NEW COLOR TV CIRCUITS FOR 1975

REMOTE CONTROL FOR COLOR TV
Digital Circuits Do The Job

NEW CONCEPTS IN
FM Tuner Design

SLOTTED-MASK
PICTURE TUBES
For Best Color

SEE HOW THEY WORK
MOS IC Shift
Registers

DESIGNING
FEEDBACK CIRCUITS
For Transistor
Amplifiers

PLUS
PTS ELECTRONICS

Precision Tuner Service

LET US TAKE CARE OF YOUR TUNER PROBLEMS...

PTS will repair any tuner—no matter how old or new—black & white or color—transistor or tubes—varactor or electronically tuned—UHF. 8 hour service is a must!

...THIS IS THE SERVICE WE OFFER:

1. Fastest Service—8 hour—in and out the same day. Overnight transit to one of our strategically located plants.
2. Best Quality—Your customers are satisfied and you are not bothered with returning tuners for rework.
3. PTS uses only ORIGINAL PARTS! No homemade or make-do, inferior merchandise (this is why we charge for major parts). You get your tuner back in ORIGINAL EQUIPMENT condition.
4. PTS is recommended by more TV manufacturers than any other tuner company.
5. PTS is overhauling more tuners than all other tuner services combined.

1 YEAR GUARANTEE

Fast 8 hr. Service! We offer you finer, faster...

...Precision Tuner Service

PTS ELECTRONICS, INC....

...Number ONE and still trying harder! (Not a Franchise Company)

Circle 1 on reader service card
New life for the old test jig.

Make it a solid-state tester with our new Sylvania Rig-A-Jig™ CK1900X.

The old test jig you used with tube-set chassis can work full time again. Connect the new Sylvania Rig-A-Jig CK1900X to it and presto—you have a test jig for solid-state and hybrid TV as well.

The Rig-A-Jig CK1900X has a self-contained anode voltmeter, a complete set of yoke programmers, and an internal focus supply. And, it will give you a close impedance match in receiver deflection circuits for almost any hybrid or solid-state sets you might have to service. And these connections are easy to make with up-front, highly accessible receptacles.

With simple modifications, you can give new life to your old test jig so it can handle sets with 350 to 500 μH SCR sweep, 1 and 3 mH for transformer sweep, or tube and hybrid sets with yoke inductances from 7, 12, and 16 mH. Instruction sheets and set-up manual are also included.

Ask your Sylvania distributor for more information.

Rig-A-Jig CK1900X. The newest addition to the versatile family of Chek-A-Color™ Test Equipment.

GTE Sylvania, Electronic Components Group, 100 First Avenue, Waltham, Mass. 02154.
Think of him as a 250 lb. antenna.

We know you don't have a 250 lb. antenna.

But when the winds get rough, you need every bit of turning power an antenna rotor can muster. The new, super power Blonder-Tongue ULTRAMATIC 1000 gets the antenna to the precise point for each station, consistently, accurately.

And, by doing this, it gives the best reception by assuring ghost-free color reception and minimum multipath stereo distortion.

These exclusive features make it all possible:

- **Highest starting and running torque** (175 to 200 inch lbs.) — motor uses filtered DC power supply.
- **Accurate 2-degree resetting** — push-to-start silent control: unique direction sensing circuit utilizing five wire control cable: differential servo sensing amplifier with solid-state switching; hermetically-sealed power relay automatically disconnects rotor when not in use.

Install the ULTRAMATIC 1000. It performs well under the most adverse conditions and will stand up for years and years.

Blonder-Tongue Laboratories, Inc., One Jake Brown Road, Old Bridge, N.J. 08857.

Circle 2 on reader service card
COLOR TELEVISION

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Equipment Report</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R&K model 467 picture-tube tester and restorer</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Color TV '75</td>
<td>Karl Savon</td>
</tr>
<tr>
<td></td>
<td>There are some fascinating circuits on the 1975 models. Some of the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>more interesting ones are described here.</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Slotted Mask Picture Tubes</td>
<td>Jack Darr</td>
</tr>
<tr>
<td></td>
<td>How the new RCA version works.</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Star—New Kind Of Remote Control System</td>
<td>Larry Steckler</td>
</tr>
<tr>
<td></td>
<td>Silent-Tuning-At-Random—Magnavox’s new digital wireless remote</td>
<td></td>
</tr>
<tr>
<td></td>
<td>control system.</td>
<td></td>
</tr>
</tbody>
</table>

SOLID-STATE ELECTRONICS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>40 COSMOS Projects For The Experimenter</td>
<td>R. M. Marston</td>
</tr>
<tr>
<td></td>
<td>Part IV—More circuits for the practical experimenter.</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Long-Chain MOS IC Shift Registers</td>
<td>Don Lancaster</td>
</tr>
<tr>
<td></td>
<td>See how they run.</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Service Clinic</td>
<td>Jack Darr</td>
</tr>
<tr>
<td></td>
<td>Orphan amplifiers—Part I.</td>
<td></td>
</tr>
</tbody>
</table>

GENERAL ELECTRONICS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Looking Ahead</td>
<td>David Lachenbruch</td>
</tr>
<tr>
<td></td>
<td>Tomorrow’s news today.</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Minicomputer & TV Typewriter Letters</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Computer Modifications</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Annual Index</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All articles published—January through December 1974</td>
<td></td>
</tr>
</tbody>
</table>

STEREO AUDIO HI-FI

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>High-Quality FM Tuners</td>
<td>Len Feldman</td>
</tr>
<tr>
<td></td>
<td>New circuits that make FM tuners sound better.</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Designing Audio Feedback Circuits</td>
<td>Manny Horowitz</td>
</tr>
<tr>
<td></td>
<td>Feedback improves transistor amplifier quality. See how to design your</td>
<td></td>
</tr>
<tr>
<td></td>
<td>own circuits.</td>
<td></td>
</tr>
</tbody>
</table>

DEPARTMENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td>Advertising Index</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Letters</td>
<td>Try This</td>
</tr>
<tr>
<td>6</td>
<td>New & Timely</td>
<td>Reader Service Card</td>
</tr>
<tr>
<td>82</td>
<td>New Products</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>Try This</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Reader Service Card</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>New Literature</td>
<td></td>
</tr>
</tbody>
</table>

Radio-Electronics is indexed in Applied Science & Technology Index and Readers Guide to Periodical Literature.

As a service to readers, Radio-Electronics publishes available plans or information relating to newsworthy products, techniques and scientific and technological developments. Because of possible variances in the quality and condition of materials and workmanship used by readers, Radio-Electronics disclaims any responsibility for the safe and proper functioning of reader-built projects based upon or from plans or information published in this magazine.
Better TV sound

Network television will have a 15-kHz audio bandwidth in about two years. That's a promise from AT&T, which says it may also squeeze in a second sound channel for stereo or as an alternate foreign-language track. AT&T, which handles intercity transmission of television, currently provides the same 5-kHz sound for TV as it does for AM radio. After much experimentation, the telephone company now is on a crash program to choose a method of transmitting sound along with the video signal, instead of on a separate narrow-band audio line.

A subcarrier system will be used, and three different methods are currently under test. In one recent test, a wideband stereo signal was sent from New York to Los Angeles and back on a video channel, and, according to a top AT&T engineer, expert listeners couldn't tell the difference between the original signal and the one which has crossed the continent twice.

No matter how much the television sound signal is improved, it won't make much difference to the viewer unless receiver sound systems can pass them along. An industry-wide engineering committee, studying the entire subject of TV sound, concludes that it hasn't gotten very far with the manufacturers, but hopes that availability of better sound on telecasts will inspire them. An EIA panel, meanwhile, is exploring the subject of stereo sound with television manufacturers. One problem may well crop up if sound is improved substantially. Although the television signal can accommodate a high-fidelity sound channel, many existing TV sets—designed for the present limited and compressed sound signal—would be brought to the point of unintelligibility. Therefore, some thought is being given to a pilot-signal or expanding system for sound compatibility with both cheap lo-fi and the hoped-for future hi-fi receivers.

Philips buys Magnavox

The worldwide electronics giant with the mouthful of a name—N. V. Philips' Gloeilampenfabrieken—has purchased controlling interest in the Magnavox Company through its American affiliate, North American Philips. The Netherlands-based parent company, considered the world's largest manufacturer of consumer electronic products, is a technologically based firm that is also strong in computers, components, picture tubes, chemicals, lighting and appliances. Philips products in the past have received exposure in the U.S. under the Norelco brand-name, and more recently Philips-brand audiophile products have entered this country. Philips is expected to continue the Magnavox brand name, at the same time strengthening Magnavox's technology and marketing.

Philips' acquisition of an American television manufacturer at this time is especially significant in terms of the upcoming battle of videodisc standards. Philips is the developer of the major optical videodisc system, that it has demonstrated throughout Western Europe to wide acclaim. A version of this system designed for the NTSC color standards was recently demonstrated in Japan, and Philips has announced that the home player probably could be built to sell for less than $500 on the Japanese and American markets. Magnavox apparently will be the American launching pad for the Philips Video Long Play (VLP) disc system, that is scheduled to reach the market in 1976.

Philips' purchase of Magnavox could lead to a confrontation with RCA over videodisc standards. RCA has developed a capacitance-storage videodisc system, that also is tentatively scheduled for 1976 marketing. Both RCA and Philips are expected to attempt to license other manufacturers. Since the two systems are incompatible, you can expect to witness strong campaigns of competitive claims—reminiscent of the 45- vs. 33 rpm phonograph battle. This time, even more is at stake, since it's widely believed the videodisc market will eventually be bigger than television itself.

Home VTR again

Somewhat eclipsed by all the talk of videodiscs is the videocassette recorder for the home. The latest candidate for consumer do-it-yourself video was developed by Germany's BASF and is the first longitudinally-scanned VTR to be announced in 10 years. The fixed-head unit uses a relatively thin (4.6 x 4.3 x 0.6 inch) single-cartridge containing ¼-inch chromium-dioxide tape. The tape has 28 parallel longitudinal tracks. Running at 120 ips, each track is scanned in sequence, the tape changing direction at the end of each track. The turnaround time is only 80 milliseconds, virtually unnoticeable. Cartridges of 90 minutes and two hours are planned. Tentative introduction date is late 1976. The principle of longitudinal scanning was described in this column in July.

Several other home VTR's may be introduced in 1975. RCA has completed in-home testing of consumer video recorders and is expected to have one on the market next year—although the exact configuration isn't yet certain. Sony, whose U-Matic videocassette system has been the most successful type in the industrial and institutional markets, is also scheduled to premiere its home version in 1975. In Japan, Toshiba and Sanyo have jointly developed a "home" videocassette system using ½-inch tape, now going into limited production and also destined eventually for the American market. While standardization is considered important in the playback-only videodisc field, it may not be a major problem in VTR—since it's expected that videolapse will be mainly a record-it-yourself medium.

Muntz' projection TV

Remember Earl "Madman" Muntz, who became the leading purveyor of low-priced receivers in television's early days and later introduced stereophonic tape to the automobile? He's back in TV and he aims to be part of that incipient projection TV boom we described in October. Muntz is co-founder of Muntz Elman Manufacturing, Inc., which is assembling the "Muntz Home TV Theatre" in Van Nuys, Cal. The Home Theatre is the first projection color TV to be offered as a single-piece furniture-styled home unit. It's mounted in a walnut-finished cabinet 54 inches wide, 25 inches deep and 36 inches high, topped by a 30-by-40-inch Kodak Ektalite aluminum reflective screen. When the set is put into use, a drawer is pulled out, and a lens and mirror system throws the picture on the screen.

The electronic part of the projection TV system is a modified Sony 15-inch remote-control color set, which is mounted in the drawer, screen upwards. The projected picture, like others which use a three-color tube as the light source, must be viewed in a darkened room. Muntz is producing sets at the rate of about 200 a month and currently is selling them only in a few areas, but hopes eventually to have nationwide distribution. The price? It's $1,995.
We’re making it our business to make your business easier.

General Electric's STC program. It takes the 'Tough' out of 'Tough Dog' service.

S. stands for our new Symptom Repair Manual. It was created for you by GE to deal with the most common faults. It lists a variety of symptoms. And then tells you what to check and in what order.

T. stands for our Troubleshooting Flow Charts. If a particular problem was not found by using the Symptom Repair Manual, these charts will take you through a logical sequence of checks to locate the faults.

C. stands for time-consuming Circuit Analysis. If you follow the ‘S’ and ‘T,’ in most cases you will never have to get to ‘C.’ With these two service aids you can quickly diagnose 95% of all General Electric TV service problems. Using them will save you time, money and aggravation. And needless to say, they’ll help you generate a lot of good will and build your reputation for fast, reliable service.

The Symptom Repair Manual is available for a $1.00 handling charge. To receive your copy or details of GE service subscription plans, write “Dutch” Meyer, GE Television Receiver Products Department, Portsmouth, Va. 23705; or call collect (804) 484-3521.
Low-priced music for the masses supplied by "anti-profit" shop

Because they "didn't want to see a society without music," four Washington women have opened what they call "an anti-profit enterprise" to sell phonograph records at phenomenally low prices, reports the Washington Post/Potomac. Named "Bread and Roses" after a line in an old worker's song, the new establishment markets records of African music, blues, folk and rock at about a 9 per cent markup.

Used LP's are also sold on consignment, at prices ranging from 25 cents to $2, depending on the record and its condition. Bread and Roses also sells records to its customers for taping (a perfectly legal process if the tape is for the customer's personal use). If returned in mint condition, the records are repurchased by the store at 70% of the original price, and resold at a discount. As an example, a "lipped" Allman Brothers double album sells for $3.70.

Other original features of the Washington store include a newsletter, a musicians' clearing-house, and a community bulletin board.

Equipment out of warranty? New device will tell when

A warranty is designed to protect a purchaser from innate defects or short life in the equipment he buys. But the 90-day, 1-year or even 2-year warranty often fails to protect, simply because time does not indicate usage. One television set is in use a minimum of 10 hours per day, 365 days per year (except for Leap Year). Another is used about 2 hours an evening most evenings. The first customer's pix tube fails near the end of the second year, and the manufacturer accepts full responsibility. The second set runs one day over the two years, and the warranty is useless. Yet tube No. 1 has operated for more than 5000 hours and tube No. 2 has run less than 1500.

North American Philips Controls Corp. has just come out with a device that may be able to even out such difficulties. Somewhat reminiscent of gadgets that were introduced in the early days of hi-fi to measure the length of time a stylus had played, it shows how long a piece of equipment has been in actual use. It can be used on all types of appliances, from the lightest up to and including air conditioners.

Called an elapsed-time indicator, the device is an inch-long glass tube with metal caps. As long as current runs through it, copper builds up at one end, at a precise rate. Installed in new equipment by the manufacturer, it would cost about $1, Philips believes. Philips has not as yet installed indicators in any appliances, but indicates interest in the very action of developing such an indicator. A spokesman for another appliance manufacturer—Whirlpool—also expressed interest and suggested that his company had also considered a similar idea.

Three persons are inducted into NESDA's Hall of Fame

At its Hall of Fame banquet, held during the recent annual convention in Hawaii, the National Electronic Service Dealers Association (NESDA) elected three persons to the Association's Hall of Fame. Two of the elevations were posthumous:

Hugo Gernsback, publisher, editor, author, inventor and lifetime champion of the service technician and the a

A BASIC PATENT covering miniature calculators having their main electronic circuitry in a single chip has been issued to Texas Instruments, Inc. The model is shown holding (at left) the world's first mini-calculator that contained the equivalent of thousands of discrete devices. It was the first mini-calculator at the time to have the high degree of computational power found only in large machines. The 1974 version (slightly smaller) is the one at the right.

A SPARK Matsunaga, US Congressman from Hawaii, flew from Washington to address the Hall of Fame Banquet. He is seated at the extreme left. Next to him is Emmett Mellford, CET, chairman of the Electronics Hall of Fame. Standing is Harvey Sunada, who coordinated the convention. He is receiving a special recognition award from Dick Glass CET, NESDA's executive vice president (behind lectern) for his work during his 11-day affair. At right is C. Bryson Bush, HTSA, the owner of Bush Electronics, Honolulu.

Paul G. Lecoy, Sandusky, OH, a service dealer who during his life had been active in many Ohio trade association activities. He had served as an officer of both NATESA and NEA.

Vincent J. Lutz, CET, ST Louis, MO, now 69 years old, Mr. Lutz has been in electronics 44 years, and has long been active in both state and national service technician's organizations. He is now the publisher of the Electronics Industry Yearbook and Director of Special Events for NESDA.

(continued on page 12)
Now Channel Master guarantees the amplifiers you installed a year ago!

And two--and even three years ago--because all Channel Master Antenna Mounted Amplifiers and Home System Amplifiers made since January 1971 are guaranteed for four full years from date of manufacture!

- With Free Replacement anytime within the first year
- And Replacement at a Pro-rated Charge anytime within 3 years after that, giving you
- Full 4 Year Warranty Protection the strongest coverage in the antenna systems equipment industry!

It’s possible because the reliability and performance of our Spartan Series Amplifiers have proved to be their own guarantee--and this performance and reliability have been engineered into the entire line!

So now, instead of the usual 90 day wondering whether the equipment you’ve installed is going to perform, rest in confidence--Channel Master is offering you the finest product with the strongest warranty protection in the business!

Channel Master Antenna Systems Equipment with 4 Year Warranty Protection!

Check with your Channel Master Distributor for listing by model number of units covered.

CHANNEL MASTER DIV. of AVNET, INC. ELLENVILLE, N.Y.
The real way to learn digital electronics!

NRI is the only school to train you at home on a real digital computer.

Learn computer design, construction, maintenance and programming techniques on your own digital computer using a professional digital multimeter!

Qualified technicians are urgently needed for careers in the exciting new field of digital and computer electronics ... and the best way to learn digital logic and operations is now available to you in NRI's Complete Computer Electronics Course.

This exclusive course trains you at home on your own digital computer! This is no beginner's "logic trainer", but a complete programmable digital computer that contains a memory and is fully automatic. You build it yourself and use it to define and flow-chart a program, code your program, store your program and data in the memory bank. Press the start button and the computer solves your problem and displays the result instantly.

The NRI digital computer is one of 10 kits you receive in the NRI Complete Computer Electronics Course. You build and use your own 3½ digit digital multimeter ... while you perform hundreds of experiments, building hundreds of circuits, learning organization, operation, troubleshooting and programming.
Only NRI offers you five TV/Audio Servicing Courses

Color TV repair is another big opportunity field right now and NRI can train you at home to service and repair any color or black & white TV, hi-fi equipment, AM-FM radios, and sound systems. You can choose from 5 courses, starting with a basic servicing course with 65 lessons... up to a Master Color TV course, complete with 25" diagonal solid state color TV in handsome woodgrain cabinet. No other school offers so many choices or so much value.

All courses are available with low down payment and convenient monthly payments to fit your budget. And all courses provide professional tools and equipment along with NRI-designed kits for hands-on training. With the Master Course, for instance, you receive your own 5" wide-band triggered sweep solid state oscilloscope, TV pattern generator, 3½ digit digital multimeter and a NRI 25" diagonal solid state television receiver expressly designed for color TV training.

YOU PAY LESS WITH NRI TRAINING AND YOU GET MORE FOR YOUR MONEY.
NRI employs no salesmen, pays no commissions. We pass the savings on to you in reduced tuitions and extras in the way of professional equipment, testing instruments, etc. You can pay more, but you can't get better training.

NRI's complete communication course includes your own CB Training Transceiver

NRI prepares you for a career in the rapidly expanding field of communications... a field destined to double in the next decade! NRI can train you at home for one of the thousands of service and maintenance jobs opening in AM and FM Transmission and Reception, TV Broadcasting, Microwave Systems, Teletype, Radar, Marine Electronics, Mobile Communications and Aircraft Electronics. You train on your own 23-channel Johnson Transceiver and AC power supply; a digital multimeter, for digital experiments and precise testing; bite-size lessons leading to your FCC license and the communications field of your choice.

NEARLY ONE MILLION STUDENTS IN 60 YEARS HAVE LEARNED AT HOME THE NRI WAY.
Mail the insert card and discover for yourself why NRI is the recognized leader in home study training. No salesman will call. Do it today and get started on that new career.

APPROVED UNDER GI BILL
For the career minded, we are approved for veterans benefits. Check box on card for details.

MAIL THE INSERT CARD FOR YOUR FREE NRI CATALOG
No salesman will call
Featured speaker at the Hall of Fame banquet was the US Congressman from Hawaii, Hon. Spark Matsunga.

Gernsback Scholarship winners

Winner of this month's 1974 Hugo Gernsback Scholarship Award, a prize of $125 granted annually to the most deserving student in each of eight leading home-study electronics schools, is James Michael Kupchik, of Louisville, KY. A graduate of Valley High School in 1963, he joined the Air Force in 1964, working in guided missiles, and later worked on government contract Autovon Systems. His contacts with electronics inspired him to refresh his knowledge of that subject. At the same time, he wished to learn something of color television for his own use. Mr. Kupchik therefore enrolled in the GTE Sylvania Home Study Master Color TV Servicing Program in June 1970 and graduated with an equivalent A average in December 1973. He is now working at South Central Bell Telephone Co. on data systems and private line services.

Runner-up and winner of the second award, an RCA WV-529A service special VOM, donated each month by RCA, is Frank Fitzgerald, 44, of the Bronx, NY.

He says:

"Being a school bus driver for mentally retarded children presented the time and the opportunity to increase my knowledge of electronics, and I enrolled in the Basic Electronics program. Having completed my course, I feel a great sense of accomplishment. I find it easy to understand, condensed, and to the point. I am looking forward to enrolling in one of the more advanced career courses."

Electronic proofreader catches most typographical errors

A computer program designed to assist in detecting typographical errors before they appear in print has been devised by two Bell Labs researchers, Robert Morris and Lorinda L. Cherry.

The manuscript is first typed into a computer, which breaks down each word into all possible two and three-letter segments, then compiles a table showing how often each segment appears in that document. The table varies with each piece of material, since it depends on the kind of words used in the particular manuscript.

The computer then looks up each word in the document and compares its combinations of letters with those in the table. It then assigns a number from 0 to 20 to each word, as an "index of peculiarity," depending on the relative rarity of the letter combinations.

The "peculiar" words are then displayed on a board or typed out on a list, with those having the highest peculiarity index at the top. Of course, many perfectly correct words that contain uncommon combinations may appear on the list. (For example, a word with the letter "q" not followed by a "u" would almost certainly be printed. Yet the dictionary shows at least 18 words beginning with "q" with a letter other than "u" following it.) Semantic nonsense or missing lines are also undetectable.

The human proofreader then simply scans the list and corrects the errors, at a great saving of time. In one case, a 20,000-word document was examined by the computer in 3 minutes. The author then needed less than 10 minutes to correct 30 misspellings—23 of them in the first 100 words on the list.
The Hottest New Product Since The Calculator...

- Makes every set on your floor a remote control model
- Universal—Attaches to any set in minutes
- Changes channel instantly and fine tunes
- Turns set on/off

- Silent push-button varactor—diode tuning—12 channels
- Amplifies signal and eliminates direct pick up ghosts
- For homes, apartments, bars, hotels/motels, schools, hospitals and nursing homes.

Packaged in a sturdy, colorful, self-selling carton
The GREATEST
TV Schematic Bargain
EVER Offered!

Complete TV Schematics
for less than 5c each
COVERS ALL COLOR TV 1960-1968 AND
23 BRANDS B & W FROM 1965-1968
Here are FABULOUS savings on nationally-
known TV schematic and service data----
everything you need to fill your vital service
data needs for TV model years 1965 through
1968. Plus COLOR TV from 1960 through
1968! It amounts to a low, low cost of less
than 50c per year for your TV service data---
with 5 more years of Color TV coverage
thrown in for good measure!

SERVICE DATA FOR 23 BRANDS
TV TECH/MATICS includes complete
schematic diagrams and vital servicing data for
every TV receiver produced by more than 20
leading American Manufacturers for 1965,
1966, 1967, and 1968. All diagrams and ser-
vicing details are completely authentic. Each
year's coverage is permanently bound into
two convenient-bound volumes which open flat
to 11" x 23 3/4", ready to provide you with
instant service data at your workbench. Some
diagrams are as large as 8" x 22"!

HERE'S WHAT YOU GET
You receive 8 BIG volumes in all. Included is
a clearly-detailed and annotated TV schematic
diagram for each specific model. You also get
complete replacement parts lists, alignment in-
structions, tube and component location dia-
grams, plus key waveforms and voltage read-
ings. all the information you need to service over
90% of the TV receivers you'll encounter!

Each volume is organized alphabetically by make, then numerically by model
number. In addition, a handy Chassis/Model
Finder is bound into each volume. Regular
list price for each year's coverage----BIG
volumes----is $19.90. All 8 volumes normally
sell for $78.60. Your price is ONLY $34.95----
a savings of nearly 55%!

MONEY-BACK GUARANTEE
Order at our risk for FREE 10-day examina-
tion. Prove to yourself they are worth many
times the price.

CONTENTS
The 8 Big volumes (2 for each year) cover all
black-and-white receivers for model years 1965
through 1968----PLUS Color TV coverage from
1960 through 1968----for these brands: Admiral,
Airline, Andrea, Coronado, Curtis Mathes, Du-
mont, Electromatic, Emerson, Firestone, Gen-
eral Electric, Hoffman, Magnavox, Motorola,
Muntz, Olympic, Packard-Bell, Philco, Philco-
Ford, RCA Victor, Sears Silverton, Seltchell-
Carlson, Sonora, Sylvania, Truetone, Westing-
house and Zenith.

Publisher's List Price each year $19.90
Total $79.60. Special price $34.95 only while
they last!

LARGE PAGES, 15x11", open flat to 29 3/4x11".
Provides complete schematic diagrams.

NO RISK COUPON--MAIL TODAY
TAB Books, Blue Ridge Summit, Pa. 17214
แพทย์ enclose $35.95. Please send your
complete 6-Vol. Tech/Matics Schematic
Offer postage prepaid plus my 5 FREE
SINGLPAK Manuals.

Please invoice me for $35.95 plus
postage. Same return privileges.

Name______________________________
Company______________________________
Address______________________________
City_________________ State__________
Foreign or add 10 Pa add 5, sales tax RE-124

CIRCLE 6 ON READER SERVICE CARD

new & timely (continued from page 12)

were made to members who had ren-
dered more than ordinary service to the
organization:

Man of the Year: Leslie J. Nesvik,
former director of education for NESDA,
for his work in organizing and conduct-
ing business management schools all
over the country during the past year.

Outstanding Officer: Charles R. Couch,
Jr., CET, President of NESDA, for his
industry and government work during
the past year.

Outstanding State President: (the Hal
Chase memorial award): John P. Kelley,
CET, past president of the Arizona State
Electronics Association (ASEA).

Outstanding Committee Chairman:
Norris R. Browne, CET, who chaired
the nominations committee, the Texas
Electronics Association state convention and
the NESDA awards committee, after
chairing the NESDA merger committee for
a year.

Outstanding Local Association President
the Jack Betz memorial award): Frank
Grabiec, CET, president of the Maricopa
chapter (Phoenix, AZ) of ASEA.

Outstanding State or Regional Peri-
odical: The Arkansas Anode, state pub-
lication edited by Bill Childs of Little
Rock, Arkansas. (Two runnerup publica-
tion award certificates were also awarded
this year: one to the VEA Reporter, ed-
ited by W. H. Harrison of Norfolk, VA;
the other: Channel 1 Newsletter, edited
by Vincent J. Lutz, CET, St. Louis, MO.

MEMBERS OF HTSA (HAWAII TELEVISION
SERVICE ASSOCIATION) meet and greet
NESDA and ISCET as the delegates arrive
at Honolulu Airport. ISCET held special
sessions at the Kualana Hotel on Oahu.
Larry Steckler, CET, Editor of Radio-Elec-
tronics, was elected chairman of ISCET for
the 1974-75 term, and Gordon Turnbull,
CET, Winnipeg, Canada, was elected the
new secretary.

A.C. HELPS BROKEN BONES TO HEAL. The broad white band around the young lady's thigh
is a transformer primary. The secondary is an "electric nail" or metal core with a magnetic
winding, inserted into the broken bone. The induced current is in the order of microamps.
The scene is the Kreiskrankenhaus (County Hospital) in Garmisch Partenkirchen, Bavaria.
“Learn an honest trade,” my old man used to say, “and you’ll never have to knuckle under to any man.”

(A TRUE STORY)

Bill De Medio of Conshohocken, Pa., has made it.

At 23, he’s a licensed master electrician. The top of a trade where there aren’t enough good men to go around.

But more important, Bill’s his own boss and calls his own shots.

“I just went into my own business. And even before the sign on my truck was dry, I got my first big job.

“The contractor for a new group of houses asked me to do all the wiring. And there’s bound to be a lot more work from him and other builders.

“If it wasn’t for my ICS training as an electrician, I’d still be in some dead-end job—hating what I was doing, taking orders from everyone, and never getting any thanks for it.

“As a master electrician, you’re the boss on the job—even when you’re working for someone. You get respect, good money, and like my old man said, you don’t have to take baloney from anyone.”

The right combination for success

Bill De Medio has the right combination for success. He’s in a growing field. And he has good training for it. You could, too.

Especially if you’re interested in one of the fast-growing careers where ICS concentrates its training. Like Electrician, Engineering. Automotive Mechanic. TV Repair & Servicing. Drafting. Air Conditioning. (Check choice on coupon below.)

Ideal way to learn

As an ICS student, you study at home, on your own schedule. You waste no time traveling to and from class. And you never have to miss a paycheck.

But you’re never alone. Skilled instructors are always ready to help you.

If you ever have doubts or problems or just want to talk to your instructor, you can call ICS from anywhere, at any hour. Toll-free.

ICS training works

Since 1890 more than 8,500,000 men and women have turned to ICS for career training.

Government agencies, unions and some of America’s top corporations (including Ford, U.S. Steel, Mobil, Alcoa, Pan Am, GE, Motorola and RCA) use ICS courses in their own training programs.

Free demonstration lesson

If you want your job to give you more, (more money, more day-to-day satisfaction, and more future) send for our career guide booklet and free demonstration lesson.

Remember, it’s your life. You might as well make the most of it.

ICS

We’ll show you a better way to earn a living.

ICS International Correspondence Schools
Scranton, Pennsylvania 18515

Please send me the Free Career Guidance Booklet and Free Demonstration Lesson for the field I have checked below. I understand I am under no obligation.

□ Electrician □ Air Conditioning
□ Income Tax □ Refrigeration & Specialties
□ Specialist □ Heating
□ Accounting □ Engineering
□ Model Home □ TV Servicing
□ Management □ Electronics
□ Airline Travel □ Automotive
□ Business □ Drafting
□ Management □ ICS High School
□ FCC Licensing □ Diploma or Equivalency
□ Check here for information if 16, or under

Name________________________ Age____

Address_______________________

City__________________________ Zip____

State__________________________

Telephone______________________

DECEMBER 1974

At 23, Bill De Medio has more freedom, more security, and gets more respect than guys twice his age.

(Photograph by Frank Cowan.)

Circle 7 on reader service card.
TV TYPEWRITER COMMENTS

Finally! I started ordering parts for my TV Typewriter as soon as I received the booklet in September and got it working in June.

Construction was straightforward and I had few problems. I had a few solder bridges that caused trouble, but they were my own fault. I left the plastic spacers on when I soldered the connector pins, then pushed them up close to the board with a vise. I had trouble with the Zener-regulated negative supplies so I scrapped them and used LM-320 series regulators instead. I blew out one section of the video combiner (trying to use the self-test on something around —12V, I think) so I bridged across the unused section and it's still working that way. I have both pages working, but only one at a time because I have only one 7406 clock driver. I used Molex pins for all IC's.

