COMPLETE PLANS – BUILD YOUR OWN COMPUTER

75¢ MAY 1976

BUILD ONE ONE OF THESE
★ 8080 Microcomputer
★ Ignition For Your Car

LEARN SOMETHING NEW
★ About Function Generators
★ Komputer Korner
★ Understanding Graphs

HI-FI-STEROE
★ Phase Response In Speakers
★ R-E Lab Test Reports
 Lafayette Stereo Receiver
 Marantz 2325 Receiver

TELEVISION
★ MATV Accessories Roundup
★ Jack Darr’s Service Clinic
★ Service Problems Solved
★ Equipment Reports

www.americanradiohistory.com
"When I started using PTS, it was like gaining two hours a day."

That's not an uncommon testimonial from hundreds of PTS customers all over the country. Just consider how much time you spend on the average tuner repair in your own shop. That's how much shop time you could gain for each tuner job you turn over to your nearest PTS Service Center. Taking the tuner repair load outside, frees up inside time for more business and greater income. We can repair most any tuner of the thousands in use, have most repairs ready in one day and guarantee the work for one year.
Can anyone beat the Altair System?

When it comes to microcomputers, Altair from MITS is the leader in the field.

The Altair 8800 is now backed by a complete selection of plug-in compatible boards. Included are a variety of the most advanced memory and interface boards, PROM board, vector interrupt, real time clock, and prototype board.

Altair 8800 peripherals include a revolutionary, low-cost floppy disk system, Teletype™line printer, and soon-to-be announced CRT terminal.

Software for the Altair 8800 includes an assembler, text editor, monitor, debugger, BASIC, Extended BASIC, and a Disk Operating System. And this software is not just icing on the cake—it has received industry wide acclaim for its efficiency and revolutionary features.

But MITS hasn't stopped with the Altair 8800. There is also the Altair 680—complete with memory and selectable interface—built around the new 680 microprocessor chip. And soon-to-be announced are the Altair 8800a and the Altair 8800b.

MITS doesn't stop with just supplying hardware and software, either. Every Altair owner is automatically a member of the Altair Users Group through which he has access to the substantial Altair software library. Every Altair owner is informed of up-to-date developments via a free subscription to Computer Notes. Every Altair owner is assured that he is dealing with a company that stands firmly behind its products.

After all, we didn't become the leader by messing around. Shouldn't you send for more information or visit one of our Altair dealers?

Altair Coupon
Please send me the following information:
☐ Your latest catalog and price list
☐ Software information package
☐ Please include a list of your dealers

NAME: ____________________________
ADDRESS: ____________________________
CITY: ______________ STATE & ZIP: ____________

MAY 1976

www.americanradiohistory.com
Super Case

Vaco means value and variety.

Like our Super Case. A great value with great variety. 48 professional problem-solving tools from screwdrivers and nutdrivers to pliers, wrenches, crimping tools, and more! All right at hand. And all unconditionally guaranteed.

You’ll find the Super Case and all the other fine Vaco tools in our exciting new 64-page Bicentennial Catalog. FREE for the asking! Just write:

Vaco Products Co., 510 N. Dearborn St., Chicago, Illinois 60610.

Send for your FREE

64 colorful pages with the complete Vaco selection.

1976 VACO catalog!

Circle 3 on reader service card
SPECIAL FEATURES

33 Build Dyna-Micro 8080 Computer
Complete plans of a microprocessor that's easy to build and use. by Jon Titus

37 MATV/CATV Accessories
The working parts of antenna systems up close. by Warren Roy

BUILD ONE OF THESE

47 Electronic Ignition For Your Car
Solid-state system can be used with any standard ignition coil. by Dick Pace

GENERAL ELECTRONICS

4 Looking Ahead
Preview of tomorrow's news today. by David Lachenbruch

18 Komputer Korner
Input-output devices. by Jon Titus, David Larsen & Peter Rony

50 R-E Lab Tests Lafayette LR-2200
This new receiver comes up with a "very good" rating. by Len Feldman

60 Using Charts & Graphs
How they work and how you can make the most of them. by Irving Gottlieb

69 State-Of-Solid State
Microprocessor IC's and systems. by Karl Savon

HI-FI STEREO AUDIO

43 Linear Phase Response
A new parameter for measuring speaker-system performance. by Len Feldman

50 R-E Lab Tests Lafayette LR-2200
This new receiver comes up with a "very good" rating. by Len Feldman

56 R-E Lab Tests Marantz 2325
A new stereo receiver runs the gamut at our test lab. by Len Feldman

TELEVISION

24 Equipment Report
American Technology ATC-10 Color Generator.

30 Equipment Report
Hewlett-Packard 3476A Digital Multimeter.

40 All About Function Generators
"Part I" Everything you always wanted to know about how they work and how to use them. by Charles Gilmore

63 Service Clinic
Loop circuits—circuits that control themselves. by Jack Darr

87 Reader Questions
R-E's Service editor Solves reader problems.

DEPARTMENTS

110 Advertising Index 6 New & Timely
12 Advertising Sales Offices 86 New Literature
14 Letters 78 New Products
93 Market Center 89 Next Month
113 Reader Service Card

ON THE COVER

The computer hobbyist needs a better machine. So we've introduced the "dyna micro." It's an 8080 architecture on a single circuit board. We'll be presenting complete plans and construction information starting on page 33 in this issue.

SOLID-STATE IGNITION for your car isn't a difficult project. This unit is easy to build and works with almost any standard ignition coil. .. see page 47

PHASE RESPONSE in speaker systems is an important measurement. Here's how a third speaker can fill the null between woofer and tweeter. .. see page 43

Subscription Service: Mail all subscription orders, changes, correspondence and Postmaster Notices of undelivered copies (Form 3579) to Radio-Electronics Subscription Service, Boulder, CO 80302.

A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs if their return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.

As a service to readers, Radio-Electronics publishes available plans or information relating to newsworthy products, techniques and scientific and technological developments. Because of possible variances in the quality and condition of materials and workmanship used by readers, Radio-Electronics disclaims any responsibility for the safe and proper functioning of reader-built projects based upon or from plans or information published in this magazine.
Secret picture tube

Around the television industry it had been rumored for some time that Zenith was up to something big in picture tubes. Suspicion grew after an unusually large number of new picture tube patents were issued to Zenith scientists and engineers. Then Tele- vision Digest, a trade publication, broke the story that Zenith had developed a "radically new picture tube, re-engineered from glass to gun, yoke to mask," that would provide higher performance at considerably lower cost than present designs.

Zenith finally confirmed that it did indeed have a new color tube that would be introduced in the 19-inch size in some sets late this summer, in other sizes next year. It indicated that the development took four years of intensive effort. In cooperation with Corning Glass Works, and that Zenith considered the new tube to be a major weapon against the inroads now being made by imports in the 19-inch size. Although Zenith hasn't yet released details, it's understood that the new tube presents a picture with a distinctive appearance, that it's lighter in weight than present types and that many operations in its production may be automated.

No picture tube

Getting rid of the picture tube completely is the goal of inventor William Glenn, whose previous contributions to television have been made at General Electric and CBS Labs. Glenn is now director of New York Institute of Technology's Science and Technology center, and he's working on a high-brightness projection television system that uses a charge-coupled device (CCD) instead of an electron gun.

The Glenn TV will be about the size of a Kodak Carousel projector and will be based on light-valve (or Ediphor) principles that use an external light source rather than a CRT to provide illumination for the projected picture. Glenn plans to use a CCD chip to modulate a membrane about the size of a 35-mm slide. A projection lamp is aimed through the membrane. The surface of the membrane is deformed by the CCD chip in accordance with the video signal. Actually, there would be three chip-membrane combinations (one for each color) converged by dichroic mirrors.

Glenn feels that his projector could make possible pictures of virtually any size, viewable in room light. "We've made small pieces of chips that work, but we don't have television resolution yet," he says, but he notes that CCD chips with adequate resolution already been made for developmental TV camera阵s. He estimates he'll have his tubeless TV in about three years.

More on projection

An increasing number of projection TV systems are coming on the market, most of them offered by small companies and based on the use of small-screen color sets, lens systems and directional Kodak EktaLite screens. Most major manufacturers have sat by with little real interest (exception—Sony, which has its own TV projector). Now the majors are beginning to stir. The most enthusiastic, apparently, is the Admiral Group of Rockwell International, whose president, Charles Urban, says: "There are so many reasons projection TV's going to fly that it's beyond the imagination. I've seen a lot of interesting ideas. Our Science Center is working on it. You'll start seeing prototypes of high-brightness systems in about a year and a half."

In addition, Zenith is understood to be underwriting development of special fresnel lenses for projection television, and General Electric is believed to be giving the projection concept another long look. Once there's a major breakthrough permitting the use of an ultra-bright light source (such as the Glenn project), projection TV could be off to the races.

New TV services

The White House Office of Telecommunications Policy has urged the FCC, broadcasters and television set manufacturers to start looking into new services that could be provided by home television without degradation of the broadcast signal. Based on a specially commissioned study made by the University of Denver, a concerted effort was urged to develop "ancillary signals for television."

The Denver study specifically dealt with three major projects: The first was stereophonic sound for television. It estimated that 10 to 25 percent of TV set buyers might be willing to pay $50 to $100 extra for stereo television sets. The second was a special captioning service for the nation's 13,000,000 people with hearing problems and 7,000,000 with limited knowledge of English. The captions would be receivable only on sets with special converters (at probably $55 to $110 installed) or on new sets equipped with captioning circuits (at $30 to $50 extra). The third was Teletext services that use the TV screen to display graphic material transmitted in the vertical interval between pictures. The report says Teletext should reach the commercial stage in the next 5 to 10 years.

One of the proposals promises to get prompt attention from the FCC. In response to an earlier petition by Public Broadcasting Service, the Commission has already proposed a special captioning system for the deaf and said it will move quickly to implement the proposal unless "compelling arguments" are offered against it. The PBS system would reserve line 21 of the vertical interval for captions, which could be decoded by optional TV set circuitry.

High-speed TV

A new, economical system for closed-circuit TV educational courses in the school or home has been developed by Peter Goldmark, president of Goldmark Communications Corp. It will be placed in service this fall in six community college districts across the country. Called Rapid Transmission & Storage (RTS), the system uses videotape or broadcast television. The tape system, RTS I, will be used this fall and makes possible the storage of up to 60 different half-hour programs on a single one-hour videocassette reel—and up to 30 may be shown simultaneously and directed to different monitors.

The RTS II system, to come later, provides for over-the-air transmission of similar information during nighttime non-program hours. A 30-minute course is transmitted in 12 seconds and stored in a special cassette recorder at the student's home for playback at will. The transmission speed of the Mark II system will make it possible to transmit 2,800 different half-hour lessons during an eight-hour period on a single channel.

AM stereo coming

The National AM Stereophonic Radio Committee (NASRC), an industry-wide organization, has set up shop to test various proposed systems to bring two ears to AM. Three systems have been proposed so far: RCA proposed one using frequency-modulated left-and-right information. Sansui and Comm Associates propose use of sideband approaches. Kahn Research Laboratories has also proposed a sideband system in the past and says it will use immediate standardization of its system by the FCC, rather than submit it to testing by NASRC.

DAVID LACHENBRUCH CONTRIBUTING EDITOR
HOW TO SAVE HUNDREDS OF DOLLARS ON PARTS. PAINLESSLY.

At CSC, we've developed a family of ingenious Design Mate™ test equipment that gives you professional quality and precision at very unprofessional prices. Each unit can save you money—and time—in a number of interesting ways. For more information on these, or any other CSC products, see your dealer or write for our catalog and distributor list.

SAVE MONEY AND TIME WITH DESIGN MATE 1
This precision all-in-one unit combines a solderless plug-in breadboarding system with a built-in better-than-1%-regulated variable 5-15V supply and 0-15V voltmeter. Gives you everything you need to design and test circuits faster than you ever could before. Saves money by eliminating lead damage and heat damage to components. Lets you re-use parts over and over again, to save even more. All for just $49.95.*

SAVE MORE MONEY AND TIME WITH DESIGN MATE 3
Accurate R/C bridge helps you use “bargain” components. Quickly and easily measures resistance 10 ohms—10 meg; capacitance 10pF-1µF—both in decade ranges to within 5% of dial setting. Simple, 2-control operation and positive LED indication make measurements in seconds. At $54.95*, it pays for itself in no time.

STRETCH YOUR BUDGET FURTHER WITH DESIGN MATE 2
Precision function generator lets you test all kinds of equipment, with 1Hz-100kHz signals. Low-distortion sine waves, high-linearity triangle waves, fast-rise-time square waves. Five decade ranges, accurate to 5% of dial setting, with variable 100mV-10V P-P output and constant 600-ohm impedance. At $64.95*, it's a lot of signal for very little money.

© 1976, Continental Specialties Corp.

*Manufacturer's suggested list. Prices and specifications subject to change without notice.
Electronic sales downtrend reversed at end of 1975

The year 1975 ended on an up-beat in all categories of consumer electronic products sales, except automobile radios, says Jack Wayman of the Electronic Industries Association (EIA). This was in contrast to the figures for the year, which were significantly lower than in 1974. In the final December sales week, television was up 19.8 percent, radio was up 66.2 percent and compact and component phonograph systems was up 10 percent.

The EIA reports color television sales for the whole of 1975 just short of 6.5 million, down 17 percent from 1974. Black-and-white TV sales were just below 5 million, down 16.4 percent from 1974. The AM and FM radio sales totaled approximately 25.5 million units in 1975, lower by 22.6 percent from the almost 33-million units sold in 1974. Automobile radio sales of about 9.2-million units were down 14.1 percent from the 1974 figures.

Total radio sales to dealers in 1975 were almost 34.7 million, a drop of 20 percent from 1974 sales. Compact and component phonograph sales to dealers, in round figures, were 3.4-million units, off 22.7 percent from the 4.4-million 1974 sales.

CSEA names Norman Wolfsel new executive director

The California State Electronics Association has announced the appointment of Norma J. Wooliscroft as successor to Howard G. Wooliscroft, the present executive director of the association. CSEA is a 21-year-old statewide trade association of more than 1,000 sales and service retailers of electronic home entertainment equipment.

Ms. Wooliscroft joins CSEA after 13 years with the California Moving and Storage Association, where she was assistant director. She is a second-year graduate of the U.S. Chamber of Commerce's Institute for Organizational Management, a member of the American Society of Association Executives and of the California society of the same name, serving for several years on its Executive Board. Until Mr. Wooliscroft's formal retirement later this year, she will assume title of assistant executive director of CSEA.

NESDA check shows big jump in number of service technicians

Figures submitted to the National Electronic Service Dealers Association by the ten major state or city licensing boards around the country indicate that the total number of service technicians in the United States has increased to 196,347—an increase of 6.5 percent—during 1975. At the same time, the number of business engaged in electronic servicing declined about 9 percent, from 72,165 in early 1975 to 66,000 at the beginning of 1976.

The increase in the number of service technicians is due to the recession, lives NESDA executive vice president Dick Glass, CET. "I think that the statistic showing 196,000 technicians is correct," he said. "My opinion is that the recession has cut overtime for many technicians working full time in other industries and has caused others to lose their jobs or be laid off. Many have therefore obtained licenses to obtain income with repair work, either for themselves or as employees of existing firms."

Radio tracking to help wolves

A Red Wolf Recovery Program has been organized by the U.S. Fish and Wildlife Service, cooperating with the Louisiana Wild Life and Fisheries Commission and the Texas Parks and Wildlife Department, with the object of preventing the wolf from becoming extinct.

Two members of the Red Wolf Recovery Program recording the vocal responses of a wolf—and any friends he might meet—on an Uher 4000 portable open-reel tape recorder.

As part of the program, wolves are fitted with collars carrying radio transmitters. Their movements are then monitored with the idea of gaining more knowledge of their wanderings and habits. The receivers are directional and make it possible to get a good idea of the whereabouts of the animal being tracked.

Technician apprenticeships initiated in Wisconsin

Through the cooperation of the Wisconsin Electronic Service Association (WESA), the Wisconsin Department of Industry, Labor and Human Relations and the Waukesha County Technical Institute, a Radio and Television Technicians Apprenticeship Program is being carried on in Wisconsin.

Apprentices will be indentured to qualified electronic service establishments in the State for a working period of 8,320 hours (approximately four years). The apprentice normally starts at 50 percent of the skilled rate for technicians and receives raises in accordance with a schedule that forms part of the apprenticeship indenture.

While working, the student will study at a certified school, or if no school is available, will take 576 hours of instruction through home study from the Waukesha County Technical Institute. Upon successful completion of all the requirements of the apprenticeship, the apprentice will receive a diploma from the Wisconsin Division of Apprenticeship and Training.

FCC moves to expand, localize Emergency Broadcast Service

The Emergency Broadcast Service (EBS) is a means for distributing emergency information swiftly to licensees and regulated services of the FCC, non-government entities and the general public. It is made up of AM, FM and TV broadcast stations operating on a voluntary, organized basis during emergencies.

At the national level, the EBS already effectively provides the President with a means of speaking immediately to all the people of the country in any time of grave national emergency. The FCC has now moved to increase the usefulness of the system by increasing its use at the state and local level for day-to-day emergencies—fires, floods or other disasters.

A key element in the plans is the establishment of single EBS points that public safety officials can contact to get emergency messages on the air—a Common Program Control Station (CPCS) that will pass the messages on to other EBS stations. This can save valuable minutes that would be lost in contacting stations individually, especially in emergencies such as tornadoes or flash floods.

New two-tone attention signal for emergency broadcast stations

The FCC established April 15, 1976 as the date at which broadcast stations (other than non-commercial educational FM's with not more than 10-watts power) must be equipped to generate (encode) and detect (decode) the new two-tone inter-station Emergency Broadcast System attention signal. The EBS is a system (Continued on page 12.)
In fact, "innovation" is the word that guides SBE engineers in their quest for better ways to improve personal communications equipment.

An example of SBE innovation at its imaginative best is OPTI/SCAN. This compact 10-channel scanning monitor requires no crystals but is capable of scanning over 16,000 radio frequencies between 30 MHz and 510 MHz.

The secret of such electronic wizardry lies in the unique use of digital frequency synthesis, combined with an exclusive optical scanner and program card system. The "memory" for specific frequencies to be monitored is programmed in 10-frequency groups on a small plastic card no larger than a credit card. Frequency bands can be mixed on the same card; and frequency groups to be scanned can be changed instantly simply by replacing one pre-programmed card with another.

SBE innovation has transformed the scanning monitor from a fixed, inflexible unit of limited range and scope into an infinitely versatile electronic marvel that puts a limitless range of frequencies at your fingertips, wherever you are, wherever you may travel.

The same innovative skill and imagination that goes into OPTI/SCAN is reflected in the full SBE line of communications equipment: citizens band, land mobile, marine and special application.

Discover how you can benefit from SBE's electronic innovations.
Where do the pros get their training?

Almost half of the successful TV servicemen have home study training and with them, it's NRI 2 to 1. It's a fact! Among men actually making their living repairing TV and audio equipment, more have taken training from NRI than any other home study school. More than twice as many!
A national survey*, performed by an independent research organization, showed that the pros named NRI most often as a recommended school and as the first choice by far among those who had taken home study courses from any school. Why? Perhaps NRI's 60-year record with over a million students... the solid training and value built into every NRI course... and the designed-for-learning equipment originated by NRI provide the answer. But send for your free NRI catalog and decide for yourself.

25" Diagonal Color TV... And 4-channel Quadraphonic Stereo.
As a part of NRI's Master Course in color TV/Audio servicing, you build a 25" diagonal solid state color TV with console cabinet. As you build it, you perform stage-by-stage experiments designed to give you actual bench experience. And you get a Quadraphonic system with 4 speakers. NRI's instruments are a cut above the average, including a transistorized volt-ohmmeter, triggered sweep 5" oscilloscope, CMOS digital frequency counter and digital integrated circuit color TV pattern generator. They're top professional quality, designed to give you years of reliable service. You can pay hundreds of dollars more for a similar course and not get a nickel's worth extra in training and equipment.

Widest Choice of Courses and Careers.
NRI doesn't stop with just one course in TV/Audio servicing. You can pick from five different courses (including an advanced color course for practicing technicians) so you can fit your training to your needs and your budget. Or, you can go into Computer Technology, learning on a real, digital computer you build yourself. Communications with your own 500 channel digitally-synthesized VHF transceiver. Aircraft or Marine Electronics. Mobile radio, and more.

Free Catalog... No Salesman Will Call.
Send the postage-paid card for our free color catalog showing details on all NRI electronics courses. Lesson plans, equipment, and career opportunities are fully described. Check card for information on G.I. benefits. No obligation, no salesman will call. Mail today and see for yourself why the pros select NRI two to one!

If card is missing, write,

Two Famous Educators... NRI and McGraw-Hill.
NRI is a part of McGraw-Hill, world's largest publishers of educational material. Together, they give you the kind of training that's geared for success... practical know-how aimed at giving you a real shot at a better job or a business of your own. You learn at home at your convenience, with "bite-size" lessons that ease learning and speed comprehension. Kits designed to give you practical bench experience also become first-class professional instruments you'll use in your work.

*Summary of survey results upon request.
that can keep the nation informed of national, state or local emergencies.

In November 1974, the FCC amended its rules to substitute a two-tone signaling system (a transmission with two audio-tones) for the system then in use—two 5-second carrier breaks followed by a 1000-Hz tone for 15 seconds.

There was some opposition to the April 1 date from broadcasters’ associations, who felt that more time should be allowed to make the changeover. They also demurred at the possible costs, which the National Broadcasters Association said could run to $700. The FCC’s reply was that when the carrier-break system went into effect in 1967, the FCC put out public notices stating that a two-toned technique, expected to prove superior to the carrier-break, was being developed and might make obsolete the emergency broadcast receivers then in operation. Thus, in effect, the industry had been put on notice for eight years. As to price, combination encoder-decoders were available at prices as low as $195, therefore the cost was neither exorbitant nor prohibitive.

Servicers support attack on in-warranty injustices

The Florida Electronics Service Association has pledged $1,000 in support of the Electo TV court-suit in California. The suit is aimed at forcing manufacturers to stop violating California law by soliciting service repair work below cost.

The question has been asked: Why go too low—if in-warranty payment rates are too low, why not simply refuse to service the brands involved? Some service concerns can do just that. But many warranty repair stations are also sales firms and are agents for only the one or two brands they sell. To refuse to handle in-warranty repairs on those brands—even if the rates are below cost—would mean that the customer would have to call a direct competitor to have the in-warranty work done.

Another case is that of a shop that handles all the repair work for a department store. The store obviously wants to handle all its repair business through one shop—not two or three. If the shop will not handle the unprofitable brands, the department store will be inclined to drop it and find one to which it can channel all the repairs.

For these reasons many service groups are supporting the litigation with cash. The Orange County chapter of the California State Electronics Association (CSEA) donated $1,000 to the fund, and a single shop in Los Angeles contributed $500. Other donations of $100 and $50 have come in from all over the country.

The National Electronic Service Dealers Association (NESDA) has set up a special fund for the in-warranty war-chest, and asks interested groups to send their donations to: SIS—Electro TV Fund, c/o the Finney Co., M. L. Finneburgh, Jr., EHF, 34 W. Interstate St., Bedford, OH 44146.

Federal Trade Commission rule helpful to mail-order customers

Under a new Trade Regulation Rule of the FTC, mail-order merchants will be required to make deliveries within a reasonable time, notify the customer if his order has to be delayed, and return his money if requested.

The Rule provides that if a mail-order seller is unable to ship merchandise within the time stated in the offer (or if no time is specified, within 30 days) he must notify the buyer of the delay and give him the option of canceling the order and having the purchase money refunded.

The buyer must be provided with a cost-free device—such as a postcard or postage-paid envelope—for this purpose. If the buyer does not respond, it will be assumed that he has consented to an additional 30-day delay. For any longer delay, the customer’s express consent must be gained; otherwise the money is to be refunded.

The Rule also makes provision for indefinite delays if agreed to by the customer, though a refund must be made if requested any time during the delay. It also requires sellers of mail-order merchandise to have a reasonable basis for claims about shipping time.

In the event of a violation, the FTC can obtain a court order for compliance or they could have the company fined $10,000 for each day of non-compliance. However, it is still legally debatable whether the FTC can go directly to Federal Trade Court.

Nationwide emergency channel adopted for police use

The FCC has designated 155.475 MHz as a nationwide emergency channel frequency for use in police emergency communications networks operated under statewide law-enforcement plans. The action was initiated on request of the APCO (Associated Public Safety Communications Officers).

Several states, APCO stated, now employ statewide emergency channels. It has been demonstrated that police can respond more effectively by using such common facilities. The 155.475 MHz frequency is limited to state police systems. Operations on 155.475 MHz that are not now limited to emergency communications may continue until January 1, 1985.
FEATURES

- A UHF Tuner with 70 channels which are detented and indicated just like VHF channels.
- A VHF Hi Gain Solid State Tuner.
- AC Powered.
- 90 Day Warranty.

Demonstrate the **SUBSTITUNER** to your customers and show improved reception with their TV sets.

You may place your order through any of the Centers listed below.

NOW AVAILABLE—TUNER SERVICE PARTS CATALOG

OF ALL SARKES TARZIAN VHF AND UHF TUNERS, INCLUDING EXPLODED VIEW DRAWINGS. OVER 200 PAGES. ORDER YOUR COPY TODAY.

SEND $2.50 WITH ORDER TO BLOOMINGTON HEAD OFFICE.

REPAIR

VHF OR UHF ANY TYPE (U.S.A. ONLY) $ 9.95
VHF/UHF COMBINATION (U.S.A. ONLY) $15.00

MAJOR PARTS AND SHIPPING CHARGED AT COST

- Fast, efficient service at our conveniently located Service Centers.
- All tuners are ultrasonically cleaned, repaired, realigned, and air tested.

REPLACE

UNIVERSAL REPLACEMENT TUNER $12.95 (U.S.A. ONLY)

- This price buys you a complete new tuner built specifically by Sarks Tarzian Inc. for this purpose.
- All shafts have a maximum length of 10 1/2" which can be cut to 1 1/2".
- Specify heater type parallel and series 450 ma or 600 ma.

CUSTOMIZE

- Customized tuners are available at a cost of only $15.95. With trade-in $13.95.
- Send in your original tuner for comparison purposes to any of the centers listed below.

HEADQUARTERS

BLOOMINGTON, INDIANA 47401

ARIZONA

SUN CITY, ARIZONA 85275

CALIFORNIA

NORTH HOLLYWOOD, 818-219-9101

BURBANK, CALIF., 818-957-0000

MODESTO, CALIF., 209-348-6051

FLORIDA

TAMPA, FLORIDA 33610

MIAMI, FLORIDA, 305-877-9799

FT. LAUDERDALE, FLORIDA 33313

GEORGIA

ATLANTA, GEORGIA 30317

ILLINOIS

CHAMPAIGN, ILLINOIS 61820

DCCETON, ILLINOIS 60449

INDIANA

INDIANAPOLIS, INDIANA 46208

KENTUCKY

LOUISVILLE, KENTUCKY 40208

LOUISIANA

SHREVEPORT, LOUISIANA 71104

MARYLAND

BALTIMORE, MARYLAND 21215

MASSACHUSETTS

SPRINGFIELD, MASSACHUSETTS 01108

MISSOURI

ST. LOUIS, MISSOURI 63102

NEVADA

LAS VEGAS, NEVADA 89103

NEW JERSEY

TRENTON, NEW JERSEY 08638

NEW YORK

ROCHESTER, NEW YORK 14615

NORTH CAROLINA

COLUMBUS, NORTH CAROLINA, 919-846-6701

OHIO

CINCINNATI, OHIO 45219

CLEVELAND, OHIO 44109

OREGON

PORTLAND, OREGON 97210

PENNSYLVANIA

PITTSBURGH, PENNSYLVANIA 15209

TENNESSEE

MEMPHIS, TENNESSEE 38111

TEXAS

DALLAS, TEXAS 75215

VIRGINIA

NORFOLK, VIRGINIA 23515

CANADA

ST. LAURENCE, QUEBEC; CALGARY, ALBERTA

IF YOU WANT TO BRANCH OUT INTO THE TV TUNER REPAIR BUSINESS, WRITE TO THE BLOOMINGTON HEADQUARTERS ABOUT A FRANCHISE.
INTRODUCING
THE FAST WORKING
COUNTERS FROM
HICKOK.

MODEL 380
1 Hz to 80 MHz, 10 ppm $259

MODEL 380X
1 Hz to 80 MHz, 1 ppm $385

MODEL 385
1 Hz to 512 MHz, 10 ppm $499

MODEL 385X
1 Hz to 512 MHz, 1 ppm $625

Perfect for communications, CB, audio and digital work, servicing and laboratory applications.

Full 7-digit display with automatic decimal, full autoranging, SPEED READ mode upgrades, display 5 times each second to aid tuning and adjustments.

Resolution is 1 Hz to 10 MHz, and 10 Hz to 80 MHz. Models 385, 385X feature a built-in prescaler to take you all the way to 512 MHz.

Models 380X, 385X incorporate temperature compensated crystal oscillators with 1 ppm accuracy.

See these exciting new counters at your distributor now!

HICKOK
the value innovator

INSTRUMENTATION & CONTROLS DIVISION
THE HICKOK ELECTRICAL INSTRUMENT CO.
10514 Du Pont Avenue • Cleveland, Ohio 44108
(216) 541-8060 • TWX: 810-421-8286

Circle 7 on reader service card

letters

AMERICAN TV STANDARDS

I note with horror that the changing of American TV standards is being seriously considered ("Looking Ahead", February issue). While it is true that the present system was developed in the middle 30's and the color system added to it in the early 50's, the system isn't all that bad.

- The information bandwidth in the present system is 4.2 MHz. Color sets normally pass about 3.5 MHz of it; black-and-white sets more like 2.5 to 3 MHz.
- The color signal consists of two variables, called I and Q, corresponding more or less to red-blue and green-purple separations. The I signal bandwidth is 1.5 MHz, the Q is 500 KHz. Most sets use 600 kHz for both.
- The soundtrack is required to have frequency response from 50 to 15,000 Hz — the same as "hi-fi" FM. Most sets come with amplifiers and speakers of quality similar to that of a portable transistor radio.

Clearly, if receiver manufacturers were convinced that the people would pay more for higher quality, they'd make sets that could take full advantage of this 25- to 35-year-old set of standards. Such a set wouldn't cost much more. But there are a few other reasons, all due to the TV stations and the networks:

- Many programs are on film, which has an inherent contrast limit compared to TV — film does not look "live." Most film uses an optical sound system, developed in the twenties. The frequency response, distortion, and signal-to-noise ratio are decidedly inferior to that of the transmitter.
- Networks limit audio frequency response from any source to about 200 to 5000 Hz, and signal-to-noise is well below the transmitter capability.
- Network shows delayed for viewing in the western half of the U.S. are played back one generation down, no matter what the source. This often causes color banding, usually seen as stripes of off-color or color contrast changes, especially in the red hues which include most skin tones.
- Local newsfilm is 16 mm or super-eight, with the limited resolution already mentioned. Some improvement is made on the audio track of super-eight by use of magnetic recording, but it is partially offset by the even slower film speed.
- Electronic news-gathering (ENG) equipment, which uses videotape instead of film, uses a high bandwidth of the capability of the television channel, since the increased bandwidth would increase the complexity, size, weight, and cost of those items.

Almost all pay-TV "movie packages" are played from videotapes, which have less than half the resolution the channel can provide. This degradation is obvious on almost any receiver.

If we were to go to a 1000-line system, we would no longer be compatible with Canada, Mexico, or Japan, to name a few, and anything we presently have on videotape would be obsolete — we could scan-convert it, but that wouldn't improve it. The thought of "Let's Make A Deal" on a 10-foot screen makes me ill. Incidentally, the main resolution limitation on our present system is in the vertical direction, since that's across the lines, while the horizontal is continuous. Vertical resolution could be doubled by going to a 4:1 interface instead of the present 2:1, and still be compatible with all the TV sets in the country. Such an arrangement could be switched on and off at will by the TV station, FCC consenting.

Let's hope that nobody's serious about all this. Look at the picture from an Advent 7-foot screen projector set — it ain't half bad. And there's always the movies.

JAMES REIGER
Ridgecrest, CA

COMPUTER HOBBYISTS

To me, the most critical thing in the hobby market right now is the lack of good software courses, books and software itself. Without good software and an owner who understands programming, a hobby computer is wasted. Will quality software be written for the hobby market?

Almost a year ago, Paul Allen and myself, expecting the hobby market to expand, hired Monté Davidoff and developed Altair BASIC. Though the initial work took only two months, the three of us have spent most of the last year documenting, improving and adding features to BASIC. Now we have 4K, 8K, EXTENDED, ROM and DISK BASIC. The value of the computer time we have used exceeds $40,000.

The feedback we have gotten from the hundreds of people who say they are using BASIC has all been positive. Two surprising things are apparent, however:

1) Most of these "users" never bought BASIC (less than 10% of all Altair owners have bought BASIC), and
2) The amount of royalties we have received from sales to hobbyists makes the time spent of Altair BASIC worth less than $2 an hour.

Why is this? As the majority of hobbyists must be aware, most of you steal (continued on page 16)
The Realistic® STA-90 Will Change Your Ideas About Who's #1 in Hi-Fi Features, Value and Style!

Quatravox®. Get spacious 4-channel effects just by adding two extra speakers.

Dub Out and two Tape Monitor switches. For versatility—record three tapes at once.

Solid metal knobs. Walnut veneer case.

Only 359.95 at participating stores and dealers. Prices may vary at individual stores. U.L. listed. Ask for 31-2063. See what a Sleeper looks like—today!
This...protects your most expensive hi-fi investment.

Recognizing that a penny saved is a penny earned, may we suggest that trying to economize by putting off the replacement of a worn stylus could be like throwing away five dollars every time you play a record. (Multiply that by the number of records you own!) Since the stylus is the single point of contact between the record and the balance of the system, it is the most critical component for faithfully reproducing sound and protecting your record investment. A worn stylus could irreparably damage your valuable record collection. Insure against this, easily and inexpensively, simply by having your dealer check your Shure stylus regularly. And, when required, replace it immediately with a genuine Shure replacement stylus. It will bring the entire cartridge back to original specification performance. Stamp out waste: see your Shure dealer or write:

Shure Brothers Inc.
222 Hartrey Ave., Evanston, IL 60204
In Canada: A. C. Simmonds & Sons Limited

Manufacturers of high fidelity components, microphones, sound systems and related circuitry.

