PROJECTS, COMPUTERS, HI-FI, CB, TV

$1.00 SEPT. 1977

Radio-Electronics

THE MAGAZINE FOR NEW IDEAS IN ELECTRONICS

CORE MEMORIES
HOW THEY WORK
YOU CAN USE THEM

BURGLAR ALARM
KEEP THEM OUT
BUILD IT NOW

FREQ COUNTER
30-MHz, 5 DIGITS
FOR CAR OR HOME

DIGITAL THERMOMETER
2-DIGIT DISPLAY EASY TO BUILD

CB TESTING
WHAT TO TEST
HOW TO MEASURE

PLUS
BARR'S SERVICE CLINIC ★ COMPUTER CORNER ★
STATE-OF-SOLID-STATE ★
CLOCK ★ HI-FI LAB TEST REPORTS ★
Fill your needs from these 3 winning lines from Mallory.

Each of these Mallory lines of components is bubble-packed, easily identified. Almost all feature basic specs and/or instructions on the back of the cards.

Mallory EPC components consist of the most popular products for technicians, hobbyists and audio enthusiasts.

Mallory PTC semiconductors are of the highest quality. They fill a wide range of consumer and industrial applications. A convenient cross-referencing catalog permits fast selection.

Mallory crimp-type solderless terminals meet virtually all popular applications.

For all the facts and pricing, see your Mallory distributor. Or write Mallory Distributor Products Company, a division of P. R. Mallory & Co. Inc., Box 1284, Indianapolis, Indiana 46206. (317) 856-3731.

Mallory crimp type solderless terminals.

Popular components in Mallory Electronic Parts Center (EPC).

Mallory PTC semiconductors.
Design of Digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes — each 11-1/2" x 8-1/4" are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers.

The contents of Design of Digital Systems include:

Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.

Book 2 OR and AND functions; logic gates; NOT, exclusive-OR, NAND, NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic.

Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.

Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive-OR feedback counters; random access memories (RAMs) and read only memories (ROMs).

Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control program structure.

Book 6 Central processing unit (CPU); memory organization; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.

Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. It consists of four volumes — each 11-1/2" x 8-1/4" — and serves as an introduction to the subject of digital electronics. Everyone can learn from it — designer, executive, scientist, student, engineer.

Contents include: Binary, octal and decimal number systems; conversion between number systems; AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables; De Morgans Laws; design of logic circuits using NOR gates; R-S and J-K flip flops; binary counters, shift registers and half adders.

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your automobile speed and gas consumption; you could be calling people by entering their name into a telephone which would automatically look up their number and dial it for you.

These courses were written by experts in electronics and learning systems so that you can teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You write at your own pace and must respond by answering questions on each new piece of information before proceeding.

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.

The six volumes of Design of Digital Systems cost only: $19.88

And the four volumes of Digital Computer Logic and Electronics cost only: $14.88

But if you buy both courses, the total cost is only: $29.90

a saving of over: $5.00

SEVEN-DAY MONEY-BACK GUARANTEE: If you are not satisfied with your Cambridge course, return it within 7 days for a full refund.

To order your books, complete the order form below and send it together with your check or money order to GFN Industries, Inc., 6 Commercial Street, Hicksville, N.Y. 11801.

TO: GFN INDUSTRIES, INC.
6 COMMERCIAL STREET, HICKSVILLE, NY 11801

Please send me:

Sets of Design of Digital Systems	$19.88
Sets of Digital Computer Logic & Electronics	$14.88
Sets of both courses	$29.90
Sales tax (N.Y. residents)	
Shipping and handling $2.50 per set	

Enclosed is check/mo (payable to GFN Industries, Inc.)

Total $______

Name ____________________________

Address ____________________________

City/State/Zip ____________________________

Prices include overseas surface mail postage.

SEPT. 1977

RE99
NO ONE PUTS A TURNTABLE ON TOP OF A SPEAKER, RIGHT?

We realize no sane person ever puts their turntable even close to their speakers, but we did it to prove a point. Which is, it’s now possible to build turntables that effectively deal with that unbearable “howl” known as mechanical and acoustic feedback.

The first of these new turntables are the Kenwood KD-3055 and KD-2055. How did we do it?

With a special base made of an anti-resonance concrete so dense it absorbs vibrations from the speakers and the floor before they get to our new S-shaped tone arm.

To prove it, we did the unheard of. We put the turntable right on the speaker box. The worst place for vibrations. Then we turned up the music.

To make a believer out of you, ask your Kenwood dealer for a demonstration comparing the Kenwoods with any other turntable in the store.

And once you’ve made the comparison based on performance, make a comparison based on price.

The semi-automatic KD-2055 is only $150.* The fully-automatic KD-3055, only $190.*

And that’s amazing, right?

KENWOOD

For the Kenwood dealer nearest you, see your Yellow Pages, or write Kenwood, 15777 S. Broadway, Gardena, CA 90248

* Nationally advertised value. Actual prices are established by Kenwood dealers.
Radio-Electronics®
THE MAGAZINE FOR NEW IDEAS IN ELECTRONICS
Electronics publishers since 1908

SEPTEMBER 1977 Vol. 48 No. 9

ON THE COVER
Electronic thermometer sits in a bed of ice cubes while accurately presenting the internal temperature of one cube—2-digit display measure 0 to 99°F. See page 33 and build your own.

BUILD ONE OF THESE
33 2-Digit Electronic Thermometer
Covers a 100°F range; costs about $50. by Walter Sikonowicz

36 Electronic Security System
Protect yourself and your property with this versatile system. by C.D. Wadsworth

40 10-Function Digital Clock
Part II: Construction details for a clock that tells time and date; has an alarm, acts as a countdown timer and more. by Jeffrey G. Mazur

43 CB Frequency Counter
For base or mobile installations. by George Santi

CB RADIO
51 Testing CB Transceivers
24 tests that really tell you how a CB radio performs. by Robert Constantine

COMPUTERS
54 Core Memories
Magnetic cores are available surplus. Here’s a look at what they are and how they work. by Martin A. Sala

78 Computer Corner
Moving data inside the machine. by David Larsen, Peter Rony and Jon Titus

HIGH FIDELITY STEREO
59 Pulse-Width Modulation for Hi-Fi
Greater efficiency, smaller size and less weight are the advantages. Now see how these amplifiers work. by Len Feldman

62 R-E Lab Tests Kenwood KA-8300
Power amplifier earns an “Excellent.” by Len Feldman

68 R-E Lab Tests Epicure PR-4
Really fine preamp earns its “Excellent.” by Len Feldman

TEST EQUIPMENT
56 All About RF Signal Generators
Part II: Types available, how they work, specifications, features and applications. by Charles Gilmore

TELEVISION
81 Service Clinic
Attacking the intermittent. by Jack Darr

82 Service Questions
R-E’s Service Editor solves reader problems

84 Step-By-Step Troubleshooting
Antennas and TV reception. by Stan Prantiss

GENERAL ELECTRONICS
4 Looking Ahead
Preview tomorrow; today! by David Lachenbruch

70 State Of Solid State
Add vibrato, an SCR array, and an ultra-stable oscillator. by Karl Savon

72 Hobby Corner
Working with breadboards. by Earl Savage

80 Today’s Semiconductors
News of new solid-state devices. by Karl Savon

EQUIPMENT REPORTS
22 TeleMatic KC-702 CrysMate Crystal Tester

24 Clarothane Cleaning Solvent

24 OK Machine WSU-30 Wire-Wrap Tool

26 Polaris TPS-225 DC Power Supply

102 JFD FM500 Amplified FM Antenna

104 VIZ 534A Voltohmysc V

DEPARTMENTS
108 Advertising Index
107 New Books

12 Advertising Sales Offices
8 New & Timely

14 Letters
94 New Products

105 Market Center
99 Next Month

As a service to readers, Radio-Electronics publishes available plans or information relating to newsworthy products, techniques and scientific and technological developments. Because of possible variances in the quality and condition of materials and workmanship used by readers, Radio-Electronics disclaims any responsibility for the sale and proper functioning of reader-built projects based upon or from plans or information published in this magazine.
Looking Ahead

Picture IC? It's only a matter of time and effort—not technological breakthrough—before a thin-film transistorized color TV panel will be able to do the work of today's bulky picture tube. That's the opinion of Dr. T.P. Brody, head of a research team on electroluminescent displays at Westinghouse Research Laboratories in Pittsburgh. Dr. Brody's team already has demonstrated a thin-film panel 1/2-inch thick that can display a monochrome picture in real time, with no visible smear and with grey-scale rendition.

The panel was originally designed for alphanumeric display, but its grey-scale capability convinced the team to explore its TV possibilities. As Westinghouse describes it, the current panel is actually a giant integrated circuit measuring six inches square. It has 12,000 glowing picture elements in a 110×110-element format. These elements themselves are phosphors dots that light up when electricity passes through them. The matrix of dots is produced by vacuum-depositing thousands of tiny interlocked thin-film circuits onto a glass substrate, coating the circuits with a phosphor film and sealing the "sandwich" with a glass cover-plate. Each element consists of two thin-film transistors, a storage capacitor and a phosphor overlay. The transistorized matrix permits separate elements to be energized without activating others in the same row or column.

Although the current panel has low resolution, the research team is now working on a 262-line display designed especially for television experimentation. Remaining work, in addition to improving resolution, will be developing thin-film driver circuitry, developing color capability and removing blemishes. Color phosphors are already available, but Dr. Brody says development of a color panel will take "several more years of concentrated effort."

Star is born: It looks like the biggest new-product launch since color TV. Fifteen entries are at the starting gate for the all-industry debut of the home video recorder this fall. Although Sony has been offering its Betamax for about two years, and Quasar has been shipping its Great Time Machine in quantity for six months, the big push is about to start, with 15 different brand names on three different types of Japanese videocassette recorders.

The latest to announce are Magnavox and Sylvania, both choosing the Matsushita-made VHS, which gets up to four hours recording onto a single cassette of half-inch tape. This is the same system adopted by RCA and Panasonic, and has partial compatibility with versions to be offered by JVC, Hitachi, MGA and Sharp. The latter machines provide two-hour capability on the same cassette, while the former have a 2/4-hour switch for full-speed or half-speed recording. Betamax-compatible VTRs, all providing 2-hour recording on a single cassette, will be offered by Sony, Zenith, Sanyo, Toshiba, Pioneer and Aiwa. Quasar will continue to offer its Great Time Machine, which is not compatible with the other two standards.

Sales are expected to be limited by supply for the rest of this year and at least a part of next. RCA estimates that the American public will buy about 250,000 units of all makes in 1977 and 750,000 next year. The going price is expected to remain at the $1000-and-up level until the shortage is over and competition erodes pricing.

Accessories: The videocassette recorder is a television accessory that costs more than the TV set. But the VTR is going to have its own accessories that will cost more than the recorder. JVC has already introduced what it calls the first home color TV camera. As a home product, it's priced at a rather steep $1500 and up. That's a bargain as color cameras go, the lowest-priced unit ever introduced. It uses a single vidicon tube, has a built-in microphone, and the $1500 version has an optical viewfinder and 25-mm lens, along with a control unit, that provides automatic color correction for a variety of light conditions. Higher-priced versions will be available with electronic viewfinders and zoom lenses. But that's not all—even the accessory has an accessory. JVC will offer a "telecine attachment," which converts the camera into a film or slide scanner to permit users to transfer their home movies or slides onto videocassettes. It's a prism arrangement that uses any projector and the JVC camera to make a film scanner; it's expected to cost around $100.

And another accessory: Sony has confirmed our report of last month that it will offer a black box to convert its Betamax video recorder into—of all things—an audio recorder. But it undoubtedly will be the best audio recorder you ever heard, using pulse code modulation (PCM) with practically no distortion, zero crosstalk, zero wow and flutter, and virtually uniform audio frequency response. It's scheduled to be available here in about a year at approximately $1300—about the same price as Betamax itself.

Cassette games: Most programmable video games announced to date have used ROM's for programming. Now there's a discernible trend toward a switch to audio cassettes. Cassette-programmed video game/computer systems already have been introduced by Microelectronics Corp. and a few others. General Instrument and EMI of England have announced the most comprehensive cassette-program plans to date. GI is making the electronics, EMI is doing the programming. Cassettes have many advantages in home computer/game programming, according to GI. A standard C-60 cassette can store 1.5-million bits on one side, or 3-million bits if both sides are used—compared with about 160,000 for a ROM. To develop a programmed ROM requires about three months and a run of perhaps 10,000 or more is needed to make a profit. A cassette can be programmed in three to five days and runs can be as short as 300 to 500.

A cassette program can provide audio instruction—an important factor in such computerized courses as.
MODULE REPAIRS

TSC has been repairing private brand TV modules for over 3 years.

Expanded facilities now include modules for:
- RCA
- GE
- ZENITH
- W. T. GRANT
- J. C. PENNEY
- WESTERN AUTO
- GAMBLER

as well as Zenith IF subchassis.

For free Price List and complete information write or phone:
TSC HEADQUARTERS, BLOOMINGTON, IND.

or any of the TSC locations listed below.

NOW AVAILABLE—TUNER SERVICE PARTS CATALOG
OF ALL SARKES TARZAN VHF AND UHF TUNERS, INCLUDING EXPLODED VIEW DRAWINGS, OVER 200 PAGES. ORDER YOUR COPY TODAY.
SEND $2.50 WITH ORDER TO BLOOMINGTON HEAD OFFICE

SAME DAY SERVICE — ONLY ORIGINAL FACTORY PARTS USED

HEADQUARTERS BLOOMINGTON, INDIANA 47401
ARKANSAS LITTLE ROCK, ARKANSAS 72204
ALABAMA BIRMINGHAM, ALABAMA 35212
CALIFORNIA NORTH HOLLYWOOD, CA 91606
MESA, ARIZONA 85202
FLORIDA ORLANDO, FLORIDA 32806
GEORGIA ATLANTA, GEORGIA 30319
ILLINOIS URBANA, ILLINOIS 61801
MISSOURI ST. LOUIS, MISSOURI 63132
NEVADA LAS VEGAS, NEVADA 89106
NEW JERSEY BURLINGTON, NEW JERSEY 08016
NEW YORK BROOKLYN, NEW YORK 11201
OHIO CLEVELAND, OHIO 44115
OREGON PORTLAND, OREGON 97210
PENNSYLVANIA HARRISBURG, PENNSYLVANIA 17110
TENNESSEE WESLEY, TENNESSEE 38011
TEXAS DALLAS, TEXAS 75231
CANADA 22 LAURENT, QUEBEC H4N-2L7

Flash Flash Flash Flash Flash

TSC

WATCH US GROW

PROVIDES YOU WITH A COMPLETE SERVICE FOR ALL YOUR TELEVISION TUNER REQUIREMENTS.

TUNER REPAIRS

VHF OR UHF ANY TYPE ... (U.S.A.) $10.95
UHF/VHF COMBINATION ... (U.S.A.) $17.95

MAJOR PARTS AND SHIPPING CHARGED AT COST

- Exact Replacement Tuners are available at a cost of $14.95 and up. .. (U.S.A. Only)
- Send in your original tuner for comparison purposes to any of the Centers listed below.

EXACT REPLACEMENT

- UNIVERSAL REPLACEMENT TUNER $13.95......... (U.S.A. Only)
- This price buys you a complete new tuner built specifically for this purpose.
- All shafts have a maximum length of 10½" which can be cut to 1½".
- Specify heater type parallel and series 450 mA or 600 mA.

UNIVERSAL REPLACEMENT

- Exact Replacement Tuners are available at a cost of $14.95 and up. .. (U.S.A. Only)
- Send in your original tuner for comparison purposes to any of the Centers listed below.

UNIVERSAL REPLACEMENT

If you want to branch out into the TV Tuner Repair Business write to the Bloomington Headquarters about a franchise.

CIRCLE 14 ON FREE INFORMATION CARD
The positive aspects of negative-ion generators

Ever since 1932, when an RCA scientist accidentally discovered that an electrostatic generator in his laboratory was releasing positive and negative ions and causing dramatic mood swings in his fellow workers, the topic has intrigued scientists. Studies here and abroad showed that atmospheric ions, those billions of electrically charged particles in the air all around us, had definite effects not only on personal well-being but also on an individual's capacity to recover from illness and disease.

For example, it has been noted that sometimes before a storm many people complain of fatigue and other symptoms; cattle also grow restless. What happens is that the air retains an excess of positive ions, causing distress and discomfort to both humans and animals. Observations made at the University of California at Berkeley and at the Hebrew University in Israel have shown that before a storm many "weather sensitive" people display moderately acute respiratory problems, migraines, nausea and vomiting. Negative-ion generation was able to reduce these symptoms. Burn victims, post-operative patients and persons suffering from depression have also been successfully treated by means of a negative-ion generator.

This generator is an electronic device housed in a small metal box. With a flip of a switch, a fan begins to turn releasing a flow of negative ions. The air begins to smell sweet and the patient feels better. Naturally enough after this discovery, negative-ion generators proliferated on the commercial market. Because fantastic claims were made for their therapeutic benefits, they were completely discredited. However, in the light of continuing laboratory experiments, negative-ion generators have now not only become "respectable," they have opened up a vista of unlimited possibilities.

While there is still much to be learned about atmospheric ions, it has been predicted that in a few years we will be able to control the ion level indoors as we regulate temperature and humidity, thereby helping us all to lead happier, healthier lives.

New mobile phone network permits more subscribers

The Illinois Bell Telephone Company of Chicago is presently testing a unique mobile telephone network that can service a greater number of subscribers. They have devised a system in which metropolitan areas are divided into circular cells about 1 1/2 miles wide. Each cell is served by a radio telephone station, with power supplied from a single transmitter in the Chicago loop area. The stations, in turn, are controlled by a central computer.

The way it works is this: As the mobile phone user moves from area to area, he is "handed off" from one station to another. The quality and strength of his signal is measured at five-second intervals to determine whether to maintain the connection at the current station or switch to the next.

A Bell spokesman stated that the 1 1/2-mile spacing had proved feasible in a series of tests in New Jersey, specifically Newark. In the Newark test, transmissions were made from a computer-equipped van, with interference being provided by other van-mounted transmitters placed wing-fashion around the 1 1/2-mile cell test area.

Seizing upon the idea, other companies have requested permission to make similar tests. In the Washington, DC, area, the American Radio Telephone Service, Inc., plans to use a Motorola cellular system called Dynatrac, in which hand-held as well as mobile phones are envisioned. Harris Corporation, another major electronics company, has petitioned the FCC for permission to test a digital transmission system using a single central station and remote-relay antennas. The on-off digital code of the computer would be used to generate the signals. The radio channel would be shared by sampling mobile telephone transmissions many times per second; this sharing system is called time-division multiple access.

It is felt that the cellular system, by allowing a greater re-use of radio frequencies, will accommodate many more mobile telephone users in urban areas, with enough traffic to justify installing the cells.

Alternate to CB radio for small business communicators

The small business that has been attempting to use CB communications but finds crowding intolerable now has an alternate in a new line, Motorola's MOXY, that is intermediate in price between CB and current FM business radio, yet offers the advantages of the latter. Crowding is reduced and reliability increased because each business user is assigned his own frequency. In addition, he can order a PL (Private Line) or DPL (Digital Private Line) squelch to screen out messages on his channel that are not intended for him.

The MOXY mobile radios are available in UHF, high band and low band. Power outputs range from 10 to 25 watts. They are less than 3 inches high, 7 inches wide and 11 inches long, weighing less than 3 pounds, thus can be installed easily in cars, trucks or tractors.

Plate-glass speaker can replace conventional systems

This is the success story of two acoustical-equipment makers, Les Barcus and John Berry, who, while tinkering around in their plant lab one day, wired an electronic sound energizer to a piece of ordinary window glass. Presto—a speaker, which has turned out to be a revolutionary device—the AudioPlate.

The AudioPlate is made of a 5- by 7-inch sheet of glass, 1/4-inch thick, with a 1-inch energizer bonded to the back. The device projects sound of such clarity that conventional precise speaker arrangement may become a thing of the past. The manufacturers claim it can produce sound in its upper ranges up to 250,000 hertz, more than ten times that of most speakers. No one is really quite sure it how it works. One theory has it that the energizer bends the glass, causing wave disturbances in it, which then disturbs the air sufficiently to produce sound.

Barcus-Berry, Inc., has already provided franchised distributors in the U.S. and abroad with public-address systems incorporating the AudioPlate, and hopes to make a low-price model available to the hi-fi market before long.

Contest turns up wide range of new microprocessor applications

An agricultural monitor and controller and a system for monitoring electroencephalograms (EEG's) more easily during surgical operations were the first and second prize winners in the Schweber Electronics first annual Microprocessor Competition. This competition, according to Seymour Schweber, president of the company, is to "inspire people to narrow the gap between today's challenges and tomorrow's realities."

The agricultural monitor and controller, which won a $1,000 first prize for Peter J. Prossen of Prossen Industries, Westminster, CA, is described as part of a system to optimize irrigation practices, reduce the cost of irrigation and irrigation labor, and minimize water waste. Data measured include root stress, transpiration rate, temperature, rainfall, and various irrigation system pressures and flow rates.

Second prize went to John Doyle of Ottawa, Canada, who worked with the Ottawa General Hospital to develop his project.
Meet the Super Family!

Our original Super Case was such a success that you asked for more. So here they are!

Super Case II includes 45 professional problem-solving tools from screwdrivers and nutdrivers to hex keys, testers, wire cutters, wrenches and pliers... plus a super-handly solderless connector kit complete with crimping tool. Super Zip is a compact zipper case assortment of 36 of our most popular tools and components. All professional quality. And all with a full lifetime warranty.

For a full color brochure on all three SUPER CASES, just write:

CIRCLE 20 ON FREE INFORMATION CARD
First and only school with designed-for-learning Quadruphonic Audio Center with four SP14 speaker systems. This solid state SQ™ system is designed so that you perform meaningful experiments at every stage of assembly... for thorough training in audio technology.

You get trouble-shooting experience from the chassis up... with NRI's unique training equipment.

The "firsts" described here are typical of NRI's over 63 years of leadership in electronics home training. When you enroll as an NRI student, you get the technical knowledge and the priceless confidence of "hands-on" experience sought by employers in communications, TV-audio servicing, computers, and industrial and military electronics. NRI training is designed for your education... from the educator-acclaimed Achievement Kit sent the day you enroll, to bite-size, well illustrated, easy-to-read lessons programmed with designed-for-learning training equipment.

NRI Firsts make learning at home fast and fascinating. More than a million have come to NRI for home training. Professional TV/Audio technicians who learned their profession through home training rate NRI as first choice by far, over any other school.

SEND FOR THE FREE FULL-COLOR CATALOG... for full details on NRI home training. There is no obligation... no salesman will call.

First with an electronics Discovery Lab™. This self-contained advanced solid-state lab gives you fast, hands-on access to fully-powered semiconductor circuitry. NRI is the only school with all these modern solid state component experiments in: bipolar and field effect transistors, Zener diodes, light-emitting diodes, SCR's and phototransistors.

"McGraw Hill CEC

First and only school with new Optical Transmission System engineered to allow you to analyze digital and analog signal transmission via light beam. Systems you build use LED and phototransistor technology, simulating basic principles of laser communications as used in video disc home entertainment systems.
First and only school with designed-for-learning 25” diagonal solid state Color TV complete with cabinet. This solid state set was designed by NRI’s own engineers from the chassis up so that students can perform over 25 in-set experiments during construction, including valuable “Power-On” trouble-shooting.

First and only school with a portable CMOS digital frequency counter engineered by NRI to give you experience in the newest types of digital systems coming into expanded use in consumer electronics.

First and only school with a solid state regulated power supply engineered by NRI to give you experience with modern power supply designs, to give you a premium power supply for your NRI Transceiver, or to use in trouble-shooting mobile equipment.

First and only school with designed-for-learning, 400-channel, digitally-synthesized VHF Transceiver to give you the only fully-up-to-date 2-meter equipment for complete training in commercial, amateur, and CB communications. The design incorporates circuitry and components representative of the latest state of the art. Circuitry is on five plug-in circuit cards to take full advantage of NRI “Power-On” training.

First and only training with an actual programmable digital computer to give you the only home training in machine-language programming essential to trouble shooting digital computers. Extra Memory Expansion Kit doubles memory size for practice in advanced programming techniques.

First and only school with an Antenna Applications Lab engineered to give you a thorough understanding of practical communications antenna requirements. You assemble and test several different types of antennas and matching sections, measuring gain and radiation patterns.

If card is missing, write to:

NRI Schools
McGraw Hill Continuing Education Center
3939 Wisconsin Ave.
Washington, D.C. 20016
EEG monitor. He received $500 for his entry.

Third and fourth prizes, both of $250, were tied between Dr. Jay S. Karmarker, electronic systems consultant of Santa Clara, and Derek McClure, of Wetaskiwin, CA. Dr. Karmarker designed a drug interaction computer that can determine the compatibility of various drugs. McClure’s entry was an audiometric instrument with which a patient can test himself after minimal instruction from a technician. The fifth prize, also of $250, went to David B. Herburg, Nirmal Ratnakumar and Peter Lobban, all of Stanford University, who cooperated on a microprocessor controller for an epitaxial reactor. There were also five honorable mentions.

The competition will be an annual one. For information on entries, contact Mel Kutzin, MPU Center, Schweber Electronics, Westbury, NY 11590, phone 516-334-7474.

Planet Jupiter emits intense radiation field

Pioneer I and Pioneer II space probes have confirmed that the planet Jupiter is emitting radiation into a vast region of space. The radiation consists of high-energy electrons that are emitted from a specific region of the planet’s magnetic field. These high-energy electrons are apparently accelerated by the planet’s magnetic field in the same manner as those signals generated by distant pulsars.

At the spring meeting of the American Geophysical Union in Washington, DC, Dr. John A. Simpson of the University of Chicago and others discussed the significance and implications of these findings. Physicists have long determined that pulsars, which are “hotspots” that spin at incredibly fast rates, release highly charged electronic particles that are responsible for much of the electromagnetic radiation that bombards the earth from all directions in the universe. Although Jupiter’s spin rate is much slower, the planet is now believed to have features in common with pulsars.

Dealer training program draws record crowd

This past April, Downstate Communications, Inc. sponsored their second, highly successful dealer training seminar at Southern Illinois University, Carbondale, IL. DOW-COM president Craig Martin was enthusiastic about the turnout. It was “like a mini PC-77,” he said, citing attendance by dealers and manufacturers from many areas.

Thirty-six manufacturers set up booths featuring mainly CB’s and related equipment. In addition, a morning seminar was addressed by speakers drawn from industry leaders. Adding spice to the proceedings were door prizes. The grand prize of a Browning Golden Eagle CB radio was won by Mark Chaffee. Lee Kitay of Pittsburgh, PA, won a base-station antenna for having “travelled the farthest distance.” The day ended in an appropriately festive fashion with a dinner party for the manufacturers hosted by DOW-COM’s Craig Martin for the participants.

Radio- Electronics

Hugo Gernsback (1884-1967) founder
M. Harvey Gernsback, KO8-6984
editor-in-chief and publisher
Larry Steckler, KTX-3644, CET, editor
Robert F. Scott, CET, W2PWG,
KXK-8533, technical editor
Arthur Kleiman, KZT-3288,
managing editor
Jack Darr, CET service editor
Leonard Feldman
contributing high-fidelity editor
Karl Savon, semiconductor editor
David Lachtenbruch, contributing editor
Carl R. Savage, K4DSD, hobby editor
Vincent P. Ciancia, production manager
Dale Allinson, production assistant
Harriet I. Matyseko, circulation director
Sheila Wurtling, circulation assistant
Arline R. Bailey, advertising coordinator

Radio Electronics is a member of the Institute of High Fidelity and is indexed in Applied Science & Technology Index and Readers Guide to Periodical Literature.

President: M. Harvey Gernsback
Vice President: Larry Steckler
Treasurer: Carol A. Gernsback
Secretary: Bertina Baer

ADVERTISING SALES

EAST
Stanley Levitan, KZA-5580
Radio-Electronics
200 Park Ave. South
New York, NY 10003
(212) 777-6400

MIDWEST/Texas/Arkansas/Oklahoma
Ralph Bergen, KXI-8936
Jim Reilly
The Ralph Bergen Co.
6319 N. Central Ave.
Chicago, IL 60646
(312) 792-3846

PACIFIC COAST
Mountain States
Jay Eisenberg, KYF-3277
J.E. Publishers Representative Co.,
8732 Sunset Blvd.,
4th Floor,
Los Angeles, CA 90069
(213) 659-3810
Sales Mart Building
1485 Bayshore Blvd., Box 140
San Francisco, CA 94124
(415) 467-0125

SOUTHEAST
J.E. Publishers Representative Co.,
214-387-2424
You've got a secret

with the amazing

Realistic

One Hander

How's a CB bandit going to take your CB if he doesn't even know you've got one? That's the secret of the One-Hander. Since all controls you need are in the palm-sized handset, you can mount the tiny transceiver case permanently out of sight — in the glovebox, under dash or seat, even in the trunk using a special extension cable. When you leave your vehicle, unplug the handset and lock it up or take it with you. The One-Hander is safer and easier to use while driving — no reaching and fumbling around to make adjustments. Built-in noise blanker and limiter chop out ignition-type noise. Two ceramic filters and push-pull audio circuitry. Improved auto-modulation for FULL talk power, always. With mounting bracket, cables for 12 VDC positive or negative ground. Thieves hate the Realistic One-Hander. But you'll love it. Just 169.95* at your nearby Radio Shack.

Trunk-mount your One-Hander. Special 16½-foot cable runs from trunk under carpet to plug-in jack on dash. Everything's hidden! Cable (21-900) just 29.95*.

FREE! New '78 Catalog
Come in for your copy and see what's really new in electronics. 164 pages, 100 in full color. 2000 exclusive items.

SOLD ONLY WHERE YOU SEE THIS SIGN:
letters

TRANSDUCERS
I have an answer to the letter that appeared in the May 1977 issue asking for information on dashboard digital readouts for drag races and rallies.

For position transducers, linear accelerometers, precision pendulums and gyroscopes, write to: Humphrey Instruments, 9212 Balboa Ave., San Diego, CA 92123. Other temperature transducers can be obtained from: Omega Engineering, Inc., Box 4047, Springdale Station, Stamford, CT 06907.

MARK POLLARD
Boulder, CO

RINGBACK
Your article telling how to build a teleswitch for your home (April 1977 issue) didn’t mention one important misconception about phone company equipment.

Ringback, the instant you hear in the earpiece after dialing, has no correlation with the number of rings occurring at the other end. The signal you hear is generated by equipment in your local phone company switching office. Even if the call were made within the same switching office, the ringback is sent out to you, the caller, only for your benefit so as to create a false sense of security that indeed the call has gone through.

A situation could come up where you think you’ve allowed your phone to ring once only, but it may have rung as many as three times, or not at all, depending on the equipment, or, I should say, on its availability at the moment it generates ring and ringback.

JONAS B. BIELKEVIČIUS
Greenbelt, MD 20770

ELECTRONIC ROULETTE
I was very pleased with your construction article, “Build Electronic Roulette” in the December 1976 issue. I used the circuits shown to build a similar unit. I found a few errors that other readers should take note of before building the unit.

The first is on page 73. IC6 is shown having pin 1 connected to LED 28. This is incorrect. IC6 was inserted in the wrong direction in Fig. 3. Turn IC6 around so pin 1 goes to LED 17, pin 2 will go to LED 18, etc. NOTE, the location of pin 1 of IC6 on page 72 is correct. The schematics show pins 2 and 3 of IC2 and IC3 shorted together. This does not appear in the foil pattern and must be included on the printed circuit board, otherwise, the counters will never reset. Add a line on the foil pattern from pin 2 to pin 3 on both IC2 and IC3.

Next, the oscillator shows the top of R1, R3, and R4 connected to the positive side of the 5-volt power supply. On the foil pattern, extend the line at the top of R3 to R1 respectively. No oscillation will occur if this is not done. The foil pattern shows pin 18 of IC7 connected to pin 4 of IC4-b, and pin 19 of IC7 connected to pin 5 of IC4-c. Change pin 18 from pin 4, IC4-b to pin 5, IC4-c, and change pin 19 from pin 5, IC4-c to pin 4, IC4-b. Once done, the foil pattern will match the schematic.

Finally, two incorrect numbers on the schematic. The first on IC5. Pin 23 appears in two places. The one labelled on input A0 is correct. Change input A3 from pin 23 to pin 20. The rest is on IC3. Pin 12 should be connected to pin 1 instead of pin 2. The foil pattern is correct, however, for both of these points on the schematic.

continued on page 16
New SIMPSON 5" Dual-Trace 15 Mhz Scope

with triggered sweep. Reliable, versatile and easy to use. It's your best scope buy.

MODEL 452 $635

- For design, development and service of digital circuitry, communications, audio, TV equipment... in lab, shop or field.
- Differential vertical amplifier stages provide wide DC to 15 MHz bandwidth with smooth rolloff usable thru 27 MHz.
- Reliable integrated circuitry, all-sold-state (except CRT)
- Triggering — internal, external, TVV, TVH, VITS
- Automatically shifts between CHOP and ALTERNATE as you change sweep time.
- 24 nanosecond rise time
- Front-panel X-Y operation, dual matched vertical amplifiers.
- 0.5V peak-to-peak 1kHz square wave calibrator
- Voltage-calibrated vertical and horizontal inputs (eleven steps in 1-2-5 sequence)
- X5 magnification
- Human-engineered front panel controls

See Your Local Electronics Distributor or Write for Bulletin T-837.
In addition to these corrections, I came up with a small modification. If a variable time constant is desired, replace R1 with a 0-500K potentiometer. Taper and type are not critical. Also, if the oscillation does not come to a smooth stop at the end of a spin, it can be eliminated by increasing the value of C1 to 3000 µF, and replacing C2 with a 220 µF 16-volt, electrolytic capacitor. MIKE TORTORELLA
Essex Junction, VT

2650 COMPUTER QUESTIONS & ANSWERS

With reference to the article on the 2650 microcomputer on page 31 of the April issue, I have a few questions. For instance, in being capable of 16 lines of 80 characters, is it also the limit of the PC board memory? Do you have to transfer this to the tape before you can prepare another format? How many of these sets will a 30-minute tape take? Can you recall from the tape any portion from any part of the tape, or do you have to start at the beginning? What about a printout, can you add on a page printer, and, if so, what kind? Raul Yzaguirre
Preston, TX

The 80-character by 16-line display is indeed limited by the display memory. You can store any memory locations onto the cassette, and load them back again without running through the cassette from the beginning. A 30-minute tape will hold about 300,000 bytes of data (234 screens full). We have a teletype line printer hooked to it (300 LPM), and it works very well.—Jeff Roloff

In the April and May issues, pictured along with the 2650 computer article, is an ASCII encoded keyboard, which is used to input data to the computer. Nothing is mentioned in the article as to where this unit can be purchased, or any of the circuitry involved with it.

RONALD P. LE BLANC
Kincheloe AFB, MI

You can purchase any ASCII keyboard for use with our board. We, however, don't sell any. We have heard that Radio Shack keyboards work well.—Jeff Roloff

MUSIC GENERATOR

With respect to my article on constructing a music generator in the June 1977 issue, the construction details were reproduced very faithfully, with the following exceptions:

The transistor type numbers are all interchanged on the schematic and parts list. NPN's are 2N3904, PNP's 2N3906. On the schematic, IC11-b in the Pitch Scaler should be 1/2 4013: IC4-b in the Duration Scaler should have output pin No. 4.

Also, a small metal shield should be placed, with appropriate insulation, over R1 and soldered to the frame of S1, which, in turn, is grounded.

Additionally, credit should be given to Richard F. Voss, IBM, Yorktown Heights, NY, for the original research on the subject done at the Physics Department of the University of California at Berkeley, and for the introductory portion of the article. His name should have been included as co-author of the article.

RAYMOND A. CHAMBERLIN
Berkeley, CA

Thanks to you it works....

FOR ALL OF US

United Way

Advertising contributed for the public good.

Treat yourself to a new direct reading DVM today.

DVM35
POCKET PORTABLE
ANALOG REPLACEMENT
3-digit, 1% DCV
Battery or AC
Only $134

DVM36
LAB ACCURATE
POCKET PORTABLE
3½ digit, .5% DCV
Battery or AC
Only $158

DVM32
BENCH & FIELD MASTER
3½ digit, .5% DCV
Battery or AC
Only $198

DVM38
"PRIME" STANDARD
AT YOUR FINGERTIPS
3½ digit, .1% DCV
Auto-Ranging
Only $348

A COMPLETE LINE OF DVMs TO FILL YOUR EVERY NEED OR WANT.

You can be sure more times in more circuits, under more adverse conditions, with greater versatility, accuracy, and meter protection than any other digital multimeters on the market today; and for less money too. 10 Day Free Trial: Try any of these famous DVMs for 10 days. If the DVMs in use don't prove exactly what we say, return them to your Sencore FLPD Distributor.

Want more information? We would like to tell you all about the Sencore DVMs by sending you a 24-page Sencore News, a six-page brochure, and the name of your nearest Sencore Distributor today...simply write or circle reader's service number.

3200 Sencore Dr., Sioux Falls, SD 57107

CIRCLE 4 ON FREE INFORMATION CARD

RADIO-ELECTRONICS
Why you should buy a digital multimeter from the leader in digital multimeters.

If you're shopping for your first multimeter, or moving up to digital from analog, there are a few things you should know.

First, look at more than price. You'll find, for instance, that the new Fluke 8020A DMM offers features you won't find on other DMMs at any price. And it's only $169.*

Second, quality pays. Fluke is recognized as the leading maker of multimeters (among other things) with a 30-year heritage of quality, excellence and value that pays off for you in the 8020A.

Third, don't under-buy. You may think that a precision 3½-digit digital multimeter is too much instrument for you right now. But considering our rapidly changing technology, you're going to need digital yesterday.

If you're just beginning, go digital.

Why not analog? Because the 8020A has 0.25% dc accuracy, and that's ten times better than most analog meters.

