make with ICs
DIGITAL CAR CLOCK
put it anywhere
5 full octaves
KEYBOARD SYNTHESIZER
you can build

General Instrument
IC DATA SHEET
for video games

how we check
NOISE MEASUREMENTS
in hi-fi gear

all about
ANALOG MULTIMETERS
for everyone

PLUS
★ More About TV Games
★ Jack Darr's Service Clinic
★ Step-By-Step Troubleshooting
★ Komputer Korner
★ State Of Solid State
★ Lab Tested Reports on Sony STR-6800
The Remote Control Racer is a competition scale model race car controlled by a transmitter using computer logic. Think of it. Remotely drive a model race car from as far as sixty feet—turning left and right, going forward and reverse. It's great fun forobbyists, children and the whole family.

DIGITALLY PROPORTIONAL CONTROL

The steering is controlled as you control the steering wheel on your remote control unit. Turn the wheel slightly to the right and the car wheels turn slightly to the right. Turn your control fully to the left and the car wheels turn fully to the left.

There is no transmission required to go from forward to reverse as the high quality servo motor simply reverses polarity to change gears. Press the forward lever on your remote unit and you go forward. Press the reverse lever and you go in reverse. It's just that quick.

BUILT TO THE FINEST DETAIL

The camber caster-action front wheels parallel a full-sized car's suspension system and they actually tilt on the turns. An independent floating rear axle maintains positive traction even on rough terrain.

The Remote Racer replaces the gasoline powered remote control race cars that have sold for well over $100 a unit. Remote gas powered models give off odors and are often temperamental. The Remote Racer is quiet so it can be run indoors and it is not dangerous so even children can safely play with it.

START A RACE CLUB

You can run as many as six different cars in a race as each car will be on a separate remote control frequency. There are four different colors available, red, white, blue, and yellow and each racer comes equipped with its matching remote control unit.

Start a local competition race club, entertain guests with your new adult toy, or give it to your children as one of their most prized possessions. There are many fun ways to use your Remote Racer.

There are two separate circuits used for forward and for reverse. Each circuit utilizes two 'C' cell batteries available anywhere. If you only go forward, the two forward batteries will last approximately two hours.

The Remote Control Racer is a well built, well engineered electronic instrument with a 90 day limited warranty. JS&A further guarantees your satisfaction—if you are not absolutely satisfied with the value, quality or fun you are having, fine—return your racer within ten days for a full refund. You can’t lose.

To order, credit card buyers simply call our toll-free number below and specify the color and quantity you want. Or send a check for $52.45 ($49.95 for each Racer plus $2.50 for postage, insurance and handling to the address shown below. (Ill. residents add 5% sales tax).

By return mail, you’ll receive a Remote Control Racer, the remote control unit, batteries, a 90 day limited warranty and simple operating instructions. Your unit should never require service but if it should, JS&A's service by-mail facility is as close as your mail box. JS&A is America's largest single source of space-age products and a substantial company—further assurance that your modest investment is well protected.

Find out the thrill and fun of racing model race cars remotely. Order one or two Remote Control Racers today.

$49.95
NATIONAL INTRODUCTORY PRICE

The remote control unit (left) controls the race car's electronics (center). The four 'C' cell batteries fit in the underside of the Racer.

SOPHISTICATED ELECTRONICS

The sophisticated electronics in the Remote Control Racer consists of 40 transistors. When you operate the control unit, the transmitter generates computer digital logic in a train of digital pulses which are amplified and transmitted to the racer. The racer then has a sensitive receiver which receives the pulses and in turn translates them into data that eventually translates into power for the car.

The sleek lines of the Remote Control Racer follows the designs of some of the more popular race cars. The car measures 3½"x5½x12".

A new fun, leisure time activity made possible by the new electronics.
Now you can buy an Altair 8800b or an Altair 680b computer right off the shelf. Altair plug-in boards, peripherals, software and manuals are also available. Check the list below for the MITS dealer in your area.

off the shelf.

GLOBAL ENGINEERING CO
5416 South Yale
TULSA, OKLA. 74145
(918) 452-2567

COMPUTER PRODUCTS UNLIMITED
Harry & Margaret Mohrman
4216 West 12th
LITTLE ROCK, AR 72204
(501) 666-2839

GATEWAY ELECTRONICS, INC
Harry & Margaret Mohrman
Lou Elmers, Stuart Bartfield
8123-25 Page Blvd
ST. LOUIS, MO 63130
(314) 427-6116

CHICAGO COMPUTER STORE
Lou Van Eperen
517 Talcott Rd
PARK RIDGE, IL 60068
(312) 823-2388

THE COMPUTER ROOM
3038 Eau D'Orue Drive
Eagan, MN 55122
(612) 452-2667

BYTE TRONICS
John & Stan Morrow
Suite 103
1600 Hayes St
NASHVILLE, TN 37203
(615) 229-1079

THE COMPUTER SYSTEM CENTER
Jim Dunton, Rich Stafford,
Steven Mann, Ron Roberts
3320 Piedmont Road
ATLANTA, GA 30305
(404) 231-1691

THE COMPUTER STORE, INC
Sid Halligan
120 Cambridge St
BURLINGTON, MA 01803
(617) 272-8770

THE COMPUTER STORE, INC
Steve Payne
314 Charleston National Plaza
CHARLESTON, W. VA. 25301
(304) 343-4607

MARSH DATA SYSTEMS
Tampa
3405 B Southern Comfort Blvd
TAMPA, FL 33614
(813) 686-9890

CIRCLE 46 ON FREE INFORMATION CARD
Sylvania introduces the first 5-year warranty on picture tubes.

How can we give you a limited warranty this good?

Because we have complete confidence that our Color Bright 85° picture tubes will outlast this 5-year warranty and keep on giving your customers beautiful pictures.

We produce these tubes on the same equipment as our All-New line which is sold as original equipment to TV set manufacturers.

It's terrific to be able to offer your customers a high-quality tube with a warranty like this at no risk to you. There's good profit in it, too. So get in touch with your local distributor today, and get cracking on your first five years.

*Limited Warranty, naturally. It doesn't cover labor for replacing a tube.
SPECIAL FEATURES

<table>
<thead>
<tr>
<th>Page</th>
<th>Interview/Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>TV Games</td>
</tr>
<tr>
<td></td>
<td>Part II—Final section in this comprehensive look at what you can buy. by Fred Blechman</td>
</tr>
<tr>
<td>61</td>
<td>IC Application Of The Month</td>
</tr>
<tr>
<td></td>
<td>Complete information on how to use General Instrument's Video Game IC.</td>
</tr>
</tbody>
</table>

CB RADIO

<table>
<thead>
<tr>
<th>Page</th>
<th>Article</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>23 Or 40—When Should You Buy?</td>
</tr>
<tr>
<td></td>
<td>How to get the most for your money. by Fred Petras</td>
</tr>
</tbody>
</table>

BUILD ONE OF THESE

<table>
<thead>
<tr>
<th>Page</th>
<th>Article</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Portable Mini Organ</td>
</tr>
<tr>
<td></td>
<td>Part I: Play music anywhere with this self-contained five-octave organ. by John S. Simonton</td>
</tr>
<tr>
<td>35</td>
<td>Digital LED Clock For Your Car</td>
</tr>
<tr>
<td></td>
<td>Accurate four-digit LED clock in a compact size for your dashboard. by Robert C. Arp</td>
</tr>
</tbody>
</table>

COMPUTERS

<table>
<thead>
<tr>
<th>Page</th>
<th>Article</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Komputer Korner</td>
</tr>
<tr>
<td></td>
<td>Generating a UART function using software. by Paul Field, David Larsen, Peter Rony and John Titus</td>
</tr>
<tr>
<td>66</td>
<td>Timeshare—Turn Your Minicomputer Into A Maxi</td>
</tr>
<tr>
<td></td>
<td>Your minicomputer can be used to access a full-scale computer system. by Patrick Godding</td>
</tr>
</tbody>
</table>

GENERAL ELECTRONICS

<table>
<thead>
<tr>
<th>Page</th>
<th>Article</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Looking Ahead</td>
</tr>
<tr>
<td></td>
<td>Tomorrow's news today. by David Lachenbruch</td>
</tr>
<tr>
<td>29</td>
<td>Equipment Report</td>
</tr>
<tr>
<td></td>
<td>Sencore DVM35 digital voltmeter</td>
</tr>
<tr>
<td>46</td>
<td>Analog Voltmeters</td>
</tr>
<tr>
<td></td>
<td>An in-depth look at how they work and how to use them. by Charles Gilmore</td>
</tr>
</tbody>
</table>

HI-FI AUDIO STEREO

<table>
<thead>
<tr>
<th>Page</th>
<th>Article</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Equipment Report</td>
</tr>
<tr>
<td></td>
<td>Heath AS-1344 Speakers</td>
</tr>
<tr>
<td>49</td>
<td>How Noise Is Measured</td>
</tr>
<tr>
<td></td>
<td>Know what the noise specs mean before you compare. by Len Feldman</td>
</tr>
<tr>
<td>56</td>
<td>R-E Lab Test Report</td>
</tr>
<tr>
<td></td>
<td>Sony STR-6800SD Receiver.</td>
</tr>
<tr>
<td>59</td>
<td>R-E Lab Test Report</td>
</tr>
<tr>
<td></td>
<td>Yamaha B-2 Amplifier.</td>
</tr>
</tbody>
</table>

TELEVISION

<table>
<thead>
<tr>
<th>Page</th>
<th>Article</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>Step-By-Step Troubleshooting</td>
</tr>
<tr>
<td></td>
<td>Color bandpass amplifiers. by Jack Darr</td>
</tr>
<tr>
<td>75</td>
<td>Service Clinic</td>
</tr>
<tr>
<td></td>
<td>Fast recovery diodes by Jack Darr</td>
</tr>
<tr>
<td>77</td>
<td>Reader Questions</td>
</tr>
<tr>
<td></td>
<td>R-E's Service Editor solves reader problems</td>
</tr>
</tbody>
</table>

DEPARTMENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Article</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>Advertising Index</td>
</tr>
<tr>
<td></td>
<td>80 New Products</td>
</tr>
<tr>
<td>12</td>
<td>Advertising Sales Offices</td>
</tr>
<tr>
<td></td>
<td>85 Next Month</td>
</tr>
<tr>
<td>14</td>
<td>Letters</td>
</tr>
<tr>
<td></td>
<td>89 Reader Service Card</td>
</tr>
<tr>
<td>6</td>
<td>New & Temply</td>
</tr>
</tbody>
</table>

ON THE COVER

Electronic music organs have been around for quite awhile, but portable organs are really unique. This one is completely self-contained with speaker, battery and keyboard, and it covers a five-octave range. The construction details start on page 31.

Spice up your car with this Digital LED Clock. The construction details start on page 35.

FREQUENCY

You can't compare noise specs for hi-fi gear unless you know how they are measured. An in-depth look at how noise measurements are made starts on page 49.

Subscription Service: Mail all subscription orders, changes, correspondence and Postmaster Notices of undelivered copies (Form 3579) to Radio-Electronics Subscription Service, Box 2520, Boulder, CO 80302.

A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs if their return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.
Advent says it produced about 6,000 projection television systems in 1976, and it’s doubtful whether the rest of the projection-TV industry—consisting of up to 30 or 40 companies, mostly small—made much more than that all together despite their optimistic forecasts early in the year. Most of the other “home” projection TV manufacturers actually assemble their systems from modified, small-screen color sets, lenses, screens and cabinets. Sony was probably the inspiration for this type of set, having had one on the market for two years (but using a special trinicon tube for high brightness). Some of the larger corporations are beginning to take an interest in projection. Admiral, a subsidiary of Rockwell International, has been experimenting with giant-screen TV, and several months ago Sega Enterprises, a subsidiary of Gulf & Western, purchased a projection television company.

The company it purchased was Muntz Home Theatre, founded by the same “Madman” Muntz who starred in TV’s early days with the first low-priced mass-marketed television sets and later introduced car stereo. Now Sega has started to distribute its “Segavision” line of projection TV at $995 to $2,395. Meanwhile, Muntz has started up a new company and is back in the projection-TV business. Although his firm’s name is Muntz Electronics, he can’t advertise it because Sega obtained an injunction, claiming it bought the Muntz name as well as the business. So, with his usual flair for turning a liability into an asset, Muntz is now advertising his company as “Madman Electronics,” with sets priced from $795 to $1,595.

Magnetic disc recorder

For the last three years, this column has reported occasionally on the magnetic disc recorder (MDR) being developed by Erich Rabe as a TV attachment to both record and play back in color. With each demonstration, picture quality has improved (although it has never seemed quite good enough for commercialization), and the major drawback has been its extremely short recording time. Now, even before the short-playing version has been introduced, Rabe has developed an LP version designed to have a playing time of two hours per disc.

The LP disc is understood to be about 1/4-inch thick, looking something like an old Edison record. The outside three inches are composed of magnetic material with deeply-cut grooves. Each groove is designed to accommodate 24 spiral magnetic tracks, which are deposited into the groove wall by the magnetic recording head. The head presumably travels the spiral groove from start to center of the disc, then changes to track two and repeats the process, and so on, until all 24 tracks have been recorded. The system’s promoters say some versions of MDR should be on the market in Europe and the U.S. during 1977. But, as this column has so often warned, don’t ever hold your breath waiting for a videodisc.

Koss leaves Advent

Henry Kloss, founder of Advent Corporation and one of the leading innovators in American consumer electronics, has left the company by which he was once president and more recently chairman of the board. His main work, he said, was finished with the successful launching of two models of the VideoBeam projection television system. Under Kloss’s supervision, Advent also introduced the first consumer Dolby adaptor and the first Dobylzed cassette recorder. Before founding Advent, Kloss was a co-founder of Acoustic Research and KLH, which pioneered air suspension speakers and compact stereo, respectively. Wherever he shows up next, you can be sure there’ll be more innovation.

TVI crackdown?

Some hints that the FCC may push to force television receiver manufacturers to include interference filtering in all sets were contained in a recent FCC order reiterating its expansion of CB to 40 channels and temporarily rejecting proposals to increase 60-dB harmonic suppression requirement for Class-D CB transmitters. The Commission took a stronger stand than ever before that most of the fault for TVI lies in the TV rather than the transmitter. Said the FCC’s decision: “Although it is quite true that harmonic radiation from some Class-D transmitters causes TVI some of the time to some television receivers, it is equal-ly true that the majority of the TVI complaints received by the Commission result directly from poor TV receiver design, lack of adequate filtering in TV receivers presently on the market, and inability of TV receivers adequately to reject unwanted or adjacent-channel signals. Indeed, in fiscal 1975, 82% of all RF interference complaints were traced to home entertainment equipment design deficiencies. In the last Congress, three bills aimed at putting an end to TVI on the TV receiver manufacturers’ backs failed to reach a hearing or a vote—possibly because the FCC declined to take a stand on them. The Commission currently has no power to require receiver manufacturers to include interference-protection in their sets. Set makers generally provide filters on request, usually without charge. With the rapid growth of CB, the FCC’s recent statements may indicate it plans to take a stronger stand and possibly request authority to regulate receivers. At the same time, the Commission proposes to tighten up harmonic suppression standards in CB transmitters, perhaps to 100 d-B—but probably not this year.

Antenna warning

Be careful—your CB antenna could be lethal. The Consumer Product Safety Commission says it’s studying the problem of what to do about the hazard of electrocutions from base-station antennas as result of their coming into contact with high-voltage lines. The Commission says about 30 people were killed in the first four months of 1976 as the result of such mishaps. The most likely outcome will be a requirement that a strong warning label be printed on packages containing communications antennas, or attached directly to the antennas.

DAVID LACHENBRUCH
CONTRIBUTING EDITOR
Now... push-button remote TV control... for all channels... for all TV sets.

Jerrold's new all-channel Universal TV Remote Control, Model TRC-82, provides instant push-button selection of all TV channels, UHF as well as VHF. Your customers will love the ease with which UHF channels pop in. Tuning is electronic with direct access to the desired channel. There are no motors and no movement, eliminating wear and tear on the TV tuner.

The TRC-82 can be attached to the back of any Color or Black and White TV set in minutes. It turns the set on and off and fine tunes, in addition to changing channels. The TRC-82 also amplifies incoming signals and eliminates direct pick-up ghosts for better picture quality.

Once you demonstrate this new electronic, all-channel TV Remote Control, your customers won't want to be without it!

It's packaged in a sturdy, colorful, self-selling carton.

See us at C.E.S., Exhibit E-206
Third Marisat now in orbit; will aid Navy, act as standby

An addition to the two Marisat satellites now in use was launched by NASA last October into an orbit over the Indian Ocean. It will be used by the Navy. Its position is 73 degrees east longitude, near the Maldives Islands, south of India. The present Atlantic Marisat is at 15 degrees West and the Pacific satellite at 176 degrees East. They are relaying high-quality voice, Telex, facsimile and data over both oceans for ships and off-shore oil drilling crews. They also serve the Navy's fleet communications requirements.

THE THIRD MARISAT SATELLITE undergoes during tests at the space facility of its builders, Hughes Aircraft Co. The new satellite is stationed over the Indian Ocean, where it will handle Navy communications and serve as standby for Comsat commercial service.

Besides its Navy use, the new satellite will be an in-orbit spare for commercial service, and can be moved to an Atlantic or Pacific position if needed.

Comsat General Corp., for whom Hughes Aircraft Co. built the satellite, reports that some 26 commercial vessels were equipped with shipboard terminals for Marisat use by early Fall 1976. Customers were paying $10 a minute for telephone calls and $6 a minute for Telex messages.

Users of the system report a notable improvement in speed and reliability over surface radio. Exxon, testing the system on five of its tankers, reports that Telex messages by satellite were being received immediately, while messages by the older marine radiotelegraph took over five hours to get through in some cases.

One thousand CB clinics to study 40-channel band

Sencore, manufacturer of electronic testing and manufacturing equipment, will hold more than 1000 CB service clinics throughout the country, beginning late 1976 and continuing through this Spring. The clinics will be directed at the new 40-channel Class-D CB spectrum and will be carried on with the help of Sencore's two new pieces of equipment, the CB41 Automatic Performance Tester and the CB42 CB Analyzer.

The clinics will cover the technical needs of both field service and bench technicians, the CB41 being adapted to field work, including installations, and the CB42 totally equipping a bench for CB servicing. Both are designed to save the technician's time, making measurements by pushbutton that formerly required adjusting several controls.

Information as to dates and locations of the clinics may be obtained from any of Sencore's Full Line Promotional Distributors.

ISCET names Technician of the Year

James E. Harris, CET, service manager of Tarpley's TV, Temple, TX, was named "Technician of the Year" by the International Society of Certified Technicians (ISCET) at their convention in San Antonio, TX, last August 15.

The award winner is determined on the basis of scores received in professional proficiency, efficiency, product productivity and customer relations, and in industry and community involvement.

Mr. Harris was nominated by the Twin Lakes chapter of the Texas Electronics Association (TEA) which he serves as secretary-treasurer and ISCET certification administrator, and was selected in balloting conducted by Service Shop magazine and ISCET.

The new Technician of the Year, besides his professional and association work, serves on the technical education advisory board of Central Texas College, teaches night classes at Temple Junior College and conducts numerous training sessions for area technicians.

Both the Technician of the Year and the runnerup received watches incorporating the ISCET logo and the statement "Technician of the Year 1976." Both awards are provided by Radio-Electronics magazine.

continued on page 12
All SBE 23-channel CB units have a 40-channel future.

With all the talk about 40-channel CB units tomorrow, why should you buy SBE 23-channel units today? Simple. We just give you the chance to buy today with tomorrow in mind. Which is what the SBE FUTURE-40 CB UPDATE PROGRAM is all about. Here's how it works: We're including a special Future-40 Certificate with all SBE 23-channel units. It entitles the SBE buyer to update his 23-channel unit to 40 channels within 1977. You send in the certificate, we'll set up the update of your unit to a full 40 channels. All, for a reasonable charge, depending on the model involved.

Simple as that. All in all, the SBE Future-40 CB Update Program is aimed to hit those people who'd like to buy now, but are a bit confused about what's around the corner. And thinking ahead, about what's around the corner, that's what SBE is all about.
Learn to service Communications/CB equipment at home...with

NRI'S COMPLETE COMMUNICATIONS COURSE

Learn design, installation and maintenance of commercial, amateur, or CB communications equipment.
The field of communications is bursting out all over. In Citizens Band alone, class D licenses grew from 1 to over 2.6 million in 1975, and the FCC projects about 15 million CB’ers in the U.S. by 1979. That means a lot of service and maintenance jobs...and NRI can train you at home to fill one of those openings. NRI's Complete Communications Course covers all types of two-way radio equipment (including CB), AM and FM.

Transmission and Reception, Television Broadcasting, Microwave Systems, Radar Principles, Marine Electronics, Mobile Communications, and Aircraft Electronics. The course will also qualify you for a First Class Radio Telephone Commercial FCC License or you get your tuition back.

Learn on your own 400-channel digitally-synthesized VHF transceiver.
You will learn to service all types of communication equipment, with the one unit that is designed mechanically and electronically to train you for CB, Commercial and Amateur communications: a digitally-synthesized 400-channel VHF transceiver and AC power supply. This 2-meter unit gives you “Power-On” training. Then we help you get your FCC Amateur License with

special instruction so you can go on the air.
The complete course includes 48 lessons, 9 special reference texts, and 10 training kits. Included are: your own electronics Discovery Lab, Antenna Applications Lab, CMOS Frequency Counter, and an Optical Transmission System. You’ll learn at home, progressing at your own speed, to your FCC license and into the communications field of your choice.

NEW CB SPECIALIST COURSE NOW OFFERED

NRI now offers a special course in CB Servicing. You get 37 lessons, 8 reference texts, your own CB Transceiver, AC power supply and multimeter...for hands-on training. Also included are 14 coaching units to make it easy to get your commercial radio telephone FCC license—enabling you to test, install, and service communications equipment.
NRI offers you five TV/Audio Servicing Courses

NRI can train you at home to service TV equipment and audio systems. You can choose from 5 courses, starting with a 48-lesson basic course, up to a Master Color TV/Audio Course, complete with designed-for-learning 25” diagonal solid state color TV and a 4-speaker SQ™ Quadraphonic Audio System. NRI gives you both TV and Audio servicing for hundreds of dollars less than the two courses as offered by another home study school.

All courses are available with low down payment and convenient monthly payments. All courses provide professional tools and “Power-On” equipment along with: NRI kits engineered for training. With the Master Course, for instance, you build your own 5” wide-band triggered sweep solid state oscilloscope, digital color TV pattern generator, CMOS digital frequency counter, and NRI electronics Discovery Lab.

NRI’s complete computer electronics course gives you real digital training.

Digital electronics is the career area of the future ... and the best way to learn is with NRI’s Complete Computer Electronics Course. NRI’s programmable digital computer goes far beyond any “logic trainer” in preparing you to become a computer or digital technician. With the IC’s in its new Memory Kit, you get the only home training in machine language programming ... experience essential to trouble shooting digital computers. And the NRI programmable computer is just one of ten kits you receive, including a TVOM and NRI’s exclusive electronics lab. It’s the quickest and best way to learn digital logic and computer operation.

You pay less for NRI training and you get more for your money.

NRI employs no salesmen, pays no commissions. We pass the savings on to you in reduced tuitions and extras in the way of professional equipment, testing instruments, etc. You can pay more, but you can’t get better training.

More than one million students have enrolled with NRI in 62 years.

Mail the insert card and discover for yourself why NRI is the recognized leader in home training. No salesman will call. Do it today and get started on that new career.

APPROVED UNDER GI BILL
if taken for career purposes Check box on card for details

NRI SCHOOLS
McGraw-Hill Continuing Education Center
3539 Wisconsin Avenue
Washington, D.C. 20016

JANUARY 1977
11
Bartlett, Kelley and Porter get Gernsback awards

Bob Bartlett, of Walton, NY, is this month's winner of the Hugo Gernsback Memorial Award, a prize given annually to an outstanding student in each of eight leading electronics home-study schools. 39 years old, with four children, and a member of the Midstate Electronic Technicians Association, he is at present enrolled in the National Radio Institute Master TV Servicing Course, and has just completed Unit III with honors. He will receive a check for $150 from Radio-Electronics.

Third-place winner, who will receive a VIZ WV-529A special service VOM, is Richard R. Porter, Jr., a high school senior in Whitesboro, NY. Electronics has been his hobby from the age of 11, and at 16 he decided to make electronics his career. Finding no suitable training locally, he enrolled in the NRI Master TV/Audio servicing course and hoped to have it completed before starting college this fall. He is working at a local fast-food outlet to pay for the course, and adds to his income by fixing radios and 8-tracks.

He plans to use his TV training to work his way through college by repairing TV's and stereos in the dorms, and to graduate as an electrical engineer with an electronic technician's training.
Now you can service with a TEKTRONIX Oscilloscope for as little as $695*

Cost of service instruments is an important factor in any purchase. But so is reliability. Now T900 Oscilloscopes give you both Tektronix quality and reliability at prices designed for cost sensitive applications.

T921—Ds to 15 MHz; single trace, single time base. $695*
T922—Dc to 15 MHz; dual trace, single time base $850*
T932—Dc to 35 MHz; dual trace, single time base $1195*
T935—Dc to 35 MHz; dual trace, delayed sweep time base $1395*
T912—Dc to 10 MHz; bistable storage; writing speed to 250
 cm/ms; dual trace, single time
 base $1300*

Performance to Spare
All T900 scopes feature large (8x10 cm), bright crt's; sensitivity of 2 mV/div to 10 V/div in twelve calibrated steps; regulated power supplies; and 3% accuracy. T900 Oscilloscopes are also equipped with important convenience features; beam finder, single knob triggering, automatic selection of chopped or alternate mode, and automatic selection of tv line or frame display (except T912 Storage model). T900 scopes are compact (7x9x
 19 in.) and lightweight (only 16 lb.). They are available with a full selection of accessories.

For a demonstration of any T900 Oscilloscope or a free copy of the new T900 brochure, write to Tektronix, Inc., P.O. Box 500, Beaverton, OR 97077. For immediate assistance, call (503) 644-0161, extension T900.

T900 Series
the quality low cost
Oscilloscopes

*All prices include 10X
 probes. Prices
 FOB Beaverton, Oregon.
Hickok introduces the first low-cost RF generator designed specifically for 40 channel CB service.

Model 256 $199.

Here's every signal you need to service CBs with easy precision tuning over all 40 CB channels. Four additional bands cover 100 kHz to 16 MHz to cover any IF. A counter output gives exact frequency monitoring for precision control. Calibrated RF attenuator output provides stable signals from under 1 microvolt to over 100,000 microvolts. An internal modulator gives a 1 kHz, 0-100% tone, and there are provisions for 20 Hz to 10 kHz external modulation. It's all the RF Generator you need, so why pay more? See your Hickok distributor for more information or contact us directly.

Part of the Hickok Line the full line of professional CB service instruments.

letters

4-CHANNEL SOUND

In his article on AM Stereo in the October 1976 issue, Harry Maynard mentioned an interview with 500 people who have lived with quadraphonic systems over a period of time. In this article, Mr. Maynard said that 95% of those interviewed did not want to go back to regular stereo. Although I wasn't one of those interviewed, I agree entirely. I'm a proud owner of an expensive do-everything quad system, and I couldn't see myself reverting to two-channel sound. But something seems wrong somewhere, and I'm one quadri-freak who isn't going to sit on his woofers and let it happen!

What am I referring to? I'm glad you asked. It's all too obvious that the interest in quad is declining, but it seems to me it's the fault of a closed-minded industry that couldn't care less. No, I DON'T think it's the economy that's killing it. After all, stereo was also somewhat more expensive when it first came out than it is now. I think it's more likely that the bulk of the hardware and software manufacturers are the ones who are trying their best to lay quad to rest and pull the sod over the grave, but it's a mistake for them to think they can do it.

First point: The industry has failed to come up with a standard for all quad records. If a standard quad system were to be adopted, it would have to offer as much as it can without compromises. I doubt the buying public would settle for less than a totally discrete system that offers compatibility with stereo and mono players. Only one does, and that's CD-4.

Second point: Several manufacturers have made quadraphonic receivers and amplifiers that were of very high quality and suddenly pulled them from the market. Sherwood was one of those; they had a fine quadraphonic receiver out that had some good features, such as SQ full logic, and moderate power output, but they yanked it from their line rather suddenly. If the units weren't selling, the blame would have to fall on the retailers, most of whom couldn't be bothered in setting up proper demonstration areas in their stores, and lack of education on the part of both retailer and manufacturer in how to properly present this new medium of sound reproduction. The sales personnel couldn't answer the consumers' questions, and therefore no sale.

Third point: Too many recording companies took a "wait and see" attitude about quad. Capitol released seven "token" efforts, all from their "Custom Products" division, and most were sampler-type albums. MCA's sales department puts the blame on the artists, claiming they were afraid to try four-channel recording. United Artists is about to make their first quad release, an album by Paul Anka, which will be SQ-encoded. Perhaps this is just the beginning of a long line of quad recordings yet to come from UA. Polydor/MGM have released two albums in QS, but without mentioning it on either the album cover or the record label. If they plan to go all quad, I know their efforts will be appreciated by many, including myself. A&M started off with QS, tried some SQ, and finally settled on CD-4. But they've had no new quad releases in the past few months. Sounds fishy to me, Herb. There are many more, but it all boils down to the continued on page 16.
The Realistic® SCT-14 gives you far more than just Dolby*

at a surprisingly low price!

The Realistic SCT-14 is not just another "me-too" Dolby deck— it's a full-feature model with lots of built-in flexibility to match your stereo system and your taping interests. Switchable Dolby. Selectable bias for CrO₂ and standard tapes. Dual VU meters and exclusive Glide-Path® controls for precise, quality recordings. Five sure-touch function keys, including pause for quick editing. A special cassette eject button. Auto-Stop at end of tape. Resettable digital counter. And for a professional touch, the indicator/meter panel is angled forward for easy viewing. An output level control matches the deck to any amplifier or receiver. Response: 40-13,000 Hz. Wow and flutter: <0.2%. Simulated walnut grain end panels. And more. It's a Realistic way to enhance your stereo system. Only 149.95†.

FREE!

Come in for your copy of our colorful 1977 catalog and see what's really new in electronics. 164 pages. 2000 items.

Radio Shack®

SOLD ONLY WHERE YOU SEE THIS SIGN:

A TANDY COMPANY • FORT WORTH, TEXAS 76107
OVER 5000 LOCATIONS IN NINE COUNTRIES

*"Dolby" is a trademark of Dolby Laboratories, Inc. †Price may vary at individual stores and dealers.
MEET OUR FAMILY OF HIGH VOLTAGE TEST PROBES

In 1967 we introduced the first high voltage test probe with a built-in meter. It became so popular that we have been adding new models ever since. Now there are five different versions to satisfy the demands of radio, television, appliance, audio, and electrical repairmen in a wide variety of high voltage testing applications.

The five models are briefly described below. Our general catalog contains complete applications information, illustrations, specifications, and prices. Write for your free copy.

MODEL 4242—42,000 volts DC. Negative ground.

MODEL 3157—15,000 volts DC. Negative ground.

MODEL 4312—15,000 volts DC. Positive ground.

MODEL 3163—6,000 volts DC. Negative ground.

MODEL 3200—10,000 volts AC.

AVAILABLE THROUGH YOUR FAVORITE ELECTRONIC PARTS DISTRIBUTOR

ITT POMONA ELECTRONICS
1500 East Ninth St., Pomona, Calif. 91766
Telephone (714) 623-3463, TWX: 910-581-3822

CIRCLE 47 ON FREE INFORMATION CARD

LETTERS
continued from page 14

same thing: WE WANT MORE QUAD SOFTWARE, AND WE WANT IT NOW!
The U.S. Military Overseas market is perhaps the largest for audio components, and quad systems make up a fair portion of the total number of systems sold through the Army and Air Force Exchanges and Navy Resale System. Here in Iceland, the largest and loudest gripe is that there just isn't enough in the way of quad records, particularly CD-4 discs, stocked in the Exchange Stereo Shop. If they were more plentiful they would sell up here like hotcakes. The sales personnel know this and are always trying to get more in, but it's a losing battle. Thing is, it doesn't have to be. If the record companies would get off their duffs and produce more quad recordings, they would sell! There are enough quad lovers around who would scarf new quad LP's up hungrily, myself included. If we can make the bigwigs at the record companies know that we're out here, the quad lovers of the world, and that we want more of what we paid good cash for to take advantage of our investments, then maybe we can convince these companies to start pushing again. The second time has to work.

To sum it up, quad doesn't have to die. With hardware vanishing because there isn't enough software, and software vanishing because the hardware is getting scarce, it seems likely that software and hardware manufacturers have to get together and make this thing work. For the software people, it means pushing quad as a single-inventory item, stressing its compatibility (with regard to discs) with existing stereo systems, and getting together on a common system that everyone would use. My vote is for CD-4, but if a matrix system must be adopted, let it be Sansui's QS matrix. As for the hardware folks, they have their work cut out for them as well. They have to make sure these retailers will also present quad with a more positive outlook than they have in the past. Maybe then we can see quadraphonic sound take its rightful place in home entertainment.

JAY L. RUDKO
FPO, NY

CORRECTION

Reader Brian Appleman has called our attention to two errors in the Automatic Telephone Dialer article in the November issue. Two resistors marked R12 are shown on the schematic in Fig. 1 and on the component layout in Fig. 6. The resistor connected from ground to pins 6 and 14 of IC12 should be R22. Resistor R22 (100K) is not listed in the parts list.

The schematic in Fig. 1 has diode D20 effectively shorted out by a line connecting its anode and cathode. Remove this line from your schematic.

Reader Richard Alston spotted two circuit elements marked IC6-c in Fig. 1. One is the inverter in the lower left corner of the schematic and the other is the NOR gate used as the blank detector. The inverter is IC6-d with pins 12 and 13 tied together as the input while pin 11 is used as the output. —Editor
FREE
THE NEW HEATHKIT CATALOG
the world's largest selection of
fun-to-build, money-saving
electronic kits!

Read about the nearly 400 electronic kits you
can build and service yourself. The famous
Heath assembly manuals guide you every step
of the way, and our quality design assures top
performance from every kit you build.

Send for your copy today!

Heath Co., Dept. 20-25
Benton Harbor, Michigan 49022

CIRCLE 100 ON FREE INFORMATION CARD
The better the training
the better you'll

As an NTS student you'll acquire the know-how that comes with first-hand training on NTS professional equipment. Equipment you'll build and keep. Our courses include equipment like the NTS/Heath Digital GR-2000 Solid State color TV with first-ever features like silent varactor diode tuning; digital channel selection, (with optional digital clock), and big 315 sq. in. ultra-rectangular screen.

Also pictured above are other units — 5” solid state oscilloscope, vector monitor scope, solid-state stereo AM-FM receiver with twin speakers, digital multimeter, and more. It’s the kind of better equipment that gets you better equipped for the electronics industry.

This electronic gear is not only designed for training; it’s field-type — like you’ll meet on the job, or when you’re making service calls. And with NTS easy-to-read, profusely illustrated lessons you learn the theory behind these tools of the trade.

Choose from 12 NTS courses covering a wide range of fields in electronics, each complete with equipment, lessons, and manuals to make your training more practical and interesting.

Compare our training; compare our lower tuition. We employ no salesmen, pay no commissions. You receive all home-study information by mail only. All Kits, lessons, and experiments are described in full color. Most liberal refund policy and cancella-
and the equipment be equipped.

COMPARE OUR KITS AND LESSONS. COMPARE OUR TUITION.