Circle 9 on reader service card

LETTERS
(continued from page 14)

your software. Hardware must be paid for, but software is something to share. Who cares if the people who worked on it get paid?

Is this fair? One thing you don't do by stealing software is get back at MITS for some problem you may have had. MITS doesn't make money selling software. The royalty paid to us, the manual, the tape and the overhead make it a break-even operation. One thing you do do is prevent good software from being written. Who can afford to do professional work for nothing? What hobbyist can put 3-man years into programming, finding all bugs, documenting his product and distribute for free? The fact is, no one besides us has invested a lot of money in hobby software. We have written 6800 BASIC, and are writing 8080 APL and 6800 APL, but there is very little incentive to make this software available to hobbyists. Most directly, the thing you do is theft.

What about the guys who re-sell Altair BASIC, aren't they making money on hobby software? Yes, but those who have been reported to us may lose in the end. They are the ones who give hobbyists a bad name, and should be kicked out of any club meeting they show up at.

I would appreciate letters from any one who wants to pay up, or has a suggestion or comment. Just write me at 1180 Alvarado, SE, #114, Albuquerque, New Mexico 87108. Nothing would please me more than being able to hire ten programmers and deluge the hobby market with good software.

BILL GATES
General Partner, Micro-Soft
Albuquerque, NM

OOOOPS!

In your February, 1976, Komputer Korner example on page 86, it appears that you have mixed up your architecture and the direction of the moves.

With architecture B; to move A to output requires:
02 (move A to C)
07 (move C to output)

But if C contains needed data, the instructions should be:
06 (move C to B) not B to C
02 (move A to C)
07 (move C to output)
04 (move B to C)

PHILLIP L. EDELSBERG
Systems Analyst
Indianapolis, IN

DON'T MISS THEM!

This month's hi-fi test reports include two stereo receivers. One is the Marantz model 2325 and the other is Lafayette's model LR-2200. See how these two receivers match-up against each other. Turn to pages 50 and 56 for the complete story and full specifications.

SHURE
Choose the one that’s just right for you...the one that can make your future more rewarding, more secure, more enjoyable...starting now! These ways to move ahead are yours from Electronics Technical Institute (ETI) and our exclusive solid-state electronics home study courses and programs ever offered!

Fundamental Electronics

Get a solid foundation for entering the fast-moving world of electronics where today is great, and tomorrow will be greater. Learn it the simple, easy, step-by-step, programmed way called AutoText, exclusive with ETI!

Electronics Drafting

Learn a vitally needed specialty that translates new technological concepts and developments to the practical drawing board. Become a specialist-in-demand, through ETI’s training. Learn it at home...get your future moving now!

Color TV Servicing

There’s a real future waiting for the established color television technician. You become that technician through this program that takes you step-by-step to theoretical and practical mastery of color TV. Get your tomorrow started today!

Master TV/Radio Servicing

Here is true “master” preparation for a career that can take you as far as you want to go into radio and television servicing, both black and white, and color. The helpful, practical ETI way can be your way to more money, security, success!

Communications

ETI’s communications program opens up a whole range of career development possibilities in electronics. Solid-state receivers, solid-state audio equipment, communications equipment, CATV, as well as preparation for FCC-licensed positions in commercial broadcasting and mobile communications. You can find a real future here!

Industrial Electronics

You open great career opportunities through this program, as instrumentation technician, electronic equipment maintenance technician, electronic calculating machine technician and audio technician. It also prepares you to move into and up in communications, automation and industrial electronics.

Digital Technology

Join the digital revolution which is radically altering our lives today and tomorrow. Get solidly trained in the new digital specialties that can lead to a real future as a digital control technician, electronic calculating machine technician, field representative, computer sales representative, manufacturer’s representative.

Electronics Technology

Learn electronics across the board! You’ll be ready for real career advancement with training that can lead to technical positions in communication, automation and industrial electronics, and can also help you in sales positions, management, and administration.

Computers

ETI offers training opportunities in Computer Technology and Computer Programming. Learn at home, and get ready to enter a field where incredible developments are sure to continue. It’s practical, useful—the step-by-step ETI way!

Advanced Electronics

Want greater challenges and career advancement? This course is for you. It can be valuable preparation not only for a technical career, but also for the fields of sales, management and administration. Make your move now!

Digital Electronics—Advanced

Here’s a special course for those already in the field of digital electronics, ready to move into more advanced areas. This is how to move up in sales, management and administration. Here’s your tomorrow!

Black and White TV Servicing—Advanced

This can be your own “advance” course to black-and-white TV competence from A to Z. You’ll construct a receiver yourself, if you wish. A key to lifetime success!

Industrial Instrumentation—Advanced

Move up in the world...the wonderful electronics world! This course opens up a whole range of careers in the industrial field, as instrumentation technician, laboratory technician, process control technician or electronic calculating machine technician. Get ready...and go!

Color TV Servicing—Advanced

Here is the “graduate” course in color TV for those who already know television fundamentals. You’ll learn color TV from top to bottom, build your own set if you choose. A great way to build your future!

Solid-State Electronics—Advanced

Applications of transistors are increasing all the time and the transistor may be a breakthrough comparable in importance to the development of nuclear energy. Solid-state can mean your solid career development, too, through ETI!

FCC License Preparation

Here is real down-to-earth practical preparation to take your 3rd, 2nd or 1st class Federal Communication Commission Radio-telephone License examinations. Get yourself ready now for any of the FCC-licensed positions involving broadcasting, mobile communications, microwave communications links, marine communications equipment or in many other positions in solid-state communications, CATV, Get ready for tomorrow...today! Get all the facts...free!

Send the coupon now for ETI’s colorfully illustrated new 32-page catalog giving you all the details. You owe it to yourself. There’s no obligation, and no salesman will call. Send for yours today!

Electronics Technical Institute

Division of Technical Home Study Schools

Electronics Technical Institute, Dept. 2-479-056
Little Falls, New Jersey 07424

Send me the Electronics Technical Institute Catalog.

Name __________________________
Address _________________________
City __________________ State ______ Zip ______

Interested in another field? Check the Technical Home Study School program that interests you most. No salesman will call. PLEASE CHECK ONLY ONE:

□ Typewriter and Office Machine Repair
□ Upholstery and Drafting
□ Accident and Insurance Claim Adjusting
□ Outdoor Careers in Conservation
□ Check here for information on Veterans Benefits
□ Check here for information on learning by cassettes

MAY 1976

Circle 10 on reader service card
The IMSAI 8080.
A commercial yet personally affordable computer.

If you thought you could never afford a computer at home, think again. The IMSAI 8080 is built for rugged industrial performance. Yet its prices are competitive with Altair's hobbyist kit. Fully assembled, the 8080 is $931. Unassembled, it's $579.

The IMSAI 8080 is made for commercial users, and it looks it. Inside and out. The cabinet is attractive, heavy gauge aluminum. The heavy duty lucite front panel has an extra 8 program controlled LED's. It plugs directly into the Mother Board without a wire harness. And rugged commercial grade paddle switches are backed up by reliable debouncing circuits.

The system is optionally expandable to a substantial system with 22 slots in a single printed circuit board. And the durable card cage is made of commercial-grade anodized aluminum.

The IMSAI 8080 power supply produces a true 20 amp current, enough to power a full system. You can expand to a powerful system with 64K of software protectable memory plus an intelligent floppy disk controller. You can add an audio tape cassette input device, a printer plus a video terminal and a teletype. And these peripherals will work with an 8-level priority interrupt system. BASIC software is available in 4K, 8K and 12K.

Get a complete illustrated brochure describing the IMSAI 8080, options, peripherals, software, prices and specifications. Send one dollar to cover handling to IMS. The IMSAI 8080. From the same technology that developed the HYPERCUBE Computer architecture and Intelligent Disk systems.

Dealer inquiries invited.

KOMPUTER KORNER

How to interface the microcomputer with input/output devices.

DAVID LARSEN, PETER RONY, and JOHN TITUS

THE VARIOUS DATA PATHS IN A MICROCOMPUTER consists of the data input, data output, external device addressing, in and out function pulses, and interrupt signals. These are the vital lines of communication between the microcomputer and the "outside world", for example, those signal lines that are necessary to interface the microprocessing unit (MPU) to the input/output or I/O devices that you would like to control.

What is an I/O device?

Some useful definitions include the following:
input/output—General term for the equipment used to communicate with a computer and the data involved in the communication.1

I/O—Abbreviation for input-output.2

I/O device—Input/output device. Any digital device, including a single integrated-circuit, that transmits data to or receives data or strobe pulses from a computer. The in and out functions are always referenced to the computer.3

The traditional view of an I/O device is that it is somewhat large or complex. Card readers, magnetic tape units, cathode-ray tube displays and teletypes certainly fit such a description. However, a single integrated circuit such as a latch, shift register, counter or small memory can also be considered to be an I/O device to a computer.

Another important point is that several device-select pulses may be required to interface a single I/O device. For example, a 74198 shift register has a pair of control inputs that determine whether the register shifts left, shifts right, or parallel-loads 8-bits of data. This IC also has a clock input and a clear input. Thus a single 74198, when serving as an output device, may require up to four device-select lines from the microcomputer. Therefore, the fact that we can generate 256 different input and 256 different output device-select pulses does not necessarily mean that we can address 512 different "devices." A more reasonable number is of the order of 50 to 100 different devices.

Device-select pulses are inexpensive and easy to implement. We encourage you to use them as often as possible as you attempt to substitute computer software for integrated circuit hardware. We shall repeat this theme often: software vs. hardware. There exists a tradeoff between the two, but your main objective in using microcomputers will usually be to substitute software for hardware. When you do so, the only penalty that you may pay is time—it takes time to execute computer instructions. If you can accept the delays inherent in computer programs, then you can vastly simplify the circuitry required to accomplish a specific interfacing task.

Interfacing

Interfacing can be defined as the joining of members of a group (such as people, instruments, etc.) in such a way that they are able to function in a compatible and coordinated fashion. By "compatible and coordinated fashion," we usually mean synchronized. Some important definitions include the following:

synchronous—In step or in phase, as applied to two devices or machines. A term applied to a computer where a sequence of operations is controlled by equally spaced clock signals or pulses.2

synchronous computer—A digital computer that has all ordinary operations controlled by equally spaced signals from a master clock.2

(continued on page 22)
mail-order pride!...
The new Heathkit Spring Catalog describes over 400 top-value electronic kits you can build for pride and satisfaction that's priceless!

FREE!
HEATHKIT CATALOG
The world's largest selection of quality electronic kits

Learn electronics the easy, effective low-cost way with the Heathkit Continuing Education Series. Four individual learning programs — DC Electronics, AC Electronics, Semiconductor Devices and Digital Techniques provide a detailed overview of modern electronics. Study when you want... without pressure or deadlines. Each program includes text, records and parts for experiments.

Our IM-4100 counts frequency to 30 MHz, period to 99,999 seconds, events to 99,999. Has bright five-digit readout with gate lamp and overrange indicator, built-in input attenuation, three-way AC or DC operation. You can count on it for value!

The IO-4550 is a lab-grade dual-trace DC-10 MHz scope at a low build-it-yourself price. It features digitally-controlled time base, automatic triggering, extra bright trace and faster writing time. It's all the scope you need for most any lab or service application.

The ET-3300 laboratory breadboard puts a lot of design versatility on your bench. Solderless sockets, built-in 5 and 12-volt power supplies, dual ground and power bus strips make solid-state circuit design fast, easy and precise.

Read all about them... PLUS over 400 other easy-to-build electronic kits

MAIL COUPON TODAY!

Heath Company, Dept. 20-17
Benton Harbor, Michigan 49022

Please send me my FREE Heathkit Catalog.

Name ____________________________
Address __________________________
City ___________________ State ________ Zip ________

Circle 100 on reader service card
Get in on the CB Service BOOM with the B&K Test Bench
When used with a scope and signal generator, you can:

- Measure signal-to-noise ratio of CB receiver
- Measure audio output power
- Measure audio distortion percentage
- Measure receiver sensitivity
- Check AGC
- Measure effectiveness of CB noise limiter or blanker (when used with an impulse noise generator)
- Measure squelch threshold
- Measure adjacent channel rejection
- Measure transmitter AM power output—even mobile!
- Measure SSB power output with TRUE peak-reading RF wattmeter
- Check AM modulation
- Check SSB modulation with a two-tone test—the only accurate way!
- Measure antenna SWR—even mobile!
- Check the transceiver in the car to determine if the problem is in the antenna system or the transceiver

You can save $500—$1,500 in equipment costs because the CB Servicemaster eliminates many of the test instruments you would otherwise need for CB servicing. These instruments, or their functions, are built into the unit:

- Audio wattmeter
- Audio generator
- Distortion meter
- RF Wattmeter/dummy load
- DB meter
- SWR bridge

These instruments—which you should have, if you don’t own them already, are all you need to get the maximum use from your CB Servicemaster. And the B&K CB Servicemaster is compatible with most oscilloscopes, frequency counters, signal generators and power supplies on the market today.

The B&K-Precision CB Servicemaster is designed for rapid programmed testing and trouble shooting of any CB transceiver. It functions as a test center and enables you to quickly check all of the significant performance characteristics of the transceiver with one hook-up—in a matter of minutes.

These instruments—which you should have, if you don’t own them already, are all you need to get the maximum use from your CB Servicemaster. And the B&K CB Servicemaster is compatible with most oscilloscopes, frequency counters, signal generators and power supplies on the market today.

With the Model 1040 CB Servicemaster it’s easy, it’s fast and it’s profitable.

MODEL 1403A—3” 5 MHz Recurrent Sweep Oscilloscope

Checks CB modulation and provides viewing of 27MHz CB waveform when used with the Model 1040. Small, compact and inexpensive, it frees other scopes for more effective use.

Model 1403A $198.

MODEL 1801—Digital Frequency Counter

To quickly determine the exact frequency of a CB channel, the 1801 automatically displays it for you in large, easy-to-read digits. You can tune oscillators precisely (to 1Hz, if necessary), conduct audio frequency analysis tests. Six digit display is updated five times per second. Accuracy to 1Hz guaranteed to 40MHz; 60MHz typical.

Model 1801 $240.

For additional information, contact your B&K-Precision distributor for our comprehensive brochure describing the operation of the Model 1040 CB Servicemaster and the CB Service Center—or write us for your free copy.

Circle 12 on reader service card

MODEL 1640—Regulated Power Supply

Designed especially for CB and other mobile equipment, the 1640 eliminates changes in supply voltage due to load variations. A stable power supply is essential to precise testing of the transceivers. Less than 0.8% variation from zero to full load; 3 amp continuous, 5 amp surge. Adjustable to any output from 11 to 15 VDC. Suppressed zero scale for greater accuracy. Overload protected.

Model 1640 $100

MODEL 2040—CB Signal Generator

Covers all 23 channels, AM and SSB with built-in capability of 64 additional channels for future FCC assignments. Ultra-stable crystal-controlled, phase-locked-loop frequency generation. Has 10 ppm accuracy. 1 µV to 100 MV output in calibrated 10 dB increments for receiver sensitivity measurements. Includes EIA standard noise test signal generator to check receiver noise suppression. Internal 400, 1000 and 2500 Hz modulating frequencies—can also be externally modulated. Internal protection against SW RF input.

Model 2040 $475

B&K Precision

DYNASCAN CORPORATION

Makers of Cobra CB Equipment

1801 W. Belle Plaine Ave.

Chicago, IL 60613 • (312) 525-3990

In Canada: Atlas Electronics, Toronto
synchronous operation—Operation of a system under the control of clock pulses. Such synchronization pulses—Pulses that are originated by the transmitting equipment and introduced into the receiving equipment to keep the equipment at both locations operating in step—is called computer interfacing. The synchronization of digital data transmission between a computer and one or more external input/output devices.

Although the details of computer interfacing vary with the type of computer employed, the general principles of interfacing apply to a wide variety of computers. Such principles include the following:

- The digital data transmitted between a computer and an I/O device are either individual clock pulses or else full data words.
- The computer and the I/O device are both clocked devices. At the very least, the I/O device has a single flip-flop that is set or reset by the computer. All data transmission operations are synchronized to the internal clock of the computer.
- The computer sends synchronization pulses, called device-select pulses, to the I/O device. These pulses are generated by the computer program and are usually quite short—for an 8080 microcomputer operating at 2 MHz, they last for only 500 ns. The pulses synchronize and select at the same instant of time.
- Individual device-select pulses are sent to individual input or output devices. This is called external device addressing. The pulses are used for latching data output and strobing data input.
- Computer program operation can be interrupted by the transmission of a clock pulse from an I/O device to a special input line to the computer. This is called interrupt generation. Upon being interrupted by an external I/O device, the computer goes to a computer subroutine that responds to, or services, the interrupt.
- Full data words can be output from, or input into, the accumulator register. For the 8080 microcomputer, a full data word contains 8 bits. Output data from the accumulator is available for only a very short period of time and usually must be latched. Input data into the accumulator is acquired over a very short period of time and usually must be strobed into the accumulator.

Interfacing basically consists of the synchronization of parallel input or output data via the use of the 512 device-select pulses. (See Fig. 1.) Hardware is required to tie the MPU to the external device and is just as important as the microcomputer software. We shall tackle both of these facets of microcomputer interfacing in detail in subsequent columns.

References

Revolutionary New Wiring "Pencil" Makes Interconnections in 1/3 the Time!

- Create Finished Wired Circuits In Hours, Not Days
- For Breadboarding, Prototypes and Production
- Interconnects Circuit Elements in Digital and Analog Circuits

Easy for anyone — just hook up your components using the insulated "solder thru" wire (your choice of blue, red, green or clear). Wire feeds off a replaceable spool thru the P173 tool body and out of a steel tip so fine it easily routes wire around even the smallest I.C. lead. A touch of the iron, with solder, completes the joint.

Available accessory items include P179WS Wire Spacers for neat routing, tenth-sixth Micro-VectoPorcelain, circuit Paddboards and liners, like the 3077-6 and 31X-1. Order a P173 Now! Supplied with two 200' spools of AWG solder thru wire (1 red, 1 green), complete instructions $2.50.

At your Vector distributor $2.50
Mail orders, add $2 shipping and handling charge, California residents add 8% sales tax.

VISIT OUR BOOTH 2122 AT ELECTRO '76

Solid-State News

National Semiconductor has submitted a 4K RAM memory that is different from the competition.

The MM5270 Tri-Share™ 4096 x 1 bit RAM is packaged in an 18 pin DIP in contrast to the industry standard 22 pin packages. Three functions share the use of a single lead—read/write, logical chip select and Vcc. One lead is also used for both data input and output.

The 18-pin packages can be squeezed in with a density nearly twice that possible with the 22-pin packages. National claims memory system costs are kept low because of the savings in PC cards, card frames, connectors and wiring. The cost of the memory package itself is lower. The access and cycle times are 200 ns and 400 ns, respectively.

RCA has also joined the NMOS memory field with the MW7001ID 1024 x 1 bit static RAM. The device is pin compatible with the AMS70011 and has a 60 ns maximum access-time and 180 ns maximum cycle-time. Also planned is a 4096 bit dynamic RAM.

Both the National and RCA chips are TTL compatible except for the chip select input.

The SHM-IC-1 from Datel Systems is a high performance sample-and-hold that uses only an external storage capacitor. Sample-and-hold systems are used in sampled data control systems, in the reconstruction of sampled waveforms and for data acquisition.

Acquisition time is 4 μs with a .001 μF capacitor; the signal droop is 50 mV/μs. The capacitor can be lowered to 100 pF for a faster 2 μs acquisition time, but droop also increases in the same ratio.

Three blocks make up the sample and hold. A high gain input differential amplifier, the electronic sampling switch, and an output buffer amplifier. The SHM-IC-1 sells for $29 in small quantities.
There's plenty of power packed in this beautiful receiver. Muscle your receiver needs for more than just sound volume. Power produces clear distortion-free sound. And it gives it to you even at low volume.

The Lafayette LR-3500 has a well-developed 47 watts per channel minimum RMS. Each channel is driven at 8 ohms from 20-20,000 Hz with no more than 0.5% total harmonic distortion.

The top of the Lafayette line, the LR-3500 AM/FM stereo receiver has all the features you've come to expect as the trappings of power: it has state-of-the-art electronics, complete power controls to personalize the sound. And many convenience features like dual tape monitors, and FM mute. Power is yours with the Lafayette LR-3500. It's $399.95 at your Lafayette dealers. There are dealers coast to coast. Or shop from our free catalog.

The Lafayette LR-3500 can make your dreams for power come true.

Electronically Speaking, Who Knows Better Than

Lafayette
Radio Electronics & Shopping Centers

American Technology Corp.
ATC-10 Color Pattern Generator

The American Technology Corp., 225 Main St., Canon City, CO 81212, is one of the new "high-technology" companies in the test-equipment field. Their first instrument is a color-bar pattern generator, model ATC-10. This is an all solid-state instrument, using the newest digital IC techniques to produce not only the stock test patterns, but several new ones. Its a versatile instrument that will do all of the regular things, and many others as well; its really a "Color-Bar-Plus" generator!

The ATC-10 uses 31 digital IC's, an IC-regulated DC power supply, and is well made. For stability, all frequencies, line-widths and spacing are crystal controlled. Due to the crystal control, all patterns are as solid as a rock.

All of the standard test patterns can be used for purity, convergence and color alignment. The ATC-10 provides 10 x 10 dot, crosshatch, vertical and horizontal lines, and the standard 10-bar gated rainbow color patterns.

Now for the new patterns. There is a Hatchdot—a crosshatch with a single dot in the exact center. There is also a Hatch-dot pattern—a crosshatch with center dot and a "frame" of dots all the way around the edges. Handy for centering and linearity adjusting. By the way, the center dot in the dots pattern is isolated—the dot above and below the center is blanked out so that you can identify it instantly.

The 10-bar color-bar pattern, the 6th (blue) bar is "flagged"—there is a blank in the center that saves a lot of counting! The ATC-10 actually has three color-bar patterns in all. The next one is called Vector. This is the 10-bar pattern with the luminance signal blanked out. It produces much sharper vectorscope patterns. The last one is really useful. This one is called 3.58 Monitor and it is the ten-bar pattern once more, but this time the burst has been blanked out. You will see exactly the same effect you get when you ground the burst-amplifier grid to let the TV set's 3.58 MHz oscillator free wheel. You can do this without taking the back of the set off. If the color bars float or fall out of sync, you definitely know that the 3.58 MHz oscillator is or isn't able to run on-frequency.

The next color pattern is one called Red Raster. It's a 3.58 MHz signal that is 67.5-degrees away from the burst. You do not have to do anything to the receiver aside from turning the phase control (handless purity!) Turn the color-control down and the brightness up, and you get a clear white raster for checking gray-scale adjustments. For another test like this, turn to the gray quad position. This displays a screen divided into four segments, white, light gray, dark gray and black. This can also be used to check deflection yoke polarity. If the white quadrant isn't in the lower right corner, one of the yoke windings is reversed. There are eleven different test patterns in all. Since all of these have their chroma and sweep frequencies tightly phase-locked, the stability is excellent. Another automatic circuit prevents over-modulation.

The RF output of the ATC-10 is on channel 2, crystal controlled. If channel 2 is used in your area, you can change to channel 3 by installing another crystal. The RF output of the ATC-10 can be varied from 15 µV to 90,000 µV at 75-ohms output, and 180,000 µV on the 300-ohm output. There is also an IF crystal-controlled output at 45.75 MHz. To obtain this, just pull out on the RF gain-control knob.

Both 75- and 300-ohm output cables are provided. These two cables and the line cord slow in a compartment provided in the back of the case. The 75-ohm IF output can be used to check the tuner in any TV set. In sets with the IF input soldered, just hook the cable right across the terminals. There is ample output.

Video signals, in either sync polarity are available from a separate jack. (Phase too are variable, from 0 to 1.8 volts P-P. Both IF, RF and video outputs may be used at the same time. One novel use for this is to feed the video signal directly to one trace of a dual-trace scope and feed the signal picked up from the TV set to the lower trace input. (The signal may be fed to the TV antenna input or IF input.) This will let you use the burst signal from the video for phase checks, bandwidth and several other things in the TV set circuitry. The luminance pedestal in the color-bar pattern is a good square wave. By tracing this through the TV set's video circuitry, you can check damping, bandwidth, frequency and phase response. Works in other stages as well, of course.

(continued on page 30)
Now you can order GE TV parts over the phone, toll-free*, and charge them to your credit cards.

Now simply call in your GE TV part order toll-free* and charge it to your Master Charge or BankAmericard account (give number and expiration date on the phone). Your order can be processed immediately.

This new arrangement eliminates costly COD charges, time-consuming credit checks or having to send cash with an order. This easy order procedure is just one more example of General Electric's on-going dedication to making your business easier.

*TOLL FREE TELEPHONES NOW AVAILABLE IN MOST STATES.

Send in this coupon for the handy brochure covering GE's toll-free phone numbers and other support programs.

We're making it our business to make your business easier.

“DUTCH” MEYER
GENERAL ELECTRIC COMPANY
TELEVISION BUSINESS DEPARTMENT
COLLEGE BOULEVARD
PORTSMOUTH, VA. 23705

☐ Please send me the brochure covering GE's toll-free phone numbers and other support programs.

NAME
SERVICE COMPANY
ADDRESS
CITY
STATE
ZIP

Circle 16 on reader service card
Engineers design electronic circuits—so can you!

Only CREI offers you a choice of 18 home study programs in electronics with circuit design, plus special arrangements for engineering degrees.

Circuit design is perhaps the one qualification that distinguishes advanced technical personnel and engineers from the average electronics technician.

If you can design electronic circuits, you can more readily understand the circuitry of all types of electronic equipment. Thus you can more easily handle the repair and maintenance of such equipment, as well as assist in the development of new electronic systems.

The ability to design electronic circuits to solve practical engineering problems is one of the most valuable skills you can possess. Those with this ability are sought after and command positions of far greater responsibility, prestige and pay than the average technician.

If you are going to have a worthwhile career in the field of electronics, the ability to design circuits is a skill you will want to acquire.

Circuit design in all CREI programs
CREI covers circuit design in its home study programs in electronics. This is one of the factors that makes CREI training different from most other home study schools. CREI programs, of course, are college level—the same level of training you will find in any college or university offering programs in electronic engineering technology.

CREI training, however, is designed for home study. The programs give you effective, step-by-step training to help you move up in your career in electronics by using your spare time for technical self improvement.

Unique Design Lab
CREI gives you both theory and practical experience in circuit design with its Electronic Design Laboratory Program. The professional equipment included in this program allows you to construct, test out and correct the circuits you design until you have an effective circuit.

This Lab Program helps you understand advanced electronics. It also gives you practical experience in many other important areas of electronics, as in prototype construction, breadboarding, test and measurement procedures, circuit operation and behavior, characteristics of electronic components and how to apply integrated circuits.
Career Training at Home

Only CREI offers this unique Lab Program. It is a complete college lab and, we believe, better than you will find in most colleges. The “Lab” is one of the factors that makes CREI training interesting and effective. And the professional equipment in this program becomes yours to keep and use throughout your professional career after you complete the training.

Engineering Degree
CREI offers you special arrangements for earning engineering degrees at certain colleges and universities as part of your home study training program. An important advantage in these arrangements is that you can continue your full time job while “going to college” with CREI. This also means you can apply your CREI training in your work and get practical experience to qualify for career advancement.

Wide Program Choice
CREI gives you a choice of specialization in 14 areas of electronics. You can select exactly the area of electronics best for your career field. You can specialize in such areas as computer electronics, communications engineering, microwave, CATV, television (broadcast) engineering and many other areas of modern electronics.

FREE Book
In the brief space here, there isn't room to give you all of the facts about CREI college-level, home study programs in electronics. So we invite you to send for our free catalog (if you are qualified to take a CREI program). The catalog has over 80, fully illustrated pages describing your opportunities in advanced electronics and the details of CREI home study programs.

Qualifications
You may be eligible to take a CREI college-level program in electronics if you are a high school graduate (or the true equivalent) and have previous training or experience in electronics. Program arrangements are available depending upon whether you have extensive or minimum experience in electronics.

Send for this FREE Book describing your opportunities and CREI college-level programs in electronics

Mail card or write describing qualifications to
CAPITOL RADIO ENGINEERING INSTITUTE
McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue Northwest
Washington, D.C. 20016
Accredited Member National Home Study Council

GI Bill
CREI programs are approved for training of veterans and servicemen under the G.I. Bill.
EQUIPMENT REPORTS
(continued from page 24)

Finally, horizontal or vertical trigger signals for a scope can be obtained from front-panel jacks. For checking horizontal sync, burst, etc., use —- sync polarity; for looking at the scan period of the sweep, use + sync polarity on the scope.

Before I forget to mention it, the panel and controls of the ATC-10 are an excellent example of human engineering. Knobs are large enough to get hold of, and they’re all very plainly marked. The use of push-pull switches makes for a compact yet handy panel layout. Only four knobs are needed, and three banana jacks for the trigger signals. BNC connectors are used for RF, IF and the video outputs. These are at each end and out of the way.

It’s a very easy instrument to use. When I first hooked it up, I obtained some very peculiar patterns! Then, I found that I had the RF cable in the video jack and that the TV set was on Channel 8. After reading the plainly marked panel and hooking it up right, it worked much better! Speaking of reading, you get not one but two instruction books with the ATC-10. One covers in-home servicing (including a darned good basic course in convergence!) and the other covers in-shop techniques using a scope. A great many previously difficult tests can be made with the precise patterns from this instrument—DC restoration, demodulation angle, vector-scope patterns, bandwidth, phase shift, and many more. All of these are covered in simple terms in the well-written manuals.

The instrument has a two-year warranty on it. Price is in the ball-park for an instrument that will do as many things as the ATC-10 will. The firm told me that this instrument had been field tested by several TV technicians, and their reports were used in the final design. This testing was carried on for over a year and a half period.

Hewlett-Packard 3476A Digital Multimeter

The option to replacing expensive Sony color picture tubes. (For most popular models)

Another first from the pioneers in service test equipment.

FOR MORE INFORMATION WRITE:

TeleMatic
2862 Fulton Street
Brooklyn, NY 11207

NAME
ADDRESS
CITY STATE ZIP

My supplier is:

SOLD THOUGH DISTRIBUTORS ONLY

Circle 98 on reader service card

Circle 98 on reader service card

I OPENED THE BOX AND SAID TO MYSELF "Oh, good! Someone has sent me a beautiful shoulder purse!" A closer look showed a modest little bug at one side and the name Hewlett-Packard. Unzipping the case, I pulled out a little light gray plastic case. This turned out to be the newest thing in portable digital multimeters; Hewlett-Packard’s 3476A digital multimeter. It’s not at all the conventional instrument, the case is flat and very thin.

The 3½ digit bright red LED display is at one side and six pushbuttons at the other. The test leads plug into the right side of the case.

The small size is made possible by the use of new technology. This includes tantalum-nitride precision resistor networks that eliminates the need for more expensive and bulky discrete precision resistors in the dividers. The circuitry is on only one PC board although the 3476A has full autoranging capability on all of its five functions: DC volts, AC volts, DC current AC current and resistance. The decimal point and polarity indications are automatic and so is the zeroing. All you have to do is touch the test prods to the circuit and note the reading.

Ranges cover everything needed. You can read DC voltages from 0.0001 volt (100 microvolts!) up to 1,000 volts, and AC voltage from the same low point up to 700 volts RMS. Accuracy on DC volts is 0.5% or better; on AC volts, 0.6% or better. Current ranges, both AC and DC cover from ±0.11 A up to 1.1 A. The AC volts range is rated up to 10 kHz with good accuracy.

The shoulder purse turned out to be a very cleverly designed carrying case. With this, the instrument can be hung around your neck. Opening it up will let you see the display and controls. Both hands are free to do the testing. Ample space is provided to hold the instrument, test leads and accessories. It is a very good-looking accessory.

The 3476A is the AC-powered version and the 3476B can be powered from AC or rechargeable batteries. The power supply is the only difference.

There are several useful features built-in. Using the 3476A in the autorange mode, it will set itself to whatever range is needed to display the voltage or resistance across the test prods. If you want to, you can take one reading and press the hold button. This locks the instrument on that range so that you can take several readings around the same stage without waiting. This doesn’t take too much time since it updates very rapidly, but in the hold position it’s even faster.

Another handy though too often neglected feature is the test leads. An instrument must be easy to connect into or across a circuit if its to be of any use. The instrument comes with a pair of stout test prods and a neat little plastic pouch that contains a whole array of different screw-in tips, clips, spade lugs, etc., to make hooking the leads to any type of circuit construction very easy. They’re easy to change and they make this instrument even more versatile.

The price of the 3476A is even more impressive. It’s only $225.00 for the 3476A AC version. This is quite a bit less than many other instruments with the same ratings. This has been made possible by the use of only two chips—one is the tantalum-nitride film resistor pack and the other a N-MOS control chip that does everything else! It contains the counters, buffer storage, display circuits, 3,500 bits of ROM and all of the mid-state analog switching for the autorange circuitry and so on and on. All in all, quite a piece of fine test gear.
The Black Watch kit

At $29.95, it's

*practical—easily built by anyone in an evening's straightforward assembly.

*complete—right down to strap and batteries.

*guaranteed. A correctly-assembled watch is guaranteed for a year. It works as soon as you put the batteries in. On a built watch we guarantee an accuracy within a second a day—but building it yourself you may be able to adjust the trimmer to achieve an accuracy within a second a week.

The Black Watch by Sinclair is unique. Controlled by a quartz crystal . . . powered by two hearing aid batteries . . . it's also styled in the cool prestige Sinclair fashion: no knobs, no buttons, no flash . . . just touch the front of the case to show hours and minutes and minutes and seconds in bright red LEDs.

The Black Watch kit is unique, too. It's rational—Sinclair have reduced the separate components to just four. It's simple—anybody who can use a soldering iron can assemble a Black Watch without difficulty. From opening the kit to wearing the watch is a couple of hours' work.

Complete kit
$29.95!

The kit contains
1. printed circuit board
2. unique Sinclair-designed IC
3. encapsulated quartz crystal
4. trimmer
5. capacitor
6. LED display
7. 2-part case with window in position
8. batteries
9. battery-clip
10. black strap (black stainless-steel bracelet optional extra—see order form)
11. full instructions for building and use.

All you provide is a fine soldering iron and a pair of cutters.

Please send me _____ Sinclair Black Watch kit(s) at $29.95 (Plus $2.50 per unit, shipping and handling). Stainless steel band $4.00. Available assembled kit $49.95.

