED ENGINES.

TO: ZEMCO, Inc.
1136 Saranap Avenue
Walnut Creek, CA 94595

Ship () CompuCruise™ units at $199.95
Model 44 (WITH CRUISE CONTROL)
Add $5.50 for front-drive

Ship () CompuCruise™ Units at $159.95
Model 41 (WITHOUT CRUISE CONTROL)
Add $5.50 for front-drive

Total enclosed: $_____
(CA residents add Sales Tax)

Charge to my () Master Charge () Visa

Card Number_________________________ Date Expires____________________

Signature____________________________

Make vehicle:
Name:__________________
Address:__________________________
City: __________________ State & Zip

(415) 935-4960
Technically competent personnel available to answer your questions.

CIRCLE 30 ON FREE INFORMATION CARD
Electronic music newsletter now available

A monthly newsletter, Device, is now available to those in the electronic music field. The publication covers such topics as new product reviews of musical equipment, construction articles, circuit-design features, etc., it carries no advertising and is entirely subscription-supported. Yearly rates: $15 (U.S.); $16 (Canada/Mexico); $18 (international). For information, write Device, P.O. Box C, Carmichael, CA 95608.

ANIK-B COMMUNICATIONS SATELLITE

ANIK-B, a domestic communications satellite, has been constructed by RCA Astro- Electronics for Telesat Canada. It is the first such satellite to operate in the dual frequency bands of 6- and 4- GHz and 14- and 12- GHz. A Telesat engineer is shown here performing antenna pattern measurements. The mirrors are part of the thermal system that keeps the spacecraft at cool operating temperatures.

Bell Labs scientists win 1978 Nobel Physics Prize

Bell Labs scientists Dr. Arno A. Penzias and Dr. Robert W. Wilson received the 1978 Nobel Prize in Physics jointly with Professor Piotr Kapitsa of the Moscow Academy of Sciences (Prof. Kapitsa received his award for his work in low-temperature physics).

Drs. Penzias and Wilson won their shared prize for their work in cosmic microwave background radiation. As early as 1964, when they were using a Bell Labs antenna to search for radio noise sources that were interfering with satellite communications, they discovered a faint pervasive radio signal that remained steady round the clock, season to season—an unusual and unique phenomenon. After eliminating possible sources of the signal (such as the Milky Way, the sun, poorly fitted antenna joints, even nesting pigeons), the conclusion became inescapable—the signal was the result of the radiation still remaining after the big bang that had created the universe approximately 2 billion years ago. Their conclusions were verified by Professor Robert H. Dicke of Princeton who had been conducting similar studies.

Although the "Big Bang" theory had been known to astro-physicists for a long time, up until Penzias and Wilson's discovery of the background radiation, the theory had never been satisfactorily verified. When the two physicists (along with Prof. Dicke and his co-workers independently) published their results, their discovery was finally understood to be a major breakthrough in understanding the origins of the universe.

Videocassette exchange service available

Owners of Beta and VHS 1/2-inch format VCR's can avail themselves of the services provided by the Video Cassette Exchange Division of Discotronics Inc., New Jersey, in which customers can either buy or exchange videocassettes at greatly reduced rates.

The 1979 catalog lists approximately 600 prerecorded film titles, some of which have never been seen on TV. The company also offers trade-in privileges that are similar to those of a rental library. And, for convenience, they also provide a nationwide home pickup service for a small charge. For more information, contact Robert Edwards, Discotronics Inc., 50 North Main Street, Cranbury, NJ 08512.

New communication service proposed by radio amateur group

In 1977 amateur radio operators of WA2RPC (Center for Advanced Study in Education, Graduate School of CUNY, New York City) filed a petition with W2CKPO, requesting the implementation of a community service that would use the communications concept to broadcast messages on UHF channels.

Communicating uses a low-power community-based repeater station that can transmit audio and video signals up to a 30-mile radius, using a high antenna. The repeater station receives signals from different areas of the community and then transmits them via any unused UHF TV channel. The petitioning group additionally requested that low-power facilities be exempt from the usual rigid broadcast standards in an effort to keep costs down.

Praising the communicating concept, the FCC has stated that: "The petition and comments by others suggest an imagined and potentially beneficial public service television concept... an activity that deserves considerable attention in the overall inquiry."

Swiss watch firm designs microminiature DMM

Heuer Time & Electronics, Inc., watch and timepiece manufacturer, has taken the plunge into the world of microelectronic instrumentation by designing what it calls "the world's smallest digital multimeter," using the company's experience in microminiaturizing watches.

The model DM 2000 meter (displayed for the first time at Newcom '78, Las Vegas) weighs less than 3 oz., including probe and batteries, and (minus probe) measures only 4 X 0.78 X 0.47 inches. In addition to its four measurement range capability—to 1000 DC, 700 VAC, AC/DC current to 2 amperes, and resistance to 20 megohms—two major technical features lie in its true AC RMS measurement and complete RF shielding. It also provides up to 100-hour battery life, an error-free LCD display (due to its remote-control probe), plus great reliability for field-service applications where accuracy and portability can be vital.

The model DM 2000 is expected to sell for $450. For further information, write Hans J. Kueffer, Heuer Time & Electronics, 960 South Springfield Avenue, Springfield, NJ 07081.

Newflash!

As we're about to go to press, we've received word that Texas Instruments has received type-approval from the FCC on a computer that connects to the antenna terminals of a TV receiver. Could it be that Texas Instruments will be entering the home computer market? Formal introduction of this new device is scheduled to take place at the Consumer Electronics Show, continued on page 12
new design...new features...unique, time-tested principle!

Weller® controlled output soldering station

Model WTCPN. New convenience-features. Striking contemporary appearance. Completely new design. Now more than ever in a class by itself. Only Weller's advanced engineering could have improved on its own predecessor WTCPL Station, popular standard of the electronics industry.

- new heat shield for cool operator comfort
- new plug-in iron design for zero down-time
- new integral tip-storage tray
- new larger sponge for easier tip cleaning
- improved, unitized rocker switch and neon indicator light
- new impact-resistant case

And add to these new features Weller's unique, proven, closed-loop, low-voltage circuit, with its "interchangeable brains" in the tip...a ferromagnetic sensor that controls the temperature at 600, 700, or 800°F, protecting sensitive workpieces. To change temperatures, simply change tips with knurled thumb-screw. More than 50 options in configuration, tip size, reach, and temperature! Exclusive-process triple-plating prevents tip oxidation and "freezing".

With all these new features and exclusive principles, Model WTCPN is still all function...no frills! It's UL-listed and OSHA-compliant, of course. And now it's available at leading electronic distributors...coast-to-coast. See it there.

For technical information, write on your letterhead.
Everybody's making money selling microcomputers. Somebody's going to make money servicing them.

New NRI Home Study Course Shows You How to Make Money Servicing, Repairing, and Programming Personal and Small Business Computers
Seems like every time you turn around, somebody comes along with a new computer for home or business use. And what's made it all possible is the amazing microprocessor, the tiny little chip that's a computer in itself.

Using this new technology, the industry is offering compact, affordable computers that will handle things like payrolls, billing, inventory, and other jobs for businesses of every size...perform household functions including budgeting, environmental systems control, indexing recipes, and more. And thousands of hobbyists are already owners, experimenting and developing their own programs.

Growing Demand for Computer Technicians

This is only one of the growth factors influencing the increasing opportunities for qualified computer technicians. The U.S. Department of Labor projects over a 100% increase in job openings for the decade through 1985. Most of them new jobs created by the expanding world of the computer.

Learn at Home in Your Spare Time

NRI can train you for this exciting, rewarding field. Train you at home to service not only microcomputers, but their larger brothers, too. Train you at your convenience, with clearly written "bite-size" lessons that you do evenings or weekends without going to classes or quitting your present job.

Assemble Your Own Microcomputer

NRI training goes far beyond theory. It includes practical experience, too. As you progress, you perform meaningful experiments building and studying electronic circuits on the NRI Discovery Lab®. You assemble test instruments that include a transistorized volt-ohm meter and a CMOS digital frequency counter...instruments you learn on, use later in your work.

And you build your own microcomputer. Each step of construction advances your knowledge, gives you deeper insights into this amazing world that's upon us.

This is the only microcomputer designed for learning. It looks, operates, and performs just like the finest of its kind...actually does more than many commercial units. But NRI engineers have designed components and planned the assembly procedure so it demonstrates important principles, gives you working experience in detecting and correcting problems. And that's what NRI training is all about.

Other Opportunities in Electronics

Since 1914, before commercial radio was even on the air, NRI has been the way to learn new electronics skills. Today's modern offerings include, in addition to three different computer courses, TV/Audio/Video Systems Servicing, with training on the only designed-for-learning 25" diagonal color TV, with state-of-the-art computer programming. Or, check out our Complete Communications Course, preparing you to enter this booming field servicing, installing, and repairing equipment like microwave, broadcast, CB, shortwave radio, paging, radar, and more.

Mail Postage-Paid Card for Free Catalog

No Salesman Will Call

Send today for your free copy of our 100-page, full-color catalog. It describes all of our electronics courses in detail, showing kits, equipment, and lesson plans. Look it over at your convenience, then decide how NRI can help you make the most of your talents. There's no obligation and no salesman will ever call or bother you. With more than a million students and unmatched experience in home training, NRI gives you the most in training for new opportunity! If card has been removed, write to:

NRI Schools
McGraw-Hill Continuing Education Center
5059 Wisconsin Avenue
Washington, D.C. 20016
which will be held in Las Vegas on January 6-9. We have also learned that Atari is preparing to introduce a BASIC interpreter for their programmable video game. This will also be introduced at CES.

Admiral television production is discontinued

Rockwell International Corporation recently announced that it would discontinue all its Admiral TV products. Admiral marketing activities are currently being phased out, and, once current commitments are fulfilled, all production will cease at the Harvard, IL, and Taiwan plants.

Charles Fazio, president of Rockwell's consumer operations, has emphasized that the company would continue to provide warranties, service and spare parts support; and added that the phasing out of its TV production would enable Rockwell to concentrate its efforts on its ongoing appliance business and other operations.

The reason given for discontinuing the Admiral TV line was "intense price competition, particularly from Japanese sources," which the company felt did not justify any additional outlay of its resources.

Two-layer solar cell provides 28% conversion to electricity

Varian Associates, Inc., of Palo Alto (under contract to the Department of Energy's Scandia Labs) has developed a prototype solar cell system that converts 28.5% of the sun's rays to electricity.

The Varian system uses two different cells—an aluminum gallium arsenide (AlGaAs) cell and a silicon cell—to perform the conversion. A special filter between the cells separates solar radiation into long and short wavelengths; it permits the longer rays to penetrate the silicon cell, while allowing the shorter rays to pass through into the AlGaAs cell. This effect is achieved by using a concave mirror to focus the solar energy onto the filter. The AlGaAs cell converts 17.4% of the rays to electricity, while the silicon cell converts 11.1% of the rays.

Sandia Labs supervisor Dr. Donald G. Schueler predicts that by 1986, photovoltaic systems "will produce electricity for $1 per-peak-watt of installed capacity, or from 6¢ to 8¢ per kilowatt-hour."

Sprague and Johnson receive EIA awards

During its fall 1978 conference, the Electronic Industries Association voted to award the EIA Medal of Honor to Robert C. Sprague, Sr., for his devotion and long years of service to the Association and the electronic industry. Among Mr. Sprague's most recent accomplishments are his efforts to revise the Custom Penalty Laws to remove unfair penalty provisions for the industry. Active for many years in EIA, he was a member of the Board of Governors since 1943 and board chairman from 1950-1954. This is the second time Mr. Sprague has won the EIA Medal of Honor, the first having been 25 years ago. The presentation will be made at EIA's spring 1979 meeting.

At the same conference, Raymond E. Johnson, EIA general counsel, received the EIA Distinguished Service Award, the first staff member to be so honored. Mr. Johnson has served as EIA general counsel since 1970 and was elected corporate secretary in 1972. He received his award for his years of distinguished service to EIA and his involvement in the Association on all levels.

RCA electron gun sharpens color TV pictures

RCA Laboratories and the technical staff of the RCA Picture Tube Division have developed a device that is used to create sharper color television pictures. This latest development is a new kind of electron gun that "shoots" invisible beams at color phosphors on the picture tube face. The result is improved focus and, thus, sharper pictures. The gun, which is now in commercial production, can be used on any size picture tube.

The results of this joint effort were presented in a paper delivered at the annual Chicago Fall Conference on Consumer Electronics by Picture Tube Division engineers Richard H. Hughes and Jim Y. Chen.

Metal-tape standards surveyed at ITA meeting

Representatives of companies manufacturing record and playback equipment, audio tape, duplicating equipment and ferric oxide attended a late 1978 meeting of the Audio Technical Executive Committee of the International Tape Association (ITA) to discuss industry-wide standardization of metal audio cassette tape.

However, because record/playback and erase heads are still not standardized, the committee could not come to any firm decision about standards for metal tape. Several companies, however, stated their readiness to enter the metal-tape market. Among these were 3M Company, which already introduced their metal-particle Metalfine tape, and Sharp Electronics with its prototype metal-tape recorder. Panasonic is presently developing metal-tape cassette decks and a duplicator for ½-inch VHS video cassettes. Fuji and 3M together are working on high-energy contact duplication of metal-particle videotape. BASF plans to introduce its metal-tape product at the 1979 Berlin Fair. Other companies continuing their R & D activities are Ampex, Maxell, Sony and TDK.

Oxide supplier Hercules, Inc. noted, said it would be producing metal-tape particles in quantity by 1979.

FCC asks, should TV sets be graded?

The Federal Communications Commission has started an inquiry to determine whether it should set up a system for grading TV receivers, since it feels that customers do not presently have enough information to help them select the best TV's and antennas for their needs. Here are some of the questions the FCC is asking:

1. If the consumer wants more information on TV systems, what kinds of data should be made available, how should it be presented and would it really improve one's ability to select a set? Should the equipment have a permanent label affixed? Should there be a brochure enclosed with each set? A letter-grading system, or a descriptive grade system (i.e., "excellent," "good," etc.)?

2. Some TV sets experience "snow" on the picture screen that is the result of noise. Should TV receivers show the maximum noise value for that set? How should this be presented to the public?

3. Should each purchased set contain more installation and operating instructions than are presently provided?

Sinclair’s new DM235. The best digital meter value in the world at $89.95!

The Sinclair DM235 provides full facilities for every application, including field servicing, testing and laboratory work, at a price no other digital multimeter can approach. High accuracy, resolution and input impedance are combined with a large, wide-angle LED display to provide quick, clear, unambiguous readings wherever you use it. Automatic polarity selection, simple clear controls and the use of a single input terminal pair for all functions, provide for maximum convenience in operation.

The DM235 measures DC and AC volts, DC and AC current, and resistance in a total of 21 ranges (with an additional 5 diode test ranges), giving it the versatility to tackle any job. The display is a full 3½ digits reading to ±1999. Large, high brightness 8mm LEDs give clear, unambiguous readings from any angle, with an ultra wide-angle of view. And an LED display means proven life-time reliability.

The Sinclair DM235 is fully portable and has complete independence of AC line via operation from four C size (R14) cells. Alternatively, where continuous operation on the bench is required, an optional AC adaptor/charger is available. To increase flexibility still further, a rechargeable battery pack and an eveready carrying case with neck strap are also available as options, as is a 30kV probe.

A sensible new concept in meter design for use on the bench or in the field!

Up till now, choosing a meter suitable for use on the bench and in the field hasn’t been easy. Either you bought a bulky, bench instrument that was awkward to carry around, or a hand-held portable that was difficult to use on the bench. The Sinclair design is different — by keeping the thickness down to only a fraction over 1½” (40mm) and the weight down to under 1½ lb (650gms), we’ve produced an instrument that has all the advantages of conventional bench meters, but packs neatly into any tool kit or brief case.

• Fully protected • Accuracy is quoted as a percentage of reading • Resistance ranges provide a diode test facility at 5 decade steps of current • Automatic overrange indication by horizontal bars • Automatic decimil point placement • Facility for battery condition test • Reading rate 2½ per second • Temperature coefficient <0.05/°C of applicable accuracy specification • Dimensions 10" x 5.2" x 1.6" (255 x 146 x 40mm) • Weight less than 1½ lbs (640gms)

Features you’d expect to pay $200 or more for:

• Lightweight, but extremely rugged case (stackable) • Large, bright, wide angle LED display means proven life-time reliability. The display is a full 3½ digits reading to ±1999. Large, high brightness 8mm LEDs give clear, unambiguous readings from any angle, with an ultra wide-angle of view. And an LED display means proven life-time reliability.

The Sinclair DM235 at $89.95 has all the features you’ll most likely ever need. There is no reason to pay more, whether your application is to outfit a team of engineers, or for the hobbyist. It is fully protected, amazingly rugged (drop it without damage) lightweight, stackable...the advantages go on and on. And with Sinclair’s innovative “Portable Benchtop” design, the DM235 is truly the only meter you’ll ever need whether you are in the shop, on the road, or at work in the field.

A background of experience

It is part of a new range of instrumentation based on "state-of-the-art" circuit design and complements an impressive record of electronic world firsts — from programmable pocket calculators to miniature T.V.'s — where Sinclair has held a world lead through innovative electronics.

Supplied Complete with test leads and prods, and operator’s instruction manual

Try the Sinclair DM235 for 2 weeks — No obligation.

Or send coupon:

Starshine Group.
926 Anacapa St., Dept 636, Santa Barbara, CA 93101

Please promptly ship Sinclair DM235 Digital Multimeter(s) @$89.95 ea. (plus $3.95 shipping and insurance). If not completely satisfied I can return it within 7 weeks of receipt for a courteous, quick refund.

• AC adaptor/charger @$9.95 ea.
• Rechargeable battery pack @$19.95 ea. (Must be used with AC adaptor/charger)
• Heavy duty carrying case @$29.95 ea.
• 30V High voltage probe @$29.95 ea.
• Check or money order enclosed (CA res. add 6% sales tax).
• Change my credit card number below
• American Express
• Diners Club

Credit Card No. Exp. Date

Name
Address
City/State/Zip

Signature

Starshine Inc., 1978
COMMUNICATIONS RECEIVER BREAKTHROUGH

A FULLY SYNTHESIZED GENERAL COVERAGE RECEIVER AT AN ECONOMICAL PRICE

McKay Dymek brings you a fully synthesized general coverage receiver for less than you'd expect to pay for a single channel, single mode unit. The DR 55 is an economical solution to the need for WWV monitors for time and frequency calibration, back up capability for main receivers, and point to point communications receivers for industrial, governmental and marine uses.

Fully synthesized general coverage (50kHz to 29.7 MHz continuous)

Digital Phase Locked Loop synthesis is used providing quick, accurate and quartz crystal stable tuning at all frequencies.

A High Level RF front end allows use of CATV RF power transistors and a double balanced diode mixer followed by a crystal filter provides immunity from intermodulation and crossmodulation interference without the need for antenna preselector adjustments under normal conditions. (Matching DP 4944 passive RF preselector available for use near transmitters).

Class D AM envelope detection is used providing less than 1.5% T.H.D. at 90% modulation.

Automatically adjusting threshold peak noise limiters enhance reception on both AM and SSB-CW-RTTY modes during conditions of impulse noise interference.

Any channel can be selected in seconds using the rotary synthesizer programming switches. This extreme simplicity of operation allows frequency changes in a fraction of the time required with conventional mechanically tuned receivers.

Ceramic filters are provided as the standard final selectivity element with optional Collins mechanical filters for Upper and Lower SSB, CW and RTTY.

McKay Dymek Co. 30 DAY FREE TRIAL
111 South College Ave. (Apply in U.S. only) 800/854-7769
PO Box 5000 Calif. 800/472-1783
Claremont CA 91711

For more information Call or Write today.

Radio-Electronics is a member of the Institute of High Fidelity and is indexed in Applied Science & Technology Index and Readers Guide to Periodical Literature.

Radio-Electronics® Hugo Gernsback (1884-1967) founder
M. Harvey Gernsback, editor-in-chief and publisher
Larry Steckler, KTX-3644, CET, editor
Arthur Kleiman, K7Z-3288, managing editor
Robert F. Scott, CET, W2PWG, technical editor
Sonia Greenbaum, copy editor
Jack Darr, CET service editor
Leonard Feldman contributing high-fidelity editor
Karl Savon, semiconductor editor
David Lachenbruch, contributing editor
Earl “Doc” Savage, K4SDS, hobby editor
Vincent P. Cicenia, production manager
Barbara Fenimore, production manager
Harriet I. Matysko, circulation director
Arline R. Bailey, advertising coordinator

ADVERTISING SALES
Paul McGinnis
Director of Marketing

EAST
Stanley Levitan
Radio-Electronics
200 Park Ave. South
New York, NY 10003
(212) 777-6400

MIDWEST/Texas/Arkansas/Oklahoma.
Ralph Bergen
The Ralph Bergen Co.
540 Frontage Road—Suite 361-A
Northfield, Illinois 60093
(312) 445-1444

PACIFIC COAST
Mountain States
Jay Eisenberg
J.E. Publishers Representative Co.,
8732 Sunset Blvd.,
4th Floor,
Los Angeles, CA 90069
(213) 659-3810

Sales Mart Building
1485 Bayshore Blvd., Box 140
San Francisco, CA 94124
(415) 487-0125

HELP US FIGHT FOR YOUR LIFE
Have Your Blood Pressure Checked
American Heart Association
We're Fighting For Your Life
SAVE $25.00

Model 8100
Frequency Counter Kit
• Range: 20Hz to 100MHz
• High Sensitivity
• Resolution to 0.1Hz

Now you can forget about price/performance trade-offs when you select a frequency counter. In Sabtronics' Model 8100 kit you get all the characteristics of superior performance at a low, affordable price.

This frequency counter, employing LSI technology, has the performance and input characteristics you demand: guaranteed frequency range of 20Hz to 100MHz (10 Hz to 120MHz typical), selectable hi/lo impedance; superior sensitivity; selectable resolution and selectable attenuation. Plus an accurate time base with excellent stability.

An 8-digit LED display features gate activity indicator, leading zero suppression and overflow indicator. You would expect to find all these features only on high-priced instruments — or from Sabtronics' advanced digital technology.

$169.90 including shipping and handling.

Order both kits of 20Hz to 100MHz (10Hz to 120MHz typical) • Sensitivity: 15mV RMS, 20Hz to 50MHz (10mV typical), 25mV RMS, 50MHz to 100MHz (20mV typical) • Selectable Impedance: X1, X10 or X100 • Accuracy: ±1Hz plus time base accuracy • Aging Rate: ±5ppm/yr • Temperature Stability: ±10ppm, 0°C to 40°C • Resolution: 0.1Hz, 1Hz, 10Hz selectable • Display: 8-digit LED, overflow indicator, gate activity indicator • Overload Protection • Power Requirement: 9-15 VDC @ 330mA

Model 2000, 3½ Digit
DMM Kit
• 5 Functions, 28 Ranges
• Basic DCV Accuracy:
0.1% ±1 Digit

The amazing Sabtronics 2000 is the choice of both professionals and hobbyists. It's the only portable/bench DMM that offers so much performance for such an astonishingly low price.

You get basic DCV accuracy of 0.1% ±1 digit; 5 functions giving 28 ranges; readings to ±1999 with 100% overrange; overrange indication; input overload protection; automatic polarity; and automatic zeroing.

Special Offer! Save $25.00*
If you order both the frequency counter and DMM kits now, you pay only $144.90 including shipping and handling. You save $25.00 off the combined regular low price of $169.90. Order both kits now! This special offer good for a limited time only.

*Special offer good in USA only.

Making performance affordable.
Sabtronics
13426 Floyd Circle • Dallas, Texas 75243
Telephone 214/763-0984
THE TERM "BAUD" EXPLAINED
The article entitled "Digital Data Transmission—How A Computer Communicates" (May 1978 issue) provides a highly readable introduction to the subject that many novice computer enthusiasts will find enlightening. However, the author commits a "technical foul" in making the unqualified statement that the term "baud" is used interchangeably with the term "bits-per-second.

The term baud means the number of times-per-second the line condition changes. If the line condition represents the presence or absence of a single bit (as in two-state signaling), then the signaling speed in bauds is the same as bits-per-second. If, however, the signaling is not two-state, then bauds are not equal to bits-per-second. The latter condition exists, for instance, in "di-bit" or four-state signaling (see diagram), in which the baud rate is equivalent to the number of bits-per-second times two.

This explanation is an adaptation from Introduction to Teleprocessing by James Martin, a reference I recommend for those interested in further exploring the subject of digital data transmission.

MARVINO A. HILL
Los Angeles, CA

THE FUTURE OF ELECTRONICS
This is in answer to your September 1978 editorial in which you invited readers to send in their look at the future of electronics. Your No. 4 idea is not at all far out. At the very least, should gravity prove to be meta- or paraphysical, control of the successful anti-gravity device will almost certainly be electronic in nature.

Electronics touches all fields of activity, even if remotely. Thus, all one has to do is just settle back and enter the light-trance state to foresee some very likely developments in coming decades. Whatever they may be, electronics will play a major part in their initiation, development, production, and, yes, even in their eventual obsolescence. Here are my "predictions":

Transportation: In but half a century we will have seen a transit from the horse to 500-passenger aircraft; the motor car has changed our life so drastically that should we run out of fuel our society as we know it would die like the dinosaurs; and the locomotive has been relegated to hauling freight. And still the insatiable appetite for travel expands. One mode of transportation will revolutionize public, private and personal travel.

Clever Kleps
Test probes designed by your needs — Push to seize, push to release (all Kleps spring loaded).
Kleps 10. Boat hook clamp-grips wires, lugs, terminals. Accepts banana plug or bare wire lead. 4-3/4" long. $1.99
Kleps 20. Same, but 7" long. $1.69
Kleps 30. Completely flexible. Forked-tongue gripper accepts banana plug or bare lead. 6" long. $1.99
Kleps 40. Completely flexible, 3-segment automatic collet firmly grips wire ends, PC-board terminals, connector pins. Accepts banana plug or plain wire. 6-1/4" long. $2.89
Kleps 1. Economy Kleps for light line work (not tab quality). Meshing claws. 4-1/2" long. $1.09
All in red or black—specify. (Add 50¢ postage and handling). Write for complete catalog of test probes, plugs, sockets, connectors, earphones, headsets, miniature components.
Available through your local distributor, or write to:
RYE INDUSTRIES INC.
127 Spencer Place, Mamaroneck, N.Y. 10543
In Canada: Rye Industries (Canada) Ltd.
CIRCLE 22 ON FREE INFORMATION CARD

Where's the % screwdriver?
In a tool box, tools and parts are everywhere. They're hard to find. They get lost. (And they get dirty.)
With a Platt tool case, that wouldn't happen. It's designed so you'll know where everything is. Smaller tools are in individual pockets in our patented one-piece pallet. Larger tools and parts are in compartments. And, papers and order book are in lid pockets. (Everything is neat and clean.)
And Platt's tool case helps you look more professional. It comes in handsome, lightweight, durable ABS Thermoplastic. Or rich looking vinyl reinforced by ABS Thermoplastic. What's more, it also has a 3 year guarantee.
Contact us for complete information on Platt's full line of tool cases and your nearest distributor.

Cases for business and industry.
2301 S. Prairie Ave., Chicago, Ill. 60616 (312) 225-6670
CIRCLE 61 ON FREE INFORMATION CARD
ALL THE MOST WANTED FEATURES AT A MOST WANTED PRICE...

BIG 1/2" HIGH LCD DISPLAY
USE INDOORS OR OUT
200 HOUR 9V BATTERY LIFE
AUTO ZERO, POLARITY,
OVER RANGE INDICATION
100 mV DC F.S. SENSITIVITY
19 RANGES AND FUNCTIONS

$74.95

HICKOK

Here is the handfull of accuracy you've been waiting for. Handsomely encased. Compact. Efficient. Only 8 ounces. Hickok's exciting, new LX 303, 3½ digit Mini-Multiputer with high quality components, one year guarantee and rugged Cycolac® case offers features previously found only in expensive units...at a price under $75.00! So why wait any longer? The amazing LX 303 is here, NOW! Another American made test equipment breakthrough from Hickok, The Value Innovator. Order today!

Available accessories include AC adapter, padded vinyl carrying case, 40kV DC probe, 10 Amp DC shunt.

X10 DCV probe adapter available for protecting input up to 10KV.

Removable cvrt-r stores test lead set furnished as part of the unit.

SPECIFICATIONS:
DC VOLTS (5 RANGES): 0.1mV to 1000V; Accuracy ±0.5% rdg ±0.5% f.s.; Input impec: 10M; Max. input 1kV except 500V on 200mV range.
AC VOLTS (40Hz to 5kHz): 0.1V to 600V; Accuracy: ±1.0% rdg ±0.5% f.s. (-2dB max. at 5kHz); Max. input: 60CV.
RESISTANCE (6 LOW POWER RANGES): 0.1Ω to 20MΩ; Accuracy: ±0.5% rdg ±0.5% f.s. (±1.5% rdg on 20MΩ range); input protected to 120VAC all ranges.
DC currents (6 RANGES): 0.1mA to 100mA; Accuracy: ±1.0% rdg ±0.5% f.s.
DIMENSIONS AND WEIGHT: 5-7/8" x 3-3/8" x 1-3/4", 8 oz.; POWER: 9V battery (not included) or Hickok AC adapter; READ RATE: 3/sec.
You gotta shop around.

When you do, you’ll probably pick CIE. You can’t afford to settle for less when it comes to something like electronics training that could affect your whole life.
When you shop around for tires, you look for a bargain. After all, if it’s the same brand, better price — why not save money?

Education’s different. There’s no such thing as “same brand.” No two schools are alike. And, once you’ve made your choice, the training you get stays with you for the rest of your life.

So, shop around for your training. Not for the bargain. For the best. Thorough, professional training to give you pride and confidence.

* * *

If you talked to some of our graduates, chances are you’d find a lot of them shopped around for their training. They pretty much knew what was available. And they picked CIE as number one.

Why you should shop around yourself.

We hope you’ll shop around. Because, frankly, CIE isn’t for everyone.

There are other options for the hobbyist. If you’re the ambitious type — with serious career goals in electronics — take a close look at what we’ve planned for you at CIE.

What you should look for first.

Part of what makes electronics so interesting is it’s based on scientific discoveries — on ideas! So the first thing to look for is a program that starts with ideas and builds on them!

That’s what happens with CIE’s Auto-Programmed® Lessons. Each lesson takes one or two principles and helps you master them — before you start using them!

How practical is the training?

This is the next big important question. After all, your career will be built on what you can do — and on how well you do it.

Here are ways some of CIE’s troubleshooting programs help you get your “hands-on” training...

With CIE’s Experimental Electronics Laboratory...

When you build your own 5 MHz Triggered-Sweep, Solid-State Oscilloscope you take your first real professional step. You use it as a doctor uses an X-ray machine — to “read” waveform patterns...lock them in...study, understand and interpret them!

When you get your Zenith 19-inch Diagonal Solid-State Color TV you apply your new skills to some real on-the-job-type troubleshooting! You learn to trace signal flow...locate malfunctions...restore perfect operating standards...just as with any sophisticated electronics equipment!

When you work with a completely Solid-State Color Bar Generator — actually a TV signal transmitter — you study up to ten different patterns on your TV screen...explore digital logic circuits...observe the action of a crystal-controlled oscillator!

Of course, CIE offers a more advanced training program, too. But the main point is simply this:

All this training takes effort. But you’ll enjoy it. And it’s a real plus for a troubleshooting career!

Do you prepare for your FCC License?

Avoid regrets later. Check this out before you enroll in any program.

For some troubleshooting jobs, you must have your FCC License. For others, employers often consider it a mark in your favor. Either way, it’s government-certified proof of specific knowledge and skills!

More than half of CIE’s courses prepare you for the government-administered FCC License exam. In continuing surveys, nearly 4 out of 5 CIE graduates who take the exam get their Licenses!

Shop around...but send for CIE’s free school catalog first!

Mail the card. If it’s gone, cut out and mail the coupon. If you prefer to write, mention the name and date of this magazine. We’ll send you a copy of CIE’s FREE school catalog — plus a complete package of independent home study information! For your convenience, we’ll try to have a representative contact you to answer your questions. Mail the card or coupon — or write: CIE, 1776 East 17th St., Cleveland, OH 44114.

FREE CIE school catalog first!
These new **Persuader Antennas** low profile, extra long whip deliver performance equal to, or better than anything else on the road!

There’s a hand-wound, hand-tuned coil in the cup...

a major advance in antenna technology from the Antenna Pros field tested and field proven by thousands of CBers

Only $34.98 suggested retail. Compare with K-40 at $38.50 or any other antenna. You’ll see there’s no comparison.

5 year guarantee

Materials and workmanship of PERSUADER ANTENNAS (Models 13505 & 17605) are guaranteed for a full five years if this antenna is installed by the dealer and a full three years if this antenna is installed by the consumer.

Any part that fails within the guarantee period will be replaced absolutely free provided the registration card has been completely filled out and returned to Antenna Incorporated.

A word from the Old Pro:

When you buy this antenna, my reputation... built over 38 years in the antenna business... will be riding on your roof. I'm confident that the Persuader Antennas will persuade you... you've chosen the Best.

M.R. Friedberg, President
Antenna Incorporated

In stock at your dealer now...
or call the Antenna Hotline... 1-800-447-4700.
(Illinois: 800-332-4400; Sorry, no Hotline service in Alaska or Hawaii)

Charge to Visa or Master Charge... and we'll have your nearest dealer ship your Persuader Antenna promptly, in the mount and color of your choice. Hotline orders add $1.50 for shipping and handling. Applicable local taxes extra. Allow 2 to 4 weeks for delivery.

The family of fine antennas from the fine antenna family.

Antenna Incorporated
26301 Richmond Road, Cleveland, Ohio 44146 (216) 464-7075

In Canada: Cordon Import Canada Ltd., PO. Box 937 Hamilton, Ontario L8N 3P9
Antenna Incorporated, International Division, PO. Box 1202 Rockville Centre, New York 11571

CIRCLE 63 ON FREE INFORMATION CARD
These features will persuade you... The Persuader™ Antenna is Your Best Antenna Choice

60" Stainless Steel tapered Whip...and No Spring

The super-long whip increases the aperture of the antenna. This increases
- the signal capture area on reception
- the transmit signal and radiation intensity at the horizon
- bandwidth to well over a 40-channel capability

The .125" diameter whip is tapered, so shock is distributed evenly. There’s no spring to stretch, break, or bend the whip away from the straightest possible upright position.

Exclusive coil-in-cup design

Loading of most low-profile antennas is by a simple printed circuit board that can’t be tuned and will eat up your cable! These new Persuader antennas are completely pre-assembled and pre-tuned and feature an actual hand-wound, hand-tuned copper wire loading coil tested with 500 watts, rated at 100 watts continuous. It’s even more efficient than our base-loaded coils because it’s wound to a larger diameter, with fewer turns.

This unique design also involves fewer mechanical and electrical connectors — fewer resistive contacts between loading coil and cable terminations — less chance for dust, moisture or road gunk to contaminate the contacts.

This concept has been field tested by thousands of CBers in our Model 13503 (shorter whip, plain white cup). Your good buddies will tell you everything we say about it is true.

Available with Trunk-Lip or Magnet Mount

for performance:
- SWR of 1.5:1 or less across all 40 AM and SSB channels.
- Shorted-fed loading coil is DC-grounded for quiet performance; bleeds off static from rain, snow, air particles. Performance is virtually identical to body mount antennas.
- Center-roof placement of magnet mount provides your most uniformly omnidirectional signal. (Can also mount on trunk lid.)
- Unique Antenna incorporated design provides capacitive coupling. Aluminum plate puts the ground potential right at the mounting surface.

for convenience: Magnet and trunk lip, the two easiest installations! Place the antenna where you want it, plug the cable into the transceiver. No holes to drill. Readily removed for anti-theft protection. Magnet mount supplied with 12' RG-58/U coax cable, 2098 type connector, trunk lip mount with 17' of cable.

for magnet mount adherence:

Heavy-duty 2 1/2" magnet in plastic cup with soft rubber gasket. Holds at top highway speeds of 55 mph. (Trunk lip mount recommended for vinyl roof cars.) Since it won’t walk, it won’t detune! “Oil-can” effect of cup, resting on gasket, provides a larger magnet plane than if the magnet itself were touching the surface — yet there’s less weight on the car, less scratch potential.

All magnet mount benefits are standard... not an extra-cost accessory!

LETTERS

continued from page 16

poration: The Transmatter! It is inconceivable that electron flow could play a major role in bringing the matter transceIVER out of the sixth dimension and into the fifth, perhaps by the year 2000.

The workhorse locomotive will continue to be the major transport for heavy goods.

Two excellent substitutes besides anti-grav for the rails: freight transmitters and automated factories that will manufacture any product (including foodstuffs) locally upon demand. An automated factory that might use hydrogen from water as its raw material would certainly use electronics in 100 integral ways.

Entertainment: Stage plays have given way to movies, and movies in turn have been taken over by TV. The same play that was artfully done for 1978 airwaves, can carry its message via satellite simultaneously to easily a hundred million, or even a couple of billion viewers.

The future patron of the arts must be so enraptured by sight, sound, smell, etc., that he becomes the protagonist. While we might anticipate that we’ll tap into nerve endings surgically to heighten the total effect, it is more likely that a helmet fitted over your head will have the desired effect. Electronic? Of course.

Students of metaphysics declare that everyone who ever lived is recorded in the “Akashic” records “out there” in the sixth dimension. Assume that there is such a record, most certainly one day a workshop experimenter will discover the way to tap that great recording at will and select out one at a time of the billions of recordings that exist in that “other dimension.” Thus tuning across AM, FM, SSB, CB, etc. frequency bands.

Through the simple application of tuned resonance or PLL, we’ll separate each (recording) to be received serially, and the roar of “pure noise” will change to recognizable intelligence.

To any who say that everything’s been invented, I can only reply, “There are more things in heaven and earth, Horatio, than are dreamed of in your philosophy!”

A READER

Guyersville, CA

HEAT ENGINE EFFICIENCY

Mr. Smiles’ letter in the August 1978 issue merits congratulations for compactness, but I have never seen so much misinformation packed in so little space!

The limiting efficiency of heat engines (of which the internal combustion engine is one type and not the most efficient, at that) is determined by the second law of thermodynamics. According to this law, the limiting efficiency is determined by the equation:

$$\eta = \frac{T_h - T_c}{T_h}$$

where \(T_h\) represents the high-temperature side of the engine and \(T_c\) the low-temperature side of the engine.

For an internal combustion engine, the high temperature can be taken as the combustion temperature, which is approximately 1700°C or 3000 K (Kelvin or absolute temperature); my conversion is not exact, but the value is only approximate.

The low temperature is the temperature at which the gas is exhausted from the cylinder, which can be taken as 500 K. Then, the theoretical limiting efficiency of such an engine is easily calculated as 75%, which is far greater than life’s complaints about 40%.

It is true, of course, that present-day internal combustion engines are far less efficient than the value calculated above. This is due to practical limitations on what type of engines can be constructed economically, a far cry from the theoretical limitations Mr. Smiles quotes above.

However, there is an even greater flaw in his argument. This lies in assuming that the efficiency of converting light into electricity by a photovoltaic cell is limited by the same considerations that limit heat engines.

In fact such a cell is not a heat engine. The best analogy in this case is that of a storage battery that is charged and discharged at the same temperature. If heat engines were considered applied to this case, the above equation would indicate that \(\eta = 0\), so that no matter how much energy you could put into the battery, none would be extracted. However, real storage batteries are 80% to 90% efficient, as is the photocell. There is no theoretical reason why the efficiency could not be created as high as desired, although there may be practical reasons for not doing so.

DR. HOWARD MARK
Suffern, NY

CABLE TV CONVERTERS

With reference to the Looking Ahead article regarding the problem of cable TV converters used with VTR’s, you might be interested in a few of the tricks we’ve come up with to get around the converter hassle.

The first is quite simple: A few of the converter-only channels have harmonics that fall into the standard VHF TV broadcast frequencies, although not, of course, right on top of the existing channels. If you off-tune the fine-tuning adjustment far enough, these harmonics can be received as clearly as on Channels 2-13, without a converter box. Just what can be received this way will vary from cable company to cable company; obviously not all stations can be picked up without the little black box (actually ours is brown). For a start, Channel “11” comes in just off Channel 7.

Most color sets and some black-and-white sets have enough range to pull in these extra channels. Presumably, the tuners on VCR’s can also receive them (all our VTR’s are studio models without integral tuners, so I don’t know for sure).

The second trick is a bit more complex: We “borrowed” it from Phillips. Here in Canada converters cost around $100 a shot, except for Phillips’ little black box, which goes for $45. Rather than having a mass of buttons and a varactor tuner, their “converter” is just an oscillator that shifts everything up into the TV’s UHF frequency band, where the UHF tuner can sort out these extra channels, much like the front end of a superheterodyne radio. We’ve built up several circuits to do this, and, of course, they are very simple.

Thank you for the prolific video material you put into Radio-Electronics.

STEVE ROTH
The Underground Tube
Markham, Canada

FEBRUARY 1979
AP Products
Powerace Model 103
Breadboard Systems

The Powerace Series of Solderless breadboarding systems manufactured by AP Products adds the convenience of combining various built-in power supplies, meters, LED indicators, switches, debouncing circuits, and pulse and clock generators on the basic plug-in matrix boards. If you do a fair amount of IC breadboarding, the usefulness of built-in sources and monitors is well worth their additional cost.

The model 103 Powerace includes three fixed-voltage power supplies. The alternative is to use three separate, or even combined, supplies, which, with their bulk and interconnecting leads, add greatly to the cost of a basic breadboarding system and severely restrict its portability.

In the Powerace model 103, a slanted control panel contains the data and logic switches, power-supply distribution buses, a voltmeter and an ON-OFF switch. The nearly horizontal breadboarding section is a 160 terminal—a solderless panel composed of two AP Products Super Strips.

The Powerace model 103 has self-contained +5-volt power supplies, plus tracking +15-volt and −15-volt power supplies. Ripple and noise measurements are less than or equal to 10 mV under full load, and load and line regulation is better than 1% for all three power supplies. The 5-volt supply is current-rated to 650 mA, and the 15-volt supplies are rated to 250 mA each. The power supplies are protected with a 1-amp fuse in the transformer primary, and their outputs are brought out to four-terminal distribution buses.

