PTS ELECTRONICS
Precision Tuner Service

OREGON:
PTS ELECTRONICS, INC
5200 N.E. SANDY BLVD
PORTLAND, OREGON 97213
TEL. 503.282.9636

COLORADO:
PTS ELECTRONICS, INC
4958 ALLISON ST.
ARVADA COLO. 80001
TEL 303.423.7080

CALIFORNIA-NORTH:
PTS ELECTRONICS, INC
4611 AUBURN BLVD
SACRAMENTO, CALIF. 95841
TEL. 916.482.9244

CALIFORNIA-SOUTH:
PTS ELECTRONICS, INC
5111 UNIVERSITY AVE
SAN DIEGO, CALIF. 92105
TEL 714.280.7070

OKLAHOMA:
PTS ELECTRONICS, INC
3007 N. MAY
OKLAHOMA CITY, OKLA. 73106
TEL 405.947.2013

KANSAS:
PTS ELECTRONICS, INC
3136 MERRIAM LANE
KANSAS CITY, KANSAS 66202
TEL 913.332.1122

MINNESOTA:
PTS ELECTRONICS, INC
815 N. LAKESIDE
MINNEAPOLIS, MINN. 55408
TEL 612.824.2333

OHIO:
PTS ELECTRONICS, INC
5609 STATE RD
CLEVELAND, OHIO 44134
TEL 216.815.4480

NEW YORK:
PTS ELECTRONICS, INC
993 ST. ANDREWS ST
BUFFALO, N.Y. 14212
TEL. 716.891.6136

MASSACHUSETTS:
PTS ELECTRONICS, INC
191 CHESTNUT ST
SPRINGFIELD, MASS. 01103
TEL 413.734.2737

NEW YORK CITY-N.JERSEY:
PTS ELECTRONICS, INC
150 MARKET ST.
E. PATerson, N. J. 07407
TEL 201.791.6380

PENNSYLVANIA-EAST:
PTS ELECTRONICS, INC
1921 S. 70TH ST
PHILADELPHIA, PA. 19142
TEL 215.724.0999

MARYLAND:
PTS ELECTRONICS, INC
1105 SPRING ST
SILVER SPRING, MD. 20910
TEL 301.565.0225

PENNSYLVANIA-WEST:
PTS ELECTRONICS, INC
257 RIVERVIEW AVE
PITTSBURGH, PA. 15202
TEL 412.761.7648

FLORIDA:
PTS ELECTRONICS, INC
1914 WYNNEWOOD DR
JACKSONVILLE, FLA. 32210
TEL 904.389.9912

9.95.......... VHF-UHF-FM
16.95.......... UV-COMB.

PTS will repair any tuner—no matter how old or new—black & white or color—transistor or tubes—varactor or detent UHF—8-hour service is a must!

PTS-NUMBER ONE

8 hr Service
1 YEAR WARRANTY

12.50...... IF-SUBCHASSIS

PTS is the only tuner service to publish an 80-page Tuner Replacement Guide and Parts catalog—and sell you any or all parts (3rd edition of top information available for one dollar)

PARTS

AND STILL TRYING HARDER!

(NEG A FRANCHISE COMPANY)

Circle 1 on reader service card
Best. Best. Best.

Permit us this momentary bit of self-indulgence, because our intentions are pure: to assist you in choosing the best phono cartridge for your hi-fi system, within the practical limitations of your audio budget. To begin, if you feel uncomfortable with anything less than state-of-the-art playback perfection, we heartily recommend the Shure V-15 Type III, a cartridge of such flawless performance it is the perfect companion to the finest turntables and tone arms available today — and those coming tomorrow. At a more moderate level of performance and price, we suggest the Shure M91ED, a superb performer second in trackability only to the Type III. Finally, for optimum performance under a budget austerity program, the yeoman Shure M44E is for you. All in all, these are three great ways to enjoy music with the kind of system you have decided is best for you.

Shure Brothers Inc.
222 Hartrey Ave., Evanston, Ill. 60204
In Canada: A. C. Simmonds & Sons Ltd.

Circle 2 on reader service card
Here's one book you can really tell by its cover.

We don't have to waste time telling you about our new integrated circuit replacement guide. Just read the index on the cover. If that doesn't convince you, nothing will.

Available from your local Sylvania distributor.

Sylvania Electronic Components, 100 First Ave., Waltham, Mass. 02154
SOLID-STATE ELECTRONICS

53 Liquid Crystal Digital Clock In A Kit
$89.95 kit you turn into a CMOS IC battery-powered clock with a liquid-crystal display.

58 Electronic Casino
Part II: Here are the final two games that complete your private gaming casino. by Walter Scott

BUILD ONE OF THESE

33 Electronic Security System Protects Your Home
Easy-to-make system safeguards against unwanted intruders. by Michael S. Robbins

56 IR Finder For Your Pocket
Infrared detector you can hold in the palm of your hand. by Forrest M. Mims

HI-FI AUDIO STEREO

50 Here Comes The Femtowatt
A preview of a new proposed FM tuner specification. by Len Feldman

100TH ANNIVERSARY

46 Guglielmo Marconi
100 years ago, this famous radio pioneer was born. Here's a brief look at his remarkable contributions. by Stanley Leinwoll

GENERAL ELECTRONICS

4 Looking Ahead
Tomorrow's news today. by David Lachenbruch

22 Appliance Clinic
Nicad batteries. by Jack Darr

43 All About Transformers
How they work, what they do, and how they are used. by Fari Jacob Waters

TELEVISION

16 Equipment Report
TeleMatic KC-270 Cryo-Mate

25 Service Clinic
Focus facts and fallacies. by Jack Darr

26 Reader Questions
R-E's Service Editor solves reader problems.

36 CCTV On The Job
Case history applications of closed-circuit TV in bank security, police work, and department store protection. by Robert S. Haines

64 Step-By-Step Troubleshooting Charts
Color TV and your scope. by Stan Prentiss

DEPARTMENTS

102 Advertising Index 79 New Literature
24 Letters 76 New Products
6 New & Timely 82 Next Month
105 Reader Service Card

looking ahead

Domestic satellite

The United States' first "domestic satellite" communications system is now in operation — but the satellite itself is Canadian. RCA has inaugurated the 'Satcom' system, linking the East and West Coasts and Alaska. For its initial phase, RCA has leased two rf-channels to Canada's Anik-2 domestic satellite, sending and receiving via its own earth stations in New York, San Francisco, Juneau and Anchorage. Although some network television programs have already been relayed to Alaska via the satellite, it's expected that the initial service will be primarily devoted to public telephone communications, data links and private-line telephone. Some time in 1976, the Satcom system is scheduled to have three of its own satellites and additional earth stations near Atlanta, Chicago, Dallas, Denver, Los Angeles, Seattle and Washington, as well as Valdez, Prudhoe Bay, Nome and Bethel, Alaska.

By leasing channels from Canada's satellite, RCA got the jump on Western Union, which plans to inaugurate domestic service using its own satellites this summer. Both systems, as well as others planned for the future, will offer all types of electronic communications services, including network television relay, as an alternative to current land-line links.

Video outlook dim

That gee-whiz product of the future, the low-cost home videoplayer, now seems likely to remain a product of the future at least through the end of this year, despite numerous false starts in the last few years. The energy crisis, parts and materials shortages, unexpected technical bugs and marketing timidity appear to have pushed the mass-market videoplayer into next year at least. This wonder product has been "imminent" for at least the last five years, and, except for its appeal to those consumers well heeled enough to pay $1,500 or $2,000, the video recorder and player will probably continue to be a commercial-industrial-education market item into 1975.

The only 1972-1973 venture into the consumer market, Cartridge Television Inc.'s home videotape system, bit the dust last year in a bankruptcy proceeding. RCA's MagTape SelectaVision home VTR deck, originally scheduled for introduction in late 1973, has undergone a long series of delays as a result of supply problems, design modifications and other vexations, and is now tentatively scheduled for "test marketing" next December, with no firm decision as to whether it actually will be offered to the mass consumer market at all.

The videoplayer which seemed most likely to succeed in 1974 — the TeDu videodisc system developed by Germany's Telefunken and Britain's Decca — now is also back on the drawing board. Although mass marketing in Germany had been announced last fall and deliveries to consumers had been scheduled to start at the first of this year, Telefunken was forced to stop production after mechanical problems were discovered. Telefunken is still talking about getting its system on the market around midyear, but there is strong evidence that it may decide to hold off for the rest of the year until a strong library of prerecorded videodiscs can be built up.

Japan, which usually is in the forefront of consumer electronics developments, has been playing the "home video revolution" real cool. Sanyo Corporation, the TeD hardware licensee for Japan, still maintains its marketing target is "late 1974" — but concedes that slippage (or a complete review of the whole situation) is possible. Other Japanese manufacturers — Japan Victor, Sony, Panasonic — are already offering home color VTR's through department stores in their home market. These, however, are actually standard closed-circuit videotape machines in consumer dress, and they're priced at around $1,400 for a deck attachment, or $2,200 to $2,500 for a console version including a color set — far above any mass-market price. And these recorders can't be expected to come down in price in their present form.

Materials and power shortages have sharply reduced the incentive for manufacturers to offer innovative products on the consumer market. "Look at it this way," said one manufacturer. "We know there's a market for color TV sets and stereo. A home videodisc or videotape system is an unknown quantity. OK, so we've a limited quantity of plastic or semiconductors or something else that could be used in either product. We're going to play it safe and put it in the product we know we can sell."

TV set safety

How safe are television receivers? The question is under investigation again — this time by the government's new Consumer Product Safety Commission. A preliminary report from the Commission's field offices, involving 42 counties, unearthed 916 fires in the 12 months ended Aug. 31, 1973 which appear to have been caused by TV sets. Another report by the Commission, based on consumer complaints, hospital records and newspaper clippings, analyzes accidents involving 51 TV sets, almost all of them color, in which it is stated that 23 people were killed and 51 injured. Most of the incidents were the result of fires, but five involved electric shocks, one an "explosion."

In other data released by CPSC, the National Electronic Injury Surveillance System is quoted as listing 857 injuries related to television in the year to last August 31. Of these, six involved fires, five electric shocks; the remainder seemed to be the result of failing TV sets, injuries received by consumers trying to lift heavy sets, and so forth.

Philco name sold

One of the oldest brand names in consumer electronics — Philco — is being sold for the second time. Founded in 1892 as a producer of batteries, Philco made its first radio in 1928 and was sold to Ford Motor Co. in 1961. At press time, Ford had agreed to sell U.S. rights to the Philco name, as well as its American sales organization, to White Consolidated Industries of Cleveland. The current Philco-Ford organization plans to continue domestic manufacture and sale of car radios and other automotive products, and will sell color TV sets to White, which will market them. White is scheduled to take over the Philco-Ford plants in Taiwan (Formosa) and in Watontown, Pa. White manufactures machine tools as well as Kelvinator, Gibson and Hamilton home appliances. Philco's Latin American subsidiaries will continue to be owned and operated by Ford, as will its aerospace and communications operations.

by DAVID LACHENBRUCH CONTRIBUTING EDITOR
Take a leaf from the Mallory Money Tree and save on famous Mallobins.

Our Mallobin benchtop organizers are worth many times their modest cost in keeping electronic components neatly sorted, labeled, protected and ready for use. Now, you can save on buying them, too. For instance, this PTC semiconductor Mallobin organizer can be purchased at a special discount at your Mallory Distributor. Just present the Mallory Money Tree coupon below.

MALLORY DISTRIBUTOR PRODUCTS COMPANY
a division of P. R. MALLORY & CO., INC.
Box 1284, Indianapolis, Indiana 46206; Telephone: 317-636-5353

Money Tree Coupon
This coupon valid through Sept. 1, 1974. Only one coupon valid on each purchase. This coupon not valid where prohibited or taxed by law. Coupon does not apply to sales tax, if applicable.

TO MALLORY DISTRIBUTOR
This coupon redeemable for $1.00 credit towards the purchase of any Mallory products or $1.00 in cash provided it is tendered to Mallory Distributor Products Company, a division of P. R. Mallory & Company Inc., Indianapolis, Indiana prior to Oct. 1, 1974. Invoices showing purchase of Mallobin organizers sufficient to cover coupon must be shown on request.

Worth $100 OFF on any purchase of any Mallory Mallobin organizer at a Mallory Distributor.
Recording cuts coming

A threatening shortage in the production of vinyl, the petroleum-based raw material for modern records, is causing postponements and uncertainty in the recording industry. "Nobody says, 'We don't have any vinyl' but some pressers have gone to two or three days production a week," reports the head of one company that depends on outside pressers for its records.

Some reporters are hoping that the threatened shortage may increase the talent/vinyl ratio in records, as companies eliminate marginal recordings in favor of the better artists. However, the situation may well make it hard for the new performer—talented or otherwise—as record companies concentrate on pressings of name artists that are sure of a good market.

Oddly, a major cause of the tight situation—other than international politics—is said to be an exploding demand for plastic plumbing pipe, which—like phono records—is made of polyvinyl chloride.

First domestic satellite system launched over U.S. and Alaska

The nation's first domestic satellite communications system was inaugurated January 8, in ceremonies attended by the Governor of Alaska, the Lieutenant Governor of California, the Chairman of the FCC, Senator Jacob Javits of New York, and other public figures from Alaska and elsewhere.

In the first phase of the joint operation by RCA Global Communications and RCA Alaska Communications, channels are being leased on Canada's Anik II satellite, which is in stationary orbit over the Equator at 109° west longitude, and "sees" the whole Western Hemisphere. Later, RCA satellites, the first of which is expected to go into operation in late 1975, will take over.

The present earth stations are near New York City, San Francisco, Anchorage and Juneau. Other stations are planned, especially in Alaska.

The Satcom system is now using the 5925-6245-MHz (5.925 and 6.245 GHz) band for transmission from earth stations to satellite, and the 3700-4200-MHz band from satellite to earth.

Multi-grid television tube improves picture brightness

The Quintrix picture tube was unveiled by Panasonic in its first 19-inch Quatrerecolor television receiver at the recent Chicago Consumer Electronics Show.

The new tube is stated to maintain sharp focus on high brightness pictures.

Panasonic Quintrix Picture Tube

THE 1976 satellite and launcher, exhibited in model form by Howard, R. Hawkins, Executive Vice president of RCA. The three satellites will carry 24 transponders each and will be lifted into space by Thor/Delta rockets.

A combination of frequency division multiplexing-frequency modulation (FDM/FM) and FM single-channel-per-carrier techniques are used, with a capability of up to 1000 one-way FDM/FM voice channels and 600 one-way voice channels with the single-channel per-carrier technique.

A second phase, is expected to go into operation in 1976. It will use three satellites, each with 24 transponders; each capable of handling 1000 FDM/FM and 600 single voice channels, as well as a television channel and a high-speed data stream. The number of ground stations will also be augmented.

The new system will reduce costs of communications across the United States, as well as between the 48 states and Alaska, and makes live television more practical economically for Alaska. It will also permit upgrading telephone facilities in that state, and will facilitate introducing specialized services, such as transmitting programs for CATV operators.

Mrs. David Sarnoff

Lizette Sarnoff, widow of David Sarnoff, died January 8 in New York City, after a brief illness. She was the wife of David Sarnoff from July 4, 1917, until his death in December 1971. Speaking only French when she met the young David, she is credited with teaching him just enough French to propose.

Mrs. Sarnoff, an accomplished amateur sculptress, was a trustee of the Sculpture Center of New York City, a member of the Women's Executive Committee of the United Hospital Fund, a member of the Manhattan chapter of the Board of the National Women's Committee of Brandeis University, a member of the Executive Committee and honorary national chairman of the Women's Division, Albert Einstein College of Medicine, and honorary vice president of its New York chapter.

Mrs. Sarnoff is survived by her three sons: Robert W. Sarnoff, New York, Chairman and Chief Executive Officer of RCA; Edward Sarnoff, New York, Chairman of the Board, Fleet Services Inc., and Thomas W. Sarnoff, Beverly Hills, California, Staff Executive Vice President, West Coast, the National Broadcasting Company. Also surviving are nine grandchildren.

Fourth Annual Hugo Gernsback Scholarship Awards

Radio-Electronics announces the fourth Annual Hugo Gernsback Scholarship Awards for 1974. The program consists of a $125 grant to the most deserving student at each of eight technical home-study schools serving the electronics field.

Eight second awards to the second most deserving student at each of these home-study schools, have been provided by RCA Electronic Components, Harrison
VIDEO TAPE RECORDERS
By Harry Kyball
This basic text on the fast-growing field of helical VTR's contains information seldom found in service manuals, which only cover specific models. It explains the fundamentals of video tape recording, describes electronic circuits and mechanical systems in currently available machines, lists basic problems encountered and their solutions, and presents recent developments in the field. 352 pages, softbound.
No. 21024 $8.95

ELECTRONIC FLASH EQUIPMENT
By Veri Mott
A fully informative book on the use of flash/strobe equipment, the problems sometimes encountered, and the service information needed to overcome those problems. Its information on the basic flash unit, flash tubes, triggering circuits, power sources, storage, and service can save you time and frustration. 112 pages, softbound.
No. 21030 $4.50

1-2-3-4 SERVICING HI-FI TURNTABLES
By Forrest H. Belt
Greatly simplifies understanding of the mechanisms in terms of four divisions: record changers by sections, assemblies within sections, breakdown of assemblies, and mechanical parts. The following chapters cover specifics for each type of drive system, tone arm and turntable. In addition, problem diagnosis—locating, isolating, and pinpointing faults is explained so that servicing can be accomplished quickly and easily. 192 pages, softbound.
No. 21032 $4.95

TUBE SUBSTITUTION HANDBOOK, 17th Edition
By the Howard W. Sams Engineering Staff
Quick and accurate information for making suitable substitutions when exact replacements are not available. Lists over 18,000 replacements in seven sections: American receiving and picture tubes, industrial tubes, cross-reference of subminiature tubes, communications and special tubes, cross-reference between American and foreign tubes. 96 pages, softbound.
No. 21007 $1.95

SERVICING BIOMEDICAL EQUIPMENT
By Elliot S. Kantor
Introduces the biomedical technician to the specialized types of electronic and electromechanical devices used in present-day hospitals. Describes test procedures, service and maintenance techniques, and safety factors of centrifuges, electrocardiographs, defibrillators, monitoring devices, oxygen and vacuum devices, 160 pages, softbound.
No. 21011 $5.50

COLOR-TV SERVICING GUIDE
2nd Edition
By Robert G. Middleton
This guide uses color photos of symptoms of circuit defects as they appear on the picture-tube screen. If the serviceman follows these picture clues and uses proper troubleshooting methods, he can service sets correctly and in less time. Covers both tube and solid-state circuits. 112 pages, softbound.
No. 20990 $4.95

ELECTRONIC SECURITY SYSTEMS
By Leo G. Sands
The principle and operation of the various electronic devices used for industrial and home security systems are covered in detail. Chapters on: scope and application, switches and relays, sensors and encoders, indicators and alarms, electrical and electronic control and alarm circuits, security communication and systems installation, closed-circuit tv, transmission media, 416 pages, hardbound.
No. 23205 $5.95

Order from your Electronics Parts Distributor, or mail to Howard W. Sams & Co., Inc.
HCWARD W. SAMS & CO., INC.
4380 W. 62nd St., Indianapolis, Ind. 46206

Send books checked at right and $ enclo s e d . P l e a s e include sales tax where applicable. Canadian prices slightly higher.

Send FREE 1974 Sams Book Catalog

Name________________________
Address_____________________
City____________________State_____Zip______

Circle 4 on reader service card
NRI “hands-on” training in Television, Communications, Electronics and Computers can give you as much as 2 years of on-the-job experience.

EARN YOUR FCC LICENSE — OR YOUR MONEY BACK

NRI Communications training programs will qualify you for a First Class Commercial Radiotelephone License issued by the FCC. If you fail to pass the FCC examinations for this license after successfully completing an NRI Communications course we will, on request, refund in full the tuition you have paid. This agreement is valid for the period of your active student membership and for six months after completion of your training. No school offers a more liberal FCC License agreement.
Experience is still your best teacher

...here's how you get it with unique NRI training at home

Ask any teacher, job counselor, engineer, technician or prospective employer about the need for practical application of theory in Electronics. He'll tell you Electronics is as much a "hands-on" profession as dentistry or chemistry. That's how you learn at home with NRI. You prove the theory you read in "bite-size" texts, by actual experimentation with the type of solid-state, transistor and tube circuits you'll find on the job today — not hardware or hobby kits. You introduce circuit defects, analyze results, discover quickly the kind of trouble-shooting and design techniques that will make you employable in Electronics.

Train with the leader — NRI

NRI lab equipment is designed from chassis up for effective, fascinating training — not for entertainment. The fact that end results are usable, quality products is a bonus. In Communications, for example, you build and analyze, stage by stage, your own 25-watt phone/cw transmitter. It's suitable for use on the 80-meter amateur band, if you have an interest in ham radio. In TV-Radio Servicing your practical training gives you your choice of monochrome or color TV sets. All training equipment is included in the low tuition — you pay nothing extra. Discover for yourself the ease, excitement and value of NRI training. Mail postage-free card today for new NRI Catalog ... or use the coupon below. No obligation. No salesman will call on you. NATIONAL RADIO INSTITUTE, Washington, D.C. 20016.