HIGH FIDELITY SPEAKERS

SOLID-STATE STEREO AM/FM/MULTIPLEX RECEIVER

COLOR BAR/DOT GENERATOR

TUBE & TRANSISTOR TESTER

FET-VOM

AM/FM/SW PORTABLE SOLID-STATE RECEIVER

VECTOR MONITOR SCOPE

5" OSCILLOSCOPE

DIGITAL MULTIMETER

SOLID-STATE 2-METER FM TRANSCEIVER & POWER SUPPLY

SOLID-STATE POCKET RADIO

SIGNAL GENERATOR

tion privileges spelled out. Make your own comparisons, your own decision. Mail card today, or clip coupon if card is missing.

NO OBLIGATION. NO SALESMAN WILL CALL
APPROVED FOR VETERAN TRAINING
Get facts on new 2-year extension

NATIONAL TECHNICAL SCHOOLS
TECHNICAL-TRADE TRAINING SINCE 1905
Resident and Home-Study Schools
4000 So. Figueroa St., Los Angeles, Calif. 90037

Please send FREE Color Catalog and Sample Lesson.
NO OBLIGATION. NO SALESMAN WILL CALL.

Color TV Servicing
B & W TV and Radio Servicing
Electronic Communications
FCC License Course

Electronics Technology
Computer Electronics
Basic Electronics
Audio Electronics Servicing

NAME ___________________________ AGE ________
ADDRESS ___________________________ APT ________
CITY ___________________________ STATE ________

Check if interested in G.I. Bill information
Check if interested ONLY in classroom training in Los Angeles

NATIONAL TECHNICAL SCHOOLS
4000 South Figueroa St., Los Angeles, Calif. 90037

JANUARY 1977
The IMSAI 8080.

A commercial yet personally affordable computer.

If you thought you could never afford a computer at home, think again. The IMSAI 8080 is built for rugged industrial performance. Yet its prices are competitive with Altair's hobbyist kit. Fully assembled, the 8080 is $931. Unassembled, it's $599.

The IMSAI 8080 is made for commercial users, and it looks it. Inside and out. The cabinet is attractive, heavy gauge aluminum. The heavy duty lucite front panel has an extra 8 program controlled LED's. It plugs directly into the Mother Board without a wire harness. And rugged commercial grade paddle switches are backed up by reliable debouncing circuits.

The system is optionally expandable to a substantial system with 22 slots in a single printed circuit board. And the durable card cage is made of commercial-grade anodized aluminum.

The IMSAI 8080 power supply produces a true 28 amp current, enough to power a full system. You can expand to a powerful system with 64K of software protectable memory plus an intelligent floppy disk controller. You can add an audio tape cassette input device, a printer plus a video terminal and a teletype. And these peripherals will function with an 8-level priority interrupt system. BASIC software is available in 4K, 8K and 12K.

Get a complete illustrated brochure describing the IMSAI 8080, options, peripherals, software, prices and specifications. Send one dollar to cover handling to IMS. The IMSAI 8080. From the same technology that developed the HYPERCUBE Computer architecture and Intelligent Disk systems.

Dealer inquiries invited.

KOMPUTER KORNER

PAUL E. FIELD, DAVID G. LARSEN, PETER R. RONY, and JONATHAN A. TITUS

This month, we return to the subject of the substitution of software for hardware, i.e., the substitution of machine-level routines and subroutines for specific digital hardware devices that store, manipulate, transmit or receive digital information. The hardware device that we will discuss is the universal asynchronous receiver/transmitter, or UART—a 40-pin integrated circuit that contains an independent 8-bit asynchronous receiver and an independent 8-bit asynchronous transmitter. Data rates range from DC to 60,000 bits per second. The receiver and transmitter sections of the IC can be programmed for 3, 5, 6, 7, or 8 data bits; 1 or 2 stop bits; even or odd parity; and parity or no parity. The IC contains a variety of flags.

An interface circuit for a simplified software UART is shown in Fig. 1. Owing to the nature of the specific application that the circuit was designed for, there was no need for special flag-bits or error checking. Thus, the interface circuit consists of a single three-state input buffer gate (SN74126), a single output data-latch (SN7474), two input device-select pulses, and one output device-select pulse. With appropriate modifications of the device select pulses, this circuit can be used with almost any microprocessor IC. In our case, an 8080A-based microcomputer operating at 750 kHz was used. This generates and detects, asynchronous serial ASCII-coded 5-volt TTL data. For teletype operation, additional hardware is required to convert the 5-volt logic levels to 20 mA current-loop operation.

TABLE I—MICROCOMPUTER SUBROUTINE that demonstrates the asynchronous serial transmission of an eleven-bit ASCII word at a teletype speed of 110 Baud.

<table>
<thead>
<tr>
<th>LO memory address</th>
<th>Instruction byte</th>
<th>Mnemonic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>144</td>
<td>056</td>
<td>MVI L</td>
<td>Set ASCII word bit counter to 013</td>
</tr>
<tr>
<td>145</td>
<td>013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>267</td>
<td>ORA A</td>
<td>Set carry bit to logic 0</td>
</tr>
<tr>
<td>147</td>
<td>027</td>
<td>RAL</td>
<td>Rotate carry bit to DO in accumulator</td>
</tr>
<tr>
<td>150</td>
<td>323</td>
<td>OUT</td>
<td>Output carry bit to SN7474 latch</td>
</tr>
<tr>
<td>151</td>
<td>004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>315</td>
<td>CALL</td>
<td>Call 9.9 ms time-delay subroutine</td>
</tr>
<tr>
<td>153</td>
<td>'B2'</td>
<td>'B2'</td>
<td>LO address byte of time-delay subroutine</td>
</tr>
<tr>
<td>154</td>
<td>'B3'</td>
<td>'B3'</td>
<td>Hi address byte of time-delay subroutine</td>
</tr>
<tr>
<td>155</td>
<td>037</td>
<td>RAR</td>
<td>Rotate bit in ASCII word to DO in accumulator</td>
</tr>
<tr>
<td>156</td>
<td>067</td>
<td>STC</td>
<td>Set carry bit to logic 1</td>
</tr>
<tr>
<td>157</td>
<td>323</td>
<td>OUT</td>
<td>Output bit to SN7474 latch</td>
</tr>
<tr>
<td>160</td>
<td>004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>055</td>
<td>DCR L</td>
<td>Decrement bit counter by 1</td>
</tr>
<tr>
<td>162</td>
<td>302</td>
<td>JNZ</td>
<td>If bit counter has a value of zero, ignore this instruction. If all of the bits in the 11-bit ASCII word have not yet been transmitted, jump to address LO = 152 above.</td>
</tr>
</tbody>
</table>

| 163 | 152 | 152 | LO address byte |
| 164 | 'B3' | 'B3' | Hi address byte |

At this point, the 8-bit ASCII word contained in the accumulator has been transmitted. Two stop bits have been added at the end of the eight bits and a single start bit, at logic 0, has been added at the beginning of the eight bits.

This article is reprinted courtesy American Laboratories. Dr. Field and Mr. Larsen, Department of Chemistry, and Dr. Rony, Department of Chemical Engineering, are with the Virginia Polytechnic Institute & State University. Mr. Titus is president of Tychon, Inc. Dr. Field is guest author of this month's column.

continued on page 24
May we send you your choice of these 3 practical, time-and-money-saving books as part of an unusual offer of a Trial Membership in Electronics Book Club? Here are quality hardbound volumes, each especially designed to help you increase your know-how, earning power, and enjoyment of electronics. Whether your interest is in electronics, you'll find Electronics Book Club offers practical, quality books that you can put to immediate use and benefit.

This extraordinary offer is intended to prove to you, through your own experience, that these very real advantages can be yours. It is possible to keep up with the literature published in your areas of interest, and to save substantially while doing so. As part of your Trial Membership, you need purchase as few as four books during the coming 12 months. You would probably buy at least this many anyway...without the substantial savings offered through Club Membership.

To start your Membership on these attractive terms, simply fill out and mail the coupon today. You will receive the 3 books of your choice for 10-day inspection. YOU NEED SEND NO MONEY! If you are not delighted, return the books within 10 days and your Trial Membership will be cancelled without cost or obligation.

An Extraordinary Offer to introduce you to the benefits of Membership in ELECTRONICS BOOK CLUB

take 3 of these unique electronics books (value to $61.70) for only 99¢ each with a Trial Membership in the Book Club that guarantees to save you 25% to 75% on a wide selection of electronics books

All 2- and 3-book sets count as only one of your 3 Selections.

Facts About Club Membership

- The 3 introductory books of your choice carry publishers retail prices of up to $31.70. They are yours for only 99¢ each (plus postage and handling) with your Trial Membership.

- You will receive the Club News, describing the current Selection. Alternates and other offers, every 4 weeks (13 times a year).

- If you want the Selection: do nothing; it will be sent to you automatically. If you do not wish to receive the Selection, or if you want to order one of the Many Alternates offered, you may give instructions on the reply form (and in the envelope) provided, and return it to us by the date specified. This date allows at least 10 days in which to return the form. If, because of late mail delivery, you do not have 10 days to make a decision and so receive an unwanted Selection, you may return it to a Club expense.

- Personal service for your account—no computers used!

- To complete your Trial Membership, you need buy only four 4 additional monthly Selections or Alternates during the next 12 months. You may cancel your Membership any time after you purchase these four books.

- All books—including the introductory offer—are fully returnable without cost or obligation.

- All books are offered at low Member prices, plus a small postage and handling charge. Prepaid orders shipped immediately.

- Continuing Books. If you continue after this Trial Membership, you will earn a Dividend Certificate for every book you purchase. Three Certificates, plus payment of the nominal sum of $0.94, will entitle you to a valuable Book Dividend of your choice which you may choose from a list provided Members.

ELECTRONICS BOOK CLUB
P.O. Box 10
Blue Ridge Summit, Pa. 17214

Please open my Trial Membership in ELECTRONICS BOOK CLUB and send me the 3 books circled below. I understand the cost of the books I have selected is only 99¢ each, plus a small shipping charge. If not delighted, I may return the books within 10 days and owe nothing, and have my Trial Membership cancelled. I agree to purchase at least four additional books during the next 12 months, after which I may cancel my membership at any time.

101 447/729/780 628/691 563/636 582
627/672 655 728 735 748/749
785 900 835 970 901 319

Name_________________________Phone_____________________
Address_____________________
City_________________________
State_________________________Zip_____________________

(If you wish, add 10% sales tax when ordering from Pennsylvania and Washington, D.C.)

JANUARY 13 ON FREE INFORMATION CARD

CIRCLE 13 ON FREE INFORMATION CARD
Transmit subroutine

The transmit subroutine, shown in Table 1, for the software UART occupies twenty to twenty-five successive program steps in memory once the appropriate PUSH, POP, and RET instructions have been included. Also required is a 9-msec time-delay subroutine that corresponds to an asynchronous serial ASCII data transmission rate of 110 baud, i.e., teletype speed. The program in Table 1 can be described as follows:

Register 1 is used as the bit counter for the 11-bit ASCII word, and it is initially set to octal 013. The seven data-bits plus the parity bit, which is Bit 8, are assumed to be present in the accumulator. At the LO memory address 146, the accumulator is OR'd to itself to clear the carry bit (shown on the far left in Fig. 2.) In Fig. 2, the least significant data bit is Bit 1. At address LO = 147, a RAL instruction is performed to rotate the start bit to bit position DO in the accumulator. Fig. 3 should provide you with assistance in understanding the four different rotate instructions.

KOMPUTER KORNER

continued from page 22

For the DO accumulator position and the carry bit is set to logic 1. Bit 1 is fed to the S7474 latch, the ASCII word bit counter in register 1 is decremented and program control is returned to the time-delay subroutine that is called at address LO = 152. The loop from LO = 152 to LO = 164 is executed a total of eleven times, after which register 1 becomes zero and the JNZ instruction at address LO = 162 is ignored.

A software UART transmit subroutine possesses a flexibility equivalent to the original 40-pin UART chip. With appropriate modifications to the program or the original accumulator data, you can transmit 5, 6, 7, or 8 data bits; 1 or 2 stop bits, even or odd parity; and parity or no parity. The time-delay subroutine can be modified so that you can transmit at data rates from 60 to 9600 baud for a 750-kHz clock rate and higher for 2-MHz and 4-MHz clock rates.

The conversion from one data transmission rate to another is easily accomplished with the aid of appropriate software time-delay subroutines that replace RC time-constant circuits. An additional advantage that is gained from the use of software is the potential to perform code conversions. For example, 5-level Baudot KSR machines are in widespread use and can still be obtained for under $50. It is not too difficult to develop software that converts ASCII to Baudot and thus produce an inexpensive hard-copy terminal for the laboratory scientist, engineer, ham, or computer buff.

Receive subroutine

The software UART receive subroutine requires 50 instructions and will not be repeated here. (Copies of the transmit and receive subroutines and a description of the
smart data-entry station are available from Professor Paul Field, Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061. The basic programming concepts associated with the receive subroutine are shown in Fig. 4, which represents an 11-bit asynchronous serial ASCII word that is being detected by the 8080A-based microcomputer with the aid of the SN74126 three-state buffer gate shown in Fig. 1. The program repeatedly tests the serial ASCII input line for a logic 0 state. Once a logic 0 state is detected, which corresponds to a start bit, the program goes into a 4.54-ms wait loop. Upon leaving the wait loop, the program again inputs the logic 0 into bit position DO in the accumulator, thus testing the validity of the start bit. The start bit is rotated to the carry bit and the program then enters a 9.09-ms wait loop, after which it inputs Bit 1 into position DO in the accumulator. Register H is used as the SAVE register that stores the growing ASCII data word. The SAVE register is rotated one position, and the 9.09-ms wait loop is again entered, after which Bit 2 (a logic 0 in Fig. 4) is input into bit position DO in the accumulator. The input of successive data and parity bits continues until the entire 8-bit data word is entered into the SAVE register. The two stop bits are also detected. With appropriate modifications, the program can detect parity or framing errors or an overrun condition. A data-ready flag signal can also be generated from software with the aid of a second SN7474 latch.

Applications

The above software UART routines were used in a "smart" remote data-entry station that was tied via a 20 mA current-loop to a PDP 8/L minicomputer in a physical chemistry laboratory. The data entry station intercepted the 20 mA teletype current-loop tied to the minicomputer. The remote data-entry station permitted students to load data into memory and then transmit it as a block to the minicomputer, which analyzed the data and provided a printout. With the 20 mA current loop operating in the full duplex mode, ten or more remote data-entry stations could be tied to the minicomputer.

This column provides a good demonstration of the software/hardware tradeoffs that can be accomplished using microcomputers. Similar and perhaps more comprehensive, routines have already been written for all of the popular microprocessor chips, such as the 16-bit PACE or the 8-bit 6800. The faster and less expensive that microcomputers become, the more likely that all moderate speed digital functions will be executed via software. The theme of software replacing hardware is an important one, and we will return to it many times in future columns.

Fast, Fool-proof TV Alignment

With the B&K-PRECISION Model 415 you can complete a TV alignment in about the time you would spend hooking up the instruments for conventional alignment procedures. It’s ideal for testing adjacent channel interference in CATV installations, too.

Everything you need is built into the Model 415—sweep and marker generators, a marker adder and three bias supplies. The 10 crystal-controlled IF markers can be shown either vertically or horizontally on your scope, and they light up on the front panel IF response and chroma bandwidth diagrams as you use them.

Proper set alignment is assured and is almost automatic when you follow the Model 415’s programmed alignment procedures.

Contact your local B&K-PRECISION distributor for a demonstration, or write for detailed information on how the Model 415 can save you time and increase your profits.
equipment reports

Heath AS-1344 2-Way Column Speaker System Kit

TIGER .01

Introduced three years ago, our "Tiger .01" is still one of the finest amplifiers available in its power class. This amplifier introduced our 100% complementary circuit which has become a standard feature in many of the better amplifiers. This combined with an output triple produces a circuit that can honestly be rated as having less than .01% IM distortion at any level up to 60 Watts. Relatively low open loop gain and a conservative amount of negative feedback results in clean overload characteristics and good TIM characteristics.

Other features are volt-amp output limiting, plus three fuses and an overheat thermostat. Despite the "budget" price an output meter is standard equipment. Each channel measures 4¾ x 5 x 14. Four will mount in a standard width relay rack for four channel systems.

SPECIFICATIONS

60 Watts—4.0 or 8.0 Ohm load Minimum RMS from 20 Hz to 20 KHz with less than .05% Total Harmonic Distortion.

IM Distortion
Damping Factor 50 or greater 20 Hz to 20,000 Hz.
Hum and Noise 807 B Amplifier (single channel) $110.00 Ppd
H 207/B Amplifier — KIT $ 77.50 Ppd

Southwest Technical Products Corp.
219 W. Rhapsody, Dept. FM
San Antonio, Texas 78216

CIRCLE 63 ON FREE INFORMATION CARD
of the crossover. The audio signal is coupled to the speaker system through the input terminals. This signal goes directly to the woofers (SPKR 1 and SPKR 2) through fuse F1 and to the tweeter circuit (CI, R1, L1, etc).

The woofers operate as full-range speakers, covering 35 Hz to 10 kHz. However, above 4 kHz, they no longer maintain good dispersion and the off-axis sound output begins to diminish. This smooth response allows the woofers to be operated with no electrical crossover. Fuse F1 protects the woofers against input overload.

The tweeter circuit consists of a high-pass second order filter, level switch S1, and two dome tweeters (SPKR 3 and SPKR 4). The audio frequency choke L1 and capacitor CI form a high-pass filter while resistor R2 is a series attenuator. Resistor R1 and switch S1 provide 3-dB of attenuation when S1 is in the 2-db position. Fuse F2 protects the tweeters against overload.

Because of its design, two radiating sides on each enclosure, some variations in speaker position and placement are feasible. These are shown in Figs. 2, 3, 4 and 5. To summarize, the placement of the speakers depends on the acoustic balance of the room and your personal preference in frequency balance. In a soft room (thick carpet, heavy drapes, soft upholstered furniture, etc.) place the level switch in the flat position with the speaker system positioned as shown in Fig. 2. The listener should be about as far away from the speakers as the speakers are apart.

In a hard room (no carpet, thin or no drapes, hard surfaced furniture) place the level switch in the -3-db position and set up the speakers as shown in Fig. 3. The listener should be about as far away from the speakers as the speakers are apart.

Most rooms are a combination of soft and hard. If you have one of these average rooms, experiment with the previously mentioned speaker positions and settings of the level switch to find the combination that provides the best balance over the entire listening range.

The speaker system also offers many options as to the amount of direct versus reflected sound. These options, shown in Figs. 4 and 5 are especially useful in narrow rooms or wide rooms where irregular furniture placement is used. Where a wall is used as a reflecting surface, the wall should be smooth and hard.

We found the speakers lived up to their specs: providing a flat energy output from 50 Hz to above 12 kHz with a dispersion of 270° (again, as stated in the manual, on-axial response goes beyond 20 kHz). The system is rated at 4 ohms and never falls below this rating at any frequency.

The cabinet design is an acoustic suspen-
sion type which has, of course, one limitation: it requires a relatively high-power amplifier. For normal operation a minimum power is used in the low frequency range. This is the first place an amplifier will be overtaxed. If there is not enough power, you’ll hear it as distorted sound, caused by clipping, on peaks in the music. If you use these speakers in a 15 by 20-foot room with an 8-foot ceiling (24,000 cu ft) and the room contains average furnishings, a peak power of 20 watts per channel into a pair of speakers will produce a sound field equivalent to 100 dB SPL (sound pressure level). This corresponds to the normal peak sound intensity produced by a large orchestra performing in a concert hall.

We connected the speaker system to our Heath Modulous control center and power amplifier. The response was amazingly good: clear, sharp and pleasant to listen to. Because of the height of the speakers above the floor we found it desirable to use the -3 dB position on the switch to limit what we considered excessive high frequency response. Since we have installed the speakers of 5 watts per channel is recommended. However, for a robust listening level you will need 15 to 25 watts per channel. Most of the

More Power To You!

Joint closer to cutters gives you this instead of this.

More cutting power with less effort. The plier provides the “extra muscle.” Perfectly mated cutters hold their edge. They’re hand honed scientifically heat treated. The joint is smooth working as a Swiss watch. Interfaces are precision machined. Drop forged, top quality steel. Beautiful full polished finish. Blue dipped plastic grips optional. Quality in every detail (at no premium in cost). CHANNELLOCK No. 369 Hi-Leverage Plier. Ask for it by name.

[Image of plier]

CHANNELLOCK

No. 369 Hi-Leverage Plier — 9 inch

Meet The Rest Of The Family...Send For Our Free Catalog

Sencore DVM-35 And DVM-36 Digital Multimeters

CIRCLE 80 ON FREE INFORMATION CARD

THE SENCORE people are really going digital in a big way. They now have a “set” of digital multimeters for all purposes. There are four models in all. The two in the middle are the DVM-35 and DVM-36. They look enough alike to be twins: both are built in the same portable compact cases made of Cycolac plastic. They say these can be dropped 10 feet to a cement floor without damage. I didn’t have the intestinal fortitude to try this, but they look tough!

Despite the similarity, there are differences. The DVM-35 has a 3-digit readout with 1% full-scale accuracy. Voltage scale are 1, 10, 100, 1000 on AC or DC. For current, 1, 10, 100 and 1000 mA, again both AC and DC. The ability to read alternating current is one
of the handy things in the newer DVM's. On all ranges, if the reading is greater than full-scale, overrange is indicated by the display showing all "8's", and blinking.

For resistance readings, the DVM-35 has a total of six. The lower three, 100, 1000 and 10K, are low-power scales with only 0.2 volt impressed across the circuit-under-test. This won't turn on even a germanium transistor. The high scales are 100K, 1000K and 10 megohm and 1.0 volt is applied to the circuit. So, these can be used for the old faithful in-circuit ohmmeter tests of transistor junctions. You will see a high reading one way and a low the other. For the high reading, the only difference you'll see will be the "infinity" display. Since this is actually an overrange condition to a DVM, the display blinks "888" at you.

The "other brother", the DVM-36 is in the same case. It has a 3/4 digit readout and different ranges. Voltage is 2, 20, 200 and 2000 volts both AC and DC. The same basic ranges are used for currents, both alternating and direct. In the DVM-36, the accuracy is 0.5% of full-scale on all voltage and current ranges. Resistance ranges read to an accuracy of 1% of full-scale ± 2 digits. The Ohms ranges use "2's": 200, 20K, 200K, all low-power with 200-mV applied, and 20K, 2000K, and 20 megohms on the high power ranges, with 20 volts applied across the circuits.

The controls are simple; the range and function switch is very plainly marked. A selector switch on the lower right corner of the panel changes it from AC to DC volts. The on-off switch is on the left and in the middle is a zero-adjust knob. To set this up, set the selector on DC volts. any range, short the prods and adjust the zero-adjust until the display reads "000" (on both models). You don't have to reverse prods for voltage or current readings. Polarity is automatic, if the voltage is negative, a minus sign lights up. It also lights up on DC current readings, which saves you from the old problem of hooking milliammeters up backward.

Speaking of probes—both of the instruments use the same type, and it has some really handy features. The body of the probe is triangular and it has a guard-ring to keep unwary digits (yours, not on the readout!) from getting into hot stuff. A long, thin red-tip has a very sharp point for making good contact. If you don't believe it's sharp, drop it on your knee.

On one side of the probe, at the front, are two small flush pushbuttons. One of these is marked "position". This is a switch, in parallel with the panel switch. You can leave the instrument turned off until you're ready to take a reading. Just push the button, note the reading and let up. This can be a big help in saving the batteries. The other one is marked "auto range". Holding this down puts an extra 15-megohm resistor in series with the probe; this multiplies the full-scale range by a factor of two. For a 1000-volt scale, this would let you read 2000 volts. The display reads one-half of the actual voltage; say this was 1500 volts. The readout would show "750" as long as the on button is held down.

Since this also brings the input impedance of the instrument from its normal 15-megohms up to 30 megohms, this feature can

continued on page 100
HOW TO SAVE HUNDREDS OF DOLLARS ON PARTS. PAINLESSLY.

At CSC, we've developed a family of ingenious Design Mate™ test equipment that gives you professional quality and precision at very unprofessional prices. Each unit can save you money—and time—in a number of interesting ways. For more information on these, or any other CSC products, see your dealer or write for our catalog and distributor list.

SAVE MONEY AND TIME WITH DESIGN MATE 1
This precision all-in-one unit combines a solderless plug-in breadboarding system with a built-in better-than-1%-regulated variable 5-15V supply and 0-15V voltmeter. Gives you everything you need to design and test circuits faster than you ever could before. Saves money by eliminating lead damage and heat damage to components. Lets you re-use parts over and over again, to save even more. All for just $54.95.*

SAVE MORE MONEY AND TIME WITH DESIGN MATE 2
Accurate R/C bridge helps you use “bargain” components. Quickly and easily measures resistance 10 ohms—10 meg; capacitance 10pF—1µF—both in decade ranges to within 5% of dial setting. Simple, 2-control operation and positive LED indication make measurements in seconds. At $59.95, it pays for itself in no time.

STRETCH YOUR BUDGET FURTHER WITH DESIGN MATE 3
Precision function generator lets you test all kinds of equipment, with 1Hz-100kHz signals. Low-distortion sine waves, high-linearity triangle waves, fast-rise-time square waves. Five decade ranges, accurate to 5% of dial setting, with variable 100mV-10V P-P output and constant 600-ohm impedance. At $69.95, it's a lot of signal for very little money.
A TOP-OCTAVE DIVIDER WORKS LIKE THIS: You pump a high-frequency clock signal into one of the pins and like magic a full octave of equally tempered musical notes come flowing out of the rest of the pins. As you might expect, this is extraordinarily useful for organ-type musical instruments.

In various single or multiple package configurations, they've been around for years. When they were first developed the price was high enough to effectively limit their application to large, expensive instruments. Now, we're getting out on the "learning curve" and while these devices are still not cheap, they are inexpensive enough to become candidates for some "small" applications.

Like, for instance, here's OZ. It's battery-powered and has a built-in amplifier, speaker and keyboard. You can take it anywhere: into the woods.

JOHN S. SIMONTON, JR.

...and play music anywhere with this self-contained battery-powered mini-organ. It has its own keyboard, speaker, unique pitch-bender and covers a five octave range.

JOHN S. SIMONTON, JR.

Your van, to the beach—places you wouldn't ordinarily expect to find a keyboard instrument. For the musician on the road, it's great for getting your chops down on long bus rides. And as an added benefit, a guitar or other instrument can plug in and share OZ's amplifier. For music students, it's a practice instrument that will fit into the most confining dorm room, apartment or budget.

It's polytonic—which means that you can play notes, intervals or full chords—and its output level is appropriate for most electronic music synthesizers. Yes, it works quite well with the Gnome (Radio-Electronics, Nov., Dec. 1975 and Jan. 1976 issues.) To make interfacing easy, OZ features a trigger output that is switch selectable to be either high as long as any key is down, or a short pulse every time a key is depressed.

It has a really slick touch-operated pitch bender that glissandos, vibratos and trills single notes or whole chords up to a full octave. The harder you press, the more the frequency changes.

Let's see how it works

The top-octave IC is the real guts of OZ; but, before we look there, we must start with the thing that makes it all go—the clock.

Two CMOS NOR gates (IC6-a and IC6-b, Fig. 1) are configured in a classical astable circuit in which timing capacitor C20 charges and discharges through resistor R42 and the variable TUNE control R57. The nominal frequency of the clock is 500 kHz and is adjustable with the tuning control through an octave range.
All resistors 1/2 watt, 10%.
R1-R18—330,000 ohms
R19-R36, R51, R53, R54—22,000 ohms
R37—33,000 ohms
R38—330,000 ohms
R39—15,000 ohms
R40, R41, R56, R60—10,000 ohms
R42—2700 ohms
R43—680,000 ohms
R44—100,000 ohms
R45, R46, R47—10 ohms
R48, R52, R55—2200 ohms
R49—4700 ohms
R50—1000 ohms
R57, R58, R59—5000-ohm potentiometers
C1—C18, C24—.005 μF, ceramic disc
C19, C22, C26, C31—.05 μF
C20—47 pF
C21, C28, C29, C30—.01 μF
C23—100 pF
C25, C32—1 μF, 12-volt electrolytic
C27—250 μF, 12 V
C33—0.22 μF, Mylar
D1—1N914 diode
IC1, IC2, IC3—CD4013
IC4—MK-50240
IC5—CD4024
IC6—CD4001
IC7—LM380
J1—miniature open circuit phone jack
J2—miniature closed circuit phone jack
J3—pin jack
LED’s (6)—MSL-7-50 light-emitting diode
Q1, Q2—2N15129 or 2N3904 transistor
S1, S3—SPST slide switch
S2—2P5T rotary switch
Keyboard—18-note DPST switching
Miscellaneous hardware, 4 knobs, front panel, vinyl covered case, 8-ohm speaker, speaker bezel, grille cloth, two 5-lug terminal strips, wire, plastic tubing, coaxial cable, bare wire, cable clamps, wire ties, printed circuit board, LED circuit board, pitch-bender circuit board.
A complete kit of parts to build OZ, including case, PC boards, keyboard, etc., less batteries, is available from;
PAIA Electronics, Inc.
P. O. Box 14359
Oklahoma City, OK 73114
for $84.95 plus shipping and insurance for 12 lbs. Order No. 3760
A set of three circuit boards may be obtained for $10.00 paid. Order No. 3760 PC.
The keyboard is available for $39.00 including postage and handling. Order No. AGO-18.

FIG. 1—COMPLETE SCHEMATIC, OZ MINI-ORGAN AND POLYTONIC PITCH SOURCE FOR MUSIC SYNTHESIZERS.
The frequency of this type of astable may also be changed by changing the value of capacitor C20. We don’t want to use this as a tuning control for the oscillator, simply because variable capacitors are more expensive than potentiometers.

Wired across the timing capacitor we have a strange looking symbol labeled “pitch bender”. This is a small circuit board etched as shown in Fig. 2 and as you can see, it consists of an interlaced grid of conductors.

Bending the pitch

This circuit board is a capacitor; but, unlike most capacitors, it is designed to be touch sensitive. In actual use, the conductors of the board are insulated by a thin film of paint so that resistance effects are eliminated.

When there is nothing touching the surface of the plate, its equivalent capacitance is low—a few pF. But when your hand touches the plate, the capacitance increases—your flesh has a higher dielectric constant than the air it is displacing. Pressing harder puts your hand in more intimate contact with the plate, which further increases the capacitance. Increased capacitance produces lower clock frequencies, which in turn lowers the pitch of the notes produced by the top-octave divider.

The five-position rotary switch S2 is a range switch that transposes the OZ keyboard up and down in pitch by exact octave increments. This could have been done by switching resistors or capacitors in the clock, but by far the easiest and most precise way is to apply the clock to a divider chain and then select the divider-chain output that will serve as a clock signal for the top-octave divider. It is probably not necessary to say, but this works because the output of each successive stage in a bistable divider chain is exactly half the frequency of the preceding stage and in the equally tempered musical scale, a frequency division of one half represents exactly an octave. The divider circuit is a type 4024 CMOS package. Notice that although there are seven stages of division on the IC, we only use four of them. (The fifth position of S2 is a direct connection between the clock circuit and the top-octave IC.)

The second section of S2 is used simply to light front panel LED’s that indicate the setting of the range switch (superfluous, perhaps; but mighty handy on a darkened stage.)

Finally, the clock signal gets to where it does some good, the MK50240 top-octave divider that, in gratitude for being supplied with this elegant square-wave clock signal, produces for us a full octave (plus one note) of equally tempered scale.

But wait; here we have 13 notes—but there are 18 keys on the keyboard. If all those keys are going to produce notes we need to find another five semi-tones somewhere. We get these in essentially the same way that we came up with the range switch; that is, by dividing a note that we already have by 2 to get the same note in the next lowest octave. This is the task of the three 4013 dual type D flip-flops. IC1–IC3.

Key switching in OZ is certainly not elegant, but taking into account where we’re headed (a pitch source for synthesizers that can be used as a stand-alone practice instrument) it is certainly cost-effective. When a key switch closes, it simply connects the note that the key represents to the common audio bus.

Notice a couple of things here. First, resistors R19–R36 are in essence mixing resistors; they prevent interaction between the outputs of the MK50240. Secondly, because of R49, R58 and R60, the audio bus that all these notes connect to is displaced from ground by a voltage equivalent to half the supply voltage. There’s a reason for this. The outputs of the top-octave IC are squarewaves. If we switch the squarewaves to an audio bus that is at ground potential, not only is the squarewave (note) going to appear on the bus, but also the average value of the squarewave (half of supply). The average value is a DC level shift as far as the audio bus is concerned and it will ultimately appear in the output as a horrendous “thump” every time a key goes down. It’s the transition that we hear and by closing to an audio bus that is already half the supply voltage, we eliminate the transition.

We’re almost in a position to produce music, but before we do, we need some controls. For example, R58, which allows for varying the level of the signal that will eventually be applied to the amplifier or synthesizer. We also need some control over the harmonic content of those squarewaves coming onto the audio bus. The low-pass T-filter, consisting of R50, R51, R59 (the tone control) and capacitor C33, does this for us.

If we’re always going to use OZ with its internal amplifier and speaker, we’re home free because the next place the signal goes to is the LM380 amplifier (IC7) that drives the speaker.

But we might not always use OZ like that, so we need a few more goodies. J1 is wired as a mixing input to IC7 for play-along situations or interfacing to other musical gear, and J2 is a closed-circuit phone jack wired to disconnect the OZ pitch source from its internal amplifier when a plug is inserted. If you’re going out to external processing gear, you obviously don’t want to hear anything until after the processing.

What type of trigger?

Synthesizers like to have some kind of triggering signal to let them know when to do things and (because it’s the most useful way) these triggers usually reflect the keyboard activity.

Two types of triggers are particularly useful. We will look at a step trigger first because it’s the easiest. When a key is pressed, a second set of switch contacts closes just after the audio switches close. As you can see from the schematic, each of these contacts connects to the positive supply line through a resistor (R1–R18), with the other contact of each switch bussed to the other contacts of all the other switches; all of which then connect to the base of Q1. If all the keys are up, Q1 is not conducting and its collector voltage is high.

Assuming that switch S1 is closed (which it must be for us to get step triggers) Q2 is being held on by the current flow through R37, producing a low output voltage at Q2’s collector. After passing through the two inverters represented by the NOR gates IC6-e and IC6-d, the voltage is still low, and this is what appears at the trigger output.
Construction

A complete kit is available, which gets the monkey off your back as far as gathering together all the bits and pieces (case and keyboard, for example) is concerned. Circuit boards are available separately or if you're used to etching your own, you can duplicate the layout shown in Fig. 3. If you prefer perf-board construction, that's fine, providing you bear in mind the warnings that will follow shortly. But first let me bring something important to your attention.

OZ is one of those devices that could very easily be built with fifty million wires running back and forth between the circuit board, keyboard and control panel. You're going to come up with a lot of wires anyway, but you will notice that in the model illustrated, some parts are on the circuit board (Fig. 4) while others are mounted on terminal strips on the front panel itself. (See Figs. 5 and 6.) This was done to minimize the wire count and I highly recommend that you study the drawings and photos and stick to their precedents as much as possible.

I recommend the following assembly sequence: First, build up the circuit board. All the standard warnings apply here. Watch the polarity of the electrolytic capacitors and the orientation of IC's, diodes and transistors: don't heat the parts to the point that they glow cherry red, etc. An additional thing that you have to worry about is the fact that you're working with CMOS IC's, so you'll want to be careful about accumulated static charges.

With the circuit board assembled, the wires connecting it to the keyboard can be installed. A tip: leave yourself enough length on these wires so that you can have access to the circuit board in case something isn't quite right. But don't make them so long that you are guaranteed to have radiation problems.

Next, wire the front panel (Fig. 5). Note the components that are mounted here rather than on the circuit board. Notice that LED's 1 through 5 are mounted on a small circuit board secured by the shaft of the rotary switch S2. LED 6 is supported by its leads and those of R55. This is not the best way to do the job, but it was the only practical thing we could come up with.

to be continued
Digital Clock
For Your Car

Part I—Preliminary details on a useful automotive accessory that is rarely available as original equipment. A valuable aid for the trucker and road rally enthusiast that is simple and easy to build.