Also, the 8020A's digital performance means things like 26 ranges and seven functions. And the tougher your home projects get, the more you need the 8020A's full-range versatility and accuracy. The 8020A has it; analog meters don't.

If you're a pro.

You already know Fluke. And you probably own a benchtop-model multimeter.

Now consider the 8020A: smaller in size, but just as big in capability. Like 2000-count resolution and high-low power ohms. Autozero and autopolarity. And the 8020A is MOV-protected to 6000V against hidden transients, and has overload protection to 300V ac.

Nanosiemens?

Beginner or pro, you'll find the meter you now have can't measure nanosiemens. So what? With the 8020A conductance function, you can measure the equivalent of 10,000 megohms in nanosiemens. Like capacitor, circuit board, and insulation leakage. And, you can check transistor gain with a simple, homemade adapter. Only with the 8020A, a 13-oz. heavyweight that goes where you go, with confidence.

What price to pay.

$169.*

Of course, you can pay more. Or less. In fact, you could pay almost as much for equally compact but more simplistic meters, and get far less versatility. And, the 8020A gives you the "plus" of custom CMOS LSI chip design, and a minimum number of parts (47 in all). All parts and service available at more than 100 Fluke service centers, worldwide. Guaranteed, for a full year.

Rugged. Reliable. Inexpensive to own and to operate; a simple 9V battery assures continuous use for up to 200 hours.

Where to buy.

Call (800) 426-0361 toll free. Give us your charge card number and we'll ship one to you the same day. Or, we'll tell you the location of the closest Fluke office or distributor for a personal hands-on feel for the best DMM value going.

*U.S. price only

Fluke 8020A DMM for Home Electronics Experts: $169

FLUKE

1808-7001

CIRCLE 33 ON FREE INFORMATION CARD
You gotta shop around.

When you do, you’ll probably pick CIE. You can’t afford to settle for less when it comes to something like electronics training that could affect your whole life.
When you shop around for
bargains, you look for a bargain. After all, if it's the same brand, better price—why not save money?

Education's different. There's no such thing as "same brand." No two schools are alike. And, once you've made your choice, the training you get stays with you for the rest of your life.

So, shop around for your training. Not for the bargain. For the best. Thorough, professional training to help give you pride and confidence.

* * *

If you talked to some of our graduates, chances are you'd find a lot of them shopped around for their training. They pretty much knew what was available. And they picked CIE as number one.

Why you should shop around yourself.

We hope you'll shop around. Because, frankly, CIE isn't for everyone.

There are other options for the hobbyist. If you're the ambitious type—with serious career goals in electronics—take a close look at what we've planned for you at CIE.

What you should look for first.

Part of what makes electronics so interesting is it's based on scientific discoveries—on ideas! So the first thing to look for is a program that starts with ideas and builds on them!

That's what happens with CIE's Auto-Programmed Lessons. Each lesson takes one or two principles and helps you master them—before you start using them!

How practical is the training?

This is the next big important question. After all, your career will be built on what you can do—and on how well you do it.

Here are ways some of CIE's troubleshooting programs help you get your "hands-on" training...

With CIE's Experimental Electronics Laboratory...

you learn and review the basics—perform dozens of experiments. Plus, you use a 3-in-1 precision Multimeter to learn testing, checking, analyzing!

When you build your own 5 MHz Triggered-Sweep, Solid-State Oscilloscope you take your first real professional step. You use it as a doctor uses an X-ray machine—to "read" waveform patterns...lock them in...study, understand and interpret them!

When you get your Zenith 19-inch Diagonal Solid-State Color TV you apply your new skills to some real on-the-job-type troubleshooting! You learn to trace signal flow...locate malfunctions...restore perfect operating standards—just as with any sophisticated electronics equipment!

When you work with a completely Solid-State Color Bar Generator—actually a TV signal transmitter—you study up to ten different patterns on your TV screen...explore digital logic circuits...observe the action of a crystal-controlled oscillator!

Of course, CIE offers a more advanced training program, too. But the main point is simply this:

All this training takes effort. But you'll enjoy it. And it's a real plus for a troubleshooting career!

Do you prepare for your FCC License?

Avoid regrets later. Check this out before you enroll in any program.

For some troubleshooting jobs, you must have your FCC License. For others, employers often consider it a mark in your favor. Either way, it's government-certified proof of specific knowledge and skills!

More than half of CIE's courses prepare for the government-administered FCC License exam. In continuing surveys, nearly 4 out of 5 CIE graduates who take the exam get their Licenses!

Shop around...but send for CIE's free school catalog first!

Mail the card. If it's gone, cut out and mail the coupon. If you prefer to write, mention the name and date of this magazine. We'll send you a copy of CIE's FREE school catalog—plus a complete package of independent home study information!

For your convenience, we'll try to have a representative contact you to answer your questions. Mail the card or coupon—or write: CIE, 1776 East 17th St., Cleveland, OH 44114.
TeleMatic KC-720B
CrysMate Crystal Tester

AN INSTRUMENT THAT WILL TEST RF CRYSTALS can be very useful. The TeleMatic Co., 2849 Fulton St., Brooklyn, NY 11207 made one quite a while ago. I have used it many times with good results. Now, they have introduced a "bigger and better" model, the CrysMate model KC-720B. It has the same features as the original plus some new ones. It checks crystals for activity, as the older one did. You plug the crystal into the front-panel socket. If it is good, an indicator light tells you so.

The new model also has a HI-LO switch. If the crystal is suspected of being low in activity or "weak" and the front-panel HI indicator light comes on, switch to LO. If the light goes out, this crystal should be suspected.

The crystal socket has the standard ½-inch (8-mm) pin spacing. This will fit the majority of crystals found in color TV, CB, etc. For crystals in larger cases, solder two short pieces of stiff No. 20 wire to two mini-clips and use these to hook it up. Keep the leads as short as possible to hold down the stray capacitance.

Many crystals work in a "third overtone" mode. If the crystal under test is one of these, a frequency counter or calibrated radio receiver will read the fundamental, since this has the highest amplitude output. A 15-MHz third-overtone crystal will read 5 MHz, etc.

With an accurately calibrated receiver, you can tune a surprising number of harmonics. We have picked up good usable signals from a 1.0-MHz crystal as high as the 10th harmonic and, in some cases, even higher. (Keep this handy in your shirt pocket to check the tracking of a short-wave receiver; a beep every 1.0 MHz will tell how well the receiver dial tracks the actual frequency. Other frequencies may be used, of course.) You can use the same setup to find the frequency of unknown crystals. Tune for the strongest and lowest-frequency signal. This will be the fundamental.

To put an odd-ball marker frequency on a sweep-alignment curve, just feed the RF output of the CrysMate into the external-marker jack of the sweep generator. Most have this jack, but if yours doesn't, the signal can be coupled into the IF input with a couple of turns of insulated wire.

With the proper crystals, you can calibrate CB or amateur radios for frequency, band-edge, etc. Crystals in the set can be checked against replacements to make sure they are good or bad. In most cases, the CrysMate's RF output will be high enough to drive a frequency counter.

If you're using the CrysMate as a frequency standard, or making calibration adjustments continued on page 24
FREE

LOOK AT ALL YOU GET!

1,862 nuts, bolts, screws, and other fasteners • Heavy-duty, all-steel cabinet, 12" x 5½" x 9¾" • 25 pre-printed I.D. labels • 51 individual compartments • 25 high-impact plastic bins, 2" x 5½" x 1½".

<table>
<thead>
<tr>
<th>HEAD STYLES INCLUDED</th>
<th>THREADS INCLUDED</th>
<th>DIAMETERS INCLUDED</th>
<th>LENGTHS INCLUDED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panhead</td>
<td>Flathead</td>
<td>Roundhead</td>
<td>Hex Head</td>
</tr>
<tr>
<td>11/2</td>
<td>1</td>
<td>1/4</td>
<td>From No. 6 to 5/16</td>
</tr>
<tr>
<td>3/4</td>
<td>1/2</td>
<td>3/8</td>
<td>From 3/8" to 1-1/2"</td>
</tr>
</tbody>
</table>

168 SHEET METAL SCREWS: 6 Sizes (Panhead)

<table>
<thead>
<tr>
<th>No.</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1-1/2</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>6</td>
<td>1-1/4</td>
<td>(\frac{1}{4})</td>
</tr>
<tr>
<td>3/4</td>
<td>1</td>
<td>3/8</td>
</tr>
</tbody>
</table>

168 WOOD SCREWS: 6 Sizes (Flathead)

<table>
<thead>
<tr>
<th>No.</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1-1/2</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>6</td>
<td>1-1/4</td>
<td>(\frac{1}{4})</td>
</tr>
<tr>
<td>3/4</td>
<td>1</td>
<td>3/8</td>
</tr>
</tbody>
</table>

274 HEX NUTS: 5 Sizes

<table>
<thead>
<tr>
<th>No.</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5/16</td>
</tr>
<tr>
<td>1</td>
<td>1/4</td>
</tr>
<tr>
<td>1</td>
<td>3/8</td>
</tr>
<tr>
<td>1</td>
<td>1/2</td>
</tr>
<tr>
<td>1</td>
<td>1-1/8</td>
</tr>
</tbody>
</table>

92 COTTER PINS: 4 Sizes

<table>
<thead>
<tr>
<th>No.</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1/8 x 1</td>
</tr>
<tr>
<td>8</td>
<td>1/8 x 1/2</td>
</tr>
<tr>
<td>6</td>
<td>1/8 x 2</td>
</tr>
</tbody>
</table>

68 MACHINE SCREWS: 2 Diameters, 3 Lengths of Each Diameter (Hex Head)

<table>
<thead>
<tr>
<th>No.</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1/4 x 1</td>
</tr>
<tr>
<td>8</td>
<td>1/4 x 2</td>
</tr>
<tr>
<td>6</td>
<td>1/4 x 3</td>
</tr>
</tbody>
</table>

312 MACHINE SCREWS: 3 Diameters, 4 Lengths of Each Diameter (Roundhead)

<table>
<thead>
<tr>
<th>No.</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1/4 x 1</td>
</tr>
<tr>
<td>8</td>
<td>1/4 x 2</td>
</tr>
<tr>
<td>6</td>
<td>1/4 x 3</td>
</tr>
<tr>
<td>4</td>
<td>1/4 x 4</td>
</tr>
</tbody>
</table>

1,71½" x 24" wall-size Specifications Chart—a $2.50 value. Tells you everything you need to know for a quick professional job. Every time. What size nut and washer to use. What size "starting" and "tapping" holes to drill. When to use what kind of washer. Instantly measures sizes. And much, much more. Yours FREE just for trying the Nut & Bolt Shop!

Just about every nut, bolt, screw, washer, and cotter pin you'll ever need—nearly 2,000 pieces—all in one, organized steel cabinet.

Now you can have just the right nut, bolt, screw, washer, or cotter pin at your fingertips ... whatever the job! And for an almost unbelievable low price!

With the NUT & BOLT SHOP—a complete size range of just about every kind of hardware you'll ever need. All organized in one all-steel, 25-tray, 51-bln cabinet. Perfect for auto repair. Home projects and hobbies. Office maintenance. And industrial shop use. Great as a gift, too.

No more time-consuming trips to the hardware store. No more less-than-professional looking repair jobs. No more searching through old coffee cans or fasteners.

OUR CUSTOMERS ARE AMAZED AT THE VALUE!

"I don't see how you make a profit at such a low cost! I found it much more than I expected!"—M. D. Dorsette, Rockville, Maryland

"An excellent buy. At retail prices, would have cost far more ... usually a minimum of 3c to 5c a piece!"—G. L. Stalger, Enfield, Connecticut

"Quality is excellent. Great for do-it-yourselfers... and convenient!"—G. R. Osling, Sunnyvale, California

"I've priced these items separate— it would have cost far more for them at a hardware store."

J. D. Russell, Cicero, Illinois

Order today! Send check, money order, or company purchase order for just $24.95 (plus $3.90 shipping and handling) to DRI INDUSTRIES, 7246 Washington Ave. So., Eden Prairie, MN 55343. If you're not completely satisfied— if you're not truly amazed at all you get—return it within 30 days for a full refund. No questions asked! And keep the FREE $2.50-value well chart for your trouble!

24-HOUR SERVICE

CREDIT CARD BUYERS

Call our 24-hour toll-free number for immediate service 800-325-6400 (in Missouri, call 800-342-6600)

DRI INDUSTRIES, Dept. RE-9

7246 Washington Ave. So., Eden Prairie, MN 55343

I WISH TO ORDER ______________ WISH TO ORDER ______________ NUT & BOLT SHOPS.

- I have enclosed my check, money order, or company purchase order for just $24.95 + $3.90 (Minn. residents add 4% sales tax).
- I wish to charge it to (check one): □ American Express □ VISA □ Diners Club □ Master Charge/Bank No.

CARD NO. EXP. DATE

SIGNATURE ___________

NAME ___________

ADDRESS ___________

CITY ___________ STATE _ ZIP

CIRCLE 104 ON FREE INFORMATION CARD

SEPTEMBER 1977

23
EQUIPMENT REPORTS
continued from page 22

where it must be on quite a while, set the switch to the 1.0 position. The RF output will usually be ample; this reduces the battery drain quite a bit.

Model KC-720B is very compact, comes in a 3.5 by 6-inch plastic case just a bit over an inch deep. It is completely self-contained, powered by one standard 9-volt battery. It will operate at full output over a range down to 7.5 volts under load. Battery life in the original model was good, and should be good here since the basic circuitry is the same. The only limitations are that low-frequency crystals may not oscillate, or not oscillate with enough output to light the indicator lamp. This could be checked with a scope on the RF output terminals or on the calibrated receiver.

This instrument can also be used to put markers for each VHF channel on a TV tuner output curve! By using the 4.5-MHz marker provided on most sweep generators, you can check the response curve for each channel. Very handy for those “I got a problem only on Channel 6” jobs!

Clarothane Cleaning Solvent

Clarothane Cleaning Solvent has been used in the digital field for many years, and the wire-wrap tool has become a mainstay of the computer service man’s tool kit. Design and debugging of systems with complex interconnection patterns requires a wiring technique that lends itself to rapid assembly and modification. Wire wrapping is used because it makes quick, reliable, neat connections without the danger of burning insulation or splashing solder among hundreds or thousands of closely spaced terminals and components.

Recently, hobbyists have been exposed to the wire-wrapping technique. They work with systems built up of 8 to 40 pin-integrated circuits which multiply to high total pin counts. So it’s really not unusual to have expensive wire-wrap tools designed specifically for the hobbyist.

The Hobby-Wrap-30 Wire-Wrapping/Stripping/Unwrapping Tool (model WSU-30) is made by the OK Machine and Tool Corporation that also makes a complete industrial line of manual and powered wire-wrap equipment.

The WSU-30 is an amazingly simple yet effective tool. Two tubular extensions of different length are axially mounted to an easily gripped hex-shaped center handle. The handle has a V-shaped wire stripper blade that removes the insulation from No. 30 (0.25-mm) wire. The stripped end of the wire is inserted in the small hole closest to the perimeter of the end of the longer tool extension. A slot along the length of the extension acts as a reservoir for the wire about to be wrapped.

The center hole at the same end is slid over a 0.025-inch square wire-wrap terminal, and the tool rotated clockwise for 10 turns. As the tool is turned, the wire is forced against the terminal and is deformed at the post corners for a low-resistance electrical connection. The tool is then lifted from the terminal.

The WSU-30 has an unwrapper in its shorter extension. A central hole at this end fits over the terminal as on the wrap end, where a
ANOTHER UNIQUE PRODUCT
DESIGNED, MANUFACTURED
AND MARKETED WORLDWIDE
BY
OK MACHINE & TOOL CORPORATION

BATTERY WIRE-WRAPPING TOOL MODEL BW-630
$34.95*

STRIP/WRAP/UNWRAP TOOL MODEL WSU-30
ANOTHER UNIQUE PRODUCT
DESIGNED, MANUFACTURED
AND MARKETED WORLDWIDE
BY
OK MACHINE & TOOL CORPORATION

$5.95*

WIRE DISPENSER MODEL
WD-30-B
THE DISPENSER WHICH
CUTS AND SPLITS
THE WIRE
$3.45*

DIP IC INSERTION TOOL WITH PIN STRAIGHTENER
MODEL INS-1416
ANOTHER UNIQUE PRODUCT
DESIGNED, MANUFACTURED
AND MARKETED WORLDWIDE
BY
OK MACHINE & TOOL CORPORATION

$3.49*

WHAT'S NEXT

*$ MINIMUM ORDER $25.00, SHIPPING CHARGE $1.00, N.Y. CITY AND STATE RESIDENTS ADD TAX

OK MACHINE & TOOL CORPORATION
3455 Conner St., Bronx, N.Y. 10475 • (212) 994-6600 • Telex 125091

CIRCLE 26 ON FREE INFORMATION CARD
EQUIPMENT REPORT
continued from page 24

recessed notch traps the end of the wire. The wire is loosened and unwrapped when the tool is rotated counterclockwise, opposite to the original wrapping direction.

I used the WSU-30 to wire an IC wiring panel. I found its very low mass and sound performance make it a useful tool; one that does its job effectively without getting in your way. I also had a couple of chances to try the unwrapper to fix a couple of errors.

The WSU-30 Wire-Wrapping Tool sells for $5.95 and is available from local electronic suppliers, or direct from OK Machine and Tool Corporation, 3455 Corner Street, Bronx, NY 10475. The WK-2-B Wire-Wrapping Kit includes a tool, a 50-foot spool of Kynar wire and an assortment of 1-, 2-, 3- and 4-inch pre-stripped wires for about $12.

Polaris TPS-225 DC Power Supply

The Polaris Co. has quite a few small, handy test instruments. Their latest is the model TPS-225 DC power supply. A bench DC power supply can be used to power small radionics, CB sets, or even TV modules for out-of-set servicing.

The TPS-225 is completely isolated from the AC line. So, it can be used as either a positive or negative voltage supply. It's rated at up to 25 volts at a maximum current of 250 mA. The DC voltage is well-filtered, and can be continuously regulated from 0 up to 25 volts. An internal solid-state regulator controls the voltage and also protects against shorts in the load. A short does no damage to either the equipment or the power supply; when the short is removed, the output voltage comes right back.

A panel meter reads the voltage or current; selection is by means of a slide switch conveniently located at the bottom of the panel. The voltage is adjusted by a control at the right, and the DC voltage is taken off at the two screw terminals on the left.

The variable-voltage output can be used, for example, in servicing small and medium power stereo amplifiers. After output transistor replacement, just lift the set's own DC power supply and hook in the TPS-225. Turn the volts adjust control to zero and set the meter switch to mA. Now bring the DC voltage up slowly without applying an input signal to the amplifier and observe the current being drawn on the meter. This is the key to the operation of the output stage. If it's too high, a problem still exists, usually in the bias. The instrument will supply ample current to check even fair-sized amplifiers, if you check one channel at a time. This can take the place of a variable-voltage line transformer and can be a great transistor saver.

The experimenter can use this unit for powering various solid-state projects; its usefulness is limited only by the ingenuity of the technician. For example, we had a question the other day: "Just how much current does this (color demodulator) IC draw?" By lifting the +24-volt supply lead and using the model TPS-225 in its place, we could have had the answer instantly. Normal current in this case happened to be 22 mA, and this handy little instrument would have been a great help! It's also reasonably priced. For more information write: Polaris Co., 2849 Fulton St., Brooklyn, NY 11207.

CIRCLE ON FREE INFORMATION CARD

The WSU-30 Wire-Wrapping Tool sells for $5.95. The WK-2-B Wire-Wrapping Kit includes a tool, a 50-foot spool of Kynar wire and an assortment of 1-, 2-, 3- and 4-inch pre-stripped wires for about $12.

CIRCLE 99 ON FREE INFORMATION CARD

The Polaris Co. has quite a few small, handy test instruments. Their latest is the model TPS-225 DC power supply. A bench DC power supply can be used to power small radionics, CB sets, or even TV modules for out-of-set servicing.

"Myron dear, Mummy wishes you wouldn't sit around in front of the tube all day."
The most important piece of audio equipment you'll ever own.

Yours to examine FREE for 15 days.

25 FACT-FILLED CHAPTERS ARRANGED IN "EASY-TO-FIND" QUESTION AND ANSWER FORM
- Basic Principles of Sound
- Acoustics, Studio techniques, and Equipment
- Constant-Speed Devices, Motors, and Generators
- Microphones
- Attenuators
- Equalizers
- Wave Filters
- Transformers and Coils
- Sound Mixers
- VU and Volume Indicator Meters
- Vacuum Tubes, Transistors, and Diodes
- Audio Amplifiers
- Disc Recording
- Cutting Heads
- Recording and Reproducing Styli
- Pickups
- Magnetic Recording
- Optical Film Recording
- Motion Picture Projection Equipment
- Loudspeakers, Enclosures, Headphones, and Hearing Aids
- Power Supplies
- Test Equipment
- Audio-Frequency Measurements
- Installation Techniques
- General Information, Charts and Tables

Be our guest. Examine the AUDIO CYCLOPEDIA free for 15 days. You'll find out why it is considered the most comprehensive and authoritative book ever written on the subject. And you'll get a FREE $3.50 bonus book to keep no matter what!

The AUDIO CYCLOPEDIA is literally a one-book audio library. It has long been considered "the bible" by amateur stereo buffs as well as professional technicians. That's why you'll find it in constant use not only in home workshops and at stereo centers, but also in recording studios, broadcast booths and concert halls. This giant reference book is over 3" thick, and packed with 1,757 illustrated pages. It features 3,645 questions and answers and a 50 page "instant-find" index for subject identification. It is truly the big one in audio electronics and it puts all the information you'll ever need right at your fingertips, chapter by chapter.

Send for the AUDIO CYCLOPEDIA today. If you don't agree that it's the most important piece of audio equipment you own, just return it within 15 days. You won't owe a cent. And no matter what you decide, you'll get a free $3.50 copy of The ABC's of Tape Recording to keep just for mailing the coupon.

FREE-BOOK
FREE-TRIAL COUPON

Save postage & handling costs. Full payment enclosed (plus tax where applicable). 15-day return privilege still applies.
Learn electronics easier... with HEATHKIT®

MONEY-BACK GUARANTEE
We're so confident you will enjoy and benefit from these five courses, that if for any reason you are dissatisfied, we will refund the full purchase price of the course text material.

Unique Heathkit Electronics Courses are designed to provide you with a complete overview of basic and advanced electronics. You learn at your own pace, without pressure or deadlines, and all material is presented in a clear, logical, step-by-step fashion. It's the ideal, effective way to learn about electronics if you're a beginner, or to "brush up" on the latest techniques and theory.

Courses start as low as $39.95 (less trainer)

Thousands of people just like you have already learned electronics the easy Heathkit way — and you can, too. The secret is our efficient approach to self-learning with easy, step-by-step "programmed" instructions; audio records to introduce and reinforce key concepts; self-evaluation quizzes to test your understanding; and interesting experiments that let you learn the easy "hands-on" way. All you need is a record player, small tools and a VOM. The optional Heathkit experimenter/trainer is specifically designed to help you do the experiments in each course, and when you finish the course, you can use it to design and breadboard your own circuits. After completing each course, you can take the optional final exam (passing grade 70%) and receive both a Certificate of Achievement and Continuing Education Units, a nationally recognized way of acknowledging participation in non-credit adult education.

ORDER NOW—GET THESE BONUS SAVINGS!

GET THIS WELLER SOLDERING IRON WORTH $7.95 FREE! WITH YOUR ORDER
A 40-watt iron for easy kitbuilding

Buy Any Single Course with Trainer and —
SAVE $9.95

Buy Courses 1 thru 4 with Trainer and —
SAVE $24.95

Heath Company, Dept. 020-331 Benton Harbor, Michigan 49022
An ideal introduction to electronics. Covers current, voltage, resistance, magnetism, Ohm's law, electrical measurements, DC circuits, inductance and capacitance. Discusses matter, atoms, current, flow, voltage rises and drops, series and parallel connections, magnetic fields, voltage dividers, network theorems, more. Includes text, records and 56 parts for 20 different experiments. Average completion time, 20 hours. 2.0 Continuing Education Units and certificate for passing optional final exam.

Course EE-3101 ... $39.95

COURSE 2: AC Electronics

Provides an understanding of most commonly used circuits. Covers alternating current, AC measurements, capacitive and inductive circuits, transformers and tuned circuits. Discusses waveforms, period and frequency, meters, scales, series and parallel circuits, RC filters, dividers, phase shifts, reactance, vectors, transformer theory and characteristics, series and parallel resonance, more. Includes text, records and 16 parts for 8 different experiments. Average completion time, 15 hours. 1.5 Continuing Education Units and certificate for passing optional final exam.

Course EE-3102 ... $39.95

COURSE 3: Semiconductor Devices

Essential for understanding latest solid-state equipment. Covers fundamentals, diodes, zener diodes, special diodes, bipolar transistor operation and characteristics, FET's, thyristors, integrated circuits and optoelectronics. Discusses holes, current flow, N and P types, biasing, circuits and varactors, PIN, IMPATT, gain, cutoff and leakage current, SCR's, bi-directional triodes, light sensitive and light emitting devices, more. Includes text, records and 27 parts for 11 different experiments. Average completion time, 30 hours. 3.0 Continuing Education Units and certificate for passing optional final exam.

Course EE-3103 ... $36.95

Our most advanced self-learning course prepares you for the world of computers and microprocessors, with particular emphasis on circuit design. Covers digital fundamentals, semiconductor devices for digital circuits, digital integrated circuits, Boolean algebra, flip-flops and registers, sequential logic circuits, combinational logic circuits, digital design and digital applications. Discusses TTL, ECL, MOS, NMOS, integrated circuits;SSI, MSI and LSi; ROM's, PLA's, microprocessors, computers and more. Assumes completion of Heathkit courses 1 through 4 above, or equivalent knowledge. The special digital techniques experimenter/trainer helps you perform all the experiments in the course, and when you complete the course, build and design your own circuits. Course includes text, records and 44 parts for 24 different experiments. Average completion time, 40 hours. 4.0 Continuing Education Units and a certificate for passing final exam.

ORDER DIGITAL TECHNIQUES PROGRAM AND TRAINER ... $109.95

HEATH IM-17 VOLT-OHM METER

All Electronic Learning Programs require a VOM to make electrical measurements. We suggest the Heath IM-17 as the ideal "all-purpose" unit. All solid state with FET input for better accuracy. Portable battery operation, zero and ohms adjust, accessory probe jack. Comes with DC polarity switch, three test leads; batteries not included. Easy 3 hour assembly.

ORDER KIT IM-17 ... $32.95

COURSE 4: Electronic Circuits

Outstanding explanations of basic circuits. Covers basic amplifiers, special purpose amplifiers, operational amplifiers, power supplies, oscillators, polar circuits, modulation and demodulation. Discusses amplifier functions and configurations, class of operation, audio characteristics, video amplifiers, buffers, IF's, rectifiers, voltage multipliers, voltage regulation, basic oscillators, RC waveshaping, clipping, AM, FM and SSB, modulation fundamentals and more. Assumes knowledge of courses 1 through 3 or equivalent and requires an oscilloscope for some experiments. Includes text, records and over 110 parts for 18 different experiments. Average completion time, 30 hours. 3.0 Continuing Education Units and certificate for passing optional final exam.

Course EE-3104 ... $49.95

HEATHKIT EXPERIMENTER/TRAINER

For use with Heathkit Electronics Courses 1 through 4 — helps you perform all the experiments quickly and easily. Has solderless breadboarding sockets, dual variable power supply for positive and negative voltages, sine and square wave signal source, center-tapped line transformer. After you complete the course, the trainer is ideal for experimenting and breadboarding with your own circuit designs.

KIT ET-3100 ... $59.95

Order Form/Agreement

Heath Company, Dept. 020-331
Benton Harbor, Michigan 49022

Please send me items checked below and include FREE $7.95-value Weller Soldering Iron (GDP-1105).

☐ Send one course (checked below) with the Experiment/trainer (ET-3100) at the special price of only $39.95 plus $3.00 shipping and handling.

☐ DC (EE-3101) ☐ AC (EE-3102) ☐ Semiconductors (EE-3103)

☐ Send me the Electronic Circuits Course (EE-3104) with the Experiment/trainer (ET-3100) at the special price of only $99.95 plus $3.00 shipping and handling.

☐ Send all four of the courses above (EE-3101, 3102, 3103, 3104) with the Experiment/trainer at the special price of just $199.95 plus $4.50 shipping and handling.

In addition, please send the following courses (less trainer):

☐ DC (EE-3101) ☐ AC (EE-3102) ☐ Semiconductors (EE-3103)

for just $39.95 plus $1.50 shipping and handling each.

☐ Electronics Circuits (EE-3104) for just $49.95 plus $1.50 shipping and handling.

☐ Send me the Digital Techniques Course (EE-3201) with its Experiment/trainer (ET-3200) for only $109.95 plus $3.00 shipping and handling.

☐ Also send me that IM-17 VOM kit for just $38.95 plus $1.50 shipping and handling.

☐ MC Master Charge, include Code No.

☐ BankAmericard Acct. No. ... Exp. Date

☐ Master Charge Acct. No. ... Exp. Date

☐ If Master Charge, include Code No.

Signature: X...

Name (please print) ...

Address ...

City.............. State............ Zip............

Radio Electronics ED-105A

September 1977
IF YOU'RE NOT DESIGNING WITH A CSC PROTO-BOARD, LOOK AT ALL YOU'RE MISSING.

Utility — Models are available with or without built-in regulated power supplies (fixed or adjustable).

Economy — Eliminate heat and mechanical damage to expensive parts. Save money by re-using components.

Versatility — Use with virtually all types of parts, including resistors, capacitors, transistors, DIP's, TO-5's, LED's, transformers, relays, pots, etc. Most plug in directly, in seconds.

Durability — All Proto-Board models are carefully constructed of premium materials, designed and tested for long, trouble-free service.

Expandability — Proto-Board units can be instantly interconnected for greater capacity.

Visibility — All parts are instantly and easily visible for quick circuit analysis and diagramming.

Speed — Assemble, test and modify circuits as fast as you can push in or pull out a lead. Save hours on every project.

Adaptability — Use in design, packaging, inspection, QC, etc. Works with most types of circuits in many, many applications.

Flexibility — Use independently, or in conjunction with other accessories, such as scopes, counters, CSC Proto-Clip™ connectors. Design Mate™ test equipment, etc. One Proto-Board unit can serve a thousand applications.

Variety — A wide variety of models are available with capacities ranging from 630 to 3000 solderless tie-points (6 to 32 14-pin DIP's), to fit every technical and budget requirement.

Whatever type of electronic circuits you work with, you can do more in less time with CSC's solderless Proto-Board systems. As fast and easy as pushing in or pulling out a lead, you can design, test and modify circuits at will. Components plug into rugged 5-point terminals, and jumpers, where needed, are lengths of #22 AWG solid wire. In the same time you took to read this ad, you could be well on your way to assembling a new circuit. For more information, pick up your phone and call your dealer—or order direct.

CSC PROTO-BOARD SOLDERLESS BREADBOARDS

<table>
<thead>
<tr>
<th>MODEL NUMBER</th>
<th>NO. TIE POINTS (14-PIN DIP)</th>
<th>MANUFACTURER'S SUGG LIST</th>
<th>OTHER FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB-6</td>
<td>630</td>
<td>6</td>
<td>$15.95</td>
</tr>
<tr>
<td>PB-100</td>
<td>760</td>
<td>10</td>
<td>19.95</td>
</tr>
<tr>
<td>PB-101</td>
<td>940</td>
<td>10</td>
<td>29.95</td>
</tr>
<tr>
<td>PB-102</td>
<td>1240</td>
<td>12</td>
<td>39.95</td>
</tr>
<tr>
<td>PB-103</td>
<td>2250</td>
<td>24</td>
<td>59.95</td>
</tr>
<tr>
<td>PB-104</td>
<td>3050</td>
<td>32</td>
<td>79.95</td>
</tr>
<tr>
<td>PB-203</td>
<td>2250</td>
<td>24</td>
<td>75.00</td>
</tr>
<tr>
<td>PB-203A</td>
<td>2250</td>
<td>24</td>
<td>120.00</td>
</tr>
</tbody>
</table>

CSC PROTO BOARD CODE 1251-047

See your CSC dealer or call 203-624-3103 (East Coast) or 415-421-8872 (West Coast) 9 AM to 5 PM local time. Major credit cards accepted. Add $2.50 for shipping and handling in the U.S. and Canada on direct orders of $50.00 or less; $3.00 for orders over $50.00. On all foreign orders add 15% to cover shipping and handling.

CONTINENTAL SPECIALTIES CORPORATION
44 Kendall Street, Box 1942
New Haven, CT 06509 - 203-624-3103 TWX: 710-465-1227
West Coast: 351 California St., San Francisco, CA 94104 • 415-421-8872 TWX: 910-372-7992
Canada: Len Pintikis Ltd., Ontario
Mexico: ELPRO, S.A., Mexico City, 5-23-30-04

© 1976 Continental Specialties Corp. Prices and specifications subject to change without notice.
HERE'S A DIGITAL THERMOMETER THAT MEASURES FROM 0° TO 99°F and displays the temperature on a 2-digit LED display with 0.6-inch high digits. The unit is relatively simple and should cost about $50 to build. The accuracy is such that readings will off by -2° at 30°F and +2° at 70°F. Restricting the temperature range and recalibrating the unit should yield better accuracy. However, the thermometer may be best suited to remote monitoring of outdoor temperatures requiring the 0° to 99°F temperature range.

About the circuit

The thermometer circuit combines two functional modules: The first module is a thermistor/resistor network whose output voltage is a nearly linear function of temperature over the 0° to 99°F range; the second module is a two-decade A/D converter. The maximum output of the temperature-sensing network is 2.2 volts, which is slightly less than the maximum voltage that the A/D converter will accept.

The block diagram (Fig. 1) and timing waveforms (Fig. 2) show how the circuit operates. During the display interval, when the output of monostable IC4 is high, the converter is inactive while the last conversion is being displayed. In this inactive state, the output of oscillator IC1 is inhibited, staircase generator IC2 is reset to zero and the displays are visible. The output of IC4 remains high for about 1 second, then drops for the duration of the conversion interval. When the output of IC4 goes low, it generates a negative pulse that clears the counters.

During the conversion interval, which can last a maximum of 10 milliseconds, the display is blanked. This rapid blanking cannot be seen and the rapid display changes that would occur during clocking of the counters remain invisible.

There is a delay of about 100 μs before the first clocking edge (negative) appears at the output of IC1. This delay permits the negative pulse to clear the counters. Each clocking edge from IC1 increments the counters and causes the staircase to increase by one step.

Comparator IC3 monitors the output voltage of the temperature-sensing network as well as the staircase-generator output. As soon as the staircase output exceeds the output of the
temperature-sensing circuitry, IC3's output drops low and triggers IC4. Before another clocking edge can arrive, the oscillator is inhibited and the staircase generator is reset. The displays are also unblanked and show the count accumulated in the counters. When IC4's output again drops low, the whole process is repeated.

The schematic diagram is shown in Fig. 3. A 10-kHz multivibrator is formed by IC1, R2, R3, R4 and C10. When base drive is present, Q1 shorts out C10 and inhibits the multivibrator output. This method of inhibiting has another effect: The oscillator cannot operate until 100 μs after base drive is removed from Q1. The reason is that C10 must charge to its operating potential through R4. This allows time for the counters to be cleared.

Operational amplifier IC2 generates the positive-going staircase. Resetting the staircase generator is performed by FET Q2 which shorts out capacitor C14. If you cannot obtain the 2N4393 FET specified for Q2, you can substitute another, but test it to be sure it has a pinch-off voltage of less than 4.5 volts.

The output of IC2 couples to pin 3 of comparator IC3, while pin 2 receives the output signal of the temperature-sensing network. Capacitor C16 filters out any noise that might be picked up by the thermistor and its input leads. The comparator's output signal (at pin 7) couples to monostable IC4, whose own output is available at pin 3.

As can be seen in Fig. 3, IC4's output drives Q1's base, Q2's gate, the blanking terminals of display drivers IC7 and IC8 (pin 4), as well as a differentiator composed of R19, C19 and D9. The output spike from the differentiator clears counters IC5 and IC6. The output of oscillator IC1 goes to inverter Q4, which drives the clock input of the first counter. The four outputs of each counter go to a decoder/driver IC (either IC7 or IC8). Then R23 through R36 couple the driver outputs to the display digits. Finally, feedback from IC4's output to pin 6 of

FIG. 1—DIGITAL THERMOMETER uses simple 2-digit A/D converter.

FIG. 2—TIMING WAVEFORMS of the thermometer circuit.

FIG. 3—COMPLETE SCHEMATIC. Power is supplied by IC regulator.
IC3, by way of Q3, eliminates an undesirable condition that results when pin 2 of IC3 is at a potential of 0 volts or less.

Construction

When constructing the thermometer be sure to include ceramic bypass capacitors for the power supply. The case should be made of metal and connected to the system ground. If the voltage regulator, IC9, is bolted directly to the chassis, with only a layer of silicone grease intervening, it will eliminate the need for a heatsink. Due to the many IC's used, it will probably be most convenient to use a PC board. The foil pattern is shown in Fig. 4, and the component overlay is shown in Fig. 5.

Two-conductor shielded cable, such as Belden No. 9452, is used to connect the thermometer to the rest of the circuitry. The shield should be connected to ground, while the two central conductors connect the thermometer to the positive supply and to R11. Use a 3- or 5-prong DIN plug-and-socket set with the shielded cable. Do not substitute for RT1, a 30K Fenwal UUT43J1 precision thermistor. Use 5% resistors for R11 and R12; these two resistors, along with R13 and R14, were chosen especially to complement the thermistor. The combination provides the most linear voltage-vs.-temperature response over the 0°F-to-99°F range, as shown in Fig. 6.