Designed-For-Learning Equipment

Like this phone-cw transmitter (Kit #7 in the Communications course) is engineered from chassis up to demonstrate principles you must know. NRI does not use modified hobby kits for training, but the finest parts money can buy, professionally and educationally applied.
N. J. This award consists of an RCA WV-529A Service Special VOM, user price $33.50 each.

The scholarships were established by Radio-Electronics, in memory of the late Hugo Gernsback, electronic pioneer, inventor and publisher to perpetuate Mr. Gernsback's interest in developing the technological skills of young people.

Hugo Gernsback founded Radio-Electronics magazine in 1929 for electronics service technicians, engineers, and advanced hobbyists. The 1974 scholarship award winners will be announced in the magazine during the course of the year.

The eight schools participating in the program are: Bell & Howell Schools, Cleveland Institute of Electronics, CREATCapitol Radio Engineering Institute, Grantham School of Engineering, International Correspondence Schools, NRI Technical School, National Technical Schools and Sylvania Technical School.

The program is already making itself felt, and according to Dick Glass, CET, executive vice president of NESDA, some employers are beginning to pay a higher hourly rate to CET's than to non-certified employees.

CET exams are given quarterly, on June 15, Sept. 15, Dec. 15 and March 15. Most test locations are in public or commercial educational institutions. (Tests in the New York City area may be taken at RADIO-ELECTRONICS.) The exam fee is $10. For further details, or to reserve a seat at the next test session, technicians are invited to write to ISCET, 1715 Expo Lane, Indianapolis, IN 46224.

Meeting of CET at Poughkeepsie Radio-Electroni's Editor Larry Steckler discuss warranties. CET (Consumer Electronics Technicians Association) has been active in the Poughkeepsie-Kingston area of New York, and had already brought up the matter of warranty abuse in a Newsletter last Fall. Left to right in the photo are Mrs. Ken Parese, CET; Ken Parese, CET, treasurer of CET; Larry Steckler, CET, at podium; Ron Palluth, CET, president of CET; Mrs. Palluth, and Dick Jones, vice president of CET.

GEORGE NEUMANN OF MICROPHONE FAME receives the Maker of the Microphone Award for 1973. The award, which is given each year by Deutsche Grammophon for an outstanding contribution to the world of sound, is presented by Paul Burkowitz (left), engineering director of the firm, in memory of Emile Berliner, inventor of the micro and disc record, and founder of the company. Neumann is discussing the award with his managing director, G. Luetzendorf (right).

CET's now number more than 7K

The International Society of Certified Electronics Technicians (ISCET) reports that over 7,000 certified technicians are now registered. According to Ron Crow, executive director of the program, there are CET's in all 50 States, in Canada and Mexico, and in 15 other countries.

Certified Electronic Technicians are persons with a total of four years experience or schooling in electronics technology and who have passed the written examination administered by ISCET (a subsidiary of NESDA, the National Electronic Service Dealers Association).

The examination consists of a basic section, which all examinees must take, plus several options: Consumer Electronics, Audio-Hi Fi, Communications, Industrial and MATV reception.

Radio-Electronics is published by Gernsback Publications, Inc. 200 Park Ave. S. New York, N.Y. 10003 (212) 777-6400
President: M. Harvey Gernsback
Secretary: Bertina Baer

ADVERTISING SALES

EAST
Stanley Levitan, Sales Manager
Radio-Electronics
200 Park Ave. South
New York, N.Y. 10003
(212) 777-6400

MIDWEST/Texas/Arkansas/Oklahoma
Ralph J. Bergan
The Ralph J. Bergan Co.
6319 N. Central Ave.
Chicago, Ill. 60646
(312) 792-3646

PACIFIC COAST/Mountain States
Jay Eisenberg
J.E. Publishers Representative Co.,
8732 Sunset Blvd., 4th Floor
Los Angeles, Calif. 90069
(213) 659-3810

420 Market St.
San Francisco, Calif. 94111
(415) 981-4527

SOUTHEAST
E. Lucian Neff Associates
25 Castle Harbor Isle,
Fort Lauderdale, Florida 33308
(305) 566-5556

MOVING?

Don't miss a single copy of Radio-Electronics. Give us:

Six weeks' notice

Your old address and zip code

Your new address and zip code

name ____________________________ (please print)

date ____________________________

city ____________________________ state ______ zip code ______

Mail to: Radio-Electronics
SUBSCRIPTION DEPT., BOULDER, COLO. 80302

ATTACH LABEL HERE
Build yourself a better car!
Build an Archerkit™
from Radio Shack

"After an hour or so of driving, we noted that the engine was acting the way it did two years and 20,000 miles ago... a definite improvement in performance. Acceleration, specifically, was much improved." - Popular Electronics, May, '73

Radio Shack's Deluxe Capacitive Discharge Ignition puts more "Go" in every gallon! It delivers 50% more spark power for faster acceleration and more complete combustion. That means you get better gas mileage, and your points and plugs will last 3 to 10 times longer. An in/out button lets you make instant performance comparisons with your old ignition. And it makes tuneups easier. The thorough step-by-step manual makes it easy for even a first-time kit builder to assemble and install—no wires to cut. Improves any 12-volt negative ground vehicle. #28-3203.

Deluxe, High-Intensity Timing Light Kit

Tune-up aid for any engine. For full power & economy. Bright flash is visible even in daylight! #28-4016.

Radio Shack by
ArcherKit

and ALLIED RADIO STORES

A TANDY CORPORATION COMPANY

P. O. Box 1052, Fort Worth, Texas 76107

Circle 5 on reader service card
This unusual switch cable TV user into your customer.

The new exclusive Winegard Cablemate TV Signal Selector lets your customers enjoy the advantages of both cable and TV antenna reception.

If there's cable TV in your area, a lot of your customers already have, or someday will have, a cable hookup. Most of them sign up to get long distance stations or local programming not possible with an outdoor antenna. At the same time, cable people claim that every subscriber will get better reception all the way around.

But the cable subscriber usually gets short-changed. He soon finds out that the channels he regularly watched with an outdoor antenna don't come in as clear on cable. And these are almost always the network stations, the ones people watch 90% of the time.

Technicians Frequently Get Blame
The problem of poor quality cable reception on one or more channels is a common one in city after city. Too often the TV technician is called for TV set repair when the cable is really at fault.

Cable outages, too, are a frequent customer complaint.

That's where you come in. With a Winegard Cablemate TV Signal Selector and a Winegard outdoor antenna.

Cablemate lets you connect cable signal and the antenna signal to the TV receiver. The viewer simply flips a switch to select antenna or cable.
can turn a new TV antenna

Not "Just Another Switch"
Cablemate, of course, is not an ordinary switch. It has specially designed circuitry with 58db isolation to prevent interference between cable and antenna signals. And it gives you a choice of coax or twinlead antenna input.

Customers Are Waiting For You
If your cable TV customer already has a good antenna on the roof, then all he needs is Cablemate. But if he has an inadequate antenna or none at all, then he's a hot prospect for both an antenna and Cablemate. That's profitable business...and the easiest way yet to sell a TV antenna to a cable subscriber.

As you can tell, you stand to gain a lot from one switch! But then remember it comes from Winegard, the folks who consistently originate new and better products for the TV service industry.

MODEL CTS-2
(Illustrated)
$16.95 suggested list.
Model CTS-1 (same, but has 75 ohm and 300 ohm output to set and does not include coax or band separator): $14.95 suggested list.

For more information, circle the reader's service card or write to: Winegard Company, 3000 Kirkwood Street, Burlington, Iowa 52601
The Professional Line
Wanted by the most Discerning Audiophiles

TELEMATIC KC-270 “CRYS-MATE”

A SOURCE OF ACCURATE RF SIGNALS is a very handy thing indeed to have around an electronics shop. Of course, a quartz crystal is considered as a standard. On many occasions we need a quick and easy source of signals, or, we need to check a crystal. The TeleMatic Co. has brought out another of the little handy-dandy test instruments that will do all of these things. This is the model KC-270 Cryst-Mate Crystal checker and frequency standard.

It’s about the size of a pack of Super-King cigarettes and not nearly as hazardous to your health (according to the label). It’s a self-contained transistor oscillator circuit, very likely a Pierce. It will oscillate with any stock crystal. Just plug the crystal in and away you go. It even has a tiny pilot light on the panel; if the crystal is oscillating, this glows quite brightly. No oscillation, no glow, and so on.

The applications for such a unit would fill a book, of course. One very handy test would be for activity of a 3.58-MHz crystal from a color TV set. Just take it out of the circuit, and plug it in. If the INDICATOR light glows brightly, this crystal is able to oscillate. If it isn’t oscillating in the circuit, something else is wrong. With another 3.58-MHz crystal, you might use the Crys-Mate as a substitute color-oscillator, to clear up doubts about operation of a given circuit. A pin-jack on the panel provides rf output. You can plug a short piece of wire in here to radiate signals into any circuit. Or, plug a test-lead in here, and feed the signal through a small capacitor into any circuit.

If you run into a need for an odd-ball marker frequency when doing sweep alignment work, plug a crystal on that frequency into the Crys-Mate and couple its output into the sweep generator’s EXT MARKER input.

Use a 4.5-MHz crystal, and align TV sound i.f. stages and sound detectors precisely. The crystal will give you a very accurate source of rf for “zero-ing” the detector output. Use a 10.7-MHz crystal, and check i.f. alignment of any FM receiver. The FM detector can be precisely set on zero, and the shape of the S-curve checked; this can be done without a scope if you must. For the best FM stereo reception, the detector must be right on the nose.

The oscillator circuit is powered by one 9-volt battery. Without a crystal plugged in, it draws only 4 Ma. With a crystal, about 50 mA. So, the battery life should be good. An on-off switch is provided to save battery life.

A good crystal gives a surprisingly bright glow of the INDICATOR light. This can be used as an indication of crystal activity, as well as for the rare but possible intermittent crystal. Some of these will operate, but are hard to start. This tester will catch these, as well as cracked crystals, which may oscillate, but will be away off frequency.

For checking frequency of unknown crystals, or known crystals for that matter, feed the rf signal from the Crys-Mate’s rf output into the antenna of a communications type radio receiver that will cover the frequency band needed. Now, feed in the rf output of an rf signal generator. Tune the radio dial until you hear the “thump” of the Crys-Mate’s unmodulated output. (If you want to hear it more easily, turn on the bfo.) Now, tune the rf signal generator until you hear a zero-beat. The signal generator is now on the crystal frequency. If the receiver dial is very well calibrated, it can be used to find the frequency. Either one can be used to check the other.

You will usually be able to pick up a great many harmonics of the crystal’s fundamental frequency, as you go higher in frequency on the dial. The lowest frequency signal, at the greatest amplitude, will be the fundamental. I have heard signals as high as the twentieth harmonic, on a sensitive vhf communications receiver.

The crystal socket used will fit the small type crystal cases, like those used on the 3.58-MHz color crystals. If you have one with a different case, just stick a couple of pieces of solid wire in the socket, and bend them until you can make each one touch one pin of the crystal being tested. That’s all you need; if it’s good, the light will tell you.

The Crys-Mate isn’t an expensive instrument, but it can certainly be a very useful one. You’ll find lots of things to do with this piece of test gear.

Circle 76 on reader service card
Energy shortages tell us we have to change our driving style. Now! It doesn't mean we have to go back to horse and buggy days. But it does mean we have to make every drop of gas give us the most go for our money. Anyone with horse sense knows that a well-tuned car gets better mileage, and in times of fuel shortages, better mileage means a lot.

The Mark Ten B Capacitive Discharge System keeps your car in better tune so it burns less gas. Using Mark Ten B is more than horse sense. It's the smart move under the hood, helping a nation survive an energy crisis and keeping you on the road. Delta Mark Ten. The best way to go.
Why a Sylvania home training program may be

your best investment for a rewarding career in electronics
1 LEADER IN ELECTRONICS TRAINING

Over the years, Sylvania Resident Schools have trained thousands of men and women for key positions in the electronics field. Now, through Sylvania Home Training, you can receive the same high-quality career training at home. In your spare time. While you hold your present job. Remember, this training is designed with one purpose in mind — to give you the background you need to land the electronics job you really want!

2 AUTOTEXT TEACHES YOU ELECTRONICS RAPIDLY, EASILY.

AUTOTEXT, offered exclusively by Sylvania, is the proven step-by-step method of home training that can help you learn the basics of electronics quickly and easily.

3 CASSETTE SYSTEM

This innovative learning-by-hearing approach is a special option that adds an extra dimension to AUTOTEXT. It's almost like having an instructor in your own home. As you play the cassette tapes, you'll have an instructor guiding you through your AUTOTEXT lessons. Explaining the material as you read it. Going over schematics with you, reinforcing the basic electricity and electronics study materials with you. Everything you need to know to get you started towards a highly regarded position as an electronics technician — all in an easy-to-understand, conversational tone.

4 SPECIALIZED ADVANCED TRAINING

For those already working in electronics or with previous training, Sylvania offers advanced courses. You can start on a higher level without wasting time on work you already know.

5 PERSONAL SUPERVISION THROUGHOUT

All during your program of home study, your exams are reviewed and your questions are answered by Sylvania instructors who become personally involved in your efforts and help you over any "rough spots" that may develop.

6 HANDS-ON TRAINING

To give practical application to your studies, a variety of valuable kits are included in many programs. In Sylvania's Master TV/Radio Servicing Program, you will actually build and keep an all solid-state black and white TV set, and a color TV set. You also construct an oscilloscope which is yours to keep and use on the job.

7 FCC LICENSE TRAINING — MONEY BACK AGREEMENT

Take Sylvania's Communications Career Program — or enter with advanced standing and prepare immediately for your 1st, 2nd, or 3rd class FCC Radio Telephone License examinations. Our money-back agreement assures you of your money back if you take, and fail to pass, the FCC examination taken within 6 months after completing the course.

8 CONVENIENT PAYMENT PLANS

You get a selection of tuition plans. And, there are never any interest or finance charges.

SEND ATTACHED POSTAGE PAID CARD TODAY! FREE DESCRIPTIVE BOOK YOURS WITHOUT OBLIGATION!

Sylvania Technical Systems, Inc.

If reply card is detached send this coupon

Sylvania Technical School
Home Study
909 Third Avenue
New York, N.Y. 10022

Please send me FREE illustrated career catalog. I understand that I am under no obligation.

Name ____________________________
Address ____________________________
City ____________________________
State __________ Zip ______
Age _________
Veterans: Check here □ 758-404-0

In the Master TV/Radio Servicing Program, you build and keep the all solid-state black and white TV set, the color TV set, the oscilloscope and the multimeter shown above.
NICAD CHARGING RATES?

by JACK DARR
SERVICE EDITOR

A READER WRITES, I WANT TO CHARGE NiCad batteries, in a 4-cell unit. Can I use resistors to regulate the current flow, with either a transformer operated dc power supply or a line-connected charger? Also, how about the new battery units I've been hearing about, that will charge in 3 or 4 hours. Can I adapt the regular types for this, without damage?"

Let's take this a piece at a time. Yes, you can use resistors to regulate the current flow. Charging at too high a rate can damage the cell, or even cause it to explode. For correct charging use a dc voltage just enough greater than the cell voltage to cause the charging current to flow at the given rate.

This maximum current varies with the battery type. There are a quite a few different sizes, from the small "button" cells up to the large C and D cells:

For an Eveready type B20 cell, at 1.25 volts, which must be charged at a rate not greater than 2.0 mA for 14 hours, up to the high capacity CH2.2T cell (also a 1.25-volt type, but it can be charged at a rate of 220 mA.)

Voltages will be given as "volts per cell" or 1.25 volts each. To get higher voltage, the cells are simply stacked in series. Although the charging voltage will vary, the charging current must be the same for multiple cells as for one cell, since they are in series. Charging voltage for a single cell will be 1.35 to 1.45 volts. For a 15-volt "battery" (group of cells) the charge voltage would be 16.2 to 17.4 volts, for a 50-mA rate in this one battery.

As for charging circuits, I would personally prefer a transformer-isolated dc power supply circuit, like Fig. 1. A single half-wave rectifier can be used; no filtering is needed. (I don't like line-connected circuits; they scare me.)

With a dc supply like this, you could adapt it for different battery voltages by simply hooking a large bleeder resistor as a voltage divider across the dc output. By making this variable or adjustable, the charging voltage and current can be set to any needed value.

The fast-charge types

The fast-charge types are probably the Eveready units called "Fast-Charge Hustler" type cells. They can be completely recharged in about 3 to 4 hours. For uses such as cordless power tools, etc.

Before you try to recharge ANY NiCad cell at a high rate, be very sure that it is one of the fast-charge types!

A specially designed charger should always be used with these. The Eveready Battery Handbook recommends several circuits for this; the simplest is shown in Fig. 2. Note the thermostat. When this type of cell is being recharged, the cell-temperature is the best indicator of reaching a full-charge condition. During recharge, the cell stays at almost a constant temperature of around 75°F, when it approaches a full-charge, the temperature rises very rapidly. When it reaches cutoff temperature, of around 112 to 120°F, it's fully charged. The thermostat opens at 110 to 120°F, and recloses from 95 to 105°F.

This action will automatically start recharging again, just as soon as the cell has cooled down far enough. So, the cell will be kept at full charge at all times, without over-charging. It'll always be ready to go at full charge.

There are several different charging circuits given; they range from the simpler one of Fig. 2 up to an electronic voltage-regulated type. In this, a small thermistor is built right into the battery. This is the temperature-sensor which controls the electronic voltage regulator.

Incidentally, the complete title of the invaluable Handbook used for the preparation of this Appliance Clinic is the "Eveready Battery Applications Engineering Data", and is published by Union Carbide Corp., Consumer Products Division, 270 Park Ave. New York, N.Y. 10017. It is available at most radio-TV supply houses, for $6.95.

FIGURE 2

A specially designed charger should always be used with these. The Eveready Battery Handbook recommends several circuits for this; the simplest is shown in Fig. 2. Note the thermostat. When this type of cell is being recharged, the cell-temperature is the best indicator of reaching a full-charge condition. During recharge, the cell stays at almost a constant temperature of around 75°F, when it approaches a full-charge, the temperature rises very rapidly. When it reaches cutoff temperature, of around 112 to 120°F, it's fully charged. The thermostat opens at 110 to 120°F, and recloses from 95 to 105°F.

This action will automatically start recharging again, just as soon as the cell has cooled down far enough. So, the cell will be kept at full charge at all times, without over-charging. It'll always be ready to go at full charge.

There are several different charging circuits given; they range from the simpler one of Fig. 2 up to an electronic voltage-regulated type. In this, a small thermistor is built right into the battery. This is the temperature-sensor which controls the electronic voltage regulator.

Incidentally, the complete title of the invaluable Handbook used for the preparation of this Appliance Clinic is the "Eveready Battery Applications Engineering Data", and is published by Union Carbide Corp., Consumer Products Division, 270 Park Ave. New York, N.Y. 10017. It is available at most radio-TV supply houses, for $6.95.

FIGURE 1

A specially designed charger should always be used with these. The Eveready Battery Handbook recommends several circuits for this; the simplest is shown in Fig. 2. Note the thermostat. When this type of cell is being recharged, the cell-temperature is the best indicator of reaching a full-charge condition. During recharge, the cell stays at almost a constant temperature of around 75°F, when it approaches a full-charge, the temperature rises very rapidly. When it reaches cutoff temperature, of around 112 to 120°F, it's fully charged. The thermostat opens at 110 to 120°F, and recloses from 95 to 105°F.

This action will automatically start recharging again, just as soon as the cell has cooled down far enough. So, the cell will be kept at full charge at all times, without over-charging. It'll always be ready to go at full charge.

There are several different charging circuits given; they range from the simpler one of Fig. 2 up to an electronic voltage-regulated type. In this, a small thermistor is built right into the battery. This is the temperature-sensor which controls the electronic voltage regulator.