The zero-center, 5% accuracy voltmeter is calibrated from −15 to +15 volts and is wired to a solderless bus strip on the panel. One side of the meter and its corresponding four terminals are wired to the power-supply ground.

Two LED driver/displays (L1 and L2) are mounted on the control panel; each consists of an LED and a single solderless terminal that is used to jumper to the logic points that will be monitored on the breadboard section. Each LED indicator is driven by a Darlington-transistor-connected circuit with an LED current-limiting resistor and a 100K base input resistor. The maximum input drive current is 1 mA.
An Extraordinary Offer to introduce you to the benefits of Membership in

ELECTRONICS BOOK CLUB
invites you to take this 1,302-page robotics library for only

$1.99

Only $1.99 for ALL FOUR!
Regular List Price $47.80
Top-Quality Hardbinding
Contains the very latest info on Robotics!
Almost 800 illustrations
Contains over 500,000 words
1,302-dated packed pages

Let us send you this 4-volume, 1,302-page robotics library as part of an unusual offer of a Trial Membership in Electronics Book Club. Here are quality hardbound volumes, each especially designed to help you increase your know-how, earning power, and enjoyment of electronics. Whatever your interest in electronics, you'll find Electronics Book Club offers practical, quality books that you can put to immediate use and enjoy!

This extraordinary offer is intended to prove to you through your own experience, that these very real advantages can be yours... that it is possible to keep up with the literature published in your areas of interest, and to save substantially while doing so. As part of your Trial Membership, you need purchase as few as four books during the coming 12 months. You would probably buy at least this many anyway, without the substantial savings offered through Club Membership.

To start your Membership on these attractive terms, simply fill out and mail the coupon today. You will receive the 4-volume Robotics Library for 10-day inspection. YOU NEED SEND NO MONEY. If you're not delighted, return the books within 10 days and your Trial Membership will be cancelled without cost or obligation.

ELECTRONICS BOOK CLUB, Blue Ridge Summit, Pa. 17214

CIRCLE 23 ON FREE INFORMATION CARD
Simpson Model 462 Digital Multimeter

SIMPSON ELECTRIC COMPANY (853 DUNDEE Ave., Elgin, IL 60120) has developed a very compact digital multimeter, the model 462. This DMM makes all the standard readings: AC/DC volts, ohms, and either AC or DC current, with an accuracy of 0.25% of reading. The display uses 3½-inch-high LED's that are large enough to be read 15 feet away.

Both AC and DC voltages start at a very low 0-200mV range. The DMM reads DC up to 1000 volts, and AC to 600 volts RMS. The resistance range can be read from 1.0 ohm to 20 megohms, with the lowest resistance range from 0-2000 ohms.

Here comes the handy part: Both voltage ranges and the resistance ranges are autoranging. You can read any voltage from 0.01 to 1000 VDC without any adjustment; all you have to do is move the test leads! Just "stick 'em on" and read the meter. Other features include fully automatic decimal-point placement and zeroing. Only the two lowest voltage ranges, 0-200 mV, are not autoranging. The lowest resistance range, however, is autoranging, and is selected by pressing the white AUTO pushbutton. All other ranges are manually selected by pressing one of five grey pushbuttons in the bottom row.

You select the desired reading by pressing one of four black pushbuttons in the top row, marked K-Ohms, mA, 200 mV and V. The AC/DC and ON-OFF switches are push-push controls. All other controls are of the standard latching type; when one is pushed, the other is released. The pushbuttons are spaced far enough apart to allow a normal human finger-tip to hit only the one desired. (I've seen earlier-model DMM's where you had to use a damn needle to hit 'em!)

The model 462 is housed in a neat, compact and insulating plastic case. The test leads are recessed, so bare metal is exposed at all, test prods are also included with the model 462. The handles are corrugated with a guard ring, and the points are sharp. The test clips are well insulated; they screw on and won't fall off, which can save you a lot of time fishing them out of tight places in the chassis that you happen to be servicing. The model 462 is powered by four heavy-duty type AF NiCad batteries. A special charging unit with a recessed plug comes with the instrument. Fully charged batteries provide eight hours of use. The charger can be left permanently plugged in for bench work. For portable use, just pull the charger plug and take off. For emergencies when the heavy-duty batteries are not available, four AA NiCad batteries can be used, but they will provide only six hours of use. continued on page 32
“General Electric is your most complete source for general line and industrial electronic components.”

Your reputation is our reputation
Tube Products Department • Owensboro, Kentucky 42301
Train with NTS for the MicroComputers, digital the first name

MicroComputers

The world of electronics is daily becoming more challenging. Technology is growing more specialized, and the importance of digital systems increases every day. Test instruments, home entertainment units and industrial control systems are all going digital. And now, NTS training programs include a wider choice of solid-state and digital equipment than ever before offered in any home study course: Advanced NTS/Heath digital color TV (25" diagonal with optional programming capability), NTS/Heath microcomputer, digital test equipment, digital stereo receiver (70 watts per channel), NTS compu-trainer, plus much more state-of-the-art equipment to make your training exciting and relevant.

The equipment you receive with NTS training programs is selected to provide you with a solid background in electronic systems. Kits and lessons are designed to work together to demonstrate electronic principles and applications. The kit-building not only shows you how electronic hardware functions, but how various circuit designs accomplish different purposes. Your lessons guide you through any number of experiments associated with many projects. This is the Project-Method, and it works. Step-by-step, you learn how and why digital electronics has become a part of our world, and the even bigger role it is sure to play in the future.

Whether you are looking for training in Consumer, Commercial, or Industrial electronics, NTS offers fourteen courses, some basic, many advanced, in several areas of electronics. An all-new full-color NTS catalog shows you what each course covers,
electronics of the future.
systems and more...from
in home study.

and every piece of equipment included.
Send for it today, and see for yourself what's really
happening in electronics training technology at NTS.
Find out how much has changed, and what new
directions the field is taking. You'll probably want to
be a part of it.
It's free. Just mail the card or coupon. Today.

NO OBLIGATION. NO SALESMAN WILL CALL.
APPROVED FOR VETERAN TRAINING.

NATIONAL TECHNICAL SCHOOLS
TECHNICAL TRADE TRAINING SINCE 1905
Resident and Home-Study Schools
400 South Figueroa St., Los Angeles, Calif. 90037

Please send FREE Color Catalog and Sample Lesson.
□ Color TV Servicing
□ B & W TV and Radio Servicing
□ FCC License Course
□ Electronic Communications
□ Electronics Technology
□ Audio Electronics Servicing
□ Digital Electronics
□ MicroComputers/MicroProcessors

Name

Address

Apartment Number Age

City

State Zip

□ Check if interested in G.I. Bill information
□ Check if interested ONLY in classroom training in Los Angeles.

professional microphones...by

Shure Brothers Inc., 222 Hartrey Ave., Evanston, IL 60204 In Canada: A. C. Simmonds & Son Limited
Manufacturers of high fidelity components, microphones, sound systems and related circuitry.

CIRCLE 2 ON FREE INFORMATION CARD
You have your own calculator. Why not a DMM?

EQUIPMENT REPORTS
continued from page 32

4400 words, this means sacrificing some functions, including one of the best—the EDIT command.

For maximum system flexibility and use, two external pieces of hardware are required: an audio cassette recorder, and a separate playback cassette machine. The system also supports a CRT, keyboard and printer.

The text editor, which occupies half of the program space, executes 20 commands. The AUTO command sets up automatic line numbering with user-specified increment size. Text files can be loaded, reserialized, recorded and printed. The RUN command executes an assembled program, the ASSEMBLE command calls the assembler, and the MANUSCRIPT command suppresses line numbers when listing. The EDIT command performs text file searches to change or delete selected alphanumeric characters within specified line-number ranges.

The assembler recognizes labels up to 10 characters long, and has five conventional fields: line number, label, mnemonic, operand and comment. Assembly can be performed from the text file that was previously created with the text editor or from tape. Programs longer than available memory storage space are assembled from tape.

The first assembler pass generates the symbolic table (label file) and outputs whatever errors are detectable at that stage. A second pass creates the object file and output listings.

An optional third assembler pass creates an object file in relocatable format. A series of 16 pseudo-ops allow you to control assembler features such as continuing assembly in spite of low severity errors, as well as storing data bytes.

There are six listings. First, a hexadecimal dump program that produces a formatted object-code output listing. The next four listings are commented source listings, including break detection, motor control, relocating loading and tape loader software. The system is recorded on a cassette tape for easy initialization. The cassette loading program must be performed manually since it prepares the computer to load the editor-assembler tape file itself.

The text file, a 24-page manual and the program listings are available for $30 from C. W. Moser, 3239 Linda Drive, Winston-Salem, N.C. 27106.

Hustler Model MOT
Monitor Antenna

WITH THE WIDESPREAD USE OF THREE-BAND (LOW-VHF, HIGH-VHF AND UHF) PROGRAMMABLE SCANNERS, MORE AND MORE ANTENNA MANUFACTURERS ARE MEETING THE DEMAND FOR COMPATIBLE THREE-BAND MONITOR ANTENNAS. NEW-ICRONICS CORPORATION (5800 Commerce Park Drive, Brookpark, OH 44142) HAS RECENTLY INTRODUCED THE HUSTLER MODEL MOT MOBILE ANTENNA.

The model MOT is available only as a trunk-mount unit. It performs well on the three frequency ranges for which it was designed—37-50 MHz, 170-174 MHz and 450-512 MHz.

The model MOT comes equipped with 16 feet of RG-58 coaxial cable, and is terminated with a Motorola antenna plug.

The model MOT is a center-trap antenna designed to act as a 16-inch one-quarter-wave whip when operating in the high-VHF band, and it automatically couples an additional 18 inches of active length (including resonant trap) when operating in the low-VHF band. The lower 16 inches is used as a three-quarter-wave whip in the UHF band.

The mounting assembly is firmly secured, both mechanically and electrically, to the trunk lid of a car by tightening two Allen-head set screws (a wrench is provided).

Because the entire antenna when mounted measures less than 3 feet, the model MOT poses no particular problem when used under normal mobile operating conditions. No tuning or pruning of the antenna is required; it is factory-pretuned.

In our tests, the model MOT proved most satisfactory for a low-cost, three-band monitor antenna. Remember that a mobile antenna uses the vehicle body as part of a complete system, and unless the manufacturer’s recommended application techniques are not followed closely, the antenna cannot be expected to perform at maximum efficiency.

The antenna comes in a blister package for rack display, with the element separated from the motor. The element is easily installed through a hole in a tightening nut and locked securely in place on the mount by a small wrench (also provided).

The model MOT monitoring antenna appears to be well designed and rugged enough to withstand most mobile monitoring applications. It is available for $24.95.

Pulse and function generators
for today’s digital world

Here are two new digital wave-form generators for today’s logic designers and digital troubleshooters.

They’re ideal for teaching, experimenting, or servicing digital-address TV tuners, digital binary instruments, digital clocks, small computers, calculators, TV games—practically anything digital.

• Pulse width adjustable from 100 nsec to 0.1 sec within 5Hz-5MHz range
• Output voltage adjustable from 0-15V to 6000, 0-6V at 50Ω
• On and off time independently adjustable
• Sine, sawtooth, and square-wave output 1Hz to 1MHz
• 4Vpp fixed-output for TTL and CMOS
• 10-V adjustable dc offset plus sweep
• Peak-to-peak output 0-20V at 600Ω

See them at your VIZ distributor.

VIZ Test Instruments Group
of VIZ Mfg. Co.
335 E. Price St., Philadelphia, PA 19144
INTEGRATED CIRCUITS MICROPROCESSORS LED'S SOCKETS CAPACITORS DIODES TRANSISTORS RESISTORS POTENTIOMETERS

One-Stop Component Center

EXCITING NEW KITS!!

Regulated Power Supply

- Uses LM 309K
- Heat sink provided
- P.C. board construction
- Provides a solid 1 amp @ 5V
- Includes components, hardware and instructions
- Size: 3-1/2" x 5" x 2" high

JE200 5v 1amp

4-Digit Clock Kit

- Bright .357" Int. red display
- Sequential flashing colon
- 12 or 24 hour operation
- Extruded aluminum case (black)
- Pressure switches for hours, minutes and hour functions
- Includes all components case and wall transformer
- Size: 3-1/4" x 1-3/4" x 1-1/4"

JE2206B

Function Generator Kit

- Provides 3 basic waveforms: sine, triangle & square wave
- Frequency range from 1 Hz to 100K Hz
- Output amplitude from 0-volts to over 6 volts (peak to peak)
- Uses a 12V supply or a ±6V split supply
- Includes chip, P.C. board, component and instructions

JE230

NOW!! OVER 300 AUTHORIZED DISTRIBUTORS...HERE'S JUST A SAMPLING:

ASK YOUR ELECTRONICS STORE TO STOCK JIM-PAK® TODAY!!

JIM-PAK® 1021 HOWARD AVENUE, SAN CARLOS, CALIFORNIA 94070 (415) 592-8097

INTEGRATED CIRCUITS MICROPROCESSORS LED'S SOCKETS CAPACITORS DIODES TRANSISTORS RESISTORS POTENTIOMETERS

CIRCLE 9 ON FREE INFORMATION CARD 35
TRUST US TO TAME YOUR ARC ENEMY.

High voltage used to be the enemy of field technicians.
In order to measure it accurately, they'd either have to tote bulky test equipment to the installation site, or tote the unit to the test bench.

Then, in 1967, ITT Pomona Electronics introduced the first high voltage test probe with a built-in meter.

This compact, lightweight instrument made high voltage trouble-shooting practical and convenient anywhere. And it became an instant success everywhere.

Now we make six different ITT Pomona Electronics high voltage test probes. There are models for color and black and white television, microwave ovens, neon signs, electronic air cleaner systems, etc.

Best of all, they're priced so low that every serviceman can have one along.

See our new catalog for details on the full high voltage test probe line. Plus more than 640 other products you know and trust.

ITT Pomona Electronics, 1500 East Ninth Street, Pomona, CA 91766 • Phone: (714) 623-3463 • TWX: 910-581-3822

AVAILABLE THROUGH YOUR FAVORITE ELECTRONIC PARTS DISTRIBUTOR

FREE 1979 YEARBOOK CATALOG
Contains 100 pages of adapters, cable assemblies, jacks, plugs, boxes, sockets, connectors, jumpers, clips, probes, patch cords, wire, and much more. Yours free upon request. See our pages in EEM.

Pomona Electronics ITT

CIRCLE 37 ON FREE INFORMATION CARD
An introduction to the latest innovation in electronic music synthesizers. The string synthesizer gives the soloist and small groups the background needed to enhance the performance.

MARVIN JONES

String synthesizers, and their recent popularity, represent the culmination of over a decade's worth of work in developing and improving electronic music synthesizers. String synthesizers are the first of what we expect will be a long line of special-purpose instruments designed to avoid the clutter of patch cords and the strong technical background required to run the early breeds of synthesizers. Recent surges of interest in guitar and drum synthesizers indicate that these instruments will follow in the string synthesizers' path.

It is very natural that the string synthesizer was the first special-purpose synthesizer to come along. Since the inception of popular music, one of the staples of the "hit record" sound has been the lush, flowing orchestrated backgrounds. Unfortunately, few vocalists and solo musicians do well enough to allow hiring orchestras to perform live. Thus, the lush background was always missing in concerts. Organs helped, but weren't quite the same. Then there's always the problem of being able to afford an orchestra for the recording session in the first place! String synthesizers have changed all that.

Now musicians are using these units to perform anything from country music to avant garde, in locations ranging from your neighborhood bar to Madison Square Garden!

Strangely enough, the basic circuitry in a string synthesizer is more a result of combo organ technology than of synthesizer technology. The rich moving sounds they produce are so powerful that most anyone (musician or not) gets a kick out of playing with them. And all the commercially available units use the same basic circuitry to achieve the effect of violins and cellos 'en masse.'

This article will describe how to build a professional-quality string synthesizer, but first let's take a look at how these magical machines are used, and then discuss how the circuitry works. The model 1550 synthesizer is of particular interest since it is available in kit form as well as assembled, and there are a number of options available such as stereo outputs and a microprocessor interface card. The instrument also produces a percussive electric-piano voicing.

How it is used

The majority of the features on string synthesizers can be found on the front panel:

- **GATE**
- **MIX**
- **PIANO**
- **OUTPUT**
- **SUSTAIN**
- **STRING**
- **Piano**
- **MOODULATION**
- **TUNE**
- **DEPTH**
- **RATE**
- **SPLIT**
- **LOW**
- **HIGH**
- **CEL**
- **VID**
- **SOLO MIX**
- **PIANO**
- **OFF ON POWER**

FIG. 1—LAYOUT OF THE CONTROL PANEL. It is operated with the left hand. Five jacks are provided for output and interfacing connections.
panel of the instrument. The front panel of the model 1550 is shown in Fig. 1. All connection points for outputs and interfacing are in the top row of the panel, and are provided via five ¼-inch phone jacks. The bottom two rows of the panel provide the multiple user controls which alter and mix the various voices of this instrument.

The GATE jack provides a voltage which steps from 0 to about +9 volts whenever a key is pressed on the keyboard. This allows the instrument to trigger external effects or processing equipment such as synthesizer modules. Many of the standard synthesizers manufactured today have an array of "systems interfacing" jacks to allow external signals to be processed and become the basis for more complex sounds with polyphonic synthesizer textures. When string synthesizers are used in this way, it is easy to synthesize "brass" sounds, and other special effects using the circuitry inside the synthesizer in conjunction with the string synthesizer.

The sustain jacks allow provisions for remote control of the amount of time it takes for a signal to fade out once the key is released. For those of you familiar with synthesizer terminology, this would actually relate to the "release" control on an ADSR (Attack, Delay, Sustain, Release) envelope generator. Note that there are separate, fully variable sustain controls for each of the two types of signals—string and piano. Some commercial units have only a long/short sustain switch, or no control at all. The most common use of the sustain jacks will be for sustain foot switches, which will operate much like the sustain pedal on an acoustic piano. When the two conductors of the jack are shorted together, the front panel sustain control will operate normally to set the minimum sustain time. When the foot switch contacts are opened, the sustain time increases to maximum as though the front panel control were turned to maximum. For the foot switch itself, a normally

![Schematic diagram of the main section of the instrument.](image-url)

FIG. 2—BASIC SCHEMATIC for the main section. This circuit contains the twelve identical tone blocks that develop the shaping, keying and mixing for the three octaves of each note.
closed momentary-contact switch can be used to provide action similar to acoustic piano sustain pedals, or a positive contact switch can be used to provide push-on, push-off sustain control action.

Internal design of the model 1550 synthesizer allows for use of variable foot pedals (such as pedal volume control voltage (0 to +5 volts) to remotely program the sustain times for either of the voices. This allows all the versatility of the front panel controls without requiring the musician to remove his hands from the keyboard.

The TUNE control is fairly standard. It allows the instrument to be tuned to other instruments, yet provides a full octave of transposition so you can extend the range of the instrument for special compositions. With a little practice, the TUNE control can even be used as a performance device, allowing orchestral glides or pitch blends for special effects.

Perhaps the most important and powerful controls on the model 1550 (or any string synthesizer) are those controls that allow the user to modify the operation of the choral singing and vibrato circuits. These controls are important in allowing each musician to alter the basic string sound to suit musical requirements or individual tastes. Unfortunately, this is where many commercial units fall short in the eyes of musicians. The choral singing circuit is responsible for taking the single "reedy" voice of the organ circuitry and making it sound as if there are a great number of simultaneous voices occurring. This effect is obtained by using analog delay lines to generate two "echoes" of the original signal. The time delay is short (constantly varying between 0.5 ms and 20 ms) that it is not heard as a distinct echo. Rather, it appears as if there is another instrument playing in unison with the original voice. With two delay lines, we can generate three-voice singing which is sufficient to confuse the human ear into believing it is hearing a large number of voices. By now you should see why this circuitry is so important to the effective generation of orchestral effects.

This synthesizer provides two controls for user alteration of choral singing effects. DEPTH determines the amount of choral singing in the effect. At minimum setting, there is no frequency modulation occurring at all, yielding a bland reed organ voice. This would be useful for basic combo organ effects, or for external processing as mentioned earlier. As the DEPTH control is advanced, the two delayed voices are frequency modulated by an increasing amount. At approximate mid-rotation, the typical string chorus with vibrato is achieved. Further rotation of the control creates very heavy vibrato and pitch deviations of about a semi-tone for special effects.

The RATE control varies the speed of pitch fluctuations (vibrato) in the chorusing circuitry. At minimum, the vibrato is so slow that it is not heard as actual pitch variations but as a rich, ethereal rolling effect similar to several phase shifters or flangers sweeping simultaneously. This control setting provides a thick pipe-organ effect that is actually spine-tingling! As it is advanced, the vibrato rate increases through normal settings to fast quivering vibrato for special effects. The adjacent LED indicates the speed of one of the low-frequency vibrato oscillators for use as a visual guide of control settings when you are on stage or in the studio.

The PIANO SOLO/MIX control is used to send the piano voice to either the master MIX output, or to the solo PIANO output. The control acts as a panning control, so the signal can be applied to the two outputs in any blend. When using only the MIX output, the PIANO control will act as a volume control for the amount of piano signal available in the master mix. When a standard 2-conductor 1/4-inch plug is used to carry the piano signal from the PIANO jack, the piano signal is disabled from the MIX jack and the PIANO MIX control will act as a volume control for the amount of signal appearing at the PIANO jack. When a 3-conductor plug is used (with no connection to the ring) for the piano output, the PIANO MIX control acts as a panning control to send variable amounts of piano signal to the two outputs. Interesting stereo imaging effects can be obtained with this configuration.

The large box of controls centered in the bottom of the panel is used to design the string voicing you desire. The SPLIT switch is used to select the point at which the keyboard can be divided. At position 1, the keyboard voicing will be split at the first octave. In position 2, the keyboard will split at the second octave. LED's show the selected split location at a glance. Once the split function is selected, the LOW MIX control will set the desired blend of violins and cellos for all keys below the selected split position. The performer can select violins only, cellos only, or any combination of the two. It should be mentioned here that the cellos are 2 octaves lower than the violins.

The HIGH MIX control serves a similar function for all keys above the selected keyboard split point. With these controls, you can easily configure the keyboard for the type of music you will be playing. For example, if the composition uses simple droning cello parts, but a violin part that moves and jumps over a wide range, then you would set the split switch for the first octave, and set the LOW mix for cellos and HIGH mix for violins. An infinite variety of voicings are available with these controls. The string mix and split controls take on added power when the stereo output is added to the unit. With the option installed, the selected split location can also become the point at which the stereo effect is split. Or, in an alternate stereo operation mode, the violins can be routed to one side and cellos to the other side. In this mode, the LOW and HIGH mix controls are instrumental in determining the "width" of the stereo effect by determining the violin/cello content of each half of the keyboard.

How it works

The schematic for the main circuit is shown in Fig. 2. Three of the four gates in IC6 generate a high-frequency clock signal (around 1 MHz.) This clock signal is applied to the Top-Octave Generator, IC7, where it is divided by the twelve integers required to produce the twelve equally tempered frequencies of a scale. These frequencies will be divided into the lower octaves inside each of their respective tone blocks. Since the keyboard used in this synthesizer is actually 3 octaves plus one note (the highest "C") additional circuitry must be provided for the tone generation of that extra note.

IC5 and associated resistors, capacitors, and diodes provide this function. This circuitry works exactly like the circuitry in the Tone Blocks, and will be discussed later. The additional circuitry in Fig. 2 shows the operation of the various front panel controls. The SPLIT switch, S2, generates a high (+V) or low (ground) logic signal which represents a high or low keyboard split location, respectively. The second section of S2 controls the LED SPLIT function indicators. Sustain controls, R52 and R54, generate control voltages that are variable from 0 to about +5 volts.

The selected control voltage is applied to the buses that run along the edge of the tone block circuit boards. Thus, this voltage is a master control that affects the sustain time of all thirty-seven notes of the keyboard. The sustain jacks, J1 and J2, provide an interrupt function for the sustain control voltage. When a plug is inserted into a jack, the voltage on that sustain bus can be remotely varied or switched (shunted) for variable sustain function. The MVH, MVL, MCH and MLI string voice signal busses (Mix Violins High, Mix Violins Low, Mix Cellos High, and Mix Cellos Low) are applied to mix controls, R55 and R56.

With these controls, the signals can be shunted to ground in the desired proportions. The resulting mixtures of string voices, as well as the raw piano-bus signal, is fed to additional circuitry for final processing.

In Fig. 2, also note that +V is applied to the common bus of the keyboard, and depression of any key provides, in effect, a logic signal to the tone block circuitry. A positive voltage designates a key being played. The open circuit of a released key is pulled back to ground by an input pull down resistor at each keying input of each tone block. Master buses running throughout the tone blocks also distribute +V, ground, and the split logic signal.
The circuitry for one of the twelve tone blocks is shown in Fig. 3. This circuitry generates the waveshaping, keying, and mixing for three octaves of any chromatic note. The twelve tone blocks are identical and all are contained on two large PC boards in addition to the top octave and highest “C” circuitry discussed in the main schematic.

The whole process begins with the input of a high-pitched squarewave from the top-octave generator. This waveform switches between +V and ground, and directly drives the input of the tone block circuitry. IC1 is a 4024 7-stage counter which divides the input frequency into lower octaves. Only the first five divisions, plus the original input, will be used. The first bank of NAND gates (IC4-b and -d, IC3-d and IC2-b and -c) are driven by the counter and used to convert the squarewave signals to pulse waves with a 25% duty cycle.

The harmonic content of this type waveform more closely approximates the sound of a violin. The high-octave violin signal is obtained at pin 4 of IC2-b, while the middle-octave violin appears at pin 10 of IC2-c, and the low violin at pin 11 of IC3-d. The three lowest octaves of NAND gate outputs are additionally fed through inverters consisting of IC4-c, IC3-a, and IC2-d. This inversion maintains proper phase relationships so the remaining waveshaping circuit will operate correctly.

Immediately after inversion, these waveforms are selected for use as the piano signal. At this point, these waveforms still have a 25% duty cycle. Finally, NAND gates IC4-a, IC3-b, and IC2-c are used to mix the inverted waveform with the non-inverted waveform which originated one octave higher. The result is a pulse wave with a 12.5% duty cycle. The extremely wide harmonic spacing occurring in this waveform very closely approximates a cello waveform, and is consequently used as the signal source for this voicing.

The remaining keying and mixing circuitry is roughly divided into three sections, one for each octave that will be keyed by the keyboard. Additionally, each of these three sections is further divided into a section for strings and another mixing circuit for the piano effect. The input terminal labelled K1–K12 is the lowest octave keying input. NOTE that there is actually only one input at this point to each tone block. However, this one point will be labelled differently for each chromatic tone block. For example: K1 will be in the “C” tone block, K2 in the “Cs” tone block, and so on through K12 in the “B” tone block.

When a key is depressed, the keying input jumps to a positive voltage. The first thing to happen is the piano keying.
The positive step-voltage that is dropped across R1 is differentiated by C1. The positive spike generated is sufficient to forward bias D2 and dump a charge on C2. Simultaneously, C1 is charging to absorb that +V which has been applied to it. By the time the positive charging spike for C2 falls and C1 has a full charge, D2 has become reverse biased, eliminating the front end of this circuit as a possible discharge path for the charge on C2. The only possible discharge is through R3 and R4 to the virtual ground of the piano mix bus (MXP). This R-C combination (R3, R4, C2) sets the maximum sustain time for the piano signal.

To get a variable amount of shorter sustain time, the voltage on the piano sustain bus (PSB) can be lowered from about +5 volts to ground with the front panel control. If this bus is anywhere lower than the peak charge of C2 (about +5 volts), D3 becomes forward biased, offering C2 a lower impedance discharge path through R2. This causes the charge on C2 to fall more rapidly than normal thus making the sustain time shorter. When the key is released, the drop in keying voltage across R1 causes a negative spike to be generated by C1. Diode D1 becomes forward-biased by the spike and shorts it to ground. This causes the charge on C2 to fall more rapidly than normal since the time constant is doubled.

When the key is released, the drop in keying voltage across R1 causes a negative spike to be generated by C1. Diode D1 becomes forward-biased by the spike and shorts it to ground. Resistor R1 will then serve to quickly discharge C1, preparing the piano keying circuit for the next key depression.

The only remaining section of the piano circuit is the signal-gating (envelope or amplitude contour) circuitry built around D4 and D5. This circuit is the standard diode-keying configuration that has been used in electronic organs for quite some time. The pulse wave being used as the piano-signal source is being continuously applied to the cathode of D4. While the piano circuit is at rest, C2 is discharged leaving the anode of D4 at ground. This leaves D4 continuously reverse-biased and stops any signal transmission through it. When a key is pressed, a pattern of rising and falling DC voltage is generated across C2 as described earlier. This voltage will now forward bias D4 and allow the piano signal to pass. When the piano signal happens to be at a high level (the top of the pulse wave), the voltage at the junction of D4 and D5 will be pulled up to a DC voltage equivalent to the charge remaining on C2. When the piano pulse wave switches to a low level (near ground), D4 conducts and the junction of D4 and D5 will be pulled nearly to ground.

This high-speed (audio frequency) switching continues until the C2 charge has been depleted via the discharge path through R3 and R4. From the previous discussion, we see that the charge on C2 has a sharp increase followed by a long decay. The audio signal passed through D4 and D5 takes on the same attack and decay characteristics, thus duplicating the effect of a plucked or hammered piano string.

Diode D5 is used primarily to avoid interaction with other notes which may be simultaneously applied to the audio mix buses. In addition to being one of the major determinants of the timing for the piano effect, R4 is also used as a mixing resistor and gain-setting component for this one piano note.

The same low-octave keying input we have been discussing for the piano circuits will also be used to gate a violin and cello sound at the same time. The keying voltage applied to R1 will forward bias D6 and cause C3 to charge via R5. The larger value of C3 and the current limiting of R5 cause C3 to charge more slowly, generating a "softer" attack, to more closely imitate the build-up that occurs when a section of strings bows a new note. This DC voltage is concurrently applied to two diode keying sections. Resistor R8, D8, and D9 are used to gate the low-octave cello signal being applied to D8. Resistor R7, D10, and D11 impose envelope control on the violin signal.

The entire keying section for the top octaves of the tone block is identical to the circuitry we have just covered. The high-octave keying inputs are K25 through K36, and the high-octave signal sources are tapped from higher frequency outputs of the NAND gate waveshaping circuit. Also, the violin and cello outputs from the high-octave keying are permanently connected to the high-violin and cello-mix buses. Otherwise, the circuits are the same.

Next month we will discuss the power supply and the middle-octave mixing and chording circuits and then go on to construction details. This will include foil patterns for the PC boards and diagrams showing parts placement.
Solar Tracking System

Solar-energy collectors work best when constantly oriented to trap the most energy from the sun. This electronic servo system swivels the collector panel so it follows the sun across the sky.

RODNEY A. KREUTER

The most common uses for solar energy systems today are space heating and hot-water preheating. These systems generally use nonmovable flat-plate collectors; and for a low-temperature system, flat plate is probably the best choice. If, however, your system needs high-temperature water or steam, or uses solar cells to generate electricity, a tracking system is the only way to go.

A solar tracking system consists of a motor-sensor combination that locates the sun and points a collector toward it. A non-sensing system can even be built using a constant speed motor, but such a system has more disadvantages than advantages.

The solar collector tracking system discussed in this article is intended as a guide, not as an absolute system. (For example, why track the sun if there is little or no energy to be gained?) We'll examine how to construct a simple circuit using a comparator that will not let the motor operate until a certain level of sunlight is present.

The basic system

Figure 1 shows a block diagram of the solar tracking system, which consists of four basic modules: 1) a pair of phototransistor sensors; 2) a difference amplifier; 3) a deadband amplifier; and 4) a servomotor and motor drive transistors.

Figure 2 shows how the phototransistor sensor is constructed. Note that the phototransistors are mounted on perpendicular surfaces so that a shadow effect occurs when the sun is not directly overhead.

The difference amplifier (see Fig. 1) subtracts the output of sensor B from the output of sensor A and multiplies the result by about 4.7.

The deadband amplifier is a fairly unique device. It amplifies the output of the difference amplifier by about 2.5 only if the output of the difference amplifier is greater than 0.6 volt.

FIG. 2—PHOTOTRANSISTOR SENSORS are mounted at right angles to each other. The output of the sensors are equal when the sun is directly over the apex.

FIG. 3—PHOTOTRANSISTOR SENSORS must have matched outputs for correct circuit operation. Circuit above provides easy method for obtaining matched outputs.
or less than -0.6 volt. If the output of the difference amplifier is between -0.6 volt and 0.6 volt, the deadband amplifier provides a stable zero volt output.

The servomotor drive circuit consists of four push-pull Darlington connected transistors, which produce enough current to drive a fair-sized 12-volt motor.

Circuit operation

Two phototransistors are used as brightness sensors. When operated from a constant-voltage power supply, the collector current of each transistor is proportional to the amount of illumination they receive.

Due to variations in manufacturing processes, the phototransistors may not be well matched, so it is a good idea to buy a few extra phototransistors and match them yourself. The procedure is very simple.

First, breadboard the circuit shown in Fig. 3. Place two phototransistors side by side with the flat side down. Shine a diffused light source (a handkerchief placed over a bare high-intensity bulb will do) on the transistors. Note that the base connection is not used.

Apply power to the circuit and measure the voltage from one of the collectors to ground; this will be your reference transistor. Adjust the distance of the light source so that the reference voltage reads about 3. Measure the collector voltage of the second transistor and write it down. Repeat this procedure with a reference voltage of 6 and 9, measuring all the transistors against the same reference transistor. Select the two transistors that give the closest results for your sensors.

PARTS LIST

All resistors ½ watt, 10%.
R1 — 1000 ohms (to start — see text)
R2 — 680 ohms (to start — see text)
R3 — 500-ohm trimmer (to start — see text)
R4, R6, R12, R13 — 100,000 ohms
R5, R7 — 470,000 ohms
R8 — 5000-ohm trimmer
R9 — 10,000 ohms
R14, R15 — 1000 ohms
C1—C4 — 0.0001 μF
C5, C6 — 0.1 μF
D1—D4 — 1N914
D5, D6 — 50-volt rectifiers (current rating depends on motor current)
Al, A2 — Op-amps, dual 741, 1558, 747, two 741’s, two 301’s, etc. Pin numbers depend on type and case style; 3900 or 324 types not recommended.
S1, S2 — Normally closed switches
M1 — 12-volt reversible motor
Misc. — Power supply, case, shielded cable for sensors, etc.
This matching may sound confusing but remember, you need two transistors that will give equal output voltages when illuminated equally. Small variations can be compensated for by the circuit, so it's not critical if the transistors are not matched exactly.

Figure 4 shows the schematic diagram of the tracking system. Difference amplifier A1 is fairly straightforward. Its output can vary from about −11 to 11 volts. The output polarity determines the direction the collector must move and the magnitude determines how far it must move. The whole idea is to move the collector and sensors so that the two phototransistors are equally illuminated by the sun. This condition occurs when the outputs from the two phototransistors are equal.

In electronics, two voltages are almost never equal for any period of time. I learned this the hard way by trying to get a simple comparator to output zero volts when the two input voltages were "equal." I didn't take drift into account.

The deadband circuit is an "almost equal" circuit. If the output of the difference amplifier is almost zero (meaning the two sensor outputs are almost equal), the output of the deadband amplifier will be zero. If the output of the difference amplifier exceeds the "deadband range," the output of the deadband amplifier heads for the rails (positive or negative saturation, in this case −12 or 12 volts). The amount of deadband output is adjustable by R8, and, with the values shown, can vary from about ±0.37 volt to ±0.95 volt.

Transistors Q3–Q6 are used as current amplifiers since the output of the op-amp cannot drive a motor directly. Almost any transistor types can be used as long as they can handle the motor current.

Normally closed switches S1 and S2 are placed at the two travel limits of the collector. When the collector reaches one of these limits, a switch opens, and this places a diode in the motor's current path. If the motor and diodes are connected correctly, this will prevent the collector from moving any farther in this direction but will allow the motor to reverse the current. You may have to reverse the polarity of both diodes depending on the type motor used.

Construciton

Since only one IC is used for the tracking system, almost any type of construction is possible, including PC or perforated board construction and the component layout is not critical.

Heat-sink output transistors Q4 and Q6 if your motor draws more than 500 mA.

Use trimmers for R1 and R8 since they are only set once.

Mount the sensors on the axle of the collector, not on the collector itself. Mounting them on the collector would cause the collector to overshadow the sensors in the morning (see Fig. 5). Paint the area around the sensors with flat black paint so that they will not respond to reflections.

Use a 12-volt reversible motor that draws less than approximately 6 amps with the transistors shown. The power supply must be able to handle the total motor load so make sure it is sized accordingly. It's a good idea to provide the final transistors with their own unregulated power supply, and the rest of the circuit should have a regulated 12-volt supply. The total current drawn by the op-amps is negligible, so a pair of Zener diodes should be adequate.

The motor should be geared down so that running flat out, the collector takes about 10 minutes to travel from one limit to the other. A small motor geared down as much as this will move a fair-sized collector.

Adjustments

Since the angle of the sun changes very slowly throughout the year, changing the angle of the collector once a month should be sufficient.

For the following electrical adjustments you will need: a bright sunny day, the circuit described in this article and a geared-down motor connected to a collector-sensor; a VOM; and a 12-volt bipolar power supply.

With the collector and sensors pointed directly at the sun and the motor disconnected, measure the output of the two sensors. Resistors R1, R2 and R3 may have to be changed to compensate for transistor variations. Even though they should be matched, the light current can vary by a factor of 100. For example, with a white light source of 2 mw-per-cm² falling on a 2N5777, the collector current can vary from 0.5 mA to 50 mA. (Remember that while you are testing, the sun is moving, so you must keep the collector pointed directly at the sun.)

Select an R3 resistor that will yield an output of about 3 volts with a bright sun. Raising the resistance will drop the voltage. Resistor R2 should equal about 70% of resistor R3 and resistor R1 about 60%; use the closest standard values.

After selecting R1, R2 and R3, point the sensors directly at the sun again and measure Vc and Vs. Adjust R1 until these values are equal, and connect the motor.

The setting of R8 determines how far the sun must move before the tracking system compensates for the movement. Your system requirements will determine your choice. If the system seems to "hunt," increase the setting of R8.
Part 2—A host of precision instruments are required if you want to put high-quality audio equipment through its paces. This month we cover the test station's power supply and timebase circuits.

RAY DAVISON

THIS, THE SECOND ARTICLE DESCRIBING Fidelity Sound's model 101 Audio Test System describes the power supply and timebase circuits and presents the construction details for these sections. Last month, we presented the overall block diagram and described the general operation of the model 101.

The traditional straightforward and largely self-explanatory power-supply circuit is shown in Fig. 3. The timebase and audio-generator output amplifiers are supplied by single-stage regulated supply. The rest of the analog circuitry is double-regulated. The pulse and counter sections have individual regulators. The diode/R-C circuits coming directly from the secondary of the transformer provide the trigger for the counter timebase.

The timebase circuit is shown in Fig. 4. The basis of this section is oscillator IC201. It is an emitter-coupled multivibrator that can be considered as an integrator and a comparator in a closed loop. The output of the comparator will always be one of two possible voltages. The output of the integrator will be a straight line whose slope is a function of the

FIG. 3—THE POWER SUPPLY delivers all the operating voltages required by the various internal circuits. Some supply sources are double-regulated.
FIG. 4—THE TIMEBASE GENERATOR is designed around the Exar 2207 current-controlled oscillator. Frequency is determined by switchable capacitors and two slide pots on the front panel.

TIMEBASE

Resistors, 1/4 watt, 5% unless otherwise specified
R201, R208—1000 ohms
R202, R204—1.5 megohms
R203, R205, R218, R219, R222, R228—R230—10,000 ohms
R206, R209, R212, R213, R221, R223—R225, R227, R232, R240—50,000 ohms, trimmer
R207—1 megohm
R210—200,000 ohms
R211, R214, R226, R233, R239—100,000 ohms
R215, R216—1200 ohms
R217—310 ohms
R220—51,000 ohms
R231—7500 ohms

Capacitors
C201, C202—100 µF, 10 volts
C203—82 pF
C204—0.001 µF
C205—0.01 µF
C206—0.1 µF
C207—1.0 µF, aluminum electrolytic, low voltage, low leakage. See text.
C208—10 µF, aluminum electrolytic, low voltage, low leakage. See text.
C209—100 µF, aluminum electrolytic, low voltage, low leakage. See text.

C210—470 µF, aluminum electrolytic, low voltage, low leakage. See text.
C211—Q204—TIS97
IC201—XR2207
IC202, IC203—LM318
IC204—LM377
IC205—LM741
OV201—LA10 over-voltage limiter
F201—2-amp fuse
S2, S9—SPDT toggle switch
S3—SPDT rotary switch
S4, S8—SPDT toggle switch
S5—DPDT toggle switch
J1—BNC panel jack
POWER SUPPLY

Resistors 1/4 watt, 5% unless otherwise noted
R101 - 52.000 ohms
R102 - 18.000 ohms
R103, R104 - 100.000 ohms
R105 - 2700 ohms

Capacitors
C101 - 1000-µF, 16-volt, electrolytic (two 500-µF in parallel)
C102 - 500-µF, 16-volt electrolytic
C103, C104, C107, C108 - 0.01-µF disc

R106 - 330 ohms

C105, C106, C115 - 10-µF, 16-volt electrolytic
C109, C110 - 100-µF, 16-volt electrolytic
C111 - 33-µF, 16-volt electrolytic
C112 - 4.7-µF, 16-volt electrolytic
C113, C114 - 0.001-µF disc

Miscellaneous
MOV1-V130LA 10 thyristor
D101-D104 - 1N4001
D105-D106 - 1N4148
IC101, IC105 - 7812
IC102 - 7912
IC103 - 4194
IC104 - 309H
LED1, LED2 -
T101 - 24-volt, 1-amp transformer
F1 -
S1 - SPST toggle switch
S21 - DP3T toggle switch

The following are available from FSI, 1894 Commercenter W., No. 105, San Bernardino, CA 92408: Complete kit, $495.00; cabinet and circuit board, $115.00. Set of semiconductors, $195.00; seven slide pots with knobs, $17.00, set of trimmers including four multiturn pots, $17.00. California residents add state and local taxes as applicable.

FOIL PATTERN of the component side of the PC board overlayed with the outlines of the power supply and timebase sections that are shown in the parts-placement illustration below.

