PERSONAL COMMUNICATIONS—’76
★ CB Equipment Roundup
★ Antennas For All Purposes
★ What Is CB?
★ REACT—A Users CB Group

HIGH-FIDELITY—STEREO
★ R-E’s Lab Tested Reports
★ Turntable Drive Systems

TELEVISION & TEST EQUIPMENT
★ RCA’S Digital Remote Control
★ Probes For Test Gear
★ Equipment Reports
★ Jack Darr’s Service Clinic

BUILD ONE OF THESE
★ Pocket Computer Terminal
★ Portable Music Synthesizer

PLUS
★ State-Of-Solid State
★ Reader Problems & Solutions
★ Looking Ahead
PTS ELECTRONICS
Precision Tuner Service

is proud to announce the GRAND OPENING of our new Service Centers in

Tampa
Los Angeles
Columbus, Ohio
Phoenix
Boston
Norfolk
Indianapolis

Fast 8 hr. Service!

LET US TAKE CARE OF YOUR TUNER PROBLEMS...

PTS will repair any tuner—no matter how old or new. Fastest Service—8 hour—in and out the same day. Overnight transit to one of our strategically located plants. Best Quality—you and your customers are satisfied.

PTS uses only ORIGINAL PARTS! No homemade or make-do, inferior merchandise (this is why we charge for major parts!).

You get your tuner back in ORIGINAL EQUIPMENT condition.

PTS is recommended by more TV Manufacturers than any other tuner company and is overhauling more tuners than all other tuner services combined.

PTS ELECTRONICS, INC.

<table>
<thead>
<tr>
<th>HOME OFFICE</th>
<th>BLOOMINGTON, INDIANA 47401</th>
<th>5233 S. HIGHWAY 37</th>
<th>812-824-9331</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALABAMA</td>
<td>BIRMINGHAM, ALABAMA 35222</td>
<td>2142 W. INDIAN SCHOOL RD.</td>
<td>602-270-8718</td>
</tr>
<tr>
<td>ARIZONA</td>
<td>PHOENIX, ARIZONA 85061</td>
<td>2142 W. INDIAN SCHOOL RD.</td>
<td>602-270-8718</td>
</tr>
<tr>
<td>CALIFORNIA CENTRAL</td>
<td>LOS ANGELES, CA 90023</td>
<td>4184 PACIFIC WAY</td>
<td>213-266-3728</td>
</tr>
<tr>
<td>CALIFORNIA NORTH</td>
<td>SACRAMENTO, CA NO. 95841</td>
<td>4613 AUBURN BLVD.</td>
<td>916-482-6220</td>
</tr>
<tr>
<td>CALIFORNIA SOUTH</td>
<td>SAN DIEGO, CA 92105</td>
<td>5113 UNIVERSITY AVE.</td>
<td>714-280-7070</td>
</tr>
<tr>
<td>COLORADO</td>
<td>ARVADA, COLORADO 80002</td>
<td>4958 ALLISON ST.</td>
<td>303-423-7080</td>
</tr>
<tr>
<td>FLORIDA NORTH</td>
<td>JACKSONVILLE, FLA. NO. 32210</td>
<td>1918 BLANDING BLVD.</td>
<td>904-389-9952</td>
</tr>
<tr>
<td>FLORIDA CENTRAL</td>
<td>TAMPA, FLA. 33690</td>
<td>2703 S. MACDILL</td>
<td>813-839-5521</td>
</tr>
<tr>
<td>FLORIDA SOUTH</td>
<td>MIAMI, FLA. SO. 33158</td>
<td>12934 N.W. 7TH AVE.</td>
<td>754-689-9111</td>
</tr>
<tr>
<td>INDIANA CENTRAL</td>
<td>INDIANAPOLIS, IND. 46202</td>
<td>28 E. 14TH ST.</td>
<td>317-631-1551</td>
</tr>
<tr>
<td>INDIANA</td>
<td>BLOOMINGTON, IND. 47401</td>
<td>5233 S. HIGHWAY 37</td>
<td>812-824-9331</td>
</tr>
<tr>
<td>KANSAS</td>
<td>KANSAS CITY, KANSAS 66106</td>
<td>1116 MERRIAM LANE</td>
<td>913-821-1272</td>
</tr>
<tr>
<td>LOUISIANA</td>
<td>METAIRIE, LA. 70003</td>
<td>2914 WYTCHWOOD DR.</td>
<td>504-885-2349</td>
</tr>
<tr>
<td>MARYLAND</td>
<td>SILVER SPRINGS, MD. 20919</td>
<td>8880 BROOKVILLE RD.</td>
<td>301-565-0025</td>
</tr>
<tr>
<td>MASSACHUSETTS EAST</td>
<td>SOMERVILLE, MASS. 02144</td>
<td>62 HOLLAND BLVD.</td>
<td>617-666-4770</td>
</tr>
<tr>
<td>MASSACHUSETTS WEST</td>
<td>SPRINGFIELD, MASS. 01103</td>
<td>191 CHESTNUT ST.</td>
<td>413-734-2737</td>
</tr>
<tr>
<td>MICHIGAN</td>
<td>DETROIT, MICH. 48235</td>
<td>13709 W. 8 MILE RD.</td>
<td>313-962-1783</td>
</tr>
<tr>
<td>MINNESOTA</td>
<td>MINNEAPOLIS, MINN. 55408</td>
<td>815 W. LAKE ST.</td>
<td>612-824-2333</td>
</tr>
<tr>
<td>MISSOURI</td>
<td>ST. LOUIS, MO. 63130</td>
<td>8456 PAGE BLVD.</td>
<td>314-428-1299</td>
</tr>
<tr>
<td>NEW JERSEY</td>
<td>E. PATTERSON, N. JERSEY 07407</td>
<td>158 MARKET ST.</td>
<td>201-791-6380</td>
</tr>
<tr>
<td>NEW YORK</td>
<td>BUFALO, NEW YORK 14212</td>
<td>993 SYCAMORE ST.</td>
<td>716-891-4935</td>
</tr>
<tr>
<td>NORTH CAROLINA</td>
<td>CHARLOTTE, N. CAR. 28205</td>
<td>724 SEIGLE AVE.</td>
<td>704-332-8007</td>
</tr>
<tr>
<td>OHIO SOUTH</td>
<td>CINCINNATI, OHIO 45215</td>
<td>8180 VINE ST.</td>
<td>513-821-2278</td>
</tr>
<tr>
<td>OHIO CENTRAL</td>
<td>COLUMBUS, OHIO 43227</td>
<td>4003 E. LIVINGSTON AVE.</td>
<td>614-237-3820</td>
</tr>
<tr>
<td>OHIO NORTH</td>
<td>PARMA, OHIO 44134</td>
<td>5682 STATE RD.</td>
<td>216-845-4480</td>
</tr>
<tr>
<td>OKLAHOMA</td>
<td>OKLAHOMA CITY, OK. 73106</td>
<td>3007 N. MAY</td>
<td>405-947-2013</td>
</tr>
<tr>
<td>OREGON</td>
<td>PORTLAND, OREGON 97213</td>
<td>5220 NE SANDY BLVD.</td>
<td>503-292-9636</td>
</tr>
<tr>
<td>PENNSYLVANIA WEST</td>
<td>PITTSBURGH, PA. 15202</td>
<td>257 RIVERVIEW AVE. W.</td>
<td>412-761-7648</td>
</tr>
<tr>
<td>PENNSYLVANIA EAST</td>
<td>UPPER DARBY, PA. 19082</td>
<td>1742-44 STATE RD.</td>
<td>215-352-6609</td>
</tr>
<tr>
<td>TENNESSEE</td>
<td>MEMPHIS, TENN. 38118</td>
<td>3614 LAMAR AVE.</td>
<td>901-365-1918</td>
</tr>
<tr>
<td>TEXAS SOUTH</td>
<td>HOUSTON, TEXAS 77032</td>
<td>6524-26 TELEPHONE AVE.</td>
<td>713-644-6793</td>
</tr>
<tr>
<td>TEXAS NORTH</td>
<td>LONGVIEW, TEXAS 75601</td>
<td>MOPAC RD.</td>
<td>214-753-4334</td>
</tr>
<tr>
<td>VIRGINIA</td>
<td>NORFOLK, VA. 23504</td>
<td>3118 E. PRINCESS ANNE RD.</td>
<td>804-625-2030</td>
</tr>
<tr>
<td>WASHINGTON</td>
<td>SEATTLE, WASH. 98108</td>
<td>432 YALE AVE.</td>
<td>206-523-2320</td>
</tr>
<tr>
<td>WISCONSIN</td>
<td>MILWAUKEE, WIS. 53215</td>
<td>3509 W. NATIONAL</td>
<td>414-643-8800</td>
</tr>
</tbody>
</table>

VHF, UHF $10.95

UV-COMBO 17.95

IF-SUBCHASSIS 12.50

Major parts and shipping charged at cost. (Dealer net!)

We offer you finer, faster...

...Precision Tuner Service

1 YEAR GUARANTEE

...Number ONE and still trying harder!
(Not a Franchise Company)

Circle 1 on reader service card
Lowest Price in the World!

In January of 1975, MITS stunned the computer world with the announcement of the Altair 8800 Computer that sells for $439 in kit form.

Today MITS is announcing the Altair 680.
The Altair 680, built around the revolutionary new 6800 microprocessor chip, is the lowest priced complete computer on the market. It is now being offered at the special, low price of $345!

The Altair 680 comes with power supply, front panel control board, and CPU board inclosed in an 11" wide x 11" deep x 4 11/16" case. In addition to the 6800 processor, the CPU board contains the following:
1. 1024 words of memory (RAM 2102 type 1024 x 1-bit chips).
2. Built-in Interface that can be configured for RS232 or 20 mA Teletype loop or 60 mA Teletype.
3. Provisions for 1024 words of ROM or PROM.

The Altair 680 can be programmed from the front panel switches or it can be connected to a computer terminal (RS232) or a Teletype such as an ASR-33 or surplus five-level Baudott Teletype (under $100).
The Altair 680 can be utilized for many home, commercial or industrial applications or it can be used as a development system for Altair 680 CPU boards. With a cycle time of 4 microseconds, 16-bit addressing, and the capability of directly addressing 65,000 words of memory and a virtually unlimited number of I/O devices, the Altair 680 is a very versatile computer!

Altair 680 Software
Software for the Altair 680 includes a monitor on PROM, assembler, debug, and editor. This software will be available to Altair 680 owners at a nominal cost.

Future software development will be influenced by customer demand. MITS will sponsor lucrative software contests to encourage the rapid growth of the Altair 680 software library. Programs in this library will be made available to all Altair 680 owners at the cost of printing and mailing.

Altair Users Group
All Altair 680 purchasers will receive a free one year membership to the Altair Users Group. This group is the largest of its kind in the world and includes thousands of Altair 8800 and 680 users.

Members of the Altair Users Group are kept abreast of Altair developments through the monthly publication, Computer Notes.

Altair 680 Documentation

The Altair 680 kit comes with complete documentation including assembly manual, assembly hints manual, operation manual, and theory manual. Assembled units come with operation and theory manuals. Turnkey model and CPU boards also include documentation.

Delivery

Personal checks take 2-3 weeks to process while money orders and credit card purchases can be processed in 1-3 days. Delivery should be 30-60 days but this can vary according to order backlog. All orders are handled on a first come, first served basis.

Altair 680 Prices

Altair 680 complete computer kit $345
Altair 680 assembled and tested $420
Altair 680T turnkey model (complete Altair 680 except front panel control board) Kit Only $280
Altair 680 CPU board (including pc board, 6800 microprocessor chip, 1024 word memory, 3-way interface and all remaining components except power supply) $195
Altair 680 CPU board assembled and tested $275
Option IC socket kit (contains 40 IC sockets, CPU, memory and PROM sockets come with 680 kit) $29
Option cooling fan (required when expanding 680 internally) $22
Option cooling fan installed $26
PROM kit (256 x 8-bit ultraviolet, erasable 1702 devices) $25
Connectors (Two sets of 25-pin connectors, required when interfacing 680 to external devices) $22

Prices, delivery and specifications subject to change.

MITS
"Creative Electronics"

MITS/6328 Linn N.E., Albuquerque, NM 87108 505/262-1951

MAIL THIS COUPON TODAY!

☐ Enclosed is check for $.........................
☐ BankAmericard # or Master Charge #
☐ Altair 680 ☐ Kit ☐ Assembled ☐ Altair 680T ☐ Altair 680CPU
☐ Socket Kit ☐ Fan ☐ PROM kit ☐ Documentation Special
☐ Please send literature

NAME

ADDRESS

CITY STATE & ZIP

MITS/6328 Linn N.E., Albuquerque, NM 87108 505/262-1951

JANUARY 1976

Circle 2 on reader service card
Put "Dyna-Mike" in your talkpower

Noise Limiter and Noise Blanker to cut down on your own and others' ignition noise and interference.

CB/PA switch lets you use audio output to drive a PA horn.

Extra-large illuminated meter.

Modulation Light shows you're modulating to maximum.

Transmit Light shows you're on the air.

"Dyna-Mike" Gain Control for maximum modulation to cut through noise.

Squelch threshold adjusts to below 1 µV.

Delta Tune helps you tune in off-frequency signals.

Big illuminated channel selector.

RF Gain cuts back strong signals when the skip is in.

Full audio output you can hear even over road noise.

MAXIMUM LEGAL POWER PLUS...

Positive or negative ground operation, plug-in microphone, output for extension speaker and the quality that COBRA is famous for! Send for more details or see your dealer.

PRODUCT OF DYNASCAN CORPORATION • 1801 W. Belle Plaine • Chicago, Ill. 60613

Circle 3 on reader service card
CITIZENS BAND

22 **Get Started In CB Servicing**
The equipment and training you need, and a look at one manufacturer’s school. by Larry Steckler

33 **CB Equipment Roundup**
A look at the latest transceivers and their features. by Herb Friedman

52 **CB Antennas**
How to choose the one that’s best for your rig. by Robert F. Scott

61 **REACT—What’s It All About?**
See how this emergency organization works and how you can become a member. by Fred Shunaman

68 **Future Of CB**
New rules, new frequencies, new equipment, new directions. by Herb Friedman

BUILD ONE OF THESE

29 **Pocket Computer Terminal**
Use any phone, anywhere, as a computer terminal when you own this pocket-size device. by Charles Edwards

46 **Portable Music Synthesizer Part III**
Final construction details complete this project. by John Simonton

GENERAL ELECTRONICS

4 **Looking Ahead**
Sneak preview of tomorrow’s news. by David Lachenbruch

STEREO AUDIO HI-FI

40 **R-E Lab Tests Marantz CD400B**
A 4-channel adapter gets a complete going over. by Len Feldman

42 **R-E Lab Tests Luxman L-100**
Test report for a great receiver. by Len Feldman

49 **Turntable Drive Systems**
They’re much more complicated than you think. by Len Feldman

TELEVISION

44 **All About Probes**
How to use them effectively for all kinds of electronic service. by Charles Gilmore

58 **RCA’s Digital Remote Control**
It’s used with a color TV that has no controls on the set. by Marvin Wilson

63 **Service Clinic**

64 **Reader Questions**

DEPARTMENTS

108 **Advertising Index**
80 **New Literature**

12 **Advertising Offices**
76 **New Products**

14 **Letters**
89 **Next Month**

6 **New & Timely**
111 **Reader Service Card**

ON THE COVER

This phone booth is a computer terminal... as is any other phone booth when you’re equipped with that little pocket-sized gadget. Want to own your own? Build it. Turn to page 29 now.

CB IS SWEEPING the country. Discover what’s happening and the equipment that makes it happen.

TURNTABLE DRIVE SYSTEMS have gone electronic. Find out what makes those platters go round.

Subscription Service: Mail all subscription orders, changes, correspondence and Postmaster Notices of undelivered copies (Form 3579) to Radio-Electronics Subscription Service, Boulder, CO 80302.

A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs if their return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.

As a service to readers, Radio-Electronics publishes available plans or information relating to newsworthy products, techniques and scientific and technological developments. Because of possible variances in the quality and condition of materials and workmanship used by readers, Radio-Electronics disclaims any responsibility for the safe and proper functioning of reader-built projects based upon or from plans or information published in this magazine.
looking ahead

Pay-TV via bird

Pay cable TV distributed by satellite is now a reality. The first see-for-fee program transmitted by satellite direct to cable systems was the Ali-Frazier championship fight from Manila September 30. The first systems to receive satellite programming via Western Union's Westar domestic satellite were in Vero Beach, FL, and Jackson, MS. The bout was transmitted from Manila to California via the Intelsat satellite, carried to New York by AT&T microwave, then to an earth station in Valley Forge, PA, where it was sent up to Westar. The image, which traveled about 92,500 miles, was of excellent quality. Regular transmissions of movies and other pay-TV fare by domestic satellite to cable systems has now begun, and new earth stations are being installed at many CATV systems.

No total recall

When a television-set model is "recalled" under government X-ray laws for inspection or modification, how many sets actually are located and inspected? A study by the Bureau of Radiological Health of the largest television recall to date showed that the percentage is shockingly low. Under the federal X-radiation law, retailers who sell color sets or other products that potentially can emit radiation are required to keep files of names and addresses of purchasers or to turn the names of buyers over to the distributor or manufacturer so that owners may be located if necessary. The BRH took a look at the 1974 recall of 308,000 Panasonic sets to see how well the system is working—and decided it isn't.

Panasonic followed the government rules for locating these sets to ask their owners to bring them in for modification to eliminate the possibility of radiation above permissible limits. Some 68,000 sets were still unsold and remained in the hands of distributors and dealers. That left 240,000 to be located in consumer homes. From its own records and those kept by dealers and distributors, Panasonic was able to locate only half of these. Each of these 120,000 unidentified set owners was sent a letter telling him modifications would be made without charge. Only 80,000 sets were brought in for modification. The end result: Fewer than half of the sets were modified, including only one-third of those which were in consumers' homes.

BRH and Panasonic are still trying to find more names of set buyers, and BRH is notifying dealers that failure to keep records of sales or forward them to the manufacturer is a violation of the law. No really dangerous radiation was involved in the sets—the function of the radiation law is to hold X-rays down to the absolute minimum—but the failure to locate so many of the receivers is prompting government officials to try to develop more certain ways to trace set owners.

For watch-watchers

Remember when you didn't think you could afford an electronic calculator? Well, electronic digital watches are going to bite the dust, price-wise, in the same way, as a result of ferocious competition and new technology, according to a study by the market research firm of Frost & Sullivan. The study forecasts that the average retail price of an electronic watch will dip to $39 before 1976 is over and to $20 in 1977. By 1980, it is predicted that electronics will represent 26% of the total men's and clock market, rising to 50% by the mid-1980s. Some 78,000,000 digital watches will be sold in 1980 at nearly $3 billion. The study says that while light-emitting diode displays currently outnumber liquid crystals by 12 to 1, new work in LCDs and photochromic displays could well reverse the trend toward illuminated displays. The report sees integrated injection logic (IPL) incorporating both timing and driving functions into same chip, reducing power requirements and resulting in increased speed.

CB vs. TV

The television business is in a slump, while there is more demand for Citizens-band radio equipment than industry can supply. So why not use idle TV factories to make CB gear? That idea occurred to E. F. Johnson Co., probably the biggest manufacturer of CB equipment. After talking with several television manufacturers, it made a deal with Magnavox to produce 100,000 portable CB units at the Morristown, TN, plant which normally turns out Magnavox television and stereo components. Production will be supervised by Johnson officials and the sets will be sold under Johnson's "Messenger" brandname.

Videodisc score

The two leading videodisc systems—the RCA capacitance and the Philips/MCA optical system—both are proceeding on schedule toward late-1976 introductions, according to their proponents. RCA is understood to have a number of hand-made prototypes installed in consumer homes, along with a selection of video records, to evaluate public response.

Officials of Philips and MCA say they're on target in their search toward complete interchangeability of optical discs—both flexible and rigid—so that any optical player will be able to read any optical disc. One of the biggest break-throughs is the development of production facilities in the Netherlands to manufacture lasers at a cost of $10 to $15 each, in large quantities, with a second source in the United States (Spectra/Physics Co.). Neither Philips (whose players will be made and sold in the U.S. by its affiliate Magnavox) nor RCA anticipates that a large quantity of players will be sold in 1976, and both see the market gradually developing throughout 1977 and 1978 before the disc player can be called a mass-market item.

Five Japanese manufacturers have taken out patent licenses for the RCA system, but this doesn't mean they're committed to produce it. Under its licensing terms, RCA doesn't require any royalty payments until the player is actually on sale. So, in effect, taking out a license is just a good way to get a free look at the schematics.

FCC's game plan

The FCC is crying foul at some of those coin-operated video games which have become so popular lately. It seems some of them are creating serious radio interference problems. In one city, these arcade games are reported to have blacked out most police radio communications. The Commission is expected to isolate the radiating units and order them modified to eliminate interference.

Just as coin-op games are proliferating, so are home video game TV attachments—but these don't cause interference problems because they must be approved under the FCC's radiation rules before they can be put on the market. The first such game was Magnavox's Odyssey, which has been followed by five other brands, some using color and sophisticated on-screen scoring, some selling for as little as $65.

by DAVID LACHENBRUCHE
CONTRIBUTING EDITOR
Tuner Service Corporation

Just $44.95

U.S.A. Only

With Cables

Provides you with a complete service for all your television tuner requirements.

Features

- A UHF Tuner with 70 channels which are detented and indicated just like VHF channels.
- A VHF Hi Gain Solid State Tuner.
- AC Powered.
- 90 Day Warranty.

Demonstrate the SUBSTITUNER to your customers and show improved reception with their TV sets.

You may place your order through any of the Centers listed below.

REPAIR

VHF or UHF ANY TYPE (U.S.A. ONLY) $ 9.95
UHF/VHF COMBINATION (U.S.A. ONLY) $15.00

Major parts and shipping charged at cost.
- Fast, efficient service at our conveniently located Service Centers.
- All tuners are ultrasonically cleaned, repaired, realigned, and air tested.

REPLACE

Universal Replacement Tuner $12.95 (U.S.A. Only)

This price buys you a complete new tuner built specifically by Sarkes Tarzian Inc. for this purpose.
- All shafts have a maximum length of 10 1/2" which can be cut to 1 1/2".
- Specify heater type parallel and series 450 mA or 600 mA.

Customize

Customized tuners are available at a cost of only $15.95. With trade-in $13.95. (U.S.A. Only)

Send in your original tuner for comparison purposes to any of the centers listed below.

Now Available—Tuner Service Parts Catalog Of all Sarkes Tarzian VHF and UHF Tuners, including exploded view drawings. Over 200 pages. Order your copy today.

Send $2.50 with order to Bloomington Head Office.

Flash

Watch Us Grow

If you want to branch out into the TV Tuner Repair Business, write to the Bloomington headquarters about a franchise.

Circle 4 on reader service card

January, 1976
Power-line radiation may alter ionospheric reflecting layers

Radio-frequency oscillations from high-power electric transmission lines may have a controlling effect on the radiation belts around the planet, believes Dr. Robert Helliwell of Stanford University. The effect of this power-line action may be to cause the belts to dump some of their electrons into the upper atmosphere, altering the layers that make long-distance radio transmission possible.

This discovery, he believes, might open the way to ground-based manipulation of the radio-reflecting layers of the atmosphere to improve long-distance communication.

Dr. Helliwell has been studying the low-frequency emissions, called whistlers, for some 20 years. The study is conducted with the assistance of two 13-mile-long antennas, one in Antarctica and one in Quebec. The Antarctica antenna is used to produce synthetic whistlers—low-frequency radio waves—that are channeled to Quebec between the earth and the bottom of the ionosphere. Indications are, says Dr. Helliwell, that a high harmonic of the 60-Hz frequency of a Quebec power station, radiated by power lines between it and a large aluminum plant, is close to the frequency of the natural radiation. This produces resonance effect then increases the amplitude of the emissions fantastically to a point where electrons are knocked loose and drop into the upper atmosphere.

Are safety brakes dangerous?

A new Federal regulation, Motor Vehicle Safety Standard 121, requires electronic anti-lock brakes for new heavy tractor-trailer trucks. These are supposed to make it possible to use heavier and more powerful brakes than can be used otherwise. Without anti-lock devices, powerful brakes would simply lock the wheels of the vehicle in quick stops and send it out of control. Heavy-duty brakes with anti-lock systems can cut stopping distances almost in half, system supporters contend, while preventing skids and jackknifing.

The new brakes use mini-computers that compare the wheel speed with the ground speed. When the speed of the tire drops a pre-determined amount below that of the ground below it—indicating that the wheel is slipping—the brake releases, then is immediately reapplied, with quick releases and reapplications continuing until the vehicle stops. This tends to counteract any tendency to skid while increasing the efficiency of braking.

Many drivers are reacting to the supposed improvement with no enthusiasm, some referring to trucks so equipped as “death traps.” Whether the objections are due to unfamiliarity with the action of the equipment (plus bugs in some of the units), normal resistance to change or inherent weaknesses in the anti-locking device is not clear. Brake manufacturers are understandably enthusiastic, as are some fleet owners. Drivers are almost totally pessimistic or downright hostile, one company’s employees even threatening to strike if the brake problem is not resolved by winter.

The situation is further aggravated in some cases because new tractors with anti-locking devices are being used with old trailers without them. Thus the trucks can stop faster than the trailers, increasing instead of reducing the danger of jackknifing.

The National Highway Traffic Safety Administration is now carrying on tests with one of the trucks of the company whose drivers most strongly opposed the new brakes, and insists that the system will reduce the number and severity of accidents. The Teamsters Union, whose members have to drive the trucks, also favors the new standard. “The safety benefits of 121 far outweigh the problems we have had so far.”

The practical Dutch may solve the problem of city transport

The city of Amsterdam is choked with a surplus of cars on narrow streets not designed for them, often alongside deep canals where handling water traffic prevents building guard rails. A solution of the traffic problem now under experiment may well result in barring cars from her streets altogether. The small electric two-seat cars of the Witkar system, now being introduced in a testing program, seem to be working well and may in time entirely replace the larger gas-powered type on the city’s streets.

The system was developed by one Luud Schimmelpennink, who in 1965 proposed that the city council buy 20,000 bicycles, paint them white and leave them all over the city for anyone to use. The white bicycle idea worked for a time, but was abandoned as the city withdrew financial support.

Citizens pay 25 guilders (about $5) for membership in the Witkar system. A further 25 guilders buys a one-year credit card that also serves as an “ignition key” for the cars. The cars are parked in stations where their batteries

(Continued on page 12)
Talk about Microwave Tube Replacements and whose name comes up first?
Amperex.

What gave Amperex such leadership in Microwaves?
Radar Magnetrons and Klystrons, Microwave Oven Magnetrons, UHF Klystrons, Industrial Magnetrons, Silicon Rectifier Stacks, TR Tubes, Pulse Modulator Tetrodes, Thyratrons and SCR's, Gunn Oscillators, Silicon Detector Diodes.

For complete information on Amperex Replacement Tubes and Components for:
* Microwave Ovens & Commercial Radar Equipment
* Radio & TV Broadcast Equipment
* Industrial Power Supplies & Oscillators
* RF Communications Transmitters
* Scientific Instruments...
contact Bob Norris, Distributor Sales Operation, Amperex Electronic Corporation, Hicksville, New York 11801
Telephone: 516-931-6210.

Amperex
TOMORROW'S THINKING IN TODAY'S PRODUCTS
A NORTH AMERICAN PHILIPS COMPANY
No other home training school gives you both an exclusive solid state color TV and an SQ Quadraphonic Receiver complete with four speakers ... all in one course. You get both for less than the tuition cost of TV or Audio alone from the next leading school. And only NRI's Master Course in Color TV/Audio servicing lets you train on equipment designed specifically for training with exclusive "power-on" features.

NRI doesn't give you hobby kits or commercial sub-assemblies. We invested the time and money to design equipment with learning in mind.

It's the only way you can (1) get the feel of typical commercial circuitry, (2) learn bench techniques while building complete units from the "ground" up, (3) perform over 35 "in-set" experiments during construction, and (4) end up with a 25" diagonal solid-state color TV with console cabinet and a 4-channel quadraphonic Audio Center.

NRI passes the savings on to you

NRI can save you money because our engineering eliminates the cost of buying from an outside source. We pay no salesman's commission. Students are enrolled by mail only. The savings are passed on to you in the form of low tuition fees, extras like the TV's console cabinet and the four speaker Quad System; a 5" triggered sweep oscilloscope, CMOS digital frequency counter, and an integrated circuit color TV pattern generator. Where NRI supplies a professional color pattern generator, most other schools use a TV set with a built in alignment generator of no use for servicing other sets. Only NRI designs, engineers, and supplies training kits specifically for learning and professional use. You can pay hundreds of dollars more for a similar course and not get a nickel's worth more in training and equipment.
More know-how per dollar
That’s what it all boils down to, the quality of training you get for the money you spend. In our 62-year history, more than a million students have come to NRI and we’re fully approved for career study under the G.I. Bill. We must be teaching something right.

Some of those “right” things are bite-size lessons to ease understanding and speed learning . . . personal grading of all tests, with comments or explanations where needed . . . a full-time staff of engineer/instructors to help if you need it . . . plenty of kits and experiments to give you hands-on training . . . and fully professional programs oriented to full or part-time career needs.

Widest Choice of Courses with CB, Digital Computer, and other career opportunities

NRI offers not one, but five excellent TV/Audio servicing courses so you can tailor your training to your budget.

Or you can study other opportunity fields like Digital Computer Electronics, Citizens Band Radio, Communications, Aircraft or Marine Electronics, Mobile Radio, and more. Send for our free catalog and see for yourself that no one gives you more training and equipment for your dollar. There’s no obligation, and no salesman will call.

If card is missing, write to:

NRI
NRI Schools
McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue, Washington, D.C. 20016
are kept charged. A member inserts his card in a slot to "unlock" the car. He then drives to the station nearest his destination, parks and re-inserts his card to terminate the trip. During the time he is using the car, a charge of one cent per minute has been automatically recorded against his credit card.

It has been found that the average trip is between one and three miles. The present experimental setup consists of five stations and 35 cars, and trip distances may increase as the system spreads out over a larger area. (Expansion to 15 stations and 105 cars is under way.)

City planners from several countries have journeyed to Holland to see and evaluate the system and its possibilities. Meanwhile spokespersons for the city traffic department suggest that Amsterdam may become the world's first city to ban all forms of individual transportation other than the congestion-reducing and non-polluting electric cars—and, of course, bicycles!

TV manufacturer warns about possible line cord damage

Admiral's Home Entertainment Division reports that the line cord on about 500 of its color TV sets distributed since 1973 may have been damaged during manufacturing, to permit exposure of the conductor. Some of the damaged sets are believed to be in the hands of consumers.

A program to make repairs on sets in the hands of consumers, dealers and distributors is now under way. Any repairs necessary to correct the cords will be made at Admiral's expense.

Admiral states that it has heard of no incidents resulting from this problem, though under certain conditions it might be possible for a user to receive a shock from the line cord.

NESDA convention issues awards to individuals and firms

Larry Steckler, Editor of Radio-Electronics magazine, and during the past year chairman of the International Society of Certified Electronics Technicians (IS CET), was named Man of the Year by the National Electronic Service Dealers Association at its 1975 convention, held in Winston-Salem, NC.

The award, was "in appreciation for personal efforts and leadership to achieve the goals of NESDA and to further the interests of the nation's independent service dealers and technicians." Radio-Electronics magazine received a citation for "its support of the service industry yearbook and NESDA convention activities and for the support shown in its editor's involvement in service association activities as a member of the NESDA Executive Council and as chairman of IS CET during 1974-75."

Outstanding among the many other awards made at the Annual Convention was the Technician of the Year Award, made to Atahusen E. Emadi, CET, of Morefield Communications Co., Camp Hill, PA. He received a total score of 96 out of a possible 100 in the NESDA Tech of the Year grading system, which includes "proficiency in profession, industry involvement and community involvement." Coming from Uganda, Africa, in 1972, Mr. Atahusen overcame drastic changes in language, life style and employment to become well known in central Pennsylvania for his technical ability and for his efforts to improve the standards of technicians through education and the CET program. Mr. Atahusen received an engraved gold watch with his award. A silver watch, furnished by Gernsback Publications, was presented to the runner-up, Clarence Saatkamp of Milwaukee.

Other awards included plaques and certificates to outstanding associations, individuals, association publications, manufacturers and parts and product distributors.
FREE

The world's largest catalog of electronic kits

- Laboratory Breadboard • Oscilloscopes • Frequency Counters
- Digital Multimeters • Amateur Radio Gear • Color TV's
- Hi-Fi Components • Radio Control Electronics
- Automotive, Fishing, Marine & Aircraft Accessories — over 400 kits in all!

Every Heathkit product comes with a fully-illustrated, step-by-step assembly manual that tells you everything you need to know to make kitbuilding fun and easy. Thousands of people have discovered the satisfaction — and savings — of handcrafting a fine piece of electronic equipment. You can build it better...let us show you how.