I had a lot of trouble with the 2524's in the main memory. I bought a total of 26 and got just 12 that work properly. Most of the rest seem "slow"—they won't accept information at the rate required but will at a slower rate.

I just finished up CIE's course in Electronics Technology and got my FCC First Class License in June. I consider building the TV Typewriter a valuable extension of my knowledge in digital electronics and well worth the cost. Thank you again for your excellent article.

RAYMOND CRANDELL
Oakdale, CA

ANOTHER TV TYPEWRITER

I have enjoyed R-E very much and have read it for many years. I have completed the recent TV Typewriter and I am now on the Mark-8 minicomputer. It is very interesting, but getting parts up here is like looking for "hen's teeth." Duty on expensive parts also bugs me.

F. G. STONE
Ontario, Canada

MINICOMPUTER ANSWERS

Thank you for the latest batch of readers' letters. Some of the questions have

(continued on page 22)
'Tis better to give (and to receive)...

FREE New 1975
Radio Shack Catalog

OVER 2000 PRODUCTS
EXCLUSIVES ON EVERY PAGE
BEAUTIFUL FULL COLOR

Stereo • Quadraphonic • Phonographs
TV Antennas • Radios • Citizens Band
Kits • Recorders • Tape • Tools
Auto Tune-Up • Electronic Parts
Test Instruments • More!

SEND FOR YOURS TODAY!
FILL OUT COUPON BELOW

1975
Mail to Radio Shack, P.O. Box 1052
Catalog Ft. Worth, Texas 76101 (Please print.)

Name
Apt. No.

Street

City

State

ZIP

458

Radio Shack®
A TANDY CORPORATION COMPANY

OVER 3000 STORES • 50 STATES • 7 COUNTRIES
Retail Prices May Vary at Individual Stores

Circle 9 on reader service card
Hunting for a better job? CIE will help you get the license you need.
A Government FCC License can help you qualify for an exciting, rewarding career in ELECTRONICS, the Science of the Seventies. Read how you can prepare for the license exam at home in your spare time—with a passing grade assured or your money back.

IF YOU'RE OUT TO BAG A BETTER JOB in Electronics, you'd better have a Government FCC License. It will help you track down the choicest, best-paying jobs in the growing field of Electronics. Demand for people with technical skills is growing twice as fast as any other group, while jobs for the untrained are rapidly disappearing. Right now there are thousands of new openings every year for electronics specialists. And you don't need a college education to qualify!

But you do need knowledge, knowledge of electronics fundamentals. And there is only one nationally accepted method of measuring this knowledge... the licensing program of the FCC (Federal Communications Commission).

Why a license is important

An FCC License is a legal requirement if you want to become a Broadcast Engineer, or get into servicing any other kind of transmitting equipment—two-way mobile radios, microwave relay links, radar, etc. And even when it's not legally required, a license proves to the world that you understand the principles involved in any electronic device. Thus, an FCC "ticket" can open the doors to thousands of exciting, high-paying jobs in communications, radio and TV broadcasting, the aerospace program, industrial automation, and many other areas.

So why doesn't everyone who wants a good job in Electronics get an FCC License?

It's not that simple. You must pass a Government licensing exam. A good way to prepare for your FCC exam is to take a licensing course from Cleveland Institute of Electronics.

Our training is so effective that, in a recent survey of 787 CIE graduates, better than 9 out of 10 CIE grads passed the Government FCC License exam. That's why we can offer this famous Money-Back Warranty: when you complete any CIE licensing course, you'll be able to pass your FCC exam or be entitled to a full refund of all tuition paid. This warranty is valid during the completion time allowed for your course. You get your FCC License—or your money back!

And with CIE, you learn at home in your spare time. With AUTO-PROGRAMMED® Lessons, you'll pick up the facts, figures and electronics theories you may have considered "complicated"... even if you've had trouble studying in the past.

CIE Grads get licenses... better jobs

The value of CIE training has been demonstrated time and again by the achievements of our thousands of successful students and graduates.

An outstanding example is Ed Dulaney of Scottsbluff, Nebraska. He passed his 1st Class FCC License exam soon after completing his CIE course. Today, he owns two companies... one to manufacture and distribute two-way radio equipment, the other to maintain and repair such equipment along with home radio, TV and stereo sets. He says: "In the last three years we sold more than $1,500,000 worth of equipment through dealers in every state plus Canada, South America and Europe."

Richard Kihn, Anahuac, Texas, worked in the engine room of a tugboat when he started his CIE training. He reports, "Before finishing, I got my FCC License and landed a job as broadcast engineer at KFDM-TV in Beaumont, Texas. I was able to work, complete my CIE course and get two raises... all in the first year of my new career in broadcasting."

Send for FREE books

If you'd like a chance to succeed like these men, send for our FREE book, "How To Get a Commercial FCC License." It tells you all about the FCC License... requirements for getting one... types of licenses available... how the exams are organized and what kind of questions are asked... where and when the exams are held, and more.

With it, you will also receive a second FREE book, "Succeed in Electronics." For your convenience, we will try to have a representative call. Send for both books today.

CIE Cleveland Institute of Electronics, Inc.
1776 East 17th Street, Cleveland, Ohio 44114

Cleveland Institute of Electronics, Inc.
1776 East 17th Street, Cleveland, Ohio 44114

Please send me your two FREE books:

1. Your book on "How To Get A Commercial FCC License."
2. Your school catalog, "Succeed in Electronics." I am especially interested in:
 - Electronics Technology
 - Electronic Communications
 - Broadcast Engineering
 - Industrial Electronics
 - First Class FCC License
 - Electronics Engineering
 - Electronics Technology with Laboratory

Name ____________________________ (PLEASE PRINT)
Address ____________________________
City ____________________________ State __________ Zip ________ Age ________
Veterans and Servicemen: Check here for G.I. Bill information.

CIRCUIT 10 on reader service card
LETTERS
(continued from page 16)

been asked and answered in my other letters to you. The one point that they seem to pick up is that the connections should not be made between pins 9 through 16 between the Input Multiplexer Module and the Address/Manual Module. This should be included as soon as possible to prevent problems with operation of the computer. Other answers are as follows:
1. Booklet page 6, fourth paragraph, last line should be: On the following boards, install the B jumpers and only resistors R1-R4 and R21.
2. Connections are made to the Molex 09-52-3081 connectors with stripped leads or male connectors Molex 09-64-1081.
3. The Interrupt Switch register is now the only source of interrupt instructions. An external encoder could be used and bussed with the switches, but this would require external circuitry as shown in the booklet. One reader, Stephen L. Diamond, expressed interest in forming a Mark-8 software users group. That’s fine with me if he wants to do it. You can suggest that readers and builders contact him direct at 311 Carl Street, San Francisco, CA 94117.
Most of the other questions are trivial. I should have a final calculator PC layout soon and have been giving some serious thought to using one of the new Intel 8080 chips which is more powerful than the 8008. I also have a cassette unit and a small calculator-type printer ready to be hooked up to my Mark-8.
JONATHAN A. TITUS

MORE MEMORY
I’ve just received your complete instructions for the Mark-8 minicomputer and not being well versed in the construction or operation of computers, I’m confused on a point you might help me clarify. On page 2, you indicate that the microprocessor can directly address up to 16,424 words of 16K; however, on page 3, you state that the Mark-8 may be used with up to four memory modules for a maximum of 4K of storage space. Why is the storage space only one-fourth of the addressable capacity of the microprocessor? Is it possible to add on more than four memory modules?
In any case, this is the most exciting project I’ve seen in a long time and I fully intend to build it and the TV Type-writer. I would greatly appreciate a reply to this letter.
BRUCE E. BLAKESLEE
Scotch Plains, N.J.

While the Intel 8008 microprocessor chip can directly address up to 16K of memory, using the memory printed circuit boards for the Mark-8, only 4K may be used. This keeps costs down for small systems by using the 1101 type RAM. Other types of memories may be used since the read/write signal is available as are the 14 address lines: D0-D7, A, B, C, D, A12 and A13. These may be used to add up to the 16K memory. Larger memories may be built using cassette units or external shift registers, etc., but most systems don’t require more than 4K.
JONATHAN A. TITUS

MINICOMPUTER PARTS
Concerning the Mark-8 minicomputer article, I have found a couple of sources of supply for a couple of the parts which might be of value to your readers. The Molex connectors are once again available from Force Electronics, 343 South Hindry Avenue, Inglewood, CA 90301. The price is $35 each for Molex number 09-52-3081. If any one has trouble locating the 8263 and 8267 IC’s, they are available for $5.00 and $2.00 respectively from one of your advertisers: James Electronics, P.O. Box 922, Belmont, CA 94002. DENNIS E. CRUNKLTON
Mare Island, CA

REPLACEMENT IC’S A PROBLEM
I have a problem which I am sure other repair shops have also had on occasion to come across at one time or another. Maybe your staff could answer me or it could be made into an article in the future.
Quite a few times I have had to replace integrated circuits, but have been unable to find listings for a replacement. For example, I recently had a set which needed an IC replaced and it was manufactured by General Electric. However, it was not listed in the current GE catalog. I wrote to GE to find out where I could obtain this particular part and they advised me as follows:
"... General Electric Company is no longer a manufacturer or supplier of integrated circuits. This product line was discontinued some time ago. Other companies have purchased the right to manufacture most of the original GE types, however, some of these have never been manufactured since GE discontinued operations on this product. Some replacements are available, however, in many cases the only available units must come from some surplus parts supplier..."

I think this is a bad situation. A company, not only GE, makes parts, discontinues them and a repair shop gets a unit which needs one of these discontinued parts to be replaced and he is stuck. I know, myself, that I can’t afford to spend months and months trying to locate a surplus parts supplier. I try to repair my sets as soon as possible—not make the customer wait indefinitely while I try to obtain discontinued parts. At least if a company discontinues parts, they should have a cross-reference to equivalent parts.
LOUIS F. FOSHAY
Pomona, NY

IN THIS ISSUE
If new electronic circuits turn you on, don’t miss the article on the new Magnavox TV remote-control system—it’s different, it’s digital, it’s on page 44.
Now make almost all your replacements with RCA's medium-priced Colorama A's

That's the kind of socket coverage you can count on from this popular new "middle line" of RCA replacement color picture tubes. With just eight Colorama A types, you can cover almost all of the replacement market with "Grade A" performance at a price your customers can afford.

Every tube in the RCA Colorama A line is totally remanufactured. That's why they all can carry RCA's 18-month inboarded warranty plus the option for an additional 12 months. Each has a completely new gun and a completely new screen made of the latest all-new rare-earth phosphors. In addition, every "V" type is made of advanced x-ray glass.

The RCA Colorama A line includes three Matrix types: CA-21VAKP22, CA-23VALP22 and CA-25VABP22. These advanced RCA Matrix tubes are as much as 100 percent brighter than any equivalent non-Matrix picture tube in RCA history.

So why not give your customers the "Grade A" choice. Choose Colorama A at your RCA Distributor today.

Remember, RCA is the world-wide leader in picture tubes, with over 65 million produced to date.
B & K Model 467 Pix Tube Restorer/Analyzer

Figure 1 is a typical electron gun. It is composed of a heater, cathode, control grid (grid No. 1), accelerating anode (grid No. 2), and a focusing anode (grid No. 3). The final anode (grid No. 4) at the end of the gun is electrically connected to the neck coating and to the shadow mask. The mask, coating, and grid No. 4 together form the ultor anode of the tube.

As in any other thermionic emission type device, the heater brings the cathode to its operating temperature to set free electrons in motion about the cathode. The control grid (G1) is biased typically at –70 volts. The video signal is applied between the cathode and the control grid. Once the positive excursion of signal is sufficient to overcome the negative bias potential at G1, beam current flows through the aperture at G1 from the cathode and continues on at an accelerated rate to strike its proper phosphor dot.

The potentials at G2, G3, and G4 are set to assure an accelerated electron beam which is finely pinpointed (focused) when it reaches the surface of the pix tube. Remember that, what is shown in Figure 1 is a simplified version of actual potentials applied to the elements and no consideration is given to signal applications and the grids as in an actual color pix tube.

Present day color TV uses mostly the three-beam tube with a magnetic convergence system. Other types of tubes are available too—the in-line, those with common elements, and the Trinitron.

What makes it tick?

Amazingly enough, regardless of the type of picture tube that's being tested, the procedure is the same. B & K's preliminary instruction book has stated (continued on page 26)
Our 25 lb., $2000.00 four channel scope is handheld, digital, weighs 10 ozs. and costs $189.50*

The mitScope MS-416 is a valuable tool in analyzing circuits. With the increasing use of digital circuitry in home entertainment equipment (stereo receivers, television sets, etc.), the MS-416 will be indispensable for every electronic service department. Digital circuitry is becoming more and more commonplace, and the mitScope is designed to handle this requirement. The MS-416 can be extremely useful in digital circuit design in electronic research and development situations. With its memory capability the mitScope can outperform oscilloscopes many times its price.

A few of the areas where the mitScope is an excellent tool for diagnosing problems are: electronic calculators; digital clocks and timers; digital automotive electronics; and many more.

DISPLAY: LED Matrix: 4x16 LED Matrix. 4 channels: with 16 divisions per channel useful for determining extensive time relationships.

TIME BASE: Range: from .5 u sec. to .2 sec. Triggering: from channel one input signal; positive or negative edge selection using SYNC switch; also an automatic sweep for checking DC steady-state signals.

Range Selection: using three controls—a potentiometer for initial sweep rate and two switches for X1000 and X20 selection.

* OR, IF YOU REALLY WANT TO SAVE, BUILD YOUR OWN MS-416 FOR JUST $127.50

MODES: Normal: for most troubleshooting and testing applications. Storage: on all 4 channels stores the information in a 16x4 bit high speed RAM and displays the signal continuously.

PULSE CATCHING: Single-shot storage capability: can catch and store a one-time occurring pulse in the memory and display it for as long as desired.

POWER: Battery: operation using rechargeable NiCads. AC: operation using an AC-(Adapter/Charger) for use with normal 110 v.a.c.

PRICE: MS-416 (fully assembled) $189.50
MS-416 (kit with easy-to-follow manual) $127.50

Enclosed is a Check for $ Signature
or
Charge Card #
or
 Credit Card Exp. Date
 Kit

MS-416

Include $3.00 for postage and handling

NAME

ADDRESS

CITY

STATE & ZIP

MITS INC.

"Creative Electronics"

Circle 13 on reader service card
ELECTRONIC TECHNICIANS!

Raise your professional standing and prepare for promotion! Win your diploma in ENGINEERING MATHEMATICS from the Indiana Home Study Institute.

We are proud to announce two great new courses in Engineering Mathematics for the electronic industry.

These unusual courses are the result of many years of study and thought by the President of Indiana Home Study, who has personally lectured in the classroom to thousands of men, from all walks of life, on mathematics, and electrical and electronic engineering. You will have to see the lessons to appreciate them!

NOW you can master engineering mathematics and actually enjoy doing it! WE ARE THIS SURE: you sign no contracts—you order your lessons on a money-back guarantee.

In plain language, if you aren't satisfied you don't pay, and there are no strings attached.

Write today for more information and your outline of courses.

The INDIANA HOME STUDY INSTITUTE
Dept. RE-1274, P.O. Box 1189, Panama City, Fla. 32401

Circle 14 on reader service card

EQUIPMENT REPORT
(continued from page 24)

"after the user has become thoroughly familiar with the instructions and the instrument itself, he will need only to refer to the SET-UP CHART booklet." This is indeed quite true. After only two weeks of use, I found only the need to verify the type of socket to be used for a particular tube and the G1 potential (either -50V or -70V). In most color pix tubes, socket 3 and a G1 potential of -50V are used. The set-up becomes almost second nature.

A tour of the 467 in operation is now in order. Let's assume we are checking a 25AP22A pix tube. The set-up manual says to use test adapter No. 3, the heater voltage is 6.3 volts and the G1 potential is -50 volts. (Anything other than -50V is noted with an * in the manual and the setting for G1 is then -70 volts. We're ready to go. The TV receiver must be unplugged at all times for any testing! With the function switch in the OFF position, select the proper heater voltage range. In the case of our 25AP22A we'll use a range of 4 to 7 volts.

Now rotate the function switch to the SET UP position. The G2 switch is

(continued on page 28)

SCELBI COMPUTER CONSULTING, INC. Announces The Totally New and The Very First MINI-COMPUTER Designed for ELECTRONIC/COMPUTER HOBBYIST!

This is a true digital mini-computer with computing power that will astound you! At a LOW, LOW price you may find hard to believe. This versatile electronic wonder has been designed to delight the very heart of every person who has dreamed of owning their own computer. It is all solid state and conservatively designed to provide years of lasting pleasure. It is a fully programmable machine. A complete line of peripheral units are available to use with the SCELBI-8H. Such as an interface that turns a low cost oscilloscope into a complete alpha-numeric display system, low cost keyboard and TV interfaces, and an interface that turns a low cost audio tape cassette unit into a "Mag-Tape" storage system.

Plus — a large selection of software! Programs such as Editors, Assemblers, Calculator packages, I/O routines for ASCII and Baudot machines and SCELBI interfaces, Data manipulating routines, Games, and much more.

And, the skill and support of an organization staffed with professionals dedicated to bringing you the most computer power for your money. Professionals who have been delivering SCELBI-8H systems for more than a year!

Fully tested card sets for the SCELBI-8H start as low as $490.00 (Complete computers (card set plus chassis) as low as $580.00. And, for the real "do it yourself" buffs, we now offer "unpopulated" p.c. card sets starting as low as $135.00. (Domestic prices.)

Literature available by request:

SCELBI COMPUTER CONSULTING, INC.
1322 Rear — Boston Post Road
Milford, CT. 06460
Phone (203) 874-1573

Circle 15 on reader service card

INTERNATIONAL

Frequency meter
FM-2400CH

- Tests Predetermined Frequencies 25 to 1000 MHz
- Extended Range Covers 950 MHz Band
- Pin Diode Attenuator for Full Range Coverage
- as Signal Generator
- Measures FM Deviation

The FM-2400CH provides an accurate frequency standard for testing and adjustment of mobile transmitters and receivers at predetermined frequencies.

The FM-2400CH with its extended range covers 25 to 1000 MHz. The frequencies can be those of the radio frequency channels of operation and/or the intermediate frequencies of the receiver between 5 MHz and 40 MHz.

Frequency Stability: ± .0005% from +50° to +104°F.

Frequency stability with built-in thermometer and temperature corrected charts: ± .00025% from +25° to +125° (000125% special 450 MHz crystals available).

Self-contained in small portable case. Complete solid state circuitry. rechargeable batteries.

WRITE FOR CATALOG!

FM-2400CH (meter only) $995.00
RF crystals (with temperature correction) 24.00 ea.
RF crystals (less temperature correction) 18.00 ea.
IF crystals catalog price

INTERNATIONAL
CRYSTAL MFG. CO., INC.
10 NO. LEB. - ORLANDO, FLA. 32802

Circle 16 on reader service card
Get a pair of HP basic test instruments that give you less—less measurement hassle because they're so easy to use. Less down-time because they're all solid-state. Less weight and bulk because this scope and probe multimeter were designed to be part of your lightweight travel kit.

Imagine a 3½-digit probe multimeter that is completely self contained, weighs only seven ounces, fits in the palm of your hand—and so advanced it AUTO ranges, AUTO zeros, and has AUTO polarity. It's practically foolproof. Completely portable. And it's absolutely unique—there's nothing else like it anywhere. At any price. And it's just $310*. That's a surprisingly low price for a state-of-the-art instrument built to HP's most exacting standards.

Or get our bright, full 5-inch diagonal display oscilloscope that gives you a whole lot less of those squinting, guessing, knob-tweaking measurements you'd just as soon do without. It's a dual channel, 15 MHz lightweight (only 15 pounds) with the sensitivity, accuracy, and big-scope conveniences most troubleshooters are likely to need. And best of all, it sells for only $750*.

There you are, a top-quality scope and probe multimeter for a lot less money. They're backed by HP's reputation and worldwide service and support facilities. So why gamble? There's less chance of error when you get your measurement instruments from the measurement leader. To get the full story on our 970A probe multimeter or the 1220A oscilloscope, just fill out and return the coupon.

*Domestic U.S.A. prices only.

Get Less
For Your Money.

Hewlett-Packard
Sales and service from 172 offices in 85 countries
1501 Page Mill Road Palo Alto, California 94306

Send information about your
probe multimeter
scope.

Name
Company
Address
City
State
Zip

Hewlett-Packard Co.
1501 Page Mill Road
Palo Alto, California 94306

Circle 17 on reader service card
VERSATILE IS ENJOYABLE

This IC150 . . . is the finest and most versatile control unit I have ever used. For the first time I can hook all my equipment together at once. I find many semi-pro operations possible with it that I have never been able to pull off, including a first-class equalization of old tapes via the smooth and distortionless tone controls. I have rescued some of my earliest broadcast tapes by this means, recopying them to sound better than they ever did before.

--Ed Canby, AUDIO

Among the things you can do with an IC150:

Produce your own taped programs! Record from any of seven inputs: 2 phono, 2 tape, 1 tuner, 2 auxiliary (tape player, cassette deck, guitar, microphone, etc.)

Clean up record scratch, tape hiss and turntable rumble with filters which scarcely alter program material.

Improve frequency response with bass and treble controls for each channel.

Enhance stereo image with the IC150's exclusive panorama control.

Record two copies of a program at once, and monitor source and tape for each. Or, record on one tape deck while listening to a second tape.

Recreate original placement of soloists, small groups and actors, regardless of speaker position.

The IC150 performs all these functions and more with lower distortion and noise than any other preamplifier. This combination of clean sound and versatility cannot be bought anywhere else for less than $600. But you can buy it for only $349 at your Crown dealer. See him today to make your own comparison.

For independent lab test reports on the IC150, write CROWN, Box 1000, Elkhart, Indiana, 46514.

CROWN
MADE ONLY IN AMERICA
Circle 18 on reader service card

EQUIPMENT REPORT
(continued from page 26)

in the norm position (0-350 Vdc. In the set up position, a meter will indicate the precise heater voltage as determined by the set htr control. Meter 2 displays the g1 potential as determined by the set g1 control. Meter 3 monitors the line voltage at the duplex outlet of the particular area you are in.

Let's proceed to setting the precise cut-off potential of our picture tube.

Rotate the function selector switch to the cut-off position. We now use the meters to set spot cut-off of the pix tube to +1 division above zero. Spot cut-off is the point at which the pix tube at the threshold of conduction (or cut-off) for a fixed g1 potential of -50v and varying g2. To see how this operates let's refer to Fig. 2. Notice that a

No variable control is used. It's strictly a means of monitoring. The leakage lamps will automatically indicate any interelement leakage from heater-cathode or from k cathode (r, g, or b) to g1. If there is a heater-cathode short, there can be no repair. Either use a good isolation transformer or replace the tube.

Now that we have selected the proper heater voltage and g1 potential and made note of the line voltage, single gun is drawn. Now we don't have a general operation but rather we have the actual method by which the model 467 connects elements of the pix tube under test. Remember, the heater voltage was previously set at 6.3 volts and g1 at -50 volts. Also note that the focus grid (g3) and the accelerating anode (g2) are common. The small amount of current flowing at the cut-off point is monitored by (continued on page 30)
Dear Radio-Electronics Readers,

It has been some time since I have had a chance to bring you up to date on the latest news here at Southwest Technical Products. This has been a busy and kind of frantic year for us. Until this fall, deliveries on many parts have been long and undependable. It seemed that we would just solve one shortage problem when another would crop up. Happily, we seem to be past the worst of it and most of our kits can again be delivered in a reasonable time.

Early in the summer we installed a "Datapoint 2200" computer system to help us keep track of orders and our inventory. Now I know some of you probably have "hang ups" about computers, but we are very happy with this one. Since about the middle of August all orders have been completely on the system. Not only has it speeded things up in handling your orders, it also makes it possible to confirm all orders and to notify you immediately and automatically if there is to be a delay. Without old Datapoint, doing this would have taken more hours of time than we had available.

We are also once more expanding our warehouse and workspace. Thanks to all our customer friends Southwest Technical Products is continuing to grow. The additional space will make it possible to produce our kits more efficiently and hopefully help us hold our prices. The majority of our board manufacturing, chassis punching and printing work is done right here at the plant to keep costs as low as possible. This combined with our — direct to you — sales method makes our kits a real bargain compared to other similar products.

During this year we have introduced several new kit projects of which we are quite proud. We have several new amplifiers, a keyboard kit, a new guitar preamp, an octave equalizer, a compressor expander and a multimeter plug in for our digital instrument. If you don’t have our latest catalog listing all these goodies, circle our number on the reader service card and mail it in, or call us. We will get a new catalog to you as fast as possible. IT’S FREE.

During the coming year we will have several more new kits that I know will interest many of you. We will have a tachometer plug-in for the digital mainframe and possibly others. We will have the improved Digi-Viewer and Microlab kit too. The big one though will be our computer terminal kit. Your enthusiastic response to the "TV Typewriter" (Radio-Electronics Sept. 73) convinced us that many of you would appreciate a real honest to gosh professional quality terminal with all the features available on commercial units. Like the "TV Typewriter" this kit will use any television set for the display, which will consist of 16 lines with 32 characters on each line. The kit will offer two pages of memory as standard equipment—not an optional extra. It will operate from our KBD-2 or any other ASCII input source. For those that want the features; we will have special cursor controls, screen read (off line edit), and a UART system. We are making the kit available in as many forms and with as many options as practical so that you can build anything from a simple TV display to a full feature computer terminal for the least possible cost. Since you use a TV set for the display, you can choose the size that is best suited to your application and it will work with any old set you may have. Would you believe you can have the basic kit with the two pages of semiconductor type memory for $175.00.

See the January 1975 issue of Radio-Electronic for complete details.

Sincerely,

Daniel Meyer
EV·GAME makes replacing cartridges a snap.

We offer virtually all originals or exact replacements. No one else comes close.

Here's an example of what that means to you:

<table>
<thead>
<tr>
<th>THE ORIGINAL</th>
<th>UNRETouched PHOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSR SX5H</td>
<td>Typical of cartridges you replace every day.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THE EXACT REPLACEMENT</th>
<th>UNRETouched PHOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>EV5344</td>
<td>In every way a perfect match—same shape, size, color and quality. Installs easily in old bracket. Accepts original needle.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THE SUBSTITUTE</th>
<th>UNRETouched PHOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTATIC 612</td>
<td>Requires replacing original bracket. Cartridge shape and needle are different. Will not accept original needle.</td>
</tr>
</tbody>
</table>

Tools you may need for a substitute:

Needle for needle; cartridge for cartridge and pin for pin you can't beat an Electro-Voice. The fact is, when you specify Electro-Voice, you save time and effort. You don't need special tools or parts. There's no unusual handling or installation. The result is that you have the best chance to maximize cartridge profits and customer satisfaction with EV·Game.

So see your local distributor for Electro-Voice replacement cartridges. Also ask him for the new EV·Game catalog. It's the most comprehensive and easiest-to-use. Simplifies selection of nearly 700 cartridges. And write to us for our revealing Replacement Cartridge Comparison Chart. Learn more about why we make it a snap for you to replace cartridges. EV·Game, Inc., Box 711, Freeport, NY 11520. (516) 378-0440

EQUIPMENT REPORT

(continued from page 28)

the meter. This current will be entirely dependent upon the setting of the G2 potential for each gun. Now we're ready to test.

Rotate the function selector switch to the TEST position. Automatically, the meters will indicate the condition of each gun. In the green area the gun is good. In the red area the gun is bad. You can also use the top scales of the meters for relative current indications if you wish to record data for your customer records. If the individual guns are well into the green area, we can be fairly sure the pix tube is good. Or is it? How will it track? Let's find out. See which gun provides the greatest emission. With this in mind, depress the TRACKING PUSH-BUTTON and set the best gun on the "set tracking" line of its respective meter by rotating the tracking control just above the TRACKING PUSH-BUTTON. The two weaker guns should now fall within the yellow wedges on their meters. Assume that we have what appear to be three good guns. How good are they? We know that under normal heater voltage the emission is "up" and that it will track. Depress the LIFE pushbutton. This reduces heater voltage by 15% and simulates reduced line voltage. If the drop in emission is negligible you can assume not only good emission but a good life expectancy. Tracking can be checked under this reduced heater condition too. If there is good tracking, then only one other test need be made. Depress the FOCUS pushbutton. If the FOCUS OK lamp lights, the focus element is good.

The quality test that was just performed is one of the most important features of the Model 467. It rapidly tells the technician the emission condition of each gun at a mere glance of the three meters, and the tube's ability to track (grey scale). Relative life span has been determined.

This is where B & K's claim of "true" beam current measurement and the multiplex system came into the act. Refer to Fig. 3. In the TEST position of the function selector switch, G1 is set to 0 volts. The tube now attempts to conduct at its maximum. Notice that the meter is connected (as before) so it measures the current that flows from K to G2 (G3). This is what B & K calls the "true" beam current and (according to B & K) is more meaningful for analysis purposes.

Our pix tube under test is still hooked up in a triode configuration. At the same time each gun is being pulsed 20 times per second. The guns

(continued on page 78)
A gift of the Shure V-15 Type III stereo phono cartridge will earn you the eternal endearment of the discriminating audiophile who receives it. What makes the V-15 such a predictable Yuletide success, of course, is its ability to extract the real sound of pipers piping, drummers drumming, rings ringing, et cetera, et cetera. Stereo Review, in a test report that expressed more superlatives than a Christmas dinner, described the performance of the V-15 Type III as "...a virtually flat frequency response... Its sound is as neutral and uncolored as can be desired." All of which means that if you're the giver, you can make a hi-fi enthusiast deliriously happy. (If you'd like to receive it yourself, keep your fingers crossed!)

Shure Brothers Inc.
222 Hartrey Ave., Evanston, Ill. 60204

(Circle 21 on reader service card)
What's the Difference?

3-1/2 digit multimeter with 6 to 13 times the accuracy of a typical analog meter

The industry's most popular bench-type VOM, compared above to our Model 282 Digital Multimeter, has 3% full scale DC accuracy. On the 50-volt scale, that's an accuracy of ±1.5 volts, or an accuracy of reading of 7.5% at about 20 volts. The 282's accuracy of reading is 0.5% ± 1 least significant digit, or ±0.11 volt. Divide those two figures—1.5 by 0.11—and you find that the 282 has 13.6 times the accuracy at that reading.

Even at readings close to 50 volts, where the analog multimeter is most accurate, Model 282 remains more than six times as accurate as the analog multimeter.

As for ease of reading...the picture above shows Model 282 and the analog meter full size. Put it where you'd normally set up your multimeter and see for yourself how much more easily you can read the 282's bright digital display.

And there's more—automatic polarity, clear out-of-range indication, automatically positioned decimal point, 100% overrange capability, complete overload protection, 10 megohms input impedance and a three-position handle that doubles as a stand for tilt-up viewing. Plus a Model PR-21 probe with switchable 100K ohm isolation resistor to prevent capacitive loading while measuring DC in RF circuits.

And all for almost an analog price! Now in stock at your local distributor or write Dynascan.