The thermistor assembly should be weatherproofed against environmental extremes. First insulate the exposed thermistor leads with heat-shrinkable tubing, then use Epoxy cement to seal any remaining areas where water could seep in. Since the thermistor is only 0.1-inch in diameter and thus relatively fragile, it should be mounted safely. For example, it could be put into a small plastic pill bottle, in which numerous large air holes have been punched. When mounting the thermistor outdoors, place it where summer sun and winter ice cannot damage it.

The power transformer for the thermometer is a 16-volt center-tapped 400 mA unit. If you cannot find a similar transformer, you can order one directly from the company listed in the parts list. Capacitors C11 and C14 should be polystyrene.

PARTS LIST

All resistors ¼ watt, 5% unless noted.

- R1—75 ohms, 1 watt
- R2, R4—120,000 ohms
- R3—470,000 ohms
- R5, R15, R17—1000 ohms
- R6—47,000 ohms
- R7—56,000 ohms
- R8, R19—4700 ohms
- R9—10,000 ohms
- R10, R12—33,000 ohms
- R11—18,000 ohms
- R13—3900 ohms
- R14—1000-ohm multturn trimmer
- R16—27,000 ohms
- R18—560,000 ohms
- R20—2700 ohms
- R21, R22—2400 ohms
- R23—R36—180 ohms
- R1T—30,000 ohms precision thermistor (Fenwal UUT43J1. Write to: Customer Service, Fenwal Electronics, Framingham, MA 01701, for name and address of their distributor in your area.)

- C1, C2—1500 µF, 35 volt, electrolytic
- C3, C4—100 µF, 16 volt, electrolytic
- C5—C9—0.1 µF, ceramic
- C10, C11—1000 pF, polystyrene
- C12—75-480 pF trimmer (ARCO 466)
- C13—30 pF, polystyrene
- C14—0.47 µF, polystyrene
- C15—150 pF, polystyrene
- C16—1 µF, paper
- C17—2.2 µF, 15 volt, tantalum
- C18—0.1 µF, ceramic
- C19—470 pF, ceramic
- D1—D4—IN4002
- D5—DIN4734A, 5.6 volt, 1 watt
- D6—D9—IN914
- IC1, IC3—LM311 voltage comparator
- IC2—LM301A op-amp
- IC4—555 timer
- IC5, IC6—74190 synchronous up/down counter with mode control
- IC7, IC8—7447A BCD-to-seven segment decoder/driver
- IC9—LM309K voltage regulator, 5 volt
- F1—¼ amp
- J1—3-pin DIN jack
- P1—DIN plug
- Q1, Q3, Q4—2N3904
- Q2—2N4393
- S1—SPST toggle
- T1—16 volt, center-tapped, 400 mA (Signal No. 2414-16. Available from Signal Transformer, 1 Junicus St., Brooklyn, NY 11212. $3.70 each, plus postage.)
- DI S1, DI S2—DL-747 (Litronix seven-segment display.)
- Misc.—Case, 2-conductor shielded cable (Belden No. 9452 or equal), miscellaneous hardware.

Figure 4 shows the foil pattern, and Figure 5 shows the component placement diagram.

Types to assure low leakage, high stability and precise capacitance values. Finally, the display pinouts are for Litronix DL-747's; others can be used, but the pin connections may be different.

Calibration

After construction, only the circuit calibration remains to be done. To adjust R14, use a 287K 1% metal-film resistor. Thermistor resistance at 0°F is theoretically 288K ± 1.5%; the precision resistor is a very close match. By using the precision resistor, you can obtain an accurate 0°F temperature reference for the calibration. Connect the precision resistor into the circuit at the point where RT1 would normally be inserted. Apply power to the thermometer, and connect a high-impedance signal source to the output of the comparator. The output should have a high voltage at 0°F and a low voltage at 100°F.

Continued on page 99
Build This Electronic Security System

Protect yourself and your property with this versatile multi-featured security system.

C. D. WADSWORTH

The solid-state system described here provides all the features and versatility of the most advanced security systems in the $500.00 to $800.00 category at a parts cost that should not exceed $65.00.

Special features of this security system include:

- System test light that turns on any time the protective circuit is broken. Prevents false alarms—automatically indicates any tampering with circuit.

- Automatic exit time delay. Just turn the system on; now you have three minutes before it activates the protective circuit. This eliminates the outside keylock switch (which is hard to install) and there is nothing outside to be picked or tampered with.

- Automatic accessory control to provide house power to turn on lights, siren, or other accessories.

- Automatic entrance time delay. When you enter the building, just walk to the master control and turn the system off. There is an adjustable time delay of 10 to 45 seconds before the alarm sounds. You set this re-entry time to suit your needs—it’s fully adjustable.

- Day-Night circuit to switch in or out part of the alarm circuit to suit your changing needs.

- Entrance-Exit time delay turn-off. This single switch eliminates the time delays so you get immediate response (alarm) when an intruder breaks in—to protect you while at home.

- Automatic alarm turn-off. 8 to 10 minutes after the alarm starts it shuts itself off and automatically resets itself (just in case the burglar returns). This could be a very attractive feature for your neighbors if you decided to leave home for two

FIG. 1—BLOCK DIAGRAM DIVIDES the circuit up into its functioning sections, shows what transistors belong in each, and indicates connections to protective switches.
weeks and the alarm tripped while you were gone.

Automatic stand-by power in case the normal house power is interrupted for any reason. Rechargeable batteries are a feature and the recharging circuitry is built in and fully automatic.

Provision for fire sensors and panic button.

How it works

The block diagram of Fig. 1 shows the functions of the various parts of the circuit. The complete schematic appears in Fig. 2.

When protective circuit switches (Fig. 1) are closed, the base of Q1 is held at ground potential and the transistor remains off. When the protective circuit is broken, the bias provided by R11 turns on Q1 and charges C2 through R2 and R3. The only discharge path for C2 is through R3, R4, and the base-emitter junction of Q3. This causes Q3 to turn on, bringing the base of Q4 to ground potential and turning Q4 off. With Q4 off C3 (Fig. 2) is allowed to charge through R6 and R7 to the point where unjunction transistor Q5 fires and turns on SCR Q6. The R-C time constant of R6R7/C3 is the re-entry time delay.

The exit time delay is provided by the system switch (closed when system is off) which charges C6. Transistors Q11, Q12, and Q13 hold C2 at ground potential until C6 discharges through R19 and the base-emitter junction of Q13.

The 10-minute alarm turn-off works as follows: Transistor Q8 is held "on" by R11. However, relay RY1 cannot turn on because the emitter of Q8 does not have a complete path to ground until SCR Q6 is turned on. When Q6 turns on, RY1 acti-

FIG. 2—COMPLETE CIRCUIT DIAGRAM of the Safeguard Security System.

PARTS LIST

<table>
<thead>
<tr>
<th>Resistor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, R19</td>
<td>47,000 ohms</td>
</tr>
<tr>
<td>R2, R7, R8, R10, R15, R20, R21</td>
<td>1,000 ohms</td>
</tr>
<tr>
<td>R3</td>
<td>4,700 ohms</td>
</tr>
<tr>
<td>R4</td>
<td>470,000 ohms</td>
</tr>
<tr>
<td>R5</td>
<td>270,000 ohms</td>
</tr>
<tr>
<td>R6</td>
<td>500,000 ohms</td>
</tr>
<tr>
<td>R16</td>
<td>$627,000</td>
</tr>
<tr>
<td>C1</td>
<td>50/20V, vertical-mount subminiature trimmer (Mallory MTC 55L1 or equal)</td>
</tr>
<tr>
<td>R9</td>
<td>100 ohms</td>
</tr>
<tr>
<td>R11</td>
<td>6,800 ohms</td>
</tr>
<tr>
<td>R12</td>
<td>10,000 ohms</td>
</tr>
<tr>
<td>R13</td>
<td>1 megohm</td>
</tr>
<tr>
<td>R14, R17, R18</td>
<td>150,000 ohms</td>
</tr>
<tr>
<td>R22</td>
<td>1,800 ohms</td>
</tr>
<tr>
<td>R23</td>
<td>1,500 ohms</td>
</tr>
<tr>
<td>R24</td>
<td>2,200 ohms</td>
</tr>
<tr>
<td>R25</td>
<td>47 ohms, 1W</td>
</tr>
<tr>
<td>C1, C2, C3, C4, C5, C6</td>
<td>50 µF, 20V</td>
</tr>
<tr>
<td>C7</td>
<td>1,000 µF, 25V</td>
</tr>
<tr>
<td>D1, D3</td>
<td>1N914</td>
</tr>
<tr>
<td>D2, D4, D5, D7, D8</td>
<td>1N2482</td>
</tr>
<tr>
<td>D9</td>
<td>2N3642</td>
</tr>
<tr>
<td>D10</td>
<td>2N2712</td>
</tr>
<tr>
<td>D11</td>
<td>2N2160</td>
</tr>
<tr>
<td>D12</td>
<td>40363 (RCA)</td>
</tr>
<tr>
<td>D13</td>
<td>40363 (RCA)</td>
</tr>
<tr>
<td>C2</td>
<td>4.7K</td>
</tr>
<tr>
<td>R21</td>
<td>1W</td>
</tr>
<tr>
<td>C7</td>
<td>100µF, 25V</td>
</tr>
<tr>
<td>Q1</td>
<td>Zener, 6V, 1/2W</td>
</tr>
<tr>
<td>Q2, Q3, Q4, Q9, Q11, Q12, Q13, Q15</td>
<td>2N3642</td>
</tr>
<tr>
<td>Q5, Q10</td>
<td>2N2160</td>
</tr>
<tr>
<td>Q6</td>
<td>2N2712</td>
</tr>
<tr>
<td>Q7</td>
<td>C106Y1 (G-E)</td>
</tr>
<tr>
<td>Q14</td>
<td>40363 (RCA)</td>
</tr>
<tr>
<td>B1</td>
<td>Batteries, (3) 4.5V alkaline rechargeable (RCA VS1563)</td>
</tr>
</tbody>
</table>

F1—fuse, 1.5A

RY1—Relay, DPDT, 12V DC, PC board mount (Potter Brumfield R10-E2-Y2)\

L—10V DC (Eldema ICE 5913)

Misc.—16-connector terminal strip (Cinch 16-140-Y), four SPDT toggle switches, metal spacers, panel, grommets, battery clips, key lock, metal cabinet.

Note: The following items are available from Electronic Products Co., Box 160412, Sacramento, CA 95816: Circuit board No. 627, $9.20.

Complete kit of all parts, circuit board, panel, metal cabinet and instructions. No. 627K, $65.00 plus postage for 10 lbs.
vates closing switches RY1-1 and RY1-2 and the alarm sounds. Prior to activation of Q6, capacitor C4 was charged to full potential through R12 and D3. When Q6 activates, it also back-biases diode D3 and the only discharge path for C4 is through R13 and the base-emitter junction of Q9. With Q9 on, C5 cannot charge and will remain at ground potential. When C4 has discharged, Q9 turns off. C5 charges through R14 and fires unijunction Q10 which triggers the SCR 7. Negative bias is then applied to Q8's base through Q7 and RY1-2. Q8 turns off, RY1 turns off. Q6 turns off because there is no longer a conductive path except through R12, which does not pass enough current to keep it turned on. When RY1 deactivates, switch RY1-2 opens, which turns off Q7. All components are now in the same active state as before the alarm.

The power supply design is straightforward and easy to follow. No heat sink is required for Q15 if the components specified are used. Batteries charge through D7 until their voltage is equal to the supply voltage, at which time diode D7 becomes back-biased, preventing further charging. R25 is a current-limiting resistor to protect the batteries. Diode D7 remains back-biased until supply voltage falls below battery voltage, at which point the batteries then supply power to the circuit.

Putting it together

Construction is straightforward and parts layout is not critical except in the SCR gate circuit, in which leads should be kept as short as possible. If you plan to etch and drill your own circuit board, the layout and parts placement are shown in Fig. 3 and Fig. 4.

FIG. 4—COMPONENT PLACEMENT diagram.

INTERCONNECTIONS

TEST LAMP (LIGHTS WHEN CIRCUIT IS OPEN)

SYSTEM SWITCH (SWITCH CLOSED WHEN SYSTEM IS OFF)

PROTECTIVE CIRCUIT (SWITCH CLOSED TO DEACTIVATE PORTION OF CIRCUIT CONNECTED BETWEEN TERMINALS 8 & 10)

TIME DELAY (SWITCH CLOSED DEACTIVATES TIME DELAYS)

ALARM BELL (SWITCH SHOULD REMAIN CLOSED AT ALL TIMES EXCEPT TO DEACTIVATE SYSTEM AND BELL)

FUSE (1.5 AMP)

BATTERY + (OTHER SIDE OF BATTERY CONNECTED TO CASE GROUND)

FIG. 6—INTERCONNECTIONS to items on panel. Letters match those on schematic.
Students to learn programming with hand-held calculators

A course for teaching fundamental programming with small calculators to students in high school was described to the recent annual conference of the National Council of Teachers of Mathematics by speakers from Texas Instruments.

Designed by the University of Denver Mathematics Laboratory and oriented to a series of motivational activity lessons, the course materials have been tested with both teachers and students. The format allows a teacher to move the students into simple straightforward programming quickly. They then proceed to advanced program techniques involving conditional and unconditional transfers, loops and subroutines. At each of these points the teacher selects applications or problem situations at various mathematical levels, to help the students understand the concepts covered.

Insert resistors and capacitors in board and solder, then insert diodes and transistors and solder. This helps prevent excessive heat on the semiconductors. Next, connect the terminal strip to the foil side of the printed circuit board with 4-40 machine screws. Use one 4-40 nut and three washers as spacers between the terminal strip and the printed-circuit board so the ends of the leads on the terminal strip do not quite pass through the board. The metal leads on the terminal strip can now be soldered to the printed-circuit board.

The numbered locations on the schematic correspond with the pin numbers of the terminal strip (Fig. 5) and the printed circuit board layout. The lettered locations on the schematic and the printed circuit board layout are the interconnections for the test lamp, fuse, and switches and are detailed in Fig. 6.

Connect wires for the switches, fuse, and light to the printed circuit board, mount the board on the back of the metal panel, using 4-40 machine screws and two 4-40 nuts as spacers. Check to be sure that no leads from printed-circuit board or the terminal strip touch the metal panel. Mount the fuse, light and switches, dress wires around edge of printed-circuit board and connect to appropriate points. Mount transformer in cabinet with the center tap of the transformer secondary going to cabinet ground.

The connections for the various sensors to the terminal strip are detailed in Fig. 5. Remember when checking this system out, capacitor C2 must become fully discharged between tests. So you must turn the SYSTEM switch on between tests and wait the full 3 minutes (exit time) before the next test. Turning the BELL switch off will not discharge C2. Unless you turn the SYSTEM switch off and then back on you may get a false alarm.

Special Note: The time before the alarm turns itself off may be reduced or increased by changing the value of R13 and to some extent by changing the value of R14. Experiments with R13 show it can be increased to 5 megohms providing the beta of Q9 (the particular 2N2712 you use for this function) is not drastically different from normal for this unit.

For accessory control (house lights, siren, etc.) connect a 12-volt relay to terminals 2 and 15.

The great advantage of the hand-held calculator as a learning tool is that it is readily available to teachers and students who would otherwise have to wait, after writing programs, for access to larger computers. Also, the initial and continuing costs for a computer-based course would be orders of magnitude greater than for one that uses calculators.

The course will be available late in 1977. Contact your local calculator dealer or write: TI, Box 5012, Dallas, TX 75222
Part II. Construction details for a multi-function digital clock that provides a simultaneous display of the time, date, alarm and countdown timer

Jeffrey G. Mazur

Last month, in the first part of this article, we provided the complete schematic diagram and a detailed description of how the circuit worked. This month, the article concludes with the foil patterns and construction details.

Construction

The clock is built on two separate printed circuit boards. A double-sided board holds all the clock circuitry, and a single-sided one contains the readouts. The foil patterns for the main board are shown in Figs. 5 and 6. The foil pattern for the display board is shown in Fig. 7. The two boards are connected by a 32-conductor cable. Since there are many connections on both sides of the clock board as well as feed-through holes for interconnecting the two sides, plated-through holes are a must on this board.

Mount the power transformer directly on the clock board or, for a slimmer package, use a wall-type AC adapter transformer. If the adapter is used, the...
two boards fit neatly into a standard 5 × 7-inch picture frame.

Before starting construction, decide on which options will be used. If a 24-hour format is desired, install D28. (See Fig. 8.) Resistors R17, R18, R26, transistor Q2 and the AM/PM digits can then be omitted if desired. For crystal timebase operation, omit R1, D1 and C2. If the power-line frequency (50 or 60 Hz) is going to be used as the timebase, do not install IC12. For 50-Hz operation, add D29. Temporarily place a jumper where resistor R5 would normally go. The component placement diagram for the display board is shown in Fig. 9. Mount the small alarm and timer displays on Molex pins to raise them up to the same height as the other displays. This gives a uniform appearance and reduces parallax problems when mounting the board behind the front panel. Make the front panel by cutting holes in a piece of black cardboard and mounting it to a solid piece of red plastic.

Mount the remaining components, including the 28-pin socket for IC11. Do not install IC11 at this time. Connect the display board to the clock board using ribbon cable. Then wire up all switches, being careful to install the diodes connected to them properly. Mount the TIME SET/DATE SET switch on the back or where it won’t be accidentally moved. Mount the rest of the switches on the front, back or sides.

Check the boards carefully for shorts and proper component polarity. When everything looks in order, remove IC11 from its protective carrier and carefully install it in its socket. Then apply power. The display may register all 8’s; this is a
normal reaction. Set the date, time, alarm and timer displays using the SET and MINUTES/HOURS advance switches. Setting the time will automatically set the seconds to zero. The seconds will hold at zero until switching to another mode. This permits you to synchronize the clock to a standard time source such as the phone company. When setting one of the functions (time, alarm, date, etc.), all but the time display will be blanked.

If there is any flicker in the display or in certain segments, the external multiplexing frequency or the blanking time may be off. The output of the scanning oscillator (IC1) should be about 140 Hz. If this checks OK, then increase the value of capacitor C5 (blanking time) until no misreading occurs.

If the crystal timebase option is not used, the clock will revert to its internal backup oscillator in case of a power failure. This oscillator can be adjusted by replacing the jumper at R5 with a 5K potentiometer or a selected resistor. The value of R5 should be such that the DI output of the 7001 (pin 8) is 1.05 kHz for 60-Hz or 875 Hz for 50-Hz operation. For short power interruptions (up to several hours), use a 9-volt battery. For longer protection, use eight AA-cells or a 12-volt lantern battery depending on available space. If rechargeable cells such as Ni-Cad's are used, then a trickle charge can be obtained by adding a resistor across D35. For DC operation in a car, boat, etc., connect the power across C1 (omit T1). Use a 9-volt backup battery to take over if the vehicle battery drops too low, for instance during starting.

R-E
 THERE IS ONLY ONE WAY THAT A CB OPER-
a tor can be certain that his CB trans-
mitter is always operating on frequency,
and that’s by monitoring its output with a
frequency counter whenever he is on the
air. The frequency counter described in
this article makes it easy for the CB’er to
do just that. It can be used in the car with
a mobile unit or at home with a base
station.

The counter reads frequencies over a
range of 5 Hz to 30 MHz. The display
consists of five large (1½-inch high)
bright LED readouts. A mode switch lets
you select kHz or MHz readings. Once
installed, the unit works automatically
when you transmit. And while you’re
listening, only the decimal point of the
display remains lit, reducing current

drain to less than 70 mA.

For CB’ers, all 40 CB channels are
covered. The unit can be mounted in a
car and the frequency counter connects
between the CB transmitter and the
antenna by using standard SO-239 in-
line connectors.

To use the counter with a base station,
an additional 117-volt AC supply is
needed. A schematic for such a supply is
shown and an assembled version is avail-
able as described in the parts list.

Amateur radio operators can also use
the counter to check their transmissions
on all bands through 10 meters. Obviously,
this is particularly important if he is
using a VFO.

For experimenters, this counter offers
an inexpensive accurate (± 10 PPM) test
instrument. It can be driven directly with
5-volt TTL signals.

Building your counter

The unit is easy to build. All parts with
the exception of front and rear panel
switches and connectors mount on the
two circuit boards. One board is the main
circuitry, the other houses the display
devices. Both boards are one-sided and
the foil patterns printed here are actual
size. Boards are also available from the
supplier listed in the parts list.

The resistors mounted on the display
board have only one lead connected to
that board. The other end of these resis-
tors mate with matching holes in the
main circuit board and interconnect the
two boards. Once soldered into place, the
two boards sit at right angles to each
other and are firmly fastened together.

No special construction tips are
needed. But do take care not to let solder
lobs short foils, especially when sol-
dering the IC pins into place.

One point; you might want to try

GEORGE SANTI

INPUT SENSITIVITY: 500 mV RMS-DC to 3 MHz, 500 mV RMS linearly increasing to 5
VRMS-3 MHz to 27 MHz.
IMPEEDANCE: 22,000 ohms at low frequencies, 200 ohms at 27 MHz.
FREQUENCY RANGE: 5 Hz to 30 MHz.
DISPLAYS: Five 0.5” high LED’s
OVERLOAD: Diodeprotected input
ACCURACY: ±1 digit ± time base stability
READOUT: kHz or MHz
TIMEBASE CRYSTAL FREQUENCY: 10 MHz, ± 10 PPM accuracy, ± 1 PPM stability
POWER REQUIREMENTS: 8-14 VDC at 1.2A. For base-station operation use 117 VAC
regulated power supply (minimum 1.5A rating)
DIMENSIONS: 2½”H, 5¼”W, 6¼”D
WEIGHT: 1.6 pounds

POWER SUPPLY provides 12 volts DC to operate the frequency counter off the 117-volt AC line.
COMPLETE SCHEMATIC of the CB frequency counter. Input jack J1 connects to the ANTENNA terminal on the CB set. Connector J3, not shown on the schematic, is in parallel with J1. When S3 is in the SNIFFER MODE, for mobile operation, only the decimal point is lit during standby.
ALL RESISTORS 1/4-WATT 5% UNLESS NOTED

R1, R2—100 ohms, 1W, 10%
R3—2200 ohms
R4, R12—1 megohm
R5, R15—5100 ohms
R6—22,000 ohms
R7—4700 ohms
R8, R9—not used
R10—1,000 ohms
R11—62,000 ohms
R13—100,000 ohms
R14—4.7 megohms
R16 thru R51—820 ohms (35 resistors)
R52, R53—680 ohms
R54—150 ohms
R55—2.2 ohms, 5W, 5%

CAPACITORS

C1—1,000 µF, 16V, electrolytic
C2, C12—0.1 µF disc
C3, C7—10 µF, 10V, electrolytic
C4, C8—0.002-µF disc
C5—1 µF, 6V, electrolytic
C6—10-pF disc
C9—62-pF, 5% NPO, disc
C10—7.25-pF trimmer (Erie)
C11—22-µF 10V, electrolytic

DIODES

D1—3A, 25V or higher power rectifier
D2—1N5232B, 5.6V Zener diode
D3, D4, D5, D6, D7, D10—1N914
D8, D9—1N4001
DSP1, DSP2, DSP3, DSP4, DSP5—
FND507 (0.5-inch high 7-segment LED display 15mA per segment)
F1—3A 3AG
J1—coax connector
J2, J3—2 connector male power jack
RFC1—56-µH choke

INTEGRATED CIRCUITS

IC1—74132—Quad 2-input NAND
IC2—7476—Dual J-K Master-Slave flip-flop
IC3 thru IC14—7490AN—Decade Counter
IC15 thru IC19—7447 BCD-to-seven-segment decoder drive
IC20—CD4001—Quad 2-input NOR gates
IC21—7400—Quad 2-input NAND gate
Q1—2N40631
Q2, Q3—2N4124
Q4—2N3563
S1—SPST switch

PARTS LIST

S2, 3—SPDT switch
XTAL1—10 MHz ±10 PPM
CIRCUIT BOARDS
Case
Hardware

THE FOLLOWING PARTS ARE AVAILABLE FROM GUARDSMAN ELECTRONICS, BOX 215, BROOKLYN, NY 11207.

ETCHED AND DRILLED CIRCUIT BOARDS (2); $11.00 POSTAGE PAID.
10-MHz CRYSTAL; $3.50 POSTAGE PAID.
TRIMMER CAPACITOR; $6.50 POSTAGE PAID.

SET OF 2 CIRCUIT BOARDS, CRYSTAL AND TRIMMER CAPACITOR; $19.00 POSTAGE PAID.

COMPLETE KIT OF ALL PARTS INCLUDING CUSTOM CABINET; $59.95 PLUS $1.50 POSTAGE AND HANDLING.
ASSEMBLED UNIT; $99.95 PLUS $1.50 POSTAGE AND HANDLING.

POWER SUPPLY (ASSEMBLED) 13.6VDC, 2.5A, $18.00 POSTAGE PAID.
Most people think there are only two levels of careers in electronics: the technician level and that of the degree engineer.

There is, however, a third and very important level. It is that of the engineering technician or *practical* engineer. The growing importance of this career level has created what might well be called the "New Professional" in electronics.

If you look at the various levels of employment in electronics, you will understand why this "New Professional" is so important.

The average technician is a person who has had vocational training in electronics. He understands the basic principles of electronics so he can troubleshoot, repair and maintain equipment. He usually works under close supervision in performing his duties.

The engineer has college training in electronics. He usually supervises technician personnel and is responsible for planning and developing of electronic equipment and systems. Frequently, however, engineers are more heavily trained in the scientific principles of electronics and less in their practical application.

The engineering technician, by contrast, is a specialist in the practical application of electronics. His training usually consists of a two-year college program in electronic engineering technology. In many organizations, the engineering technician handles several of the responsibilities of the degree engineer. He often has the title of engineer.

CREI programs are designed to give you at home the same level and depth of training you receive in a two-year college program in electronic engineering technology. CREI programs are, in fact, more extensive than you will find in many colleges. And CREI gives you the opportunity to specialize in your choice of the major fields of electronics.

Unique Design Lab

CREI gives you both theory and practical experience in circuit design with its Electronic Design Laboratory Program. The professional equipment included in this program allows you to construct, test out and correct the circuits you design until you have an effective circuit.

This Lab Program helps you understand advanced electronics. It also gives you practical experience in many other important areas of electronics, as in pro-
Career Training at Home

totype construction, breadboarding, test and measurement procedures, circuit operation and behavior, characteristics of electronic components and how to apply integrated circuits.

Only CREI offers the unique Lab Program. It is a complete college Lab and, we believe better than you will find in most colleges. The “Lab” is one of the factors that makes CREI training interesting and effective. And the professional equipment in this program becomes yours to keep and use throughout your professional career after you complete the training.

Engineering Degree
CREI offers you special arrangements for earning credit for engineering degrees at certain colleges and universities as part of your home study training program. An important advantage in these arrangements is that you can continue your full time job while “going to college” with CREI. This also means you can apply your CREI training in your work and get practical experience to qualify for career advancement.

Wide Program Choice
CREI gives you a choice of specialization in 14 areas of electronics. You can select exactly the area of electronics best for your career field. You can specialize in such areas as computer electronics, communications engineering, microwave, CATV, television (broadcast) engineering and many other areas of modern electronics.

Free Book
In the brief space here, there isn’t room to give you all of the facts about CREI college-level, home study programs in electronics. So we invite you to send for our free catalog (if you are qualified to take a CREI program). The catalog has over 80, fully illustrated pages describing your opportunities in advanced electronics and the details of CREI home study programs.

Qualifications
You may be eligible to take a CREI college-level program in electronics if you are a high school graduate (or the true equivalent) and have previous training or experience in electronics. Program arrangements are available depending upon whether you have extensive or minimum experience in electronics.

Send for this FREE Book describing your opportunities and CREI college-level programs in electronics

Mail card or write describing qualifications to

CREI CAPITOL RADIO ENGINEERING INSTITUTE

McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue Northwest
Washington, D.C. 20016

Accredited Member National Home Study Council

GI Bill
CREI programs are approved for training of veterans and servicemen under the G.I. Bill.
using IC sockets. Don't do it for this project if you intend to use the counter in a vehicle. Over a period of time the vibration will loosen the IC's and the counter will suffer from all kinds of strange problems. However, if you are using the counter with a base station, you can use IC sockets if you wish.

Installation

Installing the counter in a car is a relatively simple matter. It can be installed in any convenient location using mounting brackets. The most convenient location is usually under-dash as close to your CB rig as possible.

After mounting, the next step is to connect the counter to the car's 12-volt electrical system. To do this, assuming a negative-ground electrical system, connect the negative lead from the counter to the metal frame of the car and the positive lead to a fuse in the fuse box. If you would like the counter to turn off with the ignition switch, tie into a fuse that handles a switched accessory. For positive-ground electrical systems, reverse the connections.

Connect the antenna to the coaxial connector marked ANTENNA on the back panel of the counter and the CB rig to the one marked TRANSCEIVER. Finally, place the slide switch on the back panel in the MOBILE position and your all set.

A base installation is basically the same, minus the mounting headaches. Power is taken from the separate power supply.

We think you'll find this an interesting and useful project.
THE BASIC CLASS-D CITIZENS RADIO service has been around for many years, existing mostly as the refuge of gypsy cabs, toy-like hand helds and would be Ham’s. However, the explosion in popularity begun by truckers during the 1974-75 oil shortage and the 55-MPH speed limit has brought a tremendous influx of users with little or no previous two-way radio experience and a great many questions.

Adding to the confusion is the similar influx of CB manufacturers each elbowing for their share of the market the boom created. Many of them with the usual kind of over-zealous claims that seem to flourish in any gold rush economy. The fact that most CB sets are sold through non-technical retailers such as department and discount stores, automotive stores and truck stops, and marine hardware stores and tackle shops only compounds the confusion over quality and value even further.

Especially in the area of measuring and predicting performance in the real world, meaningful information has been non-existent. As any field service technician would be quick to point out, measurements made on the sterile bench of the testing laboratory can seem to be distantly related phenomena when compared to actual performance in the hostile environment of mobile, portable and marine service.

Mobile and marine service are especially demanding of a set's electrical and mechanical stability, and circuits and components designed to be economical performers in the living room or office are frequently disappointing and often unreliable when in equipment intended for use in the field, car or boat.

CB electronics in particular suffer in this respect because they must be built to an attractive price for one of the most competitive markets in the electronics industry. Frequently, the most unfortunate consequence of this is a lavish distribution of the manufacturing budget towards those aspects of appearance that enhance a product's appeal on the retailer's shelf, invariably at the expense of more sturdy internal construction that might enhance environmental and mechanical stability or assure long term durability.

Temperature & performance

Temperature stability is one of the most frequently overlooked causes of poor communication. In the United States, seasonal temperature extremes of 0°F to 125°F in direct sun surface temperatures are not at all uncommon. Yet many CB rigs currently in production will not operate over this range without drifting beyond legal (and useable) frequency tolerance.

Likewise a transceiver, to be trustworthy, must be able to operate under the widest power supply voltage variations
experienced. A typical automotive electrical system in good condition delivers about 13.6VDC when the engine is running. But dead batteries or defective voltage regulators can extend this optimum voltage into a range with a low of 11.0VDC and a high of 16.0VDC. A motorist stuck in a blizzard or on a desert road might find his battery too dead to restart his engine but still charged enough to deliver 3A to his CB. But if his transmitter has drifted between channels it will not get a call through and may be worse than useless.

Temperature and supply voltage, however, are two variables that are frequently overlooked when specifying and purchasing equipment. Also ignored is mechanical stability. The tremendous vibration experienced by equipment bolted to transmission humps and under dashboards can do more than just shake a flimsy radio apart in time. It can also cause the transmitted carrier to be modulated in amplitude or frequency. The former being the cause of the annoying rumble or roar heard on some signals. The latter being a violation of FCC regulations.

If we were going to test every new CB set before we purchased it, we would use the list of tests that follows. In the issues to come, Radio-Electronics will publish test reports on CB radios. These reports will include actual lab measurements of some of the more vital performance specifications covered in the following text. All of these measurements will be made in our lab and will accurately reflect the performance of the equipment that we test.—Editor

The tests
1. Carrier Frequency Error. In this test we check the actual carrier frequency of each channel in the radio when transmitting into a 50-ohm dummy load at room temperature (70°F) and nominal supply voltage (13.6 VDC for mobiles, 117 VAC for base stations) to see how carefully the crystals are selected and aligned. Results will be listed for the greatest error above and/or below any assigned frequency.

2. Carrier Frequency Change with Temperature. Holding the voltage constant we measure the maximum excursion in each direction as the entire chassis is first chilled from +70°F to 0°F and then heated to +125°F over a period of approximately four hours on channel 9.

3. Carrier Frequency Change with Volume. Holding the temperature constant at 70°F we vary the supply voltage from 11 to 16 VDC for mobiles and 100 to 130 VAC for base stations while measuring the maximum excursion in frequency of channel 9 to test the set's regulation.

4. Carrier Frequency—Worst Case. In this rigorous test we sweep the voltage ranges in test No. 3 at each 20°F increment in test No. 2 and measure the worst excursion of channel 9 in each direction. Any transceiver that remains within the .005% tolerance (approximately 1850 Hz) prescribed by the FCC during this test must be very well regulated and temperature compensated.

5. AM Carrier Power Output—Unmodulated. At nominal temperature and voltage we measure the average carrier power into a 50-ohm load of each channel and report the highest and lowest readings. A difference of more than a few percent between these two may indicate an output network that is too selective or parasitic resonances elsewhere in the exciter.

6. AM Modulation Percentage. We measure the percentage of 1000-Hz sinusoidal audio modulation relative to the carrier power on each channel to insure that the modulator has enough power to fully swing the output symmetrically about the average value. Non-symmetric irregularities are reported.

7. Mechanical Modulation. In this test, the chassis is clamped to a shake table and vibrated separately in each of three crossed axes with the mike audio terminals shorted while the output of the transmitter is observed for variations in amplitude or frequency. The presence of either will indicate loosely mounted components or poor solder joints. The vibration will sweep from 20 Hz to 2000 Hz at approximately 5 G's (sinusoidal).

8. Speech Processor Effectiveness. On sets with built in speech processing circuitry such as audio compressors or RF clippers we attempt to give a figure of merit as to their value. At nominal conditions on channel 9 we adjust external 600-Hz sinusoidal audio modulation to provide as close to 100% modulation as the modulation limiter will allow. We then monitor the output for any increases in average envelope power that can be obtained by increasing the audio input to saturation. We report the improvement in dB obtained to guide the user in evaluating manufacturers claims of superior "Talk Power". This test measures only average power however and this is not a complete indication of improved intelligibility as other factors of circuit design which determine the number of distortion products (unavoidably generated as part of the compression process) that fall within the RF passband will determine total articulation gains.

9. Harmonic and Spurious Supression. This expresses in dB relative to a 1000-Hz 100% modulated carrier any harmonically or non-harmonically related signal within the range of 500 KHz to 400 MHz. These signals, if present, cause
interference with other services—especially TV and FM radio. Therefore they are particularly interesting to base-station operators who must peacefully co-exist with their non-CB neighbors. The current FCC standard is $-60\,\text{dB}$ but a proposal to increase this to $-100\,\text{dB}$ may be enacted (this will affect manufacturers only and existing equipment will be unaffected).

10. **Opposite Sideband Suppression (SSB only).** We measure the amount of unwanted sideband content in a 1500 Hz band to determine the amount of harmful interference to users of the other half channel and the amount of power lost to the selected sideband. This suppression is determined by the IF filter and a good figure aids the receiver too.

11. **Carrier Suppression (SSB only).** The amount of residual carrier present in the output represents power robbed from the desired sideband's P.E.P. and can cause aggravating interference to distant SSB users. We measure this also in dB below the P.E.P. in the same two-tone conditions as used in test No. 10. A poor rating means a defective balanced modulator or poor shielding.

12. **Peak Envelope Power—P.E.P. (SSB only).** The power output is measured under the same conditions as in test No. 11 except using the above described two-tone modulation and a detector that responds to the peak value of the RF envelope—not the average. Legally limited to 12 watts, radios with properly adjusted Automatic Level Control should approach this closely.

13. **Sensitivity.** Under nominal conditions of temperature and supply voltage, a 1000-Hz 50% modulated RF signal is injected at the antenna terminals with the transceiver in the receive mode. The amount of this standard signal in microvolts (μV) necessary to produce ten times (20 dB normalized) the audio output voltage at the speaker terminals that the random air noise produces is termed its 20 dB S+N to N sensitivity. This is a direct measure of how weak a signal can be easily heard. Measurements made at a lower ratio such as 10 dB will yield a lower (better) figure but do not represent "armchair copy" legibility.

14. **Squelch Sensitivity.** Using the same conditions of standard modulation but advancing the squelch control just to the point of quieting the air noise, the RF input signal is measured that just breaks the squelch open. This shows how weak a signal can be heard while still enjoying the advantages of squelched operation.

15. **Sensitivity—Tight Squelch.** The sensitivity measurement taken under standard conditions but with the squelch control fully advanced. For purposes of local operation, this shows how strong a signal can be excluded.

16. **Sensitivity—Image Channel.** The process of mixing in all superheterodyne receivers produces a second undesirable channel in which signals may be received if not filtered out completely. We will measure the standard signal strength necessary on this image channel required to produce the same audio output as on the desired channel. Expressed in microvolts, it is a measure of the effectiveness of the RF and IF filtering and shielding.

17. **Sensitivity—4F.** Measuring the susceptibility of a radio to receive undesirable signals directly into its intermediate frequency we have a figure that can guide us away from a set with some strange responses. Interstage shielding is the culprit in most cases and is difficult to remedy.

18. **Dynamic Range.** To measure the dynamic range or ration of the weakest signal to the strongest signal a receiver can accommodate, we inject two equal level standard signals whose difference in frequency is equal to 27065 MHz (Channel 9). Any loading in the protection diodes, RF amplifier stage, mixer or IF stages before the filter will cause non-linear operation of that stage with a subsequent mixing of the two signals. We use test frequencies of 27.935 MHz and 55 MHz to include frequencies both inside and outside the RF bandpass to mimic the most troublesome type of interference—between other CB stations and local TV stations. The signals will be increased until cross modulation is observed on channel 9 and the difference in microvolts with test No. 13 expressed as dB.