Send for a free copy of the Heathkit Catalog today!
Heath Company, Dept. 20-13
Benton Harbor, Michigan 49022

Circle 100 on reader service card
QUESTION ON AUDIO POWER

I am writing to you concerning your article entitled "Radio-Electronics Tests Kenwood KR-5400" (August 1975 issue). While I found the article interesting, I object to the term "RMS power" that was used in the article. I claim that the term "RMS power" or (RMS watts) is a misleading term used by some vendors to misrepresent audio amplifier power capability to the technically unsophisticated consumer. Also some technical people use that term without defining it.

It is interesting to note that speakers are rated in terms of average power. What is the relationship between "RMS power" and average power (where average power is defined as the product of RMS voltage \(\times \) RMS current \(\times \) power factor, RMS current squared \(\times \) resistance or RMS voltage squared divided by resistance)? To this day I have not seen "RMS power" defined in print. I am not aware of any instrument that responds to and indicates "RMS power." A conventional wattmeter (dynamometer type such as a Weston wattmeter) responds to and indicates average power. I must assume that "RMS power" is a parameter that is not measured directly but is arrived at by the use of some other measured parameter and some mathematical manipulation with some convenient fudge factor. According to the Federal Trade Commission, power output must be stated in terms of average power instead of "RMS power."

I am looking forward to your response to my comments.

STANLEY WALTER
Electronic Engineer
Simmonds Precision,
Instrument Systems Division
Vergennes, VT.

REPLY ON AUDIO POWER

I fully agree with you that the term "RMS power" is an unfortunately misused one. Nevertheless, the audio industry, through years of usage, can clearly define this term. It is simply the square of the RMS voltage (which is a legitimate term) read at the output of an amplifier, divided by the load resistance into which current from that amplifier is flowing. Average continuous power would be a better term, but the buying public has come to accept and expect a reference to "RMS power" and it is for that reason that we continue to use this term in our product test reports.

As for the FTC rule, I beg to disagree with you. I refer to a letter received from Mr. Aldhizer on August 1, 1974. In the letter, Mr. Aldhizer states specifically that "the designation minimum RMS may be used to indicate the rated minimum sine wave continuous average power output."

This is not the first contradiction the industry has encountered from the FTC. I am, in fact, hard at work now still trying to convince that Agency that preconditioning at 1/2 of rated power is an unrealistic requirement for amplifiers designed to operate in the class "B" mode. This arbitrarily conceived requirement is causing no end of grief to top manufacturers who cannot meet the requirement without de-rating the power output capability of their amplifiers or spending extra money for additional heat-sinking and/or blower fans.

Perhaps the FTC does not understand the true meaning of "RMS" either, but for the moment they are permitting its use. Also, if you will refer to the advertising copy of the most respected audio manufacturers in the world who neither mathematically manipulate nor use "convenient fudge factors," you will find that the term RMS power is in very popular use. We are guided by industry practice, not purely by semantics.

If everyone understands RMS power to mean "average continuous sine-wave power" than that is what it means. When and if the industry drops this term, so will we. In the meanwhile, we feel our readers are better served by seeing terms which they can compare with advertised specifications.

LEONARD FELDMAN
Contributing High-Fidelity Editor

IDEAL BURGLAR ALARM

Regarding the request of Mr. David Blum, appearing in the August issue of Radio-Electronics, wherein he lists features of an alarm system as being the ideal burglar alarm system.

Let's be a little more up-to-date in our desires and have a system without underwires to pressure-pads, time-delay for entrance and exit doors, exposed reed-switches and magnets, window tapes, special alarm switches adjacent to entrance doors.

A more realistic "ideal burglar alarm system" for a residence should provide:
1. Concealed perimeter wiring for individual zones of windows, doors, underfloor entrances and roof entrances, detached garage or other structures, all coordinated into a dual-timed system.
2. A secreted control panel providing separate zonal on-off circuit continuity test with appropriately colored LED's indicating the zone alarm.
3. System should be powered with adequately rated Ni-Cads with automatic charging from the AC line.
4. Remotely located electromechanical controls providing:
 (a). Internal alarm adjustable to 90 seconds.
 (b). Very loud external alarm adjustment.

(continued on page 16)
For the $400-class CB customer
Realistic has what's really new
and 4000 places to find it.

Reading time 48 seconds:

Not everyone has four C-notes to lay out for hobby or business equipment. But on the other hand, the new Realistic Navaho TRC-57 actually costs no more than a basic 35mm SLR camera. And for 399.95* you get an AM/SSB base/mobile transceiver with everything you'd expect — plus a lot you wouldn't.

* Digital phase-locked synthesizer and crystal lattice filter for unusual selectivity.
* Automatic modulation gain control for full power always, whether you talk loud or soft.
* ANL and blanker for chopping out noise.
* LED-indicator AM/USB/LSB mode lights.
* Separate SWR and S/RF power meters that turn red on transmit.
* Precise LED-readout clock switchable for 12 or 24-hour time. And of course it's FCC Type Accepted and UL listed. The new Navaho. You get something more by accepting nothing less!

*Retail price may vary at individual stores and dealers.

FREE! NEW 1976 RADIO SHACK CATALOG

164 PAGES • OVER 2000 ITEMS

Get your copy today at our nearest store or dealer.

Or write:
Radio Shack
P.O. Box 1052
Fort Worth, Texas 76101

SOLD ONLY WHERE YOU SEE THIS SIGN:

Radio Shack
A TANDY CORPORATION COMPANY

Just Say
"Charge It"
at participating stores

Circle 8 on reader service card
able to 15 minutes.
(c). Automatic reset attempt at completion of each 15 minute period of external alarm.
(d). Sound operated controls energized only on complete shut-down.
5. Use of double-cylinder one-inch throw dead-bolt locking mechanisms on personnel entrance doors and:
(a). Immediate door-forced alarm.
(b). Provisions for exit or entry without deenergizing the zonal system.
6. Complete control with only one key. F. IRBY Ventura, CA.

UART MODIFICATION
I wanted to use my TV Typewriter as a computer terminal, so I modified Roger L. Smith's UART board ("Add This UART To Your TV Typewriter," R-E, February 1975) as an I/O interface (schematic enclosed).
The transmitter output, receiver input and clock divider are identical to Mr. Smith's circuit. The transmitter input is connected directly to the keyboard, with the transmit load pulse coming from the keyboard keypressed-output through monostable IC8-a. The receiver output is wired to the TVT input bus, pins 2-8. The data received pulse drives TVT keypressed input through an inverter. Master reset and receive register disconnect come from TVT clear, pin 24. TVT update, pin 51, drives the data received reset through an inverter.
I used Western Digital's TR 1602 UART which is directly TTL compatible, thus eliminating the pullup and pulldown resistors. To save designing a new PC board, I used the one specified in the article, wiring jumpers as required. I used the same part reference numbers that Mr. Smith did wherever possible which accounts for some of the odd numbers on my schematic.
RAYMOND CRANDELL Oakland, CA.

The new Triple-Threat renewer.
RCA's unique WT-333B is 3 ways better than conventional picture tube tester/renewers.
It helps solve your picture tube problems in 3 easy steps: Determines if tube is actually the source of set trouble and isolates fault by testing under simulated picture conditions. Repairs shorts, cleans blocked grid apertures, welds cathodes, renews cathode emission — where possible. Tests quality level of repairs.
The WT-333B also compares all three guns of color tubes simultaneously with exclusive Simul-Test 3-meter system. You get quantitative, meaningful and instant indication of tube condition and renewal.
You can buy the new WT-333B with PIX-FIX at any one of the more than 1,000 RCA Distributors worldwide. Or for further information, contact RCA Distributor and Special Products Division, Bldg. 206-2, Cherry Hill Offices, Camden, N.J. 08101 (Phone 609-779-5161).
Whether you're a full-time engineer or a spare-time hobbyist, there are only so many hours a day you can spend designing and building circuits. So why not make the most of your time?

Design circuits literally as fast as you can think. Instead of starting your next project with a soldering iron, save time by starting with our Design Mate™. In a compact (7 1/2" W x 6 3/4" D x 3 1/4"H) case with a convenient sloping top, it offers solderless breadboarding at its best: 790 terminals, a continuously-adjustable regulated 5-15 VDC 600 mA supply, and a DC voltmeter to monitor the internal supply or test your operating circuit.

With Design Mate 1, hooking up (or changing) a circuit is as simple as pushing leads into holes on the breadboard. Rugged 5-point contacts insure reliable, low-resistance connections between resistors, capacitors, transistors...even IC's in TO-5 or DIP packages. And short lengths of solid #22 AWG wire make interconnections easy wherever you need them.

At $49.95* complete, it's not only a time-saver, it's a money-saver, too.

Larger capacity? Smaller capacity? Have it your way.
Whatever your面包boarding needs.

Proto-Board 103: 2250 solderless terminals save you time on every circuit you design.

Test DIP's with power on and off—even on the most crowded circuit board with our Proto-Clip series.

Test DIP's with power on and off—even on the most crowded circuit board with our Proto-Clip series.

Start saving it. Ask your CSC dealer to show you how to solder less, design more and take the drudgery out of your electronic life.
Or send for our free catalog and dealer list.

*Manufacturer's recommended retail.

Circle 10 on reader service card
How to start making it early in life.

(A TRUE STORY)

Since he got out of the Navy, John Muirhead of Gales Ferry, Conn., has provided well for his family.

Two cars. A new house going up alongside a wooded lake. Even a handsome Great Dane named Sherman. But John has bigger ambitions.

"I want my own air-conditioning business doing installations and repairs. For homes, office buildings, restaurants, small factories, motels.

"That's no dream. With the training I've gotten from ICS, I know I can do it."

"In fact, my ICS training helped me get the first job I ever applied for. I won out over two other guys, even though I had no experience.

"Naturally, I was nervous at first. So I took my lesson diagrams with me on the job. And I found I could lick any problem."

"Pretty soon, they asked me to head up the air-conditioning department. I also picked up some business of my own on the side. That's what's helping to pay for the new house."

John Muirhead is one of our outstanding graduates. He's hard working. He's in a growing field. And he has good training.

Of course, we can't promise you'll be as successful as John — no school can guarantee jobs for its graduates. But ICS can give you the first-rate training you need — especially if you're interested in one of the growing careers where ICS concentrates its training.

AN IDEAL WAY TO LEARN

As an ICS student, you study at home, on your own schedule. You waste no time traveling to and from class. And you never have to miss a paycheck.

But you're never alone. If you ever want to talk to an instructor, you can call ICS from anywhere in the continental United States, using our toll-free Dial-a-Question® service.

Since 1890, millions of men and women around the world have turned to ICS for career training.

More than 70 of America's largest 100 corporations (including Gulf Oil, Bethlehem Steel, 3M, Westinghouse, and International Paper) use ICS training for their own employees.

And the ICS Center for Degree Studies is authorized by the Pennsylvania Department of Education to offer career programs at home leading to Associate in Specialized Business and Associate in Specialized Technology degrees. For information, check the field of your choice below.

<table>
<thead>
<tr>
<th>Business Programs:</th>
<th>Engineering Technologies:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td>Automotive Mechanics</td>
</tr>
<tr>
<td>Business Management</td>
<td>Business Management</td>
</tr>
<tr>
<td></td>
<td>Civil Engineering</td>
</tr>
<tr>
<td></td>
<td>Interior Decorating</td>
</tr>
<tr>
<td></td>
<td>Construction Electrician</td>
</tr>
<tr>
<td></td>
<td>Appliance Service & Repair</td>
</tr>
<tr>
<td></td>
<td>Income Tax</td>
</tr>
<tr>
<td></td>
<td>Moto/Restaurant Mgt.</td>
</tr>
<tr>
<td></td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td></td>
<td>High School</td>
</tr>
</tbody>
</table>

EARN A DEGREE WITHOUT GOING TO COLLEGE

The ICS Center for Degree Studies is authorized by the Pennsylvania Department of Education to offer career programs at home leading to Associate in Specialized Business and Associate in Specialized Technology degrees. For information, check the field of your choice below.

<table>
<thead>
<tr>
<th>Business Programs:</th>
<th>Engineering Technologies:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td>Automotive Mechanics</td>
</tr>
<tr>
<td>Business Management</td>
<td>Business Management</td>
</tr>
<tr>
<td></td>
<td>Civil Engineering</td>
</tr>
<tr>
<td></td>
<td>Interior Decorating</td>
</tr>
<tr>
<td></td>
<td>Construction Electrician</td>
</tr>
<tr>
<td></td>
<td>Appliance Service & Repair</td>
</tr>
<tr>
<td></td>
<td>Income Tax</td>
</tr>
<tr>
<td></td>
<td>Moto/Restaurant Mgt.</td>
</tr>
<tr>
<td></td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td></td>
<td>High School</td>
</tr>
</tbody>
</table>

FREE DEMONSTRATION LESSON

No one can promise success, but if you want more — more money, more security, more day-to-day satisfaction and more future — our free Career Booklet and free Demonstration Lesson can help you get started in the right direction.

Remember, it's your life. You might as well make the most of it.

FOR A FREE CAREER BOOKLET & DEMO LESSON, CHECK BELOW.

☐ Electrician	☐ Automotive Mechanics
☐ Engineering	☐ Business Management
☐ Accounting	☐ Civil Engineering
☐ Drafting	☐ Interior Decorating
☐ Electronics Technician	☐ Construction Electrician
☐ TV Service & Repair	☐ Appliance Service & Repair
☐ Surveying & Mapping	☐ Income Tax
☐ Diesel Mechanic	☐ Moto/Restaurant Mgt.
☐ Air Conditioning & Refrigeration	☐ Mechanical Engineering
	☐ High School

ICS
INTERNATIONAL CORRESPONDENCE SCHOOLS
SCRANTON, PA. 18515

VETERANS: TAKEN FOR CAREER PURPOSES. ICS PROGRAMS QUALITY FOR V.A. BENEFITS

CANADIAN RESIDENTS: ICS CANADIAN LTD., 1111 2nd Ave., Suite 3001, Harbour Centre, Vancouver, B.C. V6C 3K9, CANADA.

XAB12M

Soon, a new house built on a wooded lake site will give John and Cheryl Muirhead lots of room for their growing family. (Photo: Frank Cusato)
BENCH PERFORMANCE IN YOUR POCKET

The Hickok Model 239 color bar generator has an exclusive MOS LSI chip which provides 9 Rock Stable patterns and low battery drain.
- Simplified operation with 2 matrix slide switches.
- Crystal controlled chroma and timing oscillators.
- RF adjustable Channels 2-4.
- Powered by 2 standard 9v batteries.

Plus our unique 2-year warranty.
The Hickok Pocket Model 239 or our deluxe bench Model 246 are values you have to see to appreciate. See them at your Hickok distributor or contact us for more information.

$115.00

HICKOK

the value innovator

INSTRUMENTATION & CONTROLS DIVISION
THE HICKOK ELECTRICAL INSTRUMENT CO.
10514 Dupont Avenue • Cleveland, Ohio 44108
(216) 541-8060 • TWX 810-421-6266

Circle 11 on reader service card

Getting Started in CB Servicing

CB operators demand the availability of quick and reliable service. What part will you play in the overall sales-and-service picture?

by LARRY STECKLER

EDITOR

CB is booming and as sales increase, the need for qualified repair agencies will also increase. You can get ready to handle the service end of the CB explosion now. And it is not difficult.

How do you get into CB and 2-way radio servicing? What equipment do you need; what training do your people need, and where can they get it? Deciding to do it is easy. Doing it is something else again.

If you're starting from scratch and want to do CB radio work only, you can get by with under $1,500 worth of new equipment: an inexpensive scope, a $50 frequency generator, a $50 multimeter, a dummy load, and a few other odds and ends are all you need for CB service. If you're already handling other electronic repairs you may need only the generator.

When you come to land mobile repair, we're talking an entirely different ball game. Here if you start from scratch, you must have a commercial monitor to start with and that costs $5,000 to $8,000 alone. As for the rest of the equipment, it has got to be better all the way down the line, so don't expect to get into land mobile radio repair for anything under $15,000 worth of equipment. In both cases you still need a shop to work out of; tools, parts and people.

Once you've made the decision to do servicing or if you're already involved in servicing, you know you will have a perpetual problem of getting competent, trained people to do the work. There is a shortage of trained service technicians in almost every field you can name, but nowhere is the shortage more critical than in electronics repair.

As a result the specialized area of 2-way radio is facing an even more severe problem because of its sudden mushrooming growth.

One manufacturer has come up with a solution. At the moment it's available only to their authorized dealers (and on a space available basis to others who would like to participate). The company is E. F. Johnson and the school is run near their manufacturing facilities in Waseca, Minnesota.

I had the pleasure to visit the school recently. Daryl Thompson, the director of the school met me at the airport. I spent almost a full day there, touring the school, examining its facilities, speaking with its students, instructors, and Daryl.

One of my first questions was why E. F. Johnson decided to run a school for servicing 2-way gear in the first place. The answer was simple, "the manufacturer must provide trained people to service his product." With that introduction behind us, we went on to tour the facility and talk a bit about the various courses offered.

Remember, this is a resident school, and it offers several different courses of study. They are outlined elsewhere in this article. But let's review a few of (continued on page 24)
When you install a B-T Booster outside, you get a lot of new boosters inside.

The service technician's job is a tough one. Customers are always grumbling about the high cost of TV service calls. And they complain about poor reception—even when it's almost impossible to get a good signal.

But now and then a TV service technician wins one. And one of the products that can make him a winner, and create customer goodwill, is a Blonder-Tongue outdoor booster.

B-T Boosters can produce a dramatic improvement in picture quality, particularly on color and especially in difficult reception areas. After 25 years of making outdoor boosters, B-T is number one in sales, and enjoys the finest reputation for making products of highest performance and reliability. B-T Boosters do cost a bit more than competition, but they perform and last longer. And that's what makes satisfied customers.

The VAULTER, for example, is the number one outdoor booster today in the B-T line... and in the entire industry. This ultra-high performance, all-channel amplifier offers the ideal combination of lowest possible noise figure (4.6dB, VHF; 7.0dB, UHF) and high gain (15dB). While it can't make unusable, snowy pictures perfect, it can reduce fading, loss of color, overcome cable loss and reduce lead-in cable noise. It can even feed more than one TV set from the same antenna in fringe reception areas. It has separate U/V inputs and a coax output. Finally, it's specially designed for lightning prone areas.

The B-T line consists of 5 all-channel models (including the popular VOYAGER); 5 VHF models and 4 UHF boosters (the ABLE-U2bis a favorite).

See your B-T distributor for details. And see why you can count on boosters inside, when you install B-T Boosters outside. Blonder-Tongue Laboratories, Inc., One Jake Brown Road, Old Bridge, N.J. 08857.

Circle 12 on reader service card
Can your VOM take this?
Yes...if it's a WESTON®

That's right! WESTON makes its entire 660 VOM series "Drop-Proofed". Dropped from any height up to five feet, they will still work—and accurately, too. They're engineered that way. In fact, every one of them comes with a written warranty.

All meters in the WESTON 660 series are 7"H x 5"W x 23/4"D. Weight is less than 2 lbs. including furnished batteries. Models 660, 661, 662, and 663 have a sensitivity of 20,000 ohms/volt DC, 5,000 ohms/volt AC. The 660 and 662 are accurate to 2% DC (1.5% on 50 ua range) and 3% AC. The others, both of which have overload relays, are accurate to 1% DC, 2% AC.

Model 666, the top of the line, has an accuracy of 2% DC volts, 3% AC volts, 3% DC current and 4% AC current. Sensitivity: 10 Megohm DC, 10 Megohm (100 pfd) AC, and a current circuit drop of 100 millivolts. Measurement capability: DC millivolts (2 ranges) 0-300, DC volts (7) 0-1000, AC millivolts (2) 0-300, AC volts (7), 0-1000, DC microamps (3) 0-100, AC millamps (3) 0-30, ohms (7 normal and 7 low power ranges) with Rx1 to Rx1 Meg, and 9 dB scales −40 to +62.

The single range switch, jacks, and meter face are recessed flush with the high-impact type plastic case for protection. The ruggedized meter movement is diode-protected. Recalibration and fuse replacement can be done externally.

The WESTON "Drop-Proofed" 660 VOM series is easy to use...hard to hurt...and easy to get, either from your local WESTON distributor, or by mail. Use the coupon below with your Master Charge, BankAmericard, check or money order. Even if you have someone else's voltohmmeter, you still need a WESTON VOM...in case you drop the other one.

Please send me the WESTON 660 VOM "Drop-Proofed" champ

Name ____________________________
Address ____________________________
City __________ State __________ Zip Code __________

Model | 660 | 661 | 662 | 663 | 666
Price | $79.00 | $91.00 | $122.50 | $135.00 | $164.00
Quantity () () () () () ()
Add $2.00 for handling charge. (New Jersey residents add 5% sales tax to cost of unit.)
Total amount of purchase $________

PLEASE CHECK ONE
□ MASTER CHARGE □ BANK AMERICARD

INTERBANK NO. __________ EXP. DATE __________ MONTH __________ YEAR __________
□ Payment by check □ Payment by money order Offer effective through Mar., 1976.

Signature ____________________________

Circle 13 on reader service card

CB SERVICE
(continued from page 22)

the highlights here. First, there's a one-week course for people who are already doing 2-way radio repair. It concentrates on a familiarization with E. F. Johnson equipment. Next, there is a two-week electronics repair course. It's intended for the man who is already doing electronics service work but is not familiar with 2-way equipment at all.

Then there is a six week course for the beginner. Daryl Thompson says that this E. F. Johnson course will take a completely untrained individual and turn him into a competent technician capable of servicing 2-way radio gear. The school graduate does have less knowledge of theory than a two year vocational school grad, but the man will be able to work on and repair 2-way radio equipment under the supervision of an FCC licensed technician.

I asked Daryl if the course includes enough information to permit the student to pass the necessary FCC examinations. The answer is no, that the FCC license was beyond the scope of what the school was trying to cover. This is especially true since many of the questions asked on the FCC examination cover devices such as motor generators and vibrator power supplies that would be rarely seen in today's 2-way radio business.

The fees charged for the courses cover room and board for the student as well as tuition. The dealer must provide transportation to and from Watseka, plus take care of his normal salary obligations to his employee.

From my own observation, the classes are small but intensive and an awful lot is covered quite effectively in a very short time.

Like many other manufacturers, E. F. Johnson also conducts field training seminars. To enhance these seminars they have set up a complete video tape studio so that they can put the school and seminars on tape. Then the classroom is conveniently brought to dealers and their technicians in all parts of the country.

(continued on page 26)
BEEN DISSATISFIED IN THE PAST?

HERE'S A PRESENT FROM THE FUTURE.

This is our Criterion 2005 Heil Air-Motion Transformer Speaker System.

Incredible purity, astonishing clarity and definition are achieved through the use of the Heil Air-Motion Transformer Tweeter. Tastefully encased in a simple, uncluttered column, the 2005's "corona field" Heil Air-Motion Transformer reveals every important characteristic that the ear has been longing to hear. The 2005 offers outstanding dispersion to the highest frequencies, essentially flat response to beyond 22,000 Hz and complete freedom from fatigue producing distortion. The 2005 has a continuously variable control allowing infinite high frequency adjustment to balance with the acoustics of any room. Advanced engineering, outstanding performance and uncluttered styling. You'll find them all in the 2005. And you'll find the 2005 in any of our coast-to-coast electronic shopping centers and associated stores.

199.95

ELECTRONICALLY SPEAKING, WHO KNOWS BETTER THAN

Lafayette

© LAFAYETTE RADIO ELECTRONICS CORPORATION 1975
CB SERVICE
(continued from page 24)

So if you are considering the question of servicing what you sell and do decide that it's a good idea, E. F. Johnson offers one possible solution to the question of getting trained technicians to do the job for you. They'll also be happy to give you data on what equipment you need to set up a shop to do this kind of work.

Field training seminars run by E. F. Johnson's Service Training Division, or as they call it, Technical Education Center, are held at regional locations to provide a quick and convenient way to become familiar with or refresh oneself on circuitry alignment procedures and trouble shooting hints that apply to E. F. Johnson Radios.

They also allow an exchange of information between dealers and factory personnel as well as among dealers themselves. Many retailers report that this is quite beneficial particularly swapping common solutions to problems. These seminars do not provide an opportunity to actually work on the equipment as the resident factory schools do. However they do provide interim training in a convenient way. They are also arranged to allow a participant the opportunity to select only those sessions that he particularly needs and skip those that he does not.

One item in the school course description is worth special mention. It reads: "any company that manufactures a product that must be serviced cannot ignore the necessity of providing education for those who must service that product. On the other side of the coin, those who service the products owe it to themselves and their customers to be as efficient and effective as possible. Service training is truly an investment in human capital that should be expected to pay a return. The E. F. Johnson company considers this mission of service to our warranty stations and customers one of high priority."

How to register
Advance registration for an E. F. Johnson class will normally insure you

ADVANCED TECHNICIAN SCHOOL

Designed for one who is familiar with 2-way radio servicing but wants to learn the best techniques for servicing Johnson products. Also a good refresher for a "Johnson technician."

Land-Mobile
5 days Equipment covered:
- Tuition—$130.00 Fleetcom
- Transcom II
- Ultracom
- Handhelds
- 948/949 Repeater
- 770/780 Alpha Tone Panels
- Johnson Repeat-A-Guard
- All E. F. Johnson manufactured CB radios
- Duo-Scan & Mini-Scan

BASIC TECHNICIAN SCHOOL

Designed for one who knows electronics but who feels a need for a firmer foundation or who, although previously involved in electronics, has not been involved in 2-way radio before. In addition to covering the products, the student will be refreshed on the basics of circuitry, problem analysis and test equipment usage. In addition, a heavy emphasis is placed on guided practical experience on the test bench to establish proper techniques.

Land-Mobile
10 days Tuition—$285.00 Equipment covered:
- Fleetcom
- Transcom II
- Ultracom
- Handhelds
- Citizens Radio
10 days Tuition—$285.00 Equipment covered:
- All E. F. Johnson manufactured CB radios
- Duo-Scan & Mini-Scan

an opening in the class you plan to send an employee to. However, experience shows that the classes do fill quickly, so don't delay. Send company name, class requested and the date and number of employees you'd like to send, to E. F. Johnson company, Technical Education Center, Waseca, Minnesota 56093. A complete schedule of next year's classes are available from the same address.

Should you write to the school for information, please don't forget to let them know you read about it in Radio-Electronics.
THINKING ABOUT A "6800" TYPE COMPUTER?

It seems that a great many people came to the same conclusion that we did here at SwTPC. The M6800 is an outstanding processor and makes a great computer — "BUT" — Not all computers using the M6800 processor are the same. May we suggest that you consider the following features when you make your choice.

IT IS A COMPLETE 6800 SYSTEM?

You cannot get all of the advantages of the 6800 system with only the processor chip. Unless the whole 6800 family of chips is used you cannot possibly get all of the versatility and superior performance that the system is capable of providing. If for instance the design does not use the MC6820 parallel and the MC6850 serial integrated circuits for interfacing, you lose the programmable interface feature that makes it so easy to interconnect the computer system with outside devices such as terminals, printers, disks, etc.

IS THE SOFTWARE COMPATIBLE OR UNIQUE?

If the design does not use the "Motorola" Mikbug® ROM, then the software and programs that will run on the system are probably unique to that particular brand of computer. SwTPC uses the standard Motorola MCM6830L7 ROM. This provides automatic loading and an operating system that is compatible with other systems using the standard widely sold Motorola evaluation set. As an owner of our 6800 computer system, you are eligible for membership in the Motorola Users Group. If you join you have access to a library of programs that will run on your system. Editor and assembler programs are available directly from SwTPC.

CAN THE SYSTEM BE EXPANDED AT A REASONABLE COST?

Some of the limited systems being offered at lower prices can be expanded only with difficulty. Check the amount of memory that can be added and at what cost. How many additional interfaces can be added, if any. How much of the above can be run off of the power supply provided with the system? The SwTPC 6800 can be expanded up to 16K words of memory in the standard cabinet and with the power supply provided. It may also be expanded up to eight interface (I/O) boards for external devices by simply plugging in the cards. Memory is $125.00 for each 4,096 words of expansion and interface cards are only $35.00 for serial or parallel types.

Memory expansion will be essential if you ever intend to use a resident assembler, or higher level languages such as APL or BASIC on your system. Assembler programs typically require a minimum of 4,096 words of memory and higher level languages require even more.

HOW DO YOU ENTER AND READ DATA?

Let's hope it is by way of a TTY, or video terminal. No one with a serious computer application would consider attempting to enter data from a switch and status light console. These may be educational, but they sure aren't practical. Calculator keypads and digital readouts are not much better. There is no substitute for a full alphanumeric keyboard and terminal system display for serious work.

Mikbug® is a registered trademark of Motorola Inc.

SwTPC 6800 Computer System
with serial interface and 2,048 Words of memory $450.00

[Form for ordering]
Remember when a good dual trace scope cost less than $500? It does again.

Model 1471 Dual Trace Oscilloscope
$495

As the B&K-Precision Model 1471 rolls back the economic calendar, it significantly advances performance capabilities of 10MHz oscilloscopes. Model 1471 shares many of the performance and convenience features of our higher priced scopes, benefiting from Dynascans' position as a leading supplier of medium bandpass scopes.

Deflection factor is 0.01V/cm to 20V/cm in 11 ranges. Model 1471 has 18 calibrated sweeps—1μSEC/cm to .5SEC/cm and sweep to 200nSEC/cm with 5x magnification. Regulation maintains calibration accuracy from 105 to 130VAC. Rise time is 35nSEC. Automatic triggering is obtained on waveforms with as little as 1cm deflection. Dual trace display mode automatically shifts between CHOP and ALTERNATE as sweep time is changed, speeding set-up.

Front panel X-Y operation uses matched vertical amplifiers, preserving full calibration accuracy for both amplitude and phase. The intensity modulation input (Z axis) is compatible with TTL, permitting use in character display systems, and for time or frequency markers. Bright blue P31 phosphor makes any waveform easy to see. Circuit board with plug connectors permit easy user maintenance. BNC connectors. Operates on 117/230VAC 50/60Hz.

- 10 MHz Bandwidth—useable to 15 MHz
- Mode automatically shifts between CHOP and ALTERNATE as you change sweep time
- Bright blue P31 phosphor
- 18 calibrated sweeps—1μSEC/cm to .5SEC/cm
- Sweep to 200nSEC/cm with 5X magnification
- Maintains calibration accuracy over 105-130VAC range
- Front panel X-Y operation using matched vertical amps
- Input grounding switches
- TV sync separators
- Check most digital logic circuitry including CMOS
- Character display applications using TTL Z-axis intensity modulation
- BNC connectors

In-Stock Free Trial
Model 1471, or any B&K-Precision oscilloscope, can be obtained from your local distributor—or call Dynascan. You'll find the scope you need in stock today. Write for detailed specifications.
Use it to access a computer with a sound input, and with the optional plug-in memory, it can automatically dial a 7-digit telephone number.

Build This

Pocket Data Terminal

by CHARLES EDWARDS

THE POCKET DATA TERMINAL IS A HAND-sized unit that produces all the 16 digits of the standard Touch-Tone format. It generates, with a crystal controlled LSI integrated circuit, the eight Touch-Tone frequencies used by the telephone company. They are used, two frequencies at a time, to identify which one of 16 buttons is being pressed.

Its uses as a telephone dialer or control unit are many—only a few of them can be described here. With the Auto-Dial plug-in memory—to be described next month—it can be used to dial any 7-digit telephone number automatically in less than one second, at the touch of a button. As more computers are adapted to sound input, it will become more useful as a means of computer access. (To operate as a true data terminal, the computer with which it is working must be equipped with a Synthetic Voice Generating Interface. These are around in only limited numbers today, so the PDT's main use along that line is in the future.)

The device does have many other uses that make it extremely valuable today. You can use it to dial any number (your telephone answering service for example) that you call frequently or in a hurry. If you are working with a computer that has to be dialed up every time you use the terminal, program the computer's number into the PDT's Auto-Dial memory to save time and distraction.

Give one to your elderly parents or grandparents so that in an emergency they can just hold it to the phone and call you without dialing, eliminating the possibility of a wrong number. (Make sure you try this ahead of time because not all phone lines are equipped to handle Touch-Tone dialing signals.) Older people whose eyesight may be poor and manual dexterity low will find it convenient and useful. Persons subject to heart attacks, strokes, epileptic seizures, etc., may find a PDT with the doctor's number programmed into it a life saver. (Tape a dime to the back of the unit for use in a phone booth.)

A store clerk could keep a Data Terminal handy, programmed with the number of the police department, to use in case of a holdup or similar emergency. The burglar alarm in your house or business can be connected to activate the PDT and call the police automatically.

Even without the Pocket Data Terminal's Auto-Dial option, the unit is handy to have around as a Touch-Tone generator. You can use it for a wide variety of
applications, for instance, as an automatic and unduplicatable door key. Mount a small microphone at the point of entry and decode a series of tones to unlock the door. With proper decoders, the PDT can be used to operate a relay for almost any purpose. An example: to generate control tones to program a tape to control several slide projectors. Press 1, then press # to turn on a projector; press 2, then # to turn on projector 2; Press 1 then press * to turn off projector 2, etc.