MODEL 282 $200

Circle 22 on reader service card
COLOR TV '75

Manufacturers are incorporating new design innovations into their 1975 color TVs. Here's a rundown of the major manufacturer's new designs.

by KARL SAVON
SEMICODUCTOR EDITOR

BY NO MEANS HAVE WE SEEN THE END OF technological innovation in television design. But there is a lull in activity this year as the industry works to catch up with itself. Second and third generation solid-state models are on the market. The design bugs of first-generation sets have been ironed out. Refinements brought about by hard earned service experience have been incorporated. Chassis are simpler. The tube color set is just about dead as more and more people realize the consistent long life performance advantages of solid state. My solid-state receiver of two years ago still plays like new, while a tube model of the same year and make looks like it needs a ring and valve job!

Ferroresonant transformers have been adopted by at least one other manufacturer beside Zenith. Instant-on is about finished and is being dropped one by one by the set-makers.

Manufacturers are spending time looking at the subtler problems they didn't have time for before. Lower production items like modern digital remote control and sophisticated varactor tuning systems are getting attention. Touch tuning has made its debut in this country, and the in-line slotted mask picture tube is becoming commonplace. A surface wave i.f. filter is being used by one major producer.

All in all it is a mopping up operation with some bright spots of innovation here and there. What's happening is that new circuits are being developed, many of them IC's with their very long development cycles. In a discrete design, a production problem is often cured by soldering a resistor on the back of a printed circuit board, but try soldering to an IC. The design must be right at the beginning. They are going to show up in the next couple of years and you're not going to be disappointed.

Admiral

About half of Admiral's models are 100% solid state. The two top models have Digital Touch Tuning. Just touching the channel number on the control panel selects one of the uhf or one out of a possible six uhf stations. The channel number lights up on a digital readout next to the screen. Most models use the 100% solid state SS1000 chassis. The SS1000 has plug-in satellite modules on a slide out chassis. Admiral uses their Super-Solarcolor black matrix slotted mask picture tube in most of their 19-inch sets.

Color Master Control calls in preset color, tint, brightness and contrast in almost all sets.

Two Sonar remote controls are available in portables and consoles. One is a two function remote for on-off and channel changing. The other 4-function remote includes an additional volume adjust.

Quasar by Matsushita

Quasar is the new name for the Motorola line bought out by Matsushita Electric. It is an interesting situation since Quasar competes with its sister subsidiary Panasonic in some market areas.

QS3000 is the name of the third generation Quasar 100 percent solid-state entry. Simplification contributes to easier servicing. A video peaking control was added to the QS3000 portables to give sharper pictures when signal conditions permit. The control had been previously reserved for consoles only. Module count is down from eight to five on non-remote models. The integrated circuit count was increased from three to four and is given credit for part of the module simplification.

Super Insta-Matic keeps the picture brightness, contrast, and color intensity in balance with changes in room brightness. Similar to Magnavox's approach, Quasar uses a honeycomb lens in front of an LDR (light dependent resistor). An IC responds to the sensor's output and controls the change in picture energy. When Super Insta-Matic is turned off, a manual slide picture control changes the three picture parameters in the same proportion as the automatic system.

Do you use your TV for a nighttime? "Slumber Sentry" added to the "Satellite" remote control system turns off the set when the tuned in station concludes its transmission day.

Speaker jacks and low level audio jacks are found at the back of the QS3000 consoles. A high-quality speaker or amplifier-speaker system can be substituted for the TV's for better sound.

What's new at RCA

Seven new models in four screen sizes round out the XL-100 solid state series for 1975. All of RCA's color models are 100% solid state for 75. They use about 25% less power than the equivalent former tube models. In the lineup is the new 15 inch Model ET535 and the 17 inch ET395. These sets use PST precision static toroid yokes. The yokes are permanently bonded to the picture tube eliminating dynamic color convergence adjustments. The picture tubes are in-line black matrix types. There is a new "E" version of the CTC58 chassis used in 25 inch consoles. A new XL-100 chassis, the CTC76, is used in several models. It is very similar to the CTC71. Single-sided deflection boards are used rather than double-clad boards.

The new PST yoke has one-tenth the impedance of the conventional types. A new vertical module was designed to drive it. Fig. 1 is the schematic of the CTC72 vertical system. At the end of the trace interval switch Q1 is turned on and remains on for retrace. The collector of Q1 is grounded by the device's saturation resistance turning off the Darlington connected grounded emitter amplifier Q9-Q2. As the collectors of Q9 and Q2 rise toward 140 volts through R6, D4, and D5, D1 becomes forward biased when it reaches one junction voltage higher than the 26 volt reference supply.

This pulse feeds the output driver and the vertical yoke windings through C105. Returning R6 to 140 volts gives higher gain since the resistance value can be higher for the same current. The upper driver Q3 and output Q5 are emitter followers. The lower drive pair Q4 and Q6 make a composite pnp transistor. It has the characteristics of a pnp transistor, yet the bulk of the current is carried by the npn device. Current limiter Q10 turns

DECEMBER 1974

33
on if the current in R11 products a voltage that reaches the turn-on threshold of the transistor's base to emitter voltage. Q10 drains current through R6 starving Q3 and limiting the output current to a safe value. Grounding the predriver Q9's base by the transistor switch during retrace breaks any possible negative feedback path, and the amplifier operates as an open loop pulse amplifier.

At the end of the retrace period, Q1 is turned off by positive feedback through module pin 3. R409 is a current sampling resistor; the voltage across it is proportional to the current through the yoke. This voltage is fed back to the predriver through the integrating capacitor C418 and diodes D2 and D3. The base of Q9 is supplied from 26 volts through the vertical height control which determines the current or the rate at which C418 can charge.

Sync blanker Q7 forms a window or limits the portion of the vertical cycle time the oscillator can be reset or synchronized.

Changes in the CTC68 for 1975 include new audio output and kine driver modules, elimination of standby heater consumption, and an improved tuner.

The two transistor cascode mixer in the old tuner design is replaced by a dual-gate MOS type in the KRK211 tuner as shown in Fig. 2. It has high input impedance, a very good noise figure, and low cross modulation because of its parabolic characteristics. It can withstand stronger signals so the agc can be delayed longer, improving signal to noise on moderately weak signals. The drawing shows the evolution of the design. Gate 2 of the FET has a similar effect as the upper base of the original cascedo transistor pair. R6, R7, and R8 bias the gates for best mixing.

The drain of Q1 is tuned by the shunt fed circuit L30 and C4. L30 connects to the low impedance input of the i.f. module so that looking from the mosfet, L30 appears to be grounded.

Digital gas-discharge channel indicators are used in some models. Fig. 3 is a simplified drawing of the switching for the units uhf digital readout. Grounds are connected to the necessary cathode elements by the units switch through isolating diodes. The switch is deactivated in the VHF position when a different one takes over. In the UHF position S4002 grounds the cathodes of D6201 and D6202. D6202 conducts current to ground for the uhf display and D6201 lights the uhf indicator lamp. D6003 holds the VHF lamp off by restricting its voltage drop to two diode junction voltages, way below the gas ignition voltage.

Sony has a zinger

The Sony KV-1722 uses a 17-inch 114-degree deflection Trinitron picture tube. It is completely solid state and uses 26 transistors, 33 diodes, 7 integrated circuits, 3 gate controlled switches and 1 FET.

The receiver has a switching mode power supply that is being used in Sony's 20-inch Japanese and other European models.

Fig. 5 is a block diagram of the switching system. Full wave rectification produces 303 volts dc. A switching circuit operating at the horizontal scan rate, 15,734 Hz, generates a non-symmetrical square wave output that has an average value of 103 volts dc. The 130-volt output is compared with a 12-volt Zener diode to pulse width modulate the chopper drive. This is a regulation loop that maintains the 130 volts dc by changing the average value of the switched waveform. It is efficient because the switching device Q603 is either on or off, both minimum dissipation states. The EVP block is an excess voltage protection system.

For some more appreciation of the system look at the schematic diagram in Fig. 4. Sony doesn't cut corners in their designs! The switching device Q603 is a
gate controlled switch (GCS). It is a pnpn regenerative device similar to an SCR, but the geometry is such that the gate does not lose control when the transistor is turned on. Applying a negative signal to the gate turns it off. The gate of the GCS is fed from the chopper drive transistor Q604 through transformer T603. Q603's anode is connected to the 303 volt supply through R607. The horizontal rate drive is transmitted through pin 17 from the horizontal oscillator.

Filter L601, C621, L603 removes the 15-kHz switching frequency and its harmonics from the chopped output at the cathode of Q603. Error amplifier transistor Q608 compares a portion of the regulator output with the Zener reference. Current through R632 from the 19-volt dc line biases Zener D610 on through the base-to-emitter junction of Q601. Potentiometer VR601, the regulated supply voltage adjustment, is part of a resistor divider that biases the base of Q608 at 11.9 volts. Q609 is reverse biased and normally does not affect the operation of the circuit.

As the ac line voltage and dc loads on the 130-volt supply fluctuate, the current in Q608 varies, changing the control input to pulse-width modulator Q606-Q607. Like all regulators the feedback must be negative in phase. Loading the output increases the pulse width increasing the average value output of the chopped 303 volts. Starter circuit Q601-Q602 is essential for initial turn-on. Some mechanism is needed to start the oscillator which runs on its self-generated 19 volt supply. There is a path through R642, D604, Q602 and D605 to the 19-volt line. Initial turn-on of the set gates on GCS Q602 to power up the 19-volt line temporarily. The horizontal deflection system is then started by this voltage and takes over the 19-volt supply generation by rectification of horizontal output pulses. Forward bias on Zener regulator D610 will then saturate Q601 pulling down the gate of Q606 and turning it off disabling the initial power flow path.

If you ever run into one of these sets there is a characteristic of the power supply you should be aware of. If the horizontal oscillator fails, the 303 volt dc will pass through the switching circuit without being converted down. That is because it is not being chopped and the average value will equal its now constant peak value. When this happens some transistors and fuses unhappily pop along the way, confusing the unwary.

Zenith for '75

Zenith's Chromacolor II "E" line models are similar to last year's "E" line's vertical chassis. New 23-inch and 25-inch Titan chassis replace last year's horizontal model. The main differences between the larger and smaller sets are in the high-voltage circuits. Only one set in the 52 model 1975 line has tubes.

Power Sentry, the ferroresonant line regulating power transformer introduced last year has been retained to nobody's surprise. It does a fine job of smoothing out the bumps on the power line and gives full scan voltage with reduced
As an NTS student you'll acquire the know-how that comes with first-hand training on NTS professional equipment. Equipment you'll build and keep. Our courses include equipment like the 5" solid-state oscilloscope, transistor and tube-tester, vector monitor scope, 74 sq. in. B&W TV, and solid state stereo AM-FM receiver. The unique NTS Digital GR-2000 color TV with first ever features like silent varactor diode tuning; digital channel selection, (with optional digital clock,) and big 315 sq. in. ultra rectangular screen. This is just a sampling of the kind of better equipment that gets you better equipped for the electronics industry.

This electronic gear is not only designed for training; it's field type — like you'll meet on the job, or when you're making service calls. And with NTS easy-to-read, profusely illustrated lessons you learn the theory behind these tools of the trade.

Choose from 12 NTS courses covering a wide range of fields in electronics, each complete with equipment, lessons, and manuals to make your training more practical and interesting.
Compare our training; compare our tuition. We employ no middlemen because we need no salesmen. We believe you have the right to make your own decisions based on the facts, and you'll find these all spelled out in our catalog mailing. Lessons, kits, and experiments are described in full color. Most liberal refund policy and cancellation privileges — it's all in writing. And our low tuition is another big advantage. No frills, no commissions to pay. This means lower tuition for you. You receive solid training value. NTS puts more into your training, so you get more out of it. Make your own decision. Mail the card, or write if card is missing. There's no obligation, ever, and no salesman will call.

Approved for Veteran Training. Get facts on new 2-year extension.

NATIONAL SCHOOLS
TECHNICAL-TRADE TRAINING SINCE 1905
Resident & Home Study Schools
4000 South Figueroa St., Los Angeles, Calif. 90037
FIG. 4—SCHEMATIC OF SONY'S POWER SUPPLY SWITCHING CIRCUIT.

FIG. 5—POWER SUPPLY SWITCHING SYSTEM used on Sony's KV-1722. Switching is done at the horizontal scan rate.

ac supply voltage. A new power saving "quick-on" circuit replaces the older system. The standby filament transformer has been eliminated.

The 150-401 l.f. module uses a surface wave filter built into an IC to simplify i.f. alignment and improve performance. The alignment procedure for this new module is 10 steps compared to the conventional 13-step procedure. There are no 1st or 2nd i.f. coils or 39.75-MHz trap.

Zenith's electronic solid-state tuning system is a varactor diode based setup allowing any sequential mixture of 14 uhf and vhf channels. Six manually tuned receivers have this feature this year. A unique slide type channel selector is built into the tuner control panel. Signal frequency circuits are not switched mechanically, but the system does include two mechanical switches. One is to select the varactor tuning voltage and the other for band switching.

75-ohm antenna connectors are built into some models for master or cable system hook up. (continued next month)
A long time ago, RCA developed the famous three-gun shadow-mask color picture tube. This made all-electronic color TV possible. The original design proved so successful that even the Europeans still use it, without basic changes.

Now, RCA engineers have come up with a decided improvement. First introduced in early 1973, in the 15V and 17V sizes, they proved so successful that the 1974 line includes these two sizes, and a 19V as well. The new picture tube is a type 15VADTC01 (17V—, 19V—, etc.) and is called the “AccuLine” system.

These tubes use 90° deflection angle, with the three guns mounted in-line horizontally. The problems encountered in previous types have been overcome, by very precise design, as well as other things to be covered in a moment. The phosphor screen of the AccuLine tube does not have the familiar triads of dots. Instead, it has lines. Fig. 1 shows a photomicrograph of the screen itself, and Fig. 2 shows the slotted apertures of the mask.

This type of pattern gives several advantages. Vertical lines can be “nested” better than dots. The phosphor screen can be completely filled, while dots allow only 91% fill. The effects of geometric-trio distortion at the edges is greatly reduced; this makes edge-convergence a lot simpler. The edges of the screen are also much brighter. Due to the vertical lines and slots, vertical misconvergence is practically non-existent, and horizontal misconvergence is easily compensated. The effects of the earth’s magnetic field are reduced. (Wait just a minute, and you’ll hear the “really good news”; it’ll shake you up!)

No convergence board!

The most unusual thing you’ll see when you take the back off of a set with a CTC-62 RCA chassis is the thing you don’t see! No dynamic convergence board; no dynamic convergence yoke, and no blue lateral magnet on the neck; only one pix tube screen control—these parts are gone. They aren’t needed in this system.

The installation setup and convergence procedure is drastically shortened. Most of it is done for you, at the factory—even the purity and grey-at the factory. The deflection yoke is cemented in place after they’re done. The tube and deflection yoke are designed for each other. That’s why we keep referring to them as a system.

How it works

In a typical delta-gun system, the beams can be statically converged at the center of the screen; however, they will be over-converged at the edges. So dynamic convergence must be used to correct this. In the in-line gun system, the deflection yoke is designed so that there is no trapezoidal distortion at the edges, and the beams are very slightly distorted so that they make a thin vertical line at this point. Fig. 4 shows how this works. The beams can be held to less than 0.51 mm miscon-

HOW IT WORKS

Slotted-mask color picture tube

RCA has come up with an improvement to their famous three-gun shadow mask color picture tube. The new picture tube is part of their Acculine system and it requires no dynamic convergence. Here’s how it works.

by JACK DARR

SERVICE EDITOR

over, by very precise design, as well as other things to be covered in a moment. The phosphor screen of the AccuLine tube does not have the familiar triads of dots. Instead, it has lines. Fig. 1 shows a photomicrograph of the screen itself, and Fig. 2 shows the slotted apertures of the mask.

This type of pattern gives several advantages. Vertical lines can be “nested” better than dots. The phosphor screen can be completely filled, while dots allow only 91% fill. The effects of geometric-trio distortion at the edges is greatly reduced; this makes edge-convergence a lot simpler. The edges of the screen are also much brighter. Due to the vertical lines and slots, vertical misconvergence is practically non-existent, and horizontal misconvergence at any point on the entire screen.

The gun unit

Let’s look at the design of this gun unit. To get an inherently self-converging assembly, the in-line beams must pass through the center of the deflection yoke in a precisely spaced and precisely horizontal array. The grids of the new tube are a single piece, with a triple aperture. In the “RGB” or cathode-drive circuit, the grids are common, making this possible. (Cathodes are separate, of course.)

This construction also eliminates thermal-expansion convergence drift, one of the bugs possible with older types. The beam-to-beam spacing in this gun assembly is only 0.2". (5.08
mm) instead of the 0.45" (11.45 mm) of the delta-gun unit. This very tight spacing is possible because this is a function of tool-die dimensions, rather than mount-assembly. Tool-die dimensions can be held to extremely tight tolerance. This avoids one rare, but possible problem of the past, where tube and deflection yokes could come down on opposite sides of the tolerance, making this setup very hard to converge.

There are the four magnetic rings at the top of the electron-gun assembly. (These are internal; not the outside rings!) They have dual functions; the outer ones, on the B-G guns, reduce the size of the outer-beam rasters slightly, both vertically and horizontally, by shunting a small part of the deflection field. The two smaller ones, above and below the red gun, in the middle, provide a little extra width for this raster. With these built in corrections, the red beam always lands between the other two, at all points on the screen. Convergence errors of the red beam are always annoying, since visual fringing of red is more visible (especially to the customer.)

The base connections of this new tube are the same as those of the 110° 29-mm neck tubes. Blue and green grid connections are omitted since the grids are common; only one is needed. The screen is also common, so only one pin is used here. An examination of the base and socket used with this tube shows some new features. Special contacts are used, which look as if they would give much better contact, due to a larger contact area on the pins.

Convergence

Only a very slight correction is needed for convergence in this system. The purity/convergence device uses what looks like a dual assembly of conventional ring magnets, mounted in a small assembly just behind the deflection yoke. The old convergence yoke is gone. These magnets are of a special type, made of barium ferrite, which has a permeability close to 1 (one). This helps to get rid of any undesired effects from the deflection fields on the convergence.

There are four of these rings, in pairs. Two of them develop four-pole fields, as seen in Fig. 5. These move the outside (B/G) beams equally, in opposite directions (Fig. 5-a, b). The other set develops 6-pole fields which also move the outer beams equally, but in the same direction (Fig. 5-c, d).
So "convergence" boils down to moving only the two outer beams, blue and green. The red beam remains stationary; the gun design is such that the magnetic fields won't affect it. No internal pole-pieces are used. There is practically no interaction between the beams, resulting in very small distortion in the shape of the individual beams.

The deflection yoke

I've mentioned the deflection yoke as being special. It definitely is! We may have to cover its design and construction in a following article; here is a capsule description of it. This is called a PST (Precision Static Toroid), and it has only a single layer winding. Each wire lies in a winding-groove in the plastic form. This type of construction allows much tighter control of tolerances in the deflection fields. These can be "shaped" with such precision that several highly desirable goals are met; much better focus; much more light at the edges.

To increase the input capability up to eight input ports and how to use an additional sixteen output commands to generate pulses for control.

Increasing output flexibility

The original construction booklet shows how decoders and gates can be added to an output port to control external devices, but this requires us to load an instruction into the A register and then output it to the output port where it is then decoded. Each time the computer executes an OUT instruction, a pulse is generated to activate one of the eight selected ports. Actually, sixteen additional ports could be added to the Mark-8 to output data, with only a few modifications or additions to the existing hardware. While the additional ports could be used to output data to other devices, the output pulses may be used alone to activate devices such as flip-flops, gates, solenoids or even a calculator. We now have our original eight output ports plus sixteen pulses for external control.

The instructions used to activate the output ports are 01 01 M MM1, where the binary MMM bits are decoded to signify the particular output port. The sixteen additional ports or pulses come from instructions 01 10 M MM1 and 01 11 M MM1 which are also output type instructions. Some examples are shown in the following chart:

OUT0 = 121	Latch Outputs
OUT1 = 123	
OUT7 = 137	
OUT8 = 141	Pulse Outputs
OUT9 = 143	
OUT15 = 157	
OUT16 = 161	
OUT23 = 177	

To add these additional pulse outputs to your Mark-8 computer:

1) Run a jumper (insulated) from the spare connection point, No. 17, on the CPU PC board, to the through-the-board connection just to the lower left of pin 1 on IC13. Be sure to solder the jumper on both sides of the board. This jumper connects pins 4 and 5 on IC13 and pin 8 on IC18. The signal is called OUTPUT and it indicates when the computer is executing any of the twenty four OUTPUT type instructions listed above.

2) Make the other labeled connections to an SN74154 four-to-sixteen decoder as shown in Fig. 1. Connect the new OUTPUT signal as shown.

Logic zero pulses are now produced at the appropriate outputs of the decoder when the new output instructions are executed. You can obtain positive pulses by adding an inverter to the decoder output. This increased flexibility allows us to perform external operations without a great deal of additional software.

For example, to pulse a flip-flop under program control we connect the clock input of the flip-flop to the decoder output labeled OUT12. Each time the computer executes an OUT12 instruction, a pulse is generated at the OUT12 position on the decoder, clocking the flip-flop. The other decoder outputs could be used for other purposes to control relays, to start a process or to enter data to a calculator. The addition of this decoder replaces the two SN7442 decoders shown in the example in the construction booklet as (continued on page 85)
STAR - New Kind of TV Remote Control

Now you can switch from any TV channel to any other TV channel in less than a second without tuning through unnecessary or unwanted channels. How's it done? There's a rather special IC that works like a computer and...

by LARRY STECKLER
EDITOR

WANT TO WATCH THE NINE O'CLOCK MOVIE on channel four? Just pick up your STAR remote control, pinch out . . . 0 . . . 4 . . . on the calculator-like keyboard; and the station appears on the screen. The channel number is there too, right on the screen, in the upper left hand corner, for a few seconds, and then it fades away while you continue to watch the program you selected.

This new Magnavox innovation may spell the end to all the older electro-mechanical remotes. It puts an end to channel-by-channel switching to reach the one you want to see. Instead, you directly go from any channel to any other channel, in less than a second, without any other unwanted channels in the way.

And it all works thanks to a new electronic marvel named STAR—an acronym for Silent Tuning At Random.

The total system turns the set on and off; switches channels; selects channel identification; controls volume and sound muting. A calculator-type keyboard mounted in a small wireless ultrasonic remote controls all of these functions.

Advantages of the system

There is no set up for the TV tuner—all 91 channels have feedback networks that let the computer circuitry of the STAR system find the desired station. The tuner is then locked to an internal crystal oscillator by an afc loop. As a result the solid-state tuner can be easily replaced if necessary with only f.l. alignment required.

There is no fine-tuning adjustment on the set, and for that matter, no moving parts at all, even for volume control.

A switch on the TV itself, permits scanning the channels in either direction to cover all channels, if assigned active channels in an area are not known.

The number of the last channel viewed and the volume setting used are stored in the system memory when the set is turned off. When the set is switched on again, that channel and volume setting are selected. However, the memory is volatile, and if the set is disconnected while it is off, the memory is destroyed.

Now, when the set comes on a channel will have to be selected; and the volume will automatically reset at minimum.
How it works

Before we go into great detail let's take a brief look at how the system operates. When any switch on the remote unit is depressed, battery power in the handheld remote is on and an ultrasonic pulse is generated. (Each of the 15 switch functions on the remote generates a different ultrasonic pulse. These pulses are 720-Hz apart in frequency.)

The receiving unit in the TV counts the incoming frequency to decode and identify the function. The logic section in the receiver then determines whether the signal controls power, volume or channel selection or recall.

If the received signal is a channel selection signal, the first entry goes into memory (where it is retained until the second signal is received—0.1-second or 1-week later). When this second signal is received it becomes, in addition, the execute signal. So as soon as it is received the STAR circuitry generates the channel number and puts it on the TV screen, and the tuner switches to the proper channel.

The tuner switching procedure is a bit more complicated. When the second signal is received the circuitry determines whether it is a Band I, II, or III channel that has been selected (see STAR Frequency Chart) and actuates the appropriate tuner switches. Then the tuner scans to its starting point and the counter is preloaded for the band that is in use. Next the tuner scans through the band while the counter compares a channel count until it matches the command signal. When this happens the scan is stopped and afc is activated to lock the tuner oscillator to the crystal reference oscillator and the selected channel appears on the screen. All this takes place in less than one second.

The channel selector uses a special circuit to convert the energy of a 6-MHz crystal-controlled signal into every harmonic that comes within the television band (101 MHz to 931 MHz). The tuner's local oscillator is referenced to the closest harmonic. For instance, the 17th harmonic for channel 2 or the 86th harmonic for channel 14. Other channels are selected by causing the tuner to sweep through the appropriate band—Ch. 15, 16, 17, etc. for the uhf band. Pulses of energy are generated for each channel, continuing until the logic senses the correct pulse count for the desired channel. At this point, the tuner oscillator is located by an afc channel to the desired harmonic until a new command is received. The command is also placed into a memory.
If you can use any of these tools... You can gain exciting new skills as an electronics troubleshooter in Bell & Howell Schools’ fascinating learn-at-home program that includes building and experimenting with the new generation color TV.

You may already have some of the skills you need.

Most of us at one time or another have put a screwdriver, a pair of pliers or some other basic tool to work. Fixing a bicycle wheel, tightening a window latch, putting up a bookshelf, or what have you. But here’s a thought.

Using these same simple tools as a starting point, you can develop the ability to put them to work for you in far more ways than you ever dreamed of. And Bell & Howell Schools’ fascinating home learning adventure in electronics will show you how.

These days when it seems like there’s an "electronic everything," it makes good sense to have occupational skills in the servicing and repair of such products as TV's and other home electronic equipment. If you’re a person who recognizes a future in this field, Bell & Howell Schools is ready to help you develop the specialized ability you need to become an electronics troubleshooter. While no assurance of income or employment can be offered, we can assure you that no better at-home training in electronics is available anywhere.

We have an exciting way for you to pick up these specialized skills in your spare time.

Don’t think for a moment that we want you to spend your off-hours just reading a bunch of “how-to” books. That would bore anyone after awhile. What we at Bell & Howell Schools offer is the modern way to learn... a very different approach from the way you’ve been used to.
First of all, we believe that when you're exploring a field as fascinating as electronics, reading about it is just not enough. That's why throughout this learning adventure you'll get lots of "hands on" experience with some of the latest electronic training tools available today. You'll test and experiment with them and gain exciting new skills all along the way.

Although we cannot offer assurance of income opportunities, once you've completed this program a number of directions are open to you:
1. Use your training to seek out a job in the electronics industry.
2. Use your training to upgrade your current job.
3. Use your training as a foundation for advanced programs in electronics.

No electronics background necessary.

That's one of the many attractions of this program. We start you off with the basics and help you work your way up one step at a time. As a matter of fact, with your very first lesson you receive a special Lab Starter Kit to give you immediate working experience on equipment as you are picking up the fundamentals.

It makes the learning process faster and certainly a lot more interesting.

You'll build and perform exciting experiments with Bell & Howell's Electro-Lab electronics training system.

You build the Electro-Lab step-by-step, too. First, the design console. After you assemble it, you'll be able to set up and examine circuits without having to solder them in place.

Next, you'll enjoy building a digital multimeter. This important instrument measures voltage, current and resistance and displays its findings in big, clear numbers like on a digital clock. Far easier to read than "needle pointer" meters.

Then comes the solid-state "triggered sweep" oscilloscope which is similar in principle to the kind used in hospital operating rooms to monitor heartbeats. You'll use it to analyze tiny integrated circuits. The "triggered sweep" feature locks in signals for easier observation.

You'll actually build and work with Bell & Howell's new generation color TV... investigating features you've probably never seen before!

This 25" diagonal color TV has digital features that are likely to appear on all TV's of the future. Features made possible by the applications of digital electronics to home entertainment.

You'll probe into the technology behind all-electronic tuning and into the digital circuitry of channel numbers that appear big and clear, right on the screen! You'll also build-in a remarkable on-the-screen digital clock, that will flash the time in hours, minutes and seconds. Your new skills will enable you to program a special automatic channel selector to skip over "dead" channels and go directly to the channels of your choice.

You'll also gain a better understanding of the exceptional color clarity of the Black Matrix picture tube, as well as a working knowledge of "state of the art" integrated circuitry and the 100% solid-state chassis.

Having actually built and experimented with this TV, you'll come away equipped with the kinds of skills that could put you ahead of the field in electronics know-how.

We try to give more personal attention than other learn-at-home programs.
1. Toll-free phone-in assistance. The program is designed so that you can proceed through it smoothly, step-by-step. However, should you ever run into a rough spot, we'll be there to help. Many schools make you mail in all your questions. We have a toll-free line you can call when you have a question that can't wait.
2. In-person "help sessions." These are held in 50 major cities at various times throughout the year where you can talk shop with your instructors and fellow students.

Find out more on how you can pick up new skills in electronics troubleshooting as you work with Bell & Howell's new generation color TV. You've got the tools to do it!

Mail the postage-paid card today for full details, free!

Taken for vocational purposes, this program is approved by the state approval agency for Veterans Benefits.

If card has been removed, please write to:

An Electronics Home Study School
DEVRV INSTITUTE OF TECHNOLOGY

ONE OF THE

Bell & Howell Schools
4141 Belmont, Chicago, Illinois 60641

698R1

"Electro-Lab" is a registered trademark of the Bell & Howell Company.
When a channel is selected, it is identified by an "on screen" display which presents the channel number in the upper left hand corner of the screen. This fades within a few seconds but may be recalled at any time by depressing the recall button.

The STAR system incorporates three principal subsystems to provide these functions: one for tuning; a second for remote control; and the third for character generation. These share a single LSI chip (you can see it in the cover photo) containing the digital portions of all three of these subsystems. The analog portions are provided by a set of modules connecting with the LSI chip as shown in Fig. 1. The LSI chip used in the STAR system was developed by Mostek for Magnavox.
System operation

Data enters the system (see Fig. 1) from the keyboard on the set or the remote control. It is then separated into channel select or auxiliary functions by the data decoder. Channel-selection data is held in storage. It will program the character generator and the tuning system to the selected channel. Auxiliary functions do not enter data storage, but are diverted by the data decoder to the auxiliary function outputs.

In the STAR system a varactor tuner is used. Here, voltage variable capacitors (Varicaps) make possible the use of the voltage tuning in place of mechanical tuning. This tuning voltage is generated by a frequency synthesizer.

![Diagram](https://via.placeholder.com/150)

FIG. 7 — FREQUENCY SYNTHESIZER is shown in block diagram form. This circuit develops the tuning voltage.

This synthesizer (see Fig. 7) uses a harmonic comb generator to produce spectral components spaced at 6-MHz intervals throughout the vhf and uhf bands (see Fig. 2) (a 4-MHz comb is used when tuning channels 5 and 6). The system takes advantage of the fact that these harmonics fall 1-MHz above the vhf and 1-MHz below the uhf oscillator frequencies, (see Table). This harmonic spectrum is mixed with the output of the local oscillator (L.O.) (see Fig. 3).

A ramp voltage sweeps the oscillator across the band of interest. As the L.O. frequency passes 1-MHz below and above each marker, a 1-MHz beat (or birdie) is developed at the amplifier output (see Fig. 4). A detector shapes these birdies into pulses that toggle flip-flop 1 (FF1). Therefore, FF1 delivers a positive transition each time the L.O. passes through a frequency that corresponds to a TV channel.

By starting the oscillator from a given reference frequency and counting transitions, it is possible to locate the oscillator at any desired channel. This number is controlled by programming a counter to stop the sweep when the required number of pulses have been counted.