19. **Selectivity.** This test measures a set's ability to discriminate against signals on the channel immediately adjacent to the one in use. Signals displaced by the 10-kHz channel spacing both above and below are separately injected and adjusted to produce the same audio output as a 10-µV signal on channel 9. The lower level in dB relative to 10 µV is reported.

20. **Bandwidth Shape Factor.** This tests the steepness of the skirt of the receiver's filter response and is vital for judging how well a set rejects interference from stations that are off frequency. We will measure the frequency off the carrier at which the receiver's response is 6dB down from its peak value and the frequency at which it is 60dB down. The smaller over the larger gives a simple numerical figure of merit. Sets with expensive multi-section crystal type or mechanical filters in the IF will shine here and should be highly prized because this is perhaps the most important single specification for today's crowded channels.

21. **Noise Suppressor Effectiveness.** We will inject a train of 25-µS pulses with a risetime of 2 nS into the antenna and measure the reduction, again in dB, with the filter switch on and off. These pulses simulate typical ignition noise and noise blankers that block an IF gate.
Core Memories—How they work

With inexpensive core memories flooding the surplus market, it's a wonder that they haven't appeared in more hobby computer systems. Here's a look at what they are and how they work.

MARTIN A. SALA

THE MAGNETIC CORE IS ONE OF THE LEAST expensive and fastest means of storing data in a computer system. Magnetic core memories are static: they hold data when power is removed, don't have to be refreshed periodically and are usually of the random access (RAM) variety.

The actual method of storing ones and zeros in a core is simple. The basic core element is shown in Fig. 1. By passing conductors through the center of the ferrite cores and passing a current through the conductors in a set direction, a magnetic field is created that magnetizes the core. A logic 1 has then been written when the core is magnetized. (This process is similar to the one used in making permanent magnets.)

Just the opposite is done to read or clear a core. A current is sent through in the opposite direction, and consequently cancels any previous fields in the core. To read a core, an extra winding must be added: the sense winding.

When a core holds a logic 1 (is magnetized) the read current causes the magnetic flux to collapse and induce a voltage in the sense winding. If the core had held a logic 0 (been unmagnetized), no voltage would have been induced in the sense winding.

This method is basically the idea, but is much too simple to function in a real computer system. The type we shall be concerned with is known as the 3-D, 4-wire. Three-D means a three-dimensional array consisting of planes of cores arranged in an X-Y format in which the total number of words is equal to the number of cores per plane. (The number of bits per word is equal to the number of planes.) Four-wire signifies that four wires pass through each core. They are: X Drive, Y Drive, Inhibit lines and the Sense windings. (See Fig. 2.)

When a read/write (R/W) current passes through both X and Y drive lines, a core is magnetized (or demagnetized). If there is current on one drive line through one or many cores, those cores will not switch; it takes the sum of both X and Y currents to switch a core. The current on one line is known as the half current.

This half current is used to write a logic 0 into a core, with the help of the Inhibit lines. As a core is selected, an equal but opposite current on the Inhibit line cancels out the current on the Drive line parallel to it and thus creates a half current. Remember, the drive lines only select the core to be written—it is the Inhibit lines that determine whether or not the core will be logic one or zero. During the read cycle,
the drive currents are reversed and cause the magnetic field stored in the core to collapse and create a voltage on the Sense winding.

Core memory design
Memories of the core type are basically easy to design. Circuitry is usually straightforward, with simple timing methods. All that one needs to service a core memory is an oscilloscope, a VOM and sometimes a signal generator.

One can start a core system with a stack of core planes with the desired number of bits and words. Try to obtain the core stack parameters (current values for the Drive and Inhibit lines, etc.). Input/output designations for the core stack are also necessary—the experimenter will be lost if he doesn't know what all the leads on the package are for.

Mount the core stack in a place relatively free from magnetic fields (away from motors, generators, solenoids and the like) and where cool air may circulate freely—continued use heats the Drive lines.

In the 4096-core unit partially illustrated in Fig. 3, there are 64 X-drive lines and 64 Y-drive lines. (Fig. 3 shows only eight of one of these sets of lines.) One of each must be selected to switch a core. An Address unit supplies the information as to which drive lines are to be selected and in which mode (Read, Write, etc.). One of the simplest circuits incorporates a steering network to partially decode the address and steer the currents in the proper direction for read or write. Figure 3 shows that by selecting one X and one Y input, any one of 64 lines may be picked. The input lines to the diode decoders are numbered 0 to 7 X and Y. (Only one of these sets of lines is shown, to keep the circuit as simple as possible.) It is when one of eight X lines and one of eight Y lines are picked that a specific drive line is enabled.

Switching a core
It takes a specific amount of current to switch a core. This current is switched on and off at the diode decoders desired by the X and Y circuits. They are usually made up of single transistors biased so that they turn on and off at logic 1 and 0. Logic 1 is normally 4 volts, logic 0 is 1.4-volts TTL (transistor-transistor logic) levels. See Fig. 4.

There are two sets of X and Y circuits. One sends current down the drive lines in one direction to write; the other in the opposite direction for the read operation. While transistors are most commonly used, one may use any desired technique: relays, switches, diodes, even vacuum tubes (all have been used) and need not incorporate the TTL methods described here.

So far the cores, mounted in their planes and assembled into stacks, the diode decoders and the switch and sink circuits have been discussed. How the cores receive their signals, how they are directed to certain cores in the stack, how they are called for and how information is restored to a core after it is destroyed by reading are still to be learned.

R-E
all about RF signal generators

PART II—An in-depth look at the different types currently available, including how they work, their specifications, features and applications

CHARLES GILMORE*

LAST MONTH WE EXAMINED THE BASICS OF RF signal generators and the types of oscillator circuits that are commonly used. This time we continue our study of how RF signal generators work.

Modulators

As indicated last month, AM normally takes place at the output amplifier or a special modulator prior to the amplifier. Some of the earlier laboratory generators were MOPA (Master Oscillator Power Amplifier) designs. Modulation was applied directly to the oscillator itself. Generally, it is very difficult to AM an oscillator without also creating some FM. Most of the older vacuum-tube RF signal generators used grid modulation of the power amplifier. Frequently the total percentage of modulation you can get from a particular signal generator is limited not only by the modulator, but also by the power amplifier itself. This is especially true at high output levels.

The more modern, all solid-state generators, use diode modulators between the buffer and the output amplifier. Frequently the amplitude modulator has a wider dynamic range than needed to provide maximum percentage of modulation required by the generator. This wider dynamic range, combined with DC coupling, permits the modulator to modulate the RF carrier with audio frequencies and also to vary the gain of the RF carrier as part of the automatic level control (ALC) circuitry.

When the modulator is used for both automatic level control and modulation, the modulator has two inputs. One of these is AC coupled and its input signals are the internal tones generated by the modulator oscillators. The other input is a DC level derived from the automatic level control monitoring circuits.

Most signal generators provide two internal tones, one at 400 Hz, the other at 1 kHz. The two-tone modulation signal source normally consists of one of the common RC oscillator circuits. The amplitude of the audio oscillator may be continuously varied from zero to an amount which produces the maximum permissible modulation. Variation is controlled with a modulation level control on the front panel of the RF generator.

There are two ways to get a metered indication of the percentage of AM. The first, and simplest, is commonly used in the lower cost RF generators. The modulating signal supplied to the modulated circuits is sampled and applied to a full-wave rectifier. The output of the full-wave rectifier is applied to a DC meter that reads in percent of modulation. Such a system is relatively accurate if the modulation percentage does not change with changes in RF frequency or modulating frequency.

The second form of indicating the amplitude modulation percentage is somewhat more complex but eliminates problems encountered with the simpler form. As you can see in Fig. 8, this system uses a wideband diode detector that monitors the output of the power amplifier. This output is filtered so no RF signal remains, leaving only the modulating waveform. This detected signal is applied to an AC volt meter made up of a wideband fixed-gain amplifier and high-impedance, wideband, stable AC metering circuits.

The system eliminates problems encountered in the first method of monitoring as it measures the actual amount of modulating signal retrieved from the RF carrier. Frequently a more highly-filtered signal is also taken from this detector, as shown by the dotted line in Fig. 8. This signal is also applied to the modulator, forming the automatic level controls. The filtering on this line completely eliminates all RF carrier and
modulation. The line, therefore, responds only to long-term variations in output level.

A modulator normally has three sources of input when automatic leveling is used—the automatic leveling input, the internal audio tones, and a source of external audio modulation. The automatic leveling input is always connected, regardless of the modulating mode. The user, however, may choose between one of the two modulating sources—either the internal oscillator or the external input.

Frequency modulation is done by direct modulation of the oscillator. In vacuum tube generators, a reactance modulator is common. It is a form of amplifier applied across the resonance circuits of an oscillator. Signals applied to the input of the reactance modulator appear as a change of reactance to the tuned circuit. This changes the oscillator frequency. The reactance modulator is a direct-coupled device so it not only responds to audio-frequency modulating signals, but to DC-controlled signals as well. For this reason, the reactance modulator can provide limited electronic frequency control.

In solid-state oscillator design, the reactance amplifiers are normally replaced by a variable-capacitance diode. It is direct-coupled as well, and performs the same function.

The amount of deviation is of greatest concern to the user using an FM signal generator. Wideband discriminators are not readily available to monitor the RF output of the generator and indicate the amount of deviation. Therefore, we use a method similar to the first method described for monitoring amplitude modulation in determining deviation. An AC voltmeter, calibrated in kHz of deviation, is connected to the output of the modulating amplifier.

Special circuits compensate the signal from the modulation amplifier before it reaches the modulator. They adjust the signal amplitude so that deviation produced by the signal of given amplitude from the modulating amplifier is consistent with band changes and as the RF generator is tuned across the band. Without such circuitry, the deviation meter is valid only at the calibration frequency. At all other frequencies, the deviation is either greater or less than indicated. If automatic leveling circuitry is incorporated into the FM generator, an AM modulator is connected at all times. It is usual for generators of this nature to be able to supply both AM and FM signals.

Attenuators

The output attenuator of an RF signal generator is one of the more critical components in determining its usefulness. A signal generator with a poor RF attenuator, for that matter, one with high leakage and a good RF attenuator, is of little value in many applications. For example, to measure receiver sensitivity, the output of the signal generator must be reduced to an extremely low but known output level. The output attenuator must have valid calibration over extremely wide ranges of attenuation and frequency. Typically, output attenuators found on RF signal generators have at least 100 dB of attenuation. Attenuations of 120 dB to 140 dB are common.

There are two basic forms of attenuator—the piston attenuator and the step attenuator. The piston attenuator has been used for many years, and is being replaced by the step attenuator on newer designs. The piston attenuator (see Fig. 9) consists of a pickup loop and an impedance-matching network. This assembly is withdrawn into the metallic tube to increase attenuation. The exact amount of attenuation depends upon the position of the pickup loop within the tube. Theoretical attenuation is 32 dB each time the piston travels a length equal to the diameter of the tube. For high levels of signal amplitude, the amount of attenuation is no longer uniform with displacement and the calibration marks on the dial no longer have uniform spacing.

Resistors R_1, R_2, and capacitor C, act as an impedance-matching network to match the loop impedance at all frequencies to the 50-ohm output of the generator. The impedance compensating network connects to a flexible coaxial transmission line, that feeds the generator output connector. This is normally a double-shielded coaxial cable to maintain a high degree of shielding.

The step attenuator commonly consists of a number of 50-ohm pi attenuators, as shown in Fig. 10. Each of these can be given different amounts of attenuation depending on the resistor values. A series of four or more such attenuators, each having a minimum attenuation of 10 dB, may be switched in and out through a
switching sequence similar to that shown in Fig. 10. This results in attenuations from 0 dB to the required maximum attenuation in 10-dB steps.

Because this attenuator is not continuously variable as is the piston attenuator, a fine attenuation control or vernier usually accompanies it. Today, circuit designers frequently combine the DC output of a vernier control with the other modulator signals. This signal is very similar to the automatic level control signals. In some lower-frequency lower-cost generators, the variable resistance element is placed at the output of the power amplifier. In this configuration the variable element provides variable attenuation of the RF carrier.

The output amplifier

Most new signal generators have some form of amplifier between the oscillator and the output attenuator. Within this group of generators, a large percentage have more than one amplifier. The final output amplifier is assigned the task of supplying the required maximum output level to the desired output impedance, usually 50 ohms, over a wide range of frequencies. These amplifiers normally come in two forms. The tuned amplifier is quite popular with vacuum-tube signal generator designs. The output impedance of vacuum-tube amplifiers is high, thus making the matching network for broadband design extremely complex. Although this imposes no particular user restrictions, it does require additional cost in design and manufacture of the generator.

The advent of low-cost wideband low-output impedance, solid-state power amplifiers permits using a broadband amplifier at the output stage of the RF signal generator. This is the amplifier most commonly used today. The broadband, solid-state power amplifier can now be made more efficient and with a much higher degree of linearity and, therefore, with lower harmonic distortion and intermodulation distortion products, and at a lower cost than its tuned vacuum-tube counterpart.

There are some generators that use no power amplifier or buffer. These normally decouple the oscillator from the load with attenuation networks. The attenuation network, of course, substantially reduces any reflected change in load, as seen by the oscillator.

Output level meter

Most RF signal generators have an output level meter. It is driven by a wideband RF voltmeter that monitors the output amplifier. The metering circuitry may be combined with the automatic leveling circuits if they exist in the generator. Occasionally dual meters are provided on an RF signal generator, but most generators switch select the metering function between the RF level and modulation percentage.

The RF voltmeter used for output level monitoring is confined to a single amplitude range, normally no more than 1 decade.

Specifications

Specifications supplied for any particular RF signal generator are generally quite involved. A full understanding of these specifications is a must, if you are to make significant measurements. However, simple servicing and experimental projects can be undertaken without such an in-depth knowledge. The most important specifications to understand are those which differentiate the low-cost generator from the laboratory or high-quality service generator. These specifications are primarily in areas of attenuation, frequency stability, and frequency range, with secondary differences appearing in the area of signal purity and modulation characteristics.

Frequency range

One of the most important and definitely application-oriented specifications of the RF generator is its frequency range. The generator designed for use in the laboratory may not be suitable for VHF mobile servicing, and neither of these generators may be suitable for accurate analysis of 88- to 108-MHz commercial FM receivers. Frequency range is specified by noting the lowest and highest frequencies within the generator's capabilities.

Be careful when reviewing the specifications of low-cost signal generators, because the frequency range may include harmonic usage of lower range fundamental signals. For example, the Heathkit IG-102 RF signal generator is a low-cost generator with an upper fundamental frequency of 110 MHz. However, general operation is specified to 220 MHz by the use of harmonics. This characteristic is not used in the higher-cost generators. Although there are no truly typical ranges for RF signal generators, two types of generators do stand out. The first is the AM-HF (High Frequency) generator. The frequency range of typical units in this class lie between 50 kHz and 100 MHz. The second is the AM or AM/FM VHF generator. The frequency range of typical units in this class lie between 10 MHz and 500 MHz.

Frequency bands

Frequency bands indicate the number of switch settings the operator must make to cover the entire frequency range of the generator. The band specifications also indicate the frequency break points between bands.

Normally, the exact break points are not very important to the operator. However, some specialized applications may require the generator to be continuously tunable from one frequency to another. The generator must not have a band change within this range. Most generators have some tuning capability beyond their indicated absolute band limits. This is usually not more than a few percent at each end, but does insure a complete overlap from one band to another. The actual break points of the bands are primarily dependent upon the starting frequency and the tuning range of the generator.

Not all generators are continuously tunable. Many of those designed for specific applications, such as communications servicing, have segmented bands—they cover only those frequencies of interest to the user and do not continuously tune frequencies in between those of interest. For example, a communications oriented generator has one band from 25 to 54 MHz to cover low-band 2-way FM and the 6-meter amateur band. A second band covers 132 to 175 MHz and includes the 2-meter amateur band and the VHF 2-way radio communications band. A third band covers 420 to 550 MHz which includes the 220 MHz amateur band and the UHF 2-way communications band. Such a generator may also have a signal source at 455 kHz for IF and discriminator alignment. This source has limited or no attenuation or modulation capabilities.

Other generators may have an extremely limited range of frequencies if they are designed for servicing a particular type of equipment. For example, generators designed exclusively for the commercial FM receiver market may only cover 88 to 108 MHz.

The tuning method

Most RF generators have switch-selected band changes and both coarse and fine variable controls within the

continued on page 92
Greater efficiency, smaller size and less weight are the advantages of the pulse-width modulated amplifier. Here's a look at how these amplifiers work.

LEN FELDMAN
CONTRIBUTING HI-FI EDITOR

Pulse-Width Modulation For Hi-Fi

LONG AGO, IN THE DAYS WHEN A TEN watts-per-channel output power capability for an amplifier was considered the requirement for true high-fidelity music reproduction, little attention was paid to amplifier efficiency. This is especially true in vacuum-tube amplifiers, where the additional power dissipation in the vacuum-tube heaters lowers efficiency even further.

In low-powered amplifiers (whether tube-type or solid-state), Class-A operation (in which the output devices or stages draw constant, full current regardless of the input audio signal) can still be found in mini-powered output stages of car radio amplifiers. Class-A operation is also found in a few medium-powered high-fidelity amplifiers where manufacturers and users are willing to sacrifice efficiency for low distortion and the total absence of crossover distortion.

As audio power needs grew (largely because of the increased popularity of smaller, lower-efficiency speakers) the design trend in high-fidelity amplifiers shifted to Class B. In Class-B audio amplifiers, the output devices conduct for approximately one-half of the input waveform cycle, and total current drawn by the output stages varies in proportion to the output power delivered to the loads. While the Class-B circuit is therefore much more efficient as a converter of DC power to audio power, its efficiency is greatest—around 70% or so—only when it is delivering its maximum rated power output to the load, as shown in Fig. 1. Since, under musical listening conditions, the average power delivered to the load may be some 10 or more dB lower than maximum (10%), even the more efficient Class-B circuit ends up with an average efficiency of around 20%. Translated to typical wattage values, that means that when a 200-watt (rated) per-channel Class-B amplifier is delivering 20 watts-per-channel, 100 watts of input power must be supplied by the power supply—hardly a very efficient use of energy.

There is a more efficient audio amplifier circuit, known as Series E or Class G. This circuit is embodied in Hitachi's model SR-903 stereo receiver that uses a smaller heat sink and has less overall weight as compared with other receivers using the more conventional Class-B amplifier-design approach. But long before Hitachi developed the Class-G circuit, other researchers were exploring still another means of improving audio-amplifier efficiency. Class-D or "switching" amplifiers have been discussed in the audio literature since the early 1960's. Now, Sony Corporation of Japan has shown promising prototypes of a stereo amplifier that uses Class-D amplification or, more properly, pulse-width modulation, for significantly higher efficiency than can be obtained either in Class-B or Class-G amplifier operation.

How pulse-width modulation works

The theory of operation of a pulse-width modulation (PWM) amplifier is illustrated in its simplest form in Fig. 2. The audio input signal, having a continuously varying waveform amplitude, is converted to a series of pulses whose width is proportional to the instantaneous amplitude of the audio waveform itself. Some have theorized that the PWM amplifier is "digital," but a clear distinction must be made between true digital amplification and pulse-width modulation. In true analog/digital conversion, the "bit-code" appearing at the output of the A/D converter would determine the instantaneous amplitude of the input audio waveform. In a true PWM amplifier, the number of pulses per second ap-
pearing at the output of the amplitude-
time converting circuit is fixed, and it is
the varying width of successive pulses
that conveys the audio waveshape.
Figure 2 shows that the converted
pulse signals control the switching ele-
ments of the final power stage, the output
of which is passed through a low-pass
filter and on to the load. Since the final
power stage is either in the saturated
"on" mode or the totally "off" mode,
there is theoretically no loss of energy in
the operation of the circuit.
Figure 3 is a block diagram of each
stage of the PWM amplifier. Alongside
each stage is shown the waveform relat-
ing to that stage. In the Sony prototype
PWM amplifier, a squarewave generator
is used as the source of the fixed-frequency
carrier. The squarewave frequency,
which in this case is crystal-controlled, is
around 500 kHz. The squarewave carrier
is next converted to a triangular wave by
means of an integrating circuit. This
triangular waveshape and the input audio
signal are mixed together and the result-
ing waveform is passed on to a saturating
high-gain amplifier to obtain a series of
pulses whose repetition rate is still the
same 500 kHz, but the pulse width is in
direct proportion to the amplitude of the
audio input signal. The variable width
pulses are then amplified by a pulse
power-amplification stage and "demodu-
lated" by a low-pass L-C type filter.

Amplitude-time converter
Figure 4 shows the basic configuration of
the amplitude-time converter in
greater detail. Since it is desirable to
apply overall negative feedback to this
type of amplifier (for the same reasons
that negative feedback is used in con-
ventional Class-A or Class-B amplifiers),
the pulse-width modulated output is fed
through a phase-inverter circuit and an
integrator circuit, the combination of
which provides a 6 dB-per-octave in-
crease in the frequency response. To
compensate for this rising frequency-
response and its accompanying 90-degree
phase delay, the audio input signal itself
also has to be passed through an inte-
grating circuit.
The total negative feedback applied to
the PWM amplifier decreases with in-
creasing frequency. For a 500-kHz car-
rrier frequency, the negative feedback ver-
sus audio signal frequency is shown in
Fig. 5. From this graph we see that the
distortion-reducing benefits of overall
loop feedback diminish at the high-
frequency end of the audio spectrum. The
higher the carrier frequency, the greater
the amount of negative feedback that can
be applied for lowering distortion. High-
er carrier frequency also allows greater
suppression of the carrier and its side-
band components (shown in Fig. 6) for a
given low-pass filter without that filter
adversely affecting high-frequency audio
response.
As the carrier frequency is increased,
however, high-speed switching capability
of the power output devices become a
problem. A very high carrier frequency
requires devices with good high-freq-
cy characteristics and high power ca-
pability. Since the vertical field effect tran-
sistor (V-FET) does not exhibit signifi-
does not require a phase inverter stage.

Figure 7 shows the static characteristics of one of the two types of V-FET’s used in Sony’s prototype PWM amplifier (at $V_p = 0$). The device shows good linearity from the forward to reverse range, which means that it can be regarded as a pure resistive component whose saturation resistance is the value of resistance seen when it is in the “on” state. This low saturation resistance also means that the return current generated by the inductive component of the low-pass filter network that follows (in the output circuit) can be easily dissipated within the V-FET.

A PWM amplifier

Figure 8 shows Sony’s first prototype PWM amplifier. In this unit, a 500-kHz carrier frequency is used. While a low-pass filter just ahead of the output terminals effectively removes the carrier components from the audio signal, a fair amount of RF energy exists inside the chassis itself. This RF energy must be prevented from radiating outside the chassis and, for that reason, extensive shielding is used. The shielded chassis is of cast aluminum to reduce the number of welded or soldered joints that would act as “radiating antennas” at this high frequency.

One of Sony’s local engineers disclosed that the company hopes to be able to increase the carrier frequency used in their PWM amplifiers in the near future. To obtain the benefits of a higher carrier-frequency (increased feedback at the high end of the audio spectrum and resulting lower distortion), it will be necessary to come up with “faster” switching devices for the output switching stages of the amplifier. Already, Sony is developing MOSFET’s that can handle the power for such output applications.

The total harmonic distortion versus power output for the prototype amplifier, taken at frequencies of 20 Hz, 1 kHz and 20 kHz, is shown in Fig. 10. As stated before, the THD tends to increase at the higher audio frequencies.

Sony admits that some of the published distortion specs of the prototype PWM amplifier are not as good as those of some conventional hi-fi audio amplifiers. However, they maintain that the “warm” overload characteristic of the design (as in the more gradual rise of THD beyond 100-watts output shown in Fig. 10) results in a “warmer,” less-strident sound, even when more power is required beyond published ratings. This contrasts with the steep rise in THD (and sharp clipping) characteristic of conventional Class-B amplifiers when they are driven beyond overload. Sony believes the PWM amplifier will find immediate acceptance in sound-reinforcement applications, and that shortly thereafter, as faster switching devices are perfected, the new technique will find equal application in super-high-fidelity audio amplifiers.

New practice CET test available

An addition to the series of training course texts for CET’s (Radio-Electronics, April 1977, page 95) is the Journeyman Communications Electronics Option. Questions similar to those in actual CET examinations are asked on AM, FM, sideband, transmitters, receivers, transistors and other subjects likely to be covered in the actual examination. Answers to all the questions (which are multiple-choice) are in the back of the book, as well as instructions on taking CET tests.

The series of practice CET Test monographs now numbers six: Associate, Audio Journeyman, Consumer Journeyman and Industrial Journeyman levels, as well as the present text. For digital servicing, Servicing Logic Circuits is available. All the monographs may be obtained from Bank Wilson Services, P.O. Box 3321, Warren, OH 44845. Price per volume, $3.00 for members, $4.00 for non-members.

Sylvania’s service manager named dealers’ man-of-the-year

John Borlaug, National Service Manager of GTE-Sylvania, was named the Time/ NARDA Man of the Year at the NARDA national convention in Atlanta last spring. The award is presented annually by Time, the weekly newsmagazine, and the recipient is selected by the board of directors of NARDA (National Association of Retail Dealers of America).

The award was made for Mr. Borlaug’s work, as chairman of the Electronic Industries Association (EIA) sub-committee on warranty, in bringing about industry-wide agreement on a standard service warranty. The accomplishment was hailed by some as a breakthrough in the service industry, and was one that was reached only after great effort on Mr. Borlaug’s part.
The latest high-powered amplifier from Kenwood Electronics, the model KA-8300, is one of the four new integrated amplifier models that were introduced late last year. Its front panel layout is shown in Fig. 1. Despite the appellation lack of rows and hidden features to discuss than immediately meet the eye. Those two prominent illuminated meters at the upper left, for example, are peak-reading power output meters. Instead of wiggling, minimally as do many power meters now featured on many basic power amplifiers and some receivers, these meters are augmented by a two position METER RANGE switch that alters their full-scale reading from 100 watts to 3 watts. Readings can be clearly interpreted all the way from full power output down to 10 milliwatts.

Controls along the upper right section of the panel include step-type BASS and TREBLE controls, a mono/stereo MODE pushbutton and the program INPUT SELECTOR switch. The large controls at the center of the panel are dual-concentric VOLUME and BALANCE, and the VOLUME control has 41 discrete click-stop positions for easy reselectability of preferred listening levels. To the left of these major controls, under the power meters, are a POWER on/off toggle switch, PHONES jack, a power-on indicator light, SPEAKER selector switch (up to three sets of speakers can be connected to the KA-8300, with the first two sets selectable singly or together and the third set selectable only by itself), a three position LOUDNESS switch (OFF, plus two degrees of loudness compensation) and a three position PRESENCE switch (that adds a boost in overall response centered either at 800 Hz or at 3 kHz).

Controls to the right of the VOLUME and BALANCE pair include two TOUVERSWITCH switches for bass and treble controls (with a tone-defeat position and selectable 150 Hz or 400 Hz turnover for bass; 3 kHz and 6 kHz for treble), low- and high-cut FILTER pushbutton switches, TAPE DUBBING and TAPE MONITORING switches (which permit taping through from one deck to another while listening to any other program source).

Figure 2 shows the layout of the rear panel of the KA-8300 as well as the variety of associated equipment that can be used with it. In addition to the usual low- and high-level inputs (there are two pairs for phono), tape record outputs and a DIN combination socket which parallels the “Tape B” monitor circuitry, the unit is equipped with a preamplifier output and main amplifier input jacks that are combined or separated by means of a slide switch, shipped with a retainer that keeps the switch in the NORMAL (combined) position. Speaker terminals are of the knurled screw type that, when loosened, permit direct insertion of stripped speaker wires without twisting.

Two chassis ground terminals are located adjacent to the two pairs of phono input jacks. The left and right ends of the rear panel are equipped with projecting structures that permit the user to stand the amplifier upright on its rear for easy handling and also prevent pushing the unit too close to a rear surface (wall or rear of custom cabinet), thus protecting rear connectors, plugs and cables—a nice touch.
TABLE I
AMPLIFIER PERFORMANCE MEASUREMENTS

<table>
<thead>
<tr>
<th>POWER OUTPUT CAPABILITY</th>
<th>R-E Measurement</th>
<th>R-E Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS power/channel, 8-ohms, 1 kHz (watts)</td>
<td>99.0</td>
<td>Excellent</td>
</tr>
<tr>
<td>RMS power/channel, 8-ohms, 20 kHz (watts)</td>
<td>88.0</td>
<td>Excellent</td>
</tr>
<tr>
<td>RMS power/channel, 8-ohms, 20 kHz (watts)</td>
<td>86.0</td>
<td>Very good</td>
</tr>
<tr>
<td>RMS power/channel, 4-ohms, 1 kHz (watts)</td>
<td>110.0</td>
<td>Excellent</td>
</tr>
<tr>
<td>RMS power/channel, 4-ohms, 20 Hz (watts)</td>
<td>103.0</td>
<td>Good</td>
</tr>
<tr>
<td>RMS power/channel, 4-ohms, 20 kHz (watts)</td>
<td>100.0</td>
<td>Good</td>
</tr>
<tr>
<td>Frequency limits for rated output (Hz-kHz)</td>
<td>12-30</td>
<td>Excellent</td>
</tr>
</tbody>
</table>

DISTORTION MEASUREMENTS
- Harmonic distortion at rated output, 1 kHz (%) | 0.02 | Excellent |
- Intermodulation distortion, rated output (%) | 0.06 | Very good |
- Harmonic distortion at 1 watt output, 1 kHz (%) | 0.04 | Good |
- Intermodulation distortion at 1 watt output (%) | 0.04 | Good |

DAMPING FACTOR, AT 8 OHMS
- 55 | Very good |

PHONO PREAMPLIFIER MEASUREMENTS
- Frequency response (RIAA ± _db) | 0.2 | Excellent |
- Maximum input before overload (mV) | 270 | Superb |
- Hum/noise referred to full output (dB) | 68 (unweighted) | Very good |

HIGH LEVEL INPUT MEASUREMENTS
- Frequency response (Hz-kHz, ± _db) | 15-55, 1.0 | Excellent |
- Hum/noise referred to full output (dB) | 86 (unweighted) | Very good |
- Residual hum/noise (min. volume) (dB) | 100 | Excellent |

TONAL COMPENSATION MEASUREMENTS
- Action of bass and treble controls |
- Action of secondary tone controls |
- Action of low frequency filter(s) |
- Action of high frequency filter(s) |

COMPONENT MATCHING MEASUREMENTS
- Input sensitivity, phono 1/phono 2 (mV) | 2.3/2.3 |
- Input sensitivity, auxiliary input(s) (mV) | 150 |
- Input sensitivity, tape input(s) (mV) | 150 |
- Output level, tape output(s) (mV) | 150 |
- Output level, headphone jack(s) (V or mW) | 50 mW (8 ohms) |

EVALUATION OF CONTROLS, CONSTRUCTION AND DESIGN
- Adequacy of program source and monitor switching Excellent |
- Adequacy of input facilities Excellent |
- Arrangement of controls (panel layout) Excellent |
- Action of controls and switches Excellent |
- Ease of servicing Excellent |

OVERALL AMPLIFIER PERFORMANCE RATING

TABLE II
OVERALL PRODUCT ANALYSIS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Retail price</td>
<td>$449.95</td>
</tr>
<tr>
<td>Price category</td>
<td>Medium</td>
</tr>
<tr>
<td>Price/performance ratio</td>
<td>Excellent</td>
</tr>
<tr>
<td>Styling and appearance</td>
<td>Excellent</td>
</tr>
<tr>
<td>Sound quality</td>
<td>Superior</td>
</tr>
<tr>
<td>Mechanical performance</td>
<td>Excellent</td>
</tr>
</tbody>
</table>

Comments: As many of the features normally found only on integrated amplifiers find their way into all-in-one receivers, makers of separate amplifiers are hard-pressed to find new features and performance levels that will justify the purchase of a separate amplifier or tuner. Kenwood seems particularly skillful in this, and, in the KA-8300 they have come up with a great number of features which, though extremely useful, manage to leave the front panel of the unit with a totally uncluttered look that would not intimidate even the audio neophyte. The dual-position loudness control is a welcome addition, in that it permits proper operation of this often misused circuit for a variety of program source levels. The novel presence switch, with its selectable center frequencies is another innovation that appealed to us greatly in our listening tests and, of course, the power meters, with their two expanded scales permit their use at lowest and loudest listening levels. Kenwood’s “tape through” feature, which permits dubbing from deck to deck while listening to other program sources, has been copied by other manufacturers since being introduced some years ago, but it is still a most welcome feature.

As for the sound delivered by this carefully designed and assembled integrated amplifier, it is clean and authoritative, suggesting a power output capability far in excess of that actually measured. In our view, Kenwood continues to be one of the lower-profile companies amongst the “big four”, whose products deserve serious consideration from audiophiles who are ready to step up from an all-in-one receiver to a system comprised of separate components. Our test sample exceeded its published or claimed performance by a wide margin and, more important, it delivered sound that to our ears was equal to that produced by some of the more esoteric (and expensive) products which are currently being favored by some audiophiles. Construction is impeccably executed.

FIG. 3

3

TABLE III

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4

SEPTMBER 1977

63

touch that we have not seen before.

Internal construction and circuitry

The main filter capacitors clearly visible in the Fig. 3 are 15,000 µF each and are located near a massive, cool-running power transformer near chassis-center. A predriver Class-A stage is used in the main amplifier section for reduced crossover distortion and direct coupled, complementary symmetry circuitry is used in the power output stages. High precision resistors and capacitors are used in the phono equalizer circuit. Volume control takes place at two points in the circuit: before and after the tone control section for best signal-to-noise ratios at all listening levels.

The model KA-8300 has two kinds of protection circuits—one for the amplifier stages and one for connected speakers. The relay circuit that protects the speakers also provides a 4-second time delay on amplifier turn-on, preventing thumps and pops during power supply stabilization. Tone control circuits in this amplifier employ separate active amplifiers for bass and treble to reduce interaction effects and, like many other controls on the KA-8300, are directly mounted to their respective printed-circuit modules for a minimum of conventional circuit wiring. Kenwood maintains that this careful layout results in lower hum and less high-frequency attenuation.

Laboratory measurements

Generally speaking, the performance claims made for the KA-8300 integrated amplifier by its makers are conservatively stated. Our measured results, listed in Table I, may be readily compared with Kenwood’s published specifications. Kenwood could easily have rated this amplifier at 85 watts-per-channel over the full audio band and still conformed with FTC requirements. At the 80-watt level, the power band extended from 12 Hz to 30 kHz, as opposed to the nominal 20 Hz to 20 kHz.
As an NTS student you'll acquire the know-how that comes with first-hand training on NTS professional equipment.

Our courses include equipment like the NTS/Heath GR-2001 computerized color TV (25" diagonal) with varactor diode tuning and digital read-out channel selection; (optional programming capability and digital clock avail.).

Also pictured above are other units — 5" solid state oscilloscope, vector monitor scope, solid-state stereo AM-FM receiver with twin speakers, digital multimeter, and more. It's the kind of better equipment that gets you better equipped for the electronics industry.

This electronic gear is not only designed for training; it's field-type — like you'll meet on the job, or when you're making service calls. And with NTS easy-to-read, profusely illustrated lessons you learn the theory behind these tools of the trade.

Choose from 12 NTS courses covering a wide range of fields in electronics, each complete with equipment, lessons, and manuals to make your training more practical and interesting.

Compare our training; compare our lower tuition. We employ no salesmen, pay no commissions. You receive all home-study information by mail only. All Kits, lessons, and experiments are described in full color. Most liberal refund policy and cancella-
and the equipment be equipped.

HIGH FIDELITY SPEAKERS

SOLID-STATE STEREO AM/FM/MULTIPLEX RECEIVER

COLOR BAR/DOT GENERATOR

TUBE & TRANSISTOR TESTER

FET-VOM

AM/FM/SW PORTABLE SOLID-STATE RECEIVER

VECTOR MONITOR SCOPE

DIGITAL MULTIMETER

SOLID-STATE 2-METER FM TRANSCEIVER & POWER SUPPLY

SOLID-STATE POCKET RADIO

5" OSCILLOSCOPE

COMPARE OUR KITS AND LESSONS. COMPARE OUR TUITION.

tion privileges spelled out. Make your own comparisons, your own decision. Mail card today, or clip coupon if card is missing.

NO OBLIGATION. NO SALESMAN WILL CALL
APPROVED FOR VETERAN TRAINING
Get facts on new 2-year extension

NATIONAL TECHNICAL SCHOOLS
4000 South Figueroa St., Los Angeles, Calif. 90037

Please send FREE Color Catalog and Sample Lesson.
NO OBLIGATION. NO SALESMAN WILL CALL

Color TV Servicing
B & W TV and Radio Servicing
Electronic Communications
FCC License Course

Electronics Technology
Computer Electronics
Basic Electronics
Audio Electronics Servicing

NAME
ADDRESS
CITY
STATE
ZIP
AGE
APT

Check if interested in G.I. Bill Information
Check if interested ONLY in classroom training in Los Angeles

NATIONAL TECHNICAL SCHOOLS Dept. 206-097

September 1977

67
claimed. The frequency response of the high-level inputs was within 1 dB from 15 Hz to 55 kHz and RIAA phono equalization was accurate over the entire curve to within ±0.2 dB. Phono overload measured 170 millivolts while unweighted signal-to-noise, referred to rated sensitivity of 2.5 mV, measured a very satisfactory 68 dB.

The action of the BASS and TREBLE controls, in each of their selectable turnover modes, is shown in the spectrum-analyzer photo of Fig. 4, while the selectable PRESENCE control response range is shown in Fig. 5. The response of the high- and low-cut filters is compared with the flat response setting of the amplifier in Fig. 6. The two choices of center frequency for the PRESENCE control permit an added degree of flexibility when using this feature. The filters have a 12 dB-per-octave slope with turnover points well positioned for elimination of noise and rumble with minimum degradation of musical content when they are used.