Amateur radio operators will find it useful for controlling mountain-top repeaters. A series of tones from the keyboard could be used for repeater entry and for any function, from turning AC power on and off to switching antennas.

Besides the more obvious uses and remote control possibilities, an interesting case came up in the author's home. The Touch-Tone telephone quit working; it would receive calls OK but would not generate tones to dial out with. It took the phone company a week to get to the problem. In the meantime we dialed out without difficulty with the PDT, held to the handset microphone.

How it works
The Pocket Data Terminal (Fig. 1) consists of a two-of-eight coded keyboard, which drives the MOS Touch-Tone generating chip, IC1.

The output of IC1 goes to an audio amplifier, consisting of Q1 and Q2 (Fig. 2) which drive a small speaker. The two-of-eight code from the keyboard determines the divider mode of the programmable dividers in the tone generator chip. The on-chip oscillator is crystal controlled, generating very stable frequencies, accurate to ± ½%; well within the specification of

MEMORY BOARD #783

NOTES:
1. ALL DIODES EXCEPT D5 ARE 1N4148
2. DIODES SHOWN TO AUTO.DIAL TELEPHONE NO. 123-4567

MAINFRAME BOARD #789

FIG. 2—POCKET DATA TERMINAL contains five IC's and three double-sided circuit boards.
FIG. 1—POCKET DATA TERMINAL uses a MOS Touch-Tone frequency generator IC.

± 1.5% of most Touch-Tone receivers, including those used at the telephone company's main offices.

On the Auto-Dial option (board No. 788, Fig. 2) IC2, a 555 oscillator, is set to operate as a system clock with its frequency set by selecting R5. The output of IC2 clocks the input of IC3, a 4-bit binary-to-binary-coded decimal (BCD) output counter. The four-line BCD outputs of

All resistors are 1/4 watt, 10% unless noted
R1—15 megohms
R2, R3, R4, R6—1,000 ohms
R5—1 megohm, 5%
R6—1,000 ohms
C1—0.068 µF monolithic
C2—1 µF, 10 V electrolytic
IC1—TT-1001 Touch-Tone* Frequency Generator Integrated Circuit available for $11.00 postpaid within USA from:
Tel-Tek Electronics P. O. Box 562, Belmont, California 94002. Order Part TT-1001.
IC2—555 timer
IC3—7403 TTL
IC4—74154 TTL
IC5—78L05 Regulator
D1, D2, D3, D4, D6—D19—1N 4148
D5—IN753 6.2 V. Zener diode, Q1, G2—2N3565
XTAL—1.00 MHz Quartz crystal
MISC—pins, sockets, 9V alkaline battery, battery connector, speaker, PC boards, plastic case with keyboard, wire, solder

*Trademark of American Telephone and Telegraph Co.

The following parts may be ordered from:
Executive Devices, 740 South Locan Avenue, Fresno, California 93727.
PC—789—Mainframe PC Board. Drilled epoxy-glass with plated-through holes. $5.95 postpaid within USA.
PC—788—Auto-Dial PC Board. Drilled epoxy-glass with plated-through holes. $5.95 postpaid within USA.
PC—787—Memory PC Board. Drilled epoxy-glass with plated-through holes. $5.95 postpaid within USA.

CA—700—Plastic Case for Pocket Data Terminal, including keyboard buttons and hardware. $7.95 postpaid within USA.
PDT—700K—Kit of all parts for basic Pocket Data Terminal. Includes all parts, TT-1001, IC, PC Board, speaker, XTAL, case and keyboard (less battery). Does not include any parts for Auto-Dial or Memory options. $39.95 postpaid within USA.
PDT—700—Above basic Pocket Data Terminal assembled and tested (less battery). $49.94 postpaid within USA.
ADO—700K—Kit of all parts for Auto-Dial option. Includes all parts, all IC's, PC board, smaller speaker, push button switches, pins and sockets. Does not include any parts for Memory board (required, see below). $24.95 postpaid within USA.
ADO—700—Above Auto-Dial option assembled and tested. $34.95 postpaid within USA.
MEM—700K—Kit of parts for Memory board. Includes PC board, pins for interconnection, all diodes. $6.95 postpaid within USA.
MEM—700—Above Memory board and programmed for any 7-digit number. $9.95 postpaid within USA.
PDT—1000K—Kit of all parts and PC boards for basic Pocket Data Terminal including all parts and PC boards for Memory options (less battery). $69.96 postpaid within USA.
PDT—1000—Assembled basic Pocket Data Terminal including assembled Auto-Dial option and Memory option pre-programmed to any 7-digit number (specify with order) (less battery). $89.95 postpaid within USA.
181-423—Heavy duty sewn-edge carrying case with belt loop. $5.95 postpaid within USA.

(California residents add sales tax)

IC1 go to the inputs of IC4, a BCD to one-of-16 decoder. The outputs of IC4 go low one at a time, starting with pin 1, as the BCD information on the input of IC4 ascends in BCD value.

Only every other output of IC4 is used, which provides the required interdigit timing period. This is equal to the tone-on time, regardless of the frequency of IC2, the clock generator. IC2's frequency should be set so each output of IC4 is low for a period of a minimum of 40 milliseconds and could be typically set for 60-70 ms. At 70 ms, a complete 7-digit telephone number will still be outputted in less than one second.

Outputs 1, 2, and 3 of IC4 are tied together to provide a 180 to 240-ms first digit to make sure that a radio transmitter is up to full output when using the Pocket Data Terminal with a two-way radio. If a 40 to 70-ms long first digit is desired, simply cut the trace from pin 2 to 3 of IC4.

The outputs of IC4 are routed through board No. 3, the Memory plug-in card. The position of the diodes on the Memory card determine which of the two-of-eight inputs to the Touch-Tone generator chip IC1 will be pulled low in what order. IC1 is available for $11.00 postpaid within USA from Tel-Tek Electronics, P. O. Box 562, Belmont, California 94002. Order part No. TT-1001. (Refer to Part Two
next month for information on programming the Memory card.)

Switch S1 (Auto-Dial) is pressed and held during auto-dialing and supplies +5 volts to IC2, IC3 and IC4 via IC5, a 9V to 5V regulator. Switch S2 (volume boost) is used during Auto-Dial or keyboard operation to boost the audio output level when required.

How to use it

Simply hold the Pocket Data Terminal up to the telephone or two-way radio microphone. To start the Auto-Dial, press the right button on top and hold it down; then press the left button and hold it down until the Auto-Dial has finished dialing (within one second it will have outputed all seven digits stored in memory). To use the keyboard for control or data entry purposes it is only necessary to press each button as required. Press firmly and listen to the tones produced as you use the keyboard.

If the data are not being received at the other end of the phone line, the level being transmitted may be low; check for maximum acoustic coupling to the microphone; be sure the nickel-plated eyelet on the rear of the Pocket Data Terminal is centered on and is in good contact with the handset microphone; be sure the unit is parallel with and flat against the microphone. If more audio level is required because of a bad or noisy telephone line, simply hold down the top right button while using the keyboard. This gives a boost in audio level output. No on-off switch is required, because there is no battery drain when no tones are being generated. The unit will work with any Touch-Tone telephone or any dial-type telephone that is connected on a Touch-Tone telephone line.

Because of the compactness of the unit and the fact that the keyboard contacts are etched into the main frame PC board, and since making double-sided plated-through holes is beyond the capabilities of most home constructors, it is recommended that the unit be built using only pre-fabricated PC boards. A set of PC boards, as well as a complete set of parts, is available from Executive Devices, 740 South Locan Avenue, Fresno, CA 93722. See the Parts List for information on ordering complete kits or parts or assembled units.

Next Month: Detailed construction information—how to build the plug-in Auto-Dial option that enables the Pocket Data Terminal to remember and automatically dial a 7-digit telephone in less than one second at the touch of a button.

NO DC VOLTAGE

I can't get any DC voltage on the plate of the video amplifier tube in this Bradford CMAT-89243. Nothing on the picture tube cathodes either.—S.E.

It's probably an open winding in the "service transformer" that feeds DC to both the video output plate and the picture-tube cathodes. Check this. If it is open, you can get an exact duplicate from the J.W. Miller Co. Something like their no. 7600 or no. 7602 ought to do very well.
CB Equipment Roundup

New features and new performance to meet the increased demand for CB.

by HERB FRIEDMAN

GOOD TIMES OR BAD, IF YOU HAVE A PRODUCT that most everyone wants or needs—like the proverbial mousetrap—you have a hot item. Citizens band has proven, in just the last few months, to be the better mousetrap when the electronics industry needed. With color TV sales way down and hi-fi equipment just sitting on shelves waiting for customers, the CB sales have kept many a store in business, not to forget a manufacturer or two. Fact is, some CB manufacturers are running six months behind in deliveries; in some parts of the country you go on a waiting list to get a specific type of mobile antenna, and some "hot" transceivers are just about unavailable if you don't have good relations with a local distributor.

What brought about the sudden surge in CB sales is a whole separate story concerning license fees, court decisions, unbelievable stupidity by the EIA regarding Class-E service, an insane FCC restructuring proposal for Class-D service, and the realization by many that it was now or never for them and CB—with or without a license. All these factors came together at the same time and when the smoke cleared, a whole new CB market emerged; a thundering herd rushing for CB licenses at the rate of 100,000+ applications a month.

Equipment

There are so many people buying CB transceivers that the industry, which was moving towards the high-ticket "gold plated specials", has turned on a dime and settled on a more or less average price range of about $150 to $200, and most of the new equipment falls into this price range.

Of course, not everyone is producing two or three models for the "average price range". There are many lines from well known brands that range from basic budget-models with not too much in the way of features and performance to high-performance SSB/AM models with several steps in between. For example, Pearce-Simpson goes from a Pussycat 23 at $170.95 to the deluxe Guardian 23 at $379.95 in five steps—adding performance and features at each step. E. F. Johnson, Cobra (Dynascan), Lafayette and Radio Shack are just a few of other well known brands that offer progressively upgraded transceivers. And when you start to search for unusual features such as a modulation meter, or microphone gain control, you'll find other broadly-based feature/performance lines from Midland, Courier and Teaberry.

But if you look at both the broad lines, and the transceivers from manufacturers with just two or three models, you'll find most of what's available falls in the "average" $150 to $200 price range; and much of the performance will be similar. In many instances the price differential represents operating convenience features. In the "average" price range the models appear to be built on a basic package: a 23-channel transceiver with volume and squelch controls and moderate receiver selectivity. Generally, the only "extra" feature is a remote speaker jack.

As the model is upgraded, any or all of the following features might be added to the basic package: A PA speaker output and selector switch, a noise blanker, an S/RF-output meter, a tone control, a modulation meter, a microphone gain control, a speech compressor (talk power booster), etc., etc., etc. Rarely will you find one model with all possible features, but most of the standard brands will have at least one specific model with those features you consider most important. In addition to the previously mentioned brands, "average" priced models are also available from such well-known labels as E. F. Johnson, Royce, Pathcom, Browning, Hy-Gain, Robyn and Face. And it seems that almost weekly a whole host of new brands and labels appear on the CB market.

The Johnnie-come-latelys are primarily in the "average" price area for that's where most of the sales are: few enter the lower cost budget priced range close to $100 or the higher priced specialty and SSB/AM market. It's sort of like the early days of auto stereo tape players where every dealer stocked the best profit item for a given time: few gave any thought to repair parts for these here-today-gone-tomorrow brands. If it had the right "average" price it could be sold. CB is much like that today, and often you'll find an unknown "average" priced transceiver offers less performance and features than that of a similarly priced well known model.

JANUARY 1976

33
It is presently impossible to state that so many dollars will purchase so much performance and this-many features. The market just doesn't work that way anymore. In the "average" price range of about $150 to $200 there are many convenience trade-offs to make a particular feature available at a popular price. For example, and we are now talking quality equipment in terms of electrical performance—receiver sensitivity, selectivity, RF power output, etc.—the same amount of money might purchase a true RF noise blanker in one model (for those with real bad impulse noise problems), a modulation meter and microphone gain control in another model, or an S/RF-output/ SWR meter in yet a third model. Of course, it is possible to get one model with all these features, but not for the "average" price. In short, within a given price range and a given level of electrical performance, the average CB'er can find a transceiver having only those features he needs.

If you look at some of the features now offered in moderate priced equipment, you wonder how it was done, for many of the now generally available features were formerly found only in the most highest priced models. The secret to success was in cutting costs on circuits through new technologies so user-desired features could be offered at moderate prices with no essential change in performance. For example, crystal synthesizers usually require two receiving mixers, thereby providing double conversion. Lafayette, however, now uses a simple diode for the second mixer, and the substantial savings in circuit components and assembly has helped keep the cost of this year's full-feature models down at last year's levels.

On the other hand, many solid-state transceivers have suffered from cross-modulation caused by very strong received signals. Normally, the cross-modulation is caused by the protection diodes on the input to the RF amplifier. The problem can be alleviated by a more expensive FET front-end design, but a less expensive way to avoid the problem is a distant-local switch such as used by Robyn. Where the user wants to avoid throwing a switch there are new overload-immune FET front-ends such as used in Courage's Redball transceiver. In fact, with the proliferation of CB into almost every other street the overload and cross-modulation by "down-the-block" signals can only get worse and we can expect to see more FET front-ends as new transceiver models are introduced later this year.

At the approximate $200 price level we start to get some new features and performance-oriented circuits that we used to expect only on the highest priced lines. For example, E. F. Johnson now has a model with a string of LED lamps substituting for an S/RF-output meter (the lights are easier to "read" in a car); six LED's indicate the received signal strength to 20-over-S9 and RF-output on an 0 to 5 scale. Even further above $200, Johnson has a new transceiver with cascaded crystal filters for steep-skip razor selectivity, as well as an RF-sidechain type of noise blanker such as Lafayette uses in their top-of-the-line AM transceivers.

At the $200 price level we also start to see many features desired by hobbyists—and remember, the latest CB rules permit hobby-type operations. While the S/RF meter is just about standard on most transceivers priced from $150 up, more models, such as the Teaberry T-Control, now also provide SWR metering while Cobra and Pearce-Simpson have added models with independent modulation meters.

For special public service monitoring applications, there are still a few transceivers with dual-receive capability, such as Lafayette's Telsat 925, that monitors Channel-9 while you work a different channel. A signal appearing on Channel-9 will over-ride the received signal or indicate its presence by a panel lamp.

A feature for both the public service and hobbyist CB'er is the normally open and closed transmit/receive relay assembly contacts on the Kriss model XL-23 transceiver. These contacts can be used to switch accessory equipment, signal devices, etc. through the microphone's push-to-talk switch. The XL-23 also has connections for a remote signal strength indicator (S-meter, etc.).

For the CB'er active in rescue or community service, there's the Craig model 4102 with a quick release mobile mount having automatic make/break terminals for remote and PA speakers.

Another specialized rig is Midland's model 13-861: a complete 23-channel mini-sized mobile having a leather case with built-in battery compartment and an accessory telescopic antenna. Basically, the complete unit is a high powered walkie-talkie, but a mobile bracket allows the unit to be quickly secured with the usual two screws under a car or truck's dash. Plug in the power and antenna con-
nectors and the walkie-talkie becomes a standard mobile rig. If you have no need for a faster-than-the-eye-can-follow mobile to portable conversion, the unit can be removed from its case and used as a straight mobile.

The mobile telephone appearance pioneered by Johnson has really caught on and you'll find other mobilephone rigs in the Lafayette and Radio Shack lines. Also, E. F. Johnson has added an execute- phone styled base station.

In many instances you'll ask "Where have I seen that rig before?", for several brands use the quality mobile model as the basic base-station unit. They simply install the mobile in a new and larger cabinet containing a line-powered DC source, and perhaps a digital clock. PAL Electronics carries this idea one step further with their Roadrunner 23 by providing a cabinet with forward facing speakers that plug into the basic mobile package.

An attractive idea, particularly for the boating enthusiast, is the PACE model CB-145, a 23-channel CB transceiver with a built in weather monitor for the two national weather frequencies.

With the exception of the "gold-plated/high-performance" transceivers and transmitter-receiver systems such as the Tram model D201 and Browning Eagle, most AM/SSB transceivers range in price from about $250 to $500. At the lower end of the price scale are the no-frills/no extra feature mobile models such as the Lafayette Telset SSB-75, though the typical SSB/AM model with the most common features such as an S/RF-output meter go for somewhat more than $300. When you get to the feature and performance packed base station SSB/AM models, figure you're in the $500 class, but this kind of money gets you a Pearce-Simpson Simha SSB that features everything from variable microphone gain to a desk mike.

For those who dig high styling—clocks, meters, and a space-age appearance—combined with high performance SSB/AM, there's the Cobra equipment; while Siltronix, Tram, Browning, and Johnson, among others, still specialize in high performance SSB/AM equipment that can take an endless pounding on highway chuck holes.

Finally, we must acknowledge that CB has moved into the area of general interest, where it can be simply another feature in some form of "electronic entertainment center". We already find CB equipment sharing the same shelf space as hi-fi systems in many audio showrooms; and a substantial number of "auto sound shops" specializing in mobile tape player sales and installation now stock and install CB transceivers. To carry it to the final con-
What are your opportunities in the electronics field?
Here are some eye opening facts from ETI.

Q. What about the job market in electronics?
A. It's good. In fact, it seems to be one of the few fields that stays relatively steady in bad times. Today, for example, estimates indicate that several thousand jobs will be opening up for electronics technicians each year, for years to come. One reason for this is the fact that electronics are the basis of almost all communications, and this is a communications-oriented nation.

Q. What kind of jobs are you talking about?
A. For example, there are jobs available in electronic/industrial automation, electronic equipment repair and servicing, in the broadcast and radio telephone communications field, at airports, and even in medicine and in hospitals, where electronics is rapidly increasing in importance. And there are hundreds of other jobs opening up as electronics continues to make great strides, in new ideas and developments.

Q. Can such a complicated subject as electronics be successfully taught by the home-study method?
A. Of course it can. ETI has proven that beyond a shadow of a doubt. Our graduates are working in practically every phase of electronics. This is largely due to the kind of instruction provided by ETI.

Q. I have a job, and as much as I would like to get into electronics, I can't afford to take time off. How do I get around that?
A. You don't have to take time off from your job. You study at home, in your free time. We do advise, however, that you set aside a certain time for your study schedule and stick to it, even if it's only a couple of hours a day. The beauty of the ETI way of learning is that you work at your own pace, making sure you've completed your assignment thoroughly and completely. We think you'll find, as you go along, that learning the ETI way can be fun.

Q. How long does all this take?
A. If your instructor receives your examination in the morning, in most cases he will have graded it, added his comments and have it on the way back to you that same afternoon. Service like this helps speed up your learning process—keeps your interest high—and puts you closer to your goal, the coveted ETI diploma.

Q. But I was never very big on books and study. I like to work with my hands.
A. With your ETI course, you'll get plenty of work with your hands. In fact, the ETI system of teaching combines hands-on work with study, so that you actually learn by doing. As you move along developing your technical knowledge, you will use, in many phases, specially developed Project Kits. So you apply your knowledge in logical, hands-on sequences, from the first step through completion of basic units.

Q. It all sounds very interesting and inviting. But I wouldn't want to commit myself before knowing more.

A. We wouldn't want you to. In fact, we insist that you check it out first. All you do is fill out the card or coupon and mail it to us. We'll send you a colorful new 48-page ETI Career Book that will give you the facts and the many opportunities ETI can open up for you. If you like electronics, you'll enjoy reading this book.

Q. Do I obligate myself in any way by sending for your book?
A. Absolutely not. The ETI Career Book is free, and it involves no responsibility on your part, nor will a salesman call on you. All we want to do is to be sure you have all the facts about ETI and what it can mean to your future. And you can get these facts and complete information about ETI's 16 different courses and programs in electronics by filling out and mailing the card or coupon to us today. We'll send you ETI's Career Book by return mail. We think it will be a real eye-opener for you. Mail the card or coupon today.
Tests Marantz Model CD-400B

by LEN FELDMAN
CONTRIBUTING HI-FI EDITOR

WHILE MANY QUADRIPHONIC RECEIVERS marketed in the last year or two include built-in demodulators for playing CD-4 quadractics, Marantz's line of 4-channel receivers are supplied without this circuitry (See test report of Marantz 4400 receiver). Accordingly, that company offers an add-on CD-4 demodulator that will work with any 4-channel receiver or amplifier that is equipped with discrete inputs (such as AUX) for all four channels of a quadriphonic receiver. A front panel view of the demodulator is in Fig. 1. Besides the power on/off pushbutton, there is a pushbutton selector switch that chooses 2-channel, 4-channel or automatic 4-channel operation and a centrally located pushbutton that selects PHONO or AUX operation. The reason for this choice of program sources will be explained when we examine the rear panel. A tiny light at the upper right of the panel becomes illuminated whenever a CD-4 record is being played.

The rear panel, shown in Fig. 2 has the expected pair of phono inputs and four jacks for the demodulated 4-channel outputs. In addition, there are four jacks for connecting any high-level 4-channel program source (such as tape, or even the decoded outputs of a separate matrix decoder). In this way, if your receiver has only one quartet of AUX (high level) inputs that must now be used for the CD-400B's outputs, the AUX input is repeated on this unit and selected by the previously mentioned front panel pushbutton switch. There is also a pair of jacks labelled "direct output" and a slide switch that connects these jacks to the phono inputs without going through any of the electronics of the unit. These might be used to connect from your cartridge directly to a matrix decoder, for example, since CD-4 cartridges will work just fine with either stereo or matrixed 4-channel discs. The switch must be left in the "off" position when using the CD-400B for its primary purpose, the demodulation of discrete 4-channel discs, so it does not load down the CD-4 cartridge with the extra cable capacitance that would result if these additional connections are made. A pair of separation controls (which are adjusted during initial set-up to match the characteristics of a small power transformer is mounted on the metal flanges of the chassis, rather than on the printed-circuit module. A block diagram of the CD-400B is in Fig. 4, illustrating signal paths for the left composite channel only. The phono cartridge signal is equalized (low frequency only) by block "A", amplified and passed on to the main and sub-channel systems. Low-pass filter (B) attenuates sub-channel frequencies and bias separation adjust control (C) sends the main-channel signal to amplifier (D).

High-pass filter (E) passes only frequencies above 15 kHz on to the phase-lock-loop detection circuit (a single IC that demodulates the FM difference signal (front minus back). Signals from the PLL circuit (F) also pass through a band-pass filter (G) that permits only 30kHz signals to be amplified. Lock range control (H) alters the gain of the phase-lock-loop circuit to accommodate different levels of 30-kHz signals and the signal rectified at (H) also operates a Schmitt trigger circuit that turns on and off the muting and indicator lamp circuits.

Low-pass filter (K) eliminates any residual 30 kHz components. The block labelled FM/PM equalizer restores the preemphasis characteristics of the sub-channel audio signal for flat frequency response reproduction. Several of the additional blocks shown have to do with the ANRS circuit that is an inherent part of the CD-4 disc system. Much like other frequency/level dependent noise reduction systems, ANRS is a variable gain system which depends upon signal level and frequency content of program material. Matixing of the sum-signal and recovered difference signal takes place in block (T) to produce separate front and back audio signals.

Laboratory Measurements
Without having available the equivalent of a CD-4 "encoder" (used to make CD-4 discs in the first place), there are only two types of measurements that can be made for a CD-4 demodulator. You can use any of the several test records made available for this purpose. But in doing so you are limited by the performance characteristics of the CD-4 cartridge used in making the tests. You can also "create" fixed difference signals, consisting of frequency modulated 30-kHz carriers, using an SCA

MANUFACTURERS SPECIFICATIONS:

SUM SIGNAL

Frequency Response: RIAA ±1 dB from 40 Hz to 12 kHz. Total Harmonic Distortion at 1 kHz 0.1%. Input Impedance: 100,000 ohms. Output Impedance: 5,000 ohms.

DIFFERENCE SIGNAL

Total Harmonic Distortion at 1 kHz: 0.1%, Signal-to-Noise Level: -80 dB. Muting Level: -68 dB. Input level for ±4 kHz lock-in range: -53 dB. Channel separation: Greater than 20 dB.

GENERAL SPECIFICATIONS

Power Requirements: 120 VAC, 50/60 Hz, 10 watts. Dimensions: 8 1/4" wide x 4" high x 12-11/16" deep. Net weight: 5.9 lbs. Suggested retail price: $139.95.
(subsidiary communications authorization) signal generator such as is used in transmitting background music over the sub-carrier facilities of FM radio stations. While such SCA generators are generally designed to operate at either 42 kHz or 67 kHz, it is no great problem to alter circuit constants so that the "carrier" frequency is shifted to the required 30 kHz.

In our lab tests, we used some of both techniques. For separation measurements, we used several of the 7-inch discs that are supplied with most demodulators. They are cut by JVC and are intended to help you set up your CD-4 playback system through audible tests alone. By metering the outputs of each channel we were able to measure 26 dB of separation from front-left to front-right channels, and just over 20 dB from either front channel to its corresponding back channel, using a Bang & Olufsen Model MMC-6000 cartridge.

Standard FM deviation for the difference signal stated by the manufacturer is 1.3-kHz deviation of 30 kHz by a 1-kHz signal. Under these conditions, output level (using only a "difference" signal was approximately 100 mV and THD at 1 kHz measured 0.5%. Using a "sum" signal, THD was much lower, measuring only 0.07% for the same equivalent output level. Again, using a sun signal only, frequency response of the system was within 1 dB of RIAA from 20 Hz to 10 kHz, rolling off to -3 dB at around 14.5 kHz. Response of a difference signal (equalized to RIAA) was within 3 dB of the prescribed response from 20 Hz to 11 kHz. At 1 kHz, output levels reached in excess of 0.5 volts before the total harmonic distortion reached 1.0%, using the SCA generator difference signal as an input. The B & O MMC-6000 cartridge has somewhat lower output than some competitive units, but lock-in of the PLL circuit was positive even with this cartridge when playing test records and when listening to musically recorded CD-4 examples in our subsequent listening tests.

RADIO-ELECTRONICS PRODUCT TEST REPORT

Manufacturer: Marantz
Model: CD-400B

OVERALL PRODUCT ANALYSIS

- **Retail Price:** $139.95
- **Price Category:** Medium
- **Price/Performance Ratio:** Very good
- **Styling and Appearance:** Excellent
- **Sound Quality:** Good
- **Mechanical Performance:** Very good

Comments: The final judgment regarding the effectiveness of any accessory product such as a CD-4 add-on demodulator must be made on the basis of listening tests. Unfortunately, early reaction to CD-4 discs generally was negative not so much because the discs were that bad or that noisy, but rather because the first generation of CD-4 demodulators offered to the public were not capable of demodulating the complex signal contained in the grooves of these records in a satisfactory manner. The Marantz CD-400B is definitely a "second generation" design, and as such, we found it capable of demodulating CD-4 records (both older releases and newer ones) in a manner which does justice to the complex CD-4 format. The use of phase-lock-loop circuitry makes the difference, and, while it does add to the overall cost of the demodulator it is well worth the difference. Adjustment of the unit was simple and took just a few moments with the test record supplied. Only separation adjustments need be made by the user, since the carrier level adjustments are internal and factory pre-set.

With its seven IC's, ten transistors, two FET's, sixteen diodes and literally hundreds of resistors, capacitors, chokes and miscellaneous parts, it is easy to understand why a demodulator of this advanced design would be difficult to "build-in" to an all in one receiver. As a separate CD-4 demodulator, the Marantz CD-400B is one of the best we have tested.

This is the sixth consecutive issue of Radio-Electronics that contains in-depth test reports on high-fidelity equipment. By now our readers should be familiar enough with these reports to have formed opinions.

We would like to hear your opinions, comments and criticism concerning these reports:

Please address them to:

High-Fidelity Test Reports

Radio-Electronics
200 Park Ave. South
New York, NY 10003

January 1976
LUX AUDIO OF AMERICA IS PERHAPS A NEW name to most readers of R-E and to the high-fidelity fraternity in this country. Indeed, the company appeared upon the U.S. scene in mid-summer of 1975, surprising the experts with the introduction of no fewer than fourteen high-priced components. Obviously, the parent company of this fledgling U.S. subsidiary has been around for some time in its home territory of Japan (for nearly 50 years, in fact) and is, according to our information, highly regarded by Japanese audiophiles as well as by Europeans and in other Asian countries where the line has enjoyed distribution for some time.

Of all the products introduced here, we decided to check out a high-powered integrated amplifier which seemed to look interesting and had a few features we had never seen before. At just under $1000.00, our attitude initially was one of doubt. The L-100 would really have to be something special to justify that kind of money. Well, it is.

An overall view of the three-dimensional heavy bronze-colored front panel is shown in Fig. 1. Most striking is a massive master volume control knob, shown up close in Fig. 2. The knob has a metal insert in its face and another metal collar around its rim and this trim is more than decorative. After applying power by means of the pushbutton switch just be-

TABLE I

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Lux Audio of America</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>L-100 Integrated Amplifier</td>
</tr>
</tbody>
</table>

AMPLIFIER PERFORMANCE MEASUREMENTS

<table>
<thead>
<tr>
<th>Category</th>
<th>R-E Measurement</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Output Capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMS power/channel, 8-ohms, 1 kHz</td>
<td>140</td>
<td>Excellent</td>
</tr>
<tr>
<td>RMS power/channel, 8-ohms, 20 Hz</td>
<td>123</td>
<td>Good</td>
</tr>
<tr>
<td>RMS power/channel, 8-ohms, 20 kHz</td>
<td>120</td>
<td>Very good</td>
</tr>
<tr>
<td>RMS power/channel, 4-ohms, 1 kHz</td>
<td></td>
<td>Excellent</td>
</tr>
<tr>
<td>RMS power/channel, 4-ohms, 20 Hz</td>
<td></td>
<td>Good</td>
</tr>
<tr>
<td>RMS power/channel, 4-ohms, 20 kHz</td>
<td></td>
<td>Very good</td>
</tr>
<tr>
<td>Frequency limits for rated output</td>
<td>17-35</td>
<td></td>
</tr>
</tbody>
</table>

Distortion Measurements		
Harmonic distortion at rated output	0.005	Superb
Intermodulation distortion, rated output	0.035	Excellent
Harmonic distortion at 1 watt output	0.005	Very good
Intermodulation distortion at 1 watt output	0.024	Very good

Damping Factor, at 8 OHMS		
Frequency response (Hz-XkHz, = ____ dB)	0.2	Excellent
Maximum input before overload (mV)	450	Superb
Hum/noise referred to full output (db)	68	Very good

High Level Input Measurements		
Frequency response (Hz-XkHz, = ____ dB)	5-50, -1	Excellent
Residual hum/noise referred to full output (db)	87	Very good
Residual hum/noise (min. volume) (dB)	98	Very good

Tonal Compensation Measurements		
Action of bass and treble controls	See Fig. 8	Superb
Action of secondary tone controls	See Fig. 10	Excellent
Action of low frequency filter(s)	See Fig. 9	Good
Action of high frequency filter(s)	See Fig. 9	Good

Component Matching Measurements		
Input sensitivity, phono 1/phono 2 (mV)	2.8/2.8	
Input sensitivity, auxiliary input(s) (mV)	177	
Input sensitivity, tape input(s) (mV)	177	
Output level, tape output(s) (mV)	177	
Output level, headphone jack(s) (V or mW)	0.39V; 20mW	

Evaluation of Controls, Construction and Design		
Adequacy of program source and monitor switching		Excellent
Adequacy of input facilities		Excellent
Arrangement of controls (panel layout)		Very good
Action of controls and switches		Excellent
Design and construction		Very good
Ease of servicing		Good

OVERALL AMPLIFIER PERFORMANCE RATING

| Manufacturer’s Listed Specifications: |
| Power Amplifier Section: |
| Power Output: 110 watts minimum continuous power per channel, 8-ohm loads, 20 Hz to 20,000 Hz at no more than 0.05% total harmonic distortion, THD Distortion: 0.05% at rated output, Frequency Response: 5 Hz to 50,000 Hz ±1 dB, Input Sensitivity: 910 millivolts for full output. Input Impedance: 33,000 ohms. Residual Hum and Noise: -90 dB below rated output. Damping Factor: 50 (at 8 ohms). |

| Preamplifier Section: |
| Output Voltage: typically 910 mV; maximum 12 volts. Frequency Response: 5 Hz to 50,000 Hz, ±1.0 dB. Total Harmonic Distortion: ±0.07% at 1 kHz, 1-Watt output. Input Sensitivity: Phono: 3 mV (variable ±5 dB). High Level: 180 mV. S/N Ratio (Phono): Better than 65 dB. Phono Overload: 450 mV. RIAA Equalization: ±0.2 dB. Residual Hum and Noise: Less than 40 µV. Cross-talk: Better than -60 dB. |

| General Specifications: |
| Power Consumption: Maximum: 400 watts at 120 volts 60 Hz. Dimensions: 19½” wide by 6¾” high by 13¼” deep, including cabinet supplied. Net Weight: 42 lbs. Suggested Retail Price: $995.00. |
TABLE II
RADIO-ELECTRONICS PRODUCT TEST REPORT
Manufacturer Lux Audio of America, Ltd.
Model L-100

OVERALL PRODUCT ANALYSIS
Retail Price $995.00
Price Category High
Price/Performance Ratio Excellent
Styling and Appearance Excellent
Sound Quality Superb
Mechanical Performance Excellent

Comments: Were it not for those massive heat-sinks at the rear of the Lux L-100, we would have thought for all the world that this elegantly styled unit is a most sophisticated preamplifier rather than an all-in-one integrated amp. In fact, Lux does carry a preamp in its line whose front panel has every single one of the features of the L-100. Since that model sells for only $100.00 less than the tested L-100, we feel that the L-100 offers better value unless you actually need much more than 110 watts-per-channel of audio power—and very few people actually do. Every control has a precision feel to it and while at first we thought the "touch mute" feature was a needless (and expensive) frill, we were surprised at how often we found ourselves using it during the course of our listening tests. The "Linear Equalizer" circuit, though subtle in its audible action, is a unique compensator that does for recordings what no tone control (not even those multi-turnover ones on this model) can do and we found that it improved reproduction on many of our records whose recording technicians must have disagreed with our ears.