Birdie counting is handled by a programmable down counter that is initially set to the channel number (see Fig. 4). FF1 decrements this counter as the L.O. sweeps across the harmonic comb. A decoder that monitors the counter contents, stops the sweep when the count drops to a predetermined number. This sequence is shown for Channels 2, 3 & 4 in Fig. 3.

Let's assume that channel 4 has been selected. The counter is preset to "4" and the L.O. positioned at a reference frequency located below the 102-MHz marker. Next the L.O. is swept upwards, past the 102 and 108-MHz markers. As these markers are passed, the resulting birdie pulses toggle FF1. It, in turn, steps the down counter down. When this counter state reach "1", the decoder signals the ramp control logic to "stop the ramp". The L.O. is now positioned at 113 MHz, the L.O. frequency for Channel 4.

A similar sequence is used for Channels 2 and 3. Common to all of these are the following steps.

1. The down counter is always preset to the channel number.
2. The count decoder is programmed to stop the ramp when the counter contents reach "1".
3. Flip-flop 1 (FF1) is preset so that positive output transitions occur only when the L.O. is 1-MHz below a harmonic marker.
4. The local oscillator (L.O.) is initially positioned at a reference frequency at the bottom of the band. This frequency acts as the starting point for that band. From this point all channels in this band are acquired.

To align the birdie count with the desired channel, the L.O. must be positioned at the proper reference frequency before counting starts. Since each band has a different, these frequencies could be generated by three independent oscillators, one for each band. However, there is a simpler solution. It calls for only one oscillator and we use the harmonics of that oscillator for reference. This way we use a 24-MHz signal as the prime signal. The fourth harmonic, 96 MHz, is used for Band I (Channels 2, 3 & 4). (Channels 5 & 6 are also in Band I, but are a special case and are described later.) For Band II (Channels 7 thru 13 and 84 thru 91) the seventh harmonic is used. For Band III the 22nd harmonic, 528 MHz, is the reference (Channels 14 to 83). These harmonics, as well as the 6-MHz harmonics used for birdie counting, are all derived from the comb generator.

Comb generator

This circuit uses (see Fig. 5) a step recovery diode (SRD) that is driven from either a 24- or 6-MHz signal. The SRD enriches the harmonic content of these signals, to create the harmonic comb. The 6-MHz signal, derived by dividing 24-MHz by 4, drives the SRD during birdie counting. Prior to counting, the SRD is driven from the 24-MHz signal to produce the starting comb. The SRD is connected to the 6- or 24-MHz source through electronic switch S1. This switch is controlled by a signal called the starting comb enable (SC). When SC is high, S1 connects the SRD to the 24-MHz source to generate the starting comb. When SC is low, S1 connects the SRD to the divider output to generate the 6-MHz comb used for counting.

The various processes just described are elements of the channel acquisition sequence which is initiated whenever a new channel is selected.

To start this sequence, a 24-MHz comb is initially generated and the VCO is programmed to a frequency midway between the comb harmonics. This is done by a comparator which serves the ramp into the starting position. Having established this position, the VCO ramp then sweeps downwards until the first 24-MHz comb is reached. Upon contacting this comb, the ramp is reversed and the 24-MHz comb is replaced by a 6-MHz comb.

(continued on page 88)
Using COSMOS Digital IC's

Here are 9 more COSMOS projects for you to look over. By building these simple circuits yourself, you can learn about COSMOS solid-state technology. The projects are also useful as well as educational.

by R. M. MARSTON

Lamp-flasher circuits

Figure 32 shows how one half of a CD4001 IC can be used in conjunction with a couple of transistors to make a simple lamp-flasher circuit that drives a low-power lamp on and off for equal periods at a rate of roughly 1.5 seconds per cycle.

Here, one half of the CD4001 is wired as a gated astable multivibrator, with its output feeding to the lamp via Q1 and Q2. When S1 is open, the astable circuit is disabled and its output is high, so zero base drive is applied to Q1, which is thus cut off. Since Q1 is cut off, zero base drive is applied to Q2, which is also cut off: There is no current flow in lamp LP1 under this condition. Note that the circuit draws virtually zero current in this state, so the supply does not need to be disconnected when the circuit is in this 'standby' mode.

When S1 is closed, the astable circuit is enabled, and its output switches alternately between zero and the full positive supply voltage at a rate of roughly 1.5 seconds per cycle. When the output is high, Q1—Q2 and the lamp are off. When the output is low, Q1—Q2 and the lamp are driven fully on. Thus, the lamp flashes on and off once every 1.5 seconds. The flashing rate is proportional to the R1 value, so the period can be increased to 15 seconds per cycle by simply increasing the R1 value to 10 megohms. The R1 value can in fact be varied from a few thousand ohms to thousands of megohms, to give any required flashing period.

This lamp-flasher circuit has a duty cycle or mark-space ratio of approximately 1:1, so the lamp turns on and off for approximately equal times.

Figure 33 shows how the circuit can be modified to give a programmed duty cycle so that, for example, the lamp turns on for a single period of only 0.75 seconds in each 8.25 second cycle, thus giving a 1:10 duty cycle and giving considerable current economy as an emergency lamp flasher. The on time of the lamp is controlled by R1 and D1, and is fixed at about 0.75 seconds, but the off time is controlled by R2 and D2, and can be varied over a wide range. When R2 is given a value of 1 megohm, the lamp has an off time of 0.75 seconds, and when R2 has a value of 10 megohms, the off time is about 7.5 seconds. The value...
practical standby cations, automatically after momentarily turns on relay input.

Figure 35 shows how one of the four gates of a CD4001 IC can be used to make a delayed-turn-on relay time switch, in which the relay does not turn on until a pre-set time after S1 is closed. Note that the gate is connected as a simple inverter. Circuit operation is as follows.

When S1 is first closed, C1 is fully discharged, so at this moment the R1—R2 junction is effectively shorted to ground. Consequently, the output of the inverter-connected gate is at full positive supply voltage under this condition, and Q1 and the relay are cut off. Shortly after S1 closes, C1 starts to charge up via R1, and an exponential rising voltage is applied to the input of the gate.

Eventually, after a pre-set period, this voltage rises to the transfer voltage value of the gate, and at this point the output of the gate switches into the low or grounded state and drives Q1 and the relay on. The relay then remains on until S1 is opened again, at which point C1 discharges rapidly via R2 and built-in protection diode D1 (see Fig. 7-b in the September 1974 issue) of the gate. The operating sequence is then complete.

Precise delay period circuit depends on the values of R1 and C1, and on the value of transfer voltage of the particular CD4001 IC that is used. When R1 is 2.2 megohms, as in the diagram, a delay of roughly 1 second is available per µF of C1. A delay or roughly 10 seconds can thus be obtained by giving C1 a value of 10 µF, and a delay in excess of 15 minutes can be obtained by giving C1 a value of 1000 µF.

Note that the circuits of both Figs. 34 and 35 are designed to operate from 12-volt supplies, and that the relays used can be any 12 volt types having coil resistances of 180 ohms or greater.

Finally, note that the timing capacitors C1 used in these two circuits must have leakage impedances greater than 5 megohms if the circuits are to operate correctly.

Oscillator and alarm generator

The CD4001 IC can be used in a variety of audible-output oscillator and alarm-call generator circuits. Figure 36, for example, shows how the IC can be used as an efficient Morse-code practice oscillator. Here, gates 1 and 2 are wired as a variable-frequency gated astable multivibrator, which can be turned on and off via the Morse key. The output of the astable is taken to a set of high-impedance phones via gate 3, which is connected as a simple inverter. R4 resistor is a volume control.

Normaliy, when the key is open, the oscillator is disabled and the output of gate 3 is at ground potential, so virtually zero current flows through the circuit under condition. In fact, the standby current is typically of the order of .004 µA, which is less than the normal leakage current of a supply battery, so there is no need to wire an ON-OFF switch into the supply leads.

When the key is closed, the astable circuit is enabled, and a square-wave sig-
The action of the circuit is such that Q1 is driven alternately on and off at a frequency of 800 Hz when S1 is closed, so drive current is pulsed into the speaker under this condition. The speaker and limiting resistor R, should have a total series resistance of 100 ohms. The available acoustic output power of the circuit depends on the value of supply voltage used, and on the impedance of the speaker. Using a 9-volt supply, the mean output current is fixed at about 40 mA, so the output power to a 15-ohm speaker is about 25 mW, and to a 100-ohm speaker is about 160 mW.

The output power of the circuit can be boosted to a higher level by modifying the design as shown in Fig. 38. Here, the output of Q1 is used to provide base current drive to output power transistors Q2, which uses the speaker as its collector load. The speaker can have any impedance in the range 5 to 25 ohms, and the supply can have any voltage in the range 5 to 15 volts. The actual output power of the circuit depends on the combination of supply voltage and speaker impedance that is used, and ranges from 250 mW when a 25-ohm speaker is used with a 5-volt supply, to 11.25 watts when a 5-ohm speaker is used with a 15-volt supply.

The output power can be boosted to about 18 watts by further modifying the circuit as shown in Fig. 39. Here, transistors Q2 and Q3 are super-alpha connected to give high gain, and the circuit is designed to operate from a fixed 15-volt supply and to use a 3-ohm speaker.

Note that protection diodes are wired across the speakers in Figs. 38 and 39. These diodes are used to prevent the collector voltages of the output transistors from swinging above the supply voltage as the inductive speaker loads are pulsed with current. The diodes must have current ratings of at least 1 amp in the Fig. 38 circuit, and at least 3 amps in the circuit in Fig. 39. Also note that the Fig. 38 circuit passes a typical standby current of about 10 µA, and the Fig. 39 circuit passes a standby current of about 30 µA, due to the leakage currents of the transistors used.

The three alarm-generator circuits that we have looked at so far each produce a fixed or monotone output which is, by definition, monotonous to listen to. A more attractive and attention-catching sound is made by the basic pulsed low-power alarm generator circuit of Fig. 40.

Here, gates 1 and 2 are wired as a fixed-frequency astable multivibrator that operates at a frequency of about 6 Hz, and gates 3 and 4 are wired as a gated 800-Hz fixed-frequency oscillator. The 800-Hz oscillator is gated on and off via the 6-Hz oscillator, and its output feeds to the speaker via Q1 and R., the circuit can be operated from any supply in the range 5 to 15 volts, and can be turned on and off via switch S1.

In this fourth part of the series, we have looked at different ways of using the CD4001 in standby, low-level, astable multivibrator and oscillator and alarm projects.

Next month we will conclude the alarm projects and show you different electronic alarm control circuits.

FIG. 37—LOW-POWER ALARM GENERATOR operates at 800 Hz.

FIG. 38—MEDIUM-POWER (0.25W to 11.25W) alarm generator.

FIG. 39—HIGH POWER (18W) alarm generator.

FIG. 40—PULSED LOW-POWER alarm generator.
A shift register is a digital data storage device. The data can be the letters to be displayed on a TV screen, numbers in a computer or calculator, intermediate values in a digital filter, or part of an elaborate code or sequence. Shift registers are made up of individual stages. Each stage can store one bit of information, called a binary 1 or 0, and usually corresponding to a "yes" or "no" or else perhaps a "present" or "absent" command. Four bits together can represent a decimal number, while six bits together can handle one ASCII character, and so on. In a shift register, the contents can be moved or shifted so that the contained information is marched one and only one stage at a time through the device. The shifting process is called clocking and one or more clocks are involved in completing the shifting operation.

Figure 1 shows how we might make a shift register out of either a JK or type-D flip-flop. While TTL (Transistor-Transistor logic) devices are shown, we could use any logic family we like. Input data corresponding to a "1" or "0" is presented to the first stage. When the system is clocked, the first bit of data is entered and then stored in the first stage. On the second clocking, the contents of the first stage get passed on to the second, and the first stage then accepts a new bit of information from the input. The next clocking passes the output of stage 2 on to stage 3, and the output of stage 1 on to stage 2. Finally, stage 1 accepts a new bit of input information.

One more clocking fills the register in Fig. 1 as it is only four bits long, and all four stages now have information in them. If we do no more clocking, the register will keep the information we sent it. Four more clocking pulses and we can match the data out and use it somewhere else.

So what good is a shift register? We can use it to store information. It is a digital memory. We can use it to delay information. We can use it to format information, either in a buffer mode where the enter and readout clock rates may be different, or in a variable-access mode where we can enter and leave individual stages with data. With certain types of shift registers, we can convert serial data to parallel form or parallel data (all at once) to serial (one at a time in sequence) form. We can also build counters and sequencers with shift registers. Two popular types are called the walking ring computer and the pseudo random sequence generator.

Organization
The organization of a shift register is decided by how many stages it has and how you can get at the individual stages. A serial-in-serial-out register gives you the input only to the first stage and the final output of the last stage. It is sometimes called a serial register or a SISO (Serial-In-Serial-Out) register. There is no intermediate access.

A SIFO register gives you the outputs of all stages including the last one. The eight-bit 74164 is a typical TTL example. A parallel-in-serial-out or PISO register lets you simultaneously load all the stages but then marches the contents out as a serial-bit string. The 74165 is an eight-bit example of this type.

The most versatile type of shift register would be a PIPO (Parallel-In-Parallel-out) version. Here, you could load data either serially one bit at a time or "broadside" parallel. You could also get all the data out either in broadside parallel all-at-once form, or one bit at a time in serial form. The 74195 is a four-bit TTL package that does this.

You might think that since you could use a PIPO register for everything else anyway that it would be the only way to go. The problem is that you can easily put 2048 shift register stages on a single small chip of silicon. For a 2048-bit PIPO register, you'd need a minimum of 4099 leads for inputs, outputs, clocks, and power supplies. This is a most unwieldy package to say the least, even if we don't worry about the extra circuitry needed for each parallel input. Now the same register can be done SISO in as little as 5 leads.

So, for short shift register applications, we have a choice of the four formats. For long shift register uses, the only economical way to go is the SISO route. We'll consider everything longer than 24 bits a long shift register here. This is often a changeover point. 24 bits or less and you usually use the more flexible and faster TTL registers, often at four or eight stages per package. Above 25 bits, you go to the long serial MOS registers and pick up as many as 2048 bits of storage in a single package.

The majority of registers shift only towards the output and are called shift right registers. A very few can also shift back towards the input and are called bidirectional or shift-right-shift-left devices. These are expensive and not normally available in long lengths. One trick you can do with a recirculating register (more on this in a bit) is clock it rapidly ahead one stage less than its length, making it appear to back up one, rather than go forward all but one of its stages.

Two more things may enter into our register organization. We may have more than one shift register in a single package. One, two, and six registers per package are common. Usually, they have common clocking, but not always. For instance, the Signetics 2518 is a hex 32-bit shift register; the 2519 is a hex 40-bit version. Both have common clocking and a common enter/recirculate control.

You often use several shift registers in parallel. For instance, you might use four shift registers to individually handle each bit of a four-bit BCD or binary-coded-decimal digit. The each clocking of the register array gets you a whole new decimal number, rather than only ¼ of it. The four bits is sometimes called a word and sometimes a byte. Likewise, an alphanumeric character can be represented by a six bit ASCII character code. Here, we use six registers at once to give us one whole new character on each clocking. Of course, we have to make sure all the registers get clocked exactly alike, for if they didn't, all the data bits would be hopelessly scrambled. This is usually very easy to prevent.

A final feature of a shift register's organization is its recirculability. Sometimes we might like to look at the contents of a shift register a bit at a time, and then return the information back into the same relative slots in the shift register for later use. This is called recirculation. Some sort of switching or selection must be provided if you are sometimes going to enter new data as opposed to recirculating old data. Some of the long MOS shift registers have an internal recirculate logic and are normally used if you need recirculation. We'll see in a minute that recirculation is essential for the dynamic registers if you are going to keep the data more than a fraction of a second. Figure 2 shows the logic needed to add an external recirculate to a shift register.

Long MOS shift registers
There's an incredible variety of long shift registers available using several different MOS (Metal-Oxide-Semiconductor)

by DON LANCASTER
Why a Sylvania home training program may be

your best investment for a rewarding career in electronics
1 LEADER IN ELECTRONICS TRAINING

Over the years, Sylvania Resident Schools have trained thousands of men and women for key positions in the electronics field. Now, through Sylvania Home Training, you can receive the same high-quality career training at home. In your spare time. While you hold your present job. Remember, this training is designed with one purpose in mind — to give you the background you need to land the electronics job you really want!

2 AUTOTEXT TEACHES YOU ELECTRONICS RAPIDLY, EASILY.

AUTOTEXT, offered exclusively by Sylvania, is the proven step-by-step method of home training that can help you learn the basics of electronics quickly and easily.

3 CASSETTE SYSTEM

This innovative learning-by-hearing approach is a special option that adds an extra dimension to AUTOTEXT. It's almost like having an instructor in your own home. As you play the cassette tapes, you'll have an instructor guiding you through your AUTOTEXT lessons. Explaining the material as you read it. Going over schematics with you, reinforcing the basic electricity and electronics study materials with you. Everything you need to know to get you started towards a highly regarded position as an electronics technician — all in an easy-to-understand, conversational tone.

4 SPECIALIZED ADVANCED TRAINING

For those already working in electronics or with previous training, Sylvania offers advanced courses. You can start on a higher level without wasting time on work you already know.

5 PERSONAL SUPERVISION THROUGHOUT

All during your program of home study, your exams are reviewed and your questions are answered by Sylvania instructors who become personally involved in your efforts and help you over any "rough spots" that may develop.

6 HANDS-ON TRAINING

To give practical application to your studies, a variety of valuable kits are included in many programs. In Sylvania's Master TV/Radio Servicing Program, you will actually build and keep an all solid-state black and white TV set, and a color TV set. You also construct an oscilloscope which is yours to keep and use on the job.

7 FCC LICENSE TRAINING — MONEY BACK AGREEMENT

Take Sylvania's Communications Career Program — or enter with advanced standing and prepare immediately for your 1st, 2nd, or 3rd class FCC Radio Telephone License examinations. Our money-back agreement assures you of your money back if you take, and fail to pass, the FCC examination taken within 6 months after completing the course.

8 CONVENIENT PAYMENT PLANS

You get a selection of tuition plans. And, there are never any interest or finance charges.

SEND ATTACHED POSTAGE PAID CARD TODAY! FREE DESCRIPTIVE BOOK YOURS WITHOUT OBLIGATION!

Sylvania Technical Systems, Inc

If reply card is detached send this coupon

Sylvania Technical Schools
Home Study
969 Third Avenue
New York, N.Y. 10022

Please send me FREE illustrated career catalog. I understand I am under no obligation.

Name ____________________________

Address ____________________________

City ____________________________ Zip ______

State ____________________________

Age ____________________________

Veterans: Check here ______ 758-412-0

GTE SYLVANIA

In the Master TV/Radio Servicing Program, you build and keep the all solid-state black and white TV set, the color TV set, the oscilloscope and the multimeter shown above.
technologies. These range from small 16- and 21-bit versions up to 2048-bit ones in a single package. A brief and more or less random listing is given in Table I, while some of the more prominent manufacturers are listed in Table II. The typical single-unit price varies from around $3 to around $15 per unit and typically runs well under a penny per bit for the longer versions. Some of these have shown up surplus (see back ads of Radio-Electronics) for as little as a quarter each for manufacturers seconds. Some of the seconds we tested from the back ads run around a 45% “completely useful” yield. All of these devices are serial-in-serial-out. Typical maximum frequency of operation is 2 or 3 megahertz, although you get much better behavior at a 500 kHz or so rate.

Before you can use any long MOS shift register, you have to ask the following questions:

1. Is the register static or dynamic?
2. How do you interface it with TTL or other logic?
3. What kind of clock signals are needed and how many of them?
4. Can it recirculate by itself?
5. Does it have write or read enables that lets you combine it with more registers?

Let’s take a look at these important concepts in a bit more detail.

Static versus dynamic

Figure 3 shows three different types of shift registers. Our registers of Figs. 1 and 3-a used two flip-flops for storage. They will keep data so long as we apply supply power and are called static registers, or sometimes fully static registers.

Transformation of information in any shift register has to be a two-stage process or a two-phase process. On the beginning of a shift, information is transferred into some form of temporary storage. At the completion of a shift, the information is then sent to a final storage. In the case of Fig. 1-a, we have a master (temporary) and a slave (final) storage within each JK flip-flop’s logic block. The reason for the necessity of two storage phases per shift is simple—try it with only one, and you get a wild, unchecked race through several stages instead of an orderly progression of one and only one complete stage per clocking.

We don’t need a full flip-flop for some applications. Instead, we can use the temporary storage of a capacitor. So, Fig. 3-b shows us a dynamic shift register. The capacitor will hold information for us for a reasonably short time, but eventually the leakage will get to us and destroy the information in the cell. Capacitor storage is much simpler and more economical than flip-flops as it usually uses the “free” capacitance found in normal strays. Most dynamic MOS shift registers will hold their information for up to one-tenth of a second. Should you fail to clock them in that time, the information is lost.

So, if you are only going to keep your information in your shift register for under a fraction of a second before finally using it, it doesn’t matter whether you use a static or a dynamic register.

The trouble is that most applications call for data to be reused or held longer than a fraction of a second. So, if you are to use the cheaper, denser dynamic shift registers, you have to move or refresh the data a minimum of several dozen times a second. One way to handle the moving of data is to march the information completely once around at least several dozen times per second. In a computer terminal or TV Typewriter, recirculation at the 60 hertz vertical rate is one good approach.

Figure 3-c shows an interesting compromise between static and dynamic registers. Here, we use a capacitor for the temporary storage and a flip-flop for the final storage. This is a compromise that gives us static performance at slightly over half the normal cost. Strictly speaking, this is called a quasi-static operation, but practically all the “static” MOS reg-
isters use this technique. There is only one restriction, the clock line must remain in a specified level during the static part of the operation, and there is a maximum allowable clock pulse width during the dynamic transfer process.

Interface

Most of the long MOS registers will interface with TTL, DTL, and RTL, but most often a few resistors are needed. You have to read the data sheets very carefully. Unless the data sheet specifically states otherwise, the clock lines are NOT compatible with TTL and take special drive circuitry. More on this in just a bit. Remember that the inputs, enables, recirculates, and output pins can be made TTL compatible, but the clock almost always takes special circuitry.

There are lots of different MOS technologies, and each takes one of the interface circuits shown in Fig. 4. You can usually tell the technology by the supply voltage used or recommended. If the supplies are ±15 volts, chances are it is a metal gate or high threshold P-channel device. These are the oldest MOS integrated circuits and the hardest to interface. To drive them, you need an open circuit TTL logic block that can withstand 15 volts. Suitable devices are the 7406 and 7416. A pull-up resistor is provided to pull the inputs to +1.6 volt logic inputs. Two resistors are normally used in going from the MOS to TTL, one down to −15 to provide the −1.6 mA needed for a TTL “0”, and one series resistor to limit the positive swing to 5 volts or less.

Silicon gate circuits are presently the most common. They have a +5 and −12-volt supply. Usually a 2.2K pull-up resistor is recommended when they are driven by TTL, and their output drive capability depends on the particular output structure used. Often a single 6.8K resistor to −12 volts does the trick.

N-channel circuits often work with a single +5-volt supply and are directly TTL compatible without resistors on output and input. CMOS integrated circuits also work off a single ±5 to +15-volt supply. At +5 volts, they are directly TTL compatible on an input, but may not have enough output drive current for regular TTL, so low-power TTL is often used as an output sense amplifier. It usually tricky to simultaneously drive another MOS stage along with TTL as the voltage and current swings don’t usually work out too well. To get around this, you usually run through a single TTL inverter and use its output to drive the MOS following.

Clocks

More problems happen with long shift registers over clocks and clocking than over any other single difficulty. First and foremost, consult the individual data sheets for the device you are going to use. Unless it specifically says so otherwise (boldly and in large print!), the clock lines are not compatible with TTL. Usually the clock lines need almost the entire supply swing, such as a 16- or 17-volt swing for a silicon gate circuit on +5-, −12-volt power supplies. Further, what?

![Diagram](image-url)

FIG. 2—RECIRCULATING SHIFT REGISTER. Data can be fed from the output to the input.

TABLE I	A FEW OF THE MORE POPULAR LONG MOS SHIFT REGISTERS
NATIONAL:	
EA1003 Dual 32, static, rec.	MM400 Dual 25 Dynamic
EA1004 Dual 100, static	MM402 Dual 50 Dynamic
EA1007 Dual 32, static	MM406 Dual 100 Dynamic
EA1200 Quad 32, dynamic	MM4001 Dual 64 Dynamic
EA1203 Variable 1-64 dynamic	MM4006 Dual 100 Dynamic
EA1210 Dual 526 dynamic	MM4012 Dual 256 Dynamic
EA1212 Single 512 Dynamic	MM4013 Single 512, dyn, rec.
FAIRCHILD:	
3325 Quad 64, Dynamic	MM4105 Quad 64, static
3330 480 Bit, Dynamic	MM5054 Dual 64/72/80 static
3342 Quad 64, Static	
3343 Dual 128, Static	
3346 Dual 144, Static	
3383 Single 256, Dynamic	
INTEL:	
1402 Quad 256, Dyn, Mpx.	2505 Single 512 dyn, rec.
1403 Dual 512, Dyn, Mpx.	2506 Dual 100, dynamic
1404 Single 1024, Dyn, Mpx.	2509 Dual 50 Static
1405 Single 512, Dyn, Recirc.	2510 Dual 100 Static
1506 Dual 100 dynamic	2511 Dual 200 Static
2401 2048 dynamic, recirc.	2512 Single 1024, dyn, rec.
2405 1024 dynamic, recirc.	2518 Hex 32, static, rec.
2522 Dual 128, static	2519 Hex 40, static, rec.
MOSTEK:	
MK1002 Dual 128, Static	2521 Dual 256, static
MK1007 4 x 80, dynamic	2522 Dual 128, static
	2524 Single 512, dyn, rec.
	2525 Single 1024, dyn, rec.
	2527 Dual 256 static
	2528 Dual 250 Static
	2529 Dual 240 Static
	2532 Quad 80 static
	2533 1024 static, rec.
MOTOROLA:	
MC1141G Triple 66 dynamic	TMS3000 Dual 25 static
MC1142G Single 200 dynamic	TMS3001 Dual 32 static
MC1160G Dual 100 dynamic	TMS3002 Dual 50 static
MC1161G Dual 50 bit static	TMS3012 Dual 128, stat, rec.
MC2360G Dual 100 Static	TMS3102 Dual 80, static
MC2361G Dual 128 Static	TMS3112 Hex 32, static, rec.
MC2362G Dual 250 Static	TMS3113 Dual 133 static, rec.
MC2363G Dual 256 Static	TMS3304 Triple 66, dynamic
MC2380G Dual 100 dynamic	TMS3309 Dual 512, dynamic
	TMS3314 Triple 60+4 dynamic
	TMS3412 Single 1024 Dynamic

TABLE II

| SOME LONG MOS SHIFT REGISTER SOURCES |
ELECTRONIC ARRAYS INC.	501 Ellis Street	501 Ellis Street
Mountain View, California 94040	501 Ellis Street	501 Ellis Street
Mountain View, California 94040	Mountain View, California 94040	Mountain View, California 94040
FAIRCHILD SEMICONDUCTOR	464 Ellis Street	464 Ellis Street
Mountain View, California 94040	Mountain View, California 94040	Mountain View, California 94040
INTEL CORPORATION	3065 Bowers Avenue	3065 Bowers Avenue
Santa Clara, California 95051	Santa Clara, California 95051	Santa Clara, California 95051
MOSTEK	1215 West Crosby Road	1215 West Crosby Road
Carrollton, Texas 75006	Carrollton, Texas 75006	Carrollton, Texas 75006
ever is driving the clock has to drive a bunch of internal switches in a long reg-
er, so the clock line capacitance may be several hundred picofarads. Since you need sharp rise and fall times on the clock, it usually takes a special circuit called a clock driver to get the job done, as the peak currents involved in charging and discharging the clock line capacit-
cances may be several hundred milliam-
peres or more. Except for the simplest circuits, a push-pull "totem pole" drive circuit is needed, and a small current limit-
ing resistor (usually 10 ohms) must be provided between the registers and clock lines to prevent short circuit damages and reset times that raise havoc with the supply lines and decoupling. The clocks must NEVER be allowed to "overshoot" and exceed the positive supply voltage, even briefly for this will destroy or selectively change the information in the register. Clocks must be the proper widths and must not overlap. Where two clocks are used, the "daylight" or space between them is just as important as their widths.

As a general rule, always use clock widths near the minimum called for on the data sheets. With most registers, the wider the clock pulses, the more the supply current, and the hotter the IC runs, leading to potential temperature and bit pattern sensitivity problems. Clock widths should be precisely derived from system timing instead of randomly adjusted through monostables or half-monostable pulse shapers, since the position and widths can be quite critical.

On your first design with a new long MOS register, you also have to watch for the number of clocks needed per cycle. Generally static registers need a single clock and each clock pulse ad-
ances the information one stage. Static registers are also usually much easier to drive on their clock lines.

Most dynamic registers have two clock lines and need two clock drivers. One clock is the input clock; one is the output clock. A pair of clock pulses is needed to advance the information one stage.

Finally, there are a few dynamic multi-
plexed registers such as the Intel 1402, 1403, and 1404. These are tricky and hard to use. They contain two internal shift registers with a common input and output. What is an input clock for one side is the output clock for the other half and vice versa. The data externally appears to travel one stage per clock pulse, although a pair of clock pulses is needed to complete each transfer op-
eration. If you are not very careful, you can end up one clock pulse short or long of what you really need, and change the effective register length.

Note that any of these devices can have the clocks spaced out in time. They need not be continuous. They can be in bursts of random, so long as you don't exceed the minimum clock width and "daylight" spacing, and so long as you don't wait longer than the dropout time on a dy-
namic register. Outside of the capacitance you may have to charge and discharge rapidly, all of the inputs on any MOS integrated circuit are essentially open circuits and neither source nor sink current.

Enables

An enable pin lets you combine either the outputs or inputs of a shift register group without using any fancy selector switches or external devices. These enable pins are sometimes called read enables. You can combine memories simply by short-
ing all the outputs together provided you enable only one circuit at a time. Two common types of enables are the open collector and the tri-state. The latter pro-
vides a "1", a "0", or a high-impedance open circuit on command. Write enables also exist, but only on a few of the long registers.

Applications

We only have enough room to quickly run down some obvious applications of long shift registers. Two important ones were shown in the TV Typewriter story (Radio-Electronics, September 1973). Six recirculating 512-bit registers were used as a main memory character store and a final hex 32-bit shift register was used as a line register needed for for-
matting the dot matrix characters.

Pocket calculators and computers use long shift registers for number and pro-
gram storage. Often, they are combined with internal multiplexing, calculation, and control circuity into a single package.

Some music synthesizers use long shift registers as tone computers or composer storage. Several fast out tricks that can be done with them is the separation of pitch and tempo, and the ability to play an upside down scale, or a reversed or backwards score. To reverse shift reg-
ister, you simply run it ahead N-1 clock pulses as fast as you can go. For instance, a 512-bit shift register can be clocked ahead 511 bits in well under a milli-
second, and it appears to have backed up one slot at the end of the burst.

Long shift registers are ideal for sequence generation of noise that repeats for cryptography, computer security, music, and audio testing applications.

Long shift registers make good buffers or data concentrators. Input information can be loaded into a shift register at a random, slow, or asynchronous outside-world rate and then transferred to the rest of your circuit later on synchron-
ously at high speed.