COMPONENT LAYOUT for the power supply and timebase generator are shown. Power supply parts are coded in the 100 series and timebase parts in the 200 series. Components on the front panel have codes beginning with 1.
charging current supplied to the capacitor. The output of the integrator is then fed back to the comparator.

The integrator is essentially a constant-current source applied to a capacitor. If the current applied to the capacitor is constant, the change in voltage across that capacitor will also be constant. When power is applied, the output of the comparator begins to charge the capacitor through the constant-current source. This causes the voltage across the capacitors to rise linearly. When that voltage, which is applied back to the comparator, reaches a predetermined point, the comparator switches states and begins to charge the capacitor in the reverse direction. This causes the voltage across the integrating capacitor to change linearly in the opposite direction.

The result is that the output of the integrator is a triangle wave and the output of the comparator is a squarewave. The peaks of the triangle wave align with the edges of the squarewave since it is these edges that cause the integrator to change its output slope. If the charging rates represented by the plus and minus slopes of the integrator are equal, the slopes will be of equal magnitude and opposite sign, and, hence, both the triangle wave and the squarewave will be symmetrical.

The output of the integrator is at IC201 pin 14, and the comparator output is at pin 13. Both these outputs are buffered and do not represent the actual oscillator voltages.

continued on page 78
ONE OF THE MAJOR CONSIDERATIONS FACING THE amateur electronic experimenter and constructor is the physical layout and appearance of the finished project. In the days of vacuum tube and 12 by 16 in. chassis, most projects could be finished off nicely by adding a front panel and slipping the whole thing into a cabinet that could be handcrafted from wood or readily available sheet metals. Today, most electronic projects are assembled on printed-circuit boards or similar materials and are sometimes only one-tenth the size of its old vacuum-tube equivalent.

To select a case or enclosure that is most suitable for your project, you must have a pretty good idea as to what is available. Too, if your make and model specified in a magazine article is not available through your usual supplier, you should be aware of equivalents and possible substitutes. These charts list off-the-shelf enclosures, cases and chassis boxes in various material combinations, colors and sizes.

These charts list cases and cabinets not covered in the June and October 1978 issues of Radio-Electronics. While every effort has been made to ensure that these charts are as complete as possible, it is not always possible to include all the options and ordering information. It is, therefore, a good idea to obtain catalogs from the manufacturers.

To find out more about the products or distributors, a list of addresses of each manufacturer follows. To obtain a catalog, simply circle the corresponding No. on the Free Information card.

Apollo - Box 245, Vaughnsville, OH 45693. Circle No. 135.

Buckeye - 555G Marion Road, Columbus, OH 43207. Circle No. 136.

Intra Feb., Inc. - 660 Lenfest Rd. San Jose, CA 95133. Circle No. 139.

Lafayette Electronics - 111 Jericho Turnpike, Syosset, NY 11791. Circle No. 140.

La France - Enterprise and Executive Avenues, Philadelphia PA 19153. Circle No. 141.

LMB Products - 725 Ceres Avenue, Los Angeles, CA 90021. Circle No. 142.

Premier Metals - 361 Canal Place, Bronx, NY 10451. Circle No. 144.

Radio Shack - 2617 West 7th Street, Ft. Worth TX 76107. Circle No. 144.

Ross/Stahl - 500 Maple Street, Belding, MI 48809. Circle No. 145.

Scientific-Atlanta - Optima Enclosures-2166 Mountain Industrial Road, Tucker, GA 30084. Circle No. 146.

Vero Electronics, Inc. - 171 Bridge Road, Hauppauge, NY 11787. (516) 234-0400. Circle No. 149.

Zoro Mfg. - 777 Front Street, Burbank, CA 91503. Circle No. 150.

INSTRUMENT CASES

Internal side walls are grooved to position and hold PC boards. Both base and two side panels are removable for easy access to contents.

<table>
<thead>
<tr>
<th>Length</th>
<th>Height</th>
<th>Depth</th>
<th>Mfr.</th>
<th>Model No.</th>
<th>Case Material</th>
<th>Comments</th>
<th>Options</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.21</td>
<td>1.21</td>
<td>1.6</td>
<td>Vector</td>
<td>W-16-12-12B</td>
<td>Al</td>
<td>holds 1/16" p.c. cards</td>
<td>inner panels, base</td>
<td>consult mfr for latest colors</td>
</tr>
<tr>
<td>1.51</td>
<td>1.51</td>
<td>2.0</td>
<td>Vector</td>
<td>W20-15-15B</td>
<td>Al</td>
<td>holds 1/16" p.c. cards</td>
<td>inner panels, base</td>
<td>consult mfr for latest colors</td>
</tr>
<tr>
<td>2.31</td>
<td>3.81</td>
<td>1.0</td>
<td>Vector</td>
<td>W10-23-38B</td>
<td>Al</td>
<td>holds 1/16" p.c. cards</td>
<td>inner panels, base</td>
<td>consult mfr for latest colors</td>
</tr>
<tr>
<td>Length</td>
<td>Height</td>
<td>Depth</td>
<td>Mfr.</td>
<td>Model No.</td>
<td>Case Material</td>
<td>Comments</td>
<td>Options</td>
<td>Color</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>-----------</td>
<td>---------------</td>
<td>----------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>2.85</td>
<td>2.11</td>
<td>4.5</td>
<td>Vector</td>
<td>W45-28-21B</td>
<td>Al</td>
<td>holds 1/16" p.c. cards</td>
<td>inner panels, base</td>
<td>consult mfr for latest colors</td>
</tr>
<tr>
<td>2.85</td>
<td>4.61</td>
<td>1.6</td>
<td>Vector</td>
<td>W16-28-46B</td>
<td>Al</td>
<td>holds 1/16" p.c. cards</td>
<td>inner panels, base</td>
<td>consult mfr for latest colors</td>
</tr>
<tr>
<td>2.85</td>
<td>4.61</td>
<td>2.0</td>
<td>Vector</td>
<td>W20-28-46B</td>
<td>Al</td>
<td>holds 1/16" p.c. cards</td>
<td>inner panels, base</td>
<td>consult mfr for latest colors</td>
</tr>
<tr>
<td>3.10</td>
<td>2.11</td>
<td>1.6</td>
<td>Vector</td>
<td>W16-31-21B</td>
<td>Al</td>
<td>holds 1/16" p.c. cards</td>
<td>inner panels, base</td>
<td>consult mfr for latest colors</td>
</tr>
<tr>
<td>3.10</td>
<td>3.10</td>
<td>1.6</td>
<td>Vector</td>
<td>W16-31-31B</td>
<td>Al</td>
<td>holds 1/16" p.c. cards</td>
<td>inner panels, base; bezels</td>
<td>consult mfr for latest colors</td>
</tr>
<tr>
<td>3.10</td>
<td>3.10</td>
<td>2.0</td>
<td>Vector</td>
<td>W20-31-31B</td>
<td>Al</td>
<td>holds 1/16" p.c. cards</td>
<td>inner panels, base; bezels</td>
<td>consult mfr for latest colors</td>
</tr>
<tr>
<td>3.10</td>
<td>4.17</td>
<td>2.0</td>
<td>Vector</td>
<td>W20-42-31B</td>
<td>Al</td>
<td>holds 1/16" p.c. cards</td>
<td>inner panels, base; bezels</td>
<td>consult mfr for latest colors</td>
</tr>
<tr>
<td>4.61</td>
<td>2.11</td>
<td>4.5</td>
<td>Vector</td>
<td>W45-46-21B</td>
<td>Al</td>
<td>holds 1/16" p.c. cards</td>
<td>inner panels, base</td>
<td>consult mfr for latest colors</td>
</tr>
<tr>
<td>4.61</td>
<td>3.10</td>
<td>2.0</td>
<td>Vector</td>
<td>W20-46-31B</td>
<td>Al</td>
<td>holds 1/16" p.c. cards</td>
<td>inner panels, base</td>
<td>consult mfr for latest colors</td>
</tr>
<tr>
<td>4.61</td>
<td>3.61</td>
<td>2.0</td>
<td>Vector</td>
<td>W20-46-36B</td>
<td>Al</td>
<td>holds 1/16" p.c. cards</td>
<td>inner panels, base</td>
<td>consult mfr for latest colors</td>
</tr>
<tr>
<td>4.61</td>
<td>4.62</td>
<td>3.0</td>
<td>Vector</td>
<td>W30-46-46B</td>
<td>Al</td>
<td>holds 1/16" p.c. cards</td>
<td>inner panels, base; bezels</td>
<td>consult mfr for latest colors</td>
</tr>
<tr>
<td>4.61</td>
<td>6.17</td>
<td>2.0</td>
<td>Vector</td>
<td>W20-46-62B</td>
<td>Al</td>
<td>holds 1/16" p.c. cards</td>
<td>inner panels, base</td>
<td>consult mfr for latest colors</td>
</tr>
<tr>
<td>4.61</td>
<td>6.61</td>
<td>2.0</td>
<td>Vector</td>
<td>W20-46-66B</td>
<td>Al</td>
<td>holds 1/16" p.c. cards</td>
<td>inner panels, base; bezels</td>
<td>consult mfr for latest colors</td>
</tr>
<tr>
<td>6.61</td>
<td>3.61</td>
<td>2.0</td>
<td>Vector</td>
<td>W20-66-36B</td>
<td>Al</td>
<td>holds 1/16" p.c. cards</td>
<td>inner panels, base</td>
<td>consult mfr for latest colors</td>
</tr>
<tr>
<td>6.61</td>
<td>4.61</td>
<td>2.0</td>
<td>Vector</td>
<td>W20-66-46B</td>
<td>Al</td>
<td>holds 1/16" p.c. cards</td>
<td>inner panels, base; slide panels, bezels</td>
<td>consult mfr for latest colors</td>
</tr>
<tr>
<td>6.61</td>
<td>4.61</td>
<td>3.0</td>
<td>Vector</td>
<td>W30-66-46B</td>
<td>Al</td>
<td>holds 1/16" p.c. cards</td>
<td>inner panels, base; slide panels, bezels</td>
<td>consult mfr for latest colors</td>
</tr>
<tr>
<td>6.61</td>
<td>4.61</td>
<td>4.5</td>
<td>Vector</td>
<td>W45-66-46B</td>
<td>Al</td>
<td>holds 1/16" p.c. cards</td>
<td>inner panels, base; slide panels, bezels</td>
<td>consult mfr for latest colors</td>
</tr>
<tr>
<td>8.61</td>
<td>4.61</td>
<td>3.0</td>
<td>Vector</td>
<td>W30-86-46B</td>
<td>Al</td>
<td>holds 1/16" p.c. cards</td>
<td>inner panels, base; slide panels, bezels</td>
<td>consult mfr for latest colors</td>
</tr>
<tr>
<td>8.61</td>
<td>4.61</td>
<td>4.5</td>
<td>Vector</td>
<td>W45-86-46B</td>
<td>Al</td>
<td>holds 1/16" p.c. cards</td>
<td>inner panels, base; slide panels, bezels</td>
<td>consult mfr for latest colors</td>
</tr>
<tr>
<td>10</td>
<td>4.61</td>
<td>3.0</td>
<td>Vector</td>
<td>W30-100-46B</td>
<td>Al</td>
<td>holds 1/16" p.c. cards</td>
<td>inner panels, base</td>
<td>consult mfr for latest colors</td>
</tr>
<tr>
<td>10</td>
<td>4.61</td>
<td>4.5</td>
<td>Vector</td>
<td>W45-100-46B</td>
<td>Al</td>
<td>holds 1/16" p.c. cards</td>
<td>inner panels, base</td>
<td>consult mfr for latest colors</td>
</tr>
<tr>
<td>10</td>
<td>6.61</td>
<td>3.0</td>
<td>Vector</td>
<td>W30-100-66B</td>
<td>Al</td>
<td>holds 1/16" p.c. cards</td>
<td>inner panels, base</td>
<td>consult mfr for latest colors</td>
</tr>
<tr>
<td>10</td>
<td>6.61</td>
<td>4.5</td>
<td>Vector</td>
<td>W45-100-66B</td>
<td>Al</td>
<td>holds 1/16" p.c. cards</td>
<td>inner panels, base</td>
<td>consult mfr for latest colors</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>8</td>
<td>Bud</td>
<td>MD-1960</td>
<td>Steel</td>
<td>removable side & top</td>
<td>1963 for slope front</td>
<td>grey or blue</td>
</tr>
</tbody>
</table>

chart continued on following page
INSTRUMENT CASES

<table>
<thead>
<tr>
<th>Length</th>
<th>Height</th>
<th>Depth</th>
<th>Mfr.</th>
<th>Model No.</th>
<th>Case Material</th>
<th>Comments</th>
<th>Options</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>8</td>
<td>9</td>
<td>Bud</td>
<td>MD-1961</td>
<td>Steel</td>
<td>removable side & top</td>
<td>1964 for slope front</td>
<td>grey or blue</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>9</td>
<td>Bud</td>
<td>MD-1962</td>
<td>Steel</td>
<td>removable side & top</td>
<td>1965 for slope front</td>
<td>grey or blue</td>
</tr>
</tbody>
</table>

PORTABLE INSTRUMENT CASES

Modern design with handles and tilt stands available. Some are even adaptable to rack mounting.

<table>
<thead>
<tr>
<th>Length</th>
<th>Height</th>
<th>Depth</th>
<th>Mfr.</th>
<th>Model No.</th>
<th>Case Material</th>
<th>Comments</th>
<th>Options</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-7/10</td>
<td>3-1/2</td>
<td>13</td>
<td>Buckeye</td>
<td>3501</td>
<td>Al</td>
<td>concealed fasteners</td>
<td>tilt stand rack adapter</td>
<td>grey with suede-like finish consult mfr for color</td>
</tr>
<tr>
<td>5-7/10</td>
<td>5-1/4</td>
<td>13</td>
<td>Buckeye</td>
<td>5251</td>
<td>Al</td>
<td>concealed fasteners</td>
<td>tilt stand rack adapter</td>
<td>grey with suede-like finish consult mfr for color</td>
</tr>
<tr>
<td>5-7/10</td>
<td>7</td>
<td>13</td>
<td>Buckeye</td>
<td>7001</td>
<td>Al</td>
<td>concealed fasteners</td>
<td>tilt stand rack adapter</td>
<td>grey with suede-like finish consult mfr for color</td>
</tr>
<tr>
<td>5-7/10</td>
<td>8</td>
<td>13</td>
<td>Buckeye</td>
<td>8001</td>
<td>Al</td>
<td>concealed fasteners</td>
<td>tilt stand rack adapter</td>
<td>grey with suede-like finish consult mfr for color</td>
</tr>
<tr>
<td>5-7/10</td>
<td>8-3/4</td>
<td>13</td>
<td>Buckeye</td>
<td>8751</td>
<td>Al</td>
<td>concealed fasteners</td>
<td>tilt stand rack adapter</td>
<td>grey with suede-like finish consult mfr for color</td>
</tr>
<tr>
<td>5-7/10</td>
<td>10-1/2</td>
<td>13</td>
<td>Buckeye</td>
<td>1051</td>
<td>Al</td>
<td>concealed fasteners</td>
<td>tilt stand rack adapter</td>
<td>grey with suede-like finish consult mfr for color</td>
</tr>
<tr>
<td>8-1/2</td>
<td>3-1/2</td>
<td>13</td>
<td>Buckeye</td>
<td>3502</td>
<td>Al</td>
<td>concealed fasteners</td>
<td>tilt stand rack adapter</td>
<td>grey with suede-like finish consult mfr for color</td>
</tr>
<tr>
<td>8-1/2</td>
<td>5-1/4</td>
<td>13</td>
<td>Buckeye</td>
<td>5252</td>
<td>Al</td>
<td>concealed fasteners</td>
<td>tilt stand rack adapter</td>
<td>grey with suede-like finish consult mfr for color</td>
</tr>
<tr>
<td>8-1/2</td>
<td>7</td>
<td>13</td>
<td>Buckeye</td>
<td>7002</td>
<td>Al</td>
<td>concealed fasteners</td>
<td>tilt stand rack adapter</td>
<td>grey with suede-like finish consult mfr for color</td>
</tr>
<tr>
<td>8-1/2</td>
<td>8</td>
<td>13</td>
<td>Buckeye</td>
<td>8002</td>
<td>Al</td>
<td>concealed fasteners</td>
<td>tilt stand rack adapter</td>
<td>grey with suede-like finish consult mfr for color</td>
</tr>
<tr>
<td>8-1/2</td>
<td>8-3/4</td>
<td>13</td>
<td>Buckeye</td>
<td>8752</td>
<td>Al</td>
<td>concealed fasteners</td>
<td>tilt stand rack adapter</td>
<td>grey with suede-like finish consult mfr for color</td>
</tr>
<tr>
<td>8-1/2</td>
<td>10-1/2</td>
<td>13</td>
<td>Buckeye</td>
<td>1052</td>
<td>Al</td>
<td>concealed fasteners</td>
<td>tilt stand rack adapter</td>
<td>grey with suede-like finish consult mfr for color</td>
</tr>
<tr>
<td>8-1/2</td>
<td>2-7/16</td>
<td>9-1/4</td>
<td>La France</td>
<td>CH 200</td>
<td>ABS</td>
<td>without handle</td>
<td>without handle</td>
<td></td>
</tr>
<tr>
<td>8-1/2</td>
<td>2-11/16</td>
<td>9-1/4</td>
<td>La France</td>
<td>CH 225</td>
<td>ABS</td>
<td>without handle</td>
<td>without handle</td>
<td></td>
</tr>
<tr>
<td>8-1/2</td>
<td>2-15/16</td>
<td>9-1/4</td>
<td>La France</td>
<td>CH 250</td>
<td>ABS</td>
<td>without handle</td>
<td>without handle</td>
<td></td>
</tr>
<tr>
<td>8-1/2</td>
<td>3-3/16</td>
<td>9-1/4</td>
<td>La France</td>
<td>CH 275</td>
<td>ABS</td>
<td>without handle</td>
<td>without handle</td>
<td></td>
</tr>
<tr>
<td>8-1/2</td>
<td>3-7/16</td>
<td>9-1/4</td>
<td>La France</td>
<td>CH 300</td>
<td>ABS</td>
<td>without handle</td>
<td>without handle</td>
<td></td>
</tr>
<tr>
<td>8-1/2</td>
<td>3-11/16</td>
<td>9-1/4</td>
<td>La France</td>
<td>CH 325</td>
<td>ABS</td>
<td>without handle</td>
<td>without handle</td>
<td></td>
</tr>
<tr>
<td>8-1/2</td>
<td>4-7/16</td>
<td>9-1/4</td>
<td>La France</td>
<td>CHS 400</td>
<td>ABS</td>
<td>without handle</td>
<td>without handle</td>
<td></td>
</tr>
<tr>
<td>8-1/2</td>
<td>5-7/16</td>
<td>9-1/4</td>
<td>La France</td>
<td>CHS 500</td>
<td>ABS</td>
<td>without handle</td>
<td>without handle</td>
<td></td>
</tr>
<tr>
<td>8-1/2</td>
<td>6-7/16</td>
<td>9-1/4</td>
<td>La France</td>
<td>CHS 600</td>
<td>ABS</td>
<td>without handle</td>
<td>without handle</td>
<td></td>
</tr>
</tbody>
</table>

Chart continued on following page
<table>
<thead>
<tr>
<th>Length</th>
<th>Height</th>
<th>Depth</th>
<th>Mfr.</th>
<th>Model No.</th>
<th>Case Material</th>
<th>Comments</th>
<th>Options</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-1/2</td>
<td>3-1/2</td>
<td>13</td>
<td>Premier</td>
<td>TIC-030913</td>
<td>Al/vinyl</td>
<td>top carrying handle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-1/2</td>
<td>5-1/4</td>
<td>13</td>
<td>Premier</td>
<td>TIC-050913</td>
<td>Al/vinyl</td>
<td>top carrying handle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-1/2</td>
<td>7</td>
<td>13</td>
<td>Premier</td>
<td>TIC-070913</td>
<td>Al/vinyl</td>
<td>top carrying handle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-1/2</td>
<td>8-3/4</td>
<td>13</td>
<td>Premier</td>
<td>TIC-080913</td>
<td>Al/vinyl</td>
<td>top carrying handle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-1/2</td>
<td>10-1/2</td>
<td>13</td>
<td>Premier</td>
<td>TIC-100913</td>
<td>Al/vinyl</td>
<td>top carrying handle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-1/2</td>
<td>12-1/4</td>
<td>13</td>
<td>Premier</td>
<td>TIC-120913</td>
<td>Al/vinyl</td>
<td>top carrying handle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-1/2</td>
<td>14</td>
<td>13</td>
<td>Premier</td>
<td>TIC-140913</td>
<td>Al/vinyl</td>
<td>top carrying handle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-1/2</td>
<td>3-1/2</td>
<td>17</td>
<td>Premier</td>
<td>TIC-120913</td>
<td>Al/vinyl</td>
<td>side carry handgrips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-1/2</td>
<td>5-1/4</td>
<td>17</td>
<td>Premier</td>
<td>TIC-120913</td>
<td>Al/vinyl</td>
<td>side carry handgrips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-1/2</td>
<td>7</td>
<td>17</td>
<td>Premier</td>
<td>TIC-120913</td>
<td>Al/vinyl</td>
<td>side carry handgrips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-1/2</td>
<td>8-3/4</td>
<td>17</td>
<td>Premier</td>
<td>TIC-120913</td>
<td>Al/vinyl</td>
<td>side carry handgrips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-1/2</td>
<td>10-1/2</td>
<td>17</td>
<td>Premier</td>
<td>TIC-120913</td>
<td>Al/vinyl</td>
<td>side carry handgrips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-1/2</td>
<td>12-1/4</td>
<td>17</td>
<td>Premier</td>
<td>TIC-120913</td>
<td>Al/vinyl</td>
<td>side carry handgrips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-1/2</td>
<td>14</td>
<td>17</td>
<td>Premier</td>
<td>TIC-120913</td>
<td>Al/vinyl</td>
<td>side carry handgrips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-1/3</td>
<td>3-1/2</td>
<td>13</td>
<td>Buckeye</td>
<td>3503</td>
<td>Al</td>
<td>concealed fasteners</td>
<td>tilt stand; rack adapter</td>
<td></td>
</tr>
<tr>
<td>11-1/3</td>
<td>5-1/4</td>
<td>13</td>
<td>Buckeye</td>
<td>5253</td>
<td>Al</td>
<td>concealed fasteners</td>
<td>tilt stand; rack adapter</td>
<td></td>
</tr>
<tr>
<td>11-1/3</td>
<td>7</td>
<td>13</td>
<td>Buckeye</td>
<td>7003</td>
<td>Al</td>
<td>concealed fasteners</td>
<td>tilt stand; rack adapter</td>
<td></td>
</tr>
<tr>
<td>11-1/3</td>
<td>8</td>
<td>13</td>
<td>Buckeye</td>
<td>8003</td>
<td>Al</td>
<td>concealed fasteners</td>
<td>tilt stand; rack adapter</td>
<td></td>
</tr>
<tr>
<td>11-1/3</td>
<td>8-3/4</td>
<td>13</td>
<td>Buckeye</td>
<td>8753</td>
<td>Al</td>
<td>concealed fasteners</td>
<td>tilt stand; rack adapter</td>
<td></td>
</tr>
<tr>
<td>11-1/3</td>
<td>10-1/2</td>
<td>13</td>
<td>Buckeye</td>
<td>10503</td>
<td>Al</td>
<td>concealed fasteners</td>
<td>tilt stand; rack adapter</td>
<td></td>
</tr>
<tr>
<td>12-1/2</td>
<td>6-3/4</td>
<td>11-5/8</td>
<td>La France</td>
<td>CLS 625</td>
<td>ABS</td>
<td>tilt stand</td>
<td></td>
<td>Stock and custom color Consult manufacturer</td>
</tr>
<tr>
<td>12-1/2</td>
<td>7-3/4</td>
<td>11-5/8</td>
<td>La France</td>
<td>CLS 725</td>
<td>ABS</td>
<td>tilt stand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-1/2</td>
<td>8-3/4</td>
<td>11-5/8</td>
<td>La France</td>
<td>CLS 825</td>
<td>ABS</td>
<td>tilt stand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-5/8</td>
<td>3-1/2</td>
<td>13</td>
<td>Premier</td>
<td>TIC-031513</td>
<td>Al/vinyl</td>
<td>side carry handgrips</td>
<td>tilt stand; PC card cages</td>
<td></td>
</tr>
<tr>
<td>15-5/8</td>
<td>5-1/4</td>
<td>13</td>
<td>Premier</td>
<td>TIC-051513</td>
<td>Al/vinyl</td>
<td>side carry handgrips</td>
<td>tilt stand; PC card cages</td>
<td></td>
</tr>
<tr>
<td>15-5/8</td>
<td>7</td>
<td>13</td>
<td>Premier</td>
<td>TIC-071513</td>
<td>Al/vinyl</td>
<td>side carry handgrips</td>
<td>tilt stand; PC card cages</td>
<td></td>
</tr>
<tr>
<td>15-5/8</td>
<td>8-3/4</td>
<td>13</td>
<td>Premier</td>
<td>TIC-081513</td>
<td>Al/vinyl</td>
<td>side carry handgrips</td>
<td>tilt stand; PC card cages</td>
<td></td>
</tr>
<tr>
<td>15-5/8</td>
<td>10-1/2</td>
<td>13</td>
<td>Premier</td>
<td>TIC-101513</td>
<td>Al/vinyl</td>
<td>side carry handgrips</td>
<td>tilt stand; PC card cages</td>
<td></td>
</tr>
</tbody>
</table>
WITH SO MANY FINE DIGITAL CIRCUITS BEING PRESENTED IN ELECTRONIC HOBBYIST MAGAZINES, ONE IS TEMPTED TO CONSTRUCT THEM AT THE EARLIEST POSSIBLE OPPORTUNITY. THESE ARTICLES GENERALLY PRESENT THE PROJECTS USING ONE OF TWO CONSTRUCTION TECHNIQUES—EITHER USING A PRINTED-CIRCUIT TYPE OF CONSTRUCTION, OR WIRE-WRAP TECHNIQUES. LITTLE NEEDS TO BE SAID ABOUT THE PC BOARD TYPE OF PROJECT CONSTRUCTION, SINCE USUALLY A COMPLETE PC LAYOUT IS PROVIDED WITH THE ARTICLE THAT CAN BE COPIED USING MANY DIFFERENT TECHNIQUES TO REPRODUCE THE CIRCUIT (OR SOMETIMES A PC LAYOUT MAY EVEN BE OFFERED BY A MANUFACTURER AT A BARGAIN PRICE).

THIS ARTICLE DISCUSSES THE WIRE-WRAP TECHNIQUE AND PRESENTS SEVERAL WAYS TO CUT DOWN ON THE TIME-CONSUMING JOB OF WIRE-WRAPPING EACH AND EVERY INDIVIDUAL TERMINAL POINT. THE TECHNIQUE IS USEFUL FOR DIGITAL AND COMPUTER-CIRCUIT APPLICATIONS, AND HAMS AND CB ENTHUSIASTS WILL ALSO FIND IT USEFUL.

Combining wire-wrap with a printed circuit can be the answer to many layout and construction problems connected with many projects. Here are some hints in using this technique.

PC/WIRE-WRAP-

NEW CONSTRUCTION TECHNIQUE

JAMES E. TEMPLE
handle) over the terminal, wrap the wire seven turns or more and then directly run the wire to the next terminal to be wrapped, again slipping the tool over the end of that terminal and wrapping seven times around the post. If the particular circuit path must be wired to more than two terminal posts, then this tool allows you to continue wrapping to the next post without having to measure a new wire length. Just continue to wrap all the terminals that must be connected to this particular circuit path. When the last terminal in the series to be wire-wrapped is finished, just cut the wire and proceed to the next circuit path. It is just that simple with the Vector Slit-N-Wrap tool, and a great time-saver.

One of the nicest things that Vector has done is to support the needs of those who must use wire-wrap for their circuits. Vector has a complete line of wire-wrap posts and the tools to insert them in the epoxy boards.

Sockets

There are also IC wire-wrap sockets that are usually available with three levels of wrapping space. Many companies offer these sockets; and, of course, the choice of terminal pins or sockets is up to you. However, Robinson-Nugent, Inc., has an extensive line of different types of sockets, terminals and pins. One of the most handy types of sockets is the wire-wrap strip socket (model WB-25-33-G), which comes in a 25-pin-length IC connector. These sockets are easily cut to the pin length you need, are easily cemented to the board for mounting and are flexible if changes are required. If you have an oddball type of IC (let's say, 22-pins, 30-pins, etc.) and you just cannot find the right wire-wrap socket for it, then these strip sockets can come to the rescue. Simply cut the strip to size and form the IC socket from it.

Another excellent product manufactured by Robinson Nugent is their low-profile, wire-wrappable J-pin designed for IC DIP packages. These pins offer an extreme low profile to the circuit board; sockets can be made from them directly; they are space-savers; and are wire-wrapped to the underside of the J-pin.

Avoiding the jungle

Up to now we have discussed the tools, terminals and many other products offered by manufacturers that support the wire-wrap construction technique. Now let's get to the heart of the article—how to avoid the jungle and mass of wires when you wire-wrap. If you are like many hobbyists who have used the technique and have completed several wire-wrap projects, you will know what I mean by a jungle. The back of a finished wire-wrap board contains hundreds of inches of wire, and many wires cross each other, along with various colors you may have used to color-code the wires. If a change is made, you must be very careful to cut or unwrap the correct wires, and if several levels of wire-wrap exist on any single terminal, extra care is needed to make these changes.

There are ways to cut down on the number of wire-wrap connections you have to make. You can combine a printed-circuit board with wire-wrap terminals. The number of connections can be reduced by using a combination of similar lines, wire-wrap sockets, and just plain common sense and planning. For example, when a construction project calls for similar pinouts to be connected, as in the case of a computer memory board, print the redundant connections to the IC sockets right on a PC board. Then just solder in the similar terminals to be connected, either to the upper side or the lower side of the PC board.

As for other electronic circuits, review your project and look for similar pinouts of the IC, for instance, the power connections, the clock inputs, or a group of IC's that are of the same type. All that you need do is plan a PC card (double-sided copper), layout the IC on the board, use an etch pen or lacquer etchant to draw the connecting lines that are redundant in nature (after drilling the holes into the PC board, of course), and eliminate as many wire-wrap connections as possible in the design. Be sure to provide for the terminal pins that act as connectors between the foils on the top of the board to the foils on the bottom of the board. Once the design has eliminated as many wire-wrap lines as possible, etch the board, clean it, insert the sockets or J-pins, and finish wrapping the circuit paths you could not combine onto the PC card. With the right design and careful preparation, the PC lines will eliminate as much as one-half or more of the wire.
wrap lines. Rather than having a jumble of wires, you will have an orderly system that is easy to change or add to. It works!

How to design a PC board

Let's take a particular type of IC package and design a PC card and plan the wire-wrap terminals. (See Fig. 1.) I can best show how to eliminate redundant lines by using the popular 2102 memory IC. I have constructed a memory card, 3½ inches wide by 7 inches long, containing over 64 IC's. Consider this: Eight 2102's provide a memory word that is 8 bits wide. This means eight 2102's will provide 1024 8-bit memory locations. Each 2102 has 16 pins, eight on each side. Of the 16 pins, 10 are used for the memory address, one for read-write control, and one for chip-enable. Of the four remaining pins, one is used for the positive power-supply connection and one for the ground or return connection. All these pins are paralleled together between the eight 2102's. Only the data-in pin and the data-out pins will be considered as separate line- or wire-wrap connections. Of course, if several 8-bit-wide memory banks are being considered, these same pins will be paralleled to the same pins within the other memory banks.

Let's take a look at how we can eliminate some wire-wrap connections so that there are only a few. This will enable you to get a large number of IC packages in a very tight space.

Figure 1 shows the layout of the double-sided PC board. Two memory banks are shown. Each bank contains 1024 8-bit words. One bank consists of IC1—IC8, the upper lines of the PC layout and the terminal pins for wire-wrapping. The other consists of IC9—IC16. The eight foil traces on the foil side of the board parallel eight traces on the component side and are, therefore, not visible in Fig. 1.

Note from the layout for the 64 IC's (8K of memory, 2102 type) that only 32 holes are drilled for each 1K of memory. These holes are for the upper eight pins (one side) of the DIP wire-wrap socket.

Bend eight socket terminals (only one side of the DIP) at a right angle to the socket (see Fig. 2), cut the leads short and insert the other eight socket pins through the holes to be soldered to the lower PC traces. The right-angle pins are soldered to the upper PC traces. Thus, there are eight parallel foil traces on the upper and lower side of the PC card that are isolated by the thickness of the epoxy board itself.

To make sure the eight socket pins that are pushed through the board do not make contact with the upper eight parallel foil traces, it is best to take an Xacto knife with a No. 17 blade and ream the holes from the top of the PC board (see Fig. 3). To further insure isolation, use enamel paint to cover the holes on the top side. Now, when the sockets are pushed into place, the top right-angle pins and the lower terminal pins are soldered, and the lower eight pins and the upper eight pins are electrically isolated from each other. This type of setup requires that when you insert the sockets, you start from the uppermost top socket (IC1) and solder the connections. Then, to protect against possible shorts, paint over the top soldered pins with the enamel. Now, the next row of IC sockets can be soldered in place until all sockets are mounted to the PC board.

When you design the PC layout, bring the eight foil traces on the component side to a stopping point beyond the foil traces on the bottom of the board. On the component side, also extend the IC enable trace at the opposite end of the board and break the trace between IC8 and IC9 (this isolates the two memory banks).

Now (for the traces on the component side only) drill eight holes into the extended portion of the traces, insert eight terminal pins and solder the pins. For the eight foil traces on the bottom side of the board, cut the socket terminals short right up to the solder connection, all except for the top row of terminals. This row of terminals is now used for wire-wrap connections to the traces on the bottom side of the board. Make sure not to cut the data-in or data-out pins on the sockets since these pins will be paralleled to the other data-in and data-out pins and finally wire-wrapped to the input for the cable connections to the card.

On the component side of the card, you can use PC lines to make edge-connector fingers, the type of fingers or number of lines will depend upon the type of bus to which the card will be connected. Or, you can make a provision for wiring in a cable to connect to the bus lines. (Wires should be insulated in, and you can use the wire-wrap pins that allow wire-wrapping to the lower side of the wire cable.) Finally, for the fingers or the wire cable, insert the wire-wrap terminal pins, solder them firmly to the card, and finish the PC board by wire-wrapping the connections to the appropriate pins for the particular bus structure.

What you have just constructed is a compact tri-level PC board. Redundant or similar lines have been connected by foil traces, soldered to the sockets (modified for solder connections to the PC board), and all that remains is to wire-wrap the terminal pins of each row of IC's. The few wire-wrap wires you have used can be taped to the card to secure them; changes made to the circuit are easier as each line is accessible, both top and bottom. With an 8½- by 4½-inch card, there is no reason why 64 DIP IC's cannot be located on it. It is possible that on a 9- by 16-inch-wide card you can cram in four times the number of IC's, and in terms of memory for computers, provide a 32K board. What we have not provided for on this type of memory board is bank-select in 1K increments, nor did we buffer the memory address lines or buffer the data lines. However, this problem is easily overcome by a second memory control and select card of appropriate design.

What we have demonstrated are the principles of combining the best of two worlds in project construction; that is, using PC layouts (to eliminate many redundant lines to the various IC's) and using wire-wrap sockets modified to the card for solder and wire-wrap connections. Using this technique you can fit a great many IC's in a highly crowded space, and wire-wrapping the final connections is made simple. Less than one-half of the wire-wrap connections will be required by this type of construction, yet all lines are accessible if changes or additions to the circuit are required.
New IHF Amplifier Specifications

Amplifier comparisons made more realistic for the layman by a new IHF testing standard that provides a closer correlation between what he hears and what the lab technician measures.

LEN FELDMAN
CONTRIBUTING HI-FI EDITOR

AFTER NEARLY THREE YEARS OF DELIBERATIONS, the Institute of High Fidelity (IHF) has published and approved a new standard entitled "Methods of Measurement for Audio Amplifiers." This standard (IHF-A-202, 1978) supersedes an earlier IHF standard that had been used since 1966 but rendered obsolete in 1974 when the Federal Trade Commission ruled that the continuous power rating of an audio amplifier intended for home entertainment had to be specified in a somewhat different manner than had been done using the old standard.

One of the major new measurements incorporated in the new standard is dynamic headroom. This measurement was designed to help consumers select one of two amplifiers having the same continuous power-output ratings but achieving significantly different loudness levels when fed with the same short-term dynamic musical signals.

An amplifier having a very "stiff" power supply may produce very little more output power than its rated continuous power level under such conditions, whereas an amplifier with a "soft" or less-regulated supply may, under the same conditions, deliver power greater than its continuous rated level. The dynamic headroom dB specification may therefore vary from 0 (for the stiffly regulated power-supply amplifier) to +3.0, or even more.

Now that the new standard has become officially recognized by the IHF, let's look at some of the other new measurement methods it describes. The new standard attempts to correlate more accurately what the consumer hears when listening to an amplifier and what the technician measures for that amplifier during lab tests. Equally important, the new standard insures that all manufacturers that publish amplifier or preamplifier specs make all measurements in identical fashion and report their findings uniformly so that prospective purchasers are not comparing "apples and oranges" when looking at competing products.

Since Radio-Electronics publishes complete high-fidelity test reports on audio amplifiers and preamplifiers, in future reports, we will adopt the new measurement techniques described in the standard. While to detail every one of the new measurements is beyond the scope of this article, we'll try to explain those major changes in measurement techniques that will affect the test reports. Those interested in obtaining the complete standard may do so by sending a check or money order to The Institute of High Fidelity, 489 Fifth Avenue, New York, NY 10017, in the amount of $7.50. Ask for Standard IHF-A-202, 1978.

New reference levels

One of the most confusing factors found in published amplifier specifications has been the lack of uniformity in the reference levels used to make sensitivity and signal-to-noise ratio measurements. For instance, let's consider two

![FIG. 1—NEW IHF SENSITIVITY rating specifies the input voltage required to produce a 1-watt output.](image)

![FIG. 2—NEW IHF S/N RATIO STANDARD specifies reference input level and output level. The volume control is adjusted to obtain the specified 1-watt output level. The old standard required S/N to be measured at full-rated output.](image)
methods of measuring signal-to-noise (S/N) ratios.

Again, let's look at two hypothetical amplifiers. One integrated amplifier has a phono-input sensitivity of 2.0 mV (i.e.,
2.0 mV applied to the phono-input terminals at 1 kHz drives the amplifier to its full rated output if the volume control is
turned up all the way). Let's assume that the S/N measurement (when the signal is
removed and the input jacks are shorted) is 65 dB.

Another amplifier manufacturer, whose phono preamplifier is just as noisy
as the first, decides that a 65-dB value does not look "good enough" in print. So,
he chooses an input reference level of 10
mV. But, of course, when 10 mV are
applied to this amplifier, the amplifier
will overload (since it, too, would produce
full rated output from a 2.0-mV signal
with the volume control turned up fully).

Therefore, the manufacturer lowers the
volume-control setting until rated power
output is obtained once more. And he
would have to lower it by approximately
14 dB! Assuming that the residual noise
is a function only of the phono preamplic-
ifier, the manufacturer now reads a S/N
ratio of 79 dB, even though the preamp
section in his unit is no less noisy than
that of his competitor!

In order to establish uniform S/N
readings, the new standard dictates that
the input-signal level be fixed at 5.0 mV
for a magnetic phono section, and at 0.5
volt for a high-level input such as the
tuner, auxiliary, or tape input on a pream-
plifier or integrated amplifier. In addi-
tion, the output reference level must be
adjusted (as in the case of sensitivity
measurements) to a 1.0-watt level (for a
power amplifier) or 0.5 volt (for a pream-
plifier). This adjustment is made by using

audio amplifiers, one with a 10-watt power-
output rating and the other with a 100-
watt-per-channel rating. An amplifier's
input sensitivity has traditionally been
measured so as to describe how much
input-signal amplitude is required for the
given amplifier to deliver its rated output
(with the volume control turned all the
way up to maximum). Suppose each of
the two amplifiers in our example
requires an input signal of 1.0 volt to deliver
its rated output. This implies that both
amplifiers have "equal sensitivity." Yet,
if 1 volt is fed into the 100-watt-per-channel
amplifier, it will sound 10-dB louder than if it were fed to the 10-watt-per-
channel amplifier! It is therefore clear
that the gain of the two amplifiers is not identical.

