DON LANCASTER TELLS
How Calculator IC’s Work

BUILD THE MARK-8
Your Personal Minicomputer

NEW FM CIRCUITS
For Precise Tuning

DESIGN YOUR OWN
Direct-Coupled Transistor Amplifiers

WHAT YOU NEED
In Hi-Fi Test Gear

WORKING WITH SCR’s
An Experimenter’s Guide

PLUS
Appliance Clinic
Equipment Reports
Jack Darr’s Service Clinic
Step-By-Step TV Troubleshooter’s Guide
R-E’s Replacement Transistor Directory
PTS ELECTRONICS

Precision Tuner Service

is proud to announce the GRAND OPENING of our new Service Centers in

BIRMINGHAM, ALA.
CHARLOTTE, N.C.
ST. LOUIS, MO.

$9.95

1 YEAR GUARANTEE

Come and see us. PTS Branches are all company owned—No Franchises—we care for our customers. For a TUNER PART or COMPLETE TUNER REBUILT, come to us, we will take care of your tuner problems like no one else can. WE'RE PROFESSIONALS—18 years experience made us what we are!

You owe it to yourself

to try P.T.S. We are the fastest growing, oldest and now the largest tuner service company in the world. Here is what you get:

1. Fastest Service—8 hour—in and out the same day. Overnight transit to one of our plants.
2. Fine Quality! Your customers are satisfied and you are not bothered with returning tuners for rework!
3. Lower Cost! Up to $5.50 less than other tuner companies!
4. Friendly, helpful service! We help you do more business—that way we will do more too. We want your business and we try to deserve it!

PTS ELECTRONICS, INC is recommended by more TV manufacturers and overhauls more tuners than all other tuner services combined!

PTS-NUMBER ONE

AND STILL TRYING HARDER!

Circle 1 reader service card

Now you too...

...get Fast 8 hr. Service!

Color • Black & White • Transistor • Tubes • Varactor • Detent UHF
All Makes

VHF or UHF-------- $9.95
UV-Comb.-------- $16.95

Major parts and shipping charged at cost.
(Dealer net)
The more specialized your field, the more you'll need these books

HI-FI STEREO SERVICING GUIDE—2nd Edition
by Robert G. Middleton
Anyone servicing a-m tuners, fm tuners, stereo-multiplex units, and audio amplifiers can gain valuable service direction and assistance from this guide. It also covers hi-fi speaker installations, system evaluation, troubleshooting, and methods of verifying test equipment performance. 164 pages, softbound.
No. 21075 $4.50

TTL COOKBOOK
by Donald E. Lancaster
Transistor-Transistor Logic has opened up a fantastic number of applications for digital circuitry. It is not only better than traditional analog circuits, it is often cheaper. This timely book, by the author of the famous RTL Cookbook, explains what TTL is, how it works, and how to use it. 336 pages, softbound.
No. 21035 $8.95

TRANSISTOR SUBSTITUTION HANDBOOK—14th Edition
by The Howard W. Sams Engineering Staff
Since exact replacement of transistors is not always possible, this book fills a definite need. It lists substitutions for over 100,000 bipolar transistors. Both computer-selected substitutes and manufacturer-selected, general-purpose replacements are given. An updated and invaluable reference for the serviceman. 192 pages, softbound.
No. 21040 $2.95

HOW TO USE INTEGRATED-CIRCUIT LOGIC ELEMENTS—2nd Edition
by Jack W. Streeter
Lacking previous experience with digital logic circuitry, the engineer or technician will be at a complete loss when he enters the field of integrated-circuit logic electronics. This practical book helps him over that hurdle. It opens with a necessary explanation of the binary number system and Boolean algebra and progresses logically to the practical problems and limitations involved in preparing to work in this new field. A glossary of digital terms is included. 160 pages, softbound.
No. 21081 $4.50

HOW TO DESIGN AND USE MULTIVIBRATORS
by Courtney Hall
This book examines the various types of multivibrators at the introductory level. It explains how multivibrator circuits work in switching rapidly from one state to another, how they can be designed using a minimum number of components, and how they can be applied in practical circuits. Many specific projects for multivibrator circuits are covered. 96 pages, softbound.
No. 21043 $3.95

PHOTOFACT® TELEVISION COURSE—4th Edition
by The Howard W. Sams Editorial Staff
This book has provided the basic knowledge for thousands who have become skilled in the field of television engineering and service. Newly updated, it presents a complete course in black-and-white television, describes the functions of important circuits, and is supported by numerous schematics. Each chapter is followed by questions, with answers at the back of the book. 208 pages, softbound.
No. 20961 $6.95

MODERN RECORDING TECHNIQUES
by Robert E. Runstein
In explaining the intricacies of recording pop music, this book fills a gap that has been neglected or overlooked. It is of particular value to the recording engineer since it covers equipment, controls, and operating techniques currently in use in recording studios. 368 pages, softbound.
No. 21037 $9.95

METRICS FOR THE MILLIONS
by Rufus P. Turner
Here is an essential reference manual for all who will be affected by the coming changeover from our present system of measuring to the metric system. Each of the various metric units is covered, and examples show how to convert from U.S. to metric and from metric to U.S. 96 pages, softbound.
No. 21036 $3.50

HOWARD W. SAMS ® 4300 West 62nd Street, Indianapolis, Indiana 46205
Order from your electronics parts distributor, or mail to Howard W. Sams & Co., Inc.
Send books checked at right. $ ____________ enclosed. Please include sales tax where applicable.

Send FREE 1974 Sams Book Catalog 007146

RE-074

Circle 2 on reader service card
Stocking only 49 ECG™ semiconductors is like having thousands of audio transistors on hand.

Manufacturers of TV, radio and stereo systems have audio transistor replacements listed under thousands of different part numbers.

But, thanks to the Sylvania ECG semiconductor replacement guide, you can replace practically all of them with just 49 different transistors.

And that can save a lot of hunting and stocking, especially when you're a busy service dealer.

For example, if you need a low-noise, high-gain NPN-silicon transistor for an audio preamp, check out our ECG-199. It fits a lot of sockets.

And if import parts are bugging you, our ECG-158, 176, 226 and 226MP are direct replacements for parts like the 2SB405, 2SB474 and 2SB492 plus a lot of others you'll find in our guide.

But, our cross-reference guide (ECG-212E) lists a lot more than just audio transistors. It lists over 75,000 parts that can be replaced with a minimum number of Sylvania ECG parts.

For you, it means one source for practically all your replacement needs, including industrial components.

What more could anyone ask for?

GTE SYLVANIA
SPECIAL FEATURE
29 Build the Mark 8 Minicomputer
Your personal home-built computer. Use an ASCII keyboard input or tie in a TV Typewriter. Complete with expandable semiconductor memory, by Jon Titus

SOLID-STATE ELECTRONICS
38 How Calculator IC's Work
The secrets of these special IC's are uncovered by an expert, by Don Lancaster
42 Working With SCR's
An experimenter's guide to the device plus a construction project, by Brian Bixby
63 R-E's Transistor Replacement Guide
2N3554 to 2N3732 compiled by Elizabeth & Robert Scott

GENERAL ELECTRONICS
4 Looking Ahead
Tomorrow's news today, by David Lachenbruch
72 Appliance Clinic
Battery chargers, by Jack Darr

STEREO AUDIO HI-FI
22 Equipment Report
Technics by Panasonic SL1200 direct-drive turntable.
23 Equipment Report
JVC CD-1668 cassette deck.
34 New Hi-Fi Test Gear
What it is and how you can put it to work, by Robert F. Scott
48 New FM Tuning Circuits
Precise tuning is made easier by these interesting new circuits, by Len Feldman
58 Direct-Coupled Audio Circuits
Theory and design using solid-state amplifiers, by Mannie Horowitz

TELEVISION
60 Step-By-Step Troubleshooting Charts
Inside the high-voltage regulator, by Eugene Cunningham
69 Service Clinic
Blanking, by Jack Darr
71 Reader Questions
R-E's service editor solves reader problems

DEPARTMENTS
98 Advertising Index
92 Books 81 New Literature
87 Circuits 78 New Products
16 Letters 90 Next Month
6 New & Timely 101 Reader Service Card

AN AUTOMOBILE HEADLIGHTS-ON REMIN-DE R you can build as you study and become familiar with SCR's and their operation... see page 42

Hugo Gernsback (1884-1967)
founder
M. Harvey Gernsback, editor-in-chief and publisher
Larry Steckler, CET, editor
Robert F. Scott, W2PWG, CET, technical editor
Jack Darr, CET, service editor
I. Queen, editorial associate
Leonard Feldman, contributing high-fidelity editor
David Lachenbruch, contributing editor
Barbara Schwartz, editorial assistant
Vincent P. Cicenia, production manager
Sarah Martin, production assistant
Harrriet I. Matysko, circulation director
Airline R. Bailey, advertising coordinator

Cover photograph by Walter Herstatt
Cover design by Louis G. Rubisamen

Subscription Service: Mail all subscription orders, changes correspondence and Postmaster Notices of undelivered copies (Form 3579) to Radio-Electronics Subscription Service, Boulder, Colo. 80302

A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs if their return is desired. They may be rejected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.

As a service to readers, Radio-Electronics publishes available plans or information relating to newsworthy products, techniques and scientific and technological developments. Because of possible variances in the quality and condition of materials and workmanship used by readers, Radio-Electronics disclaims any responsibility for the safe and proper functioning of reader-built projects based upon or from plans or information published in this magazine.
looking ahead

Quick vs. instant

The race is on to find a substitute to instant-on, that casualty of the energy shortage which used to waste our valuable watts feeding current to tube filaments while the TV set was off. American picture tube makers are searching for a new-design cathode which heats up quickly. Philips of Holland is already manufacturing tubes with a cathode which provides four-second warmup, and Matsushita of Japan is adopting the same principle. And Sony has put a quick-warmup cathode in its 13-inch Trinitron, for sale in Japan only for the time being. American manufacturers, meanwhile, are studying the situation, trying to make sure that quick-on doesn't mean short-life for the picture tube.

Super-8 TV

Like to show your home movies on the ol' 25-inch? Kodak's Super-8 video-player is now on the market. It's designed to accommodate cartridge tapes of the amateur variety and uses a flying-spot scanner to develop a color TV signal. The compact player is attached to the antenna terminals of a television receiver. The player sells for $1,095—and lest you think that's rather high, it's actually $100 less than the originally announced price. Although home-movies buffs presumably are welcome as purchasers, Kodak initially is aiming the videoplayer at professional users, such as schools, broadcasters and cable TV systems.

Solid-state TV

The days of hybrid color TV seem to be numbered—thanks to the energy crisis and the FCC. RCA moved up its schedule for changeover to all-solid-state color sets by a full year and will stop producing hybrids at the end of June, accompanied by a drumbeat of publicity. It appears that other manufacturers won't be far behind. RCA hybrids are still on the market, of course, but they were made before the cut-off date. And they're no longer being advertised or distributed.

Several other manufacturers have quietly stopped producing tube-type color sets, too. But they've produced enough to last well into the 1975 model-year, so they're just not saying much about it and labeling their recently produced hybrids as 1975 models. That's perfectly fair, of course, since the hybrids have gone through the customary face-lifting required to indentify them as new models.

You can expect solid-state advertising for the rest of the year to feature energy-savings claims. They're perfectly true, of course—a solid-state 25-inch color set uses less power than a tube-type black-and-white. There's another concealer which decided some manufacturers to switch to solid-state. That's the FCC rule which requires "comparable" uhf tuning in all sets manufactured on or after July 1. Comparable tuning means detent or preset uhf, making uhf as simple to tune as vhf. Since most hybrid set designs contain continuous uhf tuners, some manufacturers have decided that July will be the perfect time for the changeover. Rather than retrofit for new hybrid models with the currently required tuners, they've decided to go with the wave of the future and build only solid-state sets.

You'll continue to see plenty of hybrids and continuous uhf tuning sets in the market-place for some time. Manufacturers have been stockpiling so they won't be caught without low-priced sets to sell during the intensely competitive fall season. But finally tube-type sets seem to be in the last-gasp stage.

Videoplayer census

There were 118,500 cartridge and cassette videopleayers and recorders in use in the United States as of Jan. 1, 1974, according to Creative Strategies, Inc., a research organization, which forecasts the number of units in use will double this year. Of the 118,500 units, 68,700 are recorded-play devices and 49,800 are designed for playback only. More than half of the machines—65,000—are the Sony U-Matic helical-scan 3/4-inch VTR type. The second most popular type is the Philips half-inch helical-scan, with 27,500 in use.

Long, long scan

The first developmental videotape recorders, beginning in 1951, were essentially speeded-up audio recorders, using fixed heads and high tape speeds. With development of quadrature (four-head) recorders for broadcast use and helical-scan machines for industrial and educational use, the simple longitudinal-scan technique was forgotten—but not quite. Thanks to new tape transport and signal-processing developments, fixed-head, longitudinal-scan recorders now are being groomed for the home VTR sweepstakes. Their appeal is relative simplicity and low price, since they eliminate complicated and costly revolving headwheels and associated components. Longitudinal recorders are being developed by several West Coast firms, with the first demonstrations planned for this summer. A typical such unit has a tape speed of 180 IPS (28 tracks) on a quarter-inch tape. The tape whizzes past the head, changes direction and the head is automatically indexed to the next track. One of the problems of longitudinal VTR's in the past has been the picture blackout during the period the tape is reversing direction. Fast turnaround and storage techniques are now said to eliminate this blackout completely.

Whether the new sophisticated electronics and mechanics introduced to overcome the shortcomings of longitudinal scan will push prices up to the helical-scan level hasn't yet been determined. But you can expect to hear more about this new version of an old technique in the near future.

Adding up calculators

The electronic calculator became a billion-dollar market at retail last year, according to a study by Creative Strategies. The biggest share of the market was held by consumer calculators, of which 7 million were sold. Some 3.5-million of last year's unit sales were business calculators, and another 300,000 were in the "professional" category. The study indicated that the market for consumer calculators would grow about 50% this year, in terms of dollar volume, more in terms of units, due to declining prices. Component costs for calculators have dropped sharply, LC chips failing from an average of $30 in 1970 to about $5 currently. LED displays, which cost calculator manufacturers slightly less than one dollar per digit, will be closer to 50 cents before the year is over.

RCA's home VTR

RCA, meanwhile, has embarked on a "market test" of its 3/4-inch cartridge VTR to determine whether it has potential as a consumer product. In the initial phase, demonstrations are being conducted by television retailers. Observers at the demonstrations are asked to fill out a questionnaire designed to determine their interest in purchasing the device. The second phase of the test, starting this summer, will involve loans of VTR's and monochrome cameras to about 200 selected consumers, who will be asked to treat the instruments as if they owned them. RCA hopes to gather data on the suitability of the machine under actual home use, and the reaction of potential owners.
TUNER SERVICE CORPORATION

PROVIDES YOU WITH A COMPLETE SERVICE FOR ALL YOUR TELEVISION TUNER REQUIREMENTS.

REPAIR

VHF Or UHF Any Type $9.95. UHF/VHF Combo $15.00.

In this price all parts are included. Tubes, transistors, diodes, and nuvistors are charged extra.

Fast efficient service at our conveniently located service centers. This price does not cover mutilated tuners.

All tuners are cleaned ultrasonically, repaired, realigned and air tested.

CUSTOMIZE

Customized tuners are available at a cost of only $15.95. (In Canada $17.95/$15.95)

Send in your original tuner for comparison purposes to:

TUNER SERVICE CORPORATION

Backed by the largest tuner manufacturer in the U.S.—SARKES TARZIAN, Inc.

HEADQUARTERS BLOOMINGTON, INDIANA 47401. 537 South Walnut St. Tel: 812-334-0411

ARIZONA TUCSON, ARIZONA 85713. 1528 S. 6th St. (P. O. Box 4534) Tel: 602-791-4234

CALIFORNIA BURLINGTON, CALIFORNIA 94010. 1324 Marston Road Tel: 415-347-5726

CALIFORNIA MODESTO, CALIFORNIA 95351. 123 Phoenix Ave. Tel: 209-521-8051

CALIFORNIA NORTH HOLLYWOOD, CALIF. 91691. 10064 Magnolia Blvd. Tel: 213-755-2709

FLORIDA TAMPA, FLORIDA 33606. 1505 Cypress St. Tel: 813-293-0241

GEORGIA ATLANTA, GEORGIA 30316. 938 Gordon St. S.W. Tel: 404-756-2222

ILLINOIS CHICAGO, ILLINOIS 60621. 737 W. 55th St. Tel: 312-675-5556

ILLINOIS SKOKIE, ILLINOIS 60076. 5110 W. Brown Ave. Tel: 312-675-0200

INDIANA INDIANAPOLIS, IND. 46204. 817 N. Pennsylvania St. Tel: 317-632-3493

INDIANA HAMMOND, INDIANA 46323. 6833 Grand Ave. Tel: 219-845-2676

KENTUCKY LOUISVILLE, KENTUCKY 40209. 2920 Taylor Blvd. Tel: 502-634-3334

LOUISIANA SHREVEPORT, LOUISIANA 71104. 3025 Highland Ave. Tel: 318-861-7745

MARYLAND BALTIMORE, MD. 21215. 5505 Reisterstown Rd. (P. O. Box 624) Tel: 301-358-1186

MISSOURI S. LOUIS, MO. 63132. 10256 Page Ave. Tel: 314-226-0633

NEVADA LAS VEGAS, NEVADA 89102. 1412 Western Ave. Tel: 702-384-4235

NEW JERSEY JERSEY CITY, NEW JERSEY 07307. 537-59 Tonnalee Ave. (U.S. Highway 1, S.) Tel: 201-792-3730

NEW JERSEY TRENTON, NEW JERSEY 08658. 901 N. Olden Ave. Tel: 609-393-0999

OHIO CINCINNATI, OHIO 45219. 7492 Vine St. Tel: 513-821-5080

OHIO CLEVELAND, OHIO 44109. 4597 Pearl Rd. Tel: 216-741-2314

OREGON PORTLAND, OREGON 97210. 1732 W. 25th Ave. Tel: 503-222-9059

TENNESSEE GREENVILLE, TENNESSEE 37743. 1215 Snapps Ferry Rd. Tel: 615-639-8451

TENNESSEE MEMPHIS, TENNESSEE 38111. 158 Barron Ave. Tel: 901-458-2355

TEXAS DALLAS, TEXAS 75211. 11540 Gaston Rd. Tel: 214-327-8413

VIRGINIA NORFOLK, VIRGINIA 23502. 4528 E. Princess Anne Rd. Tel: 757-455-2518-0555

CANADA TUNER SERVICE CORP., QUEBEC. Write headquarters office for address.

Franchises available—Contact headquarters for information.

Circle 3 on reader service card
20th anniversary of color TV marks end of tube regime

RCA celebrated the 20th year of color TV on March 25, 1974 with an announcement that it was abandoning tubes altogether in its new 1974 line of TV receivers. With the obvious exception of the kinescope, the RCA XL-100 color TV line is completely solid-state.

YOU'VE COME A LONG WAY, KINE! Gail Simone compares the RCA 15V in-line color TV tube system with the round 15-inch color tube system that many technicians will remember from the first sets sold in 1954. The new tube is smaller, brighter and sharper and eliminates complex circuitry and difficult adjustments.

First reaching the market in 1954, color TV had no easy row to hoe. Only 5,000 sets were sold in that first year and it was 1960 before a half million color sets were in use. But 1960 was the turning point. Increased color programming and greater availability of color TV on the retail market combined to more than triple the number—1.7 million sets—in 1963. Now there are 52.6 million sets in use—9.3 million were sold in 1973 alone—and two out of every three homes in the United States has a color TV.

Integrated circuitry makes electronic watches practical

The sharp upsurge in the demand for electronic watches—due in no small part to the new digital types—can be traced to the new COS/MOS integrated circuits, which make the digital readouts practical, according to Harry Weisberg of RCA's Solid-State Division. "These circuits," he says, "are so perfect for watches that it would almost seem that their original designers had watches in mind."

The heart of the new watches—like some of the older ones—is a quartz crystal. Oscillating at 32 kHz, it is divided down to 1 Hz by a series of binary dividers, then further divided for the minutes and the hours by counters and drivers that activate light-emitting diodes (LED's) or
digital or electromechanical timepieces.

The integrated circuit that does the work contains more than 1300 transistors on a match-head size silicon substrate.

Electronic revolution limiter tells motorist when to shift

A new aid to the sports car enthusiast—an electronic revolution limiter—is now available. The motorist—says Siemens, who introduced the device—is likely to overlook the fact that his motor is speeding up to the point of possible engine damage, especially when all his attention is being engaged by traffic conditions. The new device reminds him to shift up when the engine reaches its preset revolution limit.

The limiter is a measuring amplifier with a gate function. Squarewave pulses from the rev meter are rectified and filtered and the resultant dc voltage compared in an operational amplifier with a fixed voltage across a dividing network. When the voltages are equal, the transistor ignition system is turned off, then turned on again when engine speed drops below the limit and the voltage from the revolution counter drops accordingly. This causes a slight vibration that warns the driver to shift.

For a given engine, the system was set to cut the ignition out at 6600 and to cut it in again at 6500 rpm. By keeping the difference between the cut-out and cut-in points down to 100 rpm, the resulting engine vibration is small, but nevertheless discernible.

Earlier mechanical limiters have not functioned precisely enough, in certain extreme operational conditions, to prevent engine damage through late cut-out or loss of performance because of cutting out before the engine reached ideal top speed. The electronic nature of the new rev limiter makes it possible to maintain the 100-rpm separation of switch-out and switch-in precisely.

(continued on page 12)
No other 10 MHz oscilloscope gives you all this for $475

The TELEQUIPMENT D61 is a low priced 10 MHz dual trace oscilloscope with sweep rates up to 100 ns/div. It is ideally suited for students, technicians, and hobbyists.

Operating Ease. Front panel controls are engineered for instant recognition. Line or frame displays are selected automatically in the TV trigger position. And, chopped or alternate modes are determined automatically to optimize display clarity.

Bright, stable viewing. Stable waveforms, displayed on an 8 x 10 cm CRT, are easy to view, even under unfavorable ambient light conditions. Two identical input channels simplify generation of X-Y displays. This is particularly useful in analysis of vector patterns.

Application versatility. Because of its X-Y capability, the D61 simplifies alignment and troubleshooting of color television sets. Its performance equals or exceeds the requirements for servicing audio equipment, pocket calculators, public safety control, alarm, and communications systems, microwave ovens, digital clocks, and similar consumer electronic products.

Compact, portable. Fully transistorized, and weighing only 15 pounds, the D61 occupies only 6.3 inches of bench width. It’s easy to transport and use in confined working areas.

Tektronix reliability. TELEQUIPMENT products carry the well-known Tektronix warranty and are marketed and supported by the Tektronix organization.

Automatic triggering.
TV Frame and line triggering.
Dual-trace, X-Y and vector modes.

Send me the D61 Spec Sheet and Telequipment catalog.
Have your field engineer call to arrange a demonstration.
Tektronix, Inc., P.O. Box 500, Beaverton, Oregon 97005

Name
Title
Company
Address
City State Zip

Tektronix® committed to technical excellence

Circle 85 on reader service card
NOW you can train at home building a NEW 25'' DIAGONAL Solid State Color TV engineered by NRI for learning and trouble-shooting

So much better for learning TV servicing than any hobby kit, because NRI designed and created it as an educational tool.

Unlike hobby kits which are designed for creating a TV set as the end product, NRI built its exclusive 25'' Diagonal Solid State Color TV kit as a real training kit. You can introduce and correct defects... for trouble-shooting and hands-on experience in circuitry and servicing. The kits include a wide-band oscilloscope, color bar crosshatch generator, transistorized volt-ohmmeter and other valuable equipment that can soon have you earning $5 to $7 an hour servicing color sets in your spare time.

Handsome woodgrain cabinet, at no extra cost. (Offered only by NRI)

New square-cornered Sylvania picture tube

100% solid state chassis

6-position detented UHF channel selector

Modular construction with plug-in circuit boards

Automatic degaussing

Automatic fine tuning

Automatic tint control

Automatic color control

YOU GET MORE FOR YOUR MONEY FROM NRI

Automatic fine tuning

Automatic color control

Automatic tint control

Automatic degaussing

Modular construction with plug-in circuit boards

New square-cornered Sylvania picture tube

100% solid state chassis

6-position detented UHF channel selector

Handsome woodgrain cabinet, at no extra cost. (Offered only by NRI)
NRI FIRSTS make learning Electronics fast and fascinating—to give you priceless confidence

The NRI color TV and digital computer kits are the latest in a long line of “firsts” for NRI. For more than fifty years, NRI has been providing unique 3-dimensional home-study training that has helped hundreds of thousands of students reach their goals quickly and easily.

What NRI provides is a combination of kits and bite-size texts that give you hands-on experience while you are learning. The texts average only 40 pages each, and they are fully illustrated. You are taken step-by-step from the first stages into the more advanced theory and techniques... with an expert instructor ready at all times to provide valuable guidance and personal attention. (The level of personal attention provided is more than you would receive in many classrooms.) Once you've grasped the fundamentals, you move with confidence and enthusiasm into new discoveries in the fascinating world of electronics.

You start out with NRI’s exclusive Achievement Kit, containing everything you need to get moving fast. Lessons have been specifically written so that experiments build upon another like stepping stones. You can perform a hundred experiments, build hundreds of circuits... as you learn to use the professional test equipment provided, building radios and TV sets, transmitter or computer circuits. It's the priceless “third dimension” in NRI training... practical experience.

Train with the leader—NRI

Compare training kits, texts, techniques and overall training... and you'll find that you get more for your money from NRI. Whatever your reason for wanting more knowledge of Electronics, NRI has an instruction plan that will meet your needs. Choose from major programs in Advanced Color TV Servicing, Complete Computer Electronics, Industrial Electronics and the other special courses designed to meet specific needs. With NRI home training, you can learn new skills while you’re still working at your present job... and turn yourself into the man in demand.

Send for free NRI catalog

MAIL THE POSTAGE-FREE CARD FOR THE FREE NRI CATALOG IN THE FIELD OF YOUR CHOICE. YOU WILL BE UNDER NO OBLIGATION. NO SALESMAN WILL CALL.

If the card has been used, write direct to:

NRI TRAINING
3939 Wisconsin Ave.
Washington, D.C. 20016
Compact solid-state TV camera can work by candle light

The world's most sensitive TV camera—capable of taking pictures by the glow of a candle—weighs less than a pound and is more compact than most photographic hand cameras.

Developed at the General Electric Research and Development Center (Schenectady, N.Y.), it is expected to reach the market soon. At present the resolution (see photo) is not as great as in commercial television cameras, but it is hoped that future models may approach and possibly equal broadcast quality.

Secret of the new camera is the charge-injection solid-state imager which takes the place of the conventional camera tube. The imager—a quarter-inch square metal-oxide semiconductor chip covered with 10,000 pairs of miniature capacitors—does the same job as the camera tube in large television cameras, converting a visual image into a video signal.

World's Most Sensitive TV Camera (above) is compared in size with a set of keys. The resolution is shown in the picture below.

Each of the pairs of capacitors on the chip is a light-sensing device, collecting a charge proportional to the light striking it. Scanning circuits then release the charges on each pair of capacitors, "injecting" them into the base of the chip. The imager can be scanned at speeds compatible with ordinary television sets. Unlike earlier devices, which used charge-coupled imagers, the signal is not passed from element to element down the scanning line. So if a pair of capacitors should fail, the result is only a minute dark spot on the screen instead of the darkening of possibly a whole line.

"Since this miniature camera can be fabricated with current solid-state manufacturing techniques," states Arthur M. Bueche, GE vice president for research and development, "it can potentially be made for a fraction of the cost of a conventional television camera." Immediate applications, according to Dr. Bueche, include surveillance, as on military bases and other high-security installations, banks, museums and businesses. As the camera is improved, the field of applications will become wider and it might be combined with a small video tape recorder and a home television set to produce instant replay home movies.