A summary of our reaction to the KA-8300 as well as overall comments regarding this top amplifier from Kenwood will be found in Table II, together with our overall product evaluation. For the demanding audiophile who is not quite prepared to invest in audio components in the $1000-plus category but still demands excellent sound reproduction and the flexibility offered only by a well designed integrated amplifier, the Kenwood KA-8300 might well be a good choice.

Epicure PR-4 Preamplifier

MANUFACTURER'S PUBLISHED SPECIFICATIONS:
Rated Output: 2.5 volts. Frequency Response: 20 Hz to 20 kHz, ± 0.25 dB. Harmonic Distortion at Rated Output: 0.005%. IM Distortion at Rated Output: 0.005%. Phono Input Sensitivity: 1.5 mV. High-Level Input Sensitivity: 100 mV. Phono Overload: 150 mV. Maximum Output: 7 volts into 100K ohms; 3.5 volts into 600 ohms. Filter Cut-Off Frequencies: Low: 50 Hz at 12 dB per octave; High: 7.5 kHz at 12 dB per octave. Overall Dimensions: 15" wide × 5 high × 8-inches deep. Shipping Weight: 19 lbs. Suggested Retail Price: $450.

TABLE I

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>PREAMPLIFIER PERFORMANCE MEASUREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTORTION MEASUREMENTS:</td>
<td>R-E</td>
</tr>
<tr>
<td></td>
<td>Measurement</td>
</tr>
<tr>
<td>Harmonic distortion at rated output, 1 kHz (%)</td>
<td>0.005</td>
</tr>
<tr>
<td>IM distortion at rated output (%)</td>
<td>0.01</td>
</tr>
<tr>
<td>Harmonic distortion at 1V output, 1 kHz (%)</td>
<td>0.027</td>
</tr>
<tr>
<td>IM distortion at 1V output (%)</td>
<td>0.007</td>
</tr>
<tr>
<td>PHONO PREAMPLIFIER MEASUREMENTS</td>
<td></td>
</tr>
<tr>
<td>Frequency response (RIAA ± dB)</td>
<td>0.1</td>
</tr>
<tr>
<td>Maximum input before overload (mV)</td>
<td>80.0</td>
</tr>
<tr>
<td>Hum/noise referred to full output (dB) (at rated input sensitivity)</td>
<td>71.0</td>
</tr>
<tr>
<td>HIGH-LEVEL INPUT MEASUREMENTS</td>
<td></td>
</tr>
<tr>
<td>Frequency response (Hz-kHz, ± dB)</td>
<td>13-55</td>
</tr>
<tr>
<td>Hum/noise referred to full output (dB)</td>
<td>88.0</td>
</tr>
<tr>
<td>Residual hum/noise (Min. volume) (dB)</td>
<td>96.0</td>
</tr>
<tr>
<td>TONAL COMPENSATION MEASUREMENTS</td>
<td></td>
</tr>
<tr>
<td>Action of bass and treble controls</td>
<td>See Fig. 5</td>
</tr>
<tr>
<td>Action of low-frequency filter(s)</td>
<td>See Fig. 6</td>
</tr>
<tr>
<td>Action of high-frequency filter(s)</td>
<td></td>
</tr>
<tr>
<td>COMPONENT MATCHING MEASUREMENTS</td>
<td></td>
</tr>
<tr>
<td>Input sensitivity, phono 1/phono 2 (mV)</td>
<td>1.6-3.3 / 1.6-3.3</td>
</tr>
<tr>
<td>Input sensitivity, auxiliary input (s) (mV)</td>
<td>250</td>
</tr>
<tr>
<td>Input sensitivity, tape input(s) (mV)</td>
<td>250</td>
</tr>
<tr>
<td>Output level, tape output(s) (mV)</td>
<td>250</td>
</tr>
<tr>
<td>Output level, headphone jack(s) (V or mW)</td>
<td>N/A</td>
</tr>
<tr>
<td>EVALUATION OF CONTROLS, CONSTRUCTION AND DESIGN</td>
<td></td>
</tr>
<tr>
<td>Adequacy of program source and monitor switching</td>
<td>Very good</td>
</tr>
<tr>
<td>Adequacy of input facilities</td>
<td>Excellent</td>
</tr>
<tr>
<td>Arrangement of controls (panel layout)</td>
<td>Superb</td>
</tr>
<tr>
<td>Action of controls and switches</td>
<td>Good</td>
</tr>
<tr>
<td>Design and construction</td>
<td>Excellent</td>
</tr>
<tr>
<td>Ease of servicing</td>
<td>Excellent</td>
</tr>
<tr>
<td>OVERALL AMPLIFIER PERFORMANCE RATING</td>
<td></td>
</tr>
</tbody>
</table>
extremely low-level gain stages are measured for although designing this the internal with the own audiophile would expect for those two pairs of separate phono inputs, two tape play pushbuttons, aux and tuner). The single button at the lower right turns on power to the unit, while the paired slide controls at the extreme right act as individual channel gain controls, thereby eliminating the need for the more common balance control.

The rear panel of model PR-4 (see Fig. 2) has two unswitched and one switched AC receptacles, a line fuseholder, chassis ground terminal and the usual array of input jacks and tape record output jacks. Two pairs of output jacks make it simple to feed a pair of stereo power amplifiers or a single power amplifier and a tape deck for recording program material that has been altered by the tone controls and filters. Below each pair of phono inputs are pairs of recessed screwdriver adjustment controls to set the sensitivity of each phono input pair to match levels of other program sources. The variety of equipment that can be connected to the Epicure model PR-4 preamplifier/control is shown in Fig. 3.

Figure 4 shows an internal view of model PR-4. Two glass-epoxy circuit boards contain-

choosing the "18-dB" curve for the treble, since the control switch affects both ends of the spectrum.

Four buttons below those just described handle two tape monitor circuits and permit dubbing from one tape deck to another. Five more pushbuttons at the upper right are designated PROGRAM MODE and select either stereo, reverse, mono, left-only or right-only, while below these, six more pushbuttons are used for PROGRAM SOURCE selection (a pair of separate phono inputs, two tape play pushbuttons, aux and tuner). The single button at the lower right turns on power to the unit, while the paired slide controls at the extreme right act as individual channel gain controls, thereby eliminating the need for the more common balance control.

The rear panel of model PR-4 (see Fig. 2) has two unswitched and one switched AC receptacles, a line fuseholder, chassis ground terminal and the usual array of input jacks and tape record output jacks. Two pairs of output jacks make it simple to feed a pair of stereo power amplifiers or a single power amplifier and a tape deck for recording program material that has been altered by the tone controls and filters. Below each pair of phono inputs are pairs of recessed screwdriver adjustment controls to set the sensitivity of each phono input pair to match levels of other program sources. The variety of equipment that can be connected to the Epicure model PR-4 preamplifier/control is shown in Fig. 3.

Figure 4 shows an internal view of model PR-4. Two glass-epoxy circuit boards contain-

choosing nearly all the parts required are mounted at right angles to each other and interconnected by a multiconductor ribbon cable. The entire power supply (including a hum-backing toroid power transformer) is mounted in its own separate shielded enclosure clearly visible at the lower left in Fig. 4.

The phono stages use a two-stage voltage amplifier in a DC-stabilized feedback pair, followed by a single-stage unity-gain buffer amplifier. Auxiliary phono inputs are grounded when not in use. It should be emphasized that two completely separate equalizer-preamplifier sections are used in this unit requiring no low-level input switching. The master volume control sliders are located ahead of the high-level stage, which provides a high overload capability for all high-level program sources. A buffer amplifier section of the two-pole low and high-pass active filter circuits, followed by another buffer stage, Baxandall-type bass and treble controls, and a line amplifier that provides 20 dB gain from high-level inputs to outputs. According to Epicure, the wide bandwidth of this amplifying section (100 kHz for the -3 dB point) coincides with the small-signal high-frequency response so that the amplifier barely enters slew-rate limit-

continued on page 91
A look at an interesting circuit that adds a vibrato effect to musical passages; plus an SCR array and an ultra-stable oscillator. KARL SAVON SEMICONDUCTOR EDITOR

TREMOL0 AND VIBRATO CIRCUITS ARE POPULAR with musicians. Some want to hook them up to their electronic organs and guitars. Others want to play tape recorders or radios through them.

The effects of the tremolo and vibrato circuits are related: they both add some form of modulation to the original music. Both modulate the original music source with a low-frequency (usually sub-audio) control signal to give a pleasing "wobulation" to the music. It is most effective when the music source is purely tonal in nature with only the attack and decay envelope shapes of specific instruments.

Tremolo is amplitude modulation. The frequency of the source is unaffected. Only its amplitude wavers, usually following the sinusoidal envelope of the modulating signal. Tremolo is relatively easy to implement with fairly simple circuitry. Lower-cost electronic instruments that include either of the two effects will invariably use tremolo—it's less expensive. Vibrato is the more pleasing of the effects. We recognize it as the frequency modulation mastered by the professional vocalist. Inevitably it is often combined with a secondary amplitude modulation. Electronic organs sometimes go to great expense and extremes to produce vibrato mechanically. The most notable are the moving baffle and rotating speaker systems, where the sound source is physically moved. Some achieve true Doppler effects by changing the distance between

![Circuit Diagram]

FIG. 1—PHASE SHIFTER that produces vibrato effects.
the source and the listener. At least one manufacturer uses undriven speakers as mechanical counterweights. When the modulation frequency is very low and the proper tonal quality is synthesized, the effect takes on the sound of a carillon.

Musical phase shifter

One way to produce a true vibrato is to phase-modulate the music source. Frequency is the rate of change of phase. If the phase is varied as a sine function, the frequency of the output will change at the same rate as the phase modulation with a cosine function. You may ask, “Isn’t it simpler to frequency-shift the oscillator itself in the case of an electronic instrument tone generator?” Well maybe, but be careful. Whenever you design an oscillator to be frequency-shifted, its stability suffers as a rule. The act of building a frequency-shift system by its nature introduces sources of instabilities for undesirable shifts in frequency.

By phase-modulating the buffered oscillator output, the stability is unaffected. The frequency of the vibrato output will vary around the rock-stable original frequency.

This method is one that has been proven in the FM radio broadcast field. FM stations must hold their carrier frequencies to very tight standards. But they do. A simple way to modulate the carrier in frequency. Phase modulation is the answer. In this case the audio modulation signal is not just a simple low-frequency tone, but the entire audio baseband, and a conversion must be made so the effect of the phase modulation will be to produce a change in frequency proportional to the audio amplitude.

Dan Shannon of Brownsville, Texas, sent in the elegant vibrato circuit drawn in Fig. 1, an electronic phase-shifter that produces a true vibrato effect, pure frequency modulation without attendant amplitude modulation. It has eight op-amps, two bipolar transistors, and seven N-type FET's. He supplied no specifications, but the circuit does not look unduly critical and will probably work with a wide range of standard parts.

The signal from the input jack feeds the base of emitter follower Q1. The signal splits two ways, one path feeds the string of six phase-shifting 741 op-amps. A typical stage looks like the one in Fig. 2. Because of the op-amp's very high negative-feedback gain, let's make the familiar and reasonable assumption that the signal input at both the inverting and non-inverting inputs are equal in amplitude and phase. The inverting input then has a signal level equal to $\frac{1}{2} (V_+ + V_-)$. The non-inverting input is fed through a phase-shift network that consists of capacitor C and resistor R. This works out to $V_+ (j\omega RC/(1 + j\omega C))$, where ω represents a 90° reactive phase-shift for sinewave inputs and $\omega = 2\pi f (f$ is the frequency of the input signal). Now this must equal the non-inverting input so with some algebraic juggling you end up with $V_{ac} = V_+ (1 - j\omega RC)/(1 + j\omega C)$.

I've bothered to go into this much detail because this result is a very interesting circuit response. It can also be produced with a passive non-amplifying circuit, but there will be a loss of gain through it. First of all the magnitude of the gain or the signal output for the 741 phase-shifter remains fixed as the frequency changes. The stage gain is flat across the band.

These types of circuits are called all-pass networks because of their flat signal transmission.

How about phase? $\Delta \phi = \tan^{-1}2\omega RC$. In Fig. 1, R is made up of a fixed 100K resistor and the variable resistance of an FET. At any particular frequency the phase shift is a function of R or the control voltage of the FET. Though the phase shift changes with frequency, the function is linear. The output will be delayed in time but undistorted in waveform. Cascading the six stages multiplies the phase shift and increases the phase sensitivity of the circuit.

The output of the phase-shift chain is combined with a portion of the input from the emitter of Q1. FET Q8 is a transmission gate operated by a foot switch to turn the vibrato on and off as desired. Switched off, the unshifted signal path continues to provide a

diagram

FIG. 2—A PHASE SHIFTER STAGE.

The signal from the input jack feeds the base of emitter follower Q1. The signal splits two ways, one path feeds the string of six phase-shifting 741 op-amps. A typical stage looks like the one in Fig. 2. Because of the op-amp's very high negative-feedback gain, let's make the familiar and reasonable assumption that the signal input at both the inverting and non-inverting inputs are equal in amplitude and phase. The inverting input then has a signal level equal to $\frac{1}{2} (V_+ + V_-)$. The non-inverting input is fed through a phase-shift network that consists of capacitor C and resistor R. This works out to $V_+ (j\omega RC/(1 + j\omega C))$, where ω represents a 90° reactive phase-shift for sinewave inputs and $\omega = 2\pi f (f$ is the frequency of the input signal). Now this must equal the non-inverting input so with some algebraic juggling you end up with $V_{ac} = V_+ (1 - j\omega RC)/(1 + j\omega C)$.

I've bothered to go into this much detail because this result is a very interesting circuit response. It can also be produced with a passive non-amplifying circuit, but there will be a loss of gain through it. First of all the magnitude of the gain or the signal output for the 741 phase-shifter remains fixed as the frequency changes. The stage gain is flat across the band.

These types of circuits are called all-pass networks because of their flat signal transmission.

How about phase? $\Delta \phi = \tan^{-1}2\omega RC$. In Fig. 1, R is made up of a fixed 100K resistor and the variable resistance of an FET. At any particular frequency the phase shift is a function of R or the control voltage of the FET. Though the phase shift changes with frequency, the function is linear. The output will be delayed in time but undistorted in waveform. Cascading the six stages multiplies the phase shift and increases the phase sensitivity of the circuit.

The output of the phase-shift chain is combined with a portion of the input from the emitter of Q1. FET Q8 is a transmission gate operated by a foot switch to turn the vibrato on and off as desired. Switched off, the unshifted signal path continues to provide a

continued on page 104
Part II. Homebrew breadboard that's inexpensive, easy to build and versatile. The basic design can be easily modified.

EARL R. SAVAGE, K4SDS.

In last month's column, we provided schematics for several of circuits of the breadboard system. This month, the column concludes with the rest of the schematics and the construction details.

Pulser switch

The trouble with the logic switches previously described is that they tend to "bounce" when making or breaking a connection. In fact, all mechanical switcher is often called a bounce. It usually doesn't matter because you don't care if something is turned on and off five or ten times very rapidly every time you throw the switch. In some circuits this bouncing can cause serious problems.

Suppose you are working with counters, for example, and you use one of the logic switches for a trigger. You throw the switch from L0 to H1 and the counter shows that you did it eight times. Surely that is no way to test a counter circuit!

The pulser switch (See Fig. 6) is "bounceless." The mechanical switch S1 is not connected to the output. Instead, it causes the two gates (7400) to change the state of the output. The gates don't bounce.

The two LED's, one red and one green, indicate the state of the output (L0 or H1). Switch S1 is an SPDT type that was not used in the prototype. The prototype used two normally open momentary SPST pushbutton switches instead. Either arrangement is satisfactory.

Pulse generator

After the power supply, without which none of these circuits would operate, the pulse generator (See Fig. 7) is the most useful device in the breadboard. A pulse generator is often called a clock because its output "clocks" back and forth between a L0 and H1 level.

The generator is a 555 timer IC with an approximate squarewave output. The frequency is changed by selecting various capacitors with switch S1. The four values shown produce pulses at rates of about 0.1, 1, 10 and 100 pulses-per-second. These have been found adequate to meet all needs to date. Of course, you may change the values or increase or decrease the number of frequencies available.

The LED is included in order that the operation and state of the output of the clock can be monitored directly. This is an advantage when working with some types of circuits. Note, too, that the stated frequencies are only approximations because resistors R1 and R2, and the timing capacitors are not precision units. All you need is to be in the right ballpark—the expense of precision is unjustifiable.

![Diagram](image)

Construction

Construction is greatly simplified by using a plastic parts box (6 X 11 X 2-inches) instead of a conventional metal cabinet. Mounting holes and even rectangular openings for the slide switches are easily made and there is no worry about insulating parts from the chassis. There are, however, disadvantages.

The box is clear plastic and it would be confusing at best to look through the panel. This was solved by painting the inside of the box after making all the holes but before mounting the parts. In fact, I made the various sections different colors—red, yellow, black, white, blue, silver.

The greatest disadvantage of this box
stopped most conveniently by putting an SPDT switch on pin 4 of the 555 circuit. When pin 4 is grounded, the counter stops; when it is connected to V, (+5), the counter runs.

The 7490 circuit can be reset to 0 by connecting pins 2 or 3 to V; it can be reset to 9 by also connecting pins 6 or 7 to V. The reset and start/stop functions can be combined in a single DPDT switch.

Things to try

1. You can have an audible time signal by connecting a Sonalert between pin 3 of the 555 circuit and ground. If the Sonalert is connected between pin 11 of the 7490 and ground, it will sound a tone warning at count 8.

2. A second digit can be added so that the counter indicates up to 99 intervals. This will require a second 7490 circuit and four LED's for binary; or a second 7490, a 7448 circuit and a 7-segment digital unit for Arabic. In either case, connect the input (pin 14) of the second 7490 to pin 11 of the first 7490. Of course, a third, fourth and more digits can be added similarly.

3. A common anode digit and a 7447 circuit can be substituted for the 7448 and common-cathode digit.

4. Follow the 7490 with a 74145 (BCD-to-decimal decoder-driver) and 10 LED's to make a 0-to-9 sequential light counter. If interval T is made short, the light will appear to sweep up the line of LED's.

Troublesome circuits

If you have trouble with any of these circuits, there could be three causes:

1. You may have made a wiring error, which is easy to correct unless something went up in smoke when you applied power. That's why wiring should always be checked before throwing the ON switch—we all make wiring errors from time to time.

2. One of the components may be bad or it may have a value outside of acceptable tolerance. Since sometimes this information is difficult to find, we'll try to call your attention to any parts that seem critical.

3. Typographical errors do occur on rare occasions. This is a toughie to correct in your project. About all we can say is that a correction will be printed as soon as possible.

continued on page 89
HEATHKIT

FALL 1977

THE HEATHKIT COMPUTERS

The "total system" computer products for home, hobby, educational and business applications.

With powerful software to get you up and running fast, superior documentation and service support, sensational low prices too. They're the ones you've been waiting for! See pages 2-11.

HEATHKIT MAIL ORDER CATALOG 817

"Heath" and "Heathkit" are registered trademarks of Heath Company.

Heath Company, Dept. 010-330
Benton Harbor, Michigan 49022
The NEW Heathkit catalog introducing our complete line of personal computers and many more, exciting, fun-to-build electronic kits

NEW! H8 8-Bit Digital Computer
This 8-bit computer based on the famous 8080A microprocessor features a Heathkit exclusive "intelligent" front panel with optional data entry and control, 9-digit readout, a built-in bootstrap for one-button program loading, and a heavy-duty power supply with enough capacity for plenty of memory and I/O interfaces. It's easier and faster to use than most other personal computers and it's priced low enough for any budget.

NEW! H11 16-Bit Digital Computer
Heath, the world's largest kit manufacturer, and Digital Equipment Corporation, the leader in minicomputer systems, combine to bring you today's most sophisticated personal computer. Features include DEC's 16-bit LSI-11 CPU, 4096 x 16 read/write MOS memory expandable to 20K (up to 32K words total), priority interrupt, DMA operation and more. Complete systems software for fast and efficient operation is included!

NEW! H9 Video Terminal
This full ASCII terminal system features a bright 12" CRT, with both long and short-form displays, all standard serial interfaces, plus a fully wired and tested control board. Has auto-scrolling, cursor with full positioning controls, full-page or line-erase modes, a transmit page function, and a plot mode for simple curves and graphs. The H9 is compact, attractive and easy to build. It's compatible with all Heathkit computers as well as most others through standard interfacing.

NEW! H10 Paper Tape Reader/Punch
Complete mass-storage peripheral using low-cost paper tape. Features a solid-state reader with stepper motor drive, totally independent punch and reader modes and a copy mode for fast, easy tape duplication. Reads at 50 characters per second, punches at 10 characters per second. For use with Heathkit computers and most others.

Other Heathkit computer products include a cassette recorder/player for mass storage, teleprinter, self-instructional programming courses, a complete library of the latest computer books, plus software, memory expansion cards, I/O cards and lots more — everything you need to make Heath your personal computing headquarters!

NEW! Kit products for fall
An exciting selection of new kits includes an active audio processor to give your present hi-fi system better dynamic range and reduced noise levels, a new medium-power stereo FM-AM receiver, an electronic digital scale that shows you weight in big, bright easy-to-read numbers, and new test instruments including a low-priced precision oscilloscope and an easy-to-use FET multimeter.

NEW! Heath-recommended electronic products
These unique new products are recommended by Heath because of their excellent quality and outstanding value. The Sony Betamax video recording system using exclusive ultra-compact 2-hour Sony cartridges; an electronic greenhouse with automatic temperature and humidity controls; a microcomputer based electronic chess game; and a sophisticated multi-cartridge, microprocessor-based video game. All are high quality, fully assembled, tested and priced low to give you the kind of value you expect from Heath.

PLUS nearly 400 other superb, easy-to-build, money-saving products. You'll find a complete line of digital electronic clocks and weather instruments, plus useful and unique items for your car, home or office. There are many more exciting products to read about too! Home convenience items like a practical freezer alarm, a touch-control light switch, intercoms and a unique programmable doorbell. Automotive instruments and accessories, marine equipment, model aircraft, Radio Control gear, security systems and more. Plus our world-famous Amateur Radio equipment and test and service instruments.

These are among the nearly 400 quality, fun-to-build kits described in this new Heathkit catalog. Kits for every interest. All with the world-famous Heathkit assembly manual — a step-by-step instruction guide that makes kitbuilding easy and leaves nothing to chance. And all backed by our "We won't let you fail" promise. Find out about the satisfaction, savings and FUN of kitbuilding.

Send for your FREE copy today!
MOST MICROCOMPUTERS MANIPULATE INFORMATION eight bits at a time. For example, the 8080A microprocessor can move the eight bits from internal register to internal register, from internal register to memory, and between the accumulator and an external I/O device. It can also perform arithmetic and logic operations, the former including add, subtract, and compare, and the latter including AND, OR, EXCLUSIVE-OR, and COMPLEMENT. In this column, logic operations will be explored.

The basic rules governing one-bit logic operations are truth tables. A truth table can be defined as a tabulation that shows the relation of all output logic levels of a digital circuit to all possible combinations of input logic levels in such a way as to characterize the circuit functions completely. The truth tables for the AND, OR, EXCLUSIVE-OR, and COMPLEMENT operations are:

<table>
<thead>
<tr>
<th>AND</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>B A Q</td>
<td>B A Q</td>
</tr>
<tr>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>0 1 0</td>
<td>0 1 1</td>
</tr>
<tr>
<td>1 0 1</td>
<td>1 0 1</td>
</tr>
<tr>
<td>1 1 1</td>
<td>1 1 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXCLUSIVE-OR</th>
<th>COMPLEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>B A Q A Q</td>
<td></td>
</tr>
<tr>
<td>0 0 0 0</td>
<td>0 1 0</td>
</tr>
<tr>
<td>0 1 1 1</td>
<td>1 0 1</td>
</tr>
<tr>
<td>1 0 1 0</td>
<td>1 1 0</td>
</tr>
</tbody>
</table>

These truth tables are called one-bit tables because data words A and B each contain only a single bit.

In discussing logic instructions, it is useful to employ Boolean symbols. Such symbols originate from the subject of Boolean algebra, which is the mathematics of logic systems. Alphabetic symbols such as A, B, C, . . . Q are used to represent logic variables and 1 and 0 to represent logic states. This particular form of mathematics was originated in England by George Boole in 1847. It did not become widely used until 1938, when Claude Shannon adapted it to analyze multi-contact networks for telephone networks.

What should be learned about Boolean algebra are the basic Boolean symbols that are used in Boolean algebra computations, and thus all digital logic. These symbols include the following:

+ which means logical addition and is given the name OR
+ which means logical multiplication and is given the name AND
+ which is given the name EXCLUSIVE-OR or XOR
- which means negation and is given the name NOT

The negation symbol is a solid bar over a logical variable such as A, B, . . . Q. Thus, the Boolean statement for a two-input AND gate is Q = A • B, or simply Q = AB where the equality symbol means that the variables or groups of variables on either side of the "=" symbol are the same, i.e., both are in the same logic state. It is useful to summarize the symbol operations for the three gates that are being considered:

<table>
<thead>
<tr>
<th>AND</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1 = 0</td>
<td>0 + 0 = 0</td>
</tr>
<tr>
<td>Q2 = 1</td>
<td>1 + 0 = 1</td>
</tr>
<tr>
<td>Q3 = 1</td>
<td>1 + 1 = 1</td>
</tr>
</tbody>
</table>

EXCLUSIVE-OR

<table>
<thead>
<tr>
<th>COMPLEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q4 = 0</td>
</tr>
<tr>
<td>Q5 = 1</td>
</tr>
<tr>
<td>Q6 = 0</td>
</tr>
</tbody>
</table>

Multibit logic operations are treated as many one-bit logic operations. No new principles of logic are involved. The corresponding bits of one binary word logically operate on the corresponding bits of the second binary word to produce an overall multibit logic result. The length of the binary words can be any number of bits: two bits, eight bits, thirty-two bits, etc. Since the 8080A microprocessor performs multibit logic operations on eight-bit words (bytes), all of the examples will involve full bytes.

Consider the eight-bit logic variable, A. The individual bits in this variable are labeled as A7, A6, A5, A4, A3, A2, A1 and A0, with A0 being the least significant bit (the 2^0 bit) and A7 being the most significant bit (the 2^7 bit). Also consider the eight-bit logic variable, B, that has individual bits that are labeled as B7, B6, B5, B4, B3, B2, B1 and B0. The logic operation, A • B = Q, means the following eight one-bit logic operations:

A0 • B0 = Q0
A1 • B1 = Q1
A2 • B2 = Q2
A3 • B3 = Q3
A4 • B4 = Q4
A5 • B5 = Q5
A6 • B6 = Q6
A7 • B7 = Q7

The result of the logic operation is the logic variable Q that has a least significant bit of Q0 and a most significant bit of Q7. In other words, multibit logic operations are performed bit-by-bit via a series of one-bit logic operations. It is easier to perform multibit logic operations if the multibit binary words are placed one under the other. Thus, if A = 110111112 and B = 001000112, then A • B is 110111112 • 001000112 = 000000112 or Q = 000000112. In performing a logical AND, the relationships 0 • 1 = 0 and 1 • 1 = 1 were used in deriving the final result. (The subscript 2 is not necessary for binary numbers.)

One of the more important uses for multibit logic operations is in situations in which the on-off state of external devices must be monitored. Consider the following system of eight devices:

<table>
<thead>
<tr>
<th>Bit position</th>
<th>Device</th>
<th>Logic state information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 0</td>
<td>pressure sensor</td>
<td>1 = pressure above set-point</td>
</tr>
<tr>
<td>Bit 1</td>
<td>temperature sensor</td>
<td>1 = temperature above set-point</td>
</tr>
<tr>
<td>Bit 2</td>
<td>velocity sensor</td>
<td>1 = velocity above set-point</td>
</tr>
<tr>
<td>Bit 3</td>
<td>flow rate sensor</td>
<td>1 = flow rate above set-point</td>
</tr>
<tr>
<td>Bit 4</td>
<td>concentration sensor</td>
<td>1 = concentration above set-point</td>
</tr>
<tr>
<td>Bit 5</td>
<td>Valve A</td>
<td>1 = valve A open</td>
</tr>
<tr>
<td>Bit 6</td>
<td>Valve B</td>
<td>1 = valve B open</td>
</tr>
<tr>
<td>Bit 7</td>
<td>Power</td>
<td>1 = power on</td>
</tr>
</tbody>
</table>

The group of eight bits is called the status byte for our system of eight devices. At any instant...
of time, the status byte will have a specific value. For example, the status byte 11100010 signifies that the pressure is at or below the setpoint, the temperature is above the setpoint, the velocity is at or above the setpoint, etc. There are 2^4 or 256 possible combinations.

The importance of logic instructions in a digital computer is that they permit the determination of the following characteristics about the external devices listed above:

* Which devices are on, open or above the setpoint?
* Which devices are off, closed, or at or below the setpoint?
* Since the last time we checked, which devices have gone from on to off, open to closed, or above the setpoint to at or below the setpoint?
* Since the last time we checked, which devices have gone from off to on, closed to open, or at or below the setpoint to above the setpoint?

In other words, using logical instructions, not only can the current state of the external devices be determined but also what changes have occurred since the last time that the devices were interrogated. Since it is not clear how this is done logically, a specific example based upon the eight devices described above should help.

Imagine all eight devices have just been interrogated and the current status byte is found to be 11101010, where the least significant bit, bit 0, is on the far right. One second ago, the status byte was 11101001. What is the current state of each device, which devices have changed state during the last second, and in which direction? The steps to be employed to answer such questions are as follows:

STEP 1. Examine the current status byte. Determine the status of each external device from the logic state of its status bit.

The current status byte (CSB) is 11101010. From this value, it is concluded that the pressure, velocity, and temperature sensors are all at or below their respective setpoints; the flow rate and temperature sensors are above their respective setpoints; and that valve A, valve B and power are all on.

STEP 2. Perform an EXCLUSIVE-OR operation between the prior status byte (PSB) and the current status byte (CSB). A logic 1 in the result indicates that the logic state of that device has changed.

The logic operation to be performed is

$$PSB \oplus CSB = Q1$$

where PSB = 11101001, CSB = 11101010, and Q1 is the result of the EXCLUSIVE-OR operation. Thus,

<table>
<thead>
<tr>
<th>PSB</th>
<th>CSB</th>
<th>Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td>11101001</td>
<td>11101010</td>
<td>00000011</td>
</tr>
</tbody>
</table>

and Q1 = 00000011. Only the pressure and temperature sensors have changed state.

STEP 3. Perform an AND operation between Q1 and the prior status byte (PSB). A logic 1 in the result indicates a decrease in the status byte if the device is on; an increase if the device is off.

The result indicates that pressure and temperature have both decreased.

STEP 4. Perform an OR operation between the result of the AND operation and the prior status byte.

The logic operation to be performed is

$$Q2 \oplus Q3$$

and thus can conclude that the pressure sensor has changed from being above the setpoint to now being at or below the setpoint (logic 0 to logic 1 transition).
THE DATA SHEET FOR THE RCA CA3160 BIMOS operational amplifier (File Number 976) describes a device similar to the earlier CA3130 but with internal compensation. This means that in a host of applications you don’t have to figure out the value of capacitors or more complex compensation networks to stop your favorite circuit from oscillating.

CA3160 application

Suppose you have a microcomputer or some kind of counter hooked up as a music generator or in a measurement system and you would like to convert its 8-bit parallel output into an analog voltage. Digital-to-analog converters tend to get complicated and expensive, but the one shown in Fig. 1 is neither. This circuit has nine parallel inputs labelled MSB1 to LSB9, from the most significant to least significant bits. The converter uses an R–2R precision resistor network to weight the various binary inputs to produce the DC output voltage. Speed is a virtue of this type of converter since there are no closed-loop comparisons or sequencing operations to slow things down. It’s simply a matter of reading the parallel inputs and the time it takes the switches to settle and the circuit capacitance to charge.

The CA3160 in Fig. 1 acts as a voltage follower that takes the output of the resistor network and buffers it to feed the system output. To maintain converter accuracy, it is vital not to load the resistor network. It doesn’t take much to disturb the DC output voltage. The situation is similar to measuring with a DC voltmeter. If the meter does not have a sufficiently high input impedance, it will load the finite impedance of the circuit and destroy the measurement accuracy.

The circuit uses five IC’s: three CD4007’s that serve as switches; the CA3160 voltage follower; and a CA3085 voltage regulator to supply a stable reference voltage. The system output cannot be any better than the reference voltage since all other errors are added to it.

The CD4007’s are really COS/MOS amplifier stages. The input to each inverter amplifier is connected to each of the 9 digital inputs, and each corresponding output feeds one of the converter resistors. Starting at the most significant bit, notice that until you reach R7, the resistors keep doubling in value. Eight 806K’s in parallel are about 100K; the next group on terminals 1 and 5 of IC3 combine to 100K, etc. A voltage on the most significant bit has the largest influence due to its lowest series resistance to the common output bus. As you move in the direction of the less significant bits, doubling the resistance value reduces their influence by one-half.

Assume for the moment that you are dealing with two input bits. These binary inputs are weighted in powers of two so that the most significant bit has a weight of 2 and the least significant bit has a weight of 1. If both bits are 0, the binary number is 0 and a 0-volt output is produced. If the least significant bit is a 1 and the most significant bit is a 0, the binary number is 1 and the output is one-fourth the reference voltage. A logic 1 on the most significant of the two bits and a logic 0 on the other equals a 2, which produces an output of one-half the reference voltage. Both bits at a logic 1 level produce an output equal to three-fourths of the reference voltage. By weighting each input in binary fashion, the converter produces equal steps from 0 to three-fourths of the reference voltage. The same pattern holds for the 9-bit converter except the range of output steps is from 0 to 511.

The circuit should double the resistance value down to the end of the chain, but this would require a resistance range of 256 to 1, which creates some real practical problems. By inserting the 1556-ohm series resistance, the total converter network resistance range is limited to only 16:1, a much more manageable figure. The actual choice of resistor values is a compromise between speed and accuracy. The larger the resistance the slower the R–C time constants, and the smaller the resistors the larger the effect of the 250-ohm output resistance of the CD4007’s.

Resistors R8 and R9 combine to form a 1.612 megalohm resistance. The voltage swing at its upper end has a specific, voltage influence on network output. Resistor R5, the next one in the chain, must have exactly one-half this influence. If we separate R5 from the resistors to its left, we can draw the equivalent circuit shown in Fig. 2. If the circuit is opened at point x, the voltage at that point will change by one-half the supply when the top of R5 is switched. The resistance of this circuit is the parallel value of the two 100K resistances, or 50K. Added to the 1556 series resistance, the total resistance comes to 1606 ohms, similar to the R8 and R9 resistance.

The ladder network uses 1% metal film resistors. The most significant bits are assembled with parallel and series 806K resistors from the same lot. Parallelising resistors increases the probability of a good match between the components. The regulated voltage is adjusted higher than 10 volts to 10.01 volts to compensate for the loading of R2 to ground.

Fig. 2—EQUIVALENT CIRCUIT of the ladder network shown in Fig. 1 is shown in a. Simplifying the equivalent circuit yields the circuit shown in b.
Attacking the intermittent. **Logic can win the battle.**

JACK DARR, SERVICE EDITOR

INTERMITTENTS ARE THE BANE OF OUR existence. They're responsible for more frustration, bad language, and monetary loss than anything else. Nobody ever made money on an intermittent. There aren't any hard and fast ways of handling them (especially "fast") but there are ways that can help; two of them. You could call them active and passive.

The passive method means "set it up on the bench and let it play till it cuts out." This can take up a lot of time since the stock intermittent will usually play indefinitely on the bench. (I may hold the U.S. record! I watched one set for more than 120 hours without catching it acting up; all summer, in fact.

Since surveys show that long delays in getting sets repaired and returned are a major cause of "consumer complaints" (even more than high service charges!) this method isn't too good.

The active way is best. "Don't just sit there; DO SOMETHING!" Attack it. Intermittents can be classified, and this gives us a place to start. There are two kinds; intermittent shorts or opens. Shorts are a bit easier. They can often be located from the burnt resistors or other signs of damage. Intermittent opens are another thing. They interrupt circuits causing the loss of signal, sync, sweep, and, in the easier ones, a loss of voltage. However, the nature of the fault will lead us to the function that is affected.

Intermittents are caused by one of three things:

Thermal: some part gets hot enough to open, change value, etc. **Physical:** a bad connection somewhere that makes and breaks. **Voltage:** the least frequent but still possible. Certain voltages go out of tolerance causing trouble. Solid-state sets with automatic hold-down circuits are quite prone to this. Either of the first two things can cause this, so this is really a "subclass."

There is no definite line of demarcation between these, of course. For example, a thermal might be a burnt resistor that is cracked. Thermal expansion can make it open, and it can also be made to act up by jarring the chassis. So, don't freeze on any single attack; be flexible. Use them all at once if necessary!

A "thermal" resistor, in this sense, means one that changes in value when it gets hot. It may even open entirely. This definitely includes those types which are supposed to change, such as thermistors. These may be changing too much or not enough. Now let's see about methods of attack.

Check the characteristics of the intermittent fault. If the trouble shows up within the first 8 to 10 minutes of operation, this could be a thermal resistor in a current-carrying circuit. Plate or collector load resistor, etc. The heat that makes it go bad is developed in the resistor itself from the current. This could be called a "conduction" thermal. Such resistors usually heat up enough during the first few minutes to go bad.

If the resistor is used in a "dry" circuit, with practically no normal current-flow, it too can be thermal. In this case, it is heated by radiation of heat from nearby parts or from the chassis. It could be called a "radiation" thermal. (The heat is "conducted" through the chassis, but let's not mention that; we'll be confused enough as it is!)

The main characteristic of such thermals is the much longer time-constant. This is normally at least an hour and may be far longer. These little gems are the ones that act up in the cabinet and just won't show up at all with the chassis out of the case, or even with the back off!