You can build an electrically variable delay line out of long shift registers. The clocking controls the delay time inde-
pendently of the input data frequencies. You can get a delay to risetime ratio of 300:1 out of a 1024-bit register, some-
thing that's hard to do with analog delay lines. Speech compression (for talking book tapes and records), vibrato (for music synthesizers), and spectrum translation are three typical use examples.

In fancier circuits, shift registers are used as the key element in digital filters,
New Concepts In FM Tuner Designs

New innovations in tuner design have come to light in recent years.
These innovations include new frequency synthesis techniques, tuning indicators, noise blanking circuits and phase-locked-loop arrangements.

Here's what these innovations can mean to you.

by LEN FELDMAN
CONTRIBUTING HIGH-FIDELITY EDITOR

THE PERFORMANCE LEVEL OF THE TYPICAL all-in-one stereo hi-fi component receiver has improved remarkably over the last few years. Circuit refinements have been applied to both the amplifier sections and the FM tuner sections of the one-piece receiver, so that each of these sections now outperforms some of the better separate tuners and amplifiers of earlier years.

There are receivers which boast continuous power outputs of 100 watts per channel and more at less than 0.1% total harmonic distortion—specifications previously associated only with separate integrated amplifiers or even separate basic power amplifiers. As for FM performance, it is not unusual to find integrated stereo FM receivers which offer ultimate signal-to-noise ratios well above 70 dB, distortion levels (even at 100% modulation) of below 0.25%, and stereo separation capabilities of well over 40-dB at mid-frequencies and better than 30-dB over the entire audio range.

To "justify" the continued existence of the "separate" FM tuner, manufacturers of these relatively high-priced components have had to seek and develop improvements which extend beyond the commonly reported performance specifications and which offer operating convenience and simplicity to the prospective buyer that are not available in the popular all-in-one receiver component format. Typical of this new breed of FM tuner is Kenwood's new Model 700-T Frequency Synthesizing Tuner, shown in Fig. 1.

Tuning accuracy and distortion

Even the very best FM tuner which boasts low, low distortion can deliver its lowest THD figures only when the tuned circuits in the front end are precisely tuned to the center frequency of the desired station signal. Typical tuned circuits in the i.f. section of the tuner can cause the meter pointer to swing left or right of center and the user, relying upon this indication, would then deliberately mistune the set until the pointer returned to its mid-point. Even in a perfectly aligned system, detector bandwidth on modern tuners is sometimes great that the tuning meter's range, from end to end, must extend over several hundred kHz, making the exact "center point" rather difficult to determine visually.

Frequency synthesizing

The idea of using a frequency synthesizing circuit for accurate FM tuning is not new. It first appeared in a consumer type tuner a few years ago when the Heath AJ-1510 tuner was introduced. That tuner was tuned with keyboard push-buttons and, therefore, required a great amount of digital circuitry beyond the relatively simple requirements of frequency synthesis. In addition, the AJ-1510 tuner displayed tuned frequencies on digital read-out tubes, which also required a fair amount of digital drive circuitry.

Kenwood engineers, in designing the new 700-T decided that audiophiles

![Graph showing distortion values](image_url)
prefer to select frequencies with a conventional tuning knob and to read those frequencies on a printed dial scale, and so the front panel layout of the new tuner is not unlike that of conventional tuners which use multi-section variable capacitors. What goes on behind the dial scale is quite different, however.

The block diagram of Fig. 3 shows the circuit elements of the rf front-end and the frequency synthesizer section. The front-end is quite conventional in that it includes two stages of tuned rf amplification, a mixer stage and a local oscillator. The local oscillator is tuned by varactor diodes, rather than the conventional variable capacitor. The dc voltage applied to the varactors determines their effective capacitance which, in turn, determines the frequency of the local oscillator.

The lower cluster of blocks in Fig. 3 represent the frequency synthesizer. First, the frequency of the local oscillator is divided by four through a 4:1 divider circuit. Thus, possible frequencies available at the output of the divider will range from 24.68 MHz to 29.68 MHz. (Local oscillators in FM sets are tuned to 10.7 MHz above the incoming frequency, so that the range of an FM local oscillator extends from 98.7 MHz to 118.7 MHz.)

The output of a crystal-controlled oscillator, tuned to 2 MHz, is divided in an 80:1 divider circuit to produce an accurate and constant output at 25 kHz. The outputs of both dividers are translated to narrow digital pulses. Both sets of pulses are applied to the two inputs of a comparator circuit. So long as there are exactly the prescribed number of pulses of divided-down local oscillator signal compared to a single 25-kHz pulse from the divided down 2-MHz signal source, a prescribed value of dc voltage appears at the output of the phase comparator. If mistuning occurs, and the frequency or phase relationship changes between the two sets of pulses, the dc output of the comparator changes—not linearly, but in finite steps, as illustrated in Fig. 4.

The output of the comparator is amplified by a dc amplifier and the resulting dc voltage is used to “tune” the local oscillator in the front end. This concept of discrete steps of voltage rather than continuously variable tuning voltage is what makes this electronically tuned system different from other varactor-tuned FM sets. It is very much analogous to the “phase-lock-loop” concept used in the multiplex sections of this and other tuners, in that there is a finite “lock-in” range of the system. Essentially, if the local oscillator is tuned to less than ±100 kHz of the desired frequency, the system pulls the oscillator to exact desired center frequency. Once tuned beyond 100 kHz to either side of center, the stepped dc voltage forces the oscillator to jump in frequency to the next, discrete, FM channel frequency. Accuracy of tuning is dependent only upon the accuracy of the 2-MHz crystal oscillator which is used to create the 25-kHz reference pulses. That crystal is accurate enough to provide an overall tuning accuracy of 0.0024%. At a desired tuning frequency of 100 MHz, that means that the maximum error of tuning possible is 2.4 kHz, hardly enough to alter the distortion of the audio output signal by a measurable amount.

Tuning indicators

To provide the user with a positive indication of tuning accuracy, the 700-T is equipped with a two-step muting and LED control unit (not shown in the block diagram of Fig. 3). This circuit receives inputs from the frequency synthesizer as well as from a special noise-sensing circuit in the i.f. section of the tuner. Muting threshold is, therefore, dependent not only on signal strength (determined by signal noise content), but on accuracy of tuning as well. The three LED indicators seen at the right of the signal strength meter in Fig. 1 light when a station signal is received, with the outermost, red colored ones denoting a mistuning of 100 kHz and the center green indicator denoting perfect, on-center tuning.

Noise blanking circuit

Another novel circuit designed into the 700-T tuner is called PNBS (Pulse Noise Blanking System). Its purpose is to substantially reduce the audible effects of noise pulses which might be generated by man-made interference such as motor ignition noises. A block diagram illustrating the operation of this circuit is in Fig. 5. The noise amplifier and first comparator stage at the left of the diagram are fed a detected i.f. signal from the i.f. section of the tuner. The output of this first comparator is arranged to drive the other elements of the system such that in the presence of a weak signal (which might otherwise be interpreted as “noise pulses”), the main gating circuit in the audio amplifier stages permits the audio to come through.
shaped into lower frequency components and to the final comparator and on to a dual gating circuit which is positioned between stages of the audio amplifier section of the tuner. When a shaped pulse is applied to this gating circuit, it effectively interrupts the passage of the audio signals for a very short time, thereby blocking the otherwise audible noise pulse.

The series of waveforms shown in Fig. 6 illustrates the appearance of the i.f. signal and the resultant audio. An i.f. signal without noise is represented by the upper waveform. Pulse noise alters the waveform so that it appears as in the second diagram. Even though the limiter stages of the i.f. system remove the AM variations caused by the noise pulse, the constant-amplitude i.f. signal at the output of the limiters now contains frequency variations which correspond to the noise and which would ordinarily be detected by the ratio-detector as audible noise, as represented by the single sine wave (recovered audio) shown next. The PNBS circuit has a "smoothing" effect on the audio waveform and, while it does not eliminate the "break" in the normal audio sinewave, the audible effects of this kind of smooth disparity in the waveform are far less annoying to the listener.

The various circuits involved in the PNBS section (and especially the high-pass filter) introduce a time delay of a few microseconds. Thus, the gating voltage which finally "turns off" the gate circuit in the audio amplifier section arrives a small fraction of a second after the noise pulse arriving from the two outputs of the stereo decoder section. If this were not compensated for, the audible noise pulse would "sneak through" before the gating circuit was turned off. Accordingly, a time-delay circuit is introduced ahead of the audio amplifier section so that the arrival of the gate pulse coincides exactly with the arrival of the noise pulse from the audio amplifier inputs to the gating circuit.

Other advanced features

Like other state-of-the-art FM tuners currently available, the 700-T uses a phase-lock-loop circuit in its multiplex stereo section. In addition, the 38-kHz switching circuitry used to demodulate the composite stereo signal into separate left and right outputs consists of two, 180° phase displaced switching circuits, each fed with appropriately phased audio composite signals. This arrangement tends to maintain better phase accuracy (and therefore better separation) at high audio frequencies and also reduces or cancels residual carrier products at the audio outputs of the system. Kenwood has been using this circuit in a variety of its products in the past, but this represents its first use in combination with a phase-lock-loop arrangement for maintaining the critical phase relationship between the 19-kHz pilot signal and the audio sub-carrier sidebands of the stereo composite signal.

The signal strength meter on the 700-T serves a second function. By depressing a front panel button it is transformed into a multipath indicator meter, facilitating proper orientation of an FM antenna for least interference from signal reflections. A pair of jacks at the back of the tuner permit connection of an oscilloscope for visual observation (and correction) of multipath effects, thus permitting greater antenna orientation accuracy.

As for more familiar performance specifications, the 700-T attributes these to its unique circuit innovations. Harmonic distortion is stated as 0.15% in mono and 0.25% in stereo. Quieting slope is so steep that with a signal input of only 1.8 \(\mu \)V, S/N (signal-to-noise) ratio is 40 dB while with only 200 \(\mu \)V of signal applied, S/N ratio is at least 73 dB. The elaborate stereo decoder section provides 45 dB of channel separation at 1 kHz and maintains separation capability of at least 35 dB at 10 kHz.

Obviously, one could buy a pretty good receiver for the $700.00 selling price of the FM/AM tuner. But the hi-fi audience is such that there will always be those willing to pay a premium price for that last bit of perfection and for the unique features built into a product such as Kenwood's 700-T.
In audio circuits, feedback is used in a variety of applications. It is applied around power amplifiers to reduce distortion while minimizing the output impedance to improve loudspeaker damping. Preamplifiers use feedback in tone control circuits to maintain proper equalization for tape and phono reproduction. It is these preamplifier applications that we will discuss here.

Feedback equalization

Records and tapes are not recorded with a flat frequency response characteristic, that is, not all frequencies are recorded with equal amplitude. The amplitudes at the high-frequency end of the audio spectrum are recorded with a rising characteristic so that the recorded signal can override any noise present in the medium. Playback curves at this end of the audio spectrum must provide roll-off to compensate for the emphasis in the recording process. This roll-off characteristic is called de-emphasis and it further improves the signal-to-noise ratio.

At the other end of the audio spectrum, the low-frequency signals are reduced in amplitude with respect to the mid-frequencies during the recording process, so the width of the record groove can be maintained within reasonable limits. The playback curve must emphasize the low frequencies.

The final factor affecting the frequency characteristics of the reproduced record or tape, is the playback cartridge or head. The widely used magnetic type of cartridge does not have an output with a linear relationship to the amplitude of the signal being reproduced. It is a velocity-sensitive device in which the output voltage is proportional to the frequency of the signal.

Taking all these factors into account, the preamplifier must have the frequency response which is shown by curve A in Fig. 1. The overall output of the complete system, from record through playback will be linear only if the response is as shown. A straight line approximation to curve A has been drawn as curve B in Fig. 1.

Note that the curve has three distinct sections — two 6dB/octave roll-offs starting at 50 and 2000 Hz, and a flat response between 500 and 2000 Hz. The total frequency response of curve B can be produced by the summation of three separate curves. One curve will have a 6 dB/octave rolloff starting at 50 Hz. The second curve will be a 6 dB/octave rise starting at 500 Hz. Finally, the third curve will be a 6 dB/octave roll-off starting at 2000 Hz. The algebraic addition of these three curves will produce the frequency response shown in curve B of Fig. 1.

Designing a circuit

The design procedure can proceed in several logical steps. First, there must be a minimum of about 40 dB of feedback applied around the circuit. This allows for 0 dB of feedback at 30 Hz and for more than the required 36 dB of feedback at 15 kHz. Since 40 dB is a voltage ratio of 100:1, the gain of the circuit without feedback must be greater than 100. This is easily done with the two transistors shown in Fig. 2.

The next step is to design the R-C networks in the feedback loop. The voltage gain (A_v) of the circuit shown in Fig. 2 is approximately equal to \(Z_f/R_m \), because the forward gain is sizeable. \(Z_f \) is the impedance of the feedback loop. Substituting the actual impedance of the feedback loop for \(Z_f \) in the voltage gain equation yields:

\[
A_v = \frac{Z_f}{R_m} = \frac{1 + j 6.28 f C_1 (C_1 + C_2)}{j 6.28 f C_1 R_m (1 + j 6.28 f C_2 R_m)} \tag{1}
\]

FIG. 1—PHONOGRAPh PLAYBACK CURVES when using a magnetic cartridge. Curve A shows the exact frequency response, while curve B is a straight line approximation of curve A.

FIG. 2—PHONOGRAPh PREAMPLIFIER circuit using feedback for equalization.

This article is included in the TAB book "How To Build Solid State Audio Circuits".
This follows from the fact that \(Z_t \) is equal to the reactance of \(C_1 \) or \(1/j6.28fC_1 \) in addition to the impedance of the parallel combination of \(R \) and \(C_2 \) or \(R/(1+j6.28fC_2) \). In the equation, \(j \) indicates a 90° phase shift.

Equations in the form of Equation 1 can easily be analyzed to determine corner frequencies. (The corner frequencies are those frequencies on the response curve where two straight line segments join. i.e., the corner frequencies in Fig. 1 are 50, 500, and 2000 Hz.) To analyze Equation 1, all factors in the form of \((1+jx)\) are set equal to \((1+j)\). All other factors including those terms in the form of \(jx\) are set equal to zero. Thus for the numerator;

\[
1+j6.28fR(C_1+C_2) = 1+j
\]

Therefore; \(6.28fR(C_1+C_2) = 1\).

Solving for \(f \);

\[f_a = 1/6.28R(C_1+C_2) \] Eq. 2.

\(f_a \) is one corner frequency. Similarly, the \((1+j)\) term in the denominator yields the second corner frequency, \(f_b \);

\[f_b = 1/6.28RC_2 \] Eq. 3.

The third corner frequency, \(f_{b*} \), is found by setting the \(j6.28fC_1R\), term equal to zero;

\[f_{b*} = 0 \] Eq. 4.

Now, substitute the actual corner frequencies noted in Fig. 1 for \(f_a, f_b, \) and \(f_{b*} \). Curves roll-off at a 6dB/oct. rate, beginning at the corner frequencies determined from the factors in the denominator of Equation 1. They rise at a 6dB/oct. rate, beginning at frequencies determined from the numerator.

Rolloff starts at \(f_{a*} = 0 \)-Hz from Equation 4 and continues to 500-Hz as determined from \(f_{a*} \) in Equation 2. It begins to roll-off again at \(f_{b*} = 2000 \) Hz, as determined from Equation 3. The three equations can be solved simultaneously to determine the value of the various components.

You may justifiably ask why the rolloff begins at 0-Hz rather than 50 Hz. The basic design is simplified if this approximation is made. Actually, the coupling capacitor between stages in the forward circuit can be adjusted to move the corner frequency from 0 Hz to 50 Hz. A more accurate circuit includes a resistor across \(C_1 \) to readjust the corner frequency to its proper location at 50 Hz.

Tape equalization

A similar response curve may be derived for a tape playback preamplifier. A very rough approximation of the 7½-ips playback curve is shown in Fig. 3. There are two corner frequencies—one at 50 Hz and a second one at 3000 Hz. Once again, the basic amplifier circuit in Fig. 2 can be used. However, we must substitute the series R-C circuit shown in Fig. 4 for the feedback network of \(C_1, C_2 \) and \(R \) in Fig. 2. In the analysis, we let \(Z_t \) be the impedance of the R-C circuit;

\[Z_t = R/1+j6.28fRC = (j6.28fRC + 1)/j6.28fRC \] Eq. 5.

The rolloff in the response curve begins at the frequency where the denominator is equal to zero. This occurs at;

\[f_a = 0 \text{ Hz} \] Eq. 6.

The rise begins at 3000-Hz or whenever the numerator is equal to \(j+1 \).

This frequency is;

\[f_a = 3000 \text{ Hz} = 1/6.28RC \] Eq. 7.

Once again, the 50-Hz rolloff point must be treated as in the previous discussion of phono feedback equalization.

Now, for the final and most important step in the design. Check the actual circuit in the laboratory and adjust the response curve using physical components. Too many stray factors are usually omitted in a "paper" design for the calculated components to be sufficiently accurate.

Bipolar devices were used in this example, but JFET's can serve as equally well in these applications. In both instances, the first transistor stage must be designed so that there is a sufficient voltage swing at its output during the peaks in the music to prevent clipping. A phonograph preamplifier with about 3 or 4 mV input sensitivity for an average size signal, and that will accommodate 60 or 70 mV input signal before the output distorts, is satisfactory. A similar ratio of maximum to minimum input signal is required for the tape preamplifier, but the minimum input sensitivity in this case should be about 1 mV.

"Operational" amplifier

The "operational" amplifier is usually associated with computer electronics. Actually, the circuit known as an "operational" amplifier has been in use for many years as tone control circuits in high quality amplifiers. Because they are no more expensive or complex than the "lossier" type of base and treble, boost and cut controls, the feedback control is used almost exclusively in all audio equipment. Analysis of the feedback control requires some knowledge of the characteristics of the "operational" amplifier.

An "operational" amplifier using an FET is shown in Fig. 5. The dc gate bias for this stage is developed across \(R_1 \) and applied to the gate through \(R_c \). Resistor \(R_a \) is made as large as practical so as not to affect any other parameters in the circuit. It is assumed that no ac-signal current flows through this resistor.
The FET stage is an ordinary amplifier where the input signal will be amplified to produce an output voltage across \(R_n \). However, the actual signal generated, \(e_i \), is applied through \(R_n \) to the amplifier. \(R_f \) feeds the output signal back to the gate in a feedback circuit. In this circuit, \(C \) is considered to be a short circuit for audio signals and is designed into the circuit with the sole purpose of preventing the dc voltage at the drain from affecting the gate bias.

The signal current flowing through \(R_f \) is equal to \((e_i - e_m)/R_n \). This current divides between \(R_n \) and \(R_f \). Since the current through \(R_n \) and the gate circuit are negligible (due to their high impedance) when compared to the current flowing through \(R_f \), we can with reasonable accuracy, assume that all the current flowing through \(R_n \) also flows through \(R_f \). The current in \(R_f \) is equal to \((e_m - e_m)/R_f \). Equating the current through \(R_n \) with the current through \(R_f \), we have

\[
\frac{(e_i - e_m)}{R_n} = \frac{(e_m - e_m)}{R_f}
\]

Eq. 8.

We can now write a second equation which considers the gain, \(A_0 \), of the amplifier stage itself:

\[
e_m = e_m A_0
\]

Eq. 9.

The gain is usually extremely high and is often assumed to be infinite. When this assumption is made, \(e_m \) approaches zero. Although \(e_m \) is practically zero, the gate is not at ground potential. This point is referred to as a virtual ground.

Substituting \(e_m = 0 \) into equation 9, we get the well known relationship

\[
e_m/e_i = R_f/R_n
\]

Eq. 10.

The ideal operational amplifier has six primary characteristics: 1. Infinite input impedance. 2. Zero output impedance. 3. Infinite gain. 4. Zero offset—zero output level when the input is zero. 5. Zero response time—instant response at the output when the input signal is applied. 6. Infinite bandwidth.

Obviously, no amplifier will fully meet any of these requirements. However, the closer the actual circuit approaches the ideal, the more accurate the calculations below will be.

Feedback tone controls

Let us now analyze a practical feedback tone control which is, in its completed form, known as the Baxendall tone control circuit. Start with the bass control section in Fig. 6. \(C1 \) and \(C4 \) are short circuits for the audio signals and are used only to prevent dc from entering the gate circuit. \(R1 \) is made equal to \(R3 \), \(C2 \) is equal to \(C3 \) and \(R2 \) is a linear potentiometer set at the center of rotation.

Compare Fig. 6 with Fig. 5. \(R1 \) plus the parallel combination of \(C2 \) and the

(continued on page 80)
The orphan amplifier

How do you service without service data

by JACK DARR
SERVICE EDITOR

ONE PROBLEM WE RUN INTO TOO OFTEN is the little solid-state amplifier with the output transistors blown out. The tough part is the complete lack of any information; no schematic, no numbers, just nothing. So the only thing we can do is get in there and dig out the answers.

Before we start, let me make one thing perfectly clear. Due to the utter and complete lack of even rudimentary standardization in these amplifiers—transistor types, numbers and even circuits—the methods suggested here will definitely NOT apply to ALL of these amplifiers! About all we can do is point out a few "trends" that seem to show up more often. Certain types seem to use certain circuits. We'll do our best to point these out.

If you have even a small, postage stamp size schematic, this will help. However, the ones we'll be talking about will be the little "Orphan Imports". Small record players, mono or stereo, no recognizable name or numbers. The amplifier(s) are often tucked away under the motorboard. They can be hard to find; I've found a few by following the leads from the pickup. They're on PC boards, about 2 inches square.

For economy reasons, the vast majority of these use an output transformerless (OTL) circuit. They use two transistors, in Class B, with the speaker connected to the mid-point through a big electrolytic capacitor. (Big in capacitance, not physical size!) Note: In the Far Eastern imports, the speaker is usually connected from the midpoint to common or ground. In European imports, particularly German, French and a few British, you may find the speaker hooked from midpoint to B+. (Actually, this term should be B±, since the power supply can be of either polarity. However, the circuit works in exactly the same way.

There are two basic circuits. They work in exactly the same way; only the polarity of the transistors is different. One is called a "stacked" or totem-pole circuit, as shown in Fig. 1-a. The other is a "complementary-symmetry" circuit, as in Fig. 1-b. The stack circuit uses two identical transistors, while the complementary-symmetry circuit uses transistors of opposite polarity. As far as we're concerned, the only difference is in the driver stage.

Just to help keep things straight, let's define the transistors. From now on, the "top" transistor in the output pair is the one connected to the dc power supply, it can be of either polarity, depending on which type of transistor is used in the circuit. The bottom transistor is the one with its collector or emitter returned to common or ground. The driver may be connected to the base of either one,
it depends upon the manufacturer of the amplifier.

Questions, questions
We have a lot of questions to answer. Start with "What type of transistors are (were!) these? npn or pnp?" Make an ohmmeter check of the output transistors. This tells you which one is shorted or open. In many cases, you'll find that only one of the output pair has blown. This helps. Take the good one out and check it. Your ohmmeter will tell you its polarity (see Table). Take the bad one out, too. With a huge magnifying glass, see if there are any numbers on them. If these are the same, the chances are this is a stack circuit. If they differ, say by one digit (i.e. "1439" and "1440"), the chances are that this is a complementary-symmetry circuit. If only one transistor is bad, you can tell which one goes where.

In either type of circuit, the collector of the top transistor goes directly to the power supply. To find the polarity of the voltage, take the shorted transistor out, turn on the amplifier, and read the voltage (maximum). This determines the polarity of the top transistor. If the dc voltage is positive, it's an npn transistor. If the dc voltage is negative, its a pnp. Write down your two facts, dc voltage
TABLE OF OHMMETER TESTS TO DETERMINE TRANSISTOR TYPE

<table>
<thead>
<tr>
<th>Ohmmeter Probe Connections To Transistor</th>
<th>Resistance Reading</th>
<th>Transistor Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Probe</td>
<td>Negative Probe</td>
<td>Low</td>
</tr>
<tr>
<td>collector</td>
<td>base</td>
<td>Low</td>
</tr>
<tr>
<td>base</td>
<td>collector</td>
<td>Low</td>
</tr>
<tr>
<td>emitter</td>
<td>base</td>
<td>Low</td>
</tr>
<tr>
<td>base</td>
<td>emitter</td>
<td>Low</td>
</tr>
</tbody>
</table>

maximum and polarity. We’re off and running.

You can obtain some data about the connections from the top transistor. The collector is the lead with the dc voltage (positive or negative). The emitter probably goes to a very small resistor, then to a capacitor coupled to the speaker. The remaining lead has to be the base lead. If the two transistors are the same type, you have the connections. If they’re different, as in the complementary-symmetry circuit, the connections can still be the same; ohmmeter check to make sure. A handy quick-check for the common or ground is to look for the end of the filter capacitor that is not connected to the rectifier diode. This is usually the largest electrolytic on the board. (continued next month)
IF YOU ARE READY FOR SERIOUS CAREER

Learn College-Level
ADVANCEMENT NOW—

Electronics at Home

With CREI's unique Electronic Design Laboratory Program

There is only one way to a career in advanced electronics—through advanced training. You can get such training through a resident engineering college or you can take a CREI specialized college level electronics program at home.

Wide Choice of Programs. CREI offers you program arrangements with fourteen areas of specialization in advanced electronics. You can select exactly the area of specialization for the career you want.

CREI also offers program arrangements both for those with extensive experience in electronics and for those with only limited experience. All programs are college-level, except for a brief introductory level course, which is optional.

Unique Laboratory Program. CREI now offers a unique Electronic Design Laboratory Program to train you in the actual design of electronic circuits. You also get extensive experience in tests and measurements, breadboarding, prototype building and in other areas important to your career. The Lab Program makes it easier for you to understand the principles of advanced electronics. Only CREI offers this complete college type laboratory program.

The Lab Program includes professional equipment which becomes yours to keep. You will especially appreciate the Electronic Circuit Designer, which is available only through this program and which you will find extremely valuable throughout your professional career.

College Credit. You can actually earn college credit through CREI programs, which you can use at recognized colleges for an engineering degree. CREI maintains specific credit transfer arrangements with selected colleges in the U. S.

Industry Recognized Training. For nearly 50 years CREI programs have been recognized throughout the field of electronics. CREI students and graduates hold responsible positions in every area of electronics and are employed by more than 1,700 leading organizations in industry and government.

Qualifications to Enroll. To qualify for enrollment, you should be employed in electronics or have previous experience or practical training in the use of electronic equipment. You must also be a high school graduate or true equivalent.

All CREI Programs are available under the G.I. Bill

Send for FREE Book. If you are qualified, send for CREI's full color catalog describing these college-level programs and your career opportunities in advanced electronics. Mail card or write for your copy of this book.

McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue Northwest
Washington, D. C. 20016

Accredited Member, National Home Study Council
are pulsed sequentially so that only one gun at a time is conducting. During the conduction interval, the G2 voltage is automatically adjusted by a programmable shunt regulator controlled from a multiplex generator. They have very conveniently used the line frequency to trigger their multiplex generator. The generator itself is a TTL chip consisting of two JK flip-flops. The clock driver is essentially \(\frac{1}{2} \) of a TTL 7400 Quad NAND gate. What we have is a signal-driven (digital) pix tube providing a dynamic emission test as opposed to the more widely used "Static Emission Test." Figure 4 shows the basic test set-up for measuring emission with the pix tube hooked-up as a 2-element device.

We are still in the TEST position of the function switch. Let's assume that our 25AP22A has low emission on all three guns. Proceed to the next step.

Rotate the function switch to the RESTORE position. There are three restoration functions that can be performed in this position: remove shorts, clean-balance, rejuvenate.

At this time the pix tube we are testing has no shorts or leakage indications—just very low emission (in the red). Put the REJUVENATE/CLEAN-BALANCE switch into the REJUVENATE position. With the function switch in the restore position, the heater voltage will be increased by 58% from the initial setting of 6.3 volts to 10 volts. There will be a 30-second wait until the proper operating temperature is reached. At this time we depress the RED REJUVENATE pushbutton. The heater voltage automatically decreases to zero. At the same time the meter directly above the pushbutton should show a marked rise in current that drops off toward the meter's red region.

When the current has decreased to the red region and is approaching zero, release the pushbutton. This is an automatic timing feature for the process and leaves very little chance for stripping the cathode. Immediately return the function selector switch to the TEST position. All things being normal, the gun usually comes up to a very good emission reading. Repeat the process with the green and blue guns, using the GREEN and BLUE REJUVENATE pushbuttons. Now recheck the TRACKING and LIFE tests. The results should be remarkable.

Let's assume that in the SET-UP position of the function selector switch that LEAKAGE was indicated from G1 to the blue cathode. This immediately suggests that a current path exists between these two elements that is below 2 megohms. However, in the RESTORE
position the G1-cathode short lamp is not lit. This means that the leakage path is greater than 20,000 ohms. We then attempt a clean-balance operation for the gun in question. Simply put the function switch in the restore position and the rejuvenate/clean-balance switch in the clean-balance position. Wait the required 30 seconds and depress the blue rejuvenate pushbutton and watch its respective meter drop toward zero. Then release when the pointer reaches 0.2.

Let’s set up a third (and final) condition with our 25AP22A. Assume that in the set-up position the G1 and \(k \) blue lamps were again lit. This still indicates a leakage path between the elements of less than 2 megohms. However, when the function switch is rotated to the restore position the G1-k short lamp is lit. This now indicates that the leakage path is less than 20K and possibly a dead short. Merely depress the remove shorts pushbutton and (unless the elements are welded together) the short should disappear.

We can now faithfully draw definitive conclusions about the model 467 and comment on the equipment based on real field experience. I have had approximately one month of use of the 467 for analysis of good tubes and bad tubes. The restoration process has had successes and failures. The results and conclusions were immediate. No tube during this period was ever “destroyed” by the equipment. I would like to qualify what I mean by “success” or “failure.”

- In all cases thus far, the instrument accurately analyzed any given defect in picture tubes tested:
 - The 467 would not restore tubes which had a booster installed for a prolonged period of time;
 - The 467 would not restore tubes which had previously been rejuvenated by another process.
- In all cases, when the picture tubes were “virgin,” that is to say had not had a booster on it or no other restoration process applied, the 467 did the job and did it well.

Conclusion

From the analysis standpoint, the B & K Model 467 does a total job in determining that any given picture tube is good, bad, or marginal. It has performed its functions rapidly and has added only 3-4 minutes total diagnosis time (including set-up and restoration) to the in-home service call. Based upon this alone, it would be a welcome addition to any technician’s list of valuable test equipment.

In many instances it has outshone it’s own predecessor, the B & K Model 466. The new unit costs $279.
AUDIO FEEDBACK CIRCUITS

(continued from page 68)

Left hand half of R2 are the equivalent of Rb in Fig. 5, while R3 plus the parallel combination of C3 and the right hand half of R2 are the equivalent of Rf in Fig. 5. Because Rb = Rf at all frequencies (since it has been specified that R1 = R3, C2 = C3 and Rb is linear so that the right hand half is equal to the left half), the voltage gain of the circuit is \(e_{\text{out}}/e_{\text{in}} = 1 \) (See Equation 10) at all frequencies. The curve relating gain to frequency is theoretically flat from 0 Hz to \(\infty \) Hz.