☐ Enclosed is my check for _______

Name ________________________________
Address ___

Mail to: Sinclair Radionics Inc., RE-5 375 Park Ave., New York, N.Y. 10022
N.Y. Residents add sales tax.
Until now, the toughest part of CB servicing was getting the part.

Sylvania’s ECG” semiconductor replacement line has 138 devices for the transistors, diodes, rectifiers, integrated circuits and modules you need for Citizen’s Band repairs. And they’re all at your Sylvania Distributor.

That means you can spend your time in the shop instead of in search of the right parts house. It can also make the difference between turning away a potential customer, and turning out a profitable repair job.

The latest ECG Semiconductor Replacement Guide and Supplement cross-references CB devices by original manufacturer’s part numbers. In practically all cases, you’ll find a direct replacement, not a part that’s “something like” the original.

So don’t waste valuable time hunting for parts when you can have ECG’s electronics supermarket right in your own shop.

We’re helping you make it.

See us at Newcom Booth #L7911

Circle 18 on reader service card
build
"dyna-micro"
an 8080 microcomputer

Complete with keyboard for data entry, LED readout of the address and data, breadboard socket for experimenting, 500-bytes of PROM and 500-bytes of RAM, expandable to 65K and self-contained power supply

JOHN TITUS

Many experimenters, hobbyists and professionals are interested in learning about microcomputers and how they work, but the cost of a development system can be high and even inexpensive systems may require an expensive peripheral such as a teletypewriter to get them to work. None of the available systems have any easy hardware breadboarding capability and none have a series of experiments to teach you both interfacing and software fundamentals.

The Dyna-Micro is a complete microcomputer using the 8080A microprocessor chip. It isn't a stripped-down version of another system since it was designed specifically for the beginner. This system has been designed to teach you about microcomputers whether you're a high-school student or a digital design engineer—both will learn a great deal about computers. With the Dyna-Micro, you won't be spending your time wire wrapping a prototype or debugging a complex "hobby" system, you'll be doing hardware and software experiments to learn more about the microcomputer revolution.

The Dyna-Micro won't run FORTRAN, BASIC, editors, assemblers or other complex software in its present form. It isn't meant for that. You can, however, expand the memory if you want to. By the time you finish the experiments, you will know how this is done.

All the Dyna-Micro functions, including the keyboard, are contained on a single 10" × 12" printed-circuit board. The power supply is external.

Using the Dyna-Micro

The Dyna-Micro is one of the easiest
FIG. 1—CENTRAL PROCESSOR shows 8080A microprocessor and associated components. Power supply is external while voltage regulator is on-board.
to use microcomputers since it uses a software controlled "front-panel." Data is entered through a 15-key keyboard and data is displayed by LED's. The keyboard is used to enter address and memory data, to examine the contents of any memory location and to start your program from any location desired. The software to do this is pre-programmed in a 1702A PROM and is called the Keyboard Executive or KEX program. Since the 8080A microcomputer uses 16-bits of address and 8-bits of data, the LED display registers are divided into groups of 8-bits each. The KEX program uses OUTPUT 1 for the highest 8-bits of address (HI) and our next 65,536 words (commonly referred to as 65K) of memory may be addressed and added to the basic 8080 system. The Dyna-Micro uses only 1K of memory, more than enough for all the experiments and for most of your own needs when getting started. The memory is segmented, with the first 500-bytes being PROM and with the next 500-bytes being R/W. Table 1 shows how the memory is divided between PROM and R/W. The output ports and the keyboard input are used in conjunction with the 8080 program, but since they are not...
hardwired, you can use them for data input and output with your own software. This is easily done with the software as we'll see later. Additional input and output ports are easily added by breadboarding them on the SK-10 socket or connecting them to the edge connector.

Interfacing experiments are all done on the SK-10 socket. All you will need to do the experiments are some no. 24 jumper wires and the necessary integrated circuits. No additional soldering or wire wrapping is necessary with the Dyna-Micro.

Construction

The Dyna-Micro is constructed on a single printed-circuit board and it will be built and checked-out in stages to assure proper operation. These checks are fairly simple and all that is required is a voltmeter and a means of detecting for TTL level pulses. A monostable and LED will work quite well for this purpose. An oscilloscope is not needed, but might be helpful if you have one.

The schematic diagram of the Dyna-Micro is divided into two sections—the central processor unit and the I/O (Input/Output) section. The schematic diagram of the central processor unit is shown in Fig. 1 and the I/O section is shown in Fig. 2.

All the components of the Dyna-Micro, including the keyboard, are contained on a single 10" x 12" printed-circuit board. A double-sided board is used to minimize the number of jumper wires necessary for construction.

The power supply should be constructed first. If an assembled supply is purchased, it should be tested. The power supply must be capable of providing +5 volts at 1.5 A, and ±12 volts at about 150 mA. The power supply may be purchased from one of the many suppliers or from a surplus house. It should be ready before construction proceeds since it will be used to check the sections as we go along.

Mount the capacitors, resistor, and Zener diodes in the voltage regulator section of the PC board. Be sure that the binding posts are in the upper-left corner when the board is in front of you. The +12 volts is used only by the 8080A and the 8224 crystal clock IC. The −12 volts is used by the voltage regulator circuitry to obtain the −5 volts for the 8080A chip and the −9 volts for the 1702A type PROM's. After soldering in the parts, connect the power supply and check for the voltages at the power supply to be sure that there aren't any shorts. Check for +12 volts at pin 28 of the 40-pin socket and at pin-9 at IC5 (both sockets will not be soldered in at this time). You can also check for −5 volts at pin 11 of the 40-pin socket. The −9 volts will not be present unless a PROM is in one of the sockets.

The clock circuit uses an Intel 8224 integrated circuit. This is a crystal clock oscillator that provides the proper MOS clock levels for the 8080 system. It also contains circuitry for a TTL level clock (Q2), reset and

(Continued on page 74)
understanding MATV accessories

There's a lot of individual parts in a MATV system. Here we look at the most important ones and see what it is that they do and how best to use them.

WARREN ROY

There are more than 30 different kinds or categories of equipment that go into a MATV system. The individual items vary from antennas and rotators, to distribution amplifiers and power supplies, to connectors and cables. You need every one of these items to assemble a complete working system. In this article we will take a look at the more common elements; discuss their important characteristics and applications; and try to provide some guidelines to us when buying them.

Start at the top

We'll start with the antenna, the top of the iceberg in a MATV system. For the purposes of this article we'll look at broadband antennas as opposed to the single-channel antennas used in some systems. The single-channel approach works well where the stations to be received lie in different directions from the receiving antenna or where the signal from one station is much stronger than another. But in many systems a single broadband antenna is all that is needed.

The antenna selected must provide adequate signal levels for all of the channels to be received. Obviously, the further the antenna is located from the transmitters, the more gain, and therefore the more elaborate it must be. Most antenna manufacturers provide a full range of antennas to cover all possible circumstances. We suggest that you get an antenna that exceeds the minimum requirements. In other words, get an antenna that's one step better than you need.

Almost all modern antennas are made of aluminum and are anodized or otherwise plated or coated to protect against corrosion. In most instances a VHF/UHF antenna will do the job. But if there are no active UHF channels in your area, you can use a simpler and less costly VHF-only antenna. When using either a VHF-only or a VHF/UHF antenna there is one possible complication. Does the antenna cover the FM radio band or does it drop out those signals? If your customer wants FM reception, obviously you'll have to use an antenna that does provide that coverage.

Preamps fight snow

Preamps for weak signals are a must in many fringe areas. The preamp should be mast mounted and provide a lot of gain. At the same time it must have a low noise figure. Preamps are available that provide one wide-band amplifier or as many as three separate amplifiers in one package. The separate amplifier approach offers the benefits of greater reliability and protection from strong signal overloads. Since noise is the most important specification in a preamplifier, make sure you select one with the lowest noise figures you can obtain.

One important point to remember. A preamp can improve a snowy picture by reducing fading and loss of color and compensating for losses in the transmission line. But it cannot make a poor picture perfect.

Since the preamp contains a transistor amplifier it also requires a source of dc power. This is frequently provided by a separate power supply, located inside the house, that feeds the needed voltage up the transmission line to the amplifier. Older units may require a separate power supply connection, but this type unit is almost never seen any more.

By selecting a preamp that also converts a 300-ohm input to a 75-ohm output you can kill two birds with one stone—amplify the signal and reduce snow in the picture and match the antenna to the coax cable of the antenna system at the same time.

Filters and traps

Filters and traps are used in the head-end of many MATV systems to eliminate undesired signals and provide interference-free signals. A wide variety of equipment is available. Some are fixed, others are variable. The fixed ones are designed to cover a specific frequency range, such as individual television channels. The variable type can be tuned to any given frequency in its range.
Traps and filters

Bandpass filters permit the desired range of frequencies to pass through unobstructed, yet severely attenuate all other signals. The ideal filter has sharp slopes that make it possible to attenuate even nearby unwanted signals.

Traps are actually the opposite of a bandpass filter. They are designed to attenuate some specific undesired frequency. A good trap must have a high Q, making it extremely selective. The more selective it is, the better it can eliminate the undesired frequency without having any great effect on the wanted signals.

System amplifiers

The more sets you have connected to an antenna system the more signal you need to feed them all and have them deliver clear snow-free pictures. Remember, no matter how good the antenna itself is, there is a finite limit to how much signal it can pick up. When the demands on the system exceed this, we must use an amplifier to make up the difference. The amplifier also compensates for losses caused by the coaxial cables used in the system.

While these amplifiers are selected to deliver enough gain to operate the system, an equally important operating parameter is the noise figure of the amplifier. Amplification must be relatively...
noise free or the result will be worse than what you have without any gain at all.

About splitters
The first piece of equipment we encounter next is the splitter. The coaxial cable that carries the signal from the distribution amplifier toward the set is called the main trunk line. Some MATV systems have only a single trunk line, but it is much more common and practical to find that the signal is separated into individual lines that run directly to the sets in various parts of the house.

This kind of splitting usually requires a two-, three- or four-way splitter. Even if the plans call for only two outlets it may be wise to use a three-way splitter so that you can easily add another outlet at some later date. In strong signals areas use back-matched splitter/mixers. Back-matching provides a good match for reverse current flow, minimizing the possibility of signals re-entering the system.

Tapoff styles
The tapoff delivers the signal from the distribution lines to the TV sets. At the same time it keeps the sets from interfering with each other. Each set in a MATV system ideally gets about the same amount of signal, but there will be more signal available at outlets that are closer to the distribution amplifier than at outlets that are further away. By using variable-isolation wall tapoffs, it is relatively easy to balance this difference in signal strength out.

In most applications four types of tapoffs are most commonly used: the wall tap, the line drop tap, the directional coupler and the pressure tap.

The wall tap is the one that you are the most likely to see and use as part of a MATV system. It is used in much the same way as an electrician uses an AC outlet. In a new building, the distribution amplifier runs inside the wall and the tap is mounted in a standard electrical box inside the wall. In existing buildings it is not always possible or

DISTRIBUTION AMPLIFIERS are usually located inside the building and provide up to four outputs.
practical to snake transmission coax through the walls and in these instances the distribution coax can be run along the baseboard or the surface of the wall. The tapoff is then enclosed in a special surface-mounting housing.

Wall taps
Three types of wall taps are available. There's a 300-ohm outlet, a 75-ohm outlet, and a dual outlet. The correct one to use depends on two factors: the number of outlets required per room and the signal strength in the area.

Generally, it is best to use a 75-ohm outlet with a matching transformer. In strong signal areas the 300-ohm line between the outlet and the set will pick up signals directly and can cause ghosts, and interference. Using coax cable and 75-ohm outlets prevents this since the cable is shielded from direct signal pickup.

In some systems you will have to provide an outlet or outlets for both television and FM. In these instances you'll want to use a dual 300/75-ohm tapoff. The 75-ohm section is used for TV and the 300-ohm section for FM.

Line drop taps
The line drop tap is used in attics and crawl spaces. Each line-drop tap provides up to four drop lines to carry the signal to the set. The drop lines can be run directly to the set and the matching transformers or they can be run to a 0-dB wall tap. The line-drop tap is most commonly used in schools, motels, and hospitals.

The pressure tap is used outdoors where distribution lines are strung between poles, under the gables of apartments or other external systems.

The circuitry inside directional couplers incorporates design techniques that assure excellent impedance matching at all terminals, high accuracy of coupling and low insertion loss. Directional coupler tapoffs provide attenuation of 40 to 60 dB to signals leaving the line and returning because of receiver mismatch or disconnection.

This directional coupler circuitry is available in line tapoff configurations with one, two or four taps to the line.

Band separators
These devices are used in all channel (UHF/VHF) MATV systems to separate the UHF signal from the VHF signal before it is fed into the TV set. Unlike splitters that divide the signal equally, band separators contain circuitry to separate one band from another.

Terminators
The end of each 75-ohm distribution cable must be terminated with a 75-ohm resistor to prevent signals from traveling back up the line and causing ghosts on the individual TV sets.

That about wraps up our coverage of the important elements of MATV systems. We did not cover every item, but did look at the important ones, and the part that they play in a total system. R-E
The function generator is now occupying more service benches than ever before. This series of articles will cover the fundamentals, specifications, operation and applications of this instrument.

All about Function Generators

Charles Gilmore*

Introduced to the laboratory in the 1950's as a multi-thousand-dollar instrument, the function generator had dropped in cost to a $250-plus product by the early 1970's. This generator has always been a popular laboratory signal source because of its numerous waveforms (sine, square, and triangle being the most popular), its low output-impedance, its wide frequency range, and versatile frequency control. The past year has seen function generators in the $100 range introduced. These will be serious contenders for the slot on the service bench now filled by the classic sine-wave oscillator. That instrument may soon be relegated to high-precision audio testing where ultra-low distortion (below 0.05%) is required. The standard bench generator will then be a function generator covering the 0.1-Hz to 1-MHz range or more and providing at least, sine, square, and triangle waveforms.

Fundamentals

The function generator produces waveforms very differently from the classical sine/square oscillator. In classic higher-frequency instruments, an L-C circuit is used in the basic oscillator. Square waves are obtained from squaring circuits acting on the sine wave. If low-frequency waveforms are desired, the twin-T R-C oscillator or some other variation of an R-C oscillator is usually employed. The function generator's requirement of an extended frequency range is not easily met by either of these two classic circuits.

This new generator must span from millihertz (thousands of a hertz) to megahertz, and has evolved through a completely different technique. Note we are discussing a generator, as opposed to an oscillator, which implies a basic sinusoidal source. A simple block diagram of the function generator is shown in Fig. 1. The circuit's uniqueness is apparent on first inspection. The signal source itself is not a sinewave oscillator but a triangle generator. After passing the triangle through a special circuit (called a sine shaper), a sinewave of ½ to 2 percent total harmonic distortion is produced.

The heart of the function generator is the triangle generator, the design of which is based on the special voltage-time characteristics of a capacitor charged by a constant-current source. Fig. 2-a shows the well known voltage-time curve on a capacitor when charged through a resistor from a constant-voltage source. Fig. 2-b shows the voltage-time curve of a capacitor charged from a source of constant current. If there is no stray resistance across the capacitor (usually ensured by using extremely low-leakage capacitors), the voltage across the capacitor increases linearly as time increases. Obviously, this curve may be reversed. As shown in Fig. 2-c, if the capacitor is discharged at a constant current rate, a linearly decreasing voltage will be produced.

A triangle generator may be created by first charging a capacitor with a constant-current source until a desired positive peak voltage is reached. At this point, the charging constant-current source is turned off and a discharging (oppositely polarized) constant-source is turned on. When the voltage across the capacitor is reduced to the desired negative peak by the discharging constant-current source, this source is turned off and the charging source is again turned on. The voltage across the capacitor will again begin to increase. The waveforms associated with this operation are shown in Fig. 3. A level-detecting circuit that monitors the triangle amplitude signals the reversal of the constant-current generators when the desired peak positive and negative voltages are reached. The output of the level-detecting circuit is used as the wave source.

Note that the phase relationship of the square wave is constant with respect to the triangle wave and is 90° out of phase with the triangle wave zero crossing.

In practice, one or two switched current sources may be used. For example, if the charging constant current source has a current I, and the discharging current source has a current —2I, only the discharging current source need be switched. As the capacitor is charged, with the discharging current source off, the rate of charge will be determined by the current I.

When both current sources are on, the net current will be

\[I - 2I = -I; \]

thus the rate of discharge will be exactly opposite and equal to the rate of charge.

At any point in time the voltage across the generator is given by

\[E = \left(T \times I \right) / C, \]

E (volts) is the voltage across the capacitor, T (seconds) is the time of charge, I (amperes) is the charging current, and C (farads) is the value of capacitance being charged. Rearranging this expression, we have

\[T = \left(E \times C \right) / I, \]

which gives the time for either the positive or negative slope of the triangle wave.

This expression shows that two parameters control the time required to reach a desired limit voltage E: C and I. The greater the charging current, the shorter the time; or the smaller the capacitor, the shorter the time. In most function generators both variables are employed. The capacitance is varied for purposes of range changing, usually in decade steps. The current amplitude is continuously varied by the front panel dial. Frequently this current can be varied by as much as a thousand to one, giving a wide range of frequency control to the front panel dial without a change in the range (capacitor) setting. The upper frequency limit is determined by the maximum current available from the current source and the minimum value of the range capacitor.

At the lower frequency limit, the lowest

![FIG. 1-FUNCTION GENERATOR BLOCK DIAGRAM. A TRIANGLE WAVE generator is the basic signal source. Sine and square waves are produced from it by shaping.](image-url)
feasible current that may be reliably drawn from the current sources and the largest range capacitor determine the frequency. This large capacitor must still be of extremely high quality to preserve the linearity of the triangle waveform. As an example, presume the constant current generators may be varied over the range of 1 microampere to 1 milliampere (1,000 μA), the largest capacitor is 5 μF, and the limit voltage is 10. Using the expression $T = \frac{(E \times C)}{I}$:

$$T = \frac{(10 \text{ V} \times 5 \text{ μF})}{1 \text{ μA}} = 50 \text{ Sec.}$$

But this is only the time for the positive slope. To complete a triangle wave, a negative slope must be generated as well. The time or period of the triangle becomes twice the above calculated rate, or 100 seconds. A cycle that has a period of 100 seconds has a frequency of 0.01 Hz or 10 millihertz.

To reach the highest frequency, a much smaller capacitor is chosen, but the same 10 volt limit is used. Assume a 50 picofarad (0.00005 μF) capacitor. Using the same formula gives

$$T = \frac{(10 \text{ V} \times 0.00005 \text{ μF})}{100 \text{ μA}} = 0.000005 \text{ sec.}$$

or 0.5 microsecond. Again, this time must be doubled to arrive at the period of the triangle wave. This gives a time of 1 microsecond or a frequency of one megahertz. Thus, in this example the generator has an operating range of 10 millihertz to 1 megahertz or 100 million to one.

As the basic waveform is not a sine wave, the sinewave must be synthesized by some form of circuitry. The usual method of creating the sinewave is to shape the triangle wave with a circuit called a shaper. A simplified schematic diagram of a sine shaper and the associated waveforms is shown in Fig. 4. The technique is to increase the load on a high impedance triangle source as the level of the triangle waveform increases, thus distorting the triangle wave to approximate a sinewave with a series of straight line segments.

At levels below E1 (see Fig. 4), none of the diodes conduct and this portion of the triangle waveform is passed through the shaper undistorted. As the voltage level of the triangle wave reaches and exceeds the value E1, diode D1 conducts and the triangle source, of resistance R, is loaded by resistance $R1$. As the output voltage of the source continues to increase, diode D2 will conduct when the output voltage exceeds

E2. When diode D2 conducts, the triangle source is now loaded by the parallel combination of $R1$ and $R2$. This increased loading further reduces the amplitude of the triangle source and further decreases the slope of the wave. This process continues until all diodes are conducting and the triangle source is completely loaded. As the triangle reaches its peak and reverses, the action of the sine shaper is reversed. As each diode stops conducting, the load on the triangle source is decreased.

The number of diodes determines the number of break-points shaping the sinewave, and so determines the purity of the wave. Typically, function generators are not known for their ultra-low distortion, and total harmonic distortion figures of 0.1 to 3 percent are common. Note that figures of this order are usually quite acceptable for all but the most exacting audio work. Fig. 5 shows a typical aberration the sine shaper leaves at the crest of a sinewave. Such a peak will not substantially increase the total harmonic distortion of the sinewave, but may be quite noticeable when the waveform is viewed on an oscilloscope.

Referring to the simple block diagrams, (Fig. 1) the three waveforms are selected by a waveform selection control and then applied to the output amplifier. This amplifier is somewhat more sophisticated than those in the output stages of the simple sine/square generator. As a typical amplifier must pass a square wave of one megahertz or more, its bandwidth must be nine to ten times that value.
Generally, an amplifier of fairly high gain, reduced by negative feedback, is used to obtain the low output impedance required of a function generator. Not only must the amplifier pass frequencies in the tens of megahertz, it is also required to faithfully reproduce the output signal whose frequencies are in the milli- or microhertz region. This requirement dictates a DC-coupled amplifier.

Other frequent requirements for these amplifiers are: 10-volt peak-to-peak output into 50 ohms (2 watts); 20-volt peak-to-peak output into an open circuit; and short-circuit protection. Often a user-variable DC voltage is combined with the waveform entering the output amplifier so the user may add a DC bias or offset to the signal. The output amplifier is usually followed by some form of attenuator to decrease the output signal amplitude to a desired value. Generally, variable level controls are placed before the output amplifier and step attenuators are placed after it.

What has just been described is basic to most function generators; however, the function generator is commonly adorned with an abundance of “neat” features that vary from one manufacturer to another. Usually these features involve modifications to or additional controls on the tri- angular generator to produce such effects as swept frequency operation, variable symmetry waveforms, voltage (external) control of the oscillator, gated bursts, single cycle, and triggered start points.

Specifications
A common ground of understanding about specifications used in reference to function generators is needed before comparisons can be made. As in any complex instrument, the specifications that elabo- rate on the basic device are those that enable the user with a thorough understanding to obtain maximum usefulness from his purchase. Of course, a solid understanding of the basic specifications is also helpful when attempting to utilize even the simplest function generator.

Frequency range
As noted previously, the frequency range of function generators is controlled by two variables, the range selector and a continuously variable front panel dial. Typically the range control will be in decade steps, although some lower-cost gen- erators have switched steps that are a factor of 100. The specified frequency range for the generator will usually be from the lowest frequency that may be obtained (variable dial set at its lowest point and the range switch set in the lowest position) to the highest frequency that may be obtained (variable dial set at its lowest point and the range switch set in the highest position). When selecting a generator for its low-frequency capability, the low-frequency limit should be considered, as the accuracy of the frequency setting at the low-fre- quency point will be rather poor. Fre- quency range specifications for each generation will also note the frequency ratio given by the variable dial. Common ranges of control are 10:1, 100:1 and 1000:1. 1000:1 is popular, especially as it permits sweeping the complete audio range of 20 Hz and 20 kHz without step range changes.

Frequency stability, accuracy
Frequency stability is usually given for two different time spans. A short-term specification will be given for some time period such as 10 minutes, and long-term stability will be given for a period of 24 hours. Frequency stability specifications may be deleted on lower cost function generators.

The accuracy of the frequency setting is usually given as a percentage of full scale. For example, a generator with a frequency accuracy rated at 3% of full scale is set on the X1K range. The variable dial has a 10:1 decade, (0.1 to 10), and the dial is set at the “1.” The generated frequency will be 1 kHz ± 300 Hz (3% of full scale setting of 10 kHz). The “0.1” setting on the dial yields a frequency of 100 Hz ± 300 Hz! The accuracy is often specified only over the first decade, with the additional decades strictly for wide manual frequency control.

Frequency control (external)
In addition to the variable dial and the range switch, many function generators offer frequency control from an external voltage source. A voltage source of one variable dial. Such an external control is known as a voltage controlled generator (VCG).

A controlling voltage (such as 1 to 10 volts) is specified for the specified range of frequencies.

The maximum rate at which the VCG may be controlled is specified by the -3dB bandwidth of the VCG circuits as well as the slew rate specifications, which tell the maximum rate of change at which the VCG can be operated. The VCG spec- ification indicating the degree of match between the theoretical frequency of the generator and the actual frequency caused by the controlling voltage is called VCG linearity. VCG linearity is usually ex- pressed as a percent of maximum control voltage. The input impedance of the VCG is often in the one to ten-kilohm range.

Swept frequency mode
On more sophisticated function genera- tors, a second generator with a sawtooth waveform which will give swept-fre- quency output of the main generator, may be included. When this feature is present, the sweep generator will have a frequency range of its own, although its range is not usually as wide as that of the main generator. Frequently the rate of this generator will be given in time rather than in frequency, to assist in its use as a time base.

Other generator controls
Another control found on function gen- erators is one to trigger the start of a single burst externally. Some generators having trigger capability also have the ability to trigger a single cycle and define the phase of the start point with a level control. This allows the user to start the wave from at +90°, for example. The amount of change in the generator to output an integral number of cycles of the desired waveform during the presence of a DC gating signal. Gated cycles of the generator start and stop at zero crossing, usually on the positive-going slope of the triangle waveform.

Generators having a subgenerator for sweeping purposes may have a multiple cycle or burst mode. In this mode, the pe- riod of the subgenerator gates the main generator, again producing an integral number of cycles.

Sine wave harmonic distortion
The major specification applied to the sinewave output of a function generator is the total harmonic distortion (THD). THD will frequently be specified over a limited frequency range (such as 20 Hz to 20 kHz), as the ability to measure THD above a few hundred kHz below a few Hz is limited. A specification indicating that all harmonics are below 30 dB, for example, may be given for frequencies above 100 kHz.

Triangle linearity
Triangle linearity indicates the degree to which the positive or negative slopes of the triangle waveform conform to a perfect straight line, and is given in one of two ways. The manufacturer may specify a triangle linearity of 95%, indicating the triangle waveform will not deviate from a perfect waveform by more than 5% of the full scale value. Other manufacturers specify maximum nonlinearity. A maximum nonlinearity of 5% would be the same specification as a 95% linearity specification. High degrees of linearity (1% to 0.5%) are obtainable at a price, but 5% nonlinearity is sufficient for most applica- tions.

Square wave rise and fall
The rise and fall time of a square wave is defined as the time required for the wave edge to travel between its 10% and 90% voltage points. The rise and fall times lie in the 100-nanosecond range for 1-MHz generators and may be as fast as 10 nano- seconds on 10 to 30-MHz function genera- tors. Rise and fall times will be consistent across the generator frequency range.

Time symmetry
Time symmetry specifies the time match between the positive and negative-going slopes of the triangle wave. Any deviation from a perfect match indicates some in- crease in total harmonic distortion of the sinewave and will effectively add DC offset to the sine, square, and triangle waves. Time symmetry is not specified in the same manner by all manufacturers. A specifi- cation of 2% time symmetry indicates that the symmetry of the waveforms is such that the duty cycle of the positive pulse of the square wave will not be less than 48% nor more than 52%. This is alternately specified by noting that two of the narrow- est pulses (positive or negative) would make up at least 96% of the period of the cycle.

Vertical precision or flatness
Another important feature of the func- tion generator is the inherent flatness of the output amplitude. Flatness indicates the maximum variation in output amplitude with variations in frequency, includ- ing range changes. With the exception of the uppermost range, most function gen- erators give flatness specifications in the tenths of a dB. Frequently the uppermost frequency range of the sinewave output (continued on page 88)
Anyone who has ever connected a pair of speaker systems to a stereo amplifier knows they need proper phasing. If the stereo pair is connected out of phase, we know that one speaker cone (or set of cones in a multi-driver system) will “push” air while the other “pulls”. The result is a combination of loss of apparent bass and of vague positioning of instruments in the stereo sound field. The reason for the loss of bass is fairly obvious. Since low, bass tones are fairly non-directional (bass sound seems to fill a listening room rather than originate from a pin-point location), when recordings are made the left channel microphone or microphones pick up as much of the bass energy as the right channel mikes. In reproduction, both speakers are expected to deliver approximately the same bass energy. If the bass tones coming from one speaker are out of phase with those coming from the other, the wave fronts tend to cancel each other and there is a noticeable absence of bass in the reproduced music.

But what about the other effect? Why—when speakers are out of phase—do we find it difficult to pin-point instrument locations in the reproduced music? Despite early studies (which suggested that the human ear is not sensitive to “phase errors” in complex waveforms) an increasing amount of recent evidence suggests that, indeed, phase linearity (or, more simply, correct relative time relationships of all tones and their harmonics) is a necessary ingredient of true high-fidelity sound reproduction. It is simple enough to insure that left and right speaker systems are operating “in phase” (there’s a 50-50 chance of correct connection to begin with, and if you suspect an out-of-phase connection you just reverse the wires to one of the speaker systems). But there’s much more to “phase linearity” than that. Remember, most modern high-fidelity speaker systems consist of two or more drivers. We have woofers, tweeters, and in some cases mid-range drivers as well as super-tweeters, each attempting to reproduce a given portion of the audio spectrum. How about the phase relationship between these various drivers within a given speaker system?

Some manufacturers have come to the conclusion that the various speaker elements in a multi-driver system must be arranged so that all audio frequencies arrive at the listener’s ear in correct time (or phase) relationship. The very nature of woofers and tweeters makes this difficult if all drivers are mounted on a common baffle, in a single plane, as illustrated in Fig. 1. Because the woofer cone is deeper than that of the tweeter, sounds produced by the woofer arrive at the listener’s ear a fraction of a second later than those produced by the tweeter. Some manufacturers (such as Dahlquist in their DQ-10 design) have sought to compensate for this by
feeding low frequencies to the woofer and high frequencies to the tweeter. Note that at the crossover point itself, relative amplitude is down 3 dB for each driver, so that the sum of energy delivered to the two drivers is the same as at frequencies outside the crossover region. With a simple crossover such as this, overall phase response of the system will be quite good—even in the region of crossover. If a square wave at 1 kHz were fed into such a system (and assuming that the drivers were otherwise perfect in response), the output waveform from the woofer would look like the waveform drawn in Fig. 4-a while the output from the tweeter would have the appearance of Fig. 4-b. Add these two components together and you have the waveform of Fig. 4-c—a perfect square wave with no phase distortion.

The problem with using such a moderate-sloped crossover network is that it requires woofers and tweeters to operate effectively (with low distortion and flat frequency response) well outside their intended regions of best performance. Since the contribution of each driver can be heard at least until it is 12 dB below reference program level, the overlap region in a 6 dB/octave crossover arrangement extends for a full four octaves, as illustrated in Fig. 5-a.

If a steeper rate of roll-off—such as 12 dB per octave—were employed, overlap would need to extend only for a total of two octaves, as shown in Fig. 5-b and optimum performance of each driver would not have to be extended so far outside its “normal” frequency region. For this reason, most better systems do utilize 12 dB/octave crossover networks (some even employ 18 dB/octave slopes). But here is where the problem arises. When such a network is used, the phase angle of the waveform fed to the woofer goes in a negative direction as the crossover frequency is approached, while that for the tweeter goes positive, as shown in Fig. 6. Thus, although single-amplitude plots (without regard to phase) of the output voltages of a 12 dB/octave network, as shown earlier in Fig. 5-b, suggest that total energy output of the system in the
region of the crossover frequency will be "flat," yet if outputs are plotted with regard to amplitude and phase, the actual output energy in the crossover region appears as in Fig. 7 because of the cancelling effect of the out-of-phase outputs from the two legs of the crossover network.

![Fig. 7](image)

FIG. 7—PHASE ANGLES INTRODUCED by the 12 dB/octave network create a sharp cancelling null at the crossover frequency when the phases of the sections are reversed.

When a square wave is fed to such a system, the output from the woofer will theoretically appear as shown in Fig. 8-a, that of the tweeter as shown in Fig. 8-b, and the composite waveform will appear as shown in Fig. 8-c—not at all like the square wave input signal with which we started.

Some manufacturers have been aware of this out-of-phase problem for some time. One attempt at correction has been to reverse the phase of the tweeter with respect to the woofer (or, in the case of 3-way systems, the midrange with respect to the woofer). As can be seen from the composite diagram of Fig. 9, this produces a peak in total energy output in the frequency region of the crossover instead of a null. Because of the phase response characteristics over the entire frequency band (shown as a dotted line), application of a square wave to a system arranged in this manner would result in the woofer output shown in Fig. 10-a, the tweeter output in Fig. 10-b and the composite output shown in Fig. 10-c—still a long way from the desired square wave shape.

Bank & Olufsen's solution

The answer to the problem of phase linearity in speaker design was discovered by Erik Baekaard, who read a paper on his work at an AES convention in London. It is represented in a new line of speakers which were demonstrated to me while I was in Denmark. Design work on these speakers was led by Esben Kokholm, of B & O and I have since had an opportunity to evaluate them in my own laboratory.

In addition to the usual woofer, midrange and tweeter, this family of speaker systems employs what B & O calls a "filler driver." The general form of crossover network used is that of Fig. 11. Note that the center circuit is neither a low-pass or a high-pass filter, but rather a series resonant arrangement that provides a peaked response to the filler driver (or phase-link speaker, as they call it) at the crossover frequency and a rolloff of 6 dB per octave above and below that frequency. Added to the responses of a conventional 12 dB/octave network, we have the composite crossover network response shown in Fig. 12. The theoretical outputs from the three drivers are now as shown in the three parts of Fig. 13. When these are added together graphically, we do come up with an exact replica of the original square-wave input waveform.

Having achieved a solution to the crossover problem, the people at B & O were not about to ignore the driver positioning problem mentioned earlier. While they maintain that flat-baffle positioning produces less phase distortion than that introduced by conventional crossover networks, they nevertheless were looking for as near perfect a phase response characteristic as possible. Accordingly, they developed a new front-baffle shape (actually precision molded of high density foam resin which, they...
What happened was perfectly content with what later proved to be the somewhat vague stereo localization of music using a well-known speaker pair—until I pushed the A-B switching arrangement and listened to the linear-phase units for comparison. Suddenly, the previous pair’s sound wasn’t quite as gratifying.

The square-wave drawings shown in earlier diagrams are purely theoretical, and derived mathematically. I was curious to see if results could be duplicated in practice, allowing for the fact that my lab is anything but an anechoic chamber and that microphone placement would have a great bearing on the results. I therefore hooked up a square-wave generator to my system, placed a calibrated microphone at what I thought was an optimum spot in front of my regular lab speaker, and photographed what was picked up by the microphone. The results are shown in the scope photo of Fig. 15. Without moving the microphone, I carefully replaced my regular speaker with the sample M-70 model from Bang & Olufsen and repeated the experiment. The

FIG. 14—ANGLED FRONT BAFLE compensates for the phase delay caused by difference in depths of woofer and tweeter.