Mobile telephone scramblers cut down profits of crime

Much of the value of a police radio system is lost if criminals can eavesdrop on it. Burglars, narcotics dealers, car thieves and others find it worthwhile to invest in the relatively simple and inexpensive equipment needed to follow the police radio. Plain-language transmissions become little more than broadcast programs; attempts at secrecy by using word and number codes are almost useless—even the police buff understands them.

A new 7-pound mobile phone Scrambler does "foil the villains." Mounted in the trunk of a police car, with a mode selector on the dash, it makes the radio messages a hash of meaningless gibberish except to a receiver set to the same code. And unauthorized unscrambling is made more difficult by the fact that there are more than 200,000 possible codes.

Boeing Electronics, manufacturer of the Scrambler, reports that they are in use by the police departments of Tallahassee and Jacksonville, in Fla.; in Abilene, Tex., and Grand Rapids, Mich. as well as over the whole island of Jamaica. One of the police departments reports that a 22% decrease in burglaries can largely be credited to the use of Scramblers.

Computer-aided stimulation brings light to blind

A wave of articles in newspapers and magazines recently told of experiments in which two blind persons were able to see spots and patterns of light. Readers of this magazine, who have been following the results of such experimental work since 1956, may have been puzzled as to what was new in the work described. It did, however, represent significant advances as well as wider study of fields previously partly explored.

The approach of the researchers, W. H. Dobelle and M. G. Miladzhevsky of the University of Utah and J. P. Girvin of the University of Western Ontario, was to place a matrix somewhat similar to the mosaic of a TV camera against the portion of the subject's brain that responds to light stimuli. This array, of 64 platinum disc electrodes 1 square millimeter each in diameter, arranged in 8 rows of 8 discs, was similar to that used by Brindley and others in England. A small window was made surgically in the skull to insert the electrodes. In was then closed in such a way that the matrix could be removed without reopening the incision.

The new technique was the use of...
Fresh from the Factory.
Yet These Cars Should Be Recalled.

Because they're missing something. Like an ignition system built for today's driving.

Factory electronic ignitions were okay for yesterday. (All they do is eliminate the points and condenser, you know.) But today... with fuel shortages, the ever-growing cost of maintenance, power-robbing smog control devices, etc....there's a crying need for something better.

That something better is a Delta Capacitive Discharge Ignition System...the low-cost "now" system that really makes sense. Means up to 20% better gas mileage, 75% fewer tune-ups. Three to 10 times longer plug life. Instant starts... even at -40°. Better acceleration and performance. Easy to install on any automobile engine, too; even goes on in minutes right over the factory electronic system with no rewiring.

Delta Capacitive Discharge Ignition Systems...extra energy to beat the energy shortage. Available in two models; Mark Ten CDI, or Mark Ten B. Priced as low as $29.95 in kit form. Use coupon to order today!

DELTA PRODUCTS, INC.
P.O. Box 1147, Dept. RE, Grand Junction, Colo. 81501
303-242-9000

[Insert coupon code or details]
You remember the first super power amplifier - the Crown DC300. Well, most of its competitors are still using those six year old circuit designs pioneered by Crown. Most every amp but Crown's new DC300A - a totally redesigned amplifier inside and out. Frankly, the DC300A is not "just" the hi-fi mass market, but for demanding professional and personal applications. However, we know there are discerning audiophiles, perhaps even the most discerning of all, who can appreciate the difference.

The new DC300A has double the number of output transistors, effectively twice the muscle of the old DC300 for driving multi-speaker systems. Each channel has eight 150-watt devices for 1200 watts of transistor dissipation per channel. Advanced electronic output protection permits the DC300A to drive the toughest speaker loads at higher output levels before going into protection, and even then there are no annoying flyback pulse noises or DC fuses to blow.

The new DC300A has unprecedented signal purity. IM and harmonic distortion ratings are .05%, although typically below .025%. Hum and noise rating is 110dB below 150 watts, while typically -122dB. The difference in increased listening comfort is impressive.

Although totally new, the DC300A has inherited some important traits from its predecessor:

- **PRICE** — still under $700
- **WARRANTY** — three years on all parts, labor and round-trip shipping
- **POWER RATING** — 150 w/ch at 8 ohms; power at clip-point typically 190 w/ch at 8 ohms, 340 w/ch at 4 ohms, 500 w/ch at 2.5 ohms, or plug in two parts for 600 watts continuous mono power at 8 ohms.

There are many new super-power amplifiers, but when you buy a Crown DC300A, you're buying more than just an amp. You're buying the Crown company — a professional audio equipment manufacturer with a 26-year reputation for solid quality and lasting value. There are thousands of Crown amps in the field still working to their original specifications, and still outperforming most new amps. Visit your Crown dealer to hear the difference. For detailed product data, write Crown International, Box 1000, Elk Hart, Indiana, 46514.

electronics—a 64-channel stimulator controlled by a computer. It was in turn controlled by an electronic graphics system, so that the figures drawn by a light pen on the system's screen could stimulate electrodes that would present the same pattern to the subject's brain.

Although crude figures had been presented to the brain with earlier apparatus, this refined system made it possible to transmit recognizable simple patterns and letters to the subjects.

Partly as a result of developing these new computer-aided techniques, the researchers were able to carry out further studies on previously unresolved problems of differences in response to stimuli between totally and partially blind persons, and between those who were recently deprived of sight and those who had been blind for many years.

Technician licensing for NY State?

An act to institute licensing for all television, appliance or home entertainment equipment service technicians has been introduced in New York State Legislature, given two readings and sent to the Committee on Agriculture and Consumer Protection.

Under the terms of the bill, a temporary license would be granted to all persons who have been engaged in the given type of repair work for the last three months, or who have been engaged in this work for at least one year during the three years immediately prior to January 1, 1975. The license will be good for six months, at the end of which period the technician must pass an exam. New applicants must show evidence of successful completion of a course in an approved television, appliance, or home entertainment repair school. Licensees must be 17 years of age or older.

Proposed fees are $25 for a technician's license, $50 for a shop license, renewable annually for the same fee. In addition, there is an initial $10 fee for the application and examination.

Provision is made for an Advisory Committee of 14. Six of the members would have had actual experience in the practice of servicing or repairing the equipment enumerated in the bill; for not less than the past ten years. Three members could be from the management of electronic repair facilities, three from the management of appliance repair, and two shall not, at the time of appointment, be directly or indirectly identified with the business of electronic equipment or appliance repair (apparently representatives of the public).

The bill, if enacted into law, will take effect January 1, 1975.
Look what comes FREE with Sams Photofact®

Easy Buy Plans!

In your business the right Photofact Set is almost as essential as the right tools. And Sams Easy Buy Time Payment Plan makes it easy to have the right set when you need it. Just use the Easy Buy Plan to start or to fill out your Photofact library and you’ll not only save $1.00 a set, you’ll also get a bonus of FREE tools or equipment!

And there’s no carrying charge! One dollar saved on each Photofact Set . . . bought on time without a carrying charge . . . plus FREE tools! It’s an offer no TV or radio service shop can afford to pass by. Which of these five great Easy Buy Plans best fits your needs?

Easy Buy Plan #1. Any 60 Photofact Sets you need, for $20 down, $145 balance payable without carrying charge. Plus the $6.15 Xcelite screwdriver/nutdriver set—free!

Easy Buy Plan #2. Any 180 Photofact Sets, for $20 down, $475 balance payable without carrying charge. Plus the $12.40 Xcelite drive socket wrench kit—free!

Easy Buy Plan #3. Any 300 Photofact Sets for $20 down, $805 balance, payable without carrying charge. Plus your choice of the $30 Xcelite #99SM service master tool—or a $59.95 Craig #2624 portable cassette recorder!

Easy Buy Plan #4. Any 400 Photofact Sets for $20 down, $1080 balance payable without carrying charge, plus an $89.95 Craig #4507 portable electronic calculator—free!

Easy Buy Plan #5. Any 500 Photofact Sets for $20 down, $1355 balance payable without carrying charge. Plus your choice of a $125 Vaco tool luggage case or the $169 ACT-R 10H/L/U scanner monitor—free!

I am interested in Easy Buy Plan ______________________ Please send me a Photofact purchase contract.

Name ____________________________
Company Name ______________________
Address ___________________________
City __________________ State _______ Zip ________
My Sams Distributor is ____________________________
His Address ___________________________
City __________________ State _______ Zip ________

SAMS PHOTOFACT®
4500 West 62nd Street. Indianapolis, Indiana 46206

RE-X74

Circle 7 on reader service card
TEMPORARY SUBSTITUTE TUNER CONSUMER OPERATION

It appears that there are instances of the Castle TV Tuner "Subber" (as well as home-made imitations) being left connected to the consumer's TV receiver for use as a temporary replacement when the original tuner is removed and taken away for service. This is understandable, the "Subber" is an ingenious idea for signal circuit servicing and the receiver performance is frequently better with the "Subber" than with the original tuner; this conveniently leads to the well intentioned temptation to give the customer interrupted service from the receiver by "loaning" the "Subber" to him.

This is a questionable practice . . . and could prove to be a very expensive mistake!

A little investigation will reveal that any major changes in the operating controls, or construction, of the TV receiver, from the design which received U.L. approval, may well modify such approval. It follows that some of the product hazard liability, which the manufacturer sought to diminish by U.L. approval, may then be transferred to the technician or service dealer responsible for the changes. Using a substitute tuner, with any wiring brought out of the receiver to connect the tuner, certainly constitutes a major change . . . and in many cases could be a serious hazard!

For this reason, all "Subbers" have carried a warning label discouraging such "consumer" use. Possibly there are many service technicians who are unaware of the risks and legal responsibilities which they could face as a result of such practice and a warning against this practice is probably appropriate . . . and timely. Particularly timely in face of today's "consumerism" and the increasing public awareness of "product hazards."

CEDRIC WESTERN
Castle TV Tuner Service, Inc.
Chicago, Ill.

TV TYPEWRITER QUESTIONS

In this letter, you will find the answer to your question. Please excuse us for the need to answer you with a form letter, but it is the only practical way to handle the current volume of mail.

1. Where do I get Signetics IC's?

Answer — from Signetics (long back order).

2. Please send modem plans. Answer — not yet available. Probable IC's used will be 2536 UART from Signetics, and Exar 2240 and Exar 210.

3. How do I mount the connector pins? Answer — you remove the plastic block, and suitably shorten the pins. The plastic block is used only for spacing on the male connector.

Some new keyboards are available from Dan Mayer at Southwest Technical Products. Price with encoder is $39.95.

DON LANCASTER

I'M FOR MEN!

Your (not so) subtle change in the masthead of Radio-Electronics has not gone unnoticed. The magazine to which I subscribed "FOR MEN WITH IDEAS IN ELECTRONICS" has apparently gone the way of all flesh. It, too, has decided to abandon all of its integrity and join the massive "Sea of Capitulation" in which the rest of our society is immersed.

Perhaps there is some significance in my observation that the very month after
your masthead change, you featured an article aptly titled, "Here Comes the FEM-To-What." I hope that the mailing list that you got from MS magazine was worth the effort.

Old magazines, like old soldiers, never die—they just fade away. So let it be with my subscription.

With fond memories,

JOSEF SCHÖENBRUN
Santa Monica, Calif.

Reader Shoenbrun’s letter was dated April 1.

We’ve taken it in the spirit of that day. In case he was serious, hail and farewell ex-reader Shoenbrun! For the record let it be said that the change on the masthead from “For Men With Ideas In Electronics” to “The Magazine For New Ideas In Electronics” was made because we believe that the slogan should tell what the magazine’s content is rather than what we hope its readers are—Editor

SIMPLIFIED CLOCK CIRCUIT

In the September 1973 issue, a simple digital clock circuit was shown (p.66) by Mr. Glover. This circuit can further be simplified. Mr. Glover did not use a 7490 IC in the hours-counting section because of the particular reset function (count 1-12, reset to 1) desired.

A 7490 may be used, but instead of externally connecting it in the normal BCD fashion, the two sections (count-by-2, count-by-5) are used separately. A separate 7473 drives the “A” input of the 7447, while the onboard count-by-2 section of the 7490 drives the tens of hours display.

The advantage of this method is evident upon examination of the reset characteristics. A single 2-input AND gate is required to complete the reset function, and this can simply be substituted for by two diodes. The transistor is any bargain-pack, general-purpose device. The second half of the 7473 may optionally be used for an AM-PM indicator (clocked from “A”-out of the 7490).

DANIEL GOODELL
Concord, Calif.

I LIKE ELECTRONIC MUSIC

I’d like to take the time to compliment you on the recent various articles on electronic music synthesizers, especially the six consecutive articles explaining various how and whys of the PAIA synthesizer (May through October 1973). It was an ideal series for the amateur electronic musicians, as well as the technostuff! I hope to see more articles on the developments of new synthesizer concepts as you are doing a fine job of keeping on top of them.

I am a year from graduating with my Bachelors degree in Electronic Engineering from DeVry Tech., and am planning to design and build an synthesizer for my seminar project! Your articles are the greatest source of references and ideas.

MICHAEL L. MURRAY
Chicago, Ill.

DON’T MISS IT!

An experimental see-in-the-dark infrared viewing system for lots of exciting experiments. You can build it for $35.

TUN-O-POWER RESTORES TUNERS!

Take a really bad tuner. The contacts are so dirty you have to wiggle the knob to pull in a channel.

Remove the tuner cover and spray in TUN-O-POWER. Rotate the tuner a couple of times. Then stand back and admire the results.

The tuner contacts are not just clean, they’re shined to a high luster. And they’re coated with a long lasting lubricant that makes detent action smooth as silk.

TUN-O-POWER is available from your Chemtronics Distributor.

Try it. You’ll love it.
This important job (and its big income) is reserved for a qualified electronics technician. It can be you!

It's a fact. There are thousands of jobs like this one available right now for skilled electronics technicians. What's more, these men are going to be in even greater demand in the years ahead. But how about you? Where do you fit into the picture? Your opportunity will never be greater . . . so act now to take advantage of it. The first step? Learn electronics fundamentals . . . develop a practical understanding of transistors, trouble-shooting techniques, pulse circuitry, micro-electronics, computers and many other exciting new developments in this growth field. Prepare yourself now for a job with a bright future . . . unlimited opportunity with lasting security . . . prestige and a steadily growing paycheck.

Cleveland Institute of Electronics courses have been stepping stones to good jobs in electronics for thousands of ambitious men. Why not join them? You can learn at home, in your spare time, and tuition is remarkably low. Read the important information on the facing page. Then fill out and mail the reply card or coupon today. We'll send you all the details and for your convenience, we will try to have a representative call. Act now . . . and get your high-paying job just that much sooner.
How You Can Succeed In Electronics ... Select Your Future From Seven Career Programs

The "right" course for your career

Cleveland Institute offers not one, but seven different and up-to-date Electronics Home-Study Programs. Look them over. Pick the one that is "right" for you. Then mark your selection on the reply card or coupon and mail today. In a few days, you will have the complete details.

1A. Electronics Technology
A comprehensive program covering Automation, Communications, Computers, Industrial Controls, Solid-State Devices, and preparation for a 1st Class FCC License.

1B. Electronics Technology with Laboratory
Includes all areas of Course 1A including 1st Class FCC License preparation. In addition, student receives 161-piece Electronics Laboratory and 17 "lab" lessons for "hands-on" experience.

2. Broadcast Engineering
Here's an excellent studio engineering program which will get you a 1st Class FCC License. Now includes Video Systems, Monitors, FM Stereo Multiplex, Color Transmitter Operation and Remote Control.

3. First Class FCC License
If a 1st Class FCC ticket is your goal, this streamlined program will do the trick and enable you to maintain and service all types of transmitting equipment.

4. Electronic Communications
Mobile Radio, Microwave and 2nd Class FCC preparation are just a few of the topics covered in this "compact" program. Highly recommended for jobs with telephone companies.

5. Industrial Electronics & Automation
This exciting program includes many important subjects such as Instrumentation, Solid-State Devices used in Pulse, Digital and power controls.

6. Electronics Engineering
A college-level course for men already working in Electronics ... covers Steady-State and Transient Network Theory, Solid-State Physics and Circuitry, Pulse Techniques, Computer Logic and Mathematics through Calculus.

An FCC License... or your money back!
The CIE courses described here will prepare you for the FCC License specified. In fact, we are so certain of their effectiveness we offer this Money-Back Warranty: when you complete any CIE licensing course, you'll be able to pass your FCC exam or be entitled to a full refund of all tuition paid. This warranty is valid during the completion time allowed for your course. You get your FCC License — or your money back.

CIE's AUTO-PROGRAMMED Lessons help you learn faster and easier
Cleveland Institute uses the new programmed learning approach. Our Auto-Programmed Lessons present facts and concepts in small, easy-to-understand bits ... reinforce them with clear explanations and examples. Students learn more thoroughly and faster through this modern, simplified method. You, too, will absorb ... retain ... advance at your own pace.

Employment Assistance available for all CIE students... at no extra cost
Once enrolled with CIE, you will get a bimonthly listing of high-paying, interesting jobs available with top companies throughout the country. Many CIE graduates hold such jobs with leading companies like American Airlines, AT&T, General Electric, General Telephone and Electronics, IBM, Motorola, Penn Central Railroad, Raytheon, RCA, Westinghouse, and Xerox ... to name a few.

CIE Lessons are continually up-dated
All lesson books and materials from CIE are continually revised or replaced according to the current needs of industry and the rapidly advancing and changing state of the art.

Approved Under G.I. Bill
All CIE career courses are approved for educational benefits under the G.I. Bill. If you are a Veteran or in service now, check box for G.I. Bill information.

Cleveland Institute of Electronics, Inc.
1776 East 17th Street, Cleveland, Ohio 44114
Accredited Member National Home Study Council

Mail coupon for 2 FREE BOOKS

Cleveland Institute of Electronics, Inc.
1776 East 17th Street, Cleveland, Ohio 44114
Please send me your two FREE books:
1. Your school catalog, "Succeed in Electronics."
2. Your book on "How To Get a Commercial FCC License."
I am especially interested in:
☐ Electronics Technology ☐ Broadcast Engineering ☐ Electronic Communications
☐ Electronics Technology with Laboratory ☐ First Class FCC License ☐ Industrial Electronics & Automation
☐ Electronics Engineering

Name ____________________________ Age ____________________________
(print)
Address ____________________________
City __________________ State ______ Zip ______
Veterans and Service men:
☐ Check here for G.I. Bill information

RE-32

Circle 10 on reader service card
In this age of "automatic everything" there are still hi-fi enthusiasts who prefer a fully manual turntable, the rationale being that the fewer the number of moving parts the less likely the possibility of extraneous wow and flutter. A perfect example of the high level of performance to be found in the number of rotating components is reduced is to be found in the Technics SL-1200 turntable, which has one moving part—the platter.

In fact, though Panasonic touts their Technics SL-1200 as a Direct-Drive Turntable it is a complete manual record player consisting of the direct-drive platter, high performance pickup arm, acoustic resistant mounting feet and integral dust cover. But since the direct-drive platter is the most important we'll cover that item first.

The drive motor is a dc servo type with the platter attached directly to the shaft. Electronic speed control determines and holds to precision tolerances the user selected 33 rpm or 45 rpm speed. Attached to the rotor is a control rotor, actually a toothed metal wheel. Positioned around the control rotor are three pairs of coils; one coil of each pair is driven from an oscillator of approximately 50 kHz. As the rotor turns it determines the degree of coupling between each pair of coils, hence the amount of signal induced in each secondary coil. The output from the secondary coils is rectified and used to control three power transistors which feed current through the motor windings. Three speed control coils wound on the motor windings generate a three-phase ac voltage whose amplitude is directly proportional to the motor speed. This voltage is rectified and compared to a reference voltage determined by the selected 33 rpm or 45 rpm speed. If this comparison shows a difference between speed and reference voltages the current flow through the power transistors is automatically adjusted to compensate for the speed variation. Since corrections are made with electronic smoothness speed inaccuracies are corrected before they are heard.

By the same system of voltage comparison, fluctuations in the ac line voltage or mechanical loading of the platter are corrected before they are heard.

To compensate for the variations normal to consumer equipment, and to provide "pitch" control for those so inclined to modify a recording, two "trimmer" adjustments are provided on the top deck, one for each speed. The trimmer, or "pitch", controls provide a nominal +5% speed adjustment range. To insure precise speed-setting by the user, the 3.86-lb. platter has strobe markings on the outer rim for both speeds for 50 and 60-Hz line frequency. A built-in lamp illuminates the strobe.

The Technics SL-1200 is specified for a 0.3/4" wow and flutter. Our measurements indicated 0.4/6; the difference being well within expected instrument tolerances, and certainly an outstanding value. Rumble was absolutely inaudible. Speed regulation was constant over an applied line voltage range of 90 to 150 Vac (the limits of the test equipment). Of notable interest, the platter can be held with the hand, say for cueing purposes, with no possibility of damage either present or potential. When released, the platter comes up to speed almost instantaneously.

The pickup arm has an integral stylus force adjustment with a micrometer-type counterweight adjustment. Somewhat unusual, the stylus force adjustment has an automatic zero-reset when the arm is counterbalanced. It works this way: After the pickup is installed in the plug-in holder the stylus force adjustment is rotated until the pickup arm is balanced. Then the stylus force adjustment is pulled outwards, causing the indicator gauge to automatically reset to zero. Then the desired stylus force is simply dialed in. This feature is a particularly convenient for those using several pickups, say for mono, stereo and CD-4; it takes but a few seconds to balance and dial in the force for each pickup. The stylus force gauge is calibrated from 0 to 4 grams in 1/2 gram increments, and the stylus force can be set within 1% precision. A calibrated anti-skate adjustment is provided, as well as a viscous-damped cueing device (pickup arm...
The connecting cables from the pickup are low capacitance, making the system instantly ready for CD-4 pickups.

The turntable and arm are mounted on a massive aluminum deck which sits on four acoustically resistant (sound absorbing) feet. The mounting feet have a moderate height adjustment which permit precise horizontal balance of the pickup arm.

JVC CD-1668 Cassette Deck Features New Noise Reduction System

Circle 87 on reader service card

**WITH THE INTRODUCTION OF THE JVC automatic Noise Reduction System—termed ANRS—the audiophile now has available two anti-noise systems which do not degrade a tape recorder's overall frequency response. In many respects the ANRS is similar in basic operation to the Dolby, and as we'll show, both ANRS and Dolby tape recordings can be interchanged with a reasonable or acceptable degree of "matching."

As with the Dolby, the ANRS is a closed-loop system: all circuits between the input signal encoder and output signal decoder are included in the anti-noise processing—the tape, the playback preamplifier, and the playback line amplifiers up to the decoder. These circuits represent the inherent tape noise, the transistor noise from the amplifiers, and the bias noise (arising when electrical signals are converted to magnetic variations), all of which appear as a background hiss.

Also similar to the Dolby, a single equalizer circuit functions for both encoding and decoding so that the overall record/playback frequency response is optimally "flat."

In the record mode, the input signal is passed through the high-frequency boost 'equalizer', which is connected in parallel with a non-linear control element. The output of the equalizer is series connected to a gain compensator/control amplifier and then to the recording amplifier. When the gain compensator/control amplifier senses a high-level signal, it causes the control element to bypass the signal around the equalizer, delivering a "flat" input signal to the record amplifier. As the input signal level decreases, the control element increases the amount of signal passed through the equalizer; at 40 db below the reference signal level, full high-frequency boost is applied to the input signal. The actual amount of boost is shown in Fig. 1. If the record level is 0 db, or reference record level, there is virtually no high-frequency boost. At -40 db, there is 10-db boost applied between 5 kHz and 20 kHz.

In the playback mode, the same high-frequency boost equalizer is still used, but the control element is now used in a negative feedback amplifier so the system has a reverse characteristic to the recording system. The higher frequencies are now attenuated in the same proportion to the original signal level, as shown in Fig. 2. Since the equalizer cannot distinguish between program (signal) and noise, it attenuates both equally; as the program is restored to its original "flat" response, the noises generated within the ANRS system loop are attenuated some 10 dB between 5 kHz and 20 kHz at the lower program signal levels.

As shown in Figs. 1 and 2 the encoding and decoding are not exactly complementary as they are for the Dolby system, but the variations are so slight as to be meaningless (unheard) for program material. The big question, of course, is how the ANRS is compared to Dolby? What happens when an ANRS decoder is used with a Dolby decoder and vice versa?

The first considerations are the equalization frequencies. Whereas the ANRS provides about 5 db equalization at 1 kHz and 10 dB equalization at 10 kHz, the Dolby B (the model used in consumer equipment) has 5 db equalization at about 800 Hz and 10 dB equalization at about 3 kHz. Thus, Dolby provides the full 10 dB noise reduction 2 kHz below that of the ANRS. In terms of listening sound quality, though both systems deliver excellent noise reduction, the Dolby sounds slightly more quiet or "hiss free." Because of the differences in equalization depth vs frequency, there are variations in frequency response when the systems are intermixed, such as a Dolby encoded tape with ANRS decoding. Figures 3 and 4 illustrate just what can happen. The sweep frequency is 20 to 20 kHz recorded 30 and 40 dB below the reference or 0-VU recording level, the primary "working range" of noise (continued on page 25)
The editors' choice: Heathkit Digital Design Color TV!
At ELEMENTARY ELECTRONICS they said: "The fact is, today's Heathkit GR-2000 is the color TV the rest of the industry will be making tomorrow...there is no other TV available at any price which incorporates what Heath has built into their latest color TV."

The FAMILY HANDYMAN reviewer put it this way: "The picture quality of the GR-2000 is flawless, natural tints, excellent definition, and pictures are steady as a rock. It's better than any this writer has ever seen. Changing channels is uncannily silent, thanks to the varactor tuner, which does away with chunky old-fashioned switches. The visual channel readout ends squinting from across the room forever. Finally, the clock is a great gadget—a pleasure to have at the least."

POPULAR SCIENCE pointed out "more linear IC's, improved vertical sweep, regulators that prevent power supply shorts, and an industry first: the permanently tuned I.F. filter."

The RADIO-ELECTRONICS editors said the Heathkit Digital Design TV has "features that are not to be found in any other production color TV being sold in the U.S.:"

"On-screen electronic digital channel readout...numbers appear each time you switch channels or touch the RECALL button...On-screen electronic digital clock...an optional low cost feature...will display in 12- or 24-hour format...Silent all-electronic tuning. It's done with uhf and vhf varactor diode tuners...Touch-to-tune, reprogrammable, digital channel selection...up to 16 channels, uhf or vhf...in whatever order you wish...there's no need to ever tune to an unused channel. LC IF amplifier with fixed ten-section LC IF bandpass filter in the IF strip...eliminates the need for critically adjusted traps for eliminating adjacent-channel and in-channel carrier beats. No IF alignment is needed ever. Touch volume control...when the remote control is used...touch switches raise or lower the volume in small steps."

POPULAR ELECTRONICS took a look at the 25-in. (diagonal) picture and said it "can only be described as superb. The Black (Negative) Matrix CRT, the tuner and IF strip, and the video amplifier provide a picture equal to that of many studio monitors..."

FAMILY HANDYMAN said, "It's astounding to think that an utter novice can construct a device as complex as this without ever knowing a thing about electronics or electricity. The achievement is even more impressive in view of the result."

And here's what RADIO-TV REPAIR said about service: "...virtually every function of the receiver has been broken down to a miniature plug-in circuit assembly...if trouble develops you simply pop out the correct board and check it yourself...Heath provides free technical consultation, and if you do need factory service, as we said, the costs are low, well below that for (conventional color TV) insurance protection."