Where to start

Now, to the attack. If the problem shows these signs of being thermal, locate the function or circuit which is affected. For example; the problem is a sudden loss of picture and sound leaving a clean raster. Here we have three suspects: tuner, IF and AGC. Eliminate the tuner by checking with a tuner-substituter. Eliminate the AGC by clamping it. This leaves us with the IF strip. (Unless the previous tests showed that the trouble was in one of the first two. We should be so lucky!)

How do we attack? We've agreed that this shows signs of being thermal. So we heat things up or cool them off to see if we can make the problem show up. You can use a heat-gun, such as the Wahl Thermal-Spot, to heat up individual parts. You can also hold the tip of a soldering iron on the part long enough to warm it up. If this doesn't make it happen, try the opposite; cool things off with freeze-spray.

These tests are very useful for finding things like thermal transistors, of which there are quite a few. (I have a pet on my bench: At room temperature it works perfectly. Warm it or cool it only a very few degrees, and out it goes, only to come back when it returns to room temperature!)

These things are also useful for finding drifting resistors that cause such things as a gradual loss of vertical sync, color, etc. Heat or cool them while watching the screen. If you do find one, replace it and then check all of the others in the circuit. There may be more than one.

The physical or "jar-intermittent" can be made to show up by jarring the cabinet (the famous "Puny" treatment.) These shouldn't be too hard to find, but of course often are. If you can make it act up by jarring the cabinet, note which function is affected. This tells you where to start. Go to the area of this circuit and start tapping things very lightly. Use an insulated tool. Something like a plastic screwdriver is my favorite. You can tap with the end or hit harder with the handle if necessary. The part that is causing the problem will be the most sensitive to tapping. Use a very light touch until you find a place where only a very light tap will make it act up.

Bad solder joints are one common cause. Hairline cracks in PC board con-
intermittent, and I've got a flash light that's not working all that well. Just as soon as I get this done, I'm going to have to go to work. R-E

reader questions

VERTICAL SYNC PROBLEM

Thank you for your suggestions on the vertical sync problem in this Wards Airline GEN-12440A, (Sams 1143). The horizontal sync was good, but the vertical weak. We found both capacitors C406 and C413 open. Replacing them cured the trouble. Now tell me how I got horizontal sync through capacitor C406?—R.S., Littleton, CO.

This is simple. (Note how simple all of these problems are, after they're solved.) Both of these are 3.3-μF electrolytic capacitors. They lose capacitance where a paper capacitor can't; it's either good or open.

Capacitor C406 is the coupling capacitor, and it had enough capacitance left to let the high-frequency horizontal sync get through, though it reduced the vertical sync amplitude. (Vertical sync works on amplitude.) Capacitor C413 is the screen grid bypass on the sync-separator 6GH8, and if it's open, you'll get quite a bit of degeneration and a loss of gain.

AGC PROBLEM

Here's one for your collection. I apparently had AGC problems in this Sears 529.7246 chassis. The set had a raster, but no snow or sound. Adjusting the AGC control had no effect. Checking DC voltages, I found No. 1 B+ source to the tuner read zero. This comes from the cathode of the 50C5 audio output tube. Read this voltage (from underside of chassis) and it was zero. Replaced 50C5 tube and still nothing.

Looking at the top side, I saw that the 50C5 and a pair of 12AV6's weren't lit. Since they use a series heater string, I'd assumed that all of the tubes were lit. Turns out that these three are fed through a 300-ohm 10-watt dropping resistor all by their little selves. This resistor is R231, even though the parts lists says C231. It was open and replacing it fixed the set.

Thanks to Joe Witt, of Maxi-Watt Electronics, Vineland, NJ.

Speaking from a background of almost complete ignorance on actual amateur gear, I can give you a couple of ideas. You noted that the relay driver tube grid varied when the relay chatters. Try connecting a diode from this grid to ground, anode grounded. The idea of this is to clip the negative going peaks of the interfering signal and help hold the plate current steadier. Also, add more bypassing to ground on this grid.

(Feedback: "Tried diode to ground. It works. Fantastic!")

FUSE BLOWS

The 2.5 fast-blow fuse that supplies the +145 volts to the flyback in this Magnavox T982-12, blows within 30 seconds after turn-on. I've changed the horizontal output transistor, tripler and the flyback, and it still blows. It makes a perfect picture till the fuse goes. What's going on here?—B.H., Decatur, GA.

After the things you've changed, nothing. H! Seriously, something else is causing this, but what? I hunted through the schematic for about 15 minutes and finally came up with a good possible. This same fuse is also connected to a pulse supply that develops +250 volts. This is what took me so long; I couldn't find out where that 250 volts went.

Finally stumbled over it. This is the DC bias applied to the picture tube heater, and nothing else. You have a diode and a couple of electrolytic capacitors in that circuit. If any of these are bad, the fuse could blow; just disconnect the +250 volts and see.

HIGH-VOLTAGE ARCING

The high-voltage arcs all around the back of the picture tube in this Zenith 21X1C36, I can see arcs and flashes all around it. Sometimes the picture goes out of focus and then goes out. I suspect the picture tube but I'm not sure. How can I verify this?—J.H., Houston, TX.

This is one of those "might be the picture tube; might not" things. There is one way to tell. Hook the chassis up to a test jig! If you get the same symptoms, this is some kind of oddball problem in the grounding of the dog coating, etc. If this clears all symptoms up, the original is bad.

VOLTAGE-DEPENDENT RESISTOR

Where can I find a VDR used in a Motorola TS-597C? It's the one connected between the +250-volt source and the brightness control. The part number is 6C65263A08. Can't find it anywhere around here, even in the factory parts catalogues!—R.A., Thibodaux, LA.

This VDR can be replaced with an Onedia GB-308. This is rated 1.0 mA at 110-120 volts. This one will also replace an RCA 114862. Onedia parts are available at a lot of radio-TV supply houses. Their address is 853 North Cottage St., Meadville, PA 16335.

RELAYS CHATTER ON PEAKS

Here's one for you on ham gear. I'm trying to drive a Heath SB-230 linear amplifier with a Hallicrafters SR-150 transceiver. This works well in all bands except the 7-MHz band, but here the relays chatter and cut out on voice peaks. Happens only in PTT (Push-to-talk). This must be RF getting in, but so far I can't find it.—F.K., Raytown, MO.
New! Equalization analyzer...

Balance a system...Balance a budget.

Quick and accurate adjustment of sound system frequency response is finally within the reach of most budgets. The Shure M615AS Equalization Analyzer System is a revolutionary breakthrough that lets you "see" room response trouble spots in sound reinforcement and hi-fi systems—without bulky equipment, and at a fraction of the cost of conventional analyzers.

The portable, 11-pound system (which includes the analyzer, special microphone, accessories, and carrying case) puts an equal-energy-per-octave "pink noise" test signal into your sound system. You place the microphone in the listening area and simply adjust the filters of an octave equalizer (such as the Shure SR107 or M610) until the M615 display indicates that each of 10 octaves are properly balanced. You can achieve accuracy within ±1 dB, without having to "play it by ear." Send for complete descriptive brochure AL558.

Shure Brothers Inc.
222 Hartrey Ave.
Evanston, IL 60204

In Canada:
A. C. Simmonds & Sons Limited

TECHNICORNER
The M615 Analyzer's display contains 20 LEDs that indicate frequency response level in each of 10 octave bands from 32 Hz to 16,000 Hz. A rotary hi/lo envelope control adjusts the HI LED threshold relative to the LO LED threshold. At minimum setting, the resulting frequency response is correct within ±1 dB. Includes input and microphone preamplifier overload LEDs. A front panel switch selects either flat or "house curve" equalization.

The E615 Omnidirectional Analyzer Microphone (also available separately) is designed specifically for equalization analyzer systems.
Antennas and transmission lines. Improve reception with the right antenna system. STAN PRENTISS

THIS SERIES HAS NEVER DISCUSSED ANTENNA and transmission line characteristics, so a short discussion might be helpful to many—both in and out of the TV business—who are contemplating new installations.

Be assured there's more to retrieving a signal from the air than meets the eye, especially if you take time to ask: What "makes" this or that antenna or lead-in the best? You'll find that worthwhile products can almost always be judged fairly by their manufacturing specifications, especially if the maker has a history of reliability. Manufacturers of the better product lines, of course, usually make detailed specifications, such as antenna polar and gain graphs of transmission-line shielding and loss characteristics, available.

Obviously, prairie and mountain folk 100 miles from the nearest transmitter require antennas with very high gain and the best available 300-ohm "dry" transmission line for maximum signal pickup. Perhaps even a very high mast or tower with variable elevation and directional devices may be in order. The special circumstances and special needs are normally well known in the individual localities and need no discussion here. What we do wish to review and comment upon, however, are the vast numbers of installations within 50 miles of TV stations that probably would respond with a 25- to 50-percent improvement in signal pickup if installers would adhere to solid fundamentals.

Broadcast signals

Broadcasts stations are power limited—if you didn't already know—to prevent such problems as co-channel and adjacent-channel interference. In the northeast United States, the VHF stations must begin cutting back power when their towers have risen 1,000 feet above the average surrounding terrain. UHF cutbacks begin at 2,000 feet everywhere, while VHF around the Gulf coast and the remainder of the U.S. can have transmitters reaching 2,000 feet, the same as UHF, before power is curtailed. Broadcast power is also limited to 100 kilowatts for Channels 2 through 6; 316 kilowatts for Channels 7 through 13; and 5 megawatts for all UHF stations. Stations within 250 miles of the Canadian border are normally limited to 1 megawatt.

Received signals

Television signals between 54 and 890 MHz are broadcast virtually line-of-sight—especially signals in the 470-890 MHz spectrum. This energy consists of electromagnetic waves that are horizontally polarized. The radiator (broadcast antenna) length is inversely proportional to frequency. Naturally, what is broadcast can also be received, but FM and TV receiving antennas are far different from broadcast antennas because they must handle a much broader range of signals and do not require heavy castings for large power dissipation. And while broadcast antennas are very specialty designed by teams of highly specialized engineers, receiving antennas may or may not be (depending on the company) so their characteristics are worth looking into. True, you do need structural strength in any receiving antenna to withstand winds of at least 75 MPH, as little wind resistance as possible, exterior coatings that will not succumb to salt spray, soot and other undesirable accumulations which tend to form leakage paths that reduce efficiency and signal pickup. You would also like as many transmission-attracting elements as possible. The Yagi is the best example of an antenna using a combination of parasitic and driven arrays. Parasitic elements help supply unidirectional patterns to aid both directivity and selective gain.

Some companies make a Log Periodic antenna, whose principles were first discovered by an antenna research group at the University of Illinois in 1954. But it's only been since 1963 that log periods, continued on page 86.
An Extraordinary Offer to introduce you to the benefits of Membership in

ELECTRONICS BOOK CLUB
take 3 of these unique electronics books (value to $5179) for only 99¢ each
with a Trial Membership in the Book Club that guarantees to save you 25% to 75% on a wide selection of electronics books

All two-book sets count as only one of your three Selections.

1010-200 p. - Power's International Transistor Selector - 2nd Edition (92-95) $7 x 10"x

1800-022 - Master Handbook of 1001 Practical Electronic Circuits ($12.95)

754-236 p. - Practical CB Radio Troubleshooting and Repair ($8.95)

582-444 p. - Commercial FCC License Handbook ($9.95)

T91-476 p. - The Complete Handbook of Electronic & House Wiring ($18.95)

510928-447 p. - Two Books: How to Read Electronic Circuit Diagrams & Basic Electricity & Radioelectronics ($17.95)

191-294 p. - Build It Book of Digital Electronic Timepieces ($9.95)

780799-350 p. - Two Books: 111 Digital & Linear IC Projects & 47 Simple Transistor Radios You Can Build ($15.95)

509140 p. - How to Build Metal/Treasure Locators ($7.95)

Facts About Club Membership
- The 3 introductory books of your choice carry publishers retail prices of up to $5179. They are yours for only 99¢ each (plus postage and handling) with your Trial Membership.
- You will receive the Club News, describing the current selection of Alternates and other offers, every 4 weeks (13 times a year).
- If you want the Selection, do nothing. It will be sent to you automatically. If you do not wish to receive the Selections or if you want to order one of the many Alternates offered, you simply give instructions on the reply form (end in the envelope) provided, and return it to us by the date specified. This date allows you at least 10 days in which to select the item. Because of late mail delivery, you do not have 10 days to make a decision and so receive an unwanted selection. You may return it at Club expense.
- Personal service for your account—no computers used. To complete your Trial Membership, you must buy any four additional monthly selections or Alternates during the next 12 months. You may cancel your membership at any time after you purchase these four books.
- All books—including the Introductory Offer—are fully returnable within 10 days if you are not completely satisfied.
- All books are offered at a Member's price plus a small postage and handling charge. Prepaid or billed, prepaid preferred.
- Continuing Bonus: If you continue after this Trial Membership, you will earn a Dividend Certificate for every book you purchase. Three Dividends plus payment of the nominal sum of $1.99 will enable you to select one available Book Dividend of your choice which you may choose from a list of available Members.

ELECTRONICS BOOK CLUB
P.O. Box 10
Blue Ridge Summit, Pa. 17214

Please open my Trial Membership in ELECTRONICS BOOK CLUB and send me the 3 books circled below. I understand the cost of the books I have selected is only 99¢ each, plus a small shipping charge. If not delighted, I may return the books within 10 days and owe nothing, and have my Trial Membership cancelled. I agree to purchase at least four additional books during the next 12 months, after which I may cancel my membership at any time.

101 563/636 510/628 582 743
780/790 754 785 870 814
866 905 969 913 919 1010

Name Phone
Address
City State Zip

(This offer valid for new Members only. Foreign and Canada add 10% to RE-97)

CIRCLE 30 ON FREE INFORMATION CARD
with their different length dipoles—each half-wave resonant at its own specific frequency—have been used extensively in consumer electronics. In the graphs of Fig. 1 you will note gains of 6 dB (as compared with a folded dipole—since an antenna has no actual gain of its own) for the low VHF band (and FM), between 11 and 12 dB for the higher VHF band, and a nominal gain of 10 dB for UHF channels 14 through 68. (Channels 69 through 83 are now ordinarily used only by translators and land mobile.) Now, take a quick look at the polar patterns (shown in Fig. 1) with their large front lobes and small side and back lobes and let's investigate these. An example will help illustrate what we mean.

Polar patterns

The polar pattern in Fig. 2 is drawn in 90-degree quadrants with the three inside circles representing 3, 10, and 20-degree losses. The 3-dB half-power point occurs about 15 degrees on either side of zero (the antenna's front lobe beamwidth is 30 degrees). That's what the antenna "sees" when pointed toward a transmitter. Obviously, this is somewhat narrow, and a beamwidth of 60 degrees would be more appropriate for metropolitan or suburban reception.

The real problems with this pattern are the back and side lobes that deliver a front-to-back ratio of only 13 dB—not especially good; 20 dB would be considerably more satisfactory. Unfortunately, these side lobes permit interfering frequencies (including ghosts) to enter almost the entire back area of the array, with only the area between the forward horizontal 35- and 90-degree markers free from spurious signals because of antenna rejection. In the broad, composite patterns of Fig. 1, the front-to-back ratio is at least 20:1 (26 dB), with insignificant back lobes, and beamwidths that range from some 60 degrees in the low VHF band, to about 30 degrees in the high VHF and UHF bands where directivity is somewhat more important.

Surprisingly, the characteristics in Fig. 2 are not all that bad. For had this pattern been broadened to at least a 60-degree beamwidth, it would probably make a good metropolitan antenna if there were no tall buildings or hills to induce reflected images. So tailoring an antenna for each location can not only improve your installation immensely, but often save the customer considerable cash when elaborate antenna systems are not needed. Of course, if you're right next to some television broadcast or other interfering transmitter, you'll have to use a high gain, narrow beamwidth antenna with rotor and, perhaps, pad it resistively to reduce excess gain. In any circumstances, know your area characteristics, consult the manufacturer's gain and polar patterns, and install an antenna that is adequate for the particular location. Don't guess!

Transmission lines

Just as important as antennas are transmission lines; if the two aren't matched, the resulting standing-wave ratio (SWR) can generate unacceptable losses, line interference and all sorts of nasty signal reflections and attenuation. SWR—for your information—is the difference (quotient) between the maximum and minimum currents (or voltages) across any single or multiple conductor. The incident (outgoing) and reflective (incoming) signals will form stationary valleys and energy peaks to distort incoming information one way or another. Certainly the best insurance against a high SWR is to terminate the line in its characteristic impedance, so no energy will be reflected back from load to source. Therefore, both antenna and receiver should always present a correct impedance match to any and all transmission lines.

Unfortunately, not all transmission cables are alike, as is evident in Fig. 3. This chart shows both shielded and unshielded 300-ohm lead-in characteristics under dirty-wet and good-dry conditions. Note that flat lead when old and wet is a drastic attenuator and really should be used only indoors, being especially vulnerable when allowed to lie on metal, gutters, or roofs. Adequately shielded cable can touch other objects, but should not be permitted to contact rooftops or other places that collect either water or dirt.

Coaxial cable versus twin lead is an old subject of discussion that often fails to take into consideration so many of the

FIG. 2—30-DEGREE BEAMWIDTH ANTENNA, with rather large side and rear lobes.

FIG. 3—TRANSMISSION LINE EFFICIENCY, for shielded and unshielded types. Note that the best line when dry is the worst one wet.

FIG. 4—DIFFERENCES IN ISOLATION for three types of shielding. Bottom, 55% coverage braid; middle, 94.5% coverage braid; top, dual-foil laminate plus 81% coverage braid.

FIG. 5—LOSES IN TRANSMISSION LINES. Top, low-loss oval unshielded line; middle, low-loss shielded 75-ohm coax; bottom, high-quality shielded 300-ohm lead. Characteristics of the 9283 are similar to those of the 9228 (middle curve).
The J.M.J. DIGITAL DISPLAY BEZEL

FOR APPEARANCE AND PERFORMANCE!

Now you can add a truly professional appearance to your digital projects and improve their performance as well... With the JMJ BEZEL. It will vastly improve the readability of the display and put a finishing touch on any front panel. And that’s important, for obviously, the display is the most looked-at feature on any piece of digital equipment.

$4.95 EACH
(Please order by color)

PATENTED CHROMAFILTER® SCREEN
- Eliminates glare and reflections
- Improves contrast and readability
- Scratch resistant—easily cleaned
- Out-performs circular polarized types
- Available in four colors

DIE CAST METAL FRAME
- Nonreflective black finish
- Durable—heat resistant
- Integral 6-32 mounting studs
- No exposed hardware
- Mounts in panels up to 3/16" thick
- Includes all hardware and a special template for easy installation.

© Panelgraphic Corp., W. Caldwell, N.J.

NAME
ADDRESS
CITY STATE ZIP

J.M.J. BEZELS at $4.95 EA.
(COLOR:__________)

ADAPTERS at $.69 EA.
(NUMBER:__________)

POSTAGE & HANDLING 1.00
5% N.J. SALES TAX
AMOUNT ENCLOSED

J.M.J. TECHNICAL PRODUCTS, INC.
BOX 26, KENDALL PARK, N.J. 08824

CIRCLE 35 ON FREE INFORMATION CARD
new advances in transmission line use and construction. The Belden Corp., for instance, has recently developed an outstanding new CATV drop cable, the 9283, consisting of polyester film with aluminum foil bonded to the polyester core, and either a tinned copper or aluminum braid cover. Belden’s tests (Fig. 4) show that with aluminum inner foil laminate plus 61 percent braid cover, there is 100-dB isolation from external interference. The cable, of course, is usable for home TV installations as well as CATV.

There’s a little cost differential, but the price spread between the best 300-ohm line and this cable isn’t overwhelming either.

Figure 5 shows the attenuation characteristics (both the dB loss and percentage of signal remaining) for comparable 8228 cable (without the addition of extra braid), as compared with both unshielded and shielded 300-ohm standard TV transmission lines. Note that the 8228 cable is within approximately 1.5 dB of Belden’s best unshielded—the 9085—over the entire frequency range. (Losses of the 9283 are almost identical with those of the 8228.) Then add 0.5 dB for each top (antenna) and bottom (receiver) matching transformer (balun), and you have a difference total of 2.5 dB. Will this do your metropolitan-suburban job of keeping interference to a minimum as well as passing excellent signals? Try it within 50 miles or less of the transmitter and you will be more than pleasantly surprised. Further, the total electromagnetic field will be contained in the coax; SWR will be low because of the matching transformers, and you’ll have considerably better UHF and improved VHF reception as a result.

STEP BY STEP TROUBLESHOOTING continued from page 86
Iron temperature control

Do you have a light dimmer or motor speed control on your workbench? Of course, it’s handy for slowing down the drill or grinder when working in soft materials such as plastic. But at our workbench the soldering iron is usually connected to it.

Just having one all-purpose soldering iron instead of two or three for various uses can cause trouble with many solid-state circuits because excess heat can quickly ruin a part or even a circuit board. However, you can keep your iron at just the right temperature with a dimmer/speed control.

The control shown in Fig. 5 can be assembled quickly and easily. Be sure to provide a good heat sink for the triac. Although the 6-amp unit specified can readily handle any normal electronics iron, you might want to use the control with something heavier.

Once you use the dimmer/speed control with your iron you’ll find you destroy fewer parts and boards and your iron and tip will last longer.

New CB guide

For beginning CB’ers, Radio Shack has published a second edition of All About CB Two-Way Radio (RS #68-1046). This updated non-technical guide covers such topics as how CB got started, types of radios and antennas, how to set up fixed and mobile stations, FCC rules and regulations and plenty of ideas on using CB.

Please remember that we want to hear from you—your needs, suggestions, ideas and circuits. Drop us a note. 73, Doc

“Hey, Ed. He says he’s your Uncle Charlie about a 10-30.”

REFERENCES:
new books

INTERFACI E INTEGRATED CIRCUITS HANDBOOK, National Semiconductor Corp., 2900 Semiconductor Drive, Santa Clara, CA 95051. 464 pp. 6% x 9 in. Softcover $4.00.

This handbook gives specifications on the complete line of interface products—peripheral/power drivers, level translators/buffers, line drivers and receivers, memory and clock drivers, sense amplifiers, display drivers and optocouplers. The text is supported by graphs, charts and diagrams. Also included is a 72-page section of application notes on such topics as transmission lines, data transmission and high noise environments and driving gas discharges, and LED displays.

The ideal guide for anyone preparing to take an FCC Novice, Technician, Conditional or General Class amateur radio licensing exam. The book is brief and has FCC-type answers for each question and then explains most answers in detail. There are also chapters on the types of amateur licenses, FCC exam procedures, schedules, fees, and locations, how to learn code, how to take the code in written exams, how to operate an amateur radio station and the latest FCC rules and regulations.

CB TESTING continued from page 53

completely during a noise pulse become apparent by their vastly improved performance over simple noise clippers.

22. Audio Output Power. At the level at which the audio output contains 10% distortion or full volume, whichever is greater, we will measure the AC voltage across the speaker terminals and, using the speaker's characteristic impedance, calculate the audio power in watts.

23. Public Address Output Power. We measure the power in watts directly into 8 ohms at the P.A. jack.

The tests Radio-Electronics will use as a part of our CB Equipment Reports are conducted by an independent testing laboratory using the highest quality test equipment. We will from time to time add new tests if they are needed to rate as yet unknown features and delete those tests that do not seem important any longer. We will test at least two transceivers each month and may review an important new accessory occasionally if it requires a technical critique that fits our format. The actual tests will be performed on equipment supplied to us by the respective manufacturer and it is expected that they will be representative of the models in production.
before it becomes response-limited. This power bandwidth (at 7 volts RMS output) translates to a slew-rate of 4.8 volts-per-microsecond. Design has stressed minimization of transient intermodulation, and subsequent bench and listening tests attest to its success.

Laboratory measurements

Table I summarizes the results obtained in measuring the performance of the model PR-4. Distortion at rated output was so low that our readings were undoubtedly influenced by the residual test-oscillator distortion.

The overload readings obtained for the phono input, although short of the 150 mV claimed, are actually referred to an input sensitivity of 1.5 mV. Translated to the more usual 2.5-mV input sensitivity of most phono input stages, the overload capability increases to around 133 mV and, referred to the model PR-4’s least sensitive phono input settings, the figure becomes 175 mV.

The dual ranges of the bass and treble tone controls were plotted using our spectrum analyzer; results are displayed in Fig. 5. Low- and high-cut filter action is similarly plotted in Fig. 6. As for the signal-to-noise ratio in phono, our measurements are referred to a 1.5-mV input, whereas the published specification is based on a 5.0-mV input.

Summary

The overall product analysis of the Epicure model PR-4 is found in Table II. In actually using the preamplifier for listening and tape recording, we were pleased to see that the mode pushbuttons do not affect the tape outputs, so that signals available for recording are always stereo, even if a mono pushbutton is selected via the front panel. When this preamplifier was used together with a direct-coupled power amplifier, the transient response was extremely good and phono equalization was just about perfect.
Want to cut out a career as a two-way radio technician?

MTI offers the only training for professional FM two-way radio available. Qualified technicians are employed in government, industry, and public service. But training is your key.

You could cut out a career as a two-way radio technician by cutting out this coupon. We'll send you information on how you can learn more about this specialized field, at home.

Name
Address
City/State/Zip

☐ I am a veteran or serviceman on active duty.

MTI
formerly
MOTOROLA TRAINING INSTITUTE
College Hill, Summerdale, Pennsylvania 17093

FROM KIT TO CAR IN 80 MINUTES!

Electronic ignition is "in." Update your car with the TOPS in power, efficiency and reliability — the TIGER SST capacitive discharge ignition (CD). The TIGER delivers everything your CD's promise — and more: quicker starting, more power, more gas mileage, tune-ups eliminated, lifetime plugs and points, reduced repairs and pollution. The TIGER can be built and installed in your car in 80 minutes. The TIGER is unique! The TIGER comes with a switch for TIGER or standard ignition for 12V negative ground only.

Simpli-Kit $21.95

POST PAID U.S.A.

WE ACCEPT:
Mastercharge or Bank Americard.
Send check or money order with order to:

RF SIGNAL GENERATORS
continued from page 58

band. The fine control may be mechanical or electronic. The method of tuning may be of concern if the requirement for extreme frequency setability exists. An electronic vernier or a direct coupled variable capacitor vernier provides the lowest backlash method of fine frequency adjustment. The indicated difference between the two dial points required to get the same frequency when tuning from opposite directions is referred to as backlash. It makes setting an exact frequency quite difficult. Backlash can make it impossible to set a frequency at the same point on the dial when increasing frequency as when decreasing frequency.

A fine frequency control which is simply an edge-drive on a large coarse frequency control, or other forms of mechanical frequency vernier are much more inclined to have a high degree of backlash.

Frequency accuracy and readout

The expected accuracies, specified as a percentage of reading on band-switched LC oscillators, do not vary widely and figures such as ± 4% are found on the lowest-cost generators, and only ± 1% on some of the best. Frequency readout on such generators is normally on a circular or slide-rule dial. Each band has its own calibration. Dial calibration takes care of stray capacitance and inductance that may affect calibration.

If the generator has a digital readout, calibration accuracy becomes entirely different. The designer is no longer dependent upon the repeatability of various capacitors. The accuracy now becomes the accuracy of the digital frequency meter. This is almost entirely the accuracy of the crystal time base. Typical accuracies for digital frequency meters installed in RF signal generators are in the area of plus-minus one part per million (0.0001%). This results in approximately a ten thousandfold increase in accuracy.

Frequency stability

The frequency-stability specification covers a multitude of small variations. Each of the various frequency stability specifications presume independence from the effects of any other specification. Therefore, the total frequency stability specification of the generator must take into consideration the actual operating environment and not just any one single spec.

Frequency stability is normally defined for five different conditions. The two major ones are time and temperature. Stability with respect to time may be given for both short interval (10 minutes) and long interval (a few hours). It is usually given as a percentage of
frequency setting per unit time. Drifts of 50 PPM/10 minutes are common on older generators with an order of magnitude improvement on newer generators. Long-term drifts may lie between 1 kHz and 10 kHz per hour for older generators. Once again, an order of magnitude improvement may be expected from newer generators.

Temperature stability is given as a percentage per degree centigrade. One degree centigrade is approximately 2°F at normal working conditions. The practical concern is change in frequency for change in temperature, rather than change in absolute calibration.

Two less important specs covering frequency stability indicate percentage frequency change due to load changes, and due to line voltage changes. The band-switched I.C. oscillator often includes a stability specification for the time interval immediately following bandswitch operation. This specification may be read as a settling time.

Like all other specifications, these improve with generators of greater cost and lessen with generators of lower cost. On low-cost generators the specifications are frequently omitted.

Resettablity

The resettability specification indicates the percentage of desired frequency to which a generator may be returned if it is set back to the same mark on the dial.

Amplitude range

Amplitude range is usually specified in both voltage and dBm. The minimum amplitude of generator output determines the suitability for testing radio receivers. There are few receivers that do not require a generator output that is substantially less than 1 µV (frequently as low as 0.1 µV) for making sensitivity checks. Simple receiver alignment and basic troubleshooting may be carried out at levels considerably in excess of the 1-µV level.

As noted, the output level specifications are usually given in both volts across 50-ohms and dBm (decibels relative to 1 milliwatt). Zero dBm is 223.6 mV. 1µV is −127 dBm, and 0.1 µV is −127 dBm. The maximum obtainable signal from a signal generator varies from 100,000 µV (0.1 volt or −7 dBm) to 3 V (+22 dBm). A maximum output of 1 V or +13 dBm is common.

The variation in output level is often a function of both price and frequency. VHF generators offer 1 V in modern designs and 100,000 µV output is common on older designs. HF generators usually offer a 3-V output on medium and upper price generators. Levels in excess of 100,000 µV are usually not necessary for radio receiver servicing. The high output levels may be required for research work or situations where

continued on page 100
new products

More information on new products is available from manufacturers of items identified by a Free Information number. Free Information Card follows page 108.

40-CHANNEL AM/CB TRANSCEIVER, model Malibu 40, is a rugged, economical set suitable for installation in commercial and pleasure vehicles. Features phased-locked-loop circuitry, 4-pole ceramic bandpass filter, easy-to-read channel numbers, microphone, adjustable squelch and volume controls, and backlit RF power-out/"S" meter. Suggested price: $159.95.—SBE, Inc., Dept. P, 220 Airport Blvd., Watsonville, CA 95076
CIRCLE 80 ON FREE INFORMATION CARD

AUDIO THROUGH VHF/UHF FREQUENCY COUNTER, model FC45, is highly sensitive, with 25 mV average throughout band, with pickup loop; all direct-reading, 8-digit display; crystal checker; and all testing leads. The unit comes with optional prescaler, model PR 47, and power adapter, model PA202, for use with other frequency counters. Accuracy is better than FCC requirements on all bands including UHF; Price: Frequency counter, $395; prescaler, $125; power adapter, $9.95.—Sencore, Inc., 3200 Sencore Drve, Sioux Falls, SD 57107
CIRCLE 81 ON FREE INFORMATION CARD

VOLTAGE SPIKE PROTECTOR, model GESP-752, limits voltage transients that might damage equipment. It plugs into a 120-volt grounded AC receptacle and protects TV's, stereos and other sensitive electronic equipment against lightning strikes that cause high-voltage surges. Contained within is a varistor that permits only a safe voltage level to enter protected equipment and does not interfere with normal current flow, or add to energy cost. Available from manufacturers' tube products distributors. Suggested retail, $9.95.—G-E, Tube Products Dept., Louisville, KY 40205
CIRCLE 82 ON FREE INFORMATION CARD

RADAR DETECTOR, BEARTECTOR PR-7 Series II, resists extreme temperature and input voltage variations and interference generally found in automotive environments. The unit features a front-panel "running light" to indicate when device is working, volume and squelch controls are similar to CB equipment. Mounts on dash with self-adhesive Velcro pads for easy removal to guard against theft. Power cord plugs into cigarette lighter socket. The Series II measures 4½ X 6 X 3½ inches, power from +12 or -12 volts. Unit carries a full 90-day parts and labor warranty and is available through CB and electronics dealers and distributors.—Prime Electronics, Inc., 8605 Quivira Rd., Lenexa, KS 66215
CIRCLE 83 ON FREE INFORMATION CARD

CATHODE-RAY OSCILLOSCOPE, Miniscope MS-15, weighs only 3 pounds and measures 2.7 X 6.4 X 7.5 inches. Other features are a 15-MHz bandwidth, 0.25-inch division spacing and a graticulated rectangular viewing area 4 divisions high by 5 divisions wide. Also provided are internal/external triggering with automatic and line synchronization modes and horizontal input; 12 vertical

KEYBOARD ENCODER KIT, Archer model 277-117, contains printed-circuit board with instruction manual and parts. Completed encoder can be used to provide inputs to many devices requiring ASCII-encoded alpha-numerical characters. Kit comes with repeat key, negative-going/positive-going data-valid strobe, latch outputs, shift and shift-lock capability, true or false outputs and six extra control keys. Circuit board with parts and assembly manual: $14.95. All parts, except hardware and case: $57.80.—Radio Shack, 2617 W. 7th St., Fort Worth, TX 76107
CIRCLE 84 ON FREE INFORMATION CARD

HOLE-DRILLING KIT, model Connect 3420, contains two drill bits, cutting compound and fiber hole gauges. It is particularly adapted for easy CB antenna installation, plumbing, electrical and hobby uses. Holes can be drilled in thin material, such as steel, sheet metal and formica, among others.—GC Electronics, 400 So. Wyman St., Rockford, IL 61101
CIRCLE 85 ON FREE INFORMATION CARD

RADIO-ELECTRONICS
gain settings from 0.01 to 50 volts per division; 21
time-base settings from 0.2 ms to 0.5 sec per
division, and optional 10:1 probe and carrying
case. Power is from batteries or AC line. Price:
$289.—Non-Linear Systems, Inc., P.O. Box N,
Del Mar, CA 92014

CIRCLE 86 ON FREE INFORMATION CARD

RMS VOLTMETER/AMPLIFIER, model 9601A, is
a general-purpose instrument for use in high-risk
areas such as power-generating stations. Mea-
sures and amplifies AC voltages of 10 Hz-1 MHz
and over. Basic reading accuracy is ±3%. Bat-
tery operating time is 8 hours continuous from
0°-5° C and 4 hours at -40° C; AC power is 115
volts or 230 volts RMS ± 10% at 47-420 Hz.
Accessories include retractable tip, ground cab-
kle, spare fuse, AC power cable, test probe and
manual. The instrument weighs 9.5 lbs and mea-
sures 7¼ X 8¾ X 6-inches. Priced at $995.—
Ballantine Laboratories, P. O. Box 97, Boonton,
NJ 07005.

CIRCLE 87 ON FREE INFORMATION CARD

PRECISION LOAD SYSTEM, model 240, is de-
signed specifically for use as a dummy load for
audio equipment. It can provide 4-, 8-, 16-ohm,
1/4 loads, with power-dissipation capability at
250 watts per channel at 8 ohms, and 500 watts
at 4 or 16 ohms. Unit has speaker-monitoring
load resistors are heat-sink-mounted, with
an impedance-matched cable/connector to
control unit permitting out-of-way placement.
Price: $275.—BPB-Audio Test Instruments, 7853
Balboa Ave., San Diego, CA 92111

CIRCLE 88 ON FREE INFORMATION CARD

VOM PACKAGE, model 100-7, comes in a leather-
carrying case complete with VOM, tempera-
ture probe, VOM leads, a clamp-on AC ammeter,
and a plug-in separator for standard-line-cord
current readings.
The model 390 VOM includes five AC/DC ranges for
0-1200 volts; four DC milliamp ranges
of

NEW EICO 270

3½ DIGIT DMM KIT
ONLY $79.95

Introductory Offer—FREE AC ADAPTOR

The first and only lab accuracy por-
table DMM Kit featuring MOS/LSI
IC economy and reliability. Mea-
sures DC/AC Volts, Kiloohms, DC/AC
milliamps in 21 ranges. Polarity
indicators and overload protection
are provided, and 0.5 inch LED dis-
plays give easiest-to-read digital
readout to 1999. The 270 features
a basic 0.5% DC accuracy, 10 Meg-
ohm input impedance, low voltage
drop in all current ranges and auto-
matically-flashing overrange indica-
ator. Assembled $109.95.

FREE 78 EICO CATALOG

Check reader service card or send $1.50
for first class mail. See your local EICO
Dealer or call (212) 272-1134, 9:00
a.m.-5:00 p.m. EST. Major credit cards
accepted.

EICO—283 Malta St.,
Brooklyn, N.Y. 11207

CIRCLE 78 ON FREE INFORMATION CARD

Clever Kleps

Test probes designed by your needs — Push to seize, push
to release (all Kleps spring loaded).
Kleps 10 Boathook clamp grips wires, lugs, terminals.
Accepts banana plug or bare wire lead. 4¼" long. $1.39
Kleps 20, Same, but 7½" long. $1.49
Kleps 30. Completely flexible. Forked-tongue gripper. Ac-
cepts banana plug or bare lead. 8½" long. $1.79
Kleps 40. Completely flexible. 3-segment automatic collet
firmly grips wire ends, PC-board terminals, connector pins.
Accepts banana plug or plain wire. 6½" long. $2.59
Kleps 1. Economy Kleps for tight line work (not lab quality).
Meshing claws. 4½" long. $0.99
Prof 10. Versatile test prod. Solder connection. Molded
phenolic. Doubles as scribbling tool. Bunch" pin fits banana
jack. Phone tip. 5½" long. $0.89
All in red or black — Specify. (Add 50¢ postage and handling.
Write for complete catalog of test probes, plugs, sockets,
connectors, earphones, headsets, miniature components.
Available through your local
distributor, or write to:

RYE INDUSTRIES INC.