Does it make a difference?

Obviously, we don’t listen to square waves, and it can be argued that when listening to complex musical waveforms some of these fine points tend to be obscured. I can only tell you that in comparison tests made with three other speaker system types (all popular, well-accepted brands) I was able to sense better localization of stereo images, better transient response with certain program material, and a more natural sounding overall musical quality.

How much of the improvement is a result of the linear phase response of these new systems and how much is simply the result of otherwise excellent driver selection, enclosure design and generally good speaker system design I am not prepared to say. The fact is that “hearing memory” in humans is extremely poor. We tend to listen to our favorite speakers and to convince ourselves that we are hearing reality. This happened in my listening tests, too. I

FIG. 15—SQUARE-WAVE SIGNAL IS reproduced by actual conventional speaker system much as shown in the theoretical mathematical addition of Fig. 8-c.

scope photo of Fig. 16 shows the results I then obtained. Maybe Bang & Olufsen has something here!

DON'T MISS IT!

This month’s in-depth hi-fi test reports include the Marantz model 2325 stereo receiver and the Lafayette model LR-2200 stereo receiver.

RCA closes Harrison tube plant, oldest in world

“...A sharp decline in demand for receiving tubes in the face of the continuing shift to solid-state devices in consumer, industrial and defense electronic systems” was given by Paul B. Garver, head of RCA’s Distributor and Special Products Division, for the July closing of RCA’s last tube manufacturing facility, at Harrison, NJ, July 30. Industry sales have declined almost 80 percent since 1966, he said, with replacements in older electronic equipment responsible for most of the present volume.

The Harrison plant was opened by Thomas Edison in 1882, to manufacture electric light bulbs. Ten years later, it was acquired by General Electric, who continued to manufacture lamps until 1918 when the first radio tubes were made. Throughout the 1920’s, G-E continued to supply tubes to the various manufacturers of radios. In 1930 the plant was purchased by an RCA subsidiary, RCA Radiotron Co., and the tubes were called Radiotrons.

At its peak, the Harrison plant had a work force of more than 7,000 (as compared to a recent figure of 1,100 employees) and made 87 million tubes in one 12-month period. Besides mass-producing tubes for consumer use, the plant made special ones for industrial, military and aerospace equipment, some in rather small quantities. RCA, now the sole source for about 110 types of receiving tubes, plans to meet as far as possible all future requirements for these types, and will continue to sell replacement receiving tubes.

550,000 calls-per-hour on new telephone central system

The world’s highest-capacity long distance telephone switching system went into action in Chicago last January 17. The new facility, No. 4 Electronic Switching System (ESS), has a peak capacity of 550,000 calls-per-hour. This works out to a little over 9,000 calls-per-minute, or 150 calls-per-second.

FIG. 16—TEST SETUP OF FIG. 15 with the new B & O speaker system. Output more closely resembles the square-wave input.
Build This Solid State Ignition System For Your Car

This electronic ignition can be used with any standard ignition coil to provide a constant-amplitude spark

DICK PACE

TRANSISTOR IGNITION SYSTEMS WERE INTRODUCED by Ford as optional equipment in 1966. A year later, GM offered similar systems. Chrysler developed a system so economical and reliable that it was supplied as standard equipment on all models, beginning in 1973. Other manufacturers are following this lead, and electronic ignitions are becoming standard on most cars. The prime advantage of these systems is that they provide high peak voltage to drive the spark plugs.

The circuit to be described has several advantages over previous types. Most transistor ignition systems require special coils; this project is designed for use with any standard ignition coil.

It provides a constant-amplitude spark at engine speeds in excess of 6,000 RPM. At low speeds, spark duration is relatively long. This minimizes pollution and increases engine efficiency. At high speeds, spark duration is shorter, allowing time to charge the coil fully. (At high speeds, long spark duration is not necessary for thorough fuel burning.)

Since this ignition system is triggered by the ignition points on the car, point wear is virtually eliminated. A convenient switch enables you to operate the car from its regular ignition system in the unlikely event of circuit failure. Finally, the unit is very stable. The spark duration is computed automatically so that once turned on by the car's points, shutdown occurs at the right instant. Previous transistor ignition projects were turned both on and off by the points.

Essentially, this is an electronics project rather than an automotive one. Except for hooking up the transistor ignition system, no changes are required to the automobile. All parts are readily available, for under $30.

How it works

When the points are closed in a conventional auto ignition system, current flows through the coil, charging it. When the points open, current is interrupted. The collapse of the magnetic field creates high voltage across the points. The voltage rise (about 200 volts peak) is stepped up by the coil, which is actually a transformer, about 100 times (to about 20,000 volts) to fire the spark plugs. The capacitor serves to slow the rate of voltage rise across the points and to form a resonant tank circuit, together with the coil. The capacitor and the coil resonate in damped oscillations until the stored energy is spent. Should the points close before the energy were completely dissipated, the points would arc.

When you add this transistor circuit to the ignition system, it is power transistor Q4 (see Fig. 1) that interrupts current to the coil, rather than the points.

Transistors Q1 and Q2 form a monostable or one-shot multivibrator with some modifications. A monostable multivibrator is a pulse generator that operates only when triggered. It has two states, stable and unstable.

In its stable state, Q1 is "off," with 12 volts at its collector, and Q2 is "on," with the collector at ground. (All the transistors act as saturation switches. Either they are completely on or completely off.) Q3, a PNP, is "on," because current flows through the collector-emitter junction of Q2, R8 and the base-emitter junction of Q3. Q4 is "on" because current flows through its base-emitter junction from collector emitter current of Q3 through R9.

When a pulse is applied to the base of Q1, it turns on and its output immediately goes to ground. Therefore, the plus end of C1 also goes to ground. Since the voltage or charge across the capacitor cannot instantly go to ground, the minus side of the capacitor goes to —12 volts.

This negative voltage turns off Q2 by reverse-biasing it. Q2 will not stay off for a fixed period of time. The collector of Q2 is now at battery voltage and the base of PNP Q3 is at battery voltage (equal to its emitter voltage) and is turned off. Base current to Q4 stops and Q4 turns off, interrupting the current in the coil.
While the sparkplug is firing, R3 is (relatively) slowly charging the minus end of C1 in a positive direction. Current is flowing through R6, keeping Q1 on. Eventually, the minus end of C1 reaches +0.6 volts and turns Q2 on. This removes the voltage from the base of Q1 and it turns off. At this point in time, Q2, Q3 and Q4 are all on.

The pulse that determines when Q1 turns on comes from the ignition points in the car. When the points are closed, the junction of R1 and R4 is at ground. When the points open, +12 volts appears at R4 through R1. Capacitor C6 differentiates the voltage, forming a positive spike that turns on Q1. R1 (40 ohms) allows about 1/4-amp of current to flow through the points when they are closed. This is not enough current to cause contact wear but is enough to prevent the points from oxidizing, which could cause the system to fail. The charge time across the points capacitor (condenser?) through R1 is fast enough to be insignificant.

The spark is not turned off by the points. Spark duration is determined independently by the circuit time constants. The on time of the multivibrator is determined by C1 and R3 by the formula \(T_0 = \frac{0.6}{R_3C_1} \). This "on" time is relatively independent of supply voltages because when the capacitor charge increases, the available recharge current also increases.

The above formula assumes that C1 is fully charged. The recharge of C1 is through R2. In most multivibrator applications, a constant-duration output is desired. An attempt to operate the monostable multivibrator faster than a certain rate will cause the output pulse to become narrower, because capacitor C1 has not had time to fully recharge through its charge resistor R2. This problem is utilized to advantage in this circuit. R2 would normally be a smaller value (about 470 ohms) to allow for quick recharge. In this circuit it is made larger to increase C1 charge time. Thus, as engine speed is increased to exceed 900 RPM, the spark duration begins to narrow or shorten in time. The duration is about 1.7 milliseconds at 700 RPM, about 1.4 milliseconds at 2,000 RPM and only 0.75 milliseconds at 6,000 RPM.

The result is a long spark at low speeds, which will result in thorough combustion.

Parts List

- **All resistors 10% carbon unless noted**
 - R1–40 ohms, wirewound, 10 watts
 - R2–2700 ohms, 1/4 watt
 - R3–1000 ohms, 1/2 watt
 - R4–1000 ohms, 1/4 watt
 - R5, R6–3000 ohms, 1/4 watt
 - R7–75 ohms, wirewound, 5 watts
 - R8–22 ohms, 1/2 watt
 - R9–10 ohms wirewound, with brackets, 25 watts (Mallory type 2.5HJ or equivalent)
 - R10–150 ohms, 1/2 watt
 - R11–220 ohms, 1/2 watt
 - R12–470 ohms, 1/2 watt
 - C1–2.7 µF, ±10% high-quality tantalum (Mallory TAC 275K025P04 or equal.)
 - C2–0.1 µF ceramic, 50 V or higher, -20 +80%
 - C3–470 µF, 25-50 V, -20+80% electrolytic

- **Miscellaneous:**
 - Case–aluminum "Minibox" 5 1/2 x 3 x 2 1/4-inch
 - Circuit board. Make your own PC board or use perforated board with push-in clips.
 - Heat sink for TO-3 case (Q4). Burstein-Applebee catalog No. 12A2229-9 or any type with equivalent radiating surface.
 - Silicone grease for Q3 and Q4
 - Coil dope for Q4
 - TO-3 transistor socket for Q4. (Radio Shack 276-029 or equivalent)
 - One-inch standoffs for printed-circuit boards.
 - Barrier strip or strain relief for wires going to car
 - Printed-circuit board L-brackets for mounting case to car.

FIG. 1—THE FOUR-TRANSISTOR ELECTRONIC IGNITION SYSTEM.

www.americanradiohistory.com
and a short spark at high speeds. This short spark allows a longer charge time for the ignition coil at high speeds than with points. Points have about a 50% duty-cycle or a nearly square-wave output. An attempt to have the points open for a shorter time would cause pointing as the coil would not have discharged completely. A transistor can be turned on while the coil is still charged and sparking, without any problem.

While standard ignition systems rapidly lose voltage above 2,000 RPM, this system ensures virtually constant output voltage to over 6,000 RPM. (See Fig. 2.)

Standard ignition systems sometimes have a problem known as point bounce at high speeds. Points operating at high speeds tend to vibrate slightly, causing an erratic charge and discharge of the coil. This erratic point operation could cause the electronic ignition to operate erratically, but circuitry is included in the system to prevent this problem. Basically, the circuit prevents the unit from retriggering for a fixed period after the spark has ended. This effectively places an upper speed limit on the engine at about 10,000 RPM. The network is formed by C7, R12 and R5. When the monostable multivibrator is in its unstable state, there is a charge on C7, with +12 volts on its right side through R4. When Q2 turns on, -12 volts appears at the base of Q1. This discharged through Q2. Until it does, the unit will not trigger. When the points close, a negative voltage appears at the base of Q1 from differentiation capacitor C6. This adds to the negative charge from C7 and further prevents premature operation.

R10, D1, and D2 form a protective network to prevent excessive voltage from destroying Q4. D1 and D2 are Zener diodes in series, giving a Zener voltage of 300. R10 provides isolation and circuit limiting. If the voltage across the diodes exceed 300, the Zeners conduct and the current flow of Q4, turning it on slightly to limit the voltage at its collector. The gain of Q4 is utilized to lower requirements of the Zeners.

C8 allows a controlled buildup of voltage when Q4 turns off and effectively limits the voltage to about 220 to 270. The unit will work without it but the waveform is uncontrolled and spiky. The initial spike, if not limited by the Zener circuit, will go above the breakdown voltage of the transistor and eventually cause it to fail. C2, C4, C5 are RF and transient filters. C3 is a power supply ripple filter. The switch is used to bypass the unit, in case of component failure, for tuneup purposes or for comparison. When switched to the bypass position, the +12 volt supply is removed; the points and coil are switched out of the circuit and connected to each other.

Construction

A conventional aluminum box can be used to house the unit. The circuit layout is not critical. Most of the components can be mounted on a circuit board. While a pre-patterned board was used for the original, a perforated board with clips will be fine, or you can make a printed circuit board. D1, D2, D11 and C8 can be wired point-to-point near Q4 using a terminal strip. Mount Q4 to a heat sink, using a TO-3 socket. Heatsink Q3 by fastening it with a screw to the case. Don't forget the mica insulators and silicone grease. Wipe off excess silicone grease and coat transistor Q4 with coil dope, especially where it meets the case, to prevent water splashing from shorting across the transistor. Mount R9 outside the case with brackets; it gets quite hot. Wires running to the engine should be passed through a strain relief, or a barrier strip can be used. Use No. 18 gauge stranded wire.

In choosing transistors, there is nothing really critical about Q1 or Q2. Q3 is not critical, but should have low leakage. If you substitute, be sure to use silicon transistors that will saturate easily at the required currents. If Q2 does not saturate, for example, the unit will oscillate. The collector-base voltage ratings should be 35 volts or better. Use discretion in substituting for Q4. Here we need a high-voltage power transistor, at least 300 collector-emitter volts, high current capability, operating from 3.5 amps to 5 amps, with some gain of saturation voltage (Vce(s)). The Motorola HEP 707 and HEP-S5020 have these characteristics. Many high-voltage transistors do not.

When selecting parts remember that the unit will be operated in temperature extremes from -10°C to 100°C or greater.

Bench Testing

This unit, or other electronic ignition systems, can be bench tested without a car or even a distributor. You will need:
1. Ignition coil of the type for use with the ignition system under test.
2. a single spark plug
3. squarewave generator
4. audio amplifier
5. ballast resistor or a 1/2 to 1-ohm 25 to 50-watt resistor
6. oscilloscope with attenuator probe
7. 12-volt power supply
8. 500 µF 25V capacitor
9. clip leads

The coil and ballast resistor are connected to the unit and power supply as they would be in the car.

The squarewave generator and amplifier replace the points. For ignition systems that use points, connect the generator to the amplifier and connect the amplifier through a 500 µF, 25V or larger capacitor to the points input (minus to the amplifier, plus to the system). Adjust the amplifier volume control for a 12-volt peak-to-peak squarewave. The capacitor is to keep the 12-volt DC output from the amplifier. Ignition systems without points, such as those with a pickup coil, should be connected direct to the squarewave generator, since these units are very sensitive.

Connect the scope probe to the primary terminal of the ignition coil. Connect a sparkplug to the secondary. Don’t forget to ground the spark plug. RPM is determined by the formula for a 4-cycle engine:

\[
Hz = \frac{RPM}{60} \times \frac{No. of cylinders}{2}
\]

Operate the squarewave generator from 40 to 400 Hz.

Installation

The unit can be attached to the car with "L" brackets. Mount the unit in a dry location in the engine compartment, well away from the exhaust manifold and other hot spots. Connect the wires to the car as shown in the schematic (Fig. 1). At the ignition coil, remove the wire that goes to the points. Connect the collector of Q4 to this coil terminal. Fasten the point wire to its input (junction of R1 and R4). Connect the +12V terminal to the car's ignition circuit. It can be attached to the battery side of the ballast resistor in cars that have it, or to an ignitio terminal at the fuse block (not an accessory or battery terminal). Some cars (typically GM) use a piece of resistance wire in the lead to the coil (+) terminal for ballast resistance. Others (frequently foreign cars) have the ballast resistor inside the coil. Only in these cars can the +12V be taken from the coil's plus terminal.

Tune-up

Follow manufacturers specifications on tune-ups. Timing can be set with the switch at "normal". If you use the dwell meter technique to set the points, be sure to set...
WHEN THE NAME LAFAYETTE IS MENTIONED in electronic circles, most people think of a national network of retail stores that sell all types of consumer electronic equipment from ham gear to hi-fi. In fact, the people who run Lafayette also consider themselves to be a major manufacturer of electronic equipment and their line of high-fidelity amplifiers, tuners, receivers, and other hi-fi components is as broad as that of some of the better known makers of sound equipment. Furthermore, since they act as suppliers and retailer, they claim to offer more performance per dollar in their hi-fi equipment than do some of their competitors who have to first make a profit in selling to dealers before the dealer applies his or her profit.

We chose to investigate their moderately priced LR-2200 receiver because it seemed to offer good features and power output for its under $300.00 price. The receiver, shown in Fig. 1, follows a traditional front panel design approach with a well illuminated dial area that lights up when power is applied. Frequency calibration is minimal, with marks supplied only every 2 MHz apart of the FM scale. To the left of the tuning scales are a pair of tuning meters—one for signal strength indications on AM or FM, the other for center-of-channel tuning when listening to FM. The usual stereo indicator lights up between the frequency scales and the meters when a stereo FM signal is received. A tuning knob is located to the right of the dial scales and is coupled to a fairly effective flywheel for ease of tuning.

Along the bottom of the control panel are six major rotary knobs. The first of these, at the left, is a program selector. The other volume and balance controls are located near center of the panel. The bass and treble controls are of the dual concentric, clutch type so that individual tonal control of each channel is possible. At the lower right is a speaker mode knob that includes a power-off position as well as a position for synthesizing 4-channel effects from stereo program sources if two pairs of speakers are connected in the same room. Alternatively, two pairs of speakers may be arranged as “main” and “remote” for stereo reproduction in two different locations. Small pushbuttons located between the two left-most knobs take care of such functions as loudness, hi-cut filtering, stereo/mono switching and activation of either or both of the available tape-monitor circuits. The rear panel, shown in Fig. 2, has switched and unswitched convenience AC receptacles at the left, the required input and tape out jacks at the upper right and a loopstick ferrite AM antenna that can be retracted from chassis surface for better AM reception. Adjacent to the phono input jacks is a slide switch that alters phono input is sensitivity from 2.5 millivolts to 6.0 millivolts to better accommodate cartridges of widely varying outputs. The main pair of speakers are connected via a barrier-type terminal strip while connection of a second pair of speakers (or rear speakers if the pseudo-quadrifilar effect is desired) is made by means of phono-type pin plugs. A screw-terminal strip accepts outdoor AM or FM antennas and two of the terminals are connected by a removable jumper that couples to a line cord-capacitor arrangement that serves as an indoor FM antenna. A chassis ground terminal, left and right speaker fuses and a power line fuse complete the rear panel layout. Connection of possible associated equipment is illustrated in the diagram of Fig. 3.

Figure 4 is a photo of the internal layout of the LR-2200 receiver. Four major circuit board modules are used: a large one for the FM and AM tuner section, one for the preamplifier and voltage amplifier plus tone control section, a third module for the power amplifiers, and a fourth module that houses the power supply.

Circuit highlights

The FM front-end of the LR-2200 employs a four-section variable capacitor for tuning, a dual-gate FET as an RF amplifier, a junction FET as a mixer and a bipolar device as a local oscillator. Two ceramic filters are used to tune IF frequencies with IF amplification accomplished by one bipolar transistor and pair of IC stages. Most of the multiple decoding circuitry is contained in a single IC. The AM circuitry consists largely of a multipurpose IC, with IF frequencies tuned by another ceramic filter. Phono preamplifiers and equalizers are IC's (one per channel), while voltage amplification and tone control stages of the popular feedback type employ discrete bipolar devices. The input stage of each power amplifier section is a differential amplifiers.
TABLE I

FM PERFORMANCE MEASUREMENTS

<table>
<thead>
<tr>
<th>SENSITIVITY, NOISE AND FREEDOM FROM INTERFERENCE</th>
<th>R-E</th>
<th>R-E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement</td>
<td>Evaluation</td>
<td></td>
</tr>
<tr>
<td>IHF sensitivity, mono (µV) (dB)</td>
<td>2.4 (13.0)</td>
<td>Fair</td>
</tr>
<tr>
<td>IHF sensitivity, stereo (µV) (dB)</td>
<td>10.0 (25.4)</td>
<td>Good</td>
</tr>
<tr>
<td>50 dB quieting signal, mono (µV) (dB)</td>
<td>3.0 (14.9)</td>
<td>Very good</td>
</tr>
<tr>
<td>50 dB quieting signal, stereo (µV) (dB)</td>
<td>35.0 (36.3)</td>
<td>Good</td>
</tr>
<tr>
<td>Maximum S/N ratio, mono (dB)</td>
<td>70</td>
<td>Excellent</td>
</tr>
<tr>
<td>Maximum S/N ratio, stereo (dB)</td>
<td>65</td>
<td>Very good</td>
</tr>
<tr>
<td>Capture ratio (dB)</td>
<td>1.6</td>
<td>Very good</td>
</tr>
<tr>
<td>AM suppression (dB)</td>
<td>50</td>
<td>Fair</td>
</tr>
<tr>
<td>Image rejection (dB)</td>
<td>80</td>
<td>Very good</td>
</tr>
<tr>
<td>IF rejection (dB)</td>
<td>80</td>
<td>Very good</td>
</tr>
<tr>
<td>Spurious rejection (dB)</td>
<td>88</td>
<td>Good</td>
</tr>
<tr>
<td>Alternate channel selectivity (dB)</td>
<td>61</td>
<td>Good</td>
</tr>
</tbody>
</table>

FIDELITY AND DISTORTION MEASUREMENTS

Frequency response, 50 Hz to 15 kHz (dB)	0.75	Excellent
Harmonic distortion, 1 kHz, mono (%)	0.35	Very good
Harmonic distortion, 1 kHz, stereo (%)	0.5	Very good
Harmonic distortion, 100 Hz, mono (%)	0.35	Very good
Harmonic distortion, 100 Hz, stereo (%)	0.5	Very good
Harmonic distortion, 6 kHz, mono (%)	0.6	Good
Harmonic distortion, 6 kHz, stereo (%)	0.8	Excellent
Distortion at 50 dB quieting, mono (dB)	1.2	Very good
Distortion at 50 dB quieting, stereo (dB)	0.5	Very good

STEREO PERFORMANCE MEASUREMENTS

Stereo threshold (µV)	10	Fair
Separation, 1 kHz (dB)	40	Excellent
Separation, 100 Hz (dB)	42	Excellent
Separation, 10 kHz (dB)	26	Good

MISCELLANEOUS MEASUREMENTS

| Muting threshold (µV) | 10 | Fair |
| Muting threshold (± kHz @ MHz) | 200 @ 88 | Good |

EVALUATION OF CONTROLS, DESIGN, CONSTRUCTION

Control layout	Fair
Ease of tuning	Good
Accuracy of meters or other tuning aids	Very good
Usefulness of other controls	Very good
Construction and internal layout	Excellent
Ease of servicing	Good

OVERALL FM PERFORMANCE RATING

| Good to very good |

Laboratory FM measurements

Results of our FM performance measurements are listed in Table I and may be compared with those published by the manufacturer. It should be noted that Lafayette seems to be a bit behind the times, or is reluctant to publish all the specifications now required by the new FM Tuner Measurement Standards. Or, perhaps, they have not had sufficient time to amend or add to their manuals, which may have been published before the new standards went into effect last May. While usable sensitivity fell short of the 1.75 µV claimed (which would have equaled 10.25 dBf if Lafayette has used the new power reference as we do), the 2.4 µV figure (13.0 dBf) obtained is considered quite acceptable for a unit in this price class. While distortion figures were not as low as those measured for more expensive sets, Lafayette is to be complimented in keeping stereo distortion as low as it measured (0.8%) at 6 kHz, where most other low-cost sets produce greater distortion. Separation was excellent, measuring exactly the 40 dB claimed at mid-frequencies and even a bit better at the low end. Smooth transition from mono to stereo at about 10 µV (25.4 dBf) is just about the optimum point of switching for a set with this quieting characteristic. AM suppression was acceptable, though not outstanding, but this is offset in part by the low measured capture ratio. Used with a good outdoor antenna (Lafayette should not have encouraged use of an indoor linecord antenna by supplying that jumper), the FM performance of this receiver in most signal areas will be hard to distinguish from that of sets costing much more.

Laboratory amplifier measurements

If we had to rate the amplifier section and the tuner section of this receiver separately we would probably favor the amplifier section. One tends to view those power modules skeptically, but they certainly delivered what was ex-
The better the training the better you’ll

Send for FREE illustrated career guide

As an NTS student you’ll acquire the know-how that comes with first-hand training on NTS professional equipment. **Equipment you’ll build and keep.** Our courses include equipment like the NTS/Heath Digital GR-2000 Solid State color TV with first-ever features like silent varactor diode tuning; digital channel selection, (with optional digital clock), and big 315 sq. in. ultra-rectangular screen.

Also pictured above are other units — 5" solid state oscilloscope, vector monitor scope, solid-state stereo AM-FM receiver with twin speakers, digital multimeter, and more. It’s the kind of better equipment that gets you better equipped for the electronics industry.

This electronic gear is not only designed for training; it’s field-type — like you’ll meet on the job, or when you’re making service calls. And with NTS easy-to-read, profusely illustrated lessons you learn the theory behind these tools of the trade.

Choose from 12 NTS courses covering a wide range of fields in electronics, each complete with equipment, lessons, and manuals to make your training more practical and interesting.

Compare our training; compare our lower tuition. We employ no salesmen, pay no commissions. You receive all home-study information by mail only. All Kits, lessons, and experiments are described in full color. Most liberal refund policy and cancella-
and the equipment be equipped.

HIGH FIDELITY SPEAKERS

SOLID-STATE STEREO AM/FM/MULTIPLEX RECEIVER

COLOR BAR/DOT GENERATOR

TUBE & TRANSISTOR TESTER

FET-VOM

AM/FM/SW PORTABLE SOLID-STATE RECEIVER

VECTOR MONITOR SCOPE

5" OSCILLOSCOPE

DIGITAL MULTIMETER

SOLID-STATE 2-METER FM TRANSCEIVER & POWER SUPPLY

SOLID-STATE POCKET RADIO

COMPARE OUR KITS AND LESSONS. COMPARE OUR TUITION.

NO OBLIGATION. NO SALESMAN WILL CALL

APPROVED FOR VETERAN TRAINING

Get facts on new 2-year extension

NATIONAL TECHNICAL SCHOOLS

TECHNICAL-TRADE TRAINING SINCE 1905

Resident and Home-Study Schools

4000 So. Figueroa St., Los Angeles, Calif. 90037

NO OBLIGATION. NO SALESMAN WILL CALL.

Please send FREE Color Catalog and Sample Lesson.

Color TV Servicing

B & W TV and Radio Servicing

Electronic Communications

FCC License Course

Electronics Technology

Computer Electronics

Basic Electronics

Audio Electronics Servicing

NAME

AGE

ADDRESS

APT #

CITY

STATE

Please fill in Zip Code for fast service.

☐ Check if interested in G.I. Bill information.

☐ Check if interested ONLY in classroom training in Los Angeles

MAY 1976

55
pected of them and then some. Results of our amplifier measurements are shown in Table II. The amplifier delivered 37 watts into each 8-ohm load before reaching rated THD of 0.5%. At the rated output of 27 watts-per-channel at mid-frequencies, harmonic distortion measured 0.15% though there was a tendency for the THD to rise with decreasing power output levels, suggesting the presence of a small amount of notch or crossover distortion.

Ordinarily, we would consider an overload capability of only 67 mV for the phono inputs as being on the low side but since Lafayette does offer a lower sensitivity setting for high output cartridges (at which setting overload capability increased to 160 mV) we cannot fault the phono circuits on this point.

The spectrum analyzer scope photo of Fig. 5 shows the range of control of the bass and treble controls and the action of the high-cut filter circuit which has no greater slope than the treble control when the latter is turned fully counter clockwise. We would not be overly critical of this point if the beginning of the filter action were set to a higher pivot or turn-over frequency, but as you can see from the superimposed curves of Fig. 5, the cut action begins almost at the same frequency as does the treble action. The behavior of the loudness control is depicted in Table II.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Lafayette</th>
<th>Model: LR-2200</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERALL PRODUCT ANALYSIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retail price</td>
<td>$299.95</td>
<td></td>
</tr>
<tr>
<td>Price category</td>
<td>Low-Medium</td>
<td></td>
</tr>
<tr>
<td>Price/performance ratio</td>
<td>Very good</td>
<td></td>
</tr>
<tr>
<td>Styling and appearance</td>
<td>Excellent</td>
<td></td>
</tr>
<tr>
<td>Sound quality</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>Mechanical performance</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>Comments: While the control layout of this receiver is generally well executed, we found it awkward to have to switch through the FM MPX filter position to get from FM muting to unmuted FM operation. The muting switch should have been a separate control. The use of pin-jacks for one set of speakers and screw terminals for the other strikes us as a poor choice, since few, if any, separately purchased speaker systems come with pin cables of this sort. Aside from these cosmetic and human engineering problems, the LR-2200 performed well for its price category. The inclusion of two full tape monitor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Marantz Model 2325

IF YOU'LL CHECK THE DIMENSIONS OF THIS hefty top-of-the-line stereo receiver from Marantz you'll find that it measures exactly the same as their popular model 4400 4-channel receiver reviewed in these pages some months ago and weighs four pounds less than that quadriphonic model. Styling is similar, too, with the easily identifiable thumb-wheel "gyro-touch" fly-wheel tuning arrangement (as Marantz calls it) identifying the product the moment you look at its attractively finished, precision machined front panel and matching metal knobs and buttons as shown in Fig. 1. The blacked-out dial area lights up in a soft blue color when power is applied, revealing a linearly calibrated FM dial scale, an AM dial scale and a 0—100 reference logging scale. Multicolored illuminated words appearing just above the dial scales spell out the program source selected, a red colored word indicates when stereo is selected for other program sources by means of the front-panel MODE switch. To the left of the dial scale area are a pair of meters, each of which performs a double function. The center-of-channel tuning meter doubles as a multi-path indicator when a button is depressed, while the signal-strength meter is also used to calibrate the built-in Dolby noise reduction circuitry when that feature is selected. Centered below the dial scale, but still in the dark panel area, is a slide BALANCE control that operates horizontally from left to right. Its knob resembles the knobs of the two clusters of push-button and sub-controls located at the left and right ends of the front-panel. The left cluster of eight knobs and buttons includes a switch that selects left- or right-channel meter-monitoring of the Dolby calibration, a
<table>
<thead>
<tr>
<th>TABLE II continued</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH LEVEL INPUT MEASUREMENTS</td>
</tr>
<tr>
<td>Frequency response (Hz-kHz, ±-dB)</td>
</tr>
<tr>
<td>Hum/noise referred to full output (dB)</td>
</tr>
<tr>
<td>Residual hum/noise (min. volume) (dB)</td>
</tr>
<tr>
<td>TONAL COMPENSATION MEASUREMENTS</td>
</tr>
<tr>
<td>Action of bass and treble controls</td>
</tr>
<tr>
<td>Action of secondary tone controls</td>
</tr>
<tr>
<td>Action of low frequency filter(s)</td>
</tr>
<tr>
<td>Action of high frequency filter(s)</td>
</tr>
<tr>
<td>COMPONENT MATCHING MEASUREMENTS</td>
</tr>
<tr>
<td>Input sensitivity, phono 1/phono 2 (mV)</td>
</tr>
<tr>
<td>Input sensitivity, auxiliary input(s) (mV)</td>
</tr>
<tr>
<td>Input sensitivity, tape input(s) (mV)</td>
</tr>
<tr>
<td>Output level, tape output(s) (mV)</td>
</tr>
<tr>
<td>Output level, headphone jack(s) (V or mV)</td>
</tr>
<tr>
<td>EVALUATION OF CONTROLS, CONSTRUCTION AND DESIGN</td>
</tr>
<tr>
<td>Adequacy of program source and monitor switching</td>
</tr>
<tr>
<td>Adequacy of input facilities</td>
</tr>
<tr>
<td>Arrangement of controls (panel layout)</td>
</tr>
<tr>
<td>Action of controls and switches</td>
</tr>
<tr>
<td>Design and construction</td>
</tr>
<tr>
<td>Ease of servicing</td>
</tr>
<tr>
<td>OVERALL AMPLIFIER PERFORMANCE RATING</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE III continued</th>
</tr>
</thead>
<tbody>
<tr>
<td>circuits is worthwhile, and rarely found on receivers in this price class. The high-cut filter might just as well have been omitted, since it is no more useful in reducing noise than the already available 6 dB-per-octave treble controls. The parallel connection of one of the tape out circuits on the front panel is handy when friends bring over their tape decks for dubbing of your favorite tapes.</td>
</tr>
<tr>
<td>FM reception was better than we would have guessed from reading the “numbers” but we did experience one or two cases of poor selectivity on the dial. We do object to the labelling of the mode switch. One of the positions is identified as “4 channel,” suggesting four independent amplifiers, which of course are not present in this strictly stereo receiver. As for power output, the LR-2200 is conservatively rated and more than meets its claims. The unit was found to be thermally stable even after running for several hours at high volume levels and with continuous sine-wave test signals. This Lafayette receiver offers good to very good value for the budget minded audiophile who wants control flexibility, reliable performance and good styling without having to purchase more power than he or she rightly needs. The unit will drive medium to high efficiency speaker systems to adequate sound levels for serious listening in all but the very largest home listening areas.</td>
</tr>
<tr>
<td>pair of knobs for Dolby “play” calibration, another pair for “record” calibration of Dolby, a button that actuates a 400-Hz built-in tone generator useful for calibrating the Dolby circuitry and two more buttons that select either the TAPE 1 or TAPE 2 monitor circuits and choose either source or tape to be fed through to the rest of the amplifier circuitry. The right-most cluster of pushbuttons includes one that converts the meter to a multipath indicator, HIGH-FILTER and LOW-FILTER buttons, a HIGH-BLEND switch (for reducing noise during stereo FM listening), a LOUDNESS switch, and FM MUTING switch and individual speaker switches for MAIN and REMOTE pairs of speaker systems connected to the receiver.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MANUFACTURER’S PUBLISHED SPECIFICATIONS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM TUNER SPECIFICATION:</td>
</tr>
<tr>
<td>FM Quieting: 30 dB for 1.8 µV; 55 dB for 5.0 µV; 70 dB for 50 µV. Harmonic Distortion (mono): 0.15%; (stereo): 0.3%. Selectivity: 80 dB. Capture Ratio: 1.25 dB. Spurious and IF Rejection: 100 dB. AM Suppression: 65 dB. Stereo Separation: (1 kHz): 42 dB.</td>
</tr>
<tr>
<td>AMPLIFIER AND PREAMPLIFIER SECTION:</td>
</tr>
<tr>
<td>Power Output: 125 watts minimum continuous average power per channel into 8 ohm loads, from 20 Hz to 20 kHz at no more than 0.15% total harmonic distortion. IM Distortion: 0.15%. Damping Factor: 70. Frequency Response (High Level) 20 Hz to 20 kHz ±±25 dB. Input Sensitivity: (phono): 1.8 mV; (high level): 180 mV. Equivalent Input Noise: 1.5 µV. Dynamic Range: (phono): 96 dB. Tone Control Range (bass, 50 Hz): ±±15 dB; (treble, 15 kHz): ±±15 dB; (mid-range 700 Hz): ±±6.0 dB.</td>
</tr>
<tr>
<td>GENERAL SPECIFICATIONS:</td>
</tr>
</tbody>
</table>

in the scope photo of Fig. 6 and is typical of this type of circuit where manufacturers choose to emphasize both low and high frequencies at low volume settings. |

A summary of our reaction to the LR-2200 will be found in Table III, together with our overall product analysis. In our view, whether you consider Lafayette a retailer or a manufacturer, their LR-2200 qualifies as a worthwhile product in its price category. | R-E
other Dolbyized program sources or in the OFF position for bypassing of Dolby circuitry entirely, in the record I position for making a Dolby recording of a non-Dolby program source and-you guessed it—in the record II position for making a non-Dolbyized recording of a previously Dolby encoded program source.