"The plain truth is, ELEMENTARY ELECTRONICS said, "with service and repair costs soaring even for the most insignificant in-home repair or adjustment, the GR-2000 is the way all color sets will have to be made in the future...Heathkit GR-2000 is tomorrow's color TV, today."

Why not see what the experts have seen? The Heathkit Digital Design Color TV—without question the most remarkable TV available today.

Mail order price for chassis and tube, $659.95.* Remote Control, $89.95 mail order, Clock, $29.95 mail order. Cabinets start at $139.95.* (Retail prices slightly higher).

Send for your FREE '74 Heathkit Catalog—world's largest selection of electronic kits.

HEATHKIT ELECTRONIC CENTERS
Units of Schlumberger Products Corporation
Retail prices slightly higher:

ARIZ.: Phoenix; CALIF.: Anaheim, El Cerrito, Los Angeles, Pomona, Redwood City, San Diego, Santa Barbara, Woodland Hills; COLO.: Denver; CONN.: Hartford (Avon); FLA.: Miami (Hialeah), Tampa; GA.: Atlanta; ILL.: Chicago, Downers Grove; IND.: Indianapolis; KANSAS: Kansas City (Mission), Topeka; KY.: Louisville; LA.: New Orleans (Kenner); MD.: Baltimore, Rockville; MASS.: Boston (Wellesley); MICH.: Detroit; MINN.: Minneapolis (Hopkins); MO.: St. Louis; NEB.: Omaha; N.J.: Fair Lawn; N.Y.: Buffalo (Amherst), New York City, Jericho, L.I., Rochester, White Plains; OHIO: Cincinnati (Woodland); Cleveland, Columbus; PA.: Philadelphia, Pittsburgh; R.I.: Providence (Warwick); TEXAS: Dallas, Houston; WASH.: Seattle; WIS.: Milwaukee.
suppressors. In following the illustrations, count the traces from the top (No. 1) at the left side. (The illustrations were prepared using standard production models of outstanding Dolby and ANRS equipments.)

In Fig. 3 the No. 1 (top) trace is -30 dB ANRS in and out. Trace No. 2 is -40 dB in and out. Note that the overall record-play frequency response is within ±3 dB from about 30 to 12 kHz+ Trace No. 3 is -30 dB ANRS in and Dolby out. Trace No. 4 is -40 dB ANRS in and Dolby out. Trace No. 4 is -40 dB in and Dolby out. Note that at -30 dB, ANRS in Dolby out, there is a 5-dB dip slightly higher than 6 kHz which "flattens out" as the input level is reduced to -40 dB below 0-60 reference level.

In Fig. 4, the No. 1 (top) trace is -30 dB Dolby in and out. Trace No. 2 is -40 dB Dolby in and out. Note that the overall record-play frequency response is within ±3 dB from 20 to 12 kHz+ (it's a different recorder). Trace No. 3 is -30 dB Dolby in and ANRS out. Trace No. 4 is -40 dB Dolby in and ANRS out. Note that there is now a 5-dB peak at 3.5 kHz at the -30-dB record level which flattens out as the record level is reduced to -40 dB.

While a treble boost (from the amplifier) could compensate for the intermix dip shown in Fig. 3 (similarly, treble cut for the peak in Fig. 4), the results would be, at best, barely acceptable to the hi-fi user; sort of like cutting the highs when playing a Dolby-pre-recorded tape on a non-Dolby machine. Of course, how often are tape recordings intermixed: most users stick with tapes made on their own machines, and bath noise reduction systems work well unto themselves.

The ANRS is incorporated in JVC's top-of-the-line model CD-1668, which features other unusual and to-become-important features. In addition to normal, low-noise, and chromium-dioxide bias selection, a memory reset counter that allows rewind to a user-determined location and a user removable head cover, the CD-1668 has professionally (studio) calibrated VU meters and an optical-controlled cassette eject.

With very few exceptions, cassette recorders use a 0-VU recording reference which is already at tape saturation; hence, since the meter movement cannot usually follow rapidly changing signal levels such as program peaks, the program peaks of the input signal are already well into tape saturation distortion. To avoid the problem, JVC professional recorders have their VU meters calibrated at least 60 dB below tape saturation. So what is termed "headroom." In the CD-1668 cassette deck, JVC has not only provided 60-dB headroom, they have incorporated high-speed meter movements and a peak signal indicator lamp. As long as the meter shows the program is below 0-VU and the peak signal indicator is not flashing, the input signal is being recorded "undistorted." The value of this professional calibration is immediately apparent upon listening, for combined with the ANRS, the CD-1668 can turn out a tape copy of a record indistinguishable from the original.

The optical-eject is one of those ideas that takes time to appreciate. In the typical auto-eject system, a mechanical device is activated when the tape is stretched as it reaches the end of the reel. Though the tape has "run out", the applied capstan drive causes the tape to stretch, and an arm riding on the back of the tape senses the stretch; after a few seconds either the motor is stopped or the eject mechanism is activated.

The optical-eject avoids the tape stretch by using a shutter-generated signal to control an eject solenoid. The reset counter is

(continued on page 86)
Better electronic service data is aim of ISCET study

According to the International Society of Certified Electronic Technicians (ISCET) Serviceability chairman Dean R. Mock, three ingredients are necessary to the efficient repair and service of electronic products:

1. A product designed to be serviceable.
2. Availability of proper service parts.
3. Proper Service Data

NESDA, the parent association of ISCET, has been carrying on in-plant serviceability inspections, has made recommendations and given awards for serviceability. The availability of components has been the subject of constant dialogue between organized service technicians and manufacturers. The service data phase was started early last Spring, when a group of six independent service technicians met with G.E.'s supervisor of training and publications in a day-long critique of G.E. service data.

Out of that conference and further studies have come seven criteria for evaluating service data:

1. Indexing and filing systems. A product may be identified by model number, chassis number, or even the retail sales designation. (A customer may ask for a knob for a Nadir "Netherwood" TV, a receiver may come in with only a chassis number, or data may be required for a particular model.) In all these cases, service data needs to be indexed and fileable so that the set can be quickly matched to the correct data.

2. Accuracy. The Technician is well aware of the trouble an inaccurate voltage or waveform, or a wrong component value can cause.

3. Completeness. Essential if the job is to be done efficiently and quickly. Missing voltages and waveforms slow down the work, and may affect the quality of the finished job.

4. Readability. Lost time, errors and frustration result from microscopic print and poor printing, not to mention ambiguous or distantly placed component identifications and puzzling schematic layout.

5. Updating. This is a serious problem. One manufacturer has put out schematics for early production and another set for late production models. The hitch is that the technician may not have any way of knowing which he is working on. Or he may even be servicing a hybrid, with some early and some late features. For efficient servicing it is necessary that, whenever production changes are made, the chassis number be modified, and the service data be modified to correspond, in such a way that the technician can be sure he has the correct data for the set.

6. Availability of data. It should be published, available and mailed to subscribers prior to the date the product appears on the market.

7. Photographs, pictorials and drawings. Each component, service adjustment and control must be identified in both photos and drawings. Also included should be all mechanical tuner parts, drive assemblies, dial stringing diagrams and cabinet parts, including knobs.

THE ONLY COLOR SET YOU SHOULD TINKER WITH

It takes more than tools to be a TV service technician. It requires know-how, especially with a color TV set. Some "do-it-yourselfers" actually do more harm than good and wind up paying more money for repairs or adjustments than they would have if they called their local TV technician at that first sign of trouble. So don't play with that color set. Tinkering can be dangerous as well as expensive. Call your independent TV technician for safety as well as satisfaction.

PUT THIS BUSINESS-BUILDING TRAFFIC-STOPPER ON YOUR SHOP WALL OR IN YOUR WINDOW

while the guy down the street complains about how tough alignments are... I do them!

I used to hook up a separate sweep generator, marker generator, marker adder and bias supply, hope that everything was properly calibrated and adjusted, and pray that the alignment would hold after I disconnected the cables draped all over the bench.

I didn't do it very often.

Now, in the time it used to take me just to set up, I can almost complete an alignment. And I'm confident the set will perform as well as it possibly can. My customers notice, too. That's the difference B&K's 415 Solid-State Sweep/Marker Generator made.

Setup is no problem. After I connect the 415's outputs to my scope (there's even low-frequency compensation to eliminate pattern errors), I connect its RF outputs (channel 4 or 10) to the antenna terminals or mixer test point, the direct probe to the video detector test point (or anywhere else after the video detector diode) and the demodulator probe to the bandpass amplifier output.

They're all clip-on connections, and the 415 comes with all the accessories I need. Once I've made the initial signal and bias hookups, there's nothing else to connect or reconnect. All intercabling changes and generator functions are controlled from the front panel. There's even a 15,750Hz filter to eliminate disabling the set's horizontal output section.

Shaping the waveform is easy, because the 415 has 10 crystal-controlled IF markers, each of which lights up on the front-panel waveform diagram as it is used. Markers can be shown either vertically or horizontally on the scope trace. There's a 100kHz modulated marker that makes nulling the traps so easy it's almost automatic. And three low-impedance, reversible-polarity bias supplies—two, 0-25VDC; one, 0-50VDC.

Every step is easy to understand, too, thanks to the comprehensive manual.

Since I have nothing to sell but my time, I have to make the most profitable use of it I can. That's why I have a B&K 415.

In stock now at your local distributor or write Dynascans.

Model 415
$440
The Rad-Electronics Mark-8 Minicomputer is a complete minicomputer which may be used for a number of purposes, including data acquisition, data manipulation and control of experiments. It may also be used to send data to a larger computer or to a terminal such as the Radio-Electronics TV Typewriter, (September 1973) and it is easily interfaced with a keyboard. The keyboards do not have to be ASCII encoded since the minicomputer itself can convert the input code to an equivalent ASCII code for output. This Minicomputer is not a glorified calculator and it is not intended just for educational use. It can be interfaced to a calculator (a possible future project if readers are interested) to perform complex mathematical routines, and it may also be used as a teaching tool.
GET THE COMPLETE STORY

The Minicomputer is a very special story. Complete instruction information, including full-size circuit board patterns, would require a long multi-part article in Radio-Electronics.

To make it possible for interested readers to get full details of the unit and start construction immediately, we are making available a special package of additional data. This includes complete construction details, more data on how it works, a group of eight experiments you can perform with the computer and other important information. The cost of this 52-page package is $5.00 plus postage.

Use the coupon below to order. Fill out the portion with your name and address. You must print as it will be used as your shipping label. Then check off the way you want it shipped; this determines the price. Mail your check or money order with the coupon to Radio-Electronics, Micro-Computer, P.O. Box 1307, Radio City Station, New York, N.Y. 10019. Payment must be in U.S. currency.

Radio-Electronics
Micro-Computer
P.O. Box 1307
Radio City Station
New York, N.Y. 10019

MUST PRINT

Name ____________________________

Address ____________________________

City State Zip ____________________________

Brochure price $5.00, postage is additional.

- U.S., Canada First-class mail $5.50
- U.S., Canada Air-mail $5.65
- Foreign, Surface $5.90
- Foreign, Air-mail $7.30

Only these four methods of shipment can be provided.

* New York State residents must include 7% sales tax.

Brochures will be mailed within three weeks of receipt of your order.

The heart of the Mark 8 Minicomputer is an Intel 8008 microprocessor IC that contains all of the arithmetic registers, subroutine registers and most of the control logic necessary to interface the microprocessor with semiconductor memories as well as input and output registers. Standard TTL type IC's are used throughout and commonly available 1101, 1101A and 1101A1 type memories are used for the central storage. The microprocessor with its associated logic will be referred to as the central processor unit, or C PU.

The central processor unit is an 8-bit parallel processor. A string of eight binary bits, D, through D8, is used to indicate the instruction data or memory locations. Rather than repeat, "eight bits of binary data", we shall refer to the eight bits as a byte. As you will note, some of the instructions take up to three bytes of data and they are, therefore, called three-byte instructions.

The computer takes 20 μs to execute each byte of these instructions, so the time to execute any of the basic instructions may vary from 20 to 60 μs. The time that the computer takes to execute one byte of the instruction is called the computer's cycle time. Most minicomputers have a cycle time that is about ten times faster than the Mark 8, but this will not restrict the use of this Minicomputer in most situations.

The Intel 8008 microprocessor provides us with some sophisticated features, only found on larger, more costly computers. These include a pointer register, interrupt pointers and a stack register for multiple subroutine stacks.

The Mark 8 is programmed in assembly or machine language, the basic language of all computers which consists of 1's and 0's grouped into bytes. While it may seem cumbersome at first, this is one of the most flexible ways to program while keeping down the cost of added storage or memory. The use of just the 1's and 0's to represent the binary numbers can become tedious after a short while. It becomes much easier to convert the binary numbers to their octal equivalent and use these direct equivalents instead.

There are 48 program instructions to use in programs on the Mark 8. Each program must consist of an orderly, logical chain of steps in successive memory locations. If data or program steps are not loaded in the correct order, the program won't work correctly and is said to have a bug in it. Those not familiar with the basic operations of a computer and the various number systems used will find "Computer Architecture" by Caxton Foster, Van Nostrand Reinhold, New York, New York, 1970, ($12.50) an easy to read and understand introduction that should be read before attempting to build or use the Mark 8.

The basic Minicomputer consists of six modules:

1. Main CPU module.
2. Memory Address/Manual Control module.
3. Input Multiplexer module.
4. Memory module.
5. Output module.
6. Readout module.

These modules provide the experimenter with the basic minicomputer configuration. Two 8-bit input ports are provided for getting data into the computer and four 8-bit output ports are provided to output data to external devices. The memory module can accommodate up to 1024 bytes or words of storage, although only 256 words are required to start. Manual controls are provided for the user and a readout of some of the important registers is provided on the Readout module.

Six different modules

The Central Processor Unit (CPU) module contains the microprocessor IC and the extra circuitry used to interface with the rest of the computer. It is not important to note that the 8008 microprocessor has been fabricated as an MOS circuit and the outputs will only drive one low-power circuit of the 741 series. Each output is buffered with a 74104 inverter before it is used. The main, X-line input/output bus, or I/O bus is also buffered by two 74141 circuits to give the TTL signals a high fan-out.

The computer is controlled by a 2-phase clock supplied by a crystal oscillator which controls the pulse widths and frequency. The clock and the synchronization signal supplied by the microprocessor are used to control some of the basic operations of the computer interface circuits. The synchronization signal synchronizes the operation of the very fast TTL circuits and the slower, clocked, MOS circuits in the microprocessor. The microprocessor also has three, state-output signals which are used to drive a decoder. The eight possible states are then used to control other functions in the interface logic. A complete description of the generation and use of these state outputs is included in the Intel User's Manual.

Since the CPU uses a parallel 8-bit I/O bus for input and output of data there must be some control of when the bus is sending data from the CPU to an external device or when it is taking data in. Two lines are present on the CPU module, TN and OUT. These lines are used by the other modules to regulate the flow of data in the correct direction at the correct time. The control of the TN and OUT lines is governed by the additional logic on the CPU module.

The Memory Address/Manual Control module is used to build data which is to be used as the memory address. Two 8-bit latches are provided since the computer will use one set of eight bits for a memory address and the other set of eight bits for control functions. Since the microprocessor can directly address up to 16,424 words of memory, commonly noted as 16K, we will need 14 binary bits for the complete address. The complete memory address of any location is given by a 16-bit binary number: X X X X B3 B2 B1 B0 / B7 B6 B5 B4 B3 B2 B1 B0.

We refer to these bits that are not used. The computer specifies any address by first sending out the B0 bits to one of the eight-bit latches, followed by the six B1 bits and two B2 bits. Control of the correct latch is supplied from the CPU module.

The B0 bits have the most significance on value in the complete digit, while the B1 bits are called the least significant or LO part of the address. The HI and LO address latches are made up of SN74193 programmable coun-
The Data Storage When and Usefulness Incremented, by Counting Required.

The working heart of the computer is relatively simple. The six primary circuit boards and the front-panel controls are shown here. If additional memory is needed, more circuit boards are required.

The manual control portion of this module allows us to program the computer and to control its operation from an operator's console. We are able to externally address any memory location and deposit data or instructions in it. We may also return to any location and check the data stored there. Controls are also provided to allow us to single-step the computer through a program, one instruction at a time, and to interrupt the computer while it is executing a program. These controls will be described in detail later.

The Data Input Multiplexer module controls the flow of all data into the computer. All data going into the computer is placed on the I/O bus during the IN cycle signalled by the IN signal. Since data may be coming in from a number of different experiments or sources, we must have some means of selecting which data is fed into the CPU. Two basic multiplexers are used for this precise gating of data. The two 8263 quad, three-line to one-line multiplexers control which of three sets of input lines are selected. Note that two sets of these input lines are input ports 0 and 1. These are the two external data input ports. The third set of data input lines comes from the memory. Data or instructions in the memory, all go through the multiplexer and into the CPU.

This multiplexer is followed by a second set of multiplexers, 8267's. These are quad, two-line to one-line multiplexers with open collector outputs which are compatible with the computer bus structure. This multiplexer switches between the data selected at the previous multiplexer and data from the Interrupt Instruction Port. The use of the Interrupt Instruction Port will be covered in the Interrupt section. This second multiplexer may also be an on-off or selected state which is used when data is not to be sent to the CPU module. Control lines SL0 and SL1 are sent directly from the CPU interface logic.

Remember that when the HI address is not being used to store a memory address, it is used for control signals. During an IN or OUT cycle these control signals are decoded and used to select the proper input or output lines for the I/O bus. The Multiplexer module decodes the control bits B, C, D, and D1000 and OR's them with IN to select the proper external data input port. When the computer is instructed to get some data from memory it automatically selects the memory input section of the multiplexer. The INPUT instruction is only used when you wish to input data from some external source such as a digital voltmeter or keyboard, through one of the two input ports.

The Memory module uses the widely available 1101 type of semiconductor, integrated circuit memory. The 1101 random access memory or RAM is organized as a 256 x 1-bit memory, so eight of the 1101 type memories are used to give us 256, eight-bit words. This is the minimum configuration necessary for the operation of the Mark-8. Each memory module can hold 32 of the 1101 memories for a total of 1024 or 1K words of storage. Up to four Memory modules may be used with the Mark-8, giving us a maximum 4K of storage space. More than enough for most applications.

Each of the 256 words are addressed by the eight bits from the I/O address latch. Since 2^8 = 256 we can only address 256 words using the I/O address alone. Each memory also has an enable line so we may select blocks of 256 words, using this line. The HI address, therefore, used and decoded with a standard decoder and the decoded outputs are used to enable or select the blocks. You do not have to be concerned about the particular block where data has been stored, just use the complete 14-bit address, since the memory does the complete decoding.

Each of the addressed memory locations may store one 8-bit word or byte of information. For 2 or 3-byte program steps, two or three successive memory locations are used for storage.

The 1101 type memories are volatile semiconductor memories and information stored in them will be altered or lost if the power is shut off. If you want to save a program, leave the power on.

A chart in the construction section shows how the memory jumpers are wired for each of the four possible boards. Boards must be added in numerical sequence, 1, 2, 3, and 4. Blocks of memory must be added in units of 256 words in the A, B, C, and D sequence, to prevent gaps in the memory.

A read/write or R/W line is provided on the module so that data may either be read from, or written into a selected memory location. The CPU and the Manual Control module both control this line so that data may be entered under computer control or
so that we may insert our program data into the memory prior to use by the computer.

The eight data-output lines from the memory are sent to the CPU I/O bus through the Input Multiplexer module. When we ask for data from the memory with an I RM type of instruction (see Intel User’s Manual), the CPU senses that the memory data is needed and it sets the input multiplexer so that the data is placed on the I/O bus at the proper time.

The Output Latch module is used to send data from the computer to some external device or instrument, such as a teletype or perhaps the Radio-Electronics TV Typewriter (Radio-Electronics, September 1973). Four output latches are provided on the Output Latch module and two of these modules may be used with the Mark-8. The second module may, however, only use three of the output latches.

Note that data is sent from the I/O address latch to each output port and that these decisions are in parallel. The computer decides which latch is activated according to the OUTPUT instruction that we have in our program. Here, again, the HI address latch holds the control bits B, C, and D which are decoded and NOWed with OUT to activate the selected eight bit output port or latch. NOTE: The OUTPUT instruction in the Intel User’s Manual has two RR bits shown in it. These bits must be set to RR =

PRINTED-CIRCUIT BOARD ASSEMBLY is a stack of six 2-sided boards. Molex connectors and cables are used to interconnect the boards and to connect the boards to the front-panel controls.

A complete set of circuit boards is available for the Mark-8 Minicomputer from Techniques Inc., 235 Jackson Stree, Englewood, N.J. 07631. Prices include shipping charges inside the United States.

Complete set of six boards (1 of each) $47.50
CPU Board ... $7.50
Address Latch Board $10.50
Input Multiplexer Board9.50
1K Memory Board $8.45
LED Register Display Board $8.45
Output Ports Board $8.50

Techniques had 100 sets of boards in stock when this issue went on sale. When these boards are sold, there will be a 6 to 8-week delay before additional boards become available.

PARTS LIST

R4-22,000 ohms
R5 thru R16-1000 ohms
Misc—PC board, 32 wire, solder

MEMORY BOARD

C1, C2, C3-0.1-pF disc ceramic
IC1 thru IC8-1001, 1101A or 1101A1 memory circuits, 256 x 1
IC9 thru IC32—Same as above, but optional with builder
IC33-7442 decoder
IC34-7400
P1, P2—Molex type 09-52-3081 connector
R1 thru R11, R20, R21—1000 ohms
R12 thru R19—10,000 ohms
Misc—PC board, No. 24 wire, solder

OUTPUT LATCH BOARD

C1, C2, C3-0.1-pF disc ceramic
IC1 thru IC8-7475 quad latch
IC9-7404
IC11-7402
IC12-7442
P1, P2, P3, P4—Molex type 09-52-3081 connector
Misc—PC board, No. 24 wire, solder

LED REGISTER DISPLAY BOARD

C1-100-pF electrolytic
C2, C3, C4-0.1-pF disc

D1 thru D32—MV-50, MV-5020 or equivalent
Red, visible LED’s
IC1 thru IC6—7404
IC7, IC8—7475 quad latch
IC9—7442 decoder
IC10—7402
P1—Molex type 09-52-3081 connector
R1 thru R32—220 ohms
Misc—PC board, No. 24 wire, solder

CONTROL PANEL

D1—MV-5020 or equivalent red, visible LED
R1—220 ohms
S1 thru S10—spdt switch, rocker or toggle
S13 thru S17—spdt momentary, spring return, rocker or toggle
PS—Power supply, logic power supply available from Precision Systems, P.O. Box 6, Murray Hill, N.J. 07974, +5 volts/8.5A and +12 volts/2.0A, adjustable to 5 volts. Additional voltages available. See text.
Misc—Metal case, red plastic flier, line cord, hardware, hook-up wire, solder.

The microprocessor integrated circuit is available from Intel Corporation, 3065 Bowers Avenue, Santa Clara, CA 95051 at a cost of $120.00.

All resistors are 1/4 Watt, 10%

C1-33-pF disc
C2 thru C6-0.1-pF disc
IC1, IC4, IC6, IC7, IC9, IC13, IC17, IC19—7400
IC2, IC3, IC14—7476 dual JK flip-flop
IC5, IC11, IC16, IC20, IC21—7404
IC8, IC12—7474 dual D flip-flop
IC22, IC23, IC25—7450L4 invertor, low power
IC9, IC18—7471
IC15—7420
IC24—8008 Intel microcomputer
IC26—7442 decoder
R1—220 ohms
R3—56 ohms
R4—1800 ohms
R5, R6, R7, R8, R17—1000 ohms
R9 thru R16—22,000 ohms
XTAL 1—4000.000-KHz crystal type EX ($3.95 from International Crystal, 10 N. Lee Street, Oklahoma City, OK)
Misc—PC Board, No. 24 wire, solder

INPUT MULTIPLEXER BOARD

C1, C2, C4—0.1-pF disc ceramic
C1, C2—1.0-pF 10V electrolytic
IC1, IC2—8263 multiplexer (Signetics)
IC3—7400
IC4, IC5—8267 multiplexer (Signetics)
IC6—7402
IC7—7442 decoder
P1, P2, P3, P4—Molex type 09-52-3081 connectors
R1—1000 ohms
Misc—PC board, No. 24 wire, solder

ADDRESS LATCH BOARD

C1 thru C6—0.01-pF disc ceramic
C7—680-pF disc
IC1, IC2—74123 dual monostable
IC3, IC4, IC5, IC6, IC7—7400
IC8, IC9, IC10, IC11-74193 programmable counter
P1, P2, P3—Molex Type 09-52-3081 connectors
R1 thru R3—10,000 ohms

32
Mark-8 Minicomputer to TV-Typewriter Interface

The Mark-8 Minicomputer may be used with the TV-Typewriter to display computer generated information. The interface uses either the A or B Output Port strapped to the specific output code, 1-7, that you select. The A and B output ports have strobe lines which are pulse during the output cycle. These two lines are found above the B output lines and below the A output lines on the printed circuit board. These strobe lines provide us with the Keypressed signal required to enter data into the TV Typewriter. A monostable is attached to this strobe line to stretch the pulse width and the .10 µF capacitor used for debouncing is removed from the TV-Typewriter. This is C17 shown in Fig. 8 of the TV-Typewriter booklet.

Hookup the Mark-8 Computer to Your TV Typewriter using the circuits shown above and to the left. Wiring to the TV typewriter is direct connections (above). The IC monostable (left) stretches the pulse width. Together, the TV Typewriter (Radio-Electronics, September 1973) and the Mark-8 make a powerful computer package.

SOFTWARE EXAMPLE

Data in the A register is output to the TV Typewriter as a complete ASCII character. The computer then enters a short timing loop so that it can not go faster than data may be entered to the TV Typewriter memory.

<table>
<thead>
<tr>
<th>Address</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>006</td>
</tr>
<tr>
<td>001</td>
<td>177</td>
</tr>
<tr>
<td>002</td>
<td>106</td>
</tr>
<tr>
<td>003</td>
<td>040</td>
</tr>
<tr>
<td>004</td>
<td>000</td>
</tr>
<tr>
<td>005</td>
<td>000</td>
</tr>
<tr>
<td>040</td>
<td>123</td>
</tr>
<tr>
<td>041</td>
<td>026</td>
</tr>
<tr>
<td>042</td>
<td>004</td>
</tr>
<tr>
<td>043</td>
<td>031</td>
</tr>
<tr>
<td>044</td>
<td>110</td>
</tr>
<tr>
<td>045</td>
<td>043</td>
</tr>
<tr>
<td>046</td>
<td>000</td>
</tr>
<tr>
<td>047</td>
<td>021</td>
</tr>
<tr>
<td>050</td>
<td>110</td>
</tr>
<tr>
<td>051</td>
<td>043</td>
</tr>
<tr>
<td>052</td>
<td>000</td>
</tr>
<tr>
<td>053</td>
<td>007</td>
</tr>
</tbody>
</table>

LOAD A WITH DATA

DATA = ASCII "?"

JUMP TO OUTPUT SUBROUTINE

LOAD C IMMEDIATE

DATA

DECREMENT D

JUMP ON A FALSE ZERO FLAG TO LOOP

LOAD A TO OUTPUT PORT 1

DATA

JUMP ON A FALSE ZERO FLAG TO LOOP

UNCONDITIONAL RETURN TO MAIN PROGRAM

* For more detailed data on the Microprocessor IC write to Intel Corp., 3065 Bowers Ave., Santa Clara, Calif. 95051 - ask for a copy of "8008, 8-Bit Parallel Central Processor Unit-User's Manual. This manual was offered free at the time this article went to press.
Selecting and Using

Modern hi-fi equipment is more sophisticated and complex equipment and exacting procedures to service it.

by ROBERT F. SCOTT
TECHNICAL EDITOR

When many of us broke into radio servicing, there was no such thing as a hi-fi. Radios were relatively simple AM receivers. The audio amplifiers were the simplest circuits needed to drive a loudspeaker. Later, a phonograph pickup was added for record playing. Now, with FM and FM stereo, touch-tuning, digital readouts and audio circuits that from below 20 Hz to well beyond 20 kHz, the listener's demands for both reproduction and performance have become more severe.