127 Spencer Place, Mamaroneck, N.Y. 10543
In Canada: Rye Industries (Canada) Ltd.
CIRCLE 38 ON FREE INFORMATION CARD

SYSTEM 5000

The New Programmable Clock Kit
from Digital Concepts. $29.95

SYSTEM 5000

FEATURES AND SPECIFICATIONS

TESTING FUNCTION

- Time base - 0.2 ms to 0.5 sec per division
- 21 time-base settings
- 10:1 probe and carrying case
- 9.5 lbs weight
- 7¼ X 8¾ X 6-inches

ORDER THIS EXCITING KIT TODAY AND PUT
ELECTRONIC TIMEKEEPING TO WORK FOR YOU!

digital concepts

Digital Concepts Corporation • 241 Route 46
Saddle Brook, New Jersey 07662 • (201) 445-7503

CIRCLE 41 ON FREE INFORMATION CARD

SEPTEMBER 1977

95
Put Professional Knowledge and a COLLEGE DEGREE in your Electronics Career through HOME STUDY

Earn Your DEGREE

by correspondence, while continuing your present job. No commuting to class. Study at your own pace. Learn from complete and explicit lesson materials, with additional assistance from our home-study instructors. Advance as fast as you wish, but take all the time you need to master each topic. Profit from, and enjoy, the advantages of directed but self-paced home study.

The Grantham electronics degree program begins with basics, leads first to the A.S.E.T. degree, and then to the B.S.E.E. degree. Our free bulletin gives complete details of the program itself, the degrees awarded, the requirements for each degree, and how to enroll. Write for Bulletin R-77.

Grantham College of Engineering
2000 Stone Avenue
P. O. Box 25992
Los Angeles, CA 90025

Worldwide Career Training thru Home Study

CIRCLE 98 ON FREE INFORMATION CARD

SAVE GAS! SAVE on TUNE-UPS!

MODERNIZE and Bring Your Car "UP-TO-DATE" with the MOST EFFICIENT Ignition ever invented!

ALLISON XR-700

The "XR-700" is a COMPLETELY NEW Ignition System that replaces the inefficient Breaker-Points and Condenser with a highly RELIABLE, Invaluable "Infra-Red" Light Beam which CONTROLS the latest design Solid-State POWER MODULE. This new "Patented" Invention produces the HIGHEST ENERGY, Longest Duration Spark of ANY Ignition System manufactured TODAY!

CUSTOMERS REPORT: "The XR-700 MORE THAN PAYS FOR ITSELF...and KEEPS ON SAVING MONEY with...

- INCREASED "GAS MILEAGE" up to 30%!
- ELIMINATING COSTLY "TUNE-UPS!"
- IMPROVED ENGINE PERFORMANCE!
- QUICKER STARTING in ANY WEATHER!
- FASTER ACCELERATION...SMOOTHER RUNNING!
- PLUGS LAST UP TO 4 TIMES and LONGER!!

The XR-300 has NO moving parts to wear out, never needs adjustment! Engineered to OUTLAST Your Car. So RELIABLE... So PERFECT... that we give you a LIFETIME WARRANTY: "FREE Repair or Replacement" for as long as you own the unit, even if you change Cars, we will supply the necessary Parts FREE!

KITS ALL ENGINES. Domestic or Foreign. 4, 6 or 8 Cylinder

EASY INSTALLATION...Completely Factory ASSEMBLED!

Thousands sold at $59.95

NOW...ONLY...$39.95

THAT'S EVERYTHING...INCLUDING PORTAGE & INSURANCE

SAVE! ORDER FACTORY DIRECT!

Send Check or M/O, State Car Make, Year and No. of Cylinders

CALL OR WRITE for FREE BROCHURE

ALLISON AUTOMOTIVE CO.
1267-RL, East EDNA PL., COVINA, CAL. 91722

CIRCLE 5 ON FREE INFORMATION CARD

The model 10 clamp-on ammeter permits current readings in six ranges up to 300 amperes without circuit interruption. The model 101 plug-in line separator permits clamp-on AC measurements at 0.6 and 0.3 amps. Also included is a 42-inch lead for the AC clamp-on probe. Complete package price: $120.—Triplet Corp., Dept. PR, Bluffton, OH 45817

CIRCLE 99 ON FREE INFORMATION CARD

CB CONNECTOR, Adapta-Conn model C-714, is a special 4-pin-pattern device needing absolutely no soldering. Push-on pin connectors are crimped onto the proper wires. Unit is included as standard equipment with both manufacturer's power mike and hand-held mikes. Unit price: $2.50. With power mike: $35. With hand-held mike: $9.95.—Supercor Electronics Corp., 151 Ludlow St., Yonkers, NY 10705

CIRCLE 96 ON FREE INFORMATION CARD

BURGLAR ALARMS, 61.119, 61.120. are lightweight and adaptable to many home/office/automotive uses. The portable unit (61.119) can be slipped into purses or briefcases; the mobile alarm (61.120) is ideal for permanent installation in automobiles, vans, boats, etc. Both models are programmed with 2-digit code combinations that make it virtually impossible for a burglar to turn them off. Switches activate a 10-db alarm. Size and weight: 10% ounces, 3% x 5% x 1% inches.
CPU BOARD is S-100 bus-compatible for use with a motherboard and bus peripherals, or can replace existing CPU board and front panel to operate as a minicomputer. Features two operating modes: one allows user to step through program while unit is running; other mode prevents microcomputer from shutting off after HALT instruction. Buffering assures proper data transfer and Schottky IC's reduce power consumption. The kit is $250; assembled, $325.—Morrow's Micro-STUFF, P.O. Box 6194, Albany, CA 94706.

CIRCLE 103 ON FREE INFORMATION CARD

Speaker jack. Unit output is -45 dB re 1 volt. Powered by one AA cell, unit also includes safety switch. Suggested price: $60.—Superex Electronics Corp., 151 Ludlow St., Yonkers, NY 10705

CIRCLE 98 ON FREE INFORMATION CARD

CB FILTER CABLE reduces harmonic interference to TV channels 2, 5, 6 and 9. Connected between CB transceiver and antenna at transceiver antenna terminal, cable comes in 6-foot and 18-foot lengths.—Vitek Electronics, Inc., 200 Wood Ave, Middlesex, NJ 08846

CIRCLE 102 ON FREE INFORMATION CARD

At last! A digital counter every CB'er/Hobbyist can afford. Exclusive transmitter-keyed "sniffer" circuit activates counter only on transmit, giving accurate readout of channel frequency. Standard coax connectors and mounting brackets make mobile installation a snap. IC Digital circuitry. Freq. range: 5 Hz-27 MHz (all 40 CB channels). Accuracy: ±1 PPM ±1 Digit. Readout: Five 0.5" LED Displays; 10 MHz crystal oscillator MHz Timebase switch; Compact design; 2 3/4"H x 6 1/4"W 5 1/4"D. Assembled $99.95

FREE '78 EICO CATALOG

Check reader service card or send 75¢ for first class mail. See your local EICO Dealer or call (212) 272-1134, 9:00 a.m.-5:00 p.m. EST. Major credit cards accepted.

EICO—283 Malta St., Brooklyn, N.Y. 11207

CIRCLE 77 ON FREE INFORMATION CARD

REVOLUTIONARY NEW
CB ANTENNA TUNERS

ISO-TUNE and BACK TALK antenna tuners do more to help. They'll tune to the lowest SWR...even on 40. Reception will be far and clear. They feature a unique exclusive Isolated Tuned Circuitry. They'll out-perform anything on the market. They protect against power blowback, coax shorts, ground loops, accidental grounding. Coax lengths unimportant. Maximum radiated signals. Greatly reduced TVI.

MAKE 4 WATTS SOUND LIKE 20...SAFELY

ISO-TUNE Antenna Tuner For mobiles and single antenna bases.

BACK TALK Antenna Tuners For multiple antenna mobiles or bases.

NORCOM ELECTRONICS, INC.

A DIVISION OF IDEAS INC.

SALES OFFICE: 23011 Beach Rd. • Beachwood, Ohio 44122 • Phone: 216/833-5000

CIRCLE 72 ON FREE INFORMATION CARD
If you like our chemicals, you'll love our solder.

That's because we make it the same way we make our chemicals—with "Total Control."

We control its quality at every step from pure raw tin to hermetically sealing every spool to prevent contamination. That's why Chemtronics solder is so pure it exceeds Federal and Milspecs. And it's why Chemtronics solder takes high temperatures, yet flows evenly at low temperatures. Good flow gives you control. No crumbling, no beading, no cold joints. Instead, a bright, strong bond.

Unlike ordinary solders, Chemtronics solder won't spatter or spatter. On old soldered joints, it works in and makes a solid connection.

You know us for our chemicals. Now try us for our solder. Ask your distributor for Chemtronics "Total Control" solder. For valuable tips on soldering, use the Reader Service number below.

LOOKING AHEAD
continued from page 4

language, which EMI plans to introduce. In addition, cassette-programmed games and educational material can provide a recording feature—for example, an on-screen TV drawing made using the game/computer may be preserved for posterity (or to show Mom when she gets home). Probably the most important advantage of all is cost—the more comprehensive cassette programs are expected to retail for $5 or less, as compared with $20 for ROM programs. The GI-EMI computer system is expected to be available to manufacturers early next year, with some end-products to show up in time for the Christmas 1978 market.

In the meantime, about a dozen companies are expected to field various video game/computer systems this year, featuring such diversions as space war, tank battles, aerial dogfights, auto racing, blackjack, chess, quizzes of all kinds, and even the beginnings of a video quick-reference encyclopedia.

Big as life: Projection TV isn't very big—as a business, that is. Although there may be more than 50 companies assembling projection sets, their total output has been small to date. The largest company in the field is still Advent, which, unlike most other entities, markets a unit with specially designed electronics and three projection tubes and lenses. Major American television manufacturers have all looked into this business and decided to stay out. Sony has a single-tube projector that it appears to be phasing out. If American manufacturers are shunning the three-tube projector, Japanese TV makers seem to be taking strong interest, with three such units due from major companies within the next year. Panasonic has quietly shown some of its dealers a three-tube system designed in a one-piece cabinet with a screen five feet in diameter. MGA (Mitsubishi) may offer a two-piece system with six-foot screen in the United States before Christmas. Sony is working on a three-tube system, presumably for introduction next year. Does all this Japanese activity mean the American manufacturers will come along after all, as they did in VTR?

CB bargains: The CB manufacturers haven't yet overcome the problems created by the shock of transition from 23 to 40 channels, and the result is some almost unbelievable bargains in transceivers. The 23-channel units haven't yet been cleared from the pipelines—as a glance at the ads will show—and some have been advertised recently as low as $49.95, far below the cost of manufacture. Unfortunately for the industry—but fortunately for the consumer—the price-cutting has spread to 40-channel units as inventories rise, and even these can sometimes be spotted at half their list prices. Industry sources predict an almost certain shakeout among manufacturers, and an eventual adjustment of supply to demand, which will mean a gradual increase in prices.

If you already own a CB, there's a bright side to the picture for you, too. Along with prices of new transceivers, the "fence" prices for stolen CB's have declined to such a low point that it's hardly worth the effort to break into cars any more. Why would anybody try to steal 'em from cars when you can just about steal 'em from dealers—legally?

DAVID LACHENBRUCH
CONTRIBUTING EDITOR
next month
OCTOBER 1977

■ Build The Flanger
It's an add on to your electronic music system that produces a very special effect.

■ Car Clocks Roundup
Everything you ever wanted to know about electronic, digital readout car clocks.

■ Vari-Proportional Amplifier
New kind of high-efficiency amplifier that you'll want to know about.

■ CB Antennas
Pro and cons. . . . When to use which kind . . . Getting out . . . And more

PLUS
Hobby Corner, Computer Corner, Jack Darr's Service Clinic, State Of Solid State, Equipment Reports, and much more.

ELECTRONIC THERMOMETER
continued from page 35

 ance voltmeter to read the voltage with respect to ground at pin 2 of IC3. Adjust R14 until you get a 0-volt reading on the voltmeter's most sensitive scale.

The second part of the calibration, the adjustment of C12 requires a 16.7K, 1% metal-film resistor. As before, connect the precision resistor into the circuit in place of RT1. Adjust C12 so that the display just changes from “99” to “0.”

If you neither have nor want to buy a 16.7K precision resistor, the following procedure can be followed: Using a standard, accurate thermometer as a reference, fill a large bowl with hot and cold tap water to 99°F, stir carefully during this process. Plug the thermistor assembly into the thermometer, and immerse the waterproofed thermistor in the water. Adjust C12 to obtain a reading of “99.” The thermometer is now ready to be used. At temperatures below 0°C, the display will remain at 0. On the other hand, a temperature of 105°F appears as “5.” However, the thermometer's accuracy is rapidly degraded as the temperature rises above 100°F.

INTERNATIONAL FM 2400CH

FREQUENCY METER
for testing mobile transmitters and receivers

- Tests Predetermined Frequencies 25 to 1000 MHz
- Extended Range Covers 950 MHz Band
- Pin Diode Attenuator for Full Range Coverage as Signal Generator
- Measures FM Deviation

The FM-2400CH provides an accurate frequency standard for testing and adjustment of mobile transmitters and receivers at predetermined frequencies.

The FM-2400CH with its extended range covers 25 to 1000 MHz. The frequencies can be those of the radio frequency channels of operation and/or the intermediate frequencies of the receiver between 5 MHz and 40 MHz.

Frequency Stability: ± .0005% from +50°F to +104°F.

Frequency stability with built-in thermometer and temperature corrected charts: ± .00025% from +25°F to +125°F (.000125% special 450 MHz crystals available).

Self-contained in small portable case. Complete solid state circuitry. Rechargeable batteries.

FM-2400CH (meter only) $595.00
RF crystals (with temperature correction) ... 24.00 ea.
RF crystals (less temperature correction) ... 18.00 ea.
IF crystals ...catalog price

International Crystal Manufacturing Company, Inc.
10 North Lee Oklahoma City Oklahoma 73102

CIRCLE 34 ON FREE INFORMATION CARD
THE PAIA 8700 COMPUTER/CONTROLLER
An exceptional price on an applications oriented 6503 based micro-processor system

THE IDEAL, LOW COST SOLUTION TO IMPLEMENTING THOSE WILD COMPUTER BASED CONTROL SYSTEMS YOU’VE BEEN DREAMING OF!
PAIA software currently available or under development includes: Music synthesizer interface; Home applications package including: multi-zone fire/burglar alarm, real time clock, energy saving heat/air conditioning control, computer generated “door-bell”; Model railroad controller and more..................

6700 COMPUTER/CONTROLLER KIT $149.95 (requires 5v, @ 1.2A.; 12v, @ 150 ma.) Shipped direct from PAIA (add $3.00 postage) Also available at FULL LINE computer stores DETAILS IN OUR FREE CATALOG
PAIA • DEPT. 9R • 1020 W. Wiltshire Blvd. • Oklahoma City, OK 73116
CIRCLE 12 ON FREE INFORMATION CARD

FREE!

NEW CATALOG OF HARD-TO-FIND PRECISION TOOLS
Jensen’s new 128-page catalog is jam-packed with more than 2800 quality items. Your single source for hard-to-find precision tools used by electronic technicians, scientists, engineers, instrument mechanics, schools, laboratories and government agencies. This wanted catalog also contains Jensen’s world-famous line of more than 40 tool kits. Plus 10 pages of useful “Tool Tips” to aid in tool selection. Send for your free copy today!

JENSEN TOOLS and ALLOYS
4117 N. 44th Street, Phoenix, Arizona 85018

CIRCLE 24 ON FREE INFORMATION CARD

RF SIGNAL GENERATORS continued from page 93

receivers are tested for overload and intermodulation distortion.

Accuracy
Output amplitude accuracy at any particular attenuator setting is specified as plus-minus a number of decibels. Common values for this specification are ±3 dB for the very poorest of attenuators to better than ±1 dB for extremely good generators. It is well to remember that while ±1 dB sounds like a good figure, it is equivalent to saying ±10%, and ±3 dB is a little less than ±30%. High accuracy attenuations at UHF and substantial amounts of attenuation at UHF are extremely difficult to obtain, and even more difficult to validate.

Accuracy of the output amplitude is even further influenced by other parameters. One of these is accuracy of the output leveling circuitry. Once again, the accuracy of output leveling is usually given as plus-minus a number of decibels. If the signal generator does not use automatic leveling, then the output attenuator is only accurate if the signal generator has been “red-lined.” (Red-lining is manually leveling the generator, usually by adjusting an output amplitude control until the output level meter needle is resting on a reference mark (red line).)

Output impedance
Output impedance is given in ohms and indicates the characteristic impedance of transmission line the generator is intended to drive. Almost all generators are 50 ohms, with the exception of those designed for television work, which are 75 ohms. The output impedance specification may include a VSWR (Voltage Standing Wave Ratio) specification, indicating the accuracy of the 50-ohm spec. If the generator load is a pure resistance at the characteristic impedance of the transmission line, the VSWR of the generator output is of little or no significance. Most generators, due to attenuator design, only specify output amplitude accuracy when the generator is driving a non-reactive load at the specified output impedance.

Leakage
The leakage specification should, in many ways, be combined with the output attenuator specification. It is the leakage specification that indicates the ultimate level below which reducing the output attenuator may produce no further decrease in the signal supplied to the load. Frequently the output leakage specification is rated in μV, as it indicates the ability of the generator to make receiver sensitivity measurements. For example, a generator may be specified as being able to make 0.1 μV measurements.

In the case of an extremely low-cost generator, although the attenuator and variable level control may be set for less than 1-μV output, the leakage specification indicates the generator can only make receiver sensitivity measurements of 5 μV or greater.

There may be a high degree of attenuation beyond which the attenuator itself may no longer supply increased attenuation. This is to say, some signals directly bypass the attenuator and appear at the output. This problem is different than a leakage problem.

A leakage specification only indicates the presence of signals in the area of the generator. A receiver may be a substantial distance from the generator, fed signals through a long coaxial cable, having known loss and good shielding, and receiver sensitivity measurements can be made.

to be continued

BETTER THAN A THIRD HAND!

PANAVISE TILTS, TURNS, AND ROTATES TO ANY POSITION. IT HOLDS YOUR WORK EXACTLY WHERE YOU WANT IT.
PanaVise has great strength yet is gentle enough to firmly hold delicate objects.
Quite possibly the finest new tool you will buy this year, PanaVise is built to exacting professional standards. We guarantee it!
Illustrated is the Electronics Vise Model 396. Three other bases and a wide variety of heads are available. All interchangeable! Buy a basic unit, then add on to create your system.

Available through your dealer.
Write for a free catalog.
PANA

PANA

10107 Adella Ave., South Gate, CA 90280
In Canada: 25 Toro Rd., Downsview, Ont. M3J 2A8

A Division of Colbert Industries
CIRCLE 27 ON FREE INFORMATION CARD
INTERMITTENT HIGH VOLTAGE

The high voltage in this CTC-17X RCA would pop on and off, but only at very short intervals, separated by long periods of working perfectly. In my first letter, you suggested several places to check. I finally found that the color-difference amplifiers and the blanker tubes were the cause; their plate voltages all went to full B+.

You’d suggested the common cathode resistor R728 as one possibility. It checked good. Then I got to wondering why the blanker plate also went to B+. After some hours, I soldered the ground strap between the PW-700 board and chassis, near R728, and cured the problem.

Further checking showed why. This same strip is also the ground return for the heaters of the difference-amplifier tubes and the blanker. When the heaters went out, the plates went to B+. Thanks.—R.W., Tons River, NJ.

HORIZONTAL “SAG” IN RASTER

This is a funny problem. In this Bradford WTV-53421 TV, the raster will show a horizontal sag about 20 minutes after you put the back on the cabinet. Before this, it works fine. This has to be a heat problem, but where?—W.O., Solon, OH.

You are so right; this has to be a thermal problem. From past experience with problems of funny-shaped rasters, I’d suspect a filter capacitor that is opening up when hot. I’ve seen rasters shaped like butterflies, hourglasses, and lots more.

Try waiting till the “thing” appears, then spray coolant on each of the filter capacitors. Alternately, blow hot air on them, one at a time, with the back off. This should help catch it. The basic cause of this is oddball feedback through the DC power supply.

HORIZONTAL-OUTPUT CURRENT RUNAWAY

This Admiral 12H10 chassis came in with no drive on the horizontal-output tube. A plate resistor was open in the horizontal oscillator. Now the breaker trips after about 15 seconds. Horizontal-output cathode current starts out at 200 mA, then after about 5 seconds rapidly climbs to 400 mA and then the breaker trips.

I tried unhooking the picture tube; everything was fine: 24 kV, 220 mA steady. Then I tried the chassis on the test jig and got the same results—runaway after 5 seconds. Replaced flyback and yoke, thinking of shorted turns—no good. Any ideas will be more than welcome.—J.H., Winston-Salem, NC.

One correction: if the flyback or horizontal winding of the deflection yoke is shorted, you’ll have excessive cathode current even with the picture tube disconnected. Since the thing shows the same symptoms on its own tube and a test jig, it seems to be something in the picture tube bias.

Go and check the bias voltages on the picture tube. A good picture tube can be driven to 4—5 mA of beam current, and the maximum output of the average high-voltage circuit is quite a bit less than that. It seems that two picture tubes are showing you the same symptom, and the bias would be the most likely thing. Grids too far positive or cathodes too far negative are one and the same problem.

SPEED CONTROL PROBLEM

This Sony 800B tape recorder was plugged in wrong. Now it runs at 15 IPS at all times! I found a tantalum capacitor that was causing the difference-amplifier transistor to turn off. Replaced it. Now the transistor is turned on at all times. What else?—V.C., Lansing, MI.

Be sure that you replaced that tantalum capacitor with the right polarity. Putting these in backward builds up some very peculiar troubles that weren’t there to start with. Also, check ALL transistors in that voltage-regulator circuitry.
JFD Electronics FM-500
Amplified FM Antenna

CIRCLE 95 ON FREE INFORMATION CARD

A WELL DESIGNED AND PROPERLY INSTALLED FM antenna makes the difference between poor and good stereo and monaural FM reception. Many attempts have been made to replace an outdoor rooftop antenna with a compact electronic device like the one described in this report. Unlike many of the others, this one works. Measuring only 11 inches in diameter, 1/2 inches thick and weighing 1/4 pounds, the FM-500 uses solid state circuitry to amplify both monaural and stereo FM signals. The antenna itself can be placed right on top of the FM receiver or tuner, or can be mounted on a wall indoors, hidden in an attic, or even mounted outdoors. However, for outdoor installation, a separate mounting kit is required.

Inside the FM-500 is an omni-directional condenser element whose balanced output is fed directly into a low-noise, solid state preamplifier. The element is a modified dipole formed in a manner so that its radiation pattern is changed from that of the basic figure eight dipole’s shape, to a nearly circular pattern. The output of the element connects directly to the input of the broadband, tuned preamplifier with a medium 10-dB gain. A low-noise bipolar transistor gives the lowest possible noise figure. The amplified output of the antenna preamp section is then fed along a shielded coaxial cable transmission line to the power supply/balun unit. The signal is converted from the unbalanced coaxial line to a balanced 300-ohm twin lead output for easy connection to the antenna input terminals of the FM receiver.

The power supply for the antenna is a transformer type unit that provides 15 volts DC to the preamp and dixplexes this voltage on the same coax cable that carries the FM/RF signal to the receiver. The power supply uses only 1.4 watts so the unit can be operated continuously and both use less than 75 cents worth of electricity per year.

The overall antenna system is omni-directional. It has a nominal gain of 8 dB over a reference dipole. The system noise figure is less than 5 dB for a 200 kHz bandwidth. The photographs compare the response of the FM-500 antenna mounted outdoors with a JFD Model AFM150 turnstile antenna mounted outdoors. The parameters of the display are

sweep width 20 MHz (2 MHz/CM). Center frequency 98 MHz, vertical scale, log dB scale, zero dB reference line is 0 dB MV. As you can see, performance of the FM-500 is more than adequate. Where it is possible to install a conventional outdoor, FM antenna, do so. But when you can’t you will find great improvement in your FM reception when you use the FM-500 in place of an indoor or built-in antenna for FM.

(continued on page 104)

Truly a master guide for users of international radio and television, this book contains exact information on worldwide shortwave, longwave, and medium-wave stations. The Table of Contents lists 224 countries ranging from Afars and Issas to Zambia. In the General Index are such topics as "Broadcasts in English," "Abbreviations," "DX Clubs," "HF Broadcast Rejection Conditions," "HF Broadcast Stations List for 1977," "Shortwave Stations of the World," and "World Time Charts and Tables."

The coverage of long- and medium-wave stations (150 to 1,600 kHz) is broken down into five geographical zones. Stations are listed according to frequency, kilowatt power, country, and station location. Shortwave stations are listed alphabetically by country. Also covered are call letters, frequency, mailing address, names and positions of principals, program schedules, principal languages, and scores to the stations' musical signature.

The insert Listen to the World introduces the beginner to the material he'll need as a serious listener and covers such topics as the sunspot minimum and how to listen to clandestine stations.

SOLID-STATE CIRCUIT TROUBLESHOOTING GUIDE, by Art Margolis. TAB Books, Blue Ridge Summit, PA 17214. 224 pp. 5½ × 8½ in. Softcover $4.95; hardcover $7.95.

This is a new printing of an old book, but it's certainly worth mentioning again. This practical guide book, once and for all, will help clear up any misunderstandings readers may have about solid-state circuits. The first four chapters discuss the various types of solid-state devices—diodes, transistors, FET's, integrated circuits and silicon-controlled rectifiers. Then, getting into the real meat of the subject, the author describes how these devices work in typical circuits the reader is likely to encounter, and shows how to go about finding faulty components.

Individual chapters are devoted to RF amplifiers, IF amplifiers, audio and video amplifier circuits, power amplifiers, oscillators, converters, remote control circuits, sync separators and power supply circuits. In each instance, the author takes the reader through typical circuits, describing how each type works and how the truest professional approaches a troubleshooting problem so as to solve it in the quickest and best possible manner.

GAMES WITH THE POCKET CALCULATOR, by Sivasailam Thiagarajan and Harold D. Stolovitch. Dymax, Box 310, Monticello Park, CA 90405. 47 pp. 10¾ × 8½ in. Softcover $2.00.

The two-dozen calculator games in this book all involve an element of conflict and competition, and all share the following features: An inexpensive calculator with a 6-digit display will work fine; all the games permit people at different levels to compete on equal grounds; a single instrument can be shared by friends and opponents; the games are fast-paced and permit immediate replay without loss of interest; and the two dozen games have sufficient variety to intrigue those who love numbers and those who hate them.

Each game is described in a consistent format that interweaves a complete sample game along with the rules to provide concrete illustrations. All the games emphasize mental manipulation and use the calculator to provide immediate feedback and reinforcement, which facilitates learning of number facts and principles. All the games have been repeatedly tried and tested by various interested groups.

This data-packed reference work for broadcast engineers, technicians and managers gives timely maintenance tips, installation techniques and measurement methods for the entire broadcast chain. The same approach used to design a system is incorporated in understanding and troubleshooting it. The thrust of this book is how-to-do-it information that can be put to immediate use. All the procedures an engineer needs are included, from simple tasks like inspecting a transmitter building to running a proof of performance.

Separate chapters cover AM and FM transmitters, inspections, antennas, automation and how to get the most out of the station's test equipment. One big chapter tells how all the standard electronics techniques are adapted to broadcasting and another chapter gives complete coverage to installation. A book within a book tells how to maintain tape machines, adjust equalization, align, bias, and more. Also, there is plenty of hard-to-find, practical information about program automation equipment.

The new model General Television Servicer now includes 4.5 Mhz sound carrier, Blue Raster, Green Raster and Color Trio as well as the old favorites from the original General Television Servicer (Model ATC-10):
- 3.58 Monitor, Vector, Color Bars (6th bar marker), Hatchdots, Gray Quad, Red Raster, Crystal controlled RF,
- Wide range RF/IF attenuator, Video and IF outputs for signal injection, Interlace, and more.

The above listed features clearly show why the General Television Servicer does much more than an ordinary color bar pattern generator; it cuts service time and makes every job easier from a simple house call to the toughest dog!

That's why the GTS-10 is the biggest bargain in TV service equipment today.

Write for comprehensive 6-page full color brochure that describes these and many more features.

Telephone orders on VISA or Master Charge accepted for same day shipment.

30 day money back guarantee
2 year factory warranty against all failures in normal use.

AMERICAN TECHNOLOGY CORPORATION
225 Main Street, Dept. 9C
Canon City, Colorado 81212
(303) 275-8991

CIRCLE 29 ON FREE INFORMATION CARD

SEPTEMBER 1977
These unusual courses are the result of many years of study and thought by the President of Indiana Home Study, who has personally lectured in the classroom to thousands of men, from all walks of life, on mathematics, and electrical and electronic engineering. You will have to see the lessons to appreciate them!

NOW you can master mathematics and electronics and actually **enjoy** doing it!

WE ARE THIS SURE:—you order your lessons on a money-back guarantee.

Plain language, if you aren't satisfied you can't pay, and there are no strings attached.

Write today for more information and your outline of courses.

You have nothing to lose, and everything to gain!

The INDIANA HOME STUDY INSTITUTE

P.O. BOX 1189

PANA MA, CITY, FLA 32401

VIZ WV-534A Voltohmyst V

CIRCLE 94 ON FREE INFORMATION CARD

THE VIZ MFG. CO. HAS RECENTLY DEVELOPED the Voltohmyst V, **model WV-534A**, which sells for $150. This compact, versatile autopolarity analog meter reads up-scale on all DC voltages and current measurements. The reading polarity is shown on a small separate meter just below the main movement. Because you never have to reverse the test leads, it's also possible to read a greater number of ranges with the same number of range switch positions.

The Voltohmyst V has nine AC/DC 0.05- to 500-volt ranges; a 1500-volt range available at a special jack; and eight 0.15-amp to 500-mA current ranges, also both AC or DC. A 1.5-amp range has its own jack. All voltage and current ranges are read on only the 0-to-50 and 0-to-15 meter scales. The scales are linear, with no crowding at either end.

Resistance is read in seven ranges—from R \(\times 1 \) to R \(\times 1 \) megohm. Either in (1.5 volt applied) or low (50 mV) can be used on any range. For quick transistor checking, hook the test prods to any two leads and note the reading. To reverse polarity, just pull out the ohms adjust knob.

The autopolarity feature can be used to advantage in tests that require reading a dip, or even in such zero-crossing tests as adjusting a discriminator. Just set the Voltohmyst V to about half-scale, and then tune for a reading that drops to zero and rises again. The polarity meter will indicate which is which.

The high frequency range of the Voltohmyst V makes it useful for audio-frequency-response testing. The input circuitry is frequency-compensated from 1 dB to 50 kHz.

A dB scale reads 0 dB for 1 mV (dBm) across 600 ohms. Calibration is \(\pm 6 \), \(\pm 20 \) dB, which is read directly on the AC, 0-1.5-volt range. A calibration chart for the other AC voltage ranges is given in the manual.

The circuitry is powered by 8 AA-cell batteries, plus a 1.5-volt "C" cell for the ohms ranges. If alkaline batteries are used, they can be recharged by the WG-479 AC adapter, which plugs into the side of the case.

The Voltohmyst V is housed in a rugged light blue plastic case containing all the test leads and the WG-479.

The scale reduction allowing the use of larger figures makes it easy to read. All controls are easily accessible, and a high-voltage probe, WG-411A, is available as an accessory.

STATE OF SOLID STATE

continued from page 71

vibrato-free output.

IC7 and IC8 is an oscillator circuit that controls the amount of phase shift. The output of IC8 feeds control FET's Q2 through Q7. The shift rate of the system is determined by the frequency of the oscillator, which has both a variable and fixed-rate mode. Visual indication of the vibrato rate is provided by the incandescent lamp driven by power transistor Q5 switched by the oscillator output from IC8.

Bridge rectifiers complete the circuit by providing the positive and negative voltages for the op-amps as well as the other circuitry.

High-power transistors from TRW

Three new gold-metalized transistors from TRW are believed to be the highest power-rated equivalent devices commercially available. The PT9780, 9785, and 9790 are rated from 12 to 50 volts and 100 to 150 watts. Gain is 13 to 15 dB at full rated power.

They are designed for single-sideband applications in military, amateur, and marine radio equipment.

The transistors are available from stock and sell for $4.85 to $52.10 each in 100 quantities.

TRW has also updated its RF semiconductor catalog. The 16-page catalog includes HF, UHF, VHF, SSB, and microwave transistors. Also detailed are mobile power amplifier and CATV amplifier modules. For more information write to: TRW Semiconductors, 14520 Aviation Blvd., Lawndale, CA 90260.
YES, YOU CAN BUILD AN ELECTRONIC ORGAN

With DEVTRONIX easy to build assemblies.
Own the ultimate in organ design & sound at 1/3 the cost of commercial organs.

BROCHURE AND DEMO RECORD $1.00

POSTAL ORDER

DEPT. B
DEVA ORGNS., INC.
5872 Amapola Dr.
San Jose, CA 95129

TV-GAMES: many circuits. Complete copies of original patents. Set $9, postpaid. SANRO, Box 5511, San Jose, Calif. 95125

FREE KIT Catalog

STOP! Take a minute & let us send our latest KIT catalogue. If you like, send us the name & address of a friend who may also be interested & we'll include to you our booklet "How to build electronic thermostats.

PRINTED circuit boards from artwork, magazine layouts, fast service. OMEGA ENTERPRISES, Box 48239, Niles, IL 60648

NICKEL CADMIUM "AA" Pen-Lite Cells

$1.2 Volt Rechargeable

15043

FREE CATALOG

260 S. FORGE ST.
DEPT. L3AKRON, OHIO 44327

NAME
ADDRESS
CITY
STATE
ZIP

SEND OSON CAT

ENCLOSE POSTAGE AND SALES TAX QTY. STK. # DESCRIPTION PRICE TOTAL

CIRCLE 70 ON FREE INFORMATION CARD
BUILD YOUR OWN SPEAKERS AND SAVE UP TO 50% for our 1998-99 Project Price List. This 80-page catalog contains clear diagrams, helpful hints and tips from wiring to electronics, and describes the necessary components and how to assemble your own speakers. It's the perfect project guide for the beginner or expert. P.O. Box 44300 Santa Clara, CA 95054 (408) 988-1540

FREQUENCY counter: 300 MHz, crystal timing, lab quality 0.0003% accuracy, 9-18 vdc supply, internal batteries, 4" X 2" X 4-1/2". Plans only: $5.00. Kits: $30.00 - $100.00 - $300.00 - $120.00 E & J PRODUCTS, Box 5516-F, Walnut Creek, CA 94596

FOR SALE
FREE catalog, IC's, Semi's, CORONET ELECTRONICS, 649A Notre Dame W, Montreal, Que., Canada, H3C-1H8. US Inquiries.

COMPUTER WAREHOUSE STORE
★ ONE DAY SHIPMENT★
GREEN PHOSPHOR VIDEO MONITOR $150 + $5 Shipping & Handling
10.4" Monochrome, Standard 12" x 16" x 8" plug-in case

THOUSANDS OF KITS AND PERIPHERALS
SPECIAL DISCOUNTS! (Remember, buy used equipment together at the same time you buy our kit(s))
- 20% off kit price if over $200.00
- 10% off kit price if over $100.00
- 5% off kit price if over $50.00
(520 Nashua Discount)

FREE catalog. Solar cells, NiCad's, kits, calculators, digital watch modules, ultrasonic, strobes, LED's, transistors, IC's, unique components. CICHANEY'S, Box 27038, Denver, CO 80227

Burglar Smoke Fire Alarm Catalog
Burdex Security Co.
Box 82802 RE-097 Lincoln, Ne. 68501

FREE catalog. Solar cells, NiCad's, kits, calculators, digital watch modules, ultrasonic, strobes, LED's, transistors, IC's, unique components. CICHANEY'S, Box 27038, Denver, CO 80227

NAME brand digital/analog test equipment. Discount prices. Free catalog. SALEN ELECTRONICS, P.O. Box 82, Skokie, IL 60076

MAKE professional-quality PC boards with silk-screen techniques. Complete step by step information, $4.95 Postpaid. TERRATRONIC RESEARCH, Box 5135, Quincy, IL 62201

FREE catalog. Solar cells, NiCad's, kits, calculators, digital watch modules, ultrasonic, strobes, LED's, transistors, IC's, unique components. CICHANEY'S, Box 27038, Denver, CO 80227

AMAZING ELECTRONIC PROJECTS AND PRODUCTS:

PRINTED circuit supplies. A process that always works. Send stamp. CIRCOLEX, Box 198, marcy, NY 13403
NEW LS'TEchnology
FREQUENCY COUNTER

TAKE ADVANTAGE OF THIS NEW STATE-OF-THE-ART COUNTER FEATURING THE MANY BENEFITS OF CUSTOM LSI CIRCUITRY. THIS NEW TECHNOLOGY APPROACH TO INSTRUMENTATION YIELDS ENHANCED PERFORMANCE, SMALLER PHYSICAL SIZE, DRASTICALLY REDUCED POWER CONSUMPTION (PORTABLE BATTERY OPERATION IS NOW PRACTICAL), DEPENDABILITY, EASY ASSEMBLY AND REVOLUTIONARY LOWER PRICING!

SIZE:
3" High
6" Wide
5½" Deep

1½ LBS.
COLOR:
BLACK

FACTORY DIRECT PRICES

<table>
<thead>
<tr>
<th>Kit #</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIT #FC-50C</td>
<td>60 MHZ COUNTER WITH CABINET & P.S.</td>
<td>$599.85</td>
</tr>
<tr>
<td>KIT #PSL-350</td>
<td>350 MHZ PRESCALER (NOT SHOWN)</td>
<td>$23.95</td>
</tr>
<tr>
<td>KIT #PSL-650</td>
<td>650 MHZ PRESCALER (NOT SHOWN)</td>
<td>$29.95</td>
</tr>
<tr>
<td>MODEL #FC-50WT</td>
<td>60 MHZ COUNTER WIRE, TESTED & CAL.</td>
<td>$165.95</td>
</tr>
<tr>
<td>MODEL #FC-50/600 WT</td>
<td>600 MHZ COUNTER WIRE, TESTED & CAL.</td>
<td>$199.95</td>
</tr>
</tbody>
</table>

Kit #FC-50C is complete with predrilled chassis all hardware and step-by-step instructions wired & tested units are calibrated and guaranteed. Preselectors will fit inside counter cabinet.