Lux makes a statement regarding its design philosophy which, briefly, suggests that there is more to a good sounding high-fidelity amplifier than measured specifications. We must agree, since we heard a clarity and effortless power capability that is hard to describe in words but definitely is audible, even if you are not using the most expensive loudspeakers in the world. Obviously, one cannot hear 0.05% harmonic distortion, but we have listened to other amplifiers in the same power class that do not sound as clean, or as lifelike in their reproduction of music, and yet measure as low in distortion. There is much we still don't know about what makes one amplifier sound better than another—but Lux seems to have found some of the answers, at least.

![Image of Lux L-100 Amplifier Diagram]

The center of the panel (see Fig. 4) contains seven three-position toggle switches. The feel of these switches has got to be tried to be believed. Smooth, yet positive and noiseless. These switches take care of tone defeat, tone control operation, or tone control operation with a fixed bass-boost below 70 Hz; lower and high-cut filters (each with two frequencies of cut-off), left or right program to both speakers; stereo, mono or reverse-channel listening; dubbing from one tape deck to another (or vice versa) and tape monitoring (of either of two tape decks connected to the amplifier). Two small screwdriver-adjustable controls below the toggle switches are used to set phono input impedance for the phono-1 input and to set input sensitivity for both phono input pairs to match cartridge outputs.

The low-level input and output section of the rear panel is shown in Fig. 5. Speaker connection terminals for main and remote sets of speakers are at the opposite end of the rear panel (not shown), and are of the push, spring-loaded type that require only simple insertion of the stripped speaker wire ends into tiny holes. The section of the rear panel shown in Fig. 5 contains the usual PHONO and AUX input jacks, an input LEVEL control for the tuner inputs, RECORD-OUT and MONITOR-IN jacks for two tape decks (the second of which may be connected via a multiple pin DIN connector as well) and a GROUND terminal. There are also jacks for PREAMP-OUT and MAIN-AMP in which come supplied with jumpers that can be removed (continued on page 66)
ALL ABOUT PROBES

Test leads, transmission lines, terminators and probes are as much a part of a measurement system as the test equipment itself.

by CHARLES GILMORE*

IT IS DIFFICULT TO DEFINE A THREE-FOOT length of RG-58/U cable as an instrument, but it is more difficult to use any instrument if there are no probes, cables, connectors, terminators, etc. As the theory, specifications, and operating techniques are the same for these devices when used with any instrument discussed in this series of articles, they deserve a thorough discussion of their potential.

Devices which interconnect instruments may be divided into three categories: test leads, transmission lines, and probes. Each of these categories will be examined in this article so that the fundamental concepts are clear and the basic dividing lines between interconnection devices and another are established.

Test leads

Test leads are the simplest form of interconnection possible. In many cases they consist of nothing more than a single-wire conductor for the signal and a second such wire for the return. Such leads are common on DC voltmeters and AC voltmeters used to measure low-frequency signals. Frequently, only one wire is apparent because the common ground system between the instruments acts as the return path. This system is quite acceptable so long as the signals are of high amplitude, low frequency, and are from low impedance sources.

It is important to remember that the return path is always necessary. Often when using high-frequency circuits, a single lead will appear to be the only point of connection. Don't be misled; electricity is still electricity, and return paths are required. The path taken for the return signal may change the measured signal considerably. It is always wise to determine just what the return path is.

When the source impedance is high or the signal amplitudes are low, interference may develop on a simple open-wire test lead. The solution to this problem may be a twisted cable. Interference on the simple open-wire test lead may be caused by the signal and common wire being subjected to uneven electrical fields (see Fig. 1). One of the advantages of the twisted cable is that it cancels the electric fields. The shielded twisted cable cancels the interfering signal by the distributed capacitance and inductance of the cable. The distributed capacitance and inductance are determined by the mechanical dimensions of the line. As a voltage/current ratio has units of resistance, this natural voltage/current ratio of the transmission line is referred to as the characteristic impedance.

If a coaxial transmission line is terminated in a resistive load that will maintain the same voltage/current ratio caused by the characteristic impedance of the line, all the transmitted power will be absorbed by the load. If, however, the resistance of the load differs from the characteristic impedance of the transmission line, some of the power will be reflected back along the line. Reflected power results in standing waves that occur when the reflected signal adds and subtracts with the transmitted signal. Voltage and current maxima and minima occur at wavelength multiples along the line.

One of the most frequent effects on instrumentation of standing waves is an apparent signal loss. If a voltage minimum occurs at a point where an instrument is connected to the cable, a voltage of much less amplitude than intended is presented to the instrument, which then appears to lack sensitivity.

The opposite can also happen, and too great a signal may be applied to the instrument. Neither of these conditions would have occurred if the line was flat; i.e., terminated in a resistance equal to its characteristic impedance.

Another problem occurs when the coaxial transmission line is being driven with a square wave or some other form of pulse. If the line is not terminated in its characteristic impedance, the reflections may produce additional pulses on the line. If an instrument such as a frequency counter is connected to this line, it may count these extra pulses resulting in an erroneously high measurement.

If the transmission line is not driven by a source having an output impedance equal to the characteristic impedance of the transmission line, two problems may occur. First, there will not be maximum power transfer to the line nor, therefore, to the load. For example, a 600-ohm

FIG. 1—INTERFERENCE is generated on one of a pair of test leads. This effect can be reduced to some extent by bringing the two test leads into close proximity.

FIG. 2—A CAPACITIVE DIVIDER can be formed between a cable or other source of interference and a test cable.

FIG. 3—PLACING A SHIELD around a test cable cancels the capacitive-divider effect that once existed from the interfering source to the test cable to ground.
generator cannot supply maximum power to a 50-ohm system. Second, reflections will occur. These reflections will be propagated back to the generating source. If the generating source does not present an impedance equal to the characteristic impedance of the line, the reflected power will not be absorbed at the generating end and further reflections will occur. This effect will increase the standing waves and the probability of measurement error.

The problem of power transmission in a coaxial cable is important where voltage is the parameter of interest. The coaxial cable must be properly terminated in order to prevent error causing reflections and a low impedance system will be necessary. This impedance will usually lie between 50 and 93 ohms. If, for example, a 1-volt signal is to be transmitted from one location to another, this 1 volt must be maintained across 50 ohms. By the formula for power, \(P = \frac{E^2}{R} \), we can see that 20 milliwatts of power is involved. Compared to the power involved on a 1-megohm system (one microwatt), considerable power is involved. To maintain this 1 volt throughout the system, 20 milliwatts of power must be maintained. In order to supply a 1-volt signal, the generator must have at least 20 milliwatts of power generating capability. If we desire 10 volts on a 50-ohm system, the generator must be capable of 100/50, or 2 watts of power.

Equipment probes

At first probes were nothing more than a simple method of attaching a test lead to a circuit. The classic test probe supplied with a VOM still retains this original simplicity. As measurement techniques have improved, the simple probe proved to be no longer effective in certain measurement applications.

One of the most ineffective cases was that of the simple probe attached to the end of a shielded cable. This combination served as a convenient method of transmitting interference free signals from the point of measurement to the instrument. At low frequencies, such a system was quite acceptable. As the measured frequency increased however, the capacitance of the cable began to have a serious loading effect on the circuits being measured.

For example, consider a simple measurement where a source with an effective impedance of 1000 ohms and a frequency of 1 MHz is to be measured. A 3-foot length of RG-58/U coaxial cable is used in conjunction with an oscilloscope having an input impedance of 1 megohm shunted by 30 pF. The total capacitance at one end without the 30 pF from the oscilloscope plus an additional 85.5 pF from the RG-58/U (28.5 pF-per-foot). If the effects of the capacitance are not taken into account, the loading caused by the 1 megohm oscilloscope on the 1000-ohm source impedance of the generator will cause less than 0.1% error. See Fig. 4.

However, this ideal situation is not the case. The total shunt capacitance is 115.5 pF (see Fig. 5). At 1 megahertz this has an impedance of 1378 ohms. The 1 megohm of the scope is so dwarfed by the low capacitive reactance that it may be left out of the picture entirely. Simple calculation shows us a resistive/capacitive voltage divider has been formed, and the 10 volt signal at the generator is now presented to the oscilloscope as a signal of 8.1 volts, phase shifted by 39°. All this at only 1 megahertz.

If the signal frequency is increased to 10 MHz, the capacitive reactance is now 1380 ohms. The voltage presented to the oscilloscope is reduced from the actual 10 volts of the source to less than 1.4 volts by loading of the source impedance with the cable capacitance. In other words, the amplitude error at one megahertz is 19% and at 10 megahertz it is greater than 86% in error.

Obviously such a large error cannot be tolerated. It is also obvious that all the capacitance in the system cannot be eliminated, nor can all the source impedance be eliminated. One method of combating such error is to attempt to measure the signal at known low impedance points. This is not always possible, and as the measurement frequency increases, even low impedance sources will be affected by capacitive loading.

The passive probe is employed to reduce the measurement capacitance. Placing two capacitors in series results in a total capacitance lower than the smaller capacitance of the two. Figure 6 shows the passive probe. A second capacitor \(C_2 \) that is one ninth the total capacitance of the cable and the oscilloscope combined \((C_2) \) is placed in series with the signal being supplied to the cable. The results of this added capacitor are three fold. First, the capacitive loading of the source is now less than one tenth the value of the cable and scope alone. Second, the two capacitors act as a ten-to-one voltage divider with a division ratio that is constant at all frequencies so long as the ratio of the two capacitors remains the same and the effects of the 1-megohm shunt resistance is negligible. Third, the probe is no longer useful at DC.

For the final reason, the oscilloscope probe is modified as shown in Fig. 7. Here a resistor \(R_s \) has been added in parallel with the series capacitor. This resistor and the 1-megohm resistance of the oscilloscope form a low-frequency DC voltage divider having exactly the same ratio as the capacitive divider. A variable shunt capacitor is usually added across the probe output so the capacitive division ratio may be adjusted to exactly match the fixed resistive division ratio. This permits one probe to match instruments with different input capacitances. To further complicate the design of such a passive probe, the center conductor of the cable is usually made of a resistive material. The resistive center conductor damps ringing associated with a coaxial cable that is not properly terminated in its characteristic impedance.

Passive probes usually come as decade values. The \(\times 10 \) term is by far the most popular. Occasionally a \(\times 100 \) is desired as input capacitance is further reduced and a 100-megohm input impedance is achieved. Of course this is accompanied by an attenuation factor of 100, which tends to desensitize all but the most sensitive measurement equipment. Occasionally a division factor of 50 will be found on a passive probe. Note that while the probe acts as a voltage divider, the name is given as a multiplier (e.g. a \(\times 10 \) probe divides the input signal voltage by a factor of 10). The \(\times 10 \) term indicates the multiplication factor that must be applied to a displayed signal in order to achieve the correct amplitude.

Other forms of probes other than the low-capacitance probe are available for special use. The RF and the demodulator probe have a great deal in common. Both of these are specialized probes using diode circuits to rectify RF signals. The simple RF probe will be similar to the one shown in Fig. 8. Radio-frequency signals present at the input of the probe are rectified by the diode. The resultant DC voltage is filtered by the capacitor. The probe may also contain some series resistance which will, (continued on page 67)
For Special Music Effects

BUILD A PORTABLE SYNTHESIZER

by JOHN S. SIMONTON, JR.

THE LAST TWO PARTS OF THIS ARTICLE (November and December 1975 issues) covered synthesizer fundamentals, a detailed description of the GNOME and the construction details. This third and concluding part is a short tutorial on synthesizers.

A short tutorial on synthesizers

Before we get into the operation of the GNOME's controls, a short discussion of synthesizers in general is in order for those whose exposure has been limited.

Every natural sound-producing system can be broken down into several separate elements. Ordinarily, the first element in the chain is an energy source. A violin draws energy from the bowing action of the performer, a guitar from the deforming force of the fingers on the strings, and wind and reed instruments from the breath of the musician.

The second element is some means of converting the energy added to the system into periodic oscillations of a pre-determined frequency. In a guitar, the elasticity of the strings cause them to vibrate when deformed and released. In a saxophone, thereed converts the steady breath of the musician into a series of pulses.

The last element is some means of coupling the oscillations that are occurring in the instrument into the air so that they can be heard. In a guitar, the function is performed by the body of the instrument. In a piano, this is accomplished by the sounding board. The individual characteristics of each of these elements interact to determine how the instrument will sound to a listener.

Dynamics

If the energy is added to the system in a single pulse—as in picking a guitar string or striking the keys of a piano—the instrument is of the percussion family, and all such instruments have the common characteristic of sound intensity at its highest level immediately after the striking action. The period during which the sound output of an instrument is building to its maximum is known as "attack" and this instantaneous rise to a peak is called "percussive attack." In natural percussion instruments, the attack is immediately followed by a "decay" period during which the instrument dissipates the energy that was added by the striking force. During the decay, the sound level falls to zero from the peak it reached during the attack. The decay period may be of short duration as it is in drums or a long duration as it is in pianos. The decay is again a function of the instrument.

If the energy is added in a continuous flow, the attack and decay may be separated by a sustain interval during which time the output of the instrument can be relatively constant. As long as a violinist bows the instrument, sound comes out. As long as the musician's breath holds out he can get a sustained note from his piccolo.

Figure 12 shows an attack/decay and an attack/sustain/decay envelope, which is shown in c. The sustain envelope is shown in b. Figure 12-a would be typical of a percussion instrument while Fig. 12-b is the envelope that you would find in wind or brass instruments. Taken together, attack, sustain and decay are known as dynamics and the dynamics of an instrument make up by far the largest contribution to how that instrument will be perceived by a listener.

Timbre

But, all instruments that are capable of producing sustained intervals don't sound alike—a trumpet doesn't sound anything like a flute—so there are obviously other differences as well. Timbre is the term ordinarily used as a label for some of these differences.

The individual timbral characteristics of instruments are the result of two interacting phenomena. First, the "waveshape" of the oscillations produced by the vibrating element and secondly, the resonant characteristics of the coupling device that transfers the energy from the vibrating element to the air.

Not everything vibrates the same way and Fig. 13 shows four examples of the waveforms produced by the "oscillators" in natural instruments. Figure 13-a is typical of the waveform produced by most bowed instruments. This generally is known as a ramp waveform. In a violin, for example, it is caused by the bow grasping a string and deflecting it until the friction of the rosins on the bow is overcome and the string snaps back and is grasped again. Figure 13-b shows a triangle waveform that is typical of the back and forth...
oscillatory motion of the body of air within a flute. Figure 13-c shows a square wave that is usually produced when one or more reeds alternately open and close to allow bursts of the musicians breath to pass into the instrument. Figure 13-d shows a pulsed waveform that is often the result of a perforator's compressed lips on the mouthpiece of instruments in the brass family. Do not be confused and think that these waveshapes represent the sound of the instrument. These diagrams represent only the way that the vibrating element is behaving, the actual sound results from these waveshapes as modified by the instrument's natural resonator.

Figure 14 shows a sine wave. A sine wave is sort of a strange beast because while there are almost no natural instruments that produce it, it is the only pure tone and all of the waveforms shown in Fig. 13 (in fact any periodic waveform) can be broken down into sine wave components. The number, amplitude, frequency and phase of the various sine waves required to produce non-sinusoidal complex waveforms are ordinarily called the harmonic structure of the waveform. Harmonic structure is a concept that is critical to complete understanding of sound synthesis but in the interest of brevity cannot be covered here.

Every physical object that exists will vibrate when exposed to an energy source. Every physical object has certain frequencies at which it tends to vibrate better than others. The object is said to be "resonant" at these frequencies. If the energy applied to the system is the same as one of the resonant frequencies of the object, then the object will vibrate more energetically than when the energy source is not at one of the resonant frequencies.

The body of the musical instrument contains resonant chambers that filter out the non-resonant frequencies. Because of this filtering property, waveshapes consisting of various sine-wave harmonic components go into one end of an instrument and come out the other with the sine wave frequencies of the waveshape accentuated if at resonance and attenuated if off resonance. Because the amplitude of the sine wave components are altered, the waveform is altered. Square waves go into one end of a saxophone and a “ringing” waveform such as the one represented in Fig. 15 comes out (Note: Fig. 15 is an exaggeration for illustration purposes only, the output of a saxophone is much more subtle than that shown). In some instruments, the characteristics of the resonant chamber are constant, as in stringed instruments. In other instruments—wind and brass instruments for example—the parameters of the resonators must be altered to even closely approximate an equally tempered musical scale.

Synthesizers

Now that we have some idea of how the mechanical properties of a musical instrument determine the reproduced sound, we will look at how electronic circuits can be used to create those mechanical properties.

The electronic equivalent of vibrating strings, reeds, etc., is the oscillator. Just as the different types of vibrating elements in natural instruments can produce a variety of waveforms, so can the electronic oscillators in synthesizers. Must synthesizer oscillators are capable of producing at least ramp, triangle and pulse waveforms with the added capability of making the pulse so broad that it becomes a square wave. Many synthesizer oscillators can also produce a sine wave, but since a pure tone doesn’t appear very often in natural instruments, a sine wave from a single oscillator isn’t very interesting in electronic music. In any case, a triangle wave is very close to the same sound as a sine wave.

The pitch of natural instruments is determined by the length of the vibrating string, the pressure on the reeds or the configuration of the musicians lips and
properties of the resonant chamber. In synthesizers, the pitch (frequency) of the oscillator is determined by the magnitude of a control voltage applied to a voltage-controlled oscillator (VCO).

Control voltages can be derived from a number of possible sources including strip controllers (as with the GNOME), keyboards, programmable sources of various types (sequencers, function generators, etc), foot pedals and so on. All of these controllers have in common the fact that some action on the part of the operator produces predictable changes in the controller's output voltage.

In the simulation of an instrument's dynamics, synthesizers diverge slightly from their counterpart mechanical systems. It would be natural to assume that the oscillator is "keyed" or "triggered" in some sort of way to make its attack and decay simulate the natural instrument equivalent. In fact, the output of the oscillator is constant and the building up and dying away of the sound is implemented by varying the gain of an amplifier. As you can imagine, it would be at best cumbersome to twiddle the knob of an amplifier fast enough to simulate percussive attack but here again voltage control comes to the rescue in the form of a voltage-controlled amplifier (VCA).

In synthesizers, the gain of the amplifier is made proportional to the magnitude of a control voltage and in most cases this controlling voltage is generated by a programmable function generator.

A function generator is simply an electronic circuit that in response to a triggering signal produces a voltage that rises to pre-set level in an amount of time set by one control knob (ATTACK) and then falls back to zero in an amount of time set by a second knob (DECAY). Sustain is ordinarily handled by keeping the triggering signal on for the desired sustain interval.

Figure 16 shows a typical example of an oscillator feeding a VCA that is being controlled by a function generator to produce a desired envelope.

This leaves us with only one of the most basic natural properties to simulate—timbre. As with mechanical instruments, many of the timbral properties of a sound are the result of the excitation waveform produced by the vibrating element in the instrument and the remainder of the timbral properties are the result of the characteristics of the resonator that couples those vibrations to the air. Earlier we discussed the filtering characteristics of natural resonators because we were leading up to the use of an electronic filter as an equivalent circuit for this mechanical property.

The type of electronic filter used in the GNOME is the bandpass filter. A sine-wave applied to the input of bandpass filter will pass through relatively unchanged if it is at this center frequency of the filter but will be attenuated if at some other frequency. Similarly, the sine

(continued on page 82)
Turntable Drive Systems

The idler-wheel, belt drive and direct drive systems are examined along with their effects on rumble and wow-and-flutter.

by LEN FELDMAN
CONTRIBUTING HI-FI EDITOR

Several months ago we examined the various ways in which turntable rumble can be specified. (See "Signal-to-Noise: What Does It Mean," Len Feldman, Sept. 1975 issue.) Aside from rumble and vibration (which determines the signal-to-noise capabilities of a turntable system), the only other performance specification that is relevant to record reproduction is the speed accuracy and consistency of turntable rotation. Speed accuracy is usually stated in maximum percentage deviation from the desired speed (usually 33⅓ or 45 RPM), while periodic or cyclical variation above and below true speed (also expressed in percent) is referred to as wow and flutter. Wow is a slow repetitive speed change, generally occurring at a rate of less than 10 Hz, while flutter is any periodic variation in speed which occurs at a rate of more than 10 Hz.

Both rumble and wow-and-flutter are directly related to the type and quality of drive system used to rotate the turntable. In recent years, manufacturers have begun to stress the sophistication and perfection of their turntable drive systems. They have gone into great detail about motor type and construction, method of coupling rotational energy from motor to the turntable itself, and generally tried to prove (verbally) that their particular choice of drive system is superior to everyone else's. Actually, there are only three basic ways that a phonograph turntable can be made to revolve. These are indirect pulley/idler-wheel drive, belt drive, and direct drive.

Idler-wheel drive
A simplified diagram of pulley/idler-wheel drive is shown in Fig. 1. A high-speed motor (generally having a rotational speed of 1800 RPM) is equipped with a precision machined multi-step pulley permanently mounted to its shaft. An intermediate idler wheel, generally constructed of hard rubber or similar non-metallic material, presses simultaneously against the motor pulley and against the inner rim of the turntable itself. Since rotation of the typical motor is much faster than the required turntable speed, it is necessary to "step down" the speed of rotation. This is done by establishing precise diameters on the motor pulley. These diameters are approximately 0.0185 as great as the inner turntable diameter for 33⅓ RPM, and 0.025 as great as the inner diameter of the turntable rim for 45 RPM. As an example, if the inside rim of a turntable is machined to a diameter of 10 inches, the 33⅓ RPM "step" on the motor pulley will be 0.185 inches in diameter and the 45 RPM "step" will be machined to 0.25 or ⅛-inch diameter.

The purpose of the idler wheel is twofold. First, because it is made of slightly compressible material, it tends to absorb some of the vibration produced by the high-speed revolving motor. This same compressibility also tends to smooth out the motor systems use synchronous motors, whose speed is dependent only upon power-line frequency (60 Hz in the U.S., 50 Hz in most other parts of the world). Many manufacturers of record players that use the pulley/idler-wheel drive system will supply alternate motor-shaft pulleys (and sometimes alternate idler wheels to match) for conversion from 60 Hz to 50 Hz operation.

Speed accuracy and adjustment
The speed consistency of a synchronous motor has led many people to believe that any turntable that uses this type of motor will, of necessity, rotate at the correct speed. It should be obvious from the discussion above that this is not true. Such turntables will rotate at a consistent speed that may or may not be exactly 33⅓ or 45 RPM. This depends upon the precision with which the motor shaft pulley, idler wheel and turntable rim have been fabricated. Since motor speed is constant, however, the only way to provide some of the speed variations which might be introduced by minor eccentricities of the motor pulley diameter and of the turntable inner rim diameter. Secondly, the idler wheel serves as a convenient means for changing speeds in a multi-speed turntable system. The idler wheel is coupled mechanically to a speed-changing lever which causes it to move up and down and to engage the appropriate diameter on the motor pulley.

Drive motors used in this type of drive system are either induction types or synchronous motors. Since induction AC motors are subject to speed variations based upon fluctuating supply voltages, better speed adjustment on units using this system is to include some means for varying the diameter relationships which determine ultimate turntable speed.
A simple way to do this is shown in Fig. 2. Here, the motor shaft pulley steps are tapered and a means is provided for having the vertical position of the idler-wheel up and down the surface of the motor pulley so that it engages varying diameters. As the idler moves up, turntable speed will decrease, while downward motion causes the rotation to speed up.

The "trouble" frequencies of idler drive

There are several problem frequencies involved in this kind of drive system that can produce periodic variation of speed (wow and flutter) as well as vibration which shows up as audible rumble. First, of course, the fundamental motor rotation at 1800 RPM is the same as 30 Hz (1800/60), so that speed variation and vibration can be introduced at a once-per-motor revolution rate of 30 Hz. Then, there is the speed of rotation of the idler wheel itself, which may vary from design to design.

If the idler wheel diameter is eight times that of the motor pulley, a new once-per-revolution frequency of just under 4 Hz is introduced. Any irregularities on the surface of the idler, or any uneven friction in its bearing surface which occurs at one point-per-revolution will introduce "wow" at a 4-Hz rate. Unhappily, this is the "wow" rate which seems most audible to listeners. Finally, there is always the possibility that the turntable itself may be eccentric, so that a speed variation that occurs at 2 Hz (1/33.3) may be sensed by the listener.

The motor itself, though rotating at 1800 RPM, is usually a 4-pole motor and in poorly designed motors there may be torque pulses which occur at twice or even four times the rotation rate, leading to rumble and flutter frequencies of 60 and even 120 Hz. It should be pointed out, however, that a well designed idler-drive system need not have any of these problems. It all depends upon the precision of the machining, materials used, and overall quality of motor and associated drive parts. Most record changers use this drive system. A typical turntable system employing the idler-drive is shown in Fig. 3.

Belt drive systems

The intermediate idler wheel can be eliminated if a belt (made of rubber, neoprene or a similar compound) is used to translate rotational torque of a motor directly to an inner rim on the underside of the turntable itself, as illustrated in Fig. 4. Proponents of this approach claim that the intervening belt absorbs motor vibration more completely and that greater precision of rotation is possible using this drive system.

FIG. 4—BELT-DRIVE turntable system.

The B.I.C. turntables, recently introduced by British Industries Company, have apparently solved that problem and have successfully combined the advantages of belt-drive with multiple-record handling facilities. A photo of one of their two available models is shown in Fig. 5.

While basic motor requirements remain the same whether a belt drive or an idler wheel system is used, there has been a growing tendency to use slower speed motors in belt drive systems. By increasing the number of poles in a synchronous motor, speed of rotation is reduced. Thus, the 24-pole synchronous motor used in the B.I.C. units (and more recently in the single-play Stanton 8004 turntable shown in Fig. 6) rotate at a fundamental speed of 300 RPM. A second, internal rim on the underside of the turntable is cast and machined to a much smaller diameter than the inside of the outer turntable rim so that speed step-down is correct for the required 33⅓ and 45 RPM turntable speeds.

While in theory a properly designed belt drive system should be "quieter" than an idler-system, much depends upon the quality of the belt itself. If it is at all lumpy or bumpy along its surface, these variations in thickness can impart their own vibrations and speed variations to the driven turntable. For this reason, many belts are precision ground after molding to insure perfectly smooth surfaces.

As for the multi-pole slower speed drive motors, a 300 RPM motor will, of course, have a fundamental once-per-revolution frequency of 5 Hz. Since this frequency is well above the audible limits of human hearing, its effect in the overall "rumble" picture should be less audible. Essentially, this is true, but there are qualifications to consider. Even though the predominant rumble frequency may be only 5 Hz, if your amplifier is direct-coupled (and has good response down to that low frequency), enough 5 Hz rumble may cause your speaker system's resonance tone to undulate wildly at that low, low frequency.

While the 5 Hz itself is not audible, if the speaker cone is forced out of its linear operating region because of this energy, musical frequencies that are being reproduced simultaneously may become highly distorted. A good check for this is to remove the speaker grille while auditioning one of these turntables equipped with slower speed motors and watch what happens with the volume turned up fairly high during a quiet passage on the record. If the speaker cone is waving wildly in the breeze, reach for the low-cut rumble (sub-sonic) filter on your amplifier panel, or choose another turntable system.

Remember, too, that sub-multiples and multiples of the basic 60-Hz power line frequency can also find their way into these systems (30 Hz, 60 Hz, 120 Hz etc.), though usually their amplitude will be lower in these slow-speed motors.

We mentioned before that the only way to adjust speed on any turntable using a synchronous motor is by changing diameter relationships between the motor pulley and the turntable drive rim. That is true, so long as the motor is driven directly from the utility power line. It is possible, however, to drive a synchronous motor by internally generated AC voltages, produced by built-in 60-Hz oscillators. That is exactly what is done in the B.I.C. model 980, which uses a low-voltage AC 24-pole synchronous motor that operates from about 6 volts. An electronic circuit incorporates a Wien bridge oscillator (one of the most stable oscillators known) that in turn drives a small power amplifier, producing the needed few watts of 60 Hz power to drive the low voltage motor.

Since the frequency of a Wien bridge oscillator can be easily varied by means of a variable resistor in the oscillator's feedback circuit, all that's needed for speed adjustment is a customer-accessible control knob which adjusts this resistance value. Increase the oscillator frequency to 62 Hz or reduce it to 58.8 Hz and you have a ±2% speed adjustment capability without having to change any pulley diameters. In theory, at least, even the change from 33⅓ to 45 RPM could be accom-
plished in this way, although B.I.C. chose to retain the two-step pulley in their design.

Direct-drive turntables

Long ago, transcription turntables used in broadcast studios were called direct-drive turntables because the motor shaft pulley made direct contact with the inner (or, in some cases, even the outer) rim of the large turntables that were used in such applications. Today’s direct-drive units, such as the Technics by Panasonic model SP-10 shown in Fig. 7, operate on entirely different principles. In the first place, the motors used in today’s units rotate at the actual, low speed of the turntable itself (33½ RPM or 45 RPM). Their shafts, therefore, have the turntable directly affixed to them with the center-hole spindle forming a part of the shaft assembly.

The motors used in these direct-drive turntables are primarily DC motors, driven by electronic circuitry which is built into the turntable system. In the case of the turntable shown, a DC brushless motor is powered by a servo-controlled electronic power source which automatically varies the amount of voltage fed to the motor whenever speed of rotation varies, regardless of the cause. A block diagram of the electronic speed control system is shown in Fig. 8. Many alternative forms of speed regulation and control have been applied to these new direct-drive turntables.

Some, such as Dual’s model 701, use two Hall-effect generators to drive four switching transistors that produce a rotating magnetic field in the motor’s field coils. This causes the four magnetic pairs on the rotor to be pushed and pulled continuously. A voltage which is a function of motor speed is fed to an electronic regulating circuit and is compared to a constant standard voltage derived from a regulated power supply. Any difference between these two voltages causes an immediate change in the motor speed.

Other methods of speed regulation have been devised by other manufacturers, but all depend upon some form of electronic feedback circuitry to keep that speed constant.

The generalization that direct-drive turntable systems are confined to single-play turntables was shattered recently when Technics by Panasonic startled the industry by delivering a new direct-drive system that was also capable of handling multiple records (a “record changer”—if that company and our more sophisticated readers will excuse the use of that much disparaged term). This new entry is shown in Fig. 9.

FIG. 7—TECHNICS BY PANASONIC MODEL SP-10 features direct drive, slow speed DC servo-controlled motor. Pickup arm must be purchased separately.

FIG. 8—BLOCK DIAGRAM of electronic drive and speed regulation system, Technics by Panasonic model SP-10 turntable.

FIG. 9—DIRECT-DRIVE SYSTEM can even be applied to multiple-play turntables, as demonstrated by this new model SL-1350 from Technics by Panasonic.

Thus we see that the type of drive system used in a turntable is no longer a function of whether it is a single-play manual, semi-automatic single play, or fully automatic multiple play turntable system. Again, in theory, the direct drive approach should yield the best or lowest “rumble” figures of all—and indeed many of the newer and more expensive turntables now available for home use do boast figures as high as 70 dB or so (DIN “B” weighted). It is clear, too, that a DC motor will not impart vibration frequencies that are harmonically related to the incoming power line frequency, since no sinusoidal powering voltages are involved in the direct-drive system. Nevertheless, a poorly designed direct-drive system can have other sources of vibration at other random frequencies, that can cause audible rumble that is no less severe than that caused by the more commonly encountered 30 Hz, 60 Hz, etc.

In the final analysis, then, the choice of a good turntable system still depends upon those three primary performance factors we mentioned at the outset: signal-to-noise ratio (rumble), speed accuracy, and speed consistency (low wow-and-flutter). So long as manufacturers quote these specifications in meaningful and easily understood terms, the type of drive system used remains a function of manufacturer’s preference—and yours.
Selecting CB Antennas

The antenna is perhaps the weakest link in the equipment chain in a CB radio installation. Selecting the correct type depends on its usage and on the desired coverage. Here are some selection guides.