ROBERT C. ARP*

THE AUTOMOTIVE INDUSTRY HAS NEVER PROVIDED its customers with the one device to which the economy of the whole world is geared: a clock that keeps time. It would seem, therefore, that this is a natural area for semiconductor manufacturers to exploit. Until now, the products with which these manufacturers have challenged that need have not been accepted. The complaints from consumers are:

1. The required crystals for an accurate automotive clock are expensive and hard to get.
2. Frequency adjustments to the oscillator require an accurate time interval or frequency counter.
3. Available MOS integrated-circuit clocks designed for vehicular use do not interface directly with low-voltage, dual-in-line displays.
4. Off the displays with which these clocks do interface, LED displays are difficult to read in sunlight, liquid-crystal displays cannot be read in the dark and gas-discharge displays require a high-voltage supply.
5. Display intensity control is not automatic.

There are also several additional areas of concern. These include:
1. Battery current drain.
2. Physical orientation of displays.
3. Radio interference.
4. Physical size of the finished product.
5. Protection to vehicular wiring.
6. Accuracy.

The introduction of two new products, the MM5385 digital clock and the MM74C028 3½-digit counter, by National Semiconductor Corporation, 2900 Semiconductor Drive, Santa Clara, CA 95051, is the basis for an automotive digital clock with:

1. A crystal-controlled oscillator using a standard 100-kHz crystal. The oscillator may be adjusted without a time-interval or frequency counter.
2. Automatic control of display intensity using a photoresistor.
3. Direct interfacing with 7-segment LED and incandescent displays. The two types of displays are directly interchangeable, using appropriate display boards.
4. Very low power-supply current when ignition switch is off and displays are inhibited.
5. No radio interference.
6. Divide by 2,000 with a single IC to produce the 50-Hz input to the clock IC.
7. Only the MOS integrated circuits in addition to the clock IC are necessary.
8. The power supply to fully protect the vehicle and the clock circuitry.
9. Operation with vehicular supplies from 6 to 18 volts.

How it works

Figure 1 shows the schematic diagram of the Automotive Digital Clock. Protection of the automobile wiring and the battery from shorts in the clock, as well as protection for the clock from reverse-polarity damage, is provided by the F1-D1 combination, and F2. If the input voltage to the clock is reversed in polarity, D1 will be forward-biased and F1 will blow very rapidly. The Zener diode D2 protects the clock from voltage transients or the application of voltage from an incorrectly adjusted voltage regulator or battery charger.

The negative side of the vehicle's battery is used as V_{IN}; the positive side is common (V_{CC} and V_{EE}) between −5 V and V_{CC}. When the ignition switch is on, the optical isolator/ coupler enables the display. Voltage regulator IC1 provides a stepdown in absolute value from V_{IN} to 5 volts. Capacitor C2 is required for regulator stability; it cannot be omitted.

* Product Engineer, National Semiconductor Corp.
Crystal-controlled oscillator IC2 operates at 100 kHz. Figure 2 shows the circuit details of the oscillator. The frequency may be adjusted with variable capacitor C4 by observing the output of LED1 (more on this later). Capacitor C3 is included in series with C4 to limit the capacitance of the combination to a range of 8 to 26 pF.

The 100-kHz squarewave developed at pin 12 of IC2 is applied both to pin 1 of the dual monostable multivibrator IC4 and to the clock input of the 3-digit counter (IC3 pin 12). During the negative transition of the 100.000th oscillator pulse, the carry-out terminal of the counter (IC3 pin 14) goes high while the oscillator pulse is still low. The carry-out serves as the input to the dual monostable multivibrator.

Figure 3 shows the logic diagram of the dual monostable multivibrator IC4. A low-to-high transition of the carry-out pulse from IC3 (pin 14) triggers the output of the first monostable multivibrator (pin 13) high on a positive input transition if the reset input (pin 3) is high and the 100-kHz clock input is low. These three conditions occur simultaneously each time the carry-out pulse of IC3 goes high. No counts from the oscillator are lost because the pulse width at IC4 pin 13, determined by R4 and C6, is only 2 μs. The pulse that appears at IC4 pin 13 every 20 ms is applied to the reset input of IC3. The 3/5-digit counter IC3 is fully reset long before the negative transition of the 100,000th oscillator pulse appears at its clock input. Therefore IC3 divides the 100-kHz output of the oscillator by 2000 to produce the 50-Hz signal required by IC5.

The Q output (IC4 pin 13) is also applied to the input of the second dual monostable multivibrator (IC4 pin 9). The output of the second dual monostable multivibrator (IC4 pin 5) is triggered high on a negative input transition if the reset input (pin 11) and pin 10 are both high. These three conditions are satisfied each time IC4 pin 13 goes low (every 20 ms).

The pulse width at IC4 is extended to 5 ms by the R5-C7 combination. This pulse is used to drive the base of transistor Q1. The collector of this transistor couples the 5-ms pulse to the 50/60-Hz input of the MM5385 digital alarm clock (IC5). The MM5385 is programmed to divide by 50 by connecting pin 7 to VS.

Figure 4 shows the waveforms developed by the oscillator, counter, monostable multivibrators and transistor Q1 with respect to the common (VS and VCC) bus.

The MM5385 IC

The MM5385 is a monolithic MOS integrated circuit digital alarm clock that has a 12-hour display format (or 24-hour display format, the MM5386 may be substituted). The features of the MM5385 are presented in Table I, and the base diagram is shown in Fig. 5. The various display modes are listed in Table II and the functions of the setting controls are listed in Table III.

Whenever power is applied to the MM5385, a power failure is indicated by the display flashing at a 1-Hz rate. Applying fast-set or slow-set input (pins 9 and 10, respectively) returns the display to normal.
PARTS LIST

All resistors are 1/4-watt, 10%, unless otherwise noted
R1—1 ohm, 5 watts
R2, R4, R5, R6—10,000 ohms
R3—470,000 ohms
R7—1500 ohms, 1/2 watt
R8—6000 ohms
R9—Potentiometer—5000 ohms, printed circuit board mounting. 0.5-inch maximum diameter.
R10—Potentiometer—2000 or 2500 ohms, printed circuit board mounting, 0.5 inch maximum diameter.
R11—470 ohms
R12—100,000 ohms
R13, R14—27,000 ohms; optional for alarm clock.
C1—10 µF 35 volt solid tantalum; Allied 852-5668. Also available from Valley Electronics, 4115 Franklin Ave., Sacramento, CA 95820 for 35¢ as Kemet T368.
C2—1 µF 35 volt solid tantalum; Allied 852R6674.
C3, C5—100 pF polytystrene; Allied 852-0024.
C4—9—35 pF trimmer.
C6—150 pF polytystrene; Allied 852-0030.
C7—47 µF solid tantalum; Allied 852-5637.
D1—1, amp. 50 or higher PRV; 1N4001 or equal. Available from Valley Electronics, 15¢ each.
D2—1N5788 1-watt Zener, Professional Replacement PR247; available from Olson Electronics, 206 S. Forge St., Akron, OH 44327. An 18-watt, 1-watt Zener may be used if necessary.
Q1—500-mW switching PN2 silicon transistor; 2N4402 or equal. Available from Valley Electronics, 30¢ each.
Q2—40-watt PN2 silicon transistor;
2N5193, MJE371 or equal.
Q3—40-watt NPN silicon transistor; 2N5192, MJE521 or equal.
Q4, Q5—Optional for alarm clock.
C1—LM320K-5.0 negative voltage regulator.
C2—74C04 hex inverter—CMOS. Available from RGS Electronics, 3650 Charles Street, Suite K, Santa Clara, CA 95050.
C3—MM74C928 3/4-digit counter—CMOS.
IC4—74C221 dual monostable multivibrator—CMOS. Available from RGS Electronics.
IC5—MM5385 digital alarm clock.
OC1—Opto-isolator/coupler, MCT2 available from Valley Electronics for $1.00.
PC1—Photoresistor, Clairex CL704L or CL5M4L, Archer 276-116. The Archer 276-116 or equivalent should be used with incandescent displays. Clairex available from Allied; Archer available from Radio Shack. See text.
LED1 to LED4—Any small LED any color. LED2 to LED4 are optional. XTAL—100-kHz crystal; this is a widely available, standard crystal. The main printed circuit board has been prepared to allow crystals up to 1 inch in diameter.
F1—0.5-amp fast or normal blow fuse.
F2—1/32-amp fast or normal blow fuse.
S1, S2, S3—SPST normally open, momentary pushbuttons. (S3 is optional, to be used only in alarm clock.)
S4—SPST miniature toggle switch. Optional for alarm clock.
S5—SPDT center off, miniature toggle switch. Optional for alarm clock.
DISPLAY 1, 2, 3, 4—0.3-inch or larger, 7-segment incandescent or common cathode LED; 15-µA-per-segment maximum; MAN-74 or DL-704. The incandescent displays and MAN4510 LED displays are available at $2.00 each plus tax and postage from Valley Electronics, 4115 Franklin Ave., Sacramento, CA 95820.
Heat sinks—Wakefield 680-125-A, Allied 957-2670; see text.
IC Sockets—Calectro Cat. No. J4-635 IC Sockets, Molex IC terminals, or IC sockets; see text.
Edge Connector—Calectro Cat. No. J4-645 Digi-Klip; a standard 26-pin edge connector may also be used; see text.
Filter—Optional for incandescent displays. For red LED displays, a red circularly polarized viewing screen must be used. Available with bezel from Allied Electronics, 2400 W. Washington Blvd., Chicago, IL 60612 (minimum order: $15.00 Cash). Cat. No. 658-1240 or 658-1250, or from Tracy Design Corp., 15870 Schaefer, Detroit, MI 48227, Cat. No. 520-60. Both the Allied 658-1240 and 658-1260 may be mounted to the display board.
Misc.—mounting hardware, 1/4-inch to 1/2-inch long spacers for the Allied display-lift pins, spacers for the main printed circuit board, shoulder washers or nuts to space the Wakefield 680-125-A heat sink from the main printed circuit board.
Both the main printed circuit board and either display board are available from Henry Bossen, 44-401 Butler Drive, Santa Clara, CA 95051; etched and drilled main board for $11.82; etched and drilled display board for $5.91; both for $17.00.

With pins 11 and 17 open, the display presents time-of-day information. Sleep time can be displayed by connecting pin 11 to VSS, and seconds can be displayed by connecting pin 11 to VS.

Momentarily connecting pin 17 to VSS inhibits the alarm output for between 8 and 9 minutes. After this delay, the alarm will again be sounded and the alarm time will be displayed. The snooze alarm feature may be repeatedly used during the 59 minutes in which the alarm latch remains set. Connecting pin 17 to VSS displays alarm time.

Momentarily connecting pin 15 to VSS resets the alarm latch and silences the alarm. The alarm will automatically sound again in up to 59 minutes. The time interval is chosen by selecting the sleep display mode (Table I) and setting the desired time interval (Table III). This automatically results in an output, via pin 14, that can be used to turn off a radio (or other appliances). This turn-off may also be manually controlled by a momentary VSS connection to the snooze input (pin 17).

The display can be inhibited by connecting pin 18 to VS. However, for use in the Automatic Digital Clock, the display must be inhibited whenever the ignition switch is turned off. As shown in Fig. 1, the display is inhibited by removing current to the input diode of an optical isolator/coupler when the ignition switch is off. When no current flows through the input diode, the output transistor of the optical isolator/coupler is cut off. This output transistor is in series with the resistor-phototransistor combination that forward biases transistor Q2. When it is cut off, transistor Q2 is also cut off.

Trimmer R9 is adjusted to provide the desired display intensity in total darkness.

![Image of a table with a diagram](image)

TABLE I—FEATURES, MM5385 digital alarm clock

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>50 or 60 Hz operation.</td>
</tr>
<tr>
<td>2.</td>
<td>PM outputs in 12-hour format with a colon flashing at a one second rate.</td>
</tr>
<tr>
<td>3.</td>
<td>24-hour alarm setting.</td>
</tr>
<tr>
<td>4.</td>
<td>All counters resettable.</td>
</tr>
<tr>
<td>5.</td>
<td>Fast and slow set controls.</td>
</tr>
<tr>
<td>7.</td>
<td>Direct interface to light-emitting diodes with forward current of 3.15 mA.</td>
</tr>
<tr>
<td>8.</td>
<td>9 minute snooze alarm.</td>
</tr>
<tr>
<td>10.</td>
<td>Radio frequency interference—eliminating slow-up circuitry at the outputs.</td>
</tr>
</tbody>
</table>

TABLE II—MM5385 DISPLAY MODES

<table>
<thead>
<tr>
<th>Display Mode</th>
<th>Digit No. 1</th>
<th>Digit No. 2</th>
<th>Digit No. 3</th>
<th>Digit No. 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Display</td>
<td>10's of Hours & AM/PM</td>
<td>Hours</td>
<td>10's of Minutes</td>
<td>Minutes</td>
</tr>
<tr>
<td>Seconds Display</td>
<td>Blanked</td>
<td>10's of Seconds</td>
<td>Seconds</td>
<td></td>
</tr>
<tr>
<td>Alarm Display</td>
<td>10's of Hours & AM/PM</td>
<td>Hours</td>
<td>10's of Minutes</td>
<td>Minutes</td>
</tr>
<tr>
<td>Sleep Display</td>
<td>Blanked</td>
<td>10's of Minutes</td>
<td>Minutes</td>
<td></td>
</tr>
</tbody>
</table>

If more than one display mode input is applied, the display priorities are in order of Sleep (overrides all others), Alarm, Seconds, Time (no other mode selected).

January 1977
and R10 is adjusted for display intensity under maximum ambient lighting. The photosensor controls display intensity under all other ambient light conditions. Six circuit elements, the photosensor, the output transistor of the optical isolator/coupler, R8, R9, R10, and Q2 control the base drive to Q3. Transistor Q3 provides the current drive for all segments of the display. The photosensor acts as a variable resistor that automatically varies the brightness of the display to provide a pleasing intensity for all conditions of ambient lighting.

Two types of displays may be used with the automotive digital clock: LED displays such as Litronix DL-704, National Semiconductor NSN74K or Monsanto MAN-74 will provide enough intensity for daytime viewing as long as direct sunlight does not strike the display. Figure 6-a shows the base diagram and internal connections for the Litronix DL-704 display. The readability of the LED’s may be enhanced by placing a red circularly polarized viewing screen (see parts list) in front of the display.

Readability may be made perfect, even in direct sunlight, by using incandescent displays. These displays are attractive enough without a screen. However, a simple plastic screen of any color may be placed in front of the display if desired. The major disadvantage of the incandescent displays is that they may have to be replaced sometime during the life of the car—though many people would probably bet on the displays. Figure 6-b shows the base diagram and internal display for an incandescent display.

Operation

The time displayed in the normal mode of operation (that mode in which the clock keeps track of time) may be altered by pressing either the FAST SET switch or the SLOW SET switch. Additionally, the FAST SET and SLOW SET switches may be used individually or in combination to perform other functions.

If the SLEEP SET switch is placed in the SEC position, the clock will continue to keep track of time, but the 1 pulse-per-second LED does not flash, and the time is not displayed. Instead, the No. 4 display changes digits at a 1 pulse-per-second rate. After a count of 10 seconds, the No. 3 display changes digits; and after 60 seconds the No. 2 display changes digits. The No. 1 display is blank.

If the SLOW SET switch is pressed while the SLEEP SET switch is in the SEC position, the display stops counting and is held as long as the SLOW SET switch is closed; the clock does not continue to keep track of time. This action serves to hold the time being displayed in the normal mode.

If the FAST SET switch is pressed while the SLEEP SET switch is in the SEC position, displays No. 3 and 4 are reset to “00”; the No. 2 display is not affected.

When both the SLOW SET and the FAST SET switches are pressed simultaneously, and the SLEEP SET switch is in the SEC position, the No. 2, 3, and 4 displays are reset to “00”, in addition, the time being displayed in the normal mode is reset to 12:00 AM.

When the SLEEP SET switch is placed in the SLEEP position, the clock will continue to keep track of time as above, but displays No. 1 and 2 are blank, and displays No. 3 and 4 display the sleep time.

When the SLOW SET switch is pressed while the SLEEP SET switch is in the SLEEP position, the number 3 and 4 displays count backwards at a 2-Hz rate from “00”, which is equivalent to “60”, to “00”.

If the FAST SET switch, or if both the FAST SET and the SLOW SET switches are pressed, while the SLEEP SET switch is in the SLEEP position, the No. 3 and 4 displays count backwards at a 60-Hz rate, where “00”, which is equivalent to “60”, to “00”.

With the SLEEP SET switch in the SLEEP position, if the SLOW SET switch or the FAST SET switch is used to adjust the No. 3 and 4 displays to a set of digits, the sleep timer will be activated for the number of minutes indicated by them. The sleep counter will immediately begin to count down to “00”. During the count-down, whether the SLEEP SET switch is in the SLEEP or the NORMAL position, the output at pin 14 of the MM5385 can be used to turn on a radio at the beginning of the indicated time interval (up to 59 minutes). When the sleep counter, which counts downwards, reaches “00”, the sleep output drive is removed, thereby turning off the radio. The turn-off may also be manually controlled by a momentary Vcc connection to the snooze input (pin 17 of the MM5385). Of course, many other appliances may be controlled, including a photographic enlarger.

Pressing the SNOOZE-ALARM DISPLAY switch causes the alarm time to be displayed. The alarm time may be changed by pressing either the SLOW SET switch or the FAST SET switch. Pressing both the FAST SET and SLOW SET switch. Pressing both the FAST SET and SLOW SET switch.
PART II. New competition for prime time viewing adds a new dimension to an old medium

FRED BLECHMAN

THE TV GAME INDUSTRY HAS RECENTLY EXPERIENCED TREMENDOUS Growth. To bring our readers up-to-date, last month we presented a listing of the TV games that are currently available. This month, part 2 presents the details of these games.

Game and kit roundup

Because of design secrecy, FCC approval pending or incomplete designs, many sources contacted for information did not reply. Here are some details on those that replied, or where information was derived from another source.

Advanced Electronics: Offering only plans, PC boards and IC's. Advanced Electronics caters only to the advanced builder. The plans are clearly presented and printed, and appear to be quite complete. Also, the variety of plans offered is most extensive. For example, the 9-page Pong plans cover Pong, Tennis, 4-Player Tennis and Soccer. For an additional $7 you can order Pong Extras (8 pages) that cover circuitry for 7 more options: most of them easily added to the original games: Handball, Warball, Elimination, Fotball, Digital-Controlled Paddles, Multiple Paddles and Multiple Balls.

Plans for Anti-Aircraft 1 & 2 (10 pages) are more complex, and involve the use of 107 IC's and a PROM (pre-programmed read-only memory). The game of Anti-Aircraft consists of missile firing units at the lower corner of the screen, with airplanes randomly moving across the sky. Missile firing and angle are controlled by the players with the intent of hitting an enemy plane which, in one version, can climb or dive to avoid the missiles. This is a game equivalent to the type found in amusement centers, even to the flashing of the screen when a plane is hit.

The 12-page plans for Jaws-2 and Space Race have some similarities with Anti-Aircraft—69 IC's are identical, but are wired differently for control and image presentation. Jaws-2 shows 2 divers, a fish and a shark displayed on the screen. Players (divers) compete to catch the most randomly moving fish before being "eaten" by the randomly swimming shark that is programmed to home in on any nearby diver!

Space Race has player-controlled rockets that attempt to move vertically up the screen without being hit by small horizontally-moving meteoroids.

Since the clock, sync, score and video output circuits are designed to be the same for all of Advanced Electronics'
games, they offer a PC board for $12.95 that holds 28 IC's plus various resistors and capacitors. For the Jaws-2, Space Race and Anti-Aircraft 1 & 2 games, the PC board to hold 40 IC's, a ROM (Read-Only Memory) and associated circuitry, is $15.95; this is for locating and moving the objects and forming their images on the screen.

Advanced Microcomputer Products: The General Instruments AY3 8500-1 MOS/LSI TV IC, used in the majority of ready-made TV games, is offered by itself for $39.95, with a PC board and instructions for $49.95 or as a kit with video output (no case) for $69.95. The instructions cover all six games (Tennis, Hockey, Squash, Pelota, and Rifle Shoot 1 & 2), but the parts in the kit do not include the photo-sensitive rifle parts to be offered at a later date.

The plans are not designed for a beginner and are poorly reproduced. However, the assembly of a TV game from this IC is relatively simple and involves mostly the addition of switches. The external oscillator and video output circuits require two inexpensive IC's. The advantage of this kit is the number of builder-selected options available with this very versatile game chip.

Allied Leisure Industries: Manufacturers of 29 different coin-operated pinball and specialty amusement games. Allied Leisure has entered the home video-game market with two units. One is a 2-player unit, another is a 4-player unit. Each player uses a hand control unit with a 12-foot cord.

APF Electronics: This handsome furniture-styled console in black, walnut and silver, allows two players to compete in three games (Tennis, Hockey, and Squash), or 1 player to compete against the game. It uses most of the options available with the General Instrument IC, except for the rifle games.

ARS Systems: If you like to do it yourself, ARS offers plans for a Basic TV Ping-Pong Game (6 sheets) for $3.25 that includes a description of operation and construction information, a complete parts list, parts sources, parts layout diagram and a schematic. This is definitely for an advanced experimenter. The instructions include an on-board modulator for TV Channels 2, 3 or 4. Over 50 IC's are used in the basic design. Separate plans are available for Score Display (a pair of 2-digit LED displays that count from 00 to 99 with reset capability) for $2.25; Sound plans are $2. and plans for a regulated power supply (5V 1.5A) are $2.50.

Atari: The basic Pong unit, also sold under the Sears label, was one of the two initial video game entrants into the consumer field (the other was the Magnavox Odyssey). One of the unusual features of the Atari units is the variation of ball speed and deflection. In a volley (a series of paddle contacts with no misses in-between), the ball speed is constant for the first three hits, and the ball deflects off the paddle at any one of 7 angles (depending on which part of the paddle contacts the ball). However, on the 4th through 7th paddle contact in a volley, the ball speeds up and the deflection angles are narrowed. The 8th paddle contact speeds up the ball to its top speed, and the paddle deflection angles are their narrowest. You can play against the machine by positioning the paddles to “lock-up” the ball in a repeating pattern.

Cal Kit: The basic Ping-Pontronics kit (TV-3) uses 12 IC's mounted on a single PC board and is furnished with an excellent assembly manual. It still is not recommended for beginners, however. An optional accessory kit (TV-4, S33) that can be mounted directly to the main game board adds scoring, two sound effects and automatic serve to the basic game. A special drilled and silk-screened case (TV-11, $12.50) contains the whole game, including options. If you want the basic PC board, it's available as TV-1 for $12. The PC board for the sound and score add-on option (TV-2) is $8.50. For $15.50 you can order all the IC's for the basic game (TV-6) and all the basic game sockets (TV-8) for $6.

The finished basic game has several unusual features: the ball speed can be controlled over a wide range, from rather slow to very fast, and up to 256 buttons cause the ball to double in speed for catching your opponent off guard. A feature called Aimshot allows you to closely control the ball return angle—it depends on what part of the paddle hits the ball. While some games provide up to seven return angles based on paddle contact, this game provides 16! A Cybernetics Mode switch selects either man against machine, for either side, or machine versus machine.

Games played are Ping-Pong, Gravity (ball bounces in an arc simulating gravity), Handball (1 player) and Basketball (player tries to shoot ball through gap in upper court boundary).

Coleco: One of the first games using the General Instrument IC to be sold in stores—usually in the toy department—this unit offers many of the options contained within the IC. The on-screen digital scoring, 3-toned sound, and variations in ball-speed and paddle-size (beginner, intermediate and professional) keep the game interesting. Games played are Tennis, Hockey and 1-player Handball (so you can practice against the machine).

The Classic model appears to be the same unit in a more luxurious wooden case.
Continental Microsystems: Three versions of Bang are awaiting FCC approval as this is being written. It is possible that the V44CS unit, when it reaches the stores, will have wireless remote controls and a photoelectric rifle for the two rifle-games. In the rifle games, a bright spot moves across the screen. You aim the rifle at the spot and pull the trigger. The rifle has a lens and photocell to detect if you are precisely on target. If you pull the trigger and are right on target, the trigger pulse and photocell pulse coincide to register a hit, and the target disappears. The other games are the typical GI IC games. To add color, the GI IC is used with additional circuitry.

Exterprex: The four games played with this unit are Tennis, Hockey, Squash and Robot. Most of the options offered by the GI IC are switch-selected. The levers used to control paddle movement are linear potentiometers and are more natural in use than the knobs (rotary potentiometers) found on most units.

Entex: Basically a toy manufacturer. Entex has entered this field with a game that has several unique features. It operates on the UHF channels of your TV (adjustable from Channels 26 to 31). It has a vertical and a horizontal hold control on the console to lock in an unsteady picture. Both vertical and horizontal paddle movement can be controlled to play Tennis, Table Tennis or Squash. Scoring is manual, using score-keeping dials.

Fairchild: The Video Entertainment System is the first home video electronic game to use replaceable Videocart cartridges to provide an unlimited number of format selections. Two games resident in the System are Tennis and Hockey. The first add-on cartridge ($20) adds Tic-Tac-Toe, Shooting Gallery and Doodle (a tracing game.) A total of 17 games are planned to be available by Christmas, with others to follow. Educational and other applications are also planned.

The heart of the system is the game console which incorporates a Fairchild F8 Microprocessor and four solid-state RAM's (Random Access Memories).

Although the comparison chart seems lacking in checkmarks for this unit, that's because specific information is lacking as this is written, not because this unit doesn't have the tabulated features. In all likelihood, this system will offer more options than any other unit covered, simply because of the inherent flexibility of the microprocessor/cartridge design approach.

First Dimension: Four different models are offered. The Video Sports 76 uses many of the options of the GI chip, with the Video Sports 76C adding color when used with a color TV. The Mark IV uses a different chip and slide controls, but otherwise is very similar to the 76C. The model FD 3000W is a more advanced design offering six games in one: two or four players, and even features boundary adjustment controls for a perfect display. (This compensates for non-linearity on many TV sets.) Surprisingly, however, for such a sophisticated design, horizontal advancing bars above the court boundary indicate individual scores instead of on-screen digital scoring.

Global Video: A large 50-inch diagonal big-screen-color television receiver primarily designed for taverns, lounges, offices, schools and clubs, this unit can be used with closed circuit television, video cassettes, slide and movie projectors and also with their own 4-player Challenge video game.

Heath: The lowest-priced complete kit using all the features of the GI IC, this game is intended to be connected to Heathkit solid-state color and black-and-white TVs, with five easy clip-on connections to the chassis (and a cable connector for easy removal). Two target games will not be usable until the optional rifle is available early next year.

IFA: Three models are offered by this Canadian manufacturer. The Tele-tainment II plays seven games: Ping-Pong, Squash Handball, Basketball, Catch, Trapshoot, Zany Rebound and Krazy Catch. It appears to use discrete IC's rather than a dedicated game IC. Tele-tainment III and IV are almost identical: the III has a stylish molded plastic console with one wired remote control, while the IV is housed in a solid mahogany case of the same design, without remote.

Interfab: This very versatile game, formerly called Pong IV, is offered in three kit forms. The "B" kit is fully wired and tested with vertical and horizontal sweep oscillators tuned. The unit only requires mechanical assembly into the main cabinet and remote control enclosures, and costs $99.50. For $89.50 you can order the "C" kit that has the main board completely soldered and short-circuit tested, but requires cabling to the switches and controls. The "D" kit, for $79.50, has all the main board components properly mounted and held to the top of the board in a plastic package. Simply solder on the underside, remove the plastic, then wire to the controls and switches.

All kits include a pre-drilled cabinet, pre-drilled remote control cases, all hardware, wire and cables. The unit uses 43 IC's, 93 resistors, 42 capacitors, 18 diodes and 4 transistors mounted on a two-sided PC board, so it's not for a beginner. The instructions are adequate for assembly and troubleshooting, but if you lack the equipment or know-how and your unit doesn't work properly, Interfab will repair and turn your unit for $15 including return postage!

Since you build this unit yourself, you can make modifications. For example, you can add or change resistors to move the borders of the two basic games, Tennis and Handball. You can replace the knob controls for vertical and horizontal movement with joysticks. Also, you can modify the two automatic games (man vs. machine or machine vs. machine) to allow a miss now and then. You do this by inserting a 470K 1/2W resistor in series with the automatic switch for either or both sides.

The output of this game, as supplied in kit form, is video. However, the PC board is etched for the addition of a UHF modulated oscillator using a 2N5770 transistor, 4 resistors, 2 capacitors and a piece of brass or copper. The typical circuit is
furnished by Interfah or could be found in radio circuit handbooks—or you could use the PXV-2A VHF Modulated Oscillator mentioned earlier in this article.

Interstate Industries: This unit plays the GI IC standard games Tennis, Hockey, 2-player Handball and 1-player Handball in black-and-white, but offers all the available paddle and ball options as well as using wired remote controls. The game is packaged in a relatively small smartly-styled main console.

JAMES: Kit A, for $179.95, consists of a professional game PCB that is assembled and tested, and 2 professional Kraft joysticks (these joysticks are used in radio-control for model airplanes and are very high quality). This is the same game seen in many commercial establishments. Accessory B, for $3.95, consists of six feet of ribbon cable (flat multi-conductor color-coded insulated wires) and three switches.

You can add two more Kraft joysticks with Accessory C for $39.95. There are actually four ways to play this game, selected by two switches: 1 player against the machine, 2 players against each other, 3 players against the machine or 4 players against each other. Scoring marks show at the beginning of a game and one mark disappears with each score down to zero. No enclosure is offered and the output is strictly black-and-white video. Also, a regulated 5-volt 2-ampere power supply must be added.

Lafayette: The Tournament 2000 is made for Lafayette by Unisonic. It uses a GI chip and offers most of the options, including the two rifle games. It appears to be the only unit in this report that INCLUDES the electronic rifle, which has the additional feature of a removable stock and barrel to convert it into an electronic pistol. With wired remote slide controls and manual scorekeeping in addition to the on-screen digital score display, this may be the most versatile unit in its price range. Furthermore, Lafayette lowers the price at times in limited special promotions.

MagnaVox: Although the older Odyssey 100 and 200 models are still in some stores, the newer models (300, 400 and 500) have more features and are being heavily promoted. Also, Magnavox is the first to offer a video game built-into a color TV receiver. They are also offering the first ready-made home video game *(Odyssey 500)* with simulated playing figures on the screen instead of rectangles, and full-color playing fields. (Some color displays only have colored paddles, ball or score.) The regular games are Tennis, Hockey and Smash (Handball) with Soccer added to the model 500 and Smash omitted from the model 100.

Microecon🎅 Systems: The games are *Ricochet* (player versus machine in 3-wall Handball), Racquetball (2-player 3-wall Handball), Tennis and Hockey. Various switches and buttons provide 72 possible game combinations!

NATIONAL SEMICONDUCTOR, ADVERSARY.

This unit appears to be identical with the Microelectronics *Ricochet*, except for the names given to the games.

Southwest Technical Products: This is a relatively simple kit using only 10 IC's, but only has video output. Single white squares on each side of the screen represent space ships that can be moved vertically by the players. Each can also fire a single-burst "laser beam" at the opponent. If hit by the beam, the opponent's ship disappears from the screen and he loses. However, if the laser beam misses, the aggressor's ship blinks for several seconds while his laser is "recharging". During this recharge time (since he can't fire) his only defense is to keep out of his adversary's line of fire. To add to the fun, the movement controls are intentionally sluggish!

Tokyo Phoenix: The four games in this unit are the standard GI IC games of Tennis, Hockey, Squash and 1-player Handball. The sound comes through the TV, so there is a possibility of leaving the game on unintentionally after turning off the TV.

Universal Research: The *Video Action* series includes a Game Table and an educational game called Fact. The Game Table appears to be the *Video Action IV* with a black-and-white video monitor built into an eight-sided table with a card-playing top and checkers/chess/backgammon inserts that are removed during video game play. The automatic continued on page 84
LIKE MANY READERS OF RADIO-ELECTRONICS WHO ARE THINKING of buying a Citizens band radio, you may be caught in the confusion surrounding CB's expansion from a 23-channel to 40-channel medium on Jan. 1, 1977. And, typically, you may have decided to forego your purchase. "Why buy a 23-channel CB now, when in a matter of weeks it will be obsolete?" was the question you posed to yourself, and answered with a decision to sit tight.

The Federal Communication Commission's announcement in late July that as of Jan. 1, 1977, 17 new Class-D channels would be added. also had an effect on current owners of CB equipment. "In effect," they told themselves, "come the New Year, our 23-channel rigs are dead as a dodo."

Both negative assumptions are false. The prospective CB buyer, holding off, may be doing himself a disservice. That decision may be costing him money. Why? Because at the moment the CB market is a big bargain field, with prices of 23-channel transceivers slashed as much as 50 percent by manufacturers and dealers to make way for new 40-channel models. If you ever there was a time to buy a CB, now is it. Instead of buying a "starter" model as you may have been planning, you can now buy a deluxe unit and still have a few dollars left in your budget.

"But," you say, "Why buy something that will be obsolete?" Push the thought from your mind; you have some options, some "outs," to protect your investment.

Buyer protection

Those options are in the form of "buyers' insurance plans" being offered by manufacturers and/or their dealers to protect your investment. The 23-channel set you buy today—at a big-bargain price—can either be factory-modified at a low cost to accommodate the 17 new channels, or, you can exchange it for a 40-channel set, again at low cost, or, you can get a big discount or trade-in on a new 40 by way of a certificate you obtain with your 23-channel set purchase.

Typical of these plans are those from Hy-Gain and Pearce-Simpson. If you buy one of their current 23-channel transceivers and decide in 1977 that you'd like 40-channel capability, merely send the unit back to the factory (postpaid) along with $25. It will be returned to you (postpaid) "remanufactured" with 17 more channels. Under Pathcom's plan, consumers buying its Pace CB equipment before Jan. 1 can have it updated to 40 channels any time during 1977 for "no more than 20 percent additional cost," or $25 to $90, depending on the unit. SBE has a similar plan, with conversion costs ranging from $35 to $95. Under RCA's plan, conversions cost $40; J.I.L. charges $35.

Sharp Electronics offers purchasers of a 23-channel rig a chance to exchange it for a brand new 40-channel unit at a cost of only $30, up to Jan. 31, 1977.

And there are other protection plans. Dynascan, for example, has a two-way deal: if you buy one of its Cobra 23-channel models now, you get a certificate entitling you to a conversion to 40 channels at $40, or a $40 discount on a new 40-channel Cobra CB. Handic allows purchasers of its 23-channel CB's to turn in a certificate for a new 40-channel model at half price (without trading in the 23). Colt Communications, under their "Investment Protection Trade-In Program," allows purchasers of its 23-channel model 280, through March 15, 1977, the option of trading in that set toward a new 1977 Colt model and apply 100 percent of the purchase price paid against the suggested retail price of the 40-channel unit. Kris, Inc., is offering purchasers of its 23's up...
to $140 credit toward purchase of a 40-channel model.

Perhaps the most generous program—especially in terms of time—is offered by Channel Master. Under its “Future 40” buyer protection program, purchasers of its 23-channel transceivers (who also receive a $39.95 Power Wing antenna free with their purchase) receive a certificate guaranteeing either conversion or swap privileges for a span of 2½ years, in three “time slots.” Between Jan. 1 and June 30, 1977, a retrofit conversion on the firm’s model 6832 will cost $44.95, a swap for a new 40-channel unit, $74.95. From July 1, 1977 to June 30, 1978, the retrofit costs $54.95, the swap $84.95. From that point to June 30, 1979, the conversion will cost $64.95, the swap $94.95. Such conversion swaps will be priced somewhat lower on the firm’s model 6830. (Channel Master notes that it is making this kind of offer because it feels that “Forty-channel operation will be generally limited until 1978. There will be over 25 million mobile 23-channel units in use in 1977, and very few 40-channel units. Therefore, a consumer may not wish to exercise his retrofit or swap options until he feels that enough 40-channel transceivers are on the air.”)