PLEXIGLAS CABINETS

Great for clocks or any LED Digital project. Clear-Red-Chasss serves as bezel to increase contrast of digital displays.

CABINET I
3½"H,8½"W,5½"D Black, White or Clear Cover
$5.60 ea

CABINET II
2½"H,5"W,4"D
$6.50 ea

RED OR GREY PLEXIGLAS FOR DIGITAL BEZELS
3"X1"8' 95¢ ea 4/3

SEE THE WORKS Clock Kit
Clear Plexiglass Stand

- Big 4 digits
- 12 or 24 hr. time
- Set switches
- Plug transformer
- All parts included

Plexiglass is pre-cut & drilled
Kit #50-4PR

Size: 6-¾"X4" W. D.
$23.50 ea 2/45 ea

ASUPER CLOCK!

60 HZ. XTAL TIME BASE
Will enable Digital Clock Kits or Clock Calendar Kits to operate from 12V DC
1 X 2 PC Board Power Reg. 5 15V (2.5 MA Typ.)
Easy 3 wire hookup

Accuracy ±0.1PPM

#TB-1 Adjustable
Complete Kit $48.95
Wir & Cal $9.95

SPECIAL PRICING!
PRIME - HIGH SPEED RAM
21L02-3 400 NS
LOW POWER - FACTORY FRESH
1-24 $1.95 ea 100-199 $1.60 ea
25-99 1.75 ea 200-499 1.45 ea
OVER 500 PCS. $1.39 ea.

JUMBO DIGITAL CLOCK
A complete Kit (less Cabinet) featuring six 5 digits, MM5314 IC 12/24 HR time, PC Boards Transformer, Line Cord, Switches and all Parts. Ideal Fit in Cabinet II

Kit #5314-5 $19.95 2/38.

JUMBO DIGITAL CONVERSION KIT
Convert small digital LED clock to large 5" displays. Kit includes 6 - LED's Multiplex PC Board & Hook up info.
Kit #JD-1CC For Common Cathode
Kit #JD-1CA For Common Anode

PRINTED CIRCUIT BOARDS for CT #001 Kits sold separately with assembly info. PC Boards are drilled Fiberglass, solder plated and screened with component layout.

AUTO BURGLAR ALARM KIT

These easy-assemble kits are ready to install. Alarm promising many features will normally found refuse alarm. After pre-rigging, installation involves just mounting the switches of sensors will pull horn relay at the rate of 2400 per hour. Kit provides programmable time delays for entering and leaving premises. Pre-programmed features allow for a large variety of user dependent configurations. Also available: Complete Kit 2021
Kit #ALR-1 $9.95
Kit #ALR-1WT $19.95

MOBILE LED CLOCK
12/24 HR
4 DIGITS!

MODEL #12 VOLT AC or DC POWER

VARIABLE REGULATED 1 AMP POWER SUPPLY KIT
- Variable from 4 to 14V
- Short circuit proof
- 721 IC regulator
- 76605 pass transistor
- Current limiting at 1 AMP
- Kit is complete including drilled & solder plated Fiberglass PC Board and all parts (Less Trans.

Former: 61F5PS0, $5.95

Kit #2021 $29.95

115V AC Power $2.95 MORE

TRANSFORMER KIT (Less 9V Battery) $27.95

ASSIGNED UNITS WIRE & TESTED
Order #2001 WT (Less 9V Battery) $29.95
Wired for 124 or 24 Volt. Kit will be otherwise specified.

REMOTE CONTROL

ORDER BY PHONE OR MAIL
COD ORDERS WELCOME
Orders Under $15 Add 5.00 Handling Fla. Res. Please Add 4% Sales Tax.

WE PAY ALL SHIPPING IN CONTINENTAL USA - OTHERS ADD 5½% (10%). FOR AIRMAIL

CIRCLE 51 ON FREE INFORMATION CARD

SEPTEMBER 1977

107
ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

Free Information Number Page
19 AP Products 22
42 Advance Electronics 79
5 Allison .. 96
29 American Technology 103
1 Audio-Technica 91
61 & K-Div. of Dynascan 89
63 Castle Electronics 88
8 Channellock 26
73,79 Checmtronics 90, 98
CIE-Cleveland Institute of Electronics 18-21
6 Cobra-Div. of Dynascan Cover IV
1 Continental Specialties 32
1 CREI-Div. of McGraw-Hill Continuing Education 46-49
41 Digital Concepts 95
104 DRI ... 23
30 Edmund Scientific 126
76,77 EICO 95, 97
39 Electronics Book Club 85
EMC-Electronic Measurements 79
3 Fidelity Sound 104
18 Florida Institute of Technology 24
33 Fluke .. 17
11 GPN Industries 1
48 Grantham College of Engineering 96
GTE-Sylvania-Consumer Renewal Cover II
100 Heath 74-77, 28-31
25 Hickok Electrical Instruments 14
22 Indiana Home Study 104
34 International Crystal 100
2 Jensen Tools & Alloys 100
35 JMI Technical Products 87
20 Kenwood Radios 2
40 Mallory Distributor Products Cover II
37 MTI .. 92
21 Mountain West Alarm 92
13 National Camera Supply 102
National Radio Institute (NRI)-Div. of McGraw-Hill Continuing Education Center 8-11
National Technical Schools 64-67
72 Norcom Electronics 97
26,15 OK Machine & Tool 25, 73
12 PAIA .. 100
62 PFS Electronics 92
27 Parsons-Div. of Colberg Industries 100
57 Pomona Electronics 93
12 Radio Shack 13
38 Rye Industries 95
104 H.W. Sams 27
3 Schoder Organ 90
4 Sencore 16
69 Shaw Brothers 83
7 Simpson Electric 15
71 Techni-Tool 104
47 Telematic-Div. of UXL 101
8 Tri-Star 92
14 Turner Service 5
31 VIZ .. 71
20 Vaco ... 7
64 Wernick Electronics 102
78 Winter 96

Free Information Number Page
36 Brooks Radio & TV 108
Burdex Security 106
CFR Associates 105
Command Productions 105
Cornell ... 106
Dage Scientific Instruments 105
43 Delta Electronics 114
Detroxion Organ Products 105
66 Digi-Key 123
54 Electronic Warehouse 114
65 Eto Electronics 115
Exper-Tronix 112
44 Fordham Radio Supply 114
55 Formula International 119
47 Godbout Electronics 122
Information Unlimited 106
International Electronics 113
10,11 James Electronics 116, 117
Lab Science 112
Lakeside Industries 106
59 Messner 112
45 New-Tone 23
7O Olson .. 105
51 Optoelectronics 107
17 Page Digital Electronics 111
46 Parasitic Engineering 122
16 Printronics 112
20 Poly Paks 121
52 Quest ... 106
67 Radio Hut 125
64 SA Sales 124
23 JB Saunders 111
38 Solid State Sales 118
Speakerlab 106
75 Trico Electronics 120

MOVING?

Don't miss a single copy of Radio-Electronics. Give us:

ATTACH LABEL HERE

Six weeks' notice

Your old address and zip code

Your new address and zip code

name (please print) $

address

city state zip code

Mail to: Radiob-Electronics
SUBSCRIPTION DEPT., P.O. BOX 2520,
BOULDER, COLO. 80322

OUTSIDE U.S.A. ADD $3.00

CIRCLE 36 ON FREE INFORMATION CARD
MODU-CLOCK

\[\text{DCM-1} \]

- Versatile decade counter board. Utilizes a 7412 decade-counter circuit and a 7459 decade counter. Drives common anode LED readouts. Designed to be used in conjunction with our DCM-5 and DL-707 digital module. All connections brought to header which is panel mounted behind panel. All connecting wires are left in storage for ease of installation. AC Version requires separate power supply. AC Version uses 13 board volt. Only for AC Version.

\[\text{6 DIGIT READOUT BOARDS} \]

- Multifunction readouts for clocks, counters, etc. Can be used for measuring and general purpose. Only for AC Version.

\[\text{DIGIT MODULES} \]

- Versatile board for mounting one 6 digit LED modules. For digital counters. Also available for mounting one 4 digit LED modules. Only for AC Version.

\[\text{WIRE DISPENSER} \]

- 50 Ft. Roll of 30 AWG.
- 5 Year Wire-Wrapping Wire
- Cuts the Wire to Length
- Strips 1 Inch of Insulation
- Available in Four Colors

\[\text{MODEL WD-30} \]

- BLUE WIRE
- YELLOW WIRE
- WHITE WIRE
- RED WIRE

\[\text{RUBBER FEET} \]

- 3/4'' Round 1/8'' Diameter

\[\text{CMOS COOKBOOK} \]

- By Donald Lessen

\[\text{TTL COOKBOOK} \]

- By Donald Lessen

\[\text{CMOS-COOKBOOK} \]

- By Richard Lessen

\[\text{DIODE SELECTION GUIDE} \]

- For both TTL and CMOS devices
- Provides detailed information on diode selection, including voltage, current, and temperature characteristics. Also includes a table of diode ratings and a detailed discussion of diode applications. Only for AC Version.

\[\text{ORDER NOW!!} \]

- Only for AC Version.

All Orders Processed Same Day!

If We Have An Out-Of-Stock Item, You Are Notified Immediately.

Remember!! Our prices in May and June Radio-Electronics are still good.

Satisfaction Guaranteed!!

NEW!!!

NEW Data sheets. Specifications. Applications information. New TTL Data Book. Only $4.95

Five more valuable reference aids.

- The Linear Computer
- The New Computer
- The New Computer
- The Linear Computer
- The New Computer

Satisfaction Guaranteed!!!

NEW!!!

Catalog-In-A-Box™

JBS EXCLUSIVE!!

Each CATALOG-IN-A-BOX™ Contains:

- 65 pages of transistors, IC's, UDs, resistors.
- 1220 pages of valuable information.
- RS GIFT TOLL-DOWN-PAYMENT WITH OUTSTANDING BILLS ON ELECTRONICS.
- IC selection guide. Handy selection and pricing guide for digital and linear IC's.
- TTL, TTL, TTL.
- TTL, TTL, TTL.
- TTL, TTL, TTL.
- TTL, TTL, TTL.

ORDER NOW!!

- Only for AC Version.

$2.00

Our Third Big Year Serving The Scientist, Engineer, OEM Manufacturer And Hobbyist.

Highest Quality Merchandise! Fastest Service!

JBS ELECTRONICS, inc.

3050 VALMONT BOULDER, COLO. 80301 (303) 442-1212

TERMS

- All prices subject to change without notice.
- All merchandise subject to prior sale.
- Postage & Handling add $1.
- 3% state tax (CO only). Res.1
- Minimum order $10.00.
- MC/Visa 5.

© COPYRIGHT 1977 JBS

CIRCLE 23 ON FREE INFORMATION CARD
CATCH-A-PULSE II®

LOGIC PROBE

10 Nsec SPEED AT
3.5 to 15V LEVELS
ONLY $39.95

Compatible with TTL, DTL, TIL, CMOS, NMOS, and Microproc-e- sors using a 3.3 to 15V supply. Thresholds automatically programmed. Automatic resetting memory. No adjustment required. Visual indication of logic levels, using LEDs to show high, low, bad level or open circuit logic and faults. Highly sophisticated shirt-pocket portable protective tip cap and removable colloid. Eliminates need for heavy test equipment. A definite savings in time and money for engineer and technician.

- 10 Nsec pulse response
- Open circuit detection
- Multi-function
- Replaceable tip & cord
- High input impedance
- Pulse stretching

Send $39.95 (Calif. residents add 6% sales tax) to:

P.O. Box 19299, San Diego, CA 92119
(714) 447-1770

CIRCLE 53 ON FREE INFORMATION CARD

NOW!
The PTX
Logic Probe
Only $12.95
and a new
Low Cost Board

All of our boards feature—
- Numbered tie points and colored pluggs.
- Solid printed circuit boards.
- Reusable parts.

Our original board handles 10 IC's in sizes from 14-40 pin DIP shown above. Kit includes: Board, plugs, sockets & eyetets. Only $36.25—Order #141

NEW from Printronix—very low cost board! Our new board can handle 10 IC's and includes with the board are sockets, plugs, even wire. Only $12.95—Order #171

A complete package for the Experimenter including one of the above PTX kits and 3 specially selected books: Basic Digital Electronics, OP AMP Circuit Design and Applications, Optoelectronics Guidebook—with tested projects. With kit #141—$49.95-Order #151. With kit #171—$26.95-Order #181.

Also New—low cost logic probe! Good for TTL & CMOS integrated circuits, includes two VLED's and case. Kit—$12.95—Order #271. Assembled—$17.95—Order #261

Books of interest!

PRINTRONIX

3578 Flatbush Ave. Brooklyn, N.Y. 11210

Ad

Advertising contributed for the public good

United Way

Thanks to you it works... FOR ALL OF US
6 Digit Clock Kit
MM53156 with its NS71, 227 displays 2 P.C. Interface board may be remote. Internal or wall transformer, can be used 50-60Hz, 12-24 hour. Includes all necessary terminals, resistance, 5 switches and complete assembly instructions.

MEMORIES

1110	5.69
1103	.69
1702A	5.95
5262	.99
74S200	3.25
82523	2.75
93410	1.39

SPECIALS

<table>
<thead>
<tr>
<th>LINEAR</th>
<th>mDIP</th>
<th>TO-9</th>
<th>1.50 ohm</th>
<th>TO-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LO</td>
<td></td>
<td></td>
<td>1.99</td>
<td>545</td>
</tr>
<tr>
<td>74HL</td>
<td></td>
<td></td>
<td>1.99</td>
<td>545</td>
</tr>
<tr>
<td>74OC</td>
<td></td>
<td></td>
<td>1.99</td>
<td>545</td>
</tr>
<tr>
<td>74HC</td>
<td></td>
<td></td>
<td>1.99</td>
<td>545</td>
</tr>
</tbody>
</table>

LEAD DISPLAYS

D10A	$1.49
SN74R	.99
FND359	.59

DISCRETE LED

| MV108 | 6.51/00 |
| MV50 | 16.51/00 |

CALCULATOR DISPLY

| 9 MAN 3 | ON PC BOARD |

CENTRAL PROCESSING UNIT

| 8015 | $16.95 |
| 8028A | $16.95 |

SPECIAL SALE

| HP 8012 SERIES |
| MAG LENS FITS 15 PIN SOCKET | $5.35 | $5.35 |

6 DIGIT CLOCK KIT

| $45.25 |

LOW POWER

74L0	$5.79
74L10	$5.79
74L11	$5.79
74L20	$5.79
74L24	$5.79
74L50	$5.79
74L54	$5.79

LOW POWER SCHOTTKY

74LS00	$5.79
74LS04	$5.79
74LS06	$5.79
74LS08	$5.79
74LS10	$5.79
74LS11	$5.79
74LS12	$5.79

HIGH SPEED

74HCT02	$5.91
74HCT04	$5.91
74HCT06	$5.91
74HCT08	$5.91
74HCT10	$5.91
74HCT11	$5.91
74HCT12	$5.91

CMOS

4004A	$5.91
4004	$5.91
4004A	$5.91

CALCULATOR CHIPS

CIA102 12 digit, 4 function taped detailed operation	
CIA505 12 digit, 4 function taped detailed operation	
MM5312, 5 digit, 4 function, floating decimal operation	
MM5316, 5 digit, 4 function, 9 Battery operation	
MM5317, 5 digit, 4 function and constant floating decimal, 9 battery operation	
MM5319, 9 digit, 4 function, 9 battery operation	

FREE CATALOG AVAILABLE ON REQUEST

Satisfaction guaranteed. Shipping will be made postpaid within 3 days from receipt of order. Payment must be made in personal check, charge card (include number and exp. date) or money order. Phone orders: 566-2000, ext. 7, or ext. 3 for C.O.D.

Add $1.00 for shipping and handling. It is always less when shipped in larger lots. For shipping expense by orders shipped out of U.S. and Canada, order 10 of order.

INTERNATIONAL ELECTRONICS UNLIMITED

VILLAGE SQUARE, P.O. BOX 449
CARMEL VALLEY, CA 93924 USA
PHONE (800) 674-1171
SEND FOR FREE CATALOG WITH ALMOST 3000 ITEMS

INCLUDING

B&K, EICO, RCA,
FLUKE, SENCORE,
SIMPSON, HICKOK
and LEADER

plus a complete line
of tubes, tools and
electronic supplies
at prices you won't
believe.

FORDHAM

RADIO SUPPLY CO., INC.
8555 Conklin St., Farmingdale, N.Y. 11735
Tel (516) 752-0050

CIRCLE 44 ON FREE INFORMATION CARD

WIREFRAP

Wire Wrap Kits

100 500 1000
Cat & Stripped 30' Dyer Wire 98 97 95
In Red, Yellow, Blue, Black
Green or Orange. All lengths
6 ft., 11 ft., 15 ft., 20 ft.

STOCK NO. 3127

Wire Wrap Sockets

Gold 2 Level Close Entry Drums

STOCK NO. 3128

FREE

Hobby Wrap Tool

$34.95 Includes Wire Kit 1 FREE

Wire Wrap Boards

STOCK NO. 3129

Page Digital Electronics

7701 East Orange Grove Blvd
Pasadena, California 91104

Orders under $25 and COD Orders add 50c
We accept Visa and Mastercharge

CIRCLE 17 ON FREE INFORMATION CARD

DON'T MISS ANY

Get every single issue of Radio-Electronics delivered right to your door, and before it appears on the newsstand. Use this coupon and subscribe now.

Mail to: Radio-Electronics
SUBSCRIPTION DEPT., P.O. BOX 2520,
BOULDER, COLO. 80322

name (please print)

city state zip code

check offer preferred

□ 1 Year—12 issues ONLY $8.75
□ 2 Years—24 issues SAVE MORE $16.50
(You save $7.50 over newsstand)
□ 3 Years—36 issues GREATER SAVINGS $24.50
(You save $11.50 over newsstand prices)

□ Payment enclosed □ Bill Me

□ Check here if this is a new subscription
to Radio-Electronics

□ Check here if you are extending or renewing
your subscription

Canada same as U.S.A. Extra Postage:
Pan American $1.50 per year,
all other foreign $2.00 per year.

FROM CONCORD

THE FIRST FULL FEATURE

LSI DMM KIT

INTRODUCTORY PRICE

$77

Reg. Suggested Retail $149.00

- AUTO RANGING
- AUTO POLARITY
- AUTO ZERO
- 3 Large Digits (1/2"
- Rechargeable

MEASUREMENT RANGES:
Voltage (AC & DC), 1 MV - 1000V
Current (AC & DC) 10 mA - 1A
Resistance 1 Ω - 10 MΩ
Basic D.C. Accuracy better than
0.1%, ± 1 Digit
Power 4 AA batteries (Rechargeable batteries optional)

ORDERING INFORMATION

SHIPPING AND HANDLING - $3.00 + 50¢ Insurance
California residents add 6% sales tax

ELECTRONICS WAREHOUSE Inc.
1603 AVIATION BLVD. Dept. R
REDONDO BEACH, CA. 90278
TEL. (213) 376-8005

WRITE FOR FREE CATALOG

You are invited to visit our store at the above address

CIRCLE 54 ON FREE INFORMATION CARD
$1,000,000 SURPLUS SALE

INCRECIBLE!
ON THE
FRITZ!
CALCULATOR
BLITZ!
2
95
$2
10/24.95
SU278A

SEE "MUSIC IN FLASHING COLOR"
The DEKrite 3 CHANNEL, 1200
WATT COLOR ORGAN KIT!
400 watts per channel. A unique DEK of
quality parts for easy construction of
your own high powered color organ. Use
with home music system, PA or music
amplifiers. Comes with French, Eng-
lish instructions. KT155A
21.95
EA.

SURPLUS

Distributors.
OEM's / Manufacturers
desired
Write listing quantities.
PRICES

RCA

THERMOSTATIC APPLI-
RECTIFIER
1.5A/200
6" FOR QUOTE.

CAPACITORS
100
1,000,000
TOOL
BATTERY
GE

PT168A
2N4339
TR121A
DS158A
BB125A
NEON
8

THERMISTORS
SET
METAL FILM
-TRACK BELTS
SIZE NI -CAD

WANTED
-PT167A
SU017A
POWER
(10-66)
C
183G Hymus Blvd.
521 Fifth Ave.,
New York,
N.Y. 10017.

CIRCLE 65 ON FREE INFORMATION CARD

SEPTEMBER 1977

115
CHANNEL F

Price: $159.95

- Additional cartridges: $17.95 ea.
- 181326751
- 12113807 .35
- 1117230 .55
- 1117230 .55

DISCRETE LEDS

- Green: 1.15
- Red: 1.50
- Orange: 0.95

DISPLAY LEDS

- Common Anode: 0.75
- Common Cathode: 1.15
- Dual In-Line Package: 1.75

FCS 8000A

- 6-digit Display
- Total Segment Current: 30 mA

HP 5082-7300 Series

- Multi-Digit
- 128 Display

50 PCS. RESISTOR ASSORTMENTS

- 56k Ohm, 1% Tolerance
- 500 Ohm, 1% Tolerance
- 50k Ohm, 1% Tolerance
- 5k Ohm, 1% Tolerance
- 500 Ohm, 1% Tolerance

CAPACITOR

- 10uF, 5% Tolerance
- 100uF, 5% Tolerance
- 1000uF, 5% Tolerance
- 1000uF, 5% Tolerance
- 1000uF, 5% Tolerance

CIRCUIT 10 ON FREE INFORMATION CARD
CRYSTALS

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Case Style</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.024 MHz</td>
<td>HC-32</td>
<td>$5.95</td>
</tr>
<tr>
<td>2.048 MHz</td>
<td>HC-32</td>
<td>$5.95</td>
</tr>
<tr>
<td>3.4856 MHz</td>
<td>HC-32</td>
<td>$9.95</td>
</tr>
<tr>
<td>7.3728 MHz</td>
<td>HC-32</td>
<td>$9.95</td>
</tr>
<tr>
<td>14.7456 MHz</td>
<td>HC-32</td>
<td>$9.95</td>
</tr>
<tr>
<td>29.4912 MHz</td>
<td>HC-32</td>
<td>$9.95</td>
</tr>
<tr>
<td>115.296 MHz</td>
<td>HC-32</td>
<td>$9.95</td>
</tr>
</tbody>
</table>

DVM chip

| 50/100A | $99.95 |

SPECIAL REQUESTED ITEMS

- Special 3R-2004A Kit $29.95
- Supplies and Case $9.95

MICROPROCESSOR COMPONENTS

RS-232C	$19.95
801940	$10.95
801901	$6.95

DIGITAL AUTO INSTRUMENT

- Seven different instruments meet or exceed original automotive specifications
- Specials include, for each one, the following: DMM, DVM, SF, and VOM.
- 24 hour alarm
- Alarm on indicator
- High intensity lead indicator
- Lamp shuts off when illuminated

DIGITAL STOPWATCH

- Digital 5-digit 1/100th
- Time: 0.000 to 99.999
- Frequency: 10 Hz
- 5 digit display

TIMEKEEPER

- Digital 5-digit 1/100th
- Time: 0.000 to 99.999
- Frequency: 10 Hz

JE703 PROBE

- The Probe is a probe that comes with a digital display for most use.
- The probe is also a high sensitivity probe for digital display.

JE705 CLOCK

- Digital 5-digit 1/100th
- Time: 0.000 to 99.999
- Frequency: 10 Hz

JE107 CLOCK

- Digital 5-digit 1/100th
- Time: 0.000 to 99.999
- Frequency: 10 Hz

JE110 CLOCK

- Digital 5-digit 1/100th
- Time: 0.000 to 99.999
- Frequency: 10 Hz

JE115 CLOCK

- Digital 5-digit 1/100th
- Time: 0.000 to 99.999
- Frequency: 10 Hz

JE120 CLOCK

- Digital 5-digit 1/100th
- Time: 0.000 to 99.999
- Frequency: 10 Hz
NEW! ELECTRONIC TOUCH ORGAN KIT

Fantastic new design uses CMOS I.C. and a total of 36 semi conductors to give a touch control key board, all the electronic parts in one PC Board. This organ is easy to build, yet has features like a full two octave range touch key board, variable tremolo, two voices, built in I.C. amplifier with volume control, complete with speaker and a specially designed plexi-glass case.

$24.50 ea.

SLIM LINE CALCULATOR

6 Functions with % and memory
8 Digits LED display
'One full year guarantee
Special Price Only
$8.50 Ea.

CALCULATOR with STOPWATCH

6 Functions with % and memory
8 Digits big green display
'Built in X'tal controlled stop watch count to 1/10 of a second
Special Price Only
$16.50 Ea.

I.C. TEST CLIPS

Same as the E-Z clips.
With 20" Long Leads
In Black and Red Colors
$1.75 Per Pair

5W AUDIO AMP KIT

Solid state audio amplifier
Power Supply 6-18V DC
Only $8.00 ea.

ELECTRONIC ALARM SIREN

COMPLETE UNIT
Ideal for use as an Alarm Unit, or mount up to your car back up to make a reverse indicator Light. Unit up to 130 db.
Voltage Supply 6-12V
$7.50

19 KEY HEXADECIMAL KEY PAD

1 - 16
Homemake
Special $10.50 ea.

DIGITAL ELECTRONIC LOCK KIT

for auto ignition, entry
Door, burglar alarm, etc.
4 Digits Programmable
$6.50 ea.

POWER SUPPLY KIT

0-35V D.C. REGULATED
Use 17272 and 27052 Cover
Output can be adjusted from 0-35V, 2 AMP. Complete with PC board and all electronic parts
$9.50 each

MA1003, 12V DC CLOCK MODULE

Built in X'TAL controlled time base. Protected against inductive volt transients. Automatic brightness control with 3.3" green color display. Displays turn off with ignition 'OFF'.

$23.50 EACH

EDGE CONNECTORS (MSMA 1 Type)

Dual 50 (100 pair) 0.125 spacing wire-wrap
$4.50 EACH

DB9s Type CONNECTOR
Male...$3.40 each
Female...$3.75 each

MULTI-COLOR RIBBON CABLES

TYPE Conductors Avg. Pric Per Ft.
A 1 MHZ...$4.95
B 2 MHZ...$5.25
C 4 MHZ...$6.25
D 8 MHZ...$8.25
E 16 MHZ...$11.25
F 32 MHZ...$17.25

CB MICROPHONE

500 M/T for CB Unit
Talk Switch with Connector and Cord
$2.50 each

CLOSE OUT SALE

TV GAME MODULE UNIT

FCC Approved For Any Game with or without a Cable
ONLY $4.50

TFT 1965

Aladdin...$29.95
B Game 125 Pin Dots, Tennis Squash hockey, Fishing, Racing
Sawcut Only $11.00

PC Board for TV Games with Dots $3.50 ea.

Switch Side Between Game A & TV $1.35 ea.

NI-CD RECHARGEABLE

TV Games

Direct Sales Only
$29.90

WIRE WRAPPING TOOL

$33.50

WIRE

Wrap for 200 & 240

$100.00

$500.00

Sub Mini Size PANEL METER

500V...**ONLY $10.20 ea.**

POWER TRANSISTORS

AUTOROLA...**$29.95**

10 AMP 40 VOLT
12 AMP 40 VOLT
$2.25 PER PAIR

TRANSFORMERS

24V CT 12-...$10.95
800 MA...$2.25 each
12 or 24V 2 amp Output...$2.90 each

12V CT 12-...$10.95
87.8VDC...$1.90 each
120 MA...$1.90 each

AC POWER SUPPLY

Adaptor Type Transformer 12V AC Output 200 MA 2.75 each
6V Output...$1.30 each
8.7VDC...$1.90 each
Output...$1.90 each
120V Output...$1.90 each

33.25 OAH

4 Digital Alarm Clock
4 Digit Display 120V AC
$39.95 each

50 UA PANEL METER

Complete for 3000 MA
ONLY $10.00 PER KIT

MINI-MINI.#

200 foot wire, 12 strands
ONLY $1.50

SAE DIP SWITCHES

10 pack 3//8 in. DIP Switches
$1.25 each

SUBMINIMATURES TOGGLE SWITCHES

SPST On-off...$1.10 each
SPDT On-off...$1.35 each

JOY STICK

4" X 10" Variety of knobs...**$1.50 ea.**

PUSH-MOVER SWITCH

N/0 (Open Contact) or N/1 (Close Contact), Green, Black
$1.00 ea.

Available 50 ea.

SOLID STATE ELECTRONIC BURGER

Mini BURGER 24 V...**$3.95**

Superburger 12V...**$1.75**

**Ideal for Alarm or Burglar System
ONLY $1.10 each

FORMULA INTERNATIONAL INC.

1203 CRENSHAW BOULEVARD • MARATHON CALIFORNIA 90262
For more information please call 213-879-1162
STORE HOURS 10-10 Monday - Saturday

CIRCLE 55 ON FREE INFORMATION CARD

SEPTEMBER 1977

119
When blood pressure goes higher—meaning when blood pressure goes above 120/80 for more than five minutes—it is called hypertensive.
THE WHOLE WORKS $89.95

NEW! DESIGN CONSOLE KIT - $89.95

S.D. Sales announces the inexpensive way to beat the wire wrap jungle. Our latest kit gives you 124 solderless quick connect terminals, enough for 16 pin IC's and provides 50 x 4 common bus matrix. Has regulated 5 VDC and +/- 5 VDC, all at 1 AMP. Voltage regulation at 100%.

Car/Boat Kit $34.95

Music to your Ears!

Limited Quantity! $9.95 kit

AMD-1702A

Huge Factory Purchase

FACTORY PRIME UNITS! BRAND NEW!

1.5 Micro-Seconds Access Time.

10/$40. $4.95 ea.

IC's from XEROX

MOS 6 DIGIT UP/DOWN COUNTER

60 PIN DIP. Everything you ever wanted in a counter chip. Features: Direct LED segment drive, single power supply (12 VDC 700K), six decades countdown, pre-loadable counter, separate pre-loadable compare register with compare output, BCD and seven segment outputs, internal scan oscillator, CMOS compatible, leading zero blanking, 1 MHZ, count input frequency.

$12.95 Exclusive! $12.95
Memorex computer boards with IC's, diodes, transistor, etc. 5 Boards containing 100 – 200 IC's ONLY $4.25

MK 5005
4 digit counter/latch decoder; 7 segment output only. 24 pin dip with spec.
S $8.00 EACH

PLASMA DISPLAY KIT
Kit includes: 12 digit display 4’ Character Power Supply for display above Complete specs for hookup.

Line cord Not included. ONLY $3.95

WATERGATE SPECIAL
Telephone Relay automatically starts and stops tape recorder. No batteries required. Kit complete with drilled P.C. Board Parts and Case ONLY $10.95

CLOCK KIT
Kit includes
• LT701 clock module
• Power Supply
• Punched Cards
• 12 hour operation only
Complete except for line cord
ONLY $14.95
LT701E 12 hour clock LT701G 24 hour clock

SOCKETS
14 pin .22
16 pin .25
18 pin .26
24 pin (w/o only) .95
28 pin .85
40 pin .90

CMOS
SALE
CD4000 .16
CD4001 .16
CD4002 .16
CD4004 .16
CD4006 .16
CD4007 .16
CD4011 .16
CD4012 .16
CD4013 .16
CD4014 .16
CD4016 .16
CD4020 .16
CD4025 .19
CD4030 .20
CD4032 .20
CD4033 .20
CD4039 .20
CD4040 .10
CD4050 .10
CD4066 .22
CD4067 .22
CD4068 .22
CD4069 .22
CD4070 .22
CD4071 .22

CMOS

BRIDGE RECTIFIERS
6 Amp 50V 1.10
10 Amp 50V 1.25
25 Amp 50V 1.39

UNSCRAMBLER KIT for all Scanners
• Tunes easily
• Full instructions included
• Easy to install
• 3¾” x 3½” x 1¼”
Only $19.95

REGULATORS
7805 7818
7806 7824
7808 7905
7812 7912
7815 7915
7915 7915

Your Choice $.96

VARIABLE POWER SUPPLY KIT NO. 1
• Continuous variable from 5V to 20V
• Excellent regulation up to 500 mil.
• 4400 Mfd of filtering
• Drilled fiberglass PC Board
• One hour assembly
• Kit includes all components
• Case included
ONLY $10.95

VARIABLE POWER SUPPLY KIT NO. 2
Same as above but with 1 amp output, also with case. ONLY $13.95

BATTERY CLIPS
Standard 9V battery clip with 4-1/2” “tinned” leads. 25¢/$1.00

TRANSISTORS

ORDER BY PHONE: Charge your order to BankAmericard or Master Charge.
USE OUR TOLL FREE WATTS
1-800-527-2304
NEW WIDE FIELD TELESCOPE
Astroscan lets you enjoy clear, bright, wide-angle views of stars, moon, comets, etc. Completely portable, this unique 4¼" f/4 Newtonian reflector houses top quality optics. Designed for ease of handling and use, Astroscan weighs only 10 lbs. and stands 17½" high. What an instrument!
No. 2001 Ppd. $149.95

FREE CATALOG or continuous Photocells pseudo-random Automatic to rhythm
MACHINE MUSICAL MYSTICAL

PROFESSIONAL TIMING ACCURACY
... Only $49.95
Hand-held electronic digital stopwatch counts up, down, and sounds alarm. Full range (5 hr. 50 min. 59 sec.); bright LED display; matrix keyboard; start/stop reset buttons. Batteries: Size: 2½" x 4½" x ¼". No. 1602 Ppd. $59.95

FREE Catalog

TUNE IN AM STATIONS UP TO 3000 MILES AWAY
Ultrasonic sensitive super antenna pre-amplifies signal. Pick up all stations around the country, your home town, more. Directional indoor ant., freq. and sensitivity controls. 110V AC, 60 cyc. Size: 3½" x 9½" x 11½". Wt. 6¼ lb. No. 72,263 . $177.50 Ppd.

FREE Catalog

SEE MUSIC IN PULSATING COLOR
3 Channel Color Organ lets you modulate 3 independent strings of colored lamps w/ intensity of your music. "Light show" flashes, responds to rhythm, pitch!
No. 42,300
(ASSEMBLED) $18.50
No. 42,335 (UN ASSEMBLED) $15.95 Ppd.

FREE Catalog

MEASURE WIND SPEED ANYWHERE
Holds handy (6½") low cost anemometer into the wind. Quickly read wind speed on its big dial—from 5 to 70 mph. Acc. to 3% of full scale (2 mph). No batts., adjustments; recalibration reqd.
No. 42,478 2¼" HIGH . $21.95 Ppd.

SENSITIVE TR METAL DETECTOR
Fully transistorized transmitter/receiver (TR) detector with sensitivity rivaling models twice the price. Built of rugged aluminum with a waterproof search coil. Detects a penny at 5". Wt. 2 lb. 6 oz. No. 80,267 . $39.95 Ppd.

FREE CATALOG

EDMUND SCIENTIFIC CO.
Dept. EH18, Edscorp Bldg.
Barrington, New Jersey 08007
Send GIANT 164 Page Catalog packed with over 4,000 unusual bargains.
Name ________________________________
Address ______________________________
City ____________________________ State __________ Zip __________

Send for your FREE 164 page Edmund Scientific Catalog with over 4500 bargains

FREE CATALOG

EDMUND SCIENTIFIC CO.
Dept. EH17, Edscorp Bldg.
Barrington, N. J. 08007
□ Please send me the following items I have indicated below:

<table>
<thead>
<tr>
<th>Stock No.</th>
<th>Qty.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Charge My □ Amer. Exp. □ BAC □ MC
Interbank # □ Acc. #
Card # □ Exp. Date
Slg. __________

30 DAY GUARANTEE
You must be completely satisfied with any Edmund items or return it within 30 days for a full refund.

Name ________________________________
Address ______________________________
City ____________________________ State __________ Zip __________

Handing: $1.00
We know the problems in finding the right semiconductor replacements for imported TV, CB and other electronic equipment.

That's why we have a line of thick-film modules and ICs that will replace over 3,000 devices in 139 brands of foreign-made equipment.

And we've made them easy to find in two ways. One is through our new Module and IC Replacement Guide that cross references the original part number with our ECG® semiconductor part number.

The other way we've made it easy is by making sure your local Sylvania distributor has access to a full stock of semiconductor replacements.

Pick up a copy of the replacement guide at your distributor today, so you'll be able to pick up all the parts you need in just one stop tomorrow.

GTE SYLVANIA
Introducing the mobile that can move you out of the world of the ordinary and into the world of the serious CB'er. The Cobra 138XLR Single Sideband Sidebanding puts you in your own private world. A world where there's less congestion. More privacy. More time to talk.

It's all possible because instead of 40 channels you get your choice of 120 channels. Both AM and SSB. And instead of 4 watts of legal power you get 12 watts of legal power. So you get almost double the range of AM.

With the 138XLR Single Sideband there's less background noise and less interference. So there's cleaner, clearer reception. Because like all Cobras, the 138XLR SSB is engineered to punch through loud and clear. Even in crowded metropolitan areas.

And like all Cobras it comes equipped with such standard features as an easy-to-read LED channel indicator. Switchable noise blanking and limiting. An RF/signal strength meter. And Cobra's exclusive DynaMike gain control.

You'll find the 138XLR SSB wherever Cobras are sold. Which is almost everywhere. Because Cobra's got a nationwide network of dealers and Authorized Service Centers offering sales, installation, service and advice. So come on in. And move on up.

Punches through loud and clear.

Cobra Communications Products
DYNASCAN CORPORATION
6460 W. Cortland St., Chicago, Illinois 60635

Write for color brochure

EXPORTERS: Empire • Plainview, N.Y. • CANADA, Atlas Electronics • Toronto

CIRCLE 6 ON FREE INFORMATION CARD