Incidentally, the complete title of the invaluable Handbook used for the preparation of this Appliance Clinic is the "Eveready Battery Applications Engineering Data", and is published by Union Carbide Corp., Consumer Products Division, 270 Park Ave. New York, N.Y. 10017. It is available at most radio-TV supply houses, for $6.95.
TESTING!
with MITS lab quality test equipment

One
SG 1900—The Audio Sweep Generator provides the capabilities of both a fixed frequency (CW) and a sweep generator in a laboratory quality instrument. Features include CW, linear sweep, and log sweep with a sweep time of 0.1 to 100 seconds. Waveforms are sine, square, and triangle. The range is from 1 Hz to 100 KHz. The output has fixed attenuation levels of 0.20, and 40 dB ±1 dB, as well as continuously variable attenuation.
Prices: Kit$119.95 Assembled$149.95

WG 1700—The Waveform Generator/Frequency Counter is well suited to a wide variety of test work. Six carrier waveforms (sine, triangle, square, ramp, sawtooth, and pulse) and three internal AM or FM modulator waveforms (sine, triangle, and square) are featured. The carrier frequency ranges from 1 Hz to 1.5 MHz in twelve overlapping ranges; the modulator waveform frequency ranges from 100 Hz to 150 KHz in six overlapping ranges. Both outputs are buffered for low output impedance. The unit also accepts external AM or FM modulating signals. The frequency counter with adjustable sensitivity measures the waveform generator output frequency and frequency of external signals from 1 Hz to over 10 MHz, with input impedance of 100K ohms.
Prices: Kit$199.95 Assembled$249.95

DV 1600—The 2-1/2 digit Digital Voltmeter is a perfect companion for MITS other fine test equipment. Features include full-scale measurement of alternating and direct current in five ranges from 1 ma to 1 amp, measurement of AC and DC voltage in four ranges to 1000 volts, and measurement of ohms in six ranges to 10 megohms. The resolution in low ranges for voltage is 0.1 mV, for current, 10 ma; and for resistance, 1 ohm. The DC accuracy is ±3% and the AC accuracy is ±1%. Other features include autopolarity and ±100% overrange capability on all ranges, which effectively doubles full-scale capability.
Prices: Kit$89.95 Assembled$129.95

ICT 1800—The Integrated Circuit Tester is ideal for testing digital circuits and for breadboarding IC's while developing circuits. The eighteen LED indicators show the status of the IC under test. The internal 5 volt 1 amp power supply, which has overtemperture and overcurrent shutdown capability, is also available for external use. The crossbar switch allows complete programming of the IC under test. Other features include an internal two speed clock, single step capability, and four each remote outputs and inputs.
Prices: Kit$119.95 Assembled$169.95

Plus
ICT 1810—The Operational Amplifier Tester with test, simple GO/NO GO test capability tests operational amplifiers for gain, stability, input offset voltage, and input bias current in a dynamic operating environment. A single LED indicates IC status.
Prices: Kit$29.95 Assembled$39.95

Power Sale
PS 500—The 5 Volt Power Supply, which has overtemperature and overcurrent shutdown capability, is an ideal unit to power TTL, DTL, and other IC's. Features include load regulation at 0.005%. Output voltage is 5 volts ± 2 volt.
Prices: Kit$29.95 $19.95 WHILE THEY LAST!

Warranty: Full two-year warranty on assembled units, ninety days on kits.
*Prices subject to change without notice. Available from your local Olson Electronics Dealer.

MITS INC.
"Creative Electronics"
6328 Linn, N.E., Albuquerque, New Mexico 87108
505/265-7553 Telex Number 860401

Circle 10 on reader service card
SAVE TIME
WITH OUR
CHEMICAL
SIGNAL TRACER

Time is money. And nothing eats up time like troublesome interittents.
There is a way to fight back, though. With a faster kind of test equipment that comes in a can: SUPER FROST AID. After the set 'cooks' and the problem appears, hunt it down in minutes with SUPER FROST AID's unbeatable (-55°F) cooling power. Even on the most crowded printed circuit, SUPER FROST AID's lack of liquid residue lets you check component-by-component with pinpoint applications. And it's long-lasting—saves you more by using less! Next interimnt you run across, cure the problem faster with a chemical signal tracer, SUPER FROST AID (catalog #4500)—one of the best-selling chemical tools from CHEMTRONICS INC.
1260 RALPH AVE., BROOKLYN, N.Y. 11207
TEL. (212) 629-1300

These are made of many, many selenium diodes stacked in series. They use enough of them so that the total voltage rating will be high enough to stand the applied voltage. Voltage ratings of these should be about 7500 volts max.

Tube rectifiers can get weak from old age, like any other tube. This is easy to check; just pop in a new tube. If the focus voltage comes back up, this was it. The solid-state focus rectifiers can also "grow weak." If enough of the little pills short or leak, the output voltage will drop. If they are over internally, they'll sometimes make the case bingle or blow open in the middle.

In general, a solid-state focus rectifier can be substituted directly for any of the tube types. This is a very handy thing, especially in those irritating cases where the socket of the focus rectifier has arced over and burned up. Instead of replacing the socket, which is usually a rough job, take the plate lead loose. Mount a solid-state focus rectifier on terminal strips, to keep it from arcing to other things, and tie the lead to the plate lead at the anode and tie the lead to the focus control to the positive end. Be sure to clean up and tie the heater leads of the original tube, so they can't get into any trouble.

There are lots of readily available solidstate replacements: RCA SK-3066, and others. These have a voltage rating of 7500 volts, and plenty of amperage (sic; 5 mA max!)

Final hint: in a dry circuit, you would think that any series resistance would have little effect. Yet, if the focus pin or its socket contact, on the picture tube, "corrodes," this can cause a very tricky intermittent loss of focus! Confirmation: personal experience plus many letters in the Clinic! Clue: focus voltage, read at the focus control, source, etc. does not change when the raster de-focuses.

To check for this, pull the picture tube socket off, and examine the focus pin and the socket contact. This will be the one with a pin missing on each side of it. If you can see distinct traces of a light green powdery substance, look out! You may find that the socket contact has been almost eaten away. This is apparently the same as the green "corrosion" we used to see in audio transformers, etc. in old radios. Seems to be caused by the presence of air on a copper conductor carrying a positive voltage. Can't do better than that, but it's close. Some of them can be cleaned up. If it's bad enough, the socket must be replaced.

reader questions

HOW TO WASTE DC VOLTAGE
I'm restoring an old radio, a Crosley 66TC. Original power transformer was 300 volts, and I've got one with 350 volts

end of the center tap. How can I get rid of the excess dc voltage?—E.S.,

Laurel, Ohio

"Throw it away". Open the HV
secondary center tap and add a resistor to ground. Adjust the value of this so that it develops whatever voltage drop you want. This will subtract from the dc "B+" voltage.

This shouldn’t cause any hum, but it might. If so, add a filter capacitor as shown. Don’t forget to connect the + to ground. A lot of the older sets used this negative voltage for bias on power tubes, etc.

ODD COLOR PROBLEMS
The color keeps popping in and out, and acting very funny, on this GE CR21 chassis. All tubes in the color section have been replaced; no help. Where do I go from here?—H.S., Vincennes, Ind.

After all of the tests you have made (which were right!) I believe I’d go and have a look at that little neon lamp in series with the burst amplifier grid. This has caused some intermittent color problems in the past. Try a new one.

THE BOOST THAT DIDN’T!
This Motorola TS-579-A has the most weird group of symptoms I ever saw! Raster only half-width, high voltage low, boost low. However, the 6DQ6 cathode current is 110 Ma.; screen voltage OK, grid drive 150 volts peak to peak. Tubes good.

Suspecting the boost capacitor, I bridged it; no help. There’s another one in there; bridged it. No help. Noticed that the schematic said the boost capacitor went to +135 volts. Thought this was a typo, and shunted a capacitor from boost to +270 volts. Whammo! I got the raster, boost and high-voltage back!

Later, I checked the Motorola schematic, and the boost capacitor does go to +135 volts! But, it won’t work with it hooked there. What’s going on?—J.G. Mena, Ark.

That isn’t a typo. The boost capacitor does go to +135 volts on this chassis. I thought the same thing, the first time I ran into it. After some intensive head-scratching, I tried the same thing you did—shunting the boost capacitor to the +270 volts. That other 0.1µF capacitor you see in there is the...
<table>
<thead>
<tr>
<th>Communications Engineering</th>
<th>Aeronautical & Navigational Engineering</th>
<th>Television Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Control Engineering</td>
<td>Missile & Spacecraft Guidance</td>
<td></td>
</tr>
<tr>
<td>Radar & Sonar Engineering</td>
<td>Digital Communications</td>
<td>Industrial Electronics</td>
</tr>
<tr>
<td>Microwave Engineering</td>
<td>Satellite Communications</td>
<td></td>
</tr>
<tr>
<td>Cable Television Engineering</td>
<td>Electronic Engineering Technology</td>
<td>Nuclear Instrumentation & Control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Special Programs for Electronic Engineers</td>
</tr>
</tbody>
</table>
ADVANCED ELECTRONICS CAREER TRAINING AT HOME

If you are too busy to go to college to learn advanced electronics, CREI brings college level training to you. CREI programs give you practical engineering training that you can apply in your work to move ahead to higher paying jobs. And CREI lets you specialize in exactly the area of electronics you want. You have a choice, depending on your qualifications, of 18 different programs.

Not only are CREI programs college-level but arrangements are available for you to earn college credit applicable to advanced degrees.

Only CREI offers you a choice of 18 programs in advanced electronics

For over 45 years CREI programs have been recognized by leading technical organizations as effective home study training in advanced electronics.

NEW OPTIONAL LAB PROGRAM

CREI now offers a supplementary ELECTRONIC DESIGN LABORATORY PROGRAM to make learning advanced electronics easier and to give you actual experience to use in your work. Only CREI offers this complete college type laboratory program. You learn to actually design electronic circuits. At the same time you get extensive experience in tests and measurements, breadboarding, prototype building and other areas important to your career.

Qualifications to Enroll. To qualify for enrollment in a CREI program, you must be a high school graduate (or equivalent). You should also be working in electronics or have previous training in this field.

Send for FREE book. If you are qualified, send for CREI’s newly published book describing your career opportunities in advanced electronics. This full color book is filled with facts about career opportunities for you.

Accredited Member, National Home Study Council

Rush me your FREE book describing my opportunities in advanced electronics. I am a high school graduate.

Name __________________________ Age _______
Address __________________________
City________________________ State_________ ZIP_________
If you have previous training in electronics, check here □
Employed by __________________________
Type of Present Work ________________
Veterans and servicemen, check here for G. I. Bill information □

CREI, Dept. E-1404-E
3939 Wisconsin Avenue
Washington, D. C. 20016

CAPITOL RADIO ENGINEERING INSTITUTE
A Division of McGraw-Hill Continuing Education Co.
3939 Wisconsin Avenue, Washington, D. C. 20016

31
This 10 MHz Triggered Scope is 1/3 the size of comparably performing scopes.

MODEL 1431 $399.95

It's a lightweight 13 pounds in your hand and a heavyweight performance wideband scope with a 35 nanosecond rise time on your bench or jobsite. Whether you're servicing or designing industrial equipment or TV, there's the right sweep speed and sync for easiest operation. If you know our Model 1460, the leader in wideband 5" CRT scopes, you know our new 3" Model 1431 which gives you the same high performance in one third the size. (Only 4¾"Hx7¾"Wx12½"L)

Servicing, production, inspection, quality control and lab applications are all easier with this versatile all solid-state instrument. Triggering is accomplished with only 0.5V peak-to-peak. Ten millivolts per division sensitivity, 0.5 usec/cm to 0.5 sec/cm automatic and triggered sweep in 19 calibrated ranges, and external trigger input are just a few of the reasons you'll like it.

If you have been waiting to buy a portable scope until you could get all the features you'll ever need at a price you want to pay, you've been waiting for Model 1431. Contact your distributor or write Dynascan Corporation.

PRODUCTS OF

B&K DYNASCAN

1601 W. Belle Plaine Ave.
Chicago, IL 60613 • (312) 327-7270

Circle 16 on reader service card
PROTECT YOUR HOME

Build an Electronic Security Alarm

Your chances of stopping an intruder are only as good as your alarm system. This one uses open- and closed-circuit sensors.

By MICHAEL S. ROBBINS

DO YOU NEED A GOOD BURGLAR alarm for your home or workshop? Here’s an all solid-state design with many of the features found in the best professional units.

A 15-second delay timer and logic array designed around two low-power CMOS IC’s make possible some of the unique characteristics of the alarm. To set the alarm, the power is switched on, the door is opened and then closed. If the door is reopened and the alarm is not switched off within fifteen seconds, an earpiercing electronic siren is set off. A standard 12-volt lantern battery powers the alarm making it independent of the ac line. Until the siren is set off, the total current drain of the unit is only 120 µA, assuring long battery life. A small weatherproof speaker is the only other external component required.

How it works

An understanding of the NAND gates operation is helpful in understanding how the alarm works. The truth-table below shows the possible states of the NAND gate. In this application a “1” represents 12-volts while a “0” represents zero volts or ground.

Table I

<table>
<thead>
<tr>
<th>INPUT A</th>
<th>INPUT B</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>INPUTS A & B</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

By connecting both inputs together an inverter is produced. Two gates, two resistors and two capacitors can be connected together to form an ac coupled bistable latch (R-S flip-flop). If we start by assuming that output S is “1” when power is first applied then the NAND gate truth table shows that output R must be “0”. If we apply a negative pulse to input A, nothing happens, but if we apply a negative pulse to input B, output R becomes 33.
CIRCUIT OF THE SECURITY ALARM SYSTEM. Closing a door as you leave arms the device. A subsequent tripping of any of the normally open or normally closed sensors starts a timer which—after 15 seconds—turns on the multi-vibrator that produces the alarm blast.
a "1" and output S becomes a zero. By suitably connecting input D we can guarantee that output R will be "1" each time the power is applied. This is the configuration of IC1-a and IC1-b in the alarm. By further modifying the circuit, the outputs can be made to change from "0" to "1" for a predetermined interval upon the application of a negative pulse to the input. This configuration, a monostable flip-flop, is used in the fifteen-second timer composed of IC2-a and IC2-b.

Circuit operation

Two external sensing circuits can be used with the unit. The closed-circuit loop is composed of series-connected, normally closed magnetic reed switches, conductive foil tape on windows, and other normally closed sensors. The first opening of any of these switches (usually the one at the front door) has no effect on the normally reset latch (R-S flip-flop) composed of IC1-a and IC1-b. However, closing the door causes a negatively going pulse to be applied to the latch causing it to change states and to un latch the NAND gate IC1-d. The next opening of any switch in the closed loop will cause a positive pulse to be applied to the now unlatched NAND gate. This pulse will then trigger the monostable delay which in 15 seconds generates a pulse to trigger SCR1. The inhibit circuit (IC1-c and the OR gate) prevents subsequent closing or opening of the loop from resetting the delay.

The SCR trigger pulse can also be generated by closing any switch in the open-circuit loop. This parallel connected circuit could consist of one or more panic buttons, pressure switches or photoelectric "eyes". There is no delay in the open-circuit loop.

The siren-like tone is generated by a timer IC connected as a 1,000-Hz free-running square-wave oscillator. The oscillator is frequency modulated downward by a 2-Hz unijunction transistor ramp generator.

Power transistor Q2, a pnp, operates as a switching amplifier capable of switching 1.25A into an 8-ohm speaker. This is an earpiercing square wave output of about 12 watts. Additional sound power is obtained by using resistor R16 in series with flyback diode D3 allowing inertia to carry the speaker cone beyond its rest position.

Construction suggestions

Although the alarm could be built on perforated board, the printed circuit board shown here makes for a more professional-looking, error-free construction job. Be careful when handling the CMOS IC's as they can be damaged by static electricity. Use sockets or Molex pins for the IC's. Do all soldering with a small pencil iron and a good grade of rosin-core solder. Diode, LED, and electrolytic capacitor polarity and pin markings on the transistors, IC's and the SCR must be carefully observed. The LED is mounted in the plastic clip packed with it. Two 4-point terminal strips are used for external connections. The "hot" connections are all tied to one strip while the second serves as the ground return.
Two of the little-known applications of CCTV (Closed-Circuit TV) today are in security surveillance and police work. You are probably not familiar with either of these uses, although you are likely to have seen CCTV cameras in department stores and highway tunnels. In this article we will look at two examples of CCTV at work.

The first is an operating security system custom tailored to fit the needs of the First National Bank of Maryland's Baltimore branch. The system, installed by the Motorola Communications Division is said to save the bank a significant amount of money over conventional security approaches.

James Barrett, security officer for the bank, explains the cost savings. "With our new electronic surveillance system, we would need as many as ten guards per shift. With this system we find that three guards in the lower level and two in the upper levels are sufficient.

As we can readily see, that represents a saving of 50% in the work force and adds up to a considerable number of dollars—year after year.

Inside the system

The security system centers around a series of closed-circuit TV cameras located in strategic positions on various floors and focused on sensitive entrance/exit areas leading to various bank departments. The system also includes special sophisticated security alarms, an intercom system, electronic door controls and vehicle detection sensors.

At the heart of the entire system is the master control console, located in the basement. On this console are displayed all of the building's door-lock...
The Job

problems faced by many banking provides efficient surveillance is the story of three installations.

by ROBERT S. HAIMES

controls, intercoms, CCTV monitors and other related equipment. The area in which the master control console is located, is the most totally secure area in the entire building. The console itself, is misleading; for while it looks formidable, and ultra-complex, it is basically quite simple.

At his console desk, the security officer monitors the arrival of armored cars on CCTV cameras as well as persons entering any department of the bank. He views all of the many parking levels in the building, and the 10th floor restaurant—without interfering with normal procedures in the 22-story building. Each of the systems is designed to aid and assist the guards.

Let’s start with the two weatherproof CCTV cameras that are mounted on the rear alley side of the building’s rollaway basement door. They guarantee that only authorized vehicles such as armored cars and special bank messenger cars can enter the basement parking area. The guard at the console—at a touch—can pan, tilt, or zoom the CCTV camera so he can check not only the license of each vehicle, but the driver as well.

Once cleared for entry, the guard at the master control raises the door, and then promptly closes it as soon as the vehicle is inside. To continue control inside the basement, two more indoor cameras are positioned to monitor traffic.

Protect the computer

To safeguard the computer center at the bank, two CCTV cameras are mounted immediately inside of each access door, giving the guard at the master control console total surveillance of the area. This coverage is teamed with bullet-resistant Plexiglas doors at each of the elevator lobby areas, premise alarms (to detect forced entry) to control access and guards positioned immediately inside each elevator door lobby.

On the four floors occupied solely by bank personnel, the security system is again wrapped around CCTV cameras that are located inside each elevator lobby door and premise alarms on the glass doors at both ends of each elevator lobby. An intercom is also used for questioning by the guard in the master control room, if necessary.

The bank’s executive offices also contain a CCTV camera, a premise alarm and a secretary-receptionist with a radio-voice link to the main guard room for emergencies.

Finally, the security system also keeps a check on the upper three floors of parking, all of which are reserved for bank-owned vehicles and cars of bank employees. In addition to regular guards, the parking area is constantly monitored via CCTV camera with voice contact to the master control console. Traffic control gates prevent the general public from using the bank parking areas, and CCTV cameras ensure that the system is foolproof.

CCTV and the police

Another relatively new area for CCTV is in police work. Let’s look at
Harry Remmert decided he needed more electronics training to get ahead. He carefully "shopped around" for the best training he could find. His detailed report on why he chose CIE and how it worked out makes a better "ad" than anything we could tell you. Here's his story, as he wrote it to us in his own words.

By Harry Remmert

"After seven years in my present position, I was made painfully aware of the fact that I had gotten just about all the on-the-job training available. When I asked my supervisor for an increase in pay, he said, "In what way are you a more valuable employee now than when you received your last raise?" Fortunately, I did receive the raise that time, but I realized that my pay was approaching the maximum for a person with my limited training.

"Education was the obvious answer, but I had enrolled in three different night school courses over the years and had not completed any of them. I'd be tired, or want to do something else on class night, and would miss so many classes that I'd fall behind, lose interest, and drop out.

The Advantages of Home Study

"Therefore, it was easy to decide that home study was the answer for someone like me, who doesn't want to be tied down. With home study there is no schedule. I am the boss and I set the pace. There is no cramming for exams because I decide when I am ready, and only then do I take the exam. I never miss a point in the lecture because it is right there in print for as many re-readings as I find necessary. If I feel tired, stay late at work, or just feel lazy, I can skip school for a night or two and never fall behind. The total absence of all pressure helps me to learn more than I'd be able to grasp if I were just cramming it in to meet an exam deadline schedule. For me, these points give home study courses an overwhelming advantage over scheduled classroom instruction.

"Having decided on home study, why did I choose CIE? I had catalogs from six different schools offering home study courses. The CIE catalog arrived in less than one week (four days before I received any of the other catalogs). This indicated (correctly) that from CIE I could expect fast service on grades, questions, etc. I eliminated those schools which were slow in sending catalogs.

FCC License Warranty Important

"The First Class FCC Warranty* was also an attractive point. I had seen "O" and "A" manuals for the FCC exams, and the material had always seemed just a little beyond my grasp. Score another point for CIE.

*CIE backs its courses with this famous Money-Back Warranty: when you complete a CIE license preparation course, you'll be able to pass your FCC exam or be entitled to a full refund of all tuition paid. Warranty is valid during completion time allowed for your course.
"Another thing is that CIE offered a complete package: FCC License and technical school diploma. Completion time was reasonably short, and I could attain something definite without dragging it out over an interminable number of years. Here I eliminated those schools which gave college credits instead of graduation diplomas. I worked in the R and D department of a large company and it's been my observation that technical school graduates generally hold better positions than men with a few college credits. A college degree is one thing, but I'm 32 years old, and 10 or 15 years of part-time college just isn't for me. No, I wanted to graduate in a year or two, not just start.

"When a school offers both resident and correspondence training, it's my feeling that the correspondence men are sort of on the outside of things. I wanted to be a full-fledged student instead of just a tag-a-long, so CIE's exclusive home-study program naturally attracted me.

"Then, too, it's the men who know their theory who are moving ahead where I work. They can read schematics and understand circuit operation. I want to be a good theory man."

"From the foregoing, you can see I did not select CIE in any haphazard fashion. I knew what I was looking for, and only CIE had all the things I wanted.

Two Pay Raises in Less Than a Year

"Only eleven months after I enrolled with CIE, I passed the FCC exams for First Class Radiotelephone License with Radar Endorsement. I had a pay increase even before I got my license and another only ten months later.