Have we (or Marantz) left anything out? We strongly doubt it. The interesting combination of tone-mode and tone control knobs is shown in detail in the photo of Fig. 2. A pair of DUMBING IN and OUT jacks on the front-panel duplicate the TAPE 2 jacks on the rear panel and are useful for connecting a tape deck without having to gain access to the rear panel once the unit has been permanently installed.

A view of the rear panel is shown in Fig. 3. Speaker connection terminals for MAIN and REMOTE speaker systems are of the push-to-insert-wire type and are color coded. Below the speaker connectors are SWITCHED and UNSWITCHED convenience AC receptacles and a power line fuse post. A MUTING threshold control is screwdriver adjustable and varies the signal strength at which interstation noise muting is overcome. Terminals for AM, 75-ohm and 300-ohm FM external antenna connections are spring loaded and similar to those used for speaker connection.

What Marantz chooses to call an FM QUADRADIAl OUTPUT jack is simply an FM detector output jack that provides access to the composite FM audio signal that may be needed some day for connection to a discrete 4-channel FM adapter. A pair of screwdriver-adjustable controls are used to adjust the FM Dolby level to correspond with tones transmitted by FM stations who broadcast Dolby programs for that purpose. The usual complement of input and tape output jacks, plus a pivotable AM ferrite bar antenna complete the rear-panel layout. The flexibility of the receiver is indicated by Fig. 4 which shows how the receiver fits into a complete system and how many additional program sources can be connected to it.

Circuit description

A view of the inside of the chassis of the model 2325 is shown in Fig. 5. The power transformer is one of the most massive we have ever seen in a one-piece receiver. Power output stages are mounted on large heat sink assemblies, one on each side of the chassis. Amplified signals from the RF amplifier are fed to a triple-tuned Butterworth filter and then to an FET mixer stage. A five-section tuning-capaci-

TABLE I

FM PERFORMANCE MEASUREMENTS

<table>
<thead>
<tr>
<th>Manufacturer: Marantz</th>
<th>Model: 2325</th>
</tr>
</thead>
</table>

SENSITIVITY, NOISE AND FREEDOM FROM INTERFERENCE

<table>
<thead>
<tr>
<th>IHF sensitivity, mono: (µV) (dB)</th>
<th>Measurement</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity, stereo (µV)</td>
<td>27.0 (34.0)</td>
<td>Fair</td>
</tr>
<tr>
<td>50 dB quieting, mono (µV)</td>
<td>5.0 (17.4)</td>
<td>Good</td>
</tr>
<tr>
<td>50 dB quieting, stereo (µV)</td>
<td>55.0 (40.2)</td>
<td>Excellent</td>
</tr>
</tbody>
</table>

Maximum S/N ratio, mono (dB)

47.0

Maximum S/N ratio, stereo (dB)

72.0

Capture ratio (dB)

1.2

AM suppression (dB)

65

Image rejection (dB)

100+

IF rejection (dB)

100

Spurious rejection (dB)

100+

Alternate channel selectivity (dB)

82

FREQUENCY AND DISTORTION MEASUREMENTS

- Frequency response, 50kHz to 15 kHz: 1.0
- Harmonic distortion, 1 kHz, mono (%)
- Harmonic distortion, 1 kHz, stereo (%)
- Harmonic distortion, 100 Hz, mono (%)
- Harmonic distortion, 100 Hz, stereo (%)
- Harmonic distortion, 6 kHz, mono (%)
- Harmonic distortion, 6 kHz, stereo (%)
- Distortion at 50 kHz quieting, mono (%)
- Distortion at 50 kHz quieting, stereo (%)

STEREO PERFORMANCE MEASUREMENTS

- Stereo threshold (µV) (dB)
- Separation, 1 kHz (dB)
- Separation, 100 Hz (dB)
- Separation, 10 kHz (dB)

MISCELLANEOUS MEASUREMENTS

- Multiple threshold (µV) (dB)
- Dial calibration accuracy (°kHz/°MHz)

EVALUATION OF CONTROLS, DESIGN, CONSTRUCTION

- Control layout
- Ease of tuning
- Accuracy of meters or other tuning aids
- Usefulness of other controls
- Construction and internal layout
- Ease of servicing
- Evaluation of extra features, if any

OVERALL FM PERFORMANCE RATING

- Excellent
- Very Good
- Good

S/N

<table>
<thead>
<tr>
<th>S/N</th>
<th>dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>mono</td>
<td>30.0</td>
</tr>
<tr>
<td>stereo</td>
<td>37.0</td>
</tr>
</tbody>
</table>
TABLE II
RADIO-ELECTRONICS PRODUCT TEST REPORT

<table>
<thead>
<tr>
<th>Manufacturer: Marantz</th>
<th>Model: 2325</th>
</tr>
</thead>
</table>

AMPLIFIER PERFORMANCE MEASUREMENTS

<table>
<thead>
<tr>
<th>R-E</th>
<th>Measurement</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER OUTPUT CAPABILITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMS power/channel, 8-ohms, 1 kHz (watts)</td>
<td>140.0</td>
<td>Very good</td>
</tr>
<tr>
<td>RMS power/channel, 8-ohms, 20 Hz (watts)</td>
<td>135.0</td>
<td>Excellent</td>
</tr>
<tr>
<td>RMS power/channel, 4-ohms, 1 kHz (watts)</td>
<td>N/A</td>
<td>Good</td>
</tr>
<tr>
<td>RMS power/channel, 4-ohms, 20 Hz (watts)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>RMS power/channel, 4-ohms, 20 kHz (watts)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Frequency limits for rated output (Hertz)</td>
<td>11-20</td>
<td>Very Good</td>
</tr>
</tbody>
</table>

DISTORTION MEASUREMENTS

Harmonic distortion at rated output, 1 kHz (%)	0.10	Excellent
Intermodulation distortion, rated output (%)	0.11	Excellent
Harmonic distortion at 1 watt output, 1 kHz (%)	0.022	Excellent
Intermodulation distortion at 1 watt output (%)	0.004	Excellent

DAMPING FACTOR, AT 8 OHMS

73 Very good

PHONO PREAMPLIFIER MEASUREMENTS

Frequency response (RIAA ±_dB)	0.5 dB	Very good
Maximum input before overload (mV)	125	Good
Hum/noise referred to full output (dB)	71	Excellent
(at rated input sensitivity)		

HIGH LEVEL INPUT MEASUREMENTS

Frequency response (Hz, kHz, _+_ dB)	20-20, 0.25	Excellent
Hum/noise referred to full output (dB)	55	Superb
Residual hum/noise (min. volume) (dB)	99	Good

TONAL COMPENSATION MEASUREMENTS

Action of bass and treble controls	See Fig. 7	Very good
Action of secondary tone controls	See Fig. 8	Very good
Action of low-frequency filter(s)		Good
Action of high-frequency filter(s)		Good

COMPONENT MATCHING MEASUREMENTS

Input sensitivity, phono 1/phone 2 (mV)	2.05	Excellent
Input sensitivity, auxiliary inputs (mV)	187	Very good
Input sensitivity, tape inputs (mV)	187	Excellent
Output level, tape outputs (mV)	187	Good
Output level, headphone jack(s) (V or mV)	Not measured	

EVALUATION OF CONTROLS, CONSTRUCTION AND DESIGN

Adequacy of program source and monitor switching | Excellent |
Adequacy of input facilities | Excellent |
Arrangement of controls (panel layout) | Excellent |
Action of controls and switches | Excellent |
Design and construction | Excellent |
Ease of servicing | Very good |

OVERALL AMPLIFIER PERFORMANCE RATING

Excellent

The phase-locked-loop stereo demodulator IC circuit where it is decoded into left and right channel signals.

The AM tuner section consists of one IC and three transistors. A three section variable capacitor is used for AM tuning and automatic AGC circuits are applied to RF and IF sections.

The Dolby system circuitry is a single-process two-channel circuit with inputs and outputs determined by the setting of the front-panel Dolby selector switch. The phono preamp-equalizer section provides RIAA equalization and 40 dB of gain (at 1 kHz) for phono input signals. Tone control amplifiers are of a continuously variable feedback type and turnover frequencies are determined by the control knob switch explained earlier. Filters provide high- and low-frequency roll-off at 12 dB-per-octave slope with the -3 dB points set at 9 kHz and 50 Hz.

Power amplifier stages are direct-coupled from the input differential stage all the way through to the loudspeaker outputs. The output stage consists of four push-pull parallel complementary-symmetry power transistors (NPN-PNP pairs). Electronic protection circuits sense excessive output current and voltage conditions and limit the signal to the driver transistors to a safe, predetermined value. Thermal compensation circuits are also provided and a relay protects speakers in the event of transistor failure and also eliminate pops and transient bursts when the unit is turned on or off.

Laboratory FM measurements

Considering the price and quality of Marantz receivers, we have often wondered why that company steadfastly refuses to quote specifications in accordance with accepted new standards. For that matter, they did not even subscribe to the old IHF standards that everyone else used for years before the new, universally accepted (by IHF, IEEE and EIA) standards became official. We don't know what they claim for usable sensitivity in the case of the 2325, since they insist on giving quieting figures only—which do not take into account distortion at low signal strengths.

By our more standardized measurement, IHF usable sensitivity was 2.1 µV (11.8 dBf) in mono and a rather unimpressive 27.0 µV in stereo. This is also the point at which the circuits switch from mono to stereo automatically—and far too late in our opinion. A signal level 55 µV (40.2 dBf) was required to produce 50 dB of quieting in the stereo mode—again not particularly outstanding in view of the price and features of this otherwise excellent piece of equipment.

It wasn't long before we realized that this particular set was not optimally aligned, as evidenced by some of the other test readings (particularly stereo distortion) listed in Table I. Despite certain performance failings in FM, other performance factors such as rejection of IF, image rejection and spurious rejection were excellent—as good or better than claimed. Signal-to-noise ratio in mono and stereo was also superb. Generally, those tests which involve weak signals were the ones that turned up poor performance, indicating clearly that the front end of our sample was not properly aligned.

Laboratory amplifier measurements

The amplifier, which of course involves no alignment, did much better than the tuner section, as evidenced by the measured results listed in Table II. The output power of 125 watts-per-channel proved to be the limit at the high frequency end of the spectrum (20 kHz) rather than at 20 Hz. Unlike many amplifiers whose rated power is determined primarily by the power supply resulting in limitations at the low-frequency end of the spectrum, the Marantz 2325 delivered 133 watts-per-channel at 20 Hz with both channels driven—at a rated THD of only 0.15%. IM and THD at the low-power levels were so low as to be barely measurable on our equipment.

In quoting phono hum and noise specifications as well as overload capabilities, Marantz again takes off on a path of its own.
Make Graphs Work for You

Graphs contain a lot of information that can be easily misinterpreted. Understanding graphs and interpreting them correctly is easy if you know how.

by IRVING M. GOTTLIEB

GRAPHS ARE USED EXTENSIVELY IN THE TECHNICAL LITERATURE of electronics. When we see a graph depicting the relationship between a cause and its effect, we know we have encountered a fast and effortless educational mechanism. At a single glance, the behavior of a device or system becomes clearly obvious. But, does it? The following scenario, though fictional, accurately discloses some misleading interpretations that can be both plotted into, and misread from graphs.

A project engineer for a large firm wanted to develop a complex system. The easiest way to get the ball rolling was to collect “building blocks” from the company’s file of circuits already used for other projects. One functional block of the system required a simple low-frequency amplifier with priority on faithful response. In other words, such an amplifier had to be linear (input signal amplitude vs. output signal amplitude). For the purpose at hand, all other performance parameters, such as frequency response beyond a few hundred Hz, power output, gain, etc., need not be considered for the first go-around. Four departments were requested to submit examples of linear amplifiers that they had previously used. Compliance with this request was inordinately fast—perhaps too fast, as we shall see.

Department “A” submitted the graph shown in Fig. 1. Departments “B”, “C”, and “D” submitted the curves respectively illustrated in Figs. 2, 3, and 4. All claimed the amplifiers had a linear transfer characteristic as evidenced by the graphs. Although all of the graphs were valid plots of output power vs. input voltage, only one was acceptable. Let’s analyze these “linear” amplifiers and see where the three unacceptables went astray.

Interpreting graphs

It cannot be said that the graph of Fig. 1 is not linear—it obviously does show a straight line relationship between the input signal voltage and the output power delivered by the amplifier. But, unfortunately, such a relationship does not describe a linear amplifier. In a linear amplifier, the output power is proportional not to the input voltage, but rather to the square of the input voltage. Indeed, in any circuit, not necessarily an amplifier, power increases as the square of the voltage monitored across a constant resistance. So, we see, department A made an incorrect interpretation of their graphically-linear curve. Actually, had their amplifier been linear, it would have plotted out as shown in Fig. 5.

The plotter of Fig. 2 from department B did not forget about the square law relationship between voltage and power. However, to translate this relationship from mathematics to graphics, he used dBm units for power. Enclosed with his straight line curve was an explanation of how he obtained a straight line relationship. This, he accomplished by adjusting the bias networks in the amplifier. Alas, this amplifier, too, was relegated to the “circular file.” Even with the uniformly-spaced coordinates of his graph and the use of the logarithmically derived dBm units, a little study reveals something very much wrong. For example, if the amplifier develops 20 dBm when the input signal is 1.25 volts, we shouldn’t see 40 dBm for 2.5 volts input (40 dBm represents ten times as much power as 20 dBm. No hi-fi amplifier is this!

Having been momentarily caught off guard by department B, the project engineer inspected the graphical results of department C’s amplifier (Fig. 3). With a chip-on-the-shoulder attitude, he noted the use of semi-log paper. This should have solved the oversight of department B’s plotter—but hold on a minute! It happens that the technique used by department C is exactly equivalent to the erroneous plot submitted by department B. A little contemplation shows that both must be faulted for the same reason—non-compliance with the square law relationship between voltage and power. More exasperated than hopeful, the project engineer turned his attention to the work of the next “contestant”, department D.

Another straight line plot (Fig. 4)—but did it represent the transfer characteristics of a linear amplifier? The answer was speedily forthcoming, for it was seen that any time the
input voltage doubles, the output-power quadruples. This was recognized as clear evidence of the required square-law relationship. However, a straight line plot on log-log paper does not necessarily reveal a square-law relationship. For example, the dashed and dotted lines superimposed on Fig. 4 indicate other than square law functions. So, log-log paper is great, if such plots are interpreted with a practiced eye. Significantly, once it is determined that the slope of the straight line does represent the square-law relationship, we know that the amplifier is very linear indeed! This is because the slightest departure from the square-law is readily recognized as a change in the slope of the graph. Note that to make a similar evaluation of the curve of Fig. 5, many coordinate points and much computation would be required to determine whether the curvature is just right.

The log-log plot shown in Fig. 4 does, however, leave us in the dark concerning the operation of the amplifier at low levels. To convey full information, graphs should start at the origin—the zero-zero point. But, how does one define the origin of log-log graph paper wherein the left-bottom corner is never 0-0? Here, experience and common sense must be used. In Fig. 4, the characteristic of the amplifier is shown over an output range of 0.1 watt to ten watts. Thus, we see its performance down to one-hundredth of the highest power plotted. And if the relationship had been plotted on a three-cycle graph, rather than two, the plot would have extended down to 0.01 watt, or one thousandth of the highest power plotted. Not bad, but for the purist who must see the action right down to zero-zero, the log-log graph will forever frustrate him regardless of the number of cycles used.

Log graphs

Open almost any engineering textbook to the chapter on *transients or energy storage*, and the chances are good that you'll find graphs similar to that shown in Fig. 6. This graph tells us what percentage of original voltage is left in a charged capacitor C after a discharge path is provided by a resistance R. Time is scaled off in R-C units, otherwise known as time constants. (To determine actual elapsed time in seconds, simply evaluate the R-C product—thus; if $R = 100,000$...
ohms and \(C=5.0\) microfarads, then one time-constant \(=1\times10^4\times5\times10^{-4}=5\times10^{-1}\) or 0.5 second. The curve of Fig. 6 has the following shortcomings:

- Many points must be plotted to produce an accurate plot.
- The measurement of coordinate values is difficult.
- After two, and most certainly three time-constants, both plotting and reading become increasingly difficult.

Consider next, the same function plotted on semi-log paper. In Fig. 7, the plot is made on two-cycle paper. Note that the time constant corresponding to 1% of the initial capacitor voltage can be accurately determined. And with three-cycle paper, the range could be extended down to 0.1% of the initial voltage. Another aspect of this graphical technique is that we only need know two coordinates to lay out such a “curve” for any number of time constants. It happens that we already know those two points! At zero time, the capacitor voltage is 100%. And it is a mathematical axiom that one time-constant always corresponds to a capacitor voltage of 36.8%. We do not even have to know the values of \(R\) or \(C\) to make this straight-line plot. Even if the plot on ordinary graph paper shown in Fig. 6 were desired, it would be wise to first construct the semi-log graph. With this procedure, we avoid measurements and math.

An interesting and useful straight-line graphical technique is illustrated in Fig. 8. This is the plot of the reactance of an electrolytic capacitor as a function of frequency. In other words, it is a plot of \(1/2\pi fC\). A quick inspection of this log-log graph tells us that this is not the best of capacitors for hi-fi amplifier circuits or for the output capacitor of a regulated power supply. The change in the slope of the plot in the 7 kHz to 10 kHz region, and thereafter, indicates that the impedance of this capacitor no longer obeys the law, \(X_c=1/2\pi fC\) for these higher frequencies. The practical aspect of this is that the bypass or filter-action of this capacitor becomes progressively worse at higher frequencies. Note that this phenomenon is not obvious in the “conventional” plot of Fig. 9. Here, several or more computations would be required in order to discover the poor high-frequency performance. To make matters even worse, Fig. 9 is both difficult to plot and to read.

When to use which graph

A natural question is when to use conventional, semi-log or log-log graph paper. First, it is permissible to use any type of graph to represent any relationship! All three techniques can display cause and effect information. The subtle trap lying in our pathway is the interpretation of the shape of the plotted curve. With regard to straight line graphs on log paper, the following rules apply:

Semi-log paper: Use for exponential functions. This includes the equations for the charge and discharge of voltage or current in \(R-C\) or \(L-R\) circuits. Plot voltage or current on the vertical axis. Plot time units on the horizontal axis. The plotted “curve” will then be a straight line.

(continued on page 90)
R-E's Service Clinic

Loop circuits

A circuit that controls itself

by JACK DARR
SERVICE EDITOR

A LOT OF "LOOP CIRCUITS" ARE USED IN electronics; feedback loops, control loops, and on and on. We find a lot of them in TV and radio. By a "loop circuit" I mean a function consisting of an active circuit (amplifier, oscillator) and a control circuit. The output of the circuit is used to control its own action. When we find trouble in such a circuit, we must remember that it could be one of two things: a fault in the active circuit or a fault in the control circuitry.

Let's look at the basic test method we must use. We have a circuit with two parts. So, we can't tell which one is the guilty one as is. To isolate the trouble we disable the control circuitry and let the controlled circuit run free to see if we can get a normal output from it. If it will do this, we know that the fault is in the control circuit; if it still won't work, the fault is in the active circuit.

A good example of this is the horizontal oscillator and AFC circuit. This is a servo-loop; the phase of the reference signal is compared to the phase of the horizontal sync signal. The result is a small DC voltage directly proportional to the phase error. This voltage is used to control the frequency of the horizontal oscillator. (Yes; this is a phase-locked loop. The horizontal multivibrator type of oscillator is actually a voltage-controlled oscillator.)

Figure 1 shows a block diagram.

```
    HORIZONTAL OSCILLATOR
       |  NORMAL OUTPUT
       |  CONTROL CIRCUIT (AFC)
       |  COMPARISON SIGNAL
          |  SYNC
```

Troubleshooting

Suppose the horizontal oscillator won't run on-frequency. We have two possibilities; either the horizontal oscillator has a bad part which is throwing it off-frequency or a fault in the AFC Automatic (Frequency Control) circuitry is pulling it off frequency. So, we kill the AFC by grounding the output of the phase detector.

In the tube-type multivibrator circuit, we have an open grid that isn't really needed in the oscillator itself. The AFC control voltage is applied to this grid. If the frequency goes high, the AFC develops a voltage that pulls it back on. If it goes low, the voltage is of opposite polarity. If the oscillator is running right on frequency, this grid will be zero volts. To clamp this and kill the AFC, we simply ground this grid.

Now check to see if the oscillator will run on-frequency under this condition. Adjust the frequency control (horizontal hold) to see if you can get a single picture, with straight sides. If you can, the oscillator is definitely able to run on-frequency. This picture will float from side to side since there is no control, but if you can see that there is only one picture, that's it. We've cleared the oscillator circuit.

Now put the AFC back in. The picture should snap in sync and hold. If it falls out of sync, we know that there is a fault in the AFC circuit. In only two steps we have isolated the cause of the trouble. This narrows it down to about 4 or 5 components—the AFC diode unit and a few resistors and capacitors.

AFPC

There are several other common circuits that are actually identical to this one. The Automatic Frequency and Phase Control (AFPC) in a color TV set works exactly like the horizontal AFC. All tests and reactions are the same. The only difference is in the observed symptoms. In this case the color will fall out of sync while the picture remains locked.

To break the control loop and let the 3.58 MHz oscillator free-wheel, just kill the control voltage. In most sets this is done by grounding the grid of the burst amplifier. Now adjust the frequency control(s) to see if you can make the colors straighten up and hold momentarily. Note the similarity of the color-rainbows to a picture out of sync horizontally. Out of sync, they make slanting lines of red, green and blue. As the frequency control is adjusted, they will become fewer and wider, and slant less.

If the oscillator can be adjusted to the right frequency, the bars will straighten up and the colors lock in momentarily. If you can not make them lock in, the oscillator is not able...
save on gas!
save on tune-ups!
save on maintenance!

Electronic ignition is "IN"! So says Detroit.
Update your car with either a TIGER CD or a TIGER I breakerless system.
Enjoy the benefits of better gas mileage, quicker starting, elimination of tune-ups, 50,000 miles on points and plugs, and reduced maintenance expenses.

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIGER MAX CD</td>
<td>$69.95</td>
</tr>
<tr>
<td>TIGER 500 CD</td>
<td>59.95</td>
</tr>
<tr>
<td>TIGER SST CD</td>
<td>42.95</td>
</tr>
<tr>
<td>SIMPLIKIT CD</td>
<td>31.95</td>
</tr>
<tr>
<td>TIGER I</td>
<td>45.95</td>
</tr>
</tbody>
</table>

Postpaid U.S.A. only.

Tri-Star Corporation
Dept. WW, P.O. Box 1727
Grand Junction, Colorado 81501
Circle 19 on reader service card

...to run on the precise frequency we need. For example, if the bars start to straighten up but then turn around and start slanting more instead of straightening up and then slanting in the opposite direction, the oscillator can't run at the right frequency (crystal slightly off frequency, etc.)

If you can get this reaction, then the oscillator circuit is working. If you put the AFPC back in the circuit and the color sync is still poor, go directly to the color sync circuits themselves—the burst amplifier, AFPC diodes, and so on. The details of the circuit differ in many sets, but if you'll check it out, the basic reaction is always the same—the burst is compared to the frequency of the 3.58 MHz oscillator and the resulting control voltage used to lock the color in place.

We could draw a block diagram of this circuit, but it would look just like Fig. 1, so we won't bother. Only the operating frequency is different!

AGC

Another loop that is often unrecognized is the IF and its AGC circuit. The IF is a multi-stage amplifier with its gain controlled by the amplitude of the video signal from its output. This is fed back to the input, once again in the form of a small DC control voltage.

Here, it controls the gain of the circuit so that it will neither clip nor drop below a certain level.

Test methods are exactly the same though with one minor difference. We have been killing the control by grounding things to clamp the active device input at zero. Now we have to use a definite value of DC voltage to clamp the control loop. If we have what we think is an IF problem, its symptoms will be no picture at all or a distorted picture—too dark, too light, etc.

So, we clamp the control voltage so that the IF amplifier is held at maximum gain. Now, we use the same old simple method—look at the picture! If we can get a good picture, this shows that the IF stages are able to amplify the signal properly.

How do we know exactly what voltage and polarity we need to do this? Look at the schematic! The bias voltages shown on the IF amplifiers are read at no-signal input. In this condition, they are at maximum gain. This may be a very low DC voltage or quite high and of either polarity. The last is especially true in solid-state TV sets. Just check the voltage shown on the schematic and hook up a bias box to the AGC test point. This will always be somewhere in the grid return circuit (continued on page 68)
TABLE III
RADIO-ELECTRONICS PRODUCT TEST REPORT

Manufacturer: Marantz Model: 2325

OVERALL PRODUCT ANALYSIS

<table>
<thead>
<tr>
<th>Feature</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retail price</td>
<td>$799.95</td>
</tr>
<tr>
<td>Price category</td>
<td>High</td>
</tr>
<tr>
<td>Price/performance ratio</td>
<td>Good</td>
</tr>
<tr>
<td>Styling and appearance</td>
<td>Excellent</td>
</tr>
<tr>
<td>Sound quality</td>
<td>Very good</td>
</tr>
<tr>
<td>Mechanical performance</td>
<td>Excellent</td>
</tr>
</tbody>
</table>

Comments: We especially appreciated the tone control permutations available on this receiver. With its selectable crossovers for both bass and treble plus the extra mid-range control it comes close to being able to adjust response for almost any listening situation or component deficiency, much like the separate graphic equalizers can do. Clearly, the amplifier has enough power to drive virtually any speaker system to loud, clean listening levels and it seemed adequately protected in terms of thermal overload and accidental shorts. We suspect that in our sample, FM performance, and particularly stereo FM performance, was not up to standards and that a minor realignment could have brought things into line. Stereo switching takes place at too high a level, preventing reception of weaker stations in that mode. Stereo sensitivity was also poorer than on receivers costing far less, all of which suggests that quality control must have missed a few points on this one. We very much doubt if this is a design fault, having measured any number of Marantz tuners and receivers that do much better on FM and stereo FM. It is our policy, however, to “call them as we see them”, since an unsuspecting consumer could just as easily have ended up with this particular unit.

Performance of the amplifier section and preamplifier section, on the other hand, was as near perfect as anything we’ve heard from an all-in-one receiver. The front-panel control arrangement is sensibly organized, considering the number of control features, tape monitoring facilities, and the like.

(continued on page 66)

With RCA’s SK Series you need stock fewer different semiconductors than you’d have to with any other major brand. Because our 300 devices can replace 112,000. And they’re all immediately available.

OEM Quality. You don’t have to be concerned about quality with RCA SK’s. They measure up to strict AQL Standards to protect you from time-wasting callbacks. Lets you make more calls. And more profits.

See your RCA Distributor for a copy of the new RCA SK Replacement Guide. Or send $1.00 to RCA Distributor and Special Products Division, P.O. Box 85, Runnemede, N.J. 08078. Phone: (609) 779-5735.

Circle 20 on reader service card

Circle 21 on reader service card

www.americanradiohistory.com
own. This time, the numbers are at least translatable to ones we are all more accustomed to reading. For example, when Marantz says that phono input noise is 1.5 \(\mu\)V and that input sensitivity for full output is 1.8 mV, it is easy enough to establish a ratio of these two numbers, take a log of the ratio and multiply by 20 to get the S/N ratio in dB. It works out to 61.5 dB, but why not state the overload capability of these two numbers, take a log of the ratio and multiply by 20 to get the S/N ratio in dB. This important specification. In the case of overload capability of the preamp-
equalizer section, Marantz comes up with a figure called dynamic range, which they define as the ratio of input overload voltage to equivalent input noise. Happily, our scientific calculator could translate all this to a millivolt figure for phono overload which turns out to be about 95 millivolts, given their "96 dB dynamic range" specification. Again, our test sample did much better than that, with overload of the phono inputs occurring at about 125 millivolts—not the highest we have measured for a receiver but certainly good enough. Additional lab measurements are shown in Table II and, generally speaking, the amplifier section of this receiver comes off looking a lot better than the tuner section. While no measurements are presented in

You Can Pick Up A Small Pin With These Precision Matched Points

Exactly matched teeth and jaws. Dentists would call it "perfect occlusion." You'll call it the stiffest long nose plier you've ever used. Precision made of high polished, drop forged steel. Smooth working moving parts. Long compact handles for extra reach in tight spots. Blue dipped plastic cushion grips. CHANNELLOCK. Expert craftsmanship in every detail.

CHANNELLOCK, Inc., • Meadville, Pa. 16335

No. 738 G Long-Reach Needle Nose Plier

You can build a better organ than you can buy!

A magnificent Schober Electronic Organ

What a marvellous way to put your special talents to work! With our Schober Electronic Organ Kits and your skill, you can build yourself some very special satisfaction, and a lifetime of great music!

Schober Organs are literally far superior to comparably-priced "ready-made" units. You could actually pay twice as much and get no better organ and miss the fun of assembling it yourself. A PC board at a time, component by component, you'll assemble your own "king of instruments." And when you're done, you'll wish there was more to do. And there is! For then, Schober will help you learn to play, even if you've never played a note before.

Schober Organ Kits range from \$650 to \$2,850 and you can purchase in sections to spread costs out - or have two-year time payments. Just send the coupon for this fascinating Schober color catalog (or enclose \$1 for a record that lets you hear as well as see Schober quality).

The Schober Organ Corp., Dept. RE-150
43 West 61st Street, New York, N.Y. 10023

[Please send me Schober Organ Catalog]

[Enclose please find \$1.00 for 12-inch L.P. record of Schober Organ music]

NAME
ADDRESS
CITY STATE ZIP

Send for Our Free Catalog

Circle 22 on reader service card

Circle 23 on reader service card

www.americanradiohistory.com
MOS
KIM-1
microcomputer system

A COMPLETE MICROCOMPUTER
ONLY $245
NOT A KIT!
- FULLY ASSEMBLED
- FULLY TESTED
- FULLY WARRANTED
OPERATES WITH
- KEYBOARD & DISPLAY
- AUDIO CASSETTE
- TTY
KIM-1 INCLUDES
- HARDWARE
 KIM-1 MODULE WITH
 6502 µP ARRAY
 6530 ARRAY (2)
 1 K BYTE RAM
 15 I/O PINS
- SOFTWARE
 MONITOR PROGRAMS
 (STORED IN
 2648 ROM BYTES)
- FULL DOCUMENTATION
 KIM-1 USER MANUAL
 SYSTEM SCHEMATIC
 6500 HARDWARE
 MANUAL
 6500 PROGRAMMING
 MANUAL
 6500 PROGRAMMER’S
 REFERENCE CARD

USE THIS FORM TO ORDER YOUR KIM-1 TODAY!

Send to:

MOS TECHNOLOGY, INC.
KIM-1, 950 Rittenhouse Rd.
Norristown, PA 19401

Please ship me_______ KIM-1 Systems at a cost of $245.00 per system plus $4.50 for shipping, handling and insurance (U.S. and Canada only) PA residents add 6% sales tax.
(International sales subject to U.S. Commodity Control Regulations. Add $20.00 per system for shipping and handling of international orders.)

My check or money order is enclosed for $___

Name__

Address__

City________________________________State_________Zip_________
of the first IF amplifier stage if you don't have a schematic.

If you have a good strong signal, you may see that the picture shows signs of overload—too dark and with bending or buzz. If you see this, vary the control voltage toward the direction of reduced gain. If you can find a setting that gives you good picture and sound, this clears the IF stages. Go and scratch around in the AGC circuitry for the trouble.

There are quite a few other circuits that turn out to be loops. For example, the boost voltage in the horizontal output stage is one form of a loop. This voltage is developed by the high pulse-voltage from the plate of the horizontal output tube. It also serves as the plate voltage of that same stage. So, you can't have one without the other. Low boost-voltage produces a low output that produces low boost.

When you run into mysterious symptoms, look around carefully and see if the circuit is some form of a loop. If it is, then divide and conquer—kill the control voltage and then see if the active circuit will work. This will tell you instantly where to look for the cause of the trouble!

Service Clinic

(continued from page 64)

You don't need a bench full of equipment to test transistor radios! All the facilities you need to check the transistors themselves—and the radios or other circuits in which they are used—have been ingeniously engineered into the compact, 6-inch high case of the Model 212. It's the transistor radio troubleshooter with all the features found only in more expensive units. Find defective transistors and circuit troubles speedily with a single, streamlined instrument instead of an elaborate hook-up.

Features:

Checks all transistor types—high or low power. Checks DC current gain (beta) to 200 in 3 ranges. Checks leakage. Universal test socket accepts different base configurations. Identifies unknown transistors as NPN or PNP.

Dynamic test for all transistors as signal amplifiers (oscillator check), in or out of circuit. Develops test signal for AF, IF, or RF circuits. Signal traces all circuits. Checks condition of diodes. Measures battery or other transistor-circuit power-supply voltages on 12-volt scale. No external power source needed. Measures circuit drain or other DC currents to 80 milliamperes. Supplied with three external leads for in-circuit testing and a pair of test leads for measuring voltage and current. Comes complete with instruction manual and transistor listing.

Use Zip Code on all mail

We carry a complete line of

B & K, RCA, HICKOK, SENCORE,

SIMPSON, LEADER, EICO . . .

all at incredible discount prices.

A. RCA Color Bar Generator
 Model WR 508.
 Reg. $89.50 NOW $59.50.

B. B & K Digital Multimeter
 Model 260.
 Reg. $117 NOW $99.95.

C. Hickok Frequency Counter
 Model 380.
 Reg. $259 NOW $219.

6 x 9 Air Suspension Speakers with grills

D. COAXIAL W/3" TWEETER,
 10 oz. ceramic magnet;
 $9.95 each, 2 for $18.
 20 oz. ceramic magnet;
 $12.95 each, 2 for $24.