There was a time when a radio and its audio system could be serviced using a voltmeter with output meter feature, a simple rf test oscillator and a simple audio signal generator with built-in 400 Hz (we called it 400 cycles) modulation. Now to restore a modern FM stereo receiver to its original performance specifications, we may need a multiplexer generator/oscillator, a lab-grade audio signal generator with sine, square-wave and sweep output, distortion analyzers, dual-channel wide-band scope with triggered sweep, sweep and filter meter, audio vtm, audio wattmeter and a precision decade attenuator.

A piece of hi-fi gear that is inseparable or has one channel weak or completely out is generally easy to service by using an electronic multimeter for voltage and resistance measurements to localize the trouble. But, when it comes to satisfying complaints from musicians and other critical listeners, you may need the whole bag of tricks: along with some of the most sophisticated test equipment available for hi-fi servicing.

The specialized gear you'll be likely to need should either be designed especially for hi-fi servicing or have known response function characteristics that are equal or better than the equipment you'll be servicing. Now, let's take a look at what features we want in various test instruments and how we can best use them.

The audio oscillator

The basic use of the audio oscillator is as a signal source when trouble-shooting audio circuits either by signal tracing or signal substitution. For this we are mainly interested in the presence or absence of the test signal. The amount of distortion or the flatness of the generator's output over the tuning range is of little importance at the moment.

On the other hand, an audio generator used for measuring or tracking down distortion, measuring frequency response, the resonant frequency of speaker enclosures, and checking input and output impedances should deliver a signal with distortion limited to 0.5% or less over the range of 20 Hz to 20 kHz and preferably to 50 kHz. Output versus frequency should be ±1 dB or better from 20 Hz to 20 kHz or higher.

Most audio generators are R-C types using either phase-shift or Wien-bridge circuits to cover a tuning range in four or five bands with 10:1 or 100:1 tuning ratios. (Some function generator-type audio signal sources cover the range of 20 Hz to 200 kHz in only three bands.) Output impedance is generally 600 ohms, unbalanced—600 ohm is a figure designed to match long audio lines. When driving high-impedance loads, most manufacturers recommend loading their generators with a 600-ohm resistor. Most audio generators have a step attenuator, calibrated in decibels, followed by an output level control for adjusting the output from maximum down to zero. Note that most the attenuators included in these instruments do not have the fine, precision adjustments of output level that are required in some applications. There'll be times when you want to adjust signal levels in 1 dB or smaller steps. Therefore, a precision attenuator may be a required instrument in your shop. More on this later.

The square-wave output of the audio generator and a scope are useful when you want a quick look at the overall response of an amplifier. A square wave fed into an amplifier will provide a rough idea of the response from one-tenth its fundamental frequency up to about the fourth third harmonic of that frequency and will indicate phase distortion that cannot be detected in a sinewave test. Figure 1 shows some of the various patterns that result from phase shift and amplitude distortion. For example, a 20-Hz square wave presents a picture of the amplifier's response from 2 to 800 Hz. A 500-Hz square wave checks response from

![FIG. 1—SQUARE-WAVE PATTERNS produced by phase shift and amplitude distortion in an amplifier. (a) The dip between the leading and trailing edges shows amplitude loss at low frequencies. (b) The picture of phase distortion. (c) The round corners of leading and trailing edges are from high-frequency losses. (d) Low-frequency phase shift causes top slope to trail edge. (e) A slope and dip show low-frequency loss and phase shift. (f) High-frequency phase shift loss. (g) Phase shift and roll-off at high frequencies. (h) Overshoot and damped oscillations. (i) Same as (d) with hum in the trace.](image)
HI-FI Test Instruments

than it was just a few years ago and you’ll need lab-grade
Learn what instruments you’ll need and how they’re used.

Vp-p square wave calibrating voltage is available at a jack on the front panel.

IM AND THD ANALYZER includes sensitive audio vtm and db meter. The Eico 902 uses a continuously variable 20—20,000-Hz Wienbridge rejection filter for harmonic distortion measurements. IM distortion measurements are made with 60-Hz and 7-kHz signals mixed 4:1 and 1:1 with fullscale ranges of 0.3, 1, 3, 10 and 30 percent. Accuracy ±5% of fullscale. Residual distortion 0.05%.

Harmonic distortion measurements at 20—200, 200—2000 and 2000—20,000 Hz; THD ranges 0.3, 1, 3, 10 and 100%.

Voltmeter input impedance 2 megohms; ranges 10 mV to 300 Vrms; response ±0.05 dB 10 Hz to 30,000 Hz. Decibel scale (20 to -2) based on 1 mW across 600 ohms.

AC MILLIVOLT METER has amplifier that can be used as a wide-band scope preamplifier. The Leader model LMV-87A measures 1 mV to 300 V in twelve ranges. Decibel range (0 dB = 1 mW across 600 ohms) is -8 to +52 dB and bandwidth is ±1 dB 10 Hz to 1 MHz. Amplifier output is approximately 500 mVp-p at fullscale. Operates from 105—125 V, 50/60 Hz.

Distortion analyzers

Any complex audio signal fed to an audio circuit can be considered as a series of pure sinewaves which we expect to find in amplified but unaltered form in the output of the circuit. But, distortion in the amplifier produces a distorted output waveform that consists of fundamentals and harmonics of these input sinewaves as well as some sum-and-difference frequencies resulting from fundamentals beating or heterodyning in non-linear circuits in the amplifier. This is called harmonic distortion. The most common type of harmonic distortion measurement compares the sum of the levels of the harmonics with the level of the fundamental and gives the result as the percentage of total harmonic distortion or THD.

The harmonic distortion meter is a relatively simple instrument as indicated by its block diagram in Fig. 2. A low-distortion audio oscillator is connected to the input of the amplifier being tested and the analyzer is connected to the preamp output or, in the case of a power amplifier, across a dummy load resistor equal to the amplifier’s output impedance. The oscillator is set to a test frequency and its output level adjusted to within the range of the amplifier’s input rating.

The harmonic analyzer mode switch is set to CALIBRATE and its sensitivity or level-set control is adjusted so the analyzer’s meter reads 100%—the level to which the harmonic level is compared. When the meter is switched to MEASURE, a Wien bridge or

FIG. 2—BASIC HARMONIC METER. Instrument is calibrated at the test frequency and then a tunable filter is switched in and adjusted to null the test signal. Meter reads distortion.

FIG. 3—BLOCK DIAGRAM of the Heathkit audio analyzer used for intermodulation measurements. The instrument also functions as an audio vtvm and as an audio wattmeter.
similar active filter is inserted in the signal path to notch out the fundamental—leaving only the harmonics which are read as a percentage of full scale.

Since the harmonic distortion meter measures any signal that is present after the fundamental has been filtered out, you must be sure to eliminate any stray signal pick-up or hum introduced through ground loops. Be aware, also, that some amplifiers show a rising THD percentage at low output levels where the equipment's signal-to-noise ratio is low.

An intermodulation (IM) distortion analyzer tests the amplifier's ability to handle mixed high and low frequencies without mutual interaction. The test frequencies are generally 60 Hz (low) and 3000, 6000 or 7000 Hz on the high end. Let's assume that a 60-Hz and 7-kHz note are applied to the input of a non-linear circuit. The higher frequency is modulated by the lower, just as audio frequencies modulate the radio-frequency carrier in an AM transmitter. However, the situation is more complex. We not only have interaction between the fundamentals; we can have interaction between each fundamental and the harmonics of the other as well as intermodulation among the harmonics. All of these interactions can produce spurious frequencies that are equal to the sum and difference of the frequencies involved. To get an idea of these spurious frequencies generated by intermodulation, consider the typical 60-Hz and 7000-Hz test frequencies. The spurious frequencies resulting from the various combinations of fundamentals and second harmonics are:

$$2 \times 60 = 120 \text{ Hz}$$
$$2 \times 7000 = 14000 \text{ Hz}$$
$$120 + 7000 = 7120 \text{ Hz}$$
$$7000 - 120 = 6880 \text{ Hz}$$
$$14000 + 60 = 14060 \text{ Hz}$$
$$14000 + 60 = 13940 \text{ Hz}$$
$$14000 + 120 = 14120 \text{ Hz}$$
$$14000 - 120 = 13880 \text{ Hz}$$

A block diagram of a typical IM meter is shown in Fig. 3. The 60-Hz test signal is tapped off the power transformer; the high-frequency signal is supplied by an internal audio oscillator. Level controls are provided so the 60-Hz signal can be adjusted to four times the amplitude of the high-frequency signal for the standard 4:1 ratio or for a ratio as high as 10:1, depending on the test standard you are using.

The two signals are mixed and fed to the amplifier's input. The signal is taken off the amplifier's output and fed into the analyzer circuits in the IM meter. A high-pass filter removes the 60-Hz signal; leaving only the high-frequency signal (call it the carrier) along with any possible 60-Hz modulation. The carrier is then rectified by a linear or logarithmic manner. Sweep speeds are 2.5 ms, 25 ms and 25 seconds.

Output: High-level sine wave variable up to 1 Vrms. Low-level sine wave is approximately 1% of the high-level output setting. Squeeze wave with 50% duty-cycle at nominal TTL levels (0 to +0.5 V low and +0.3 to +4.5 V high). Triangular (output on rear panel) 1 Vp-p, less than 2 mA peak current.

Operates from 9-volt battery. NiCad battery and charger available as accessories.

FUNCTION GENERATOR—the model 30 by Wavelet—covers 2 Hz to 200 kHz in three overlapping 1000:1 ranges (2 Hz to 2 kHz, 20 Hz to 20 kHz, 200 Hz to 200 kHz) delivering sine, square and triangular waveforms. Can be used as a VCO (voltage-controlled generator) with the frequency controlled by a voltage applied to a jack on the rear and by the setting of the range switch. Full-scale frequency change requires about 1 volt input for either linear or log tuning. Using the internal sweep source, the generator sweeps the full frequency range in either a

linear or logarithmic manner. Sweep speeds are 2.5 ms, 25 ms and 25 seconds.

Output: High-level sine wave variable up to 1 Vrms. Low-level sine wave is approximately 1% of the high-level output setting. Squeeze wave with 50% duty-cycle at nominal TTL levels (0 to +0.5 V low and +0.3 to +4.5 V high). Triangular (output on rear panel) 1 Vp-p, less than 2 mA peak current.

ANC VOLTMETER—the Hewlett-Packard 400GL—features a 20-dB dynamic range on a 4½ in. linear scale and a single logarithmic voltage scale for measuring 100 µV to 1000 Vrms full scale in eight 20-dB steps. Input impedance is 10 megohms on all ranges. The ac amplifier has a gain of 80 dB and delivers up to 1 volt rms open-circuit for full scale deflection. Frequency response is 20 Hz to 4 MHz on 1-mV to 1000-V ranges; 30 Hz to 100 kHz on 0.1 dB ±1% of indicated value for frequencies below 200 kHz. For increments in attenuation, the 1% tolerance holds out to 1 MHz.

Impedance is 600 ohms in either direction. An etched calibration chart indicates mismatch losses for circuit impedances other than 600 ohms. Each decade is individually shielded within the shields connected to the ground terminal. The decade attenuator is also available as the model 1450-1BH for rack mounting.

WIDE-BAND AMPLIFIERS are featured in the Heathkit ID-101 electronic switch. Each channel has 1-megohm/50-pF input impedance. Response is to 5 MHz. Maximum gain is greater than 10. Minimum input signal 50 mV.

maximum 600 Vp-p or dc. Maximum output 8 Vp-p. Chopping rates approximately 100, 500 1000 and 5000 Hz. Hum and noise (single channel only) less than 40 mV p-p.

WOW AND FLUTTER measurements can be made with any carrier in the range of 2 kHz to 8 kHz with the Manke model M-7 at input levels ranging from -20 dBm to +30 dBm. Input impedance 400K; ranges are 30, 10, 3, 1, 0.3 and 0.1 percent full scale for rumble, wow and flutter measurements. Accuracy is 0.01%. The 3-kHz test oscillator delivers 1.5 volt into 120K, 35 mV into 600 ohms and 10 mV into 250 ohms. The instrument can be used as an audio voltmeter with 400K input impedance and full scale ranges of 1 mV to 100 Vrms in eleven 10-dB steps. Frequency response (6-dB points) is 0.3 Hz to 100 kHz. The -10 to -2 dB scale is referenced to 1 mV into 600 ohms. Powered by eight "C" cells.

ALL SIGNALS REQUIRED FOR FM STEREO and monophonic alignment and troubleshooting are supplied by the Heathkit IG-37 FM stereo generator. Generates mono FM or compatible multisignal FM signals, a phase test signal composed of left and right channels in phase; a crystal-controlled 19-kHz pilot adjustable from 0 to 10% for checking receiver
lock-in range, and a selection of 400 Hz, 1000 Hz, 5000 Hz, 19 kHz, 38 kHz and 65 or 67 kHz for complete alignment of decoder circuitry. In addition, the IG-37 delivers a 100-MHz sweep signal (adjustable ±2 MHz) for overall r.f. and i.f. alignment and provides crystal-controlled 10.7, 90.95, 96.30, 101.55, and 107-MHz markers for i.f. and dial-tracking checks. Sweep width adjustable to ±75 kHz. Rf output level variable in three 20-dB steps. Operates from 105-125/210-230 V, 50/60 Hz lines.

controlled pilot is adjustable ±45° in phase, 0 to 15% in amplitude. Power: 117 V, 50/60 Hz.

IN-LINE READING DIALS show attenuation at a glance on the Hewlett-Packard 4436A (shown) and 4437A decade attenuators. Both have a maximum attenuation of 119.9 dB in 0.1-dB steps. Frequency range is dc to 1.5 MHz (0 to 110 dB) and dc to 1.0 MHz (0 to 119.9 dB). Input and output impedances 600 ohms (balanced in the model 4436A and unbalanced in the 4437A). Maximum input power is 1 watt (24.5 V maximum).

WOW AND FLUTTER MLTER features a separate panel meter for measuring drift in tape speed. Drift test range is -5% (2850 Hz) to +5% (3150 Hz) in one range. The Leader LFM-36A measures wow and flutter in 0.1%, 0.3%, 1% and 2% push-button selected ranges. It can be used with scope to observe wow and flutter content.

Input signal level is 15 mV to 10 Vrms. Input impedance is over 100K, unbalanced. A 3-kHz test source is included in this instrument. Operates from 115/235 V, 50/60 Hz.

COMPOSITE AUDIO OUTPUT for direct injection into multiplex decoder as well as for modulation of the 100-MHz carrier with deviation up to 75 kHz is generated by precision circuits in the Eico 4912 FM multiplex signal generator. Channel separation is 40 dB from 200 Hz to 10 kHz, 30 dB from 50 Hz to 15 kHz. Composite signal output is continuously variable from 0 to 6 Vpp at 1500 ohms. Internal modulation 1 kHz with less than 0.3% THD. External modulation 1 V rms into 10,000 ohms for 100% modulation. Stereo source modulation input: 1 Vrms each channel across 1 megohm for maximum output; preemphasis built-in. The 19-kHz crystal

and a 3-kHz tape calibrated for 3-1/2 ips and using the tape itself as a 6-kHz test source for 71/2 ips. Test range -3% to +3%. Input level 100 mV to 10 Vrms. Input impedance 150k.

RECTANGULAR CRT is used in this solid-state dual-traced wide-screen scope that is available as the 0-105 kit from Heath. You can display two separate waveforms on channels 1 and 2; channels 1 and 2 alternately; 1 and 2 chopped at a 50-kHz rate, or 1 and 2 displayed in the X-Y mode. The vertical amplifiers have input impedances of 1 megohm shunted by 35 pf and frequency response 0 to 15 MHz. They are balanced for 5° or less phase shift to 50 kHz. Rise time 23 ns; overshoot less than 10%. Attenuators have nine positions varying sensitiv-

ity from 0.05 V/cm to 20 V/cm. Input sensitivity 0.05 V/cm.

The triggered horizontal time base has 18 calibrated sweep rates ranging from 0.2 usec/cm to 100 m/sec/cm. Sweep also continuously variable (uncalibrated) over the same range. Sweep sync delayed 600 ns; in auto mode zero crossing -½ cm; and within viewing area in normal mode. Sync source: channel 1, channel 2 or both; polarity selectable + or - slope. The CRT is an 8 x 10 cm flat-face type. The graticule is edge-lighted.

IDEAL FOR STEREO is Leader's LMV-89 2-channel solid-state millivolt meter. The instrument features a single meter with two independent scales and separate pointers. Especially useful where there is a great difference in the voltage levels at the two points being metered. Individual switches and amplifiers are used for the two channels. The channels can be used together or separately.

Fullscale voltages are 100 µV to 300 V in twelve steps. Decibel ranges are -80 to -52 when 0=0.775 V and -80 to -50 when 0 dB = 1.0 V. Input Impedance 10 megohms shunted by 40 pf. Sensitive to 1300 mv and by 20 pf at 300 V. Amplifier output is approximately 2.5 Vrms fullscale at 200 ohms. Power supply 115/230 V, 50/60 Hz.
UNDERSTANDING CALCULATOR IC's

Basically, the electronic calculator is a very complex device and, if it were not for the great and recent developments in IC technology, it would be priced far beyond our reach. Here's how those IC's count.

by DON LANCASTER

Most lower priced calculator systems consist of very few parts—a display and driver assembly, a keyboard, a battery and case, a clocking system and decimal point and constant selectors, and, finally, a single integrated circuit that does all the work. A block diagram of a typical calculator is in Fig. 1. Numbers and program commands entered by the keyboard are carried out and used by the integrated circuit, and answers are then routed to the display.

Since the integrated circuit does everything, our overall system complexity changes very little if we add squares, square roots, percentages, metric conversion, etc. . . . All that happens is that the inner workings of the integrated circuit get slightly more complex, and perhaps a key or two is added. The way to understand these circuits is to understand what the IC does and how it works. Let's take a closer look.

Some basic operating principles

If we had no worries about total calculation time, supply power, circuit complexity, or the number of pins and interconnections on the package, there'd be a lot of different possible ways to do the job. But, when we take all these restrictions into account and at the same time aim at circuitry that eventually will sell for $19.95 or even $9.95, there's only one really good route to do the job. While best current pricing is still $29.95 and up, the inner workings and mechanical complexity of a 4-function calculator is far less than a $4 transistor radio.

What is the best route to do the job? It's based on several circuit principles:

- Serial by digit arithmetic
- Repetitive use of a simple, unsophisticated arithmetic unit to do complex functions
- Use of a multiplexed display
- Use of a scanning keyboard
- Use of a dynamic shift register stack to store inputs, calculation products, and answers.

Let's look at these one at a time, starting with the simpler concepts, and then going on to put the whole thing together as a working system.

Multiplexed displays

Our display typically consists of a group of light emitting diodes (LED's) or an arrangement of neon display characters, although some calculators also use miniature fluorescent display tubes or liquid crystal readouts. Regardless of the method we use, we have to select a means of driving the display that has a minimum need for power, interconnections, and storage restrictions.

If we were to display all the digits all the time, we'd need at least 80 leads for a 7-segment, 10-place display. This is clearly inefficient.

Instead, we only display one digit at a time, but we sequentially change which digit we display fast enough that the eye averages everything out into a continuous process. Each digit is lit for only a short time, possibly 20 to 40 milliseconds. The final result is a digit that is apparently continuously lit to normal brightness. This circuit trick is called display multiplexing.

Multiplexing is shown in Fig. 2. Most calculator systems internally use a 4-bit BCD (Binary Coded Decimal) code. To drive the popular 7-segment displays, the chip internally converts the 4 BCD bits into the proper 7-segment patterns.

The output of the 7-segment converter goes to all the digits being displayed in parallel. Now, the trick is that we use a one-of-N decoder to provide supply power or digit line power to only one entire numeral at a time. Thus, while all the digits know what the numeral is to be, only one of them receives supply power at any single instant, and only one of them lights at a time. We bring the digits information out one digit at a time, and at the same instant, we step and decide which digit line gets power. The result is a sequence of digits being lit. The sequence repeats so fast that you see everything as a continuous display.

One very handy circuit-saving trick the calculator people use is that they sequence the digits at the same rate they do the calculations and in the same order—thus our digit sequencing is essentially "free," as the numbers have to go around anyhow when a calculation is being made. When a calculation is NOT being made, the numbers still go around, but the internal arithmetic unit (more on this in a bit) goes into a do-nothing mode and does not change the contents of the display or answer register that is storing the number being output.

Multiplexing needs a display system that has internal diodes, thresholds, or nonlinearities. If the system was perfectly linear, you would get sneak paths through series combinations of supposedly off segments, causing ghosting and other problems. Light emitting diode displays are inherently diodes, and eliminate the problem, as do the nonlinearities associated with fluorescent displays. Panaplex and Sperry neon displays have a well-defined threshold that also eliminates the problem. Liquid-crystal readouts do not inherently multiplex very well, and for this reason, very few calculators use the otherwise ideal liquid crystal display systems.

Driving a display

Ideally, we'd like to come directly out of our calculator IC, and go directly to the display without needing any interface circuitry at all.
Unfortunately, every display system in use today has some interface restrictions, owing to needing more current or more voltage than a calculator IC can provide. Some typical interface circuits are shown in Fig. 3. In the case of neon-type displays (Fig. 3-a), drive voltage is usually the problem. Most neon systems need considerably more drive voltage than the calculator IC's can provide. For LED's, current is the problem, for each individual segment needs a few mils, while the digit driver lines may need several hundred milliamperes of drive, since a digit driver may have to drive up to 7 segments at once, and since multiplexing magnifies the peak-to-average current ratio additionally by a bunch.

Figure 3-b shows how two driver integrated circuits (the Texas Instruments 75491 and 75492 being typical) are used to drive a LED-type display. Special high-voltage integrated circuits are available for neon-type displays, or discrete circuitry consisting of Darlington connected transistors and resistors may be used.

Obviously, the $9.95 calculator won't be able to afford any inter-

face circuitry. Newer calculator IC's such as the General Instruments CZL-550 can directly drive some LED display segments, and a companion IC is available for digit line driving. At the same time, LED systems are becoming more efficient, and reducing their current needs to levels that are compatible with calculator IC technology. Liquid-crystal displays, with their essentially zero current consumption and low-voltage operation, should eventually dominate the calculator display market, if and when practical multiplexing schemes are worked out and a few other production and life problems are worked out.

With today's chips and circuitry, you still must use some sort of interface circuitry, either in the form of additional IC's, or Darling-
Scanning keyboards

Our keyboard data entry system must use the simplest possible key switches, minimum external encoding components, and a minimum number of package pins. How can we do all this at once? Several keyboard systems we could use are in Fig. 4.

Figure 4-a shows the worst we could do. Here, we have one common lead and one output lead for each individual key. If we had 80 keys this would take 17 leads. We can cut down on the number, so we lead with a diode encoding network as in Fig. 4-b by encoding 1-of-16 to 1-2-4-8 4-line binary. This takes a bunch of diodes, but saves us on package pins. In a system of this type, we might make a "0" the equivalent of a binary "10," or 1010. This way, our "0000" state can be a do-nothing state, and any other combination indicates a key-pressed command. Thus, binary 1 through 10 would be the numbers, and binary 11 through 15 would be the add, subtract, multiply, divide, and equals commands.

We can go to the keyboard matrix of Fig. 4-c to eliminate the diodes. Here we arrange our keys in a 4 x 4 array. There are four lines from the calculator that source current; there are four lines to the calculator that sink current. Press any one key, and one of the source lines gets shorted to one of the sink lines. There are 16 possible combinations of source-to-sink shorts that may be uniquely internally recognized as a numeral or a machine command.

This eliminates the diodes, but we still need 8 input leads. Can we do any better? Remember that we already have 8, 10, or 12-digit driver lines going to our multiplexed display. If we use these in our matrix as in Fig. 4-d, we end up with a scanning keyboard that only needs two new leads for a 16-key system, and only one new lead for up to 24 keys if there are eight digit drivers. Pressing any one key connects one of the digit driver lines to one of the keyboard input lines. The internal circuitry recognizes the time slot of digit driver pulse, and enters the appropriate numeral or machine command. While quite a bit of internal circuitry is needed, the same circuitry also provides debouncing, minimizes the package pins needed, and eliminates any need for diodes or other encoding components.

Any given calculator chip can only work with one of the 4 systems of keyboard entry shown—the newer the chip, the more likely it will use the scanning configuration of Fig. 4-d since it is the best in terms of pins and simplified external circuitry.

Inside the chip

So, what goes on inside the calculator chip? There are several important circuit areas, as the block diagram on Fig. 5 shows us. The essential parts include the memory stack, where numbers are stored; the arithmetic unit, where simple arithmetic operations are carried out; the microprogram, where the simple arithmetic unit is told what to do over and over again and in what sequence; the keyboard interpreter, where numbers are debounced and entered and machine commands (add, subtract, multiply, equal, etc.) are sorted out and used to sequence the microprogram; finally some housekeeping functions, such as decimal point conversion, output BCD to 7-segment conversion, etc. . . .

There are two basically different types of memory in a calculator IC. The memory stack contains the numbers and changes from time to time, as we enter new numbers or as changes are made as a calculation is being carried out. This changeable memory is called a read-write or Random Access Memory (RAM). On the other hand, the microprogram sequencing information need never be changed, for once we teach the calculator how to sequentially perform a calculation, we henceforth and evermore want it to do the same thing. So, the microprogram is in a fixed data storage mode, and is called a real-only memory. Let’s look at the memory stack first.

Remember that our multiplexed display needs something that goes round and round, sequentially putting out digits in the proper order so they can be displayed. A memory that does this is called a shift register, and the shift register is arranged to normally recirculate its numbers by connecting output to input via a logic circuit. Calculator shift registers usually are dynamic ones; they have to be kept moving at all times or the data will be lost. Arithmetic is usually done in the 4-bit BCD code. This takes four bits per numeral, so we really have four separate but identically clocked shift registers to march the numerals around, one at a time. Such a system is called a parallel by numeral, serial by digit arrangement. A typical memory from a memory stack is in Fig. 6. The length of the shift register used is determined by the number of digits to be displayed, plus a sign digit, plus some possible locations for overflow and underflow digits. Regardless of its length, at any instant, all four bits of a digit appear at the output of a stack memory.

The memory is shifted or advanced one stage at a time, usually by an internally derived clock one-fourth the frequency of the system clock you provide to run the IC. It takes nine or more internal clockings to exactly once turn over the memory, depending on the number of stages in the shift register. The turn-over time is called the machine cycle time, and a calculator with a 25-kHz-or-so system clock would end up with a machine cycle time around 2 milliseconds or so.

If we connect a stack memory to a BCD, to-7-segment decoder, and then connect this decoder to our display, the number stored in that portion of the memory stack will be displayed.

One stack memory can only store one number. It takes more memory than that to do the job. We need an answer memory and a keyboard memory at the very least for simple addition and subtraction. If we are to multiply and divide, we also need an arithmetic or operand memory, and, as an option, if we are to store a constant, we would need a fourth constant memory. So, there are three or four separate shift register memories in our memory stack, one for keyboard, one for answer, one for arithmetic, and an optional one

FIG. 5—INSIDE THE CALCULATOR IC. The “keyboard” section reads and sorts out input signals from the keyboard.