"These are the tangible results. But just as important are the things I've learned. I am smarter now than I had ever thought I would be. It feels good to know that I know what I know now. Schematics that used to confuse me completely are now easy for me to read and interpret. Yes, it is nice to be smarter, and that's probably the most satisfying result of my CIE experience.

Praise for Student Service

"In closing, I'd like to get in a compliment for my Correspondent Counselor who has faithfully seen to it that my supervisor knows I'm studying. I think the monthly reports to my supervisor and generally flattering commentary have been in large part responsible for my pay increases. My Counselor has given me much more student service than 'the contract calls for,' and I certainly owe him a sincere debt of gratitude.

"And finally, there is Mr. Tom Duffy, my instructor. I don't believe I've ever had the individual attention in any classroom that I've received from Mr. Duffy. He is clear, authoritative, and spared no time or effort to answer my every question. In Mr. Duffy, I've received everything I could have expected from a full-time private tutor.

"I'm very, very satisfied with the whole CIE experience. Every penny I spent for my course was returned many times over, both in increased wages and in personal satisfaction."

Perhaps you too, like Harry Remmert, have realized that to get ahead in Electronics today, you need to know much more than the "screwdriver mechanics." They're limited to "thinking with their hands" ... learning by taking things apart and putting them back together ... soldering connections, testing circuits, and replacing components. Understandably, their pay is limited—and their future, too.

But for men like Harry Remmert, who have gotten the training they need in the fundamentals of Electronics, there are no such limitations. He was recently promoted, with a good increase in income, to the salaried position of Senior Engineering Assistant working in the design of systems to silence submarines. For trained technicians, the future is bright. Thousands of men will be needed in virtually every field of Electronics from two-way mobile radio to computer testing and troubleshooting.

Send for Complete Information—FREE

Many men who are advancing their Electronics career started by reading our illustrated school catalog, "Succeed in Electronics." It tells of the many electronics careers open to men with the proper training. And it tells which courses of study best prepare you for the work you want.

If you're "shopping around" for the training you need to move up in Electronics, this interesting book may have the answers you want. We'll send it to you FREE. With it, we'll also include our other helpful book, "How To Get A Commercial FCC License."

To get both FREE books, just fill out and mail the reply card. For your convenience, we will try to have a representative call. If card is missing, use coupon below.

APPROVED UNDER G.I. BILL
All CIE courses are approved for educational benefits under the G.I. Bill. If you are a Veteran or in service now, check box for G.I. Bill information.

CIE Cleveland Institute of Electronics, Inc.
1776 East 17th Street, Cleveland, Ohio 44114
Accredited Member National Home Study Council

Cleveland Institute of Electronics, Inc.
1776 East 17th Street, Cleveland, Ohio 44114
Please send me your two FREE books:
1. Your school catalog, "Succeed in Electronics."
2. Your book on "How To Get A Commercial FCC License."

I am especially interested in:

☐ Electronics Technology ☐ Electronic Communications
☐ Broadcast Engineering ☐ Industrial Electronics
☐ First Class FCC License ☐ Electronics Engineering
☐ Electronics Technology with Laboratory

Name ___________________________ (Please Print)
Address ___________________________
City _____________________________
State __________ Zip __________ Age ______
☐ Veterans & Servicemen: Check here for G. I. Bill information

CIE Cleveland Institute of Electronics, Inc.
the way a Motorola CCTV system has already made an impressive start on reducing successful burglaries in Hoboken, N.J. Hoboken Police Chief George W. Crimmins says that the system has already "proven itself," and Hoboken Mayor Louis DePascale says that city government wants "all of Hoboken" under the protection of the CCTV cameras.

Prior to the new system, Hoboken tried high-intensity lights with increased patrolling. This was not effective enough.

On paper and in practice, the CCTV system seems simple. Three television cameras are mounted at varying vantage points along streets making up one of Hoboken's most crime-prone neighborhoods. Cables from the three cameras reach back to police headquarters where officers monitor the 19-inch screens for signs of lawlessness first, traffic offenses second.

Two of the cameras, Motorola S1140B high-performance models—are set in fixed positions where they continuously view the neighborhood street scene. The automatic light compensation for these cameras has a 10,000 to 1 light compensation and 0.5 foot-candles sensitivity.

The third camera, a Motorola S1170A low-light-level camera. It delivers clear, sharp pictures in bright sunlight or darkness and does this job automatically. Its light compensation range is 200,000 to 1 without adjustment and sensitivity is .005 foot-candles. In addition the camera has a motorized 10 to 1 zoom lens, pan and tilt controls and can view 360°.

The Hoboken Police Department communications control center—where the three 19-inch monitors are located—is atop the City Hall, located in the heart of the business district. Dispatchers in the center communicate with patrol cars and beat officers and now view the conduct of citizens on the downtown streets.

If something catches the dispatcher's eye, he can use the low-light-level camera to zoom in on a specific area. If it is something that arouses his attention further, he can use the half-inch video tape recorder to make a permanent record of his observations.

The dispatcher can also pan the street, tilt the camera for different angles and record all this if he wants to do so. The camera can also revolve 360°, so it can follow the subject under observation. This camera works effectively without external light, amplifying available light to keep monitor images clear and sharp. It can also see through fog, haze, smoke, rain and snow. The housings for all three cameras are bulletproof and impervious to efforts to blind them with flashing lights.

In the Hoboken Police Department, the electronic "rookie" is already well received. Officers who know they have the support of an irrefutable witness—the CCTV tape recorder—when they take a case to court, are able to move with more assurance in their rounds. Some criminal actions have already been witnessed as they occurred and in one recent burglary the criminal fled into the range of the CCTV system, nearly depositing himself in the city's jail.

The idea in Hoboken is not to catch more criminals, but rather to discourage criminal activity by convincing potential lawbreakers that they may be seen on the police department's version of "Candid Camera."
Transformers are the "heart" of modern-day electricity and electronics. Without them, long-distance power transmission and radio and electronic devices would be impractical. Here's how they work.

by FARL JACOB WATERS

Transformers are found in many kinds of electronic or electrical apparatus. All transformers, whether the power type on the utility pole or the "shirt-pocket" radio i.f. type, depend upon electromagnetic induction. The reaction to a varying magnetic field, is the development of a voltage or current.

As lines of magnetic force encircle and are "cut" by a conductor, a force (voltage) is developed which causes electrons to move as a current. Inversely, a current through a conductor develops a magnetic field as shown by Fig. 1-a. An alternating current produces a magnetic field that also changes magnitude and direction. As this alternating magnetic field increases and decreases, its lines 'cut' that conductor as well as any other conductor that may be close (Fig. 1-b). Thus, if a conductor carrying alternating current is near a second conductor, a current will be induced into that second conductor.

Transformers have conductors coiled as shown by Fig. 2. Alternating current through coiled conductor P (the primary) produces a concentrated magnetic field. That magnetic field also surrounds and "cuts" the turns of conductor S (the secondary) to induce a current into that winding. The density of the magnetic field is dependent upon the primary current I_p and upon the number of turns within that winding N_p.

Magnetic density, \(\phi = \frac{N_p I_p}{S} \)

This same magnetic density develops the current I_s within secondary winding of N_s turns.

Magnetic density, \(\phi = \frac{N_s I_s}{S} \)

Then, \(I_p N_p = I_s N_s \)

It can also be shown that the primary and secondary voltages, E_p and E_s, are related to the number of turns, N_p and N_s, \(E_p/I_s = N_p/N_s \)

Primary impedance, \(Z_p = E_p/I_p \)

Secondary impedance, \(Z_s = E_s/I_s \)

And \(I_p = \frac{N_p}{N_s} \) \(I_s \)

In common language the above equations become:

1. A transformer's voltage ratio, \(E_p/E_s \), is directly related to its turns' ratio, \(N_p/N_s \).
2. A transformer's current ratio, \(I_p/I_s \), is inversely related to its turns' ratio, \(N_p/N_s \).
3. A transformer's impedance ratio, \(Z_p/Z_s \), is directly related to the square of its turns' ratio \((N_p/N_s)^2 \)
4. A transformer's primary volt-ampere product, \(E_p I_p \), is equal to its secondary volt-ampere product, \(E_s I_s \).

Therefore, a transformer can be used to change voltage, to change current, or to change impedance.

Losses and limiting factors:

A transformer consists of two or more windings on a magnetic core (Fig. 3). Transformers used to couple r.f. or i.f. stages require a very low density magnetic field, and
are likely to have an air core. Conversely, the power transformer must have a very strong magnetic field and an iron core of sufficient cross-section. Each winding must be of sufficient wire size to avoid excessive voltage and power loss, or occupying excessive space. Iron cores are laminated or powdered to reduce core losses (hysteresis and eddy currents) for an overall efficiency of 90% or better.

Figure 4 shows that the magnetic force increases directly with the increase in current between point O and point A. Between points A and B, the magnetic force increases little with the current increase. In other words, the iron core has acquired a magnetic saturation between A and B. Primary current above this saturation level will not induce additional voltage into the secondary. Transformers used in audio amplifiers often carry dc to further limit the saturation level. Audio current exceeding that saturation level will not induce additional voltage into the secondary. Thus, the secondary voltage will not have the same shape as the primary voltage wave—the secondary voltage waveform is distorted.

Transformer uses
The first use for transformers that comes to mind is the changing of voltage. Power companies commonly generate power at a low voltage, use transformers to step-up the voltage for transmission, and then step-down the voltage to a safe level for use in our homes. Within electronic apparatus using transistors, it is necessary to step-down the supplied 117 volts to a value of less than 50 volts. Tubes often require voltage greater than 117 volts, and step-up transformers are commonly a part of their associated power supply circuits. Filaments or heaters of electron tubes use lower voltages—5.0, 6.3, 10.0, 12.6—from step-down transformers.

Figure 5 shows a transformer of a full-wave rectifier circuit having a center tap on secondary winding. The transformer is shown in full-wave rectifier circuit having a center tap at point A. This center-tap divides the secondary voltage to two equal values, and provides a return path for the dc. Push-pull amplifiers use secondary transformers with center tapped primaries or secondaries.

Transformers are seldom used for the changing—step-up or step-down—of current. However because of the excessive voltage drop and power loss encountered in usual measuring methods, power companies often use current transformers in series with the transmission line as shown by Fig. 6. So-called “snap-around” meters use this same principle with the line conductor serving as the primary. The coupling of transistor amplifiers stages by transformers often steps-up the current, but this is the result of impedance matching.

A transformer, with its impedance ratio \((Z_p/Z_s) \) equaling the square of its turns ratio \((N_p/N_s)^2 \), is a convenient means of changing or transforming impedances. The transformer primary and secondary impedances may have different values, or their impedances may be different sizes—impedance may be in a different place. A transformer reduces the size of the impedance by a factor of \((N_p/N_s)^2 \). Transformer amplifiers are used in power engineering, in microphones, and in amplifiers, between transmission lines of differing impedances, etc.

Power of the automobile engine cannot be directly applied to its wheels, and must be coupled by gear and clutch arrangements. In a like manner, an oscillator circuit directly coupled to its load reduces the power feedback to the input and prevents oscillations. Figure 8-a shows such an oscillator circuit directly coupled to load \(R_1 \) while the transformer formed by inductors \(L_1 \) and \(L_2 \) serves to couple the circuit of Fig. 8-b to its load. The circuit of Fig. 8-b will oscillate while that of Fig. 8-a probably will not.

To eliminate some of the interference on power lines and to add a factor of safety isolation, transformers are often used. Isolation transformers with 1:1 turns' ratio have a non-magnetic (electrostatic) shield between the primary and secondary windings acting as a barrier to electrostatic fluctuations (Fig. 9). Since one side of the secondary can be grounded as shown in Fig. 9, there is a lower factor of knowing which side of the power line is at ground potential. Isolation type transformers are also used with audio transmission lines to eliminate undesirable noises as well as being a barrier to direct current.

Transformer ratings
Transformer ratings vary greatly with usage. Power companies use transformers rated in volt-ampere or kilovolt-ampere capacity. Ac circuits commonly have a phase difference between the voltage and the current, and the power consumption is seldom equal to the voltage current (EI) product. Thus, it is essential to rate the transformer by its maximum voltage-current product. A 1,000-watt load with a 30° phase difference and a power factor of 0.866 across a 115-volt secondary will draw a current of \(10.1 \times (1.000/115 \times 0.866) \) amperes, and the transformer capacity must be 1,160 volt-ampere or 1.16 kilovolt-amperes. Power transformers used in electronic equipment are designed for an 80% power factor, and the true volt-ampere rating is not given.

In addition to the power rating, audio output transformers are also rated with regard to impedance ratio and frequency response. The output transformer has an impedance ratio based upon the speaker impedance of 800 Hz. However, at other frequencies the speaker's impedance differs at 500 Hz. However, at other frequencies the speaker's impedance differs greatly, and any impedance match is actual...
TABLE 1. AUDIO TRANSFORMERS

<table>
<thead>
<tr>
<th>TYPES</th>
<th>PRIMARY Z OHMS</th>
<th>SECONDARY Z OHMS</th>
<th>POWER RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>MICROPHONE OR LINE TO GRID</td>
<td>100</td>
<td>70,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>400CT</td>
<td>195,000</td>
<td></td>
</tr>
<tr>
<td>LINE TO LINE OR VOICE COIL</td>
<td>500/1000/1500/2500/3000</td>
<td>8/16/24/32/40/48</td>
<td></td>
</tr>
<tr>
<td>PLATE TO P.P. GRID</td>
<td>5000</td>
<td>4/8/16/250/500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7000</td>
<td>20,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>4/8/16/500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/4/8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>40,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>90,000</td>
<td></td>
</tr>
<tr>
<td>OUTPUT</td>
<td>20</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>8/16</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>3.2/8/16</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>4/8/16</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>4/8/16</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>4/8/16</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>4/8/16</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>1250</td>
<td>4/8/16</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>2500</td>
<td>4/8/16</td>
<td>0.3</td>
</tr>
<tr>
<td>INTERSTAGE</td>
<td>100</td>
<td>10</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5000</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>50,000</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>5000</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>DRIVERS</td>
<td>20</td>
<td>36</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>200</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>200</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>200</td>
<td>0.05</td>
</tr>
</tbody>
</table>

ally a compromise. In turn, the frequency response of the output transformer and speaker combination is also a compromise within reasonable limits up to 12,000 Hz. As well as possible, high-fidelity hi-fi equipment makes use of high-frequency feedback and bass-boost systems to compensate for the inadequacies of the transformer-speaker combination.

Inter-stage audio transformers transfer little or no power. While inter-stage transformers used in tube circuits made the use of lower supply voltages possible, that advantage has become insignificant with transistor circuits. Inter-stage transformers are rated by their impedance ratios which will be a step-up (5,000: 1 meg.) in tube circuits and a step-down ratio (10,000:200) in transistor circuits.

Impedance and turns ratios of i.f. transformers for tube circuits are often not listed by the catalogs. This assumes that i.f. tube circuits are fairly standardized, but most i.f. transformers used in transistor circuits are listed with their impedance ratios.

Type of transformers:

Many early radio receivers used a step-up power transformer to provide 250 to 500 volts for the plate circuits as well as step-down transformers to supply the heaters. Quite often, these step-up and step-down transformers were combined with a single primary winding as shown by Fig. 10. In time, more efficient electron tubes and circuits made the voltage step-up unnecessary, and series wiring of heaters eliminated the step-down transformer. However, better television receivers used filament transformers to prolong tube life. Figure 11 shows the basic construction of a power or filament transformer with its windings formed on paste-board, and thin E- and I-shaped pieces of this iron core insulated by a coating of iron-oxide (rust). Plate supply transformers typically had secondary voltages up to 930 volts (46 volts each side of the center-tap) at 150 m.A., measuring 3 x 4 x 3 inches and weighing nearly 8 pounds.

With transistorized receivers operating on ac, it is necessary to step-down the 117 volts to less than 50 volts. Except for transistorized receivers and record players with large audio outputs, the current drain is low, and the power transformer does not need a heavy magnetic core. Filament and transistor power transformers have ratings of 2.5 to 30 volts at up to 30 amperes.

Audio frequency transformers used in coupling and impedance matching are similar in construction to power transformers. However, in most cases the current and power of audio circuits are small, and the core and windings need not be large. Most coupling and impedance matching audio transformers are rated by their impedance ratios as shown by Table 1. Power ratings are insignificant except for those used as driver and output transformers. Driver stage transformers have power ratings of 0.5 and 1.0 watt while output transformers may have as much as 35-watt capacity. Although often not listed, another important factor of audio transformers is the frequency response. Figure 12 shows the typical frequency response at A, a very poor response

(Continued on page 74)
Guglielmo Marconi

On December 12, 1901, an event took place on a hill overlooking St. John's, Newfoundland, which was destined to have a profound effect on the social, cultural, political, and economic affairs of all people and nations on earth from that day onward. At 12:30 PM on that cold and blustery day, a handsome young man of 27 worked busily at a table on which an unusual collection of electrical equipment was assembled. The building in which the apparatus was housed barely sheltered him from the harsh winds that blew outside.

The young man held a telephone receiver tightly to his ear, listening intently, his features strained. Suddenly, his expression brightened. He beckoned to his assistant, who had been waiting nearby, and handed him the receiver. "Can you hear anything, Mr. Kemp?" he asked.

Kemp took the telephone and pressed it to his ear. He listened for several seconds, then he smiled and nodded affirmatively, handing the receiver back to the young man whose name was Guglielmo Marconi.

Both had heard the three faint clicks in the receiver, Morse Code for the letter "S." The signal which produced the clicks had traveled over 2000 miles without wires, having been sent toward its frigid St. John's, Newfoundland destination from Poldhu, near Land's End, in Cornwall, England. The two men, Marconi and Kemp, heard the signals again at 1:10 and 2:20 PM the same day, and at 1:28 PM the following day, Friday, December 13th.

The announcement, given to the press on December 16, 1901, startled the world. Electrical signals had been sent across the Atlantic Ocean without the use of connecting wires!! The experiment, one of the more significant steps forward in the course of human history, climaxed seven years of work by the Italian scientist. The world would never be the same again.

GUGLIELMO MARCONI WAS BORN 100 years ago, on April 25, 1874, in Bologna, northern Italy. His father Giuseppe was an able and well-to-do businessman. His mother, Annie Jameson, was Irish. She had been born in Dublin, the daughter of Andrew Jameson, who operated one of Ireland's largest whiskey distilleries. Annie had come to Italy to study bel canto. There she met, and later married, Giuseppe.

As a child, Guglielmo had few friends. At the age of five, he went to England with his mother for two years, and his first elementary school education was at a private school in Bedford. For several years thereafter, his education was provided primarily by tutors and by his mother, who taught him in English. He went to school in Florence at age 12, and at 13, attended the Leghorn Technical Institute. In his teens, Marconi attended some of Professor Righi's lectures. Augusto Righi was Italy's leading authority on electromagnetic radiation. The lectures stimulated Marconi's interest in electrical phenomena, and by the time he was twenty he had read extensively on the subject.

The turning point in Marconi's life came when, at the age of 20 he read, while on vacation in the Italian Alps, a paper on the experiments of Heinrich Hertz. Using a battery, an induction coil, a switch, and a pair of metal plates with a spark gap between them, Hertz had produced an electrical dis-
charge between the metal plates. The discharge was detected several feet away by a circlet of wire with a small gap in it. When the discharge between the plates occurred, tiny sparks could be observed across the gap in the circlet, indicating that energy had been transferred through space.

Although he knew that a theory had been proposed postulating such waves, Marconi had not been aware that their existence had been proved experimentally. His imagination fired by the article, young Marconi curtailing his vacation and returned to the family's country estate, the Villa Griffone, outside Bologna. Signora Marconi had given her son a room on the third floor of the estate to use as a workshop and laboratory, and it was in this room that Guglielmo Marconi conducted his first experiments using electromagnetic waves as a means of communicating.

He started by duplicating the apparatus used by Hertz. After several failures, Marconi was successful. Guglielmo's early efforts consisted of modifying the Hertzian apparatus in an attempt to produce bigger sparks at greater distances. He had seen the possibilities immediately: Hertzian waves could potentially be used to transmit and receive messages over great distances without the use of wires!

It was not long before Marconi was able to produce a spark the full length of his room. This done, it became clear to Marconi that further development would have to lie in two directions: to increase the transmission distance of the sparks, and to make these sparks perform a function - to transmit intelligence in some manner. Young Marconi realized that development along these lines would take capital, and he went to his father for it. The elder Marconi was totally against his son's activities initially, but soon saw the commercial possibilities of his son's "wireless" experiments, and he gave the boy a substantial sum of money with which to continue his work.

He started with equipment being used by the others. This included the Hertzian transmitter in the sending circuit, and a receiver which substituted a coherer for Hertz's spark ring. The coherer had been developed by a French physicist, Edouard Branly, who found that if a small glass tube were filled with metal powder, then exposed to electromagnetic waves, the metal particles cohere - that is, their resistance dropped, and they were able to conduct electricity. Branly had used iron filings in his coherer. He used a galvanometer, an instrument designed to detect the flow of electric current, to show the coherer was working.