For those prospects considering a combination stereo player/CB rig, Clarion Corp. of America has an interesting trade-in program. Purchasers of its component-type in-dash cassette and cartridge combinations that feature a separate 23-channel transceiver module can have a brand new 40-channel version of the module, along with a new microphone, for about $129.

At presstime, other companies were finalizing plans for conversions, exchanges and trade-ins to encourage prospective C'ers to go out and buy 23-channel CB now, with the assurance that their purchases have a long future and will not be obsolete.

(NOTE: While the above applies to most major, nationally-advertised brands, there are exceptions that generally apply to products from lesser-known manufacturers. Before you buy, determine what the protection plan is, and make sure it applies to the unit you intend to buy. Another point to consider in the plans outlined above is that Dec. 31 is given as the cut-off time for purchases of 23-channel rigs that will be protected. As we go to press, rumors are rampant that more 23's are on the way from the Orient and some will be arriving in the United States too late to be sold by Dec. 31. It is quite possible that some of the protection plans will be extended, to cover 23-channel set purchases after Jan. 1. Again, check before you buy.)

When to buy

The one outstanding factor that makes the purchase of a 23-channel CB now a no-lose proposition is that in many, if not most instances, the price differential between what you save by buying a 23-channel rig will be greater than the amount you might pay for a conversion, exchange, or trade-in. For instance, you might buy a big-name 23-channel CB at $89.95 now versus the regular price of $139.95, for a saving of $50, and later pay only $25 to $40 for a conversion.

And there's another way to look at it. While you can buy a 23-channel now at a bigger-than-usual discount, you will not likely be able to buy a 40-channel at discount when they initially become available. The old law of supply and demand will prevail. The new 40-channel models will be in short supply for many months, according to the best information we have at presstime. This will be due to the short production period between the time the FCC type-aproves the new sets, and January 1, their availability date.

Furthermore, the new 40-channel models will be higher priced than their 23-channel counterparts, by an estimated average of 20 percent. Thus, the new 40-channel version of the $139.95 23-channel model you bought for $89.95 will sell for about $169.95. Allowing $25 to $40 for a conversion, you come out at least $40 ahead by buying that 23-channel model NOW.

Another assurance that 23-channel CB will not be obsolete
comes from the industry itself. A handful of American companies who make CB's for export to Canada and European countries—where 23-channel will prevail—intend to continue making some 23-channel models for the American market. Thus, if you find you don't actually need 40 channels, you can go out and buy a 23-channel model next year or the year after, albeit at the kind of discount you'd obtain today. One such company is Pathcom, producer of Pace brand CB products, RCA, which will be marketing nine 40-channel models in 1977, early in October introduced two new 23-channel models. A company spokesman said the move was in line with RCA's belief that "Most CB activity will remain on the existing 23 channels for a long time." He went on to say "There are approximately 15 million 23-channel CB units in use today. Throughout many areas of the country, 23 channels are more than sufficient for normal operation."

One Massachusetts sales rep firm, in a letter to its dealers, noted that "after Jan. 1, 1977, 90 to 95 percent of all general CB communications will continue on the present 23 channels for several years at the very least. And at current price levels, the 23-channel sets are quite a buy."

In fact, some manufacturers envision a continuing life for 23-channel CB even after 40-channel hits the market. Their reasoning is that the two types are actually two product categories, with the approximate 20 percent price differential between them automatically setting them up as such. Priced lower, the 23-channel models will attract the first-time buyer or the consumer on a budget. The 40-channel models will be "upgrades" or "steppups" for the more sophisticated or more involved CB'er.

Current owners of 23-channel transceivers, worrying about their equipment being as dead as a dodo bird, should not have such fears. Their equipment will have the potential to serve them indefinitely. The FCC will be among the first to point that out. As noted in the October issue of Radio-Electronics, FCC chairman Richard Wiley said, "No present CB sets will in any way be made obsolete. The FCC is very disturbed by any suggestion to the contrary." The suggestions referred to by Mr. Wiley are a variety of newspaper and magazine reports negative about 23-channel CB. One Chicago newspaper, for instance, erroneously topped an article about the upcoming channel expansion with the headline "Buying A CB Radio? Wait, Advises the FCC.

(As of October 1, the FCC was processing some 85,000 CB license applications per week. This would bear out widely scattered reports to the effect that consumers "in the know" are not letting 40-channel CB keep them from investing in 23-channel CB.)

The future of 23 channels

As far as 23-channel CB's becoming obsolete is concerned, the following are some reasons why it won't. First off, the CB world will not change overnight. It will, in effect, gradually phase out from one state-of-the-art into another, with the new state-of-the-art not necessarily a worthy advance for all CB'ers. Overall, there will be a noticeable change—but only after a considerable while. For instance, it will be many months, perhaps as much as two years according to some manufacturing sources, before enough 40-channel models will be sold so that new-set purchasers will have someone to talk to. And this 40-channel CB population rise will occur mostly in major cities where channel congestion is greatest. The rural-area user may go begging for lack of possible air contact on the new channels.

Contributing to a lack of CB communications on the new channels will be an expected shortage of 40-channel rigs in the first half of 1977. As noted, manufacturers will have only a short period in which to make new equipment before the sale date arrives. Some companies, whose products fail to make the grade at FCC testing labs, will not have 40-channel sets for sale come Jan. 1.

Secondly, no one really expects a mad rush of consumers to the nearest CB store to pick up a 40-channel model. Initial purchasers will be CB "nuts"—those who have to be first on the block with the latest—and avid keepers-up-with-the-Jones'. According to many sources—manufacturers, sales representatives, dealers—most people with 23-channel sets will stick with them once they check out all the ramifications of the 23/40-channel situation, and find that there are really very few reasons to switch to 40-channels. Let's enumerate some of those ramifications:

- Most CB'ers settle down to operations on a few channels once they've got their basic dial-chasing out of the way. These few channels prove sufficient in most localities.
- The opening of 17 new channels will not affect the two most popular channels—9 and 19. Channel 9 will continue to be the emergency channel. Channel 19 will be the truckers' channel.
- All current 23 channels will continue to be used. Only Channel 11 will be modified; now a "calling only" channel, it will lose that restriction come Jan. 1.
- If you live in a congested metropolitan area, the addition of 17 new channels will eventually decongest the current 23-channels to some degree—making for better communications on them.
- The new channels will be more interference-prone because many illegal single-sideband sets operate on them.
- Many industry executives say that 23-channel rigs will prove to be better performers than most of the upcoming 40-channel models because of the FCC's strict modulation requirements for the new models. Those requirements will cut the broadcasting range of the 40-channel models. It is also claimed that the strict new chassis radiation requirements will also contribute to reducing transmission range of the new sets.

So, summing up, we'd like to say this: There is no reason to hold off buying a 23-channel CB in the current buyer's market, and possibly pass up one of the best electronic product bargains you may ever see.
As the cost of the digital multimeter continues to go down, many people are beginning to worry about the future of the analog multimeter. Although it has lost some of its popularity to the digital meter, the analog instrument still has many advantages. Foremost is that of price. The lowest priced digital meter, with a 1 to 1.5 percent accuracy, is in the $80 range, while $30 still buys a perfectly suitable electronic analog meter with almost as great accuracy (2 to 3 percent).

The analog meter will be with us for some time, due to its sheer numbers. Digital multimeters number in the hundreds of thousands—analog voltmeters in the millions. That many meters will not be simply thrown away.

The analog meter actually offers advantages over its digital counterpart in some operations. When the measurement objective is a trend rather than a specific voltage, the analog meter has the simplest display to interpret. Examples of trend measurement are peaking, dipping, and zeroing (nulling). Many measurements—especially in electronic maintenance or service—are trend rather than absolute measurements. The digital meter is especially difficult to use in this mode, and can cause error and frustration.

Frequently, special scales are needed for certain meter uses. Special nonlinear scales, such as decibels, are particularly difficult to develop with the digital meter, but can be set up on an analog meter with little or no added expense. (The person who needs a meter calibrated in decibels is likely to have an analog meter for that purpose.)

Often the analog meter offers the lowest cost, truly portable, multifunction operation. Small size is expensive in any meter. Small analog meters tend to be lower in cost than correspondingly small digital meters. Part of the reason for the reduced size is the normally smaller power requirement of the analog meter.

What is an analog multimeter?

Figure 1 is a simplified block diagram of the electronic analog voltmeter. Essentially not far different from its passive cousin the VOM, the electronic analog meter contains an amplifier in addition to the meter and the input attenuator. The rectifier, which permits AC operation, may be located in either the input to the amplifier, or after it.

The amplifier gives the electronic analog voltmeter some advantages. It provides high input-impedance, thus reducing circuit loading considerably. It amplifies the input signal so the voltmeter's maximum sensitivity is not determined by the sensitivity of the meter movement itself, and it permits operation over a wider frequency range than is possible with simple meter rectifier types.

Three kinds of meters

Electronic analog multimeters come in three basic types. The original was the
vacuum-tube voltmeter (VTVM). Though the sophisticated electronics technician may turn his nose up at the vacuum tube, many VTVM's are still built and sold today. It is a moderately accurate, highly stable, low cost voltmeter. To some extent the VTVM has been replaced, especially in the more sophisticated applications, by the transistor voltmeter (TVM). Most TVM's do all a VTVM can do, and more. There are relatively few low-cost TVM's on the market today.

The transistor volt-ohmmeter (TVOM) is a close relative of the TVM. Frequently the only difference is that the TVM is designed as a bench instrument while the TVOM is designed as a portable one. The TVOM is often referred to as an FET VOM. This name comes from the field-effect transistor used to obtain a high-impedance input.

A third class of electronic analog meter is the AC instrument. There are both AC VTVM's and AC TVM's. The AC voltmeter measures AC voltages only, though it can measure very low levels of AC, especially compared to the ordinary VTVM or TVM. Some AC voltmeters are also able to display decibels on a linear rather than the conventional compressed scale.

The VTVM

Figure 2 is a simplified schematic diagram of two conventional dual-triode DC VTVM's. Note the first circuit may be drawn two ways, as a bridge circuit with two of the arms being triodes, (Fig. 2-a) or as a differential amplifier with one input referenced to common (Fig. 2-b). The VTVM bridge circuit may also be drawn as shown in Fig. 2-c, which when redrawn in Fig. 2-d, shows a pair of cathode followers. Either of these basic configurations may be used to develop the VTVM.

The bridge or differential configuration has a number of advantages. It provides a simple method of making a zero adjustment, and if the tubes are well matched, it is quite free from effects caused by time and temperature.

The input attenuator of the VTVM is usually a simple voltage divider with a total series resistance of 10 megohms. The accuracy of the divider is dependent on the accuracies of its resistors—the loading by the tube is negligible.

The input impedance of the VTVM is often specified as 11 megohms. This consists of the 10-megohm impedance of the attenuator plus one megohm at the probe tip. The additional megohm, which is shunted by the capacitance of the probe's shielded cable, forms a low-pass filter. This filter keeps AC signals (especially RF) from the input attenuator and out of the tube bridge, which is sensitive to such signals. (The 1-megohm resistor at the probe tip must be taken into account when calculating the voltage division.)

When the VTVM is switched to AC, a rectifier is inserted in the signal path. This peak-responding voltage-doubler is inserted ahead of the bridge, as shown in Fig. 3 Most range attenuation takes place at the DC attenuator, after rectification. This is because the greater the AC signal on the rectifier (without exceeding breakdown voltage) the more linear the conversion to DC. Non-linearities become great enough on the lowest AC range to
The VTVM as ohmmeter

The common ohmmeter circuit for the VTVM is the voltage-divider type. In this circuit (Fig. 4) the meter scale has a nonlinear calibration. The voltage across the unknown resistance (R_u) is the ratio of the unknown resistance to the sum of the range resistor (R_R) and the unknown resistor. Typically, the lowest resistance range uses a 10-ohm range resistor. With no resistance across the terminals, the voltmeter shows the open-circuit voltage of the battery. This point is calibrated as infinity on the ohmmeter scale. With a 10-ohm resistor connected to the terminals, half the battery voltage is displayed on the scale. Ten ohms is the center-scale reading of this meter. With a direct short across the terminals, the meter reads zero. When the ohmmeter is switched to the x 100 scale, the total series (range) resistance is increased to 1000 ohms. This gives us a center-scale reading of 100 ohms. Each succeeding range of the ohmmeter increases the series resistance by a factor of 10. (Occasionally, other values of series resistance are used.)

The TVM

The original TVM was nothing more than a solid-state version of the VTVM. Expanding knowledge has changed the design from the original simple one. Shown in Fig. 5 are three circuits used as the DC section of solid-state electronic multimeters. Fig. 5-a is the simple balanced bridge, characteristic of many VTVM's. In the solid-state version, the low impedance of the bipolar transistor loads a high-impedance attenuator. Consequently, a field-effect transistor is used as the input device. There is no gain in such a circuit, so TVM's of this type have a maximum

(continued on page 82)
How Noise is Measured in Hi-Fi

Manufacturers measure signal-to-noise ratios differently. Before you compare, know the differences.

LEN FELDMAN
CONTRIBUTING HI-FI EDITOR

THERE IS ONE SPECIFICATION RELATING TO high-fidelity equipment that has received increasing attention in recent years. That specification is noise, or more properly, signal-to-noise ratio. If one defines distortion as the presence of any signal in the output of a piece of equipment that is not present at the input, then noise is certainly a form of distortion. The only difference between harmonic or intermodulation distortion and “noise” is that harmonic and IM distortion consist of discrete identifiable frequencies whereas noise, as we commonly refer to it, contains varying amounts of random frequencies. It is generally agreed that noise that occurs outside the audio spectrum (above 20,000 Hz or below 20 Hz), while certainly within the broad definition of noise, is of no great concern. For this reason, noise measurements were originally made with low-pass and high-pass filters having cut-off points that eliminated the affects of noise beyond the limits of the audio spectrum.

Annoyance factor

Recently, I received a letter from a reader who complained that he had been studying the specifications of two competing receivers that he was considering for his hi-fi system. Since his prime interest was in listening to records, he was particularly concerned with the phono signal-to-noise (S/N) ratio. Receiver “A” claimed a phono S/N ratio of 60 dB, while receiver “B” boasted a phono S/N ratio of 70 dB. Both specifications were referenced to an input signal level of 2.5 millivolts and both receivers had equal output power capability, so he was convinced that neither manufacturer was playing any games by varying the input or output reference level. Convinced that receiver “B” would be his choice, he found a dealer who stocked both models and did some listening tests. Much to his surprise, receiver “B” had noticeably more hum (easily discernable during quieter passages of music on the record he was playing) than receiver “A”. And hum certainly qualifies as one form of “noise”, even if it does consist of discrete frequencies (usually 60 Hz and multiples thereof). Was the manufacturer of receiver “B” lying in his published specifications? Not at all. What the maker of receiver “B” had failed to specify is that his measurements were made using a “weighting network”—in this case, an “A” weighting network.

Long ago, researchers discovered that humans do not hear all frequencies at the same audible level when all frequencies are reproduced at equal measured intensity. The now familiar Fletcher-Munson curves reveals that particularly at low listening levels, we are less sensitive to extreme bass and extreme high frequencies. Since noise, in any reasonable piece of hi-fi equipment is reproduced at very low levels, it stands to reason that this “non-flat response” characteristic of human hearing would play an important role in evaluating the annoyance factor of noise. As an example, 60 Hz hum reproduced at 60 dB below some arbitrary loud listening level should be less annoying to a listener than a 1000-Hz tone reproduced at the same level. Similarly, a hissing type of noise containing primarily frequencies over 10,000 Hz should be less audibly annoying than high-frequency noise centered at around 5000 Hz or so. These considerations gave rise to the first three types of “weighting networks” that are commonly used in acoustic and electrical noise measurements. The three weighting curves are known as “C” weighting, “B” weighting and “A” weighting. They were standardized by the American National Standards Institute (ANSI). When making noise measurements, the weighting networks are inserted between the output of the device being measured and an average-reading AC voltmeter. The setup is shown in Fig. 1.

A reference output level is first established by applying some known input to the device. This reference output level is very often the rated output of the device being tested. The signal is then removed from the input, the input is grounded and the weighting network is inserted between the output of the device being tested and the AC meter. If the network has an insertion loss, this loss must be taken into account when the noise reading is taken. The noise read on the voltmeter is then expressed as “so many dB below the reference output” and, for a complete description of the measurement, the words “A Weighted” (or “B”, or “C”) should be added.

ABC’s of weighting networks

The standard “C” network has a frequency response with a continuous roll-off above 10,000 Hz and below 20 Hz. This roll-off is at a rate of 6 dB per-octave or greater.

The “B” weighting network is similar to the “C” network but with the addition a simple high-pass network having its half-power (-3dB) point at 160 Hz.

The “A” network changes the response with respect to a “C” network by the same amount as two simple cascaded identical non-isolated resistor-capacitor high-pass networks, each having its half power (-3 dB) point at 280

FIG. 1—TYPICAL SETUP for measuring signal-to-noise (S/N) ratios.
Hz. The frequency response characteristics of each of these networks is plotted in Fig. 2.

Figure 3 shows a simple circuit that has the same frequency response as an "A" network. It is designed to operate from a 600-ohm source impedance and to be terminated at its output with at least a 1-meg ohm impedance of a vacuum-tube voltmeter.

is shown to have decreasing amplitude with frequency when measured from the main output of the tuner because we are measuring the noise after the signal has passed through the so-called 75-microsecond de-emphasis network. It is down some 14 dB or so at 10 kHz (mid-trace).

Next, we connected our measurement setup directly to the detector output of the same tuner (ahead of the de-emphasis network) and again repeated the two sweeps, making sure that our reference 1-kHz tone was at the same relative level as before. Disregarding the lower sweep (that resulted from residual noise in our measurement system), you will note that the noise (at the center of the scope face, vertically) has an almost constant amplitude from 0 to 20,000 Hz. Clearly, if both the de-emphasized output in the case of Fig. 4 and the "flat" output of Fig. 5 were read as a single measurement on a VTVM, the reading in the case of the "flat" output would be many dB greater than that of the de-emphasized noise output.

The "A" weighting curve

Shown in Fig. 5 is another dual-sweep presentation on our spectrum analyzer.

The horizontal line at the top is a reference level sweep from 20 Hz to 20,000 Hz. This time the spectrum analyzer is set for a logarithmic sweep. Each octave takes up the same amount of space from left to right, the way we are most accustomed to examining an audio frequency response. The superimposed curved response is that obtained by inserting the "A" network of Fig. 3 between the swept-frequency signal source and the spectrum analyzer's input that was adjusted to take into account the insertion losses of the filter network. Compare this curve with the hand drawn plot of the official "A" weighting characteristic of Fig. 2. Note that at 60 Hz, response of the network itself is down some 40 dB, while at 120 Hz it is down approximately 15 dB (each vertical division on the scope face equals a 10-dB change in amplitude).

In any noise measurements using an "A" weighting network, hum components will not contribute to the "single reading" on a voltmeter. Only noise in the region from around 500 Hz to 10 kHz will determine what the averaging-VTVM will read. If a given piece of equipment had substantial noise above 10 kHz, this component of noise would also be attenuated by the roll-off action of the network above 10 kHz. The shape of the "A" weighting response curve was designed to correspond with what many researchers believed to be the "annoyance" factor of noise rather than with its absolute amplitude.

Annoyance factor

More recently, studies have suggested that the so-called "annoyance factor" of noise does not necessarily correspond with the "equal loudness" curves of the old Fletcher-Munson studies. The more recent DIN network differs somewhat from the "A" weighting network in that it includes a sharp cut-off filter above 9 kHz. Recent developments in audio have extended the bandwidth of hi-fi equipment to well beyond 15 kHz, and many audiophiles now believe that a "correct" weighting network (that will truly correlate annoyance factor with metered noise readings) must be capable of taking extreme high-frequency noise into account.

One such network is known as the CCIR weighting network and its characteristics are shown in Fig. 7 using the same double-sweep method used in Fig. 6. Two things are particularly interesting about this curve. Notice that in the
region above 2 kHz and extending to about 12 kHz, the curve actually emphasizes noise contained in that bandwidth. In other words, this network implies that noise at around 3 to 6 kHz, if present in a system, is actually more annoying (and should be given greater emphasis in any measurement) than program information contained in that same region of frequencies. The other difference between the "A" weighting network and the CCIR network is that attenuation in the newly proposed weighting network occurs at a higher frequency at the high end of the spectrum.

Comparing the frequency response of the "A" network (Fig. 6) with the new CCIR network (Fig. 7) reveals that for frequencies below 2 kHz, the CCIR network de-emphasizes noise contributions to a greater degree than does the "A" network while for frequencies between 2 kHz and 15 kHz, noise contributions within that range are emphasized with respect to the "A" network. Clearly, the CCIR network is going to reveal those hi-fi products that have high-frequency hiss or noise as having poorer S/N ratios than will the "A" curve, while those products that have a somewhat greater noise contribution at low frequencies will yield a poorer overall S/N figure when measured with an "A" network than when measured with the CCIR network.

Since noise measurements of tape and tape decks are concerned more with tape hiss than with hum and low frequency noise, the CCIR method would seem to lend itself particularly to such measurements. To illustrate this, we altered the sweep of our spectrum analyzer so that it would sweep linearly (so that the high-frequency region would not be as compressed as it is in log sweep and would therefore be easier to analyze in detail), so that one horizontal division equals a sweep of 2000 Hz (beginning at 0 Hz at the left). Using a high-quality cassette deck, we first established a reference level below which the noise was to be measured using no weighting network whatever. as shown in Fig. 8. We then recorded a no-signal condition on the tape for some sufficient time and played back the "noise" for our second sweep (lower sweep of Fig. 8). Noise level is practically constant over the entire range of sweep.

Next, we inserted the "A" weighting network between the output of the tape deck and the spectrum analyzer and repeated the two sweeps. The upper sweep of Fig. 9 shows the characteristic of the "A" network, while the lower sweep exhibits diminished noise at the low-frequency end of the spectrum. Finally, we inserted the new CCIR network and repeated the same measurement, after first establishing the same flat reference level as before.

![Figure 8: Tape Noise from Cassette Deck Measured with No Weighting Network](image1)

![Figure 9: Tape Noise from Cassette Deck Measured with "A" Weighting Network](image2)

![Figure 10: Tape Noise from Cassette Deck Measured with CCIR Weighting Network](image3)

The Hal Chase Memorial Award, presented to the outstanding state Association president, to John Cioni, president of NESA's fastest growing organization, the Arizona State Electronics Association.

The Jack Betz Memorial Award—in honor of the year's outstanding local association president—to Clifford Lum of Honolulu, past president of NESDA of Hawaii.

An award for the outstanding state association publication went to the OTSA News Channel, Salem, OR; Al Lamer, CET, Editor. The award for the outstanding local association publication was won by ARTSD News, Columbus, OH; Don Blazer, CET, Editor. The award winners were selected by the editorial staff of Radio-Electronics magazine.

Electronic technicians honor two outstanding members

The NESDA Man of the Year Award was this year presented—for the first time—to two members: Dick Pavak, President of Tech Spray, Amarillo, TX, and Miles Sterling, owner of Electro TV, Garden Grove, CA.

Mr. Pavak was cited for his outstanding efforts on behalf of the Certified Electronics Technician (CET) program of the Association. His firm, Tech Spray, this year underwrote a substantial portion of an individual's CET test fee.

Miles Sterling was cited for his vigorous and courageous efforts on behalf of independent consumer electronics service dealers. It was Miles who initiated the $5 million lawsuit against several large electronics manufacturers, charging illegality in the method of handling warranty payments to independent service dealers. Besides waging war on the giants, he spent many weeks and much personal effort in working for the passage of California Senate Bill 568, which will eliminate inequities in the California warranty practices law that have given trouble to independent service technicians.

Awards were also given to a number of members and association officers:

NESDA Outstanding Officer, to Leroy Ragsdale, Ft. Smith, AR, who was President last year.

NESDA Outstanding Committee Chairman, to Paul F. Donije, CET, Arvada, CO, Chairman of NESDA's Business Management Committee.

The NESDA Outstanding Service Technician Award, to James Wright, CET, Glendale, AZ, for his outstanding service as a member of the Association.

The NESDA Outstanding Volunteer Award, to Bob Kunz, CET, Glendale, AZ, for his outstanding volunteer service to the Association.

The NESDA Outstanding Instructor Award, to Jack Betz, CET, Glendale, AZ, for his outstanding instruction of students.

The NESDA Outstanding Manufacturer Award, to RCA, for their outstanding contributions to the Association.

The NESDA Outstanding Distributor Award, to Best Buy, for their outstanding contributions to the Association.

The NESDA Outstanding Supplier Award, to Sony, for their outstanding contributions to the Association.

The NESDA Outstanding Supplier Award, to Panasonic, for their outstanding contributions to the Association.

The NESDA Outstanding Supplier Award, to Mitsubishi, for their outstanding contributions to the Association.

The NESDA Outstanding Supplier Award, to Sharp, for their outstanding contributions to the Association.

The NESDA Outstanding Supplier Award, to Sanyo, for their outstanding contributions to the Association.

The NESDA Outstanding Supplier Award, to JVC, for their outstanding contributions to the Association.

The NESDA Outstanding Supplier Award, to Pioneer, for their outstanding contributions to the Association.

The NESDA Outstanding Supplier Award, to Sony, for their outstanding contributions to the Association.

The NESDA Outstanding Supplier Award, to Panasonic, for their outstanding contributions to the Association.

The NESDA Outstanding Supplier Award, to Mitsubishi, for their outstanding contributions to the Association.

The NESDA Outstanding Supplier Award, to Sharp, for their outstanding contributions to the Association.

The NESDA Outstanding Supplier Award, to Sanyo, for their outstanding contributions to the Association.

The NESDA Outstanding Supplier Award, to JVC, for their outstanding contributions to the Association.

The NESDA Outstanding Supplier Award, to Pioneer, for their outstanding contributions to the Association.

The NESDA Outstanding Supplier Award, to Sony, for their outstanding contributions to the Association.

The NESDA Outstanding Supplier Award, to Panasonic, for their outstanding contributions to the Association.

The NESDA Outstanding Supplier Award, to Mitsubishi, for their outstanding contributions to the Association.

The NESDA Outstanding Supplier Award, to Sharp, for their outstanding contributions to the Association.

The NESDA Outstanding Supplier Award, to Sanyo, for their outstanding contributions to the Association.

The NESDA Outstanding Supplier Award, to JVC, for their outstanding contributions to the Association.

The NESDA Outstanding Supplier Award, to Pioneer, for their outstanding contributions to the Association.

The NESDA Outstanding Supplier Award, to Sony, for their outstanding contributions to the Association.
Be the "New Professional" in electronics

CREI trains you at home for one of the most important career levels in electronics—plus offers you special arrangements for engineering degrees.

Most people think there are only two levels of careers in electronics: the technician level and that of the degree engineer.

There is, however, a third and very important level. It is that of the engineering technician or practical engineer. The growing importance of this career level has created what might well be called the "New Professional" in electronics.

If you look at the various levels of employment in electronics, you will understand why this "New Professional" is so important.

The average technician is a person who has had vocational training in electronics. He understands the basic principles of electronics so he can troubleshoot, repair and maintain equipment. He usually works under close supervision in performing his duties.

The engineer has college training in electronics. He usually supervises technician personnel and is responsible for planning and developing of electronic equipment and systems. Frequently, however, engineers are more heavily trained in the scientific principles of electronics and less in their practical application.

The engineering technician, by contrast, is a specialist in the practical application of electronics. His training usually consists of a two-year college program in electronic engineering technology. In many organizations, the engineering technician handles several of the responsibilities of the degree engineer. He often has the title of engineer.

CREI programs are designed to give you at home the same level and depth of training you receive in a two-year college program in electronic engineering technology. CREI programs are, in fact, more extensive than you will find in many colleges. And CREI gives you the opportunity to specialize in your choice of the major fields of electronics.

Unique Design Lab
CREI gives you both theory and practical experience in circuit design with its Electronic Design Laboratory Program. The professional equipment included in this program allows you to construct, test out and correct the circuits you design until you have an effective circuit.

This Lab Program helps you understand advanced electronics. It also gives you practical experience in many other important areas of electronics, as in pro-
Dareer Training at Home

totype construction, breadboarding, test and measurement procedures, circuit operation and behavior, characteristics of electronic components and how to apply integrated circuits.

Only CREI offers the unique Lab Program. It is a complete college Lab and, we believe better than you will find in most colleges. The “Lab” is one of the factors that makes CREI training interesting and effective. And the professional equipment in this program becomes yours to keep and use throughout your professional career after you complete the training.

Engineering Degree
CREI offers you special arrangements for earning credit for engineering degrees at certain colleges and universities as part of your home study training program. An important advantage in these arrangements is that you can continue your full time job while “going to college” with CREI. This also means you can apply your CREI training in your work and get practical experience to qualify for career advancement.

Wide Program Choice
CREI gives you a choice of specialization in 14 areas of electronics. You can select exactly the area of electronics best for your career field. You can specialize in such areas as computer electronics, communications engineering, microwave, CATV, television (broadcast) engineering and many other areas of modern electronics.

Free Book
In the brief space here, there isn’t room to give you all of the facts about CREI college-level, home study programs in electronics. So we invite you to send for our free catalog (if you are qualified to take a CREI program). The catalog has over 80, fully illustrated pages describing your opportunities in advanced electronics and the details of CREI home study programs.

Qualifications
You may be eligible to take a CREI college-level program in electronics if you are a high school graduate (or the true equivalent) and have previous training or experience in electronics. Program arrangements are available depending upon whether you have extensive or minimum experience in electronics.

Send for this FREE Book describing your opportunities and CREI college-level programs in electronics

McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue Northwest
Washington, D.C. 20016
Accredited Member National Home Study Council

GI Bill
CREI programs are approved for training of veterans and servicemen under the G.I. Bill.
Tests Sony STR-6800SD Receiver

LEN FELDMAN
CONTRIBUTING HI-FI EDITOR

UNLIKE MANY OF THE MAJOR HIGH-FIDELITY component receiver manufacturers, Sony Corporation had, for several years, refrained from “model changes” every few months. They preferred to keep their receiver product line intact for the past three years or so. Now, in a major redesign sweep, Sony has come up with three new receivers ranging in suggested retail price from $400 to $600. The highest-powered (and highest priced) of these is their new model STR-6800SD, shown in Fig. 1, and this new receiver looks completely different from earlier Sony models. The front panel controls, dial layout and metering arrangement have been completely reshuffled for what, in our opinion, is a much more logical grouping of functions.

The most often used volume and tuning control knobs are together at the upper right of the panel, with the click-stop detented volume control flanked by a handy 20 dB audio muting switch. A rectangular power on/off pushbutton and signal-strength and center-of-channel tuning meters are at the upper left, with the signal meter doubling as a multipath indicator. To the right of the meters are Dolby and stereo FM indicator lamps. The dark-colored dial area across the center section of the panel has a linear FM scale with markings at every 200 kHz and a less accurately defined AM scale. An illuminated pointer travels along an opening between these scales and increases in illuminated length when a station is tuned in accurately. Quite a startling effect when you see it happen for the first time! To the right of the dial scales are TAPE and MONITOR selector switches and a five-position program SELECTOR switch. The combined use of the TAPE and MONITOR switches permit copying from one tape deck to the other, in any direction, plus monitoring of either deck connected to the receiver.

Along the lower edge of the two-tone dial area are located the HEADPHONE jack, SPEAKER selector switch (up to three pairs of speakers can be connected, with up to two switchable for simultaneous listening in two locations), LOW FILTER and HIGH FILTER switches, dual concentric BASS and TREBLE controls (for independent adjustment of left and right channels), BALANCE control, ACOUSTIC COMPENSATION switch (with settings for fixed bass boost, loudness compensation or mid-hand “presence” emphasis), FM MUTING switch, DOLBY FM SWITCH, MULTIPATH switch (which alters the function of the signal strength meter, as previously mentioned), MONO-Stereo switch, EXTERNAL adapter switch and an AUX input phone jack that parallels the AUX input jacks located on the rear panel.

A view of the rear panel is shown in Fig. 2. Connections are provided for 75- or 300-ohm FM antennas as well as an external AM antenna. The usual input and output jacks for PHONO 1, PHONO 2, AUX, TAPE 1 and TAPE 2 are logically arranged, as are the in and out jacks for connection of an extra adapter. A chassis-ground terminal is located just below the phone inputs and directly above the pivoting AM ferrite bar antenna. An FM discriminator output jack is provided for future use with a possible 4-channel FM adapter. The three sets of speaker terminals are of the spring-loaded “piano key” type that accept stripped ends of speaker wires without the need of any tools. Three convenience AC outlets are also provided on the rear panel. Figure 3 illustrates the variety of components that may be connected to and used with the Sony STR-6800SD receiver.

The internal layout of the receiver is shown in Fig. 4. The entire front end, IF circuitry, AM circuitry, stereo decoder and Dolby decoding circuitry are all wired on a single large PC board, which also includes the 4-gang FM and 2-gang AM tuning capacitors. A heat-sink structure can be seen in the photo running across the full width of the chassis, near the rear. An MOSFET is used in the RF section of the FM front-end. A phased-locked-loop circuit is used for the stereo multiplex decoding section, and IC’s are used for the built-in Dolby decoding circuitry. Tone controls are of the negative feedback type. The power-amplifier section is equipped with an electronic protection circuit as well as with a relay system which interrupts signal flow to the loudspeaker terminals in the event of an overload or shorted condition. This relay also delays receiver turn-on for a few seconds to permit power-supply voltages to reach stable values.

MANUFACTURER’S PUBLISHED SPECIFICATIONS:

FM TUNER SECTION
IHF Usable Sensitivity: mono, 1.7 µV; stereo, 45 µV. S/N Ratio: mono, 73 dB; stereo, 68 dB. Harmonic Distortion: 1 kHz: mono, 0.2%; stereo, 0.3%. 100 Hz: mono, 0.2%; stereo, 0.3%. 10 kHz: mono, 0.2%; stereo, 0.6%. Intermodulation Distortion: mono, 0.2%; stereo, 0.3%. Frequency Response: 30 Hz—15 kHz. +0,—1.5 dB. Capture Ratio: 1.0 dB. AM Suppression: 54 dB. Image Rejection: 75 dB. IF Rejection: 100 dB. Spurious Rejection: 100 dB. Subcarrier and SCA Rejection: 60 dB. Muting Threshold: 5.0 µV. Stereo Separation: 40 dB at 1 kHz; 35 dB at 100 Hz; 35 dB at 10 kHz.

AM TUNER SECTION
Usable Sensitivity: 250 µV internal antenna; 100 µV external. S/N Ratio: 50 dB. Selectivity: 35 dB. Image Rejection: 40 dB. IF Rejection: 35 dB THD: 0.5%.

AMPLIFIER SECTION
Power Output: 80 watts continuous per channel, 8 ohm loads, 20 Hz to 20 kHz. Rated THD: 0.15%. IM Distortion: 0.15% at rated power. Damping Factor: 40 at 8 ohms. Input Sensitivities: Phono 1 & 2: 2.5 mV; Aux, Tape and Adaptor: 250 mV. Signal-to-Noise Ratios: (“A” weighted) Phono: 72 dB; High Level: 90 dB. Frequency Response: Phono: RIAA: ±0.5 dB; High Level: 10 Hz to 30 kHz. +0,—2 dB. Tone Control Range: ±10 dB at 100 Hz (bass) and 10 kHz (treble). High and Low Filters: 6 dB-per-octave at 5 kHz. 10 kHz, 50 Hz and 25 Hz.