WHETHER OR NOT A MOBILE CB UNIT can maintain reliable contacts with its base station depends largely on the types of base and mobile antennas and how they are installed. This is particularly true of the antenna on the mobile unit.

The basic or fundamental antenna is a length of wire one-half wavelength long and broken in the center by an insulator. The antenna—called a half-wave dipole—is fed in the center by a two-wire transmission line. The resistance of the antenna at the feedpoint is approximately 70 ohms. The overall length of a dipole for the 27-MHz Citizens band is approximately 108 inches long.

It would be highly impractical to install an antenna of this length on the average vehicle so mobile radio designers quickly adopted the Marconi or ground-plane type vertical antenna as being the simplest and most practical for vehicular installations. Since transmission and reception is best between stations using antennas of the same polarity, vertical antennas are most often used at base stations whose main contacts are with mobile units.

This antenna is half the length of a dipole or one-quarter wavelength long—about 9 feet at 27 MHz. If a quarter-wave antenna is to operate properly and most efficiently with a low angle of radiation for maximum ground-wave range, it must work against a good earth ground. When this is not possible, as when it is mounted on a building or on a vehicle, it must work against a ground plane which is a substitute for a good earth ground.

Ideally, the ground plane is a square or round metal plate or wire mesh. The minimum radius of the circle or half the diagonal of a square ground plane should be one-quarter wavelength or equal to the electrical length of the radiator. The ground plane, in effect, acts as a mirror that simulates the additional quarter-wave section that would be required if the antenna were not working against ground. The most common ground plane for VHF antennas consists of a number of stiff wires or rods extending from the base of the radiator. The most common type of quarter-wavelength vertical antenna is mounted on an insulator in the center of the ground plane. The center or core of a coaxial cable connects to the base of the antenna radiator and the coaxial shield connects to the ground plane. The impedance at the base of a quarter-wave radiator is about 35 ohms—half that of a half-wave dipole. This is not a perfect match for 50–52-ohm coaxial transmission lines but it is sufficient to yield a SWR of 2.5:1 or better.

(In the case of a base station antenna mounted on a tower or a mast, the ground plane may consist of three or four radials sloping downward at a 45° angle. Now, the feed-point impedance approaches 50 ohms so it is a nearly perfect match for 50-ohm coax.)

Vehicular installations

The ideal location for a vertical antenna on an automobile or other vehicle is in the center of a metal roof. But, a 9-foot whip can be quite unwieldy when mounted on the roof of the family car so it is usually mounted on a bumper or fender. In this case, the radiation pattern is distorted from the circular (ideal) configuration to one that is decidedly directional due to the close proximity to body metal.

Many CB'ers object to the 120–108-inch whip designed for mobile operation so several shortened forms have been developed. By using a loading coil at the base, in the center, above the center or at the top of a physically short radiator, the effective electrical quarter wavelength can be attained.

When a vertical radiator is shortened to less than a quarter wavelength, it presents a capacitive reactance and a lower radiation resistance to the source. To compensate, a loading coil is used to provide enough effective inductance to compensate for the physical shortening. When the loading coil is at the base of the antenna, the coaxial transmission line is usually tapped on to the coil at a point that provides a good impedance match between the two.

A coil-loaded shortened antenna is less efficient than a full-length quarter-wave whip. But, when it is installed in the center of a vehicle's metal roof, its radiation pattern suffers less distortion than that of a full-wave whip mounted on the car's rear bumper, on the cowl of a truck or on the side of a motorhome.

The placement of the loading coil in a shortened vertical radiator depends on several design factors and on how and where the antenna is to be used. The efficiency of the antenna is directly related to its height above ground and on the distribution of the RF current along its length. Naturally, the ideal is the full-length quarter-wave antenna.

In this case, the current distribution resembles one-quarter (ninety degrees) of a sine wave with minimum current at the top and maximum current at the base. Figure 1, from material supplied

FIG. 1—LOADING COILS compensate for physical length in a shortened antenna. The position of the coil in a vertical antenna affects its overall performance.
by Hy-Gain, compares the current distribution of a full-length quarter-wave radiator with base-loaded, center-loaded and top-loaded radiators. The solid lines represent the current distribution in a short loaded antenna and the dashed lines the current in full quarter-wave antennas. The shaded areas represent loss in radiation efficiency.

Note how current distribution and efficiency vary with the position of the loading coil. Obviously, the top-loaded provides performance quite like that of a full-length radiator. However, you have to consider installation and use. Top-loaded radiators perform a little better than base-loaded types but they are difficult to match and their characteristics tend to change rapidly with any movement that varies the position of the loading coil with respect to the ground plane.

Furthermore, the loading coil on the top of an antenna cannot take physical abuse as when struck by trees and other low obstructions. On the other hand, in a base-loaded antenna, the loading coil is pretty firmly fixed in relation to the ground plane so antenna detuning with movement is minimized. The tip of the whip can be made of spring steel or other material that can take battering by trees and low overpasses.

Radiation patterns

Every antenna has vertical and horizontal radiation patterns. The horizontal shows the relative amounts of power radiated to the 360 degrees of the compass and the vertical pattern shows the angle at which maximum power is radiated with respect to the horizon.

The radiation pattern of a vertical antenna is (ideally) circular—radiating equally to all points of the compass. The pattern resembles a doughnut with the radiator passing through the hold in its center. Sliding through the doughnut, we may find its cross-section to be nearly flat so its greatest dimension is parallel to the earth’s surface. See Fig. 2.

A quarter-wave radiator squirts a considerable amount of the transmitted power upward where it is wasted in the atmosphere. As the radiator is lengthened to a half wavelength and longer (Fig. 3), the available power is concentrated in a lower, more extended lobe to provide a stronger signal over a greater distance.

The quarter-wave radiator is the standard against which all other verticals are measured. It is said to have an amplification factor of unity or zero dB gain. (An antenna is a passive device so it cannot amplify the signal fed to it by a transmitter or picked up from a distant station. Instead, it derives its power gain by concentrating more of the transmitter power at lower angles to the horizon.)

Stepping up from the quarter-wave radiator, we have half-wavelength, five-eighths wavelength and 0.64-wave-length verticals. These provide approximate gains of 1.8, 3.4 and 4+ dB over a reference quarter-wave radiator.

Some of the more impressive vertical base station antennas based on two or more electrical half-wavelength radiators operated in phase. The average CB colinear is a full-wave vertical whose electrical length is around three-quarter wavelength. The transmission line connects to a 52-ohm point on a matching coil or to a shunt-feed arrangement. A capacitance “top hat” consisting of a few radials or a wagon-wheel type configuration shapes the current distribution for best operation and also serves to minimize static electricity build-ups that cause interference with reception. Typical colinear antennas are the CLR series by Hy-Gain, the Hustler Jam Ram model 27 Jr by New-Tronics Corp. and Mosley’s Deviant.

Directivity

In many cases, it is desired to radiate maximum power in only one direction. This is particularly true in installations where all communications are between two fixed stations, as between a ranch house and a stock pen or an oil well and pumping station. Some directional antennas concentrate their radiated power in directions 180 degrees apart; these are bidirectional. Antennas that spread all of their radiated power in one direction are unidirectional. Some unidirectional antennas are mounted on rotators so they can be aimed in the desired direction. Others are fixed arrays of two or three quarter-wave radiators whose pattern can be rotated electrically by changing the method of feeding and the phase of the current in the radiators. Beams for CB use will be covered later.

POOR FOCUS

This Silvertone 4267 has a focus problem. The focus control has no effect. High-voltage is good, but I'm reading only 3.5 kV on the focus, and it won't vary. I can reduce the high-voltage and get better focus. What's going on? —D.F., Lyndhurst, OH.

Your focus voltage is too low. For proper focus, you must have approximately 20% of the high voltage; that's why you can reduce the high voltage and get a focused raster. Since you replaced the focus rectifier without result, the problem should be in the focus transformer. (The pulse that drives the focus rectifier comes from the horizontal output tube plate. If this is low, your high voltage, boost and sweep would also be down.)

Try this. Disconnect the two leads from the focus transformer to the flyback. This should bring your focus voltage back to slightly above normal. This type of adjustment is a “variable-loss” thing like the old width coils. If this brings it back, replace the focus transformer.
Engineers design electronic circuits—so can you!

Only CREI offers you a choice of 18 home study programs in electronics with circuit design, plus special arrangements for engineering degrees.

Circuit design is perhaps the one qualification that distinguishes advanced technical personnel and engineers from the average electronics technician. If you can design electronic circuits, you can more readily understand the circuitry of all types of electronic equipment. Thus you can more easily handle the repair and maintenance of such equipment, as well as assist in the development of new electronic systems.

The ability to design electronic circuits to solve practical engineering problems is one of the most valuable skills you can possess. Those with this ability are sought after and command positions of far greater responsibility, prestige and pay than the average technician.

If you are going to have a worthwhile career in the field of electronics, the ability to design circuits is a skill you will want to acquire.

Circuit design in all CREI programs
CREI covers circuit design in its home study programs in electronics. This is one of the factors that makes CREI training different from most other home study schools. CREI programs, of course, are college level—the same level of training you will find in any college or university offering programs in electronic engineering technology.

CREI training, however, is designed for home study. The programs give you effective, step-by-step training to help you move up in your career in electronics by using your spare time for technical self improvement.

Unique Design Lab
CREI gives you both theory and practical experience in circuit design with its Electronic Design Laboratory Program. The professional equipment included in this program allows you to construct, test out and correct the circuits you design until you have an effective circuit.

This Lab Program helps you understand advanced electronics. It also gives you practical experience in many other important areas of electronics, as in prototype construction, breadboarding, test and measurement procedures, circuit operation and behavior, characteristics of electronic components and how to apply integrated circuits.
Career Training at Home

Only CREI offers this unique Lab Program. It is a complete college lab and, we believe, better than you will find in most colleges. The "Lab" is one of the factors that makes CREI training interesting and effective. And the professional equipment in this program becomes yours to keep and use throughout your professional career after you complete the training.

Engineering Degree
CREI offers you special arrangements for earning engineering degrees at certain colleges and universities as part of your home study training program. An important advantage in these arrangements is that you can continue your full time job while “going to college” with CREI. This also means you can apply your CREI training in your work and get practical experience to qualify for career advancement.

Wide Program Choice
CREI gives you a choice of specialization in 14 areas of electronics. You can select exactly the area of electronics best for your career field. You can specialize in such areas as computer electronics, communications engineering, microwave, CATV, television (broadcast) engineering and many other areas of modern electronics.

FREE Book
In the brief space here, there isn’t room to give you all of the facts about CREI college-level, home study programs in electronics. So we invite you to send for our free catalog (if you are qualified to take a CREI program). The catalog has over 80, fully illustrated pages describing your opportunities in advanced electronics and the details of CREI home study programs.

Qualifications
You may be eligible to take a CREI college-level program in electronics if you are a high school graduate (or the true equivalent) and have previous training or experience in electronics. Program arrangements are available depending upon whether you have extensive or minimum experience in electronics.

Send for this FREE Book describing your opportunities and CREI college-level programs in electronics

Mail card or write describing qualifications to

CREI
CAPITOL RADIO ENGINEERING INSTITUTE
McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue Northwest
Washington, D.C. 20016

Accredited Member National Home Study Council

GI Bill
CREI programs are approved for training of veterans and servicemen under the G.I. Bill.
new digital Remote Control

It's a new kind of remote control system for a color TV. The most noticeable thing about it is that there are no controls at all on the TV itself.

by MARVIN WILSON

Some models of the new RCA CTC-81 and CTC-74 color TV chassis use a unique remote control system that features on-screen display of the selected channel number and the time-of-day.

In addition, the set owner selects channels by punching out two-digit numbers on a calculator-like keyboard. This is a direct-access system that permits the customer to go directly from any channel to any other channel. For more information on similar systems see "Star—A New Kind Of TV Tuning System" Radio-Electronics, December 1974; also see "Omega Tuning System", Radio-Electronics, December 1975.

Other features of this new control system include remote control of volume, color, tint and chassis power.

The control unit (it's the only way to control the set, there are no controls on the receiver itself) is an ultrasonic transmitter that RCA calls an XL-100 control center.

What the unit controls

To turn the chassis on, the customer simply punches out the desired channel (01 through 83). If an active channel has been selected, program audio and video appear immediately after the second digit is entered. To turn the chassis off, the user enters two zeros (00).

When the set is turned on, and each time a new channel is selected, the channel number appears in white in the lower right hand corner of the screen. The time appears on the lower left hand side of screen and shows hours, minutes and seconds. The channel number and time of day remain visible for five seconds and then turn off. They can be recalled at any time by making a new channel selection or by tapping the "C" or "T" buttons. If recalled by using the "C" button, the display appears in red. If you use the "T" button the display appears in green. If for any reason the set owner wants the display on all the time, he flips a switch on the rear of the set.

Actually, power is applied to the chassis as soon as the first digit is entered. However, if the second digit is not entered within 25 seconds, the set turns itself off. This feature prevents accidental triggering of the system when no one is home.

To control volume, the UP button on the control keyboard is depressed to increase the volume and the DOWN button to decrease volume. These switches are marked with arrows to indicate up and down.

To adjust color, the user depresses the "C" button and then the up or down buttons. Tint is controlled in a similar fashion. First you depress the "T" button and then either the up or down button.

What Makes It Work

Now let's take a look at the electronic systems that make this electronic magic possible.

Physically, the complete address tun-
ing system consists of a 14-frequency ultrasonic transmitter (see schematic in Fig. 2). Inside the TV there is an ultrasonic decoding and function command system called the Direct Address Package (DAP). It is shown in block diagram form as a part of Fig. 4. Then there's an ultrasonic preamp and post amplifier (they are shown in both Fig. 3 and Fig. 4). There's also a five-module receiving, decoding and command assembly that includes the UHF and VHF tuners (see Fig. 3). The last section is the time-set pushbutton switch assembly that also includes the VHF offset potentiometers.

As you can see in Figures 3 and 4, ultrasonic signals from the control center are received and amplified by the preamplifier. From here the signal goes to the post amplifier that amplifies and amplitude-limits the incoming ultrasonic energy before applying it to the command module. The command module (Fig. 3) converts the 14 possible ultrasonic frequencies into digital codes that control the desired functions (on-off, channel select, volume, color and tint). The same digital codes are applied to the display module. It converts the channel number codes into video information that is displayed as channel numbers on the screen. The display module also contains an electronic clock that supplies time-of-day information to the display circuits.

The channel-select codes are applied to the VHF tuning and UHF tuning modules. These modules select the appropriate analog voltage for the varactor tuner operation. They also provide the respective tuners with the proper power and bandswitching voltages.

A separate power supply module (not shown) provides the DC voltages needed to operate the direct address system. Standby voltages as well as some operational voltages are derived from the AC line input via a module mounted transformer and rectifier circuit. The rest of the required voltages are taken off the set's 175-volt DC and 38-volt DC supplies.
FIG. 3—MAJOR SUBSYSTEMS in the direct address package are shown here in block diagram form. Note that the tuners are part of the system.

FIG. 4—DIRECT ADDRESS SYSTEM BLOCK DIAGRAM shows everything from the ultrasonic remote transmitter through the display on the color TV screen.

FIG. 5—COMPARISON OF WHITE numeral “1” digit to the output waveform that produces it. Note the black outline around the numeral.

The transmitter

A simplified schematic of the remote transmitter is shown in Fig. 2. Integrated circuit U1 consists of a crystal controlled oscillator and dividers that supply ultrasonic energy to the transducer at one of the 14 selected frequencies.

When the user pushes the keyboard switches, the switch supplies a positive DC output to the oscillator on the proper input terminal. The output pulse train at the selected frequency appears simultaneously on the bases of transistors Q1 and Q2. They drive the transducer through transformer T1.

The transformer secondary is tuned to resonate with the capacitance of the transducer beyond the highest selectable ultrasonic frequency. By charging capacitor C4, the transformer primary provides extra driving power for the transducer.

Diodes CR5, CR6, CR7 and CR8 prevent output current reversal, allowing T1 and its associated circuitry to ring when pulsed. A voltage tripler rectifies the 150 volt peak-to-peak output AC to provide the DC bias for the transducer.

The transmitter has a unique battery condition indicator. It consists of an LED and a PUT. When the “C” button is pushed, the battery voltage that appears at the oscillator color frequency input is applied across the LED (CR4). The LED cathode returns to ground through Q3, a programmable unijunction transistor (PUT). The gate voltage on the PUT (Q3) is set by R5 to maintain transistor conduction with battery voltages higher than 6.5 volts. When the battery drops below 6.5 volts Q3 no longer conducts and the LED will not light.

The receiver

As shown in Fig. 1, ultrasonic energy from the control center (remote transmitter) is preamplified by the MCY preamplifier module. The preamplifier is tuned to accept a spectrum of ultrasonic frequencies from approximately 30 kHz to 60 kHz, and to provide a voltage gain of approximately 60 dB. Power for the preamplifier is supplied from the direct address power supply module.

From the preamp, the band-limited and simplified ultrasonic energy is coupled to the post-amplifier module. It supplies an additional 60 dB of voltage gain and provides a square wave output limited to a value of 12V p-p.

The remote receiver and decoder functions take place in a unique large scale integrated circuit (LSI) located on the command module. This “remote” IC consists of a frequency counter and decoder which converts each of the 14 possible input ultrasonic frequencies into a binary code. The ultrasonic frequency corresponding to each of the ten transmitted digits, 0 through 9, is converted into the respective binary number on output terminals D1 through D4. In addition, the “up,” “down,” color (“C”) and tint (“T”) functions each produce a binary number plus an output on the “control” terminal. These remote IC outputs are decoded by the “control” IC which generates the appropriate function command signals.

Because a high degree of immunity from undesired inputs is a prime requisite for the reliable operation of the digital address system, the remote IC only reacts to valid, legitimate ultrasonic inputs. Each ultrasonic input is sampled at a 120 sample-per-second (continued on page 86)
REACT—What’s It All About

Citizens Band group keeps perpetual watch on channel 9, supplies information and aid to motorists and helps in emergencies.

A SUDDEN CATASROPHE ERUPTS—FLOOD, earthquake, tornado, or a forest fire that wipes out a village. The authorities are out with emergency gear, evacuating people in danger, supplying food for the hungry, lodging for the homeless, and emergency medical and hospital service for the injured.

Emergency communications services are vital at such a time. Wires are usually down; power is often out, normal communications facilities may be entirely disrupted. Traditionally the amateur has moved in, setting up his portable equipment and preparing to handle messages in and out of the stricken area.

But today a new agent—the Citizens-band communicator—is in the center of the emergency as soon as it appears. No need for him to set up equipment—his is in his car—or in his hand. Highly mobile, he can report on rapidly changing conditions even while they are changing, and can maintain contact between various groups working on the same emergency as no other service can.

In many cases this work is done by local Citizens-band groups. But by far, the greater number of effective workers are banded together in a national organization called REACT—Radio Emergency Associated Citizens Teams. Organized in the late 1950’s by Hallicrafters, the Association is now sponsored by the Research and Development Department of General Motors as an aid to highway travelers.

Even though REACT members have made a glorious record in emergency activities, probably REACT’s most valuable work is to help motorists on the road. They respond to calls for assistance, giving information and referring calls to agencies able to handle them, as well as engage in life-saving activities in road accidents. CB Radio means more than just a sales boom. Used effectively and in an organized manner, CB communications can provide a necessary and valuable community service. And aside from community service, organized CB communications can create new marketing opportunities in your region. But how can CB help a community?

Other activities, such as assistance to police during parades and celebrations, maintaining communications during searches for lost children, and even participating in an “annual rattlesnake hunt” are reported on with some enthusiasm in the association’s organ, The National REACTER. Their central activity is to keep a continuous watch on CB channel 9, recognizing that many motorists have CB equipment, which can be completely useful to them only if they are able to contact help at any time.

REACT has its heroes

REACTers nevertheless point with pride to their work in severe emergencies, where they already have an honor roll of members lost in the service of the public. In the Rapid City (South Dakota) flood of 1972, five REACT members were among the victims. Herb Whiting, his wife Phyllis, Mary Pepper and Blake Thornton of Black Hills C-276 REACT and Otis Mathews of Rushmore 2158 REACT were instructed to take positions in the flood areas and were cut off by waters that rose faster and farther than expected. At least two other Black Hills members were trapped for several hours, one in a tree and the other in a water-filled car.

More recently David Bryant, past president of the Hale County (Texas) REACT, was killed on tornado watch duty. Alerted by the local REACT coordinator, he took his regular spotter’s post. His wife was with him in the car (“I wouldn’t want us to get separated if Plainview gets hit.”) The tornado touched down close to Bryant’s car and a police vehicle also on tornado watch duty. Bryant’s last transmission was: “The wind is trying to lift us up!” His body was found in a field about 60 feet from the car. His wife, in the car, was injured. The police car was also shaken up, one of the officers receiving lacerations.

A full week’s work

A more recent example was given by Xenia, OH, where two tornados (some say three) joined to destroy the southern third of the city. The Miami Valley REACT, headquartered in Dayton, has a special group called Redicom, trained under the Red Cross and Civil Defense in first-aid, survey and disaster work. When the Sheriff’s radio announced: “A tornado has touched down in Xenia. Send all available police, ambulances and first-aiders,” the Redicom unit was ordered out by the Red Cross and CD.

Their first duty was to carry the injured to ambulances. Then for several days they carried on a combination of communications and legwork. Mobiles assigned to explore the partly devastated streets found heart patients without phones or necessary medicines, some without food. Others, who were in normal physical condition, were afraid to leave their homes for fear of looters. The CB mobiles called the information back to base, and runners were
sent with food or other necessary supplies or aid.

One detachment was joined by Red Cross nurses with PA's. The REACT vehicle toured while the nurse announced the availability of medicine and vaccines, and asked that people come to the car for medical aid. Calling on other CB'ers for assistance, the original Redicom group was joined by REACT teams and other CB clubs from Greene, Clarke, Fairfield and Franklin counties. It was only after eight days, "spending ten to 16 hours a day in Xenia," that the last REACT team was discharged from a job well done.

These dramatic incidents, and dozens of others in which REACT'ers have risked life and limb in the service of the community, are just a few of the thousands of times REACT'ers have been of service to the motoring public—all the way from telling a driver where he made a wrong turn and the best way to get to his destination, to a two-car accident where ambulances were called and first aid given to the injured till they arrived.

In this continuing activity they have had some special successes. During the energy shortage in early 1974, CB'ers not only relayed distress calls from motorists who were out of gas, but were able to direct others to stations that had supplies at the moment. In many cases, they used their local knowledge to give information on the shortest and most economical route to a given destination.

WHAT IS REACT—HOW DOES IT WORK?

Any five or more persons may apply to REACT National Headquarters, 11 E, Wacker Drive, Chicago, IL 60601, for a charter to form a local REACT team. If there is already a REACT team in the community, applicants will be referred to it.

There are three simple requirements:

1. Establish an effective REACT monitor system, guarding the official emergency channel 9, 24 hours per day, 7 days a week.
2. Maintain an active membership of at least five Class-D Citizens Radio operators.
3. Operate at all times in accordance with FCC rules and all Federal, State and local regulations.

(It might seem that REACT service would be useful only to motorists with Citizens Radio. It really is much broader—a REACT member or often an ordinary Citizen bander passing a disabled car or an accident will immediately put out a call on channel 9, informing the nearest monitor of the situation. Some teams even patrol the highways, though National REACT does not endorse such projects, pointing out that criminals sometimes pose as disabled motorists to lure good Samaritans into their reach. In any case, the services of REACT reach a much broader group than owners of CB radios.)

Organized aid to travellers

The State of Ohio, whose State Highway Patrol Superintendent, Colonel Robert Chiaramonte, has been an ardent supporter of CB from its earliest days, is a particularly excellent example. All 57 Ohio State Patrol posts are equipped with CB base units, donated by REACT teams and other CB clubs, that monitor channel-9 twenty-four hours a day. In 1970, the Patrol engaged in a two-year test program with REACT. It included not only road tests but such activities as planning meetings where Highway Patrol personnel, REACT teams and local CB clubs as well as representatives of other interested public services, were involved. A number of problems were investigated and some educational work accomplished. One somewhat unexpected result is that in Ohio, "non-emergency use of channel 9 is very limited."

In some of the tests, CB mobile units were placed in patrol cars for a given period of time and their traffic logged. In one ten-day period during one officer's regular duty tour, he received three accident calls, one report of a car on fire, twelve disabled motorists, one "driving under the influence of alcohol" complaint, two runaway teen-age girls, and three excessive speed complaints. A tribute to the CB discipline on the Ohio highways is that there were no false alarms—all the messages were legitimate.

The growth of Citizen band use in Ohio, says Col. Chiaramonte, is incredible. Other states throughout the nation, keeping a close watch on Ohio's progress in CB emergency use, have expressed interest in building a similar climate of cooperation between law enforcement agencies and the CB user population.

"Infinite positive results," says Col. Chiaramonte, "could come from the development of a nationwide highway emergency communications system as described here. The day is coming when it may be said that help for the person in trouble is truly as close as his microphone."
The open short

When is an open a short?

by JACK DARR
SERVICE EDITOR

This is the tale of a fairly typical tough-dog service job. The fault itself isn’t at all unusual. We’ve all seen it many times. However, I thought it might be educational to follow the analysis through all of the various tests (and see how many times I was led astray by not interpreting test reactions correctly!) When you see this (*!*), it marks one of the points where a different interpretation of the symptoms would have led me to the solution much faster.

The TV set was a new Zenith 19DC-12Z. It had been sold, but developed a nasty habit of blowing the damper fuse about every three weeks. When taken back to the dealer’s shop, it played perfectly. After about three trips, it was replaced by another set and put aside. After quite a while, I inherited it.

On my bench, it played for quite a while, and then the fault showed up and stayed. Replacing all of the tubes did nothing. Checking for grounds in the B+ and boost circuits clearly showed no grounds (*!*). Grid drive on the 6L6 horizontal output was good, but the cathode current slowly increased to 400 mA (at which point I pulled the plug. Disconnecting the tripler didn’t help. The flyback and yoke showed no shorts on a flybacker test.

Rechecking the horizontal windings of the deflection yoke showed no shorts. Ohmmeter tests also showed infinity. Substituting another horizontal yoke winding and using only the ends of the winding hooked to the flyback brought back the boost and high-voltage. The cathode current of the horizontal output tube dropped to normal. Hmm. Must be a high-voltage breakdown in the horizontal deflection yoke winding. (*!*).2

Order new exact-replacement deflection yoke. Plug it in. Retest. Oh, boy! Same thing. The cathode current of the horizontal output tube increased to above 400 mA and no boost voltage. (Get red in the face.) Try the substitute yoke again. Everything normal. Notice that I had used only the ends of the winding, leaving the horizontal yoke center tap open. Hook this up. Hmm.

Current jumps back up and the yoke smokes. The smoke turns out to be the 4.7K resistor in the center-tap. Check original yoke; this resistor completely open. Check replacement yoke; open here too. Also in my test yoke. Replace all of them. Now we’re ready to try again.

Using my test yoke because it would be easier to replace the 4.7K resistor, I pulled the set-yoke plug and clip mine in. Without the center-tap hooked up, I get normal current, lots of high-voltage, and 1,000 volts of boost. Discover that the last one is due to connecting the top of the yoke to terminal 9 on the flyback instead of terminal 8 where it should have been. Correct this and boost is now normal.

Stop and sit. Try thinking. Everything is now out of the circuit except the pincushion transformer. As you can see in Fig. 1, this is actually between the two halves of the horizontal winding, so it has boost on it. Check for shorts from boost terminals to ground, B+ and everywhere else. Nothing. Completely open circuit. Actually, about 3.0 megohms, which ought to be all right. (*!*).3 Monitoring the boost with the pin-transformer still in the circuit shows that the boost voltage rises and holds momentarily before dropping drastically. Cathode current rises at the same time.

It’s easy to unhook the boost winding of the pincushion transformer. one end actually plugs in. Disconnect this and connect the ends of the horizontal yoke winding with jumper lead. Cross fingers and turn on the set again. Everything normal! Boost, high-voltage and current all OK. Reconnect center-tap lead. Still OK. Disconnect test yoke and plug original yoke back in. Still normal. (Look sheepishly at brand-new deflection yoke lying on bench!)
3 GOOD REASONS FOR BUYING AN EMPIRE CARTRIDGE

1. YOUR RECORDS WILL LAST LONGER. Unlike ordinary magnetic cartridges, Empire's variable reluctance cartridges have a diamond stylus that floats free of its magnets. This imposes much less weight on the record surface and insures much longer record life.

2. YOUR RECORDS WILL SOUND BETTER. Empire sound is spectacular. Distortion at standard groove velocity does not exceed .05%. Instruments don't waver; channel separation is razor sharp.

3. MORE CARTRIDGE FOR YOUR MONEY. We use 4 poles, 4 coils and three magnets in our cartridge (more than any other brand). Each cartridge must pass rigid tests before shipment.

For more good reasons to buy an Empire cartridge write for your free catalogue:

EMPIRE SCIENTIFIC CORP.
Dept. C, Garden City, N.Y. 11530

Mfd. U.S.A.

Now, apparently we have a shorted pincushion transformer. Reconnecting it to the boost momentarily with a clip lead shows the short. Recheck for short to ground or B+ from boost winding of pin transformer; nothing. Open circuit ("*1")5. Hmm. Examine pincushion transformer very closely. No burnt spots, all windings check out at precisely the correct resistance.

Scratch head. By now the nature of the fault is becoming apparent, even to me. It has to be an arc-over ("*1")5. But where? Can't hear it pop or see it or smell it. Eventually, a very close examination of the connections to the boost winding of the transformer shows it up. There is a spaghetti-covered lead going to the boost terminal on the mounting plate. This is crossing the grounded lead to a capacitor in the other windings. Moving the spaghetti covered lead reveals a tiny spot! It had accidentally been dressed closely over the grounded lead, and the heat of soldering had weakened it. Moving the hot lead about 1/4 inch away from the other cleared up the whole problem.

Analyzing the analysis!

Now, let's see what happened.
1. One of the early tests showed very plainly that this was not an "ordinary short" either to ground or B+. That should have been remembered later.
2. This was getting closer. However, I ran right over the key fact in this series; that I could get both boost and high-voltage with no overload using the substitute yoke. This should have been pursued further, for there were more things than the deflection yoke in that circuit!
3. This is a repeat of a test that I had made at least three times. Every time it told me the same thing, that this was definitely an arc-over or high voltage breakdown. Only two things in there, the horizontal winding of the yoke and the pincushion transformer.
4. Now, we're getting better. At least I had sense enough to start eliminating things.
5. Ho-hum. There he goes with that ohmmeter again. Monotonous, ain't it? Anyhow, by now ol' Dum-Dum has pinned it down to the right part! Actually, I came very close to ordering a new pincushion transformer, but didn't.

So there you have it. As you can see, on too many occasions I ran right over the key fact in this case. The "open short" definitely points to only one kind of fault, and that is a high-voltage breakdown due to just exactly what I found. A place that had no readable leakage with the low voltage of an ohmmeter, but which broke down instantly when the boost hit it. The yoke-sub test was correct. This pinned the trouble down to the area of the deflection yoke and pincushion transformer.

The correct method here is the one I eventually used; taking the pincushion transformer out of the circuit (simply because it was easier to do this) and checking out the deflection yoke. The moral of this is "stop and think." When you see something that isn't right, take the thing apart and check it a piece at a time and you'll find the cause a lot faster!

R-E

reader questions

REPLACEMENT FOR UF86 TUBE?

I need a replacement for a type UF86 tube. Found it in an old stereo amplifier brought in. I can't find this in any of the interchangeable tube manuals. Do you know where I can get this tube, or if there is a replacement? -V.S., Canoga Park, CA.

There is no direct substitution for this type. It's made by Mullard, in England. It's a "low-noise audio amplifier pentode." The problem is in the basing (see diagram). There is no direct replacement for a base like this.

The closest thing you could get to the spec's of the tube itself would be something like a 12BY7. The socket will have to be rewired to match. There are other 9-pin types that would also work, if you want to look them up, but the 12BY7 ought to be good.

REPLACEMENT OUTPUT TRANSISTOR

I need a replacement for the output transistors in a Fisher 440T amplifier. They have the numbers 36642 and E65265J and RCA on them. Also, what is the little black thing marked 0.5 and 5% WL connected to them? No one around here can get a replacement. — J.B., Las Vegas, NV.

The 36642 is an RCA Device number. Both transistors in this stage are NPN's. From the voltages used, and the spec's (Sams 1094-SED), something like an RCA SK-3027 ought to do nice.
ly. You can get matched pairs of SK-3027's under the number SK-3029. The “little black gadget” is an emitter resistor, 0.5 ohms, 5%. It is connected from the emitter of one transistor to the collector of the other. Check it, or replace it. If the originals shorted out, it probably damaged this resistor. Also, be sure to check the driver transistors. Since these are direct coupled, they will affect the output transistors!