In the new standard, amplifier sensitiv-
ity is still measured with the volume
control turned up fully, but now it is speci-
died as the voltage required to produce
1.0 watt at the speaker-output terminals
(or 0.5 volts in the case of a separate
preamplifier), regardless of the full power
(or voltage output) rating. Using that
reference output level in the two exam-

S/N reference levels

Even more confusing were previous

<table>
<thead>
<tr>
<th>PRIMARY SPECS FOR POWER AMPLIFIERS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Continuous Average Power Output</td>
</tr>
<tr>
<td>2. Dynamic Headroom</td>
</tr>
<tr>
<td>3. Frequency Response</td>
</tr>
<tr>
<td>4. Sensitivity</td>
</tr>
<tr>
<td>5. A-Weighted Signal-To-Noise Ratio</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRIMARY SPECS FOR PREAMPLIFIERS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Frequency Response</td>
</tr>
<tr>
<td>2. Maximum Voltage Output</td>
</tr>
<tr>
<td>3. Total Harmonic Distortion</td>
</tr>
<tr>
<td>4. Sensitivity</td>
</tr>
<tr>
<td>5. A-Weighted Signal-To-Noise Ratio</td>
</tr>
<tr>
<td>6. Maximum Input Signal</td>
</tr>
<tr>
<td>7. Input Impedance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRIMARY SPECS FOR INTEGRATED AMPLIFIERS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Continuous Average Power Output</td>
</tr>
<tr>
<td>2. Dynamic Headroom</td>
</tr>
<tr>
<td>3. Frequency Response</td>
</tr>
<tr>
<td>4. Sensitivity</td>
</tr>
<tr>
<td>5. A-Weighted Signal-To-Noise Ratio</td>
</tr>
<tr>
<td>6. Maximum Input Signal</td>
</tr>
<tr>
<td>7. Input Impedance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 1—PRIMARY SPECS that must be provided by manufacturer to comply with new IHF standards.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Clipping Headroom</td>
</tr>
<tr>
<td>2. Output Impedance</td>
</tr>
<tr>
<td>3. Wideband Damping Factor</td>
</tr>
<tr>
<td>4. Low-Frequency Damping Factor</td>
</tr>
<tr>
<td>5. CCIR/ARM Signal-To-Noise Ratio</td>
</tr>
<tr>
<td>6. Tone-Control Response</td>
</tr>
<tr>
<td>7. Filter Cutoff Frequency</td>
</tr>
<tr>
<td>8. Filter Slope</td>
</tr>
<tr>
<td>9. Crosstalk</td>
</tr>
<tr>
<td>10. A-Weighted Crosstalk</td>
</tr>
<tr>
<td>11. CCIR/ARM Crosstalk</td>
</tr>
<tr>
<td>12. SMPTE Intermodulation Distortion</td>
</tr>
<tr>
<td>13. IHF Intermodulation Distortion</td>
</tr>
<tr>
<td>14. Transient-Overload Recovery Time</td>
</tr>
<tr>
<td>15. Slew Factor</td>
</tr>
<tr>
<td>16. Reactive Load</td>
</tr>
<tr>
<td>17. Capacitive Load</td>
</tr>
<tr>
<td>18. Separation</td>
</tr>
<tr>
<td>19. Difference of Frequency Response</td>
</tr>
<tr>
<td>20. Gain-Tracking Error</td>
</tr>
<tr>
<td>21. Tone-Control Tracking Error</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 2—SECONDARY SPECS that may be provided at manufacturer's discretion.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Time Constant</td>
</tr>
<tr>
<td>2. Phase Delay</td>
</tr>
<tr>
<td>3. Crosstalk</td>
</tr>
<tr>
<td>4. Capacitive Load</td>
</tr>
<tr>
<td>5. Separation</td>
</tr>
<tr>
<td>6. Difference of Frequency</td>
</tr>
<tr>
<td>7. Gain-Tracking Error</td>
</tr>
<tr>
<td>8. Tone-Control Tracking Error</td>
</tr>
<tr>
<td>9. Time Constant</td>
</tr>
<tr>
<td>10. Phase Delay</td>
</tr>
<tr>
<td>11. Crosstalk</td>
</tr>
<tr>
<td>12. Capacitive Load</td>
</tr>
<tr>
<td>13. Separation</td>
</tr>
<tr>
<td>14. Difference of Frequency</td>
</tr>
<tr>
<td>15. Gain-Tracking Error</td>
</tr>
<tr>
<td>16. Tone-Control Tracking Error</td>
</tr>
</tbody>
</table>

FIG. 3—RESPONSE of A-weighting network used in hum measurements.

FIG. 4—NETWORK approximates the imped-
ance of a magnetic phono cartridge. To comply
with new IHF standard, network must be con-
ected to phono preamp for S/N measure-
ments.
the master volume control. This makes a lot of sense since it places the master volume control at a setting that approximates that which a consumer would normally use in actual music listening. No one ever listens to a hi-fi stereo system with the volume control turned up fully (in most cases, this would overdrive the amplifier or preamplifier into severe clipping, since amplifier gain has nothing to do with maximum amplifier power or voltage output).

Figure 2 shows the old and the new methods of measuring signal-to-noise; it is assumed that other amplifier stages do not affect overall noise. Actually, we have already discovered that very often you cannot compute new S/N values from the old values (even taking into account new reference input and output levels) since, as the new input and output reference levels are set up (by the volume control and by varying signal-input levels), other noise-producing stages affect the measurement. Thus, it is next to impossible to convert from the old measurement method to the new by simply juggling dB and gain figures.

A-weighting

In the past, some manufacturers used a weighting network in signal-to-noise measurements while others did not. A weighting network recognizes the fact that the human hearing system does not respond equally to all audible frequencies, especially at low listening levels. Our ears are less sensitive to line frequency or hum than to mid-frequencies, and are also less sensitive to ultra-high frequencies. In the past some manufacturers used an A-weighting network to take into account the subjective aspects of residual noise. This network has a frequency-response characteristic that is shown in Fig. 3, in which you will note that much less importance is given to 60-Hz noise (about 20-dB less) than to noise at, say, 1 kHz. Similarly, noise at 10 kHz is given approximately 5-dB less importance than noise at mid-frequencies.

The new standard is in conformance with those manufacturers who have used an A-weighting network in making S/N measurements, and requires that type of network to be inserted between the output of the amplifier and the meter used to measure the noise voltage or residual noise.

Most manufacturers have traditionally measured phono signal-to-noise ratios by inserting a shorting plug in the phono-input jacks. In the case of many phono-preamplifier circuits, this test method does not reflect what actually happens when you connect a magnetic cartridge to those same phono inputs. A magnetic cartridge has a certain amount of DC resistance, plus a finite amount of inductance. Instead of inserting a shorting plug, the new standard requires using a network that approximates the complex impedance "observed" by the phono inputs when a cartridge is actually connected, a diagram of this network is shown in Fig. 4.

For making S/N measurements of the high-level inputs on an amplifier or preamplifier, a 1000-ohm resistor will be used to terminate the input jacks.

Primary amp/preamp ratings

To rate amplifiers according to the new IHF standards, the manufacturer must list certain primary ratings in order of their importance. For a basic power amplifier, four basic ratings must be shown; while for an integrated amplifier or a preamplifier, seven primary ratings must be given. Table 1 lists the primary ratings in each case.

At least 21 other secondary ratings and how to measure them are included in the IHF standards, and can be listed (in part or in whole) by the manufacturer at his own discretion. Table 2 shows these secondary ratings.

Future test reports

It has been Radio-Electronics' practice to publish tabular listings of measured results on amplifiers, receivers and preamplifiers in its high-fidelity test reports. Table 3 shows the form that will be used in future test reports. The italicized items in this table represent either new specs not previously reported on, or those that have been reported on using earlier techniques and that will now be measured in accordance with the new standards. Since it will probably take some time before all manufacturers begin to use the standards, it may be somewhat difficult to compare their published specifications with those measured according to the new standard. For example, signal-to-noise ratios may seem poorer or lower than those specified using older methods.

In time, however, it is hoped that most serious high-fidelity manufacturers will adopt the new measurement techniques and ratings; this will make it that much easier for an audio consumer to select good hi-fi amplification equipment.

TABLE 3

RADIO-ELECTRONICS PRODUCT TEST REPORT

<table>
<thead>
<tr>
<th>Manufacturer:</th>
<th>Model:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPLIFIER PERFORMANCE MEASUREMENTS</td>
<td></td>
</tr>
<tr>
<td>POWER OUTPUT CAPABILITY</td>
<td>R-E Measurement</td>
</tr>
<tr>
<td>RMS power/channel, 8-ohms, 1 kHz (watts)</td>
<td></td>
</tr>
<tr>
<td>RMS power/channel, 8-ohms, 20 Hz (watts)</td>
<td></td>
</tr>
<tr>
<td>RMS power/channel, 4-ohms, 1 kHz (watts)</td>
<td></td>
</tr>
<tr>
<td>RMS power/channel, 4-ohms, 20 Hz (watts)</td>
<td></td>
</tr>
<tr>
<td>Frequency limits for rated output (Hz-kHz)</td>
<td></td>
</tr>
<tr>
<td>Dynamic headroom (dB)</td>
<td></td>
</tr>
<tr>
<td>DISTORTION MEASUREMENTS</td>
<td></td>
</tr>
<tr>
<td>Harmonic distortion at rated output, 1 kHz (%)</td>
<td></td>
</tr>
<tr>
<td>Intermodulation distortion, rated output (%)</td>
<td></td>
</tr>
<tr>
<td>Harmonic distortion at 1-watt output, 1 kHz (%)</td>
<td></td>
</tr>
<tr>
<td>Intermodulation distortion at 1-watt output (%)</td>
<td></td>
</tr>
<tr>
<td>DAMPING FACTOR AT 8 OHMS, 50 Hz</td>
<td></td>
</tr>
<tr>
<td>PHONO PREAMPLIFIER MEASUREMENTS</td>
<td></td>
</tr>
<tr>
<td>Frequency response (RIAA ± dB)</td>
<td></td>
</tr>
<tr>
<td>Maximum input before overload (mV)</td>
<td></td>
</tr>
<tr>
<td>Hum/noise, "A" weighted, referenced to 1W or 0.5V output, for 5-mV input (dB)</td>
<td></td>
</tr>
<tr>
<td>HIGH-LEVEL INPUT MEASUREMENTS</td>
<td></td>
</tr>
<tr>
<td>Frequency response (Hz-kHz, ± dB)</td>
<td></td>
</tr>
<tr>
<td>Hum/noise, "A" weighted, re 0.5 or 1W out, 0.5V in (dB)</td>
<td></td>
</tr>
<tr>
<td>Residual noise, "A" weighted, minimum volume, re 1W out (dB)</td>
<td></td>
</tr>
<tr>
<td>TINAL COMPENSATION MEASUREMENTS</td>
<td></td>
</tr>
<tr>
<td>Action of bass and treble controls</td>
<td>See Fig.</td>
</tr>
<tr>
<td>Action of secondary tone controls</td>
<td>See Fig.</td>
</tr>
<tr>
<td>Action of high- and low-frequency filters</td>
<td>See Fig.</td>
</tr>
<tr>
<td>COMPONENT MATCHING MEASUREMENTS</td>
<td></td>
</tr>
<tr>
<td>Input sensitivity, PH-1/PH-2, re 1W or 0.5V out (mV)</td>
<td></td>
</tr>
<tr>
<td>Input sensitivity, high-level, re 1W or 0.5V out (mV)</td>
<td></td>
</tr>
<tr>
<td>Output level, tape outputs, at rated output (mV)</td>
<td></td>
</tr>
<tr>
<td>Output level, headphone jack, at rated output (mV or mW)</td>
<td></td>
</tr>
<tr>
<td>EVALUATION OF CONTROLS, CONSTRUCTION AND DESIGN</td>
<td></td>
</tr>
<tr>
<td>Adequacy of program source and monitor switching</td>
<td></td>
</tr>
<tr>
<td>Adequacy of input facilities</td>
<td></td>
</tr>
<tr>
<td>Front panel layout</td>
<td></td>
</tr>
<tr>
<td>Action of controls and switches</td>
<td></td>
</tr>
<tr>
<td>Design and construction</td>
<td></td>
</tr>
<tr>
<td>Ease of servicing</td>
<td></td>
</tr>
<tr>
<td>OVERALL AMPLIFIER PERFORMANCE RATING</td>
<td></td>
</tr>
</tbody>
</table>
Manufacturers published specifications for Yamaha's relatively low-powered model CR-420 receiver contain one term you may have not seen before. This is the NDNCR specification (Noise Distortion Clearance Range). Yamaha (6600 Orangethorpe Avenue, Buena Park, CA 90622) developed this specification in the belief that it tells more exactly what you can expect from the product in terms of combined noise and distortion during actual use. When you read this claim, you'll note that, with the volume control turned down 20 dB below its maximum (typical of normal use), the model CR-420 receiver produces no more than 0.1% combined noise and distortion at any listening level from 100 mW to the full rated output of 22 watts-per-channel. While it can be argued that distortion at a -60 dB level (compared with output level) is far less annoying than noise at that same level, this extra specification gives you some idea of what you can expect in the way of dynamic range.

The NDNCR specification is only one of several innovative features associated with this low-cost receiver. The front panel of the model CR-420 is shown in Fig. 1. To the left of the long and narrow dial calibration area is a single tuning meter that serves as a signal strength meter in the AM mode and as a center-of-channel tuning meter for the FM mode, with FM frequencies calibrated at every half-MHz. Three tiny LED indicators to the right of the scales inform you whether you are listening to AM, FM, or stereo FM. Step-type bass and treble controls are located just below the tuning meter, and next to them is an independent loudness control. This control is used to change listening levels after the main volume control has been adjusted to realistic listening levels, depending upon the program source selected. The control covers a range (downward in level) of around 20 dB, and as it is rotated away from the flat or maximum clockwise position, this introduces just the right amount of loudness compensation. This arrangement works far better than the usual combination volume/loudness-control-plus-switch found on many competitive receivers.

Recording-output and program-source selector switches are also operated independently of each other. This makes it possible to feed one program to an associated tape deck while

Radio-Electronics Audio Lab Tests

Yamaha CR-420 AM/FM Receiver

LEN FELDMAN
CONTRIBUTING HI-FI EDITOR

MANUFACTURER'S PUBLISHED SPECIFICATIONS:

FM Tuner:
Usable Sensitivity (mono): 1.8 μV (10.3 dB) 50-dB Quieting: mono: 3.5 μV (16.1 dB); stereo, 43.5 μV (38 dB). S/N Ratio: mono 77 dB; stereo, 71 dB. Capture Ratio: 1.0 dB. Selectivity: 65 dB. Image Rejection: 50 dB. AM Suppression: 56 dB. IF and Spurious Rejection: 75 dB. Harmonic Distortion: mono, 0.15% at 100 Hz and 1 kHz, 0.35% at 6 kHz; stereo, 0.25% at 100 Hz and 1 kHz, 0.8% at 6 kHz. Stereo Separation: 40 dB at 1 kHz, 50 dB at 10 kHz. Frequency Response: 30 Hz to 15 kHz, +1.0, -3.0 dB. Muting Threshold: 5.0 μV (19.2 dB).

AM Tuner:
IHF Sensitivity: 18 μV per meter. Selectivity: 20 dB. S/N Ratio: 50 dB. IF and Image Rejection: 40 dB. Harmonic Distortion: 0.6%.

Amplifier:
Power Output: 22 watts-per-channel, 8 ohms, 20 Hz to 20 kHz. Harmonic Distortion: 0.05%. IM Distortion: 0.05%. Damping Factor: 40. Input Sensitivity: phono, 2.0 mV, high level, 120 mV. Frequency Response: phono, RIAA ±0.5 dB; high level, 20 Hz to 20 kHz, ±1.5 dB. S/N Ratio: phono, 91 dB (referenced to a 10-mV input); high level, 97 dB. Noise Distortion Clearance Range: for 0.1% THD, 20 Hz to 20 kHz with volume control at -20 dB; phono to speakers, from 100 mV to 22 watts. Bass Range: ±12 dB at 50 Hz. Treble Range: ±11 dB at 20 kHz. High Filter Cutoff: 6 dB-per-octave above 10 kHz. Low Filter Cutoff (built-in): 12 dB-per-octave below 10 Hz.

General Specifications:
you listen to a completely different program source. Volume and balance controls are concentrically mounted, and next to them is the tuning knob.

The bottom of the panel contains a pushbutton power-on switch, two phone jacks (for dual stereophonic headphone listening); speaker selector pushbuttons for choosing one or both pairs of speaker systems (which can be connected to the model CR-420); a high-cut filter switch; an AM/FM selector pushbutton; a mono/stereo mode selector; and an AM muting switch which, when pressed to OFF, also switches the FM reception into the monophonic mode, regardless of the incoming FM signal.

The rear panel of the model CR-420 contains terminals for 75-ohm, 300-ohm FM and external AM antennas. Nearby are the phono and auxiliary input jacks as well as the tape-out and tape-in jacks and a chassis ground terminal. Two rows of spring-loaded color-coded speaker terminals are next, followed by a pair of convenience AC receptacles (one switched, the other unswitched). A wide variety of additional components can be connected to the model CR-420 receiver.

Circuit highlights

An internal view of the chassis is shown in Fig. 2. The power-supply circuitry is well isolated from low-level and RF circuits, and the two major rotary switches are connected to front-panel knobs via long coupling shafts and swivel joints. This design places the actual switches close to the circuits they must select.

The front-end section of the receiver uses a three-tap tuning capacitor and a junction FET for the RF amplifier stage. The IF section uses a four-element ceramic filter, a two-stage direct-coupled amplifier and a three-stage differential amplifier with a current limiter. The FM demodulator is a wideband balanced-type ratio detector, and a phase-locked-loop IC is used for multiplex stereo decoding.

A special circuit allows the external FM antenna to serve for AM reception thus eliminating the need for a bar antenna. During AM reception, the FM antenna acts as a whip antenna because of the high impedance provided by capacitors C1 and C2 (see Fig. 3). Using capacitor C3 to bypass the power-transformer primary side, the ground side of the AM antenna coil is grounded via the power-line cord; this provides a whip antenna effect. To increase the antenna's sensitivity, the shorting bar shown in Fig. 3 bridges the terminals as shown. If overloading results, the bar can be removed.

The power-amplifier section of the model CR-420 is direct-coupled and consists of a differential amplifier stage with constant-current circuitry, a Class-A driver stage with two-stage thermal compensation, a Darlington pair full complementary single-ended push-pull DC-coupled output stage, and a power-consumption limiter-type protection circuit.

A speaker protection relay separates the amplifier and speakers when the power switch is turned on or whenever more than ±2 volts DC is present at the speaker output terminals.

FM measurements

Table 1 summarizes measurements made for the FM tuner section. The results can be compared with the manufacturer's published specifications shown elsewhere in this report. Almost every performance specification was either equalled or exceeded, except for the monophonic and stereophonic signal-to-noise claims, which were nonetheless excellent. The 1-kHz distortion readings of 0.06% in mono and 0.07% in stereo are about as low as we have ever read, even when lab testing the very highest-priced separate tuners. Stereo FM separation of better than 50 dB at mid-frequencies and above 40 dB at 10 kHz is also unusual in receivers in any price or power category.

Figure 4 is a scope analysis of FM frequency response and separation. Note that FM de-
channel FTC power rating claimed. At an actual rated output of 22 watts-per-channel (at mid-frequencies), harmonic distortion was an extremely low 0.008% while 1M distortion was almost equally low, with readings of only 0.009%. Distortion readings at the 1-watt level were largely distortion plus noise (with the noise component contributing more to the single-meter reading than the distortion), but they were well below Yamaha's 0.1% THD figure, even ignoring that noise was a contributing factor to the total reading.

The range of the BASS and Treble controls of the model CR-420 is shown in Fig. 6. Note that turnover frequencies are positioned lower (for the BASS) and higher (for the Treble) than is usual with simple feedback-type con-

controls. This design feature makes it possible to augment extreme bass or extreme treble that might be deficient.

Figure 7 shows the system response at various loudness control settings. When these measurements and sweep-frequency analyses were made, the volume control remained at a fixed setting and only the separate loudness control setting was altered. At mid-frequencies, this control provides up to 20 dB attenuation, but as can be seen from the progressively lower amplitude sweeps, compensation at the bass end of the spectrum increases as the control setting is lowered.

Summary

Table 3 contains an overall product evaluation together with our positive conclusions regarding the model CR-420. Although in the past we have tested more costly Yamaha receivers and other components, this is our first experience with one of their lower-priced products. We have had an opportunity to use the receiver for better than two weeks, and it is easy to see why these receivers are well accepted. Yamaha has brought as much care and thoughtful engineering to "beginner" sets as to its sophisticated separate components.

TABLE 2

<table>
<thead>
<tr>
<th>Manufacturer: Yamaha</th>
<th>Model: CR-420</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPLIFIER PERFORMANCE MEASUREMENTS</td>
<td></td>
</tr>
<tr>
<td>POWEROUTPUT CAPABILITY</td>
<td>R-E</td>
</tr>
<tr>
<td>RMS power/channel, 8-ohms, 1 kHz (watts)</td>
<td>34.0</td>
</tr>
<tr>
<td>RMS power/channel, 8-ohms, 20 Hz (watts)</td>
<td>33.0</td>
</tr>
<tr>
<td>RMS power/channel, 8-ohms, 20 kHz (watts)</td>
<td>30.0</td>
</tr>
<tr>
<td>RMS power/channel, 4-ohms, 1 kHz (watts)</td>
<td>N/A</td>
</tr>
<tr>
<td>RMS power/channel, 4-ohms, 20 Hz (watts)</td>
<td>N/A</td>
</tr>
<tr>
<td>RMS power/channel, 4-ohms, 20 kHz (watts)</td>
<td>N/A</td>
</tr>
<tr>
<td>Frequency limits for rated output (Hz-kHz)</td>
<td>Below 10-45</td>
</tr>
<tr>
<td>DISTORTION MEASUREMENTS</td>
<td></td>
</tr>
<tr>
<td>Harmonic distortion at rated output, 1 kHz (%)</td>
<td>0.008</td>
</tr>
<tr>
<td>Intermodulation distortion, rated output (%)</td>
<td>0.009</td>
</tr>
<tr>
<td>Harmonic distortion at 1-watt output, 1 kHz (%)</td>
<td>0.025</td>
</tr>
<tr>
<td>Intermodulation distortion at 1-watt output (%)</td>
<td>0.02</td>
</tr>
<tr>
<td>DAMPING FACTOR, AT 8 OHMS</td>
<td>51.4</td>
</tr>
<tr>
<td>PHONO PREAMPLIFIER MEASUREMENTS</td>
<td></td>
</tr>
<tr>
<td>Frequency response (RIAA ± dB)</td>
<td>+0.5 -0</td>
</tr>
<tr>
<td>Maximum Input before overload (mV)</td>
<td>140</td>
</tr>
<tr>
<td>Hum/noise referred to full output (dB) (at rated Input sensitivity) ("A" weighted)</td>
<td>80</td>
</tr>
<tr>
<td>HIGH LEVEL INPUT MEASUREMENTS</td>
<td></td>
</tr>
<tr>
<td>Frequency response (Hz-kHz, ± dB)</td>
<td>13-41, 1.0</td>
</tr>
<tr>
<td>Hum/noise referred to full output (dB) ("A" weighted)</td>
<td>102</td>
</tr>
<tr>
<td>Residual hum/noise (minimum volume) (dB) ("A" weighted)</td>
<td>103</td>
</tr>
<tr>
<td>TONAL COMPENSATION MEASUREMENTS</td>
<td></td>
</tr>
<tr>
<td>Action of bass and treble controls</td>
<td>See Fig. 7</td>
</tr>
<tr>
<td>Action of secondary tone controls</td>
<td>N/A</td>
</tr>
<tr>
<td>Action of low-frequency filter(s)</td>
<td>N/A</td>
</tr>
<tr>
<td>Action of high-frequency filter(s)</td>
<td>Good</td>
</tr>
<tr>
<td>COMPONENT MATCHING MEASUREMENTS</td>
<td></td>
</tr>
<tr>
<td>Input sensitivity, phono 1/phono 2 (mV)</td>
<td>2.1</td>
</tr>
<tr>
<td>Input sensitivity, auxiliary Input(s) (mV)</td>
<td>105</td>
</tr>
<tr>
<td>Input sensitivity, tape inputs(s) (mV)</td>
<td>105</td>
</tr>
<tr>
<td>Output level, tape output(s) (mV)</td>
<td>105</td>
</tr>
<tr>
<td>Output level, headphones jack(s)</td>
<td>125 mV</td>
</tr>
<tr>
<td>EVALUATION OF CONTROLS, CONSTRUCTION AND DESIGN</td>
<td></td>
</tr>
<tr>
<td>Adequacy of program source and monitor switching</td>
<td>Very good</td>
</tr>
<tr>
<td>Adequacy of input facilities</td>
<td>Very good</td>
</tr>
<tr>
<td>Arrangement of controls (panel layout)</td>
<td>Excellent</td>
</tr>
<tr>
<td>Action of controls and switches</td>
<td>Very good</td>
</tr>
<tr>
<td>Design and construction</td>
<td>Very good</td>
</tr>
<tr>
<td>Ease of servicing</td>
<td>Excellent</td>
</tr>
<tr>
<td>OVERALL AMPLIFIER PERFORMANCE RATING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Excellent</td>
</tr>
</tbody>
</table>

TABLE 3

<table>
<thead>
<tr>
<th>Manufacturer: Yamaha</th>
<th>Model: CR-420</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERALL PRODUCT ANALYSIS</td>
<td></td>
</tr>
<tr>
<td>Retail price</td>
<td>$280</td>
</tr>
<tr>
<td>Price category</td>
<td>Low</td>
</tr>
<tr>
<td>Price/performance ratio</td>
<td>Superb</td>
</tr>
<tr>
<td>Styling and appearance</td>
<td>Excellent</td>
</tr>
<tr>
<td>Sound quality</td>
<td>Very good</td>
</tr>
<tr>
<td>Mechanical performance</td>
<td>Very good</td>
</tr>
</tbody>
</table>

Notes:

Yamaha is an audio component manufacturer that does not sacrifice control or quality when "stepping down" to its lower-end power receiver designs. The tube section (at least the FM) of the model CR-420 exhibited performance characteristics as good as those of higher-priced models, and, even though the unit is not equipped with selectable IF bandwidth, a high-enough alternate channel selectivity was balanced with an adequate bandwidth, so that the distortion levels observed during our tests (at full 100% modulation levels) were incredibly low—often limited by the capabilities of our test equipment. Stereo separation in FM was very high.

Perhaps more important than the measured test results was the Intelligent layout. The separate record-out switch and program source switch are a welcome innovation in a receiver at this low price and permit you to record one program source while listening to another. Yamaha retained the center-of-channel tuning mode for the single meter when it is used for FM tuning. We wish that the muting switch had been made Independent of the stereo/mono FM mode, since the present arrangement prevented us from checking out some weak-signal stations in the stereo mode.

At (or even slightly above) its rated power-output level, the model CR-420 delivers good tight sound that is well balanced and uncolored. With so many new speaker systems requiring no more power than the receiver can supply, it's nice not to have to opt for a super-powered unit just to obtain other high-quality features.
Most serious audiophiles know that any stereo component system, no matter how superior its music-reproduction capabilities, still falls short of recreating the total musical experience of attending a live concert in an acoustically proper environment. When you attend a live concert in a large auditorium, much of the sound reaches you not from the stage, but as reflections from the walls, ceiling, and other areas of the auditorium. This reverberant sound is delayed in time in amounts that depend upon the hall’s dimensions. The duration of the sound reflections can also vary greatly, depending upon the hall size and the reflective nature of its surfaces. These effects are called the acoustics or reverberance of the concert hall and it is this reverberant effect with its associated time delay that the Scientific Audio Electronics (701 E. Macy, Los Angeles, CA 90012) model 4100 attempts to recreate in a home listening room.

The model 4100 (see Fig. 1) requires another stereo amplifier and another pair of speakers in addition to itself and your present stereo component system. The unit is designed to be used between the preamplifier output and the power amplifier input of an existing stereo system.

Performance measurements

The model 4100 requires relatively few static bench measurements. The few we did make are summarized in Table 1. Let you become dismayed at the seemingly poor frequency response obtained from the rear-channel outputs, a few words of explanation are needed.

Long ago it was established that reverberant or reflected sound in a concert hall does not contain very much high-frequency content. This is because the highs are more readily absorbed by the structural surfaces of the concert hall than the low and mid-frequencies that are more easily reflected from surfaces. In addition, our outer ear is so shaped that high frequencies reaching us from behind are not as readily perceived as treble frequencies reaching us from the front. If the rear channels reproduced all the frequencies with uniform intensity, the effect would be unreal and we would perceive the rear speakers as being primary producers of program content, which is not the purpose of a time-delay system.

The effectiveness of a device such as the model 4100 is more easily determined by listening tests than by static bench measurements, and our comments and overall product analysis in Table 2 confirm that the model 4100 produces the desired effect in a home music system very successfully. Nevertheless, to give you some idea of what is taking place inside the "black box," we fed a series of burst tones into the inputs of the model 4100. In the scope photo of Fig. 2, the upper trace represents the tone-burst input, while the lower trace represents the signal obtained by using only the "short" time-delay slide control set to its maximum setting. The signal has clearly been delayed by the requisite amount (sweep rate was 2 µs-per-horizontal division).

Summary

The model 4100 Time Delay Ambience System will appeal to those audio purists who are willing to add the necessary additional stereo amplifier and extra speakers to their hi-fi systems to achieve total realism in home music-reproduction systems. This system should enable a user to duplicate every kind of listening environment.

Manufacturer’s Published Specifications:

- Total Harmonic Distortion: 0.5%.
- Intermodulation Distortion: 0.5%.
- Signal-to-Noise Ratio, referred to rated output: front outputs, 95 dB; rear outputs, 60 dB.
- Frequency Response: rear outputs only, 50 Hz to 5 kHz, ±1.0 dB.
- Weight: 15 lb.
- Dimensions: 2¾ H X 15 W X 8 inches D.
- Suggested Retail Price: $500.

Table 1

<table>
<thead>
<tr>
<th>Type of Measurement</th>
<th>R-E Measurement</th>
<th>R-E Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total harmonic distortion, 1 kHz (%)</td>
<td>0.3</td>
<td>Good</td>
</tr>
<tr>
<td>IM distortion (%)</td>
<td>0.2</td>
<td>Very good</td>
</tr>
<tr>
<td>S/N ratio, front (dB)</td>
<td>90</td>
<td>Excellent</td>
</tr>
<tr>
<td>S/N ratio, rear (dB)</td>
<td>77</td>
<td>Excellent</td>
</tr>
<tr>
<td>Frequency response, rear (Hz-kHz)</td>
<td>36-50—1.0 dB</td>
<td>See test</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Type of Measurement</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price category</td>
<td>Medium</td>
</tr>
<tr>
<td>Price/performance ratio</td>
<td>Very good</td>
</tr>
<tr>
<td>Styling and appearance</td>
<td>Excellent</td>
</tr>
<tr>
<td>Sound quality</td>
<td>Excellent</td>
</tr>
<tr>
<td>Mechanical performance</td>
<td>Very good</td>
</tr>
</tbody>
</table>

Comments: The merits of a time-delay unit such as the SAE model 4100 are directly proportional to the degree of flexibility it affords. The greater the number of variables in time delay and reverberation, the more likely the unit will be able to duplicate the sonic environment that best fits the music reproduced in your listening room. The model 4100 excels in this respect, thanks to the three time-delay levels and its ability to introduce continuously variable amounts of short, medium and long delay. SAE engineers and listening panel must have done a great deal of listening before choosing these delay times since, in our extended listening tests, we were always able to find some combination of delays and regeneration (reverberation) that resulted in an apparent room-size enlargement just about perfect for the particular program source.

However, as with all such devices, the effect can be overdone, and you are cautioned to adjust it with care. If you can “hear” sound coming from the rear speakers, the rear sound level is probably too high and should be backed off. The stereo pushbutton, in which a delayed sound signal is fed back to the front speakers as well as to the rear speakers, did not prove to be useful in our setup, although it might prove effective if you simply want to add some reverberation to “dry” program sources recorded with close-microphone techniques.

A device such as the model 4100 should not be confused with any 4-channel reproduction scheme. But, in its own way, this time-delay unit offers one of the chief advantages of 4-channel sound—the feel of a concert hall—that was almost entirely ignored in the early 1970 attempts at quadraphonic sound reproduction.
Troubleshooting Communications Receivers

The right signal generator, good diagnostic ability and precise bench techniques lead to rapid repair of 2-way radios.

Forest Belt

Many of the articles on test equipment tend to be of the "what it does" variety. Some of them, like lab reports, provide a list of specifications and comments on the conformance or nonconformance to the specs by the instrument being examined. This special section takes a different approach.

We will take an in-depth look at communications signal generators and how to properly use one to troubleshoot. We will also look at what instrument features make the job easier and which instruments have those features. The following pages of this article will attempt to bring you this knowledge, along with explanations and illustrations.

Using the best available information, all data has been checked and rechecked. Some test equipment manufacturers did not respond to our requests for detailed information. We have either omitted their instruments or told you what we could learn about them by other means. In either case, there is a lot of information here to insure successful two-way-receiver troubleshooting, no matter what kind of land/mobile, marine, or CB outfits you should run across.

Troubleshooting Communications Receivers

You can approach diagnosing two-way radios from two standpoints. First, and probably most common, you can analyze a symptom or set of symptoms, then track down the specific defect causing those symptoms.

Or—and I consider this the better approach—you can start a procedure that takes you all the way through the transmitter-receiver. Along the way you virtually cannot miss encountering any defect that exists. Moreover, checking the entire set this way anticipates many minor troubles, and helps you correct them before they cause a breakdown. Best of all, you put the transmitter and receiver in top condition, right up to specifications.

An approach like this proves effective whether you're troubleshooting CB radios, FM two-way radios, aircraft transceivers, marine radio-telephones, or ham gear. The result is thorough servicing, mixed with what is commonly called preventive maintenance—grade-A insurance against most callbacks.

This special section deals with signal generators, with the emphasis on receivers and the receive function of transceivers. Obviously, certain transmit functions can also be traced with communications signal generators: mainly in microphone amplifiers and modulators.

For a start, let's examine in more detail this overall troubleshooting approach. The block diagram of Fig. 1 shows the receive stages in a typical FM two-way radio. Receive stages in CB transceivers differ somewhat, since they receive AM or SSB signals.

The receive stages shown in Fig. 1 represent those of a recent model single-conversion UHF-FM receiver. Not long ago, UHF receivers needed a second conversion, down to 455 kHz. Only filters at that low IF frequency could confine bandwidth or selectivity enough for narrowband FM (5-kHz deviation). But technology never stands still. Now, sharply selective crystal filters at 10.7-MHz (especially in tandem as shown here) can hold IF selectivity tightly to the necessary

FIG. 1. RECENT MODEL UHF-FM RECEIVER reflects single-conversion design. Older UHF sets used dual conversion, and did not contain IC's.
20-kHz bandwidth. The need for a second oscillator and mixer is eliminated.

This changes very little the way you approach overall troubleshooting. As you will see later, dual-conversion receivers require a generator that reaches accurately down into the submegahertz frequencies.

First things first

An excellent place to begin troubleshooting is around the discriminator. You need an accurate 10.7-MHz signal source, unmodulated. Of course, if the discriminator comes after a series of low-IF amplifiers, let’s say, the 455-kHz variety—that’s the signal source to use.

The important thing to remember is **accuracy**. Today’s more expensive signal generators have plenty of accuracy. However, you should not attempt a discriminator adjustment with just any old signal generator. One of exceptional accuracy and tight stability is a must. Lacking an expensive generator, you may have to make do with one that has less stability; if so, **always** monitor its output with a frequency counter.

Once the discriminator is calibrated, turn your attention to the IF stages immediately preceding it. In the Fig. 1 example, this means you test the IF amplifier and limiter stages at a frequency of 10.7 MHz. In a dual-conversion receiver, this step deals with 455-kHz stages.

Go to the limiter first. You’ll discover that a quick meter check of the action in this stage indicates some things about the operation back towards the front end of the receiver, without even injecting a signal. Monitoring the effects, at the limiter, of an input signal tells you even more.

After checking the limiter, assess the operation of the IF amplifiers and the associated selectivity filters. Again, certain tests reveal whether or not these stages and components perform the way they are intended to. If they don’t, correct the trouble before you proceed. Some later tests will depend on the proper operation of these IF stages.

Alignment tells a story

Knowing that transmitter troubleshooting responds well to an alignment procedure in diagnosis, smart technicians apply similar techniques for the IF and RF sections of communications receivers.

Therefore, if the receiver is a dual-conversion set, you next switch your signal generator to the high intermediate frequency and test those stages. As you will discover, you can verify the accuracy of your signal generator by two measurements—one using your frequency counter, and another made at the discriminator of the receiver. (Details will follow later in this article.)

The same procedure works when you check the receiver’s RF sections. If the previous tests have been performed correctly, you can quickly zero-beat the receiver to a base transmitter or to a tightly controlled signal generator. (Today’s generators (see Table 1) with digital settings have an accuracy that exceeds the FCC requirement for transmitters.)

Next on the agenda

It may come as a surprise that audioand-squelch diagnosis **follows** the IF and RF troubleshooting procedure. Yet, using a meter to check most two-way radios makes it easy to check out most of these sections—up to and including the FM detector—without having to listen to the receiver.

Furthermore, only if all these tests come out as they should are squelch-system tests meaningful. This is because FM two-way radios depend on noise-operated squelch. Squelch problems in these sets often arise from defects in the RF or IF sections. Anything that reduces the amount of front-end circuit noise at the discriminator can cause “soft or erratic squelch.” You could drive yourself crazy trying to track it down in the squelch section.

For this and other reasons, therefore, we suggest getting the discriminator, the low and high IF sections, and the RF and oscillator/mixer stages all in tip-top shape before you worry about squelch or audio.

Also, you can then check out the squelch and audio without having to use an audio generator. Simply feed a frequency-modulated signal (again, most modern generators can be frequency-modulated as well as amplitude-modulated) through the front end of the set (which you have proved OK) and proceed with testing.

This possibility becomes even more important when tone-coded squelch is involved. In these systems, receiver squelch opens up and “hears” only messages with an accompanying subaudio tone from the transmitter.

First, of course, you must understand how these squelch systems work. Second, you must be able to check the way squelch turns the audio on and off. Finally, you test how the squelch is opened up by the subaudio tone. This last requirement involves using a rather special audio generator, which is beyond the scope of this Special Section.

Final checks

One other important circuit within a receiver is the power supply: Certain DC voltages are regulated.

Before you undertake any other procedures, measure and verify that these regulated DC voltages are where they are supposed to be.

Not many mobile sets use electromechanical relays nowadays. Yet you may come across older gear that does use such relays.

Ordinarily, there are only two answers to relay problems: Either burnish the contacts or replace the relay. Only the most experienced relay expert is truly successful in trying to “bend the contacts” so they make and break in proper sequence. Considering the time you might spend on this procedure, and the likelihood of an early failure, your money is better spent on a new part.

Finally, do the customary final touchups. If a pilot light looks a little dark, it should be replaced because it will probably burn out soon. Dust out the chassis and clean up the front panel. Use a little alcohol on a Q-Tip to clean almost any corner. Remove knobs so you can clean behind them rather than leave a “ring around the collar.”

Most important of all, service the set thoroughly. Whether you use the procedures described in this Section or ones of your own, check the set thoroughly. That’s the only way to do the job conscientiously.

Table 1—FM Signal Generators

<table>
<thead>
<tr>
<th>Brand</th>
<th>Model</th>
<th>Frequencies</th>
<th>Accuracy (ppm)²</th>
<th>Output (mV)</th>
<th>Tone-Squelch Frequencies (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cushman</td>
<td>CE-48</td>
<td>0.01-999.999</td>
<td>3</td>
<td>100</td>
<td>10.0-9999.0</td>
</tr>
<tr>
<td></td>
<td>CE-5</td>
<td>0.05-519.999</td>
<td>9</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>ifr</td>
<td>FM/AM</td>
<td>0.03-1000.0</td>
<td>5</td>
<td>5</td>
<td>5.0-9999.9</td>
</tr>
<tr>
<td>Lampkin</td>
<td>107C</td>
<td>0.001-1000.0</td>
<td>10</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>109</td>
<td>2.0-512.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>303</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singer/</td>
<td>FM-10CS</td>
<td>0.05-1300.0</td>
<td>10</td>
<td>1</td>
<td>10.0-9999.0</td>
</tr>
<tr>
<td>Altech</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wavetec</td>
<td>3001</td>
<td>1.0-520.0</td>
<td>100</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3002</td>
<td>0.001-520.0</td>
<td>100</td>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1—All but Waveteck are part of FM communications service monitors.
2—ppm = parts per million, each part equivalent to 0.00001% of dialled frequency.
3—Dual-tone generator, with variable delays and durations.
FM Detector And Filter Tests

Proper operation of FM detectors is vital to reliable operation of 2-way radio communication. Here’s how they work and how to fix ‘em.

Before embarking on tests, you should understand how an FM demodulator works. Three basic types are used—discriminator, ratio detector and quadrature detector. Each is different, yet the principle of operation is roughly the same.

A frequency-modulated IF signal goes to the primary of a demodulator transformer. The signal is coupled inductively to the secondary. However, capacitance coupling also feeds the signal into the same circuits that are driven by the transformer secondary. This mixes inductively coupled and capacitively coupled signals, 90 degrees out-of-phase with each other.

A pair of diodes, connected in series-opposing at each end of the transformer secondary, act as detectors. However, the 90-degree phase difference causes them to conduct equally under one condition only—when the signal entering the transformer primary is precisely at the resonant frequency of the transformer primary and secondary circuits.

However, during frequency modulation, the signal deviates above and below the center frequency at an audio rate. Imbalance caused by the quadrature signals is proportional to the amount of frequency deviation.

Demodulators in double-conversion receivers center on a 455-kHz frequency. In others, the demodulator centers at whatever IF has been chosen; 10.7 MHz is usual.

Figure 1 shows an example of a basic FM discriminator that is used in many G-E two-way receivers. When the frequency swings above resonance, diode D1 conducts the most current. The voltage across the 220-pF capacitor becomes positive at the junction of D1. The farther the frequency deviates from center, the greater the positive voltage. When the frequency swings below resonance, diode D2 conducts the most current, and diode D1 conducts less. Voltage becomes positive at the junction of the capacitor and diode D2. Polarity across the capacitor thus alternates back and forth in step with the frequency deviation.

If you remember your frequency-modulation theory, you know that deviations occur at an audio or voice-frequency rate. The resulting alternating voltage across the 220-pF capacitor corresponds exactly with those voice frequencies. The RF is eliminated by the 220-pF capacitor. The demodulator thus recovers audio or voice modulation from the IF signals.

The discriminator shown in Fig. 2 differs only in how the quadrature or phase-shifted signal is fed to the secondary circuits. A “phantom center tap” is set up by a capacitive divider across the secondary.

The overall effect is identical. A signal precisely at resonance (of the transformer) results in the two diodes conducting equally and developing an equalized potential (0 volt) across the load capacitor. You can measure this zero voltage through a metering circuit—in Fig. 2, the 15K resistor and 0.01-pF decoupling capacitor.

Lampkin Laboratories Model 107C

Either of two things can move this DC “output” voltage away from zero. First, if the center frequency fed to the transformer is slightly off—that is, not exactly at 455 kHz—the resting meter voltage reads slightly positive (above frequency) or slightly negative (below frequency). Second, with an exact incoming frequency, any misalignment of the transformer resonance, particularly secondary misalignment, drastically alters the meter reading. In other words, the discriminator meter reads zero only when the incoming frequency is exactly 455 kHz, and when both transformer coils are adjusted to resonate precisely at 455 kHz.

From this, you can determine how to “calibrate” a discriminator; i.e., set it accurately at zero. Feed an accurate 455-kHz signal into the transformer from the limiter stages, and adjust the transformer coils for a zero reading at the discriminator metering point.

Just one precaution: The accuracy of this 455-kHz test signal is crucial. Use a crystal-controlled source, or a highly accurate synthesized generator, or keep a frequency counter on the generator you use. This is the only way you can truly calibrate the discriminator.