GENERAL SPECIFICATIONS

FM measurements
A summary of measurements made for the
receiver the better. Even Sony makes no great sensitivity claims for this circuit. (100 µV of usable sensitivity, using the external antenna terminal, compares very poorly with 15, 20 and 30 µV figures normally obtained for AM circuits included in higher priced receivers.) No doubt, this is another area in which compromises were needed to achieve the price goal while retaining more important circuit features and power capability in the amplifier section.

We verified the performance of the Dolby decoding circuitry by listening to at least two FM stations in our area that broadcast Dolby regularly and the usual improvement in noise reduction and dynamic range was evident. We also verified the fact that the de-emphasis at the output of the tuner section is changed from 75 microseconds to 25 microseconds automatically when the Dolby pushbutton switch is depressed. This is confirmed in the two frequency-sweep traces in the scope photo of Fig. 5. The upper trace is the de-emphasis response at 25 µs while the lower trace shows the rolloff characteristic needed to compensate for broadcast pre-emphasis of 75 microseconds. Note the steep drop-off at 19 kHz—a desirable characteristic caused by the low-pass filters built into the multiplex decoder output circuits to improve subcarrier product rejection.

FM tuner section will be found in Table 1, together with our comments regarding those measured results as they relate to a receiver in this price and power category. While FM measurements were, for the most part, excellent, it is obvious that in order to reach this selling price certain design compromises and trade-offs had to be made, particularly in the area of such secondary specifications as AM suppression ratio, alternate channel selectivity and stereo distortion. Receivers in this price and power category from some other manufacturers have had better, overall tuner sections than the one engineered into this Sony receiver. On the other hand, many of the competitive models have higher price tags and lack the Dolby decoding feature that is generally conceded to be worth around an extra 100 dollars if bought separately.

Stereo separation, on the other hand, was extremely good and stable, and stereo threshold and muting threshold were just where we like to see them. Tuning meter indications agreed perfectly with minimum-distortion tuning points, and dial calibration was never off by more than a pointer-width. The multi-path indicating function of the signal-strength meter worked well. (We were able to test it by using the rotator connected to our outdoor antenna and orienting the antenna for minimum indication on this meter).

The less said about the AM section of the

TABLE I

<table>
<thead>
<tr>
<th>Manufacturer: Sony</th>
<th>Model: STR-6800SD</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>FM PERFORMANCE MEASUREMENTS</th>
<th>R-E Measurement</th>
<th>R-E Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SENSITIVITY, NOISE AND FREEDOM FROM INTERFERENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFH sensitivity, mono (µV/DB)</td>
<td>1.7 (9.8)</td>
<td>Excellent</td>
</tr>
<tr>
<td>Sensitivity, stereo (µV)</td>
<td>4.0 (17.2)</td>
<td>Good</td>
</tr>
<tr>
<td>50-dB quieting signal, mono (µV)</td>
<td>2.8 (14.1)</td>
<td>Very Good</td>
</tr>
<tr>
<td>50-dB quieting signal, stereo (µV)</td>
<td>33 (35.6)</td>
<td>Average</td>
</tr>
<tr>
<td>Maximum S/N ratio, mono (dB)</td>
<td>72</td>
<td>Very Good</td>
</tr>
<tr>
<td>Maximum S/N ratio, stereo (dB)</td>
<td>68</td>
<td>Excellent</td>
</tr>
<tr>
<td>Capture ratio (dB)</td>
<td>1.2</td>
<td>Excellent</td>
</tr>
<tr>
<td>AM suppression (dB)</td>
<td>55</td>
<td>Good</td>
</tr>
<tr>
<td>Image rejection (dB)</td>
<td>75</td>
<td>Average</td>
</tr>
<tr>
<td>IF rejection (dB)</td>
<td>100</td>
<td>Superb</td>
</tr>
<tr>
<td>Spurious rejection (dB)</td>
<td>100</td>
<td>Excellent</td>
</tr>
<tr>
<td>Alternate channel selectivity (dB)</td>
<td>73</td>
<td>Good</td>
</tr>
</tbody>
</table>

FIDELITY AND DISTORTION MEASUREMENTS		
Frequency response, 50 kHz to 15 kHz (±db)	0.0, -2.0	Fair
Harmonic distortion, 1 kHz, mono (%)	0.15	Good
Harmonic distortion, 1 kHz, stereo (%)	0.20	Very good
Harmonic distortion, 100 Hz, mono (%)	0.19	Good
Harmonic distortion, 100 Hz, stereo (%)	0.33	Very good
Harmonic distortion, 6 kHz, mono (%)	0.33	Excellent
Harmonic distortion, 6 kHz, stereo (%)	0.15	Fair
Distortion at 50-dB quieting, mono (%)	0.30	Good
Distortion at 50-dB quieting, stereo (%)	1.2	Excellent

STEREO PERFORMANCE MEASUREMENTS		
Stereo threshold (µV) (dB)	3.3 (15.6)	Very good
Separation, 1 kHz (dB)	44.0	Excellent
Separation, 100 Hz (dB)	42.0	Excellent
Separation, 10 kHz (dB)	33.0	Excellent

MISCELLANEOUS MEASUREMENTS		
Muting threshold (µV)	4.0	Good
Dial calibration accuracy (± kHz @ MHz)	0.2	Excellent

EVALUATION OF CONTROLS, DESIGN, CONSTRUCTION		
Control layout		Very good
Ease of tuning		Very good
Accuracy of meters or other tuning aids		Very good
Usefulness of other controls		Very good
Construction and internal layout		Good
Ease of servicing		Good
Evaluation of extra features, if any		Very good

| OVERALL FM PERFORMANCE RATING | | |
| | | Very good |
Amplifier measurements

Table II summarizes the measurements made on the preamplifier and power amplifier sections of the STR-6800SD receiver. It is obvious from these results that the power amplifier section is conservatively rated and has extremely low harmonic distortion at output power levels up to its rated value and beyond. Though IM distortion was a bit higher at rated output, it was nevertheless still below the rated figure of 0.15% and decreased substantially for all lower power values.

While our measured hum-and-noise figures in phono seem to be "just on the borderline (compared to published specifications), bear in mind that Sony lists these specifications on the basis of an A-weighting curve (which tends to de-emphasize the hum contribution), whereas our measurement is an unweighted one that measures wideband noise from 20 Hz to 20 kHz, including all hum components. In unweighted terms, the 71 to 72 dB figures obtained are excellent. Phono overload of 100 millivolts was deemed adequate if not outstanding and should cause no problem with cartridges having nominal outputs up to about 5 mV or so (which accounts for most popular cartridges with which the receiver is likely to be used).

Range of bass and treble controls is plotted, by means of our spectrum analyzer, in the scope photo of Fig. 6, while the action of the selectable low-cut and high-cut filters is shown in Fig. 7.

We also measured the response of the

| TABLE II |
| RADIO-ELECTRONICS PRODUCT TEST REPORT |
| Manufacturer: Sony | Model: STR-6800SD |
| **AMPLIFIER PERFORMANCE MEASUREMENTS** |
POWER OUTPUT CAPABILITY	R-E	R-E
RMS power/channel, 8-ohms, 1 kHz (watts)	Measurement	Evaluation
93.1	Excellent	
RMS power/channel, 8-ohms, 20 Hz (watts)	86.0	Excellent
RMS power/channel, 8-ohms, 20 kHz (watts)	90.0	Excellent
RMS power/channel, 4-ohms, 1 kHz (watts)	N/A	——
RMS power/channel, 4-ohms, 20 Hz (watts)	N/A	——
RMS power/channel, 4-ohms, 20 kHz (watts)	N/A	——
Frequency limits for rated output (Hz-kHz)	16-25	Excellent
DISTORTION MEASUREMENTS		
Harmonic distortion at rated output, 1 kHz (%)	0.028	Superb
Intermodulation distortion, rated output (%)	0.115	Good
Harmonic distortion at 1 watt output, 1 kHz (%)	0.025	Excellent
Intermodulation distortion at 1 watt output (%)	0.020	Excellent
DAMPING FACTOR, AT 8 OHMS		
40	Very good	
PHONO PREAMPLIFIER MEASUREMENTS		
Frequency response (RIAA ± dB)	1.0	Fair
Hum/noise referred to full output (dB)	100	Good
(at rated input sensitivity)	71/72	Excellent
HIGH LEVEL INPUT MEASUREMENTS		
Frequency response (Hz-kHz, ± dB)	8-30, 3.0	Very good
Hum/noise referred to full output (dB)	88	Good
Residual hum/noise (min. volume) (dB)	90	Fair
TONAL COMPENSATION MEASUREMENTS		
Action of bass and treble controls	See Fig. 7	Good
Action of low frequency filter(s)	See Fig. 8	Good
Action of high frequency filter(s)	See Fig. 8	Fair
COMPONENT MATCHING MEASUREMENTS		
Input sensitivity, phono 1/phono 2 (mV)	2.5/2.5	N/A, 8-10K ohm
Input sensitivity, auxiliary input(s) (mV)	250	——
Input sensitivity, tape input(s) (mV)	250	——
Output level, tape output(s) (mV)	250	——
Output level, headphone jack(s) (V or mW)	N/A, 8-10K ohm	——
EVALUATION OF CONTROLS, CONSTRUCTION AND DESIGN		
Adequacy of program source and monitor switching	Very good	
Adequacy of input facilities	Excellent	
Arrangement of controls (panel layout)	Good	
Action of controls and switches	Good	
Design and construction	Excellent	
Ease of servicing	Good	
OVERALL AMPLIFIER PERFORMANCE RATING	Very good	

| TABLE III |
| RADIO-ELECTRONICS PRODUCT TEST REPORT |
| Manufacturer: Sony | Model: STR-6800SD |
| **OVERALL PRODUCT ANALYSIS** |
Retail price (suggested)	$600.00
Price category	Medium/high
Price/performance ratio	Very good
Styling and appearance	Excellent
Sound quality	Good
Mechanical performance	Excellent

Comments: An intelligent rearrangement of the traditional control layout common to most receivers, as well as a new, two-tone framed looking panel treatment makes this new top-of-the-line receiver from Sony look a bit different from either the familiar "blackout" look, or the newer, all-light colored front-panel look which seems to have become popular of late. The included Dolby decoding circuitry makes the price of this powerful receiver even more attractive, although we wish that some means of calibration of the Dolby levels (such as a built-in test tone) would have been incorporated, since Dolby test-tones broadcast by stations are becoming increasingly less frequent. A first look at the insides of the chassis tends to be a bit disappointing, for the layout seems more like that of a mass-produced set, with a great deal of circuitry all on one major PC board and a fully exposed and unshielded RF section—tuning gangs and all. Despite this, however, measurements were not affected by this layout, and neither was actual performance. Power output is very conservatively rated, and pre-conditioning tests did not result in any thermal shutdown or undue heating of the heat-sink structures or power transformer of this receiver. The tape-copy selector switch, the aacoustic compensation switch and the front-panel aux input jack add extra versatility to this unit and provisions for an extra adaptor (for 4-channel decoders, graphic equalizers, etc.) mean that you can retain full use of both other tape monitoring functions even if and when these extras are added later.
ACOUSTIC COMPENSATOR switch positions at a -30 dB setting of the master volume control. Under those conditions, the loudness compensation circuitry boosts bass frequencies by some 10-dB at 50-Hz and treble frequencies by a more moderate 3-dB at 10-kHz. When the low switch position is selected, only the bass is boosted, to the extent of around 9-dB at 50-Hz, while in the presence position, a very moderate 3-dB of boost is added at mid-frequencies, centered at around 1000 Hz. Unfortunately, Sony made no provision for using BOTH loudness compensation and presence action at the same time. Such an option would have been desirable, since the purposes for each are different.

Summary and listening tests
Our overall product analysis as well as our reactions to the listenability and ease of control use of the Sony STR-6800SD will be found in Table III. While we can certainly appreciate Sony's desire to offer a powerful receiver at an unusually attractive price, we would almost wish that the company had devoted a bit more engineering effort to the tuner sections of the receiver, even if that would have meant raising the price somewhat. As the receiver now stands, just about everything that could have been offered at this price has been included and if "watts per dollar" is of prime concern, the STR-6800SD offers a very excellent cost/performance ratio. If you want more power, better tuner performance, or some of each, you'll just have to spend more money.

Yamaha B-2 Amplifier

IN THE DECEMBER 1975 ISSUE OF RADIO-Electronics we discussed the then new power FET's that had begun to find their way into audio amplifying equipment, notably Yamaha's model B-1, which is still very much a part of that company's amplifier line. Those interested in learning more about the theory and operation of power FET's (or, V-FET's, as they are called) may wish to refer back to that article. Now, Yamaha has come up with a lower powered amplifier using much of the same technology; their model B-2, shown in Fig. 1.

Dominating the black front-panel are a pair of peak-reading meters that are calibrated from -50 dB to +5 dB. Since there are two sets of input jacks and facilities for connection of two pairs of speakers on the B-2, the remaining pushbuttons to the right of the meters select which inputs are to be applied to the amplifier, which speakers are to operate and permit turning off of all speakers during level adjustment. The four rotary controls provide sensitivity adjustment to compensate for different speaker efficiencies. A toggle switch at the left of the panel turns the amplifier power on and off.

Figure 2 shows the rear panel of the B-2. A most unusual speaker cable connection terminal arrangement is provided. Speaker wires are inserted in exposed holes and tiny thumb-knobs are rotated (much like a screw head) until the wires are firmly and permanently clamped. In addition to the two sets of input jacks (selectable from the front panel) there are two additional input jacks that permit using the front-panel meters either for power readings of other amplifiers or for voltage readings referenced to 0 dBm (0.775 volts).

Two adjacent switches determine whether the meters are to be used internally or externally and whether the meters are to be calibrated to read in watts across 8 ohms, or in terms of input voltage. Another slide switch near the input jacks (which are single-circuit phone-plug type rather than phono-tip jacks) selects between either a DC input or "normal" input. In the normal position, DC-blocking capacitors are connected to the input but the input nevertheless maintains a flat response down to about 10 Hz, Yamaha suggests that the switch be set to the normal position to prevent accidental application of a DC voltage to the input from preamplifiers or other program sources. In the DC position, the amplifier operates as a direct-coupled circuit from input to output.

An unswitched AC receptacle can be used for equipment that draws no more than 300 watts. Figure 3 illustrates how the B-2 would be incorporated in a complete high-fidelity component system. The second power amplifier shown illustrates how the meters might be used to monitor power output of another amplifier.

Internal construction
As can be seen in the photo of Fig. 4, separate power transformers are used in each channel of the B-2. Massive heat sinks containing the parallel connected 2SK76 and 2SJ2E (N-channel and P-channel) power V-
FET's are centrally located across the width of the chassis. The semiconductor complement includes no fewer than 95 bipolar transistors, 66 diodes (including LED's), 2 IC's, 8 V-FET's and 4 small-signal FET's. Space limitation prevents a detailed analysis of the circuit itself, but a brief summary of the circuit elements used may prove to be of interest to readers. The circuit configuration consists of a first-stage differential FET cascode-bootstrap circuit, a pre-driver stage with current-mirror differential push-pull amplification, a driver stage featuring full complementary-symmetrical push-pull, and an output stage using the aforementioned V-FET's in a complementary configuration with parallel push-pull direct-coupled outputs to form a true DC amplifier.

Carefully matched low-noise FET's in the first stage are thermally coupled and form a differential amplifier that insures against long-term drift in the center potential that is directly connected to the speakers. The high-gain FET's used, along with temperature compensated constant-current source bias, provide a common-mode-rejection-ratio that is so high that the center-potential drift is maintained within 10 mV. The owner's manual provides additional detailed technical data regarding the rest of the circuits used in the B-2 and will be of immense interest to the technically minded owner of this amplifier.

Test measurements

Major test results obtained during bench measurement are listed in Table 1 and may be compared with manufacturer's published specifications shown elsewhere in this report. In order to study some of the claims made by the manufacturer beyond the normal power output, frequency response and distortion measurements, we subjected the amplifier to several other tests. With the amplifier set to the IRC input mode, we applied a 10-Hz squarewave to the input (upper trace of Fig. 5) and applied the resultant output to the lower trace of our dual-trace oscilloscope. The amazingly flat squarewave reproduced by the amplifier is so similar to the input that it would be difficult to tell which is which. The squarewave frequency was then adjusted to 10 kHz, and the lower trace of Fig. 6 illustrates the wide bandwidth of the B-2 as well as its excellent transient response and

![Image of oscilloscope traces](image-url)

7. Finally, we applied a 10-kHz tone burst with approximately a one-third duty cycle to the input (upper trace of Fig. 7) and displayed the output in the lower trace of that

TABLE I

AMPLIFIER PERFORMANCE MEASUREMENTS

<table>
<thead>
<tr>
<th>POWER OUTPUT CAPABILITY</th>
<th>R-E Measurement</th>
<th>R-E Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS power/channel. 8-ohms, 1 kHz (watts)</td>
<td>112.5</td>
<td>Excellent</td>
</tr>
<tr>
<td>RMS power/channel. 8-ohms, 20 Hz (watts)</td>
<td>106.0</td>
<td>Excellent</td>
</tr>
<tr>
<td>RMS power/channel. 8-ohms, 20 kHz (watts)</td>
<td>106.0</td>
<td>Excellent</td>
</tr>
<tr>
<td>RMS power/channel. 4-ohms, 1 kHz (watts)</td>
<td>146.0</td>
<td>Excellent</td>
</tr>
<tr>
<td>RMS power/channel. 4-ohms, 20 Hz (watts)</td>
<td>144.0</td>
<td>Excellent</td>
</tr>
<tr>
<td>RMS power/channel. 4-ohms, 20 kHz (watts)</td>
<td>142.0</td>
<td>Excellent</td>
</tr>
<tr>
<td>Frequency limits for rated output (Hz-KHz)</td>
<td>10-55</td>
<td>Excellent</td>
</tr>
</tbody>
</table>

DISTORTION MEASUREMENTS

Harmonic distortion at rated output, 1 kHz (%)	0.0035	Excellent
Intermodulation distortion, rated output (%)	0.058	Excellent
Harmonic distortion at 1 watt output, 1 kHz (%)	0.008	Excellent
Intermodulation distortion at 1 watt output (%)	0.008	Excellent

DAMPING FACTOR, AT 8 OHMS

| 75 | Excellent |

INPUT SENSITIVITY

<table>
<thead>
<tr>
<th>(For rated output, V)</th>
<th>DC-90 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>Superb</td>
</tr>
</tbody>
</table>

FREQUENCY RESPONSE (Hz-kHz, +1 dB)

<table>
<thead>
<tr>
<th>HUM/NOISE REFERRED TO FULL OUTPUT (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(unweighted)</td>
</tr>
</tbody>
</table>

OVERALL AMPLIFIER PERFORMANCE RATING

TABLE II

OVERALL PRODUCT ANALYSIS

<table>
<thead>
<tr>
<th>Manufacturer: Yamaha</th>
<th>Model: B-2 Power Amplifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retail price</td>
<td>$850.00</td>
</tr>
<tr>
<td>Price category</td>
<td>High</td>
</tr>
<tr>
<td>Price/performance ratio</td>
<td>Excellent</td>
</tr>
<tr>
<td>Styling and appearance</td>
<td>Very good</td>
</tr>
<tr>
<td>Sound quality</td>
<td>Excellent</td>
</tr>
<tr>
<td>Mechanical performance</td>
<td>Very good</td>
</tr>
</tbody>
</table>

Comments: There are those who would argue that laboratory testing of an amplifier does not necessarily disclose how that amplifier will sound and how it will compare with other amplifiers whose measurements equal, surpass or fall short of those of an amplifier being tested. We must admit that we, too, have often encountered such seeming disparities between measured and listened-to results. Such was not the case with the Yamaha B-2. It measured exceptionally well—and it sounded even better. What issue we will take with some of the statements made with regard to this product (and Yamaha's higher powered B-1) have to do with the claim that it "sounds" like a tube-hybrid amplifier. The V-FET certainly behaves differently from a bipolar transistor, but that does not necessarily mean that it duplicates the performance of a triode. Those who insist that tube-sound offers a degree of "warmth" not found in any transistor equipment will probably not alter their opinion even after hearing the B-2. The manner in which it goes into "clipping" is not at all that different from clipping observed with amplifiers using conventional bipolar transistors. Once an amplifier clips in this manner, the harmonic distortion products will be pretty much the same regardless of whether bipolar or V-FET's are used. What has been reduced to almost the vanishing point is any evidence of "notch distortion", so that listening at low and medium power levels is thoroughly transparent. Transient response evaluated with a variety of difficult recorded material, was outstanding, but we have heard other amplifiers (which use conventional bipolar devices) that do just as well once they have been designed for excellent risetime and wide bandwidth. Certainly, the audio purist seeking a high-powered basic amplifier will want to include this new amplifier from Yamaha amongst the units auditioned before reaching any conclusions regarding the place of the power V-FET in the world of audio.
Application notes are hard to get unless you are an engineer. So we've decided to try an experiment and select and publish some interesting ones in Radio-Electronics. We're starting with this TV Game IC from General Instruments. If you find this one of interest and want more, let us know by circling #105 on the Free Information Card. If you think it's a waste of space, tell us that by circling #110 on the Free Information Card.

AY-3-8500

TV GAME

FEATURES
- 6 Selectable Games - Tennis, hockey/soccer, squash, pelota/practice and two rifle shooting games.
- 625 Line (AY-3-8500) and 525 Line (AY-3-8500-1) versions.
- Automatic Scoring
- Score display on T.V. Screen, 0 to 15.
- Selectable Bat Size
- Selectable Angles
- Selectable Ball Speed
- Automatic or Manual Ball Service
- Realism Sounds
- Shooting Forwards in Hockey Game
- Visually defined area for all Ball Games.

DESCRIPTION

The AY-3-8500 and AY-3-8500-1 circuits have been designed to provide a TV 'games' function which gives active entertainment using a standard domestic television receiver.

The circuit is intended to be battery powered and a minimum number of external components are required to complete the system. A block diagram is shown below.

PIN CONFIGURATION

28 LEAD DUAL IN LINE

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vss (Ground)</td>
</tr>
<tr>
<td>2</td>
<td>Hit Input</td>
</tr>
<tr>
<td>3</td>
<td>Shot Input</td>
</tr>
<tr>
<td>4</td>
<td>Reset Input</td>
</tr>
<tr>
<td>5</td>
<td>Ball Angles</td>
</tr>
<tr>
<td>6</td>
<td>Ball Output</td>
</tr>
<tr>
<td>7</td>
<td>Ball Speed</td>
</tr>
<tr>
<td>8</td>
<td>Manual Serve</td>
</tr>
<tr>
<td>9</td>
<td>Hockey/Soccer</td>
</tr>
<tr>
<td>10</td>
<td>Tennis</td>
</tr>
<tr>
<td>11</td>
<td>Rifle Game 1</td>
</tr>
<tr>
<td>12</td>
<td>Clock Input</td>
</tr>
<tr>
<td>13</td>
<td>Sync Output</td>
</tr>
<tr>
<td>14</td>
<td>Bat Size</td>
</tr>
<tr>
<td>15</td>
<td>Score and Field Output</td>
</tr>
<tr>
<td>16</td>
<td>Pelota/Practice</td>
</tr>
<tr>
<td>17</td>
<td>Rifle Game 2</td>
</tr>
<tr>
<td>18</td>
<td>Rifle Game 1</td>
</tr>
<tr>
<td>19</td>
<td>Rifle Game 2</td>
</tr>
<tr>
<td>20</td>
<td>Tennis</td>
</tr>
<tr>
<td>21</td>
<td>Squash</td>
</tr>
<tr>
<td>22</td>
<td>Sound Output</td>
</tr>
<tr>
<td>23</td>
<td>Practice</td>
</tr>
<tr>
<td>24</td>
<td>Vcc</td>
</tr>
<tr>
<td>25</td>
<td>NC</td>
</tr>
<tr>
<td>26</td>
<td>NC</td>
</tr>
<tr>
<td>27</td>
<td>NC</td>
</tr>
<tr>
<td>28</td>
<td>NC</td>
</tr>
</tbody>
</table>

BLOCK DIAGRAM

- **RIFLE CIRCUIT**
- **GAME SELECT**
- **2MHz OSC.**
- **2N2222**
- **Vcc**
- **Vss**
- **10µF**
- **8Ω 2W**
- **15K**
- **0.2µF**
- **2N2222**
- **12MΩ**
- **5.6K**
- **CRYSTAL 2.00 MHz**
- **330Ω**
- **510Ω**
- **30µF**
- **SYNC SPACE**
- **TO MODULATOR**

Do not use as tie point.
1) Tennis
With the tennis game the picture on the television screen would be similar to Figure 2 with one 'bat' per side, a top and bottom boundary and a center net, the individual scores are counted and displayed automatically in the position shown. The detail of the game will depend upon the selection of the options. Considering the situation where small bats are used and all angles, after the reset has been applied, the scores will be 0,0 and the ball will serve arbitrarily to one side at one of the angles. If the ball hits the top or bottom boundary it will assume the angle of reflection and continue in play. The player being served must control his bat to intersect the path of the ball. When a 'hit' is detected by the logic, the section of the bat which made the hit is used to determine the new angle of the ball.

To expand on this, all 'bats' or 'players' are divided logically into four adjacent sections of equal length. When using the four angle option it is the quarter of bat which actually hits which defines the new direction for the ball.

The direction does not depend upon the previous angle of incidence. With the two angle option the top and bottom pairs of the bats are summed together and only the two shallower angles are used to program the new direction for the ball.

The ball will then traverse towards the other player, reflecting from the top or bottom as necessary until the other player makes their 'hit'. This action is repeated until one player misses the ball. The circuitry then detects a 'score' and automatically increments the correct score counter and updates the score display. The ball will then serve automatically from the center line towards the side which had just missed. This sequence is repeated until a score of 15 is reached by one side, whereupon the game is stopped. The ball will still bounce around but no further 'hits' or 'scores' can be made. While the game is in progress, three audio tones are output by the circuit to indicate top and bottom reflections, bat hits and scores.

2) Hockey/Soccer
The 'hockey' type game is shown in Figure 3, and with this game each participant has a 'goalkeeper' and a 'forward'. The layout is such that the 'goalkeeper' is in his normal position and the 'forward' is positioned in the opponent's half of the playing area.

When the game starts, the ball will appear travelling from one goal line towards the other side. If the opponent's forward can intercept the ball, (Figure 3a), he can 'shoot' it back towards the goal. If the ball is missed it will travel to the other half of the playing area and the first team's forward will have the opportunity of intercepting the ball and redirecting it forward at a new angle according to the 'player' section which is used, (Figure 3b). If the ball is 'saved' by the 'goalkeeper' or it reflects back from the end boundary, the same forward will have the opportunity to intercept the coming ball and divert it back towards the 'goal'.

A 'score' is made in the 'hockey' game by 'shooting' the ball through the defined goal area. The scoring and game control is done automatically as for the tennis game. The same audio signals are used to add atmosphere to the game.

3) Squash
This game is illustrated in Fig.4. There are two players who alternately hit the ball into the court. The right hand player is the one that hits first; it is then the left hand player's turn. Each player is enabled alternately to ensure that the proper sequence of play is followed.

4) Pelota/Practice
This game is similar to squash except that there is only one player.

5) Rifle Shooting
This game is illustrated in Fig.5. It has a large target which bounces randomly about the screen, a photocell in the rifle is aimed at the target. When the trigger is pulled the shot counter is incremented, if the rifle is on target the hit counter is incremented. A hit noise is generated and the target is blanked for a while. After 15 shots the score appears but the game can still continue.

6) Rifle Game No. 2
In this game the ball traverses the screen from left to right under control of the manual serve button. Otherwise the game is as above.

![Fig.1 RIFLE INTERFACE](image-url)
Fig. 2 TENNIS GAME
Fig. 3 HOCKEY GAME
Fig. 4 SQUASH
Fig. 5 RIFLE SHOOT

Fig. 3a RETURN OF ‘GOAL SAVE’
Fig. 3b ‘SHOOTING’ FORWARD

This modulator is used in the lab for test purposes and may not possess the long term stability or meet FCC requirements for home use.

PACKAGE OUTLINES
28 LEAD DUAL IN LINE
PIN FUNCTIONS

Left Bat Input
An R-C network connected to each of these inputs controls the vertical position of the bats. Use a 10K resistor in series with each pot.

Reset
This input is connected momentarily to VSS (Logic '0') to reset the score counter and start a game.

Ball Size
This input is left open circuit (Logic '1') to select large bats and connected to VSS (Logic '0') to select small bats. For a 19" T.V. screen, large bats are 1.9" and small bats are 0.95" high.

Ball Angles
This input is left open circuit (Logic '1') to select two rebound angles and connected to VSS (Logic '0') to select four rebound angles. When two angles are selected they are ±20°, when four are selected they are ±20° and ±40°.

Ball Speed
When this input is left open-circuit, low speed is selected (1.3 seconds for ball to traverse the screen). When connected to VSS (Logic '0'), the high speed option is selected (0.65 seconds for ball to traverse the screen).

Tennis, Hockey/Soccer, Squash, Pelota/Practice, Rifle Game 1 and Rifle Game 2
These inputs are normally left open circuit (Logic '1') and are connected to VSS (Logic '0') to select the desired game.

ELECTRICAL CHARACTERISTICS

Maximum Ratings
- Voltage on any pin with respect to VSS pin: -0.3 to +12V
- Storage Temperature Range: -40°C to +70°C
- Ambient Operating Temperature Range: 0°C to +40°C

Standard Conditions
- VCC = +6 to +7V
- VSS = 0V
- F Clock = 2.01 MHz ±1%
- Operating Temperature (TA) = 0°C to +40°C

<table>
<thead>
<tr>
<th>Characteristics at 25°C and VCC = +6 Volts</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>1.99</td>
<td>2.01</td>
<td>2.03</td>
<td>MHz</td>
<td>Maximum clock source impedance of 1K to VCC or VSS.</td>
</tr>
<tr>
<td>Logic '0'</td>
<td>0</td>
<td></td>
<td></td>
<td>Volts</td>
<td></td>
</tr>
<tr>
<td>Logic '1'</td>
<td>VCC-2</td>
<td></td>
<td>VCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse Width — Pos.</td>
<td>200</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Pulse Width — Neg.</td>
<td>300</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Capacitance</td>
<td>10</td>
<td></td>
<td></td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>Leakage</td>
<td>100</td>
<td></td>
<td></td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>Control Inputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logic '0'</td>
<td>0</td>
<td></td>
<td></td>
<td>Volt</td>
<td>Inputs have 100KΩ pull up to VCC.</td>
</tr>
<tr>
<td>Logic '1'</td>
<td>VCC-2</td>
<td></td>
<td>VCC</td>
<td></td>
<td>Pull up to VCC.</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>1.0</td>
<td></td>
<td></td>
<td>MΩ</td>
<td></td>
</tr>
<tr>
<td>Rifle Input</td>
<td>1.0</td>
<td></td>
<td></td>
<td>MΩ</td>
<td></td>
</tr>
<tr>
<td>Outputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sync. Logic '0'</td>
<td></td>
<td></td>
<td>1.0</td>
<td>Volt</td>
<td></td>
</tr>
<tr>
<td>Logic '1'</td>
<td>VCC-2</td>
<td></td>
<td>VCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ball Logic '0'</td>
<td></td>
<td></td>
<td>1.0</td>
<td>Volt</td>
<td></td>
</tr>
<tr>
<td>Logic '1'</td>
<td>VCC-2</td>
<td></td>
<td>VCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sound</td>
<td></td>
<td></td>
<td></td>
<td>Volt</td>
<td></td>
</tr>
<tr>
<td>Logic '0'</td>
<td></td>
<td></td>
<td>1.0</td>
<td>Volt</td>
<td></td>
</tr>
<tr>
<td>Logic '1'</td>
<td>VCC-2</td>
<td></td>
<td>VCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply Current</td>
<td></td>
<td>50</td>
<td></td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

Manual Serve
This input is connected to VSS (Logic '0') for automatic serving. When left open circuit (Logic '1') the game stops after each score. The serve is indicated by momentarily connecting the input to VSS.

Shot Input
This input is driven by a positive pulse output of a monostable to indicate a "shot".

Hit Input
This input is driven by a positive pulse output of a monostable which is triggered by the shot input if the target is on the sights of the rifle.

Sound Output
The hit (32ms pulse/976Hz tone) boundary reflection (32ms pulse/488Hz tone) and score (32ms pulse/1.95Hz tone) sounds are output on this pin.

Sync Output
The T.V. vertical and horizontal sync signals are output on this pin.

Ball Output
The ball video signal is output on this pin.

Score and Field Output
The score and field video signals are output on this pin.

Left Player Output/Right Player Output
The video signals for the left and right players are output on separate pins.

Note: The "Shot" and "Hit" inputs have on-chip pull-down resistors to VSS. All other inputs (except the "Bat" inputs) have on-chip pull-up resistors to VCC.
COLOR OPTION

This option (the circuit is shown in the diagram immediately below) allows for the display of the various games in full color with different colors defining the playing area, team players, ball, boundaries, net and score.

The color application diagram is broken up into six sections, a main clock generator, a color burst locator, a phase angle generator, a phase angle multiplexer, a luminance multiplexer, and a summing network. The main clock generator produces the 3.579 MHz clock for all the color clocks used and a 2.045 MHz clock for the chip clock. It includes 3 CMOS packages and a 3.579 MHz crystal.

The color burst locator produces the time slot after the sync pulse, being initiated from the AY-3-8500, for a period of 11 cycles of the color frequency, approximately 3.1 µs.

The phase angle generator produces the phase angles for all the colors used. It consists of a single CMOS package of inverters. These inverters produce phase angles, approximately 135° away from their inputs.

The phase angle multiplexer feeds the correct angle for each output from the game circuit into the summing network. This section consists of a single MOS multiplexer package.

The luminance level multiplexer produces the proper DC level for any given color so that the color is of the correct intensity. Also included is the logic necessary for generating the background timing and color. This consists of a MOS multiplexer package and two CMOS packages.

The summing network combines all the DC and AC signals without distorting their levels into a single output for RF modulation at TV receiver frequency. This section consists of 3 n-channel FET's and assorted resistors and capacitors.

To enhance the excitement and challenge of the TV games, this option provides random variations of the ball speed and random changes in the ball rebound angle as the games are being played.
Timeshare—
Turn your Minicomputer Into a Maxi!

Your TV typewriter or a similar keyboard/display type of terminal can be your access to a full-scale computer system. All you need is a modem and proper authorization to share computer time with many others.

PATRICK GODDING

AN IDEAL COMPUTER OPERATION WOULD BE efficient for both the user and the computer system. A single-user system, where one terminal has complete control of the computer, allows interaction between user and computer. However, only a very small part of the computer’s capabilities are used. Batch systems offer efficient computer use, but there is no interaction. A program must be loaded, executed, and printed before an error can be detected. After the program is corrected, the procedure must be repeated. This is inefficient from a user standpoint.

The disadvantages of single-user and batch modes of computer operation are greatly reduced in a timeshare system. Timeshare (or multi-user) systems allow interaction between a number of user terminals and a single high-speed computer (see Fig. 1).

A timeshare system

The minicomputer has made it possible to build a timeshare system that can be afforded by persons not in the computer field. Price reductions in terminals and the development of less complicated programming languages have also helped bring this situation about.

The system described in this article is typical of the trend in timeshare systems: no longer the huge centralized systems, but rather many small localized ones.

The minicomputer

Minicomputers are available in many different levels of sophistication, but all have the same standard subsystems. A CPU (Central Processor Unit) controls all internal operations and synchronizes the input/output operations. An ALU (Arithmetic-Logic Unit) processes mathematical operations. A control memory contains all the hardware instructions for use by the CPU and a data storage memory or core memory contains system software instructions and data storage. Peripheral devices such as line printers, card readers, magnetic tape drives and disk drives can all be supported by minicomputers, and the more sophisticated ones can support timeshare and batch operating systems simultaneously.