Although Marconi's new equipment worked, the ranges he obtained with it were comparable to those being achieved by other researchers in the field—a matter of yards at the most. Discouraged, Marconi turned to other electrical research — attempts to pick electrical discharges from thunderstorms using an elevated antenna. A sudden flash of insight inspired Marconi to combine the elevated antenna of the electrical storm experiments with his wireless equipment.

He mounted a copper plate atop a tall mast, and attached it to one end of his Hertzian transmitter. The other end was connected to a copper plate that was buried in the ground. At the receiver, Marconi erected a similar elevated antenna which was connected to one side of a coherer. The other side led to a metal plate in the ground. These modifications led to dramatic increases in the distance to which he could transmit his wireless signals. The grounded antenna, often referred to as a Marconi antenna, was the young inventor's first original contribution to radio, and for many years afterward, the symbol for wireless was an antenna with one end elevated and the other grounded.

The improvement in range was so marked that Marconi had to move his equipment out of doors to continue his experiments. There, he found that the distance he could transmit a signal varied approximately in proportion to the length of the vertical wires, as well as the height of the plates above ground. At this point, Marconi's equipment included a telegraph key and relay, which he had introduced in late 1894 and early 1895 experiments: this enabled him to produce long or short trains of sparks, depending on the length of the time the key was depressed. In the receiving circuit, Marconi replaced the galvanometer used by Branly with a battery-operated relay and a Morse inker which recorded the signals being sent. He also introduced a tapper into the coherer circuit. The tapper worked like a hammer in an electric bell. When reception of Hertzian waves caused the coherer's electrical resistance to drop to a low value, an electrical circuit was established between a battery and the tapper. The hammer thereupon gave the coherer a light tap which decelerated the metal particles, rendering them nonconductive until another train of waves arrived.

At the time the tapper was introduced, Marconi also introduced an improved coherer. He had found that the Branly tube was too erratic to provide reliable Morse signals, so he devoted considerable time to improving the device. He experimented with 300-400 different combinations of filings and metals before evolving a satisfactory coherer which contained nickel and silver. All of these modifications further improved Marconi's equipment as a communication device.

Each impulse reaching Marconi's receiver

M Marconi Transmitter and Receiver

- **ANTENNA**
 - M₁, M₂ = Metal Plates
 - S = Spark Plug
 - I = Induction Coi
 - K = Telegraph Key
 - B = Battery
 - C = Coherer

GROUND (EARTH)

TO RELAY

GROUNDED TRANSMITTER AND RECEIVER with elevated antenna were the key to greater communications range.
racing yachts in a tug which had been specially equipped with wireless equipment; sending back to shore a running commentary of race positions and developments in Morse code. This marked one of the first times wireless had been used for journalistic purposes.

Queen Victoria was so taken with the Kingston Regatta reporting that she requested that wireless communication be established between her residence at Osborne House, on the Isle of Wight, and the Prince of Wales, who was recovering from an injury aboard the royal yacht Osborne, several miles away. Over 100 messages were exchanged between the royal yacht Osborne, several miles away. Over 100 messages were exchanged these exchanges.

In 1899, the French Government requested that Marconi conduct tests to determine whether communication between England and the European continent was feasible. The tests, carried out over a 30-mile distance, were a complete success, and were given wide publicity by the many reporters from both countries who witnessed them. At last, wireless was beginning to gain international attention.

In the same year, Marconi came to the United States to conduct a series of tests for the war and navy departments. The American military, satisfied that Marconi's system was the best available, adopted it for use by the army and navy. While in the United States, Marconi gained widespread publicity by reporting the results of the America's Cup yacht races off Sandy Hook.

Although press coverage during Marconi's stay in the United States was excellent, and purchases of Marconi's equipment were made by the U.S. Government, the most significant development of Marconi's visit was the demonstration of wireless telegraphy at Signal Hill, Newfoundland. Marconi wireless telephone was used to send messages to Signal Hill, and the system was shown to be successful. The tests proved the feasibility of wireless communication over long distances.

In 1900, Marconi experienced serious competition from foreign sources, particularly from Germany, where Braun, Slaby, and Arco were notable workers. The head start Marconi had gained was being held, but others were close behind, and he needed some innovation that would give him a significant lead.

Frequency selection

One of the biggest problems at that time was co-station interference. Because control of the frequency at which the wireless equipment functioned was virtually nonexistent, it was a frequent occurrence to find that two stations operating in close geographical proximity drowned each other out. There was no way, in 1900, of separating a wanted from an unwanted signal, and with the growth of wireless communication, the problem of interference became more critical.

To overcome this problem, Marconi conducted experiments and developed a technique known as frequency selection. He realized that different types of antennas and transmitting equipment would affect the frequency of the signal, and he experimented with various configurations to find the optimal setup.

The first important development was the introduction of a fanning, or fan-shaped, transmitting antenna. This antenna was designed to reduce interference by reducing the directivity of the transmitted signal. Marconi used the fanning antenna in 1901 to transmit messages from Signal Hill, Newfoundland, to Poldhu, Cornwall, England. The transmission, which was the first transatlantic signal to Signal Hill at St. Johns, Newfoundland, was a significant milestone in the history of wireless telegraphy.

Marconi continued to refine his equipment, and by 1902, he was able to transmit messages across the Atlantic Ocean. The signal was received at the Marconi station in Brooklyn, New York, and the message was read at the manager's desk in the United States.

In the same year, Marconi demonstrated the feasibility of wireless communication between North America and Europe. The demonstration was a significant milestone in the history of wireless telegraphy, and it paved the way for the widespread use of wireless communication in the years to come.

The technology developed by Marconi had a profound impact on society, and it transformed the way people communicated. Wireless telegraphy allowed for instantaneous communication over long distances, and it revolutionized the way information was exchanged. The technology also paved the way for the development of radio, television, and other forms of wireless communication.

Marconi's work in wireless telegraphy was a testament to the power of innovation, and it continues to inspire scientists and engineers around the world. His legacy is a reminder of the importance of perseverance and dedication in the pursuit of knowledge and understanding.
tenna inductively to the transmitter, and made both this inductance, as well as the capacitance in the transmitting circuit, variable. These changes enabled him to tune his transmitting circuit to resonance, and the resulting oscillations radiated considerable electromagnetic energy.

Marconi then matched his receiving circuits to those at the transmitter, tuning to the frequency being transmitted. No longer did his wireless equipment radiate a broad band of frequencies. By using sinesine circuits with variable inductances and capacitances, he was able to detect and amplify the signal in the vicinity and, simply by varying the values of the circuit components, could transmit and receive with greatly reduced interference. As soon as he was certain that synton was the answer, Marconi applied for an inclusive patent of his system. On April 26, 1900, one of the most important patents ever granted, the famous No. 7777, was issued to Marconi by the United States. The stage for one of the great experiments of the age was rapidly being set.

Beyond the horizon

Concomitant with the work on sinesine or tuned circuits, Marconi had become aware of an apparent paradox in connection with his wireless system. He knew that, according to the well-understood laws governing electromagnetic wave propagation, wireless telegraphy ranges should theoretically never greatly exceed optical distances. This is because radio waves, like light waves, travel virtually in straight lines. Therefore, because of the earth's curvature, they would be expected to leave the surface at a tangent to disappear out into space. While diffraction and refraction effects would increase the range to a little beyond the horizon, no significant extension could theoretically be expected.

Scientists of the day were therefore unanimous in declaring that wireless telegraphy communication would be limited to just beyond the-horizon distances. Yet Marconi had found that, in practice, he was able to communicate well beyond twice those that mathematical calculation indicated. He did not know why this should be, he only knew that it was.

Encouraged by the 60- to 100-mile ranges he was already getting, Marconi decided to gamble by seeking whether the signals could bridge the Atlantic. The audacity of this scheme can be gathered by remembering that all wireless equipment at that time was small and battery-powered, whereas the transatlantic project would demand a huge power plant and an antenna system of a kind of never before visualized. Marconi proposed to erect two such stations, one on each side of the Atlantic, with which he hoped to effect two-way communication, and thereby to deal a mortal blow to the cable companies.

He put his proposal to his board of directors who were far from enthusiastic, for tremendous expenditures were involved and, according to the text books, the scheme could never succeed. At length, however, and with considerable misgivings, the board agreed.

When the news was released, many noted scientists scoffed. The earth was round. Hertzian waves traveled in straight lines, and the signals would be lost in outer space long before they reached their destination. There was no way, they said, that the experiment could succeed. Marconi was stubborn and would not be dissuaded.

To assist him, Marconi engaged the services of an eminent scientist and engineer, J.A. Fleming, who was Professor of Electrical Technology at London University. Fleming, who would later invent the diode detector, was an expert in the operation of high-power alternating current generators, and an authority on the work of Max well and Hertz as well. He had duplicated Hertz's experiments, and followed closely the work of Marconi in England.

In May, 1900, a station at Poldhu, on a finger of land just east of Land's End, Cornwall, was chosen for the transmitter site and a connection began in October, 1900, the work being carried out secretly. The size of the Poldhu station was massive. In place of previously used battery power supplies, a 32 horsepower power generator was installed to drive a 25 kilowatt alternator, whose output was 2000 volts. This voltage was stepped up to 20,000 volts by a transformer.

The antenna system at Poldhu consisted of 20 wooden masts, each 200 feet high, erected in pairs. This support was provided by horizontal tracks between each mast and the guy wires anchoring the masts were broken up and held together with guy wires. From an engineering standpoint, the horizontal support arrangement left much to be desired, because it meant that if one mast fell, it would in all probability carry the others down with it. The designers were aware of this shortcoming, but decided the gamble was justified, in view of the relatively low losses the system would have from leakage current. They would need every bit of power possible.

By March, 1901, the Poldhu station was nearly ready, and Marconi satisfied that things were going well there, sailed with an assistant for the United States. An ocean front site at South Wellfleet, Cape Cod, Massachusetts was chosen, and Marconi left the construction of the receiving equipment and the receiving antenna system, which was identical to that at Poldhu, to an assistant, and he returned to England.

FIRST TRANSMITTING ANTENNA at Poldhu - a circular array — was blown down in gale.

Preliminary tests conducted in the fall of 1901 from Poldhu to Crookhaven, on the west coast of Ireland, were successful. The distance between these points was 225 miles, well beyond the 186-mile record established from Poldhu several weeks before, and indicated once again that the Hertzian waves were not traveling tangent to the curvature of the earth. Since no other possibil-

ity was conceived of at the time, it was generally supposed by Marconi and his associates that the signals were traveling along the surface of the earth.

During the period of these preliminary tests, construction of the Cape Cod station continued while the finishing touches were being put to the Poldhu station. Then, in close succession, a double disaster struck. In September, the worst fears of the antenna designers were realized when a severe gale struck the west coast of England, and the antenna system at Poldhu was totally destroyed. In October, 1901, the work being carried out secretly. The size of the Poldhu station was massive. In place of previously used battery power supplies, a 32 horsepower power generator was installed to drive a 25 kilowatt alternator, whose output was 2000 volts. This voltage was stepped up to 20,000 volts by a transformer.

The antenna system at Poldhu consisted of 20 wooden masts, each 200 feet high, erected in pairs. This support was provided by horizontal tracks between each mast and the guy wires anchoring the masts were broken up and held together with guy wires. From an engineering standpoint, the horizontal support arrangement left much to be desired, because it meant that if one mast fell, it would in all probability carry the others down with it. The designers were aware of this shortcoming, but decided the gamble was justified, in view of the relatively low losses the system would have from leakage current. They would need every bit of power possible.

By March, 1901, the Poldhu station was nearly ready, and Marconi satisfied that things were going well there, sailed with an assistant for the United States. An ocean front site at South Wellfleet, Cape Cod, Massachusetts was chosen, and Marconi left the construction of the receiving equipment and the receiving antenna system, which was identical to that at Poldhu, to an assistant, and he returned to England.

Preliminary tests conducted in the fall of 1901 from Poldhu to Crookhaven, on the west coast of Ireland, were successful. The distance between these points was 225 miles, well beyond the 186-mile record established from Poldhu several weeks before, and indicated once again that the Hertzian waves were not traveling tangent to the curvature of the earth. Since no other possibil-

ity was conceived of at the time, it was generally supposed by Marconi and his associates that the signals were traveling along the surface of the earth.

During the period of these preliminary tests, construction of the Cape Cod station continued while the finishing touches were being put to the Poldhu station. Then, in close succession, a double disaster struck. In September, the worst fears of the antenna designers were realized when a severe gale struck the west coast of England, and the antenna system at Poldhu was totally destroyed. In October, 1901, the work being carried out secretly. The size of the Poldhu station was massive. In place of previously used battery power supplies, a 32 horsepower power generator was installed to drive a 25 kilowatt alternator, whose output was 2000 volts. This voltage was stepped up to 20,000 volts by a transformer.

The antenna system at Poldhu consisted of 20 wooden masts, each 200 feet high, erected in pairs. This support was provided by horizontal tracks between each mast and the guy wires anchoring the masts were broken up and held together with guy wires. From an engineering standpoint, the horizontal support arrangement left much to be desired, because it meant that if one mast fell, it would in all probability carry the others down with it. The designers were aware of this shortcoming, but decided the gamble was justified, in view of the relatively low losses the system would have from leakage current. They would need every bit of power possible.

By March, 1901, the Poldhu station was nearly ready, and Marconi satisfied that things were going well there, sailed with an assistant for the United States. An ocean front site at South Wellfleet, Cape Cod, Massachusetts was chosen, and Marconi left the construction of the receiving equipment and the receiving antenna system, which was identical to that at Poldhu, to an assistant, and he returned to England.

Preliminary tests conducted in the fall of 1901 from Poldhu to Crookhaven, on the west coast of Ireland, were successful. The distance between these points was 225 miles, well beyond the 186-mile record established from Poldhu several weeks before, and indicated once again that the Hertzian waves were not traveling tangent to the curvature of the earth. Since no other possibil-
FEMTOWATT—Here It Comes

The standards used to rate the performance of FM tuners and receivers have been varied and only loosely followed. A new standard proposed by EIA/IHF meets the needs of today's technology.

by LEN FELDMAN

The Electronic Industries Association (EIA) and the Institute of High Fidelity (IHF) recently held a joint engineering meeting to try to come up with one national (and hopefully, perhaps international) standard for measuring the performance of FM tuners and receivers. Ever since 1958, when the first IHF Tuner Measurement Standards were issued, the hi-fi component manufacturing segment of the audio industry has, for the most part, tried to specify product performance using these measurement standards. Mass-market manufacturers, such as makers of console "package" radio-phonographs and table model FM sets have either used specific portions of the IHF standards, sections of the older (1947 and 1949) IRE FM measurement standards (now the I-E-E), or have come up with measurement standards of their own to suit their advertising requirements.

Admittedly, even the IHF Standards of 1958 are sadly out of date. For one thing, they make no mention of stereo FM performance or related measurements, since in 1958, stereo FM was still three years away. New drafts of measurement standards developed separately by both the IHF standards committee and the EIA sought to update and clarify FM performance measurements in the light of present-day technology and knowledge.

Undoubtedly, the final approved version or versions will take proper account of such important parameters as stereo separation, stereo signal-to-noise ratio (which is always poorer than the S/N realized in monophonic performance) and stereo harmonic distortion. SCA and 38kHz carrier product rejection will also appear in the new standards, along with more wide-ranging intermodulation and harmonic distortion measurements in general—all intended to more clearly spell out the relative merits (or demerits) of an FM receiver product so that its performance can be meaningfully and completely compared with competitive products being shipped by the knowledgable audiophile. Details of these new measurement requirements will be reported on here as the new standards near finalization and issuance. Our purpose this time, however, is to analyze a much more fundamental concept which came under investigation at the joint EIA-IHF meeting—and that has to do with the way in which we measure signal input levels to receivers—be they FM, AM, TV, or other communications types.

![Diagram](image)

FIG. 1.—VOLTAGE RELATIONSHIPS using an FM signal generator matched for use with a receiver having an antenna input impedance of 300 ohms, balanced.

Microvolts vs power

Even though it is intuitively recognized by engineers and technicians alike that a signal induced in the antenna of any communications receiver involves a transfer of power to the antenna terminals, some segments of the industry (notably, in the consumer FM and AM receiver field) have traditionally dealt with signal inputs in terms of voltage or, more specifically, microvolts. Obviously, we can easily translate microvolts appearing across a given impedance into microwatts of power. For example, 10 microvolts appearing across an input impedance of 75 ohms may be expressed as 1.3 micro-microwatts (1.3 x 10^-12 watts) since power, \(P = E^2/R \). However, the same 10 microvolts appearing across a 300-ohm input impedance is equivalent to only \(3.3 \times 10^{-13} \) watts, or \(1/4 \) the previous power. Looking at it another way, if a manufacturer rates his FM tuner as having a sensitivity of 2.0 microvolts (referencing a 300-ohm input impedance), another manufacturer might well rate a similar product as having a 1 microvolt sensitivity if he refers his sensitivity to a 75-ohm input impedance, since \((2.0 \times 10^{-6})/75 = 1.33 \times 10^{-7} \) watts. Few manufacturers of true hi-fi components play this game any more, but the possibility of this abuse does exist, and either statement would be true if the manufacturer bothers to reference the impedance being used in the calculation.

"Hard" and "Easy" microvolts

Continuing to use microvolts rather than power as a reference input signal for tuner or receiver measurements leads to other possible points of confusion. The available power from a typical signal generator (used to measure FM performance) having a source voltage \(E \) (equivalent to the induced antenna voltage) and an internal source resistance of \(R \) (equivalent to the antenna resistance) is the power which would be delivered to a matched load (the receiver input terminals). It is equal to \(E^2/R \), where \(E \) is the open-circuit voltage and \(R \) is the generator output impedance.
resistance. The terminated voltage is the voltage delivered to the matched load, and is therefore equal to one-half the open-circuit voltage.

In the diagram of Fig. 1, the generator produces a voltage 2E, internally, and has a 50-ohm source resistance. Most generators are calibrated directly in terms of available power level—that is the power available to a matched load, so that they are direct reading in available power (or signal). Thus, in Fig. 1, the microvolts indicated on the generator's own internal voltmeter would be "E" rather than 2E. The resistors shown in the dummy antenna configuration serve to terminate the output of the generator, and present a "looking back" impedance of 300 ohms required by the 300-ohm antenna terminals of the receiver under test.

Using this kind of dummy antenna and working according to present IHF standards, a technician would consider the signal intensity applied to the receiver to be E/2, rather than the true open-circuit voltage of E. Thus, if the generator meter's reading was 5 microvolts, he would divide this figure by 2, and say that the receiver had only 2.5 microvolts applied. The reasoning, of course, is that half of the internally available "2E" voltage is voltage divided between the internal 30-ohms impedance and the external matching network. A second voltage division takes place between the voltage available across the 52-ohm resistor and the combination of series resistors and the internal impedance of the receiver (which is presumed to be exactly 300 ohms). Bear in mind that the generator's meter already takes into account the first such, and is calibrated to read "E" and not "2E."

This procedure has been labelled as the "soft," "easy," or terminated microvolts approach. Alternatively, "hard" microvolts are used by some to measure receivers, in which the number of microvolts would be the open-circuit microvolts (in this case "E"), or exactly the number of microvolts read by the generator's own meter—without the "divide by two" factor. Thus, if the meter reading is "5 microvolts," one faction might term sensitivity as 5 µV, while those who subscribe to the well-established IHF procedure would designate the same receiver's sensitivity as 2.5 µV.

Enter the femtowatt

The joint IHF-EIA committee has suggested that henceforth all input signal levels should be expressed in terms of available power, to avoid confusion over whether receiver sensitivity expressed in microvolts is in "open-circuit" or "terminated" microvolts. In addition to resolving the 6-dB ambiguity of "hard" vs "easy" microvolts, expression of receiver input levels in available power has been accepted for many years as being the more fundamental measure of receiver input level. It would be particularly advantageous when comparing measurements in receivers designed for different source impedances (as, for example, 75-ohm coaxial lines or 300-ohm lines).

To make the scale a convenient one, the reference level that has been selected is one femtowatt (1 x 10^-15 watt). 0 dBf, using this reference, works out to an open-circuit voltage of approximately 1.1 microvolt, and +120 dBf corresponds to 1.1 volt, both referred to a 300-ohm impedance level. The nomograph of Fig. 2, along with the accompanying notes, will enable the reader to translate any relationship between available power, open-circuit microvolts, and terminated microvolts at both the 300-ohm and the 75-ohm impedance levels. Typical sensitivity figures for today's state-of-the-art component tuners and receivers might be expected to fall at around 10 dBf, using this system. As can be seen from Fig. 2, this would correspond to an open-circuit voltage of 3.4 µV at 300 ohms, or a terminated voltage (similar to that used in the present IHF specs) of 1.7 µV.

Calibration of generators

Some FM generators are already calibrated in some form of decibel scale, but this should not be confused with the new femtowatt 0-dB reference. For example, one well-known generator is calibrated with a dB scale in which 0 dB is 1 volt, and a change of 20 dB corresponds to a 10 to 1 change in power level. However, a femtowatt reference is appropriate because it is the accepted unit of power in the International System of Units (SI).

Some FM generators have a calibration switch that allows the user to select different reference levels, such as microvolts, millivolts, or even decibels. The user should consult the manual or contact the manufacturer for the appropriate calibration setting to use with the femtowatt reference.