E. WITH WHIZZER,
 10 oz. ceramic magnet;
 $6.95 each, 2 for $12.
 20 oz. ceramic magnet;
 $9.95 each, 2 for $18.

Indoor/Outdoor Weather resistant 5" Horn
F. 12 Watts peak power for CB & Stereo.
 Includes 10' speaker cable;
 $7.99 each, 2 for $15.

Circle 25 on reader service card

For Faster Service

We've moved to a larger location and are celebrating with our lowest prices ever.

Your one-stop discount center.

We have CB radios in stock! Complete line of tubes, tools and electronic supplies. Send for FREE 108 page catalog.

Free

6 piece precision screwdriver set with every order.

Send check, money order or for Master Charge include MC card no. and expiration date. Minimum order $50. Add $2 for shipping and insurance.
State of SOLID STATE

KARL SAVON
SEMICONDUCTOR EDITOR

LET THERE BE NO DOUBT ABOUT IT! THE microcomputer is a full-fledged member of the computer clan. All the basic functional processes are found on a single or a compatible series of integrated circuits. “Micro” is much less a characterization of the processing power than the physical size and fabrication process. As a computer, the micro carries out a programmed sequence of arithmetic and data-shuffling instructions in a way that completes a useful task. The task may be the solution of differential equations, thousands of calculations, or intelligent control of a simple or complex piece of machinery.

Logic designers are learning a new discipline—programming—and leaving their AND's and NOR's behind. Many sequential logic systems were controlled by gates and flip-flops are now done cheaper and quicker with the μP. They are cropping up all over in electronic sales, appliances, pinball machines, auto ignition controls, games, communication controllers, medical instruments, and test equipment. Updating and logic flaws are corrected by changing a few lines of program code rather than costly circuit redesign.

But although the microcomputer is aptly named, you would be a little optimistic to expect it to replace an IBM370 or a large scale minicomputer system. Here lies one of the principal areas of confusion quite evident in discussions with people new to this revolutionary art. In general, the μC is slower and more awkward in carrying out its computer assignments than its bigger brothers. They are the most economical when the job is small or medium sized. When the project acquires large dimensions, the computer may be the lowest cost item on the list. Outshading it will be the expensive peripherals.

There are wide variations in speed capability, in memory addressing, and instruction repertoire. Remember though that speed alone is not the selection criterion. Overall ability to do the prescribed job at the lowest cost is the objective. Some applications are better handled by 4-bit microprocessors. If there is not much computation to be done the use of an 8-bit machine would unnecessarily up the cost.

Then there are the NMOS types, a notch up including the latest with depletion mode loads. Here we have the Intel 8080 and Motorola's 6800 at 2 μs, the Signetics, 2650 at 4.8 μs, the Fairchild F8 at 2 μs, and Electronic Arrays' 9002 with a 2 μs add time.

Continuing, we come to a group of elite devices which have been designed to be building blocks for the larger machines. These are the 2 and 4-bit slice machines with their microprogrammability and higher prices. On this list you’ll find the TI T/L SRP8040 at 1 μs, and the TTL group including the MM1 3701 (0.2 μS), the Intel 3002 (0.15 μS), and AMD's 2900 (0.125 μS). They are in a class by themselves and are not chips you are likely to build into a home project.

[Already a number of processors have become popular with users. Notably the Intel 4040 and 8080, the Rockwell PPS-4, and the Motorola 6800 which have taken into the confidence of manufacturers.] Speed is largely governed by the monolithic process. Silicon-gate MOS seems like it will be the dominant process for a while. Using PMOS are Mostek's MK5065, Rockwell's PPS-4 and National's SCAMP, which have add times of 7, 4, and 28 microseconds respectively.

In an effort to dominate a segment of the market, each manufacturer has developed a specific computer organization or architecture which he feels best meets particular needs. Some of the latest types are designed to take a crack at minicomputer applications. General Automation has a new GA-16 system that uses two NMOS chips by Syntek. The new machines are software compatible with their versatile SPC-16 minis. Also in the mini category are Motorola's 10800 ECL, MMI's system 300 Micromini, and TI's 9900. Texas Instruments is one of the stronger contenders with a sophisticated line of hardware and software designed around the 9900. Just as minicomputers are creeping up on the big boys, micros are closing in on the minis. μCs are today about where the mini was 10 years ago.

Mics are in their third generation of development. Concentration is now on putting the clocks on the processor chip and using single voltage supplies. The AMI 9209, TI's TMS-1000, the Rockwell PPS-1, and National's SCAMP are all efforts in this direction. Slower PMOS is used so they can sell close to calculator chip prices. The Rockwell 6801's PACE has most of the features of the earlier IMP16 on one chip reducing costs. The comparison reference for all these is the Intel 8080, the most widely used of all μPs. San Francisco's BART system has just finished development of a 6-bit arithmetic price collection system using the 8080.

The μP is only one element of a complete μC system. It receives the lion's share of attention because its design dictates the performance limitations of the entire system to which it is connected. Designers have learned to shun types with an incomplete supporting family. When micros first came out the designer had his hands full figuring out driver, multiplexing, and decoder circuitry. Newer devices have this critical logic on the chip. The total package count has been slashed. Interface problems have been reduced to cookbook procedures.

Understandingly there is general confusion as the manufacturers huddle and reduce their prices and update their designs. Designers are uneasy that the model they are working with today will be obsoleted by next year's model. The rapidly changing technology makes it very hard to keep up. Choosing the right machine is no easy task. But using one of the leading types is a pretty sure bet. Hand's on experience is vital for real solid evaluation and fortunately distributors are setting up so—they can run benchmark programs for your application on competitive machines.

When the dust clears, for an unbelievable few dollars you will see products that make life more fun. And the general purpose computer will be introduced as a mind expanding tool for both you and your school-age child.

Microcomputer news

We might as well wrap up with some μC-related items.

Processor Technology Co. (2465 Fourth St., Berkeley, CA 94710) has put together an operating system for program development on Intel 8080 systems. The program listing is available for $3 and paper tapes will be sent to computer clubs or societies.

Software Package No. 1 requires 6K of memory plus additional space for user storage of source and object files.

The operating system will keep track of 6 program files that are assigned names by the programmer. A line oriented editor is part of the package. Two assembly passes convert the mnemonic program listing produced with the editor into machine code which can then be executed by the EXEC command. The operating system will provide an output to program 1702A PROM's.

FANIS, Inc. (110 First St., Suite B, Los Altos, CA 94022) has developed a six-volume programmed learning course on microcomputers. It specifically covers the Intel series in detail starting with the 4004, through the 4040, the 8080, and the 8080. The course proceeds with 700 pages beginning with binary arithmetic through microcomputer assemblers and prototype systems.

Additional learning materials include wall-size system charts, pocket reference books, and programming pads. The introductory course is $99.50 and has a 15-day money back guarantee.
Learning with CIE is
YES! I want your FREE “Education-by-Mail” career information.
I am especially interested in:
☐ Electronics Technology ☐ Industrial Electronics
☐ FCC License Preparation ☐ Electronics Engineering
☐ Color TV Maintenance ☐ Other ______________________

PRINT NAME __________________________
ADDRESS ____________________________ APT. ____________
CITY ________________________________
STATE ____________ ZIP ________________ AGE ________
AREA CODE & PHONE NO. (________)

Check box for G.I. Bill information.
☐ Veteran ☐ On Active Duty

Cleveland Institute of Electronics, Inc.
1776 East 17th Street, Cleveland, Ohio 44114
Accredited Member National Home Study Council

Find out about CIE’s home study courses in Electronics for beginner, intermediate, advanced college level . . . the value of an FCC License and how to get one. No obligation. FREE.

Printed in U. S. A.
Attention Veterans and Military Personnel:
All CIE career courses are approved under the G.I. Bill for educational benefits.

Fill in the postpaid reply card and mail ... TODAY. If card has been removed, send your name and address to: Cleveland Institute of Electronics, Inc., 1776 East 17th Street, Cleveland, Ohio 44114.
It takes work. And a few sacrifices. But it's worth it!

The minute you start your CIE course you'll see why CIE is different than other home-study schools.

Because as a CIE student you'll get the kind of electronics training that prepares you for a career, not just a job. We'll give you a meaningful, well-rounded foundation in electronics theory and practice. And with our special Auto-Programmed* Lessons, we'll make sure you grasp the key theories and methods of modern Electronics. No "fun and games" frills. No time-wasting, superficial lesson material. No "snap" exams.

We'll challenge your thinking.

We have to. Because after you graduate, employers will expect you to really know how to analyze and troubleshoot virtually all kinds of electronics equipment. Some employers of electronics personnel have told us that our graduates have what it takes.

That's why we're so thorough. We've got a 40-year reputation to uphold and we're going to keep it by giving our students the best independent home-study training we can.

Sure, some of our weaker students drop out. (Learning Electronics with CIE is no free ride.) But you can bet on this... the ones who do make it are ready! Ready to go out and make it in the rewarding world of Electronics. And that's the reason you want to learn, isn't it?

You can have attractive job opportunities

There have already been many exciting developments and breakthroughs in Electronics and some people might assume there will be no new frontiers... no new worlds to conquer. Not so.

Electronics is still growing. In nearly every one of the new and exciting fields of the Seventies you'll find electronics skills and knowledge in demand. Computers and data processing. Air traffic control. Medical technology. Pollution control. Broadcasting and communications.

Importance of an FCC License

If you want to work in commercial broadcasting... television or AM or FM broadcasting... as a broadcast engineer, federal law requires you to have a First Class Radiotelephone License. Or if you plan to operate or to maintain mobile two-way communications systems, microwave relay stations or radar and signaling devices, a Second Class FCC License is required.

But even if you aren't planning a career which involves radio transmission of any kind, an FCC "ticket" is valuable to have as Government certification of certain technical skills. It's a job credential recognized by some employers as evidence that you know your stuff.

A good way to prepare for your FCC License exam is to take one of the CIE career courses which include FCC License preparation. We are confident you can successfully earn your license, if you're willing to put forth an effort, because the vast majority of CIE students have. In fact, based on continuing surveys, close to 9 out of 10 CIE graduates have passed their FCC exams!

So if you are serious about getting ahead in Electronics... if you are willing to put in the extra work... get in touch with us.

We have many career courses for you to select from. If you already have some electronics training, you may want to skip our beginner-level courses and enroll in an intermediate program. Or, if you're really hot, there's a tough, college-level course called "Electronics Engineering" that can make you even better.

Send today for FREE school catalog

Send today for our FREE school catalog and complete package of independent home-study career information. For your convenience, we will try to have a representative call to assist in course selection. Mail reply card or coupon to CIE... or write: Cleveland Institute of Electronics, Inc., 1776 East 17th Street, Cleveland, Ohio 44114.

Do it TODAY.

G.I. Bill Benefits

All CIE career courses are approved for educational benefits under the G.I. Bill. If you are a Veteran or in service now, check box for G.I. Bill information.

CIE Cleveland Institute of Electronics, Inc.
1776 East 17th Street, Cleveland, Ohio 44114
Accredited Member National Home Study Council

Yes, I want your FREE school catalog and career information package today.
I am especially interested in:
- Electronics Technology
- FCC License Preparation
- Color TV Maintenance
- Industrial Electronics
- Electronics Engineering
- Mobile Communications
- Other

Print Name ____________________________
Address _______________________________
City ____________________________
State __________________ Zip ____________
Age ________ Check box for G.I. Bill information. ☐ Veteran ☐ On Active Duty

MAY 1976

Circle 27 on reader service card
The lower-left reset (R) key will not output any data since it is hardwired to the 8224 clock chip. You can check this key's operation by testing the voltage at pin 1 of IC5, the 8224 clock chip. It should normally be at about zero volts and will rise to 3 volts when the R key is depressed.

If all the keys operate correctly, peel off the protective backing and apply them to the tops of the keys.

After the power supply, voltage regulator, clock, LED display and keyboard sections have been tested, install the remaining parts. Remember to add the 0.01 μF decoupling capacitors. If you are only going to be using 256 words of R/W memory, at least to start, be sure that it is correctly installed in the locations allocated for IC9 and IC10. If you have not already done so, obtain one of the 1702A PROM's with the Keyboard Executive (KEK) software in it. Preprogrammed PROM's are available (see parts list) and if you already have a 1702A PROM, it may be programmed from the listing provided. There are currently a number of 1702A type PROM's available. These are the 4702A and the 8702A. These are pin-for-pin equivalents of the 1702A, but their access times are slower. The 1702A PROM's or equivalents should have a maximum access time of about 1.3 ms to work with the Dyna-Micro. If you purchase a "surplus" PROM, be sure that these conditions are met.

The PROM containing the KEK software must be placed in the location allocated for IC15. It will not work correctly if placed in the location for IC16 since the addresses will be incorrect.

Next month, the foil patterns, component placement diagram, schematic diagram of the monostable-LED circuit and the final check procedures will be given.

R-E

From the deep jungles of jumbled software, from the rivers of mysterious circuits, he came. Mini-Micro Designer. He was tough and smart. And he glowed with purpose. To teach the people microcomputers.

Learn from the leader in the modern electronics revolution. E&L’s Mini-Micro Designer (MMD-1) comes with a series of educational "modules" that teach you how to design and use a microcomputer. And you get complete documentation and full software support. MMD-1 features the 8080A central processor chip, direct keyboard entry of data/instructions, LED status indicators, and all the apparatus needed to make your first microcomputer. Novice or expert, MMD-1 gets you into action fast. Put a revolutionary on your side. Send for more information today.

CIRCUIT DESIGN, INC.
Division of E&L Instruments
P.O. Box 24
Shelton, Conn. 06484

Prices start at $125.00 in kit form.

FREE catalog
over 2000
unique tools, handy kits, precision instruments, technical supplies.

Over 24 years of service to the world’s finest craftsmen and technicians.

A carefully selected and tested assortment of unique, hard-to-find tools, clever gadgets, precision instruments, bargain kits. One-stop shopping for the technician, craftsman, hobbyist, lab specialist, production supervisor. Many tools and measuring instruments available nowhere else. One of the most unusual and complete tool catalogs anywhere. Get your copy of the NC FLASHER today.

National Camera
2000 West Union Ave., Dept. GSA
Englewood, Colorado 80110
(303) 788-1813

Circle 28 on reader service card

Circle 29 on reader service card
ALL YOU NEED FOR SERVICING CB RADIOS

... at a price you can afford.

To get started in the CB radio repair business you need several expensive test instruments or the all-in-one Zodiac U-2 CB Transceiver Service Instrument with which you can do the following:

- Check frequencies
- Measure modulation
- Check antenna SWR
- Generate AF/RF signals
- Measure power output
- Align receivers
- Tune transmitters
- Measure field strength

This compact combination bench/field instrument can be set to generate crystal-controlled RF signals and will measure 210 different frequencies—including all existing and proposed Class D channels.

In addition, you will need a 13.8-volt regulated power supply for operating CB Transceivers under test, on the bench. If you buy a Zodiac U-2 now, we will give you the power supply FREE*. Send check or money order for $895 (in New York add appropriate sales tax) or $100 deposit plus your written authorization to charge $795 to your Master Charge card (be sure to give full card number) to:

ZODIAC COMMUNICATIONS CORP.
626 Chrysler Bldg., New York, NY 10017 Phone: 212/697-9585

Complete money back guarantee if not totally satisfied.

*Offer expires July 30, 1976

Circle 30 on reader service card
World's Smallest Electronic Calculator: $19.95!

Does Everything Big Ones Do

Small but mighty! 8-digit, 4-function electronic calculator even has automatic % key...for only $19.95. Take it anywhere. Carry it in your pocket or purse—it's ½ the size of a pack of cigarettes. This 3½-ounce dynamo features floating decimal, constant key, lead zero depression, clear entry, more! At Edmund's low price, the unit comes with a Ni-Cad rechargeable battery pack that can plug into any AC outlet. No need for special recharging adapters. Calculator overall is just 2 x 3½ x ½" with plenty of room for most fingers. Another Edmund first with advanced technology. $19.95 p.d.

Stock No. 1945EH...... Only

CIRCLE 61 ON READER SERVICE CARD

R-E LAB TEST REPORTS

(continued from page 66)
ONE RIG DOES IT ALL!

Tube and Solid State

THE UNIVERSAL
PJS-298

33KV LEADED GLASS 19" CRT
EIA recommended to protect against dangerous X-radiation

A MUST FOR TODAY'S SERVICING

ACCESSORIES INCLUDE:
- CRT 90° Extension
- Yoke Extension
- Transverter
- Convergence Load
- Universal Yoke
- Convergence Assembly
- Blue Lateral Assembly
- Anode Extension

BUILT-IN SPEAKERS
Easy audio checking

40 KV METER
50aU sensitivity monitoring

FRONT CONNECTORS
Convenient cable plug-in

OBSOLETE PROOF
Plug in modules for up-dating

$298.98 VALUE

SPECIAL INTRODUCTORY OFFER
$229.95
COMPLETE WITH CRT

TeleMatic
2468 FULTON ST., BROOKLYN, NY 11207
Circle 64 on reader service card

PLEASE SEND ME MORE INFORMATION

NAME

ADDRESS

CITY

STATE

ZIP
FET MULTIMETER. The LEM-75 is a battery-operated full-sized FET multimeter that is both portable and AC operable. It offers wide range of use for most every electronic application, employs a large 4½ inch mirror scale and has an input impedance of 10 megohms. There are full scales of 0.3 V and 30 μA, AC and DC. Minimum sensitivities are 10 mV and 1 μV on both AC and DC for checking and servicing extremely sensitive low voltage and low current parameters of most advanced solid-state devices in use today. The LEM-75 is supplied with an AC adapter for field or work bench use.

The H-80V (Corinthian walnut vinyl) and H-80W (American walnut) use 8-inch woofers with the aluminum tweeter and a capacitor feed to the tweeter cut-in at 4.5 kHz; low-frequency cutoff is at 30 Hz. 25 × 14¼ × 11½ inches. Suggested list prices: H-80W—$87.00 each, H-80W—$87.00 each.

The H-100V and H-120W use a 12-inch wooden tweeters and a capacitor feed to the tweeters cutting in at 2.5 kHz; low-frequency cutoff is at 40 Hz, 25 × 14½ × 11½ inches. A tweeter-level control on the rear panel permits adjustment for optimum balance in a particular room environment. H-120V—$35.00 each, H-120W—$156.00 each.—Hegeman Laboratories, Inc., 555 Prospect Ave., East Orange, NJ 07017. Circle 32 on reader service card

CAR STEREO COMPONENT SYSTEM, Stamp 50, consists of a separate power amplifier, an under-the-dash preamp/equalizer and a 2-way speaker system with crossover net-

The unit features a ±DC polarity switch; 8 AC and DC current ranges; and peak-to-peak voltage from 0 to 2,800 Volts. The dB range is —15 to +62 dBm (0 dB=1 mV/600 ohms); and 7 ranges of resistance from 0.2 to 500 megohms. $149.95 complete with an LPB-13 heavy-duty test probe and the LPS-169 AC adapter. The optional, LP-05 thermistor probe ($21.00) is useful in measuring ambient temperature in solid-state circuits from —50°C to 250°C.

The LEM-75 measures 8½ inches high by 6 inches wide by 5½ inches high. It also has a tilt viewing stand and weighs 5½ lbs.—Leader Instruments Corp., 151 Dupont Street, Plainview, NY 11803.

Circle 31 on reader service card

BOOKSHELF SPEAKER SERIES. Consists of three models, available in both walnut and vinyl, features excellent dispersion, smooth frequency response, clean transient attack and good efficiency. A two-way system in a closed-box baffle, the driver package in each unit utilizes 2-inch aluminum-coned tweeters with frequency response to 40 kHz and a woofer system employing a conical aluminum dome to provide the extended range, improved transients and wide dispersion. In all models the woofer is driven full range.

The Stamp 50 is a high-performance high-fidelity system designed to parallel the works. The Stamp 50 on page 80)

More information on new products is available from the manufacturers of items identified by a Reader Service number. Use the Reader Service Card inside the back cover.
When you install a B-T Booster outside, you get a lot of new boosters inside.

The service technician's job is a tough one. Customers are always grumbling about the high cost of TV service calls. And they complain about poor reception—even when it's almost impossible to get a good signal.

But now and then a TV service technician wins one. And one of the products that can make him a winner, and create customer goodwill, is a Blonder-Tongue outdoor booster.

B-T Boosters can produce a dramatic improvement in picture quality, particularly on color and especially in difficult reception areas. After 25 years of making outdoor boosters, B-T is number one in sales, and enjoys the finest reputation for making products of highest performance and reliability. B-T Boosters do cost a bit more than competition, but they perform and last longer. And that's what makes satisfied customers.

The VAULTER, for example, is the number one outdoor booster today in the B-T line...and in the entire industry. This ultra-high performance, all-channel amplifier offers the ideal combination of lowest possible noise figure (4.6dB, VHF; 7.0dB, UHF) and high gain (15dB). While it can't make unusable, snowy pictures perfect, it can reduce fading, loss of color, overcome cable loss and reduce lead-in cable noise. It can even feed more than one TV set from the same antenna in fringe reception areas. It has separate U/V inputs and a coax output. Finally, it's specially designed for lightning prone areas.

The B-T line consists of 5 all-channel models (including the popular VOYAGER); 5 VHF models and 4 UHF boosters (the ABLE-U2bi is a favorite).

See your B-T distributor for details. And see why you can count on boosters inside, when you install B-T Boosters outside. Blonder-Tongue Laboratories, Inc., One Jake Brown Road, Olc Bridge, N.J. 08857.

Circle 26 on reader service card
NEW PRODUCTS (continued from page 78)

performance quality of home stereo components. It can be installed in a car, van, boat or airplane.

The DG-coupled Stamp 50 amplifier delivers 20-35 watts RMS per channel (40 to 70 watts in stereo). Distortion less than 0.3% THD, 20 Hz to 20 kHz at full output.

The PEQ50 preamp/equalizer has separate high- and low-frequency controls level and LED indicator. The input accepts an FM/FM stereo signal source and all 8-track and cassette players. The 6½-inch rear-mounting woofers are complemented by forward-placed hemispherical Mylar dome radiating tweeters.

Speaker grilles, all wiring, crossover components and owners’ installation manual are included in the kit. $388.00—AudioMobile, Inc., 3225 McArthur Blvd., Santa Ana, CA 92704.

Circle 33 on reader service card

LIQUID CRYSTAL DISPLAYS. Standard digit sizes are 2, 4, 6, and 8 in., with large sizes up to 12 in. available on special order.

Single- and multi-digit assemblies are available with integral lighting or in a reflective mode for external front lighting. The units are completely self-contained requiring only BCD inputs to generate numerics, and use less than 50 milliwatts of power per digit of exclusive lighting. Excellent legibility with contrast ratios greater than 10 are achieved in ambients of up to 300 foot-candies with back lighting, and in any ambient, including direct sunlight, in the reflective mode.

Applications include message boards, process control “score boards”, clocks, arrival/departure boards, and other uses requiring large numeric readouts—North Hills Electronics, Inc., Glen Cove, NY 11542.

Circle 34 on reader service card

NEW SEMICONDUCTOR TESTER, the model 520-B, features a new HI-LO Power Drive system, is AC-powered and designed for maximum operating convenience for technicians at the service bench.

ewtonics

Anybody who’s into electronics certainly should be getting the everyday convenience and family security of automatic garage door operation...especially now, with Perma Power’s great Electro Lift opener...made to fit in the trunk of your car, designed for easy handling and simple do-it-yourself installation. Available now at a surprisingly low price from your distributor.

P.S. Show off your opener to your friends and neighbors. You’ll probably be able to pay for yours with what you make installing openers for them.

Perma Power

Chamberlain Manufacturing Corporation
Perma Power Division
5740 North Tripp Avenue, Chicago, Illinois 60646
Telephone (312) 539-7117

Circle 67 on reader service card
In LO Power Drive, the base, emitter, and collector leads of the device being tested are automatically identified. HI Power Drive enables a technician to perform accurate in-circuit gain tests on devices in circuits with shunt resistance as low as 10 ohms and shunt capacitance as high as 15 µF. An audible tone indicates proper operation, and LED indicator lamps identify the functioning device as PNP or NPN.

The model 5028B can perform a complete in-or-out-of-circuit test in less than 10 seconds. The new unit also tests out-of-circuit leakage with an automatic identification of silicon or germanium semiconductor types. The polarity of diodes, FET's and SCR's is also indicated. $160.00—B&K-PRECISION Division of Dynascan Corporation, 1801 W. Belle Plaine Ave., Chicago, IL 60613.

Circle 35 on reader service card

NON-CONTACT AC/DC CURRENT PICKUP. The model ID-5001M current sensor is designed to sense both AC and DC currents on one or more conductors passing through the sensing aperture. The device produces an output voltage proportional to the total current through the aperture.

This method of current sensing is unique in four main areas: (1) Non-contact operation provides complete isolation from the bus.

(2) Introduces a negligible power drain in the measured circuit. (3) The extremely low insertion impedance has a negligible effect upon a measured circuit performance. (4) The DC current capability allows the measurement of DC, AC or combination waveforms.

An optional electronic package is available with the ID-5001M sensor. This package contains the power supply for the control current and the output amplifier—F. W. Bell, Inc., 4949 Freeway Drive East, Columbus, OH 43229.

Circle 36 on reader service card

SOLDERING AIDS, designed with the production worker in mind, have non-magnetic steel blades to which solder won't adhere. Blades are set into black plastic handles that are hex-shaped so the aids won't roll off the workbench. Solder aids are available in the 8-inch standard size and the 6-inch version for micro work.

Models are available with a forked end that straddles wire for looping, bending or guiding; a reamer end that cleans and burrs lug holes; the hook end probes for loose connections; the knife/scaper removes surplus solder and the brush cleans solder connections. The dual-ended regular models have an overall length of 8 inches. The hex handle is 5/8 x 4 inches, blades are 3/32 x 2 inches. Three models pair the fork with hook, brush and reamer. The fourth pairs the knife and brush, $1.39 each.

The Micro models are 6 inches overall. Handle is 1/4 x 3 inches; blade 1/4 x 1-1/2 inches. Available as fork/hook and fork/hook models at $1.79—Hunter Tools, Marshall Industries, 9674 Telstar Ave., El Monte, CA 91731.

Circle 37 on reader service card

POCKET PORTABLE DVM as an analog meter replacement. The DVM35 is more accurate than most general-purpose analog instruments due to its 3-digit display; 1% DC voltage accuracy and 15-megohm input impedance. It measures more than most portable analog meters; including 1-ampere and 10-megohm capabilities, plus 2000 VDC measurements available when using the TIMES TWO button on the probe—thus doubling all voltage ranges and increasing the input impedance to 30 megohms. Measurements up to 50 KV are possible when using the HP200 accessory high-voltage probe.

Long battery life is assured by using the TOUCH ON button on the probe. The DVM35 is turned off between measurements, thus extending battery life. AC line operation is possible using the optional power adapter/recharger model PA 202. $124.00—Sencore, Inc., 1260 Sencore Drive, Sioux Falls, SD 57107.

Circle 38 on reader service card

DISTORTION METER. The LDM-170 audio circuit distortion meter also measures signal-to-noise ratio and signal levels in all audio-frequency circuits. It has a balancing circuit to suppress the fundamental frequency in the 20 Hz-20 kHz range while distortion products are fed to a stable, high-

Look for the June issue of Radio-Electronics at your newsdealer May 18

MAY 1976

Circle 70 on reader service card
DIGITAL ELECTRONIC STOPWATCH, mod- 1671, is designed for use in simple start/stop and time in/time out applications, it is ideal for industrial time and motion studies, excellent for use in the research lab. You start, stop and reset with one hand, and it times to 59 minutes, 59.9 seconds (with automatic recycle) in increments of 1/10 second. Fail- safe design means timing cannot be reset. Equipped with solid-state. Compact (4.45 x 2.45 x 1.46), lightweight (6 oz.) and durable for use in the field or lab, the watch's bright 5-digit LED display gives excellent readability under most light conditions. Neck strap and replacement AA batteries are included. $49.95.

For under eighty dollars, you can get a wrist model (6559) with all the features detailed above, plus standard split-fuction for partial event times. You can freeze times on a partial event while you continue to measure total elapsed time (allows for timing of two or more "openings" or participants in a single event). Rechargeable NiCad batteries, AC charger and leather carrying case are included. $79.95.

The deluxe model 1655, similar to above but with no charger, comes with four replaceable alkaline batteries to provide 18 hours of continuous use. Transistor Radio astonished allows for a series of individual event times without losing total elapsed time. Its 6-digit display is bright neon orange with ±0.001% accuracy. $149.95. These three, and other electronic digital stopwatches, are available by mail, postpaid.—Edmund Scientific Co., 80 ESSCRO Bldg., Barrington, NJ 08007.

Circle 39 on reader service card

LAFFAYETTE L-8 3-WAY PEDESTAL SPEAKER—L-8 is a three-way design employing a 10-inch woofer with a magnetic 4-lb. P-C type, open cell, 1-1/8" x 1-1/8" x 1-1/8" aluminum voice coil, and a 5-inch sealed-back mid-range speaker, and four suicide tweeters. Front speakers are set in front and either side to provide 270° sound dispersion.

The columnar enclosure incorporates an internal tuned duct for high acoustic effi-
ciency and improved bass response. Frequency response of the L-8 is 30–20,000 Hz. Nominal impedance is 8 ohms. Multistage RLC crossovers are used at frequencies of 2300 and 6000 Hz providing 12dB per octave. Mid- and high-frequency controls on rear panel are used to adjust output for room acoustics. Power handling capacity is 30 watts RMS, 60 watts, program material. The cabinet is finished on four sides in a mar- proof walnut finished laminate over solid ¼-inch acoustic wood and has a removable

LEADER

5” QUALITY SCOPES COST LESS THAN EVER!

And They’re Complete With Accessories!

LBO-506
5” Dual Trace/Dual Channel Automatic Trigged Scope
- It’s all automatic, h’z’tl sweep, vert’l input & trigger (TV-V, TV-H).
- Features sep/simul.
- sw. mode, X5 mag; X-Y display; direct RF input; 10MHz b’width; sync’d to 350MHz 10mv/20 Vp-p/cm vert’l sens., in 11 calib. steps. Probes, leads, adapters inc.

LBO-505
5” Trig Dual Trace/Dual Chan.
Scope 15MHz Bandwidth
- Outduals them all! With auto & trig sweep, AC or DC c/p d per ch; 100 nsec/cm max. speed (X10mag.), sep. or simultaneous sweep mode.
- Input sweep display of ch 1 & 2.
- 1µsec/cm, to 0.5sec/cm, 17 steps calib.
- Probes, leads, adapt’s incl.

LBO-502
5” Triggered Scope w/Graded Scale
- Ideal for most electronic applications; easy pushbutton operation; 1-5, 5-graded scale readings & 15 MHz b’width. Has auto and trig sweep, 17 steps calib.: X5 mag.; and 10mV to 20Vp-p/cm vert.
- Sensitivity. Complete with probe, leads and adapter.

LBO-511
5” Solid State General Servise Scope
- Features remote automatic sync and calib vert’l input – has 140° phase control; and TV-V & TV-H w/sweep range from 10kHz, DC coupling and push-pull amps provide distortion-free stability across the 10MHz b’width.

AM Comes Alive!

The Mckay Dynek DA 5 shielded ferrite loop AM antenna has a solid state preamp with tuning and sensitivity controls.

Overcomes the two most common AM reception problems: strong local stations “hiding” weaker distant stations close on the dial, and interference from TV and electrical sources.

Improves inherent long range capabilities of AM programs, listenable from hundreds of miles.

increases signal strength 4 to 8 times — really sharpens up AM performance in typical hi-fi receivers and tuners.

Factory direct — $175.00 (US), ten day money back guarantee. Lease plan, BankAmericard and Master Charge welcome. For more information or to place your order, call toll free:

Nationwide 800/854-7769
California 800/472-1783

Mckay Dynek Co.
675 North Park Ave.
Pomona, CA 91766

Price subject to change without notice.

Circle 74 on reader service card

AM

Super-strip™ for all circuit sizes...it’s a complete mini breadboard...it’s a capacity growth module for large-scale breadboards, too.

ALL IN ONE SUPER-STRIIP™ — you get an integral 8 bus distribution system plus room for lots of components in a matrix of 840 solderless, plug-in tie points.

Super-strip is the world’s greatest “quick-change artist” for building, testing and modifying experimental circuits. No lost time doing tedious soldering — just plug in virtually any DIPs and discrete where you want them and interconnect with any solid wires up to #20. Then change anything in your circuit at will. Just unplug, move, plug in again — undamaged — where desired. Reuse everywhere, every time.

Buses may be used for voltage, ground, reset lines, clock lines, shift command, etc. Link buses together when grouping several Super-strips to form large-scale breadboards.

CALL YOUR A P DISTRIBUTOR TODAY

If no distributor in your area, call the factory or mail the convenient order form at right.

A P PRODUCTS INCORPORATED

Box 110-R • Painesville, OH 44077
216/354-2101 • Dealer inquiries invited

A P PRODUCTS INCORPORATED

Box 110-R • Painesville, OH 44077
216/354-2101 • Dealer inquiries invited

MAY 1976

A P PRODUCTS INCORPORATED

Box 110-R • Painesville, OH 44077
216/354-2101 • Dealer inquiries invited

Circle 73 on reader service card
brown foam grille. It measures 37½ inches high x 12½ x 12½ inches cross-sectionally. $165.95—Lafayette Radio Electronics Corp., 111 Jericho Turnpike, Syosset, NY 11791.

Circle 41 on reader service card

HOME MUSIC SYSTEM. The model RH-606 8-track record/playback, AM/FM stereo system is one of four in the Pioneer Centrex Series of seven having recording capabilities. Automatic or manual program change, lighted program and recording indicators are among features. Unit has magnetic phono input jacks, 120-volt AC-outlet, front-panel microphone and headphone jacks. The two-way acoustic suspension speakers have foam grilles. $260.—Pioneer Electronics of America, 1555 E. Del Amo Blvd., Carson, CA 90746.

Circle 42 on reader service card

MAGNETIC-MOUNT CB ANTENNAS. The 39-in. Liberty series are designed for fast attachment and removal that helps prevent thefts. The need for mounting holes or brackets is eliminated with these virtually theft-proof antennas that magnetically clamp to any 4 square-foot metallic surface on cars, trucks, RV's, or boats. (Not recommended for soft vinyl tops). The husky base magnet has 40 lb. holding power which prevents crawling or cislodgement and is ABS encapsulated to prevent surface scratches. The Liberty I (Model 10-285) has a fiber glass whip, and the Liberty II (Model 10-286) features a weather-resistant stainless steel whip with base-load coils.