Figure 3 shows another type of demodulator. Note how the quadrature signal passes between two capacitive dividers, one across the primary and another across the special three-winding secondary of the discriminator transformer. This particular discriminator is used in Motorola two-way radios. Sometimes it is called a phase discriminator; some technicians call it a capacitance discriminator. The bottom part (inset) of Fig. 3 restructures the usual diagram to help you understand the operation of the demodulator a little better.

Diode D2 grounds the bottom end of the transformer secondary on the half-cycles in which the top end of the winding is negative (and the bottom end is positive). During that half-cycle, R1 is the load. Diode D1 couples the other end of the secondary to R2 on the other half-cycles. At resonance, D1 and D2 conduct almost identically. The DC voltages they develop show up across capacitor C4. Since these voltages are equal, they cancel each other. Therefore, the voltage at the metering point is exactly 0 (to ground).

Let the frequency being fed to the transformer deviate even slightly from

FIG. 1—BASIC FM DISCRIMINATOR is based on old Foster-Seeley design. The capacitor shifts phase by 90 degrees.
the transformer's resonant frequency and one diode conducts slightly more than the other. The voltage developed across C4 becomes something other than zero. If the frequency goes up, D1 conducts the most and the voltage at the metering point swings positive. Below resonant or center frequency, D2 conducts more and the voltage at the meter point is negative.

Hence, as frequency modulation deviates the signal up and down from the center frequency, the voltage across C4 follows the deviations closely and frequency demodulation occurs.

One thing you will discover when you examine the functional block diagram of almost any two-way radio is that a stage or two of limiting precedes the FM discriminator. Limiters are saturated stages that level out any amplitude variations that exist in a signal. It is important, for the recovered voice signals to be clear, that a discriminator type of demodulator be fed a pure FM signal. Many factors between the transmitter modulator and the receiver demodulator can vary the signal level, in effect adding some amplitude modulation. Most discriminators are sensitive to amplitude modulation, so limiters are necessary.

Once a limiter is saturated, it develops a base current that is somewhat proportional to the signal fed into the stage. Consequently, connecting a meter across a base resistor will indicate whether the limiter works or not. Virtually all commercial FM two-way radios contain at least one metering point for evaluating the limiter, which is why it's handy as an alignment indicator.

Broadcast FM receivers and some older communications receivers contain a variant called a ratio detector. The most notable circuit variation is that the diodes are connected as series-aiding rather than as series-opposing. Capacitors still produce a quadrature phase shift and the same results are obtained as with a discriminator; that is, frequency deviations cause a change in voltage across an output or a load capacitor and voice signals are recovered from a frequency-modulated IF signal. A ratio detector effectively cancels the amplitude modulations that accompany the IF signal to the detector. Therefore, less limiting is needed. Nevertheless, you almost never find a communications receiver without limiters between the low-IF amplifier and the FM demodulator.

Modern systems

Figure 4 shows a modern-day FM demodulator. Instead of a discriminator transformer, a fixed-frequency ceramic filter couples the IF signal from the limiters to the diodes. Designed especially for this purpose, this unique filter offers an extra advantage: high selectivity. Aging seldom changes the filter's resonant frequency more than a few Hertz, so you never have to adjust it; it either works or it doesn't.

The 90-degree phase difference occurs in the discriminator filter itself. Two output voltages develop across R1 and R2, and are fed to diodes D1 and D2. Because they are connected in series-aiding, diodes D1 and D2 deliver a combined DC output voltage that is precisely zero when the frequency that is fed to the filter exactly matches its center resonance. Deviations up or down from the center frequency produce a net positive or negative voltage across R3. Capacitor C3 provides a time constant with this load fast enough to respond properly to voice frequencies, and yet slow enough to eliminate most of the IF component. Network L1 and C5, together with bypass capacitor C4, filter out any remaining 455-kHz signal. As a result, capacitor C6 couples voice signals onto the audio-amplifier stages.

As always in communications discriminators, there is a test point across the DC output. In this design, since you cannot adjust the quadrature circuit, this test point serves mainly to help you judge whether the filter discriminator is good or bad, or adjust the conversion oscillators.

State-of-the-art two-way radios use an IC for the limiter/discriminator sections. Even with these circuits, a 90-degree phase shift is necessary. So, you will find an adjustable quadrature transformer connected to two pins of the IC. This tunable coil serves the same purpose (insofar as adjustment is concerned) as the secondary of a discriminator transformer.

Figure 5 shows a simplified representation of an integrated-circuit FM demodulator system, with limiters and a quadrature detector contained in one IC.

The quadrature coil is located externally. Tuning it is similar to tuning the secondary of a discriminator or ratio detector, but with one significant difference. You do not align for a zero-centered
If you can't zero the discriminator, this means trouble, and diodes are the most frequent offenders. Diodes should be fairly well matched; that is, forward resistance should be about the same in both. There should be almost no leakage. A faulty coil or capacitor can also prevent zeroing. Get this corrected before proceeding any further.

Next, test the discriminator for balance. This is where a decade-type generator-frequency control comes in handy.

With the discriminator accurately zeroed, reset the generator frequency for 1 kHz above the center frequency. Note the new discriminator meter reading. Then, reset the generator frequency to 1 kHz below the center frequency. The meter reading should move in the opposite direction from zero and exactly the same amount. In other words, equal frequency swings above and below center frequency should result in equal but opposite voltage swings.

Diodes again are your prime suspect when a discriminator fails to show balance. Sometimes, however, a badly mis-tuned primary coil creates this effect, even when the secondary seems to zero normally. However, go easy; all primary tuning requires that you readjust the secondary for zero. Capacitor values that have shifted (as a result of age or heat) can also cause unbalance. In addition, check the decoupling for the primary winding and the discriminator secondary.

Poor discriminator balance can be caused by a faulty ceramic or crystal IF filter. Although this is not the usual symptom of a bad selectivity filter, don't overlook it. (In a moment we'll tell you how to test filters.)

Connect your DC meter at the metering point in the limiter stage nearest the discriminator. Adjust all low-IF transformer and limiter coils for a maximum reading at the limiter.

For this check, don't feed in too much IF signal. Set the signal generator attenuator at zero and turn it up until you see the limiter reading rise slightly. If, when you align the IF and limiter coils, the reading goes higher, keep reducing the generator-output signal. If you oversaturate the limiters, these adjustments will be too broad and you won't obtain accurate alignment.

Broad adjustments in any case signify trouble. Look for a leaky transistor, a faulty transformer or an open decoupling capacitor. Eliminate the trouble before proceeding to any other part of the receiver.

Finding filter defects

Check out low-IF filters when you have your instruments connected for IF alignment. Keep the generator set exactly at the discriminator's center frequency. Feed in just enough signal to quiet some of the circuit noise heard in the speaker. Meter the limiter at the same time. You will note that slight quieting occurs after the limiter reading starts rising.

Now, set the generator-output high so the receiver is almost but not completely quieted. This signal level brings the limiter reading up to about halfway between threshold limiting and "flattening out" or oversaturation. It is important to hear a tiny bit of circuit noise, and note the limiter meter reading.

Now, raise the generator frequency exactly 1 kHz above the center frequency. Pay close attention to the increased noise level of the receiver and the exact degree of reduction in limiter reading.

Next, shift the generator frequency to 1 kHz below center. The meter reading should fall off almost exactly the same amount as for 1 kHz above the center frequency. Speaker noise increases. You can make and interpret this test in a matter of seconds. If you have any doubts, swing the generator frequency 2 kHz above and below center. Again, the noise levels on either side of center should be the same, with matching reductions in the limiter reading.

If there had been any earlier unbalance in the discriminator or quadrature detector, this test indicates whether you can blame it on defective filters.

Sometimes, when a discriminator zeroes OK but cannot be balanced exactly, some careless folks settle for a compromise balance, with the discriminator resting a little off-center. This results in audio distortion, especially during full signal modulation from another station or transmitter. Always test both the discriminator and filter balance to be sure.

Where filters are ganged, you may wonder which one is bad. Try injecting the test signal between the two filters. Isolate the signal generator with a 50-pF capacitor in series with the cable. Injection tracing lets you isolate which filter has changed characteristic.
TRY YOUR HAND AT THESE SAMPLE TEST questions on electronic components and circuits. The answers to this month’s and a new set of questions will appear in a future issue of Radio-Electronics. When you feel ready to take the CET Exam write to ISCET: 310½ Main St., Ames, IA 50010. Ask for the name and number of the nearest Certification Administrator, and take the CET exam.

Chapter 5 questions, electronic components & circuits

1. Which of the following statements regarding the circuit shown in Fig. 1 is true:

 - a. will pass all frequencies except one band near the resonant frequency of the L—C circuit.
 - b. will reject all frequencies except one band near the resonant frequency of the L—C circuit.
 - c. the value of R will determine the resonant frequency of the L—C tank circuit.
 - d. resistor R provides regeneration for the circuit.

2. In the circuit shown in Fig. 2:

 - a. R and C act as a tone control.
 - b. R varies the frequency of oscillation.
 - c. R varies the collector voltage.
 - d. R varies the DC voltage on C.

3. In the Fig. 3 circuit:

 - a. D will conduct when the voltage at E1 is lower than its breakdown potential.
 - b. D is a protective device which will cause R to open if E2 voltage rises above D breakdown voltage.
 - c. D will conduct when E1 voltage is higher than its breakdown potential.
 - d. the circuit is that of a simple half-wave power supply.

4. Regarding the circuit shown in Fig. 4:

 - a. the circuit cannot work as D1 and D2 cancel any signal at E.
 - b. the circuit could work as a regulated power supply.
 - c. the position of the pointer at R would determine the DC voltage at E.
 - d. D1 and D2 are noise limiters.

5. Regarding the circuit shown in Fig. 5:

 - a. it will work best if a high impedance headset is connected at E.
 - b. it cannot work without a power supply connected at E.
 - c. it cannot operate over the entire AM broadcast band unless both the L and C1 are variable.
 - d. the value of C2 will determine the station to be received.

6. The circuit shown in Fig. 6:

 - a. could be used to turn on an alarm.
 - b. is a sound-operated relay circuit.
Be A CET
of questions aimed at checking your Certified Electronic Technician
DICK GLASS

7. What type of circuit is shown in Fig. 7?
 (a) a complementary symmetry amplifier circuit.
 (b) a push-push amplifier.
 (c) a push-pull amplifier.
 (d) an emitter-follower amplifier circuit.

8. The circuit in Fig. 8 is a:
 (a) a heat sinks.
 (b) optional input level connections.
 (c) optional output level connections.
 (d) they have no purpose.

9. Figure 9 is a:
 (a) a ratio detector.
 (b) a quadrature detector.
 (c) a discriminator.
 (d) a full-wave bridge.

10. In Fig. 10, pins 3, 4, 5, 7, 10, 11, & 12 of the IC might be used for:
 (a) heat sinks.
 (b) optional input level connections.
 (c) optional output level connections.

 Be sure to keep this month’s issue of Radio-Electronics so you can check your answers in the next CET test.

Answers To Prior Quiz
Correct answers to Chapter 4 questions on transistors and semiconductors

Here are the answers to the questions on transistors and semiconductors that appeared in the November 1978 issue.

1. Correct answer is “b.” Collector and emitter DC voltages on transistors vary widely. Determining that either of these elements has a DC voltage is useful in troubleshooting but the most useful check is to see if the bias voltage (emitter-to-base) is in the range that will permit the semiconductor to operate.

2. Correct answer is “d.” The collector of an NPN transistor is positive in relation to the base and emitter. The emitter would be approximately 0.6 volt more negative than the base.

3. Correct answer is “a.”
4. Correct answer is “a.”
5. Correct answer is “d.”
6. Correct answer is “c.”: A tunnel diode is unique in that it will oscillate at UHF frequencies.

7. Correct answer is “c.”
8. Correct answer is “a.”
9. Correct answer is “b” (an N-channel JFET).
10. Correct answer is “c.”
ANNOUNCING

. . . A New

CREI Program:

Minicomputer &

Microprocessor

Technology

Including A

Microprocessor

Laboratory

Advanced Electronic Career

The microprocessor has ushered in the age of microtechnology and electronics will never again be the same. The microprocessor has made possible the placing of an entire computer on a silicon chip one quarter inch square. The microprocessor "miracle chip" is in the process of changing the world. Soon all technical personnel in electronics will have to understand and work with the microprocessor. It is invading virtually every area of electronics. And it profoundly affecting your electronics career.

Brand New Program

CREI has a brand new program to help you learn how to work effectively with this revolutionary electronics development. CREI's new program in Minicomputer and Microprocessor Technology is designed to prepare you for this field by giving you the education and practical experience you need.

The program provides solid preparation in electronics engineering technology with a specialization in minicomputers and microprocessors. In addition, it includes a microprocessor laboratory which features a fully programmable microcomputer which utilizes the Motorola 6802 microprocessor chip. This is an extremely important element of your program.

Programming Essential

As you may well know, you must learn how to program the microprocessor in order to design, service or troubleshoot microprocessor electronic systems. There is only one effective way to learn this all-important skill of programming, and that is by actually doing it. CREI's new program gives you this opportunity as you work with the exciting microprocessor laboratory.

Programming Is Easy

With CREI's new program, learning the skill of programming is simple. Within a few hours you'll be programming the microprocessor and in a short time you'll learn how to program it in three languages: BASIC, assembly and machine languages. In addition, you will learn how to interface the microprocessor with other systems and to test and debug specialized programs.
Preparation at Home

Wide Choice of Programs

Please note, however, that CREI's new program is only one of 16 state-of-the-art programs in advanced electronic technology offered by CREI. So even if you choose not to specialize in microprocessor technology, CREI has an advanced electronics program to meet your needs.

With CREI, you may choose from any of the following areas of specialization in advanced electronics:

- Microprocessor Technology
- Computer Engineering
- Communications Engineering
- Digital Communications
- Electronic Systems
- Automatic Controls
- Industrial Electronics
- Television Engineering
- Microwave Engineering
- Cable Television
- Radar and Sonar
- Nuclear Instrumentation
- Satellite Communications
- Aeronautical and Navigational
- Solid State Theory
- Nuclear Engineering

Unique Lab Program

An exclusive option available with CREI programs in electronic engineering technology is CREI's unique Electronic Design Laboratory program. It gives you actual experience in designing practical electronic circuits. It also helps you to understand the theories of advanced electronics and gives you extensive experience in such areas as tests and measurements, breadboarding, prototype construction, circuit operation and behavior, characteristics of electronics components and how to apply integrated circuits. Only CREI offers this unique Lab Program.

Practical Engineering

CREI programs give you a practical engineering knowledge of electronics. That is, each part of your training is planned for your "use on the job." By using your training, you reinforce the learning process. And by demonstrating your increased knowledge to your employer, you may qualify for faster career advancement.

Free Book

There isn't room here to give you all of the facts about career opportunities in advanced electronics and how CREI prepares you for them. So we invite you to send for our free catalog. This fully illustrated, 56 page book describes in detail the programs, equipment and services of CREI.

Send for this FREE Book describing your opportunities and CREI college-level programs in electronics

Qualifications

You may be eligible to take a CREI college-level program in electronics if you are a high school graduate (or the true equivalent) and have previous training or experience in electronics. Program arrangements are available depending upon whether you have extensive or minimum experience in electronics.

Send card or write describing qualifications to

CREI

CAPITOL RADIO ENGINEERING INSTITUTE

McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue Northwest
Washington, D.C. 20016

Accredited Member National Home Study Council
Learn solid-state circuitry as you complete your monophonic music maker.

EARL "DOC" SAVAGE, K4SDS, HOBBY EDITOR

DID YOU GET YOUR MULTIPLE-TONE GENERATOR AND NOTE SELECTOR ASSEMBLED AND OPERATING (SEE "HOBBY CORNER," RADIO-ELECTRONICS, JANUARY 1979)? THIS MONTH IT'S TIME TO ADD AN AUTOMATIC CONTROL SYSTEM. WE'LL BUILD A PUSH-ONE-BUTTON-TO-PLAY CIRCUIT AND THEN ADD TRIGGERS.

THE PUSH-TO-PLAY CIRCUIT CALLS FOR A PULSE GENERATOR AND A COUNTER. FIG. 1 SHOWS A BASIC 555 ASTABLE MULTIVIBRATOR USED AS A VARIABLE-RATE PULSER. THE RATE AND, THEREFORE, THE LENGTH OF EACH NOTE IN THE TUNE IS DETERMINED BY R1, R2, AND C1. YOU CAN INCREASE OR DECREASE ANY OF THESE COMPONENTS TO CHANGE THE AVAILABLE RANGE OF LENGTHS.

PRESSING SWITCH S1 REMOVES PIN 4 FROM GROUND; THIS ENABLES THE 555 PULSER THAT PUTS OUT (PIN 3) A STRING OF PULSES FOR AS LONG AS THE SWITCH IS OPEN. THE 7493 INVERTER BETWEEN PIN 4 OF THE 555 AND PIN 2 OF THE 7493 DOES TWO JOBS. IT RETURNS THE COUNTER TO ZERO WHEN THE 555 IS DISABLED, THUS INSURING (1) THAT THE TUNE STARTS AT THE BEGINNING REGARDLESS OF WHERE IT STOPPED, AND (2) THAT ZERO OUTPUT PIN 1 (74154) IS ACTIVATED. SINCE NO TONE WAS CONNECTED TO THE PIN 1 OUTPUT, THE DEVICE IS SILENT WHEN S1 IS NOT PRESSED.

YOU CAN USE SWITCH S1 TO TURN ON A DOORBELL, AS AN ALARM CLOCK OUTPUT OR ANY OTHER DEVICE OF YOUR CHOICE. AS LONG AS THE SWITCH IS ACTIVATED, THE TUNE PLAYS. THE CIRCUIT NOW PLAYS AS MUCH OF YOUR TUNE AS THERE IS TIME FOR. THAT'S OK, BUT IT SEEMS UNFINISHED!

SO LET'S ADD ANOTHER 555 TO MAKE THE CIRCUIT PLAY THE TUNE IN WHOLE MULTIPLES ONLY—NO MORE PART TONES. THE 555 MONOSTABLE SHOWN IN FIG. 2 WILL DO JUST THAT.

REMOVE THE PIN 4 LINE FROM THE PULSER AND CONNECT IT TO THE CONTROLLER OUTPUT, PIN 3. NOW JUST A QUICK TAP ON S2 STARTS THE TUNE, AND IT PLAYS UNTIL THE CONTROLLER TIMES OUT. ADJUST R3 UNTIL THE TIME-OUT OCCURS RIGHT AT THE END OF THE TUNE. (DEPENDING UPON HOW LONG EACH NOTE SOUNDS, YOU MAY HAVE TO CHANGE THE VALUE OF R3 AND/OR C2 TO GET INTO THE CORRECT TIMING RANGE.)

NOW YOU HAVE A DOORBELL, CLOCK ALARM OR WHATEVER OTHER DEVICE YOU LIKE THAT PLAYS YOUR TUNE THROUGH TO THE LAST NOTE REGARDLESS OF HOW LONG S2 IS CLOSED. OF COURSE, IT MAY PLAY IT LIVE OR 10 TIMES IF YOUR VISITOR HAS A HEAVY FINGER, BUT THIS FEATURE IS GOOD TO HAVE ON A CLOCK ALARM IF YOU ARE A HEAVY SLEEPER!

WHY NOT USE A 556 DUAL TIMER IN PLACE OF THE TWO 555'S? SURE, YOU CAN DO THAT, BUT RIGHT NOW WE'RE GOING TO TALK ABOUT ADDING EVEN MORE CONTROLLER TIMERS.

CONTROL TIMERS

SUPPOSE, FOR EXAMPLE, THAT YOU WOULD LIKE TO USE YOUR TUNE PLAYER IN PLACE OF A DOORBELL, AND YOU HAVE TWO DOORS. IF YOU USE TWO SWITCHES ON ONE CONTROLLER TIMER, IT WON'T BE POSSIBLE TO KNOW WHETHER YOUR VISITOR IS AT THE BACK OR THE FRONT OF THE HOUSE. TO SOLVE THIS PROBLEM, SET UP ANOTHER CONTROLLER 555, AS SHOWN IN FIG. 2. ADJUST THE TIMING SO THAT ONE CONTROLLER PLAYS ONE-HALF THE TUNE AND THE OTHER CONTROLLER PLAYS THE WHOLE TUNE, OR THE WHOLE TUNE ONCE AND TWICE. IF YOUR HOME HAS THREE DOORS, JUST USE THREE CONTROLLERS.

WHEN YOU USE MORE THAN ONE 555 CONTROLLER, YOU CANNOT SIMPLY TIE ALL THE OUTPUTS TOGETHER. THE MOST DIRECT METHOD IS TO USE ONE OR MORE OR GATES (SEE FIG. 3). IF ONE OR MORE INPUTS GOES HIGH, THEN THE OUTPUT ALSO GOES HIGH AND ACTIVATES THE PULSER.

THERE IS ONE MORE POTENTIAL PROBLEM: PERHAPS A HEAVY-HANDED VISITOR OR SOME OTHER OCCURRENCE TRIGGERS AND RE-TRIGGERS A CONTROLLER WHEN YOU DON'T WANT IT TO REPEAT. FOR EXAMPLE, SUPPOSE YOU WANT THE ALARM CLOCK TO REPEAT UNTIL YOU TURN IT OFF BUT YOU DON'T WANT TO ACTIVATE THE ONE-HOUR CHIME. THE CIRCUIT SHOWN IN FIG. 4 CAUSES THE CONTROLLER TO TRIGGER ONCE AND ONLY ONCE FOR EACH CLOSING OF SWITCH S3 NO MATTER HOW LONG IT IS CLOSED.

THE SINGLE TRIGGER CIRCUIT IS A LITTLE TRICKY. IN FACT, YOU CAN PROVIDE DIFFERENT EFFECTS BY CHANGING THE VALUES OF R4 AND C4 AND EVEN BY TAKING OUT THE DIODE ACROSS THE CAPACITOR. THESE POSSIBILITIES ARE AVAILABLE: (1) A SINGLE TRIGGER WHEN S3
Why buy a multi-capability counter for frequency-only measurements?

For accurate readings in the presence of noise. Our new 1911A/12A multi-counters have both trigger-level and attenuator controls.

For high resolution measurement of low frequency control tones in the period or period-average mode.

For economy. They're priced about the same as many frequency-only models, with totalize, autozero, autoranging, manual and automatic range selection, and more. Standard:

- 1911A for 250 MHz applications: $495
- 1912A for measurements to 520 MHz: $620

Call (800) 426-0361, toll free, or write John Fluke Mfg. Co., P.O. Box 43210, Mountlake Terrace, WA 98043.

(U.S. price)

The 1911A multicounter makes accurate field transmitter frequency checks easy with the optional battery-pack and whip antenna.

1912A 520 MHz model

Fluke Multicounters for Communications Service

2110-8001
CIRCLE 46 ON FREE INFORMATION CARD

CIRCLE 72 FOR DEMONSTRATION

You can assemble any of these Schober Organs
—and save 50% off store prices.

This coupon will bring you the fascinating Schober color catalog which describes the organs and shows you how easy it is to assemble them from Schober's complete kits. Include $1 if you want a 12-inch demo record.

The Schober Organ Corp., Dept. 183
43 West 61st Street, New York, N.Y. 10023

☐ Please send me the Schober Organ Kit Catalog
☐ Enclosed is my $1 for the 12-inch demo record.

Name:
Address:
City State Zip

February 1976

CIRCLE 31 ON FREE INFORMATION CARD
8085 A look at one memory IC that is among the 8085 family of devices.

J. TITUS, C. TITUS, D. LARSEN AND P. RONY

IN A PREVIOUS COLUMN (JANUARY 1979), we described the new Intel 8085 microprocessor IC. This is an upgraded type of 8080 microprocessor, since it has features that are not found on the 8080 device. One of the advantages in using the 8085 is the availability of “family” devices that can be used with little or no additional external logic. This makes the 8085 and its family ideal for small controllers, instruments and games, where expansion and the ability to run large programs such as BASIC may not be required.

This month we will describe one of the 8085-family devices, the 8155 read/write memory.

8155 RAM

The 8155 read/write memory IC contains 256 bytes of memory, which is probably more than enough for a small system. In most cases, the read/write memory will be used for temporary storage of data or results, as well as register and address information. The 8155 is also bus-compatible with the 8085 system through the use of the bidirectional address-data bus and standard control signals. In this case, only the /M, RD and WR signals are necessary for memory control. The ALE, CLOCK and RESET signals from the 8085 are also provided for internal control of the IC.

The 8155 has some I/O lines—in fact, there are two 8-bit I/O ports and one 6-bit I/O port. The two 8-bit I/O ports can be operated in either the input or output mode; individual bits cannot be selected. These two ports are called ports A and B. The 6-bit I/O port (port C) can be operated in several ways, but these are beyond the scope of this article. Let us just say that these operations allow the I/O ports to perform in a manner similar to that provided by the mode 1 and mode 2 operation of the 8255 programmable peripheral interface.

The 8155 read/write memory also contains a 14-bit programmable counter, re-
ferred to as a timer. The timer uses either the 8085's clock output or an externally applied clock signal. The timer's output is available as a pin on the 8155 IC, and it can be used several ways, depending on your requirements. It could be connected to the Serial In/Output Data (SID) pin 5 to be sensed by the RIM instruction, or connected to one of the 8085's interrupt pins (RST 7.5, for example) so that the end of the timer's period could be detected via an interrupt. The timer's output is fairly flexible, being programmed to operate in one of four ways:

Control bits M2 and M1 are the most significant ones in the 16-bit value programmed into the counter. Since the counter is only 14-bits long, the control bits are not included in the count itself, but are used by the control logic to determine the counter-output state when the count has been finally decremented to zero. Whenever a new 14-bit count value is reprogrammed into the counter, these two control bits must also be included in the new 16-bit word.

The 8155 read/write memory also has an internal control register that is loaded with an 8-bit byte that is used to determine operation of the I/O ports and the 14-bit counter.

make more money with RCA SKs...

...and your customers will really appreciate your reliable service.

You save time because you'll identify the exact SK you need quickly in RCA's easy-to-use Replacement Guide with complete installation data. And on every SK package you'll find all the necessary technical specifications, physical characteristics and terminal diagrams.

All hardware, when needed, is also included right in the SK package which saves you extra trips back to the truck or back to the shop.

You make more money because: you can work faster, more efficiently with RCA SKs. And you virtually end costly call-backs which means a lot more satisfied customers as well.

For details on how to order, see your RCA SK Distributor. Or contact RCA Distributor and Special Products Division, Deptford, N.J. 08096, Attention: Sales Promotion Services.
More information on new products is available from manufacturers of items identified by a Free Information number. Free Information Card is inside the back cover.

ANTENNA MOUNTS, model TRM-3, model WM-12, model WM-18. The heavy-duty model TRM-3 is a 3-foot-high tripod that accommodates TV, FM, CB and antenna masts to 1¼ inches in diameter. It can be roof-mounted or used in the field without bolting the legs. Comes fully assembled, with cap screws and hex nuts for securing the mast.

CIRCLE 126 ON FREE INFORMATION CARD

The models WM-12 and WM-18 are 12-Inch and 18-inch wall mounts, respectively; both include brackets, U-bolts and hardware for up to 1¼-inch diameter masts. List prices: model TRM-3, $16.90; model WM-12, $9.50; and model WM-18, $13.45.—RMS Electronics, Inc., 50 Antin Place, Bronx, NY 10462.

CIRCLE 128 ON FREE INFORMATION CARD

using a regular mobile CB antenna or AM/FM antenna for CB communications. The unit comes with two antenna inputs. Other specifications include a 26.5-MHz to 27.5-MHz frequency range, handles 5 watts of input power, 50-ohm input impedance, up to 4:1 VSWR mismatch correction, and spurious signal suppression of —25 dB. The model CB-MM6 measures 2½ W X 4 L X 1¼ H inches, and lists for $49.95.—RMS Electronics, Inc., 50 Antin Place, Bronx, NY 10462.

CIRCLE 127 ON FREE INFORMATION CARD

Micorder II mike/auto patch) costs $289.95; the model HW-2036A-2 (with standard PPT mike) costs $299.95.—Heath Co., Dept. 350-640, Benton Harbor, MI 49022.

CIRCLE 129 ON FREE INFORMATION CARD

switch. The flush-mounted head protects against theft.—Harada Industry of America, Dept. P, 145 E. Albertoni St., Carson, CA 90746.

AUDIO TEST STATION continued from page 48

Rotary switch S3 selects the integrating capacitor, and the charging current is determined by the networks connected to IC201 pins 4 through 7. Small-value capacitors charge faster than larger capacitors for the same charging current so a smaller capacitor selected by S3 will produce a higher frequency. Also for a given capacitor, increasing the charging current by varying R1 and R2 also increases the frequency.

The comparator or squarewave output from pin 13 is applied to Q201, an external buffer. The buffer is necessary because the internal squarewave buffer is an open collector, and the output impedance on the positive edge of the squarewave is equal to R201. Therefore, any significant change in the external load on pin 13 alters the amplitude of the positive edge of the squarewave.

The two resistor networks connected to pins 4 through 7 each control a separate current source for charging the integrating capacitor. These sources can be used singly or in pairs. When used in pairs, the currents of each are added. The voltages applied to IC201 pins 8 and 9 determine which of these current sources is active.

The outputs of both pins 13 and 14 are approximately symmetrical around 0. The output of Q201 ranges from approximately 0 to +V (+6 volts). With S4 in the SYMM position, IC201 pin 8 is at level 0 and pin 9 at +V. This enables both pins 6 and 7 and, therefore, the charging current from the integrating capacitor for both the positive and negative ramps is the total current drawn from pins 6 and 7. When the wiper of R1 is at ground, only a very small current is drawn from pin 7, and the charging rate, or frequency, is determined by R204. Resistor R204 therefore determines the low frequency point when R1, the front panel frequency-adjust slide pot is at the minimum setting. When the wiper of R1 is at —V (—6V), most of the charging current is provided by R205, since it is much smaller than R204. Resistor R205 then determines the high frequency limit when R1 is at the maximum setting. With these values for R204 and 205, the frequency range of R1 is 100:1. The reason that R204 and R205 are not also 100:1 is because even with R1 at ground, R205 contributes slightly to the charging current and therefore R204’s contribution must be reduced to compensate. When R1 is at —V, the R204 contribution is negligible compared with that of R205.

When S4 is in the RAMP position and the output from IC201 pin 13 is high, pin 8 is also high. In this case, pins 4 and 5 are activated and they perform exactly as do pins 6 and 7. Remember that the squarewave output of pin 13 is at a constant voltage during rise of the ramp.
voltage of pin 14. Therefore, during the positive-going ramp of pin 14, the current is controlled by pins 6 and 7. During the negative portion of the ramp, current is controlled by pins 4 and 5; or, as viewed from the front panel, R1 controls the time of the positive-going ramp and R2 controls the time of the negative-going ramp. If R1 and R2 are in extreme opposite positions, the result is positive and negative ramps with a 100:1 time ratio. With S4 in the ground (symmetrical) position, R1 controls the time of a symmetrical triangular waveform. The result of all this (looking at the front panel), is that R1 and R2 provide a 100:1 change of frequency, and each step of S3 provides a 100:1 change.

We know that the timebase section derives its name from the fact that its primary function is to sweep the audio generator and the time (actually the inverse of time—frequency) base of an X-Y display. To accomplish this, the timebase only has to provide a variable-symmetry triangle wave at low frequency. However, once the basic oscillator is established, it is relatively easy to let it provide other useful functions.

For instance, an effective way to check the proper action of a mixer is to apply two triangle waves, one, high-amplitude at a low frequency; the second, a lower amplitude at a higher frequency. If the mixer is functioning properly, each input retains its individual characteristics at the output, but one input will be riding on the other. The timebase section was designed to provide the three basic waveforms over at least the full spectrum of needed audio frequencies.

A piece of test equipment that many classify as "nice to have" but difficult to justify as a separate purchase is a pulse generator. Again, however, since there is already a basic oscillator in the timebase section, it is relatively simple to shape it into a pulse output. Therefore, the total frequency range of the timebase oscillator is made wide as the capabilities of the basic oscillator can provide.

You then have a three-function generator with a useful frequency range of 0.002 Hz to 100 kHz and a pulse repetition rate of 0.002 Hz to about 800 kHz. The pulse-shaping section will be covered next month.

To provide the maximum possible versatility to the timebase oscillator, the range of integrating capacitors has been made wide as practical. There is no DC bias across the integrating capacitor, and the manufacturer of IC201 has specified that the capacitors be nonpolar. This requirement is easily implemented for small-value capacitors; however, large-value nonpolar capacitors are rare and usually large sized.

The problem with using a polarized-type capacitor in a bipolar circuit is that the polarized capacitor tends to leak when you try to charge it in the reverse direc-

If the leakage represents a significant portion of the charging current, the voltage rise across the capacitor (and hence across the output triangle wave) will be an exponential rather than a linear rise. This is because the leakage current increases with the charging voltage. If the leakage is significant, then at some voltage level, the leakage current and charging current will be equal, the voltage will cease to rise and oscillation will also cease. Additionally, some types of polarized capacitors can be damaged by reverse voltage.

Actually, this circuit works quite well with some aluminum electrolytic capacitors. With a supply voltage of ±7, the charging voltage is only about ±1.5. Aluminum electrolytic capacitors can tolerate the 1.5-volt reverse voltage. However, low-leakage capacitors, and only those with the lowest voltage ratings, should be used in this circuit.

Note that the integrating capacitors are all evenly spaced one decade apart except for the largest and smallest capacitors. The 470-µF value capacitor is simply the largest value that will consistently work in this circuit. Also note that the smallest capacitor (C203) must be reduced from its nominal value by an amount that is equal to the stray capacitance of the board and switch circuit.

continued on page 82

A 20MHz OSCILLOSCOPE UNDER $500?

YES!!

LBO - 507 by LEADER Instruments Corp

FEATURES:
- 20 MHz bandwidth
- Unique trigger circuit for maximum display stability
- 10 MV sensitivity
- Bright display
- TV trigger
- Built-in calibration signal
- Triggered and automatic sweep
- Built-in TV vertical and horizontal sync separation circuits
- Check most digital logic circuits, including CMOS
- 12 sweep range selections
- Sweep to 1.5 SEC/cm

NEWCOM SHOW SPECIAL!!

MIDWINTER SPECIAL
Save $100 Regularly $549.95
Now $449.95 including probe
Shipping not included
Sale ends April 30, 1979

THE TEST EQUIPMENT SPECIALISTS
TOLL FREE HOT LINE
800-223-0474
54 West 45 Street, New York, N.Y. 10036

ADVANCE ELECTRONICS
FEBRUARY 1979

79
Troubleshooting starter circuits in pulse-width modulated power supplies.

THE AUGUST 1978 SERVICE CLINIC, WE discussed pulse-width modulation (PWM) power supplies, and briefly mentioned the starter circuit. Now let's explain this circuit in more detail. This circuit is absolutely indispensable because it gives the horizontal oscillator circuit a swift kick to get it started. The PWM circuit must receive gate pulses from this circuit to operate. So, all PWM power supplies use some form of starter circuit. Keep in mind that all this activity takes place in a fraction of a second! When power is applied, the B+ voltage comes up very quickly in all solid-state circuits. Oscillator, driver and horizontal-output circuits start just as quickly.

So, all it takes is a short pulse of DC voltage, somewhere near the right value to get the oscillator going. Once the oscillator is running, the horizontal-output stage starts, as well as the PWM supply, and everything takes off. Some of these stages use quite complex circuits, but basically they're all similar. For example, the RCA CTC-85 color chassis circuitry looks complicated but isn't (see Fig. 1).

The B+ line (unregulated) is provided by a nonsolated bridge rectifier, from the AC line through L201—an AC line choke. At turn-on, a current pulse comes from the + terminal of the bridge and flows through the primary of the start-up transformer T201. The current flows through this transformer because a large electrolytic 800-μF capacitor, C304, is connected to it (C304 later becomes a filter capacitor).

When a capacitor of this size is discharged, it resembles a short circuit to a current source. Translation: The current flows into the capacitor until it is fully charged. While this is flowing, we get a pulse of current through the primary of T201. The transformer's secondary develops the two DC voltages needed—+22 and +27 VDC through the rectifier diodes and filter capacitors. These DC voltages now feed the horizontal oscillator, driver and buffer stages. When these stages start operating, they generate drive pulses to feed the horizontal-output stage and the PWM circuit (this is on the regulator-control module). The PWM circuit feeds a regulated B+ voltage to the horizontal-output stage.

Now that we've got our starting kick and things are going, we have to disable the starter circuit or it might interfere with the normal DC supplies, which are all developed by the flyback. The following method is used in all the starter circuits I've seen so far.

In Fig. 1, note D301 and D304, which are connected to the starting DC lines feeding the oscillator, driver, etc. During start-up, these two diodes are reverse-biased and do nothing. There is a +DC voltage on their cathodes but no voltage at all on the anodes. This is because the normal supply voltage is not working yet. (Remember this is taking place in a very short time!)

Shortly thereafter, the oscillator circuit and other stages are fed their normal supply voltages, so that they continue operating. Now, the starter circuit has no AC supply to keep it running. The start voltage drops. The starter diodes are now reverse-biased and cut off (there is a + voltage on the cathodes, and no voltage at all on the anodes). This isolates the starter transformer from the DC lines, which stays inactive until the set is turned off again. This diode reaction is used for all the starter control circuits I've seen so far.

An interesting test, mentioned in the RCA Technical Manual, can be performed. If the starter circuit is not working, nothing happens. After checking the starter diodes, the filter capacitors, transformers, etc., for shorts and opens, you can start the horizontal oscillator by momentarily connecting a +22 VDC supply to the +27-volt input. All it takes is a very short current pulse somewhere near the normal voltage. (Although I haven't tried this, it looks as if you could do this with a bias box. The RCA manual suggests using a 22.5-volt battery, but these batteries are not very common.)

Check the starter circuit for a short DC pulse just as the set is turned on. It is best to use an analog meter because even a small kick of the needle is detectable. Set the meter to approximately the 15-volt scale so that the motion of the needle is easier to observe.

Most problems in these circuits can easily be located with the standard tests—checking diodes, filter capacitors, transformers, etc., for shorts or opens. In the RCA CTC-85 chassis, the entire B+ supply is isolated from the AC line by

Fig. 1

```
```

Jack Darr, Service Editor

Translation:

When we've got our starting kick and things are going, we have to disable the starter circuit or it might interfere with the normal DC supplies, which are all developed by the flyback. The following method is used in all the starter circuits I've seen so far.

In Fig. 1, note D301 and D304, which are connected to the starting DC lines feeding the oscillator, driver, etc. During start-up, these two diodes are reverse-biased and do nothing. There is a +DC voltage on their cathodes but no voltage at all on the anodes. This is because the normal supply voltage is not working yet. (Remember this is taking place in a very short time!)

Shortly thereafter, the oscillator circuit and other stages are fed their normal supply voltages, so that they continue operating. Now, the starter circuit has no AC supply to keep it running. The start voltage drops. The starter diodes are now reverse-biased and cut off (there is a + voltage on the cathodes, and no voltage at all on the anodes). This isolates the starter transformer from the DC lines, which stays inactive until the set is turned off again. This diode reaction is used for all the starter control circuits I've seen so far.

An interesting test, mentioned in the RCA Technical Manual, can be performed. If the starter circuit is not working, nothing happens. After checking the starter diodes, the filter capacitors, transformers, etc., for shorts and opens, you can start the horizontal oscillator by momentarily connecting a +22 VDC supply to the +27-volt input. All it takes is a very short current pulse somewhere near the normal voltage. (Although I haven't tried this, it looks as if you could do this with a bias box. The RCA manual suggests using a 22.5-volt battery, but these batteries are not very common.)

Check the starter circuit for a short DC pulse just as the set is turned on. It is best to use an analog meter because even a small kick of the needle is detectable. Set the meter to approximately the 15-volt scale so that the motion of the needle is easier to observe.

Most problems in these circuits can easily be located with the standard tests—checking diodes, filter capacitors, transformers, etc., for shorts or opens. In the RCA CTC-85 chassis, the entire B+ supply is isolated from the AC line by
the horizontal-output transformer; the unregulated B+ supply is not. This leads to the use of two "grounds," one isolated, the other "hot." However, this ground lead isn't really very hot, since it's only a very little way (one diode drop and a 1.8-ohm resistor) away from the isolated ground, or B—line. So little, in fact, that the hot ground can be used as the test equipment ground lead for power and waveform checks.

The starter circuit is not difficult to troubleshoot if you know what it does and how it does it. It's just that trying to explain the procedure isn't easy! The PWM won't work till the oscillator starts, the output stage won't work till the oscillator starts, but the output stage must be running to feed the oscillator! Something like the mythological worm with its tail in its mouth!

Thanks to RCA for the CTC-85 Color Chassis Technical Manual, which provided Fig. I and much data.

service questions

HEATER STRING SHORT

There's a short in a Sears 19-inch color set that I can't find. The 5-amp fuse in the heater string blows quickly. The 40KD6 tube was bad, as well as the 12BY7 tube. Any ideas? —M.R., E. Chicago, IN.

A common cause of this kind of trouble is a heater-to-cathode short in one of the tubes, perhaps one in the middle of the series circuit. (Note: The cathode of the tube must be directly grounded to cause this particular short.) When it happens, the heater circuit is grounded in the middle; this raises the heater voltage on all tubes between the short and the source, and it will usually blow some of the tubes.

(Feedback: "Bulls-eye! I found a 6G118 tube with the heater-to-cathode short, and another 12BY7 tube was open.")

VERTICAL BLACK LINES

I've had problems in several TS-934 Quasar chassis with one or two small vertical dark lines at the left side of the screen. So far all I've done is try new damper and horizontal-output tubes until I find some that help. Do you have any data on this? —L.J., Eveleth, MN.

Quasar's booklet, 6 Years of Servicing, says that this problem can be caused by damaged insulation on the red wire between pin 5 of the high-voltage transformer and pin 9 of the damper tube. The cure is to place heavy plastic sleeveing over this lead to prevent leakage to the edge of the chassis. (This lead is on the socket side of the chassis under the damper/output tube, and goes to a terminal strip and hash choke L502.)

The way you check line-by-line with an A P Intra-Switch or Intra-Connector.

You plug your Intra-Switch in-line with standard socket connectors, and instantly you've got a separate, independent on-off switch for each and every line in your flat ribbon cable. To switch, you nudge with a pencil point. It's that quick.

Imagine how much time and trouble Intra-Switch will save you in your diagnostic and quality testing, your programming and selective line inhibiting.