Now move the wiper arm of potentiometer R2 to the extreme left. C2 is shorted while C3 is placed across the entire resistance of R2. In this position, Rb of Fig. 5 becomes R1 while Rf is effectively R3 in series with C3. The impedance of Rf is \(Rf + 1/6.28fC3 = (j6.28fC3R3 + 1)/(j6.28fC3) \). Applying Equation 10, the output becomes:

\[
e_{\text{out}} = e_{\text{in}}(j6.28fC3R3 + 1) \]

The response curve will begin to rise at the frequency where the numerator is equal to \((j+1)\) or \(f_{A1} = 1/6.28fC3R3 \). It should level off at the frequency where the denominator is zero or \(f = 0 \) Hz. Equation 11 defines the maximum boost curve shown in Fig. 7.

The maximum boost cut occurs when the wiper arm of potentiometer R2 is at maximum right hand setting. Here,}

FIG. 10—COMPLETE TONE CONTROL circuit using the operational amplifier and feedback.
When you buy the 3-meter RCA WT-333A, you get both an accurate picture-tube tester and a rejuvenator. The WT-333A performs all the vital tests and repairs you need to service nearly 2000 picture-tube types.

Get all of these servicing essentials at RCA's sensible price — only $199! Buy the WT-333A from one of the more than 1000 authorized RCA distributors worldwide. Or, write to RCA, Harrison, N.J. 07029.
new products

More information on new products is available from the manufacturers of items identified by a Reader Service number. Use the Reader Service Card inside the back cover.

CORDLESS SOLDERING IRON, Quick Charge model 7700. Decrease in recharging time is due to long-life nickel cadmium batteries. Lower base stand (with slot for spare tip) will return a partially discharged battery to full capacity in an hour or two. A completely discharged battery can be fully recharged and used again in about four hours, giving tip performance equivalent to up to 50 watts and over 700° temperature. Same low voltage and isolated-tip construction as original Iso-Tip which eliminates electrical leakage and need for grounding, reducing risk of heat damage to sensitive components. Tip is easily replaceable with any of the four completely different tip sizes from heavy duty to fine (manufactures does caution against interchanging standard Iso-Tip with a Quick Charge stand as units are not interchangeable).

Pressing the button gives you soldering heat in five seconds plus a built-in work light on working area; pilot light, too. Lock-off switch prevents accidental heating of tip. Carries enough power to make up to 125 electronic joints per charge: automatically begins recharging when replaced in its stand; no wires to connect; no positioning of iron in its stand: 6 inches long with tip; 6 oz.; kit consists of cordless Quick Charge soldering iron, separate recharging stand, one No. 7545 fine tip, one No. 7546 heavy duty tip and instruction booklet.—Wahl Clipper Corp., 2902 Locust Street, Sterling, Ill. 61081.

Circle 31 on reader service card

ALARM, Mach 4. Keyless vehicle alarm can be installed in any vehicle in 30 minutes. Encapsulated electronics insures accurate timing and monitoring of all battery current flow, temperature stability and long product life. Designed with solid-state circuits and components. Arming the system is a throw of a hidden switch within the vehicle; hidden switch must be turned off within 15 seconds of entering the vehicle or powerful 114-dB siren will sound. Needs no fender hole or lock.—Wolo Manufacturing Corp., 37 Jefry Lane, Hicksville, NY 11801.

Circle 32 on reader service card

OSCILLOSCOPE, PS29 Minute Man. Automatic triggered pushbutton scope enables you to display any color TV or video waveform by simply pushing a button. Pushbutton displays include TV vertical, TV horizontal, 3.58 MHz for viewing color subcarrier information, five times expand and a completely front end vector display. Sixth button sets scope for 60 Hz line sweep used in sweep alignment work. Triggers internally on any signal down to 20 millivolts. External trigger allows you to sync on any signal above a dc voltage. Absence of input signal is indicated by continuous running baseline.

Has dc coupling, 500 V ac input protec-

The Pencil Soldering Iron with Operating Light, 2 Heats and On/Off Switch $10.95 NET
Model 545S Soldering Iron Length 8 1/2" Weight 2 oz.
• Light shows when it's on
• 2 heats—20w and 40w— for any job
• Iron clad tips for longer life
• Cool, unbreakable polycarbonate handle
• Burn-resistant neoprene cord
• Converts to a desoldering iron with low cost attachment

The Pencil Desoldering Iron with Operating Light, and On/Idle/Off Switch $15.95 NET
Model 515 Desoldering Iron Length 8 1/2" Weight 3 1/8 oz.
• Light shows when it's on
• Operates at 40w; idles at 20w for longer tip life
• 6 tip sizes available to handle any job
• Cool, unbreakable polycarbonate handle
• Burn-resistant neoprene cord
• Exclusive new bracket insures alignment, prevents damage

New kits also available:
• Soldering Kits • Desoldering Kits • Soldering/Desoldering Kits

To locate your nearest distributor call toll-free 800-645-9200

Circle 64 on reader service card

endeco

Enterprise Development Corporation

Circle 64 on reader service card

endeco

Circle 64 on reader service card
Solderless Terminals Kits. Only the 12 most popular types are included in each of the six kits, with wire sizes ranging from 22-18 through 12-10. Each kit comes complete with universal crimping tool with built-in bolt cutter and wire stripper. All kits are supplied in reusable cases. Insulated terminals offer beveled mouth for wire insertion, multiple “V” groove for maximum holding power and minimum contact resistance, open barrel construction, one-piece, burr-free construction, uniform electro-tin plating. K-120-A kit ($21.95) includes 520 pieces of non-insulated solderless terminals. K-130-A kit ($31.95) contains 600 insulated and non-insulated terminals. K-140-A ($39.95) has 600 insulated terminals. K-170-A ($35.95) has 180 non-insulated terminals. K-180-A ($41.95) includes 120 insulated terminals. K-220-A ($32.95) has 420 pieces of non-insulated and insulated quick-disconnect solderless terminals.—Waldom Electronics, Inc., 4625 West 53rd Street, Chicago, Ill. 60632.

Turntable, Pl-10. Belt-drive turntable and pickup combination comes complete with its own electrically shielded spring suspension wood-grain cabinet and hinged dust cover. Uses belt-drive system with a 4-pole synchronous motor for stable speed rotation. Aluminum alloy die-cast 12 in. platter rotates at 33⅓ or 45 rpm regardless of line voltage fluctuations.

Signal-to-noise ratio is better than –47 dB; wow and flutter is less than ±0.1% rms. Statically balanced, S-shaped pickup arm...
Plug in...wire...modify...build...test

New Continental Specialties QT SOCKETS® and BUS STRIPS offer expanded, flexible breadboarding without shorts or burnt fingers. Simply SNAP/LOCK together as many QTs as you need and you can test ICs, transistors, resistors, capacitors and more. Just plug-in, connect with solid #22 AWG hook-up wire — no soldering or patch cords needed! And QTs are totally reusable. 10 different sizes. Prices from $3 for QT Sockets...from $2 for Bus Strips.

Write or phone today for FREE Selection Guide, with applications, photos, drawings, specs, socket sizes and ordering Information.

Continental Specialties Corporation
44 Kendall St., New Haven, CT, Tel 203/624-3103
Circle 67 on reader service card

PAT. PENDING

FREE
METRIC
TO
ENGLISH
SLIDE
RULE

Convert lengths, areas, weights, volumes instantly. Yours FREE with minimum $5.00 order!

PAIA
EXPANDS their line of SYNTHESIZER KITS from the GNOME micro-synthesizer
to modular systems all at affordable prices
demonstration record, including explanatory manual, patch charts and scores now available — $1.99 ppd. catalog — free

PAIA ELECTRONICS
BOX R14389, OKLAHOMA CITY, OK 73114
Circle 68 on reader service card

Electronics Bench Manual
"EBM"
WHAT'S AN "EBM"???
Over 1,000 illustrations and tables, high-density text equivalent, contained in a whole collection of other books, arranged in specific sections on:
BENCH PLANNING & LAYOUT...BASIC BENCH SUPPORT FACILITIES...HAND SOLDERING...CONSTRUCTION & ASSEMBLY...RESISTORS...CAPACITORS...BATTERY SYSTEMS...ICs...SEMICONDUCTORS...ELECTRONIC COMPONENTS...GENERAL TABLES...APPLICATIONS & CIRCUITS.
Each as a separately bound book section, which can be detached for use on the bench, or used right in the nonglue bound paperback binder supplied.

ORDER YOURS TODAY!

Check, Money Order, BANKAmericARD or MASTERCARD
Enclose or call with Account #

STILL ONLY
$1795 TECHNICAL DOCUMENTATION
Postpaid

CENTREVILLE, VA 22020
703-928-2533

RADIO-ELECTRONICS

Circle 69 on reader service card

Pivots on a point of hard alloy for reduced friction and improved tracking. Anti-skating control is independent of tonearm. Plug-in shell and oil-damped cueing, plus direct-reading stylus force scale on adjustable counterweight are additional features. Accepts cartridges weighing from 4 grams to 8.5 grams and provides a stylus overload of 0.61 in. Operates on 120 V, 60 Hz; consumes 10 watts of power, maximum. 6 1/4 x 16 1/2 x 13 3/4 in.; 14 lbs. 12 oz.; $99.95—U.S. Pioneer Electronics Corp., 75 Oxford Drive, Moonachie, NJ 07074.

Circle 35 on reader service card

WIND GENERATOR, stock No. 19,189, taps inexhaustible energy source to supply current for battery charging, lighting, emergency current supplies, and various uses in isolated cabins or lodges.
Six-foot propeller turns 200-watt generator to supply 12 volts. Starts charging in 7-mph winds, delivers 15 amperes with winds at 23 miles per hour. Air-brake governor automatically prevents overcharging.
Enclosed collector ring with double carbon brushes protects against dust, frost or ice. Special capacitors and grounding spring eliminate radio interference. Mounts on 10-foot, 4-leg angle-iron tower.

Circle 36 on reader service card

COMPONENTS KIT, Stock No. 199006 contains a variety of transistors, diodes and resistors plus one circuit breaker—29 components in all. Also included is a tube of white silicone heat sink compound. Parts location diagram fits into kit lid and simplifies part identification by showing exact location of each component in the kit. Cross reference chart shows usage of each part by chassis number and circuit symbol number. Components in the kit are used to service XL-100 chassis. $55.60—RCA Parts and Accessories, P.O. Box 100, Deptford, NJ 08096.

Circle 37 on reader service card
MINICOMPUTER MODIFICATIONS

(continued from page 43)

well as the gates needed to connect them.

Expanding input ports

The basic Mark-8 computer has only two input ports which may not be enough for all purposes, particularly if we want to use one input port for an

MINICOMPUTER MODIFICATIONS

ASCII keyboard and use the other for data input. We know that we can bus data to the other input port using three-state gates or open-collector gates with the decoders on an output port to select the data source. This was shown

in the dvm and counter example. This configuration takes extra software and hardware and doesn’t allow for a great deal of flexibility for future expansion or for more complex systems.

The two 8263 multiplexers on the Input Multiplexer Board allow the computer to input data from the memory, input port 0 or input port 1. The selection of the data source is performed by the computer so that an INP1 instruction switches the multiplexers to the input port 1 data lines. We can simplify the multiplexer scheme so that it switches to input data whenever an INP type instruction

(continued on page 98)
Clever Kleps

Test probes designed by your needs — Push to seize, push to release (all Kleps spring loaded).

Kleps 10. Boathook clamp grips wires, lugs, terminals. Accepts banana plug or bare wire lead. 4½” long. $1.39
Kleps 20. Same, but 7½” long. $1.49
Kleps 30. Completely flexible. Forked-tongue gripper. Accepts banana plug or bare lead. 6” long. $1.79
Kleps 40. Completely flexible. 3-segment automatic collet, firmly grips wire ends, PC-board terminals, connector pins. Accepts banana plug or plain wire. 6½” long. $2.99
Kleps 1. Economy Kleps for light line work (not for lab quality). Meshing claws. 4½” long. $.89
All in red or black - specify. (Add 50¢ postage and handling).
Write for complete catalog of test probes, plugs, sockets, connectors, earphones, headsets, miniature components.

Available through your local distributor, or write to:
RYE INDUSTRIES INC.
129 Spencer Place, Mamaroneck, N.Y. 10543
In Canada: Rye Industries (Canada) Ltd.
Circle 72 on reader service card

You'll never know how much you can do until you do it.
You can help people.
In fact, there's a crying need for you. Your talents. Your training. Your concerns. They make you valuable to your business. They can make you priceless to your community.

If you can spare even a few hours a week, call the Volunteer Action Center in your town. Or write: "Volunteer," Washington, D.C. 20013.
It'll do you good to see how much good you can do.

Volunteer.
The National Center for Voluntary Action

All booklets, catalogs, charts, data sheets and other literature listed here with a Reader Service number are free. Use the Reader Service Card inside the back cover.

TAPE ACCESSORIES BOOKLET. 8-page booklet includes Ampex, Scotch, Craig, Concord, Dokorder, Capitol, Electro-Voice, Koss and others. Contains specifications, prices and photos of the tape accessories as well as what type of equipment each of the companies is offering.—Saxtone Tape Sales, 1776 Columbus Road, NW, Washington, DC 20009.

Circle 38 on reader service card

STEREO CATALOG. 32-page catalog contains systems, cartridges, stereo phono cartridges, turntables, changers, phono accessories, loudspeakers, tape recorders and players, tape accessories, 4-channel systems, professional audio equipment, tapes, microphones, mixers, headphones and audio/video electronic equipment. Many illustrations and prices; an order form is inserted in the center of the catalog.—ADR Audio Warehouse, 6200 Chillum Place, NW, Washington, DC 20011.

Circle 39 on reader service card
places the corner frequency at about 300 Hz. Substituting 300 Hz for \(f_{st,\text{c}} \), C3 is calculated to be 5000 pF (.005 µF). For symmetry reasons, \(f_{st,\text{c}} \) is also set at 300 Hz and as a result, \(C2 = C3 \).

Intermediate settings of this control will give intermediate amounts of boost and cut. 300 Hz will not be the corner frequency at these intermediate settings. The corner frequency will shift closer to the low end of the band when less emphasis or attenuation is required. The high and mid-frequencies will not be affected by the settings of the control.

The treble circuit is shown in Fig. 8. C1, R1, R3, and C4 are from Fig. 6. The potentiometer R2 has been drawn as a short circuit and omitted because at the high frequencies involved, C2 and C3 are effectively shorts across the bass control.

Effectively, with R5 at the maximum left hand setting (maximum treble boost), the control is a short across R1 and several other components. As a result, the high frequencies are fed more easily to the gate of the FET, than at the lower frequencies. This meets the requirements of a treble boost circuit.

Similarly, at the extreme right hand setting of R5, C5 shorts R3 as well as several other components in the circuit. It feeds the high frequencies back from the output to the gate more readily than it does the lower frequencies. Hence there is treble cut.

(continued on page 97)
STAR REMOTE CONTROL
(continued from page 51)

Now birdie counting begins and continues until the desired channel is reached.

To summarize, channel acquisition is a three-step process involving:
1. Setting the VCO to a frequency midway between the 24-HMZ comb;
2. Scanning downwards until contact is made with the 24-MHz comb; ramp down;
3. Upon contacting the comb, reversing the sweep and simultaneously posting a 6-MHz comb and counting to the desired channel, ramp up.

Accommodating Channels 5 & 6

Channels 5 and 6 are unique in that their frequencies lie out of step with the regular 6-MHz intervals which separate all other channels. A 6-MHz comb cannot be used in a direct way to lock onto these channels. A 4-HMZ comb will, however, fall 1-MHz away from Channel 5 and 6 oscillator frequencies. The 31st harmonic of 4-MHz is 124-MHz which is 1-MHz above Channel 5 L.O. frequency of 123-MHz. The 32nd harmonic of 4-MHz is 128-MHz which is 1 MHz below the L.O. of 129-MHz for Channel 6. By properly decoding the birdie counter, it is possible to use a 4-MHz comb to lock a birdie counting system on Channels 5 or 6.

Two digits are required to address a channel. These are entered sequentially, first tens then units. The data may be entered through the keyboard or remote input. In either case, data is converted to binary form prior to entering the data decoder.

The data decoder accepts keyboard or data in binary form and decodes this into channel address or auxiliary functions. DATA VALID and LOAD ENABLE outputs are additionally derived from the data decoder.

Read-In sequence

Assume that Channel 45 is to be selected. A “4” is first entered into the data decoder (see Fig. 6). The data valid line immediately goes high indicating that a number between 1 and 15 is present at the data decoder input. The “4” is not immediately read into the system, however. Read in occurs only when valid data is present for a minimum of 70 ms. This assures that noise inputs less than 70 ms are not read into the system.

This delay is produced by C1, which charges to the upper trip point of ST 70 ms after the data valid line goes high. ST fires, generating a transfer signal. This signal activates the load control which first loads the contents previously stored in the units counter, into the tens counter, and subsequently loads the “4” into the units counter. These pulses appear on the load control output lines designated LOAD TENS and LOAD UNITS. Upon release of the “4,” C1 discharges through the lower trip point of ST causing the transfer line to go to zero. This completes loading of the first entry. A similar sequence occurs for the second entry.

The second entry differs from the first
A. Heathkit IB-1103 180 MHz Counter has phase-locked multipler, extremely high resolution with 8½-digit readout. Pushbuttons permit multiplication by 1 (direct), 10, 100 or 1000. Also has temperature compensated crystal oscillator (TCXO) and pushbutton selection of 1 msec., 100 m sec. and 1 sec. gate times. Input sensitivity is 50 mV to 120 MHz and 100 mV to 180 MHz. Has lighted indicators for MHz, kHz, Hz, Gate, Overrange and unlocked conditions. $349.95*. Shipping weight, 12 lbs.

B. Heathkit ID-1290 Weather Station has Uni/Mag® barometer for 2½ times greater pointer deflection; 8 wind-direction compass points that light-up in combination to give you 16-point resolution; wind speed indicator with 2 switch selectable ranges, 0-30 and 0-90 mph, dual-sensor thermometer with switch selection of indoor and outdoor temperatures. Includes weather cup and wind vane assembly, simulated walnut housing. $99.95*. Weight, 9 lbs.; 50' cable, 6.95*, 2 lbs.; 100', 12.95*, 4 lbs.; 150', 17.95*, 6 lbs.

C. Heathkit GC-1005 Electronic Alarm Clock. A six-digit timepiece that displays hours, minutes and seconds on highly visible cold-cathode readout tubes. Gentle “beeper” alarm can be set for 24-hour cycle, features snooze switch for seven more minutes of sleep. Displays time in 12-hour, or 24-hour format. $59.95*. Mailing weight, 4 lbs.

D. Heathkit ID-1390 Digital Thermometer. A solid-state device that monitors indoor and outdoor temperatures. Switches set thermometer for alternate display of indoor/outdoor temperature at 4-second intervals, for constant display, and for readout in either degrees Fahrenheit or degrees Centigrade. Includes 85' cable and 2 sensors. $62.95*. Mailing weight, 5 lbs.

E. Heathkit AR-2020 4-Channel Receiver offers 15 watts per channel, built-in decoder for reproducing matrixed 4-channel material, and an AM/FM tuner that boasts 2µV sensitivity, 2dB capture ratio. Pushbuttons for all modes of operation and inputs to accommodate phono, tape and auxiliary source in stereo or 4-channel combinations. The solid-state circuitry mounts on plug-in boards for easy assembly and self-service. And the low kit price includes the cabinet, too! $259.95. Mailing weight, 31 lbs. *Power measured at 8 ohms with less than 0.5% total harmonic distortion from 20-20,000 Hz, all channels driven.

Send for your FREE '74 Heathkit Catalog—world's largest selection of electronic kits

HEATHKIT ELECTRONIC CENTERS
Units of Schlumberger Products Corporation
Retail prices slightly higher
ARIZ.: Phoenix, CALIF.: Anaheim, El Cerrito, Los Angeles, Pomona, Redwood City, San Diego (La Mesa), Woodland Hills, COLO.: Denver; CONN.: Hartford (Avon); FLA.: Miami (Hialeah), Tampa, GA.: Atlanta; ILL.: Chicago, Downers Grove, IND.: Indianapolis; KANSAS: Kansas City (Mission); KY.: Louisville; LA.: New Orleans (Kenner); MD.: Baltimore, Rockville; MASS.: Boston (Wellesley); MICH.: Detroit; MINN.: Minneapolis (Hopkins), MO.: St. Louis; N.B.: Omaha; N.J.: Fair Lawn, N.Y.: Buffalo (Amherst), New York City, Jericho (L.I.), Rochester, White Plains; OHIO: Cincinnati (Woodlawn), Cleveland, Columbus, PA.: Philadelphia, Pittsburgh, R.I.: Providence (Warwick); TEXAS: Dallas, Houston, WASH.: Seattle, WIS.: Milwaukee.
There's a new Heathkit everyone on

Introducing a new generation of Heathkit small-screen color TV

- On-screen digital channel readout
- Optional on-screen Digital Clock
- New one-button Preset Picture Control (PPC) restores perfect picture at a touch
- New precision in-line gun picture tube with new slotted shadow mask for greater light output
- No convergence or purity adjustments — ever
- 3 popular screen sizes — 15, 17, & 19 in. (diagonal)

In the new Heathkit GR-500, GR-400 and GR-300, Heath brings you another industry first — a new generation of small-screen color TV receivers featuring on-screen digital channel readout, an optional digital clock accessory, and a host of other exciting new design innovations. The new precision in-line gun tube uses a slotted shadow mask for far greater light output. And, in the GR-400 & 500, a negative matrix screen is used for greater contrast and brightness. A wider bandwidth IF amplifier with fixed LC filter was added. This, coupled with luminance and video circuits with black level clamps maintains the true brightness level of the televised scene, with picture realism you never dreamed possible.

Convergence and purity adjustment a thing of the past. A new precision static toroid yoke offers vastly improved convergence. And the factory adjusted and sealed yoke and magnet assemblies completely eliminate the need for convergence and purity adjustments, yet the results are superior to previous methods requiring manual adjustments.

Improved VHF tuner design. Another area receiving special attention was the VHF tuner. It was given a new mixer circuit featuring a dual gate FET to achieve better cross modulation performance. The RF amplifier is also a dual gate FET, resulting in a low noise figure, high gain and low cross modulation. The four circuits of the tuner (most have only three) offer far greater selectivity than ordinary sets.

Total VHF/UHF detent tuning convenience — with on-screen channel display. Every VHF and UHF channel is selectable simply by turning the channel selection knobs until they click to your favorite channel with precision detent action. As you turn the knobs, every channel number is displayed on the TV screen in big bright digits, completely adjustable as to brightness, position on the screen, and length of display time. And the same goes for the optional digital clock.

New one-button Preset Picture Control (PPC). An important new convenience feature is the PPC button located on the front panel. Once the brightness, contrast, color and tint have been correctly set by the rear preset controls, a touch of the PPC button returns the picture to perfection instantly — no matter how much the front-panel controls have been disturbed.

Other design innovations include Instant-On operation with a front-panel defeat switch for vacation-time shutdown; hi-fi output jack and TV speaker defeat switch; 75-ohm VHF antenna input; a new high voltage power supply with voltage tripler circuit for plenty of reserve power; a new quasi-complementary-symmetry vertical deflection circuit that eliminates the need for an output transformer; new slide-out chassis, plus interconnecting cables using plugs and sockets, for easier adjustment and servicing.

Get with the new generation of Heathkit small-screen Color TV now ... in time for the holiday fun!

Kit GR-500, less cabinet, 88 lbs., Exp./Frt. 499.95*
GRA-500-1, table model cabinet for GR-500 (main illus.), 35 lbs., Exp./Frt. 39.95*
GRA-500-2, floor model cabinet for GR-500 (inset), 45 lbs., Exp./Frt. 89.95*
Kit GR-400, with cabinet, 104 lbs., Exp./Frt. 489.95*
Kit GR-300, with cabinet, 90 lbs., Exp./Frt. 449.95*
GRA-403-18, roll-around cart for GR-300, -400 & -500, 23 lbs., Exp./Frt. 21.95*
GRA-2000-1, optional digital clock module, 1 lb., mailable 29.95*
Christmas gift for your list

Give your scientist, engineer or student a gift he'll use all year long. Finger-sized keys and 8 bright ½" digits make it easier to use than pocket calculators. Cumulative memory and register exchanges virtually eliminate scratchpad work. Performs arithmetic plus trig and arc trig in degrees or radians, common and natural logs, powers of e, square roots, inverses, pi and exponential functions.

Kit IC-2100, 4 lbs., mailable119.95*

Unique New Heathkit AM/FM Digital Clock Radio

Our outstanding clock radio makes even sleepy Santas happy.

The electronic clock with snooze alarm features a gentle “beep” with adjustable volume. Or wake to the component-quality AM/FM radio. Standby batteries (not included) keep the clock on time during power interruptions. Kit GR-1075, 10 lbs., mailable 129.95*

Our new Heathkit Desktop Electronic Sliderule Solves Your Gift-Giving Problems

A bright idea for the pilot on your list—or for anyone who needs an emergency marine or marker light. It meets FAR 23.1401 and assembles easily in just one evening. For 12 VDC neg. ground. With clear lens, optional red and red/clear lenses available. Kit OL-1155, 3 lbs., mailable54.95*

New Heathkit Aircraft Strobe

Learning's Fun With Our New Heathkit “Electronics Workshop”

The JK-18A teaches kids electronics the easy learn-by-doing way. 35 exciting projects include light meter, sound meter, transistor radios. For safety, it's battery powered and requires no soldering.

Kit JK-18A, 10 lbs., mailable . . 34.95*

Heathkit Exhaust Analyzer Checks Your Car's Tune Up

Make everyone's Christmas whiter and cleaner—be sure your tune up is helping clean up the environment. Big 4½" meter reads relative combustion efficiency, air-fuel ratio and percentage carbon monoxide.

Kit CI-1080, 6 lbs., mailable61.95*

New Heathkit Electronic Clock/Timer for Car, Boat or Plane

A timely gift—a electronic clock and a 20-hour rally timer, both with quartz crystal accuracy. Bright ½"-tall digits dim automatically at night. 12 VDC, mounts on or under dash. Kit GC-1093, 2 lbs., mailable62.95*

Two Heathkit Electronic Clocks with Standby Power

Two beautiful gifts—the GC-1092A is a clock with a snooze alarm; the GC-1092D reads the time in 6 digits, the month and date in 4 digits. Both have standby power to keep the clock on time without the display even during temporary power interruptions. (Batteries not included.) Kit GC-1092A or D, 5 lbs., mailable each 82.95*
Exciting new Heathkit Christmas giving

new Heathkit
dual-trace DC-15MHz scope

It offers a lot more than just a low price

The Heathkit IO-4510 is your best 'scope buy for two good reasons—it does more and it costs less.

Time base sweep up to 100 nsec/cm.
There's always a reference baseline, even when there's no trigger signal. The time base can be precisely triggered at any point along the positive or negative slope of the trigger signal. In automatic mode, it triggers at the zero crossing point.

Modes of display. Either channel can be displayed as a function of time or both can be displayed together. In X-Y operation, channel 1 provides horizontal deflection and channel 2 provides vertical deflection. There are 22 calibrated time bases from 0.2 sec/cm to 0.1 µsec/cm. The sweep speed is continuously variable between switch positions. Any speed can be expanded five times by pulling out the control knob.

For easy calibration, a 1 volt peak-to-peak square wave is available on the front panel. The regulated supply operates from 100-280 volt AC power.

Kit IO-4510, 34 lbs., mailable 549.95*
Assembled SO-4510, factory wired & calibrated version of the IO-4510, 34 lbs., mailable 750.00*

New Low-Cost Heathkit Function Generator

A true function generator, not an oscillator, delivers sine, square and triangle waveforms from 0.1 Hz to 1 MHz. Short-proof output supplies 10 volts peak-to-peak into 50-ohm load. A calibrated step attenuator adjusts from 0-50 dB (10V to 30 mV) in 10 dB steps. A variable control provides up to 20 dB of additional attenuation at each step. Attenuator accuracy is ±1 dB; frequency accuracy is ±3%. Non-linearity of the triangle waveform is 5% max., symmetry is within 10%. Sine wave THD is 3% max. from 5-100k Hz. Square wave rise and fall times are 100 nsec max. 105-130 or 210-260 VAC. Kit IG-1271, 7 lbs., mailable 99.95*

Assembled SG-1271, factory wired & calibrated version of IG-1271, 7 lbs., mailable 140.00*

*Prices subject to change without notice.
New Heathkit SB-230 1 kW conduction-cooled linear
High-power match for the SB-104. Lowest cost conduction cooled linear on the market. 1200 watts PEP and 1000 watts CW from less than 100 watts input. It's also rated at 400 watts input for slow-scan TV and RTTY. And absolutely silent - no blowers, no fans.

New Heathkit SB-614 station monitor scope
How clean is your signal? The bright 1½ x 2½' screen helps keep your rig in peak condition. Reveals a wide variety of operating problems - nonlinearity, insufficient or excessive drive, carrier or sideband suppression problems, regeneration and key clicks. Monitors AM, SSB and CW signals up to 1 kW from 80 to 6 meters. Kit SB-614, 17 lbs., mailable

New Heathkit SB-230-2 Mobile mount
100 watts PEP and 100 watts CW from less than 100 watts input. It's also rated at 400 watts input for slow-scan TV and RTTY. And absolutely silent - no blowers, no fans.

New Heathkit SB-644 remote VFO
Designed exclusive for SB-104, it provides the ultimate in multi-mode operation with two crystal sockets for fixed frequencies. No modifications - just plug the VFO into the "104" and go - VFO frequency even reads out on the 104's digital display. Kit SB-644, 10 lbs., mailable

New Heathkit SB-604 station speaker
Response-tailored to SSB and designed to match the SB-104. Large enough to house HP-1144 AC power supply, Kit SB-604, 8 lbs., mailable

Optional features include VDC, so totally broadband.

For more information on the Heathkit SB-104 and other Heathkit ham radio equipment, contact your local Heathkit dealer or write to Heath Company's Dept. 20-12.

Heath Company, Dept. 20-12
Benton Harbor, Michigan 49022

Send for my FREE 1975 catalog today.

Please send my free 1975 Heathkit Catalog.

Please send the merchandise checked below. I've enclosed $_________ plus shipping, in payment.

- GR-500 Color TV
- GR-500-1 TV Cabinet
- GR-500-2 TV Cabinet
- GR-400 Color TV
- GR-400-3 Color TV
- GR-403-8 TV Cart
- GR-2000-1 Digital clock module
- IC-2100 Calculator
- CI-1080 Exhaust analyzer
- GR-1075 Digital clock radio
- GC-1093 Digital car clock/timer
- JK-18A Junior electronics workshop
- GC-1092A Digital clock with snooze alarm
- GC-1092D Digital clock with date display
- IO-510 Oscilloscope (kit)
- SG-510 Oscilloscope (assembled)
- IG-1271 Function generator (kit)
- SG-1271 Function generator (assembled)
- SB-104 Transceiver
- SB-104-1 Noise blanker
- SB-104-2 Mobile mount
- SB-104-3 CW crystal filter
- SB-230 1 kW linear
- SB-614 Monitor scope
- SB-634 Station monitor
- SB-644 Remote VFO
- HP-1144 AC power supply
- SB-604 Station speaker

Name:

Address:

City__________State____Zip__________

Mail order prices, FOB factory

Prices and specifications subject to change without notice.