Both models have extra-distance radiation patterns and corrosion resistant stainless steel whip spring and marine-type hardware.

16 ft. coax transmission cable with a PL-259 plug, plus a capacitive impedance match that eliminates the need for matching transformers. $27.95.—Breaker Corp., Marketing Dept., 1101 Great Southwest Parkway, Arlington, TX 76011.

Circle 43 on reader service card

HAND-HELD DIGITAL MULTIMETER measures capacitance along with AC and DC volts and resistance. Called the model 21, this palm-sized instrument has four DC voltage ranges with 1 mV resolution: Four AC voltage ranges with 1-mV resolution: Four resistance ranges with 1-ohm resolution and four capacitance ranges with pF resolution. Other features and specifications include: 0.27” LED displays 3½ digit readout (up to 2,000 counts); simplified five-step calibration.

Designed for field or bench operation, the model 21 operates from 4 rechargeable Ni-Cad batteries. (An optional converter for line operation is also available). Inside the high-impact polycarbonate case, the model 21 uses all components laid down to withstand impact and shock. Only standard compo-

(continued on page 86)
AUTOMOTIVE IGNITION SYSTEM
(continued from page 49)

the unit in the “bypass” position while setting the points.
Point contact wear is almost completely eliminated with the unit. Other point wear factors should be considered. The rubbing block surface of the points can wear. It is important to follow the car manufacturers instructions on lubricating the distributor cam surface during tune-up. Some cars have a lubricating wick; this should be replaced. On other cars, a thin layer of grease is put on the cam. If the rubbing block does wear, it will retard ignition timing somewhat. (The author has not experienced any rubbing block wear problems.)

Another possible source of failure is breakage of the points tension spring from age and fatigue. I have never seen this happen. However, it is probably good preventive maintenance to replace the points every 50,000 miles.

Due to the more positive spark from the unit, sparkplug life should be a little longer with this unit than with a standard ignition.

Red Cross.
The Good Neighbor.

Help!

There’s not enough space to tell how great PAIA kits are!

We have ingenious designs for Mixers, Guitar Effects Boxes, Portable Amplifiers, Synthesizers! With Step-by-Step Instructions!

- Send for Free Catalog PAIA ELECTRONICS, Dept. 5-R
10720 W. Wilshire Blvd.
OKLAHOMA CITY, OK 73116

Circle 79 on reader service card

Circle 81 on reader service card

Circle 80 on reader service card

Versatility Quality Low cost.

- Telequipment D32 4"x9"x11" (105mm x 230mm x 288mm)
- Dual Trace
- Automatic selection of chopped or alternate modes
- Automatic selection of TV line or frame display
- Weighs only 10 lbs. (4.5 kg)
- Versatile AC, DC or battery operation
- $1050 includes 10x probes and batteries

U.S. Sales Price FOB Beaverton, Oregon

TEKTRONIX
committed to technical excellence

SOLID STATE...BREAKERLESS ELECTRONIC IGNITION.
The BEST...The ULTIMATE
of All Ignition Systems

ALLISON
OPTO-ELECTRIC

- No Breaker-Points or Condenser to EVER wear out or need any maintenance.
- Once installed and properly timed your Distributor will give you CONTINUOUS PEAK PERFORMANCE.

- The Allison OPTO-ELECTRIC System ELIMINATES the Points and Condenser, replacing them with an OPTO-Electronic Trigger, using a Light-Emitting Diode and Phototransistor. This System operates on a Beam of LIGHT. There is NO Breaker-Point "Wiper-Arm" to wear down. Point bounce and erosion are completely eliminated thereby giving longer Timing ACCURACY than any System using "Mechanical" Breaker-Points. (and No Timing Fluctuation as with Magnetic Impulse Units). ACCURATE Timing gives the BEST in Engine EFFICIENCY...and that’s the name of the Game for the BEST in GAS MILEAGE and ECONOMY.

- The Allison's "Built-In" Dwell never needs adjustment. It is PRE-SET to supply the OPTIMUM Performance at BOTH high and low speeds. The RPM capability of the "OPTO-ELECTRIC" unit exceeds that of any known automotive internal combustion engine. Positive spark intensity and duration helps eliminate "misfire" and extends the Spark-Plug life.

- The Allison "OPTO-ELECTRIC" was engineered to OUT-LAST THE LIFE OF YOUR CAR. Only the Highest Grade Solid-State Components are used...UNAFFECTED by Moisture or Vibration! Easier engine starting under ANY Weather Condition. Solid. DEPENDABLE PERFORMANCE.

- Installed in your Distributor in same location as Points COMPLETE INSTRUCTIONS FURNISHED. (Not Necessary to dismantle your Distributor.)

- America's Oldest and Largest Manufacturer of Opto-Electronic Ignition Systems.

Our Best Salesmen are the USERS of our ALLISON System!

ALLISON AUTOMOTIVE COMPANY 1267 - E9 East EDNA PL., COVINA, CAL. 91722

MAY 1976

Circle 79 on reader service card

For complete information, write to Tektronix, Inc., P.O. Box 500, Beaverton, Oregon 97007
If your ears are ready for $600 speakers, but your budget isn’t, we have a way to satisfy both. Sennheiser headphones. Using the same acoustic design principles that have made our professional microphones industry standards, Sennheiser Open-Aire* headphones reproduce sound with a realism most loudspeakers can’t begin to approach. With wide, flat response. Low distortion. Excellent transient response (even in the bass region!) And sheer intimacy with the music. All without sealing in your ears. Whether you’re waiting for that pair of $600 speakers or just curious about a pair of headphones some experts have compared with $1000 speakers...the answer’s at your audio dealer’s.

*Manufacturer’s suggested list for Model HD4/4. Deluxe Model HD242 also available at $79.75.

If your ears are ready for $600 speakers, but your budget isn’t, we have a way to satisfy both. Sennheiser headphones. Using the same acoustic design principles that have made our professional microphones industry standards, Sennheiser Open-Aire* headphones reproduce sound with a realism most loudspeakers can’t begin to approach. With wide, flat response. Low distortion. Excellent transient response (even in the bass region!) And sheer intimacy with the music. All without sealing in your ears. Whether you’re waiting for that pair of $600 speakers or just curious about a pair of headphones some experts have compared with $1000 speakers...the answer’s at your audio dealer’s.

*Manufacturer’s suggested list for Model HD4/4. Deluxe Model HD242 also available at $79.75.
reader questions

LOSS OF VERTICAL SWEEP
I've got a black-and-white portable with no vertical sweep at all. I want to check a quick to the vertical output transformer and yoke. Can I use a separate 6.3 volt filament transformer to feed a signal into the output tube? This set has a series heater string—J.G., Arlington, VA.

If you feed the test signal into the grid of the vertical output tube, OK. If you feed it directly to the plate, either disconnect the plate voltage or use a good-sized blocking capacitor (0.25 or 0.5 μF).

TOO MUCH RIPPLE IN PICTURE
I wrote you before about checking the excessive ripple in the picture of a Gamble TV-2761 black-and-white TV. You suggested checking ripple on the power-supply filters. That was it! I had to add 80 μF of extra capacitance to get rid of it! Works now. Thanks—J.W., Hastings, MI.

Glad to hear I was right.

EXCESSIVE WIDTH
The raster in this Sylvania D05-14 is so wide that I can see only 8 vertical lines of a cross hatch pattern! All of the DC voltages seem to check out all right. I tried reducing the screen grid voltage of the horizontal output tube. That didn't work—C.M., Diamond Bar, CA.

Well, there went one of my favorite ways of reducing excess width! So now what? In several cases this chassis has shown excessive width if that VDR from the pin-3 cathode of the 6CL8 high-voltage regulator tube to ground goes bad. This is part No. 38-15257-9. Replace with exact factory duplicate; couldn't find a listing on it.

MAY 1978

The Money Generator

It's a DOG FIGHTER, TOO!
The Model ATC-10 is much more than a color bar pattern generator. It should be called a portable multi-purpose TV diagnostic and servicing aid, but it looks too much of a mouthful. We would have to rename it the Dog Fighter (instead of the Money Generator), but that might be misinterpreted to mean that it's only useful in the shop. The versatile ATC-10, a portable, moderately-priced instrument, combines the most essential features of a color bar pattern generator, a TV "analyzer," and a substitute tuner plus several brand new "dog fighting" and timing innovations. With all this extra versatility, however, the ATC-10 is human engineered with only four simple-to-master controls.

Two illustrated brochures describe the ATC-10. The first brochure describes the many unique and unusual features which make the ATC-10 a "dog fighter" and a time-saver. The second brochure illustrates the timesaving (money making) potential of the ATC-10 by comparing its capabilities with 18 competitive instruments. In all, 33 representative features are evaluated. We think the results of this evaluation will be a sure surprise to many. It clearly illustrates how easily it is for most TV shops to purchase or continue to use less versatile equipment and shows how the ATC-10 has the potential of returning its $299.95 purchase price in as little as 3 to 4 months.

These brochures are yours for the asking — write direct for immediate reply.

American Technology Corporation
225 Main, Dept. 5C, Canon City, CO 81212
FUNCTION GENERATORS (continued from page 42)

will decrease in output amplitude by as much as —2 dB when changed from the lowest to highest frequency. This —2 dB roll-off is due to filtering circuits used in the output amplifier to eliminate high-frequency discontinuities present in the synthesized sawtooth.

Amplitude symmetry (DC offset)

As noted before, lack of time symmetry can cause an apparent DC offset in the output signal. The output signal may also have DC offset contributed by lack of symmetry in the limit detectors, and DC offset contributed by amplifying stages elsewhere in the generator. Amplitude symmetry is usually specified as a percentage match between the peak positive and negative amplitudes of a wave.

Output specifications

The output impedance, the maximum peak-to-peak output voltage, and the clipping level of the output voltage are all of interest to the potential user. The common output impedance of a function generator is 50 ohms. This value is chosen to permit driving low-impedance loads and to minimize reflections on the 50-ohm coaxial cables commonly used to connect the generator to a load. This is especially important when fast rise time square waves are used. Some lower-cost generators have sacrificed 50-ohm output impedance to reduce their price. These generators specify the 600-ohm output impedance common in the older sine/square oscillators.

The peak-to-peak output voltage of the generator is specified into the rated load impedance as well as into an open circuit. The open circuit voltage will be twice that of the loaded output voltage when the output impedance of the generator is the same as the rated load impedance. A common value of peak-to-peak output voltage is 10 volts minimum into the rated load. The value varies from manufacturer to manufacturer, and sometimes from model to model, and should be clearly noted when purchasing a function generator.

Frequently the sum of the peak output signal and the variable DC offset signal will exceed the peak limits of the output amplifier. When this condition occurs, the desired waveform may be clipped or otherwise distorted. Limit detectors are offered on some models of function generators, and a rare few offer an output amplifier with enough dynamic range to handle both the signal and the DC offset signal. The vast majority of function generator manufacturers expect the user to keep track of this condition.

Offset control

The offset control permits a variable amplitude/variable polarity DC bias to be applied to the output signal. This is usually a ±5 volt offset signal. Generally, offset signals will not be attenuated with an increase in attenuation of the variable attenuator, but will be attenuated by the step attenuator. On some generators, offset may not be turned off, and some generators have switched position allowing the user to return to a signal symmetrical about zero volts. Offset is not available on all generators and is frequently deleted from low-cost units.

Attenuator

The amount of attenuation and the type of attenuators vary considerably from generator to generator as well as from manufacturer to manufacturer. The simplest attenuators are nothing more than a single variable control, offering as little as 20 dB attenuation and a maximum of 40 to 60 dB. Other function generators combine a variable control with 20 dB range with a step attenuator offering 10 or 20 dB per step. Step attenuations vary from one 20 dB section to six or seven 10 dB sections. Of course, the more attenuation sections available, the better. The maximum output voltage is usually known only to be greater than some specified value (say 10 volts) but not to be an exact voltage. For this reason, most attenuators are calibrated in decibels of attenuation rather than in voltage steps. The user interested in the exact signal voltage at the load should measure it separately.

Often the variable attenuator may appear to give more total attenuation than specified by the manufacturer. Use of the function generator at greater than specified attenuation levels may result in an output waveform with excessive distortion, resulting from high-frequency signals.

(continued on page 92)
Build Super-Pong & Bumper
Two TV games that are fun to build and exciting to play. They connect into the video circuits of your TV set, IC circuitry. Complete plans and instructions start in this issue.

Video Discs & Tape
They are still just a little further down the road as far as in-home devices go; but they'll be here soon. Here's a report on where they stand today.

Ball Lightning And How To Make It
You build a giant Tesla generator, of course, out in the desert and then... But you'll have to read about this one for yourself. By the way have you ever seen 5- and 10-foot long electrical discharges?

Hi-Fi Test Gear
A fresh look at test equipment for hi-fi gear. See the equipment and how it is used.

PLUS
Lab Tested Hi-Fi Equipment Tests
More On Building The 8080 Microcomputer
Jack Darr's Service Clinic

If You Work In Electronics:
GRANTHAM OFFERS YOU
College-Level Training
and a college degree.

Electronic Circuit Design,
Engineering Analysis (including mathematics thru calculus),
Classical and Solid-State
Physics, Engineering Design,
etc., etc., are all part of
the Grantham home-study de-
gree program in Electronics
Engineering.

PUT PROFESSIONAL
RECOGNITION IN
YOUR CAREER.

By adding college-
level home training
and a college degree
to your experience,
you can move up to
greater opportuni-
ties in electronics.

Grantham offers the
A.S.E.T. degree by corre-
respondence. After earn-
ing this degree, you may
continue with additional
correspondence plus a 3-day
residential seminar and certain transfer credits, to
earn the B.S.E.T. degree. Then, the B.S.E.E. is
available through further study.

GRANTHAM SCHOOL OF ENGINEERING
2000 Stoner Ave., Los Angeles CA 90025
Telephone (213) 477-1901

Worldwide Career Training thru Home Study
Mail the coupon below for free bulletin.

Grantham School of Engineering
2000 Stoner Ave., Los Angeles, CA 90025

I have been in electronics for years. Please
mail me your free bulletin which gives details concerning your electronics degree programs.

Name ___________________________ Age ________
Address ____________________________ _______________________
City __________________ State _______ Zip ________

Circle 88 on reader service card
The FM-2400CH provides an accurate frequency standard for testing and adjustment of mobile transmitters and receivers at predetermined frequencies. The FM-2400CH with its extended range covers 25 to 1000 MHz. The frequencies can be those of the radio frequency channels of operation and/or the intermediate frequencies of the receiver between 5 MHz and 40 MHz. Frequency Stability: ±.0005% from +50°F to +104°F.

Frequency stability with built-in thermometer and temperature corrected charts: ±.0025% from +25°F to +125°F (.000125% special crystals available).

Self-contained in small portable case. Complete solid state circuitry. Rechargeable batteries.

FM-2400CH (meter only) $595.00
RF crystals (with temperature correction) 24.00 ea.
RF crystals (less temperature correction) 18.00 ea.
IF crystals catalog price

CHARTS & GRAPHS

(continued from page 62)

Log-log paper: Use for power functions—those involving “x” raised to a power, “n”. This embraces all square-law equations, such as those connecting power and voltage or current. Example: \(\ln P = \frac{1}{2} \ln R \), \(I \) corresponds to “x”, and “n” is 2. Plot I on the horizontal axis vs. \(P \) on the vertical axis. The plotted “curve” will then be a straight line.

Interestingly, log-log plots are also straight lines for reciprocal functions. Commonly-encountered reciprocal functions are the Ohm’s law equations, \(I = \frac{E}{R} \) and \(R = \frac{E}{I} \). In the first equation, assume \(E \) is constant, then plot \(I \) on the vertical axis and \(R \) on the horizontal axis. In the second equation, assume \(E \) is constant, then plot \(R \) on the vertical axis and \(I \) on the horizontal axis.

Another reciprocal function is the equation connecting capacitive impedance or reactance, \(X \), with capacitance, \(C \), and frequency, \(f \). This equation is \(X = \frac{1}{2\pi fC} \). Plot \(X \) on

Fig. 10—Characteristic Curves of a typical junction FET. Circled portion is sometimes omitted.

Fig. 11—Behavior of a Schottky diode. Circled portion is sometimes omitted.
FIG. 12—RESPONSE of a 4-kHz low-pass filter plotted on conventional graph paper.

FIG. 13—SEMI-LOG GRAPH of response of same filter as in Fig. 12.

the vertical axis, and either f or C on the horizontal axis. (Actually, the reciprocal function is a power function in which the power of the exponent is −1. Thus, another way of writing the equation for capacitive impedance is $X_c = \frac{1}{2\pi fC}$.)

Some graphical entrapments stem from incompleteness. Because of sales department specmanship or engineering department laziness, the encircled portions of the graphs in Figs. 10 and 11 are sometimes absent. This can lead to dire application results. There is nothing to warn us of the limits of allowable drain-source voltage for the FET. And unless you had reason to suspect otherwise, the inordinately low reverse avalanche voltage of the Schottky rectifier could lead to fireworks.

Graphs depicting the frequency response of tuned circuits, filters and other devices are often deceiving. Consider, as an example, the two plots of the same 4-kHz low-pass filter shown in Figs. 12 and 13. Both display the same information with respect to the "skirt". Yet, the semi-log plot of Fig. 13 appears to show much greater selectivity than is revealed by Fig. 12. Heightening the illusion, we see that the passband is geometrically longer in the semi-log plot than in the conventional plot. And that is despite the fact that a log scale has the ability to compress range! A filter maker would be guilty of no chicanery at all by showing the performance of his filters on semi-log plots. He would simply be putting his best foot forward!
WE'RE ON TRIAL
But, you're the judge.
To introduce you to Dana's quality tested Danamer® 2000A we're offering you a thirty day free trial period to use our DVM and judge its new reliable features. If it doesn't fit your needs, return it...that's right, return it. Why make such a fantastic offer? Just look at what the Danamer 2000A offers!

☐ Unequalled accuracy ☐ New brighter, faster "Super" LCD (reads even in sunlight) ☐ Direct answers, no time-consuming calculating ☐ 1 full year battery life ☐ LSI-CMOS circuitry And best of all...it costs only $199.50!

Send for more details now...put us on trial. The new Danamer 2000A will come out ahead! For immediate action, call Cliff Hamilton at 714/833-1234.

For faster service
USE ZIP CODE on all mail

FUNCTION GENERATORS (continued from page 88)

that capacitively bypass the attenuator and add to the desired signal.

Trigger output
A second output is frequently found on the function generator. This output is a square wave or a spike of a fixed level. The trigger signal is related to the leading edge of the square wave at the main output. This signal may be used to trigger such external devices as an oscilloscope, for example, in situations where the main output signal is attenuated below the point that would allow it to be used for this purpose. Often these trigger outputs are not 50-ohm amplifiers but are TTL outputs. Therefore, the user must remember that the waveform may not pass through zero volts, and may be of variable source impedance.

Other features
On the more exotic generators, features such as remote programmability, digital display of frequency, logarithmic frequency sweep, amplitude modulation, and variable symmetry control may be had, to mention a few of the more popular options. Most of these features will not be found on the low-cost function generators for a few years to come. Generators employing these features must be considered more than simple replacements for the sine/square oscillator.

VISTA
DIGITAL CROSSHATCH
Gives professional, accurate Color T.V. convergence. Digital IC's coupled with a crystal time-base oscillator provide precise horizontal & vertical lines at broadcast frequencies. Accurate 8 x 7 dot or crosshatch pattern A.C. power 2 x 3½ x 6 in. Wt. 24 oz. Fits in tool kit. COMES COMPLETE WITH ALL PARTS, CASE, CRYSTAL AND GUIDE TO ASSEMBLY & USE.

KIT $31.95
COMpletely ASsembled $41.95

Shipping Prepaid in USA
NY State Add Sales Tax

PHOTOLume CORP.
118 EAST 28 STREET
NEW YORK, N.Y. 10016

Circle 91 on reader service card

Circle 93 on reader service card

www.americanradiohistory.com
NOTICE TO MAIL ORDER BUYERS

Under a new Trade Regulation Rule of the FTC that became effective February 2, 1976, mail-order merchants are required to make deliveries within a reasonable time, notify the customer if his order has to be delayed, and return his money if requested.

The rule provides that if a mail-order seller is unable to ship merchandise within the time specified in his ad (or if no time is specified, within 30 days) he must notify the buyer of the delay and give him the option of cancelling the order and having his purchase money refunded.

The buyer must be provided with a cost-free device for this purpose such as a postpaid postcard or return envelope. If the buyer does not respond, it will be assumed that he has consented to an additional 30-day delay. For any longer delay, the customer's express consent must be gained; otherwise the money is to be refunded.

The rule also makes provision for indefinite delays if agreed to by the customer; though a refund must be made, if requested any time during the delay. It also requires sellers of mail-order merchandise to have a reasonable basis for any claims they make about shipping time.

Penalties are severe. The FCC can go to court to get an order for compliance by a company or they could have a company fined up to $10,000 for each day of non-compliance.

The rule does not apply to COD orders.

If you have a documented complaint send it to: Federal Trade Commission, Bureau of Consumer Protection, Washington, DC 20580.
Circle 101 on reader service card

Circle 124 on reader service card

79.99 FREQUENCY COUNTER \- MULTIMETER

1234567890

Circle 102 on reader service card

car clock!

6 digit AUTOMOTIVE CLOCK KIT complete with a CRYSTAL TIME/BASE accurate to .01 percent. 12 volt operation built-in noise suppression and voltage spike protection. Readouts blank when ignition is off — draws 25 mA in standby mode. Has 3 in. readouts. Use in your car or for all applications where a battery-operated clock is needed. Approximate size 3" x 3.5" x 1.75". WITH BLACK PLASTIC CASE $34.95 ppd.

NEW! 6-Digit Frequency Counter 1000 Hz, 100 KHz, megahertz. Includes equation to calculate frequency. COMPREHENSIVE ASSEMBLY INSTRUCTION SHEET. ALL COMPONENTS ASSEMBLED AND TESTED $29.45 ppd.

LIN CORPORATION
1531 S. Broadway
Gardena, California 90248

Hours 10:40-3

CIRCLE 101 ON READER SERVICE CARD
NEW CLOCK KITS!

MODEL OC1032
JUMBO DIGITS
ALARM CLOCK
1.2" Bright Yellow
Color Readouts

Features:
12/24 Hour Display, 24 Hour
Alarm Set, 10 Min Snooze
Switch, AM/PM Indicator

Kit Includes: Woodlike Color Plastic Case, 4
Digit 1.2" Neo Display with AM/PM, TMS
3834 Alarm Chip, 2 pcs. double sided PC
Boards, 16 transistors, all other components,
Transformer and speaker

SPECIAL $35.90

THE MOST POPULAR

MM5314 KIT

WITH A NEW CASE!!
Features: 12/24 Hour Display
50/60 Hz Input 6 Digits Readout

Kit includes: Grey Color Plastic Case
MM5314 Clock Chip PC Boards and Trans
former, 6 Green Color 0.4" Tube Readouts,
All other transistor
components.

Special Only $19.95 ea.

MODEL OC1030
4 DIGIT
ALARM CLOCK KIT
0.5" Green Color

Features: 12/24 Hour Displays
24 Hour Alarm Set, 10 Min Snooze Switch, AM/PM
Display.

Kit includes: Orange Color Plastic Case, 0.5"
LOB133 Green Color Readouts PC boards with
transformer, all electronic parts with
speaker.

Only $28.50

MODEL CT7001
WITH ALARM
MONTH and DATE
CLOCK KIT

use 0.5" LED Displays

without Case Only $28.50 ea.
CT Case $7.50 Additional

TOUCH TONE KEYBOARD
no electronic parts
10 key switches only
LIMITED QUANTITY
Only 14.50 ea.

NEW ITEMS

National MM5330 4 digit DVM chip $12.50 ea.
Character Generator TI TMS2501 Static
USASCII 64 x 7 $8.50 ea.
Motorola MC 1731 Video Amp, I.C. $1.20 ea.
Monitron MANS491 Bipolar Led
Orange or Green .50 ea.
LM 566 Voltage Controlled Oscillator
$1.60 ea.
NE540 Power Driver $2.20 ea.
823B Interfacer Function Generator $6.00 ea.
MM5215 Stopwatch Clock Chip $4.60 ea.
MM5301 MOS2512
Motor Mean Calculator
Chip $4.00 ea.
TI32 PNP Power Transistor
80V 30W 10 for $5.00

7 SEGMENT LED

MOSANTO 0.4" Common Anode
Green or Yellow Color
only $1.80 ea.

** SPECIAL 10 for $15.00

DL 707 0.3" Common Anode Red
$1.30 ea.
DL 727 0.3" Common Anode Double Digit
$2.80 ea.
DL 747 0.6" Common Anode Red
$2.60 ea.
HP 0.3" Common Cathode Red
$1.20 ea.

(Buy 10 for $10.00)

Fairchild FND 70 0.25" Common Anode
$0.60 ea.

Fairchild FND 503 0.5" Common Cathode
$1.60 ea.

AC adapter for the unit
$4.50 ea.
*postage $1.50 a unit.

MINIMUM ORDER $10.00. California residents add 6% sales and 1.50 to cover postage and handling.
Out-of-state and overseas countries add $2.50.
SEND CHECK OR MONEY ORDER TO:

FORMULA INTERNATIONAL INC.
12603 CRENSHAW BOULEVARD • HAWTHORNE, CALIFORNIA 90250
For more information please call (213) 675-9126
STORE HOURS 10-7 Monday - Saturday

Circle 103 on reader service card

MAY 1976

www.americanradiohistory.com
MICROPROCESSOR COMPONENTS

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>8080</td>
<td>$24.95</td>
</tr>
<tr>
<td>8080A</td>
<td>$39.95</td>
</tr>
</tbody>
</table>

BUILD YOUR OWN JOLT MICROCOMPUTER IN JUST 3 HOURS OR LESS FOR $199.50

A COMPLETE MICROCOMPUTER IN A KIT CAN INCLUDES: An MOS Technology MC6802 Mono microprocessor, a 128 bytes of program RAM, and 64 bytes of interrupt vector RAM. 1K bytes of mask-programmed ROM containing DEMON, a powerful debug monitor and 26 programmable I/O lines - Internal HD clock, crystal controlled clock with unipolar 5V power supply. A 2.5V power supply, a 2.5V power supply. 115VAC/120VDC Power Supply Card. 8x8 bytes of memory.$9.95

JOLT ACCESSORY KITS

- **JOLT RAM Card** — Fully wired 1,096 bytes of RAM with unipolar 5V power supply.
- **JOLT Keyboard** — Complete keyboard with microprocessor-controlled switching.

NOW: YOUR OWN VIDEO GAME FOR THE ENTIRE FAMILY

This game comes pre-tested with two PROFESSIONAL Kraft joystick. Joysticks allow 2 dimensional player control (other than one dimension, such as up and down). If you require more than two joystick, order extra joysticks. At about $1 each, it's a bargain. And a fascinating toy. Comes with schematics, wiring information, and all necessary documentation. Game is fully portable video output: perfect for any TV monitor. Game designed in one, two, three, four players can play at the same time. You can even play against the house. Score for each person is shown on TV screen. These boards are produced over runs of a well known video game manufacturer, and are not rejects, or in any way inferior to one being sold in games for over $1,000.00. Kit A — $179.95 PROFESSIONAL game P.C. board, and 2 PROFESSIONAL joystick. P.C. board stack 10% x 10%. This is the SUPERPROFESSIONAL game seen in commercial video games. Don't confuse with the simple game sold in stores, or with analog kits. ACCESSORY B — $37.95 Six feet of ribbon cable, three SPST switches (combinator switches, decoder, and start switch), for those of you who don't have any extra switches to build the game. ACCESSORY C — $39.95 Two additional PROFESSIONAL Kraft joystick, for third and fourth player.

DIALIGITAL CLOCK KIT — 3½ INCH DIGITS

This kit contains all components needed to make your own digital clock. This kit comes with all components, including the case and the circuits. Electronic Relays, is entirely electronic, and features 30 LEDS to form a unique, multi-colored display as large as a 3 ½ Peter. Dimensions are 6% x 6% x 1½. $19.95

DIGITAL CLOCK KIT — 3½ INCH DIGITS

This kit comes with all components, including the case and the circuits. Electronic Relays, is entirely electronic, and features 30 LEDS to form a unique, multi-colored display as large as a 3 ½ Peter. Dimensions are 6% x 6% x 1½. $29.95

AUTOLEX®

An Audible Alarm Indicating Potential Engine Damage

AUTOLEX® is an effective (10 microcurrent fleet) device by which every owner of an automobile, truck or even a small aircraft, can ensure that minor engine problems may be detected in time to avoid costly repairs. AUTOLEX®, for example, was used in a 60,000-mile test of a 1950-model car, during which the vehicle operator had a minor oil leak to check and prevent major engine damage. It is a simple operation to have the entire vehicle evaluated by a trained AUTOLEX® technician for $1.95. AUTOLEX® features COMPATIBLE packaging, in a 25 oz. bag, containing non-toxic AUTOLEX® engine testing strip, and a non-toxic aging strip.

$9.95 Per Kit $14.95 Assembled

IMC 3½ DIGIT DVM KIT

DIAGONAL CRYSTALS

$5.95

$4.95

MOS 16 I/O DEVICES

$5.95

$4.95

$19.95

$14.95

$9.95 Per Kit

$5.95

$9.95

$7.95

$7.95

$19.95

$34.95

$19.95

$69.95

$89.95

$99.95

$24.95

$24.95

$99.95

$24.95

$24.95

$99.95

$24.95

$24.95

$99.95

$24.95

$24.95

$99.95

$24.95

$24.95

$99.95

$24.95

$24.95

$99.95

Send to: Olson Electronics, Dept. LK 260 S. Forge St., Akron, Ohio 44327. Allow for Postage. COD 20% Deposit. Residents of the following states please add Sales Tax: Ga. 5%, Fl. 4%, Ga. 3%, Il. 4%, Ky. 5%, Ma. 5%, Mi. 4%, Mo. 3%, N.Y. 4%, Oh. 4%, Pa. 6%, Tn. 4%. FREE! Please send me: Olson catalog ☐ CB catalog ☐ Both . Print!

NAME ☐ ADDRESS ☐ CITY ☐ STATE ☐ ZIP

Circle 108 on reader service card

IT'S ABOUT TIME

4-DIGIT ALARM CLOCK KIT NO. 1

$13.95 (with PC Board)

FEATURES

- Direct drive display outputs
- Current control regulation on chip
- Low power brightness control on chip
- Remote eliminating switch circuits
- Sweep radio feature
- 24 Hour "Stopwatch" alarm
- Independent digit setting
- Non-multiplex outputs circuitry

12 VAC CT 1/2 amp transformer for Kit No. 1 $2.00

KIT NO. 2

Complete kit with components, PC Board, transformer, wood grain case, and filter for display window. Includes 25 in. readouts $21.50

KIT NO. 3

Complete kit with components, PC Board, transformer, wood grain case, and filter for display window. Includes 5 in. readouts $22.50

* Components for Kit No. 2 or Kit No. 3 steep radio feature, add .95.

ALTAJ ELECTRONICS

5635 N.科 Atlanta, Texas 75238

TERMS: Check or money order, No COD. Telephone (241) 278-3561 Texas Residents Add 5%

D-VM

1,980 V. at basic with polar- ity indication, together with Kit 012 and 4 digit display board, you have a DVM with 1 M ohm input impedance, and if properly adjusted, 1% accuracy. Includes components & PC Bd.

KIT 017 $13.50

FREE!

CLOCK KIT $14.00

Includes all parts with MM5316 chip, transformer, drilled & etched PC board, all except case. ASCII KEYBOARD, brand new w/paperwork $45.00

AA NICAD CELLS brand new $1.25 each 9/39.00

C-MOS LINEAR all brand new RCA 1301 3.90 74HC 10 74HC 29 12 74HC 291 $6.00

FREE!

POWER SUPPLY KIT Puts out 24-12-6 volt DC 2 amps. Includes transformer, line cord, filter, silicon bridge.

FREE!

B & HELIUM NEON GAS LASER Fully assembled, runs on 115 volts AC. Less than $15.00

FREE!

POWER AMP TRANSFORMER $9.00

115 volts input, output of 96 VCT 2 amps $9.00 each 3/25

Please add shipping cost on above. FREE catalog

Mehna SURPLUS ELECTRONIC MATERIAL

P.O. Box 62
19 ALLERTON STREET
E. LYNN MASS. 01904

Circle 109 on reader service card

FREE INFORMATION

American Calibration Services
Box 8104 - Athens, GA 30601

USED OSCILLOSCOPES TEST EQUIPMENT

S-A-S CATALOG

illa BOX 1014-4 LIVERMORE CA 94550

FREE catalog. Ultrasonic devices, LED's, transistors, IC's, strobe lights, UART's, memories, digital thermometers, unique components. CHANEY'S, Box 15431, Lakewood, CO 80215

KEYBOARDS, for synthesizers, organs. Three octave. $.65. BRINKWOOD ELECTRONICS, Box 26A, Sandy Spring, MD 20860

1-MHz crystal chain time base divides. Outputs: 1 MHz-100 kHz-10 kHz 10 Hz-10 Hz 1 Hz. Accuracy better than .005% with proper adjustment

KIT 012 complete C-MOS with PC Board. KIT 014 same as Kit 012, but with TTL

Kit 015-65 Hz crystal chain time base using sine frequency as reference. Accuracy 0.1-0.5%, Output 10 Hz 1 Hz-0.1 Hz. Complete with C-MOS shaping circuit and PC Board $75.00

KIT 015-10 MHz frequency counter kit, together with Kit 012 and 013 or 014 or 015 and display board makes a nice accurate frequency counter. Complete with PC Board and test for overflow, MHz. Kit indication...

$16.50

L-1 INTEGRATION

MM5314 $5.75

MM5316 $4.25

7002 $2.50

7005 $2.50

7007 $7.00

70250 $5.50

70380 $9.50

PC Board for 70250 $4.25

PC Board for 70380 $3.75

Circle 110 on reader service card

www.americanradiohistory.com
AT LAST!

4 & 6 DIGIT PC BOARDS

PC Board for 4 digit display MAN'S Series or DL707
PC Board for 6 digit display MAN'S Series or DL707
PC Board for 4 digit display FND503
PC Board for 6 digit display FND503
PC Board for 4 digit display DL747
PC Board for 6 digit display DL747
PC Board for 4 digit display FN70

All PC display Boards are multithread for adding additional digits.