FIG. 6—TYPICAL MEMORY in memory stack. Length of shift register depends on number of numerals and sign digits to be shown.
Choose from 12 NTS Electronics Courses, including Color TV and B&W TV Servicing, Electronics and Computer Technology, Electronics Communications & FCC, and Industrial & Automation Electronics. All courses can provide you excellent opportunities to expand your career in the exciting world of electronics! So get started right now by checking the coupon and mailing it today.

Classroom Training at Los Angeles. You can take classroom training at Los Angeles in sunny Southern California. NTS occupies a city block with over a million dollars in facilities devoted exclusively to technical training. Check box in coupon.

Approved for Veteran Training. Accredited Member: National Association of Trade & Technical Schools; National Home Study Council

NATIONAL TECHNICAL SCHOOLS
TECHNICAL-TRADE TRAINING SINCE 1905
Resident & Home Study Schools
4000 South Figueroa St., Los Angeles, Calif. 90037
THE PERFORMANCE OF MODERN, HIGH-
quality FM tuners and receivers has
reached a point of near-perfection that
generally exceeds the performance of a
majority of FM stations’ broadcast
practices. There are tuners and receivers
available now that can recover audio
programming from the incoming signal at signal-to-noise ratios of 75 dB
and better. Few station studio consoles
provide that kind of signal-to-noise and
hum performance.

Many tuners and receivers can decode
the stereo multiplex composite signal
with channel separation exceeding 40 dB,
even though the FCC requires only that
stations transmit separation of at least 30 dB from 50 Hz to
15,000 Hz. Harmonic distortion in
modern tuners is down to a fraction of
one percent, but with most music
broadcast over FM coming from records
and tapes, one seldom is able to
take advantage of this low-distortion
capability since even the best phono
cartridges and tape playback machines
used at broadcast stations fall short of
reproducing the recorded material at
such a low level of distortion.

Small wonder, then, that recent ef-
forts in the design of new FM high-
fidelity components have concentrated
more on “convenience” features.
These do not directly affect audible
performance, but do make it easier for
the user to take advantage of the
superb performance capability built
into these products. Harman-Kardon’s
new model 900+, shown in Fig. 1, has
two interesting circuits which are
worth noting—both of which are
directed towards more accurate and
better tuning of FM stations.

The two circuits analyzed here replace
the conventional signal-strength
meter and center-of-channel meter so
common in better quality FM receivers
and tuners. Although a tuning meter is
clearly visible in the front-panel photo
of the 900+ quadriphonic receiver, its
function and mode of operation is quite
different from that of meters normally
called signal-strength tuning meters.

Typically, conventional signal-
strength meters obtain the voltage
necessary for their pointer’s deflection
from either an i.f.-age voltage (which,
of course, increases with increased
signal strength) or from a rectified por-
ton of the 10.7-MHz i.f. signal ob-
tained at the output of the first or sec-
ond limiter in the FM i.f. system as
shown in Fig. 2. The disadvantage of
this kind of signal-strength indicator is
that it is difficult to determine the exact
center-of-channel point because the
transformer will be zero when the tuner
is correctly tuned to exactly 10.7 MHz.
a suitable dropping resistor and a
center-pointer meter can be connected
as shown.

Now, when the set is detuned either
above or below 10.7 MHz, the meter
pointer deflects either to the left or
to the right of its center point. Generally,
this meter action is easier to use when
seeking center-of-channel tuning.
However, it too has its limitations. The
peak-to-peak value of the ratio
detector “S”-curve shown in Fig. 4 may be
2 volts or more and the meter’s total
excursion is so small that visual center-
ing of the pointer may well occur over a
range of a significant fraction of a
volt—enough of an error to permit
non-linear audio recovery when full

A quieting meter
The meter used in the H-K 900+ is
totally different from ordinary signal-
strength or center-of-channel tuning
meters. Harman-Kardon calls it a
quieting meter because it actually
responds to the degree of noise quieting
offered by the tuner in amplifying and
receiving an FM signal. The entire cir-
cuit board schematic involved in both
the quieting meter operation and the
new “in-tune” indicator of this re-
civer is shown in Fig. 5.

The output of the conventional ratio
detector is first fed to a dc differential
amplifier consisting of Q102, Q103 and

5

48

FIG. 1—FRONT PANEL VIEW of Harman-
Kardon model 900+ quadriphonic receiver.

FIG. 2—CONNECTION POINT FOR TYPICAL “signal-strength” FM tuning meter.
Q104. In addition to affording accurate dc offset control (by means of VR101), stable temperature tracking and isolation from the circuits which follow, this arrangement also provides the opportunity for frequency compensation so that the effective output of the FM demodulator has flat response all the way from dc to 100 kHz, important for the multiplex decoding circuitry to follow later.

This composite signal is fed via C201 to gain control VR201 and on to a T-section filter consisting of C204, L201, C203 and C205. This high-pass filter has a voltage gain of several dB at noise frequencies of about 110 kHz while effectively rejecting all lower frequencies of the composite stereo audio signal. The random-noise frequencies are passed on to a high-gain feedback pair of transistors, Q201 and Q202. With no rf signal received (condition of maximum random noise), the peak-to-peak voltage at the output of Q202 is quite high, approaching 30 volts. R208 and Q203 form a voltage-variable attenuator in what amounts to an age loop while Q204 and Q205 are another high-gain pair of transistors with a feedback network around them. The collector load of Q205 is tuned to 110 kHz.

The amplified noise is applied to C210, D201, D202 and C212, the combination of which acts as a peak-detector-voltage doubler. Q206 serves as a dc buffer amplifier and the output of its emitter completes the age loop back to Q203. The dc voltage output from Q206 applied through R215 and D203 converts this age voltage to a diode-drop log characteristic, a characteristic which is important to the ultimate operation of the quieting meter. The resultant dc voltage is then applied to dc buffer-amplifier Q207, the emitter circuit of which drives the quieting meter. VR202 is used to calibrate the meter which reads downscale as quieting improves with signal reception. With no signal received, the meter pointer reads "0" at the right of the scale.

As signal is received (and "quieting" improves), the pointer moves downscale along a calibration of numbers reading from zero to ten at the extreme left of the scale. The circuitry described is so arranged that the readings correspond almost linearly (in dB) to the actual quieting obtained.

An "In-Tune" light indicator
The schematic of Fig. 5 also shows how another novel circuit of the H-K 900+ receiver works. Transistor stages Q213 through Q219 are used to trigger on an in-tune lamp located on the receiver's front panel. The dc voltage output from the ratio-detector (via differential amplifier Q102, Q103 and Q104 described earlier) is direct-coupled via voltage-divider resistors R201, VR205 and R230 to the base of Q213 across base resistor R231 (3.3 K). VR206 is used to set perfect dc zero voltage or a balanced condition between the differential amplifier pair Q213 and Q214.

When the dc voltage at the ratio detector output is close enough to "zero" (actually within about ±10 mV) so that the set is considered to be "in tune," the voltage across both R232 and R233 is less than the Vbe of either Q215 or Q216. Under these circumstances neither Q215 or Q216 conducts significantly and the voltage across R237 is near zero. If the receiver is detuned so that either a positive or negative voltage exceeding 10 mV appears at the ratio-detector output point, the voltage across R232 or R233 exceeds the Vbe of Q215 and Q216 and one or the other of these transistors conducts heavily (into saturation), causing a potential to develop across R237.

Note that Q217 is hooked up not as a transistor, but rather as a diode. In fact, it exhibits the characteristics of a Zener diode, but has a non-critical breakdown voltage of anywhere from 4 to 9 volts dc. When breakdown voltage is reached, that voltage is applied to the base of Q218, which then conducts heavily, reducing the voltage at the collector of Q218, which then conducts heavily, reducing the voltage at the collector of Q218 and at the base of Q219. Q219 is therefore cut off and collector current is shut down so that the in-tune lamp is not illuminated.

The reverse action takes place when the receiver is in tune. With little or no voltage developed across R237, Q217 (the "Zener Diode") remains below breakdown voltage. Q218 conducts only slightly so that the voltage at its collector is high enough to cause Q219 to conduct and turn on the in-tune lamp on the front panel. The action is that of a true gating circuit and the width of the "in-tune window" can be calibrated at the factory so that the user does not find it too critical a task to tune to a station and yet be assured of low-distortion reception when the in-tune light is on.

Though VR205 shown in the schematic on Fig. 5 is not depicted as a variable potential meter, in the actual receiver it is adjustable (hence the designation VR- instead of just plain R-) and its adjusted value determines the percentage of total dc swing of the radio detector that should be applied to this novel circuit. Differential amplifier pairs Q213/Q214 and Q215/Q216 operate so that regardless of whether the tuning error results in a positive or negative dc voltage at the output of the ratio detector, the end result is always a positive voltage developed across resistor R237. Figure 6 further clarifies the gating action.

The additional transistor stages not used or described in connection with either the quieting meter or IN-TUNE light circuits are involved in the muting and stereo-threshold switching circuits of the 900+. Q208 and Q209 comprise a Schmitt trigger circuit which, in combination with Q210, determines at what signal strength the stereo demodulation circuitry should be "turned on." VR203 is used to adjust this sensitivity and is accessible to the user from beneath the chassis. Q211 and Q212 constitute a second Schmitt trigger with the voltage at the output of the "Zener
diode" Q217 acting to trigger the circuit. Sensitivity of this circuit, however, is adjusted independently with a rear panel potentiometer. VR204. Thus, the user may hear an audio signal with the muting switch in the on position well before the in-tune light becomes illuminated. If the program is one he desires to listen to, he then proceeds to tune more carefully until the in-tune light goes on—otherwise, he can quickly pass it by and proceed to the next station which defeats the muting circuit. Any other arrangement would have resulted in an extremely tedious and long process when using the muting feature.

The combination of quieting meter and in-tune light indicator on this receiver is not, as might first appear, a redundant situation. Ideally, if the user is equipped with a rotator for his antenna (or can send a friend up to the roof to do it the hard way), the quieting meter's most important function is in helping to orient the antenna for best (and that means quietest) reception. Since quieting is often directly affected by multipath reflections (out-of-phase arrival of reflected signals can often cause cancellation of signal and noisy reception), the smooth action of this meter arrangement beats trying to use a conventional "signal-strength" meter which, in most receivers, hits top reading point at 40 or 50 mV—often well before maximum quieting is reached.

Once the best signal is delivered to the antenna terminals, the in-tune light then insures that the user is properly tuned to it for lowest distortion and best separation if it happens to be a stereo signal.

International friendship theme of ARRL National Convention

"International Friendship through Amateur Radio" is the major theme of the National Convention of the American Radio Relay League, to be held at the Waldorf-Astoria Hotel, New York City, July 19 through July 21. A secondary theme is "Building for the Amateur Radio Operator of Tomorrow."

As in the many former conventions of the League, which has represented the radio amateur since before World War I, the meeting will feature authoritative papers and discussions on ham subjects, and also the usual social activities of a ham gathering.

IS CET starts technical library of electronic information

"An international Technical Electronic Clearing House (TECH)" is the way librarian Henry V. Golden, CET, describes the newest move of the International Society of Certified Electronic Technicians (US CET). The library just started will be, he says, "a depository of otherwise unavailable technical information, a place where you can deposit that valuable—maybe only one of a kind—piece of technical information, that will still be available to you, yet be a means of getting a fellow craftsman out of trouble."

Mr. Golden reports to the NESDA and IS CET constituency that he is ready to receive help in the program, in the form of any and all new electronics textbooks, service manuals, all old issues of trade and technical magazines, as well as service manuals and diagrams of old test equipment. The address is IS CET/TECH, 8017 Paseo, Kansas City, MO 64131.

More information on how you can give and receive aid will be available by the time this appears, he says. Write for it to the same address.
Grid-clamps; diodes and VDR's

A very simple form of high-voltage regulation is used in some sets (mostly the smaller screen types, with lower high voltage). This uses a diode rectifier, in the grid return circuit of the horizontal output tube. Figure 3 shows a typical circuit. The diode (D1) is biased by a resistor network back to B plus. The pulse from the flyback will cause the diode to conduct whenever the voltage goes above the bias level. The diode conducts and charges the capacitor. This is a negative voltage. It's fed to the bottom of the horizontal output tube grid resistor.

If the high voltage tries to rise, the pulse voltage also rises. This makes the diode develop a higher negative voltage. This is fed to the grid as a higher negative voltage. This cuts down conduction of the tube and the output drops back.

The VDR clamp

You'll find VDR's (Voltage Dependent Resistors) used in some of these circuits. These are rather special resistors. When the voltage across them rises, their resistance goes down. So, they will actually act as "rectifiers" if a high-amplitude pulse is fed across them. The resulting dc voltage will have the same polarity as the applied pulse. If this is a negative-going pulse, a negative dc voltage will appear, etc. Figure 4 shows a schematic of this type.

You will find this circuit used in addition to the pulse regulators in quite a few sets. Here, its main purpose is as a high-voltage hold-down circuit to meet the HFW regulations on high-voltage supplies.

If the regulator is working normally, and the output tries to rise beyond the range of the regulator, the extra pulse amplitude will be converted into added negative bias on the horizontal output tube. This will definitely keep the high voltage from exceeding safe limits. You'll find VDR's used in the grid bias networks of pulse regulator circuits for the same reason. Here, they signal an increase in voltage by changing the regulator grid bias.

You'll find some interesting circuits in these hold-downs. For one example, in the Zenith 20C50 and 25C50 series, a pair of neon lamps is connected in series across the hv supply control. If the control shorts at the low side, the high voltage could increase. With the neon in the circuit, the increased voltage drops them. This loads the circuit and prevents the high voltage from rising. This is shown in Fig. 5. Note another interesting thing; the 6JK5 and 6HJ5 pulse regulator tubes used here have dual plate pins. The current through the damper is connected in series with the high-voltage regulator plate! If the regulator tube is pulled from the socket, no current can flow through the damper, and the high-voltage system is disabled. In still others, the heaters of the high-voltage regulator and damper are connected in series. If either one burns out, the system is again disabled completely.

Checking high-voltage regulators

These circuits are actually quite easy to test. All you need is a voltmeter with a high-voltage probe. Read the high voltage, then turn the brightness up and down. If the high voltage stays within the limits given (24 to 25 kV), it's working. Variation should not exceed more than ±1 kV.

If the high voltage reads low, and you also have excessive cathode current in the horizontal output tube, the high-voltage regulator may have incorrect bias on it. This will cause an overload. It can happen in all types of high-voltage regulators if the dc voltages are off.

The old shunt regulators are the easiest to check. Just pull the plate cap off the regulator tube (place it where it can't arc to ground if the high voltage does come back). Recheck. If your high voltage rises to about 30 kV, the regulator is overloading it. Screen brightness and focus should be close to normal. Try a new regulator tube. If this still doesn't clear it up, go to the dc voltages on the regulator.

In practically all circuits using this circuit, you'll find a 1 k resistor in series with the cathode of the regulator tube. This is for ease in reading the regulator cathode current. Just connect a voltmeter across the 1 k resistor, and set it on a low dc voltage scale. For each 1.0 mA of current flowing, you'll see a 1.0-volt deflection of the meter.

For practically all of these sets, using 6B4K's and similar tubes, normal regulator current should never be more than about 1.0 mA, with the picture tube screen dark (maximum current flowing in regulator). This should drop to about 0.1 or 0.2 mA with the brightness full up. If you see more than 1.5 to 2.0 mA with a bright screen, the regulator is taking too much current. This will overload the high-voltage supply, and you'll probably see an overload of cathode current in the horizontal output tube. Most of this trouble will be caused by drift in the matched pair of resistors in the regulator grid. Leakage in the small capacitor connected from grid to cathode of the regulator will also do it. If this capacitor shorts, you'll have zero grid bias, and the regulator...
TRROUBLESHOOTING CHART helps you find and eliminate defects in high-voltage regulator circuits fast and efficiently.

will conduct very heavily. The 6BK4 plate will probably get red hot. This has been known to blow horizontal output tubes, and even burn up flybacks.

The pulse regulator tubes can be checked in much the same way. In cases where the high voltage is far too high, and the HV ADJUST control won't bring it down, even if it does make it vary, check the dc voltages on grid and cathode. In one typical set, the grid voltage was found to be +290 volts. Since the cathode had +390 volts, the regulator grid had a +190-volt bias! This is enough to make the tube cut off completely. Normal grid voltage is +345 volts, giving a -45-volt bias. The regulator was doing nothing, so the high voltage went up around 30 kV.

This was due to a faulty resistor.

Diode clamp and hold-down circuits can be tested in the same way. Check to find out exactly what the thing is doing. Does it have normal high voltage, very low high voltage, or what? Read the grid voltage of the horizontal output tube. In most sets, this will be about -55 to -60 volts. If you read +100 volts or even more, you have some kind of trouble in the grid bias circuitry. See if you read a higher negative voltage across the control diode than you get at the grid. You can ground the bottom end of the horizontal output tube's grid resistor. If this brings the grid voltage back to almost normal, check the bias control circuitry.

Check diodes for leakage or opens; also, since the control voltage is developed across the little capacitor, as a negative charge, check this for an open. Scope the diode to see that the flyback pulse is there. Average amplitude runs around 200 volts p-p.

The key tests for trouble in this circuit will be both the high voltage itself and the cathode current of the horizontal output tube. If you see low high voltage, and the cathode current is also well below normal, say about 100 mA (200 mA is normal, average), this would point to a weak horizontal output tube, low dc voltages, or something in that area. Low grid drive on the horizontal output tube will show low grid voltage, and increased cathode current. Check the horizontal oscillator.

Do NOT try to read the pulse on the plate of a pulse regulator tube. This is definitely a *DO NOT MEASURE* point: you'll have the same pulse there as on the yoke: around 5 kV. To check this, just hold the scope probe near it. You'll have plenty of stray pickup to tell whether your pulse is normal. Check a few sets that work, to see about what kind of waveform you would see at this point.

Limit switches or lockouts

In quite a few of the newer solid-state color TV sets, you'll find "latching" or "lock-out" high-voltage circuits used. These will be triggered by a rise in high voltage. When they're fired, they disable some circuit. In most of them, it will stay off until the set is repaired. One version kills the horizontal oscillator, by killing its dc voltage supply. A small SCR is used: it's connected as a "crowbar short" across the +24 V. This is fed by dc; when it is gated on, it stays on.

The set must be turned off, and left for about half a minute. The charge leaks off the circuit, and the SCR turns off. So if you find a set where turning the BRIGHTNESS control up and down makes the raster go out, this is probably what's doing it. Check out the regulator, which will be in the low-voltage supply in these chassis. In some cases the SCR trips a little too fast. Try a new one, and see if there are any factory modifications to eliminate false tripping.

Resistors, of course, can be checked with an ohmmeter. VDR's must be substituted: they can be checked but it is a long process! Besides, no one ever gives you any specs on VDR: just the part number!
Why a Sylvania home training program may be your best investment for a rewarding career in electronics.
1 LEADER IN ELECTRONICS TRAINING

Over the years, Sylvania Resident Schools have trained thousands of men and women for key positions in the electronics field. Now, through Sylvania Home Training, you can receive the same high-quality career training at home. In your spare time. While you hold your present job. Remember, this training is designed with one purpose in mind — to give you the background you need to land the electronics job you really want!

2 AUTOTEXT TEACHES YOU ELECTRONICS RAPIDLY, EASILY.

AUTOTEXT, offered exclusively by Sylvania, is the proven step-by-step method of home training that can help you learn the basics of electronics quickly and easily.

3 CASSETTE SYSTEM

This innovative learning-by-hearing approach is a special option that adds an extra dimension to AUTOTEXT. It's almost like having an instructor in your own home. As you play the cassette tapes, you'll have an instructor guiding you through your AUTOTEXT lessons. Explaining the material as you read it. Going over schematics with you, reinforcing the basic electricity and electronics study materials with you. Everything you need to know to get you started towards a highly regarded position as an electronics technician — all in an easy-to-understand, conversational tone.

4 SPECIALIZED ADVANCED TRAINING

For those already working in electronics or with previous training, Sylvania offers advanced courses. You can start on a higher level without wasting time on work you already know.

5 PERSONAL SUPERVISION THROUGHOUT

All during your program of home study, your exams are reviewed and your questions are answered by Sylvania instructors who become personally involved in your efforts and help you over any "rough spots" that may develop.

6 HANDS-ON TRAINING

To give practical application to your studies, a variety of valuable kits are included in many programs. In Sylvania's Master TV/Radio Servicing Program, you will actually build and keep an all solid-state black and white TV set, and a color TV set. You also construct an oscilloscope which is yours to keep and use on the job.

7 FCC LICENSE TRAINING — MONEY BACK AGREEMENT

Take Sylvania's Communications Career Program — or enter with advanced standing and prepare immediately for your 1st, 2nd, or 3rd class FCC Radio Telephone License examinations. Our money-back agreement assures you of your money back if you take, and fail to pass, the FCC examination taken within 6 months after completing the course.

8 CONVENIENT PAYMENT PLANS

You get a selection of tuition plans. And, there are never any interest or finance charges.

SEND ATTACHED POSTAGE PAID CARD TODAY! FREE DESCRIPTIVE BOOK YOURS WITHOUT OBLIGATION!
Blanking circuits—why and how they work

Symptoms are often weird but easy to blank out. Here's how.

by JACK DARR
SERVICE EDITOR

WHAT IS BLANKING? THE CLINIC MAIL BAG gets pretty heavy sometimes with assorted problems which all have something to do with blanking circuits. This circuit is getting pretty complex, in application, although it's pretty basic in theory. In the older sets, if we lost the blanking, all we got was a few vertical retrace lines on the screen. In the newer sets, and most especially in color TV sets, blanking troubles can cause some really weird symptoms. Most of these do not appear to be due to blanking, but they are. Let's look at the basic circuitry first, and then take a look at some of the oddballs.

Blanking means just what it says. We feed two pulses, one horizontal frequency, the other vertical frequency, into the circuit. Both of these occur in their respective sync interval. They are fed into some point in the circuit that will make the picture tube cut off, so we don't see the syncs in the picture. In black-and-white (B/W) sets, they were fed directly into the picture tube; a negative-going pulse to the grid or a positive-going pulse to the cathode.

In color sets, where we split up the signal into B/W (video or Y) and color, you may find blanking fed to the video amplifier stages, the color amplifier stages or both. By feeding the blanking in at an early stage, we can use a low-level pulse. By definition, a blanking pulse must be of such a polarity that it will make the amplifier cutoff. Negative going on a tube grid, positive on the cathode: reverse bias to a transistor base: positive for pnp, negative for npn. If the pulse is fed to the emitter, in a common-emitter stage, its polarity is reversed to that of a base pulse. This is often found in hybrid or solid-state sets.

Problems

Now how about some of the odd problems that we can get from blanker troubles? The worst ones are the type that cause a bias upset in the amplifier stage. This causes effects not readily associated with blankers. For the first one, the older color sets using three color-difference amplifiers, with common cathodes for matrixing, often had the blanking fed into the cathode circuit, as in Fig. 1.

The blanking pulse here is high, negative going, so that it causes cutoff of the picture tube. It does this by making the color-difference amplifier tubes conduct more heavily. This causes their plate voltage to drop (go more negative) which in turn biases-off the picture tube grids. (This kind of polarity reversal will be quite common and confusing, so watch out for it.)

What happens if the blanking pulse is lost? In this circuit, we lose the raster. The presence of the large blanking pulse on the cathodes of the color difference amplifiers develops a bias of about 7 volts. Without the pulse, this drops to a very low voltage, less than 1.0 volt. The triodes conduct very heavily, and the picture tube cuts off. This happens if the blanker coupling capacitor opens, or the blanker tube goes dead. Key clues: low plate voltage on color-difference amplifier tubes, along with low cathode voltage, and absence of blanking pulse on cathode, with scope.

In another set, of about the same vintage (RCA CTC-38, etc), the blanker tube is actually in series with the picture-tube bias control, which varies the dc supply to the picture tube grids. It does this because the control is in the dc supply line to the color amplifier plates. Figure 2 shows this version.

Note that there is a dc path for current from the bias control, through the plate-cathode circuit of the blanker, and then on to ground (actually completed through the cathode resistor of the 2d color bandpass amplifier).

If the blanker tube goes dead, this will upset the dc voltages. They will go higher, more positive, and the picture tube grids will...
Blanking diodes

Diodes have become very popular for blanking in the later sets. Some will use transistors, and some a combination of both. The advantage of a diode is that it can be biased, so that only the desired part of the blanking pulse passes through. For example, in many Zeniths, you'll find both horizontal and vertical blanking diodes.

For the horizontal blanking, a pulse from the flyback is fed through a biased diode (Fig. 3 shows the circuit). The bias keeps the diode cut off until the pulse voltage has risen above the bias level. So we get an input pulse as shown, with quite a bit of normal ringing along the baseline (which is during the scan period). The output pulse is clean, with the ringing clipped off. This is fed into the emitter of a transistor video amplifier stage.

If this diode shorts, it does not put the raster out. You'll see an odd symptom; the picture will have about six thick, black vertical bars at intervals, with the picture showing between them. These are called jail bars, for obvious reasons. The bars are caused by blanking of the raster, due to the peaks of the ringing waveform, which are now getting through the diode unclipped.

The vertical blanking is applied in the same amplifier circuit, with another diode. It is goes bad, we see another odd effect.

When the brightness control is turned down, the raster will go out from top to bottom, exactly like a window shade being pulled down. If the diode is just leaky, you may not see a full window-shade effect, but the raster will be shaded from top to bottom: the top is usually the darkest.

Neon lamps

You'll also find neon lamps used in blanking circuits. Neons will fire at about the same voltage, usually somewhere around 65 volts. When they fire, they conduct a small current. So this too can be used to pass a pulse voltage. The neon lamps do sometimes become defective. Strange as this sounds, they can become gassy, and fire all the time. This upsets the blanking. They can also crack, and refuse to fire. When this happens to the neon lamp of the same type. In some circuits, you'll find polarized neon lamps. These must be replaced by an exact duplicate, and with the right polarity.

Blanker transistors

Blanker transistors are found in most hybrid and solid-state sets. Like all of the rest, they can cause some unusual symptoms. In Sylvania's D-12 color chassis, a bad blanker transistor can cause a series of faint vertical lines to show up in the raster. Scoping the blanker transistor will show you the same signal on both base and emitter, quite low in amplitude. This happens when the transistor is leaky. If this transistor should open, the raster will still be there, but it will turn purple. (Don't ask! I know not why, but it does!)

Another jail-bar symptom, but this time affecting only the color, shows up in circuits such as Zenith hybrid 14ZK50 chassis. The B/W picture will be good, but when you turn up the color control, you get a jail-bar effect in the color. Here again, the cause is a shorted horizontal blanking diode. This time, it is in the emitter circuit of the second color bandpass amplifier transistor. The reaction is just the same as before: the shorted diode allows the ringing on the baseline to get through, and blank out only the color signals (Fig. 4 shows this one).
circuit, though: Class A output with 6V6's.

The 7-pin sockets on the back are for the speakers. The jumper between 6 and 7 is intended to break the primary circuit to the power transformer, so that it can't be operated without a speaker load; this burned out the output transformer!

Standard connections for this would be: Pin 1, common (ground): pin 2, 4 ohms; pin 3, 8 ohms, pin 4, 16 ohms, and pin 5 (probably) 500 ohm line.

HIGH-VOLTAGE DROP

With the switch in service position, the high voltage is normal on this GE CA color chassis. In normal position, it drops quite a bit, and I have vertical retrace lines in the picture. The horizontal scan also slowly collapses.

Would you suspect the vertical output circuits? I replaced the vertical output tube; no help. —H.K., Chicago, Ill.

Not the vertical circuitry. I'm afraid. This kind of symptom is usually due to one of two things: excessive beam current in the picture tube, overloading the high-voltage circuits, or to a low output high-voltage circuit (which would include such things as the high-voltage rectifier, horizontal output tube, etc.).