The multiplexor (MUX)

The MUX is a hardware device that interfaces all the user terminals to the computer. It operates much like a rotary switch—connecting each terminal line to the computer for a small amount of time, then going on to the next line.

The terminals and computer communicate via a binary code called ASCII (American Standard Code for Information Interchange). Each character on the terminal keyboard is represented by an 8-bit ASCII number. The MUX receives and transmits these codes one bit at a time, so that each terminal user appears to have unique control over the computer. The delay that a user experiences is minimal or zero since the MUX and the computer operate at such high speeds.

The disc

When a timeshare system has no provision for mass storage, the computer’s core memory must be divided into a number of sections equal to the number of users. This can greatly limit the size of a user program.

With the addition of a disc unit, a user program can be as large as the total amount of core memory. This is done by a software system program that swaps user programs between the disc and core memory. No swapping occurs if all the programs fit in core.

FIG. 1—TIME-SHARING TERMINAL and its connection by telephone "communications link" to a central computer. Because the computer "thinks" in terms of microseconds and the user in terms of seconds, many users can share the same computer without any observable interference or delay. The "printer" in many of these terminals is the same unit as the keyboard.
There are many types of disc units, but the concept of all is the same. The disc drive can be likened to a record player and the disc to a record, except that the drive records as well as plays. The drive also must be able to locate information anywhere on the disc, instead of simply “playing” the disc from start to finish as with a record player. Swapping programs to and from the disc does not create an unreasonable delay since many disc drives can transfer data at a rate greater than 700,000 bits-per-second.

When a disc unit is incorporated into a timeshare system, a part of the disc storage area can be allocated to the user for program storage. This provides an area both for a user library of programs that no other users have access to and also for a common library filled with programs that can be accessed and run by any user. This is an important feature because it alleviates the need to enter a program more than one time—it can be left on the disc between uses. Computer connect time (the amount of time that a user is signed-on to the system) is greatly reduced.

The terminal

The interface between the user and the computer (or MUX) is a computer terminal. The terminal has a keyboard for sending data and some type of display or printing device for receiving data. Many terminals have their own internal memory for storing data. This can allow entering a complete program before connecting to the computer—a good feature if the user is paying for connect time. Some terminals also have external connections for cassette tape recorders, printing units, and even disc drives (usually a discette-type drive, smaller than the discs discussed earlier).

The smaller size and reduced cost of terminals makes it possible for a user to have a terminal in an office or even in the home. When the terminal is not physically close enough to the computer for direct connection, the telephone system provides an economical communications link.

A common method of data transmission via the telephone is FSK (Frequency-Shift Keying). This type of modulation converts the serial ASCII information into two frequencies that can be transmitted readily over ordinary telephone lines. One frequency represents a logical-high level (called a “mark”), and the other a logical-low level (called a “space”). (See Fig. 2, top.) The device that converts the transmitted ASCII information into FSK and the received FSK into ASCII is the MODEM (M0dulator/DEModulator). A MODEM is required for each terminal line at the computer and at each terminal. A few terminals have built-in MODEM’s—a good feature since an external MODEM means added expense.

The language—Extended BASIC

Even with the low cost of a timeshare system, many people have not considered using one because of the time involved in learning to “talk” to a computer: learning the language.

Computer languages that are very similar to English now exist. The most common, perhaps, is called BASIC. It was first created for scientists and mathematicians who were not computer-oriented, but needed the use of a computer in their work. Now, with Extended BASIC, the language has been further developed to include both powerful format statements for control of output (printed business forms, payroll checks, etc.) and file input/output capabilities for storing large amounts of data, as needed with inventories, purchase orders and the like, as well as for purely scientific purposes.

The language provides two modes of use: the immediate mode for instant calculations or program debugging and the program mode in which a user writes a group of statements to solve a specific or unique problem. The only difference between the two modes is that in the program mode a number between 1 and 9999 must precede each statement. Examples of both types follow:

Immediate mode

PRINT 3/4

This statement tells the computer to calculate the value of 3 divided by 4 and send the result to your terminal. A curved arrow at the end of the statement represents pushing the RETURN key on the terminal keyboard. The RETURN key tells the computer to begin execution.

PRINT SQR (4.2 + 3) + (5.3 * 3))

This statement says: Find the 3rd power of 4.2 and 5.3, add these results together and take the square root, then send the answer to the terminal.

Program mode

If we wanted the above problem solved for any two numbers, we would write a short program:

10 INPUT A, B
20 LET C=SQR (A + 3) + (B + 3))
30 PRINT C
40 GOTO 10
RUN

In this program, we have substituted variables (A and B) for the values 4.2 and 5.3.

After this program is entered into the terminal, the word RUN is entered. The RETURN key is depressed and execution begins.

When line number 10 is executed, the computer sends the terminal a question mark (?) that tells the user to enter his values. After the user enters the first value, a comma (,), the second value and depresses the RETURN key, execution continues. Line 10 has now assigned the first value that was entered to the vari-

continued on page 25
Color bandpass amplifiers are straightforward and easy to service if you know how

JACK DARR
SERVICE EDITOR

The color bandpass amplifiers are nice straightforward circuits. You'll find them used in both the original color-TV sets and the latest R-G-B types. This makes it easy to walk trouble out of them using simple, logical tests. You'll find them under several names: color IF; chroma amplifiers; and even more simple, color amplifiers. Whatever the alias, they are all the same.

The color bandpass amplifiers have one purpose. They pick off the color signals (the sidebands of the color subcarrier), amplify them, and band-limit them. So, they could be called intermediate-frequency amplifiers. It is located between the composite signal at the video detector output and the chroma demodulator. Like all IF's, they are bandpass amplifiers. They have a 1.0-MHz bandpass, from 3.08-MHz to 4.08-MHz. The overall response curve is a haystack with the 3.58-MHz color subcarrier in the middle.

How they work

Figure 1 shows a typical circuit. The color signals are picked off the video detector output by a tuned color takeoff coil. Here, as in many sets, you'll find an unusual stage. This is generally called the 1st video amplifier. Its input is the video detector output with the chroma and video signals. The plate feeds the video signal to the succeeding video amplifiers and to the color takeoff coil via the chroma amp for separation of the color signals.

In several sets, the cathode of the 1st video amplifier (acting as a cathode-follower) feeds the color takeoff coil. So, to one signal, the stage is a stock common-cathode amplifier, to the other it's a cathode follower. For transistor stages, substitute common-emitter for the first and emitter-follower for the color. Same thing.

The color takeoff coil has an unusual response curve. This isn't a haystack, but a slope (see Fig. 2-a). There's a reason for this. The response of the color IF (see Fig. 2-b) places the color signals on a slope. As a result, they are not amplified equally. To compensate for this, the color takeoff coil has a curve with an equal but opposite slope. The output of the color takeoff coil is a combination of the two, and we wind up with a nice symmetrical haystack (Fig. 2-c) to pass through the rest of the tuned circuits. These are tuned for the conventional haystack curve with the 3.58-MHz subcarrier in the center.

In most sets, the color control will be found in the bandpass amplifier circuits. Sometimes it will be between the first and second stages and sometimes it will be across the output of the last transformer, feeding the demodulators. It is a plain volume-control type, and in fact, this is the color volume. You'll find this called saturation, etc., but it controls the amplitude of the color signals.

Special circuitry

There is one mildly unusual circuit. This is called the color killer and other, more impolite terms at times. The original idea was to cut off the color signals if the set was receiving a black and white program. Since all programs are now in color (with the exception of some old late-late movies), the circuit is redundant and most technicians wish they'd leave it out! They are left out in a few of the later sets.

The color killer circuit senses the presence or absence of the color burst. When there's no burst present, the circuit develops a high negative voltage. This is applied to the grid of the bandpass amplifier tube, cutting it off. When the burst is present, this voltage drops to a level that will let the amplifier stage work at maximum gain.

One other control circuit is found in a few sets. This is ACC (Automatic Color Control). It is exactly like common AGC except that it senses the level of the color signals (usually by means of the burst amplitude) and develops a control voltage that raises or lowers the gain of the controlled stage. It prevents variations of the color level.

Troubles

The standard symptom of bandpass am-
TROUBLESHOOTING CHART—Color problems.

- **NO COLOR: B & W PICTURE GOOD.**
 - Check tubes, transistors.
 - Check color control, killer control, and fine tuning.
 - Check DC voltages in bandpass stages, especially biases.
 - Check DC voltages off.
 - Feed color-bar signal to set, signal-trace with scope, find point where signal is lost.

- **COLOR PROBLEMS**
 - Color cleans up.
 - Check bandpass transformer by touching.
 - Scope all bypass capacitors in bandpass amplifier circuits.
 - Bridge new ones across original scope and bridge electrolytic filter capacitors nearest to this stage.

Make the simple tests first. If this is a tube type set, replace the bandpass amplifier tubes. If it is a solid-state set with plug-in transistors, do the same thing. If this doesn't help, start checking for loose wires, most especially on the color control. A great many of these have a plug-in type of connection with a coaxial cable going from chassis to the front-panel control cluster. Gremlins can make this plug come loose, break a wire to the control or even bend one of the lugs on the color control so that it's shorted to the ground lug. (All of these have occurred and it must be gremlins: nothing else is small enough to get into the closed cabinet.)

There are two types of trouble possible. One is a fault that upsets the DC voltages, and of course, the signal as well. These are reasonably easy to locate with DC voltage checks. On tubes, check plate, screen grid, cathode and control-grid voltages. The last should be checked without signal and with signal to catch possible faults in the color killer circuit. You should see a high negative bias on one of the bandpass amplifier grids with no signal, if the killer is working. This should drop to a much lower (negative) level when the signal is applied. Do this even though you did remember to turn the killer all the way off.

In transistor bandpass amplifiers, the emitter voltage is the most useful test. Most of them use stock common-emitter circuits with a little resistor in the emitter. If the DC voltage on the emitter is normal, this stage is almost certain to be working. If it is zero, that transistor is open or biased to cutoff. If it's far higher than normal, the transistor could be shorted.

The second type of fault is one that breaks the signal-path but has no effect on the DC voltages. For example, an open conductor in the coaxial cable from chassis to the color control, an open coupling capacitor, a plain old open conductor on the pc board, etc. There is an extremely easy way to check these. Just feed a color-bar signal into the set and check the waveform and its amplitude at the output of the video detector. Even on a narrow-band scope you'll see a comb pattern: these are the color-bars. Now, trace this signal through the circuit and it won't take long to find out where the signal disappears!

To check gain, compare the signal amplitude to those shown on the schematic. For example, in the circuit of Fig. 1, the input of the 1st bandpass amplifier stage is 2.0 volts P-P. The signal at the color control (input to demods, here) is 30.0 volts P-P. This procedure works even in modular or hybrid sets. In the hybrid of Fig. 3, we have a tube bandpass amplifier feeding an IC 2nd bandpass amplifier. All of the same tests apply! Signal levels differ, of course. The 1st bandpass amplifier grid is only 0.4 volt P-P. Its
CIE has a terrific idea for a few people who know what they want.
If you want success in electronics...if you want the skills people are glad to pay for...find out about CIE training.

It's a terrific idea that can get you on your way to success in electronics troubleshooting.

Let's face it, learning valuable new skills isn't something you just breeze through. Especially in a modern technological field like electronics troubleshooting. You've got to really want success if you're going to build your skills properly.

But, oh boy, the rewards when you do! In today's world, the ones who really know electronics troubleshooting find that people...even industries...look for their help.

What about you? How much do you want the thrill of success...of being in demand? Enough to roll up your sleeves and work for it?

Why it pays to build troubleshooting skills.

Suppose the automated production controls on an assembly line break down. Imagine how much money the manufacturer can lose when help doesn't come fast! And it takes a skilled electronics troubleshooter to move in...locate the problem...solve it...and get the lines moving again.

Or take a TV station. Breakdowns are costly in broadcasting where time is money. Viewers won't sit forever waiting for sound or the picture to come back. Before they change channels, the station needs to get back on the air again—with the help of a skilled troubleshooter.

No question about it. Building new skills in electronics troubleshooting is an investment in your future. It's well worth the effort.

Why you should get CIE to help you do it.

Troubleshooting starts with ideas...principles. CIE's Auto-Programmed® Lessons help you get the idea—at your own most comfortable pace. Step by step at home, you explore each principle—each theory—until you understand it thoroughly and completely. Then you start to use it.

How CIE helps you turn ideas into reality.

If you're a beginner, you start with CIE's Experimental Electronics Laboratory. You actually perform over 200 experiments to help you grasp the basics. Plus you use a 3-in-1 Precision Multimeter to get your first taste of the testing, checking, analyzing steps you take in troubleshooting!

You explore digital logic circuits...observe the action of a crystal-controlled oscillator!

This practical, "hands on" training takes concentration and effort. But it's enjoyable and rewarding. And it's a great way to prepare for a troubleshooting career!

Why it's important to get your FCC License.

For some troubleshooting jobs, you must have your FCC License. For others, employers often consider it a mark in your favor. It's government-certified proof of specific knowledge and skills!

Almost 4 out of 5 CIE graduates who take the exam get their Licenses. More than half of CIE's courses can prepare you for it...and the broadest range of career opportunities!

Free catalog!

Mail the card. If it's gone, cut out and mail the coupon. If you prefer to write, mention the name of this magazine. We'll send you a copy of CIE's FREE school catalog—plus a complete package of independent home study information! For your convenience, we'll try to have a representative call to help you with course selection. Mail the card or coupon...or write: CIE, 1776 East 17th Street, Cleveland, Ohio 44114.

Finally, step three rounds out your experience as you work with a completely solid-state color bar generator—actually a TV signal transmitter that produces ten different display patterns on your TV screen!

You study a gated color bar rainbow...crosshatch lines...dot patterns.
output at the color control is 3.5 volts P-P (at the input to the module) and the color-signal input to the IC at pin 3 is 1.2 volts P-P. Its amplitude is reduced because it goes through some coupling components.

This brings up another point. In this chassis (Zenith 25CS50) the 2nd bandpass amplifier and the color demodulators are all in the same IC. The color signals are fed from the IC outputs to three color video amplifiers (same as color-difference amps). These stages drive the picture tube cathodes. The B&W video signal goes to the picture tube grids.

If you do have a normal color signal at the IC input but you can see no color signal patterns (the typical rockers or lazy-S waveforms) on the three color outputs (pins 9, 11 and 13 on the IC), the IC is bad. Watch out for one booby trap! If you can see flat-topped bar signals on all three of the outputs, the chances are that the IC is good! This could happen if the 3.58-MHz oscillator is dead. The fact that the IC will pass the signals though it isn't demodulating them could mean that the oscillator has dropped out. Be sure to check for the presence of the 3.58-MHz signal on pins 6 and 7 of the IC. It's not very large, but it's got to be there.

These waveforms can be seen if a direct probe is used. They'll be a little clearer if a low-capacitance probe is used, and better still if you use a crystal-detector probe. After all, these are RF signals. The actual waveform doesn't make a lot of difference; all you want to do is compare amplitudes and get an "Is it there or isn't it?" reading. This is "bangbang" scope-testing at its best. (I can recommend one thing that will be of a whole lot of help. Check these waveforms on a set that is working! Try different probes and note the amplitude at various points. This will give you a set of bogie values to use when checking a set that's dead.)

Alignment

There is one key word which must be said about alignment of bandpass amplifiers. This word is "DON'T!!" Caps, bold and two exclamation points. May I repeat this for added emphasis? DON'T!! When you find problems that have caused a complete loss of color or even those that cause odd-colors (which we'll get to in a minute), don't just twist the cores of the bandpass transformers! This didn't cause the sudden loss of colors. You'll only add one more fault that will have to be fixed after you fix the real one, and the misalignment that you will cause will make this job far more difficult. (The exception that proves this rule is the case where you know, or have a pretty good idea, that a previous "technician" has been into them with his liddie diddle stick!)

Unusual troubles

The preceding section was covered faults that could be called "stock"; more or less common things. Now let's look at a few oddballs that are not nearly so common, but always possible. You should know about these and remember them. It can save a lot of time.

One of the best of these is ringing in the color only. By this I mean that the B&W picture does not show any sign of ghosting. Turn up the color control and you see colored ghosts or beats all over the place. These are distinctly different from the beats produced by mistuning the fine-tuning. The latter shows beats in solid-colored areas only; this shows over the entire picture.

The basic cause of this kind of trouble, of course, is oscillation. The bandpass stages instead of amplifying are in violent oscillation. So, we get beat-frequencies and beats between beats and the whole signal turns into a mess! Going one step farther back, all oscillation is due to feedback.

Open bypass capacitors can cause this. All tuned transformers will be bypassed at the bottom end of one or both windings to place this point at signal-ground. Since these are high-frequency signals, small capacitors are used. One of the best tests for this is to scope the bottom of the windings right on the bypass capacitor. Turn the vertical gain as high as possible and look for any sign of signal. It helps to feed a known signal through the set, like the output from a colorbar pattern generator.

If you see signal, bridge a good capacitor across the one under test and see if this gets rid of the unwanted signal, and usually the problem as well. If so, replace the capacitor. (In one somewhat odd case, the original capacitor turned out to be very good! To eliminate the problem I had to add another capacitor of the same size.) By the way, don't forget the filter capacitors. These too can develop faults and allow a feedback loop to be set up through the DC power supply. This can cause some dandy problems. Scope them too.

Another possible cause for oscillation can be trouble in the bandpass transformers. In some sets with tapped windings, the tap can open. Figure 4 shows one like this. A lead on the secondary of the input transformer opened. This disconnected the shunt resistor used to damp this winding and the whole thing went into violent oscillation. There's a simple test for this; most of these use unshielded transformers. Just grab the transformers between thumb and finger; this will add enough "hand-capacitance" to cause at least a change in the oscillation. The ohmmeter will find the open winding very quickly.

Another case with the same symptoms, and the same basic cause, happens if the bandpass transformer is replaced with the wrong part. Some sets have two types of bandpass transformers. They look alike and will fit in the holes on the PC board. However, the wrong one will leave the damping resistor across one winding disconnected! So, we get exactly the same trouble, though "It can't be the transformer! I just replaced that!". When replacing these, double-check to be absolutely sure that you get the correct part number.

Weak color

Cases where the complaint is not loss of color but weak color, can be due to misalignment although this generally causes other symptoms. It can also be due to an ACC circuit that is overriding its job a little. The key clue here will be the control voltage. Check this carefully to be sure that it isn't too far in the direction of cutoff; negative for tubes and the NPN transistors most commonly used, positive if they are using a PNP transistor. The actual cause of the problem could be a leaky or open diode in the ACC.

Intermittent loss of color

If all colors are lost intermittently, look for things like a plug/socket contact on the cable from the color control to the chassis. An intermittent open in the center conductor of the coax, or an intermittent ground due to a frayed shield could also do it. Once again, stage by stage signal-tracing will soon pin down the point where the signal is being lost.
Fast Recovery Diodes

A diode is a diode—or is it?

JACK DARR
SERVICE EDITOR

EVERYWHERE WE LOOK—DIODES! CIRCUITS are full of them nowadays. All the way from tuners to detectors, to power supplies, to switches, to you name it. A lot of these are special types, such as varactors. However, while we're pretty familiar with these by now, there is another special type that has been around for quite a while. A lot of us are not familiar with this. Present company included: I've been booby-trapped on a couple of occasions!

This is the fast-recovery diode. You'll find them used in damper, boost rectifier and similar applications. They're also used in the flyback DC power supplies found in many late model sets. (We talked about these in a previous column.) This circuit uses pulses from the flyback that are rectified to develop low DC voltages. (See Fig. 1.) Some are connected so that they use the long "scan" portion of the pulse; these are called scan rectifiers (how about that?). Others are hooked up so that they use the very sharp spike developed during flyback time; these are called flyback rectifiers, retrace rectifiers, etc. Operating frequency in both types is 15,750 Hz although there is a vast difference in the duty cycle of pulses. Scan pulses will be almost 60 microseconds long, but the flyback pulses will run around 10-15μS.

This kind of circuit needs a special type of diode. The common rectifier diode works on 60-Hz sinewaves and the recovery time isn't all that critical. Recovery time means the diode's ability to turn off when the polarity of the applied voltage reverses. In the flyback rectifier with the short duration spike.
the turn-off time is critical. If the wrong diode is used it can foul up the operation.

A conventional rectifier diode has a turn-off (reverse-recovery) curve looking something like Fig. 2-a. The special fast-recovery diodes, sometimes called fast-switching diodes, have a characteristic called snap-off (see Fig. 2-b). If this is too fast, it can cause problems. The rapid change of current develops harmonics that cause the diode to radiate RF interference! So, they redesigned the junctions to have a controlled recovery characteristic as shown in Fig. 2-c. This diode has a fast recovery but without the very abrupt switch-off. (I remember reading about an abrupt diode a long time ago: it took me years to find out what the heck it was!)

Now let us look at a few typical applications for these diodes. One is in the DC power supply such as the one used in the new Sylvania E20 and E21 chassis. This power supply is shown in Fig. 1. One diode is used as the rectifier in the +170-volt supply. This is actually a boost type of circuit—regulated B+ of +107 volts is fed to the flyback; the pulses are rectified and added to this so that the total comes out as +170 volts. This voltage is developed through diode SC510 that charges C506-C to this peak value.

A regulated +27-volt supply is developed from another winding on the flyback. From terminal 7 of the flyback, the voltage is rectified by SC530 and filtered by capacitor C530. The output of the +27-volt supply is monitored by the current-limiter transistor. This transistor triggers SCR430 which kills the high-voltage. The 107-volt B+ supply is also monitored through Zener diode SC434 for this same purpose. If any of these voltages go out of limits, SCR430 trips which then kills the horizontal drive signal to the horizontal output stage and turns practically everything off at once.

If a diode fails in this type of circuit, it must be replaced by an exact duplicate; never by an ordinary rectifier type regardless of the PIV (Peak Inverse Voltage) rating. In some of the typical fast-recovery types that I looked up, recovery time runs from 0.5 microsecond to 100 nanoseconds, and that is FAST! Typical units are G-E's GE-511. Sylvania's ECG-506. RCA's SK-3515. 3517 or 3175, and so on.

For a very good discussion of how these diodes work along with the mathematics, see RCA's Solid-State Power Circuits Designer's Handbook. This is where I got the curves of Fig. 1. I had to dig through quite a lot of books before I found anything at all about them!

There have been quite a few letters in the Clinic mail lately about diode failures in circuits of this type. In quite a few, the complaint was repeated diode failure although the load circuit fed from this DC supply showed no problems! One state technician even disconnected the load circuit and ran it on an external DC power supply, whereupon it worked perfectly! This one was in a late model Sears color TV, and we have
had quite a few cases involving the same model. I have been recommending replacement of this diode with a fast-recovery type. As we already stated, regardless of the peak inverse voltage rating or the current rating, a "slow diode" just won't work properly in this type of circuit. So; if you run into diode failure in sets using this kind of DC power supply, watch it! Be sure to use either an exact factory replacement part or a high-rated fast-recovery type from one of the better lines of replacement semiconductors.

reader

questions

POOR FOCUS

I can't get a sharply focused raster on this CTC-25X. The high voltage is 25 kV, B+ is 405, boost normal, but I can get only 4200--4300-volts for the focus. The 4.7 meghm and 66-megohm resistors all check. The core of the focus transformer is all the way out and I still can't get focus. Any help appreciated.—G.S., Red Bank, N.J.

You're right; you're not going to get sharp focus with 25-kV and only 4.3-kV focus voltage. It takes about 20% of the high voltage for sharp focus. or in this case, a bit over 5 kV. Since the focus circuit and high voltage are driven by the same flyback pulse, everything else has to be OK! So, we've still got something in this focus circuit.

Since the transformer shows a normal reaction, and your cathode current isn't high, it probably is not shorted. This leaves only one likely part; that voltage-dependent resistor shunted across the focus transformer. This is a 1.0 mA at 870-volt type. Try an RCA 112876 or an Oneida GB-314. Try a new one. If it has gone down, it would load the focus transformer.

SAFE RATING OF RECTIFIER DIODES?

This Corona TV5-1614A came in with both rectifier diodes open. These are 200-PIV units, in parallel. Could find no short or overload. Replaced with the same type. In two weeks it is back and they're open again! So, I put in a single 1.0A 800 PIV silicon. It's playing fine and seems to be holding up. What do you think?—W.S., Bonaparte, IA.

In my opinion, you did the right thing! A 200-PIV rectifier diode is just running a little too close to the bone on a 125- or 130-volt AC line. I like lots of safety factor, and you also seem to. Good idea.

Build your own Digital Clock!

It's easy with the Calectro Digital Clock Kit! The complete kit with everything necessary for fast, easy assembly, including illustrated step-by-step instructions. See the Digital Clock, TTL Power Supply, Motor Speed Control, DC Regulated Power Supply and Burglar Alarm kits at Calectro dealers everywhere!
These unusual courses are the result of many years of research and teaching by the President of INDIANA HOME STUDY INSTITUTE, who has personally lectured in the classroom to thousands from all walks of life on mathematics, electrical and electronic engineering.

- You must see these lessons to appreciate them!
- NOW you can master mathematics and electronics and actually enjoy doing it!
- WE ARE THIS SURE:—you order your lessons on a money-back guarantee.
- In plain language, if you aren't satisfied you don't pay a cent.

There are no strings attached.

WRITE TODAY for more information and your outline of courses. You have everything to gain and nothing to lose!

LICENSED BY THE STATE BOARD OF INDEPENDENT POST-SECONDARY VOCATIONAL, TECHNICAL, TRADE, AND BUSINESS SCHOOLS.

THE INDIANA HOME STUDY INSTITUTE
EASTERN DIVISION
P.O. BOX 1189
PANAMA CITY, FLA. 32401

CIRCLE 14 ON FREE INFORMATION CARD

Don't Get Caught With Your
MODULES DOWN
Increase Your Profits By Utilizing Our Module Rebuilding Program

Consider these features!
- Original Parts. We use ONLY original parts. Brands we rebuild include Magnavox, Admiral, GE, Montgomery Ward, Quasar, RCA, Zenith and others.
- Quality. Only professionally trained techn- nicians will handle your modules. All modules are tested, temperature cycled, retested and airtested.
- Protective Packaging. Rebuilt modules are returned to you in polyethylene skin packaging for protection during shipping and storage.
- Fast Service. Quick reliable service is our tradition.
- One Year Warranty. One year limited warranty on workmanship and parts.

PTS ELECTRONICS, INC.
P.O. Box 272 Bloomington, IN 47401 812-824-9331

OR, check the white pages for the location of the PTS branch nearest you.

R-E TESTS YAMAHA B-2 AMP continued from page 60

same scope photo. The accuracy of the reproduced tone-bursts speaks for itself.

Yamaha had made much of the fact that the FET circuitry used in both the B-1 and B-2 amplifiers results in the generation of fewer high-order harmonic-distortion components. While this may well be true at power output levels below rated power, our spectrum analyzer's 75-dB dynamic-range capability precluded examining harmonic distortion on a harmonic by harmonic basis. 75-dB "down" is equivalent to only 0.0178% THD and since, at less than rated power output levels the measured THD (as a single number) was only 0.008% or thereabouts, we could not display harmonic distortion components on the analyzer. At clipping, however, when distortion begins to reach more significant percentages, we were able to analyze the individual components that make up the distortion and, as can be seen in Fig. 8, higher-order distortion components be-

Come just as significant as the usual second and third order components.

Use and listening tests
Our overall comments concerning the sound of the B-2 will be found together with our summary product analysis, in Table II. In using the amplifier for several days, we were particularly impressed by the action of the power meters which have an unusually rapid rise time (100 microseconds) and a slower (1 second) decay time. They therefore permit the user to really monitor close-to-true peak power of this (or any other externally connected) amplifier or of an externally used preamplifier and serve a function that we deemed more useful than that of the average reading or conventional VU-meters found on some competitive products.

Despite the fact that the V-FET's require considerably higher quiescent (no signal) current than do conventional bipolar devices used in Class-B audio output circuits, there was little if any evidence of undue heat rise after hours of continued use of the amplifier for music listening purposes. Unless you are terribly concerned about the cost of the extra few watts consumed by this unusual amplifier, the extra current demanded by the V-FET circuitry should not pose a problem.

Obviously, an $85.00 basic power amplifier is not everyone's idea of how much they would like to spend for 100 watts-per-channel of pure audio amplification. But, in the case of the B-2, pure amplification is what you get—in every sense of the word.
SET SWITCHES, while the SNOOZE ALARM DISPLAY SWITCH is pressed, resets the alarm time to 12:00 AM.

If the alarm function is to be used, the PM output (pin 3) of the MM5385 must be used to activate an LED so that the alarm may be set for AM or PM. A current-limiting resistor (180 ohms for 10 mA) must be used in series with the LED.

Pressing the SNOOZE-ALARM DISPLAY SWITCH also inhibits the alarm output for between 8 and 9 minutes after which the alarm is sounded and the alarm time is displayed.

When the alarm latch, S4, is closed, an output is available to drive an NPN transistor, as shown in Fig. 1. This output is available for 59 minutes unless the SNOOZE-ALAR M DISPLAY SWITCH is pressed, or unless the alarm is reset by the ALARM OFF SWITCH. If it is desired to silence the alarm for a day or more, the ALARM OFF SWITCH must remain closed. The alarm feature would be a valuable addition to the auto digital clock in truck installations.

to be continued

FREE catalog
over 2000
unique tools, handy kits, precision instruments, technical supplies.

Over 24 years of service to the world's finest craftsmen and technicians.

A carefully selected and tested assortment of unique, hard-to-find tools, clever gadgets, precision instruments, bargain kits. One-stop shopping for the technician, craftsman, hobbyist, lab specialist, production supervisor. Many tools and measuring instruments available nowhere else. One of the most unusual and complete tool catalogs anywhere. Get your copy of the NC FLASHER today.

CIRCLE 10 ON FREE INFORMATION CARD

You’ve seen the rest... now try the best.

Solderless strips, backing board and binding posts. Everything you need to build and test your own circuit. Used to be you'd get a circuit idea, lay out a pc board, print it, solder everything together, trouble-shoot, change your layout, try a new board, and spend absolutely too much time breadboarding. Now A P ACE All Circuit Evaluators let you breadboard in a fraction of the time. Make your changes immediately. Keep full leads on your components. Avoid the heat damage possible with repeated soldering and de-soldering. A P made the first modern solderless breadboard, and we still make them best.

Pick an ACE for Faster and Easier solderless circuit building and testing.

Order from your A P distributor today. Our distributor list is growing daily. For the name of the distributor nearest you call Toll-Free 800-321-9668.

AP PRODUCTS INCORPORATED
Box 110-R Painesville, OH 44077
(216) 354-2101 TWX: 810-425-2250

CIRCLE 11 ON FREE INFORMATION CARD
new products

More information on new products is available from the manufacturers of items identified by a Reader Service number. Use the Free Information Card following page 88.

AUDIO INSULATORS. The model AT-605 is one method of combating low-frequency acoustic feedback by isolating the phono pickup from vibrations such as rumbles from deep bass notes, passing buses and subways, and floor disturbances. The four height-adjustable chrome-finished insulators, selling for under $25.00, help absorb disturbances before they reach the turntable. The audio insulator set fits under turntable or speaker corners, assuring optimum tone-arm tracking as well as protection. The set includes a small bubble level, permitting accurate height adjustment necessary for maximum performance with today’s lightweight pickup arms.—Audio-Technica, 108 N. State St., Chicago, IL 60602.

CIRCLE 72 ON FREE INFORMATION CARD

INTRUSION ALARM, model A-18 uses existing public address, paging or background music speakers as sound pickups. Sounds of intrusion such as breaking glass, hammer blows, footsteps, etc., cause the output relay to operate while normal building sounds such as heaters or telephone rings are ignored. Sophisticated counting, audio-level and reset circuits reliably process potential threats. Audio detectors or speakers supplied cover as much as 2,500 feet each, depending on acoustics. Existing audio systems may be used with no additional wiring if cables are shielded or twisted and run in conduit. The A-18 can handle one to twenty audio inputs to provide protection for a small shop or up to a 30,000-50,000 square-foot warehouse.—Mountain West Alarm Supply Co., 4215 North 16th St., Phoenix, AZ 85016.

CIRCLE 73 ON FREE INFORMATION CARD

STEREO TUNER, model KT-7300; features a dual-gate MOS-FET in the RF stage and exceptional stability even under the widest climatic changes of temperature and humidity. With FM sensitivity of 1.8 mv (10.3 dB), the KT-7300 can handle signals as strong as 1 volt without overload. Phase-linear ceramic filters in the IF stage bring selectivity to a high 80 db.

A new FM decoder, consisting of a multiplier and a linear phase shifter, has a useful bandwidth of over 1 MHz. Signal-to-noise ratio is 68 dB (stereo), 73 dB (mono).

A phase-lock-loop circuit and individual LC filters for each channel provide 35 dB stereo separation 50 to 10,000 kHz with a solid 45 dB at the mid-range frequencies. Filters cut interference above 19 kHz, including the 19-kHz carrier, without affecting the musical frequencies. Other features include a 25-msec emphasis switch which gives perfect balance to Dolbyized FM broadcasts: two sets of outputs (one fixed, one adjustable), the first of which is fed to TAPE for the highest signal desirable; the second is fed to the amplifier for tuner play when a lower level may be preferred; and lastly, terminals for an oscilloscope with which to check and correct multipath distortion, accurate signal strength and zero-center tuning meters, a long, linear FM dial, as well as MPX filter and muting switches.—Kenwood, Dept. P, 15777 South Broadway, Gardena, CA 90248

CIRCLE 74 ON FREE INFORMATION CARD

IC DIGITAL COLOR-BAR PATTERN GENERATOR, model 388 is a new unit, housed in hand-sized cabinet, weighs 12 ounces and delivers accurate signals for test and alignment of any color or black-and-white television receiver. It provides the following displays, projected on channels 2, 3 or 4: gated rainbow pattern for chrominance adjustment with ten standard color bars, single dot for static convergence adjustment; dot raster for final convergence, nonlinearity correction, pincushioning; single vertical line for horizontal centering; eight vertical lines for width and nonlinearly adjust-

P.S. Show off your opener to your friends and neighbors. You’ll probably be able to pay for yours with what you make installing openers for them.
stems: single horizontal line for vertical centering; eight horizontal lines for height and nonlinearity adjustment; single crossbar for centering and positioning; and crosshatch pattern for final convergence, pinching and nonlinearity correction.

Operates from two standard 9-volt batteries or rechargeable nickel-cadmium cells. Also featured is an LED for power-on indication. Crystal-controlled oscillator and timing circuits, for greater stability. $99.85—EICO Electronic Instrument Co., 283 Malta St., Brooklyn, NY 11207.

CIRCLE 75 ON FREE INFORMATION CARD

STEREO AMPLIFIERS, models 300 and 300A.
The model 300 is a 300-watt stereo power amplifier kit designed for easy re-wiring into a 4-channel unit with a full complement of input and output functions. It is rated to deliver 150 watts per channel into 8 ohms, 20 Hz through 20 kHz, at less than 0.2% total harmonic distortion at rated power. Both channels are completely independent, with separate power supplies. Converted to quadriphonic operation, the amplifier delivers 75 watts per channel into 8 ohms.

"FERRET" TV MINI-ANALYZER
FOR FAST STEP-BY-STEP TROUBLE SHOOTING

1 out of 2 who have it don’t know it...

1 out of 2 who have it don’t know it...

SUB TUNER
VHF AND UHF TUNER FOR RAPID TESTING OF ALL CHANNELS; CALIBRATED GAIN ADJUSTMENTS PROVIDE FOR SIGNAL STRENGTH COMPARISON.