ODD COLOR SYNC PROBLEM

After other repairs, an odd color drift problem showed up in a Magnavox U45 chassis. Not the usual breakout with 6 or 7 color stripes, only one and a half. This showed up only on a TV signal; very steady on a color bar generator. Trying a bias-box on the oscillator control test point showed that the color could be controlled at that point by varying the AC line, 60 Hz, at 17 V. Scoping different points showed about 5 volts of AC um on the screen grid of the burst amplifier! Replacing the 80-μF electrolytic (C2-b) on this point cured the color problem. Apparently, the variation of the screen voltage of the burst amplifier, due to the hum, was dropping the burst level and letting it fall out of sync, only to pull back when the voltage rose on the next cycle!

—Monty Huckle, CET, Tahoe City TV, Lake Tahoe, CA.

NO HORIZONTAL SYNC

The picture slips sideways on this Phileco 19P22. Sometimes it runs pretty fast. I've checked all of the tubes and changed the AFC diodes. Now what?—J.T., Norlina, NC.

Now run a complete setup procedure on the horizontal oscillator! Shunt the stabilizer coil with a cliplead, and ground the AFC. Adjust the horizontal hold control for a single straight-sided picture. This will float from side to side; no sync.

Next, take the shunt off the stabilizer coil and adjust it for a straight-sided floating picture. If it'll do this, your oscillator is capable of running on-frequency. Now take the short off the AFC. If the picture falls out of sync, you've got AFC problems.

If you can lock the picture with the hold control but it has no range at all, picture falls out as soon as you move the control just a hair, you are NOT getting horizontal sync to the AFC circuitry. Check for break in foil on PC board.

More for your money - $199.00 - than any other Color Bar/Pattern Generator

Superpulse — Provides a big, fat square pulse for easy CRO tracing in the set, and a white window pattern for quick checks of gray-scale tracking, smearing, and ringing right on the TV screen.

Bar Marker — Identifies color bars, 3, 6, 9 — a “must” on overscanned sets.

Video Output — 2 volts, max. “+” and “-” at 75 ohms for commercial/industrial closed-circuit TV.

75- and 300-Ohms Output — at both RF and IF. Snap-on BNC heads for fast impedance changes. RF works into MATV, CATV systems.

100% Digital ICs — Computer-type counters need no adjustments — ever! Patterns stay locked-in.

KEDMAN COMPANY

Box 267
Salt Lake City, Utah 84110

Does all the job!
HOLDS, STARTS, DRIVES, AND SETS
the screw normal tightness!
GET A SET TODAY!
At your dealer’s
and write

RCA

Electronic Instruments

Circle 20 on reader service card

Circle 21 on reader service card
HI-FI LAB TEST
(continued from page 43)

for separate use of the two circuit sections of the L-100. Some idea of the number of components that can be connected to this amplifier and their method of connection is shown in the diagram of Fig. 6.

Circuitry and construction
An internal view of the L-100 chassis with the cabinet removed is shown in Fig. 7. Those giant electrolytic filters are 15,000 μF each. The L-100 is so new that

Lux Audio of America does not as yet have English versions of the service manual and so we could not study a schematic diagram of the unit. An attempt at circuit description is given in the temporary brochure describing the product and, though it is a poor translation from the original Japanese, we will summarize it briefly.

The preamp-equalizer has a differential direct-coupled amplifier with a cascode circuit, followed by a Darlington push-pull Class-A inverter circuit. Voltage and tone amplifiers also employ direct-coupled cascode circuitry. The main power amplifier section uses a two-stage differential amplifier input and direct-coupled complementary output circuitry. Since early stages operate in Class-A while output stages are Class-B, Lux has actually constructed a power transformer with separate windings for powering the Class-A and Class-B circuitry. They claim that this reduces intermodulation distortion that might otherwise result from a common power supply impedance between the fluctuating Class-B currents and the less irregular Class-A circuit currents.

A complex group of circuits is included for protection of the output stages and loudspeakers, and the muting action that delays turn-on for those first few seconds is relay operated.

Power and distortion measurements
A summary of all of our laboratory measurements can be found in Table 1, together with our evaluation of each specification measured in relation to claims and in terms of the price category of the L-100. The unit is very conservatively rated, delivering 140 watts of power at its rated distortion figure of 0.05% at mid frequencies and over 120 watts-per-channel for the same distortion at the high-frequency and low-frequency extremes. In fact, if one limits output power to the rated 110 watts, the distortion measured at that power level (at mid frequencies) is an incredibly low 0.005%.

Preamp and control measurements
RIAA equalization was measured and found to be within 0.2 dB of exact requirements at all frequencies when the Linear Equalizer switch is set to its mid-position. Tone control range of the bass and treble controls is shown in the spectrum analyzer scope display shown in Fig. 8. This display clearly shows how changing the bass and treble turnover points affects overall range and hinge points of both of these controls. Each vertical major division on the scope graticule is equal to 10 dB of amplitude change. High-filter and low-filter action is similarly shown in Fig. 9. While both

high-end cut-off curves show up clearly (the cut-off points are 7 kHz and 12 kHz), only the 70 Hz cut-off of the low-filter shows up significantly in the scope traces because the second cut-off position is set to 10 Hz (for sub-sonic rumble attenuation) and our scope/spectrum analyzer combination sweeps only from 20 Hz to 20,000 Hz in the required logarithmic mode.

Phono sensitivity measured 2.8 millivolts for full output with the front panel sensitivity controls set to their mid-points. As mentioned earlier, cartridges with different output levels can be matched in gain to other program sources by adjusting these controls for a maximum of ±5 dB on either side of the nominal 3.0 millivolt sensitivity.

Hum and noise in phono (referred to actual input sensitivity and full output) was 68 dB. For those who prefer a 10 mV input signal reference, that would be equivalent to a signal-to-noise ratio of 79 dB below rated output. Overload capability measured an impressive 460 mV against 450 mV claimed.

To illustrate the action of the linear equalizer, we displayed the RIAA equalization afforded by the preamp section with the linear equalizer set first to one extreme and then to the other. Results are shown in the photo of Fig. 10. Note that the shape of the overall curve does not change with these settings—it is simply "tilted" up-

RAD
ward or downward (unlike what tone controls might do, even if used minimally). While the range of adjustment seems small indeed, bear in mind that each vertical box in the scope display is equivalent to 10 dB of change. Certainly, the effect of the linear equalizer is rather subtle, but it is audible enough for an astute listener to be able to choose that setting which sounds "just right" for a given recording in a given listening environment—and that is just what it is intended to do.

A summary of our overall opinion of the Lux L-100 will be found in Table II together with our comments concerning the listenability of the unit and its control features as they impressed us during actual use and listening tests.

PROBES
(continued from page 45)

when the probe is used with a meter of known input resistance, create a voltage divider. This voltage divider will divide the voltage stored on the capacitor (which will be equal to the peak value of the RF signal) by 1.414 to yield a meter deflection that may be read as RMS voltage. Additional diodes may be connected in series to increase the reverse breakdown voltage of the diode, and therefore the maximum operating voltage of the probe. Placing additional diodes in series also increases the minimum voltage that can be measured.

The demodulator probe is similar in design to the RF probe, but usually differs in its intended use and its output time constant. Demodulator probes, as their name would imply, are designed to recover amplitude modulated information on an RF signal. These probes are frequently used in analyzing television signals in such places as the IF strip, and recovering signals created by a sweep generator. Signals from a sweep generator often obtain modulation from the amplitude vs. frequency characteristics of the circuit being swept. Demodulator probes are primarily used with oscilloscopes. RF probes are used with voltmeters.

Other types of specialty probes include those that are used to measure current, active probes containing amplifiers to achieve high impedance at no sacrifice in gain, logic probes (which are really miniature instruments rather than probes) for detecting highs and lows in logic circuits and specially built high-voltage probes containing series multiplier resistors to permit extremely high DC voltage measurements with ordinary meters such as VTVM's and VOM's.
Future of CB

More channels and maybe even a Class-E service.

by HERB FRIEDMAN

THINK BACK TO LAST SPRING. WOULD YOU really have believed anyone who predicted the FCC would permit hobby-type operations on the Class-D 27-MHz Citizens band? Fact is, it would have been next to impossible to find anyone to make such a prediction because the future of CB looked about as black as a coal bin at midnight—during a power failure.

At the time, the FCC was talking about restructuring Class D, which put very simply meant eventual SSB-only operations except for channels 9 and 11. Reading further between the lines, heavy restrictions were ahead for antenna systems. Add to all this the seemingly endless list of CB'ers being hit with heavy monetary fines for hobby-type operations and it appeared the FCC had finally decided to crack down—very hard.

At the same time it appeared the EIA's proposal for Class-E CB was going to get the go-ahead; whether it was a well thought out proposal or not made no difference for the electronics industry needed the anticipated sales. Unfortunately, some one proposed Class-E right in the middle of the 220-MHz amateur band, and the howls to every policeman in sight made a handsome profit for the postal service.

Funny about the Hams, for they were the key to relaxation of the CB rules allowing hobby communications. Concurrent with the FCC proposals for Class-D restructuring were assorted docket's for restructuring the amateur radio licenses. Among the sane and insane ideas was a "Communicator's License" that would permit entry-level skilled "Communicators" to use the amateur 2-meter band FM frequencies. This new "Communicators License" would have no code speed requirement and a simplified written test. Trouble was even the FCC didn't seem to know what the "simplified test" would contain. Most informed sources implied a "ten easy-true-or-false on simplified theory and/or regulations."

The Hams read the "Communicators License" to be a legal CB hobby license and envisioned a thundering herd of CB'ers filling their FM repeaters frequencies. The howl from the Hams to their elected representatives almost equalled their complaints about giving up part of their 220-MHz band to Class-E CB. Basically, the Hams were making everyone edgy as they were showing a lot more muscle than any one thought they had.

Meanwhile, the politicians who set telecommunications policy get the wrong message. They actually believe Class-E CB is all that's needed to boost the consumer electronics industry and they announce "they favor" a Class-E CB in the 220 MHz Ham band. (When a White House agency says "they favor," you read the signal right or look for a new job.) Now it's out in the open, the Hams will really lose part of their 220-MHz band, and every amateur radio club mounts a letter writing campaign to Washington—showing even more muscle.

Word gets out that both the CB and amateur restructuring will be postponed (until someone figures out who has the right ideas). Suddenly, someone in authority actually listens to Class-D CB and takes two deep breaths at what he hears; Where did all those stations come from? CB was known for ten layers on each channel but now there were twenty layers. In urban areas it was virtually impossible to get 100% copy across on a single transmission.

It seems that in the few months since the license fee had been reduced to $4, something like an average of 100,000—applications for a CB license poured into the FCC every month. The FCC was literally tied up and nothing was getting done. Amateur licenses were running months behind; commercial license (operator) renewals were getting lost, and even CB licenses were taking so long the bootleg CB operator was taking over the band—there were more stations using "handles" than call letters. Class-D CB was running...
out of control; the hobbyist had taken over CB and the manufacturers and the amateurs were showing as much muscle as they could to fight restructuring, so the FCC bailed out; they simply removed the restrictions against hobbying and turned Class-D CB into a "Communicators Band." Simultaneously, a "spokesman" announced that Class-E CB was now being considered for 218 to 220 MHz, outside the amateur band. This took the amateurs off everyone's back.

As for the CB manufacturers, they couldn't have been happier. With the hobby restrictions removed from Class D, CB took off. Everyone, but everyone got into CB: the department stores, the discount houses, the auto supply stores, the tape player specialty shops, even the local auto service centers. (CB was and is booming, and no one along the way really tells the equipment buyer he needs a license.)

Some of the best known brands of CB transceivers are running six months on back order. In several stores of a large national electronics chain you must get on a waiting list to get a transceiver and antenna equipment. For some of the best known hi-performance transceivers you actually have to be on friendly terms with the local dealer to even get moved up on the waiting list.

Of course, almost 100% of the CB sales and activity are to hobbyists today, and the small business and personal user for whom CB was originally intended is being squeezed out. No one can expect a small store, taxi service or personal user to use CB if every transmission is cut to ribbons—or walked on as the CB'ers would term it. What is needed now is a rational expansion of the Citizens Radio Service.

Looking ahead

If at the time you are reading this article the FCC has gone ahead with part, or all of their restructuring proposal(s) there will not be much of a change in Class-D CB from what we have now, for the extra channels won't be worth a burnt out tube if they are SSB-only. SSB is too expensive for the average CB'er and there are not sufficient sales to maintain a viable consumer industry. For the small business user, a standard VHF or UHF, or even mobilephone, will cost less than an SSB CB system. For the personal user, SSB is entirely too expensive and complex. At worst, the hobbyists will creep up into the new channels. They got what they wanted by violating the rules the first time around; why be any different the second time?

We'll get back to Class D later. Right now, let's move on to Class-E CB, where the real future of CB lies. With the present Class D turned over to the hobbyists Class E is not only needed for the business and personal user, it offers the only area that can resist encroachment by the hobbyist, thereby providing for a true citizens radio service. The ideal frequencies for Class E are about 218 to 220 MHz because the present technology and equipment—used by radio amateurs—can be instantly ap-

(turn page)
INTERNATIONAL FM 2400CH

FREQUENCY METER
for testing mobile transmitters and receivers

- Tests Predetermined Frequencies
 25 to 1000 MHz
- Extended Range Covers
 950 MHz Band
- Pin Diode Attenuator for
 Full Range Coverage
- Signal Generator
- Measures FM Deviation

The FM-2400CH provides an accurate frequency standard for testing and adjustment of mobile transmitters and receivers at predetermined frequencies.

The FM-2400CH with its extended range covers 25 to 1000 MHz. The frequencies can be those of the radio frequency channels of operation and/or the intermediate frequencies of the receiver between 5 MHz and 40 MHz.

Frequency Stability: ±0.0005% from +50° to +104°F

Frequency stability with built-in thermometer and temperature corrected charts: ±0.0025% from +25° to +125° (0.000125% special 450 MHz crystals available).

Self-contained in small portable case. Complete solid state circuitry. Rechargeable batteries.

FM-2400CH (meter only) $595.00
RF crystals (with temperature correction) 24.00 ea.
RF crystals (less temperature correction) 18.00 ea.
IF crystals catalog price

For faster service
USE ZIP CODE on all mail

2 + 2 = 5

Double check your tax return.

Errors delay refunds!

Internal Revenue Service

ICM
International Crystal Manufacturing Company, Inc.
10 North Lee, Oklahoma City, Oklahoma 73102

Circle 29 on reader service card

plied to CB; there are no development costs to be written off near 220 MHz. The same FM equipment used by hams can be "tweaked" on the assembly line to cover Class-E CB. For this reason alone the future looks bright for Class E below 220 MHz.

Assuming we will see Class E in the near future, if it is not already approved by the time you read this article, figure the FCC will not make the same mistake twice, and Class E will be exactly what was originally intended for Class D: hobbying will be out. It is most likely that Class-E stations will be permitted contacts only with stations under the same license (except for emergencies), and it is likely Class-E equipment will have built in identifiers that will transmit—probably when the transmitter is keyed—a code sequence filed with the F.C.C. Licensing will probably be done at the point-of-purchase through the dealer, who will file the proper papers with the F.C.C. The cost of licensing will probably be built into the cost of the transceiver. Violations will be easy to detect if the identifier is coded to the license, so a transmitter can communicate only to another transmitting station with the same identifier code. Keying in the code at the time of purchase is slightly ahead of what we can expect from a CB dealer, so the first system will probably have an individual identification. The FCC will probably refer to the codes only when there is an apparent violation. Automatic identification will make it difficult to resell the rig as the identifier will be yours. Assume some provisions will be made to transfer the license with the coded identifier, much as we do with automobile title papers in some states.

Since every Class-E transceiver will be licensed at the time of purchase, the only way a hobbyist could get by is either by stealing the equipment or going through some complicated conspiracy at the time of purchase to conceal his or her true identity. (And this would be carrying hobbying too far—into the area of a felony.)

The proven success of the amateur radio repeaters on 144 and 220 MHz has led many to speculate on the use of commercial repeaters for Class-E CB. The idea is certainly appealing, frequencies would be set aside for repeater use, and the user would pay a fee for each "call" through a repeater. This all looks very good, except we are getting into the realm of the common carrier, and Ma Bell wouldn't stand still one second for this idea. If you think the Hams and CB'ers have clout in Washington, they're not even newborn infants compared to A.T. & T.

Finally, let's examine the cost of a Class-E CB system. Since it will be the same equipment the Hams use, only with increased production and sales, the CB unit will cost even less than a modern amateur radio FM transceiver. A typical Class-E unit might have 10 to 25 watts RF output, 10 channel selection, and a price tag well under $200. The antenna equipment is not much more than a piece of stiff wire in a lightweight body mount, so figure maybe $15 as an average. That's about the same if not a little less than a decent Class-D system would cost. Dollar for dollar, Class E is the same as Class D. If we allow for the capture effect of FM so that interference from distant stations
is non-existant with FM, Class E pulls ahead. And when we add in a complete absence of hobbyism, Class E is obviously the future of CB.

Class D, however, will still be around, for there is no present way to change or eliminate what has become a legal "unlicensed amateur band". (If you object to calling CB'ers "amateurs" let's call it a "licensed communicator's band").

Unlike other electronic hobbyists such as the general experimenter and traditional radio amateur, the CB hobbyist doesn't give two hoots or a holler about electronic experimentation. He might purchase some add-on transceiver accessory in the quest for more talk-power, or a directional antenna to produce a rock-crushing signal at the receiving station, but how it all works or why couldn't interest him less, for the end purpose of his hobby is to talk to someone else.

Since the equipment itself serves only as a means for the hobbyist CB'er to do something, and is not part and parcel of the hobby itself as the transmitter-receiver is to the typical amateur, there is no reason why hobbyist CB gear cannot be part of some other hobby, a normal being a mobile tape player or AM/FM radio. Facts is, that is precisely what we are starting to see: Combination tape player/CB transceivers and AM/FM radios combined with CB transceivers; even an AM/FM radio/tape player/CB transceiver is ready for distribution to dealers.

It is this combination of music and CB that shapes up as the next big development in Class-D CB. And it is with this tie-in that cars might come equipped with a CB transceiver, thereby providing the channel 9 emergency service the FCC and the CB manufacturers envisioned when Channel 9 was set aside for emergency calls. (A purely accidental benefit via the CB hobbyist).

Another aspect of hobby CB has been an increase in the availability of budget (low cost) CB transceivers. Until the past year there was a continuous upgrading of the average AM CB transceiver. In general, selectivity—the ability to reject interference from stations on adjacent channels—was the key to both the transceiver's overall quality and price; and both were edging upwards. Fewer and fewer basic, limited channel, transceivers were available each year.

But with the hobbyist explosion last March there was a similar explosion in low cost all-channel versions of basic transceivers: nothing great in selectivity, maybe prone to strong signal overload, enough modulation distortion to garble the message, but, and it's a BIG but, a price tag around $100 that's bringing in customers like lemmings on a death march to the sea. One hundred, or so, dollars is the magic figure for hobby CB—the price that gets the talkers: students, young children, etc. Almost all major newspapers now have half or full page ads from ex-hi-fi and auto-aid dealers extolling and selling CB, and always the feature attraction is a transceiver in the $100 price range. It's that $100 price tag that's getting 'em on the hook, the more expensive high-performance equipment will come later. Fact is, business should soon start (continued on page 81)

RCA Nickel-Cadmium Batteries. They're rechargeable—up to 1000 times.

RCA Nickel-Cadmium batteries are rechargeable up to 1,000 times and more. That's what makes them so much more useful than ordinary power cells. They're ideal for products ranging from flashlights, cameras, and calculators to toys, recorders, and transistor radios.

Available in the AA, C and D 1.2 volt standard sizes, the RCA Rechargeables supply constant battery voltage and high power throughout each working cycle. They offer outstanding performance and value for today's battery consumer. Try them and see for yourself.

RCA Distributor and Special Products Division, Cherry Hill Offices, Bldg. 206-2, Camden, N.J. 08101.

RCA Batteries

TeleMatic FOCUS VOLTAGE SUPPLY

Service The New Low Focus Voltage TV's On Any Test Rig

FVS 3950

- Easy Installation
- Safety Light
- Adjustable Voltage

The TeleMatic Focus Voltage Supply Model FVS 3950 is indispensable for servicing many of today's TVs that incorporate low voltage focus systems. These TV's require this external voltage source to properly focus the Test Rig picture. The Focus Voltage Supply has a control for adjusting the voltage according to chassis requirements. A safety light indicates that the unit is properly hooked up, to insure the high voltage contact is secure.

(Also see ad on page 66)
Hunting for a better job?

CIE will help you get the license you need.
A Government FCC License can help you qualify for an exciting, rewarding career in ELECTRONICS, the Science of the Seventies.

Read how you can prepare at home in your spare time to pass the FCC Licensing examination.

If you're out to bag a better job in Electronics, a Government FCC License can give you a shot at job opportunities with real futures.

According to the U.S. Office of Education Bulletin (4th Edition): "The demand for people with technical skills is growing twice as fast as for any other group, while jobs for the untrained are rapidly disappearing."

There are new openings every year in many different industries for electronics specialists. And you don't need a college education to qualify.

But you do need knowledge . . . knowledge of electronics fundamentals. And one of the nationally accepted methods of measuring this knowledge . . . is the licensing program of the FCC (Federal Communications Commission).

Importance of an FCC License and CIE's Warranty of Success

If you want to work in commercial broadcasting . . . television or AM or FM broadcasting . . . as a broadcast engineer, federal law requires you to have a First Class Radiotelephone License. Or if you plan to operate or to maintain mobile two-way communications systems, microwave relay stations or radar and signaling devices, a Second Class FCC License is required.

But even if you aren't planning a career which involves radio transmission of any kind, an FCC "ticket" is valuable to have as Government certification of certain technical skills. It's a job credential recognized by some employers as evidence that you really know your stuff.

So why doesn't everyone who wants a good job in Electronics get an FCC License?

It's not that simple. To get an FCC License, you must pass a Government licensing exam.

A good way to prepare for your FCC License exam is to take one of the CIE career courses which include FCC License preparation. We are confident you can successfully earn your license, if you're willing to put forth an effort, because the vast majority of CIE students have. In fact, based on continuing surveys, close to 9 out of 10 CIE graduates have passed their FCC exams!

That's why we can offer this time-tested Warranty of Success: when you successfully complete any CIE career course which includes FCC License preparation, you will be able to pass the Government FCC Examination for the License for which the course prepared you or you will be entitled to a full refund of an amount equal to the cash price of tuition for CIE's Course No. 3, "First Class FCC License," in effect at the time you enrolled. This warranty is good from the date you enroll until the last date allowed for completion of your course.

CIE Has Career Courses that Include "Hands On" Training

ELECTRONICS TECHNOLOGY with LABORATORY Courses . . . takes beginner from fundamentals to skills required of technician or engineering assistant. Includes Experimental Electronics Laboratory for "hands on" training.

COLOR TV MAINTENANCE and REPAIR . . . several CIE courses combine electronics theory with the actual construction, testing and troubleshooting of a big screen, color state

With CIE you learn at home
With CIE, you learn in your spare time at home . . . or wherever else is convenient. No classroom time, ever. No one to make you go too fast . . . or too slow. With CIE's Auto-Programmed® Lessons you'll pick up facts, figures, and electronics theories you may have considered "complicated" . . . even if you've had trouble studying before.

You can have attractive job opportunities

There have already been many exciting developments and breakthroughs in Electronics and some people might assume there will be no new frontiers . . . no new worlds to conquer. Not so.

Electronics is still growing. In nearly every one of the new and exciting fields of the Seventies you find electronics skills and knowledge in demand. Computers and data processing. Air traffic control. Medical technology. Pollution control. Broadcasting and communications. Once you have the solid technical background you need, you can practically choose the career field you want . . . work for a big corporation, a small company or even go into business for yourself.

Yes, Electronics can be the door to a whole new world of career opportunities for you. And CIE training can be your key.

Send for FREE school catalog

Discover the opportunities open to people with electronics training. Learn how CIE career courses can help you build new skills and knowledge and prepare you for a meaningful, rewarding career. We have courses for the beginner, for the hobbyist, for the electronics technician, and for the electronics engineer. Whether you are just starting out in Electronics or are a college-trained engineer in need of updating (or anywhere in between), CIE has a course designed for you.

Send today for our FREE school catalog and complete package of career information. For your convenience, we will try to have a representative call to assist in course selection. Mail reply card or coupon to CIE . . . or write: Cleveland Institute of Electronics, Inc., 1776 East 17th Street, Cleveland, Ohio 44114. Do it TODAY.

APPROVED UNDER G. I. BILL

All CIE career courses are approved for educational benefits under the G.I. Bill. If you are a Veteran or in service now, check box for G.I. Bill information.

Cleveland Institute of Electronics, Inc.

1776 East 17th Street, Cleveland, Ohio 44114

Accredited Member National Home Study Council

Cleveland Institute of Electronics, Inc.

1776 East 17th Street, Cleveland, Ohio 44114

Please send me your FREE school catalog and career information package today.

I am especially interested in:
- Electronics Technician
- FCC License Preparation
- Color TV Maintenance
- Mobile Communications
- Industrial Electronics
- Electronics Engineering
- Other

Print Name

Address

Apt.

City

State

Zip

Age

Check box for G.I. Bill information.
- Veteran
- On Active Duty

RE-62
new products

More information on new products is available from the manufacturers of items identified by a Reader Service number. Use the Reader Service Card inside the back cover.

PORTABLE DIGITAL MULTIMETER. model 1455, has ½ inch high, 7 segment planar ½-inch display, 100% overranging and 21 function-range operation. DC volts are measured from 100 μV to 1000 V; AC volts from 100 μV to 500 V RMS; resistance from 100 milliohms to 20 megohms; current, both AC and DC, from 1 μA to 2 amps. Frequency response for AC current and voltage is from 30 Hz to 50 kHz. Basic accuracy on DVC is ±0.02% of reading ±0.01% f.s., ±1 digit for AC voltage.

The model R2638 and R33047 both list for $8.50—Robins Industries Corp., 75 Austin Blvd., Commack, L.I., NY 11725
Circle 32 on reader service card

WIRELESS PA SPEAKER, the SC-100 Sound Column is a system featuring quick set-up and freedom from trailing microphone wires. The Sound Column consists of three 6 x 9 inch speakers, a receiver with built-in antenna and amplifier, a chrome stand and a nylon carrying case. The crystal-controlled model SC-100 is available on three different frequencies. The manufacturers wireless microphones can be matched to the system.

functions and prolonging service life. Other features include a knob with cut and trim positions, spring-loaded arms to hold the tape in position and cutting blades that are exposed only when actually splicing.

The SC-100 has separate bass and treble controls and may be AC or 12-volt DC operated. Three independent volume controls provide simultaneous control of a wireless microphone, recorder and turntable. The system provides wire-free communication on tennis courts, athletic fields, playgrounds, indoor and outdoor assemblies and emergency situations—Edcor, 3030 Red Hill Ave., Costa Mesa, CA 92626
Circle 33 on reader service card

PORTABLE DIGITAL MULTIMETER, model 1455, has ½ inch high, 7 segment planar ½-inch display, 100% overranging and 21 function-range operation. DC volts are measured from 100 μV to 1000 V; AC volts from 100 μV to 500 V RMS; resistance from 100 milliohms to 20 megohms; current, both AC and DC, from 1 μA to 2 amps. Frequency response for AC current and voltage is from 30 Hz to 50 kHz. Basic accuracy on DVC is ±0.02% of reading ±0.01% f.s., ±1 digit for AC voltage.

The model R2638 and R33047 both list for $8.50—Robins Industries Corp., 75 Austin Blvd., Commack, L.I., NY 11725
Circle 32 on reader service card

WIRELESS PA SPEAKER, the SC-100 Sound Column is a system featuring quick set-up and freedom from trailing microphone wires. The Sound Column consists of three 6 x 9 inch speakers, a receiver with built-in antenna and amplifier, a chrome stand and a nylon carrying case. The crystal-controlled model SC-100 is available on three different frequencies. The manufacturers wireless microphones can be matched to the system.

functions and prolonging service life. Other features include a knob with cut and trim positions, spring-loaded arms to hold the tape in position and cutting blades that are exposed only when actually splicing.

The SC-100 has separate bass and treble controls and may be AC or 12-volt DC operated. Three independent volume controls provide simultaneous control of a wireless microphone, recorder and turntable. The system provides wire-free communication on tennis courts, athletic fields, playgrounds, indoor and outdoor assemblies and emergency situations—Edcor, 3030 Red Hill Ave., Costa Mesa, CA 92626
Circle 33 on reader service card

PORTABLE DIGITAL MULTIMETER, model 1455, has ½ inch high, 7 segment planar ½-inch display, 100% overranging and 21 function-range operation. DC volts are measured from 100 μV to 1000 V; AC volts from 100 μV to 500 V RMS; resistance from 100 milliohms to 20 megohms; current, both AC and DC, from 1 μA to 2 amps. Frequency response for AC current and voltage is from 30 Hz to 50 kHz. Basic accuracy on DVC is ±0.02% of reading ±0.01% f.s., ±1 digit for AC voltage.

The model R2638 and R33047 both list for $8.50—Robins Industries Corp., 75 Austin Blvd., Commack, L.I., NY 11725
Circle 32 on reader service card

WIRELESS PA SPEAKER, the SC-100 Sound Column is a system featuring quick set-up and freedom from trailing microphone wires. The Sound Column consists of three 6 x 9 inch speakers, a receiver with built-in antenna and amplifier, a chrome stand and a nylon carrying case. The crystal-controlled model SC-100 is available on three different frequencies. The manufacturers wireless microphones can be matched to the system.

functions and prolonging service life. Other features include a knob with cut and trim positions, spring-loaded arms to hold the tape in position and cutting blades that are exposed only when actually splicing.

The SC-100 has separate bass and treble controls and may be AC or 12-volt DC operated. Three independent volume controls provide simultaneous control of a wireless microphone, recorder and turntable. The system provides wire-free communication on tennis courts, athletic fields, playgrounds, indoor and outdoor assemblies and emergency situations—Edcor, 3030 Red Hill Ave., Costa Mesa, CA 92626
Circle 33 on reader service card
2 lbs. Price: $69.95 plus $1.50 shipping. Assembled—Helectronics, 8100 St. Clair Avenue, North Hollywood, CA 91605. Circle 14 on reader service card

AIR-SUSPENSION SPEAKER, model 69C10FECO, for auto stereo and other hi-fi applications is a 6 x 9 inch model with a 3-inch tweeter. Voice-coil impedance is 8 ohms. List price is $24.75.—Guam-Nichols Co., 234 M. Marquette Road, Chicago, IL 60637. Circle 35 on reader service card

NEW CASSETTE TAPE. The new Ferricobalt tape, called Nakamichi EX II, is the outgrowth of a newly developed process whereby a crystal of cobalt ferrite is grown onto the surface of a gamma ferric oxide crystal. The resulting particle is more elongated and uniform in size and combines the most desirable properties of both compounds without any of their drawbacks. It permits extremely uniform coating and boasts superior magnetic orientation characteristics. This means higher output, lower noise and lower distortion. Typically, EX II offers 4 dB more output at low and mid frequencies and up to 6 dB at high frequencies in comparison to other quality high-output, low-noise tapes. Noise level is improved by more than 1 dB and dynamic range is enhanced by a factor of 1.8. Best of all, biasing requirements are exactly the same as for the highly acclaimed Nakamichi EX tape.

The Nakamichi EX II cassette employs cassette housing that not only resists jamming, fouling and other mechanical difficulties, but also reduces tape skewing, a major cause of nonuniform output.

Nakamichi EX II is available in C-60 and C-90 lengths. The price of the C-60 cassette is $4.39, the C-90 is $5.79.—Ted Nakamichi, Nakamichi Research (U.S.A.), Inc., 220 Westbury Ave., Carle Place, NY 11514. Circle 36 on reader service card

AUDIO GENERATOR, LAG-120, features pushbutton operation for easy switching of frequency ranges along with solid-state circuitry to hold distortion to 0.1%.

How To Cut The Tough Stuff ... Easy As Butter In Summer

You don't need the grip of a gorilla to cut sheet metal, leather, gaskets, plastics, screening, rubber and roofing material. With the perfectly mated, precision cutting edges of a CHANNELLOCK snip, you'll ease through such "tough stuff" ... smoothly, accurately, positively. And happy day! No more blisters. The handles are cushion coated with durable, blue dipped plastic. Drop forged of highest grade tool steel, scientifically heat treated ... your assurance of tough, dependable service for years to come.

CHANNELLOCK, INC., • Meadville, Pennsylvania 16335

Send for Our Free Catalog

Circle 64 on reader service card
high-fidelity equipment and products and generates a wide range of sine and square waves from 10 Hz to 1 MHz. It offers external triggering through the use of the built-in trigger terminals and has a switchable output generator which ranges from 0 to 20 dB continuously variable with frequency accuracy at +3% (~1 Hz). Input impedance is 10,000 ohms while the synchronization range is ±1% per volt.