CL-548

Circle 100 on reader service card

DECEMBER 1974
SPECTACULAR
25th ANNIVERSARY SALE!!
Incredible Savings Free Football

TEST EQUIPMENT

Compare these typical savings on RCA

Model WV 98C
Senior Volt/Ohmyst List $109.00
Our Price $88.50

Model WT-333A
Picture Tube Tester/Rejuvenator List $199.00
Our Price $162.50

Digital Meters
B&K 281 List $169.95
Our Price $144.50
B&K 282 List $199.95
Our Price $169.97
Leader LDM 850 List $359.95
Our Price $305.96

Full Line of All Popular Brand Test Equipment Drastically Reduced

EICO B&K SENCORE LEADER RCA HICKOK

1000's of Name Brand Items. Check These Typical Values.

SERVICE AIDS
Castle Mk V Master Subber $144.50
Castle Mk IV A 47.00
Telematic MAP 3500 Transverter 37.95
Mura NH 45 2000 ohm VOM 7.95

PARTS
Sarkes Tarzian Tuner 3 for $15.00
IR-D004 Dual Diodes .20 for 5.00
IR-R170 2.5 AMPS .40 for 9.99
IR-Focus Rect 6500 PIV .10 for 8.00
Telematic CR 250 90° Color Booster 4 for 18.00
Workman FR/TV Universal Color De-boosting Kit 3 for 5.97
Thordarson Yokes
9Y4 (Philco equiv.) ea. 8.95
Y 105 (Universal equiv.) ea. 8.95
Y 130 (Zenith equiv.) ea. 8.95

TUBES (ICC/Servicemaster)
3A3 10 for $10.00 6JE6 10 for 22.00
3A72 10 for 9.80 17LZ8 10 for 9.50
6B4 10 for 19.50 2329 10 for 12.00
6CG7 10 for 7.20 3GY7 10 for 16.00
6D4W/6CL3 10 for 9.20 3HE7 10 for 18.00
6DE4M 10 for 9.50 6GH8 50 for 34.00

Complete inventory of ICC/Servicemaster and Raytheon tubes

FREE 48 pg Discount Catalog
FREE regulation football with every order of $100 or more accompanied by this ad

Minimum Order $50.00
Send Check or Money Order. Add $1.00 for Shipping and Insurance.

FORDHAM
Radio Supply Co., Inc.
558 Morris Ave., Bronx, N.Y. 10451 Tel. (212) 585-0330

Circle 82 on reader service card

try this

PENCIL IRON REPAIR

Has that small pencil iron fallen off of the workbench for the last time, its plastic socket container broken and the shell socket is exposed? If so, it probably looks like the “before” photo.

Don’t throw this pencil iron holder away. Take a tube of silicone rubber bath tub seal, which can be purchased at drug and hardware stores, and repair it. Remove the soldering iron tip and center the socket into the broken plastic piece. Pour or squirt the rubber cement around the socket. Level or bevel off the excess rubber silicone cement and insert retainer ring. See “after” photo. Let the mixture set up for twenty-four hours. You now have a new soldering iron holder that bounces when it is dropped upon the floor.—Homer L. Davidson

SILVERTONE COLOR SETS

When servicing many of these sets, you have to pull the chassis to adjust the reactance or color oscillator coils. The standard alignment tool is just too long.

To alleviate this problem, cut the plastic alignment tool in half. Shortened, it is easy to insert and saves broken coils and slugs.—Andrew M. Hejnar

NEW CB RULES ARE COMING

There are more channels being added to the CB band and some complications too. To keep up with the new FCC rulings and to find out how they affect you, don’t miss the January 1975 issue of Radio-Electronics. It goes on sale December 19.
AUDIO FEEDBACK CIRCUITS

(continued from page 87)

Both the boost and cut circuits are in the operational amplifier circuit and Equation 10 does apply. Converting R1, R3 and R1 mathematically from a "tee" to a "delta" configuration to facilitate analysis, will yield a corner boost frequency at f_{bb} and a corner cut frequency at f_{bc}. They are both equal to $1/2.628C5 (R1 + 2R4)$.

The intermediate settings of the control will yield intermediate amounts of treble boost and cut. As was the case with the bass control, the corner frequency is shifted away from the center frequency when less boost or cut is required at the upper ends of the band. The setting of the control will not affect the center or low frequency regions of the band.

The value of C5 was set at about 100-pF, so it would not load the input circuit excessively and yet be large enough not to be affected by stray capacitances in the circuit.

f_{bb} was chosen for about 16 dB of boost at 10,000 Hz. An approximate curve used to determine the corner frequency is shown in Fig. 9. At the maximum setting of the control, f_{bc} was approx. 1.5 kHz. Since R1 and C5 are already known, R, is calculated to be about 500,000 ohms.

R5 must be made as small as practical when compared to the reactance of C5 at the highest audio frequency that must be boosted. A 500,000-ohm linear center-tapped potentiometer was found to be satisfactory.

A low-gain amplifier or lower impedance bipolar transistor are frequently used in the feedback tone control circuit in place of the JFET. As these components cause the operational amplifier to differ radically from the ideal, the components must change from the calculated values to produce results similar to those outlined above. The circuit should be designed in the laboratory in this case. Since the function of each component has been detailed, the effects of changing a component is known and the design procedure does not have to be haphazard.

A complete tone control circuit has been drawn in Fig. 10 showing the bass and treble controls. The following factors affecting the various functions of the control should be noted.

The amount of boost and cut produced by the treble control is affected by R4 and C5. Make either component larger if more treble action is required. To a lesser degree, increasing R1 increases the amount of treble boost, while increasing R3 affects the size of the treble cut.

As for the bass circuit, C3 and R3 must be increased to further emphasize the boost while C2 and R1 must be increased to accentuate the cut.

R-E MOS SHIFT REGISTERS

(continued from page 62)

Correlators, and Fourier series calculators. And, as a final and obvious application, shift registers are being used to replace magnetic discs as medium-speed, high-density storage systems for computers. These are often called silicon disc files.

Getting started

If you are new to shift registers, pick up a few of the bargain surplus units and try experimenting with them. You'll get best results if you stick with the static units at first and avoid the older metal gate ±15 volt circuits as they are hard to interface. Remember to pick up several units at once if you are buying seconds. Above all, have the exact data sheet on hand, and if possible, some application notes as well. Be sure to have your power supplies well decoupled and regulated and make sure your clock lines and drivers exactly meet the specified requirements. Keep your clock pulse widths down around the minimum recommended values to minimize internal heating and try to derive the clock widths and spacing from digital logic and timing rather than using adjustable monostable delays. R-E
Free '75 Catalog

Fast...Flameless Concentrated Heat up to 1000°F.

HEAT-BLO GUN

The Heat Gun of a Thousand Uses
A model for every need ranging from 150° to 1000°F., without an open flame. Safe and easy to operate...use wherever concentrated heat is needed. Fingertip switch control permits operator to aim heat right at desired point. Temperature can be varied by air intake adjustment. Also blows cold air when desired.

MEETS DOZENS OF NEEDS in laboratory and on production lines...softens plastics...dries paint, glue or photo prints...thaws...defrosts...heat seals...does blister packs...preheats for welding or soldering...desoldering...excellent for softening, repairing and retexuring molded plastics...shrinks vinyl to fit upholstery.

Sturdy adjustable metal stand permits positioning on bench or machine, on assembly lines, etc.

MILWAUKEE LOCK & MFG. CO.
5078 N. 37TH STREET - MILWAUKEE, WIS. 53209

Circle 80 on reader service card

4½ digit multimeter to go
battery and line operated

Distributed nationally. Call your local office for a demonstration.

AL (205) 533-5896
AZ (602) 994-9519
CA (909) 733-9000
CA (714) 549-1163
CO (303) 449-5294
CT (203) 525-7647
FL (813) 294-5815
GA (404) 457-7117
HI (808) 292-6286
IL (312) 593-0292
IN (317) 263-9827
IA (617) 273-0198
MD (301) 792-8661
MI (313) 482-1229
MN (612) 781-1611
MO (816) 737-0066
MO (314) 731-2321
NC (919) 787-5818
NJ (215) 925-8711
NJ (201) 863-5660
NY (212) 265-6471
NY (315) 446-0220
NY (516) 822-3500
GA (216) 725-4565
OH (613) 298-3033
OR (503) 238-0011
TX (214) 244-4127
TX (713) 461-4487
UT (801) 268-3181
WA (206) 763-2310
CA (808) 317-9874
CA (514) 731-9328

Circle 81 on reader service card

MINICOMPUTER MODIFICATIONS
(continued from page 85)

is executed by the computer. The second input port on the Input Multiplexer Board will not be used.

Data is now input to the computer on eight input lines using either a three-state or open-collector bus and data is strobed on the bus from the selected source. Since the multiplexer will switch to input data with every input instruction, we still need some method of selecting the data source. Instead of using the output port and decoders we can use the IN signal and decode the MMM bits in the input instructions, 01 00M MM1. This gives the capability of up to eight input ports on the Mark-8. We will need eight gates on each input port, one per bit of information and these should be either SN7403 types for the open collector bus or DM8095 types for the three state bus. The additional circuitry is shown (Fig. 2 and 3) and the Input Port Code and IN signal are Nored together to activate the selected eight bit input port. An example of each type of bus is also shown in Fig. 3.

Fig. 3

In both of the bus examples we have used INP3 to activate the selected device. The open-collector bus used SN7403 gates and since these will invert the data, we invert it again before it is input to the computer. Pull-up resistors must be used and the IN and Input Port Code 3 were Nored together using an SN7402 quad two input nor chip. The three-state bus example used DM8095 three-state gates where the nor gate is included on-chip just for this gating purpose. IN and Input Port Code 3 are applied directly to the DM8095. These gates do not invert the data and pull-up resistors are not needed.

We must modify the Input Multiplexer Board slightly so that the eight input lines of Input Port 0 are activated on each input instruction. Input port 0 now becomes the bus input and input port 1 is not used. Input ports zero through seven are now constructed with external gates and use the IN and Input Port Code to select the set of gates to input data. Remember, port 1 is no longer on the board.

To modify the multiplexer, remove IC-7, the SN7442 decoder, and using the IC solder pads, connect a jumper from hole 1 to hole 8 (ground), and connect another jumper from hole 2 to hole 16 (+5 volts). This will disable the input port 1 lines and cause the multiplexer to switch to the input port 0 lines whenever an input instruction is executed.
BROOKS RADIO & TV CORP., 487 Columbus Ave., New York, N.Y. 10024
Circle 78 on reader service card

BROOKS FOR PROFITABLE SALES

FREE $1 BUY WITH EVERY 10 YOU ORDER

Only applies to "$1" Buys

FREE GIFT WITH EVERY ORDER

CANADIANS: Ordering is easy—we do the paperwork—try a small order

SHANNON MYLAR RECORDING TAPE

- 3" - CASSIDO E-59
- 3½" - 600' - 76
- 5" - 900' - .82
- 7" - 1200' - 1.89
- 8" - 1800' - 1.87
- 9" - 2400' - 1.99
- 10" - 3600' - 3.49

SARKES TARZIAN TUNER 41mc

Latest Compact Model good for all 41 mc TV's. BRAND NEW—

Best Tuner “SARKES TARZIAN” gives the finest in picture, sound, detail and stability during short wave broadcast, and brings your TV Receiver up-to-date.

Complete with Tubes

WESTINGHOUSE ALL TRANSISTOR HOME/Office MESSAGE CENTER

Leaves messages for other for replay... Built in speaker/ microphone for talk-in convenience... Records up to 3 messages at a time... When the signal shows when a message is waiting. Control adjusts playback... Volume without affecting recording volume... Capstan Drive.

BRAND NEW SOLD AS IS

MAYBE YOU HAVE HAD THE SAME EXPERIENCE.

When you buy a TV, you get an Instruction Book. But when you buy a Tube, you get a box! If you are a TV-repairman, you know this: The best way to know a TV is to have it in your shop.

This is why we have put together this special offer: We are giving you a free copy of "The Great Tube Book of 1952." It contains all the information you need to know about the new TV Tubes. It includes a quick reference guide for making TV repairs.

READER

This huge book contains over 350 pages of valuable TV Tube information. It is packed with facts and figures that every TV repairman should know.

SPECIAL DISCOUNT PRICES

- $28.95
- $32.95
- $38.95

BROOKS COLOR TUNER

- 795
- 795
- 795

SARKES TARZIAN TUNER 41mc

Latest Compact Model good for all 41 mc TV's. BRAND NEW—

Best Tuner “SARKES TARZIAN” gives the finest in picture, sound, detail and stability during short wave broadcast, and brings your TV Receiver up-to-date.

Complete with Tubes

KLEPS “CLOVER” TEST PROBS

- 75¢
- 75¢
- 75¢

SHANNON MYLAR RECORDING TAPE

- 3" - CASSIDO E-59
- 3½" - 600' - 76
- 5" - 900' - .82
- 7" - 1200' - 1.89
- 8" - 1800' - 1.87
- 9" - 2400' - 1.99
- 10" - 3600' - 3.49

SARKES TARZIAN TUNER 41mc

Latest Compact Model good for all 41 mc TV's. BRAND NEW—

Best Tuner “SARKES TARZIAN” gives the finest in picture, sound, detail and stability during short wave broadcast, and brings your TV Receiver up-to-date.

Complete with Tubes

KLEPS “CLOVER” TEST PROBS

- 75¢
- 75¢
- 75¢

SHANNON MYLAR RECORDING TAPE

- 3" - CASSIDO E-59
- 3½" - 600' - 76
- 5" - 900' - .82
- 7" - 1200' - 1.89
- 8" - 1800' - 1.87
- 9" - 2400' - 1.99
- 10" - 3600' - 3.49

SARKES TARZIAN TUNER 41mc

Latest Compact Model good for all 41 mc TV's. BRAND NEW—

Best Tuner “SARKES TARZIAN” gives the finest in picture, sound, detail and stability during short wave broadcast, and brings your TV Receiver up-to-date.

Complete with Tubes

KLEPS “CLOVER” TEST PROBS

- 75¢
- 75¢
- 75¢
CLASSIFIED COMMERCIAL RATE (for firms or individuals offering commercial products or services), $1.15 per word...minimum 10 words.
NONCLASSIFIC RATE (for individuals who want to sell or buy personal items) 70c per word...no minimum.

FIRST WORD AND NAME set in bold caps at no extra charge. Additional bold face at 10c per word. Payment must accompany all ads except those placed by accredited advertising agencies. 10% discount on 12 consecutive insertions, if paid in advance. Mailing or objectionable ads not accepted. Copy to be in our hands on the 28th of the third month preceding the date of the issue (i.e., August issue closes May 26). When normal closing date falls on Saturday, Sunday or a holiday, issue closes on preceding working day.

WANTED
"WORKING" TV typewriter. Sand price, Polaroid, BOB, 8556 Hillside, Hollywood, CA 90009

QUICK cash . . . for electronic equipment, components, unused tubes. Send list now! BARRY, 512 Broadway, New York, NY 10012, 212 Walker 5-7000

PLANS & KITS
CONVERT any television to sensitive, bright-screen oscilloscope. Only minor changes required. No electronic experience necessary. Illustrated plans, $2.00, SANDERS, Dept. A-25, Box 92102, Houston, TX 77010

FREE catalog. Most unusual electronic kits available. Music accessories, surf, wind, synthesizer, computer, crystals, many others. PAIA ELECTRONICS, Box B14359, Oklahoma City, OK 73114

ELECTRONIC organ, kits, keyboards and many components, independent and divided tone generators. All diode keying, IC circuitry. Supply your Artisan Organ Co. for catalog. DORON PRODUCTS, Dept. B, 5872 Amapola Dr., San Jose, CA 95129

AUDIO processing circuits . . . designs, kits, units. Laboratory tested designs for hobbyist through professional use—limiters, compressors, AGC’s, equalizers, mixers, preamps, and more. Send now! Complete catalog for $1.00 (refundable)—CIRCUIT RESEARCH, 3920 E. Indian School Road, Phoenix, AZ 85016

BUSINESS OPPORTUNITIES
FREE giant below-wholesale catalog featuring national & imported gift items. Unique opportunity of finding beautiful & exotic gifts, novelties, toys. Thousand others. Rush 25c for postage, JAAFI INDUSTRIES, 9907-RE, Brookshire, Downey, CA 90240

OWN YOUR OWN PICTURE BUSINESS
With Lakeside Industries re-building equipment you can rebuild any picture tube now.

For complete details send name, address, Zip code to
LAKE SIDE INDUSTRIES
4320 W. Fullerton Ave.,
Chicago, Ill. 60631
Phone: 312-342-3298

ELECTRONIC ENGINEERING & INSTRUCTION
ELECTRONICS book discounts. Save! Free selected, reviewed list. T/DOC, Box 340, Centerville, VA 22020

SELF-STUDY CB radio repair course. There's money to be made repairing CB radios. This easy-to-learn course can prepare you for a career in electronics enabling you to earn as much as $16.00 an HBR. Fly your spare time. For more information write: CB RADIOTECH REPAIR COURSE, Dept. 11-R, 531 North Ann Arbor, Oklahoma City, OK 73122

TV tuner repairs—Complete course details, 12 repair tricks. Many plans. Two lessons, all for $3. Refundable, FRANK BOECK, Box 3260 (Enterprise), Redding, CA 96091.

EDUCATION & INSTRUCTION
DEGREE program in Electronics Engineering. Our 29th year! Free literature. COOK'S INSTITUTE, Dept. 14, Box 20245, Jackson, MS 39209.

SHORTCUT to success: Highly effective, profitable short courses (75 courses). Study at home. Diploma awarded. Our 29th year! Free literature, OIEE—Box 20245, Jackson, MS 39209.

FOR SALE
JAPANESE transistors, wholesale prices, free catalog, WEST PACIFIC ELECTRONICS, Box 25637, W. Los Angeles, CA 90025.

LEARN design techniques. Electronics Monthly Newsletter. Digital, linear construction projects, design theory and procedures. Sample copy $1.00. VALLEY WEST, Box 2119-A, Sunnyvale, CA 94087

"INSTRUCTION Manuals—Thousands available for test equipment, military electronics. Send $1.00 (refundable first order) for list. A service of TUCKER ELECTRONICS, Box 1050, Garland, TX 75040."

INCREDIBLE prices on integrated circuits thousands on hand. Gates 20c: 7447 98c; 7475 65c; 7490 75c, many more. Free catalog. JEFF ROSE, 3015 Eaton, Cleveland, OH 44112

CANADIANS—We stock a broad line of electronic parts, including most solid-state devices—Send for free flyer, DARTEK ELECTRONICS, Dept. R, Box 2460, Dartmouth, Nova Scotia
December Specials

10% Off on Orders Over $25.00

MEMORIES
- **1101** 256 bit RAM MOS 1.75
- **1102** 1024 bit RAM MOS 4.95
- **5260** 1024 bit RAM Low Power 3.95
- **7450** 64 bit RAM TTL 2.75
- **8223** Programmable ROM 4.95

LED & OPTO ISOLATORS
- **MVI 4** 12 DIP 4 func fix elec 3.95
- **5001** Same as MVI 4001 exc btr 2.95
- **5005** 12 DIP 4 func fix elec 8.45
- **MM 725** 8 DIP 4 dual ch & dec 2.79
- **MM 738** 8 DIP 5 dual ch & dec 4.95
- **MM 739** 9 DIP 4 func (45 degree) 7.95
- **MM 3311** 24 pin BCD decoder driver 6.95
- **MM 3312** 24 pin BCD decoder driver max 6.95
- **MM 3313** 24 pin BCD decoder driver 6.95
- **MM 3316** 40 pin alarm dec 6.95

LINEAR CIRCUITS
- **300V** 74 V reg (super 723) TO-5 7.9
- **301** Hi Perf mDIP TO-5 3.2
- **302** Volt follower mDIP 1.3
- **304** 3N56 V Reg mDIP 3.2
- **305** Op Amp (super 741) TO-5 1.10
- **308** Micro Pre Op Amp mDIP TO-5 4.75
- **309** 85 V/4 V regulator TO-5 1.65
- **310** 74 V. Op Amp TO-5 1.59
- **311** Hi perf V Comp mDIP TO-5 1.09
- **312** Hi Speed Op Amp mDIP TO-5 1.29
- **316** 3N9 Reg 5, 2, 16 TO-5 1.75
- **317** Quad Op Amp mDIP 1.69
- **318** Quad Comparator mDIP 1.69

HIGH SPEED TTL
- **7400** 33 74LS13 33 74HS19 39
- **7401** 33 74HC23 33 74H60 39
- **7402** 33 74HC171 33 74H164 39
- **7403** 33 74HC141 33 74H165 39
- **7404** 33 74HC167 33 74H166 39
- **7406** 10 74HC405 10 74H172 49
- **7407** 12 74HC12 12 7474 49
- **7408** 11 74HC25 11 74H253 49
- **7409** 11 74HC253 11 74H254 49
- **7410** 11 74HC254 11 74H255 49
- **7411** 11 74HC255 11 74H256 49
- **7412** 11 74HC256 11 74H257 49
- **7413** 11 74HC257 11 74H258 49
- **7414** 11 74HC258 11 74H259 49
- **7415** 11 74HC259 11 74H260 49

CMOS
- **74CS01** 39 74CS74 1.15 74CS162 3.25
- **74CS02** 55 74CS76 1.70 74CS163 3.25
- **74CS03** 75 74CS107 1.30 74CS164 3.50
- **74CS04** 75 74CS151 2.90 74CS173 2.90
- **74CS10** 65 74CS154 3.50 74CS195 3.00
- **74CS12** 65 74CS157 3.00 74CS257 6.00
- **74CS13** 42 74CS165 2.15 74CS251 6.00
- **74CS14** 2.15 74CS163 1.20 80C97 1.50
- **74CS15** 1.55 74CS161 1.25

4000 SERIES - RCA EQUIVALENT
- **CD 4001** .55 CD4013 120 CD4002 3.55
- **CD 4004** .55 CD4016 125 CD4005 4.55
- **CD 4009** .85 CD4017 125 CD4007 4.55
- **CD 4010** .85 CD4019 135 CD4030 3.95
- **CD 4012** .55 CD4022 125 CD4035 2.85

DTL
- **930** 5 17 937 5 17 949 5 17
- **931** 17 944 17 962 17
- **933** 16 946 16 963 17

CMOS DATA

INTERNATIONAL ELECTRONICS UNLIMITED

102
INTERNATIONAL ELECTRONICS UNLIMITED

LOGIC PROBE KIT
Checks TTL and DTL logic states in circuit or isolated
Dual slope memory for pulse detection
Ten ramp speed capability
Internal 5V regulator
Kit is complete with 5 IC's, FET, PC Board & all necessary components, case, probe, instructions & logic chart
$19.95

CLOCK KITS
12-hour selection
Long life, large LED displays

6 DIGIT
- **MMS313**: 6-MAN 1's (270°), trans, diode, perf. board and necessary components except pwr transformer and case
 $29.95
- **MMS314**: 4-MAN 1's same except 4 DIGIT
 $26.95

TRANSISTORS

<table>
<thead>
<tr>
<th>DE Value</th>
<th>FUNCTION</th>
<th>CROSS REF</th>
<th>S K</th>
<th>MHP</th>
<th>VECD</th>
<th>VCEO</th>
</tr>
</thead>
<tbody>
<tr>
<td>40A80</td>
<td>PWR AMP AUDIO</td>
<td>3036</td>
<td>26.100</td>
<td>80</td>
<td>80</td>
<td>5.0</td>
</tr>
<tr>
<td>40A81</td>
<td>PWR AMP AUDIO</td>
<td>3037</td>
<td>70.712</td>
<td>95</td>
<td>95</td>
<td>7.0</td>
</tr>
<tr>
<td>2N3318</td>
<td>PWR AMP AUDIO</td>
<td>3038</td>
<td>70.764</td>
<td>76.900</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>2N5175</td>
<td>PWR AMP AUDIO</td>
<td>3036</td>
<td>50.150</td>
<td>60</td>
<td>80</td>
<td>4.0</td>
</tr>
</tbody>
</table>

RF PWR AMP
- **2N5220**
 - 3812 52002 30 130
 - 3812 52010 40 2500 50 50 75 50 2.0 1.0 10 50 TO 2.5
- **2N5221**
 - 3812 52010 40 2500 50 50 75 50 2.0 1.0 10 50 TO 2.5

RF DRIVER
- **2N5679**
 - 35231 40 150
- **2N5681**
 - 35245 40 150

AUDIO DRIVER
- **40091**
 - 3024 52002 70 2500 95
- **40091**
 - 3025 52002 70 2500 95
- **40091**
 - 27100 65 50 5.0 5.0 5.0 5.0 1.0 1.0 10 50 TO 2.5
- **2N5671**
 - 30120 50 250 50 50 75 50 2.0 1.0 10 50 TO 2.5

GEN PUP AMP
- **2N5929**
 - 40 120 65 120 7.0 1.0
- **2N5929**
 - 3029 300 50 300 50 60 5.0 5.0 1.0 10 50 TO 2.5
- **2N2215A**
 - 3024 53001 75 375 40 75 6.0 8.0
- **2N2215A**
 - 3024 53001 75 375 40 75 6.0 8.0

HF GEN PUP
- **2N5953**
 - 3019 50 50 100 100 30 40 4.0 4.0
- **40094**
 - 3024 52002 70 2500 95
- **40094**
 - 3025 52002 70 2500 95
- **40091**
 - 27100 65 50 5.0 5.0 5.0 5.0 1.0 1.0 10 50 TO 2.5
- **2N5179**
 - 3029 709 25 250 50 50 75 50 2.0 1.0 10 50 TO 2.5

RESISTORS

<table>
<thead>
<tr>
<th>OHM</th>
<th>%</th>
<th>TYPE</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>5%</td>
<td>1w</td>
<td>Corning</td>
</tr>
<tr>
<td>15</td>
<td>5%</td>
<td>25w</td>
<td>Omhite</td>
</tr>
<tr>
<td>28.7</td>
<td>1%</td>
<td>1w</td>
<td>Corning</td>
</tr>
<tr>
<td>75</td>
<td>5%</td>
<td>8w</td>
<td>Omhite</td>
</tr>
<tr>
<td>122</td>
<td>1%</td>
<td>1w</td>
<td>Corning</td>
</tr>
<tr>
<td>200</td>
<td>5%</td>
<td>5w</td>
<td>Int. Tect</td>
</tr>
<tr>
<td>330</td>
<td>5%</td>
<td>5w</td>
<td>Stackpole</td>
</tr>
<tr>
<td>390</td>
<td>2%</td>
<td>5w</td>
<td>Allen Bradley</td>
</tr>
<tr>
<td>450</td>
<td>5%</td>
<td>5w</td>
<td>Stackpole</td>
</tr>
<tr>
<td>500</td>
<td>5%</td>
<td>5w</td>
<td>Stackpole</td>
</tr>
<tr>
<td>620</td>
<td>5%</td>
<td>5w</td>
<td>Stackpole</td>
</tr>
<tr>
<td>681</td>
<td>1%</td>
<td>1w</td>
<td>Date</td>
</tr>
<tr>
<td>750</td>
<td>1%</td>
<td>1w</td>
<td>Date</td>
</tr>
<tr>
<td>1</td>
<td>Kohm</td>
<td>1%</td>
<td>Date</td>
</tr>
<tr>
<td>5</td>
<td>Kohm</td>
<td>1%</td>
<td>Date</td>
</tr>
<tr>
<td>1.2</td>
<td>Kohm</td>
<td>1%</td>
<td>Int. Rect.</td>
</tr>
<tr>
<td>1.6</td>
<td>Kohm</td>
<td>5%</td>
<td>Stackpole</td>
</tr>
<tr>
<td>2</td>
<td>Kohm</td>
<td>1%</td>
<td>Date</td>
</tr>
<tr>
<td>2.15</td>
<td>Kohm</td>
<td>5%</td>
<td>Date</td>
</tr>
<tr>
<td>2.4</td>
<td>Kohm</td>
<td>5%</td>
<td>Int. Rect.</td>
</tr>
<tr>
<td>2.5</td>
<td>Kohm</td>
<td>5%</td>
<td>Date</td>
</tr>
<tr>
<td>2.7</td>
<td>Kohm</td>
<td>5%</td>
<td>Date</td>
</tr>
<tr>
<td>3.01</td>
<td>Kohm</td>
<td>1%</td>
<td>Date</td>
</tr>
<tr>
<td>4</td>
<td>Kohm</td>
<td>1%</td>
<td>Date</td>
</tr>
<tr>
<td>4.7</td>
<td>Kohm</td>
<td>1%</td>
<td>Date</td>
</tr>
<tr>
<td>5.6</td>
<td>Kohm</td>
<td>1%</td>
<td>Date</td>
</tr>
<tr>
<td>7.5</td>
<td>Kohm</td>
<td>5%</td>
<td>Date</td>
</tr>
<tr>
<td>8.25</td>
<td>Kohm</td>
<td>1%</td>
<td>Date</td>
</tr>
<tr>
<td>9.1</td>
<td>Kohm</td>
<td>1%</td>
<td>Date</td>
</tr>
<tr>
<td>10</td>
<td>Kohm</td>
<td>1%</td>
<td>Date</td>
</tr>
<tr>
<td>10</td>
<td>Kohm</td>
<td>1%</td>
<td>Date</td>
</tr>
<tr>
<td>15</td>
<td>Kohm</td>
<td>10%</td>
<td>Stackpole</td>
</tr>
<tr>
<td>17.4</td>
<td>Kohm</td>
<td>5%</td>
<td>Date</td>
</tr>
<tr>
<td>20</td>
<td>Kohm</td>
<td>1%</td>
<td>Date</td>
</tr>
<tr>
<td>23.7</td>
<td>Kohm</td>
<td>2%</td>
<td>Date</td>
</tr>
<tr>
<td>38</td>
<td>Kohm</td>
<td>1%</td>
<td>Date</td>
</tr>
<tr>
<td>59</td>
<td>Kohm</td>
<td>0.1%</td>
<td>Date</td>
</tr>
<tr>
<td>75</td>
<td>Kohm</td>
<td>1%</td>
<td>Date</td>
</tr>
<tr>
<td>100</td>
<td>Kohm</td>
<td>1%</td>
<td>Date</td>
</tr>
<tr>
<td>120</td>
<td>Kohm</td>
<td>1%</td>
<td>Date</td>
</tr>
<tr>
<td>130</td>
<td>Kohm</td>
<td>1%</td>
<td>Date</td>
</tr>
</tbody>
</table>

CAPACITORS

<table>
<thead>
<tr>
<th>VOLT</th>
<th>MFD</th>
<th>TYPE</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>100V</td>
<td>5%</td>
<td>Skiptec mylar axial</td>
<td>5.0</td>
</tr>
<tr>
<td>100V</td>
<td>10%</td>
<td>G.E. mylar axial</td>
<td>5.0</td>
</tr>
<tr>
<td>200V</td>
<td>20%</td>
<td>Aerovox paper axial</td>
<td>5.0</td>
</tr>
<tr>
<td>600V</td>
<td>1%</td>
<td>Mallory mylar axial</td>
<td>15</td>
</tr>
<tr>
<td>400V</td>
<td>3%</td>
<td>Aerovox paper axial</td>
<td>20</td>
</tr>
<tr>
<td>400V</td>
<td>1%</td>
<td>Mallory mylar axial</td>
<td>15</td>
</tr>
<tr>
<td>500V</td>
<td>1%</td>
<td>Mallory mylar axial</td>
<td>25</td>
</tr>
<tr>
<td>680V</td>
<td>5%</td>
<td>Mallory mylar axial</td>
<td>35</td>
</tr>
<tr>
<td>680V</td>
<td>5%</td>
<td>Mallory mylar axial</td>
<td>20</td>
</tr>
<tr>
<td>750V</td>
<td>6%</td>
<td>Mallory mylar axial</td>
<td>20</td>
</tr>
<tr>
<td>750V</td>
<td>6%</td>
<td>Mallory mylar axial</td>
<td>25</td>
</tr>
<tr>
<td>750V</td>
<td>6%</td>
<td>Mallory mylar axial</td>
<td>20</td>
</tr>
<tr>
<td>750V</td>
<td>6%</td>
<td>Mallory mylar axial</td>
<td>25</td>
</tr>
<tr>
<td>750V</td>
<td>6%</td>
<td>Mallory mylar axial</td>
<td>20</td>
</tr>
<tr>
<td>750V</td>
<td>6%</td>
<td>Mallory mylar axial</td>
<td>25</td>
</tr>
<tr>
<td>750V</td>
<td>6%</td>
<td>Mallory mylar axial</td>
<td>20</td>
</tr>
<tr>
<td>750V</td>
<td>6%</td>
<td>Mallory mylar axial</td>
<td>25</td>
</tr>
<tr>
<td>750V</td>
<td>6%</td>
<td>Mallory mylar axial</td>
<td>20</td>
</tr>
<tr>
<td>750V</td>
<td>6%</td>
<td>Mallory mylar axial</td>
<td>25</td>
</tr>
<tr>
<td>750V</td>
<td>6%</td>
<td>Mallory mylar axial</td>
<td>20</td>
</tr>
<tr>
<td>750V</td>
<td>6%</td>
<td>Mallory mylar axial</td>
<td>25</td>
</tr>
<tr>
<td>750V</td>
<td>6%</td>
<td>Mallory mylar axial</td>
<td>20</td>
</tr>
<tr>
<td>750V</td>
<td>6%</td>
<td>Mallory mylar axial</td>
<td>25</td>
</tr>
</tbody>
</table>

SWITCHES

<table>
<thead>
<tr>
<th>TYPE</th>
<th>VALUE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPST</td>
<td>1A</td>
<td>Momentum Relay P.B.-A.H. & M.</td>
</tr>
<tr>
<td>SPST</td>
<td>15A</td>
<td>Micro switch Flat leaf</td>
</tr>
<tr>
<td>DPST</td>
<td>5A</td>
<td>Micro switch Pin plunger</td>
</tr>
<tr>
<td>DSST</td>
<td>10A</td>
<td>Micro switch Mini Pin Plunger</td>
</tr>
<tr>
<td>DPST</td>
<td>10A</td>
<td>Pin plunger</td>
</tr>
<tr>
<td>DPT</td>
<td>5A</td>
<td>Slide Stack pole</td>
</tr>
</tbody>
</table>

MISCELLANEOUS

1 ohm 25w 5A Memcor wire wound pot. 1.05
100 ohm 10w Bourns EZ trim WV 30 turn pot. 1.50
10 Kohm 1w Bourns EZ trim WV 30 turn pot. 1.50
MDA 962 Motorola fullwave bridge 10A 100V 4.05
AEC X 43 1 TEC selenium Rectifier 0.75
In 29904 Motorola 33V 1w zener diode 1.95
LA 2751 Ferranti Thermistor 550 100 75
6113 Elwood Thermal 75
Panel Light P.T. red DSST SW W/ Mount Tec 75
Panel Light red Neon 4-3/4 2 Bulbs Snap Mount 75
4 Terminal chassis Count Terminal Strip 10 25
Chassis Mount Cable Clamp 1/2" Nylon 15 25

10% OFF ON ORDERS OVER $25.00

 transgender

DECEMBER 1974

Circle 87 on reader service card

103
LISTEN TO
Spectacular
4-Channel Sound!
EXPAND YOUR STEREO TO QUADRIPHONIC HI-FI
- BUILD the VISTA Full Logic "SQ" Decoder.