DIGITAL GENERATOR
CRYSTAL CONTROLLED FOR GENERATING STABLE PATTERNS WHEN CONVERGING RED, GREEN AND BLUE GUNS IDEAL FOR LINEARITY, PIN CUSHION, CENTERING, FOCUS AND ALL PICTURE ADJUSTMENTS.

40 MHZ OUTPUTS
IF SIGNALS FROM DIGITAL GENERATOR AND SUB TUNER FOR STAGE-BY-STAGE ANALYZING AND TROUBLE SHOOTING.

SG 785 $99.95

The VHF/UHF section of the Ferret allows direct substitution of the TV’s tuner for fast, positive localizing of front end trouble.

The crystal controlled digital circuitry assures complete accuracy of both the vertical and horizontal frequencies. Accuracy is better than .005%. Output from the generator may be coupled thru the tuner section or directly to the IF-video stages. Resolution is limited only by the picture quality of the TV receiver. Operates from 105 to 125 volts 50-60Hz.

21 million Americans have high blood pressure. But 50 percent of those who have it don’t know it.

When blood pressure goes higher than it should and stays high, it sets the stage for heart attack or stroke.

Most cases of high blood pressure can be controlled with drugs and other advances in treatment. That’s why you should see your doctor regularly. Only he can tell if you need help.

In

TF

IF

BANDWIDTH

CONVERGENCE ADJUSTMENT

STATIC AND DYNAMIC CONVERGENCE BEAM ADJUSTMENTS.

SOLD THRU DISTRIBUTORS ONLY

Please send me more information.

Name ____________________________

Address ____________________________

Code ____________________________

JANUARY 1977

CIRCLE 34 ON FREE INFORMATION CARD
All the of the audio circuitry, except for the output stages, is contained on 2 factory-wired and pre-tested circuit boards, permitting complete assembly of the amplifier in about 10 hours. Amplifier and speaker protection is afforded by volt-amp limiting 8 B + fuses, 4 speaker fuses, 2 thermal breakers, in addition to the AC line fuse. As supplied, the Stereo 300 is wired for maximum power output into 4- and 15-ohm loads. Alternative conversion through simple internal changes enables even greater power outputs into lower impedance loads, with proper volt-amp protection. The behind the panel provision is made for either two or four rear-lighted output meters as optional accessories.

sensitivity near 1 volt.

Figure 5-b shows the discrete differential amplifier. Its advantage lies in its voltage gain, which also buffers the input attenuator from the low impedance of the meter movement. Once again the FET is used to obtain the high impedance. A modern integrated version of the differential amplifier is shown in Fig. 5c. An operational amplifier, buffered with FET followers on the inputs, is the amplifier.

The AC section of the TVM differs in a few characteristics from the VTVM. The placement of the rectifier within the circuit is the major difference between the two. The TVM rectifier is almost always placed after the amplifier, which must then have both good AC and DC characteristics. The type of rectifier is also changed. Figure 6 shows the various types of rectifiers used in the AC portions of TVM's. Figure 6-a is the simple input rectifier. much like that of the VTVM. This rectifier is peak responding, its DC output must be divided by 1.414 to obtain the RMS value of a pure sinewave.

Figure 6-b is a bridge rectifier driven from the outputs of a differential amplifier. This circuit is average responding—the output must be multiplied by 1.1 to obtain the RMS value. Figures 6-c and 6-d are other common implementations of the average responding circuit. Both of these employ the operational amplifier to overcome the nonlinear characteristics of the diode at low voltages. Figure 6-c is a full wave, 6-d a half-wave rectifier.
The AC and DC attenuators of the TVM are usually the same, unlike those of the VTVM. When the attenuator is common, it must be compensated to attenuate accurately at both high and low frequencies. Figure 7 is a compensated attenuator used in a 10-megohm TVM. The capacitors create a capacitance divider with the same ratio as the resistors they shunt. If they were not used, the capacitance division ratio would depend entirely on the distributed capacitances of the resistors. These are substantial for high and negligible for low resistances. There is less than a decade attenuation between the first divider and a full decade across the last one.

The input to the attenuator is also AC coupled with a 0.033-mF capacitor. It serves to keep DC from the attenuator and therefore from the amplifier and rectifier, which respond to a combination of AC and DC. The total input capacitance of the TVM is somewhat greater than that of the capacitance in shunt with the divider because of other distributed capacitances (see the dotted capacitor in Fig. 7).

FIG. 7—THE INPUT ATTENUATOR of the Heathkit IM-104 as designed for AC operation. Capacitor shown in dotted lines represents stray capacitance in the circuit.

The input to the attenuator is also AC coupled with a 0.033-mF capacitor. It serves to keep DC from the attenuator and therefore from the amplifier and rectifier, which respond to a combination of AC and DC. The total input capacitance of the TVM is somewhat greater than that of the capacitance in shunt with the divider because of other distributed capacitances (see the dotted capacitor in Fig. 7).

FIG. 8—SWITCHABLE FILTER used to keep AC out of the amplifier when the instrument is used to measure DC voltages.

TVM’s using a common AC and DC attenuator have a filter (Fig. 8). It is switched into the attenuator output during DC and during AC operation. The filter helps remove AC signals from the amplifier input when the meter is operating in the DC mode. Although the meter theoretically does not respond to AC signals, excessive AC can disturb the amplifier enough to cause error in DC readings.

To be continued...
VIDEO GAMES
continued from page 42

mode (Robot) has a controllable skill level. The Indy 500 Road Race Game for 1 or 2 players has realistic sounds to duplicate engine acceleration and crashes, and appears to be one of the games in both the Game Table and Video Action IV. The models IIA and III play 2 or 4 player tennis, or hockey. The color display on the Video Action game screen is a rainbow pattern rather than discrete coloration of images.

The Fact game displays questions and answers in alphabets on your TV screen. It may have a microprocessor since it uses cartridges to program the mode of operation. The unit comes with 2 cartridges, and 5 more are available. One or two people can play their knowledge against each other or against the machine. You can test your knowledge in hundreds of planned categories with two categories in each cartridge. Also, learning cartridges to improve reading, math, history or other skills, are planned. Multiple-choice answer buttons are used.

Videomaster: All of these games are manufactured in England. Some of the games in the Rally and Olympic models are different than the other games surveyed. and no upper or lower court boundaries are displayed. The 6000 seems to be a standard GI IC game, but in a fancy aluminum case with a lever control for each player.

Visuex: This kit was the subject of a detailed 3-part article in the June, July and August 1976 issues of Radio-Electronics. You can order anything from complete $6 construction plans and individual parts, to the everything package for $129.50 that includes the main circuit board, scoring circuit board, all parts, hardware, wire, cable, controls, power supply and main cabinet with remote player control boxes.

INTERNATIONAL FM 2400CH

FREQUENCY METER
for testing mobile transmitters and receivers

- Tests Predetermined Frequencies 25 to 1000 MHz
- Extended Range Covers 950 MHz Band
- Pin Diode Attenuator for Full Range Coverage as Signal Generator
- Measures FM Deviation

The FM-2400CH provides an accurate frequency standard for testing and adjustment of mobile transmitters and receivers at predetermined frequencies.

The FM-2400CH with its extended range covers 25 to 1000 MHz. The frequencies can be those of the radio frequency channels of operation and/or the intermediate frequencies of the receiver between 5 MHz and 40 MHz.

Frequency Stability: ± 0.005% from +50° to +104°F.

Frequency stability with built-in thermometer and temperature corrected charts: ± 0.0025% from +25° to +125° (.000125% special 450 MHz crystals available).

Self-contained in small portable case. Complete solid state circuitry. Rechargeable batteries.

FM-2400CH (meter only)$595.00
RF crystals (with temperature correction)24.00 ea.
RF crystals (less temperature correction)18.00 ea.
IF crystalscatalog price

GO DIGITAL, GO DANAMETER®
(The New VOM For Today's Needs.)

- 0.25% Accuracy
- Full Overload Protection
- Really Drop-Proof
- Full One Year Battery Life

DANA

Dana Laboratories, Inc.
2401 Campus Dr, Irvine, Ca. 92715, (714) 833-1234
CIRCLE 62 ON FREE INFORMATION CARD
Put Professional Knowledge and a
COLLEGE DEGREE
in your Electronics Career through
HOME STUDY

Earn Your DEGREE
by correspondence, while continuing your present job. No commuting to class. Study at your own pace. Learn from complete and explicit lesson materials, with additional assistance from our home study instructors. Advance as fast as you wish, but take all the time you need to master each topic. Profit from, and enjoy, the advantages of independent study.

The Grantham correspondence degree program in electronics is comprehensive. It begins with basics, written in very simple language, and continues through the B.S.E.E. degree level. Throughout the entire program, heavy emphasis is placed on clear explanations written in great detail, progressing from the simple to the complex, in easy steps.

Our free bulletin gives complete details on the curriculum, the degrees awarded, the requirements for each degree, and how to enroll.

GRANTHAM SCHOOL OF ENGINEERING
2000 Stoner Ave., Los Angeles CA 90025

Telephone (213) 477-1901
Worldwide Career Training thru Home Study

Mail the coupon below for free bulletin.

Grantham School of Engineering
2000 Stoner Ave., Los Angeles, CA 90025

I have been in electronics for__________years. Please mail me your free bulletin which gives details concerning your electronics degree programs.

Name__
Age__
Address__
City__
State______________________________________Zip________________

CIRCLE 9 ON FREE INFORMATION CARD

ACTIVE INGREDIENTS

NOW...97% ACTIVE INGREDIENTS

Plus!: WARMER SPRAY FOR MORE CLEANING POWER

TUN-O-WASH has long been the industry standard in tuner degreasers. Now, it's better and more economical than ever.
No, we haven't tampered with the famous TUN-O-WASH formula. That's too good to change. What we have changed is the propellant. We now use carbon dioxide (CO2) as a propellant. This permits us to fill the can with 97% active ingredients, compared with only 65% active ingredients before this development. The can is the same size, but you get more cleaning power for your money.

There are other advantages to using CO2 as a propellant. FIRST, the spray comes out 10°F warmer. Everyone knows that heat increases solvent action. SECOND, the particles of solvent come out in larger drops, making for a wetter spray. And, finally, CO2 enables us to maintain a uniform 70 pound pressure until the can is completely empty.

This is another first from the electronics industry's leading chemical manufacturer.

CHEMTRONICS INCORPORATED
45 NOHO MAIN AVE., HAUPPAUGE, N.Y. 11788 (516) 582-3327

CIRCLE 26 ON FREE INFORMATION CARD
CLASSIFIED COMMERCIAL RATE (for firms or individuals offering commercial products or services). $1.00 per word...minimum 15 words.
NONCOMMERCIAL RATE (for individuals who want to buy or sell personal items) 85¢ per word...no minimum.
ONLY FIRST WORD AND NAME set in bold caps. Additional bold face (not available as all caps) at 10¢ per word. Payment must accompany all ads except those placed by accredited advertising agencies. 10% discount on 12 consecutive insertions, if paid in advance. All copy subject to publisher's approval. Advertisements using P.O. Box address will not be accepted until advertiser supplies our permanent address and phone number. Copy to be in our hands on the 26th of the third month preceding the date of publication (i.e. August issue closes May 26). When normal closing date falls on Saturday, Sunday or a holiday, issue closes on preceding working day.

FOR SALE

RECONDITIONED test equipment. $0.50 for catalog. ALLIANCE'S TEST EQUIPMENT, 2697 Nickel, San Pablo, CA 94906

LOW cost digital/analog test equipment. Exceptional values. Free catalog. SALEN ELECTRONICS, P.O. Box 82, Skokie, IL 60076

12" ALL PURPOSE 1 VOLT P TO P GREEN PHOSPHOR VIDEO DISPLAY IDEAL UNIT FOR ANY DIGITAL OR GRAPHICS APPLICATION $150 Add $10 for packing and shipping in continental US

COMPUTER WAREHOUSE STORE 5/o Dept R
384 Commonwealth Ave. Boston 02115

SURPRISE! Build inexpensively, the most unusual test instruments, futuristic gadgets using numerical readouts! Catalogue free! GBS, Box 100B, Greenbank, WA 98444

FREE catalog, IC's, Semi's. CORONET ELECTRONICS, 649A Notre Dame W., Montreal, Que., Canada, H3C-1H8. US inquiries.

RADIO & TV tubes $6 each. One year guarantee. Plus many unusual electronic bargains. Free catalog. CORNELL, 4217-E University, San Diego, CA 92105

MANUALS for Govt. surplus radios, test sets, scopes, List 50¢ (coin). BOOKS, 7218 Roanne Drive, Washington, DC 20021

UNSCRAMBLES: We manufacture one of the finest police code unscramblers on the market. Our prices are very competitive and our service is the best. For further information call or write on nobles electronics, Inc., Dept. RE, Rt. 7, Box 265B, Hot Springs, AR 71901

DESCRAMBLERS: Several professional models that work with all scanners. Tone encoders/decoders. Scanmate, AAPP, radar detectors. Big Data, alarms, books, kits, parts. Catalog 25 cents. KRYSTAL KITS, Box 445, Bentonville, AR 72712

TV picture tubes—ASE manufactures over 2200 types, B/W and color. ALLIED SALES, Dept. 43, Pimento, In 74886, (812) 495-6555.

NON ami surplus, Monthly picture flyer. Quality. Low price. Send 25¢ U.S. only. STARTRONICS, CAT 683, McMinnville, OR 97128

SOLID-STATE television recorder electronic unit with documentation. $21.45. MADISON ELECTRONICS COMPANY, INCORPORATED, Box 369, D102, Madison, AL 35758

COLOR DIGITAL CONVERGENCE GENERATOR Uses latest CMOS-LSI technology. For servicing Color TV etc. Selects up to 16 patterns. As low as $39.95 4x41, Plans.

NEW Canadian Magazine, "Electronics Workshop," 50 weekly, sample $1.00. ETHCO, Box 741 "A", Montreal, Quebec, Canada.

FREE catalog, IC's, Semis. CORONET ELECTRONICS, 649A Notre Dame W., Montreal, Que., Canada, H3C-1H8. US inquiries.
ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

Free Information Number Page
65 Allison Automotive ...82
49 American Audioport Cover III
11 AP Products ...79
79 B&K-Div. of Dynascan25
59 Brooks Radio & TV ..83
26 Chemtronics ..85
CIE-Clevenger Institute of Electronics70-73
16 Channellock ..28
12 Cobra-Div. of Dynascan Cover IV
18 Continental Specialties30
52-55 CREI-Div. of McGraw-Hill
Continuing Education
62 Dana Labs ..94
15 Edmund Scientific106
38 EICO ..76
13 Electronic Book Club23
67 Electronic Control Technology25
EMC-Electromagnetic Measurement81
5 Fidelity Sound ...24
71 GC Electronics ..77
9 Grantham School of Electronics55
35 GTF Sylvana-Consumer Renewal2
27 Handle of USA ...27
100 Heath ..17
34 Hickok Electrical Instruments44
40 IMSAI Mfg ...75
14 Indiana Home Study Institute78
68 International Crystal64
36 JB Electronics ...83
23 Jensen Tools & Alloys26
28 Jerrold .. 5
52-55 JS&A ... Cover II
46 MITS-Micro Instrumentation Telemetry
Systems ..1
4 Mountain West Alarm Supply79
10 National Camera Supply79
55 National Radio Institute (NRl-Div. of McGraw-Hill
Continuing Education Center)8-11
20 National Technical Schools18-21
20 PAIA Electronics ..83
52 Perma Power ...82
47 Pomona Electronics 16
54,55 Professional Aids82
64 PTS Electronics ...78
2 Radatron ...77
48 Radio Shack ..77
33 Schober Organ ...29
63 Southwest Technical Products26
37 Tektronix ..28
634 Telematic-Div. of UXI29.81
7 Tri-Star ... 14

MARKET CENTER
32 Active Electronics ...103
101 American Used Computer86
44 Babylon Electronics91
Karel Barto ..100
38 CFR Associates ...96
49 Cornell Electronics92
2 Command Productions96

Free Information Number Page
31 Delta Electronics ..102
Deltixon-Organ Products96
51 Digi-Key ..87
66 Fordham Radio Supply102
19 Formula International101
Financial Management Associates100
24 Godbout Electronics92
Information Unlimited92
45 International Electronics104
Interfac96
21,22,23 James ...98.99
39 Jeff ...92
57 Lab Science ...96
56 Lakeside Industries 86
30 Meshua ..96
57 Mini Micro Mart ...96
29 New-Tone ... 94
8 Nexus Trading ...102
42 Optoelectronics ..104
1 Otum Electronics ...86
102 P.P.G. Electronics100
41 Peninsula Marketing100
25,35 Poly Paks ...95.88
43 Quest ..102
56 Radio Hut ...93
Science Workshop ...86
70 SD Sales ...97
56 Sold State Sales ...94
3 Surplus Center ...106
9 Tracy Design .. 92
42 Trumbell ..92
42 Valley West ..92
13 Vituxel ..92

MOVING?

Don't miss a single copy of Radio-Electronics. Give us:

Six weeks' notice

Your old address and zip code

Your new address and zip code

ATTACH

LABEL

HERE

name (please print)

address

city state zip code

Mail to: Radio-Electronics
SUBSCRIPTION DEPT., P.O. BOX 2520,
BOULDER, COLORADO 80302

CIRCLE 35 ON FREE INFORMATION CARD

PUBLIC SERVICE ADMINISTRATION
All signal diodes with leads
P4465 PHASE LOCK LOOP DIP
L'AS10 LM111 '13184 PRECISION OP AMP
110301 L7'100 '558 DUAL
CAL36 LOW NOISE DUAL
CD -2 COUNTER KIT

This kit provides a highly sophisticated display section for digits, counters, or other numeric displays. Unit is 8 x 8 x 38", and includes a 51 power supply. It includes 2-board PCB with plated-through holes, 7400, 7405, 7447, 7420, complete instructions, and Nolex when ordering please specify single digits or panels of up to 10 digits (with all interconnections). COMPLETE KIT $7.95 per digit.

3 Amp Power
Silicon Rectifiers
MARKED AXIAL PACKAGE

PCB IC
Sockets

8 pin
10 pin
14 pin
20 pin
24 pin
30 pin
38 pin
40 pin
8 pin wrap sockets gold inline, Texas Instruments.

25¢ each

CD-3 COUNTER KIT

This kit can be programmed to count in either mode, 5 for one kit, 99 for two kits, etc. Includes all as in CD-2, 2 resistors. 3 diodes. Jumper actual size. 7455 quad gates. Perfect for display of seconds, minutes, etc. All instructions included.

When ordering please specify single digits or panels of up to 10 digits (with all interconnections).

COMPLETE KIT $6.25 per digit

12V DC Relay

DPDT - 10 Contacts Prime -500 ohm coil PCB - rated for $1.50 works well at 40. Dimensions 1/4" x 1 1/4" x 1/4" Each $1.50. Ten for $12.50.

KEYBOARD ASSEMBLY

This data systems unit, 10 keys 0-9, 3 or 4 V. 74 lamp, printed circuit board, with (10) diodes, capacitors, transistors, and resistors. All mounted in an attractive case, 4 x 4 x 2". These are used, no schematic is available. EACH $6.95.

WIRE REEL GUARANTEED ON ALL GOWEINS.
Phone orders $10 and over $1.00, F.O.B. Sacramento, CA. Orders shipped promptly. $10 minimum on C.O.D.'s.

BAHAMAN ENECEUTICS

CIRCUIT 44 ON FREE INFORMATION CARD
Printed Circuit Board Components

Godbout

BIL GODBOUT ELECTRONICS
22255 OAKLAND AIRPORT, CA 94604

- **$4.95** A 0.5K 10W 300ohm see RCA 7440
- **$5.95** R 7.9K 2.5W 500ohm see RCA 7440
- **$11.95** R 1K 20W 500ohm see RCA 7440
- **$7.95** R 2K 7.5W 1K5 3.5% factory select part-2CN269

RF Power Transistors

709 OF AMP

- **$14.99** MultiMeter

Spot Diodes Switch

$19.95 Special! 1 Meg Trimpot 6 for $1

SEND FOR OUR FLYER

CIRCLE 24 ON FREE INFORMATION CARD

New Products

Miniature Film Capacitors

<table>
<thead>
<tr>
<th>Value</th>
<th>1/4</th>
<th>1/2</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1pF</td>
<td>100</td>
<td>100</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>0.47pF</td>
<td>100</td>
<td>100</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>1pF</td>
<td>100</td>
<td>100</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2.2pF</td>
<td>100</td>
<td>100</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Fixed Power Supply Kits

- **Price**
 - 1800: $12.00
 - 1801: $13.00
 - 1802: $14.00
 - 1803: $15.00

Switches

- **Price**
 - 100: $1.00
 - 101: $1.50
 - 102: $2.00
 - 103: $2.50

Diode Arrays

- **Price**
 - 40A: $3.00
 - 41A: $3.50
 - 42A: $4.00

Plans & Kits

SAVE 50%: Build your own speaker systems.

Write: MCgee RADIO ELECTRONICS, 1901 McGee Street, Kansas City, MO 64108

Electronics Design Newsletter

- **Learn Digital Techniques**
- **Learn Logic Design Techniques**
- **Learn Digital & Logic Design Theory & Procedures**
- **Learn Construction Projects**

Plans & Kits

- **Price**
 - 5D1: $10.00
 - 5D2: $15.00
 - 5D3: $20.00

ORGANS—PA Systems

Electronic pianos—string synthesizers—speakers—guitar amplifiers—electronic sound rotators. Modern integrated circuitry. Factory assembled or easy-to-build custom kits. Send one dollar (refundable with first purchase) to WERSI ELECTRONICS, Depl A, Box 5318, Lancaster, PA 17601

Displays & Bezel

Dallas 74HC...

4-1/2 DIGIT ALARM CLOCK

Kit includes a strobe, P.C. boards & all components. It has huge 7/8" red L.E.D. displays. It also has a 24-hour alarm format with a 9-min snooze.

- **Assembled** $64.95
- **Kits** $49.95

ALARM CALENDAR CLOCK

It lights up the time for 8 seconds then gives the date in month and day of month. Has a 12 or 24 hour format, 24-hour alarm with a 10 minute snooze, and is available in 7/8" or 1/4" red L.E.D. displays. Kit includes all components, tester, and P.C. Boards.

- 1/4" Digits $15.95
- 7/8" Digits $12.99

- **Case** $4.99

NE555 10/3.99 7447.69 3/1.99

14 Pin IC SOCKETS—1810/1.59
40 Pin IC SOCKETS—395/1.79

Red Jumbo LED 10/1.00

TERMS: Ohio residents add 5% sales tax. Add 5% of total amount for PAH bet a minimum of $1.00.

Send SASE for catalogue now!

JEFF

3015 Eaton Road, Cleveland, OH 44122

Printed Circuit Board Components

Printed Circuit

- **Positive Acting Photo Resist; Cartridge bits; Bubble etchers; Artwork; Epoxy Glass Boards.**

Send stamp & address label for flyer

TRUMBULL

833 Balia Dr., El Cerrito, CA 94530

Electronics News

ORGANS—PA Systems

Electronic pianos—string synthesizers—speakers—guitar amplifiers—electronic sound rotators. Modern integrated circuitry. Factory assembled or easy-to-build custom kits. Send one dollar (refundable with first purchase) to WERSI ELECTRONICS, Depl A, Box 5318, Lancaster, PA 17601

Send for your information packet today—

Which also includes custom functions, component layout, and accessories. Information Packet $1.00 (refundable with order).

Visulex

P.O. Box 42044, Mountain View, CA 94040

Catalog Numbers

Part Numbers:

- **100 500 1K 5K**
- **$1.95** A 0.5K 10W 300ohm see RCA 254570
- **$5.95** R 7.9K 2.5W 500ohm see RCA 7440
- **$11.95** R 1K 20W 500ohm see RCA 7440
- **$7.95** R 2K 7.5W 1.5K 3% factory select part-2CN269

Circle 39 On Free Information Card

Circle 69 On Free Information Card
TERMS: NO COD's. Check or money orders only. Texas Residents add 5% State Sales Tax. Add 10% of total order for postage and handling. Overseas orders add 20% for P&H. Foreign orders - US Funds ONLY! Phone orders welcome! - in Dallas call 214/271-8423.

READOUTS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Price per Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>FND 800</td>
<td>Common Cathode Large .80" character Low current drain!</td>
<td>$2.95 each</td>
</tr>
<tr>
<td>FND 359</td>
<td>Common Cathode Direct Replacement For FND 70 but larger .40" character .95 each or 10 for $8.79</td>
<td></td>
</tr>
<tr>
<td>FCS 8000</td>
<td>Common Cathode 12 hour – 3½ digit array Includes AM/PM Indicator & Colons .80" character</td>
<td>$6.25 each</td>
</tr>
<tr>
<td>FCM 7010</td>
<td>4 Digit Direct Drive Radio Alarm Clock Chip Similar to MK50380</td>
<td>$6.25 each</td>
</tr>
</tbody>
</table>

FULL WAVE BRIDGES

<table>
<thead>
<tr>
<th>Description</th>
<th>Price per Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 amp – 50 volt – $1.65 each</td>
<td></td>
</tr>
<tr>
<td>4 amp – 50 volt – $1.50 each</td>
<td></td>
</tr>
<tr>
<td>1 amp – 50 volt – $0.99 each</td>
<td></td>
</tr>
</tbody>
</table>

Motor for home tape decks. Operates on 115 Vac 60 HZ. Shielded construction; High torque capability; and is four pole type.

DIODES by MOTOROLA

<table>
<thead>
<tr>
<th>Description</th>
<th>Price per Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2½ amp – 1000 volt 6 for $1.00</td>
<td></td>
</tr>
</tbody>
</table>

CMOS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Price per Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4001 .23</td>
<td>CD4017 1.00</td>
<td>CD4030 .40</td>
</tr>
<tr>
<td>CD4002 .23</td>
<td>CD4018 1.20</td>
<td>CD4035 1.24</td>
</tr>
<tr>
<td>CD4007 .23</td>
<td>CD4019 .40</td>
<td>CD4040 1.35</td>
</tr>
<tr>
<td>CD4009 .53</td>
<td>CD4021 1.20</td>
<td>CD4041 .85</td>
</tr>
<tr>
<td>CD4010 .49</td>
<td>CD4022 .95</td>
<td>CD4043 .73</td>
</tr>
<tr>
<td>CD4011 .23</td>
<td>CD4023 .23</td>
<td>CD4044 .50</td>
</tr>
<tr>
<td>CD4012 .23</td>
<td>CD4024 .87</td>
<td>CD4045 .55</td>
</tr>
<tr>
<td>CD4013 .45</td>
<td>CD4025 .23</td>
<td>CD4050 .50</td>
</tr>
<tr>
<td>CD4014 1.30</td>
<td>CD4027 .53</td>
<td>CD4051 1.45</td>
</tr>
<tr>
<td>CD4015 1.10</td>
<td>CD4028 .90</td>
<td>CD4052 1.25</td>
</tr>
<tr>
<td>CD4016 .49</td>
<td>CD4029 1.20</td>
<td>CD4053 2.25</td>
</tr>
<tr>
<td>CD4017 .90</td>
<td>CD4911 .30</td>
<td></td>
</tr>
</tbody>
</table>

ALUMINUM PROJECT CASES

(Order by Number)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Price per Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASE 1</td>
<td>H – 1½" W – 3" L – 4 3/8"</td>
<td>$2.50</td>
</tr>
<tr>
<td>CASE 2</td>
<td>H – 2" W – 4 7/8" L – 3½" Slope Front – ¼"</td>
<td>$3.40</td>
</tr>
<tr>
<td>CASE 3</td>
<td>H – 2½" W – 7" L – 4" Slope Front – ½"</td>
<td>$3.00</td>
</tr>
<tr>
<td>CASE 4</td>
<td>H – 1 7/8" W – 4 3/8" L – 3"</td>
<td>$1.50</td>
</tr>
<tr>
<td>CASE 5</td>
<td>H – 1½" W – 2 7/8" L – 2½" 99c each</td>
<td></td>
</tr>
</tbody>
</table>

VOLTAGE REGULATORS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Price per Unit</th>
</tr>
</thead>
</table>

SPECIAL!

A 12 HOUR BASIC CLOCK KIT

Display with case includes:

* FCS 8000 3½ Digits .60" character
* M7010 Direct Drive Clock Chip
* Sloped Front Case - Punched for Display

$11.25 each

A GOOD BUY!

1/2 LB. OF SCREWS, NUTS & WASHERS

All Hardware is New! Includes 2-56, 4-40, 5-32 and 8-32
½ pound – $1.75
or 1 lb. for $3.00

CIRCLE 55 ON FREE INFORMATION CARD

93
SOLID STATE SALES
P.O. BOX 740
SOMMERVILLE, MASS. 02143 TEL. (817) 547-4005

FULL WAVE BRIDGES

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2572</td>
<td>$2.75</td>
</tr>
<tr>
<td>2581</td>
<td>$2.50</td>
</tr>
<tr>
<td>2584</td>
<td>$2.50</td>
</tr>
<tr>
<td>2585</td>
<td>$2.50</td>
</tr>
</tbody>
</table>

SILICON SPECIALS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2546</td>
<td>$2.75 each</td>
</tr>
</tbody>
</table>

CB SPECS - R.F. DRIVERS - R.F. POWER OUTPUTS - FETs

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>25C481</td>
<td>1.85</td>
</tr>
<tr>
<td>25C482</td>
<td>2.75</td>
</tr>
<tr>
<td>25C483</td>
<td>2.75</td>
</tr>
<tr>
<td>25C484</td>
<td>3.75</td>
</tr>
<tr>
<td>25C485</td>
<td>3.75</td>
</tr>
<tr>
<td>25C486</td>
<td>4.75</td>
</tr>
<tr>
<td>25C487</td>
<td>5.75</td>
</tr>
<tr>
<td>25C488</td>
<td>6.75</td>
</tr>
<tr>
<td>25C489</td>
<td>7.75</td>
</tr>
<tr>
<td>25C490</td>
<td>8.75</td>
</tr>
<tr>
<td>25C491</td>
<td>9.75</td>
</tr>
</tbody>
</table>

JAPANESE TRANSISTORS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>25A62</td>
<td>3.50</td>
</tr>
<tr>
<td>25A63</td>
<td>4.50</td>
</tr>
<tr>
<td>25A64</td>
<td>5.50</td>
</tr>
<tr>
<td>25A65</td>
<td>6.50</td>
</tr>
<tr>
<td>25A66</td>
<td>7.50</td>
</tr>
<tr>
<td>25A67</td>
<td>8.50</td>
</tr>
</tbody>
</table>

TANTALUM CAPACITORS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>25F80</td>
<td>3.00</td>
</tr>
</tbody>
</table>

SILICON SOLAR CELLS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>25C847</td>
<td>1.00</td>
</tr>
<tr>
<td>25C848</td>
<td>1.50</td>
</tr>
<tr>
<td>25C849</td>
<td>2.00</td>
</tr>
<tr>
<td>25C850</td>
<td>2.50</td>
</tr>
<tr>
<td>25C851</td>
<td>3.00</td>
</tr>
<tr>
<td>25C852</td>
<td>3.50</td>
</tr>
<tr>
<td>25C853</td>
<td>4.00</td>
</tr>
<tr>
<td>25C854</td>
<td>4.50</td>
</tr>
<tr>
<td>25C855</td>
<td>5.00</td>
</tr>
</tbody>
</table>

TTL IC SERIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2501</td>
<td>$2.50</td>
</tr>
<tr>
<td>2502</td>
<td>$3.00</td>
</tr>
<tr>
<td>2503</td>
<td>$3.50</td>
</tr>
<tr>
<td>2504</td>
<td>$4.00</td>
</tr>
<tr>
<td>2505</td>
<td>$4.50</td>
</tr>
<tr>
<td>2506</td>
<td>$5.00</td>
</tr>
</tbody>
</table>

POWER-TRANSISTORS HIGH-VOLT. TV. TYPE

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>25B246</td>
<td>50</td>
</tr>
<tr>
<td>25B247</td>
<td>50</td>
</tr>
<tr>
<td>25B248</td>
<td>50</td>
</tr>
<tr>
<td>25B249</td>
<td>50</td>
</tr>
</tbody>
</table>

SILICON UNJUNCTIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>25D246</td>
<td>1.00</td>
</tr>
<tr>
<td>25D247</td>
<td>1.50</td>
</tr>
<tr>
<td>25D248</td>
<td>2.00</td>
</tr>
</tbody>
</table>

INTEGRATED CIRCUITS - RECYCLED

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>25G457</td>
<td>$3.75</td>
</tr>
<tr>
<td>25G458</td>
<td>$3.75</td>
</tr>
<tr>
<td>25G459</td>
<td>$3.75</td>
</tr>
</tbody>
</table>

CB SPECIALS - R.F. DRIVERS - R.F. POWER OUTPUTS - FETs

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>25C481</td>
<td>1.85</td>
</tr>
<tr>
<td>25C482</td>
<td>2.75</td>
</tr>
<tr>
<td>25C483</td>
<td>2.75</td>
</tr>
<tr>
<td>25C484</td>
<td>3.75</td>
</tr>
<tr>
<td>25C485</td>
<td>3.75</td>
</tr>
<tr>
<td>25C486</td>
<td>4.75</td>
</tr>
<tr>
<td>25C487</td>
<td>5.75</td>
</tr>
<tr>
<td>25C488</td>
<td>6.75</td>
</tr>
<tr>
<td>25C489</td>
<td>7.75</td>
</tr>
<tr>
<td>25C490</td>
<td>8.75</td>
</tr>
<tr>
<td>25C491</td>
<td>9.75</td>
</tr>
</tbody>
</table>

OM Specials

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>25A62</td>
<td>3.50</td>
</tr>
<tr>
<td>25A63</td>
<td>4.50</td>
</tr>
<tr>
<td>25A64</td>
<td>5.50</td>
</tr>
<tr>
<td>25A65</td>
<td>6.50</td>
</tr>
<tr>
<td>25A66</td>
<td>7.50</td>
</tr>
<tr>
<td>25A67</td>
<td>8.50</td>
</tr>
</tbody>
</table>

LINEAR CIRCUITS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>25M48</td>
<td>$2.50</td>
</tr>
<tr>
<td>25M49</td>
<td>$3.00</td>
</tr>
<tr>
<td>25M50</td>
<td>$3.50</td>
</tr>
<tr>
<td>25M51</td>
<td>$4.00</td>
</tr>
<tr>
<td>25M52</td>
<td>$4.50</td>
</tr>
<tr>
<td>25M53</td>
<td>$5.00</td>
</tr>
</tbody>
</table>

SOLID STATE SALES

36 CIRCLE ON FREE INFORMATION CARD

NEW TONE ELECTRONICS
P.O. Box 1738 A
Bloomfield, N.J. 07003
Phone: (201) 748-6171

ALL PARTS GUARANTEED
N.J. residents add 5% sales tax. Minimum order $5.00. All orders add $1.50 postage. Dealers write or phone for discount prices.
Z-80

INTRODUCTORY SPECIALS

RM Z-80 CPU System, w/1K RAM, Monitor ROM, serial parallel I/O ports, provision for additional I/O ports. PROMS on main board, compatible with existing 8080 software.

Complete Kit $259.95
RM-4K Static RAM Board 300ns, for above system, low power 2102's, I/O sockets, kit $139.95

Keysboards, Power Supply kits available.

RM Z-80 System, complete kit with enclosure, shown below, 5K of 300 ns memory, Monitor ROM, keyboard, power supply, ONLY $529.95

w/VIDEO Display Board, add $99.95
w/Teletype 33 Printer, used, add $445.

RM case, below, holds all of above, including up to 64K of memory.

16K Static RAM Board, 215 ns access time, extreme low power kit. RM or Altair/IMSAI version $479.95

Altair/IMSAI 4K Static Memory Board w/2102 RAM's ONLY $79.95

High-speed low-power versions available.