FIG. 2—NOMOGRAPH for translating microvolt signal-level standards to the dBf available-signal-power rating system.

FIG. 3—DUMMY ANTENNA for matching signal generator to unbalanced 300-ohm antenna inputs on FM tuners and receivers. The dummy antenna should be shielded to avoid stray pickup.
voltage. This scale would show a 1000-µV signal as -60 dB (the minus sign is in fact omitted on the actual scale). Still other generators have adopted a reference of 0 dB = 1 µV while others choose the 0-dB point as is direct reading in available power (once the new scale has been designed and affixed to the generator). If resistive pads are used for making the impedance match, the loss in available power would have to be subtracted from the generator reading to find the power available to the receiver. A few examples of dummy antennas for various configurations, together with corresponding available power loss, are shown in Figs. 1, 3, 4, 5, and 6. The latter two are required in making measurements such as capture ratio and selectivity, in which the use of two FM generators is required both in the old and newly suggested standards.

Standard input levels

Many of the presently required standard measurements made on FM tuners and receivers (such as distortion, separation, signal-to-noise, etc.), in accordance with existing 1HF measurement standards, require standard input signal levels of 1000 µV or 1 mV. It has been suggested that the new standard mean level for these measurements be done at an available power level of 60 dB. As can be seen from the nomograph of Fig. 2, this would correspond to an open-circuit input voltage of about 1100 microvolts (referred to a 300-ohm impedance level). For just about any tuner or receiver we can think of, this slight change in signal level would not materially affect measured results previously made at the 1000-µV level, and the figure of "60 dB" is a convenient and easily remembered one. Similarly, for those measurements (such as capture ratio and AM suppression) that were previously required to be made at a signal level of 100 microvolts, a power level of 40 dB would be substituted, corresponding to about 100 µV for 300-ohm impedance levels. This minor change, too, would not be expected to materially affect readings and performance ratings.

As of this writing, a final draft of the new combined FM measurement standards is being prepared. As noted, the new standard is far more comprehensive in scope than anything previously attempted with respect to FM performance measurements. As approval becomes imminent, we will report on some of the specifics and on some of the new parameters that 1HF members will have to report in their published specifications. In the meanwhile, the femtowatt, or power concept of signal input, may take a bit of getting used to on the part of engineers and technicians who have become accustomed to less meaningful signal level references. But once adopted, the system should prove simple, unambiguous, and easy to use. After all, we're all going to have to get used to the metric system before long, too—simply because it makes more sense than the system of measurement will be replacing.

WHAT IS A FEMTO?

Femto is a prefix meaning 10^{-15}. The proper symbol denoting femto is a lower case f. Be careful not to confuse it with F for Farad.
Liquid-Crystal Clock

Build it from a kit for $89.95. It runs on one set of pen light batteries for a year. Crystal oscillator makes it accurate.

We first broached the idea of a practical IC digital clock using low-power CMOS IC's driving a liquid-crystal digital readout in Radio-Electronics, one year ago, in the April 1973 issue. At that time we presented a construction article on just such a clock. Unfortunately, both the IC's and the readout were hard to come by, and their prices were staggering. Anyone building the clock now has one of the most expensive digital clocks our readers ever built.

Now, just one year later, we are pleased to report on a new liquid-crystal clock kit, that is very similar to the clock project we presented. It's the RCA model KC-4014 and will be available from RCA distributors across the United States for $89.95.

This is a complete kit with all parts and construction details. IC's, liquid crystal display, two-sided circuit board, case, oscillator crystal, even the batteries are included.

An interesting clock

The liquid-crystal display provides a 4-digit readout that tells the hour and minute. The colon between the hours and minutes blinks off the seconds. There are 18 CMOS IC's mounted on one side of a two-sided circuit board that has plated-through holes. The readout plugs into a special set of contacts that the builder solders to the board.

All parts except for the three time-setting switches mount directly on the circuit board. The switches are attached to the rear of the clock case and connected with ordinary hookup wire to the circuit board.

The oscillator crystal is in a miniature TO-8 type case. There is one special feature of this device that deserves special notice. When you take a close look at it you'll see that the top of the crystal case is transparent. This is done because the crystal is trimmed to its precise frequency after it is in its case. It's done with a laser.

The liquid crystal display is highly visible, as you can see in the photos.
COMPLETE SCHEMATIC OF THE CLOCK. CMOS IC's and liquid-crystal readout combine to make this completely portable unit that requires no ac hookup.

IC TYPES
IC1, IC3, IC4, IC6, IC7, IC9—KD2134
IC2, IC5, IC8—KD2135
IC10, IC11, IC15—KD2136
IC12, IC13, IC14—KD2137
IC16—KD2138
IC17—KD2140
IC18—KD2139

READOUT—KD2133
OSCILLATOR CRYSTAL—KD2141

List of RCA distributors who have this clock kit will be published by RCA next month.
and on this month's cover. This is true even when light levels are low. The reflective type display, with the back plate and black felt in front of it provides maximum visibility.

Why batteries?

Battery operation makes this clock completely portable and independent of the ac line. As a result you can use it anywhere, indoors or out. Battery powered digital clocks have been built before, but the major problem has always been the life of the battery. Normally, between the current drain of the IC's and the power required by the display, batteries will only last for a relatively short time. Some battery powered clocks are set up so the time display is turned on only when you want it, to conserve power.

In this clock we see only CMOS IC's. They, in conjunction with the liquid-crystal display (another power-saving device) make it possible. For more information on CMOS IC's see the article "CMOS—Why Is It So Good" by Don Lancaster in the December 1973 issue of Radio-Electronics.

If you are looking for full circuit operation of this clock we suggest you take a look at the April 1973 issue where we presented the original story "Battery-Powered IC Digital Clock" by Steve Leckerts.

R-E Puts it all together

Assembling the kit is a snap. The parts plug into the board and are soldered into place. Since the board has plated through holes you only have to solder on one side.

The one thing we did notice, is that this is not a quick 1-2-3 assembly job. There are 19 IC's and that means an awful lot of soldered connections that must be made. The biggest problem we had was making sure that we didn't create solder bridges between the IC connections. We do suggest that when you build your clock you double check each time you complete soldering one set of IC connectors. A solder aid brush and a hot iron are all you need to cure this potential problem.

It is vital that you use a small iron—one with small tip size that is. A 1/16-inch tip is excellent for the job. But except for this one caution, normal printed circuit assembly techniques will see you through.

After you've got all the parts on the board the batteries are plugged into place and the board fastened down over them. There's more than enough clearance, but make sure you trim all leads projecting from the bottom of the circuit board to avoid shorts.

With the circuit board in place the cover is fitted in place over the top and fastened down. Now it's just a matter of setting the clock to the proper time.

This is done using the three rear-panel switches.

If you find your assembled clock is not keeping precise time, you will have to adjust the oscillator frequency with the adjustment capacitor. This can be done with or without equipment. With a frequency counter you simply set the oscillator up to provide the exact frequency specified in the instructions. Using a communications receiver tuned to WWV, you can adjust the oscillator precisely in a matter of minutes. Without equipment you simply adjust the oscillator capacitor and wait a few hours to judge the result.

We tried setting up the clock without the counter and found that it took about four days to get the adjustment on the nose. Since then we've had the clock operating for about three months and find no significant drift.

R-E
THE IR FINDER

Infrared radiation is widely used in security countermeasures and in scientific, military and industrial applications. You can get to know what it's all about with this simple IR detector

by FORREST MIMS

THE IR FINDER is a sensitive, versatile infrared detection system that can be assembled in less than an hour, once the necessary parts have been collected. A variety of infrared detectors can be used with the unit. The completed instrument has many experimental and practical applications.

The heart of the IR Finder is a simple 2-transistor oscillator whose frequency is varied by an infrared sensitive photoconductive cell or thermistor. Infrared rays falling on the detector alters its resistance, changing the oscillator's output frequency. Normally, the output of the system is a low-frequency buzz. But when the unit is pointed toward a source of infrared, a high-pitched tone is heard.

The prototype IR Finder was installed in a small plastic flashlight case for convenience, and to take advantage of a built-in parabolic reflector. Using a parabola to collect the infrared is important for two reasons. First, it focuses more radiation on the detector. Second, a reflector is more efficient than a lens, since most kinds of glass absorb infrared. In essence, the reflector is to the detector what an antenna is to a radio.

While the flashlight I used is available from many distributors for about $1.20, the IR Finder can easily be installed in any convenient container. If you are using a flashlight case like the one in the photographs, begin construction by opening the flashlight and removing the battery contact from the top side of the back of the case. This makes room for a miniature phone jack. Leave the two battery contacts on the lower side of the case in place, as the unit's power supply cell will be inserted in this space later. Install the phone jack by carefully drilling a ¼-inch hole in the rear of the case in the space formerly occupied by the battery clip.

Following the parts layout in the photo, assemble the oscillator circuit. Solder the leads directly to one another to form a self-supporting structure. There are only three components to install, so a conventional circuit board is not necessary. Use insulation, if necessary, to prevent leads from shorting. Do not trim excess lead lengths from the components at this point.

When the components are soldered together, solder 2-inch lengths of hookup wire to the appropriate leads of Q1 and Q2 so they will reach the phone jack and detector contact. Then trim all excess lead lengths except from C1. Bend the leads of C1 as shown in the photo, and insert them in the appropriate spaces in the flashlight switch and phone jack. It isn't necessary to solder the two leads inserted into the contact holes as the friction should be great enough for a good electrical contact. Complete the electrical assembly by soldering the leads connected to the negative battery terminal and phone jack.

The IR Finder is completed by installing a detector. The prototype uses a small lead sulfide (PbS) cell purchased from Radio Shack as part of an infrared detector package. The cell sensitive to a range of wavelengths extending from about 1 to 3 microns at room temperature. Other detectors can be used as well—so long as their resistance varies with temperature or infrared. For example, a thermistor with a room temperature resistance that falls somewhere between 10,000 and 100,000 ohms can be used, but its response time will be much slower than the PbS cell. For near-IR detection at about 0.75 microns, an inexpensive cadmium selenide (CdSe) detector such as the Clairex CL703, CL1.603, or CL1.903 can be used.

The parabolic reflector of the plastic flashlight makes for a convenient detector installation. Remove the PR-4 lamp from the holder, and carefully break and remove the glass bulb. Be sure to protect your eyes from flying glass. A good technique is to wrap the bulb in several layers of tissue, and crack it with gentle pressure from a pair of pliers.
INSIDE THE IR FINDER. Battery contact is removed so earphone jack can be installed.

When the glass has been removed, carefully remove the filament with tweezers, wrap the detector leads around the filament support, and solder them in place. Trim any excess lead lengths when complete. The photo shows both thermistor and lead sulfide detectors attached to PR-4 lamp bases. Both have been used in the prototype IR Finder.

When the detector assembly is completed, insert it in the lamp receptacle in the parabolic reflector, and replace the reflector in the flashlight case. Turn on the device by pushing forward on the flashlight switch, and plugging in the earphone. When the IR Finder is pointed toward an incandescent lamp, a high-pitched tone should be heard in the earphone. The tone’s frequency will vary as the IR Finder is pointed away from the lamp.

The sensitivity of the IR Finder depends on the detector used. The PbS (lead sulfide) cell, for example, will easily respond to a candle flame more than 50 feet away. The PbS and thermistor detector will also respond to a hot stove, soldering iron, and even a warm auto engine. Sensitivity of the PbS cell is outstanding, particularly since its very small active area (only about 0.1 mm²) permits only a small amount of the IR collected by the reflector to be detected. A more efficient reflector system should improve performance considerably.

Other detectors give similar results. Cadmium sulfide and cadmium selenide cells will also detect a candle at about 50 feet, but they respond more to the flame’s visible light than to the infrared. Consequently, results with these inexpensive detectors will probably be best with the room lights turned off. The PbS cell and thermistor will respond nicely to the candle flame in bright ambient illumination.

Now that you’ve built the IR Finder—or at least are preparing to—don’t put it on the shelf after experimenting with it for a few hours. Keep it handy: it’s a great gadget for locating miscellaneous warm objects (ranging from hot water pipes to overheated electronic components), and it’s an interesting conversation piece to demonstrate to friends and associates who have not yet been turned on to the invisible world of infrared.

THE HAND-HELD IR FINDER. Pointing it at heat raises the note in the earphone.

TWO TYPES OF DETECTORS can be mounted equally well on the lamp base.

AUTHOR’S WIFE DEMONSTRATES with a visible source, which also emits infrared rays.
NOTE TO READERS
This is not a construction article! We have not seen an assembled version of the Electronic Casino. However, this story does contain enough information to enable a reader who expects to do a bit of experimenting to build the unit. If you do build your own version of the Electronic Casino, we’d appreciate receiving a glossy photo of the assembled unit and will publish it in our Letters column. —Editor

THIS IS A CONTINUATION OF AN ARTICLE that began last month. You’ll need the March issue for diagrams of the power supply and audio amplifier used for the sound effects of each game.

High card
Fig. 6 describes an electronic deck of cards used in a game of High Card. Cards 2 through ace can be drawn; however, no indication of suit is provided.

Instead of depressing a switch, this game is played by inserting a finger or other object into a slot in the panel containing a LED and phototransistor.

The LED is normally on which keeps the phototransistor turned on through the optical coupling between the two. When an object breaks the light path in this photosensor, Q20 turns on control transistor Q21 which starts a familiar three gate oscillator. The output of this three-gate oscillator clocks a 15-counter which has 13 states for the 13 cards and 2 states which are reset states. The counter is reset to state 1 when the game is turned on. No card number is displayed at this time. After the first card is drawn by triggering the photosensor with a finger, the oscillator clocks the counter at a several MHz rate. The counter goes through the sequence 2, 3, 4, . . ., 12, 13, 14, 2, . . . over and over. Count number 15 exists for only a few nanoseconds while the counter is reset back to count 2.

The A, B, C, and D flip-flop outputs are decoded according to the particular count number in the repeating sequence. Counts 2 through 9 correspond to cards 2 through 9. These counts are decoded by a 7447 7-segment decoder driver integrated circuit. A 7-segment LED display is driven by the 7447 to display the characters representing cards 2 through 9. Cards 10 through ace are decoded by TTL gates and through 7416 display drivers, display the special characters representing cards 10 through ace.

At the time the oscillator starts sorting through the “deck of cards” Q22 and Q23 are turned on energizing the circuit of Q24 which is a phase-shift oscillator operating at approximately 1
The output of this oscillator is coupled to the audio amplifier. The 1-kHz tone decays in amplitude as the 25-µF capacitor (in series with the collector of Q23) charges up. Thus the tone is heard immediately upon inserting a finger in the slot to draw a card. This “deck of cards” could be used for the game of “21”, as well as high card, and perhaps others. One thing nice about this card game—you never have to shuffle the cards!

The one-armed bandit

The circuit of Fig. 7 depicts a desperado who is famous for relieving you of your coins. In this economy version the Bandit can be awakened by merely pulling the big lever marked PULL—no coins required.

CMOS (Complimentary Metal-Oxide Semiconductor) logic circuits are used in this game. These IC's require only a few microwatts of power per gate function. High noise immunity and availability of complex function IC's are other advantages.

Upon pulling the lever and closing the PULL switch, three separate 3-gate oscillators are started. The output pulses of these oscillators are at different frequencies and are used to drive three decade counters. These counters continue counting 0-1-2- . . . 8-9-0, etc. until the switch is opened and the three separate timing capacitors discharge. For example, when the 1-µF capacitor discharges, the high is removed from the first 3-gate oscillator input and oscillation stops.

Each decade counter chip contains a BCD to 7-segment decoder. The decoded decimal number, represented in binary form by the counter, is fed from the device in the form of a segment drive signals to an LED display. The three oscillator/counter chains drive three different displays representing the left, center, and right wheels of a slot machine. The timing capacitor values are chosen to cause the left “wheel” to stop first, then the center, and the right last.

A phase-shift oscillator is switched on by a CMOS gate and control transistors Q25 and Q26 just as each oscillator stops. This oscillator provides a decaying 1-kHz tone to the audio amplifier when each “wheel” stops. A suggested scoring chart is provided in Fig. 6 to aid in playing the One-Armed Bandit game.

Undoubtedly, by now, some of the more ingenious among you have wondered how to convert this circuit to one which requires coins for operation and pays off in same. To paraphrase all good textbooks, this conversion is left as an exercise to the gambler!

Summary

The various schematics show resistor and capacitor values as well as TTL part numbers. The CMOS IC's are identified with RCA part numbers. Other sources of these IC's are becoming available. All diodes can be small-signal types with appropriate PIV and current ratings, except for the power supply diodes. Transistors are small-signal switching types except for the +5Vdc series pass transistor and solenoid driver which should be Motorola MJ6S02's, or similar npn power transistors. Depending on circuit layout and wiring, the various flip-flop IC's may require bypass capacitors across their supply voltage and ground pins. Generally, layout is not critical and the Casino can be built in a variety of forms. If you are so inclined, you can add or substitute games of your own design to the five described here.

The Electronic Casino should provide many hours of entertainment while constructing it in breadboard or more permanent fashion. Afterward you will have an electronic gadget which will create considerable interest and provide amusement for yourself, your family, and even your non-electronic friends.
Bell&Howell Schools introduces an amazing new color TV featuring channel numbers and digital clock that flash on the screen and automatic channel selector!

Now you can build and keep a color television that's ahead of its time!

You've seen TV's that swivel, TV's with radios built in, TV's small enough to stuff in a suitcase and TV's that have remote control.

But now comes a color television with features you've never seen before. Features now possible as a result of the new applications of digital electronics...

Channel numbers that flash big and clear right on the screen. An on-screen digital clock that flashes the time in hours, minutes and seconds with just the push of a button. An automatic channel selector that you pre-set to skip over "dead" channels and go directly to the channels of your choice.

And to insure highest quality performance, this new TV has silent, all-electronic tuning, "state-of-the-art" integrated circuitry, Black matrix picture tube for a brighter, sharper picture and 100% solid-state chassis for longer life and dependability.

Perform fascinating experiments with the exclusive Electro-Lab® electronics training system. It's yours to build and keep!

Designed exclusively for our students, this new Bell & Howell Electro-Lab® gives you up-to-date "tools of the trade", including instruments you can use professionally after you finish the program.

A new digital multimeter that measures voltage, current and resistance and displays its findings in big, clear numbers. Far more accurate and readable than conventional "needle pointer" meters that require guesswork and interpretation.

The solid-state "triggered sweep" oscilloscope is a "must" for accurate analysis of digital circuitry. Includes DC wide-band vertical amplifier and "triggered sweep" feature to lock in signals for easier observation.

The design console is a valuable device for setting up and examining circuits without soldering! Features patented modular connectors, AC power supply and transistorized dual range DC power supply.
Build it yourself... the perfect way to learn all about the exciting field of digital electronics!

It's part of a complete at-home program!

Imagine spending your spare time actually building your own 25-inch diagonal digital color TV! It's a project you can work on right in your home. You'll enjoy the challenge... exploring the new systems of digital circuitry and performing experiments to test what you learn.

There's no travelling to classes, no lectures to attend, and you don't have to give up your job or paycheck just because you want to get ahead. When you finish this new Bell & Howell Schools program, you'll have the skills you need plus a great color TV to keep and enjoy for years!

Digital electronics is changing our lives!

There's a lot more to digital electronics than just the numbers! True, that's what you see on more and more products like digital calculators, clocks and watches. But behind the numbers lies a fantastic technology that's creating higher standards of accuracy and dependability. The versatility of digital electronics has begun another industrial revolution. Its growth and applications are giving us new and better ways of doing things and spectacular products like this new Bell & Howell digital color TV!

You need no prior electronics background!

We start you off with the basics. You'll receive a special Lab Starter Kit with your first lesson so that you can get immediate "hands on" experience to help you better understand newly-learned electronics principles. Later, you'll use your new knowledge and learn valuable skills as you build the digital color TV. You can take advantage of our toll-free phone-in assistance service throughout the program and also our in person "help sessions" held in major cities throughout the year where you can "talk shop" with your instructors and fellow students.

Pick up valuable skills in electronics that could lead to extra income, full or part time... perhaps a business of your own!

Once you complete this new at-home program from Bell & Howell Schools, you'll have the specialized skills to service not only color TV's but a variety of today's most modern home entertainment electronics equipment. These skills could open up new income opportunities for you, full or part time. Get the complete story on this exciting, learn-at-home program...the world's first color TV course employing digital electronics technology! No better or more practical at-home training in electronics is available anywhere!

Mail card today for full details, free!

If card has been removed, write:

An Electronics Home Study School
DIETRICH INSTITUTE OF TECHNOLOGY
ONE OF THE
BELL & HOWELL SCHOOLS
4141 Belmont, Chicago, Illinois 60641

Electro-Lab is a registered trademark of the Bell & Howell Company.
Step-by-step TV Troubleshooters Guide

A TV set with multiple troubles can be a "dog" if you don't use the right approach. Let's look at a simultaneous sync, agc and color ills.

by STAN PRENTISS

Just in case you've forgotten, there are still some vacuum-tube color TV's around, and there will be some for at least another ten years. But the newer ones have their tubes and transformers, deflection and convergence assemblies mounted just a little closer together, and circuit board components buried a little further underneath. So with boards that don't unplug, hot tubes, and less working space, servicing these hybrid or all-tube receivers can become a chore. But the right tools and a considered approach can overcome many handicaps.