Compact, portable and lightweight the LAG-120 offers 115/230 V power supply; 50/60 Hz; and approx. 12 VA. Size is 5½"H x 5-3/16"W x 9-13/16"D; weight approx. 6.5 lbs. $219.95.—Leader Instruments Corp., 151 Dupont St., Plainview, NY 11803.

Circle 37 on reader service card

COMPLETE TOOL KIT in a pouch, Super Kit, the newest addition to the Vacombo kit program offers the convenience of twenty of the most often used tools in a versatile roll-up pouch. The Super Kit contains a standard and a stubby type heavy-duty handle with snap-in interchangeable screwdriver and nutdriver blades, reamer and extension plus two pliers and an adjustable wrench. The screwdriver blades are 3/16" and 1/4" slotted and a point. The extension blade adds an additional 7" of working length to all of the nutdriver and screwdriver components. All of the blades will fit into either the standard or the stubby handles. The kit also contains a 6" long needle nose plier with the wire cutter, a 5" diagonal wire cutter and a 6 ¼" adjustable wrench.

The Super Kit (Stock No. 99550) measures 19½" wide and 19¾" high. The blue pouch with yellow trim is made from top grade, durable vinyl. Pockets and dividers are double stitched. A matching blue dust cover keeps all components clean. The kit can be mounted on a wall or pegboard through brass eyelets, or it can be rolled up for convenient, compact storage in a drawer or a tool kit.—Vaco Products Co., 510 N. Dearborn St., Chicago, IL 60610.

Circle 38 on reader service card

OPTICAL SERVO TURNABLE, the Gale GT2101 is totally different from any other turntable ever made... in appearance, materials used, motor design, speed control and monitoring, performance and price.

At first glance, the Gale is not easily recognizable as a turntable, as there is neither the conventional rectangular chassis nor round platter. Instead, one sees a highly modernistic Y-shaped sculpture of plexiglass and stainless steel. Only the pickup arm on the long end of the Y indicates that this is indeed a record playing device.

At the center there is a spindle for the record hole protruding from the motor underneath. The record itself is also supported by and rotated on a Y element.

The DC, brushless, servo motor is also unique. Its 10-pole, 3-phase skew-wound design minimizes peak-to-peak torque ripple. It is commutated optically instead of by the Hall-effect devices commonly used in other direct-drive systems. The rotating elements rest on a magnetic field instead of the high-point-load mechanical bearings used in almost all turntables, which wear in time and cause the rumble figures to deteriorate appreciably.

Unlike conventional permanent magnets such as the Alnico alloys or barium ferrite, the rare-earth magnetic material used to create the magnetic field will not degrade in time. The entire motor is housed in a cylinder, with the rotating portion made of stainless steel and the base of cast aluminum.

The electronic control circuitry is in a stainless steel cylinder connected to the turntable by a coiled cord and can be mounted up to three feet away. Speeds can be set either in a continuous range from 10 to 99 RPM, or locked in precisely at 33⅓. A green LED indicates 33⅓ to an absolute accuracy to within parts per million. Speed is monitored 600 times per revolution by reference to a 1.048-Hz quartz crystal. A three-digit LED read-out displays the actual rotation speed.

A mechanical suspension on the three extremities of the unit provides near-total isolation from external shock and acoustical...
FREE burglar — fire alarm catalog
over 500 systems, detectors, controls, sounders, tools, locks, supplies

TO PROTECT YOUR HOME, BUSINESS, INDUSTRY
Huge selection of hard-to-find security equipment from stock. 96 fact-filled pages loaded with 100's of highest quality professional alarm products, technical notes, diagrams.

ONE-STOP SUPERMARKET
SELECTION INCLUDES:
ultrasonics, radar, infrared, undercarpet mats, magnetic contacts, smoke & heat detectors; Controls: Alarms: bells, sirens, phone dialers, lights, guard panels. Large selection of tools, relays, wire, holdup alarms, books. Fills need for industry, alarm co.s., businesses, homes, institutions. Order your copy today.

mountain west alarm
4215 n. 16th st. phoenix, az. 85016
(602) 263-8831

Circle 66 on reader service card

THE MEAN LITTLE KIT
New compact 24-piece kit of electronic tools for engineers, scientists, technicians, students, executives. Includes 7 sizes screwdrivers, adjustable wrench, 2 pair pliers, wire stripper, knife, 2 alignment tools, stainless rule, hex-key set, scissors, 2 flexible files, burnisher, miniature soldering iron, solder aid, coil of solder and desoldering braid. Highest quality padded zipper case, 6 x 9 x 3/4" inside. Satisfaction guaranteed. Send $6 check, company purchase order or charge to Bank America or Mastercharge. We pay the shipping charges.

JTK-6 TOOL KIT $59.50

FREE CATALOG
112 pages of hard-to-find precision tools. Also contains 10 pages of useful "Tool Tips" to aid in tool selection. Send for your free copy today!

JENSEN TOOLS & ALLOYS
4117 N. 44TH STREET, PHOENIX, ARIZONA 85018

Circle 67 on reader service card

feedback.
Gale does not manufacture pickup arms, but provides a model which includes an SME arm. Mounting plates for other arms are available.
The designer of the turntable claims that there is no current test equipment or method that can accurately measure any rumble or wow and flutter in this turntable. The 5-year guarantee not only covers defects in materials and workmanship, but any measurable change in performance.
The price: $1,875, less tonearm. Gale products (turntable and speaker systems) will be available in the U.S. through selected Audio specialists—Roth/Sindell, Suite 102, 540 Kelton Ave., Los Angeles, CA 90024.

Circle 39 on reader service card

PROJECTION TELEVISION KIT that easily converts any color or black and white set to wall size projection with a 50" picture, consists of a specially designed TV projection lens and a high-efficiency screen. A high-voltage intensifier for brighter pictures is also available. Complete instructions for converting the TV set and installing the necessary components are also furnished. A completely assembled projection TV set with a 13" color tube and an attractive stand is also available—"Miami Projection TV," 354 N.E. 79th Street, Miami, FL 33138.

Circle 40 on reader service card

SMALLEST ELECTRONIC CALCULATOR is only 2 x 2.8 x 0.4" (about one-third the size of a pack of cigarettes), and weighs just 2 ounces. This full-function electronic calculator with 8-digit readout does everything the big ones do. It features an automatic percentage key, floating decimal, constant key, lead zero suppression, and more. The tiny plastic unit operates on two 1.5-V Mallory PX 825 camera batteries or the equivalent. Batteries are included and replacements are available at any camera shop.

Polaris
40 KV DUAL RANGE Probe MEASURES VOLTAGE AND CURRENT FOR TODAY AND TOMORROW MODEL #651
ONLY $29.95

SPECIFICATIONS
Range One: 40,000 Volts D.C.
Range Two: 0-400 M.A.D.C.
Accuracy: + 2% Full Scale
Meter Movement: 50µA

Polaris DC POWER SUPPLY
0-25 VOLT 250 MA
TEST & SERVICE
SOLID STATE EQUIPMENT MODEL TPS 225
ONLY $29.95

• Operates on 105/125 V.A.C.
• Adjustable Voltage Output
• Meter Measures Voltage & Current
• Extremely Low Ripple

Polaris COBRA CURVE TRACER
RAPID TRANSISTOR & DIODE TESTER
MODEL CT 751
ONLY $22.95

• In & Out of Circuit Testing
• Gain-Junction-Leakage Test
• In Circuit Test Leads
• Checks Diodes for Function & Polarity

Polaris New York
2862 Fulton St., Bklyn, N.Y. 11207
Please send me rebate certificates and information on Probe
□ Power Supply □ Curve Tracer □
Name __
Street __
City __________________ State ______ Zip ______
My supplier is ______________________________________

SOLD THROUGH DISTRIBUTORS ONLY

Circle 68 on reader service card
NEW LIT

All booklets, catalogs, charts, data sheets and other literature listed here with a Reader Service number are free. Use the Reader Service Card inside the back cover.

AUDIO PRODUCTS CATALOG, No. 7502, starts off with the best sellers in the Robins line of 230 different accessories used by professional as well as amateur hi-fi enthusiasts and tape recordists. The most interesting items—or at least those that the Robins customers buy most—are right up front, where they’ll be easy to find.

Another feature of the catalog was to group, describe and illustrate products by type, rather than specific application. Thus all cleaners, splicers, bulk erasers, demagnetizers and other sound enhancers are listed as such.

According to the catalog listing, among the products are phono cleaners and kits, record and album covers and other phono accessories, tape and cassette cleaners and lubricants, head demagnetizers, bulk tape erasers, splicers, a variety of recording, splicing, leader and test tapes for all applications, and a melange ranging from carrying cases to mailers and from stereo speaker protectors to audio plugs, jacks and cables.

Robins Industries Corp., 75 Austin Blvd. Commack, N.Y. 11725.

Circle 42 on reader service card

PACKAGING PRODUCTS. A new 16-page catalog fully describes packaging products from A-Aluminum Cages to Z-Vectorboards. Organized to aid the designer, the catalog gives features and specifications for circuit boards, cages, card cases, sockets, terminals, vectorboards and tools. Also included are a variety of breadboarding kits, patchboards, turrets, positive photosensitized boards and developer. The 398 products listed are the most popular items stocked by Vector and its AVID distributors. Vector Electronic Co., Inc., 12460 Gladstone Ave., Sylmar, Calif. 91342.

Circle 43 on reader service card

CTS LOUDSPEAKER LINE. A total of 87 models are described in a 12-page catalog. This makes it easy for hi-fi stereo buffs to meet all of their speaker requirements from one quality product line. . . . whether it be for new system construction or replacement of an existing hi-fi stereo, musical amplifier, automobile, public address or aircraft speaker. Among those offered in this newly expanded group are:

- A full selection of 36 hi-fidelity speakers ranging from a 1¼ in. tweeter with a power rating of 2 watts maximum continuous and a response range of 2000-20,000 Hz, to the popular 10-watt, 4½ inch, mid-range speaker rated at 400-10,000 Hz to the big 100-watt, 18 in. winder with 20-15,000 Hz response range. New automotive stereo and rear deck speaker kits. Additional speakers are also available for public address, intercom, tape deck, sound column and numerous other applications. —CTS of Paducah, Inc., 1565 N. 8th St. Paducah, Ky. 42001.

Circle 44 on reader service card

FREE catalog

over 2000 unique tools, handy kits, precision instruments, technical supplies.

Our 23rd year of service to the World's finest craftsmen and technicians.

A carefully selected and tested assortment of unique, hard-to-find tools, clever gadgets, precision instruments, bargains kits. One-stop shopping for the technician, craftsman, hobbyist, lab specialist, production supervisor. Many tools and measuring instruments available nowhere else. One of the most unusual and complete tool catalogs anywhere. Get your copy of the NC FLASHER today.

National Camera

2000 West Utica Ave., Dept. GEA
Elmhurst, Illinois, 60126
Phones 1-03719-1195

Circle 70 on reader service card

the audio

amateur?

What a trip old Richard's Rhine journey could have become had he built his own mixers, 900 watt amps, octave equalizers, 24 inch woofers, electronic crossovers, and home brew electrostatics. Zounds what sounds!

Ask our Rhine maiden for details.

Box 176R
Peterborough, N. H.
03458

Send for a free prospectus. Craig Stark of STEREO REVIEW says "Top quality. Only U.S. publication devoted to the serious audiophile constructor.”

Name

City

State

Zip

Circle 71 on reader service card

ALLISON

AUTOMOTIVE COMPANY

1267-L, East EDNA Pl., COVINA, CAL. 91722

Circle 72 on reader service card

ALLISON

'OPTO-ELECTRIC'

The BEST...the ULTIMATE

of ALL Ignition Systems!

- (We challenge ANYONE
dispute this Fact)

Never wears out or needs any Maintenance!

...gives you Maximum Power
with continuous PEAK PERFORMANCE
...while reducing Maintenance and Operating Costs!

★ The Allison OPTO-ELECTRIC System eliminates the Points and Condenser, replacing them with an OPTO-ELECTRONIC TRIGGER, using a 4th Emitting Diode and Photo transistor to the system operates on a beam of Light. As there are NO moving parts in rubbing contact, 'friction-wear' is completely eliminated. Timing adjustments are PERMANENT.

★ Gives 40-times More Timing accuracy than ANY system using mechanical Breaker Points! UNLIMITED RPM!

★ "Electronically-Controlled" Dwell automatically supplies HIGHEST Performance at both Low and High RPM. Spark strength does not fall off at high RPM! POSITIVE SPARK helps eliminate Misfire...for faster acceleration and improved Engine Performance. Spur评审LAST 3 to 10-Times LONGER.

★ Easier Starting under any condition! Smoother running...NO TIMING FLUCTUATION as with Magnetic Impulse Units.

All SOLID STATE Components. UNAFFECTED BY Temperature, Moisture, or Vibration! Only highest grade materials used. Guaranteed you Solid. Dependable Performance!

★ PERFECT TIMING INCREASES Engine Efficiency and Gas Mileage. SAVES Precious Fuel! Allison gives you MAXIMUM Engine Efficiency 100% of the Time...and that's the name of the game for the BEST in GAS MILEAGE and ECONOMY

★ Perfect Timing and Dwell never change.

★ Pays for itself! Eliminates Ignition Tune-Ups forever! "INFINITE LIFE". Once installed...Never needs replacing!

PROVEN RELIABILITY!

Each Unit Tested to 15,000 RPM.

Road and Race Proven.

Opto-Electric System was at:

INDY Two years in a row!

You can install the ALLISON System on ALL the U.S. made & Foreign Cars! (4. 6. or 8-Cylinder).

EASIEST-TO-INSTALL" UNIT ON THE MARKET.

(Not necessary to eliminate Distributor) with other systems).

★ If you want the BEST. and SAVE! This is IT!

ORDER with CONFIDENCE

SAFETY GUARANTEED

10-YEAR FACTORY WARRANTY

(Free Repair or Replacement)

Send Check or M.O.

State Make. Year. Engine Size

(Calif. Res. not Tax)

(So New...it’s SOLID ONLY FROM FACTORY DIRECT).

You may use your MASTER CHARGE or BANKAMERICAN Card.

Send us (1) Your Name, (2) Number of Units, (3) Exp. Date.

★ Before buying any other Type ignition system

Send Postcard for our FREE BROCHURE.

★ If you have already installed a C-O ignition system.

Modernize and increase its Efficiency.

CONVERT YOUR "C-O" UNIT TO BREAKLESS! Opto-Electric "TRIGGER UNIT"... Only $34.95.

★ Our BEST Satisfied are the users of our ALLISON System!

★ America’s Oldest and Largest Mfg. of Opto-Electronic Ignition Systems.

ALLISON

AUTOMOTIVE COMPANY

1267-L, East EDNA Pl., COVINA, CAL. 91722

Circle 72 on reader service card

Circle 70 on reader service card

Circle 71 on reader service card
picking up for the "gold plated specials"; those high-performance feature-loaded CB transceivers priced well upwards of $400 or $500. In any hobby there's always some who want to upgrade; the more hobbyists there are the more there are who want to break out of the general scheme of things and upgrade. While we can count the number of presently available "gold plated special" transceivers on one hand, the booming CB hobbyists should result in many more super-performance transceiver models in the next few months (just as soon as the manufacturers can move them off the assembly line).

Finally, we come to Class-D restructuring with its additional channels. In practical terms there is simply no future for them if they are SSQ-only. Several years ago many a manufacturer took a "bath" by going into SSQ when there was no market at all; a few magazines and promoters created the illusion of an SSQ market and some really big names got hurt bad. Even if additional channels are approved, if they are SSQ-only don't look for a thundering herd of users or manufacturers. For one thing, a total of 100 channels requires a bandwidth too wide for simplified transceiver design—simplified meaning the design technology presently being used in CB transceivers. With SSQ, total equipment costs will be much too excessive for the small business and personal user. If the channels are added for the AM mode, and hobby operations permitted, that, of course, is a whole new ball game and you can figure CB will be even bigger than it is today. It would be totally impossible for the FCC to handle the licensing of all the people flocking to CB, and point-of-purchase licensing would be an absolute must.

The really ideal solution for CB, and one strongly favored by some of our largest CB manufacturers, dealers and users is additional AM channels reserved for the business and personal user—as originally intended by the FCC. Here, contacts would be only between stations of the same call (license), with built in identifiers and crack-down enforcement by the FCC insuring total freedom from CB hobbyists. (Without the identifiers and crack-down the hobbyists will simply slide up the band to the new channels). Of course, if the new channels are reserved for business and personal intranet use, there is no point or justification for Class-E CB.

The future of CB will therefore be primarily determined by new channels or frequencies, and how they are finally used not how they are initially set up. As we should have all learned by now, CB is some mystical force unlike any other established radio service; as the commercials for a well-known hamburger chain would put it. "The CB'er will have it his way."

R-E
SYNTHESIZER

(continued from page 48)

wave components of a complex signal that are within the pass band of the filter will be produced while some means of attenuating the pass band will be employed, thus producing a planned and controlled "distortion" of the complex waveform.

Since many natural instruments depend upon the characteristics their resonators being changed to produce different tones, there will be some means of controlling the frequency of the least center frequency of a synthesizer's filter. As you might expect, voltage control is the answer.

Control voltages for a voltage controlled filter (VCF) can originate from basically the same sources as those that control the oscillators. If the center frequency of the filter is to change with the changing pitch of the oscillator, the same voltage that is controlling the oscillator can also be routed to the filter. For all practical purposes, the concept of electronic music, the control can originate in a function generator.

Noise

So far in our analysis we have dealt exclusively with sound sources —sources that have a readily discernable frequency and therefore an easily recognized musical pitch. There are also "unpitched" sources.

The concept of an unpitched musical sound may at first seem as esoteric as the sound of a clapping hand, but it is actually very easy to understand. The hiss that you hear from an FM radio that is tuned between stations is an unpitched sound and essentially noise. We give provision for a noise source that produces just this effect. From a technical standpoint, it is the result of summing together randomly varying amplitudes of all possible frequencies within a given frequency band. The applications of noise are very broad. For example, the sound of the snares of a snare drum is noise with a percussive envelope. By processing noise through the proper filters, the sounds of the surf and wind are easily simulated.

So, now we know a little bit about how musical instruments work and how electronic circuits can be used to simulate the properties of these instruments—let's look at the GNOME and begin applying some of these principles.

The GNOME

In the early days of synthesizers, each element of a system was a free-standing module and the specific electrical connections were made using patch cards. Patch cords allow great flexibility but laborious task of setting up patches for each voice is a disadvantage to most performing musicians. In a small system that will not be expanded beyond a specific capability, a normalized connection (one in which a specific arrangement of elements is pre-wired) is definitely the way to go.

Figure 17 shows the signal and control paths through the GNOME. The VCO always feeds the input of the VCF and the VCA can get its input either directly from the VCO or from the output of the VCF. The control voltage for the VCA always comes from the function generator. The control voltage for the VCO can come either from the self-contained controller or the power supply and is adjustable with the VCF VCA range control. The VCF control voltages can come either from the function generator or the controller, or both. This is a fairly typical normalization scheme for small synthesizers and while it unquestionably limits the versatility of the machine, the limitations are minimal and entirely consistent with the inherent limitations of the simplified, low cost circuitry of the GNOME.

Controls

The front panel nomenclature of the GNOME is such that the controls are divided into six sections corresponding to the six major circuits that make up the unit. These sections are:

1. Controller
2. Trigger
3. Noise Source
4. Voltage Controlled Oscillator
5. Voltage Controlled Filter
6. Voltage Controlled Amplifier

Controller section

The built-in control strip is nothing more than an exposed resistance element that has one end grounded and a positive voltage applied to the other end. The saw-tooth cuts on the resistance strip along with the paralleling resistors inside the
case combine to produce a voltage distribution along the control strip that is exponential. If it were not for this exponential voltage distribution at the control strip, semi-tone intervals at the low end of the strip would seem to be bunched together while those at the top end of the strip would be spread apart. This relates back to the distribution of semi-tone intervals in the equally tempered musical scale.

The Controller RANGE potentiometer varies the voltage that appears across the control strip. At the maximum position of this control, the strip is a little less than 4 octaves long; while at the minimum setting it is slightly more than ½ octave long. As we shall see later on in this article, the Controller and VCO RANGE controls interact to place the musical "length" of the controller at any desired position within the oscillator's 8 octave range.

The two slide switches within the controller section of the front panel connects the voltage that is picked off the control strip by the wiper probe to either the VCO or VCF, or both. Sliding the switch bat in the direction of the arrow connects the voltage to the element indicated.

Trigger

There is only one control within the trigger section of the front panel and that is the TRIGGER button. Whenever this button is pressed, a voltage is applied to the triggering inputs of the function generator associated with the VCF and VCA. Provisions have been made internally to reduce multiple triggering caused by "noisy" switch contacts, but a firm pressure on the button is needed to prevent contact bounce.

Noise source

The single control within the noise section of the front panel is a LEVEL control that determines the amount of white noise that will appear on the common audio bus. At the minimum position of this control, the noise source is isolated from the bus and the noise level increases with clockwise rotation toward maximum.

VCO

The RANGE control within the VCO section of the front panel is an attenuator on the control voltage input line of the oscillator. It is useful in a number of different ways. When the Controller VCO switch is off, a constant voltage is applied to the VCO RANGE control allowing the oscillator to be set to some constant pitch that is independent of the controller action.

When the Controller VCO switch is on, the VCO RANGE and Controller RANGE controls can be used together to set the highest and lowest pitches available from the control strip. Figure 18 illustrates this by using a bar to represent the total 8 octave range of the oscillator. The double ended arrow above the bar represents the range of the control strip. Rotating the Controller RANGE control toward maximum increases the length of the double ended arrow across the width of the bar. For example, with both controls set to maximum, the range of the controller is approximately from 600 Hz to 6500 Hz. If the Controller RANGE control remains at maximum, the controller will remain a little over three octaves long but reducing the VCO RANGE can cause these three octaves to run from 30 Hz to 350 Hz. Note: The same slight non-linearities that in most circumstances make the GNOME oscillator incompatible with keyboards will also make the length of the control strip variable depending on the setting of the VCO RANGE control, but under normal circumstances these errors will not be noticeable or objectionable.

At the minimum setting of the RANGE control, the oscillator is off regardless of the condition of the controller or the setting of the Controller VCO switch.

The SKEW control is a little unusual for synthesizers but it allows the GNOME's simple VCO to produce 4 basic waveforms (triangle, ramp, square wave and pulse) while also making available a wide range of waveforms in between the four. Figure 19 shows the effect of this control. Clockwise rotation changes the ramp wave to a triangle and the narrow pulse to a square wave. There is a point in oscillator pitch associated with the rotation of this control from one end of its travel to the other. This deviation is maximum toward the center of the range of the control with the two extreme ends being within a semi-tone of the same pitch.

The triangle control determines the amount of ramp/triangle waveform applied to the common audio bus. The level (turn page)
The square wave control determines the amount of pulse/square wave applied to the common audio bus. The level increases with a clockwise rotation of the control.

There are four possible combinations of settings of the REPEAT and SUSTAIN switches and each of these combinations produces a different response. These combinations are most easily explained in tabular form as shown in Fig. 20.

The range control within the VCA section of the front panel is an attenuator on the output of the VCF's function generator. It varies the amount of control voltage applied to the filter from the function generator. The range of these filters will vary from one unit to the next, this control is designed so that rotation clockwise to MAX provides a control voltage greater than the maximum range of the filter. This assures that maximum range will be available on all units. Voltages of less than VCF's function generator, when the Controller VCF switch is made are not connected through this range control.

The attack control within the VCF section of the front panel determines the time required for the filter's function generator output to rise to its peak. The range of this control is from .005 seconds at the minimum setting to a little over 1 second at maximum.

The decay control determines the time required for the output of the filter's function generator to fall from the attack peak back down to no output. The range of this control is the same as the attack control.

The VCF attack is the only control that actually makes some change to the filter itself. Clockwise rotation of this control raises the frequency of the filter, while simultaneously decreasing the Q and increasing the loss of the filter. It is normal for the volume of the sound to decrease as the VCF signal is rotated in a clockwise direction.

VCA

The sustain switch within the VCA section of the front panel serves roughly the same function as the VTF switch does for the VCF. With the sustain switch off (switch to the left), pressing the TRIGGER button will cause the VCA's function generator to attack and then immediately decay. As long as the TRIGGER button is held down, the attack and decay times will be set by these controls. When the TRIGGER is released, a "muting" function takes over and quickly turns the VCA off.

Turning the sustain switch on (to the right) causes the function generator to hold at the peak level as long as the TRIGGER button is held down. Releasing the TRIGGER now causes the envelope to decay at the rate set by the DECAY control. These responses are tabulated in figure 21.

The attack control determines the...
amount of time required for the output of the amplifier to build to a peak. The range of this control is from .002 seconds at minimum to slightly more than one second at maximum.

The decay control determines the amount of time required for the amplifier to turn off. The range of this control is from .003 seconds at minimum to slightly more than one second at maximum.

There are two jacks on the back of the GOME case. The miniature phone jack is the output and it requires a standard miniature phone plug for connections. Coaxial cable should always be used to connect the GOME output to the input of the amplifier being used.

The black pin jack on the rear edge of the case is an external trigger input. For best operation, the trigger voltage applied to this jack should exceed 8 volts but trigger voltages greater than 4 volts will produce a triggering action (trigger voltages less than 8 volts will not allow the function generators to go to their maximum level). External triggering voltages must be referenced to the GOME ground case.

Thanks to you
it works...
FOR ALL OF US

Radio-Electronics is available in MICROFILM
UNIVERSITY MICROFILMS
300 N. Zeeb Road
Ann Arbor, Michigan 48106

MICROFICHE
A Division of Information Handling Services
P.O. Box 1154
Englewood, Colorado 80110

BELL & HOWELL CO.,
Micro Photo Division
Old Mansfield Road
Wooster, Ohio 44691

Attn.: Mr. Spies
Please write for complete information.

Test Equ. Special Discount Prices

Transistor Radio $2.95

320 Assorted types, good, bad

200 Assorted 1/4 watt Resistor

100 Assorted 1/2 watt Resistor

50 Assorted 1 watt Resistor

Silicon NPN P.B. Transistor

Complete Convergence Assy. incl. Yoke, Board & Mounting Legs, 50 cents

250 Assorted Resistors, same in S.F.

200 Assorted Wirewound Resistors, 5, 10, 25 watt

250 Assorted Soldier Lugs, assorted types and sizes

250 Assorted Wood Screws, effect popular extension

250 Assorted Self-Tapping Screws

100 Assorted #2 1/2 Screws and Assorted #2 1/2 Nuts

100 Assorted #2 1/2 Screws and Assorted #2 1/4 Nuts

100 Assorted #4 1/4 Nuts

100 Assorted #6 1/4 Nuts

50 Assorted Rivets, most useful selected sizes

50 Assorted Washers

50 Assorted RUBBER BUMPERS for cabinet bottoms—other uses

950 Assorted Screws, assorted types, sizes

MARKET SCOP COLUMN

4-ASSTD. PHILCO SWITCHES 125-250-025-2.50 BU. $1.50 each

10-ASSTD. Turnstries, 3, 6, & 12 BU. With knob late $2.50

250-ASSTD. TRANSFORMER 10V-141-119'YR.-32 BU. In most cases

COMPLETE CONVERGENCE ASSY., incl. Yoke, Board & Mounting Legs, 50 cents

1154 DELIVERY FREE

Thanks to you
it works...
FOR ALL OF US
Why not?

Why not go computer now! From $680 to $11,200 it can't be beat, look at our capabilities and you'll agree!

Sphere starts with a CPU using a Motorola 6800 microprocessor, a real-time clock, 4K of dynamic memory, 1K of PROM software. The CRT Board generates 16 lines by 32 characters of ASCII on a television or video monitor. Keyboard is complete with numeric and cursor editing keys. From here, hardware can be expanded to your heart's desire with extra memory boards (up to 64K), serial communications interface, cassette interface, MODEM, digital input/output (as many as you need), floppy disc memory (up to 4 discs), 8 computer terminals, line printer etc. . . . all from one M6800 chip.

With a Sphere Computer, stand-alone program development is just the beginning; you can configure your system to handle your problem solving/record keeping needs. All Sphere Computer Systems come complete with useable software languages. Available are "PDS" 1K Basic, or extended Basic Compiler. When computer is turned on, it immediately goes into a command mode, so that you can instantly start programming. "PDS" contains a mini-assembler, editor, debugger, and utility command set in 1K of PROM. Also available is a 1K subset of Basic. Our extended Basic compiler is complete with string, matrix and file functions, and requires 12K of memory. With this software you can perform your application whether it be accounting, home management, education, security monitoring, research, business, etc. Why not invent your own application? For play or for work your biggest problem is no problem at all. $680 is the start for an operating Computer System kit. Your computer is ready and comes complete with operator manuals sufficient for first-time computer users. Contact us today for more information.

REMOTE CONTROL

(continued from page 60)

rate and must be present for at least 16 consecutive sample periods before the remote circuitry will identify the input as valid. A valid input is identified by an output on the "data valid" (flag) terminal of the remote IC. This "flag" output causes the control IC to accept the remote IC outputs. The "flag" output goes to 0 when no input has been received for 3 consecutive sample periods.

Clock and display

The clock and display circuits fill two basic functions:

1) Converts the channel number BCD code generated by the control IC to video signals, which allow the channel number to be displayed as decimal characters on the TV screen.

2) Generates and maintains time-of-day information in an hours and minutes digital format, which is also converted to video signals to be displayed on the TV screen simultaneously with the channel number.

The clock and display system also, in response to time out, half-entry, and CTS codes from the control IC, establishes the color of the display (white, red, or green) and the amount of time the display remains on the screen.

The clock IC receives 60-Hz clock pulses from the crystal controlled reference clock located on the command module. The clock IC converts both the channel number BCD code and clock information to a channel number and time-of-day display code for use by the display IC. The time-of-day may be updated by the customer via hours and minutes update push buttons located on the instrument front panel.

The display IC decodes the display code from the clock IC and the CTS code from the control IC to provide the proper series of color blanking and luminance drive pulses to the chassis video circuitry for character display on the TV.

FIG. 6—DISPLAY FORMAT of red zero and the waveforms that generate it on the screen. It, too, has a black outline.

Clock and display

The clock and display circuits fill two basic functions:

1) Converts the channel number BCD code generated by the control IC to video signals, which allow the channel number to be displayed as decimal characters on the TV screen.

2) Generates and maintains time-of-day information in an hours and minutes digital format, which is also converted to video signals to be displayed on the TV screen simultaneously with the channel number.

The clock and display system also, in response to time out, half-entry, and CTS codes from the control IC, establishes the color of the display (white, red, or green) and the amount of time the display remains on the screen.

The clock IC receives 60-Hz clock pulses from the crystal controlled reference clock located on the command module. The clock IC converts both the channel number BCD code and clock information to a channel number and time-of-day display code for use by the display IC. The time-of-day may be updated by the customer via hours and minutes update push buttons located on the instrument front panel.

The display IC decodes the display code from the clock IC and the CTS code from the control IC to provide the proper series of color blanking and luminance drive pulses to the chassis video circuitry for character display on the TV.

FIG. 7—CLOCK IC OUTPUTS are shown in their relationship to the display and MPX pulses.
screen. Auxiliary blanking is provided to both the luminance and chrominance circuitry to blank station video and color outputs during character display. Horizontal and vertical sync is also defeated during half-entry and non-assigned (illegitimate) channel entry to prevent noise from causing character display instability.

The display output interfacing circuits consist of emitter followers in the red, green, and blue blanking outputs, as well as the luminance and chrominance blanking outputs. The luminance drive is a transistor switch and resistor stage designed to provide the correct driver output current for properly saturated (white or colored) characters. For explanation purposes, the display waveforms generated are those for the character “1” as shown in Fig. 5. For this digit, the pulse shape applied to the red, green, and blue interfacing emitter followers is shown. Note that blanking is applied to the leading and trailing edges of the character. During these blanking intervals, current is diverted from the red, green, and blue output stages, causing a black area to surround the digit. This greatly enhances the sharpness and visibility of the character. (For illustration purposes, it is assumed that the video information surrounding the digit has an “average” white content.)

A luminance drive pulse is supplied to transistor Q5. It establishes the video output driving current for proper white saturation. If blanking were applied for the full character width to any combination of the R, G, and B blanking stages, along with luminance drive, the character would be produced in color. This is exemplified by the red “0” illustrated in Fig. 6. Of course, blanking applied to all three color blanking stages simultaneously would completely blank the video producing a black screen (muted video). This occurs during half entry or illegitimate channel input, except in those areas where the characters are displayed.

An auxiliary blanking pulse (which is the same as the luminance drive pulse) is applied to an auxiliary blanking emitter follower Q6. This stage cuts off the luminance output stage (Q5, on the MCL video module), preventing station video information from appearing on the screen during character display and provides a blanking pulse to IC2 on the chroma module which prevents station chroma input to the R, G, and B outputs.

Not shown are a series of low-pass, parasitic suppression filters in the outputs of the interfacing stages. These filters, in combination with the shields on both sides of the clock and display module, prevent spurious outputs from the display circuitry from coupling to the tuner RF inputs during character display.