Or, plug in your Intra-Connector (see box) the same way, and you have an extra set of male contacts at right angles. Instant line-by-line probeability—and an easy way to tap your system and daisy chain it into new areas.

Both Intra-Connectors and Intra-Switches come in 20, 26, 34, 40 and 50-contact models.

Faster and Easier is what we're all about.
The best speaker kit isn't a kit at all!

The best speaker kit is a system designed by Electro-Voice that allows you to choose your own level of performance, from a studio monitor to a modest bookshelf system, from a wide selection of woofers, tweeters, mid-range drivers and crossovers. Then Electro-Voice provides detailed plans on how to construct the enclosures designed specifically for the drivers you chose.

Only Electro-Voice gives you all the options. But, then, Electro-Voice is known for their superb quality speakers—not for kits.

To get your component speaker catalog and construction plans package, just send $1.00 to Electro-Voice Component Speaker Systems, 600 Cecil St., Buchanan, MI 49107.

Electro-Voice®
a quality company

600 Cecil Street, Buchanan, Michigan 49107

Electro-Voice Component Speaker Systems, 600 Cecil St, Buchanan, MI 49107

Please send me
E-V component speaker packages.
I have enclosed $1.00 for each package ordered.

Name
Address
City/State/Zip

continued from page 79

Accuracy and stability are mainly dependent on the components' cost and the amount of care taken during calibration. The oscillator is quite stable, and the timing components can be stable and either precision or trimmable. We decided that the components should be stable but that absolute accuracy was not important. The frequency counter can read down to approximately 1 Hz. By noticing the last digit bubble, it is even possible to interpolate to a sensitivity of less than 1 Hz. Frequencies of less than 1 Hz should perhaps be selected as subjective rather than absolute values. Therefore, the resistors, similar to most of the resistors throughout the rest of the system, are 5% carbon film; the capacitors are as temperature stable as readily available with the tolerance of the smaller values at ±5% and that of the electrolytic capacitors at ±20%.

Timebase output circuitry

The output of Q201 serves four functions: One has already been discussed; the other functions will be covered as they apply to other circuits. Transistors Q202 and Q203 form a triangle-to-sinewave converter. Each transistor logarithmically clips one peak of the triangle wave. Resistor R212 determines the degree of rounding of the peak, and R213 makes sure that the peaks are clipped equally. Transistor Q204 buffers the common-collector output of Q203.

Trimmer resistors R224, R223 and R227 as selected form the input resistor to inverter IC202. Each of the three basic waveforms are generated with different signal levels; therefore, these resistors provide that each waveform has the same amplitude at the output of IC202. Trimmers R225, R221 and R240 provide offset nulling for each waveform, with R226, R222 and R239 controlling the sensitivity of those adjustments.

Switch S5 selects one of the three signal lines to be applied to IC202. Note that the squarewave line when it is not selected is grounded through the other half of switch S5. This minimizes squarewave crosstalk into the sinewaves or triangle waves at time of selection. The rise- and falltimes of the squarewave are fast enough to cause a spike waveform to propagate across the contacts of S5 or across the circuit board.

The output of IC202 goes to IC203, which is connected as a unity-gain inverter. Switch S8 then inverts at the output whatever waveform was selected by S5. This is valuable for interfacing with certain other types of equipment and can also help provide a stable scope-trigger for internal calibrations.

Resistor R3 is the front-panel-amplitude slide pot, and IC204 is one-half of an LM377. This device is generally considered only as a driver for low-power speaker systems, to be used with a single power supply. However, it is far more versatile and actually easier to implement with a split power supply than with a single power supply. Also, from the speaker-driver applications it is not always obvious that this is an operational amplifier suitable for op-amp applications. It is fast enough for the full audio spectrum.

One of the most powerful audio applications for an operational amplifier is as a mixer. The negative inputs of IC204 and IC201–IC203 are connected as a summing junction. This creates a perfect mixer; that is, several independent signals can be added together each with independent gain or loss, without any signal affecting any other signal.

A first encounter with this circuit is often rather mysterious. When you troubleshoot a signal-processing system, you often take an oscilloscope, start at the input and then walk through node-by-node to the output, observing the waveforms and watching for any change from node to node. Normally, the only change from input to output is a change in amplitude. If a node in the chain does not have a signal, you can generally assume that something has either interrupted or grounded the signal since you checked the previous node; also you would not

continued on page 84

Try this exciting new hobby! Build your own electronic concert organ. It's easy. No technical knowledge required. Just follow the clearly pictured instructions of the famous Wersi do-it-yourself system. Choose from seven different models. Send $2.00 (refundable) with coupon for colorful 104 page catalog.

WERSI

Wersi Electronics, Inc.
Dept 42
1720 Hempathood Road
Lancaster, PA 17601

Enclosed is $2.00 for any copy of your 104 page catalog.

Name
Address
City/State/Zip

CIRCLE 20 ON FREE INFORMATION CARD
FLUKE

DIGITAL MULTIMETERS

8020A
- 26 Ranges—5 Functions plus New Conductance Function for up to 10,000 MΩ Leakage Measurements
- Extensive Overload and Transient Protection
- Rugged Construction—4 Year Warranty
- Hi/Lo Power On/Off for In-circuit Resistance and Diode Testing
- 100 μA DC/AC high impedance Green Trace Circuit
- 200 Hour, 9V Battery Life—Low Battery Indicator
- Large LCD Readout—1000 Counts
- 1 Year Calibration Cycle
- Hi/Low Power Ohms for In-circuit Resistance and Diode Testing
- One Hand Operation
- Complete with Battery and Test Leads

The 0020A has been designed with the user in mind and features exclusive one-hand use of the instrument. It has a high-speed low-power consumption and extensive overload/transient protection backed up by a 4-Year Warranty. Long-term stability (user calibration allowed) is maintained with only 100 microamps of absorption. Up to 400 hours of continuous operation can be expected from a single 9V alkaline battery.

BASIC SPECIFICATIONS

<table>
<thead>
<tr>
<th>Range</th>
<th>DC Volts</th>
<th>AC Volts</th>
<th>DC Current</th>
<th>AC Current</th>
<th>Resistance</th>
<th>Conductance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-100</td>
<td>1000</td>
<td>2000</td>
<td>50</td>
<td>100</td>
<td>20000</td>
<td>2000</td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.2% ± 5</td>
<td>0.7% ± 2%</td>
<td>0.5% ± 0.05</td>
<td>0.2% ± 2%</td>
<td>0.5% ± 2%</td>
<td>0.5% ± 2%</td>
</tr>
</tbody>
</table>

$169.

Leader Instruments Corp

LCR-740 Transistorized LCR Bridge
- Highly accurate 3 digit readout
- Measures Inductance L, Capacitance C, and Resistance R, within 0.5% accuracy
- Range expandable—built in 10%, over range
- Loss Factor scale (%)
- Battery, or AC adapter operation

$279.95 Regular price $319

Last Chance

At these Prices
Due to the fluctuation of the dollar there will be substantial price increases coming.

This sale ends Feb. 28, 1979.

Order Now

NEW YEAR'S SPECIALS

Prices do not include shipping. Sale ends Feb. 28, 1979

New 15MHz portable 3" dual-trace scope

Model 1432
- 3-1/2 Digit DMM with .5% Accuracy

$639.95 Regular price $840

3-1/2 Digit DMM with .5% Accuracy

Model 1403A
- 10MHz bandwidth
- 60 MHz high pass filter
- 3000 counts
- 9V battery
- Onboard battery tester
- Overload protection

$209.95 Regular price $255

Advance Electronics

TOLL FREE HOT LINE
800-223-0474

54 West 45 Street, New York, N.Y. 10036 212-687-2224
observe that signal in any subsequent node. However, in this circuit (if R3 is not at ground) there is a signal at the left side of R234, but the right side of R234 shows just 0 volt.

This phenomenon is called a virtual ground. The input impedance of IC204 (as seen from the wiper of R3) is simply R234. For any signal from R3 that might attempt to pass back through R235, it's as if the right side of R235 were grounded. Turning up the sensitivity control on the scope may reveal a very severely clipped remnant of the signal. However, the output of IC204 is the original signal with a gain of R237 divided by R234.

In addition, there is a DC level that is the voltage at the left of R233 times R237 divided by R233. In this case, the voltage should be zero since R233 provides the offset null of IC204. Front-panel DC offset is applied through R235.

Resistor R236 is necessary for frequency compensation. OP-amp IC204 is internally compensated to be stable at gains greater than 10 (the gain being determined by the ratio of feedback resistor R237 to input resistors R234, etc.). Resistor R236 can be calculated, but is most easily determined empirically. Substitute a variable resistor for R236, set S5 to the squarewave position, observe the output of IC204, and adjust R236 for both minimum rms and minimum overshoot at 1 kHz.

Resistor R4 is the front-panel DC offset. With S9 in the SWEEP position, the R4 output mixes with the signal from R3 to provide a ±5-volt DC offset of that signal.

Switch S9 provides the manual timebase mode. With S9 in the SWEEP position, the triangle-wave output of the oscillator is used to sweep the frequency of the audio sweep generator as well as the timebase of an X-Y display. Setting S9 switch to the MANUAL position opens the direct connection between R4 and IC204. The triangle wave is removed from its sweep function, and R4 is substituted for it—both for the sweep circuitry and for the timebase output. Switch S5 must be in the TRIGG. position. Resistors R209 and R206 adjust the output of IC204 so that the signal from R4 that arrives at the upper half of S9 will exactly replace the triangle wave at switch S9.

The LM377 IC has both overcurrent and thermal shutdown. It can apply at least ±5 volts to a less than 10-ohm load. If a higher signal or power level is required, an LM378 or an LM379 can be substituted, as these IC's are equivalent.

The LM377 is rated at a total supply voltage of 26. The LM378 and LM379 are both rated at 15 volts. The only way to differentiate between those devices that can tolerate a higher voltage from those that can't is to experiment. (The premium price of the LM378 pays for destroying a lot of good LM377's to locate some of the higher voltage units we need.) The LM379 is an LM378 with a metal heat sink on top. A tab at each end lets you solder it into a circuit board; the device is also drilled and tapped so that you can mount an additional heat sink or mount the unit to a chassis.

Although the LM377 is quite immune from self-destruction, it can be damaged by applying a large external voltage at J1. Overvoltage sensor OV201 protects the output of IC204 from external damage. If ±10 volts or more is applied to the output terminal, OV201 shorts to ground and prevents the external voltage from reaching IC204. If this voltage is present for any significant time, F201 blows, thereby protecting OV201 from excess dissipation.

The external overvoltage protection is optional. There are several devices on the market designed to limit voltage, and the PC board is set up to accept several different types. The recommended LA10 device costs approximately $20. Even though this $20 is there to protect a $3 output amplifier, the value lies in eliminating repair costs and downtime.

Resistor R299 establishes the output impedance. The jumper around R299 is on the circuit board. Normally, R299 is omitted in which case the output impedance is less than 1 ohm. If some other output impedance is desired, it is inserted as R299 and the jumper on the board is cut. The jumper is on the reverse side of the board readily accessible in a finished unit, which makes it easy to attach R299.

Timebase calibration
Connect a reasonably well-calibrated oscillator scope to J1. (The scope is the only calibration standard that will be used and it is assumed that amplitude calibrations are not critical.)
Set the scope input to DC.
Set all trimming resistors to their center positions.
Turn on master power switch S1 and S2.
Set S5 to TRIANGLE and S8 to NOT INVERT.
Set R3 to maximum and R4 to 0.
Set S3 to 1 kHz.
Set S4 to symmetrical.
Set R1 to lower position.
The output should show a clean triangle wave at about 1 kHz.
Set R3 to zero.
Make sure that R4 is at 0.
Adjust R232 for zero offset.
Set R3 to maximum.
Adjust R227 for 16 volts peak-to-peak.
Adjust R240 for zero offset.
Switch S5 to squarewave.
Adjust R224 for 16 volts peak-to-peak.
peak.
Adjust R225 for zero offset.
Switch S5 to sine wave.
Adjust R223 for approximately 16 volts peak-to-peak and R222 for approximately zero offset. Both these resistors will be readjusted later.
Switch the scope input to AC.
Adjust R212 for slight clipping.
Adjust R213 for symmetrical waveform.
With the scope set to AC, adjusting R213 will cause the average level of the waveform to shift; therefore, symmetry is achieved when the positive-going and the negative-going peaks are exactly the same distance from the center line on the scope.
Adjust R212 for minimum sine wave distortion. A sine wave plotted on the face of the scope can greatly assist in this. Use an 8 X 8 centimeter overlay, and a harmonic distortion analyzer can be used if one is available.
Adjust R223 for 16 volts peak-to-peak.
Switch the scope input to DC.
Adjust R222 for zero offset.
Set S5 to triangle wave.
Check the waveform quality at each position of S3.
At the 10K position, the waveform will be distorted; however, the 10K position is only intended to trigger the pulse generator. When you initially check the low-frequency ranges, set R1 to 100 F. Any deviation from strict linearity indicates a leaky capacitor. A slight curving of the waveform is acceptable for most applications. However, if curving is severe, the circuit may not oscillate at all at low currents. For the lowest positions of S3, set the horizontal timebase of the scope to external; this will produce just a vertical trace. Then, follow the oscillator through at least a couple of cycles to insure there is no excessive leakage. At the 0.002 setting of switch S3, a single cycle is approximately 8 minutes. If the scope beam stops while approaching one peak, increase R1 slightly. This increases the charging current. The beam should continue slightly, which indicates excessive leakage. Increasing R1 past some point should cause the oscillator to restart.
Replace the capacitor that is leaky.
Then.
Set S3 to maximum.
Set S9 to manual.
Set R4 to zero.
Set R206 for zero output.
Move R4 to +5 volts.
Set R209 for a +8 volt output.
Move R4 to -5 volts.
The output should be approximately -8 volts. Resistors R206 and R209 will be fine-tuned later on.
The combination of 50K (R3) and 16K (R234) produces a taper similar to the audio taper in most controls.
That's it for now. Next month, we'll cover the pulse generator, sweep shaper and audio sweep generator.

in portable multimeters, compare our features, our quality, our price!

Analog, LED, and LCD—SOAR has the battery-operated multimeters for your application: the engineering and test lab, the field service technician, the small repair shop, and the radio hobbyist. Just take a look at some of the features of our instruments.

ME-221 ANALOG MULTIMETER
It's drop-proof—the taut band absorbs shocks to 50 G's, and the meter movement is made in the U.S.A. Rugged and versatile, this multimeter has no equal at our price—$30.00

ME-651DX DIGITAL MULTIMETER
This truly portable (12 7 oz.) 3½-digit LED precision instrument has a HI-LO switch for all ranges, five function modes, and an accuracy of 0.5% (typical).

Price—$115.00

ME-553 DIGITAL MULTIMETER
For the price, this is the best multimeter on the market today. It presents the function mode right on the LCD display, has a HI-LO switch for all ranges, an extremely long battery life, and an accuracy of 0.25% (typical). And all this for a price of $150.00.

And let's not forget our workhorse ME-522. It has almost all the features of the 523, but at an even lower price—$135.00.

Contact us TODAY for more details on SOAR's portable multimeters—and why not also inquire about our complete line of bench-type, tilT view DMM's.

SOAR ELECTRONICS (U.S.A.) CORP.
813 2ND STREET
RONKONKOMA, NEW YORK 11779
TEL. (516) 981-8444/TELEX 144638

CIRCLE 57 ON FREE INFORMATION CARD

February 1973

85
B&K-PRECISION's
new
digital
probe
offers more
than logic

DUAL-TRACE 100-MHz SCOPE, model PM3262, is a dual-channel, 100-MHz instrument that provides both a main timebase and an alternate timebase to display trigger signals simulta-
Design costs without the board. Also Dr.,
matic Drafting Set
vanced Games range from simple "Tic-Tac-Toe" to ad-
lected. The unit uses a TI micro-
CIRCLE 124 ON FREE INFORMATION CARD
operated. Merlin can counter moves with its own
strategy, and uses electronically synthesized
sounds to communicate wins and losses. Approx-
imate retail price, $33.—Parker Brothers, 50
Dunham Rd., Beverly, MA 01915.

WHERE ELSE
BUT DAVIS?

600 MHz Mini Counter
at $149.95!

All Davis Frequency Counters deliver highest quality at
low cost. But Series 7200 plug-in or battery-powered
Mini Counters are truly minimal cost, general purpose
instruments that sacrifice no basic performance char-
acteristics. No other counter offers such superior fea-
tures at Mini Counters’ prices. One year warranty on
assembled units, 90-day on kit components.

2 MODELS:
Kit 1149.95 Assembled 1199.95
• All Metal Cabinet
• 315 V or 12 V operation
• 8 Digit .4" LED Display
• Selectable Gate Times .1 & 1 sec.
• Crystal Time Base (1 ppm after cal.)

OPTIONS: Portable w/NiCad Battery (Built-in Charger) 139.95
Crystal Oven (1 ppm 10 to 50°C) 139.95 Handle 5.00
Order direct from factory. Add $3.00 for shipping. $1.00 extra
for C.O.D. and 7% sales tax in N.Y. State. Payment by certi-
fi ed check, money order, Master Charge, VISA. Credit-rated company
P.O. accepted. Money back guarantee if returned in good con-
dition in 10 days. Kits returnable only unassembled.

For more information, request FREE DESCRIPTIVE LITERATURE
or for in-depth preview, send $3.00 for 32 page INSTRUCTION
MANUAL. Detailed, illustrated. Credited against purchase of
either unit.

DAVIS ELECTRONICS
636 Sheridan Drive, Tonawanda, N.Y. 14150 716/874-5848

INTERNATIONAL FM-2400CH

FREQUENCY METER FOR TESTING MOBILE TRANSMITTERS AND RECEIVERS

• Portable • Solid State • Rechargeable Batteries

The FM-2400CH provides an accurate frequency standard for testing
and adjustment of mobile transmitters and receivers at predeter-
mined frequencies.

The FM-2400CH with its extended range covers 25 to 1000 MHz.
The frequencies can be those of the radio frequency channels of
operation and/or the intermediate frequencies of the receiver be-
tween 5 MHz and 40 MHz.

Frequency stability: ±.0005% from +50° to +104°F
Frequency stability with built-in thermometer and temperature cor-
corrected charts: ±0.0025% from +25° to +125° (.000125% special 450
MHz crystals available)

• Tests Predetermined Frequencies 25 to 1000 MHz
• Extended Range Covers 950 MHz Band
• Pin Diode Attenuator for Full Range Coverage as Signal
Generator
• Measures FM Deviation

FM-2400CH (meter only) Cat. No. 035320
RF crystals (with temperature correction) 24.90 ea.
RF crystals (less temperature correction) 18.90 ea.
IF crystals (catalog price)

Write for catalog

INTERNATIONAL CRYSTAL MFG. CO., INC.
10 North Lee / Oklahoma City, Okla 73102

CIRCLE 64 ON FREE INFORMATION CARD
CIRCLE 60 ON FREE INFORMATION CARD

FEBRUARY 1979

87
Read about The Newest, Most Exciting

The GD-1186 Digital Readout Electronic Scale shows you your weight in bright easy-to-read digits to eliminate guessing and interpolating. It uses an advanced strain-gauge transducer for outstanding precision just like expensive laboratory scales.

The GR-2001 Computerized Programmable Color TV lets you select a complete evening's viewing, then just sit back and relax. Changes channels automatically, it can even rotate your TV antenna!

Two new FCC-approved linear amplifiers add plenty of power to your Amateur Radio station. Choose from 1 kW or a hefty 2 kW to really get your signal out!

Exciting 2-Meter Amateur Radio Gear includes a new hand-held transceiver with minimum 2 watts output and 600 kHz offsets, and our famous HW-2036A, the mobile 2-meter industry standard.

The ID-4001 is the first totally computerized digital personal Weather Station that tells you indoor-outdoor temperature, wind chill, wind speed and direction, barometric pressure and more. Stores and retrieves info, too!

The OC-1401 Aircraft Navigation Computer gives you full on-board computer power right in your hand. Helps you compute important flight data for safer and more efficient flight planning. Accepts and computes data for up to nine different flight legs.

Our low-priced IO-4205 is the ONLY DC-5 MHz oscilloscope we know of that offers DUAL-TRACE versatility for sophisticated measurements!

The finest oscilloscope we've ever offered gives you DC to 35 MHz response with DUAL-TRACE and DELAYED SWEEP — it's the one you can use for virtually all electronic measurement and design work. Compares to scopes costing twice as much.

We've got the Personal Computer System you need, with the software support for any application you wish to program. Our "total" design computer systems include both 8-bit and 16-bit units with a full line of peripherals, accessories and floppy disk storage. With full documentation and optional software.

Heathkit stereo equipment is famous for fine sound reproduction and outstanding specifications. Our new rack-mount series of stereo components continues this fine tradition. A sophisticated new stereo amplifier, digital readout tuner and graphic output indicator are available now. A super preamp and a handsome new rack are coming soon. And we have a complete line of stereo speakers to complement them.

Choose from these and nearly 400 other quality, money-saving electronic kits for your home, your hobby, or your business.

Catalogs are also available at Heathkit Electronic Centers Coast-to-Coast (Units of Schlumberger Products Corporation) where Heathkit products are displayed, sold and serviced. See the white pages of your phone book.
Some of the most exciting electronic products around are easy-to-build kits from Heath! From the world’s first fully computerized digital readout weather station to a computerized color TV you can program for an entire evening’s viewing, Heath leads the way in sophisticated electronics. And every Heathkit product comes with a comprehensive step-by-step instruction manual that makes kitbuilding fun and easy. Choose from nearly 400 electronic kits you can build yourself in this new FREE catalog. Send for your copy today!

Building a Heathkit product can be great family fun and an education in electronics at the same time. And you’ll have a top-performing piece of electronic equipment at a low price!

Send for your FREE Copy Today!

If card or coupon is missing, write: Heath Company, Dept. 020-500 Benton Harbor, Michigan 49022
More information on new products is available from manufacturers of items identified by a Free Information number. Free Information Card is inside the back cover.

S-100 BUS EXTENDER BOARD KIT, model TB-2, is an S-100 bus-compatible card with several new features: A built-in logic probe with 7-segment display, a pulse catcher with LED; and a "kluge board" (with holes on a 0.1-inch grid) that aids in assembling debug or test circuits. Power is provided by an on-board 5-volt regulator. Other features include power-supply links for current measurement and independent supply switching, edge connector label; and gold-plated edge connectors. List price: $35.—Mullen Computer Products, Box 6214, Hayward, CA 94545.

8-LEVEL READER/PUNCH is equipped with a serial interface that operates with a standard acoustic coupler or an RS-232-compatible interface. The serial Interface converts reader contact inputs and punch solenoid outputs to RS-232 levels and ASCII codes computer hookup. The

unprotect ROM's, shadow ROM sockets, select card addresses and control Bank-Select or DNA I/O features. Prices: 32K Bytesaver, kit, $195; assembled, $295.—Cromemco, Inc., 280 Bernardo Ave., Mountain View, CA 94040.

S-100 BUS PROM BOARD, model 8K Plus 2, is available in kit form (plus sockets) or fully assembled. The board is designed for use with eight 2708 EPROM's, and has two provisions for either 2716's or pin-compatible 8316 ROM's. The board's circuitry can pull Ready-Line low for use with low-speed ROM's, and three extra 16-pin

pads are included for TTL PROM's, power-on jump, etc. The board is made of epoxy glass with solder-tinned pads and buses and gold-plated edge connectors. Prices: kit, $59.95; assembled, $109.95.—Mini Micro Mart, 1618 James St., Syracuse, NY 13203.
HOBBYISTS! ENGINEERS! TECHNICIANS! STUDENTS!

Write and run machine language programs at home, display video graphics on your TV set and design microprocessor circuits—the very first night—even if you've never used a computer before.

ELF II

Featuring RCA COSMAC microprocessor / COMPUTER $99.95

CIRCLE 119 ON FREE INFORMATION CARD

MICROPROCESSOR ANALYZER, model MAD-1, is a versatile tool for 8080- or 8085-based systems. The unit provides real-time analysis of processor operations and can single-step the program either by machine or instruction cycle. Its features include hardware breakpoint capability.

CIRCLE 119 ON FREE INFORMATION CARD

Don Lancaster's "Cheap Video" concept allows almost unlimited options, including:

- Scrolling. Full performance cursor.
- Line Character formats of 18x32, 24x40, 32x64 or almost anything.
- Graphics up to 256x256 B&W. 96 x 128 COLOR. (requires low cost option modules)
- Works with 6502, 6800 and other micros.

SPECIAL OFFER: Buy the Kit (upper case alpha numeric option included) & get the Book at 1/2 price.

Don't forget—please read!

- TTY 65$ Kit & Cheap Video Cookbook, $2.45. encased
- 1 TTY 65$ Kit & only book (looks for assembly) $139.95.

Send to:

Don Lancaster
350 9th Street, Palomar Springs, CA 92379

CIRCLE 67 ON FREE INFORMATION CARD

* If you're an engineer or hobbyist, you can also use ELF II as a course reader, technical, terminal, or telephone dialer, or for countless other applications.

ELF II Explodes Into A Giant

Thanks to ongoing work by RCA and Zeonics, ELF II add-ones are among the most advanced anywhere. Plug in the GIANT TV Screen Module, add the new Elf II COSMATIC II 6502 Basic Kit, or connect Elf II MOS KADD-B BASIC translator and debug programs, communicate with remote devices and make things happen in the outside world. Add huge X-BUS board to get Elf II COSMATIC II 6502 Basic Kit to solve multitasking problems in operating a more complex alarm system or controlling a printing press. Add ELF II MOS KADD-B BASIC translator and debug programs, communicate with remote devices and make things happen in the outside world.

ELF II COSMATIC II 6502 Basic Kit

The ELF-BUG® Monitor is an extreme recent breakthrough that lets you debug programs with lightning speed because the key to debugging is to know what's happening in the registers of the microprocessor and, instead of simple stepping through, you can see the result of changes. In ELF-BUG® you can "peek" at TV's, "watch" at the registers and program breakpoints; you can see the entire state of the machine at any point in your program. You find out immediately what's happening and can make any necessary changes. Programming is further simplified by displaying 24 bytes of RAM, with full address, blinking cursor, and auto scrolling. A must for serious programmers!

ELF II COSMATIC II 6502 Basic Kit

NOW BASIC Makes Programming ELF II Even Easier!

Like all computers, ELF II understands only "machine language". It's the language a computer can learn to talk to each other (but, to make life easier for you, we've developed an ELF II BASIC System). It talks to ELF II in machine language for you so that you can program ELF II in your own way (and you can also use ELF II in any computer language). And you can even type out your language on the keyboard as PRINT RUN and LOAD.

next month

- **Your Own Computer**
 A special section devoted to personal computing with the accent on peripheral devices, including printers, terminals and floppy discs. You won’t want to miss the many hints on selecting and setting up a system and the round-up listings of peripheral devices.

- **Rechargeable Batteries—Past, Present And Future**
 A look at the improvements that have taken place in the last 10 years and what may take place in the next 10 years, with a special look at lithium cells.

- **Build A String Synthesizer**
 Part 2—Construction details for a professional-quality music synthesizer that can be built for many times less than commercially available instruments.

THE BIG PLUS + Graphic Equalizer

ASSEMBLED $189.95
KIT $99.95

LOADED with Quality Features!
- Stereo - Eleven Bands Per Channel - Extremely Low Noise & Distortion - LED Peak Indicators - Center Detent ("flat") sliders - Built-in "record" Switching - Line and Microphone Level Inputs/Outputs - Regulated Power Supply - Fully Guaranteed - Horizontal or Vertical Cabinets - Kit or Fully Assembled - Plus Much, Much More!

Absolutely equals or exceeds overall performance and features of any graphic equalizer made today!

Want to Switch to Land Mobile Servicing?

WE CAN HELP YOU SWITCH
... by providing professional HOME STUDY training for you and your technicians. MTI has been providing specialized training in land mobile servicing for 18 years. We would like to help you also. For more information, cut out this coupon.
NO SALESMAN WILL CALL!

Name ___________________________
Address _________________________
City ____________________________
State/Zip ________________________

MTI
Mobile Training Institute
Box 735, Camp Hill, PA 17011

CIRCLE 27 ON FREE INFORMATION CARD

Accuracy like a VTVM...

Convenience like a VOM...

NEW BATTERY-OPERATED FET SOLID-STATE VOLT-OHM-METER

Easy-to-build KIT
$44.78 = 116K
Factory-Wired & Tested
$60.05 = 116W

Now you can get all the benefits of a VTVM (laboratory accuracy, stability and wide range) but with its drawbacks gone: no plugging into an AC outlet, no waiting for warm-up, no bulkiness. New Field Effect Transistor (FET) design makes possible low loading, instant-on battery operation and small size. Excellent for both bench and field work.

Compare these valuable features:
- High impedance low loading: 11 meg-ohms input on DC, 1 megohm on AC
- 500 times more sensitive than a standard 20,000 ohms-per-volt VOM
- Wide-range versatility: 4 P.P. AC voltage ranges: 0-3, 33, 330, 1200V; 4 RMS AC voltage ranges: 3 1/2, 12, 120, 1200V; 4 DC voltage ranges: 3 1/4, 0-100K, 0-10 meg, 0-1000 meg; 400 ranges: -24 to +5000. Sensitive easy-to-read 4 1/2" 200 micro-amp meter. Zero center position available. Comprises FET transistor, 4 silicon transistors, 2 diodes. Meter and transistors protected against burnout. Etched panel for durability. High impact baffle case with handle usable as instrument stand. Kit has simplified step-by-step assembly instructions. Both kit and factory-wired versions shipped complete with batteries and test leads. 5 1/4"W x 6 1/4"H x 2 7/8"D. 3 lbs.

Send FREE Catalog of complete EMC line and name of nearest distributor. RE-2

Name ___________________________
Address _________________________
City ____________________________
State __________________________
Zip ____________________________
HOLD IT! Anywhere you want it.

PanaVise tilts, turns, rotates. One quick turn of the control knob and you securely position your work exactly where you want it. Holds firmly but gently the most delicate electronic parts and P.C. boards.

Whether you’re into building home electronics, trouble shooting, or professional servicing...you’ll wonder how you got along without this modestly priced “extra hand.”

Model 325 Wide Opening PanaVise shown. An ingenious variety of other interchangeable bases, holders and accessories also available. See your electronics distributor, or write for FREE brochure.

PANAVISE® Dept. CE2
2850 29th St., Long Beach, CA 90806

More information on new lit is available from the manufacturers of items identified by a Free Information number. Use the Free Information Card inside the back cover of this issue.

The world of electronics gee-wizardry

endeco soldering & desoldering equipment

SOLDERING IRONS
Pencil style. Safety light. Two heats — 20w and 40w, 6 tips. Unbreakable handle. 2 and 3 wire neoprene cords.

DESOLDERING IRONS
Pencil style. Safety light. Some operate at 40w idle. At 20w, 6 tip sizes. 2 and 3 wire neoprene cords.

SOLDERING & DESOLDERING KITS
Everything needed to solder or desolder, or both. All in a handy lifetime metal box with hasp.

See your distributor or write...

CIRCLE 54 ON FREE INFORMATION CARD

More information on new lit is available from the manufacturers of items identified by a Free Information number. Use the Free Information Card inside the back cover of this issue.

ELECTRONICS CATALOG, 48 pages of discounted items for electronics hobbyists, educators, dealers. Includes hundreds of items from basic components to TV and hi-fi equipment, a radar warning system, telephone keyboard, clock assembly, etc. Catalog also includes a 16-page wholesale supplement listing items of special interest to dealers and volume users.—ETCO Electronics Corp., North Country Shopping Center, Rte. 9 North, Plattsburgh, NY 12901.

CIRCLE 105 ON FREE INFORMATION CARD

BRADFORD COMPONENTS CATALOG, 8 pages listing components for servicing Bradford TV’s and appliances. Included are resistors, VDR’s, transistors, diodes, electrolytics, semiconductors; several parts kits are featured, as are Bradford service manuals. Price: $1.50 (refundable with first purchase).—The Marcel Companies, Parts Division, 57 Enfield St., Enfield, CT 06082.

TROUBLESHOOTING GUIDE, Common Production Soldering Problems: Causes and Cures, is a four-page article detailing the most common soldering defects and can be used as a reference for assembly and production personnel. Some of the problems discussed are insufficient or excessive solder on joints, solder joint discoloration and solder bridges, nonwetting and dewetting conditions, measling and cold joints. Possible causes for solder defects plus suggested solutions accompany each section.—Multicore Solders, Westbury, NY 11590.

CIRCLE 106 ON FREE INFORMATION CARD

QUARTZ CRYSTALS catalog contains 7 pages describing high-quality crystals for a wide variety of equipment applications—from replacement units to new, modified or experimental equipment. Crystals are available for Motorola, GE, E.F. Johnson, Comco and other manufacturers. Complete descriptions and specifications are given along with technical information for all crystal sizes and types—from microminiature to large and cold-weld varieties.—Savoy Electronics, Inc., 1175 N.E. 24th St., Fort Lauderdale, FL 33310.

CIRCLE 107 ON FREE INFORMATION CARD

ELECTRONIC WIRE/CABLE CATALOG, Catalog No. 872, 180 pages of multi-conductor cables, computer cables, hookup wires, coax cables, wire and cable assembly packages, and shielded/unsheathed cords and portable cordage. Catalog includes such products as power-limited low-energy cable (UL-approved); bus-cable assemblies for IEEE-488 interconnections; and CEE color-coded wire. Construction details, specifications and electrical characteristics are given in both conventional and metric units. Price: $2.50.—Belden Corp., 2000 S. Batavia Ave., Geneva, IL 60134.
MARKET CENTER

CLASSIFIED COMMERCIAL RATE (for firms or individuals offering commercial products or services): $1.50 per word (no charge for zip code) . . . minimum 15 words.
NONCOMMERCIAL RATE (for individuals who want to buy or sell personal items) 85¢ per word . . . no minimum.

ONLY FIRST WORD AND NAME set in bold caps. Additional bold face (not available as all caps) at 10¢ per word. Payment must accompany all ads except those placed by accredited advertising agencies. 5% discount for 6 issues, 10% for 12 issues within one year, if paid in advance. All copy subject to publisher’s approval. Advertisements using P.O. Box address will not be accepted unless advertiser supplies publisher with permanent address and phone number. Copy to be in our hands on the 26th of the third month preceding the date of the issue (i.e., August issue closes May 26). When normal closing date falls on Saturday, Sunday or a holiday, issue closes on preceding working day.

PLANS & KITS

LINEAR AMPLIFIER: Ham only 2-30 MHz, 100 watt, solid-state FREQUENCY COUNTER: 300 MHz, miniportable/mobile, memrony VOX—COMPRESSOR: Splatter-free modulation booster. Construction plans $3.00 each. All $7.50!

Many others, catalog with order. PANAXIS PRODUCTIONS, Box 130-F2, Paradise, CA 95969

SCANNER users—Build many useful accessories. Free kit catalog. CAPRI ELECTRONICS, Route 1R, Canon, GA 30220

AMPLIFIER kits: Low TIM. Class A, BI-FET circuitry. Free 60-page manual MOONLIGHTER ELECTRONICS, 117 Inverness, San Francisco, CA 94132

CIA TOOL KIT. Complete schematics for 30 electronic surveillance devices. $15.00. MICRON RESEARCH, PO Box 118, Woodstown, NJ 08098

PRINTED circuit boards from your sketch or artwork. Affordable prices. Also fun kit projects. Free details. DANOCINTHS INC, Box 261, Westland, MI 48185

AMAZING ELECTRONIC PROJECTS and PRODUCTS:

SAVE 50%. Build your own speaker system. Write for catalog. McGEE RADIO, 1901 McGee, Kansas City, MO 64108

PROJECTION TV Convert your TV to project 7 foot picture. Results equal to $2,500 projector. Total cost less than $20.00 Plans & lens $16.00. Illustrated information free. MACROMG B, Washington Crossing, PA 19077

FOR SALE

FREE catalog (anglais), IC's, semi's. CORONET ELECTRONICS, 649A Notre Dame W., Montreal, Que. Canada, H3C 1H8. US inquiries.

To run your own classified ad, put one word on each of the lines below and send this form along with your check for a $1.50 per word (minimum 15 words) to:

Radio-Electronics, 200 Park Avenue South, N.Y., N.Y. 10003

ORDER FORM

PLEASE INDICATE in which category of classified advertising you wish your ad to appear. For special headings, there is a surcharge of $10.

() Plans/Kits () Business Opportunities () For Sale
() Education/Instruction () Wanted ()

Special Category: $10

(PLEASE PRINT EACH WORD SEPARATELY, IN BLOCK LETTERS.)

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35

PRINTED CIRCUIT

Positive Acting Photo Resist; Carbide bits; Bubble etchers; Artwork; Epoxy Glass Boards.
Send stamp & address label for flyer TRUMBULL 833 Balda Dr., El Cerrito, CA 94530

RADIO & TV tubes 36¢ each. One year guaranteed. Plus many unusual electronic bargains. Free catalog. CORNELL, 4217-E University, San Diego, Calif. 92105

NAME brand test equipment. Up to 50% discount. Free catalog and price list. SALEN ELECTRONICS, P.O. Box 62, Skokie, IL 60076

SPEAKER INFORMATION KIT

Get 70 pages of speaker facts, specs, construction tips plus info on our raw speakers, crossovers and a line of 9 quality hi-fi speaker system kits. We'll send you our full-color catalog plus How to Hook Up Your System on an exhaustive step-by-step basis on our hi-fi system installation and our Speaker Operating Manual. Check full of facts on how to get the most from any speaker system. For Free. Even if you don't buy from us we want you to have the facts. That's how we get to be the world's largest manufacturer of speaker kits.

Send to: Speakerlab. Dept. 2 RE 735 N. Northlake Seattle, WA 98102

STAMP collectors. Fine sets of no-gum unused Canadian postage stamps. More than $2 face value only $1 US funds plus SASE. Quantities limited. G. STECKLER, 24 Straw La., Hicksville, NY 11801

CATALOG Write for Your Free Copy

TRI-TEK incorporated

7008 N. 27th Avenue Phoenix, Arizona 85021 (302) 985-9325

VCR's, CPU's, etching solution, and much more at discount prices. For more information send $0c to: CHARLES LEWIS, Moravia, IA 52571

Independent News Company, Inc. is pleased to announce a Retail Display Plan available to all retailers interested in earning a display allowance on Radio-Electronics magazine and who purchase the magazine from suppliers other than Independent News Co., Inc., or the publisher.

To obtain details and a copy of the formal contract please write to: Director, Retail Sales Division, Independent News Co., Inc., 75 Rockefeller Plaza, New York, N.Y. 10019.

Under the display plan in consideration of your acceptance and fulfillment of the terms of formal contract to be sent to you upon your request you will receive a display allowance of 10% of the cover price per copy sold by you. This plan will become effective with all issues of Radio-Electronics delivered to you subsequent to the date your written acceptance of the formal independent News Co., Inc. Retail Agreement is received and accepted by our Company.

FEBRUARY 1979

97
Burglar - Fire - Smoke
Alarm Catalog

- Billions of dollars lost annually due to lack of protective warning alarms.

FREE CATALOG Shows you how to protect your home, business and person. Wholesale prices. Do-it-yourself. Free engineering service.

BURGDORF SECURITY CO.
Box 82802 RE-029 Lincoln, Ne 68501

SPECIAL offer available. 7" reel to reel tape now $1.00 per roll plus 50c shipping per roll. Order from: LABTRONICS, 850-167 Lombard Avenue, Winnipeg, Man., Canada R3B OY8

SAVE PUSBUTTON AM AUTO RADIO

2400 FT. MYLAR RECORDING TAPE

2400 FT. MYLAR RECORDING TAPE

Reg. 145 TA-974

8 TRACK CASSETTE 40-MINUTE BLANK + 60 MINUTE BLANK

Reg. 49c SALE 87c

Reg. 49c SALE 87c

PLASTIC METER 799

8 OHM EARPHONES 29c

500-Ft. Hookup Wire Kit $2

SPECIAL OFFER available. 7" reel to reel tape now $1.00 per roll plus 50c shipping per roll. Order from: LABTRONICS, 850-167 Lombard Avenue, Winnipeg, Man., Canada R3B OY8

FREE KIT CONTENTS TEST & EXPERIMENTERS EQUIP.

FREE KIT CONTENTS TEST & EXPERIMENTERS EQUIP.

PUSHBUTTON AM AUTO RADIO

AU-580

- All Are Brand New
- Mts. In Under Dash
- With Volume and Tone Control
- 12 VDC Neg Grd
- Solid State 6 lbs

1000 OHMS PER VOLT TESTER 899

REPLACEMENT TONE ARM 69c

METER 799

FIELD STRENGTH INDICATOR

CB-067 Reg. 119c

- For Accurate Tuning of CB Antenna, styles vary
- Range 2 to 30 MHz, 50 Ohms Impedance \\

6 OHM EARPHONES 29c

500-Ft. Hookup Wire Kit $2

2400 FT. MYLAR RECORDING TAPE

TA-974

Reg. 145

- Quality Mylar Tapes
- Split
- Made By Famous U.S. Mfr.
- Supplied Less Storage Box
- Shipped wt. 1 lb

1000 OHMS PER VOLT TESTER 899

REPLACEMENT TONE ARM 69c

HF-035

- For All Manual Portable Phonos
- SAPplied
- Quality Mylar Tapes
- Split
- Made By Famous U.S. Mfr.
- Supplied Less Storage Box
- Shipped wt. 1 lb

METER 799

FIELD STRENGTH INDICATOR

CB-067 Reg. 119c

- For Accurate Tuning of CB Antenna, styles vary
- Range 2 to 30 MHz, 50 Ohms Impedance \\

8 OHM EARPHONES 29c

500-Ft. Hookup Wire Kit $2

PH-405

- Package of 4
- Earphones Without Plugs
- Shipped wt. 1/2 lb
AMERICA'S LARGEST SUPPLIER
of ORIGINAL Japanese Semi-Conductors
for CB, TV and Stereo Repair
We carry only genuine replacement parts

Minimum order $5.00. Add $1.00 postage and handling. Ask for our complete price list when ordering. Overseas buyers, Manufacturers, Distributors or Dealer orders welcome. All parts are guaranteed against factory defects for one year. C.O.D. orders are welcome. 48-hour delivery.