For instance, a "friend" brought in a 1967 RCA CTC22 (Fig. 1) that had the usual "minor" troubles such as no horizontal and vertical sync, agc that would cut off but not saturate, no color, and a brightness control whose rotation had positively no effect. He swore all tubes had been checked, dc voltages were good, and that just a little "twiddling" would turn the beast into a winner. I agreed that certainly something could be done. But instead of using a voltmeter, we put in a tube mount following the video detector, and scoped the first video amplifier and the sync, agc, and chroma driver V203. We found both a cathode-shorted 5GH8A and no output. The tube was replaced, but apparently damage had been doubly done, for the same troubles continued, and we still could not control sync or luminance, or produce color.

The approach

Now the worst possible action in such a situation is to begin pulling tubes, probing with voltmeters, and otherwise aimlessly killing time. What needs doing is to find the problem circuit as quick as possible, then select stage and components for checks in the likely area. The easiest way, of course, is with a well-calibrated dc oscilloscope, preferably with accurate, stable, triggered sweep. And the first point to look at is TP201, just following the video detector. Here you can determine if the signal has normal amplitude—that is, has approximately a ratio of 30 percent for sync pulses and 70 percent for video (fully modulated)—and whether there is clipping, smear (high-frequency information where it shouldn't be), ripple (low-frequency sinewave-type interference

FIG. 1—RCA CTC22 LUMINANCE AND CHROMA SUBSYSTEMS. The trouble was due to a shorted V203 (sync, agc, and chroma driver).
Weave, usually from the power supply), or sync compression, which ordinarily means age problems.

In the Y1W1 trace (Fig. 2), you can see none of these, even at the grid of the sync, agc, and chroma driver V203B, although the dc level is more than 3 volts negative, while the schematic shows only 0.3 volts positive. (But this voltage is probably static and taken without incoming signal.) C239, R235, and R239 probably generate some self-bias; so we'll pass this negative situation by for the time being.

In the plate circuit of V203B, however, with its 10-k, 3-W load resistor, no video shows (V2W1, Fig. 1), but the 100-volt-per-division dc has risen to 280 volts, the value of the receiver's dc prime power supply. With no ripple, adequate value, and steady state, there is obviously nothing wrong with B+ . . . Nonetheless, the V203B tube is not conducting.

Evaluation
Like any careful technician would, let's see what the screen grid, its divider, and bypass capacitor have to offer. RCA's dc readings say it should be between 90 and 120 volts. And here you read (on your dc scope) 0 volts! Do you jump on this right away? Not by a long shot! What's the voltage at the plate of V203A? It turns out to be 165. This indicates immediately that the pin 3 1-watt screen divider is probably open, since the 140-volt supply is less loaded, and therefore has risen 20 percent.

Before we move too fast, though, remember that brightness is frozen, age offers short range, and sync remains poor. If R243 is actually open, would one resistor cure all these problems? Chroma, sync, and age would certainly benefit, but the brightness control is nothing more than a negative dc bias for the grid of the second video amplifier, derived by diode rectification from the heater of the V706 video amplifier, and may not respond unless the video level itself changes radically when the sync, agc, and chroma driver fault is repaired. At any rate, let's see . . . And remember that not one portion of the receiver has yet been disturbed except for the exchange of a single tube—the 5GH8A—for a new one, to see if sync and chroma would return to normal. The tube mount and new tube remain in place.

So the next step is to remove both tube and mount, and look around. The first thing we see is a 1-watt resistor burned to a crisp, located "conveniently" as always, just under the large video detector and third i.f. transformer shielding. Another 0.5-watt resistor along side is little more than gray carbon ash. A look at their positions on the PW200 board reveals they are the R243 screen bypass and R241, the other portion of the series divider to the 140-volt bus. Obviously this is the seat of the problem, and both require replacing. A cathode short can do remarkable damage.

The repair
Since complete chassis removal is not easy, bottom and top retaining screws can be back ed out, and a little discreet prying will uncover the upper right and center subsection. Then, if the leads of the damaged resistors are clipped close to their bodies, a certain amount of solder-coated copper lead remains. A hot soldering iron and a pair of long-nose pliers can now be used on the component side of the board to push the cut leads through far enough to be identified. Then, tinned and shortened replacement resistor leads inserted in the pc board can now be easily located on the board's circuit side and soldered securely in place. The "pry" is then removed, safety insulation (hot chassis) checked, the tuner-to-chassis ground resoldered, and the usual dozen screws replaced.

But how about the 1,000-pF bypass capacitor that shunts R243—do you have to haul that out and check it too? Not at all! With your new 5GH8A sitting in the tube mount, simply put the dc oscilloscope to pin 3, and see what happens. If you have at least between 90 and 120 volts, there is no further problem at this terminal unless you see excessive signal. A 0.001-muF capacitor isn't going to remove all video here, so a modest remnant is all right.

The resulting waveforms for grid and plate of V203B now appear in Fig. 3 (W2). The Y1W2 top is 2 volts per division, and the Y2W2 bottom is 100 V/div. The only possible fault that can now be found might be the amplitude of the sync pulse portion of Y2W2. However, both vertical and horizontal sweeps are steady, and there is no reason to believe there are further problems, at least in this stage. Further, age will now swing from saturation to cut off, and remove all picture information at either end.

The color portion, however, does take many extra moments to merge from something nearly purple to normal flesh tones. Since there's no width problem, this often means slow warm-up of the picture tube or a second set of 5GH8A RGB-Y amplifiers. With a new set installed, the receiver turned on properly, color appeared and remained in satisfactory phase and amplitude, and focus plus overall luminance seemed ample. There was one other consideration, however . . . Are the chroma circuits aligned?

Using a vectorscope
In modestly priced tube receivers such as this one, burst transformers firing ringing crystals are often used to excite either a 3.58-MHz subcarrier
amplifier or oscillator, with the tint function simply an RC control about the oscillator itself. Now, if the tint potentiometer will turn flesh tones from natural to green at one extremity of rotation and to lavender at the other, you have the usual 30-degree plus swing on either side of control mechanical center, and nothing further need be done. If an adjustment is necessary, set the tint control at center, and twiddle the burst transformer for flesh tones while the receiver is on the air. The T703 3.58-MHz output transformer seldom, if ever, needs adjustment, and then only for an ac-de null. In this case, with only one bandpass transformer, all that needs tender adjustments are chroma take-off coil 1,701 and double-tuned bandpass transformer 1,701.

But we must use an oscilloscope/veectorscope that won't load the high-impedance tube outputs, and a color bar generator that hasn't got "crawlies," color bars that run up and down, or broad striped bars instead of narrow, clean ones. Here we used a new Sencore Color King IV and a Telequipment (Tektronix) D66 with Y-Y instead of X-Y inputs so that both Y channels are phase-matched and have identical and adjustable gains, plus the same 10-Megohm impedance when used with the usual 10X low-capacitance probes. Further, since this receiver is an R-Y and B-Y system, with luminance and chroma matrix in the picture tube, no removal of luminance information is necessary, as in RGB receivers where both luminance and chroma go to the cathodes of the picture tube already mixed.

Our initial pattern on a channel 3 input appears as in W3 (Fig. 4). The objective of the entire procedure is to get relatively symmetrical, straight-sided petals out of the pattern with absolutely no crossovers. Initially, be positive; your fine tuning places the magenta fourth bar from the left—the first color bar is usually hidden—exactly on target with tint control at mechanical center. Then go to chroma take off 1,701 and 7,011, and twiddle these two for best pattern.

If the initial pattern as shown in W3 looks this good on single bandpass transformer receivers, you could stop right here and not do a lick more. But there is a crossover in petal No. 1 (extreme left), and you may be able to reshape all petals symmetrically and delete crossovers at the same time with some careful manipulation of the bottom and top cores of 1,701; you're pretty close when the pattern in W4 (Fig. 5) is completed. A visual check of the color bars on the CRT still shows the fourth magenta bar where it should be, the tint control rotatable through its green to lavender range, producing flesh tones at center.

<table>
<thead>
<tr>
<th>R-E's Substitution guide for replacement transistors</th>
<th>PART XIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>compiled by ROBERT & ELIZABETH SCOTT</td>
<td></td>
</tr>
<tr>
<td>ARCH</td>
<td>DM</td>
</tr>
<tr>
<td>------</td>
<td>----</td>
</tr>
<tr>
<td>2N3065</td>
<td>NA</td>
</tr>
<tr>
<td>2N3066</td>
<td>NA</td>
</tr>
<tr>
<td>2N3067</td>
<td>NA</td>
</tr>
<tr>
<td>2N3068</td>
<td>NA</td>
</tr>
<tr>
<td>2N3069</td>
<td>NA</td>
</tr>
<tr>
<td>2N3070</td>
<td>NA</td>
</tr>
<tr>
<td>2N3071</td>
<td>NA</td>
</tr>
<tr>
<td>2N3073</td>
<td>RS276-2023</td>
</tr>
</tbody>
</table>

*Indicates a dual transistor for high-speed switching, diff amplifier etc. Likely to be a matched pair. Use two of the type specified, matching when necessary, on a curve tracer or lab-type transistor checker.

NA = NOT AVAILABLE

(continued next month)
boost filter: note that the boost goes through 560k before it gets there.

If you'll check that 10-μF electrolytic capacitor in the +135 volt line, you'll find that it's open! This puts the 12K resistor "in series" with the boost pulse, and raises the impedance so much that you don't develop any boost voltage. I found about 75 to 80 volts p-p of hash on the one I had, indicating that the capacitor was wide open.

Without boost voltage (which is the plate voltage of the 6DQ6 horizontal output) you won't get enough output:

you'll have half the high voltage and half the sweep width. This is a rather unusual circuit, but the basic reactions are just the same.

R-F
Train at home on NTS equipment like this:

NTS Audio Electronics Servicing
Know tweeters, woofers and baffles—sound distortion, amplification and control—public address and music systems. Kits you build and keep include Heath 60-watt stereo receiver, twin speakers, Volt-Ohmmeter, digital meter, in-circuit transistor tester, solid-state pocket radio.

NTS color and b&w tv servicing
Build the largest and most advanced solid-state color TV. A 315 sq. in. ultra-rectangular matrix picture tube, Varactor Diode Tuner, Electronic Character Generator and more. Or build B&W TV with cabinet. Both TV's feature "instant on" Automatic Fine Tuning, solid-state design, and more. Other kits you build and keep: Full-Transistor Pocket Radio, Troubleshooter, AM/SW Radio, Volt-Ohmmeter, Color Bar/Dot Generator, Electronic Tube and Transistor Tester, TV Vector Monitor Scope and 5-inch Oscilloscope. Send card or coupon for all new color catalog and full details today.

NTS Automation and Computer Electronics
Master computer servicing technology as you build this solid-state Compu-Trainer—an NTS exclusive! Duplicates circuit technology of giant computers in industry, do your own wiring, patch-cording, assembly. Other kits you build and keep: 5-inch wide-band solid-state oscilloscope, FET Volt-Ohmmeter, Electro-Lab.

NTS Electronic Communications
Earn your FCC First-Class Radio-Telephone License. Prepare for the test by building your own amateur phone 2-Meter FM Transceiver. NTS gives you the exact skills the FCC requires. Other kits you build and keep: fully transistorized Volt-Ohmmeter and regulated power supply.

Project Method Training — "heart" of the NTS system.
NTS Project Method Training is a better way to learn electronics. With easy-to-follow lessons, comprehensive kit manuals, large fold-out charts and more, you'll build advanced equipment while you learn electronics principles and applications. You'll learn how components work, why they work, what to do when they don't work. In short, you'll use your mind and your hands to develop ability and confidence. This is why the NTS Project Method is such an invaluable part of your program.

NTS gives you confidence-building extras!
- Job Getting Manual
- Advice On Starting A Business
- Answers To On-The-Job Questions
- Illustrated Electronics Dictionary
- Mechanics & Science Bulletins

NATIONAL SCHOOLS
Technical-Trade Training Since 1905
Resident & Home Study Schools
4000 SOUTH FIGUEROA ST., LOS ANGELES, CA. 90037
Feel at home on jobs like these:

NTS builds your confidence with more solid training in Solid-State

NTS Training on professional solid-state equipment prepares you for many careers — in many consumer, commercial and industrial fields. If television is your chosen field, you could join a first class TV repair center, start a shop of your own, or specialize in industrial applications of television such as security system installation. And other electronic fields are continuing to grow, revolutionizing industry and communications, even reshaping our own lives. Opportunities are opening in home entertainment areas, commercial audio systems, mobile communications, computer servicing, industrial controls and many other service technician areas. Yes, this is truly "The Age of Electronics." Your NTS training and the equipment you receive prepare you for these exciting careers wherever electronic technicians are needed. Start now! Build your confidence along with new skills in electronics. You may start earning extra money even before you graduate! Check your course on the card or coupon and mail today! No obligation. No salesman will call.

Classroom training at Los Angeles
You can take classroom training at Los Angeles in sunny Southern California. NTS occupies a city block with over a million dollars in facilities devoted exclusively to technical training. Check box in coupon.

Please rush Free Color NTS Guide To Careers in Electronics and Sample Lessons, plus information on course checked below. No obligation. No salesman will call.

National Technical Schools
Technical-Trade Training Since 1905
Resident & Home Study Schools
4000 So. Figueroa St.
Los Angeles, Ca. 90037

NTS guide to careers in Electronics
☐ Master Course in Color TV Servicing
☐ Color TV Servicing (For Qualified Technicians)
☐ Master Course in B&W TV & Radio Servicing
☐ Master Course in Electronic Communications
☐ Practical Radio Servicing
☐ FCC License Course
☐ Master Course in Electronics Technology
☐ Automation & Industrial Electronics
☐ Computer Electronics
☐ Basic Electronics
☐ Audio Electronics Servicing
☐ Audio Technology for Qualified Technicians

NAME __________________________ AGE ________
ADDRESS _________________________
CITY _____________________________
STATE __________________________ ZIP ______
☐ Check if interested in Veteran Training under new G.I. bill.
☐ Check if interested ONLY in Classroom Training at Los Angeles.

Approved for Veteran Training
Accredited Member: National Association of Trade and Technical Schools; National Home Study Council.

Dept. 206-044
Reduce shock hazard
Bypass line noise
use TRIAD isolation transformers

Available from stock
at your Triad Distributor

Since many TV sets now have one side of the power line connected to the chassis, an isolation transformer is a "must" to prevent shock. For safety's sake, use Triad when you have a set on the bench to repair.

Triad isolation transformers are also ideal for use in screen rooms for isolation of laboratory test equipment... reduction of line disturbances... elimination of undesired grounds. Available in a wide range of volt-amperere ratings for operation at 50/60 Hz. Static shielding, separating primary and secondary windings, provides inductive coupling which is essentially free from capacity coupling. Write for the Triad catalog today. Triad-Utrad Distributor Services. 305 N. Briant St., Huntington, Ind. 46750

ALL ABOUT TRANSFORMERS
(continued from page 43)

at B, and an ideal response at C. The typical transformer response varies less than 2.0 dB between 100 and 10,000 Hz, and is acceptable for most uses.

For replacement purposes, the "universal" audio output with many taps for impedance variation has been popular for many years. Figure 13 shows a similar transformer that has recently become popular with 70.7-volt audio distribution systems. With this system, the output of an audio power amplifier at 70.7 volts (or 25 volts) can be divided in any desired manner among any number of speakers. And those speakers may have any combination of impedances.

Although meeting the definition of a transformer, the two windings used to inductively couple stages of radio frequency amplification are seldom referred to as being a transformer. Naturally this is one reason that most receivers use a heterodyne system to develop the intermediate frequency (i.f.). With standardization of the intermediate frequencies at 455 kHz., 4.5 MHz., 10.7 MHz., and 48 to 48 MHz. for the various broadcast services, it becomes simple to design and construct transformer units. Such i.f. transformer units usually include capacitors, resistors, or other inductors associated with the resonant and amplifying circuits. For example, the converter of a standard broad-

COMPONENT LEAD BENDER

- Eliminates trial and error lead bending.
- Fast, exact, thumbwheel adjusted spacing between bends.
- "Breezes" through special units and short production runs.
- Increases production 50%. Pays for itself within a week.

Ask for MODEL N-300 for 1/4 watt and larger components; MODEL N-400 for micro-components.

Security is the infant TV
was in 1954

By 1994 most American homes and businesses will have security systems just as most have a TV set today.

In 1974 some electronic service technicians and communication specialists are going to enter the security field by installing 8 to 10 security systems.

PLC Security Systems are designed and prepackaged for installation by electronics businessmen, and the proof is in the PLC catalog. Send for your free copy today.

Circle 19 on reader service card

CAUTION: In all cases where a 115/230-volt source is available, safety regulations require that the primary and secondary windings of any transformer be grounded at the chassis in order to eliminate any possibility of shock.
cast receiver feeds into an untuned primary of an i.f. transformer as shown by Fig. 14. Also included within this transformer unit is the capacitor C5 of Fig. 14 which resonates with the secondary inductor L5. The i.f. transformer feeding into the FM discriminator (Fig. 15) also has a capacitor coupling the high side of the primary to the secondary center-tap as well as an rf choke.

TV receivers make use of a special transformer in developing the very high voltage (up to 30,000 volts) accelerating the electron beam toward the picture tube screen. This is the horizontal output or flyback transformer. It has only one winding, and is a type of autotransformer. In Fig. 16-a, a small portion of this single winding is the primary of a step-up transformer. With the entire winding of the autotransformer in Fig. 16-b used as the primary to develop the magnetic field, it becomes a step-down type. Sawtooth voltages fed into the primary (between A and B of Fig. 16-a) produce a high voltage across the secondary between A and C. Actual flyback transformers have other secondary windings providing filament voltage for the high-voltage rectifier as well as horizontal deflection current.

Fig. 15—FM DISCRIMINATOR TRANSFORMER has tuned windings and capacitance coupling to the secondary center tap.

Fig. 16—AUTO TRANSFORMER may be step-up (a) or step-down (b), depending on connections.

The fastest, easiest, most-reliable, least-expensive way to test transistors

Sprague's Model A Transistor Curve Tracer by Jud Williams Incorporates Dynamic Signature Pattern™ Servicing Technique

Eliminate transistor damage. Did you ever unsolder a transistor to test it, find it defective, then wonder if it was ruined in removal? Or, if the device tested OK, how about the ticklish job of resoldering without damage to either transistor or board? The solution to such problems is in-circuit testing with the "Signature Pattern" technique.

What are Signature Patterns?

They are scope readouts of the dynamic impedance of in-circuit transistors. With this unique test method, the transistor under test is actually turned on, not merely made to oscillate, as with conventional techniques. The "Signature Pattern" method of trouble-shooting has these definite advantages: (1) Quick, decisive, "good-or-bad" tests of suspect transistors; (2) Discovery of defective components within transistor circuits even when transistors are good; (3) Elimination of damage to transistors and other components; (4) Safe testing with system power removed.

Quick, accurate tests. By observing the family of curves, you can determine at a glance such parameters as gain, linearity, saturation, avalanche point, and leakage. No zeroing or balancing is necessary. The Model A also performs the all-important breakdown voltage test. It will identify a transistor type as either silicon or germanium. In addition, it will analyze an FET as either junction-type or insulated gate, as well as determine the pinch-off voltage.

Service modules profitably.

With more and more set-makers switching to modular circuitry, it becomes economically difficult for service shops to stock a variety of plug-in panels in quantity . . . not to mention excessive costs to your customers when panel replacements are made. Also, you waste valuable time processing paper work and preparing modules for shipment to the factory for repair or credit. The practical solution is to quickly and economically repair defective modules in your own shop with the "Signature Pattern" test technique.

Low-cost testing.

When the Sprague Model A Curve Tracer is connected to any general-purpose scope, you have the most complete semiconductor servicing facility possible at a budget price . . . only $149.50.

Get the Sprague Model A Transistor Curve Tracer from your Sprague distributor now. Or, ask him for Brochure M-957. If his supply of brochures is depleted, write to Sprague Products Co., 81 Marshall St., North Adams, Mass. 01247.

R-E
new products

More information on new products is available from the manufacturers of items identified by a Reader Service number. Use the Reader Service Card inside the back cover.

TRANSISTOR AND FET TESTER, TF26 Touch Tone Cricket. Just hook the test leads to the three elements in any pattern and push the buttons. The "Cricket" chirps, indicating a good test. Good/bad levels are indicated on a meter. Without removal of circuitry, you can see the "signal" and "current" measurements. Light shows good or bad for replacement without removal from circuit. Out-of-circuit leakage test in microamps is included.

The Pencil Soldering Iron with Operating Light, 2 Heats and On/Off Switch

Model 5405
Soldering Iron Length 8¼" Weight 2 oz.
- Light shows when it's on
- 2 heats—20W and 40W—for any job
- Ironclad tips for longer life
- Cool, unbreakable polycarbonate handle
- Burn-resistant neoprene cord
- Converts to a desoldering iron with low cost attachment

$10.95 NET

The Pencil Desoldering Iron with Operating Light, and On/Idle/Off Switch

Model S10
Desoldering Iron Length 8¼" Weight 3½ oz.
- Light shows when it's on
- Operates at 40W; idles at 20W for longer life
- 6 tip sizes available to handle any job
- Cool, unbreakable polycarbonate handle
- Burn-resistant neoprene cord
- Exclusive new bracket insures alignment, prevents damage

$15.95 NET

New kits also available!
- Soldering Kits
- Desoldering Kits
- Soldering/Desoldering Kits

See your distributor or write...