THE KING OF ALTAJ

INTRODUCING:

FATIMA

FOUR DIGIT TEMPERATURE KIT

FATIMA, the first in a series of time sharing kits to interface with THE KING.

FATIMA FEATUERES: $19.95

1) 4-digit temperature display
2) Farewell to Centigrade
3) Temperature 10 sec. display; time 20 display
4) Complete C-Mos application
5) Kit uses 1002 4-digit counter

Kit includes all components, PC Board and instructions for interfacing with THE KING 4-digit alarm clock.

Watch next issue for yet another addition!

DOLLAR $ DAYS

FIFO SOLID STATE MODULES

Module contains 2 transistors plus other components. Used as audio pre-amp.

With specs: 4/$1

TANTALUM CAPS

4.7 MFD 10VDC, Axial. $0.50

DUAL ELECTROLYTIC CAPS

220 MFD 25 VDC, PC type. $0.50

DIAMIC DISC CAPS

.01 MFD 50 VDC $0.25

12 V N.C. REED RELAY

Coil is 500 OHM, SPST-NO. or Submini, $0.50

PUSH BUTTON SWITCHES

Miniature momentary switches. 4/$1

POLAROID FILTERS

Pale green in color, 2.3 x 12 in. Use with various modules. 2/$1

TRANSFORMER SPECIAL NO. 1

Mini, size 8 VAC 400 MA under load. $1

LOOK!

From Altaj to you, a special offer.

Power Supply Kit: 5 Volt Tamp. Reg. $1.25

Kit includes Components, PC board, Transistor, Fuse & Pilot Light.

Nothing to buy: $5.50

LED DRIVERS

75481 Sep... 36
75482 Dbl... 45

6 Function Calculator Chip

Two chips, 7200 with direct segment drive. 8.25

Prior to sell: $2.25

TRANSISTORS

2N3056 NPN 115W TO3 Power NPN $1.25
RCA 220V 115W TO5 Power NPN $0.75
GE 15C21 NPN Car. Cut-Off $0.25
2N4434 SCR 400 VAMP TO220 $0.65
2N2227 NPN Gen. AMP $0.25
2N3043 NPN Driver $0.16
2N3090 PNP Comp. 2N304 $0.15
2N4403 NPN Low Level noise $0.25
2N4041 PNP Nixie driver $0.25

DIODES

1N4004 400PV 15 for $1.00
1N4007 1000PV 10 for $1.25
1N746 3.25 4 for $1.00
1N4146 Switch 20 for $1.00

NEW MANAGEMANT!

* Free Pottage
* No Minimum Order
* 48 Hour Service
* 24 Hour Phone Service

WE ARE EAGER TO SERVE YOU!
THE KIT INCLUDES:
1. Mostek 50252 Alarm Clock Chip
2. Hewlett Packard .30 in. common cathode readsouts.
3. NPN Driver Transistors
4. Etched and Drilled P.C. Board set
5. Step Down Transformer
6. Switches for time set
7. Slide Switches for alarm set and enable
8. Filter Cap
9. IN4002 Rectifiers
10. IN914 Diode
11. .01 Disc Cap
12. Resistors
13. Speaker for alarm
14. LED lamp for PM indicator.

$16.50 (COMPLETE KIT)

Why pay MORE MONEY for our competitor’s clock that has LESS DIGITS that are SMALLER in size?

Please take note that we use only first run parts in our kits and include all the necessary parts. Not like some of our competitors who use retested readouts and chips or who may not even include switches in their kits.

60 Hz. Crystal Time Base

FOR DIGITAL CLOCKS

S. D. SALES EXCLUSIVE!

The kit you have been waiting for is here NOW, and at an unbelievable price! Thanks to S. D. Sales you can turn that digital clock of yours into a superbly accurate, DC operated, time piece.

KIT FEATURES:
A. 60 Hz output with accuracy comparable to a digital watch.
B. Directly interfaces with all MOS clock chips.
C. Super low power consumption (1.5 Ma typ.)
D. Uses latest MOS 17 stage divider IC.
E. Eliminates forever the problem of AC line glitches.
F. Perfect for cars, boats, campers, or even for portable clocks at camp field days.
G. Small size, can be used in existing enclosures.

Kit includes crystal, divider IC, P.C. Board plus all other necessary parts and specs.
Spring-Pac super SALE! Each pac only $1.99

Memory pac $1.98
A MRS005 MOS TO-5 S12
BIT shift registers from TRIDON, with data

Flip-Flop pac $1.98
10 assorted Flip-Flops, Dual JK's, RS's, and
low power. Includes transformer.

Comparator pac $1.98
5 assorted DIP---
LM331, with data.

TTL Gates $1.98
Assorted 7400 series-7420, 7430, 7400,
etc. 8 gates per page, marked parts, with
data.

LED pac $1.98
10 assorted discrete LED's, green, red, and
infra-red, with data.

Transistor pac $1.98
40 assorted TO-92 plastic transistors---
PNP's and NPN's, mostly Fairchild or
dated.

Resistors $1.98
50 watts 5% resistors of any single standard
value from 2 ohm to 1 M ohm. Includes 1

Diode $1.98
Assorted diodes, incandescent, and
radio. Includes 15 VDC, 12 VAC.

LED Display pac $1.98
2, D.I.3, -3 digits each, approximately 1"
mini-DIP with 3 volt D.I. DIP, with data.

Specials

DIP TRIMMER $1.98
twist trimpots which plug into D.I. DIP socket

25K Trimmer $1.98
Printed Circuit Board Type

1 Amp O.P. AMP $1.98
Similar to National LM324 op-amp, in a
TO-93 package. Not have all capabilities of
the LM324. Includes 150,000 Ohm.

Capacitors

PBC-40 portable battery capacity, 12" long.
3 3/4" dia. 800 ea. $10.00

More Memories

1702-2048 BIT PROM 2K
static units. Ultra-low power, erasable
unit. $1.95 each.

NEW! Low-cost, full feature 4k x 8 kit!

Other manufacturers have put together kits of various parts, but instead using hysteresis on the data inputs, and static operation...but we've got the recipe on keeping the price down...the ALTAIR 8800 is plug-in compatible.

Software in a kit for $80.00: $159.25

The "ECONOMAN" is a 4k byte of ROM, pre-programmed with editor, assembler, and
monitor routines for the 8080. For even more, the board's price is $100.00, and will put your own software into a memory that's not used.

Microcomputer Power Supply $1.50

A general purpose board designed to be used with the ALTAIR 8800, but it can also be used with any H-BD power supply. The board's price is $100.00, and it can be modified to suit the needs of the user.

Do you know how to get out of FLYER? IT'S EASY!

CIRCLE THE READER SERVICE # BELOW

ECONOMAN™

4k x 8 at a bargain: NAKED RAM $79.95

A general purpose board designed for the ALTAIR 8800, but it can also be used with any H-BD power supply. The board's price is $100.00, and it can be modified to suit the needs of the user.

Flash Tube

A Krypton/Xenon flash tube made by Honeywell for use in their portable strobe units. Perfect for the PC board above. Energy input: 50 watt-sec, Max flash voltage: 400v, trigger voltage: 4kv, life: 100,000 flashes. 2" long, 18" diameter. STOCK NO. H224 $2.50 each, 2/4.50

Special! Flash tube & PC board $7.00 each, 2 sets/$11.00

Light Activated SCR, triggered by light falling on a lens which acts as the gate. 200v rating. Use with above or any flash to make a slave strobe. With repair quality quality, $1.25 each. STOCK NO. R4118 $1.50 each, 2/2.50

Laser, Flash tube, & Barber head $9.95 each, 2/19.90

Send for our free catalog. Phone orders welcome. BACKAMERICA & BANKAMERICAN accepted. ALL numbers must be included to process order. Minimum order $5. Subject to sufficient payment, excess will be refunded.

Circle 127 on reader service card

Circle 117 on reader service card
BUY 'EM FROM THE "BARREL" AND SAVE! 100'S OF BARRELS PURCHASED!

EXCLUSIVE 'BARREL' OFFER! Every kit carries money back guarantee.

THE BIGGEST INFLATION-FIGHTING VALUE EVER! TEST 'EM YOURSELF 'N SAVE!

For the first time anywhere, Poly Pak Introduces a new way in selling 'em. Shoppers can stock from the "barrel". Remember the "good ole days?" They're back again. The same way merchandisers used to sell the United States from various factories... their over-

runs in barrels. Poly Pak has done the same. Therefore you are getting good 'n' old bargains at factory-direct material as the

RE-TESTERS DO!

BARREL KIT 46 SN7440 DIP 10C $1.98
50 for $1.58
100 for $1.48
Also includes BC107, 2N3904, NPN Transistor, 2SC1267, 2N2222.
Cat. No. 5R2615 Unlisted.

BARREL KIT 28 SUBMINIATURE IF TRANSFORMERS 100 for $1.98
For all those needs where a Miniature transformer is needed. Also includes many other types, NOS. Cat. No. 5R2421 Unlisted.

BARREL KIT 246 G.E. 3.5 Watt LAMPS 100 for $1.98

For the first time anywhere, Poly Pak Introduces a new way in selling 'em. Shoppers can stock from the "barrel". Remember the "good ole days?" They're back again. The same way merchandisers used to sell the United States from various factories... their over-

runs in barrels. Poly Pak has done the same. Therefore you are getting good 'n' old bargains at factory-direct material as the

RE-TESTERS DO!

BARREL KIT 46 SN7440 DIP 10C $1.98
50 for $1.58
100 for $1.48
Also includes BC107, 2N3904, NPN Transistor, 2SC1267, 2N2222.
Cat. No. 5R2615 Unlisted.

BARREL KIT 28 SUBMINIATURE IF TRANSFORMERS 100 for $1.98
For all those needs where a Miniature transformer is needed. Also includes many other types, NOS. Cat. No. 5R2421 Unlisted.

BARREL KIT 246 G.E. 3.5 Watt LAMPS 100 for $1.98

For the first time anywhere, Poly Pak Introduces a new way in selling 'em. Shoppers can stock from the "barrel". Remember the "good ole days?" They're back again. The same way merchandisers used to sell the United States from various factories... their over-

runs in barrels. Poly Pak has done the same. Therefore you are getting good 'n' old bargains at factory-direct material as the

RE-TESTERS DO!
VIDEO CAMERA KIT

A UNIQUE ALL SOLID STATE CAMERA KIT FEATURING A....100 X 100 BIT SELF SCANNING CHARGED COUPLED DEVICE

- INJ M. THE FOLLOWING UNIQUE FEATURES FOUND IN NO MORE EXPENSIVE CAMERAS:
- LOW VOLTAGE SUPPLY: 5VDC
- +15 18 OR -5VDC
- SENSITIVE TO RED 730N SIRED LIGHT SOURCE
- MAX. VOLTAGE FOR 5VDC SUPPLY WITHIN 5VDC SUPPLY
- ALL COMPONENTS MOUNTED ON A PARALLEL 271 X 101 METAL SHELF WITH WEIGHT UNDER 1 BAR
- UNIT WIRING WITHIN UNIT WITH SOME TECHNICAL EXPERIENCE IN A WAY TO MANUFACTURE SUPER UNBELIEVABLE

$225.00

SOLDI STATE SALES
2-P.O BOX 1630
SHIREWIND MASS. 02143 TEL: 617-567-4804

PARTS & KITS

TV Ping Pong game. Plays through you set's antenna terminals: Plans $3.25, ARS SYSTEMS, Box 81922, Sunnyvale, CA 94088

SOFTWARE! Sorcery and interface kits can change your computer into a fun and enjoyable investment. Hundreds and hundreds of Dynamic Programs for the Businessman, Engineer and Game Enthusiast. Send for $1 samples catalog. SRI, PO Drawer C. Marcy, NY 14303

AMAZING ELECTRONIC PROJECTS AND PRODUCTS:

DIAGRAMS, servicing material, most radio and television sets, $2.50. Immediate shipment. BEITMAN, 1760 Balsam, Highland Park, Ill. 60035

COLOR bar generator kit $39.95, 16 patterns. Plans $15, WORKSHOP, Box 3393, Bethpage, N. Y. 11714

ELECTRONIC kits for home or school projects from our 50+ kits. Men by $5. Send $1 for our catalog. Referendaral with first order. GRAYMARK, 1751 McGaw Ave., Irvine, Calif. 92714

ELECTRONIC

MUSIC SYNTHESIZER/ANALOG PROCESSING

- PLANS & KITS
- N-CIRCUIT THEORY
- INDUSTRIAL R&D TECHNIQUES
- PARTS & COMPONENTS

Featuring STATE-OF-THE-ART technology and professional-lab quality design at LOW COST.

BUILD: Ultra wide range universal V CO
- Voltage controlled filters & amplifiers
- Joviskitch controlled filters & filters
- Plus MUCH MUCH MORE

Write for our catalog featuring over 1000 new, professional-quality devices, circuits, and components for your electronic projects.

PO BOX 4 Newton, MA 02158

"the oldest name in synthesis for the experimenter!"

“...the electronic engine you always wanted at a price you can afford. Third edition of "Organ Builder’s Guide," pictured product line kit, circuits, block diagrams, design rationale using IC divider and independent generators with diode keying.$3.00 Postpaid. Also, free sample kit to start building transistors. DEMONSTRIC ORGAN PRODUCTS, Dept. B, 5872 Amapola Drive, San Jose, California 95129

ALTAIR 8800 OWNERS

Is your Altair:: Slow to start-up:: Writing all it's data into memory:: Having troubles running BASIC

Our "CPU Clock Fix-it" may solve your problems. Good clock pulses are a must. Send for your kit today!

Only $5 postpaid. Brochure available.

P.O. Box 6314, Alhambra, Calif. 91806

WANTED

QUICK cash for electronic equipment, components, unused tubes. Send list now.

BARRY, 512 Broadway, New York, N.Y. 10012, 212 Walker 5-7000

GIVE YOUR FAIR SHARE

THE UNITED WAY

Texas: FOB Cambridge, Mass. Send check or Money Order.

VIRGINIA: Send check or Money Order.

Order No. 656, COO’S 2/09

SOLID STATE SALES
2-P.O BOX 1630
SHIREWIND MASS. 02143 TEL: 617-567-4804

www.americanradiohistory.com
MAY SPECIALS

Pocket Calculator
- 5% Function with memory - chain operation
- 12 digits accuracy
- Only $13.28

8038 Function Generator
- Voltage controlled oscillator - square, sawtooth, and triangle waveforms
- Only $9.45

Resistor Kit
- 800 OHMS... $1.44
- 900 OHMS... $1.44
- 1000 OHMS... $1.50

New Items
- **TTL**
 - 7400... $2.50
 - 7402... $2.50
 - 7403... $2.50
 - 7404... $2.50
 - 7405... $2.50
 - 7408... $2.50
 - 7412... $2.50
- **RESISTOR KIT**
 - 1% OHM VALUES... $7.20
 - 10% OHM VALUES... $6.20
- **SOLAR DIP-DO T**
 - 1000 VOLTAGE DETECTOR... $5.95

LOW POWER TTL

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400</td>
<td>...</td>
<td>$2.50</td>
</tr>
<tr>
<td>7402</td>
<td>...</td>
<td>$2.50</td>
</tr>
<tr>
<td>7403</td>
<td>...</td>
<td>$2.50</td>
</tr>
<tr>
<td>7404</td>
<td>...</td>
<td>$2.50</td>
</tr>
<tr>
<td>7405</td>
<td>...</td>
<td>$2.50</td>
</tr>
<tr>
<td>7408</td>
<td>...</td>
<td>$2.50</td>
</tr>
<tr>
<td>7412</td>
<td>...</td>
<td>$2.50</td>
</tr>
</tbody>
</table>

HIGH SPEED TTL

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7409</td>
<td>...</td>
<td>$2.50</td>
</tr>
<tr>
<td>7411</td>
<td>...</td>
<td>$2.50</td>
</tr>
<tr>
<td>7412</td>
<td>...</td>
<td>$2.50</td>
</tr>
<tr>
<td>7414</td>
<td>...</td>
<td>$2.50</td>
</tr>
<tr>
<td>7415</td>
<td>...</td>
<td>$2.50</td>
</tr>
<tr>
<td>7416</td>
<td>...</td>
<td>$2.50</td>
</tr>
<tr>
<td>7417</td>
<td>...</td>
<td>$2.50</td>
</tr>
</tbody>
</table>

8000 SERIES

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7422</td>
<td>...</td>
<td>$2.50</td>
</tr>
<tr>
<td>7423</td>
<td>...</td>
<td>$2.50</td>
</tr>
<tr>
<td>7424</td>
<td>...</td>
<td>$2.50</td>
</tr>
<tr>
<td>7425</td>
<td>...</td>
<td>$2.50</td>
</tr>
<tr>
<td>7426</td>
<td>...</td>
<td>$2.50</td>
</tr>
<tr>
<td>7427</td>
<td>...</td>
<td>$2.50</td>
</tr>
<tr>
<td>7428</td>
<td>...</td>
<td>$2.50</td>
</tr>
</tbody>
</table>

9000 SERIES

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7430</td>
<td>...</td>
<td>$2.50</td>
</tr>
<tr>
<td>7431</td>
<td>...</td>
<td>$2.50</td>
</tr>
<tr>
<td>7432</td>
<td>...</td>
<td>$2.50</td>
</tr>
<tr>
<td>7433</td>
<td>...</td>
<td>$2.50</td>
</tr>
</tbody>
</table>

CMOS

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4011A</td>
<td>...</td>
<td>$0.98</td>
</tr>
<tr>
<td>4012A</td>
<td>...</td>
<td>$0.98</td>
</tr>
<tr>
<td>4013A</td>
<td>...</td>
<td>$0.98</td>
</tr>
<tr>
<td>4014A</td>
<td>...</td>
<td>$0.98</td>
</tr>
<tr>
<td>4015A</td>
<td>...</td>
<td>$0.98</td>
</tr>
<tr>
<td>4016A</td>
<td>...</td>
<td>$0.98</td>
</tr>
</tbody>
</table>

INTERNATIONAL ELECTRONICS UNLIMITED

P.O. BOX 3036 / MONTEREY, CA. 93940 USA
PHONE (408) 659-3171

Satisfaction guaranteed. Shipment will be made via first class mail in U.S., and Canada within 5 days from receipt of order. Add $6.50 to cover shipping and handling for orders under $25.00. Minimum order $5.00. California residents add sales tax.
WANT TO PLAY VIDEO GAMES ON YOUR OWN TV?

Write us today for a free catalogue with complete listing of video games and other kits along with all IC's, Discretes, Diodes, Resistors, pots, hardware, grab bags - you name it.
<table>
<thead>
<tr>
<th>Price</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$25.00</td>
<td>Waveform Generator Kit</td>
</tr>
</tbody>
</table>
ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

READER SERVICE CARD NO. PAGE

Allison Automotive Co. 85
American Technology Corp. 87
AP Products 83
15
Arrow Faster 24
83
Bell P/A Products 86
12
B & K Division of Dynason Corp. 20,21
26
Blonder Torque Laboratories 79
85
Brooks Radio & TV Corp. 87
96
Card Electronics, Inc. Cover IV
22
Channellock, Inc. 66
91
Chemtronics 27
CIE, Cleveland Institute of Electronic Engineering 70-73
66
Continental Specialties Corp. 5
CREI, Division of McGraw-Hill Continuing Education Center 26-29
92
Dana Laboratories, Inc. 92
90
Delta Products 91
72
Digi Electronics 82
62,94
Edsyn 70
70
EICO, Electronic Instrumentation, Inc. 84
28
E & I Instruments, Inc. 74
10
Electronics Technical Institute, Division of Technical Home Study Schools
17
EMC, Electronics Measurement Corp. 68
25
Fordham Radio Supply Co. 25
16
General Electric 25
88
Grantham School of Electronics 89
18
GTE Sylvania—Electronic Components 32
63
Harwil 76
100
Heath Co. 19
7
Hickok Electrical Instruments Co. 14
IMS 18
20
Indiana Home Study Institute 65
89
International Crystal Mfg. Co. 90
14
Lafayette Radio Electronics Corp. 23
75
Leader Instrument Corp. 83
74
McKay Dymek Co. 83
MITS, Micro-Instrumentation 1
80
MOS Technology, Inc. 67
24
Mountain West Alarm Co. 80
National Camera Co. 74
29
Neal, Division of McGraw-Hill Continuing Education Center 8-11
National Technical Schools 52-55
PAIA Electronics, Inc. 85
79
Panavise, Division of Colbert Ind. 84
93
Perma Power 80
97
Polystar Corp. 92
8
PTS Electronics, Inc. Cover II
RCA Distributor & Special Prod. Div. 64,65
87
Rye Industries 88
68
Sabtronics International 80
69
SBE 7
8
Scholar Organ Corp. 66
32
Sencore, Inc. 88
82
Sennheiser Electronics 86
9
Share Brothers 16
Sinclair Radionics, Inc. 31
9
Southeast Technical Products 80
Cover III
61
Sphere Corp. 76
73
Tab Books 83
17,64
Techtronics, Inc. 85
19
Telematic, Inc. 30,17
Tri-Star Corp. 64
6
Tuner Service Corp. 13
3
Vaco 2
13
Vector Electronics Corp. 22
65
Welger-Xcetile
Electronics Division 78
30
Zodiac Communications 75
MARKET CENTER
105
Active Electronics 97
110
Alfaj 100-101
AMC Sales 96
American Calibration Services 100
American Used Computer Corp. 94
121,122,123
Anorona Corp. 109,110,111
Baby Electronics 106
Karen Barta 93
CRF Associates 106
Command Productions 94
Cornell Electronics 106
Dage Scientific Instruments 100
Delta Electronics 104
Dena Electronics 94
Digi-Key 96
25
Electronic Materials 96
Formula International 92
31
Bill Godbout Electronics International 104
Information Unlimited, Inc. 106
International Electronics Unlimited 107
120
Jade 108
106,107
James Electronics 98-99
Lab Science 100
Lakeside Industries 91
Mesha Electronics, John Jr. 100
Micro-Peripheral, Inc. 113
Micro-Electronics 102
Nexus Trading 94
108
Olsen Electronics 106
Parasitic Engineering 106
99
Polyatomic Systems 93
118
Poly Paks 105
113
Processor Technology Corp. 102
112
Quest 102
54
Satellite Tape Sales 94
116
SD Sales 103
Security Systems 94
Solid State Sales 106
101
Stanley Lin 94
43
Trumbell 96
Valley West 93

MOVING?
Don't miss a single copy of Radio-Electronics. Give us:
Six weeks' notice
Your old address and zip code
Your new address and zip code

ATTACH LABEL HERE

name (please print)

Your old address and zip code

name (please print)

Your new address and zip code

Send check or money order to:
ANCORNA CORP
P.O. BOX 2208P
CULVER CITY, CA 90230-2208P

Circle 122 on reader service card

110

www.americanradiohistory.com
CMOS/LSI
FROM STANDARD MICROSYSTEMS
CMOS1814
Universal Asynchronous Receiver/Transmitter
Performs data formatting functions associated with an asynchronous
data communications system. Duplex mode, baud rate, data word
length and parity are all user-selectable and are internally
continually programmable. There may be 5,6,7, or 8 bit data
words, 5 or 6 parity levels, data rates up to 1 to 2400 Baud and
utilizing a 5-bit code from the CMOS2415/16. Operates in either
twinmode or parallel mode. 74-series compatible. 2000 to 20 ns.
Power supply: +5.0 to +5.5 V, -5.0 to -5.5 V, 4.0 mA, $3.95.
2N3984, 2N3985, 2N3986, 2N3987.
Universal Synchronous Receiver/Transmitter
Performs data formatting functions associated with an asynchronous
data communications system. Duplex mode, baud rate, data word
length, parity, receiver sync character and transmitter sync character
are all user-selectable and are internally continuously
programmable. Double buffered and generates the sync character received
and sync character transmitted. Key features: Sends up to 1000
words per second and utilizes a 7-bit code from the CMOS2272/73.
High-speed operation — 250 kHz, 2000 strobe.

DUAL BAUD RATE GENERATOR
Dual Bandwidth Discriminator
Generates 32 externally selectable frequencies, the full spectrum of
32 frequencies can be obtained by programming external
multiplier circuits externally selected by four address inputs. Internal
programmable divide-by-16, divide-by-1024 or divide-by-1024
(2048) divide ratios can be obtained for any of the other
external frequencies or input frequencies. The address inputs
are each divided by 16 (15900ns). If the divide ratio
selected operation is possible. Divide any module up to (2^N—1).
The DUAL BAUD RATE GENERATOR is driven by TTL logic level
Inputs, DUAL BAUD RATE GENERATOR is driven by TTL logic level
Inputs. Power supply: +5.0 V. +5.5 V.

HIGH QUALITY CARBON FILM RESISTORS
From $1.00 to 5000 ohms, 1% tolerance, 10,000 hours life.
Only in multiples of 100 per 10% value. 100 different values.

SMALL, DIP DIP TANTALUM CAPACITORS
MFD 0.47uf, 0.1uf, 0.01uf, 0.001uf, 0.0001uf. In ranges of 5 or 10.

X-RAY FUNCTION GENERATOR
XR-205A — SPECIAL. $16.95. Includes monodisp infiniti function
generator. 2000 f. DIP, and out list $24.95. mutilist $22.50.

ContinentN Design Aids
Design and produce any design. Includes the tools and
equipment. $16.95.

LOGIC MONITOR
Simple circuit development with an expensive scope. The Logic Monitor
brings together many exciting and useful features.

M437-XX
Keyboard Encoder Read-Only Memory
Contains all the logic necessary to encode keyboard
input information. Power up. 24-pin capacitors for
externally generated clock. 16-pin ceramic DIP
package. $12.00. 24-pin capacitors for
externally generated clock. $12.00. 24-pin capacitors for
externally generated clock. 16-pin ceramic DIP
package. $12.00.

Twelve Digit Printing Calculator
Contains all the logic necessary to interface with a SICO
102/104 or equivalent printer. Performs functions consistent
with those of similar printers. Includes all necessary
functions, one menu and percentage. One line of output
buffers allows for an average of 120 calculations per
minute. It is over $120.00.

PULSE GENERATOR
Intersense 1101: 0.1 to 1.000 sec. var. width, line or
battery operation. $150.00.

SPDT MINIATURE TOGGLE SWITCH
105D — 115V — BA Rating. $3.95.

MEE
Analog, digital and mixed signal ICs.
www.americanradiohistory.com
LIVE IN THE WORLD OF TOMORROW...TODAY!
And our FREE 164 PAGE CATALOG is packed with exciting and unusual values in electronic, hobby and science items—plus 4,500 finds for fun, study or profit...for every member of the family.

A BETTER LIFE STARTS HERE

SUPER POWER FOR ANY AM RADIO
New antenna assist turns a tiny transistor into a tiger, has pulled in stations 1000+ miles away! Just set beside radio (no wires, clips, grounding) and fine tune Select-A-Tenna's dial to same frequency—'kangbusters'! Great for clearing weak signal areas, small or crowded frequency stations. Solid state—uses no electricity, batteries. Tubed.

Stock No. 72,095 EH
165a. Select-A-Tenna No. 72,147 EH (*.Over 1000 ML)

$15.95 Ppd.
$22.95 Ppd.

ACTUAL WORKING SEE-THRU LASER!
See the full lasing process work, why this technological break-through revolutionized optical field! Beautiful 0.5mW TEMoo 6328A laser enclosed in completely safe clear acrylic housing. Shows everything—power supply to actual lasing action within plasma! Diffraction grating attachment's, for multiple beam display. Converts to hologram viewing system (18 holograms included), polished walnut base. Fantastic demonstrator/display. 2 year tube guarantee.

No. 79,089 EH (15½x6½x7¼"
$350.00 Ppd.

AN ALPHA MONITOR FOR $34.95?
Yes, because it built it! Use your ability to tune in your brainwaves, an aid to relaxation, concentration. Kit inc: everything you need (except 9v trans. batt.) to own a portable self-contained biofeedback unit for a pituitary, brain, earphones, electrode headband, solid-state circuitry; 5 microvolt sensitivity more! Complete: assembly, instructions & op. manual. With basic electronics knowledge, you can do it!

No. 61,069 EH (KIT)
$34.95 Ppd.

No. 71,069 EH (FULLY ASSEMBLED)
$55.00 Ppd.

FLYWHEEL GENERATED FLASHLIGHT
Never needs batteries! Lights the way free by using flywheel energy. Each time you squeeze handle the alternator generator spins, flywheel disengages from the clutch, and your flashlight lights for about 2 seconds. By continuous squeezing (generating a soft hum), the light stays bright. Energy-saving 6-oz. flashlight pays for itself in many times over. And demonstrates flywheel generator principle. Never buy flashlight batteries again!

No. 61,086 EH (2x5½"
$14.95 Ppd.

MAIL COUPON FOR GIANT FREE CATALOG!
172 PAGES + MORE THAN 4500 UNUSUAL BARGAINS

EDMUND SCIENTIFIC CO.
300 Edscorp Building, Barrington, N. J. 08007

Please rush Free Giant Catalog "EH".

COMPLETE AND MAIL WITH CHECK, M.O. OR CHARGE NO.
EDMUND SCIENTIFIC CO.
300 Edscorp Building, Barrington, N. J. 08007
(609) 547-3488

How Many Stock No. Description Price Each Total

□ CHARGE MY BANKAMERICAN *
□ CHARGE MY MASTER CHARGE *
Interbank No.

My Card No.

Card Expiration Date

30 DAY MONEY-BACK GUARANTEE.
You must be satisfied or return your purchase in 30 days for full refund. *$15.00 minimum.

Name
Address
City State Zip

Add Handling Charge $1.00

I enclose $1.00 money order for TOTAL $

Signature

Circle 94 on reader service card

www.americanradiohistory.com
CD-4 DEMODULATOR

TRUE FOUR CHANNEL SOUND
Southwest Technical Products is proud to offer the most advanced CD-4 demodulator available. Our new CD-4 has characteristics superior to anything previously available thanks to the OSI-5022 integrated circuit used in the unit. This IC and the balance of the circuit was designed by Quadcast Systems Inc. under the direction of Mr. Lou Dorren. The OSI-5022 contains all the sub-system functions needed to demodulate a CD-4 disc, from the phono cartridge input to the output drive for the four power amplifiers. It may be used with either an RIAA equalized magnetic cartridge, or a semiconductor cartridge with flat equalization.

INEXPENSIVE
Now anyone can afford to add discrete true 4 channel sound to their system. You no longer need be satisfied with matrix techniques that produce acoustical enhancement, but not true 4 channel sound. The Southwest Technical Products CD-4 demodulator when added to your system will produce four channel sound from a CD-4 encoded disc that will equal, or surpass anything you can buy—no matter what the price.

EASY INSTALLATION
The SWTPC demodulator connects between the cartridge and the volume-tone control portion of your system. If you did not want tone controls, actually all that would be needed in addition to our CD-4 demodulator would be volume controls for the front and rear amplifiers. The demodulator is self powered from any 115 Volt 60 Cycle line. When normal stereo discs are played on your system a muting system automatically turns off the rear channels. A manual override 2 or 4 channel selector switch is provided on the rear panel.

SIMPLE CONSTRUCTION
As shown in the photograph, the vast majority of the parts mount on the epoxy-fibreglass circuit board. Part numbers and package outlines printed on the top of the board make proper assembly quite simple. Anyone with a minimum of electronic experience should be able to assemble this project without any problems. A copy of the article describing the CD-4 demodulator and assembly instructions are supplied in the kit.

CD-4 Demodulator Kit............$50.00 ppd

CD-4 CARTRIDGE
For those who do not already own a CD-4 cartridge, we are offering the "Technics" EPC-451C semiconductor strain-gauge cartridge at a special low price when purchased with our new CD-4 demodulator kit. This cartridge features a Shibata-type stylus and excellent response out to 50 kHz. This eliminates any chance of "carrier drop-out", or "carrier crosstalk" which result in abnormal noise or distorted sound. The EPC-451C produces a high output (about 30 times that of an average magnetic cartridge) and does not pick up hum from magnetic, or electrostatic fields. Easily replaced stylus.

EPC-451C CD-4 Cartridge............$25.00 ppd

TEST RECORD
Lou Corren has recorded a special test record for Southwest Technical Products Corp. that will allow you to properly adjust your CD-4 demodulator for the best possible sound. This special test and demonstration record is yours for only $5.00 when purchased with the CD-4 demodulator kit.

CD-4 Test Record....................$5.00 ppd

WANT MORE INFORMATION?
Send the coupon below and $0.50 and we will send you by return mail a copy of the article describing our new CD-4 kit along with our catalog of other kit projects.

MAIL THIS COUPON TODAY
☐ Enclosed is $....................or BAC # __________
☐ or Master Charge #___________ Bank #_________ Expire Date _________
☐ CD-4 Demodulator Kit ☐ Cartridge ☐ Test Record

NAME ____________________________
ADDRESS __________________________
CITY ___________________ STATE ______ ZIP ______
☐ $0.50 Enclosed for catalog & CD-4 Data

Southwest Technical Products Corp., Box 32040, San Antonio, Texas 78284

Circle 95 on reader service card
A question for the professional TV Service Technician

What is the signal NOW?

After all the amplifying, levelling, compensating and distributing . . . is it what it is supposed to be?

You are a professional TV Service Technician . . . and see this "wire coming out of the wall" all the time. Maybe you assume that the signal is O.K. . . . but do you know?

Now you can put an end to your guessing about the signal level.
Here is a field strength meter designed exclusively for you . . . at the right price!

MEZZER™

Model TVS

service dealer net $69.95

- Simple to operate, minimum of operating adjustments.
- Principle of operation similar to output meter and attenuator system of expensive signal generators.
- Standard signal level for proper color reception (1mV to 4mV = 0dBm to +12 dBm) clearly indicated for instant identification.
- Measures signals from 300uV to 30,000uV.
- Uses ordinary 9v transistor batteries, low current consumption ensures low cost per measurement.
- IC amplifier and meter driver circuits.
- Electronic voltage regulation.
- Quasi-peak detector.
- LED IC battery status system, shows when batteries are below operating voltage.
- Sturdy, high impact ABS plastic case for field use.
- Made in USA.

Castle products — advanced technology — modern styling — and they work!

See your stocking distributor . . . or write for more details and complete specifications.

CASTLE ELECTRONICS, INC.

5715 N. Western Ave., Chicago, Ill. 60645
Ph. (312) 728-1800
In Canada: Len Finkler Ltd., Ontario

Circle 96 on reader service card