ORDER TOLL FREE
Telex: 21-4732

FEBRUARY 1979
The SE-01 is a kit that contains all the parts needed to build a programmable sound effects generator. Designed around the Texas Instruments 76447 Sound Chip, the board provides banks of Mini DIP switches and pots to program various combinations of the SLF Oscillator, VCO, Noise, One Shot and Envelope Controls. Another IC is used to implement an Adjustable Power Generator. Level Comparator and Multiplex Oscillator for even more versatility. The 3/4 by 5" plated PC Board features a prototype area to allow for user added circuitry. Easily programmed to duplicate Explosions, Phaser Guns, Steam Trains, or any and all infinite number of other sounds, the unit has a multitude of applications. The $16.95 price includes Assembly Manual, Programming Charts, and 76477 Chip specifications (speaker not included). Available from stock.

VINYL's where the money is! Professionally re-pair, restin, receiver furniture, luggage, car tops. Quick, easy, Two small $20 a job earn you $1000 a month. Homes, cars, offices, restaurant, unlimited customers. Start earning after a few days practice. Sensational details free. VIP. 2013 Montrose, Chicago, IL 60618
Texas Instruments
Low Profile Sockets

Over one million pieces in stock.

<table>
<thead>
<tr>
<th>Contacts</th>
<th>Price</th>
<th>Contacts</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 PIN</td>
<td>.08</td>
<td>22 PIN</td>
<td>.22</td>
</tr>
<tr>
<td>14 PIN</td>
<td>.12</td>
<td>24 PIN</td>
<td>.24</td>
</tr>
<tr>
<td>16 PIN</td>
<td>.14</td>
<td>28 PIN</td>
<td>.28</td>
</tr>
<tr>
<td>18 PIN</td>
<td>.18</td>
<td>40 PIN</td>
<td>.40</td>
</tr>
<tr>
<td>20 PIN</td>
<td>.20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Microprocessor Chips

<table>
<thead>
<tr>
<th>Stock level</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4600</td>
<td>8080A</td>
<td>$55.50</td>
</tr>
<tr>
<td>16000</td>
<td>6800</td>
<td>$65.75</td>
</tr>
</tbody>
</table>

Interface Support Circuits

<table>
<thead>
<tr>
<th>Stock level</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000</td>
<td>8121</td>
<td>$1.98</td>
</tr>
<tr>
<td>1400</td>
<td>8124</td>
<td>$1.99</td>
</tr>
<tr>
<td>2800</td>
<td>8216</td>
<td>$1.99</td>
</tr>
<tr>
<td>1520</td>
<td>8224</td>
<td>$2.75</td>
</tr>
<tr>
<td>4000</td>
<td>8226</td>
<td>$1.98</td>
</tr>
<tr>
<td>1700</td>
<td>8228</td>
<td>$4.75</td>
</tr>
<tr>
<td>700</td>
<td>8233</td>
<td>$4.75</td>
</tr>
<tr>
<td>5800</td>
<td>8251</td>
<td>$4.95</td>
</tr>
<tr>
<td>550</td>
<td>8253</td>
<td>$4.95</td>
</tr>
<tr>
<td>11000</td>
<td>8255</td>
<td>$5.95</td>
</tr>
<tr>
<td>400</td>
<td>8257</td>
<td>$9.95</td>
</tr>
<tr>
<td>800</td>
<td>8259</td>
<td>$14.95</td>
</tr>
<tr>
<td>3300</td>
<td>6810</td>
<td>$3.95</td>
</tr>
<tr>
<td>2200</td>
<td>6820</td>
<td>$3.95</td>
</tr>
<tr>
<td>4200</td>
<td>6821</td>
<td>$4.95</td>
</tr>
<tr>
<td>3000</td>
<td>6850</td>
<td>$5.95</td>
</tr>
<tr>
<td>1200</td>
<td>6852</td>
<td>$5.95</td>
</tr>
</tbody>
</table>

MOS Static RAM's

<table>
<thead>
<tr>
<th>Stock level</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>11400</td>
<td>2114</td>
<td>$7.50</td>
</tr>
<tr>
<td>4K (1K x 4) 300NS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 74000 | 2102LFPC | $1.19 |
| 1K 350NS (Low Power) |

| 19700 | 2114 | $6.95 |
| 4K (1K x 4) 450NS |

MOS Dynamic RAM's

<table>
<thead>
<tr>
<th>Stock level</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>16000</td>
<td>4K 4027</td>
<td>$2.95</td>
</tr>
<tr>
<td>4K (4K x 1) 300NS 16 PIN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 21500 | 416-3 | $9.95 |
| 200NS |

| 93000 | 416-5 | $7.95 |
| 300NS |

UART's

<table>
<thead>
<tr>
<th>Stock level</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>44000</td>
<td>AY5-1013A</td>
<td>$4.95</td>
</tr>
<tr>
<td>3800</td>
<td>AY3-1015</td>
<td>$5.95</td>
</tr>
<tr>
<td>1K CMOS RAM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zilog

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>280-CTC</td>
<td>$10.90</td>
</tr>
<tr>
<td>280A-CTC</td>
<td>$13.10</td>
</tr>
<tr>
<td>280-DA</td>
<td>$32.20</td>
</tr>
<tr>
<td>280-PO</td>
<td>$10.90</td>
</tr>
<tr>
<td>280A-PO</td>
<td>$13.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>280-CPU</td>
<td>$13.60</td>
</tr>
<tr>
<td>280A-CPU</td>
<td>$16.20</td>
</tr>
<tr>
<td>280-PIO</td>
<td>$10.90</td>
</tr>
<tr>
<td>280A-PIO</td>
<td>$13.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N914 (100V 4NS)</td>
<td>.027</td>
</tr>
<tr>
<td>1N4148 (100V 4NS)</td>
<td>.027</td>
</tr>
</tbody>
</table>

LINEAR I.C.'S

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM324N</td>
<td>$1.40</td>
</tr>
<tr>
<td>LM293N</td>
<td>$1.40</td>
</tr>
<tr>
<td>LM55N-8</td>
<td>$1.29</td>
</tr>
<tr>
<td>LM55N-14</td>
<td>$5.99</td>
</tr>
<tr>
<td>LM74CN</td>
<td>$1.34</td>
</tr>
<tr>
<td>LM74CN</td>
<td>$1.39</td>
</tr>
<tr>
<td>LM41CH</td>
<td>$1.40</td>
</tr>
<tr>
<td>LM41CN-8</td>
<td>$1.24</td>
</tr>
<tr>
<td>LM1458-8</td>
<td>$1.39</td>
</tr>
</tbody>
</table>

VOLTAGE REGULATORS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>8005</td>
<td>$5.50</td>
</tr>
<tr>
<td>7805</td>
<td>$5.75</td>
</tr>
<tr>
<td>7808</td>
<td>$5.75</td>
</tr>
<tr>
<td>7814</td>
<td>$5.75</td>
</tr>
<tr>
<td>7812</td>
<td>$5.75</td>
</tr>
<tr>
<td>7811</td>
<td>$5.75</td>
</tr>
<tr>
<td>7810</td>
<td>$5.75</td>
</tr>
<tr>
<td>7806</td>
<td>$5.75</td>
</tr>
<tr>
<td>7802</td>
<td>$5.75</td>
</tr>
<tr>
<td>7800</td>
<td>$5.75</td>
</tr>
<tr>
<td>7804</td>
<td>$5.75</td>
</tr>
<tr>
<td>7803</td>
<td>$5.75</td>
</tr>
<tr>
<td>7802</td>
<td>$5.75</td>
</tr>
<tr>
<td>7801</td>
<td>$5.75</td>
</tr>
<tr>
<td>7800</td>
<td>$5.75</td>
</tr>
<tr>
<td>7804</td>
<td>$5.75</td>
</tr>
<tr>
<td>7803</td>
<td>$5.75</td>
</tr>
<tr>
<td>7802</td>
<td>$5.75</td>
</tr>
<tr>
<td>7801</td>
<td>$5.75</td>
</tr>
<tr>
<td>7800</td>
<td>$5.75</td>
</tr>
<tr>
<td>7804</td>
<td>$5.75</td>
</tr>
<tr>
<td>7803</td>
<td>$5.75</td>
</tr>
<tr>
<td>7802</td>
<td>$5.75</td>
</tr>
<tr>
<td>7801</td>
<td>$5.75</td>
</tr>
</tbody>
</table>

Features

BRAND NEW!

1979 IC MASTER

Complete integrated circuit data selector. Master guide to the latest I.C.’s including microprocessors and consumer circuits.

Free Quarterly Updates $39.95
MECHANICALLY INCLINED INDIVIDUALS—WANTED

ELECTRONIC DEVELOPMENT LAB.
Box 1560R, Pinellas Park, FL 33565

EDUCATION & INSTRUCTION

MATHMATICS

ELECTRONICS

ENGINEERING MATHMATICS

ADVANCED MATHEMATICS

DIGITAL TECHNOLOGY

These unusual courses are the result of years of study by the President of lHI. He has lectured to thousands of men in mathematics, and electronic engineering. Order your lessons on a money-back guarantee. If not satisfied you don't pay! Write for free information. Act now!

The INDIANA HOME STUDY INSTITUTE
EASTERN DIVISION
P.O. BOX 1189
PANAMA CITY, FLA 32401

GRANTHAM's FCC License Study Guide—327 pages, 1465 questions with answers/discussions—covering third section, first radiotelephone examinations. $13.45 postpaid. GSE PUBLICATIONS, 2000 Stoner, Los Angeles, CA 90025

FROM KIT TO CAR IN 80 MINUTES!

Electronic ignition is "in." Update your car with the TOPS in power, efficiency and reliability — the TIGER SST capacitive discharge ignition (CD)!

The TIGER delivers everything other CD's promise — and more: quicker starting, more power, more gas mileage, tune-ups eliminated, lifetime plugs and points, reduced repairs and pollution.

The TIGER can be built and installed in your car in 80 minutes. The TIGER is unique!

The TIGER comes with a switch for TIGER or standard ignition for 12V negative ground only.

Simpli-Kit $21.95
POST PAID U.S.A.
WE ACCEPT Mastercharge or Bank Americard.
Send check or money order with order to:

DEPT. FF, P.O. Box 1727
Grand Junction, Colorado 81501

CIRCLE 12 ON FREE INFORMATION CARD

FAIRCHILD RED LED LAMPS

"EFLG509" Medium Size Clear Case RED/EMITTING. These are not the usual "off-spec" units as sold by some of our competitors. These are factory prime, first quality new units

10 FOR 119
50 FOR 1495

"WE BOUGHT 250.000 PCS."

COMPUTER KITS

We stock our own line of top quality computer kits.
8K STATIC RAM (S-100) $129
16K STATIC RAM (S-100) $295
16K EPROM (7278) BOARD (S-100) $59.95
16K STATIC RAM (SWTPC 6800 SS-50) BOARD $295
ADDITIONAL DATA ON ANY KIT AVAILABLE ON REQUEST

16K DYNAMIC RAM CHIP

16K X 1 Bit 16 Pin Package Same as Motorola 4116 16 256 NS access 12NS cycle time. Our best price yet for this state of the art RAM 32K and 64K RAM boards using this chip are readily available. These are new, fully guaranteed devices by a major manufacturer.

VERY LIMITED STOCK!

$1495 each

8 FOR 89.95

FAIRCHILD PNP "SUPER TRANSISTOR"

2N5064 15000 Vrms, 1.5 MA. Driven in npn Mode. High Reliability. 300VDC 90% of 50C. Full T817 test data. Readily beced-up Version of the 2N5060.

8 FOR $1

FET SALE!

2N4044 Brand New N Channel JFET. 90VDC 300MA. Test data. Readily beced-up Version of the 2N4040.

8 FOR $1

DISC CAPACITORS

1 MFD 16V, P.C. leads. Most popular value. By Sprague. 20 for $1.00

TIP-30 POWER TRANSISTOR

Prime new units. 20-22 Case Code. 500Amp. 150VDC 1.5MA. Test data. Readily beced-up Version of the 2N5060.

3 FOR $1

SURPLUS SPECIAL!

FullWaveBridge

4 Amp 200 PIV 69ce. 10/5.75

COMPUTER CAPACITOR

By GE 36 MFD 150VDC Small Size 4x1/4" Inches SURPLUS. $1.25 Each

3 FOR $8

VOLTAGE SUPPRESSORS

Z-80 19.95
Z-80A 24.95
8080A 6.95
8080A-2 8.95

TERMS: Add 30c postage. We pay balance. Orders under $15 add 75c handling. No C.O.D. We accept Visa, Mastercharge, and American Express cards. Tex. Res add 5% Tax and Foreign orders (except Canada) add 20% P & H. 90 Day Money Back Guarantee on all items.
Radio Shack: No. 1 Parts Place Low Prices and New Items Everyday!

Top-quality devices, fully functional, carefully inspected. Guaranteed to meet all specifications, both electrically and mechanically. All are made by well-known American manufacturers, and all have to pass manufacturer’s quality control procedures. These are not rejects, not blowouts, not seconds. In fact, there are none better on the market! Always count on Radio Shack for the finest quality electronic parts!

TTL and CMOS Logic ICs

<table>
<thead>
<tr>
<th>Type</th>
<th>Cat. No.</th>
<th>ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400</td>
<td>276-1601</td>
<td>354</td>
</tr>
<tr>
<td>7401</td>
<td>276-1611</td>
<td>354</td>
</tr>
<tr>
<td>7402</td>
<td>276-1602</td>
<td>354</td>
</tr>
<tr>
<td>7403</td>
<td>276-1603</td>
<td>354</td>
</tr>
<tr>
<td>7404</td>
<td>276-1604</td>
<td>354</td>
</tr>
<tr>
<td>7406</td>
<td>276-1616</td>
<td>396</td>
</tr>
<tr>
<td>7407</td>
<td>276-1607</td>
<td>396</td>
</tr>
<tr>
<td>7408</td>
<td>276-1608</td>
<td>396</td>
</tr>
<tr>
<td>7409</td>
<td>276-1609</td>
<td>396</td>
</tr>
<tr>
<td>7411</td>
<td>276-1611</td>
<td>396</td>
</tr>
<tr>
<td>7412</td>
<td>276-1612</td>
<td>396</td>
</tr>
</tbody>
</table>

SN-76477 Sound/Music Synthesizer IC

299

Featured In Oct. Popular Electronics

SN-76477 creates almost any type of sound - music, or guntshots! Built-in audio amp includes 2 VCO’s, LF osc, noise gen, 16 mixers, envelope modulator, logic circuit 26-pin DIP. With data application circuits 276-1769. 2.99

Analog Audio Delay IC

MN 3002

10.95

For Phase-Shiftor, Reverb & Delay Circuits

'Bucket Brigade' device uses 512 shift registers to provide a continuously variable electronic delay for complex audio signals. Includes data sheet and application circuits 276-1760. 10.95

Heat Sinks

TOP-220. For PC board-mounted power semiconductors in TOP-220 cases. Anodized aluminum 276-1363. 7.99

TOP-3 Sinking. For PC or chassis mount 276-1364. 1.39

Universal. Mounts 2 devices except 9 case styles 276-1361. 2.69

Top-Quality IC and PCB Accessories

PC Board: Mounts two 14 or 16-pin IC's or sockets for breadboarding. Copper-clad 2thickness. 276-1311. 4.99

PC Board: Mounts single 14 or 16-pin IC or socket. 276-1314. 2.99

18-pin TO 381C 276-1511. 2.99

18-pin DP Replac. With snap-on cover 276-1000. 1.29

S-Rocker 8-pin DP Switch. 276-1361. 1.99

Vertical Region Socket for LED Displays 276-1365. 1.99

16-pin DP Jumper cable. 26 long 276-1876. 2.99

Microprocessor and Support Chips

New - 100% Prime SALE

All With Full Data and Specs

8080A Microprocessor, 2.25$ Mat. $7.95

276-3110. Reg. 17.95 Sale 9.95

278-1907. Reg. 16.50 Sale 9.50

278-1911. Reg. 19.95 Sale 9.50

278-1851. Reg. 14.50 Sale 7.50

278-1827. Reg. 21.50 Sale 12.50

278-1829. Reg. 21.50 Sale 12.50

276-2518. Reg. 31.50 Sale 15.50

276-2438. Reg. 31.50 Sale 15.50

276-2452. Reg. 31.50 Sale 15.50

276-2454. Reg. 31.50 Sale 15.50

276-2468. Reg. 31.50 Sale 15.50

276-2474. Reg. 31.50 Sale 15.50

276-2476. Reg. 31.50 Sale 15.50

276-2480. Reg. 31.50 Sale 15.50

RAM Memory ICs

Under 450 nS Access Time

2122 1024 x 4 Array. Low-cost static memory chip. 16-pin DIP. Buy 8 and save 15%

276-2501. 2.49 Es. or 6.14.95

2114L 1024 x 4 Array. NMOS static RAM. 16-pin DIP. 320. 276-2504. Reg. 12.95 Sale 10.95

WHY WAIT FOR MAIL ORDER DELIVERY? IN STOCK NOW AT OUR STORE NEAR YOU!

Prices may vary at individual stores and dealers.

Computer Data Manuals and Semiconductor Handbook

Intel 8080/8085 Programming Manual, Handy reference for programming with Intel's assembly language 52-1377. 3.95

Intel Memory Design Handbook, Explains use of Intel's memory components and support circuits in systems. 62-1378. 3.95

Intel Data Catalog. 528 pages of specifications on most of Intel's standard microcomputer-related products. 62-1379. 4.95

Semiconductor Reference and Application Handbook, Complete specs and applications for popular IC transistors. diodes 276-4002. 1.95

Low-Cost Plug-In PC Boards

For 22-pin connectors. 49x49. 1/2 grid, 3 styles available Standard. 276-153 Digital. 276-154 Op Amp. 276-153 22-pin Dual Connector. 276-1551. 2.95

Solderless Breadboard with Fuse Socket. 280-100. 2.95

Microfiche of Catalog. 276-205. 1.95

Computer Design Kit. 276-2537. 39.95

Open Frame Round. 276-2547. 8.50

Low-voltage LED. 276-1975. 0.20

Solar Cells

Silicon-type cells convert sunlight to electrical power, delivering up to 100 mA at 0.5V ideal output in series-parallel for higher voltage of current 276-120. 2.93

4cm x 2cm Silicon Cell

Highly efficient! Delivers up to 400 mA at 0.5V. Ideal for solar power projects. battery charging and operating electronic equipment. 276-121. 5.99

Electricity from Light

2.54Dia. Silicon Cell

Prices vary at individual stores and dealers.

Radio Shack: A DIVISION OF TANDY CORPORATION • FORT WORTH, TEXAS 76102

OVER 7000 LOCATIONS IN NINE COUNTRIES

103
THE MOST ADVANCED TIMEPIECE OF ITS KIND IN THE WORLD!

LCD Quartz Alarm Chronograph with calendar and dual time zone! Watch is the same as Sello so you pay a lot more for the name! Features:

- 24 hour alarm
- Chronograph counts up to 12 hours, 59 mins, 59.9 sec.
- Precise of chronograph up to 1/10 sec indicated by 10 moving arrows!!
- Alarm (with chronic running uninterrupted)
- Time displays by LCD for hour, min, sec, day, date, date of the week and AM/PM.
- Calendar gives out date day.
- Dual time zone for any two cities of the world at your own choice.
- With light switch to allow you to see time in the dark!

$65.50

THE MOST POPULAR MM5314 CLOCK KIT

Features:

- 12/24 Hours Display
- 50/60 Hz Input
- 6 Digits Bright Orange Readouts

Kit includes plastic case, MM. $12.25 EA. One set: Power amplifier, P.C. Board, gas discharge displays, all other electronic parts and transformer. Catalog no. DC-8SP

SPECIAL PRICE $17.95 PER KIT

9 STEPS LED LEVEL INDICATOR KIT

for most stereo amplifiers

This new project works as a pair of VU meter to indicate the output level of your amplifier from 20dB to +3dB. It includes all LEDs, transistors, electronic components, P.C. Board and instructions. Easy to build and fun to see. ONLY $12.50 EA.

THE MOST ADVANCED TIMEPIECE OF ITS KIND IN THE WORLD!

LCD Quartz Alarm Chronograph with calendar and dual time zone! Watch is the same as Sello so you pay a lot more for the name! Features:

- 24 hour alarm
- Chronograph counts up to 12 hours, 59 mins, 59.9 sec.
- Precise of chronograph up to 1/10 sec indicated by 10 moving arrows!!
- Alarm (with chronic running uninterrupted)
- Time displays by LCD for hour, min, sec, day, date, date of the week and AM/PM.
- Calendar gives out date day.
- Dual time zone for any two cities of the world at your own choice.
- With light switch to allow you to see time in the dark!

$65.50

THE MOST POPULAR MM5314 CLOCK KIT

Features:

- 12/24 Hours Display
- 50/60 Hz Input
- 6 Digits Bright Orange Readouts

Kit includes plastic case, MM. $12.25 EA. One set: Power amplifier, P.C. Board, gas discharge displays, all other electronic parts and transformer. Catalog no. DC-8SP

SPECIAL PRICE $17.95 PER KIT

9 STEPS LED LEVEL INDICATOR KIT

for most stereo amplifiers

This new project works as a pair of VU meter to indicate the output level of your amplifier from 20dB to +3dB. It includes all LEDs, transistors, electronic components, P.C. Board and instructions. Easy to build and fun to see. ONLY $12.50 EA.

60W + 60W AMPLIFIER

COMPLETED UNIT—NOT A KIT!

OCL pre amp. & power stereo amp. with pass, middle, treble 3-way tone control. Fully assembled and tested, ready to work. Total harmonic distortion less than 0.5% at full power. Output maximum is 60 watts per channel at 8Ω. Power supply is 24-36V AC or DC. Complete unit

Kit FOM $37.50
Assembled FOM $49.50 EA.
Power transformer $8.50 EA.

SANYO HYBRID

Audio power amplifiers I.C. Max. hi-fi output power, minimum ext. component needed.

15 Watts STK-028 $ 8.50
23 Watts STK-054 $13.50
30 Watts STK-056 $17.50
50 Watts STK-050 $26.50
10W + 10W (stereo) STK-040 $14.50
15W + 15W (stereo) STK-041 $25.50
20W + 20W (stereo) STK-043 $31.50

22W + 22W HYBRID AMPLIFIER KIT

It Works in 12V D.C. As Well! Kit includes 1 PC SANYO STK-024 stereo power amp. IC LM 1458 as pre amp, all other electronic parts, PC Board, all control pots and special heat sink for hybrid. Power transformer not included. It produces ultra hi-fi output up to 44 watts (22 watts per channel) yet gives out less than 0.1% total harmonic distortion between 100Mz and 10KHz.

$32.50 PER KIT

SANYO HYBRID

Audio power amplifiers I.C. Max. hi-fi output power, minimum ext. component needed.

15 Watts STK-028 $ 8.50
23 Watts STK-054 $13.50
30 Watts STK-056 $17.50
50 Watts STK-050 $26.50
10W + 10W (stereo) STK-040 $14.50
15W + 15W (stereo) STK-041 $25.50
20W + 20W (stereo) STK-043 $31.50

22W + 22W HYBRID AMPLIFIER KIT

It Works in 12V D.C. As Well! Kit includes 1 PC SANYO STK-024 stereo power amp. IC LM 1458 as pre amp, all other electronic parts, PC Board, all control pots and special heat sink for hybrid. Power transformer not included. It produces ultra hi-fi output up to 44 watts (22 watts per channel) yet gives out less than 0.1% total harmonic distortion between 100Mz and 10KHz.

$32.50 PER KIT

SANYO HYBRID

Audio power amplifiers I.C. Max. hi-fi output power, minimum ext. component needed.

15 Watts STK-028 $ 8.50
23 Watts STK-054 $13.50
30 Watts STK-056 $17.50
50 Watts STK-050 $26.50
10W + 10W (stereo) STK-040 $14.50
15W + 15W (stereo) STK-041 $25.50
20W + 20W (stereo) STK-043 $31.50

22W + 22W HYBRID AMPLIFIER KIT

It Works in 12V D.C. As Well! Kit includes 1 PC SANYO STK-024 stereo power amp. IC LM 1458 as pre amp, all other electronic parts, PC Board, all control pots and special heat sink for hybrid. Power transformer not included. It produces ultra hi-fi output up to 44 watts (22 watts per channel) yet gives out less than 0.1% total harmonic distortion between 100Mz and 10KHz.

$32.50 PER KIT
SUPER 15 WATT AUDIO AMP KIT

Uses STK-015 Hybrid Power Amplifier

Kit includes: STK-015 Hybrid IC, power supply with power transformer, front panel with tone control, all electronic parts as well as PC Board. Less than 0.5% harmonic distortion at full power (±90) response from 20-100,000 Hz. This amplifier has QUASI-Complimentary class B output. Output max is 10 watt RMS at 4Ω.

ONLY $23.50 each

63 KEYS ALL DECORATED COMPLETE KEYBOARD

by Honeywell

with dual color key tops, uses TMS 5000 decoder LSIC. (Schematic included)

SPECIAL $56.50

NOT A KIT!

MANY SOUND DECISIONS!

Solid state sound indicator displaying voltage 6V DC.

Model EB2116 (Continuous)

Model EB2117 (Short Wave)

Model EB2136 (Fast Pulsed)

S.36 EACH

1 Watt AUDIO AMP

All parts are pre-assembled on a mini PC Board

Supply Voltage 6-9v DC

SPECIAL PRICE $1.95 ea.

"FISHER" 30 WATT STEREO AMP

Kit includes 2 pcs. Fisher PA 501 rpm. 50 watts, all electronic parts with PC Board (Express Included), Power Supply (117V 2A 30V) Voltage 33VDC 200V. Super-Buy Only $18.50

5W AUDIO AMP KIT

All parts are pre-assembled on a mini PC Board

Supply Voltage 6-18V DC

only $5.00 ea.

TIMER KIT

Time Controlled from 1-10,000 sec.

Ideal timer accessory to your car back up to make a reverse indicator.

Easy welding done for charging batteries

Supply voltage 6-12V

$7.50

SOUND ACTIVATED KIT

All parts pre-assembled on a PC Board

50 watts max. High or low volume up to 100 watts

Ideal for use as alarm unit, door bell, burglar alarm, radio service, and other purposes.

Max. loading 110v, 2 AMP.

Supply voltage 12-19 DC.

$11.50 each

ELECTRONIC ALARM SIREN

COMPLETE UNIT

Ideal for use as an Alarm Unit or hook up to your car back up to make a reverse indicator.

Easy welding done for charging batteries

Supply Voltage 6-12V

$7.50

LINEAR SLIDE POT 500KΩ SINGLE

Metal Case 3" long

Model #392

FOR $1.20

DIGITAL ELECTRONIC LOCK KIT

All parts pre-assembled on a mini PC Board

SPECIAL $6.50 ea.

Digital Programming to any Combination

ORDER RELAY AND SET PARTS INCLUDED

FEATURES

- Combination display for operation by high efficient, high gain, power transistor.

- One or two button push switches for easy entry.

- Circuit is maintained at standard level even the battery supply drops to a certain low voltage. 5v DC supply.

- Backlight miniature package.

- 12V X 1 1/2 SIM-1 Type D dry cell battery.

- Stations selector with wide angle intermittent illumination at the selected one.

- ORDER RELAY AND SET PARTS INCLUDED

- ORDER RELAY AND SET PARTS INCLUDED

RUBBER POWERED FLUORESCENT LANTERN

- Combination display for operation by high efficient, high gain, power transistor.

- One or two button push switches for easy entry.

- Circuit is maintained at standard level even the battery supply drops to a certain low voltage. 5v DC supply.

- Backlight miniature package.

- 12V X 1 1/2 SIM-1 Type D dry cell battery.

- Stations selector with wide angle intermittent illumination at the selected one.

- ORDER RELAY AND SET PARTS INCLUDED

- ORDER RELAY AND SET PARTS INCLUDED

FM WIRELESS MIC KIT

New model FM wireless MIC kit uses 3 high freq. transistors, works on the FM range (88-108)

- This transmitter is the sound wave fidelity clear over long distances (up to 250 ft.)

- Kit comes with all electronic parts, PC Board and Gum.

- USED FOR COMMCU IN MINI MICROPHONE

- SPECIAL PRICE $2 for $5.99

FLUORESCENT LIGHT DRIVER KIT

12V DC POWERED

Lights up to 15 Watt Fluorescent Light Tubes

Ideal for lamp. display, Auto or Boat

Kit includes high voltage coil, power transformer, heat sink, all other electronic parts and PC Board.

LOWLY $5.00 PEr KIT

HEAVY DUTY CLIP LEADS

10 pairs - 5 colors

Alligator clips, on a 22" long lead.

Ideal $1.85/pack for any testing

MINI-SIZED I.C. AM RADIO

Size smaller than a box of matches.

Ideal for any car radio.

Ideal for camper, bus, and truck.

Ideal for boat.

Ideal for$8.50

TOGGLE SWITCH

MINI-SIZED TOGGLE SWITCHES

1-15...2-15...3-15...4-15

For use in most of the job.

TOGGLE SW15 KIT

12V Switch

SOLD PER KIT

ONLY $1.00 each

SUBMINIATURE TOGGLE SWITCHES

KITS

- The Kit comes with jumper cables.

- $24.50

ONLY $5.00 PER KIT

MINI SIZE REED RELAY

Available 500mA 12V DC.

For use in most of the job.

SEND FOR FREE CATALOG ORDER TO:

FORMULA INTERNATIONAL INC.

12601 CRENSHAW BOULEVARD • HAWTHORNE, CALIFORNIA 90250

For more information please call 714-679-9191. 714-679-5162

SEND FOR FREE CATALOG ORDER TO:

FEBRUARY 1979

CIRCLE 13 ON FREE INFORMATION CARD

105
GOVERNMENT SURPLUS

JEEPS $595.01—cars $33,501—450,000 items! Government surplus—most comprehensive directory available tells how, where to buy your area—20.00—moneyback guarantee—GOVERNMENT INFORMATION SERVICES—Denver, CO 80210

MANUALS for Govt. surplus radios, test sets, scopes. List S0e (coin), BOOKS, 7218 Roanoke Drive, Washington, DC 20021

WANTED

MAJOR NY publisher has immediate opening for freelance acquiring editor electronic handbooks, troubleshooting manuals, texts. Qualified candidate should have successful publishing record, good leads to other tech writers, heavy publication/copy editing experience. Reply: 118 Concord Ave., Oceanside, NY 11572

DELTA Electronics
P.O. Box 2, Dept. 2R
7 Oakland St.
Amsbury, Mass.
01913
Tel. (617) 388-4705

FREE SHORTWAVE CATALOG

NEWSTED EDITION—ONE-STOP SHOPPING FOR SWLS

RECEIVERS SPECIAL DX MODS • ANTENNAS • PRESELECTORS • TUNERS • CALIBRATORS • CLOCKS • HEADPHONES • BOOKS • LOGS

GILFER SHORTWAVE
Dept. RE-2, Box 239, Park Ridge NJ 07656

YOU'RE UNDER SURVEILLANCE!!
A HOST OF PEOPLE, AGENCIES, AND COMPUTERS ARE BUSY SPYING ON YOU AND YOUR BUSINESS EVERY DAY, OFTEN ILLEGALLY.

HOW TO STOP IT OR DO IT BACK!

THE BIG BROTHER GAME

A Large Format (8½" x 11") Quality Papersack, 240 Pages

BUGGING WIRE TAPPING TAILING OPTICAL AND ELECTRONIC SURVEILLANCE SURREPTITIOUS ENTRY DETECTING TECHNIQUES WEAPONS COUNTERMEASURES

"A VIRTUAL ENCYCLOPEDIA ON SURVEILLANCE EVERYTHING YOU'VE ALWAYS WANTED TO KNOW ABOUT SPYING.

PLAYBOY MAGAZINE

With Each Order You Receive Free Other Material And Literature For Investigative Procedure. Depending on luck for success is like fishing without bait!

QUIMTRONIX
Postpaid—P.O. Box 548—RE
Seattle, Washington 98111

CIRCLE 8 ON FREE INFORMATION CARD
The CT-50 is a versatile and precision frequency counter which will measure frequencies to 60 MHz and up to 600 MHz with the CT-600 option. Large Scale Integration (LSI) circuitry and solid state technology have contributed to this counter to match performance found in units selling for over three times as much. Low power consumption (typically 300-40AC ma) makes the CT-50 ideal for portable battery operation. Features: FM - 3216, VD-1, 741, 567, 7400, 74369, 7405, 7423, -1,-50 ma, 29.65 W, 2.50 W...
2 METER MOBILE ANTENNA

$12.95

BRAND NEW FACTORY BOXED ANTENNAS MADE BY M.I.

SUCCESSFUL TOP LINE MFR. FOR POLICE AND GOV'T. AGENCIES. ORIGINAL COST IN M.U. QUANTITIES WAS TWICE OUR ACTIVE PRICES.

FEATURES:

- HIGHEST QUALITY, DESIGNED FOR USE WITH STATE & COUNTY POLICE VEHICLES. MOLED FIBERGLASS FUNCTIONALLY WORN WIRE (FLUORESCENT ORANGE), HEAVILY PLATED PARTS, SEALED MATCHING TRANSFORMER.

- SINGLE MOLD MOUNT (1/2" DIA) WITH ALL MOUNTING HARDWARE INCLUDING TRUSS RINGS AND RUBBER SEALS. ALSO WORKS WITH MOST "CLAMP TYPE" ADAPTERS.

- TURNS FROM 340-176 MHZ -- WHIP CUTTING CHART SHOWS WHIP LENGTH VS. FREQUENCY. CUT FOR 2 HM MAN, FIRE, A POLICE BAND (FOR SCANNERS) OR EVEN USE IN THE MAIN BAND.

- COMPLETE WITH ALL PARTS -- WIP, LOADING COIL (TRANSFORMER), HAIN, COAX (RESBA), PL259 CONNECTOR, AND COMPLETE INSTALLATION AND TUNING INSTRUCTIONS.

DOES IT GET OUT? YOU BET!! 1/2 WAVE VERTICALS ARE MOST WIDELY USED IN COMMERCIAL AND 2 METER FM HAM BECAUSE OF THE LOW RADATION ANGLE AND CONSIDERABLE GAIN OVER SHORT WAVE BUNDLES, BANDLIMITED VERTICALS, RESULTING IN LOWER SWR OVER A WIDER FREQUENCY RANGE. A LESSER DEPENDENCE ON A GROUND PLANE MEANS LESS ENERGY IN MANY CASES. THESE ANTENNAS WERE USED IN POLICE MOTORCYCLES WITH EXCELLENT RESULTS -- GROUNDBOUND (GIVE THEM A GOOD GROUND PLANE (LIKE A CAR ROOF) AND THEY'RE NEVER UNATTAINABLE!!

CIRCLE 70 ON FREE INFORMATION CARD

Original Japanese Replacement Parts for TV, Stereo and CB

CIRCLE 24 ON FREE INFORMATION CARD

SURPLUS

2 METER MOBILE ANTENNA

$12.95

BRAND NEW FACTORY BOXED ANTENNAS MADE BY M.I.

SUCCESSFUL TOP LINE MFR. FOR POLICE AND GOV'T. AGENCIES. ORIGINAL COST IN M.U. QUANTITIES WAS TWICE OUR ACTIVE PRICES.

FEATURES:

- HIGHEST QUALITY, DESIGNED FOR USE WITH STATE & COUNTY POLICE VEHICLES. MOLED FIBERGLASS FUNCTIONALLY WORN WIRE (FLUORESCENT ORANGE), HEAVILY PLATED PARTS, SEALED MATCHING TRANSFORMER.

- SINGLE MOLD MOUNT (1/2" DIA) WITH ALL MOUNTING HARDWARE INCLUDING TRUSS RINGS AND RUBBER SEALS. ALSO WORKS WITH MOST "CLAMP TYPE" ADAPTERS.

- TURNS FROM 340-176 MHZ -- WHIP CUTTING CHART SHOWS WHIP LENGTH VS. FREQUENCY. CUT FOR 2 HM MAN, FIRE, A POLICE BAND (FOR SCANNERS) OR EVEN USE IN THE MAIN BAND.

- COMPLETE WITH ALL PARTS -- WIP, LOADING COIL (TRANSFORMER), HAIN, COAX (RESBA), PL259 CONNECTOR, AND COMPLETE INSTALLATION AND TUNING INSTRUCTIONS.

DOES IT GET OUT? YOU BET!! 1/2 WAVE VERTICALS ARE MOST WIDELY USED IN COMMERCIAL AND 2 METER FM HAM BECAUSE OF THE LOW RADATION ANGLE AND CONSIDERABLE GAIN OVER SHORT WAVE BUNDLES, BANDLIMITED VERTICALS, RESULTING IN LOWER SWR OVER A WIDER FREQUENCY RANGE. A LESSER DEPENDENCE ON A GROUND PLANE MEANS LESS ENERGY IN MANY CASES. THESE ANTENNAS WERE USED IN POLICE MOTORCYCLES WITH EXCELLENT RESULTS -- GROUNDBOUND (GIVE THEM A GOOD GROUND PLANE (LIKE A CAR ROOF) AND THEY'RE NEVER UNATTAINABLE!!

CIRCLE 70 ON FREE INFORMATION CARD

Original Japanese Replacement Parts for TV, Stereo and CB

CIRCLE 24 ON FREE INFORMATION CARD

PRICES MAY CHANGE WITHOUT NOTICE
COD ORDERS WELCOMED

Immediate Delivery Within 48 Hours
On All Transformers in Stock

Radio-Electronics

New Tone Electronics International
P.O. Box 1738, Bloomfield, N. J. 07003

New Jersey Phone: 201-748-6177

Radio-Electronics

New Tone Electronics International
P.O. Box 1738, Bloomfield, N. J. 07003

New Jersey Phone: 201-748-6177
PLASTIC MOLDED INSTRUMENT CASE

- **H-2" W-6-1/8 D-5/8"**
- Adjutable heights to accommodate most needs
- Available in all 3 gray tones
- **Models 81 and 82**
- **Price** $15.00

L.S. SOCKETS

<table>
<thead>
<tr>
<th>Model</th>
<th>Type</th>
<th>Wire Wrap</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-pin</td>
<td>Pro</td>
<td>5 pcs 10 pcs 100 pcs</td>
<td>9.50-3.50 2.00</td>
</tr>
<tr>
<td>16-pin</td>
<td>Pro</td>
<td>5 pcs 10 pcs 100 pcs</td>
<td>10.95 1.75 15.00</td>
</tr>
<tr>
<td>16-pin</td>
<td>1</td>
<td>5 pcs 20 pcs 100 pcs</td>
<td>2.50 4.20 29.90</td>
</tr>
<tr>
<td>16-pin</td>
<td>3</td>
<td>5 pcs 20 pcs 100 pcs</td>
<td>3.50 6.50 60.00</td>
</tr>
<tr>
<td>22-pin</td>
<td>1</td>
<td>5 pcs 20 pcs 100 pcs</td>
<td>3.75 7.00 85.00</td>
</tr>
<tr>
<td>22-pin</td>
<td>3</td>
<td>5 pcs 20 pcs 100 pcs</td>
<td>2.65 5.00 79.50</td>
</tr>
<tr>
<td>22-pin</td>
<td>18</td>
<td>5 pcs 20 pcs 100 pcs</td>
<td>4.75 9.90 85.00</td>
</tr>
<tr>
<td>32-pin</td>
<td>1</td>
<td>5 pcs 20 pcs 100 pcs</td>
<td>4.00 8.50 58.00</td>
</tr>
<tr>
<td>32-pin</td>
<td>3</td>
<td>5 pcs 20 pcs 100 pcs</td>
<td>6.25 12.00 100.00</td>
</tr>
</tbody>
</table>

FOLD TRAYS WITH WIRE WRAP WIRE

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR1060A</td>
<td>34-100V</td>
<td>$0.85</td>
</tr>
<tr>
<td>TR1060B</td>
<td>40-100V</td>
<td>$1.05</td>
</tr>
<tr>
<td>TR1060C</td>
<td>50-100V</td>
<td>$1.25</td>
</tr>
<tr>
<td>TR1060D</td>
<td>60-100V</td>
<td>$1.55</td>
</tr>
</tbody>
</table>

BIBBOARD KIT

- **BIBBOARD 1** $9.95 ea.
 - Accepts DIP packages without adapters or damaging component leads.
 - Contacts are double tinned, nickel silver, current carrying capacity of 1Amp.
 - Smaller than 0.1 inches contact resistance.
 - Total 0/500 sockets designed by letter and numeral matrix for recording requirements.
 - Bus strip sections run on each side of board.
 - Component bracket (with holes) will fit any of the four edges or reach the center.

- **BIBBOARD 2** $23.95
 - 2 Breadboards and 2 component brackets.
 - 1 Alum frame with 4 isolated Terminals.

- **BIBBOARD 3** $34.95
 - 4 Breadboards and 3 component brackets.
 - 1 Alum frame with 4 isolated Terminals.

- **BIBBOARD 4** $43.95
 - 6 Breadboards and 4 component brackets.
 - 1 Alum frame with 4 isolated Terminals.

DECISIONS CONSOLES

- **15" SLOPING PANELS**
- **CAGES (bottoms)**
- **PANELS (tops)**
- **MINIATURE CONSOLES**
- **1/2" HEE HEE CIRCUIT**
- **1/4" HEC HEC CIRCUIT**
- **1/8" HEC HEC CIRCUIT**
- **1/2" HEC HEC CIRCUIT**
- **1/4" HEC HEC CIRCUIT**
- **1/8" HEC HEC CIRCUIT**

- **SOLDER**
- **RESISTORS**
- **CAPACITORS**

WIRE WRAP TOOLS

- **MINIATURE CONSOLES**
- **1/2" HEE HEE CIRCUIT**
- **1/4" HEC HEC CIRCUIT**
- **1/8" HEC HEC CIRCUIT**

SPECIAL OF THE MONTH

- **TRINIC KIT**
- **TRINIC 3**
- **TRINIC 5**
- **TRINIC 7**
- **TRINIC 10**
- **TRINIC 12**
- **TRINIC 15**
- **TRINIC 18**

CAR BATTERY ELIMINATOR KIT

- **KITS INCLUDES**
 - Transformer.
 - PC Board.
 - Large filter capacitor.

8-BIT 4 DIGIT JUMBO DISPLAY

- **FEATURES**
 - Alarm Clock KIT.
 - 8-Bit Digital Clock.
 - 8-Bit Super Clock.
 - 8-Bit Display.

2-80 CPU BOARD/KIT

- **FEATURES**
 - 1/2" pitch 280 chip).
 - 280/380 RISC processor.
 - Factory Price.