Check the grid and cathode voltages on the picture tube, in normal position of the service switch. If the grids are too far positive, or the cathodes too far negative, the tube will draw too much beam current, and overload the high-voltage supply. Maximum here is only 1500 microamperes. Check the setting of the picture tube screen controls, too. If these are too high, they can cause the same symptoms.

What you actually have is too much brightness! This will almost always let retrace lines show.

ODD COLORS

The picture comes on with the colors oversaturated, and well out of phase. Raster's clear; no imperfections. This is a Zenith 1449C50. I ran an AFPC adjustment, and replaced the IC demodulator chip, and the oscillator tube. No help. I'm lost. —G.C., Rockford, Ill.

Polishing the crystal ball. I would say that this sounds like a 3.58-MHz crystal which won't quite come to the right frequency! Try this: hook a 50K ohm resistor in series with the probe of the vtvm, and read the dc voltage on the grid of the 3.58-MHz oscillator tube. Use a color-bar signal on the set, and set up for AFPC alignment. Normally, the grid voltage should be zero. It should be able to go from a -5 volts to a +5 volts as you adjust the oscillator frequency. If the crystal is off, it will probably come up to about +0.5 volt, or -0.5 volt, and then snap out. Final test is to try a new crystal, of the right part number.

reader questions

AFC COLOR PROBLEM

The color pops in and out in this Zenith 20X1C36. However, if I put the afc switch off, the color stays in. I've changed all of the tubes in the color section; no help. What's wrong? —J.M., Phila, Pa.

Nothing in the color section, apparently. This is an intermittent afc problem! Sounds as if it is detuned just enough to keep the color "hanging on the edge," and at any disturbance, such as noise, it lets go. Readjust the afc, and it should stop the trouble.

TO "YOUNG-TIMER"

I have an old amplifier. It's an "Erwood," 4112. It seems to be in good working order, but I don't have a schematic. It has a pair of 7-pin sockets on the back that I don't understand. The ac line is connected to pins 6 and 7. What's this for, and what are the output impedances? —T. J., Toms River, N.J.

Unfortunately, I can't help you with a schematic: don't seem to have one for this make. It's standard amplifier cir-
BATTERY CHARGES USED TO BE FAIRLY simple devices; a low voltage transformer, a rectifier, and that was it. They did the job, but they could also do some damage. Leave one on a battery too long, and you’re in trouble. When a battery is partially discharged, a high current flows when the charger is hooked up. As the battery charges up, this current decreases. However, if the charger is left hooked up after the battery has reached full charge, some current will still be flowing. The actual amount depends on the voltage of the charger, and its current-rating.

This can be up to 1 to 2 amperes. It doesn’t do any useful work, since the battery is already up to full charge. What it does is generate heat. This makes the water evaporate out of the electrolyte, and it also liberates gases which can be dangerous. (Oxygen plus hydrogen plus small spark makes one heck of a bang!)

So the newer chargers are provided with a voltage-sensing circuit. This turns the charger off when the battery reaches full charge. The “signal” for this is the voltage across the battery. Before it reaches full charge, this will be lower than normal; when it is fully charged, it will rise. In a standard 12-volt battery, somewhere between 13 and 14 volts.

This automatic protection is provided by an SCR, in a novel circuit (see Fig. 1). As you can see, the transformer and rectifiers are still there. The positive terminal of the dc output (center-tap of the transformer) is connected to the anode of the SCR. The negative terminal of the dc output is the common anodes of the rectifiers. So now the charging current flows through the SCR.

An SCR will not conduct current at all until it is “gated on” by applying a small positive voltage to its gate. Once it is turned on, however, it keeps on conducting until the anode voltage drops to zero. If we look at this as a dc circuit, the SCR would conduct at all times, once turned on. However, this isn’t precisely a pure dc circuit. The voltage applied to the SCR anode isn’t really dc, but a series of pulses, positive-going. So the SCR turns off every time this voltage reaches zero, which it does 120 times a second. The waveform of this is shown in Fig. 1, just above the SCR anode.

So the SCR will actually turn itself off 120 times per second, then be gates back on again for the next half-cycle. By the voltage from the gate-voltage divider. Current will keep flowing into the battery as long as the gate circuit is working.

Three resistors are connected across the output. They actually “read” the dc battery voltage. As the battery charges, this goes more positive. The current through the sensing resistors also increases, as Mr. Ohm said. Now we come to the secret: notice that one of these resistors isn’t a fixed type, but a thermistor. This is a special type of resistor. When the current flowing through it increases, its resistance decreases. This change is actually caused by the resistance element heating up. That’s why the term thermistor.

Now then: when we begin the charge, the battery voltage is comparatively low. The dc voltage drop across the sensing resistors is such that the gate of the SCR stays positive with respect to its cathode; enough to make sure that the SCR stays on. When the battery gets to full charge, the dc voltage rises. So the current through the sensing resistors rises with it. In fact, this current rises slightly more than it would if all of these were standard resistors. This is because of the reduced resistance of the thermistor, with increased current.

Its resistance drops; so does the voltage drop across the bottom section of the divider. This results in the SCR gate becoming not quite positive enough to be turned on. So, it blocks current flow, and the battery will not be over-charged. This won’t be a complete cutoff. The meter will generally flicker slightly. The Zener diode and the resistor across the supply also help out in this action, by providing a fixed reference voltage.

What to do if it doesn’t work

The old standard test that we used to make to see if a battery charger was working, was popping the clips together to see if there was a spark. I don’t think I’d recommend this any more. Solid-state devices dislike any transients, so don’t take chances. In most of these chargers, you will have a panel ammeter. This will tell you whether any current is flowing or not. Connect the clips to the battery. If you see an indication of current on the meter, OK.

Many of these chargers have a clever little reverse-polarity indicator circuit, which tells you if you have managed to connect the battery up backward. This is the diode and lamp shown across the dc output. If the battery is hooked up correctly, the cathode of
the diode has a positive voltage applied to it. It won't conduct. If the battery polarity is reversed, the cathode will have a negative voltage on it. It will go into full conduction, and the lamp will light brightly. Connected as this circuit is, the meter needle will back off-scale if the battery is reversed. This will be only the lamp-current, and won't hurt anything. If the lamp lights, but the meter is reading up-scale, the diode is shorted.

If the ammeter needle doesn't move when the battery is connected, the first thing to do is check to see if the line cord is plugged in. In this type of regulated charger, as I said before, even if the battery should happen to be fully charged, the ammeter needle will flicker slightly if it's working.

If it doesn't move at all, though the line cord is plugged in, check for an open fuse or circuit breaker inside the charger. If these all check out OK, the SCR could be open, or not being gated-on. This can be checked by simply jumping the SCR with a clip-lead. If current flows now, something is wrong with the SCR or its circuitry.

This will have to be checked out with a dc voltmeter. The SCR gate should be slightly positive with respect to its own cathode. It takes only about +0.4 volt to turn the average SCR on. You can take the SCR out and check it. A shorted SCR will read zero ohms with ohmeter probes either way.

If the charger works but the current is very low, one of the rectifier diodes could be open. This will show you an open circuit, with probes either way, across the bad diode. A normal diode reading is a very low resistance one way, and a very high resistance with the ohmmeter probes reversed.

SOLDERING IRON CORD HOLDER

If your workbench is usually cluttered with small parts and tools, you have probably often gotten your soldering iron cord tangled up in something and pulled it to the edge of the table and watched it crash to the floor. A way to prevent this is to use a gadget that the little women may be using on her ironing board. These were intended for use on the end of an ironing board to prevent ironing over the cord, etc., but works equally well holding the soldering iron cord out of the way. The holder installs on the edge of a table or work-bench and is secured by a thumbscrew. — Kent Mitchell, W3WTO
HI-FI TEST INSTRUMENTS (continued from page 37)

A typical audio voltmeter has one or more ranges with full-scale readings in the millivolt range so you can measure the output, hum and noise from such low-level sources as microphones, tapeheads and phonograph cartridges. Many audio voltmeters include a built-in high-gain amplifier that can be used as a preamp for a scope when measuring low-level signals. The lowest full-scale range is 1 to 2 millivolts and the decade range is from around -80 dB to +160 dB with 0 dB referenced to 0.775 or 1.0 volt.

A number of FET multimeters have full-scale ac voltage ranges low enough to permit making valid measurements of all except the lowest signal voltages found in modern audio equipment. So, if you are just getting started in hi-fi servicing and have one or more good FET multimeters, you may want to defer purchasing a more specialized audio voltmeter until the volume of business warrants it.

An audio voltmeter is especially useful in signal tracing where you may need to detect small differences in voltages at corresponding points in the two channels of a stereo amplifier.

Audio attenuators

Decade attenuators are used between the audio test oscillator and the amplifier to provide the precise low-level signals needed when testing preamps and other high-gain audio circuits. Some attenuators—like General Radio's Microvolter—include a precision audio voltmeter for setting the input to a predetermined level and two or more step attenuators with dials calibrated in volts and in decibels. Typical decade attenuators used for gain and loss measurements of filters, amplifiers, active and passive networks and similar equipment are General Radio's model 1450 and the Hewlett-Packard 4437A. These provide attenuation of 0 to 110 dB and 0 to 119.9 dB, respectively, in 0.1 dB steps.

When measuring the frequency response of an amplifier, an attenuator is needed between the audio generator and the amplifier to provide the minute, precise adjustments in the input signal level during the frequency run. With a constant signal voltage being fed into the attenuator: the attenuator is adjusted up or down as necessary to keep the amplifier's output voltage constant. The amplifier's gain is up or down at that frequency—is above or below the gain at the reference frequency—by the change required in the attenuator setting in dB.

The meter across the amplifier output cannot be used, except as a reference meter, when making precise gain or response measurements. The small changes in output voltage level are difficult to read and—even harder for many—to convert to gain or loss in dB. For example, assume that the amplifier gain varies 0.1 dB. This amounts to a voltage ratio equivalent to a gain of 1.012 or a loss of 0.988. This is a variation of about 1.5%; very difficult to read accurately on an analog meter scale.

Wow and flutter meter

If most of your experience has been in radio and TV servicing, the terms wow and flutter may be all but meaningless to you but you'd better know what it's all about if a musician or other critical client tells you that his $200 turntable or $600 tape deck sounds funny. Wow and flutter are symptoms of mechanical troubles in tape and record player mechanisms that can make the player's sound and reproduction garbled or "sick". You need specialized equipment to test tape and record player mechanisms and to check a reel on the effectiveness of your servicing procedures.

Both of these troubles are variations in the tape or record speed that frequency-modulate the recorded and/or recording signal. The rate of variation determines whether it is* Wow* or* Flutter*. When the recording- or playback speed varies at a rate of 0.5 to 2 Hz, we have *Wow*. *Flutter* is heard when the speed varies at a rate of 2 Hz and higher.

When speed changes at 2 to 6 Hz, even the most musical ear can detect the periodic changes in pitch. At 6 to 10 Hz, notes begin to sound as though vibrato is being used. At higher variation rates, the signal may sound garbled or harsh.

Wow and **flutter** are measured using a test tape or record with a 3-KHz test tone played on the equipment under test. The wow/flutter meter (see block diagram of a typical instrument in Fig. 5) is connected across the output of an amplifier fed by the player. An input attenuator sets the signal to the desired level. A following limiter stage clamps the signal level so readings are not affected by amplitude variations. The signal goes through a bandpass filter and harmonic suppressor and on to a 3000-Hz rejection filter and FM discriminator so all frequency components other than the 3000-Hz can be read on the built-in voltmeter.

There is an adjustable bandpass filter at the discriminator output. When the filter is set to 0.5 to 250 Hz the reads the sum of both wow and flutter. Setting the mode switch to *Flutter* cuts in a sharp filter that removes all frequencies below 6 Hz. In the

Wow and flutter measurements

Wow position of the switch, the filter removes all frequencies above 6 Hz so the meter measures only the wow component.

Most wow/flutter meters have a built-in 3-KHz oscillator so you can make a test tape when necessary. Some include facilities for measuring turntable flutter. Others also measure *Drift*—slow speed variations, but more often defined as long-term speed variations caused by variations in supply voltages to the drive or capstan motors or gradual changes in take-up tension.

(continued on page 76)

KEYBOARD ENCODER KIT

At long last—a top quality fully professional data entry keyboard at a sensible price. Keyswitches are full typewriter travel and response type, arranged in a modified ANSI layout. Full length spacebar uses equalizer. Keyswitches are mounted on a double sided fiberglass circuit board with plated through holes. The encoder provides a standard ASC II output and includes a debouncer circuit. ASC II code includes shift and control functions with two user defined keys available.

This keyboard is ideal for use with the Radio-Electronics "TV-Type writer", or any type of radio tele-type display system. It will drive TTL, DTL, RTL, CMOS and PMOS logic systems. Requires only +5 Volts @ 100 Ma.

Circle our reader service number below for a FREE 1974 catalog listing all of our outstanding kit projects.

KDB-1 Kit............S39.95 ppd

Southwest Technical Products Corporation
DEPT. RE
219 W. Rhapsody
San Antonio, Texas 78216

(continued from page 37)
Let's say that you've decided on (1) a sine/squarewave audio generator, (2) a sweep and marker generator especially for FM work—the shop's sweep/marker generator is always tied up on the TV service bench, (3) an FM stereo multiplex generator and (4) an AM RF signal generator for AM radio work. In this case, you'd want to look closely at something like Sencore's SG165 AM-FM Stereo Analyzer. It replaces the functions of the four instruments you want while including such goodies as dual 100-watt speaker dummy loads and two wattmeters with 10- and 100-watt ranges. The same type of thinking can be applied to your equipment needs and other types of all-in-one instruments.

As you gain experience in hi-fi servicing, you may find a need for such instruments as a tone-burst generator, X-Y recorder or an electronic counter. And you will accumulate such accessories as test records, test tapes, stylus pressure gauges, stylus microscopes and head cleaners and demagnetizers for reel-to-reel, cassette and cartridge tape equipment. You'll be working with high-quality gear so purchase the best equipment you can afford.

You have a wide choice of instruments

If you want to develop an efficient and profitable approach to hi-fi servicing, we have shown in the following listing, some of the types of instruments and their pertinent features and specifications. The list is not all-inclusive. We suggest writing to the manufacturers for their general catalogs and additional information on the equipment listed here.

If You Work In Electronics:

GRANTHAM OFFERS YOU
College-Level Training
and a college degree.

Electronic Circuit Design,
Engineering Analysis (including mathematics thru calculus),
Classical and Solid-State
Physics, Engineering Design,
etc., etc., are all part of
the Grantham home-study degree program in Electronics Engineering.

PUT PROFESSIONAL RECOGNITION IN YOUR CAREER.

By adding college-level home training and a college degree to your experience, you can move up to greater opportunities in electronics.

Grantham offers the A.S.E.T. degree by correspondence. After earning this degree, you may continue with additional correspondence plus a 3-day residential seminar and certain transfer credits, to earn the B.S.E.T. degree. Then, the B.S.E.E. is available through further study.

GRANTHAM SCHOOL OF ENGINEERING
2000 Stoner Ave., Los Angeles CA 90025
• Telephone (213) 477-1901 •

Worldwide Career Training thru Home Study
Mail the coupon below for free bulletin.

Grantham School of Engineering
2000 Stoner Ave., Los Angeles, CA 90025

I have been in electronics for _______ years. Please mail me your free bulletin which gives details concerning your electronics degree programs.

Name ___________________________ Age ______

Address _________________________

City ___________________________ State ___________ Zip ______

Circle 26 on reader service card
new products

More information on new products is available from the manufacturers of items identified by a Reader Service number. Use the Reader Service card inside the back cover.

SPEAKER SYSTEM, LST-2 represents a blending of drivers used in other AR systems. Cross-over network and spectral balance switch permit three repeatable, spectral energy profiles that allow the user to select the energy output best suited for room acoustics and program material. Geometric design of the cabinet along with the characteristics of the drivers in the three planes results in uniform dispersion at all frequencies. Has room-filling quality of omni- or multi-directional system with no beaming of high frequencies.

Includes a 10-inch acoustic suspension woofer, three 13/4-inch mid-range hemispherical dome radiators and three 3/4-inch hemispherical dome tweeters. Cabinet is of solid oiled walnut. $400.00.—Acoustic Research, Inc., 10 American Drive, Norwood, Mass. 02062.

Circle 48 on reader service card

CASSETTE DECK, model GXC-75D has built-in Dolby (automatic distortion reduction system), three-way electrical reverse mode selector and automatic and manual reverse recording and playback. Also features lifetime glass and crystal head. Has pause control button for tape editing; control suspends tape travel at any time during record or playback. Individual back-lighted meter panel indicates various operating modes. Reverse-mode selector provides one-way recording or playback, one-cycle forward and reverse recording or playback or continuous playback.

Other features include: tape selector circuit for CrO2 tape, over-level suppressor circuit, index counter with memory wind supplement that stops tape at any desired point, automatic stop, large slanted VU meters and hysteresis motor. 5-3/4 x 18 x 11-3/4 in.; 17.6 lbs. $429.95—Akai America, Ltd., 2139 East Del Amo Blvd., Compton, Calif. 90220.

Circle 49 on reader service card

IN-DASH CASSETTE PLAYER, model C984. AM/FM stereo in-dash radio with built-in cassette player for autos features: fast-forward, adjustable shafts for easy in-dash installation, FM local-distant control, AM/FM selector with indicator lights and slide-rule dial scale. New cassette loading mechanism allows easy cartridge insertion even while driving. Pushbutton cassette ejector facilitates removal. 2-1/2 x 7 x 6-1/4 in.; $179.95—Audiovox Corp., 150 Marcus Blvd., Hauppauge, N.Y. 11787.

Circle 32 on reader service card

DIGITAL MULTIMETER, model 45. 10,000 count (digit) DMM operates from either line or battery power and is applicable for tuning precision power supply and amplifier circuitry. Has five ac and five dc voltage ranges with 10 µV resolution, six resistance ranges with 10 milliom ohm resolution and five ac and five dc current ranges with 10 nA resolution. Battery charge life: 10—12 hours; power consumption: 3 watts; display: 33' 7-segment Sperry's.

Entire unit can be field-striped in less than five seconds; spare fuse and circuit card connector for testing are housed behind a rear entry panel. 2.5 x 6.25 x 9 in.; 2.3 lbs; without batteries; $399.00—Data Technology Corp., 2700 South Fairview Street, Santa Ana, Calif. 92704

Circle 33 on reader service card

BASE STATION MICROPHONE, model BTM-4 features dynamic element with cardioid response pattern to minimize background noise and an acoustical damper to preserve full voice quality. Also included is a solid-state preamplifier circuit with adjustable output of 0-30 db gain to match most transceivers' input requirements. Slide switch on the underside permits selection of relay or electronic switching. Press-to-talk bar may be locked in talk position. Frequency response is 100-8000 Hz; impedance is 1000 ohms; cable is six-foot; three-conductor coiled cord with plug.—Fanon-Courler Corp., 990 South Fair Oaks Avenue, Pasadena, Calif. 91105

Circle 34 on reader service card

DIGITAL MULTIMETER, model 134 is a 3-1/2 digit five-function full-range DMM (digital multimeter) with bright 1/2-inch seven-segment planar gaseous display. Has 1999 count display and automatic decimal point positioning. Displays three full digits plus overrange “one” for all functions with minus sign displayed and plus sign implied. Offers direct digital reading with no analog interpolations necessary for positive and negative dc volts and current (automatic polarity), ac volts, ac current and resistance.

Dc volts: 4 ranges, ±1000 V to ±1500 V f.s. with 1% overrange in each range to a limit of 1500 V. Sensitivity is 1 mV on the 1-volt range. Input resistance is 10 megohms on all ranges. Accuracy on all dc voltage ranges except the 1-kV range is ±0.2% f.s. ±0.2% reading. The 1-kV range accuracy is ±0.5% f.s. ±0.5% reading. On the ac range, frequency response is 50 Hz to 1 kHz extended to 5 kHz at slightly reduced accuracy. Basic accuracy: ±0.7% f.s. ±1% of reading thru 100 V range. Accuracy on 1-kV range is 0.7% f.s. ±2% of reading.

Has 100-, 1000-, 10,000-, 100,000-ohm; 1- and 10-megohm resistance ranges. At low end,
measures to 0.1 ohm. Accuracy is 0.5% f.s. ± 7% of reading through 1 megohm and ±1.8% on 10-meg range. Ac and dc current 1mA to 1 A f.s. Minimum resolution 1 nA. 3-1/2 x 7-1/2 x 8-3/4 in.; $189.00 complete with combination handle/tilt stand and test leads.—Data Precision Corp., Audubon Road, Wakefield, Mass. 01880.

Circle 35 on reader service card

FINE LINE SOLDER, Cat. No. 9132 has low-melting point and self-feed plastic dispenser. Designed for today's printed-circuit needs, this solder is 60/40 rosin-core type and .032 inches in diameter. Self-feed dispenser holds over 12 feet of solder and is made of clear plastic so that the amount of remaining solder can be seen—GC Electronics, 400 South Wyman, Rockford, Ill. 61101.

Circle 36 on reader service card

ANTENNA HARNESS, model JSL-U is tapered-line 300-ohm matching harness for combining identical uhf antennas into a single downlead. Harness is ideal where vertical stacking of uhf antennas is required for increased gain and added vertical capture area. Stacking gain is better than 2.5 dB. Theoretical maximum stacking gain is 3.0 dB. Can also be used as low-loss mixer to combine two identical uhf antennas which are oriented in different directions; such as arrangement can often eliminate the need for an antenna rotator. $4.95—Jerrold Electronics Corp., 200 Witmer Road, Horsham, Pa. 19044.

Circle 37 on reader service card

ELECTRONIC ORGAN, model TO-1260. Solid-state spinet home organ with two 44-note overhanging keyboards and 13-note radial-arc pedal keyboard. Tonal resources are at fingertip command—from rich, mellow bass sounds to brasses and woodwinds that have built-in wha-wha sound. Two 35-watt rms amps and two wide-range 12-in. heavy-duty speakers. Also featured is accessory panel for installation of cas-
supply transformers in some new TV sets. Separate function is provided for ac peak-to-peak measurements for direct comparison readings against peak-to-peak test point voltages labeled on schematics. Sensitivity provides eight overlapping voltage ranges between 0.3 volts and 100 volts full scale, dc and ac. Current range covers dc from 10 mA to 1 amp full scale and five ohm ranges measure resistances from 1 ohm to 1000 megohms. $150.00—Sencore, Inc., 3200 Sencore Drive, Sioux Falls, S.D. 57107.

Circle 39 on reader service card

VHF/UHF/FM ANTENNAS, LPV-UC Color Best combine patented log periodic design with ultra-sensitive corner reflector and uhf driver for more sharply detailed reception in color or black and white on all channels. Capacitor-coupled dipoles provide synergistic response of uhf channels. Staggered multi-element phased driver minimizes ghosts and snow on uhf and uhf bands. Rugged triple square crossarm construction maintains solid rigidity, improves signal transfer. Use of lustrous gold colored alodized aluminum protects antenna.

All-band vhf/uhf/FM splitter is included with each of seven models: model LPV-UC180 (far fringe), LPV-UC150 (fringe), LPV-UC120 (near fringe), LPV-UC90 (suburban fringe), LPV-UC60 (suburban), LPV-UC40 (local suburban), LPV-UC30 (local).—JFD Electronics Corp., 1462 62nd Street, Brooklyn, N.Y. 11219.

Circle 40 on reader service card

OSCILLOSCOPES, models TO-55 & TO-66. TO-55 is a single-trace instrument; TO-60 is a dual-trace instrument. Automatic features include autostop and automatic selection of TV vertical and TV horizontal triggering. Vertical sensitivity of both instruments has been increased to 10 millivolts/cm. TO-55 vertical bandwidth is 10 MHz while TO-60 has a 15-MHz system. All switching is done in the 1-2-5 step sequence.

TO-60 provides five operating modes for the dual-trace vertical amplifier. These include independent operation of each channel plus dual trace alternate and dual-trace chopped and the sum of each channel.—Letrotech, Inc., 5810 North Western Avenue, Chicago, Ill. 60639.

Circle 41 on reader service card

HEX SOCKET SCREWDRIVERS, LN-8MM Set has fixed handle and comes in a range of metric sizes that are available as a set or individually. Set consists of eight drivers with black plastic handles and hex tip sizes from 1.27 mm to 6 mm, contained in handy roll-up kit that keep tools together and in order. Blades, measuring 101.60 mm (4"), are protected by a black oxide finish. Handle dimensions are ¼ x 2¼ in. for the smaller drivers and ⅜ x 3¼ in. for the larger. Overall screwdriver lengths are 6¼ x 7¼ in. respectively.—Xcelite Incorporated, Orchard Park, N.Y. 14087.

Circle 42 on reader service card
EXPERIMENTAL GUIDE TO CLOSED-CIRCUIT TELEVISION

16-page brochure includes descriptions, detectors, filters, and monitors. Camera lens, components, accessory equipment, videotape recorder, camera housings, (camera mounts, switchers and amplifiers), types of CCTV systems, equipment needed and actual installations. Chapter on use of CCTV equipment in producing videotapes for training and educational programs as well as glossary of CCTV terms and definitions. — GBC Closed Circuit TV Corp., Publications Dept. 74 Fifth Avenue, New York, N.Y. 10011

Circle 43 on reader service card

PANEL METER CATALOG

6-page catalog describes line of miniature and sub-miniature panel meters. About two dozen different styles are illustrated that range in size from less than 1 in. to 4.75 in. wide. Includes varied shapes and styles such as edge reading, flat, round, square, Keystone style etc. — Mura Corp., 50 South Service Road, Jericho, N.Y. 11753

Circle 44 on reader service card

HARD-TO-FIND TOOLS CATALOG

68-page catalog contains unusual craftsmen's hand tools and small power tools used by woodworkers, machinists, researchers, model makers and metalworkers throughout industry. Includes space-age glue, razor hone, professional wood bits, tenon, handles that write permanently on metal, Engraved glass cutter, wood chisel sets of twist drill, funnel, control stopper, etc. Free year's subscription (six issues). — Brookstone Co., 4436R Brookstone Building, Peterborough, N.H. 03458

Circle 45 on reader service card

QUICK GUIDE TO CONSUMER ENTERTAINMENT INTEGRATED CIRCUITS

4-page catalog lists integrated circuits for such applications as audio amplifiers, tape recorders, TV receivers, and set-top boxes. Includes a detailed description of each IC, its function, and how it is used in consumer electronics. — Sprague Electric Co., Technical Literature Service, 81 Marshall Street, North Adams, Mass. 01247

Circle 46 on reader service card

SOLID-STATE PUBLIC ADDRESS SOUND SYSTEMS

8-page catalog specializes primarily in flash-signt battery-operated complete public address systems. Catalog offers seven systems. Sound Column Lectern, Roving Rostrum, Diplomat, Announcer, Half-Mile Hiater, Sound Cruiser, Background Music and Paging system. Lists range of accessory items that include extra speakers, microphones, batteries, converters for ac operation and mixers and microphone extension kits. — Perma Power, 845 Larch Avenue, Elmhurst, Ill. 60126

Circle 47 on reader service card

Now...the most enjoyable do-it-yourself project of your life—A Schober Electronic Organ!

You'll never reap greater reward, more fun and proud accomplishment, more benefit for the whole family, than by assembling your own Schober Electronic Organ.

You need no knowledge of electronics, woodwork or music. Schober's complete kits and crystal-clear instructions show you — whoever you are, whatever your skill (or lack of it) — how to turn the hundreds of quality parts into one of the world's most beautiful, most musical organs, worth up to twice the cost of that kit.

Five superb models with kit prices from $500 to around $2,000, each an authentic musical instrument actually superior to most you see in stores, easy for any musically minded adult to learn to play, yet completely satisfying for the accomplished professional. And there are accessories you can add any time after your organ is finished — life-like big auditorium reverboration, automatic rhythm, presets, chimes, and more.