Referring again to Fig. 6, note that the half-entry terminal is coupled to an electronic sync defeat “switch.” This switch provides a positive voltage to the base of the PNP sync separator disabling this stage during half-entry and illegitimate channel selection. This defeat is necessary to limit vertical instability of the character display when no valid station sync information is received.

There you have it, a complete rundown on one of the newest remote control systems around. We thought you’d find it as interesting as we did.

If You Work In Electronics:
GRANTHAM OFFERS YOU
College-Level Training
and a college degree.

Electronic Circuit Design, Engineering Analysis (including mathematics thru calculus), Classical and Solid-State Physics, Engineering Design, etc., etc., are all part of the Grantham home-study degree program in Electronics Engineering.

PUT PROFESSIONAL RECOGNITION IN YOUR CAREER.

By adding college-level home training and a college degree to your experience, you can move up to greater opportunities in electronics.

Grantham offers the A.S.E.T. degree by correspondence. After earning this degree, you may continue with additional correspondence plus a 3-day residential seminar and certain transfer credits, to earn the B.S.E.T. degree. Then, the B.S.E.E. is available through further study.

GRANTHAM SCHOOL OF ENGINEERING
2000 Stoner Ave., Los Angeles CA 90025
- Telephone (213) 477-1901
Worldwide Career Training thru Home Study
Mail the coupon below for free bulletin.

Grantham School of Engineering
2000 Stoner Ave., Los Angeles, CA 90025

I have been in electronics for ________ years. Please mail me your free bulletin which gives details concerning your electronics degree programs.

Name __________________ Age ________

Address ____________________________

City __________________ State __ Zip ______

Circle 83 on reader service card

Camp Fire is for everyone. It is an adventure in living — exciting, creative and fun.

Camp Fire Girls, Inc. 1740 Broadway/N.Y., N.Y. 10019

JANUARY 1976

87
SERVICE NOTES

TOO MUCH HEIGHT

I have too much height in this Sylvania 19P08 TV. Can't reduce it with the controls. Also, I bought a Sansu folder for it, and the tubes don't match the ones in this chassis. I'm confused.—G.S., Plainville, CT.

Welcome to The Club. There are several different chassis in this model. From the tube lineup, you have a 573 chassis; Sams Photofact 723-4. The crystal ball tells me that your height problem could be due to a bad thermistor that feeds the DC voltage to the vertical size control. The Sylvania part number on this is 38-11780-2, and it should read 1.0-megohm cold. There was a modification in this circuit; in some, they use a different thermistor with a 100K resistor in series to protect it against breakdown.

REVERSED GUNS IN PICTURE TUBE!

The last time I wrote you about the reversed blue and green convergence problems, in a Sears 7160, you said that it might be something wrong in the picture tube. I took it back to the rebuilder. He checked, and said that in a 16CP22, the blue gun should be on the bottom; but in a 16CP22, the blue gun should be on top. He ran the tube through again, and the convergence problem was solved. Thank you.—L.H., Detroit, MI.

When every possible alternative has been considered, the only one left has to be the right one!

HV REGULATOR; EXCESS CURRENT

This Curtis-Mathes CMC-33 chassis has a high-voltage regulator problem. If I take the 6BK4 plate-cap off, I can get 27kV. Put it back, and it drops to only about 10-11 kV. (Here he gave a list of DC voltages, including 6BK4, grid, +300 V, cathode +300 V.) BoostedBoost, +1000 V; B+, +400 V; and all tubes good. There's no high voltage adjustment control on this chassis.—G.M., Whittier, CA.

This is almost one of those "Everything it fine but it won't work" problems. However, there is a clue. Look at the bias voltage on that 6BK4. With +300 volts on both grid and cathode, this tube is at zero-bias. This makes it draw far too much cathode current. In this tube, about 1.5 milliamperes is "too much!"

This voltage is controlled by a voltage divider from the boost, to the 6BK4 grid through two 1.5-megohm resistors and the high-voltage adjust (which may have been replaced by a fixed resistor here). The cathode should be at the full B+ voltage (400 volts). The only thing in there that could drop this voltage would be the little 1K "metering resistor." See if this hasn't gone up to a high resistance. Also, check those grid resistors at the same time. Normal bias on this tube should be at least a -20 volts, or even more. Normal cathode current should never be more than about 1.0 mA.

MORE ON DUMONT 304 SCOPE

Howard A. Boltz, of the Lockheed Missiles & Space Co., Sunnyvale, CA, writes, "A friend showed me the item in the Feb. 1975 issue of R-E regarding the Dumont 304 scope. I had just finished repairing his Dumont 304-H with the same symptoms! However, the cause was different. Blanking capacitor C27, 0.05 µF 200 volts, was leaky. This leakage increased as the scope got hotter. The cathode of the CRT became more positive, cutting off the electron beam. If the scope is a Dumont 304-A, look at capacitor C401. Thank you very much, sir. Note this in your files, Dumont scope owners!"
FEBRUARY 1976

- **Build An Electronic Thermometer**
 Here's an accurate electronic thermometer that has a built-in extra...a monitor that lets you use it for biofeedback training. See how it works and learn how you can make one for yourself.

- **555 IC Applications Circuits**
 You'll find a least one circuit that will turn you on. R-E's technical editor has put together this applications library.

- **New FM Standards**
 Len Feldman examines the latest developments in FM broadcasting. They could make your FM listening more realistic.

- **Step-By-Step Troubleshooting**
 Jack Darr shows how to solve service problems fast. Follow his step-by-step approach to solve your service problems.

PLUS

State-Of-Solid State Equipment Reports
Service Clinic
The better the training the better you'll

Send for FREE illustrated career guide

As an NTS student you'll acquire the know-how that comes with first-hand training on NTS professional equipment. Equipment you'll build and keep. Our courses include equipment like the NTS/Heath Digital GR-2000 Solid State color TV with first-ever features like silent varactor diode tuning; digital channel selection, (with optional digital clock), and big 315 sq. in. ultra-rectangular screen.

Also pictured above are other units — 5” solid state oscilloscope, vector monitor scope, solid-state stereo AM-FM receiver with twin speakers, digital multimeter, and more. It's the kind of better equipment that gets you better equipped for the electronics industry.

This electronic gear is not only designed for training; it's field-type — like you'll meet on the job, or when you're making service calls. And with NTS easy-to-read, profusely illustrated lessons you learn the theory behind these tools of the trade.

Choose from 12 NTS courses covering a wide range of fields in electronics, each complete with equipment, lessons, and manuals to make your training more practical and interesting.

Compare our training; compare our lower tuition. We employ no salesmen, pay no commissions. You receive all home-study information by mail only. All Kits, lessons, and experiments are described in full color. Most liberal refund policy and cancella-
and the equipment be equipped.

COMPARE OUR KITS AND LESSONS. COMPARE OUR TUITION.

TUBE & TRANSISTOR TESTER
AM/FM/SW PORTABLE SOLID-STATE RECEIVER
VECTOR MONITOR SCOPE
DIGITAL MULTIMETER
SOLID-STATE 2-METER FM TRANSCIEVER & POWER SUPPLY
SOLID-STATE STEREO AM/FM/MULTIPLEX RECEIVER
COLOR BAR/DOT GENERATOR
5" OSCILLOSCOPE
HIGH FIDELITY SPEAKERS
FET-VOM

Mail card today, or clip coupon if card is missing.

NO OBLIGATION. NO SALESMAN WILL CALL

APPROVED FOR VETERAN TRAINING
Get facts on new 2-year extension

NATIONAL TECHNICAL SCHOOLS
4000 South Figueroa St., Los Angeles, Calif. 90037

NAME ______________________________________ AGE ______
ADDRESS ______________________________________ APT # ______
CITY ______________________________________ STATE ______

Please fill in Zip Code for fast service ______

Check if interested in G.I. Bill information.
Check if interested ONLY in classroom training in Los Angeles.
Scott...where innovation is a tradition

We have acquired a fine lot of H. H. SCOTT P.C. boards, (One of the better names in audio equipment). These boards were used in the assembly of many of their late model stereo receivers. These boards may be used in many ways, as part of your own design, replacement of a board that you may already have, or in the design of different types of receivers, including “ham” receivers. Boards are new, and each one is marked H. H. SCOTT, with its function. We have circuits of many of these boards, and expect more. We will honor whatever information we have including complete service manual with some boards. Quantities of some boards is limited.

AM/FM front end assembly in enclosure. 1.9uV sensitivity on FM. 3:1 gain reduction. 1/2 lbs. STOCK NO. R6183 $.95 each

FM front end assembly, same as above but without AM. 1.9uV sens. STOCK NO. R6184 $7.95 ea

10.7 MHz FM IF strip, with 3 IC amplifiers. 2 " x 7 1/4" $14.95. STOCK NO. R6185 $4.95 ea

10.7 MHz FM IF strip, with dual 6 pole LC filters and 4 IC amplifiers. STOCK NO. R6188 $6.95 ea

10.7 MHz FM IF strip, with dual ceramic filters and 3 IC amplifiers. STOCK NO. R6189 $6.95 ea

FM Stereo Multiplex Decoder, with filtered outputs on each channel. STOCK NO. R6180 $4.95 ea

Complete stereo preamp, with 5 position input switching and IC preamp. STOCK NO. R6187 $4.95 ea

Stereo preamp board, with IC preamp. Use for phono or tape preamp, etc. STOCK NO. R6206 $2.95 ea

Output board. 4 transistor preamp used in FM tuner. 1.2V RMS out, each channel. STOCK NO. R6189 $3.95 ea

Stereo tone controls. Vol, Bass, Treble, & Balance controls, with FET amplifiers. STOCK NO. R6190 $7.95 ea

Power supply board, +11V and -11V, regulated. STOCK NO. R6208 $2.95 ea

We accept MASTER CHARGE and BANKAMERICAN without expiration date. Minimum charge order $15.00.

Please include sufficient postage. Excess will be refunded, send for new catalog.

DELTA ELECTRONICS CO.
MAIL ADDRESS: P.O. Box 1, Lynn, Mass. 01913
OFFICE & SALESROOM: Phone: 617-388-4705
1-7 Oakland St. Amosbury, Mass. 01913

Circle 94 on reader service card

BURGLAR ALARM dialing unit automatically calls police. $29.95. Free literature. S &S SYSTEMS, 5619 St. John, Kansas City, MO 64113.

MICROPROCESSOR CB8080A/8080A $65.00. Altar 8800 cassette interface $100.00. SARGENT'S DISTRIBUTING, 10268 Rosecrans, Ballifler, CA 90070

PLANS & KITS
THIRD generation (Improved 6800) 8-bit micro kit. RAM, ROM, edit-debug monitor, buffered I/O. Manual. All LSI chips $188. SASE details, 5 ARRAYS, 170 Noe St., San Francisco, CA 94114.

BUILD that electronic organ you always wanted at a price you can afford. Third edition of "Organ Builder's Guide," pictured product kit list, circuits, block diagrams, design rationale using IC divider and independent phase shifters. Boards include diode keying. $3.95 Postpaid. Also, free brochure on keyboards. DEVTRONIX ORGAN PRODUCTS, Dept. B, 5872 Amapola Drive, San Jose, CA 95129

ELECTRONIC MUSIC SYNTHESIS
- COMPONENTS
- CIRCUITS
- DESIGNS
- KITS AND PLANS
For free nibs and SASE to 56 Te. CIRCUIT ASSOCIATES POB F. NEWTON, N. H. 03808

CONVERT any television to sensitive, big-screen oscilloscope. Only minor changes required. No electronic experience necessary. Illustrated plans $2.00. SANDERS, Dept A-25, Box 92102, Houston, TX 77010

COUNTERSURVEILLANCE equipment locates and destroys winnower, bugs. Schematic. $5.00. GOLDEN ENTERPRISES, Box 128280, Glendale, AZ 85311

BUILD powerful radio telescopes from readily available parts. Amateur Radio Astronomer's Notebook, $20.00 postpaid, contains complete plans. Free pulsar cassette tape with order. BOB'S ELECTRONIC SERVICE, 917 N. Andrews Ave., Fort Lauderdale, FL 33311.

Circle 94 on reader service card

BIOGRAPHER SPECIALS

SPECIALS: 8080 Monitor, editor, and assembler routines for 8080, pre-programmed on one of our PROM boards. 2 free updates included. DIRECT ALTAIR PROM-IN COMPATIBLE.
SPECIAL: 8080 Assembler/editor 200$ Monitor, editor, and assembler routines for 8080, pre-programmed on one of our PROM boards. 2 free updates included. DIRECT ALTAIR PROM-IN COMPATIBLE.

POWER SUPPLIES
We ran out for a bit, but our supply kits are back. 12 volt, 8 AMP.-ideal for projects, including motors, sensors, lights, etc. Current limited, adjustable 11-14V, $22.95 plus $1 shpg. DUAL TRACKING SUPPLY-gives (+) & (-) voltages from under 10V to more than 150V. Short proof, 100 mA per side. $19.95 +1 lb shipping. 15 Volt supply-similar to kit above, but 150 ma per side. $9.95 +1 lbs shpg. NOTE: NONE OF THE ABOVE KITS INCLUDE CASE OR HARDWARE.

This is the successor to our "cheap clock" kit, featuring 10/10 digits (see insert in picture for actual size digits). Kit includes CRT, clock, power supply, decoder, IC and readouts, segment and digit drivers for extra brightness, and 11/14 hour, 55/60 Hz choice of mode. Our data shows how to use the clock, how to adapt it to automotive use with our 60 Hz time base circuits, and how to build the readouts. Includes all parts to build a working clock, less case and hardware.

SPECIAL ALTAIR PROM-IN COMPATIBLE

SON OF A CHEAP CLOCK $135.40 including transformer

GODBOUT
BILL GODBOUT ELECTRONICS
BOX 2355, OAKLAND AIRPORT, CA 94664

$1971

MARKET CENTER CONTINUES ON PAGE 104
It takes more learn about

Bell & Howell Schools introduces three fascinating learn-at-home programs featuring some of the finest equipment available as your “teachers.” Choose the program you prefer—then mail card for more details today!

Experience is the best teacher, without a doubt. And when it comes to learning electronics, we feel it’s hands-on experience with state-of-the-art equipment that counts the most. That’s why with Bell & Howell Schools’ learn-at-home programs you work with some of the most up-to-date equipment. Equipment that’s being used today—and will be used tomorrow. So the skills and knowledge you acquire will be useful for years to come.

Of course, with all our learn-at-home programs you’ll have plenty of lab manuals and basic principles to work with. And you’ll also get exciting “teachers” to help make electronics come alive...

Lab Starter Kit gives you hands-on experience with the very first lesson.

We get you started with the basics in an exciting way! At the very beginning you get a fully-assembled volt-ohm meter as well as design panels, modular connectors, experimental parts and battery. So you don’t just read about electronics principles, you actually see them at work!

You build your own Electro-Lab® electronics training system.

Whatever program you choose, you get your own home laboratory including oscilloscope, digital multimeter and design console to give you actual experience in wiring, soldering, assembling, testing, trouble-shooting and circuit analyzing.

I. Learn new skills in the field of Home Entertainment Electronics including building the new generation color TV.

What better or more exciting way to learn digital electronics! Once you have the basics under your belt and get into color theory and service, you’ll build a 25” diagonal color TV and probe into the digital technology behind digital channel numbers that flash on the screen... a digital clock that flashes the time to the second and an automatic channel selector.

As you put the set together, you’ll discover how advanced integrated circuitry works, how to trouble-shoot it and much more. Upon completion of the program you’ll have gained the specialized occupational skills to service color TV’s plus the principles that you can apply to repair a variety of home electronic equipment. And you’ll have the foundation to understand and work with new product applications as they’re developed, too!

II. Use professional communications equipment as you delve into Communication Electronics.

Here’s how to pick up skills in the vital field of two-way radio, widely used in public safety, marine, industrial and transportation areas. Bell & Howell Schools’ Communication Electronics Program can help prepare you for the FCC licensing exam, right through to 1st class radiotelephone operator. And teach you skills in two-way radio, radar or commercial broadcasting.

For a refundable deposit, you get to use the special two-way radio equipment lab featuring an FM transceiver, frequency meter, and modulation meter. All regular, first-rate commercial grade test equipment.

“Electro-Lab®” is a registered trademark of the Bell & Howell Company.
Simulated TV Picture/Test Pattern
Digital Trainer helps you learn the latest in Industrial Digital Electronics.

Digital technology is setting new standards of accuracy and beginning a revolution in industry. For example, more precise control in refining, manufacturing plants, food processing and transportation. And now you can learn about this technology with Bell & Howell Schools unique Digital Trainer. You'll analyze and experiment with various types of integrated circuits so you'll have a solid background in modern digital electronics and its applications to industry.

You study at home in your spare time ... with help as close as the telephone.

Because these are home study programs, you can learn electronics without missing a day of work or a single paycheck.

You study at your convenience—without being a classroom captive. If you ever have any questions, you can call our toll-free number for help.

You can also meet and talk shop with fellow students and instructors at "help sessions" held in 50 cities at various times throughout the year.

Bell & Howell Schools tries to give you more personal attention than any other learn-at-home program.

Decide which exciting program you're interested in... you can check more than one. Then mail postage-paid card today for full information!

Taken for vocational purposes, these courses are approved by the state approval agency for Veterans' Benefits. Please check box on card for more information. Naturally, we cannot offer assurance of income opportunities.

724R3

If card has been removed, please write to:
An Electronics Home Study School
DEKALB INSTITUTE OF TECHNOLOGY

BELL & HOWELL SCHOOLS
4141 Belmont, Chicago, Illinois 60641

JANUARY 1976
JAMES JANUARY SPECIALS

As Astrak denotes Items On Special For This Month

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Special Price</th>
<th>Regular Price</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>5% Resistors</td>
<td>$2.95</td>
<td>$5.99</td>
<td>$3.04</td>
</tr>
<tr>
<td>10% Resistors</td>
<td>$3.95</td>
<td>$7.99</td>
<td>$4.04</td>
</tr>
<tr>
<td>15% Resistors</td>
<td>$4.95</td>
<td>$9.99</td>
<td>$5.04</td>
</tr>
<tr>
<td>20% Resistors</td>
<td>$5.95</td>
<td>$11.99</td>
<td>$6.04</td>
</tr>
<tr>
<td>25% Resistors</td>
<td>$6.95</td>
<td>$13.99</td>
<td>$7.04</td>
</tr>
<tr>
<td>30% Resistors</td>
<td>$7.95</td>
<td>$15.99</td>
<td>$8.04</td>
</tr>
<tr>
<td>35% Resistors</td>
<td>$8.95</td>
<td>$17.99</td>
<td>$9.04</td>
</tr>
<tr>
<td>40% Resistors</td>
<td>$9.95</td>
<td>$19.99</td>
<td>$10.04</td>
</tr>
<tr>
<td>45% Resistors</td>
<td>$10.95</td>
<td>$21.99</td>
<td>$11.04</td>
</tr>
<tr>
<td>50% Resistors</td>
<td>$11.95</td>
<td>$23.99</td>
<td>$12.04</td>
</tr>
<tr>
<td>60% Resistors</td>
<td>$12.95</td>
<td>$25.99</td>
<td>$13.04</td>
</tr>
<tr>
<td>70% Resistors</td>
<td>$13.95</td>
<td>$27.99</td>
<td>$14.04</td>
</tr>
<tr>
<td>80% Resistors</td>
<td>$14.95</td>
<td>$29.99</td>
<td>$15.04</td>
</tr>
<tr>
<td>90% Resistors</td>
<td>$15.95</td>
<td>$31.99</td>
<td>$16.04</td>
</tr>
</tbody>
</table>

SPECIAL REQUESTED ITEMS

- **Dual Tranz-y** $5.95
- **Duo** $6.95
- **Penthouse** $7.95
- **Renaissance** $8.95
- **Sunset** $9.95
- **Twin** $10.95
- **Vista** $11.95
- **Zephyr** $12.95

WE WILL BE HAPPY TO QUOTE ON YOUR SPECIAL PARTS

- **XGTOX**
 - **Monaco** $5.95
 - **Cortina** $6.95
 - **Vauxhall** $7.95

OPTO ELECTRONICS

- **LITRONIX** $6.95
- **DISCRETE LEDS** **Y - GREEN** $7.95
- **G - ORANGE** $8.95
- **SUPER LEDS** **C** $9.95

DISPLAY LEDS

- **DISPLAY LEDS** **C** $9.95
- **DISPLAY LEDS** **D** $10.95
- **DISPLAY LEDS** **E** $11.95

IC SOLIDSTATE - LOW PROFILE (TIN) SOCKETS

- **SOLDIEST** **STD.**
- **SOLDIEST** **GOLD**

WIRE WRAP SOCKETS

- **WIRE WRAP SOCKETS** **LEVEL #3**

50 PCS. RESISTOR ASSORTMENTS $1.75 PER ASSORT.

<table>
<thead>
<tr>
<th>Type</th>
<th>Assortment Code</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB1</td>
<td>10 ohm to 10 meg</td>
<td>350 pieces</td>
<td>$1.75</td>
</tr>
<tr>
<td>AB2</td>
<td>10 ohm to 10 meg</td>
<td>350 pieces</td>
<td>$1.75</td>
</tr>
<tr>
<td>AB3</td>
<td>10 ohm to 10 meg</td>
<td>350 pieces</td>
<td>$1.75</td>
</tr>
<tr>
<td>AB4</td>
<td>10 ohm to 10 meg</td>
<td>350 pieces</td>
<td>$1.75</td>
</tr>
<tr>
<td>AB5</td>
<td>10 ohm to 10 meg</td>
<td>350 pieces</td>
<td>$1.75</td>
</tr>
<tr>
<td>AB6</td>
<td>10 ohm to 10 meg</td>
<td>350 pieces</td>
<td>$1.75</td>
</tr>
</tbody>
</table>

CAPACITORS

- **-45° C TO 85° C**
- **-15° C TO 85° C**
- **-25° C TO 85° C**
- **-55° C TO 85° C**

ZENERS - DIODES - RECTIFIERS

- **ZENER**
- **DIODES**
- **RECTIFIERS**

TRANSISTORS

- **BIPOLAR**
- **FET**
- **POWER**

CAPACITOR CORNER

- **50 VOLT CERAMIC DISC CAPACITORS**
- **50 VOLT LAMINATED CAPACITORS**
- **100 VOLT CERAMIC DISC CAPACITORS**
- **100 VOLT LAMINATED CAPACITORS**

Circle 96 on reader service card
CONTINENTAL SPECIALTIES $15.95

JE SERIES KITS $39.95 Per Kit printed circuit board

JE803 PROBE $9.95 Per Kit printed circuit board

JE804, JE805 SUPPLIES $9.95 per kit

WALL OR TV DIGITAL CLOCK $19.95 per kit

JE601 DVM $9.95

JE700 CLOCK $9.95

WALNUT CASE $34.95

JE010 CALC. $12.95

ELECTRONIC ROULETTE $29.95 Per Kit

$39.95 Per Kit printed circuit board

$9.95 Per Kit printed circuit board

$9.95 per kit

$19.95 per kit

$34.95

$12.95

$29.95 Per Kit

$19.95 Per Kit

Circle 96 on reader service card
INTRODUCING VDM-1

Video Display Module

The VDM-1 is an ultra high-speed intelligent display on a single printed circuit card. The new card generates 16, 64 character lines of Alpha-numeric data in upper and lower case from a 1K Byte memory.

The VDM-1 configuration allows you to power terminal, with a standard video output into your Altair Processor.

Price: $160.00

SPECIAL FREE OFFER!

Scientific Notation Software Package with Formatted Output

With the purchase of (1) VDM-1 and (1) 4KRA Memory: Just $299.00 (Offer expires 2-1-76)

The floating point math package features 12 decimal digits with exponents from +127 to -128 handles assigned and unassigned numbers. With it is a 5 function calculator package: + \times \div \sqrt{\cdot} \text{ and } \sqrt[n]{\cdot}.

Write for more details on these and other 8800 plug in compatible modules.

Circle 98 on reader service card

INCREADIBLE! Make the beauty of Time from easy to assemble plans for a programmable 12-hour Digital Alarm Clock. A worthwhile project that’s easy, fun, yet rewarding. Send only $5.00 to: DOLPHIN ELECTRONICS, P.O. Box 2086, Ventnor, NJ 08406

WANTED

QUICK cash . . . for electronic equipment, components, unused tubes. Send list now! BARRY, 512 Broadway, New York, NY 10012, 212 Walker 5-7000
JANUARY SPECIALS

CLOCK CHIPS

<table>
<thead>
<tr>
<th>MEMORIES</th>
<th>2500</th>
<th>256 bit RAM</th>
<th>$2.65</th>
</tr>
</thead>
<tbody>
<tr>
<td>3125</td>
<td>3210</td>
<td>5311</td>
<td>$3.95</td>
</tr>
<tr>
<td>3126</td>
<td>3212</td>
<td>5312</td>
<td>2.95</td>
</tr>
<tr>
<td>3127</td>
<td>3214</td>
<td>5314</td>
<td>3.95</td>
</tr>
<tr>
<td>3215</td>
<td>3223</td>
<td>5316</td>
<td>4.15</td>
</tr>
</tbody>
</table>

CALCULATOR CHIPS

| 74244 | 256 bit RAM | $1.69 |

8038 FUNCTION GENERATOR

Voltage controlled multivibrator, oscillates at sawtooth, triangular output. 16 pin DIP with data.

030 CLOCK CHIP

4-44, 12-24 hr. alarm, timer and date circuits — with data.

DVM CHIP 4% DIGIT

CMOS 272050 — P-channel device provides all logic for 4% digit voltmeter. 16 pin DIP with data.

Data sheets on request. With order add $5.30 for items less than $10.00 ea.

PULTRON V.I.P. QUARTZ REGULATED LED WATCH

LOW POWER TTL

7400	74LS15	74196	$1.49
7402	74LS15	74195	1.49
7404	74LS40	74191	1.35
7406	74LS40	74192	1.25
7408	74LS40	74193	1.15
7410	74LS40	74194	1.10
7412	74LS40	74195	1.09
7414	74LS40	74196	1.05

HIGH SPEED TTL

7400	74HCT15	74115	$1.49
7402	74HCT15	74114	1.49
7404	74HCT40	74110	1.35
7406	74HCT40	74111	1.25
7408	74HCT40	74112	1.15
7410	74HCT40	74113	1.10
7412	74HCT40	74114	1.09

8000 SERIES

7490	74LS248	74541	$1.09
7492	74LS248	74542	1.09
7494	74LS248	74543	1.05
7496	74LS248	74544	1.05

9000 SERIES

74F00	74F04	74F06	$0.89
74F01	74F05	74F07	0.89
74F02	74F06	74F08	0.89
74F03	74F07	74F10	0.89

LED's

74916	3 digit, 0.57" red led	$2.22
74920	7 segment, 0.56" red led	$2.32
74924	7 segment, 0.57" red led	$2.42

CALCULATOR & CLOCK CHIPS

| 74F10 | 74LS11 | 74LS12 | $1.33 |
| 74F11 | 74LS11 | 74LS12 | 1.30 |

MULTIPLE DISPLAYS

56833	7 segment 12 pin led 12 pin fits ic al	$1.79	
56802	5 digit, 0.51 led mag. lens	$1.98	
74C20	74C21	74C22	2.09
56820	4 digit 0.51 led mag. lens to(common)	$2.29	
56821	4 digit 0.51 led mag. lens to(most)	$2.32	
74F37	7 digit 7 seg led 1st digit 0.5" mag. lens	$3.49	
825F31	9 digit 25" LED neon direct	$4.41	

SHIFT REGISTERS

| 56834 | 104 bit binary dynamic | $1.33 |
| 56835 | 104 bit binary dynamic | 1.33 |

JANUARY SPECIALS

107

Satisfaction guaranteed. Shipment will be made via first class mail in U.S., Canada and Mexico within 5 days from receipt of order. Add $5.50 to cover shipping and handling for orders under $25.00. Minimum order $50. California residents add sales tax.

INTERNATIONAL ELECTRONICS UNLIMITED

P.O. BOX 1708 - MONTEREY, CA. 93940 USA

PHONE (408) 659-3171
LIVE IN THE WORLD OF TOMORROW...TODAY!

And our FREE 164 PAGE CATALOG is packed with exciting and unusual values in electronic, hobby and science items—plus 4,500 lincs for fun, study or profit...for every member of the family.

A BETTER LIFE STARTS HERE

WORLD'S SMALLEST CALCULATOR!
Small but mighty! 8-digit, 4-function electronic calculator does everything big ones do—even has automatic % key...for only $19.95. Take it anywhere! Fits in your pocket—1/2 size of cigarette pack. 3/8 oz. dynamic features floating decimal, constant key, lead zero depression, more! Includes plug-in rechargeable Nicad battery pack. 2x3/4 x 9/16" with plenty of room for most fingers. Another Edmund first with advanced technology.

Stock No. 1945EH $19.95 Ppd.

SEE MUSIC IN PULSATING COLOR
New 3-Channel Color Organ adds to music listening pleasure, lets you modulate 3 independent strings of colored lamps with intensity of your music to create an "audio "light show." They flash, vary in brightness related to music's rhythm, pitch, volume. Pulsating lighting performance to music. Fully assembled & priced half that of others, the Edmund Sound To Light Control is a terrific value.

Plug-in, turn on.
No. 42,309 EH (ASSEMBLED) $17.95 Ppd.
No. 42,336 EH (UNASSEMBLED) $13.95 Ppd.

AN ALPHA MONITOR FOR $24.95!
Yes, because you built it! Use your ability to tune in your brainwaves, an aid to relaxation, concentration. Kit incs. everything you need (except 9v trans. batt.) to own a portable self-cont. BIOFEEDBACK unit for a pittance: steth. earphones, electrode headband, sensor, 5 microvolt sensitivity, more! Compl. assembly instructions & op. manual. With basic electronics knowledge, you can do it!

No. 61,069 EH (KIT) $34.95 Ppd.
No. 71,803 EH (FULLY ASSEMBLED) $55.00 Ppd.

FLYWHEEL GENERATED FLASHLIGHT
Never needs batteries! Lights the way free by using flywheel energy. Each time you squeeze handle the alternator generator spins, flywheel disengages from the clutch, and your flashlight lights for about 2 seconds. By continuous squeezing (generating a soft hum), the light stays bright. Energy-saving 6-v. flashlight pays for itself many times over. And demonstrates flywheel generator principle. Never buy flashlight batteries again!

No. 61,086 EH (2x5½") $14.95 Ppd.

MAIL COUPON FOR GIANT FREE CATALOG!

164 PAGES—MORE THAN 4500 UNUSUAL BARGAINS

EDMUND SCIENTIFIC CO.
300 Edcorr Building, Barrington, N.J. 08007

PLEASE SEND GIANT FREE CATALOG "EH".

COMPLETE AND MAIL WITH CHECK, M. O. OR CHARGE NO.

EDMUND SCIENTIFIC CO.
300 Edcorr Building, Barrington, N. J. 08007

How Many Stock No. Description Price Each Total

Please rush Free Giant Catalog "EH".

Circle 86 on reader service card
The death of a solid-state device needn’t complicate your life.

You take a look at the job and the brand name’s Bigston or Kobekiiito or Teaberry or Pace. No problem!

Sylvania replacement modules and IC’s fit these brands like a glove. They also fit over 122 other brands, including RCA, Panasonic, Sony—and, of course, Sylvania.

For the vast majority of domestic and imported electronic equipment, all you need is a basic stock of Sylvania ECG™ Semiconductors. And our new Replacement Guide to show you which ones go where.

For a copy, see your Sylvania distributor.

We’re helping you make it.

Repair over 126 domestic and imported brands with Sylvania modules and IC’s.
A question for the professional TV Service Technician

What is the signal NOW?

After all the amplifying, levelling, compensating and distributing ... is it what it is supposed to be?

You are a professional TV Service Technician ... and see this "wire coming out of the wall" all the time. Maybe you assume that the signal is O.K. ... but do you know?

Now you can put an end to your guessing about the signal level.
Here is a field strength meter designed exclusively for you ... at the right price!

MEZZER™

Model TVS

service dealer net $69.95

- Simple to operate, minimum of operating adjustments.
- Principle of operation similar to output meter and attenuator system of expensive signal generators.
- Standard signal level for proper color reception (1mV to 4mV — 0dBmV to +12 dBmV) clearly indicated for instant identification.
- Measures signals from 300uV to 30,000uV.
- Uses ordinary 9v transistor batteries, low current consumption ensures low cost per measurement.
- IC amplifier and meter driver circuits.
- Electronic voltage regulation.
- Quasi-peak detector.
- LED IC battery status system, shows when batteries are below operating voltage.
- Sturdy, high impact ABS plastic case for field use.
- Made in USA.

Castle products — advanced technology — modern styling — and they work!
See your stocking distributor ... or write for more details and complete specifications.

CASTLE ELECTRONICS, INC.

5715 N. Western Ave., Chicago, Ill. 60645
Ph. (312) 728-1800

Circle 87 on reader service card