MONITOR 80A Super System Monitor in ROMS for 8080's and Z-80's, replaces over 2K of system memory, supports entry and dump in symbols, many other routines. Turn your system on and start programming, $74.95 value, NOW ONLY $59.95

With PROM-ROM Board for Altair/IMSAI, will hold additional 8 PROMS 1K x 8 2708 type Special $109.95

ASSEMBLED and TESTED Boards and Systems available.

8080 and 6800 Systems available at extremely low prices.

Send stamped, self-addressed envelope or contact your favorite dealer.

MiniMicroMart
1618 James Street
Syracuse, New York 13203
(315) 422-4467

H. H. SCOTT Misc Etched & Drilled P.C. Boards #15.00

SILICON SOLAR CELLS, 4X8 in. 1.00 .8X8 in. 1.50

GOULD NIDACS NEW Sub "C" Cells10.00 Sub "C" Cells12.00

GREEN LED ...$1 or $5.00

GALLIUM ARSENIDE IRLED EMITTER$1 or $5.00

40 PIN SOCKET FOR MM5314-5316-UART Etc...$1.00 6/5.00

MAGNETIC RECORDING TAPE 7/8"

Audio 1800 ft. $1.50

10 for $12.00

900 Ft. $1.15

10 for $10.00

Surplus Electronic Material

19 ALLERTON STREET
E.LYNN MASS. 01904

CIRCLE 3 ON FREE INFORMATION CARD

CIRCLE 30 ON FREE INFORMATION CARD

U.S. GOV'T ELECTRONIC SURPLUS

* Nationally Sourced - World famous SURPLUS CENTER offers fresh, used可 expandable, electronic used parts and components at a fraction of their original acquisition cost.

300 AMP., 200 VOLTS RECTIFIER

* (ITEM 215205) - 4-FOUR STAR SPECIAL WEST INDIES, heavy duty unit. Excellent for use in 12 or 24-volt fast chargers, high current power supply systems, etc. 3-1/8" x 1-3/6" x 4/16" (1 lbs.) $6.95

SNAP-AROUND VOLT-AMMETER

* (ITEM 213203) - "WIREMETER" clamp type AC analog-volt-meter. Small enough to carry in shirt pocket. Will measure 0 to 50 microamps, 0 to 100 volts, furnished with test leads. Overall size 4-1/2" x 2-3/4" x 1". (1 lbs.) Cost $23.80

STANDARD DIAL TELEPHONE

* (ITEM 6715) - Some as used on commercial systems in U.S.A. Use as expansion to private system. Connect several together for local extension system. Instructions furnished Original Cost $139.95 (9 lbs.)

RUNNING TIME METER

* (ITEM 3116) - Record number of operating hours of electric lights, electrical devices such as refrigerators, furnaces, etc. Records total hours and number of times to 9999 hours. Cost $25.95

SPECIAL SALES

Correspondence Course in Electrical Engineering Printed in U.S.A. Cost $117.95

CIRCUIT DESIGN Printed in U.S.A. Cost $127.95

* (ITEM 99-103) - Technical training at low cost! Lincoln Engineering School's complete Correspondence Course 100% effective. Limited number of Electrical Engineering Courses are available without exams and grading services. Complete set of lesson books, each with associated exams and standard answers. Designed to build practical knowledge. Home Experimental Laboratory Kit included at no extra cost.

ALL ITEMS SHIPPED F.O.S. LINCOLN, NEBR. Order Direct from Ad - Send for FREE Catalog

Microtronics
Department RE-126
LINCOLN, Nebraska 68501

SURPLUS CENTER

ELECTRICAL ENGINEERING

FASCINATING microcomputer kits! Build inexpensive ASCII keyboard, paper tape reader, teleprinter interface, terminal. Construction manuals $2 each. 1702A Programming-$1. Free Catalogue MICROTRONICS, P.O. Box 7454, D191, Menlo Park, CA 94025

ECONOMY kits, Super-Pong TV game by "VisuLext" (June "R-E") complete kit $150.00; TVT-II (W/2K memory capability) $114.75; screen read $11.65; manual cursor $9.50; cassette-computer interface, dual recorder. 1000 baud $28.50; motion detector (ultrasonic): assembled $18.75. 4K memory card (2102) 7$5.00; 2K/4K (word) PROM card kit, less EPROMs $55.00, (W/2EA 1702A) $111.00 W/ 16EA 1702A $167.00) boards available separately. ELECTRONIC DISCOUNT SALES, 138 N. 81st Street, Mesa, AZ 85207

SHOOT OUT
JUST ONE OF THE 16 GAMES YOU CAN PLAY WITH OUR NEW INCREDIBLE HANDHELD ELECTRONIC GAME SATISFACTION GUARANTEED ASSEMBLED & PPD.$8.95 KIT $6.95

INTERSTAR 27957T CABOT RD. LAGUNA NIGUEL, CA. 92677

ORGAN KITS KEYBOARDS
THE ULTIMATE IN DESIGN AND SOUND
DEMO RECORD AND BROCHURE $1.00

DEVTRONIX ORGAN PRODUCTS, Dept.4B
5782 Amapola Dr. • San Jose, CA 95129

LINEAR amplifier, 3-30Mhz, 100 watt mobile. Construction plans, $3.00, WILSON, Box 5516-FA, Walnut Creek, CA 94596

EDUCATION & INSTRUCTION
TELEPHONE bugged? Don't be Watergated! Countermeasures brochure $1.00. NEGEYE LABORATORIES, Box 547-RE, Pottsvrboro, Pa. 17641

F.C.C. EXAM MANUAL
PASS FCC EXAMS Memory, study-techniques Answers for FCC 1st and 2nd class Radio Telephone licenses. Many revised multiple choice questions and diagrams over all areas included in FCC exams, plus Self-Study Study Kit. 1st class prepaid. Money back guarantee.

COMMAND PRODUCTIONS P.O. BOX 26381SH RADIOTELEVISION DIV • SAN FRANCISCO, CALIF. 94126

FREE educational electronics catalog. Home study courses. Write to: EDUKITS WORKSHOP, Dept. 287G, Hewlett, NY 11557

GRANTHAM'S FCC License Study Guide—377 pages, 1465 questions with answers/discussions—covering third, second, first radiotelephone examinations. $10.70 postpaid. GSE PUBLICATIONS, 2000 Stoner, Los Angeles, CA 90025
S.D. SALES CO.

Z-80 CPU CARD KIT
FOR IMSAI/ALTAIR

$149. KIT

Kit shipped with 2 MHZ crystals for existing 500NS memory. Easily modified for faster RAM chips when the prices come down.

Kit includes Zilog Manual and all parts.

JUMBO LED CAR CLOCK $16.95 KIT

You requested it! Our first DC operated clock kit. Professionally engineered from scratch to be a DC operated clock. Not a makeshift kludge as sold by others.

Features: Bowmar 4 digit .5 inch LED array, Mostek 500252 super clock chip, on board precision time base, 12 or 24 hour real time format, perfect for cars, boats, vans, etc. Kit contains PC board and all other parts needed. (except case). 50,000 satisfied clock kit customers cannot be wrong!

FOR ALARM OPTION ADD $1.50 FOR XFMR FOR AC OPERATION ADD $1.50

60 HZ CRYSTAL TIME BASE FOR DIGITAL CLOCKS
S.D. SALES EXCLUSIVE!

KIT FEATURES:
A. 60HZ output with accuracy comparable to a digital watch.
B. Directly interfaces with all MOS Clock Chips.
C. Super low power consumption. (1.5 ma typ.)
D. Uses latest MOS 17 stage divider IC.
E. Eliminates forever the problem of AC line glitches.
F. Perfect for cars, boats, campers, or even for portable clocks at ham field days.
G. Small Size, can be used in existing enclosures.

KIT INCLUDES CRYSTAL, DIVIDER, IC BOARD PLUS ALL OTHER NECESSARY PARTS & SPECS

50HZ CRYSTAL TIME BASE KIT - $6.95

All the features of our 60HZ kit but has 50HZ output. For use with clock chips like the 500252 that require 50HZ to give 24 hour time format.

THIS MONTH'S SPECIALS!
300.00 KHZ CRYSTAL - $1.50
8080A - CPU CHIP by AMD - $19.95
82S129 - 256 x 4 PROM - $2.50
N.S. 8865 OCTAL DARLINGTON DRIVERS 3 for $1.00
Z-80 - CPU by ZIGOL - $69.95
MM5204 - 4K EPROM - $7.95

Prices in effect this month only!

4K LOW POWER RAM BOARD KIT THE WHOLE WORKS - $89.95

Imsai and Altair 8080 plug in compatible. Uses low power static 21L02-1 500ns. RAM's, which are included. Fully buffered, drastically reduced power consumption on board regulated, all sockets and parts included. Premium quality plated thru PC Board.

SIGNETICS ANALOG MANUAL - $5.95

Just out! From the acknowledged leader in linear technology. Theory, applications, and specs. on op amps, timers, phase locked loops, etc. 637 pages.

A MUST For Any Technical Library!

STICK IT! in your clock
$3.95

Huge Special Purchase
Not Factory Seconds
As sold by others!

BUY 3 for $10.

STICK IT!
In your clock
in your DVM, etc.

4 JUMBO .50" DIGITS ON ONE STICK!
(with colours and AM/PM Indicator)

BOWMAR 4 DIGIT LED READOUT ARRAY

The Bowmar Opto-Stick. The best readout bargain we have ever offered. Has four common cathode jumbo digits with all segments and cathodes brought out. Increased versatility since any of the digits may be used independently to fit your applications. Perfect for any clock chip, especially direct drive units like 50380 or 7010. Also use in freq. counters, DVM's, etc. For 12 or 24 hour format.

UP YOUR COMPUTER!

21L02-1 1K LOW POWER 500 NS STATIC RAM
TIME IS OF THE ESSENCE!

And so is power. Not only are our RAM's faster than a speeding bullet but they are now very low power. We are pleased to offer prime new 21L02-1 low power and super fast RAM's. All new, first quality, name brand, Try one pack today and you'll reorder more. SPECIAL 12/$1.

WESTERN DIGITAL UART
No. TR16028, 40 pin DIP
This is a very powerful and
popular part.
NEW-$6.95 with data
LIMITED QUANTITY

RESISTOR ASSORTMENT
1/4 W 5% and 10%,
PC leads. A good mix
of values.
200/$2.

FAIRCHILD BIG LED READOUTS
A big .50 inch easy to read
character. Now available in
either common anode or
common cathode. Take your
pick. Super low current draw.
As a result, all parts, all sockets, and
of course, all NMOS. The
FND 510 Common Anode
FND 503 Common Cathode
PRICE SLASHED! 50c each

TERMS:
Money Back Guarantee. No
COD. Texas Residents add 5% tax. Add 5% of
price for postage and handling. Orders
under $10, add $75. Foreign
orders: US Funds ONLY!

CALL YOUR BANK
AMERICARD OR MASTER CHARGE ORDER IN ON OUR
CONTINENTAL UNITED STATES TOLL FREE:
1-800-527-3460
Texas Residents Call Collect
214/271-0022

S.D. SALES CO.
P.O. BOX 28810 C
Dallas, Texas 75228

CIRCLE 70 ON FREE INFORMATION CARD

97
FAIRCHILD TECHNOLOGY KITS

- Complete Specifications on back of each kit
- Packaged for WALL DISPLAY APPEARANCE
- Dealer's Inquiries invited — Price List Available

<table>
<thead>
<tr>
<th>KIT</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400N TTL</td>
<td>7400 Series TTL Package</td>
<td>$1.75</td>
</tr>
<tr>
<td>74S00</td>
<td>74S00 Series CMOS</td>
<td>$2.25</td>
</tr>
<tr>
<td>74L00</td>
<td>74L00 Series CMOS</td>
<td>$2.75</td>
</tr>
<tr>
<td>74M00</td>
<td>74M00 Series CMOS</td>
<td>$3.25</td>
</tr>
<tr>
<td>74A00</td>
<td>74A00 Series CMOS</td>
<td>$3.75</td>
</tr>
<tr>
<td>74K00</td>
<td>74K00 Series CMOS</td>
<td>$4.25</td>
</tr>
<tr>
<td>74H00</td>
<td>74H00 Series CMOS</td>
<td>$4.75</td>
</tr>
<tr>
<td>74E00</td>
<td>74E00 Series CMOS</td>
<td>$5.25</td>
</tr>
<tr>
<td>74D00</td>
<td>74D00 Series CMOS</td>
<td>$5.75</td>
</tr>
<tr>
<td>74C00</td>
<td>74C00 Series CMOS</td>
<td>$6.25</td>
</tr>
<tr>
<td>74B00</td>
<td>74B00 Series CMOS</td>
<td>$6.75</td>
</tr>
<tr>
<td>74A00</td>
<td>74A00 Series CMOS</td>
<td>$7.25</td>
</tr>
<tr>
<td>74K00</td>
<td>74K00 Series CMOS</td>
<td>$7.75</td>
</tr>
<tr>
<td>74H00</td>
<td>74H00 Series CMOS</td>
<td>$8.25</td>
</tr>
<tr>
<td>74E00</td>
<td>74E00 Series CMOS</td>
<td>$8.75</td>
</tr>
<tr>
<td>74D00</td>
<td>74D00 Series CMOS</td>
<td>$9.25</td>
</tr>
<tr>
<td>74C00</td>
<td>74C00 Series CMOS</td>
<td>$9.75</td>
</tr>
<tr>
<td>74B00</td>
<td>74B00 Series CMOS</td>
<td>$10.25</td>
</tr>
</tbody>
</table>

DISCRETE LEDS

- Yellow
- Red
- Green
- Blue

<table>
<thead>
<tr>
<th>Type</th>
<th>Polarity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>Common Anode</td>
<td>$0.10</td>
</tr>
<tr>
<td>74</td>
<td>Common Cathode</td>
<td>$0.12</td>
</tr>
</tbody>
</table>

IC SOLDERABLE - LOW PROFILE (TMR) SOCKETS

- Various types and packages available

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>$0.15</td>
</tr>
</tbody>
</table>

IC SOLDERABLE - STANDARD (TMR)

- Suitable for general use

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>$0.20</td>
</tr>
</tbody>
</table>

SOLDERABLE STANDARD (GOLD)

- Gold-plated for improved reliability

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>$0.25</td>
</tr>
</tbody>
</table>

WIRE WRAP SOCKETS (GOLD) LEVEL #2

- Designed for industrial applications

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>$0.30</td>
</tr>
</tbody>
</table>

WIRE WRAP TOOL

- Ideal for precise wiring and assembly

<table>
<thead>
<tr>
<th>Tool</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>$0.50</td>
</tr>
</tbody>
</table>

WIRE WRAP WIRE

- Available in various gauges

<table>
<thead>
<tr>
<th>Wire</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>$0.75</td>
</tr>
</tbody>
</table>

RESISTOR ASSORTMENTS

- 50 PCS. 1% Tolerance $1.75 PER ASST.
- 2% Tolerance $1.75 PER ASST.

<table>
<thead>
<tr>
<th>Assortment</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>$1.75</td>
</tr>
</tbody>
</table>

CAPACITOR

- 10V, 470V, 630V, 1000V, 1500V

<table>
<thead>
<tr>
<th>Cap</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>$0.50</td>
</tr>
</tbody>
</table>

Note: All prices subject to change without notice. Please check for the most current pricing and availability.
Where to get it.

Equipment, parts, supplies and services. Hard to find and standard items at bargain prices.

Over 600 places to find transceivers, antennas, surplus, new and used equipment, µPs/computers, ICs, components, assortments, assemblies, discounted items, test equipment, peripherals, etc. Hundreds of large and small mail order sources.

A complete directory divided by sources, items and locations. Saves countless hours of shopping. Easily pays for itself through comparative buying. Contains no advertising.

Rush my order. I enclose $5.95 plus 55¢ postage and handling. Californians add 39¢ sales tax. Full refund if not completely satisfied within 10 days.

Name __

Address __

City/State/Zip ___

Primary interest: Amateur Radio ☐ CB ☐ Experimenting ☐ µPs/Computers ☐

Send to: Peninsula Marketing Dept. B

12625 Lido Way

Saratoga, CA 95070

100 CIRCLE 41 ON FREE INFORMATION CARD

EQUIPMENT REPORTS

continued from page 29

be useful in checking touchy circuits where meter loading is important. The action is the same on any scale; it is now changeable.

The inputs of both are electrically protected: DVM-35 up to 1,000 volts and DVM-36 up to 2,000 volts. An internal shunt diode is used. Beside this: if you unscrew the red tip of the probe, you'll find a fast-blow 2.0A fuse! This is nice for those places where "you didn't know the gun was loaded". If you do manage to pop this fuse, be sure to use a fast-blow type for replacement. This is a standard 2A 3AG fuse.

A slip-on high-voltage probe, HP200, can be used to go up to 50 kV. This can also be used on lower voltage ranges if a very high impedance is needed.

Both models are powered by 6 AA batteries inside the case. NiCad batteries can be used; a recharger unit, PA4-202, can be used for bench work. The unit can be used for portable work by pulling the charger plug. Battery condition may be checked at any time by setting to the 10- or 20-volt DC scale and touching the tip of the charger-socket terminal.

The instruction manual covers all possible uses of the instrument. A service manual, parts list and color-coded schematic diagram are included. Test and calibration procedures are given in the back pages. A novel feature is used, for the benefit of those who are new to digital voltmeters. A tape cassette, with recorded instructions and references to pages of the manual, comes with every instrument. This can be played while reading the manual and checking the instrument.

R-E

TV corporations, labor unions ask for color TV import quotas

Eleven labor organizations and five corporations have petitioned the United States International Trade Commission for import quotas on color TV sets. The petition is one of the largest yet filed under the escape clause provisions of the new Trade Act that was made law last year. All but one of the petitioners—GTE Sylvania, Inc.—are banded together in a new organization, the Committee to Preserve American Color Television (COMPACT).

"Imports from abroad have already captured two-thirds of the American market for black-and-white, and they are now moving aggressively to capture the more than $2 billion-plus domestic market for color receivers," says Allen W. Dawson, executive vice president of Corning Glass Works and co-chairman of COMPACT.

Business Week reports that "the Japanese now claim 31 percent of the United States color TV set market." According to Jacob Clayman, secretary-treasurer of the AFL-CIO Industrial Union Department, the other co-chairman of COMPACT, "some 65,000 jobs are at stake in this action (the petition) and many of these have been lost already." He reported that ten years ago, an estimated 240,000 imported color sets were sold in this country. By 1975, imports had risen to 1,214,000 sets and at the current rate of increase they are expected to exceed two million in 1976.

BUSINESS OPPORTUNITIES

HIGHLY PROFITABLE ONE-MAN ELECTRONIC FACTORY

Investment unnecessary, knowledge not required, sales handled by professionals. Ideal home business. Write today for facts! Postcard will do. Barta-BM, Box 248, Walnut Creek, CA 94597.

INCREASE TV set sales with your own, exclusive newspaper column. For free details, write TELEVISION TIPS, P.O. Box 157, Clarkston, GA 30021

YOUR HOBBY EXPENSES ARE TAX DEDUCTIBLE!

FOR FREE INFORMATION WRITE FINANCIAL MANAGEMENT ASSOC., INC. BOX 82129 AD SAN DIEGO, CA 92138

WANTED

TV JAMMER

Amaze your friends! Makes TVs go into distortion. Max range 20`. In easy KIT FORM. 92.65

* SEND FOR FREE CATALOG *

ELECTRONICS COMPANY

8627 Tobias Ave. Van Nuys Ca. 91405

WANTED old Rider's, Sams', Supreme manuals. BEITMAN, 1760 Balsam, Highland Park, IL 60035
COMPLETE ALARM CLOK

*4 Digits 0.5" LED with brightness control
*12 Hour display with AM/PM indication
*True 24 hour alarm with repeatable snooze
*Power failure indicator for power interrupt

MODEL EC 400
(Not A Kit)
Only $22.80
ON SALE $17.50 ea.

RCA FM-AM MUX TUNER

ALL BRAND NEW BUT NO CASE
(Power Supply Not Included)

Special Price $16.00 each

RCA 12 WATT PER CHANNEL
FM-AM MUX TUNER AMP
All brand new but no case.

Special Price $35.00 each

CLOCK KITS!
THE MOST POPULAR

MM5314 KIT
WITH A NEW CASE!!
Features; 12/24 Hour Display
50/60 Hz Input 6 Digits Readout
Kit includes Grey Color Plastic Case
MM5314 Clock Chip PC Boards and Trans
former, 6 Green Color 0.3" Tube Readouts,
All other transistor Drivers and Other Components

Special Only $19.95 ea.

MODEL CT7001
0.5" Green Color 6 Digits
with MONTH & DATE
50/60Hz MUX M.C.

Only $28.50 ea.
CASE ONLY $6.00 EACH

VOLTAG REGULATORS

ALL POSITIVE OUTPUT
FAIRCHILD 78 MG
Adjustable Volt Regulators
500MA 5V 30V Output
with data only $1.50 ea.
LM340T 1 amp Output
5V, 6V, 9V, 12V, 15V, 24V
only $1.10 ea.

MINI SIZE REGULATOR
in TO-92 package
78L05, 78L012 by Fairchild
Low Power 100MA Output
only $0.60 ea.

LM300K 5V 1amp TO-3 $1.00 ea.

3 AMP POWER SUPPLY

UA723 REGULATED
5V and 12V
Input 110AC
only $19.50
*Postage for this item
$2.50

LED READOUTS

LARGE CLOCK PANEL!
1/2" high 9 digit bargraph orange display on a 3" X 3/4" panel

5V OUTPUT $10.50 ea.

JUMBO LED

500 MA RED COLOR

7 LED $9.00

AC ADAPTERS

110V Input
4 6V 100MA 6V 100MA
by 200MA 12 6V 120MA
by 200MA $2.65 each
3.50 ea.

TRANSFORMERS
110V coil
12 V 12 V Amps
$2.75 ea.

12 V 12 V Amps
$2.75 ea.

6.3V 10 AMP $9.95 ea.

500MA 12V $9.95 ea.

5V REED RELAY

DPST Special $2.25 each
2 for $4.00

5V RELAY

Special Only $19.95 ea.

AUTO ALARM KIT

The Contraband Audio Alarm is a microcontroller controlled alarm circuit to be added within the clock dependant upon the crystal to be activated.

Two minutes after turning off the alarm, the alarm is automatically turned off automatically.

When the alarm is activated the alarm will continue to sound for 10 minutes before automatically turning off. The alarm is to be set and in place to be turned off. The alarm is designed to be set with a 10 minute delay.

FEATURES

- Alarm function
- Time delay
- Adjustable volume
- programmable

$8.00 ea.

150A METER

Only $1.50 ea.

50 UA PANEL METER

Only $2.90 ea.

QUAD VOLUME CONTROL

1000 Volume Control
Input 0.5V full scale
Output 0-5V full scale

Only $16.50 ea.

FORMULA INTERNATIONAL INC.

12035 CRENSHAW BOULEVARD • HAWTHORNE CALIFORNIA 90250
For more information phone toll free 1-800-679-5162
STORE HOURS 10-2 MONDAY-SATURDAY

MINIMUM ORDER $10.00
ON ORDER ONLY
SEND CHECK OR MONEY ORDER TO

JANUARY 1977

CIRCLE 19 ON FREE INFORMATION CARD
DELTA ELECTRONICS CO.
P.O. BOX 2, AMESBURY, MASS. 01913

For faster service
USE ZIP CODE
on all mail

Good computer boards for parts are getting scarce. We have
assembled a G.E. computer, and can offer 5 boards load-
ed with parts. A sample shows over 60 transistors, over 250
W and 5% resistors, over 100 diodes plus tantalum caps, dipol-
ed mylar caps, mylar caps pulse transformers and much more.

STOCK NO. R6448 3 ass. boards, $3.00 10/5.00

44 POLE G.E. REED SWITCH

Most unusual board contains 44 reed switches, in 4 banks of
11 each. Any or all banks can be acti-

 stroded at one time.

Four separate coils, each enclosing 11
reed, slide over the board.

The coils require 12 VDC. The set consists of one 44 reed board, and
4 coils.

STOCK NO.R5668 $12.50 per set. 2 sets $25.00

TRANSFORMER - Ferro-Resonant. 115 V. Pri. 2 tapped sec. 11/14 V. 10 A. 220/117 V. 14 A. Plus 150 VA isolation winding.
STOCK NO.R6492 ML. 20 lbs. $19.50 ex. 2/7.00

Send for our latest free catalog. Minimum order $5, phone orders
welcome. (617) 386-7055. include sufficient postage, excess will
be refunded. BANKAMERICAN & MASTERCHARGE welcome, ALL numbers needed for processing. Minimum charge $15.

CIRCLE 31 ON FREE INFORMATION CARD
TEXAS INSTRUMENTS

MOS & BI-POLAR REMEMORIES

Fairchild

<table>
<thead>
<tr>
<th>2102-P</th>
<th>2106-P</th>
<th>3106-P</th>
<th>3147-P</th>
<th>3147AC</th>
<th>4096-SDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.95</td>
<td>2.00</td>
<td>2.05</td>
<td>2.25</td>
<td>2.50</td>
<td>2.75</td>
</tr>
</tbody>
</table>

Texas Instruments

<table>
<thead>
<tr>
<th>TMS1017JC</th>
<th>TMS3131NC</th>
<th>TMS3132NC</th>
<th>TMS1424NC</th>
<th>TMS1402NL</th>
<th>TMS1403NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.00</td>
<td>14.95</td>
<td>4.95</td>
<td>9.50</td>
<td>9.50</td>
<td></td>
</tr>
</tbody>
</table>

CMOS

<table>
<thead>
<tr>
<th>CD4006BE</th>
<th>CD4001BE</th>
<th>CD4002BE</th>
<th>CD4003BE</th>
<th>CD4004BE</th>
<th>CD4005BE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.96</td>
<td>2.96</td>
<td>2.96</td>
<td>2.96</td>
<td>2.96</td>
<td>2.96</td>
</tr>
</tbody>
</table>

Linear Voltage Regulators

<table>
<thead>
<tr>
<th>L7100 Series</th>
<th>LM7100 Series</th>
<th>LM7200 Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00 Positive Voltage Regulators</td>
<td>1.00 Positive Voltage Regulators</td>
<td>1.00 Positive Voltage Regulators</td>
</tr>
</tbody>
</table>

Active Electronic

CIRCLE 32 ON FREE INFORMATION CARD
JANUARY SPECIALS

CENTRAL PROCESSING UNIT

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>8008</td>
<td>$10.99</td>
</tr>
<tr>
<td>8080</td>
<td>$19.95</td>
</tr>
</tbody>
</table>

1702A 2046 bit static PROM

- electro. - UV eras. - 24 pin...
- for $6.05

1702 1004 BIT STATIC RAM

- DTL/TEL comp. - 16 pin...
- for $1.49

TANTALUM CAPACITOR KIT

- $19.95

DISK CIRCUIT

- $4.52

IC Sockets

- Socket Tall - low profile...
- for $0.17

RESISTOR KIT

- 180 carbon film resistors ± 5%, 1/8 watt...
- for each of 12 values utility box...
- for $9.95

TANTALUM CAPACITOR KIT

- Solid dipped 2000...
- for $33.95

MEMORIES

- 1103 - 95...
- for $1.95

LINEAR

- LED...
- for $10.04

Electronic Games

- A great gift idea or for your own family entertainment center...
- has all necessary components, 3 switches and complete assembly instructions with schematics.
- For sale...
- for $13.95

6 Digit Clock Kit

- MM313 with 6 NS71 - 272 displays 2 P.C. boards...
- display board may be remote...
- for $10.95

7 Digit Clock Kit

- MM313 and 4 NS71 - 272 displays 12 hour...
- dual P.C. board...
- for $4.95

Electronic Craps

- Dimensions 6 ft. x 6 ft. x 11 ft...
- for $23.95

AUTO CLOCK KIT

- 8 3/8" red LED...
- for $1.95

DISPLAYS

- $3.95

OPTO ISOLATORS

- McC-1 Opto isolator diode...
- for $1.99

MULTIPLE DISPLAYS

- $9.95

SPECIAL DEVICES

- $2.95

I.C. BREADBOARD

- Accommodates 1 IC pin (IC's with additional sockets...
- for $1.95

FREE CATALOG AVAILABLE ON REQUEST

Satisfaction guaranteed. Shipment will be made postage prepaid within 3 days from receipt of order. Payment may be made with personal check, charge card (include number and exp. date), or money order. Phone Orders — Boa/A and M/C Card or C.O.D. Add $1.00 to cover shipping and handling if order is less than $10.00. Call your local residents add 1% sales tax. Include shipping expense for orders of $100.00 or over.

INTERNATIONAL ELECTRONICS UNLIMITED

P.O. BOX 3036-R
MONTEREY, CA. 93940 U.S.A.

PHONE: (408) 563-3179
6 Digit LED Clock Kit - 12/24 hr.

<table>
<thead>
<tr>
<th>QTY.</th>
<th>price</th>
<th>OQTY.</th>
<th>price</th>
<th>QTY.</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 or 24</td>
<td>$9.95 ea.</td>
<td>OR MORE</td>
<td>$10.95</td>
<td>OR</td>
<td>$11.95 ea.</td>
</tr>
</tbody>
</table>

KIT INCLUDES
- **INSTRUCTIONS**
- **QUALITY COMPONENTS**
- **50 or 60 Hz OPERATION**
- **2 or 12 OPERATION**

"Kit #850-4 will furnish a complete set of clock components as listed. The only additional items required are a 7-12 VAC transformer, a circuit board, and a cabinet, if desired."

Printed Circuit Board for kit #850-4 (etched & drilled fiberglass)...

MOBILE LED CLOCK

12 OR 24-HOUR OPERATION

12 VOLT AC OR DC POWERED FOR FIXED OR MOBILE OPERATION. SIX LARGE, "4" DIGITS!

MODEL 2001

JUMBO LED RED's

12/1.00

50/5.95

6 Digit LED Clock-Calendar-Alarm Kit

This is a complete, top of the line, kit for the person that wants the best. Some of the many features and options are: 12/24 time, 28-30-31 day calendar, alternates time (8 sec) and date (2 sec) or can display time only and date on demand, 24 hr alarm - 10 minute snooze, alarm set indicator, 50/60 Hz. line operation or use with Xtal time base (Model-1), built in OSC for battery back-up / AC failure, Aux. timer, CHOICE OF DIGITS.

CABINET I

3\(^\circ\),6\(^\circ\),W,5\(^\circ\),D

CABINET II

2\(^{\circ}\),H,5\(^{\circ}\),W,4\(^{\circ}\)

ANY SIZE/COLOR

$6.50 ea.

7-SEG LED COMMON CATHODE

COLOR

- **WHITE**
- **RED**
- **GREEN**
- **BLUE**
- **ORANGE**
- **PURPLE**
- **PINK**
- **AMBER**
- **YELLOW**

100/1.35 each

Order by phone or mail COD ORGERS WELCOME 11% CMG. Orders Under $15 Add $1.00 Handling. Fla. Res. Please Add 4% Sales Tax.

Plexiglas Cabinets

Great for Clocks or any LED Digital project. Clear-Red Chassis serves as Bezel to increase contrast of digital displays.

Black, White or Clear Cover **$6.50 ea.** 2/12.
NEW! THE UNIQUE EDMUND 4¾", 1/4 NEWTONIAN RICHEST FIELD REFLECTOR TELESCOPE.

Clearest, brightest, most spectacular wide angle views of moon, stars, comets, galaxies ever—and portable! See heavenly wonders...Sets up in seconds (precollimated, ready to use). Pop the eye piece in, focus—and zoom! Its field of view gives you more stars in a single view than any other type scope. Bright, crisp, finely resolved images. For sky gazing and earth gazing! Take it anywhere (only 17" x 10 lbs), easily use it over your shoulder (has adjustable carrying strap). In your lap, on a tripod, rotate the spherical base on its mount for use on a table, car hood. Top quality optical system features 4¼", 1/4 parabolic primary mirror (4½" wave, 17" F.L.). Standard 28mm Kellner eyepiece (5X). No other telescope like it. It's even bright red!

Based on wind—no charts, dials—no computations! Program WW for your location once, then forecasting automatically. Who needs TV in your van, house, boat, or car! 1000 ft. of cable, 5x4x3½" control unit, instruct.

No. 72,200EH... (110V, 60 CYCLES)...

$99.95 Pdp.

CLEAN! GLANCE AT WEATHER WEATHER COMPUTERIZED Glance at our Weather Wizard and know what to expect for the next 8-18 hrs. Roofmounted windvane sends pulses to indoor control unit programmed w/75 yrs. data. Interprets on 3 panel lights (Unsettled, Fair, Change). Be up to 90-95% accurate (better than most pro's)!

Based on wind—no charts, dials—no computations! Program WW for your location once, then forecasting automatically. Who needs TV in your van, house, boat, or car! 1000 ft. of cable, 5x4x3½" control unit, instruct.

No. 72,200EH... (110V, 60 CYCLES)...

$99.95 Pdp.

MY KNOW YOUR ALPHA FROM THETA! For greater relaxation, concentration, listen to your Alpha-Theta brainwaves. Ultra-sensitive electrode headband slips on/off in seconds—eliminates need for messy creams, etc. Attch'd to amplifier, filters brainwaves, signals beep for ea. Alpha or Theta wave passed. Monitoring button simulates Alpha sound; audio & visual (L.E.D.) feedback. Reliable, easy-to-use unit—comparable to costlier models. Complete safety. Comprehensive instruction booklet. No. 1636EH... (6x3½"; 24 oz.)...

$149.95 Pdp.

LOW COST "STARTER" UNIT No. 71,809EH...

$9.95 Pdp.

3000 MI. POWER FOR AM RADIOS Remarkably Clearer Reception! Get ball games from distant cities, your old hometown, up to 3000 miles away (subject to local conditions). Deluxe Ultra-sensitive AM Antenna pre-amplifies signal before it goes into your hi-fi AM receiver or turntable. Nulls interference. Great for marginal AM reception areas! Shielded ferrite rod 6-½ lb. directional indoor antenna has 2-stage FET amplifier with frequency & sensitivity controls for precise selection, optimum reception. Easily attch'd. 110VAC, 60 cycles.

No. 72,263EH... (3-3/8x9-1/16"")...

$177.50 Pdp.
The Reference Solution Is Vastly Improved

Introducing D3

- significantly higher “activity” ratios.
- incredibly low parts-per-billion but highly effective anti-static system.
- a chemical “release system” that allows fluid and suspended compounds to pull away from record micro-grooves.

Only from Discwasher labs.
Better performance without increased price.

Discwasher Group
1407 N. PROVIDENCE
COLUMBIA, MO 65201
THE COBRA 32XLR.
A TECHNOLOGICAL PUNCHTHROUGH.

Cobra has a reputation for punching through loud and clear. The new Cobra 32XLR, of course, continues the reputation. And creates another—for innovative design, superb engineering and technical superiority.

Start with the illuminated 4-in-1 meter. It tells you exactly how much power you're pushing out and pulling in. As well as monitoring your modulation in precise percentages. And measuring your punch with an SWR check. In short, the 32 XLR lets you keep an eye on your ears.

ScanAlert, Cobra's unique scanning system, continually monitors Channel 9 when you're on another channel. If an emergency comes up, the ScanAlert light goes on. And the incoming message automatically locks the receiver on the active channel.

The 32XLR's Digital Channel Selector is the very latest. With large LED numerals—for a read-out that registers clearly and quickly Plus switchable “pulse block” noise blanking that rejects short-pulse noise not normally blocked by other systems. Which makes it the most effective in the business. Finally, add automatic noise limiting, Dynamike Plus (with built-in power mike) and Delta Tuning.

The new Cobra 32XLR. It has virtually everything. And it has everything to do just one thing. Punch through loud and clear.

Punches through loud and clear.
Cobra Communications Products
DYNASCAN CORPORATION
6460 W Cortland St., Chicago, Illinois 60635

For Information on our complete line write for brochure #CB-2

CIRCLE12 ON FREE INFORMATION CARD