Join the thousands of Schober Organ builders-owners who live in every state of the Union. Often starting without technical or music skills, they have the time of their lives — first assembling, then learning to play the modern King of Instruments through our superlative instructions and playing courses. Get the full story FREE by mailing the coupon TODAY for the big Schober color catalog, with all the fascinating details!

The Schober Organ Corp., Dept. RE-128
15 West 61st Street, New York, N.Y. 10023

Enclosed please find $1.00 for 12-inch P.A. record of Schober Organ music.

NAME
ADDRESS
CITY
STATE
ZIP

Circle 61 on reader service card

Now...the most enjoyable do-it-yourself project of your life—A Schober Electronic Organ!

You'll never reap greater reward, more fun and proud accomplishment, more benefit for the whole family, than by assembling your own Schober Electronic Organ.

You need no knowledge of electronics, woodwork or music. Schober's complete kits and crystal-clear instructions show you — whoever you are, whatever your skill (or lack of it) — how to turn the hundreds of quality parts into one of the world's most beautiful, most musical organs, worth up to twice the cost of that kit.

Five superb models with kit prices from $500 to around $2,000, each an authentic musical instrument actually superior to most you see in stores, easy for any musically minded adult to learn to play, yet completely satisfying for the accomplished professional. And there are accessories you can add any time after your organ is finished — life-like big auditorium reverboration, automatic rhythm, presets, chimes, and more.

Join the thousands of Schober Organ builders-owners who live in every state of the Union. Often starting without technical or music skills, they have the time of their lives — first assembling, then learning to play the modern King of Instruments through our superlative instructions and playing courses. Get the full story FREE by mailing the coupon TODAY for the big Schober color catalog, with all the fascinating details!

The Schober Organ Corp., Dept. RE-128
15 West 61st Street, New York, N.Y. 10023

Enclosed please find $1.00 for 12-inch P.A. record of Schober Organ music.

NAME
ADDRESS
CITY
STATE
ZIP

Circle 61 on reader service card

Now...the most enjoyable do-it-yourself project of your life—A Schober Electronic Organ!

You'll never reap greater reward, more fun and proud accomplishment, more benefit for the whole family, than by assembling your own Schober Electronic Organ.

You need no knowledge of electronics, woodwork or music. Schober's complete kits and crystal-clear instructions show you — whoever you are, whatever your skill (or lack of it) — how to turn the hundreds of quality parts into one of the world's most beautiful, most musical organs, worth up to twice the cost of that kit.

Five superb models with kit prices from $500 to around $2,000, each an authentic musical instrument actually superior to most you see in stores, easy for any musically minded adult to learn to play, yet completely satisfying for the accomplished professional. And there are accessories you can add any time after your organ is finished — life-like big auditorium reverboration, automatic rhythm, presets, chimes, and more.

Join the thousands of Schober Organ builders-owners who live in every state of the Union. Often starting without technical or music skills, they have the time of their lives — first assembling, then learning to play the modern King of Instruments through our superlative instructions and playing courses. Get the full story FREE by mailing the coupon TODAY for the big Schober color catalog, with all the fascinating details!

The Schober Organ Corp., Dept. RE-128
15 West 61st Street, New York, N.Y. 10023

Enclosed please find $1.00 for 12-inch P.A. record of Schober Organ music.

NAME
ADDRESS
CITY
STATE
ZIP

Circle 61 on reader service card

Now...the most enjoyable do-it-yourself project of your life—A Schober Electronic Organ!

You'll never reap greater reward, more fun and proud accomplishment, more benefit for the whole family, than by assembling your own Schober Electronic Organ.

You need no knowledge of electronics, woodwork or music. Schober's complete kits and crystal-clear instructions show you — whoever you are, whatever your skill (or lack of it) — how to turn the hundreds of quality parts into one of the world's most beautiful, most musical organs, worth up to twice the cost of that kit.

Five superb models with kit prices from $500 to around $2,000, each an authentic musical instrument actually superior to most you see in stores, easy for any musically minded adult to learn to play, yet completely satisfying for the accomplished professional. And there are accessories you can add any time after your organ is finished — life-like big auditorium reverboration, automatic rhythm, presets, chimes, and more.

Join the thousands of Schober Organ builders-owners who live in every state of the Union. Often starting without technical or music skills, they have the time of their lives — first assembling, then learning to play the modern King of Instruments through our superlative instructions and playing courses. Get the full story FREE by mailing the coupon TODAY for the big Schober color catalog, with all the fascinating details!

The Schober Organ Corp., Dept. RE-128
15 West 61st Street, New York, N.Y. 10023

Enclosed please find $1.00 for 12-inch P.A. record of Schober Organ music.

NAME
ADDRESS
CITY
STATE
ZIP

Circle 61 on reader service card
CREI—the only home-study college-level training

and now
Electronic circuit design—source of all new development in the application of electronics to new products and services. Without this skill, we would be unable to monitor the heartbeat of men in space. Without it, the computer revolution would never have occurred. And we would have yet to see our first TV show. Yet, only CREI teaches electronic circuit design at home.

ELECTRONIC CIRCUIT DESIGN
A key skill which paces our nation's progress in countless fields—from pollution control to satellite tracking to modern medicine to exploring the ocean's depths. And beyond. A skill which you must have to move to the top in advanced electronics.

CREI programs open up new worlds of opportunity for you.
In addition to electronic circuit design, CREI provides you with a full advanced electronics education in any of thirteen fields of specialization you choose. Communications, computers, space operations, television, nuclear power, industrial electronics—to mention just a few of the career fields for which CREI training is qualifying. With such preparation, you will have the background for a career which can take you to the frontiers of the nation’s most exciting new developments. And around the world.

This free book can change your life. Send for it.
If you are a high-school graduate (or equivalent) and have previous training or experience in electronics, then you are qualified to enroll in a CREI program to move you ahead in advanced electronics.

Send now for our full-color, eighty page book on careers in advanced electronics. In it, you will find full facts on the exciting kinds of work which CREI programs open up to you. And full facts on the comprehensive courses of instruction, the strong personal help, and the professional laboratory equipment which CREI makes available to you. All at a surprisingly low tuition cost.

And when you have it, talk with your employer about it. Tell him you're considering enrolling with CREI. He'll undoubtedly be happy to know you are planning to increase your value to him. And he may offer to pay all or part of your tuition cost. Hundreds of employers and government agencies do. Large and small. Including some of the giants in electronics. If they are willing to pay for CREI training for their employees, you know it must be good.

Send for Advanced Electronics today. You’ll be glad you did.

CREI Dept. E 1407-E
3939 Wisconsin Avenue
Washington, D.C. 20016

Rush me your FREE book describing my opportunities in advanced electronics. I am a high school graduate.

Name ___________________________ Age ________
Address __________________________
City ___________________ State _______ ZIP ________

If you have previous training in electronics, check here □

Employed by __________________________

Type of Present Work __________________________

Veterans and servicemen, check here for G. I. Bill information □
EQUIPMENT REPORT (continued from page 26)

driven from the cassette take-up spindle. Attached to the counter drive is a shutter, or segmented disc, similar to rotary shutters used on some movie projectors (Fig. 5). On one side of the shutter is a small lamp, on the other side is a photocell whose output feeds an amplifier/detector solenoid control.

As long as the shutter rotates, an alternating signal is generated in the photocell which is used to hold the solenoid. As soon as the shutter stops, such as when the tape reaches the end of the reel or jams, or if the tape sticks and starts to wrap around the capstan (a nettlesome problem with cassettes), there is no longer an ac output from the photocell and the solenoid control system causes the mechanism to stop and eject—in less than a half second.

A good idea of the performance built into the CD-1668 is illustrated by the performance measurements of a standard production model. Using a standard frequency response test tape with a 50 to 10-KHz range, the playback response was +0.2-2 dB. With the ANRS operative, the overall record-play frequency response was obtained with Maxell UD (C-900) tape was +2/3-3 dB from 35 to 15 KHz. Distortion at the indicator meter indicated 0-VU record level was 1.7% THD (total harmonic distortion) with 6-DB headroom in to 3/4 THD. The signal-to-noise ratio was 55 dB; at the noise frequencies—those that produce tape hiss—the signal-to-noise ratio was 59 dB.

With the ANRS operative and Norelco chromodioxide tape (C-900), the frequency response measured +0/3 dB from 35 to almost 15 KHz, but the headroom was reduced to 2 dB (the entire industry-wide chromodioxide equalization "mess" needs to be straightened out). The signal-to-noise ratio at the noise frequencies was 54 dB.

The recorder’s overall record-play wow and flutter was a surprising 0.09%—a value more typical to quality reel-to-reel recorders rather than cassette mechanisms. It is pure conjecture, but the low wow and flutter might be due to the optical-eject which keeps extraneous pressure from stretching the tape.

Even excluding the ANRS, the JVC CD-1668 cassette deck has several features which are forerunners of things to come in quality cassette equipment...
WINDSHIELD WIPER PAUSE CONTROL

A number of windshield wiper pause controls have been described in the press. Most consisted of a two- or three-transistor circuit with numerous associated components. Here is the diagram of a design that is simpler and less expensive than most. It uses the low-cost and versatile NE555 IC (by Signetics) as a free-running oscillator with its frequency adjustable from one cycle every three seconds to one cycle every 30 seconds.

R1 and C1 set the width of the negative-going pulse and thus the period of time that power is applied to the wiper motor. The positive-going pulse width is adjustable independent of the negative-going pulse by the combination of R1, R2, R3, and C1. This is the interval between active cycles.

The NE555 drives the relay directly and can handle up to 100 mA, thus making it possible to use almost any inexpensive 12-volt dc relay. The total cost for parts is under $5.00.—James Baumgardt

LINE OPERATE YOUR LED'S

Light emitting diodes (LED's) have become quite the "in" thing as indicators because of their low current drain and indefinite life. However it seems that when ever LED's are used in a circuit they are associated with a dc power supply of some sort. But haven't there been times when you would have liked to run them directly off the ac line? Well you now can and (continued on page 88)
with just two additional parts.

Get a silicon diode of 1/2 amp, 200-PIV or better and a 10K, 1-watt resistor. Connect them as shown to your LED and you are all set. If you use a larger LED than the one specified (a new budget priced unit from Radio Shack) and you want a little more brightness, decrease the value of the resistor. But don’t decrease it too much or you’ll burn out the LED! This arrangement has worked great for remote power indicators in industry, as pilot lights on home appliances, and indicators in commercial test equipment on the bench. Why not try it today? — Gary McClehan

POWER-ON INDICATOR SHOWS BATTERY CONDITION

A problem encountered when designing battery-powered equipment is how to include a power-on indicator. If the device is to operate from a small battery, an incandescent lamp would draw too much current. Here is a power-on indicator which draws little current. As a bonus it indicates battery condition.

As can be seen in the schematic, the indicator is a LED connected in series with a Zener diode and current-limiting resistor R1. The trick is to “starve” the LED by selecting a high value for R1. The diode won’t put out much light at this current (about 1 mA) but it does indicate that the equipment is on. The Zener diode lets the LED indicate battery condition. So long as the battery voltage is above the Zener-breakdown voltage, the LED will light. Should the battery weaken the Zener won’t breakdown and the LED will remain dark.

Some design hints: Select a low-power, good-quality Zener diode whose value is 1–2 volts below that of the minimum weak-battery voltage. If the fresh-battery voltage is 9 volts and the minimum is 8, then a 6.8-volt, 400-mW Zener would be used. To determine the value for R1, hook a variable-voltage power supply in place of the battery. Set the supply to deliver the fresh-battery voltage. Then select a value for R1 so that the LED draws about one mil. Then set the supply to the weak-battery voltage. Note that any voltage below this will cause the LED to go dark. It is best to use a clear-domed, high-efficiency LED for this application.

When the indicator is connected as shown the LED will light when the power switch is on. Should the LED remain dark it is an indication that the battery needs replacing. — Robert Liebman

COLLECTORS!

We’ve just added the 1927 Radio Encyclopedia to our growing library—

S. Gernsback’s 1927 RADIO ENCYCLOPEDIA is your technical book on wireless and early radio. Deluxe illustrated reprint of the original. 175 pages. $12.95 hard-cover. $9.95 soft-cover.

VINTAGE RADIO is the fascinating photo reference for collectors and historians. 1887-1929.263 pages, over 1,000 photos. $6.95 hard-cover. $4.95 soft-cover.

RADIO COLLECTOR’S GUIDE is the data book for collectors, 56,000 facts, 1921-1932. 264 pages. $3.95 soft-cover.

And now while they last—

Most-often-needed 1926-1950 Diagrams

The original Supreme Publications books. Schematics of over 3,000 radio models from 1926 thru 1950. Restore those old sets, or use your books for valuable historical information.

- 1926-1930 Volume 800 models, $7.00.
- 1940, 41, 42, 46, 48, 49, 50, $4.00 each.
- All eight volumes, special price $31.50.

Quantities of original books are limited. Order now and avoid a wait for reprints.

need belts?

We’ve thousands in stock

Ready for immediate shipment! Belts for over 1800 makes and models of tape recorders, projectors, dictating machines, video recorders . . . and our simplified cross reference system makes it easy for you to order. Drive tires, wheels, phono idlers also listed. On most items we can ship the same day. Call or write today for your free catalog/cross reference chart.

PROJECTOR-RECORDER BELT CORP.

315 Whitewater St., Whitewater, Wisconsin 53190 414/473-2151

Circle 68 on reader service card

Everything you wanted to know about CD Ignition Systems but didn’t know whom to ask.

Send for FREE Tiger booklet (20 pages) which answers all your questions.

Name ____________________________

Address __________________________

City _____________________________

State _______________________ Zip ______

CLIP OUT THIS AD AND SEND TO—

TRI-STAR CORP.

P. O. Box 1727, Dept. H

Grand Junction, Colo. 81501

Circle 69 on reader service card
NOW A PROFESSIONAL BURGLAR-FIRE ALARM SYSTEM YOU CAN INSTALL YOURSELF.

ONLY 139.95

Save hundreds of dollars in alarm installation and monthly service charges. The EICO SS-500 “install-it-yourself” burglar-fire alarm sys-

tem offers you the kind of professional protection you have been look-

ing for, at a price you can afford. The SS-500 has been designed on

the EICO “Expandability Concept” that enables you to “add-on” protec-
tion to meet your own special needs. Before you purchase any security

system, we suggest you read the EICO Security Handbook and see how

easy EICO makes it to “Do-it-Yourself.”

FREE EICO CATALOG/SPECIAL OFFER!

Security handbook (Reg. $2.95) only $1.50 with this ad. Includes a
catalog on EICO Security Systems, Test Instruments, Stereo, Hobby Kits
and name of nearest distributor. For catalog only, check reader service

card or send 50c for first class mail service.

EICO. 283 Malta Street, Brooklyn, N.Y. 11207

Circle 77 on reader service card

BUILD A $35 INFRARED VIEWING SYSTEM

It’s easy to build and literally makes it possible for you to see in the dark. A

great project for the experimenter.

SECURITY SYSTEM INSTALLERS—

A new job for the technician? Forest

Belt explores the job of the security sys-
tem installer. Discover if this is a field

worth getting into (it is). Learn what you

must know to enter this profitable field.

ABC’S OF PUBLIC ADDRESS

A short review of the basics that must be

remembered to set up a proper PA sys-
tem.

DESIGNING OUTPUT TRANSFORMERLESS OUTPUT CIRCUITS

How to design one that will be sure to

work. It’s a useful circuit, but must be

handled with care.

TUNNEL DIODE THEORY & CIRCUITS

A delightful article that does more than

just explain how and why tunnel diodes

work. It concludes by showing how to

assemble a wireless FM mike.

PLUS:

Technical Topics
Appliance Clinic
Jack Darr’s Service Clinic
R-E’s Transistor Replacement Guide

90
library or Electronic Design, 50 Essex St, Rochelle Park, N.J. 07662.

With 500 or so machine cycles available each second we can use rather sophisticated algorithms and still come up with an apparently "instant" answer to a tough problem. Minicomputers and regular computers use parallel computational systems with much faster machine cycle times of fractions of a microsecond. These are much more expensive and are not needed for one-at-a-time arithmetic operations.

The rest of our calculator chip takes care of the "housekeeping", cycling the microprogram in the proper order, taking care of constants and decimal points, accepting information into the keyboard register, routing the display to a BCD to seven segment converter and the proper memory in the stack and so on.

What's available?

There are dozens of different calculator chips available today, both as new and surplus items. Some of these are now as low as $5 each surplus, and quality new units in production quantities are pushing a $4 figure. A few of the more common calculator IC's are on page 41. A list of some of the manufacturers is shown below.

A Few Calculator IC Manufacturers

AMERICAN MICROSYSYEMS
3800 Homeslead Road
Santa Clara, California, 95051

CAL-TEX SEMICONDUCTOR INC
3090 Alfred Street
Santa Clara, California 95050

GENERAL INSTRUMENTS
600 West Johns Street
Hicksville, New York, 11802

INTEL CORPORATION
3065 Bowers Avenue
Santa Clara, California, 95051

MOS TECHNOLOGY
Valley Forge Center
Norristown, Penna., 19401

MOSTEK
1215 West Crosby Road
Carrollton, Texas, 75006

TEXAS INSTRUMENTS
Box 5012
Dallas, Texas, 75222

As with any IC, if you are building or experimenting with these, be sure to have all data sheets and applications notes on hand before you start, along with whatever other information you can possible get—and read everything carefully.

Broken down into its component parts, there's nothing really very fancy or exotic about a calculator—except, of course, for the incredible amount of engineering and expertise that goes into successful chip design. Calculator IC's are now cheap enough that you should be able to do much more with them than simple four functions arithmetic, particularly if you add your own external microprogramming, entering in parallel with the key commands. What applications can you think of?

R-E

UNDERSTANDING CALCULATOR IC'S
(continued from page 41)

WINEGARD AMPLIFIED PRODUCTS PROVEN IN OVER 1,000,000 INSTALLATIONS.

CASE IN POINT: WINEGARD DISTRIBUTION AMPLIFIERS.

For quality and dependability in distribution amplifiers, look to Winegard. You know they're good. Because our distribution amplifiers have specs you can count on and the best reliability in the industry today.

When you install an MATV system you want it to work right . . . and keep on working that way. You want a headend amplifier that won’t give you headaches. No matter what size systems you install Winegard offers the most trouble-free circuitry around . . . and at the most reasonable cost around.

On your next commercial system start out with a Winegard distribution amplifier. There’s a model just right for every size and type of installation. We invite comparison!

Best TV products for Best TV reception

Accuracy like a VTVM...

Convenience like a VOM...

NEW BATTERY-OPERATED FET SOLID-STATE VOLT-OHM METER

Easy-to-build KIT

$32.40 = 116K

Factory-Wired & Tested

$44.90 = 116W

Now you can get all the benefits of a VTVM (laboratory accuracy, stability and wide range) but with its drawbacks gone—no plugging into an AC outlet, no waiting for warm-up, no bulkiness. New Field Effect Transistor (FET) design makes possible low loading, instant-on battery operation and small size. Excellent for both bench and field work.

Compare these valuable features:

- High impedance low loading: 11 meg.
 ohms input (DC, 1 megohm on AC) ± 500-times more sensitive than a standard 20,000 ohms-per-volt VOM
- Wide-range versatility: 4-P-AC voltage range: 0-3.3, 0-12, 330, 1200V; 4 RMS AC voltage ranges: 0-1, 2, 12, 120, 1200V; 4 DC voltage ranges: 0-1, 2, 12, 120, 1200V; 4-Resistance ranges: 0-1K, 0-100K, 0-10 meg., 0-1000 meg.
- 408 ranges: 24 to ±50DB.

Circle 73 on reader service card

GIVE... so more will live...

HEART FUND

EMC

Electronic Measurements Corp.
625 Broadway, New York, N.Y. 10012

Send FREE catalog of complete EMC line and name of nearest distributor.

Name:

Address:

City:

State:

Zip:

91
A FULL RANGE, 5-FUNCTION
3 1/2 DIGIT MULTIMETER

$189.00

Data Precision's new Model 134 is the least expensive full function digital
multimeter you can buy

A real workhorse

Designed as the first real alternative to analog
meters, the Model 134 delivers equal precision at
lower prices. Measurements appear on a bright, 7-segment
graphic gaseous display, a bit easier to read and 3 1/2
digit wide.

And they go precisely. Measurements are
accurate to 0.1% of full scale. This means that what you'll
get from an analog meter. And a great deal easier to read.

Model 134 measures DC and AC volts, DC and
AC current and resistance through a total of 22 range
settings. No interpolations are necessary.

And the specs speak for themselves:

- DC volts: + - 2 1/2 digits
- AC volts: + - 2 1/2 digits
- DC milliamperes: 1 1/2 digits
- AC milliamperes: 1 1/2 digits
- DC millivolts: 1 1/2 digits
- AC millivolts: 1 1/2 digits
- Resistance: 1 1/2 digits

To get your hands on a 134, simply contact the
representative nearest you. Immediate delivery.

Data Precision
1120 South Taylor Road
Rancho Santa Margarita, Calif. 92688

Circle 74 on reader service card

FREE '74 CATALOG

Fast... Flameless
CONCENTRATED HEAT
up to 1000°F.

The Heat Gun of a Thousand Uses
A model for every need ranging from 150° to 1000°F.,
without an open flame. Safe and easy to operate—use
however concentrated heat is needed. Fingertip switch
permits operating at any heat right at desired
point. Temperature can be varied by air intake
adjustment. Also blows cool air when desired.

MEETS DOZENS OF NEEDS in laboratory and on production
lines... softens plastics... dries paint, glue or photo papers... thaws
... defrosts... heat seals... does blister packs... preheats for welding
or soldering... desoldering... excellent for softening, repairing and
retouching molded plastics... shrinks vinyl to fit upholstery.

Sturdy adjustable metal stand permits positioning
on bench or machine, on assembly lines, etc.

Circle 75 on reader service card

ELECTRONICS FOR MODERN COMMUNICATIONS by George J. Anger-
Hardcover. $15.95.

If you are seeking an amateur or FCC commercial license, this text
provides the latest information that you need to prepare for the license
examination. Chapters include transistors and other solid-state devices,
reflecting the latest FCC type questions. Sample questions follow most
chapters and have been compiled following the latest FCC Study Guide
Revisions. New circuits have been included wherever possible to show
the changing nature of electronic communications.

TRANSISTOR SPECIFICATIONS MANUAL, 6th Edition. By Howard W.
Sams Engineering Staff. Howard W. Sams & Co., Inc., 4300 W. 62 St.,
Indianapolis, Ind. 46268. 8 1/4 x 10 3/4 in, 160 pp. Softbound. $4.50.

This manual contains three main sections designed to provide a max-
imum of information about the transistor, specifications section, a lead
identification section, and an outlines section. It also includes a special
listing of specifications for rf power transistors. Using this manual you
should be able to determine the essential electrical and mechanical
specifications of more than 4000 transistors.

ELECTRONICS SHOP PRACTICES, EQUIPMENT, AND MATERIALS by
340 pp. $14.95

Any technician in training or a technician employed in the areas
involving assembly techniques, assemble line testing, quality control,
or tuning-calibration processes will find this book most useful. Demonstra-
tions and projects combined with more than 300 illustrations provide
unbelievable "hands-on" experience as well. Starting with safety rules,
basic tools and equipment, the text goes on to cover parts identification,
hardware and test equipment.

KITS & PLANS by Joseph Rosenbloom. Oliver Press, 1400 Ryan Creek
Road., Willits, California. 95490. 8 1/2 x 5 1/2 in. 274 pp. Softcover $3.95.

More and more people are building things for themselves these days.
As a result there are more and more kits and plans available. The problem
is how to find out who makes what kit or plan. This guide
provides the latest information that you need to prepare for the license
examination. Chapters include transistors and other solid-state devices,
reflecting the latest FCC type questions. Sample questions follow most
chapters and have been compiled following the latest FCC Study Guide
Revisions. New circuits have been included wherever possible to show
the changing nature of electronic communications.

VINTAGE RADIO, second edition, by Harold Greenwood, Revised, Edited
and Expanded by Morgan E. McMahon. Vintage Radio, Box 2045, Palos
Verdes Peninsula, Calif. 90274. 8 1/4 x 5 1/4 in. 264 pp. Softcover $4.95.
Hardcover $6.95.

A pictorial history of wireless and radio covering the period from 1887
1929. This is the story of one of mankind's great achievements: the
ability to talk across the miles to one person or to millions of people.
This authoritative collector's and historian's handbook contains photos
and information on more than 100 items. As you turn the pages you can
recapture the feel of pioneer days of wireless and radio. You will be
browsing through old-time ads, pictures and trivia.

FET CIRCUIT BOOK, G. C. Electronics Co., 400 South Wyman Street Rock-
ford, Ill. 61101. 5 1/2 x 8 1/2 in. 14 pp. Softcover 25c.

Provides the hobbyist and experimenter with a basic understanding of
how the FET works and a number of interesting circuits. Each of the nine
projects is complete with parts list and all other information needed to
duplicate the device.

SOLDERLESS IC PROTOTYPING TECHNIQUES, by Carl T. Helmers, Jr.
M.P. Publishing Co., P.O. Box 378, Belmont, Mass. 02178. 7 x 10 in. 78 pp.
Soft cover $4.95.

The techniques and methods described in this manual are meant to
inform the reader about methods of electronic prototype construction
and basic information is included on wire-wrapped interconnects, preparing
layouts, methods of building prototype boards and how to sys-
tematically wire projects.

DIGITAL HANDBOOK, G. C. Electronics Co., 400 South Wyman St., Rock-
ford, III. 61101. 5 1/2 x 8 1/2 in. 64 pp. Softcover 50c.

Basic fundamentals for the digital integrated circuit with charts,
schematics and eight easy to build projects for the hobbyist and exper-
imenter are featured. These projects include a digital dice game, digital
clock, digital burglar alarm and others. All are complete with parts lists
and construction details.
NEW invention, dynamic transistor tester. Simulation principle, identifies whether un-usable component is germanium or silicon, VHF, HF or LF, npn or pnp. Out and in-circuit good test. Kit 532-50: wired $29.50, information 92102, Littronix, 145a Church Street, Toronto, M5B1Y4, Canada.

BUSINESS OPPORTUNITIES

NEW! Complete! Hong Kong Manufacturer! Illustrated pages list over 5166 new, used, rare and unique items, with hundreds of items to choose from. Send $3.00. CARLTON, Box 1743, Ann Arbor, Mich. 48106

WANTED

QUICK cash for electronic equipment. All brands - brand new or reconditioned. Send list or picture. BARRY, 512 Broadway, New York, N.Y. 10012. 212-588-5600.

WANTED: Electro Voice 15TRX speaker. BARB McGAHA, 4 Craig Drive, Springfield, Ill. 62704

LINEARS

NE560 ... $2.00 74B $1.00
NE589 ... 1.50 CA3030 ... 0.75
NE561 ... 3.25 CA3040 ... 1.00
NE582 ... 3.25 CA3045 ... 1.00
NE562 ... 4.00 LM3050 ... 1.25
NE563 ... 4.00 LM3060 ... 1.25
NE555 1.00 LM3080 ... 2.00
74100 0.75 LM3107 ... 0.50
74150 0.75 LM3100 ... 0.55
74151 1.00 LM3102 ... 0.65
74155 1.50 LM3103 ... 0.75
74160 1.00 LH0210 ... 0.75
74114 0.75 LM5540 ... 0.50
74124 0.25 LM5580 ... 0.15
74115 0.25 LM5591 ... 0.15
74134 0.25 LM5593 ... 0.15
74135 0.25 LM5595... 0.15

SEND FOR FREE FLYER!