8-BIT 4 DIGIT JUMBO DISPLAY

- **FEATURES**
 - Alarm Clock KIT.
 - 8-Bit Digital Clock.
 - 8-Bit Super Clock.
 - 8-Bit Display.

2-80 CPU BOARD/KIT

- **FEATURES**
 - 1/2" pitch 280 chip).
 - 280/380 RISC processor.
 - Factory Price.
NEW IN STOCK...

POWERACE ALL-CIRCUIT EVALUATORS WITH POWER

100 MHz, 8-digit power analyzer, will read up to 100 MHz.

For more information, call us at (415) 592-8097.

NEW

MINI-MAX

6 Digit 50MHz Frequency Counter

- Guaranteed frequency range of 10 kHz to 50 MHz
- Built-in digitizer for easy reading
- High-contrast LED display
- Auto-zero function
- 1-second measurement
- Memory lock
- Built-in clock and day
- Optional RS-232 interface

ACCESSORIES FOR MAX 100

Digital clock

- Guaranteed time base for stability

MINI-MAX

- **Part No.**
- **Description**
- **Price**

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Accessories</td>
<td>$95.95</td>
</tr>
<tr>
<td>25</td>
<td>Battery pack</td>
<td>$9.95</td>
</tr>
<tr>
<td>26</td>
<td>Carrying case</td>
<td>$7.95</td>
</tr>
</tbody>
</table>

MINI-MAX

Part No.

- **Description**
- **Price**

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Accessories</td>
<td>$95.95</td>
</tr>
<tr>
<td>25</td>
<td>Battery pack</td>
<td>$9.95</td>
</tr>
<tr>
<td>26</td>
<td>Carrying case</td>
<td>$7.95</td>
</tr>
</tbody>
</table>

The Incredible

Pennywhistle 103

$139.95 Kit Only!

- The Pennywhistle 103 is a great instrument for kids and adults alike. It is made from high-quality materials and is easy to play. It features a simple design and is perfect for both beginners and experienced players. The Pennywhistle 103 is available in a variety of colors and is sure to please everyone.

SUP 'R MOD II

$115.00 Special Offer - Order both your TRS-16K and the 4160 Interface kit together (retail value $144.95) for only $139.95.

COMPUTER CASSETTE SYSTEM

- **Sup-R Mod II**
- **IBM Channel 33 TV Interface Unit Kit**

RS-232 CENTER

Plug-in your modem, computer, or printer

$29.95 Kit

CASSETTE CONTROLLER

- **Ideal for use with the TRS 80 and others**
- **Plug-and-play interface to any compatible system requiring cassette control of cassette functions**

The CC100 combines cassette function, motor function, and line-out control into one compact unit. It is compatible with the TRS 80 and other popular microcomputers. The CC100 is easy to install and use, and is sure to improve the overall performance of your system.

63-Key Unencoded Keyboard

- **This is a 63-key terminal keyboard newly manufactured to a large computer manufacturer. It is unencoded and is controlled by your own computer. It is perfect for use with your terminal computer and is available in a variety of colors.**

Hexadecimal Unencoded Keypad

- **19-key pad includes 1-10 keys, ABCDE and 2 opional keys and a shift key.**

$29.50 each
PTS 8001 Component Analyzer

Solid state component tester works in or out of circuit. Simple hook-up to any standard oscilloscope. High, medium and low range switch for matching the impedance to the component being tested. Dealer Net $54.95

See the Yellow Pages for the PTS Servicenter Nearest You or Contact:

PTS ELECTRONICS, INC.
P.O. Box 272, Bloomington, IN 47401 812-824-9331

CIRCLE 66 ON FREE INFORMATION CARD

REGULATED POWER SUPPLIES

<table>
<thead>
<tr>
<th>POWER SYSTEMS</th>
<th>#5111</th>
<th>115-220V 50/60 Hz, in VAC at 36A out 6" x 15" x 15"/20 lbs, shipping weight $85.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER SYSTEMS</td>
<td>#5111B</td>
<td>115-220V 50/60 Hz, in 12V VAC at 15A out 6" x 15" x 15"/15 lbs, shipping weight $75.00</td>
</tr>
</tbody>
</table>

C/MOS (DIODE CLAMPED)

<table>
<thead>
<tr>
<th>2011</th>
<th>2020</th>
<th>2021</th>
<th>2030</th>
<th>2031</th>
<th>2040</th>
<th>2041</th>
<th>2050</th>
<th>2051</th>
<th>2060</th>
<th>2061</th>
<th>2070</th>
<th>2071</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>1010</td>
<td>1020</td>
<td>1030</td>
<td>1040</td>
<td>1050</td>
<td>1060</td>
<td>1070</td>
<td>1080</td>
<td>1090</td>
<td>1100</td>
<td>1110</td>
<td>1120</td>
</tr>
<tr>
<td>1201</td>
<td>1210</td>
<td>1220</td>
<td>1230</td>
<td>1240</td>
<td>1250</td>
<td>1260</td>
<td>1270</td>
<td>1280</td>
<td>1290</td>
<td>1300</td>
<td>1310</td>
<td>1320</td>
</tr>
</tbody>
</table>

PRINTED CIRCUIT BOARD

<table>
<thead>
<tr>
<th>7 WATT POWER SUPPLY</th>
<th>3601</th>
<th>3602</th>
<th>3603</th>
<th>3604</th>
<th>3605</th>
<th>3606</th>
<th>3607</th>
<th>3608</th>
<th>3609</th>
<th>3610</th>
<th>3611</th>
<th>3612</th>
</tr>
</thead>
<tbody>
<tr>
<td>3621</td>
<td>3622</td>
<td>3623</td>
<td>3624</td>
<td>3625</td>
<td>3626</td>
<td>3627</td>
<td>3628</td>
<td>3629</td>
<td>3630</td>
<td>3631</td>
<td>3632</td>
<td>3633</td>
</tr>
</tbody>
</table>

TRANSISTOR SPECIALS

<table>
<thead>
<tr>
<th>7400 series 14-pin DIP</th>
<th>7400</th>
<th>7401</th>
<th>7402</th>
<th>7403</th>
<th>7404</th>
<th>7405</th>
<th>7406</th>
<th>7407</th>
<th>7408</th>
</tr>
</thead>
<tbody>
<tr>
<td>7409</td>
<td>7410</td>
<td>7411</td>
<td>7412</td>
<td>7413</td>
<td>7414</td>
<td>7415</td>
<td>7416</td>
<td>7417</td>
<td>7418</td>
</tr>
</tbody>
</table>

Silicon Power Rectifiers

<table>
<thead>
<tr>
<th>1N4004</th>
<th>1N4007</th>
<th>1N4001</th>
<th>1N4002</th>
<th>1N4003</th>
<th>1N4005</th>
<th>1N4006</th>
<th>1N4009</th>
<th>1N4010</th>
<th>1N4011</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N4012</td>
<td>1N4013</td>
<td>1N4014</td>
<td>1N4015</td>
<td>1N4016</td>
<td>1N4017</td>
<td>1N4018</td>
<td>1N4019</td>
<td>1N4020</td>
<td>1N4021</td>
</tr>
</tbody>
</table>

CIRCLE 66 ON FREE INFORMATION CARD

CIRCLE 28 ON FREE INFORMATION CARD

Full Wave Bridges DIP SOCKETS

<table>
<thead>
<tr>
<th>1N4001</th>
<th>1N4002</th>
<th>1N4003</th>
<th>1N4004</th>
<th>1N4005</th>
<th>1N4006</th>
<th>1N4007</th>
<th>1N4008</th>
<th>1N4009</th>
<th>1N4010</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N4011</td>
<td>1N4012</td>
<td>1N4013</td>
<td>1N4014</td>
<td>1N4015</td>
<td>1N4016</td>
<td>1N4017</td>
<td>1N4018</td>
<td>1N4019</td>
<td>1N4020</td>
</tr>
</tbody>
</table>

Sanken Audio Power Amps

<table>
<thead>
<tr>
<th>0S901</th>
<th>0S902</th>
<th>0S903</th>
<th>0S904</th>
<th>0S905</th>
<th>0S906</th>
<th>0S907</th>
<th>0S908</th>
<th>0S909</th>
<th>0S910</th>
</tr>
</thead>
<tbody>
<tr>
<td>0S911</td>
<td>0S912</td>
<td>0S913</td>
<td>0S914</td>
<td>0S915</td>
<td>0S916</td>
<td>0S917</td>
<td>0S918</td>
<td>0S919</td>
<td>0S920</td>
</tr>
</tbody>
</table>

Tantalum Capacitors

<table>
<thead>
<tr>
<th>4700</th>
<th>4701</th>
<th>4702</th>
<th>4703</th>
<th>4704</th>
<th>4705</th>
<th>4706</th>
<th>4707</th>
<th>4708</th>
<th>4709</th>
</tr>
</thead>
<tbody>
<tr>
<td>4710</td>
<td>4711</td>
<td>4712</td>
<td>4713</td>
<td>4714</td>
<td>4715</td>
<td>4716</td>
<td>4717</td>
<td>4718</td>
<td>4719</td>
</tr>
</tbody>
</table>

PT Components

<table>
<thead>
<tr>
<th>4720</th>
<th>4721</th>
<th>4722</th>
<th>4723</th>
<th>4724</th>
<th>4725</th>
<th>4726</th>
<th>4727</th>
<th>4728</th>
<th>4729</th>
</tr>
</thead>
<tbody>
<tr>
<td>4730</td>
<td>4731</td>
<td>4732</td>
<td>4733</td>
<td>4734</td>
<td>4735</td>
<td>4736</td>
<td>4737</td>
<td>4738</td>
<td>4739</td>
</tr>
</tbody>
</table>

DATA CASSETTES 1/2" M/M $.50

<table>
<thead>
<tr>
<th>2244</th>
<th>2245</th>
<th>2246</th>
<th>2247</th>
<th>2248</th>
<th>2249</th>
<th>2250</th>
<th>2251</th>
<th>2252</th>
<th>2253</th>
</tr>
</thead>
<tbody>
<tr>
<td>2254</td>
<td>2255</td>
<td>2256</td>
<td>2257</td>
<td>2258</td>
<td>2259</td>
<td>2260</td>
<td>2261</td>
<td>2262</td>
<td>2263</td>
</tr>
</tbody>
</table>

TRIACS SCRs

<table>
<thead>
<tr>
<th>2N3779</th>
<th>2N3780</th>
<th>2N3781</th>
<th>2N3782</th>
<th>2N3783</th>
<th>2N3784</th>
<th>2N3785</th>
<th>2N3786</th>
<th>2N3787</th>
<th>2N3788</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N3789</td>
<td>2N3790</td>
<td>2N3791</td>
<td>2N3792</td>
<td>2N3793</td>
<td>2N3794</td>
<td>2N3795</td>
<td>2N3796</td>
<td>2N3797</td>
<td>2N3798</td>
</tr>
</tbody>
</table>

Terms: FOB Cambridge, Mass. F.O.B. City or post paid order only. Includes postage, minimum Order $5.00 COD's $3.50

SOLID STATE SALES
P.O. Box 740
SOMERVILLE, MASS. 02143 TEL. (617) 547-7053
CIRCLE 21 ON FREE INFORMATION CARD

We ship over 95% of our orders the day we receive them
THE NEW HOBBY WORLD CATALOG

Your source for factory prime, professional quality equipment. Computers, add-on boards, IC's, sockets, resistors, supplies, tools, test equipment, books, and more. Shop your buy list at Hobby World. You'll find what you want, and at a solid savings. For example, look at this month's specials:

NEW FROM CALIFORNIA COMPUTER SYSTEMS!
16K STATIC RAM KIT, MODEL XVI. IEEE S-100 compatible, requires only +5 Volts, 450 ns, fully buffered. Bank switching capability, Phantom Line, wait state, addressable in 4K blocks. HOBBY WORLD PRICE ONLY $265 KIT, $27 BARE BOARD.

16K MEMORY ADD-ON FOR APPLE, TRS-80 OR EKIDY SORCERER. HOBBY WORLD PRICE ONLY $98 (specify when ordering)

C-10 DATA CASSETTES - PERFECT FOR TRS-80. PRICE ONLY $2 EACH! 10 for $17.50.

SEND ME A FREE CATALOG!

Name
Address
City State

Solar cell panels, used, OK condition
20 cell panel, 2½" cells 6 volt ½ amp $75.00
36 cell panel, 12 volt ½ amp 100.00
24 cell panel, 8 volt 45 amp 85.00
10 half cell panel, 5 volt ¼ amp 50.00
5 cell panel, 2½ volt ¼ amp 40.00
Single 3½ inch cell, 1 amp, 45 volt 8.50
Solar power kit, 3½ inch cell, motor, propellor $10.25
ULTRASONIC room alarm, intrusion detection with full data for hookup 40.00

SEE IN THE DARK
IR viewer complete ready to operate. Guaranteed by the manufacturer. Portable, runs on lantern battery. New, see in total darkness. No shipments to Calif. Comes complete with built in IR source and adjustable focus lens. SPL-21 $199.00

CIRCLE 44 ON FREE INFORMATION CARD

INTEGRATED ELECTRONICS

540 Weddell Drive, #4, Sunnyvale, CA 94086 (408)734-8470

SN6477 Complex Sound Generator $3.50
This is a programmable sound effect generator capable of producing a wide variety of sounds from high to low frequency. Using this chip & a small number of inexpensive parts, a variety of projects may be built. Spec shs & application notes $1.00

TL500 Analog Processor $8.50
The TL500 contains all the active analog elements for an automatic zeroing and automatic polarity. It is a 13-bit dual-slope A/D converter that has true differential inputs. It requires 3 caps & 2 resistors with no special matching or tolerances. It is designed for use with the TL502. Spec sheet $0.25

TL502 Digital Panel Meter L.D. $5.50
This is a 4½-digit Digital Panel Meter L.D. that is designed to interface with the TL500 analog processor. It provides base drive for external PNP digit & segment drivers providing direct interface with 7-segment display. Spec sheet $0.25

LD130 A/D Converter $5.50
Single-reference voltage, auto zero and auto polarity. It is designed for Digital Voltmeters, Panel Meters, Digital Thermometers, Microprocessor Interfaces to Analog Signals, & General Instrumentation. 34-pg. Spec & Application notes $2.50

MM5865 Programmable Stopwatch $7.50
7-function Universal Timer and Stopwatch. Start/stop with elapsed time, start/stop accumulative event time, split, sequential total elapsed time, rally total elapsed time, program up and down count. It uses 32.8 KHz crystal or external clock. Spec sheet & 10-page Application notes $1.50

32.8 KHz Crystal $4.00
Minimum order $5.00 US currency. Check or money order only. Add 5% to cover shipping and handling charges. Calif. residents 8.5% sales tax. Santa Clara County residents add 6.5% sales tax.

CIRCLE 11 ON FREE INFORMATION CARD

CATCH-A-PULSE II
LOGIC PROBE

10 Nsec SPEED AT 4 to 15V LEVELS

Compatible with DTL, TTL, CMOS, MOS, and Microprocessors using any 4 to 15V power supply. Thresholds automatically programmed. Automatic resettable memory. No adjustment required. Visual indication of logic levels, using LEDs to show high, low, and 15V. New circuit and parts. Highly sophisticated, start pocket portable (protective tip cap and removable wallet). Eliminates need for heavy test equipment. A definite savings in time and money for engineer and technician.

SPECIAL PAK: II $15.95
Includes a standard coiled cord, coiled cord with micro hooks, adapter for using CATCH-A-PULSE II on logic families whose power supply is 15V to 25V. Shipping add $2.50 per probe.

ELECTRONICS

Box 19299, San Diego CA 92119
(714) 447-1770

CIRCLE 48 ON FREE INFORMATION CARD
103 MINI-WINK NEON FLASHER. Random flash pattern. Interesting displays. 6 neon lamps. AC operated. 103 $2.95 103A (103 w/PCB) 4.60 103B (103 w/PCB, CASE) 6.85

110 ELECTRONIC WHOOPER SIREN. Powerful wailing sound. Dual oscillator circuit. Use with any alarm circuit. Battery not included. 110 $4.95 110A (110 w/PCB) 6.50 110B (110 w/PCB, CASE) 9.60

117 TUNABLE ELECTRONIC ORGAN. Tunable 7-note scale. Play sing-a-long favorites. Battery not included. 117 $6.95 117A (117 w/PCB) 8.90 117B (117 w/PCB, CASE) 12.00

120 SIREN/CODE OSCILLATOR. Loud, piercing alarm. Practice Morse code. Battery not included. 120 $4.20 120A (120 w/PCB) 5.55 120B (120 w/PCB, CASE) 8.65

126 PROGRAMMABLE DOORBELL. Adjustable rate and pitch for 15 musical notes. Play favorite tunes. 6 IC's. Uses existing transformer and switch. 126 $16.95 126A (126 w/PCB) 23.70 126B (126 w/PCB, CASE) 29.20

114 AUDIO AMPLIFIER. High sensitivity, high gain, use as intercom, PA amp, phone pick-up and others, push-pull output. Battery not included. 114 $5.35 114A (114 w/PCB) 8.90 114B (114 w/PCB, CASE) 12.00

112 6/9 VOLT SUPPLY. 100mA. Battery eliminator, dual range output switch, neon pilot lamp. AC operated. 112 $3.95 112A (112 w/PCB) 5.30 112B (112 w/PCB, CASE) 7.25

119 MOTOR SPEED CONTROL. Adjust motor speed to suit application. SCR controlled, use as light dimmer. AC operated. 119 $3.95 119A (119 w/PCB) 5.50 119B (119 w/PCB, CASE) 7.75

123 ELECTRONIC TIMER. Turns appliances on and off, adjustable control. 2 minutes to 1 hour. 1 IC. AC operated. 123 $8.95 123A (123 w/PCB) 11.40 123B (123 w/PCB, CASE) 13.65

540 BINARY CLOCK. Handcraft tomorrow's timepiece today. Watch constantly changing patterns of LED's as they display Binary Time. This unique clock project enhances the learning of Digital Logic and the Binary Coding System, as well as offering a beautiful styled conversation piece. 10 TTL INTEGRATED CIRCUITS • VOLTAGE REGULATOR • 43.000 PULSATING LIGHT PATTERNS • FAST, SLOW and HOLD CONTROLS • 115VAC 50 or 60Hz. $39.95 Complete with 80 page manual

536 8-TRANSISTOR AM RADIO. Experience jewel-like clarity in sound. The best superheterodyne kit circuit available. SEPARATE LOCAL OSCILLATOR for high sensitivity and excellent selectivity. Unique IF Transformer mounting system. 9V battery required (not included). $16.45 Complete with 88 page manual

124 WARBLING SIREN. Two-tone oscillating siren. Loud and penetrating, 2 IC's. For automobile or other 12 volt systems. 124A (124 w/PCB) 7.10 124B (124 w/PCB, CASE) 10.20

105 FISH CALLER. Clicking sound imitates distressed fish. Adjustable speed. Battery not included. 105 $2.95 105A (105 w/PCB) 4.10 105B (105 w/PCB, CASE) 5.70

107 COLOR ORGAN CONTROL — 3 CHANNEL. Over 2000 per channel. Separate sensitivity control. Hi-mid-i-o frequency response. AC operated. 107 $9.20 107A (107 w/PCB) 11.85 107B (107 w/PCB, CASE) 14.95

118 TV SCRAMBLED. Tunable to all VHF stations. 30 foot range. Battery not included. 118 $1.95 118A (118 w/PCB) 2.90 118B (118 w/PCB, CASE) 4.50

122 COMPUTER SOUND EFFECTS GENERATOR. Produces weird, spaced sounds. 4 IC's. Control tone, rate and blip or glide. Battery not included. 122 $14.95 122A (122 w/PCB) 19.40 122B (122 w/PCB, CASE) 24.90

We accept:
VISA, MASTERCARD, BANK & MERCARD.
CALL TOLL FREE 800-824-5136
IN CALIFORNIA CALL 800-852-7631
ASK FOR OPERATOR 318

DO NOT SEND CASH • NO COD • ORDER BY PHONE OR MAIL
CALIF. RESIDENTS ADD 5% SALES TAX.
MINIMUM ORDER $10.00
WE PAY POSTAGE AND HANDLING IN U.S.A. OVERSEAS COUNTRIES: ADD 15% OF TOTAL FOR POSTAGE.

SEND CHECK OR MONEY ORDER TO:
Graymark International, Inc.
1751 McGaw Avenue Dept. 2 Irvine, CA 92714 (714) 540-5480
Real-State-of-the-Art

TWO NEW AC/DC BATTERY PORTABLE COUNTERS

OPTO-8000 .1A 10Hz to 600 MHz — FREQUENCY COUNTER
- Precision TCXO time base 0.1 PPM Stability 17-40°C
- Super Sensitivity with preamps in both HI-Z & 50 Ohm inputs <10mV to 50MHz, 25 mV @ 150 MHz <50mV to 600MHz
- Auto Decimal Point • Aluminum Case • Socketed IC's
- Three position attenuator: X1, X10, X100 (avoids false counting)

#OPTO-8000.1A Factory Assembled $329.95
#OPTO-8000.1AK Kit Form $279.95
#NI-CAD-80 Ni-CAD Battery Pack $ 19.95

OPTO-7000 10 Hz to 600 MHz MINIATURE COUNTER
- XTAL (TCXO) Time Base ±.08PPM/°C
- Aluminum Case • HI-Z & 50 Ohm inputs
- 1 Sec. & 1/10 Sec. Gate times • Auto Dec. Pt.
- Built-in Prescaler and Preamps Standard

#OPTO-7000 Factory Assembled • 1 Year-Guar $139.95
#OPTO-7000K Kit Form $ 99.95
#AC-70 AC Power Pack $ 4.95
#NI-CAD-70 Ni-CAD Battery Pack $ 19.95
#TCXO-70 Precision TCXO Time Base <0.1PPM, 17-40°C $79.95

ACCESSORIES

PROBES:
#P-100 50 Ohm, 1X $13.95
#P-101 Lo-Pass $ 16.95
#P-102 HI-Z, 2X $ 16.95
#AP-8015 UHF Counter Preamp 20 MHz to 600 MHz 15-50 DB Gain (Not Shown) $49.95/Kit $39.95

#D-450 Antenna
Rubber Duck RF Pick-up 450 MHz $12.50
#D-146 Same as above 146.5MHz $12.50
#RA-BNC Right-Angle BNC Adapter for above Antenna $2.95

ORDER FACTORY DIRECT — PHONE OR MAIL

TERMS: Orders to U.S. and Canada, add 5% to maximum of $10.00 per order for shipping, handling and insurance. To all other countries, add 10% of total order. Florida residents add 4% state tax. C.O.D. fee: $1.00. Personal checks must clear before merchandise is shipped.

OPTOELECTRONICS, INC.
5821 NE 14 Avenue
Ft. Lauderdale, FL 33334
Phones: (305) 771-2050 771-2051

Phone orders accepted
APPLE II SERIAL I/O INTERFACE *
Part no. 2
Baud rate is continuously adjustable from 0 to 30,000 plugs into any peripheral connector. Low current drain. RS-232 input and output. On-board switch selectable 5 to 8 data bits. 1 or 2 stop bits and parity or no parity either odd or even. jumper selectable address. SOFTWARE: Input and Output routine from monitor or BASIC to teletype or other serial printer. Program for using an Apple II for a video or an intelligent terminal. Also can output in correspondence code to interface with some seletrics. Board only $15.00 with parts $42.00 assembled and tested $62.00.

MODEM *
Part no. 109
* Type 103 * Full or half duplex. Works up to 300 baud. Originate or Answer. No coils, only low cost components. TTL input and output serial. Connects to speaker and crystal mic. directly to board. Uses XR FSK demodulator. Requires +5 volts. Board $7.60. with parts $27.50.

DC POWER SUPPLY *
Part no. 6085
Board supplies a regulated +5 volts at 3 amps. -12, -12, and -5 volts at 1 amp. Power required is @ 8 volts AC at 3 amps., and 24 volts AC C.T. at 1.5 amps. Board only $12.50, with parts excluding transformers $42.50.

TAPE INTERFACE *
Part no. 111
Playing record Kansas City Standard tape. Converts a low cost tape recorder to a digital recorder. Works up to 1200 baud. Digital in and out are TTL serial. Output of board connects to mic. in out recorder. Earphone of recorder connects to input on board. No coils. Requires +5 volts. power drain. Board $7.60. with parts $27.50.

T.V. TYPEWRITER *
Part no. 106
Stand-alone TVT. 32 char./line, 16 lines. modifications for 84 char./line included. Parallel ASCII (TTL) input. Video output. 1K on board memory. Output for computer controlled cursor. Auto scroll. Non-destructive cursor. Cursor inputs up, down, left, right, home. EOL, EOB. Scroll up, down. Requires +5 volts at 1.5 amps. and -12 volts at 30 mA. All 7400 TTL chips. Char. gen. 2513. Upper case only. Board only $99.00. with parts $145.00.

8K STATIC RAM *
Part no. 300

RF MODULATOR *
Part no. 107
Converts video to AM modulated RF. Channels 2 or 3. So powerful almost no tuning is required. On board regulated power supply makes this extremely stable. Rated very highly in Doctor Dobbs Journal. Recommended by Apple. Power required is 12 volts AC C.T., or +5 volts DC. Board $7.60. with parts $13.50.

TIDMA *
Part no. 112
* Tape Interface Direct Memory Access. Record and play programs without bootstrap loader. (no prom) has FSK encoder/decoder for direct connections to low cost recorder at 1200 baud rate, and direct connections for inputs and outputs to a digital recorder at any baud rate. S-100 bus compatible. Board only $35.00, with parts $110.00.

UART & BAUD RATE GENERATOR *
Part no. 101
Converts serial to parallel and parallel to serial. Low cost on board baud rate generator. Baud rates: 110, 150, 300, 600, 1200, and 2400. Low power drain. Requires +5 volts and -12 volts required. TTL compatible. All characters contain a start bit. 5 to 8 data bits 1 or 2 stop bits, and either odd or even parity. All connections go to a 44 pin gold plated edge connector. Board only $12.00. with parts $35.00 with connector $3.00.

CIRCLE 71 ON FREE INFORMATION CARD

ELECTRONIC SYSTEMS

To Order:

Voluntary part number and description. For parts kits add "A" to part number. In USA. shipping paid for orders accompanied by check, money order, or Master Charge. Bank America, or VISA number, expiration date and signature. Shipping charges added to C.O.D. orders. California residents add 6.5% for tax. Outside USA add 10% for air mail postage, no C.O.D.'s. Checks and money orders must be payable in US dollars. Parts kits include sockets for all ICs components and circuit board. Documentation is included with all products. All items are in stock and will be shipped the day order is received via first class mail. Prices are in US dollars. No open accounts. To eliminate tariff in Canada boxes are marked "Computer Parts" Dealer inquiries invited.

* Circuits designed by John Bell
STATIC RAM BOARDS

<table>
<thead>
<tr>
<th>Model</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-100 32K (uses 2114)</td>
<td>450ns</td>
<td>$339.95</td>
</tr>
<tr>
<td>250ns</td>
<td>$339.95</td>
<td></td>
</tr>
<tr>
<td>250ns/1558.4 MHz</td>
<td>$499.95</td>
<td></td>
</tr>
<tr>
<td>Bare Board with parts less $110.00</td>
<td>$329.95</td>
<td></td>
</tr>
</tbody>
</table>

ZX/Z-80A/8080 CPU BOARD

- On board 2708 included (450ns)
- Power on jacks: complete socketed
- Assembled and tested: $119.00
- Kit: $34.95
- Bare PC Board: $34.95
- 2MHz Speed Add $5.00
- 8080A Kit: $99.95
- 8080A Assembled: $149.95

ACOUSTIC COUPLERS & MODEMS

We now stock complete ATX line.

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRS-203</td>
<td>$109.95</td>
</tr>
<tr>
<td>8150 7" x 10"</td>
<td>$109.95</td>
</tr>
<tr>
<td>Digitizer, black</td>
<td>$199.95</td>
</tr>
<tr>
<td>High Resolution</td>
<td>$399.95</td>
</tr>
<tr>
<td>2.4/v sec Pict speed</td>
<td>$999.95</td>
</tr>
</tbody>
</table>

SPECIAL KEYBOARD BUY WHILE THEY LAST

- "Clare Pender 63 Key ASCII"
- w/26 Pin 5 34 Pin Output conn.
- $109.95

WAVEFORM GENERATORS

- EPROM40/50 40/50
- EPROM25/30 34/34
- EPROM25/10 25/25
- EPROM16 16/16
- EPROM 4/4

CHARGE COUPLED DEVICES

- 1151 16K 8-bit EPROM
- 2115 16K 8-bit EPROM
- 2125 16K 8-bit EPROM
- 2125 16K 8-bit EPROM

DISPLAYS/OPTOS

- 4020 80x20
- 4024 80x24
- 4028 80x28
- 4030 80x30
- 4032 80x32
- 4034 80x34
- 4036 80x36
- 4038 80x38

MONTHLY SPECIALS

- 22 Pin 277 985.00
- 277 985.00
- 277 985.00
- 277 985.00
- 277 985.00
- 277 985.00
- 277 985.00
- 277 985.00

DISCOUNT COMPUTER

- 1151 16K 8-bit EPROM
- 2115 16K 8-bit EPROM
- 2125 16K 8-bit EPROM

THE FIRST TO OFFER PRIME PRODUCTS TO THE HOBBYIST AT FAIR PRICES NOW LOWERS PRICES EVEN FURTHER!

1. **Proven Quality**
 - Factory tested products only, no retests or returns guaranteed. We stand behind our products.

2. **Same Day Shipment**
 - All prepaid orders with cashiers check, money order or charge card will be shipped same day as received.
Color T.V. Pattern Generator
MODEL WR-515A
REG. $195.00 OUR PRICE $169.15

Scope Dual-Trace
MODEL WM-541A
REG. $120.00 OUR PRICE $91.80

Audio Sine Squ.-Wave Generator
MODEL WA-504B/44D
REG. $22.00 OUR PRICE $19.95

Ruggedized Color Bar Generator
MODEL WR-538A
REG. $45.00 OUR PRICE $45.00

15 Mhz. Trigger Sweep Scope
MODEL WO-527A
REG. $55.00 OUR PRICE $45.00

Quick Tracer Transistor/Diode
MODEL WC-528B
REG. $30.00 OUR PRICE $19.50

Ungar Hot Gun
$46.50

Weller "Xcelite"
$249.95

Service Master Attache Style Tool Kit
MODEL BS5
$42.95

Magnetron LAMP
MODEL MG-10A
$249.95

Auto Stereo 40 Watt Power Booster
POW-40 REG. $39.50 OUR PRICE $24.95

VOM Multimeters
20K ohm/v $19.95
1K ohm/v $9.95

Transistor Tester
MODEL 100
$22.00

Before you buy, check our prices...
Call TOLL FREE (800) 645-9518

FORDHAM YOUR ONE STOP DISCOUNT CENTER
Save on new TVS, VCR's, and home video equipment.

Code-a-Phone Telephone Answering Devices
Model 1500
$199.95

MODEL 1500
$249.95

3 Stage Digital Portable DMM
MODEL 725
$149.95

15 Mhz Mini Oscilloscope
MODEL TG-55
$369.95

20 MHz Dual Trace Oscilloscope
MODEL L010
$654.50

In Dash AM/FM 8 Track Stereo
 Model K105
$56.25

AM/FM Cassette Stereo
MODEL 603
$57.50

VIZ TEST INSTRUMENTS

NOW AVAILABLE

MAKE A REASONABLE OFFER

915 5TH AVENUE
BROOKLYN, N.Y. 11215
(212) 637-0270

CODE-16 PHONE

Telephone Answering Devices
Wireremote Command

100 Mhz 8-Digit Counter $119.00

10 MHz 10 Digit Counter
$359.00

500 MHz Prescaler $52.95

Digital Capacitance Meter
MODEL 420
$271.95

Wahl New Iso-Tip "Quick Charge"
4 6 x 2.75" Speaker
$27.95

3 Way $14.95

15 Mhz 3" Dual Portable Scope
MODEL 429B
$663.00

Digital Clock Generator
Model 4900
$199.95

Weller Controlled Output Soldering Station
FREE 1979 Catalog

FORDHAM

FREE SUPPLY CO. N.Y.
385 Conklin St.
Farmington, N. Y. 11775
C.O.D. accepted

For all regional locations call our toll free number.

CIRCLE 42 ON FREE INFORMATION CARD
QUEST Cosmac Super Elf Computer $106.95

Compare features before you decide to buy any other computer. There is no other computer on the market today that has all the desirable benefits of the Super Elf for so little money. The Super Elf is a small single board computer that does many big things. It is an excellent computer for training and for learning and programming with its machine language and yet it is easily expanded with addition modules. Thumb assorted parts, ASCII Keywords, Video card generator, etc.

The Super Elf includes a ROM monitor for program loading, editing, execution with single step. There are two additional memory select, monitor select and single step. Large, on board displays provide output and optional high and low address. In addition to the standard connector for PC cards and a 50 pin connector for the Quest Super Expansion Board. Power supply and sockets for all ICs are included in the price plus a detailed 90 page instruction manual.

Mainboards and universes are using the Super Elf as a course of study. OEM's use it for training and research and development.

Remember, other computers only offer Super Elf features at additional cost or not at all. Compare before you buy. Super Elf Kit $106.95. High address option $8.95. Low address option $9.95. Custom Hardware Cabinets with dinged and smacked finish $24.95. NiCad Battery Backup Kit #4.95. All kits and options also come completely assembled and tested.

 quesdata. a 12 page monthly software publication for 802 computers is available by subscription for $12.00 per year. New 100 page software manual Vols 1, 2, $4.95.

Tiny Basic for ANY 1802 System

Cassette $10.00. On ROM Monitor $38.00. Super Elf monitors, 30% off. Object code listing or pages with manual $5.95.

Original Elf Kit Board $14.95.

Super Expansion Board with CASE

This is truly an astoundingly valuable board! This board has been designed to allow you to decide how many you want. The Super Elf Expansion board comes with 4K of low power RAM fully addressable anywhere in the built-in memory. Has a write-once never erase cassette interface. Provision has been made for all other options on the same board. Includes all of the Peripheral slots in the hardware cabinet alongside the Super Elf. The board includes slots for use of EPROMs 2708, 2716, 27146 or TI 2716 and is fully socketed ($12.00 value) EPROM can be used for the monitor and Tiny Basic or any peripheral program you choose.

A $20 Super ROM Monitor $19.95 is available as an on board option in 2708 EPROM which has been designed to work with all of the program loaders or editor and error checking mull file cassette read and write programs. (relocatable cassette file) another exclusive from Quest. It includes regulator save and readsout block, move capability and video graphics drive razing the circuit. The Super Monitor is written with software allowing users to take advantage of monitor functions.

Auto Clock Kit $15.95

RCA Cosmac VIP Kit $229.00

Video computer with games and graphics. Fully assembled. test $249.00

Not a Cheap Clock Kit $14.95

Includes everything except case. 2-PC boards. 6-50 LED Displays. 514 clock chip. transformer, all components and full instructions. Green and orange displays also available. Same kit with 80 display. Red only. $21.95. Case $1.15.

60 Hz Crystal Time Base Kit $4.40

Complete crystal clock assembly including crystal time base. Outstanding accuracy. Kit includes: PCB board, IC, crystal, resistors, capacitors and trimmer.

TERMS: $5.00 min. order. U.S. Funds. California residents add 6% tax. BankAmericard and Master Charge accepted. Shipping charges will be added on charge cards.

Digital Temperature Meter Kit

$17.95

include 1/2 v.d. meter and 1/4 power meter. 1/8" LED display with AM-FM indicator. Alarm/timeout feature includes beeper. Complete with all parts, power supply instructions, less case.

Sinclair 3" Digit Multimeter

Basic option Term and 1/8" resolution Resistance to 20 meg. 1% accuracy. Small, portable, completely assembled in case. 1 yr. guarantee. Next value next! $38.95

Video Modulator Kit $8.95

Convert your TV set into a high quality monitor without affecting normal usage. Complete kit with all instructions.

2.5 MHz Frequency Counter Kit

Convert kit less case $37.50

30 MHz Frequency Counter Kit

Complete kit with more case $75.00

1976 IC Update Master Manual

INTINTEGRATED CIRCUITS

Same day shipment. First line parts only. Factory tested.

CIRCLE 45 ON FREE INFORMATION CARD
ADVERTISING INDEX

Radio-electronics does not assume any responsibility for errors that may appear in the index below.

Free Information Number Page

33 Active Electronics...101
34 - Advance Electronics...26, 79 & 83
16 Advanced Computer Products...118
19 A M C Sales...98
19 American Antenna....Cov. 4
63 Antenna Incorporated...22 & 23
61 A P Products, Inc....81
11 A V R Electronics...114
56 Karrel Barta...100
56 B & K Precision Dynaco...86
56 Bulletin Electronics...100
51 Burdick Security Co...98
51 C F R Associates...102
51 Chaney Electronics...122
24 CIE-Cleveland Institute of Electronics...18-21
25 Command Productions...106
25 Continental Specialties...Cov. 3
41 The Cooper Group Electronics...Division 7
41 C R E I - Div. of McGraw Hill...Continuing Ed...70-73
41 - Uage Scientific Instruments...98
64 Davis Electronics...87
64 Delta Electronics...106
70 Diamondback Electronics...108
59 Digi - Key...119
59 DI-C-Digital Research...Corporation...102
26 E I C O...96
35 Electronics...85
23 Electronics Book Club (Tab Books)...25
23 Electronic Development Lab...102
40 Electronic Supermarket...100
71 Electronic Systems...117
71 - Electro - Voice, Inc...82
29 E M C - Electronics Measurements...95
29 Enterprise Development...96
46, 47 & 72 Pickle...32 & 75
42 Fordham Radio Supply...120
13 Formula International....104 & 105
13 Fowler Alarms...98
13 Fuji - Svea...99
13 Gavin Instruments...95
13 G. E. - General Electric...27
13 Giffer Shortwave...106
28 Godbout Electronics...112
28 Golden Enterprises...98
28 Gould...Cov. 2
17 Grantham College of Engineering...92
36 Graymark...115
100 Heath...86-91
69 Hickok Electrical Instruments...17
44 Hobby World...114
48 I E Intergrated...114
48 Indiana Home Study...102
48 Information Unlimited...97
60 International Crystal Mfg. Co...87
24 International Instrumentation...108
9, 10 James Electronics...35, 110 & 111
4 Jensen Tools & Alloys...92
3 Kester Solder...84
3 Lakeside Industries...100
52 McKay Dymek...14
32 Meshman...114
32 Milico Industries...98
27 M T T-E Mobile Training Institute...95

National Camera Supply...94
National Radio Inst. (NRI) Div. of...McGraw Hill...8-11
National Technical Schools...28-31
Netronics...93
43 New-Tone Electronics...International...108
15 Ohio Scientific...1
100 Olson...98
100 Optoelctions...116
100 P A I A...93
100 Panavise...96
100 Platt Luggage...16
100 Polysty...112
100 Pomona...37
100 President Electronics...Cov. 2
100 P T E Electronics...112
100 Quest...121
100 Quintronux...106
100 Radio Shack...103
100 Ramsey Electronics...107
100 R C A...76 & 77
100 Rye Industries...16
100 Sabtronics...15
100 Schober Organ...75
100 Share Brothers...33
100 Soar...85
100 Solid State Sales...112
100 Southwest Technical Products...94
100 Speakerlab, Inc...97
100 Starshine...13
100 Tasco...98
100 Trinco International...109
100 Tri-Star...102
100 Tri-Trk...97
100 Trimball...97
100 Vector...24
100 Viz Mfg...34
100 Wersi Electronics...122
100 Zemco...5

MOVING?

Don't miss a single copy of Radio-Electronics. Give us:

Six weeks' notice

Your old address and zip code

Your new address and zip code

name (please print)

address

city state

Mail to: Radio-Electronics

SUBSCRIPTION DEPT., P.O. BOX 2520,
BOULDER, COLO. 80322

ATTACH LABEL HERE
How to be in 16 places at once. Logically.

Meet CSC's Logic Monitor LM-1. The fastest, most efficient way to check digital DIP IC's. A self-powered, precision instrument that automatically senses and displays the static and dynamic states of every node on any DIP up to 16 pins at once. Instantly. Accurately. And safely. Speeds design and testing on all types of DTL, TTL, HTL and CMOS logic.

Use LM-1 to trace signals through counters, shift registers, gating networks, flip-flops, decoders... any type of circuit or system, even with mixed logic families. Cutting minutes—often hours—from design, development, debugging, production testing, QC, field service and repair.

Nothing could be simpler to use. Just clip it over any DIP up to 16 pins, and the LM-1 does the rest. Precision plastic guides and unique flexible web insure positive connections between non-corrosive nickel-silver contacts and IC leads. Each contact connects to a single "bit" detector with high-intensity LED readout, activated when the applied voltage level exceeds a fixed 2V threshold. Logic "1" (high voltage) turns LED on; Logic "0" (low voltage or open circuit) keeps LED off. A power-seeking gate network automatically locates supply leads and feeds them to the Logic Monitor's internal circuitry.

NEED MORE INFORMATION? CALL 203-624-3103 to order, or for the name of your local distributor. Prices slightly higher outside USA.

CIRCLE 25 ON FREE INFORMATION CARD
New, K40 Magnamount:
Grips like a grapple, actually improves transmission.

We double guarantee it.*

Exclusive Octopole Construction.

That's eight magnets set in eight different directions to give you a magnetic seal so complete and powerful, your antenna would stay up there if you could squeeze between two semis passing each other at 180 miles an hour. That's magnetic octopower.

Exclusive K40 Flux Harmonics for Greater Transmission.
The magnetic radiation pattern was designed to match the K40 antenna radiation for greater distance than the standard K40. See our guarantee.

The facts: Physics and Physical.
1. Magnamount is a bigger, stronger magnet—in fact it’s 8 bigger, stronger, magnets.
2. It doesn’t just hold the K40 antenna, it helps it transmit further.
3. Remember the law of reciprocity. The antenna that transmits better, receives better.
4. It provides a flatter, lower SWR because the Magnamount is capacitance grounded.
5. It puts your 5/8 wave K40 antenna securely in place in the most advantageous place to work against a ground plane—high and free from obstruction. That’s square in the middle, right up on top.

$15.95 buys it.

(SUGGESTED RETAIL)

K40 Magnamount.
American Antenna 1945 South Street Elgin, Illinois 60120
This professional CB equipment available only through Registered K40 Dealers!

CIRCLE 19 ON FREE INFORMATION CARD