KIT SQ-1
ONLY $3750
Shipped Prepaid in USA & CANADA N.Y. State and Tax

PHOTOLUMINE CORPORATION
118 East 28th STREET, New York, N.Y. 10016

COLUMBIA 4 CHANNEL SQ
Solid state SQ 4 channel adapter, 2amps built in. Decodes 4 channel or synthesizes 4 channel...$350.00
AM-FM RADIO $15.00
For console installation, w/face plate, no knobs.
Stereo amps for tape or turntable playback...$15.00
Pair of matching speakers w/WMFRS for above...$5.00

PHOTO STROBE
For use with most photographic cameras. With nicad battery and built-in charger. Never buy flash cubes again... $9.95

CALCULATOR CHASSIS
Fully assembled pocket calculator chassis with calculator chip. Uses LED readouts, not included...$5.00

POWER AMP XMR 380 WATT
115 Volt input, 64VCT 6 amp output. $119.95 Each, 2/$225, 5/$350

BOOKSHELF SPEAKERS
Completely finished, 9x12x5 in. inches. 16 ohm, with extension cord...$15/pair
All above material plus shipping, 96 page catalog free.
JOHN MESHNA JR. PO Box 62
E. Lynn Mass. 01904

CT 5001 CALCULATOR CHIP...$3.95
Close out sale while they last, w/data

8270 DIP 4-BIT SHIFT REGISTER
4-Bit shift Register. parallel and serial input and output;data entry is synchronized with clock pulse.
$1.50

CARBON RESISTORS
Carbon Resistors...5 Watt full range. (All values in stock. 10 per value min. amount quantities). For info. $1.45

FAIRCHILD "TRIMPOTS"
a. Only $0.89 10 for $5.00
Branded new 20 turn precision trimmers. These are prime parts mostly in individually packed in sealed envelopes. These values in stock: 50 $0.00 1 K $75 5 K $16

POTTER BRUMFIELD
Type KHP Relay 4 PDT 3A Contacts. 12 VDC (600 ma) coil $1.75 10/$15.75

DIODE ARRAY
10 L6214 Silicon Signal Diodes in One package. 10 leads some with pin connections. ea. $.25 10 for $2.25

IC SOCKETS
PBC Mounting
a pin-$.07
8 pin $.35
14 pin $.35

SEND FOR FREE FLYER!
C.O.D. PHONE ORDERS
ACCEPTED-$10 MINIMUM
All parts surplus and tested, leads plated with gold or silver. Discretes 50 or more are shipped prepaid; smaller orders add 10% California residents add Sales Tax.
C.O.D. shipped within 24 hours. PO Box 41127
Sacramento, C.A. 95811
(916) 334-2161

Circle 88 on reader service card
Circle 89 on reader service card
Circle 90 on reader service card

4011 $.18
4012 .23
4013 .23
4014 .23
4015 .23
4016 .23
4017 .23
4018 .23
4019 .23
4020 .23
4021 .23
4022 .23
4023 .23
4024 .23
4025 .23
4026 .23
4027 .23
4028 .23
4029 .23
4030 .23
4031 .23
4032 .23
4033 .23
4034 .23
4035 .23
4036 .23
4037 .23
4038 .23
4039 .23
4040 .23
4041 .23
4042 .23
4043 .23
4044 .23
4045 .23
4046 .23
4047 .23
4048 .23
4049 .23
4050 .23
4051 .23
4052 .23
4053 .23
4054 .23
4055 .23
4056 .23
4057 .23
4058 .23
4059 .23
4060 .23
4061 .23
4062 .23
4063 .23
4064 .23
4065 .23
4066 .23
4067 .23
4068 .23
4069 .23
4070 .23
4071 .23
4072 .23
4073 .23
4074 .23
4075 .23
4076 .23
4077 .23
4078 .23
4079 .23
4080 .23
4081 .23
4082 .23
4083 .23
4084 .23
4085 .23
4086 .23
4087 .23
4088 .23
4089 .23
4090 .23
4091 .23
4092 .23
4093 .23
4094 .23
4095 .23
4096 .23
4097 .23
4098 .23
4099 .23
4100 .23

Circle 91 on reader service card

Christmas SPECIALS
Digital LCD Watch
Liquid Crystal Display
Constant on-Off Switch: Proof uses Field effect display
Accuracy to 1 Minute a Year
5 Year Warranty $149.95ea
Unbreakable LCD, 99.999% California Res. Add 6% Tax
CALCULATORS
5Ml=4 Function 9V
6 Month War. Hard Case
SLBM-4 Function Memory $35.00
% Add on Disc.-Tilt Lens
5m-20 Function Memory $39.95
Constant 9V-1.9Yr.
TIME-TEMP Display
6 digit LED Display
Liquid Crystal Temp. Display
115 Volt 1-Yr. War. $39.95
-Kit 2/$25.95
Shift Registers
8 pin DIL .22
LM5004 dual 25 bit DSR $2.00
11 pin DIL .29
LM5044 dual 16 bit DDR $2.00
14 pin DIL .31
LM5014 dual 16 bit DDR $2.00
16 pin DIL .39
LM5018 dual 16 bit DDR $2.00
20 pin DIL .46
LM5024 dual 16 bit DDR $2.00
28 pin DIL .51
LM5010 dual 16 bit DDR $2.00
32 pin DIL .67
LM5018 dual 16 bit DDR $2.00
50 pin DIL .89
LM5020 dual 16 bit DDR $2.00
Satisfaction Guaranteed. All items 100% Tested
$5.45 Order - No Charge
California Residents - Add 6% Sales Tax
Wholesale Outlets - Write for Special Discounts
Write for Catalog Data Sheets...200 each

LINEAR
LM300 $.85
LM300H/N 3/1.00
LM303H $.85
LM304H Negative Volt Reg 1.10
LM305H $ 1.00
LM307H/N 1.20
LM308H Micro Power Op Amp 1.15
LM309K 5 Volt Regulator/Amp 1.25
LM310H Improved Vom/Amp 1.10
LM311H/1 Hi-Speed Op Amp 2.00
LM312N To 3 N-Ch Regs 1.15
LM324N Quad 741 Op Amp 1.90
LM339 Quad Comparator 2.35
LM340K Pos. Temperature Monitor
LM370N 6 A - C Shunt Amp 1.55
LM373N AM/FM $8 $ Strip 3.30
LM255N 2-Watt Audio Power Amp 2.25
LM555N Timer .75
LM556-LM556L5567 Phase L.L. 2.50ea
LM753H RF/FM Input .45
LM709H/N Op Amp .29
LM723H/N Voltage Regulator .55
LM747H/N Dual Op Amp .90
LM748N Freq. Adj. 741 .40
LM1002 Stearo Decompressor 4.10
LM1458N Dual Comp. Op Amp .65
LM1556N 5 Times Faster 741 1.65
LM167P Current Contoller 0.5C1.95
LM3056N T.V.-FM Sound System .75
LM3058N Neutral Circuit 3.25
LM3090N Precision Timer .65
LM7522 Core Memory Sense Amp. 2.50
LM7525 Core Memory Sense Amp. 1.50
LM7535 Core Memory Sense Amp. 1.00
LM7545 Dual Peripheral Driver .49
LM7543 Dual Reg. Driver .49
LM7545 Dual (LM351) .65

PROJECTS
LEDS 8000 Series
8263 $ 7.00
MV 10 S/1 $891.99
6267 $ 4.00
MV 5024 S/1 $880.80
2518 12 S/1 $880.80
2424 6 S/1 $880.80
2425 7 S/1 $880.80
2426 2 S/1 $880.80
2427 1 S/1 $880.80
5.00

JAMES
P.O. Box 822, Belmont, CA 94002
PHONE ORDERS (415) 592-8087

Circle 88 on reader service card
Include

STOCK

SOLID STATE

TWO-WAY

RADIO

For those who

specify frequency range

FE/RE 52, JA1, 2, or 3 series,
25-50 MHz, 12 volts, 35 watts, front or rear mount, fully solid state receive, 3 tubes in transmitter, fully narrow band, complete with accessories

$178.00

(specify frequency range)

FE/RE 72, JA1, 2 or 3 series, 25-50 MHz, 12 volts, 100 watts, front or rear mount, fully solid state receive, 4 tubes in transmitter, fully narrow band, complete with accessories

$288.00

FE/RE 53, JA6 series, 150-174 MHz, 12 volts, 35 watts, front or rear mount, fully solid state receive, 4 tubes in transmitter, fully narrow band, complete with accessories

$198.00

FE/RE 73, JA6 series, 150-174 MHz, 12 volts, 80 watts, front or rear mount, fully solid state receive, 3 tubes in transmitter, fully narrow band, complete with accessories

$288.00

CMF 150, 25-54 MHz, 12 volt, 50 watts, transistorized power supply, fully solid state, partially transistorized receiver, fully narrow band with accessories

$128.00

R.C.A.

GREGORY ELECTRONICS CORP.
251 Rl. 46, Saddle Brook, N. J. 07662
Phone: (201) 489-5000

MAGNUS 3 OCTAVE TONE GENERATOR BOARD

MAGNUS model 1700 3 octave tone generator board contains 12 soundable Tuneable oscillators for total of 37 notes, plus 1 oscillator for chords Includes 5 watt - 120 volt & power supply except transformer. Requires 36 volts at 1 amp. A great basic start for your electronic organ or synthesizer. Boards new, but some spring contact or broken component Parts alone worth more than twice the price.

STOCK NO.J5200 with data sheet $14.95 2/27.00

37 KEY BOARD FOR MAGNUS TONE BOARD

This keyboard is the one designed for the model 1700 TONE BOARD shown above. Limited quantity, so we can only sell a keyboard to purchasers of the TONE BOARD, or those who have recently purchased a TONE BOARD from us.

KEYBOARD & TONE GENERATOR BOARD
STOCK NO. F5200 A $24.95 2/47.00
For those who previously purchased TONE BOARD
STOCK NO. F5200B keyboard board $10.95 2/22.00

36 VOLT, 1 AMP. TRANSFORMER

This transformer has 2 windings, one at 36 volts, 1.0 amp, & the other 5.5 volts @ 10 amp. Ideal for the MAGNUS TONE GENERATOR BOARD above. Stock No.F3911...$3.75 ea. 2/7.00

Include sufficient postage. Excess refunded. Send for new catalog.

D DELTA ELECTRONICS CO.
BOX 1, LYNN, MASSACHUSETTS 01903
Phone (617) 388-4705

Circle 95 on reader service card

CANADIAN'S free catalog. IC's Semi's, parts.

SPECIAL PRICE $1.00 ea.

M. A. D. INGENIOUS new application of computer concepts. Memorize 20 random true-false answers in less than 30 seconds, mathematically! Send $2.00 for complete description. FOATER, Box 1144, Forest Park, GA 30050

Circle 95 on reader service card
20-WATT STEREO AMP

Featuring solid state circuitry, our exclusive "peak" detecting circuit displays channel. Handsome walnut veneer finish with chrome execution. With provisions for vertical mounting at factory expense. Assembled with new mounting clips at STEREO HEADPHONES, TREBLE, BASS, BALANCE, TREBLE, bass, controls, separate OFF-ON POWER switches. Choice size 11 x 17 x 6.5. Special price includes fancy card, convenience power outlet for- tape of phone and Auxiliary speakers connections. Built-in power cord, separate left and right lights, and automatic turntable power plug, with headphone jack that will fit. Wt. 2 lbs. $16.95

39.99

NATIONAL 60-WATT STEREO AMPLIFIER

For the most amazing audio offer, see the back-sweeps. PA sets, etc., have it all! For PA systems, use in school, churches, etc. 3-in-1 set provides complete PA with: 60-watt audio pre-amplifier (includes terminal panel, 4 speaker connections, 4 speaker switches, 4 speaker jacks, + speaker volume controls) and 60 watts into 8-ohm speakers... A complete PA system with everything included for just $50.00! Wt. 30 lbs. $99.99

IT'S NEW! 0.6 MITY JUMBO DIGIT LCD DCM'S

SOLD OUT. SENSE CORE MEMORY AMPS

99¢ ea. Buy 3 Take 10% Off

National 340-T9 Vr's

...70-220 Case + Amp $4.99

NATIONAL 340-T9 Vr's

...70-220 Case + Amp $4.99

INCREASED SPEED CONTROL $4.95

A $30 item from G.R. Model 833A (made for home and industrial control of electrical motors, etc.) Incl. 115VAC, rated as 115VAC. With variable speed or dimming control in both positive and negative control. Maximum range 3 x 2 x 2. With diagrams and hookups.

RCA TYPE TRANSISTOR ARRAYS

$1.50

Choose any 3 for $3.00

M4450, M6408, M7408

20-WATT STEREO AMP

20-watt Solid State Amplifier, with Glass Escutcheon

$39.95

60-WATT AM-FM-MULTIPLE

5-WATT STEREO AUDIO AMP

$19.95

Circle 92 on reader service card
RECEIVER-TRANSMITTER

R-392/URR RECEIVER: High performance, rugged, 32 Bands; 500 KHz thru 32 MHz continuous. Mechanical counter type digital readout to 300 Hz. Separate Megacycles and Kilocycles tuning. Triple conversion lower eight bands, double conversion calibrator, squelch, RF gain, audio gain, antenna tuning, BFO, variable selectivity 8.4.2 KHz. Requires 22-30 VDC 3 Amps. Size: 11x14x24x.11". Wt.: 52 lbs. Shpg. Wt.: 65 lbs.

Used, Reparable: $125.00 Used, Checked: $195.00
T-195/GRC-19 TRANSMITTER: 1.5 — 20 MHz, 100 W. Fixed, stability 4% at 1000 Hz. Manual or automatic tuning, CW, voice, or FSK operation. Power output: 50 Ohm antenna, 1.5 — 12 MHz 100 W. 13 to 20 MHz 80 watts, 16 — 20 MHz 80 watts. Input voltage required: 22 — 30 VDC 42 Amps maximum, small signal 5 Amps. Size: 11x14x14x.2". Wt.: 122 lbs. Shpg. Wt.: 150 lbs. Price: Used — Complete Repairable: $189.50

5T-851 MOUNTING BASE for R-392 & T-195, Shpg. Wt.: 60 lbs. $10.00

Note: Separate catalog available. Send for catalog: WAVE ELECTRONICS

FAIR RADIO SALES

1016 East Eureka Box 1153 Linoma, Ohio 44632

SEMICONDUCTOR and parts catalog: J. & J. ELECTRONICS, Box 1437, Winnipeg, Manitoba, Canada

SURPRISE! Build inexpensively, the most unusual test instruments, futuristic gadgets using numerical readouts! Catalogue free! GBS, Box 1006, Greenbank, W.Va 24944

WHOLESALE, scanners, CB/SSB/AM, crystals, directories, Catalog 25C, G-ENTERPRISES, Box 461R, Clevekill, N.Y. 4015.

REED RELAY TIMER BOARD

Board contains heavy duty COOK ELECTRIC reed relay, and 2 timing circuits. When 24 volts is applied to board, relay goes on for several minutes 30 seconds, then goes off for 15 minutes or more, then repeats. A mechanical flip flop. Great for flasher and other off devices.

STOCK NO.29092 $2.00 ea. 3/5.00

MINIMUM ORDER $5.00. Include postage, excess refunded. New edition of our catalog now available.

DELTA ELECTRONICS CO.

Box 1, Lynn, Massachusetts 01903

Phone (617) 388-4705

Circle 95 on reader service card

ADVERTISING INDEX

RADIO-ELECTRONICS does not assume responsibility for any errors which may appear in the index below.

READER SERVICE CARD: PAGE

62 Allison Automotive 81
22 Bell & Howell Schools 46-49
22 B & K Division of Dynascan Corp. 32
26 Blonder-Tongue 2
78 Blonder & Radio & TV Corp. 99
84 Castle TV Tuner 3
4 Channel Master 7
27 Chemtronics Corp. 78
101 CIE, Cleveland Institute of Electronics 18-21
67 Continental Specialties Corp. 84
CREL Division of the McGraw-Hill Continuing Education Center 74-77
18 Crown International 28
81 Data Precision Corp. 96
79 DataCorp. 97
71 Delta Products, Inc. 85
30 Edil Electronics 80
83 Edmund Scientific Co. 110
77 EICO Electronic Instrument, Inc. 88
12 Elenco Electronics 24
24 EMC, Electronic Measurement Corp. 97
64 Enterprise Development Corp. 82
20 EV-Game Inc. 30
82 Fordham Radio Supply Co. 98
3 General Electric Corp. 5
76 Grantham School of Electronics 87
GTE Electronic Components 1, Cover III
100 Heath Co. 89-95
17 Hewlett-Packard 27
15 ICS, International Correspondence Schools 15
14 Indiana Home Study Institute 26
11 International Components Corp. 22
16 International Crystal Mfg. Co. 26
70 Jensen Tool & Alloy 85
12 Jerrold Electronics 13
73 Lectrotech, Inc. 86
80 Milwaukee Lock 96
13 MITS, Micro-Instrumentation Telemetry Systems, Inc. 25
74 Mountain West Alarm Supply Co. 86
61 National Camera Co. 81
10 National Technical Schools 36-39
18 NRI Training 8-11
25 Olson Radio Corp. 73
68 PAIA Electronics 84
19 Price Electronics 87
17 Radio Shack International 17
RCA Electronic Components 23
36 Test Equipment 81
75 RGS Electronics 87
92 Rye Industries 86
15 Scelbi Computer Consulting Co. 26
66 Schober Organ 83
8 Sencore Inc. 16
21,23 Shure Bros. 31, 72
19 Southwest Technical Products 29

Circle 95 on reader service card

108
LIVE IN THE WORLD OF TOMORROW... TODAY!

And our FREE 164 PAGE CATALOG is packed with exciting and unusual values in ecological and physical science items—plus 4,500 finds for fun, study or profit... for every member of the family.

A BETTER LIFE STARTS HERE

3 CHANNEL COLOR ORGAN KIT

Easy to build low-cost kit needs no technical knowledge. Completed unit has 3 bands of audio frequencies to modulate 3 independent strings of colored lamps (i.e. "lows", "middles", and "highs", blues to reds). Synchronous electronic circuits. Connect hi-fi, radio, power lamp etc. and plug ea. lamp string into own channel (max. 300w ea.) Kit teats 3 neon indications: color intensity controls, controlled individual color circuits; isolation transformer; custom plastic housing; instructions. Stock No. 41,831 EH $18.95 Ppd.

PRO ELECTRONIC SOUND CATCHER

Parabolic mike w/ 184" reflecting shield & 2 I.C.'s in amplifier magnifies signals 1000 times of normal microphone. Catch a songbird 1/2 mile off. QB's huddle strategy; sounds never before heard. Super directionality gives highest signal to noise ratio possible. Safe, auto cuts off ear damaging noises. Easy to use; switch controls tripwires, tripwires, tripwires. Req. 9v trans. batt. (not incl.)

No. 1649 EH (3½ lb.) $299.00 Ppd.

BIG 444 "TOY" MODEL 2: 80,176 EH $32.25 Ppd.

LIE DETECTOR TYPE METER

Amazing Emotion Meter reveals hidden lies, dislikes, easy to use; sensitive accurate. Measures changes in body resistance caused by changes in emotional state. Needle movement indicates emotional response (not whether fiber is unfavorable). Effectiveness depends on questions asked and interpretation. Unique 10-oz. set ideal for entertainment and education—parties, science projects, psychological experiments. Requires 9v transistor battery (not included). Instructions.

No. 42,194 EH (2½x3x1½") $9.95 Ppd.

GET A CHARGE FROM THE SUN!

Our 12V Solar Battery Charger allows direct conversion of light-to-electricity. Compact panel out on a boat can automatically charge its 12v battery over entire daylight hours. Use anywhere for a trickle charge. Big value, it comprises 30½ silicon solar cells in series w/diode.

No. 71,971 EH (3½x11x6½; WR.) $89.95 Ppd.

9x18" HI CURRENT MODEL (6V, 12V, 500 ma) No. 72,010 EH (AB: 150 W-HRS./WR.) $42.00 Ppd.

6x5" LOW VOLTAGE MODEL (1.5v, 30W, 250 ma) No. 42,172 EH $49.95 Ppd.

TAKE TEMPERATURES IN SECONDS

Edmund's new electronic oral thermomter obsoletes glass mercury type.Seconds instead of minutes, more accurate, much easier to read. Just push button, dial center; read temp fast in F & C. 92-106°F.

No. 42,210 EH $25.00 Ppd.

LOW COST 7X INFRARED VIDEO

No. 1648 EH (11x14½x3") $199.95 Ppd.

LOW COST "STARTER" UNIT

No. 71,809 EH $55.00 Ppd.

NEW KIRLIAN PHOTOGRAPHY KIT!

Experiment in the fascinating new field of "Kirlian photography"—images obtained on film without camera or lens by direct recording of electric charge leaks from human aura to inanimate objects. Each "aura" differs—allows you to change corresponding to physical changes. Kit incls portable darkroom, double transformer isolated from power source; instructions.

No. 71,938 EH $49.95 Ppd.

"HIGH VOLTAGE I.R. LIGHT SOURCE" by H. S. Dakin No. 9129 (60-PG.) PPRK BK.) $5.00 Ppd.

DELUXE KIRLIAN PHOTOGRAPHY SET No. 72,053 EH $399.00 Ppd.

3X ASTRONOMICAL REFLECTING TELESCOPE

See stars, moons, planets close-up 30 to 90X. Famous Mt. Palomar Type. Aluminized & overcoated 3" diameter f/10 primary mirror, ventilated cell, no attachments. Durable PVC tube. Includes 1" F. L. 30X Ramsden, Barlow lens to triple power, 3X finder telescopes, hardboard tripod.

FREE "STAR CHART", "HOW TO USE" book.

No. 85,240 EH $49.95 Ppd.

DELUXE 3" REFLECTOR TELESCOPE #80,162 EH $79.95 Ppd.

4½" REFLECTOR W/CLOCK DRIVE #85,107 EH $189.50 Ppd.

6" REFLECTOR W/CLOCK DRIVE #85,187 EH $249.50 Ppd.

DELUXE 3" REFLECTOR TELESCOPE #85,086 EH....$285.00 Ppd.

FREE: "STAR CHART", "HOW TO USE" book.

COMPLETE & MAIL WITH CHECK OR M.O.

EDMUND SCIENTIFIC CO. 300 Edsorop Building, Barrington, N.J. 08007

Mail coupon for Giant Free Catalog!

164 PAGES * MORE THAN 4500 UNIQUE BARGAINS

Complete New Catalog. Find over 4500 items in this unique catalog: ASTRONOMY, SCIENCE, TECHNOLOGY, MAGNETS, MAGNETISM, PICS and PRINTS, ELECTRONICS, GARDENING, PHOTOGRAPHY, PHOTO-Voltaics, COMPUTERS, COMPUTING, EDUCATION, MEDICAL, HEALTH, ELECTRONICS, BOOKS. Most items under $5.00. Complete catalog sent for $1.00.

NAME
ADDRESS
CITY STATE ZIP

30 DAY MONEY BACK GUARANTEE

You may return any unused part of your purchase within 30 days (See coupon below for full refund.)

ADD MAILING CHG. $1.00. Orders Under $5.00. 50c. Orders Over $5.00

ENCLOSE CHECK OR MONEY ORDER

ECRU PLASTIC MOUNTED MILESTONE, 4"x6" CIVIL WAR MAP...$10.00

ECRU PLASTIC MOUNTED MILESTONE, 6"x12" CIVIL WAR MAP...$25.00

ECRU PLASTIC MOUNTED MILESTONE, 6"x12" W.W.I. MAP...$25.00

ECRU PLASTIC MOUNTED MILESTONE, 6"x12" W.W.II.MAP...$25.00

Circle 83 on reader service card

110
Now you don’t have to turn down jobs just because the sets were made in the Far East.

Your Sylvania Distributor has solved one of your biggest problems in semiconductor replacements for imported equipment.

Until now, unless your shop was around the corner from an import warehouse, you probably had a tough problem. Especially for those non-repairable modules.

But not anymore.

Sylvania’s new ECG™ 1000 series gives you over 140 new integrated circuits and modules for imported sets right on your distributor’s shelves.

And, thanks to our newest interchangeability guide (ECG 212E-4), those 140 parts add up to a lot more when it comes to the number of types they’ll replace.

That means you don’t have to watch a profitable repair job walk out the door just because getting the parts could make it unprofitable.

It also means that you’ve got one-stop shopping for all of your repair jobs, foreign or domestic.

Whether you need semiconductors, picture tubes or receiving tubes, you’ll find them all at one electronic supermarket.

Your Sylvania Distributor.

GTE SYLVANIA
The Tuner People

Pioneers of TV Tuner Overhauling
Originators of Complete TV Tuner Service

Castle offers the following services to solve ALL your television tuner problems.

Universal Replacements from $8.95

These universal replacement tuners are all equipped with memory fine tuning and uhf position with plug input for uhf tuner. They come complete with hardware and component kit to adapt for use in thousands of popular TV receivers.

<table>
<thead>
<tr>
<th>STOCK No.</th>
<th>HEATERS</th>
<th>SHAFT</th>
<th>MIN.</th>
<th>MAX.</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR6P</td>
<td>Parallel 6.3v</td>
<td>1 1/4"</td>
<td>3"</td>
<td>41.25</td>
<td>8.95</td>
</tr>
<tr>
<td>CR7S</td>
<td>Series 600mA</td>
<td>1 1/4"</td>
<td>3"</td>
<td>41.25</td>
<td>9.50</td>
</tr>
<tr>
<td>CR9S</td>
<td>Series 450mA</td>
<td>1 1/4"</td>
<td>3"</td>
<td>41.25</td>
<td>9.50</td>
</tr>
<tr>
<td>CR6XL</td>
<td>Parallel 6.3v</td>
<td>2 1/2"</td>
<td>12"</td>
<td>41.25</td>
<td>10.45</td>
</tr>
<tr>
<td>CR7XL</td>
<td>Series 600mA</td>
<td>2 1/2"</td>
<td>12"</td>
<td>41.25</td>
<td>11.00</td>
</tr>
<tr>
<td>CR9XL</td>
<td>Series 450mA</td>
<td>2 1/2"</td>
<td>12"</td>
<td>41.25</td>
<td>11.00</td>
</tr>
</tbody>
</table>

Castle Replacements $15.95

Castle custom replacements made to fit in place of original tuner. Purchase outright...no exchange needed. Write for current list of Castle replacements, or request the part number you require (use number on ORIGINAL TUNER ONLY; do not use service literature numbers). Available for many of the popular models of following manufacturers: Admiral, Curtis Mathes, Emerson, GE, Heathkit, Magnavox, Motorola, Muntz, Philco, RCA, Sears, Sylvania, Westinghouse, Zenith and many private labels.

Overhaul Service $9.95

This is the service pioneered by Castle! We are now in our third decade of serving the TV Service Industry

Service on all makes and models, vhf or uhf, including transistor and color tuners...one price $9.95 Overhaul includes parts, except tubes and transistors.

Remember!

Castle overhaul service is as near as your post office

Simply send us the defective tuner complete; include tubes, shield cover and any damaged parts with model number and complaint. Your tuner will be expertly overhauled and returned promptly, performance restored, aligned to original standards and warranted for 90 days.

Dismantle tandem uhf and vhf tuners and send in defective unit only. Remove all accessories...or dismantling charge will apply.

Custom Exchange Service $17.95

When our inspection reveals that original tuner is unfit for overhaul, and it is not available from our stock of outright replacements, we offer to make a custom replacement on exchange basis. Charge for this service is $15.95 for uhf tuner and $17.95 for vhf tuner.

If custom replacement cannot be made we will custom rebuild the original tuner at the exchange replacement price.

All replacements are new or rebuilt. All prices are f.o.b. our plant. Add shipping and handling of $1.25 on all prepaid orders. We will ship C.O.D.

CASTLE TV TUNER SERVICE, INC.
5715 N. Western Ave., Chicago, Ill. 60645 • Ph. 312—561-6354

Circle 84 on reader service card