C.O.D. PHONE ORDERS ACCEPTED--NO MINIMUM

111 Ww new and fully-tested, plated with gold or solder. (Orders for 16 or more are shipped prepaid; smaller orders add $5.00 California restocking and add Sales Tax. Ships within 24 hours.) P.O. Box 47277

BABYLON ELECTRONICS

Circle 74 on reader service card

Circle 82 on reader service card

PLAN KITS

ELECTRONIC orgkits, keyboards and many components, independent and divider tone generators. All diode keying. IC circuitry. Supplement your Artisan Organ. 35c for catalog. DEVTRONIX ORGAN PRODUCTS, Dept. 8, 5872 Amapola Dr., San J0se, Calif. 95129

FREE catalog. Most unusual electronic kits available. Music accessories, surf, wind, synth, and more. PAIA Electronics, Box B14359, Oklahoma City, Ok 73114

CONVERT any television to sensitive, big-screen oscilloscope. Only minor changes required. No electronic experience necessary. Illustrated plans $2.00. SANDERS, Dept. A-25, Box 92102, Houston, Texas 77010
WHOLESALE, scanners, CB/SSB/AM, crystals, directories. Catalogue 25c. ELECTRONIX, Box 461R, Clearfield, Utah 84015.

RADIO & TV tubes 36c each. One year guaranteed. Plus many unusual electronic bargains. Free catalog. CB SOSELL, 4171-E University, San Diego, Calif. 92105.

SLA-37 segment LED readouts. $0.75

MINIATURE TRIM POTS. 5K, 10K, 20K, 25K, 50K, 100K. $0.50 ea. $3.00

MULTI-TURN TRIM POTS. Similar to Bourns 3010 style. 31/6" x 3/4" x 1/4", 50, 100, 500, 1000, 10,000 and 20,000 ohms. $1.50 ea. $3.00

PRINTED CIRCUIT BOARD. 41/2" x 63/4" double-sided fiber glass board, 1/16" thick, unetched. $0.60 ea. $1.50

NIXIE TUBES. Similar to Raytheon 8650 tubes, with ticket & data sheet. $2.25 $3.00

VERIPAX PC BOARD. This board is a 1/16" single sided paper epoxy board, 41/2" x 63/4" (standard veripax). DRILLED AND ETCHED which will hold up to 21 single 14 pin IC's or 8, 16 or 61/DIP IC's with bus. Self-supporting connections are also etched for 22 pin connector. $5.25

FLY 100 VISIBLE LED. $0.50

MC-10 HAM/AM, $0.30

MED-2070 ISO, $0.50

GREEN GAP-15/16 LED, $0.65

RED GAP-3/8 LED, $0.50

14 PIN DIP SOCKETS, $0.40

10 WATT ZENERS, 3.4 OHM 5V. $0.75 EA

3 WATT ZENERS, 3.95 OHM 12V. $0.30 EA

Silicon Power Rectifiers

PRV 1A 3A 12A 50A

100 .011 30 .60

200 .016 35 1.15

400 .020 50 1.40

600 .115 70 1.80

800 .180 90 2.20

1000 .250 110 2.60

In 418 price $14.00.

Terms: FOB Cambridge, Mass. Send check or Money Order. Include Postage Minimum Order $3.00

Send 20c for our Spring catalog featuring Transistors and Rectifiers, 225 Elm St., Cambridge, Mass.

SUPERSE! Build inexpensively, the most unusual upper end electronics kits using numerical readouts! Catalogue free! CBS, Box 1098, Greenbank, Va. 24944.

SEMICONDUCTOR and parts catalog. J. J. ELECTRONICS, Box 1437, Winnipeg, Manitoba, Canada.

MANUALS for Govt. surplus radios, test sets, scopes. List 50c (6 per). BOXES, 7218 Roane Drive, Washington, D. C. 20021.

1/2-WATT resistors all values 2 cents, minimum $2.00. ELECTRONIX, Box 1067, Southgate, Mich. 48195.

FREE catalog. IC's, PUT's, transducers, thermocouples, LED's, transistors, circuit boards, parts CHANEY'S, Box 15431, Lakewood, Colo. 80215.

LOW noise resistors - 1W, 5%, carbon film from 10 to 33M ohms for 3.5c each. Fifty of one value for $1.25. Specifications upon request. 75c postage and handling charge. Deduct 10% on orders over $50.00. COMPONENTS CENTER, Box 134, New York, N. Y. 10019.

DIGITAL clocks close out sale four digit LED readout wired case $34.75 each. ASTRO LABS, Box 824, Mesa, Arizona.

 Printed circuits made — hobby, prototype. P.C. TECHNOLOGY, Box 919, Cupertino, Calif. 95014.

JAPANESE transisors, wholesale prices; free catalog. WEST PACIFIC ELECTRONICS, Box 25837, W. Los Angeles, Calif. 90025.

FREE: C-Channel locator map for all hwy's of the U.S. Send 10c to cover postage. CLASSIC ENTERPRISE, 4069 E. Gage Ave., Bell, Calif. 90120.

SEMICONDUCTORS, components, unusual item prices. FREE: WANTED-LIST. P.O. Box 29C, SEABOARD INTERNATIONAL ELECTRONICS, Box 906, Clute, Tex. 77531.

DIGITAL electronics! Complete schematics, parts lists, theories—Discrete component digital, $10.00. Includes professional competence, hobby skills—Complete course in Digital Electronics, highly effective. 10.00. Free literature. DYNASOUND, Box 65R2, Wayland, Mass. 01778.

BURGLAR alarm system — do it yourself, installation instructions. 8.00. FREE: ELECTRONICS CORPORA TION, P.O. Box 1341, Kokomo, Ind. 46901.

BUILD tuner subber from junk TV. Plans $1. TIPS — Box 188 — Bruce, Miss. 38891.

ELECTRONIC ENGINEERING & INSTRUCTION

TV tuner repairs—Complete course details, 12 repair tricks in minutes. Free literature. BOX 2. $2 Refundable, FRANK BOCEK, Box 3236 (Enter prise), Redding, Calif. 96060.

DEGREE Program in Electronic Engineering. Our 25th Year! Free literature. COOK'S INSTITUTE, Dept. 14, Box 20345, Jackson, Miss. 36209.

MOVABLE CROBB HATCH FOR COLOR TV SET CONVERGENCE.

$18.00 POST PAID IN U.S.

THE GENERATOR IS A TV TRANSMITTER GENERATING ONE VERTICAL AND ONE HORIZONTAL LINE EACH MOVABLE OVER THE TV SCREEN OUTPUT CONNECTS DIRECTLY TO SET ANTENNA 3 1/2 X 6 X 2. IDEAL FOR CARRYING IN TOOL CADDY. KIT IS COMPLETE WITH ALL PARTS, INSTRUCTIONS AND CONNECTIONS.

PHOTOLUM CORPORATION BOX 138 NEW YORK N.Y. 10019

A NEW INSTRUMENT FOR YOUR SCOPE MULTITRACER

Use with your present Oscilloscope to save inspection time, locate failures, solve problems. Suitable for all types of conventional and digital scopes. Write for details—Inexpensive, rugged, compact. Unit also makes a good bench tool. PHOTOLUM CORPORATION, 1061 Main St., Box 138, New York, N.Y. 10019.

WRITE FOR CATALOG.

501 West 42nd Street, New York, N.Y. 10036

FOR COLOR TV SET CONVERGENCE.

$18.00 POST PAID IN U.S.

THE GENERATOR IS A TV TRANSMITTER GENERATING ONE VERTICAL AND ONE HORIZONTAL LINE EACH MOVABLE OVER THE TV SCREEN OUTPUT CONNECTS DIRECTLY TO SET ANTENNA 3 1/2 X 6 X 2. IDEAL FOR CARRYING IN TOOL CADDY. KIT IS COMPLETE WITH ALL PARTS, INSTRUCTIONS AND CONNECTIONS.

PHOTOLUM CORPORATION BOX 138 NEW YORK N.Y. 10019

A NEW INSTRUMENT FOR YOUR SCOPE MULTITRACER

Use with your present Oscilloscope to save inspection time, locate failures, solve problems. Suitable for all types of conventional and digital scopes. Write for details—Inexpensive, rugged, compact. Unit also makes a good bench tool. PHOTOLUM CORPORATION, 1061 Main St., Box 138, New York, N.Y. 10019.

WRITE FOR CATALOG.
DIGITAL INTEGRATED CIRCUITS

7400 25 74A7 1.45 74141 1.25
7401 25 74A8 1.50 74145 1.25
7402 25 74A9 1.50 74150 1.25
7403 25 74A1 1.50 74151 1.05
7404 25 74A2 1.50 74152 1.25
7405 27 74A3 1.50 74154 1.75
7406 55 74A4 1.45 74155 1.35
7407 53 74A5 1.45 74156 1.50
7408 29 74A6 1.45 74157 1.59
7409 29 74A7 1.45 74161 1.65
7410 25 74A8 1.45 74165 1.75
7411 35 74A9 1.55 74164 2.95
7412 55 74AA 1.75 74166 1.95
7413 50 74AB 1.75 74173 1.95
7414 25 74AC 1.75 74183 1.15
7415 25 74AD 1.75 74186 1.95
7416 35 74AE 1.85 74173 1.95
7417 25 74AF 1.85 74176 1.95
7422 32 74AG 1.85 74172 3.25
7423 37 74AH 1.85 74180 1.35
7425 39 74AI 1.40 74181 4.25
7427 39 74AJ 1.40 74190 5.05
7429 35 74AK 1.40 74191 5.05
7431 55 74AL 1.65 74193 1.65
7432 55 74AM 1.65 74195 1.25
7441 1.25 74AN 1.75 74195 1.15
7443 1.25 74AO 1.75 74197 1.15
7444 1.30 74AP 1.75 74198 2.50
7445 1.45 74AQ 1.75 74199 2.50
7446 1.45 74AR 1.75 74199 2.50

LOW POWER TTL

74L00 .40 74L31 .40 74L90 1.75
74L02 .40 74L33 .40 74L91 1.50
74L03 .40 74L37 .60 74L93 1.75
74L04 .60 74L37 .60 74L93 1.75
74L06 .60 74L37 .60 74L94 1.25
74L10 .40 74L37 .60 74L95 1.25
74L20 .40 74L37 .60 74L95 2.95
74L42 .75 74L43 1.25
74L44 .45 74L46 1.25

HIGHT SPEED TTL

74H00 .40 74H31 1.7 74H95 1.45
74H01 .37 74H22 1.7 74H45 1.45
74H04 .37 74H22 1.7 74H46 1.45
74H06 .37 74H22 1.7 74H46 1.45
74H10 .37 74H22 1.7 74H46 1.45
74H20 .37 74H22 1.7 74H46 1.45
74H10 .37 74H22 1.7 74H46 1.45
74H20 .37 74H22 1.7 74H46 1.45

8000 SERIES TTL

8091 .69 8214 1.95 8810 95
8092 .69 8220 1.75 8910 95
8093 .69 8230 2.95 8912 1.25
8094 .69 8235 2.55 8912 1.25
8095 .55 8309 1.05 8830 2.95
8121 .05 8312 1.05 8831 2.95
8122 .05 8315 1.45 8836 2.95
8123 .20 8511 1.95 8830 2.50
8200 .29 8522 2.95
8210 .39 8554 2.45

CMOS

74C00 .85 74C24 1.50 74C162 3.25
74C02 .85 74C26 1.70 74C163 3.55
74C04 .95 74C107 1.50 74C164 3.50
74C06 .95 74C151 2.90 74C173 2.90
74C08 .95 74C154 2.50 74C175 2.90
74C20 .85 74C157 2.25 74C195 3.00
74C22 2.15 74C160 3.30 80CC197 3.10
74C23 1.70 74C161 3.25

4000 SERIES RCA-EQUIVALENT

CD4001 .65 74D013 1.50 74D025 6.55
CD4002 .65 74D017 0.50 74D037 3.15
CD4009 1.00 74D017 0.95 74D030 6.55
CD4010 .65 74D019 1.50 74D035 2.85
CD4011 .65 74D022 1.75
CD4012 .65 74D023 6.55

MEMORIES

1101 256 bit RAM MOS 2.50
1102 432 bit RAM MOS 7.95
2560 1024 bit RAM Low Power 7.95
7499 64 bit RAM TTL 3.25
8223 Programmable ROM 6.95

INTERNATIONAL ELECTRONICS UNLIMITED
P.O. BOX 1708 MONTEREY CALIF. 93949 USA

ON ORDERS OVER $25.00 DEDUCT 10%
All items are new, unused surplus parts—tested functional. Satisfaction is guaranteed. Shipping will be made via first class mail — postage paid — in U.S., Canada and Mexico within three days from receipt of order. Minimum order $5.00. California residents add sales tax. 30 days COD. 90 days 10% O/N. No C.O.D. on sales cards. Master Charge and Bank American Card Accepted. By Mail or Phone.

INTERNATIONAL ELECTRONICS UNLIMITED
INTERNATIONAL ELECTRONICS UNLIMITED
P.O. BOX 1708 MONTEREY CALIF. 93949 USA

Circle 61 on reader service card
WIRE-GRABBER

To avoid the hazard and mess caused by flying component-led trimmings, add a "wire grabber" to your diagonal cutters. First, thoroughly clean the inside of the jaws with a degreasing solvent. Then fill the hollow of the jaws with silicone rubber sealer (GE, Dow-Corning, etc.) and slip rubber bands over the handle to hold the jaws closed. Let the sealer cure over night, then slit the seal with a razor blade by running the blade between the cutting edges. — Carl B. Van Wanner

WE WANT TO BUY

...your used FM General Electric, R.C.A. and Motorola 2-way radios, base stations and remote units.

CALL US TODAY!

GREGORY ELECTRONICS
The FM Used Equipment People.
Send for New Catalog

MOTOROLA D43GV-3100, 150 to 170 MHz, 6/12 volt, 30 watts, front mount with "private line", fully narrow band $88

GENERAL ELECTRIC MT42, 450-470 MHz, 12 volt, 15 watts, transistor power supply. In 17" case, multi-freq., deck, wide band, keys, ovens, w/accessories $88

GREGORY ELECTRONICS CORP.
251 Rt. 46, Saddle Brook, N. J. 07662
Phone: (201) 489-9393

Circle #4 on reader service card
GIANT SALE ON LED'S

LIGHT EMITTING DIODE GaAs INDICATORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Qty</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1V2</td>
<td>100</td>
<td>$1.00</td>
</tr>
<tr>
<td>M1V3</td>
<td>100</td>
<td>$1.00</td>
</tr>
<tr>
<td>M1V4</td>
<td>100</td>
<td>$1.00</td>
</tr>
<tr>
<td>M1V5</td>
<td>100</td>
<td>$1.00</td>
</tr>
</tbody>
</table>

REFLECTIVE BAR TYPES

<table>
<thead>
<tr>
<th>Type</th>
<th>Qty</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>707</td>
<td>10</td>
<td>$1.00</td>
</tr>
<tr>
<td>708</td>
<td>10</td>
<td>$1.00</td>
</tr>
<tr>
<td>710</td>
<td>10</td>
<td>$1.00</td>
</tr>
</tbody>
</table>

GIANT SALE ON 3-DIGIT READOUTS $2.50 TO $4.99

LOWEST PRICES ON NATIONAL "CALCULATOR CHIPS"

LOWEST PRICES ANY 9 DIGITS FOR $5

LEAD MITY "DCM'S" $9.99

IT'S NEW! THE 9 DIGIT ANTIX CALCULATOR ** Only $9.95 ** 7 SEGMENT READOUT

POLY PAKS...

POLY PAKS 1st in Opto & Calculator Components!
ANOTHER HOT AUTO-TRANSFORMER

G.E. 9T56Y8831, rated at 2.09 KVA. 7 taps, 14, 23.6, 105, 110, 115, 120, and 125 volts. Input voltage any voltage from 106 to 125 volts. Output voltage any of the tap voltages above. Currents in excess of 15 amperes per tap, ideal for raising or lowering line voltages, and getting 14 or 235 volts at high current. Most other voltage combinations possible, we supply data sheet showing many voltages possible with this transformer. In original factory cartons. Weight 12 lbs. ea.

STOCK NO. J9868 $10.00 ea 2/19.00

DUAL VOLTAGE, HIGH CURRENT VARIABLE POWER SUPPLY KIT

We supply the following parts, to make a dual D.C. power supply with the following ratings: 0 to 40 volts, 20 amp, 5.0 volts, and 12 volts D.C. at 5.0 Amps. Switch, line cord, pilot light, transformer, variable autotransformer, 2 bridge rectifiers, 2 high capacity electrolytic capacitors. (Meters and cabinet not supplied.)

STOCK NO. J5166 Parts Kit $22.50, 2/39.00

TUNG-SOL DIGIVAC FLUORESCENT READOUT TUBE

Tung-Sol DTI7048 7 segment fluorescent 9 pin miniature readout tube. Character size .360x.570, Height 1.4", Fill volts.16 AC or DC, Segment voltage 12 to 50 volts, 25 volts typical. Electrically identical to G.E. Y4076 & Y4976. 1937, Readout color is green, but can be filtered to any color. We supply a socket for each tube, and many pages of application data.

STOCK NO. F5140 $2.65 ea 2/5.00 6/14.00

Include sufficient postage. Excess refunded. Send for new catalog No. 11, just out. MINIMUM ORDER $5.00

DELTA ELECTRONICS CO.

BOX 1, LYNN, MASSACHUSETTS 01903

Phone (617) 388-4705

Circle 80 on reader service card

ADVERTISING INDEX

RADIO-ELECTRONICS does not assume responsibility for any errors which may appear in the index below.

READER SERVICE CARD NO. PAGE
66 Allison Automotive ... 81
76 B & A. & Division of Dynacorp Corp ... 26, 28
78 Brooks Radio & TV Corp ... 89
79 Castle TV Turner Service, Inc ... Cover IV
81 Chellinck Inc ... 79
88 Continental Specialties Corp ... 87
88 C.R. Cleveland Institute of Electronics ... 16, 21
88 C.R. Cleveland Institute of Electronics ... 87
91 D.C. Electronics Inc ... 80
92 Data Precision Corp ... 92
93 Delta Products Corp ... 53
94 Digital Concepts ... 76
95 E.I. du Pont de Nemours & Co ... 70
96 Edie Electronics ... 76
97 Edie Electronics ... 76
97 Ebro Electric Instrument Co ... 86
97 Ebro Electric Instrument Co ... 90
97 EMC Medical Measurement Corp ... 91
97 E.S. Enterprises ... 80
98 Emerald Radio Supply Co ... 80
98 Grammar School of Electronics ... 77
98 GTE Sylvania Electronic Components ... 7
99 Health Care ... 24-25
99 Ideal Home Study Institute ... 73
99 International Components Corp ... 8
99 International Crystal Mfg. Co ... 14
99 Jensen Tool & Alloy ... 77
99 Johnstom Research & Mfg. Co ... 87
99 Jewelry & Tool ... 71
99 METS Micro-Instrumention Telemetry Systems, Inc ... 76
99 Milwaukee Lock & Mfg. Co ... 92
99 National Camera Co ... 73
99 National Technical Schools ... 44-47
99 NCL Training ... 8-11
99 PAPA Electronics ... 81
99 Projector Recorder, Inc ... 81
100 PTS Electronics ... Cover II
100 Quinteto Co ... 87
100 RCA Electronic Components ... Cover III
100 Sams & Co ... Howard W ... 1.15
100 Scientific Organ ... 81
100 Smithbridge Technical Products ... 81
100 Sprague Products Corp ... 27
100 Technical, Technical School ... 64-67
100 Tele-Tech, Inc ... 7
100 Telematic ... 70
100 Telco Division of C.H. Mitchell ... 86
100 Telco Division of C.H. Mitchell ... 86
100 Time Service Corp ... 85
100 TV Tech Specials ... 86
100 Vintage Radio ... 88
100 Wohl Clipper Corp ... 75
100 Wohl X-Factor Electronics Division ... 22-24
100 Winegard Co ... 91

MARKET CENTER

79 ATC Research Corp ... 98
79 Babylion Electronics ... 92
80 Bell & Howell Schools ... 93
80 Beta ... 92
80 Continental Products ... 98
80 Cornell Electronics ... 98
80 Delta Electronics ... 98
80 Gregory Electronics Corp ... 98
80 International Electronics Unlimited ... 95
80 JVA Associates ... 95
80 Lakeside Industries ... 95
80 Lemko Electronics ... 92
80 Lemko Electronics ... 92
80 Logic Newsletter ... 94
80 Meito Electronics John Jr ... 93
80 Poliscope ... 93
80 Polytek ... 97-99
80 Solid State Sales ... 94
$9.99
AMPEREX

$12.50
10-WATT STEREO AMP

$39.95
20-WATT STEEREO AM-FM-MULTIPLEx

POLY PAKS "BLUE RIBBON" POLICY

POLY PAKS SMASHES IC PRICES

I.C.'S FOR EXPERIMENTERS

INTEGRATED CIRCUIT SOCKETS

POLY PAKS

P.O. BOX 8429, LYNNFIELD, MASS. 01940
LIVE IN THE WORLD OF TOMORROW...TODAY!

A BETTER LIFE STARTS HERE

NEW! KIRLIAN PHOTOGRAPHY KIT!
Experiment in the fascinating new field of "Kirlian" electro-photography—images obtained on film without camera or lens by direct recording of electric charge transmitted by animate & inanimate objects. Each "aura" differs from another—animate aura said to change corresponding to physical changes. $50 Kit gives everything needed except film including portable darkroom, double transformer isolated from power source; complete instructions.

Stock No. 71.938EH $49.95 Ppd.

KNOW YOUR ALPHA FROM THETA!
For greater relaxation, concentration, listen to your Alpha-Theta brainwaves. Ultra-sensitive electrode headband slips on/off in seconds—eliminates need for messy creams, etc. Attch'd to amplifier, filters brainwaves, signals beep for ea. Alpha or Theta wave passed. Monitoring button simulates Alpha sound audio & visual (L.E.D.) feedback. Reliable, easy-to-use unit—comparable to costlier models. Completely safe. Comprehensive instr. Kit.

Low cost "starter" unit

Stock No. 71.996EH $49.95 Ppd!

3-CHANNEL COLOR ORGAN KIT
Easy to build low-cost kit needs no technical knowledge. Complete unit has 3 bands of audio frequencies to modulate 3 independent strings of colored lamps (i.e. "low"—reds, "middles"—greens, "highs"—blues. Just connect hi-fi, radio, power lamp etc. & plug ea. lamp string into own channel (max. 300V ea.). Kit features 3 mean indicators, color intensity controls, controlled undesired S.O.R. circuits; isolation transformer; custom plastic housing; instr.

Stock No. 41.831EH $17.50 Ppd.

MAIL COUPON FOR GIANT FREE CATALOG!

180 PAGES • MORE THAN 4,500 UNUSUAL BARGAINS!

Complete 74 Catalog. Packed with huge selection of telescopes, microscopes, binoculars, magnets, magnifiers, prisms, photo components, ecology and Unique Lighting items, parts, kits, accessories—many hard-to-get surplus bargains. 100's of charts, illustrations. For hobbists, experimenters, schools, industry.

EDMUND SCIENTIFIC CO.
300 Edscorp Building, Barrington, N.J. 08007

Please rush Free Giant Catalog "EH"

Name
Address
City
State ZIP

COMPLETE & MAIL WITH CHECK OR M.O.

EDMUND SCIENTIFIC CO.

How Many Stock No. Description Price Each Total

Please send □ GIANT FREE CATALOG "EH" □ MERCHANDISE TOTAL $ ADD HANDLING CHARGE-$1.00 ON ORDERS UNDER $5.00; 50c ON ORDERS OVER $5.00 TOTAL $ I enclose □ check □ money order for $ NAME
Address
City STATE ZIP

30 DAY MONEY-BACK GUARANTEE
YOU MUST BE SATISFIED OR RETURN ANY PURCHASE IN 30 DAYS FOR FULL REFUND

Circle 76 on reader service card
RCA introduces the “easy way” to buy test equipment.

RCA's new Easy Payment Plan makes it possible for you to own . . . immediately, any of the electronic instruments shown in the table below for just a small down payment and only four additional easy payments.

No interest . . . no special charges to worry about. Just meet your local participating Distributor’s credit criteria.

So check off the instruments you need and visit your nearest participating RCA Electronic Instruments Distributor. Or write to RCA Electronic Instruments, 415 S. Fifth St., Harrison, N.J. 07029. A distributor will contact you. He'll show you the quick and easy way to own the best in RCA test equipment.

But hurry. This great offer ends on July 31, 1974.

Model WO-33B
New “super” portable 3” Oscilloscope
$229.00 $71.00 Down

Model WO-505A
DC to 10 MHz 5” Oscilloscope
$329.00 $101.00 Down

Model WV-98C
Senior VoltOhmyst®
$99.95 $30.00 Down

Model WV-532A
Relay-protected VOM
$99.95 $30.00 Down

Model WR-514A
TV Sweep Channelyst
$380.00 $114.00 Down

Model WR-538A
Super Chro-Bar Generator
$129.95 $39.00 Down

Model WT-524A
Dynamic Transistor/FET Tester
$159.00 $47.00 Down

Model WO-535A
Triggered sweep DC to 10 MHz 5” Oscilloscope
$349.00 $104.00 Down

Model WV-510A
Master VoltOhmyst®
$135.00 $40.00 Down

Model WV-500B
Portable Solid-State VoltOhmyst®
$99.95 $30.00 Down

Model WA-504B/44D
Audio Sine/Square-wave Generator
$109.50 $36.00 Down

Model WR-515A
Master Chro-Bar Generator
$189.00 $56.00 Down

Model WT-333A
Picture Tube Tester/Rejuvenator with “SIMUL-TEST”
$189.00 $56.00 Down

Model WP-702A
Dual Output DC Power Supply
$99.00 $30.00 Down

Specialists demand the best tools of their trade.

RCA Electronic Instruments

Circle 77 on reader service card
A Giant ... Steps Forward!

.... a truly fantastic, BRAND NEW, TV Service Instrument

More than two years in development.
Modular microcircuit construction.
Masterpiece of miniaturization.

MASTER SUBBER™
MARK V

The GIANT in a tiny package

MASTER SORBBER™
MARK V

Designed for servicing the ENTIRE signal circuit system of any Color or Black & White Television receiver ... by signal substitution!

Substitutes the following signal stages:
- VHF Tuner.
- Each video i.f. stage.
- Video detector stage.
- Video amplifier stage.
- Sound detector stage.
- Audio amplifier stage.

Provides tests for:
- UHF tuner.
- Antenna system.
- AGC system.

Use on the bench or in the home. Equipped with wall plug-in transformer for 120-vac line, instrument automatically changes over to internal battery power when transformer is disconnected.

Inbuilt monopole antenna allows use without connection of outside antenna in prime signal areas.

Inbuilt monitor loudspeaker with separate level control.

Video carrier level meter may be calibrated against Master Gain Control for the area in which the instrument is used, to afford true field strength measurements.

Lightweight ... and measures a mere 6.5"x6.5"x3.25" exclusive of knobs, handle and antenna.

Complete with connecting cables and instructions.

You get all this for $169.95 ... at your stocking distributor.

... or write for more details and complete specifications.

CASTLE TV TUNER SERVICE, INC.

5715 N. Western Ave., Chicago, Illinois 60645 • Phone: (312) - 561-6354

In Canada: Len Finkler Ltd., Ontario

Circle 78 on reader service card
BUILD THIS GUITAR PREAMP
Get Unique Sound Effects

VIDEOTAPE-VIDEODISC
Who's Doing What

NEWEST CD-4 DECODER
IC's Make It Work

IC CHARACTER GENERATORS
See How They Work

NEW SYNTHESIZER MODULE
Sine-Wave Converter