Circle 32 on reader service card

FUNCTION GENERATOR, model MK1 features decade frequency ranges from 10 Hz to 1 kHz, dc offset control, 20 volts p-p maximum output; variable plus calibrated attenuator, output amplitude flat over entire frequency range, auxiliary TTL output on rear panel. FM or VCO operation through rear panel jack. Independent controls: waveform symmetry constant over frequency range.

Dial accuracy: ±5% of full scale. Variable attenuator: 0 to 20 dB, minimum, calibrated attenuator - 3 positions—normal (0 dB), -20 db, and -40 dB. Output impedance is 600 ohms; sine wave distortion less than 3% from 10 Hz to 100 kHz, less than 5% from 100 kHz to 1 MHz. Power requirements: 117 Vac 60 Hz, less than 10 W. 11 x 4 x 8½" in., kit $135.00; assembled $195.00—American Circuits and Systems, Inc., R. D. Box 149, Planetarium Station, New York, N.Y. 10024.

Circle 33 on reader service card

BREADBOARDING SYSTEM, Proto Board 103. Allows user to build, plug-in, modify, wire, test, add, or remove circuits quickly, using twenty four 14-pin DIP’s, without solder or patch cords. Input/output and processing circuits separate by using different power buses and separate sockets for every part of the design. Each section can be tested independently because user can break up power and ground lines. Extra IC’s or components can be plugged-in and interconnected with No. 22 AWG solid hook-up wire.

Board uses multiple OT sockets and bus strips as interconnecting components for expanding or contracting a system. There are 2,250 solderless plug-in point tie points. Socket array consists of three QT-59S’s with 1,770 tie points (354 terminals with 5 tie points each). Distribution matrix (bus strips) consists of three QT-59B’s with 480 tie points (8 buses of 50 tie points each). There is one QT-47B with 80 more tie points (2 buses of 40 tie points each). 6 x 9 x ¼ inches: $59.95.—Continental Specialties Corp., 325 East Street, P. O. Box 1492, New Haven, Conn. 06509.

Circle 34 on reader service card

EXCITER/TRANSMITTER, B-910 & B-910T. 10-watt educational FM broadcast transmitter and FM exciter. Phase-lock techniques control the FM oscillator operating at one-half the assigned frequency. Features low FM noise: -68 db or better, all distortion at 0.3%, and -0.5% leakage test.
Everything you wanted to know about CD Ignition Systems but didn’t know whom to ask.

Send for FREE Tiger booklet (20 pages) which answers all your questions.

Name__________________________

Address_______________________

City___________________________

State__________________________ Zip________

CLIP OUT THIS AD AND SEND TO—

TRI-STAR CORP.
P. O. Box 1727 Dept. H
Grand Junction, Colo. 81501

Circle 23 on reader service card

BURGLAR ALARM BUSINESS!!!

Burglar alarm installation is one of the most rapidly growing industries today. The tremendous publicity associated with security systems has created a widespread demand for installation of alarm systems.

A formal program has not been previously available to an individual seeking training in this profitable field. Now Ademco, the world’s leading manufacturer of burglar alarm equipment offers you an opportunity to learn alarm installation techniques even if you have little or no experience in the alarm field. In just two short days you can be ready to install your first alarm!

Seminars are held throughout the year at Ademco’s plant in Syosset, New York and at various locations throughout the country. All sessions are limited in attendance, so reservations should be made well in advance.

FOR FURTHER INFORMATION CONTACT:
ALARM DEVICE MANUFACTURING CO.
A DIVISION OF PITTWAY CORPORATION
165 Eileen Way, Syosset, N.Y. 11791
Area Code 515-921-6700

Circle 24 on reader service card

Circle 36 on reader service card

Circle 37 on reader service card

frequency response. Permits immediate conversion to stereo and/or SCA multiplex by inserting optional modules.

Automatic protective circuitry provides indication of phase lock condition, plus carrier interruption if center frequency should shift 100 kHz or more from assigned operating frequency. Metering of all supply and phase lock control voltages, relative if output, and semi-peak audio input voltages is provided. B-910 exciter $1,995.00; B-910T transmitter $2,330.00 — McMartin Industries, Inc., 135 South Columbus Avenue, Mt. Vernon, N.Y. 10553

Circle 35 on reader service card

LOUDSPEAKER SYSTEM. Advent 2 is housed in molded cabinet composed of inner shell of high-density polyurethane, bonded to outer shell of thermoplastic.

Uses acoustic suspension woofer and 2 direct radiator tweeters. Resonance is 58 Hz; nominal crossover point is 1500 Hz; impedance is 8 ohms; recommended minimum power is 10 watts per channel. 11 1/2 x 19 x 7 1/4.; $58.00 — Advent Corp., 195 Albany Street, Cambridge, Mass. 02139.
LOW COST
DIGITAL KITS

NEW BIPOLAR MULTIMETER:
AUTOMATIC POLARITY INDICATION

Model ES 210K
Displays Ohms, Volts or Amps in 5 ranges
- Voltage from 100 microvolts to 500 V
- Resistance from 100 Milli-ohms to 1 Megohm
- Current from 100 Nanoamps to 1 Amp
Case ex: $12.50; Optional probe $5.00

40 MHZ DIGITAL
FREQUENCY COUNTER:
- Will not be damaged by high power transmission levels
- Simple, 1 cable connection to transmitter's output.

ES 220K -- Line frequency test base. 1 KHz resolution, 5 digit: $69.50 Case extra: $10
ES 221K -- Crystal test base. 100 Hz resolution. 6 digit: $109.50 Case extra: $10.00

DIGITAL CLOCK:

ES 112K/124K -- 12 hr. or 24 hr. clock: $46.95
Case extra: Walnut $12.00 • Metal $7.50

CRYSTAL TIME BASE:
ES 201K -- Optional addition to ES 112K, 124K or 500K. Mounts on board. Accurate to 0.02%.

1 D REMINDER:
ES 200K Reminds operator 9 min. 45 sec. have passed. Mounts on ES 112 or 124 board. Silent LED flash $10.95 Optional audio alarm $4.00 extra.

TAPE DECK, OD-5500 has record and playback in 4- and 2-channel modes. Auto reverse operates for 2-channel playback and record. Three-motor design: capstan motor is 4-pole/8-pole hysteresis type; reel motors are 6-pole induction types. Low-distortion, high-linearity record/play prepream uses 3-stage direct-coupled negative-feedback design with wide dynamic range. Four microphone and 4 line inputs allows 3-way mixing. Has independent-4- and 2-channel outputs; 6-position record selector switch. Cue button moves tape against playback head when machine is in either fast mode.

Transport mechanism operates via pushbuttons and electromagnetic relays with built-in delay circuit to prevent undue pressure on tape: automatic shut-off stops reel motion when tape is wound on either reel or when tape breaks; tape shifters move tape away from head surface during last operation. Frequency response at 3 kHz is from 30 to 12,000 Hz ±3 dB, and 20 to 20,000 Hz ±3 dB at 7½ ips. Signal-to-noise ratio is 60 dB. Wow and flutter is less than 0.12% at 3 kHz, and 0.07% at 7½ ips. Channel separation is better than 50 dB at 1 kHz. 16x x 21x x 10½ in.; 53.4 lbs. $749.50 — Sansui Electronics Corp., 55-11 Queens Blvd., Woodside, N.Y. 11377.

Circle 38 on reader service card

OP-AMP DESIGNER, OA-2, is used in linear and CMOS digital circuitry. Updated version of the OA-1 features heavier current capacities on all three power supplies (175 mA on the +/-15-volt supplies and 500 mA on the +5-volt) with current limiting throughout. Has sensitive null detector and full function generator with external frequency adjustment. Interconnections are solderless, and use SK-10 socket and EP-22 breadboarding pins incorporated in the design. Kit $89.95; assembled unit $139.295 — EEL Instruments, Inc., 61 First Street, Derby, Conn. 06418.

Circle 39 on reader service card

MULTI-PURPOSE RECTIFIER, series MPR. Eight-pin octal base plug-in rectifiers can be programmed into various rectifier configurations such as center-taps, bridges, voltage multipliers, half-wave, etc.

Consists of four voltage types with each type containing four independent, electrically isolated diode elements. Basic peak reverse voltages (per type number, per element) at 500, 1,000, 1,500, and 2,000 volts are available. Rectified current output currents from 0.05 to 3.0 amperes average. All diode elements have 50-ampere peak single cycle surge current rating. Price (14 qty): MPR105 (500 volts) $4.85; MPR110 (1,000 volts) $7.35; MPR115 (1,500 volts) $9.60. MPR120 (2,000 volts) $12.25. (*) = voltage ratings per element when programmed into either single-phase bridge, dual-center-tap or quadrupler configurations.—Rectifier Components Corp., 1112 Lousons Road, Union, N.J. 07083.

Circle 40 on reader service card

FASCINATING HOBBY!

VINTAGE RADIO brings you the pioneer days of wireless and radio in pictures. The collector's bible, it opens doors to a new hobby. Great browsing, too. Over 1,000 pictures, 263 pages, 1887-1929.

RADIO COLLECTOR'S GUIDE lists over 50,000 facts on 4,000 radios, 1921-32: maker, model, year, original price, style, circuit type. 264 pages.

Send Today to Vintage Radio, Dept 'R', Box 2045, Palos Verdes Peninsula, CA., 90274

Vintage Radio, hard cover $6.95
Radio Collector's Guide 4.95
Radio Encyclopedia, hard cover 12.95
Radio Encyclopedia, paperback 9.95
Postage paid, California residents add 5% Tax.

Name __________________________ Street __________________________
City __________________________ State __________ Zip ______

Enjoy The Old Days!
The practical cordless original

When the Wahl Iso-Tip® Cordless Soldering Iron was introduced, it became practical to eliminate the cord from soldering.

Weighing only six ounces, compact and fast heating, the Iso-Tip can make up to 125 electronic joints (or more) per charge.

Its recharging stand repowers its batteries overnight. And its worklight lets you see what you’re soldering.

Accessories include carrier storage tube, auto charger, and 4 replacement tips. For all the details, see your local electronic component distributor.

Still the greatest advance in soldering since electricity.
weather continued to rage. In spite of the weather, an antenna carried aloft would have been sent to an altitude of 400 feet, and Marconi began his listening vigil in the hospital room. But the howling winds made the motion of the kite highly erratic, dipping and soaring like a terrified bird. These sporadic movements altered the angle of the kite relative to the earth, as a result of which the characteristics of the antenna were in a constant state of flux. Marconi heard nothing.

He had substituted a telephone receiver for the Morse inker which he had been using. The latter would have given Marconi a printed record of the experiment, but was not as sensitive to signals as the human ear.

Marconi also replaced his syntonic receiver with an older model. Different types of coherer were employed; one of these was to so-called Italian Navy coherer which had been developed by a lieutenant in the Italian Navy. Lougi Solari; it consisted of a glass tube with a plug of iron at one end and carbon at the other. With a globe of mercury between the device is of the ionization-historic interest because it appears to be a forerunner of the semiconductor rectifiers brought into use nearly half a century later. Semiconductors employ dissimilar materials to rectify current, and the mercury, coated by an oxide layer, constituted the elements of the rectifier.

Marconi listened intently, growing more discouraged by the moment. Suddenly, at 12:30 PM on December 12th, he heard the signals! Uncertain at first, he continued to listen. Soon, there was no doubt. The faint but unmistakable signals were there, and Kemp was shortly to confirm their presence. The series of dots could only be coming from Poldhu, some 2000 miles to the east. Marconi's second assistant, Paget, was ill on December 12th, and was not present: he would regret the illness the rest of his life.

On the following day, signals were again faintly for a brief period, in spite of a howling storm that raged. By December 14th, however, it had become apparent that obtaining evidence on the inker was not feasible with the equipment at hand, and that no better receiving apparatus could be erected because of the terrible weather conditions. Marconi then had to decide whether to announce the results to the world. There

was an instant's pause before he decided to announce the results.
were, after all, no objective witnesses to the accomplishment. After cabling London with the results, Marconi advised the press on December 16th.

Marconi was immediately involved in several stormy controversies. On December 16th, the Anglo-American Telegraph Company, which had a monopoly on message-carrying activities throughout Newfoundland, threatened legal action if the experiments were not terminated at once. Marconi decided not to contest the action, which could have been costly and time-consuming. The United States or Canada had no such monopolies in existence, and since no significant outlay for receiving equipment had been made in Newfoundland, there did not seem to be much purpose in fighting.

The second, and more far-reaching, controversy involved the accuracy of Marconi's report. In the absence of proof of his claim, many prominent scientists throughout the world expressed doubt about what he actually heard, believing that what he thought were signals could have been caused by heavy static.

It should be pointed out that to this day, a number of responsible and respected scientists believe that no signals were actually heard on December 12, 1901, and that the story was a "myth." Several reasons have been given to support the contention, the most important of which were the primitive nature of the receiving equipment and the wavelength of the signal. Although the exact wavelength was not measured at the time of the experiment, Marconi himself has stated it was about 366 meters (0.20 kHz).

(continued on page 83)
next month

MAY 1974

■ New Projection Color TV
This set, available now, delivers a color TV picture that measures 4 feet by 5 feet. It costs $2500. We show how it works and what it will be like to service.

■ Inside MATV Antennas
Forest Belt tells what’s new and what’s different in these special-purpose TV antennas.

■ What’s New In Automotive Electronics
New circuits and devices are common in today’s automobile. Both add-on and orginal-equipment items are described in this article.

■ Designing Active Bandpass Filters
Don Lancaster shows how to design an inductor-free high-Q bandpass filter circuit. Use it for electronic music in percussion and bell circuits, as well as for audio filtering.

■ New Noise-Reducing Circuit For FM Tuners
It’s in the new line of Pioneer equipment and it works. Get the details in this story by R-E’s Contributing High-Fidelity Editor

PLUS:
Appliance Clinic
Service Clinic
R-E’s Transistor Replacement Guide

MAY ISSUE ON SALE APRIL 16, 1974
Lend a Hand — And a Home

If your family cares about the world and its people...

If you live in a community that shares that concern...

Then let a student from another culture understand you and your life better.

Invite an AFS scholar into your home.

AMERICAN FIELD SERVICE
INTERNATIONAL SCHOLARSHIPS
313 East 43rd St., New York, New York 10017

MARCONI
(continued from page 80)

In light of our present knowledge of propagation phenomena, the tests took place at the worst possible time, because both the transmission site and the receiving site were in daylight. There is little possibility that the frequency of 820 kHz could propagate over 2000 miles during daylight because absorption by the ionosphere during those hours is at a maximum, and even powers of the order of thousands of kilowatts would not deliver a significant signal over the Atlantic in that frequency range.

G.R.M. Garratt has theorized that reception of the signals did not take place at the frequencies for which the equipment was designed, but at much higher frequencies: the Poldhu transmitter probably radiated considerable higher order harmonics which would be capable of being propagated over a daylight path, since absorption by the ionosphere decreases as the transmission frequency is increased. In view of the fact that radio amateurs of today are frequently capable of signalling across the Atlantic using powers of the order of watts, it is quite likely that Marconi actually heard the historic series of dots on that bleak and dreary day, but on a frequency in the 10,000 to 15,000-kHz range, in the short-wave portion of the electromagnetic spectrum.

Most of the doubts were dispelled less than three months later, when Marconi sailed across the Atlantic from Southampton to New York aboard the liner Philadelphia. The ship was equipped with Marconi's latest syntonic receiving equipment and an antenna lashed to a specially constructed 150-foot mast aboard the ship. A Morse inker recorded signals as they were received, and the captain of the ship verified all observations.

As the ship sailed on, signals continued loud and clear. At a distance of 700 miles, they were being recorded in broad daylight. Beyond that, the Poldhu transmitter could only be heard at night. This was the first observation of the curious nighttime effect which radio amateurs were to observe countless times—that signals traveled much greater distances at night than during the day.

During most of Marconi's historic voyage, signals were being received before witnesses. Poldhu's S's were recorded to a distance of 2099 miles, almost precisely the distance between Poldhu and St. John's. There could no longer be any doubt. The miracle of long distance communication without wires had come to pass. Much of the miracle lay in the fact that this was only the beginning!

If You Work In Electronics:
GRANTHAM OFFERS YOU
College-Level Training
and a college degree.

Electronic Circuit Design, Engineering Analysis (including mathematics thru calculus), Classical and Solid-State Physics, Engineering Design, etc., etc., are all part of the Grantham home-study degree program in Electronics Engineering.

PUT PROFESSIONAL RECOGNITION IN YOUR CAREER.

By adding college-level home training and a college degree to your experience, you can move up to greater opportunities in electronics.

Grantham offers the A.S.E.T. degree by correspondence. After earning this degree, you may continue with additional correspondence plus a 3-day residential seminar and certain transfer credits, to earn the B.S.E.T. degree. Then, the B.S.E.E. is available through further study.

GRANTHAM SCHOOL OF ENGINEERING
2000 Stoner Ave., Los Angeles CA 90025

Telephone (213) 477-1901

Worldwide Career Training thru Home Study
Mail the coupon below for free bulletin.

Grantham School of Engineering
2000 Stoner Ave., Los Angeles, CA 90025

I have been in electronics for_______ years. Please mail me your free bulletin which gives details concerning your electronics degree programs.

Name_________________________Age_______

Address_________________________

City_________________________State_______Zip________

RE-474

Circle 63 on reader service card
Heathkit® Digital Color TV...

Digital technology comes to TV with the new Heathkit GR-2000 Color TV. It has on-screen digital channel numbers and a digital clock — programmable digital channel selection, all electronic varactor tuning, and an IF that never needs alignment! So advanced, it's like nothing you've ever seen before.
The Heathkit Digital Color TV is the culmination of the most extensive engineering project in Heath history. Its advances in technology, quality and performance are astounding.

An electronic on-screen readout puts channel number and an optional digital clock into the picture. Change channels, or touch the "recall" button and you have instant, highly visible station identification. You pre-set the readout for the time it remains on the screen before fading out of the picture. Even position it anywhere you want it on the screen.

Digital logic circuitry selects channels, via an electronic digital counter and computer-like programming board. You program up to 16 stations, in any sequence, for automatic recall - intermix UHF with VHF, even repeat a station in the cycle. You'll never switch through a "dead" channel again.

To tune, just push a button. It's automatic, all electronic and completely silent. A solid-state varactor tuner takes the place of the noisy mechanical "thunder", corroding contacts, humming motors and mechanical linkages. You'll never have a tuner cleaned again.

Yet another "first" is the unique fixed-filter IF amplifier. Unlike the IF in conventional TVs, this one never needs instrumen alignment! The picture retains its brilliance and clarity year after year without periodic IF servicing. And, because this Heath-designed IF produces an ideally shaped and broader bandpass, you get truly superior reception. Especially valuable with cable service or in urban areas where the high density of stations causes adjacent channel interference.

No matter how you look at it, the Heathkit Digital Color TV shows you improvement, innovation, invention. Things like digital volume control (with remote) to raise or lower sound level in a series of small steps. An output jack for reproducing TV audio through your hi-fi while controlling volume at the TV or TV remote. And the optional digital remote control package that really takes advantage of the on-screen readout. The 100% solid-state chassis that uses more integrated circuits than any other TV around...33 in all, with clock and remote. The most advanced 25" (diagonal) picture tube available gives you a brighter, more vivid picture with greater contrast, reduced glare and reflection. Dual VHF antenna inputs with built-in baluns for 300-ohm twin lead, true 75-ohm for cable and coax hook-up.

And only Heathkit TV comes with a full complement of self-service instruments. Such as the digital design dot generator, purity and convergence adjustments, test meter, vertical and horizontal centering circuits, pincushioning corrections. The service manual included shows you how to use them all.

The Heathkit Digital Color TV is a technological wonder, but it is also an easier kit-form TV to build. More modular circuit boards plus more prefabricated wiring harnesses and cables hold point-to-point connections and chassis-mounted components to the minimum. It may well be the most "rewarding kit-building experience of your life!"

You can order the Heathkit GR-2000 Digital Color TV with the optional on-screen digital clock (it can be set for 4- or 6-digit readout), ultrasonic remote control, and any of four beautiful factory assembled and finished cabinets. Mail order price for chassis and tube $649.95. Remote control, $79.95 mail order. Clock, $29.95 mail order. Cabinets start at $139.95.

Send the attached card for your FREE HEATHKIT CATALOG describing the amazing new Heathkit Digital Color TV in detail. If card has been removed, write: Heath Company, Dept. 20-4, Benton Harbor, Mich. 49022.

HEATHKIT ELECTRONIC CENTERS
Units of Schlumberger Products Corporation
ARIZ.: Phoenix; CALIF.: Anaheim, El Cerrito, Los Angeles, Pomona, Redwood City, San Diego (La Mesa), Woodland Hills; COLO.: Denver; CONN.: Hartford (Avon); FLA.: Miami (Hialeah), Tampa; GA.: Atlanta; ILL.: Chicago, Downers Grove; IND.: Indianapolis; KANSAS: Kansas City (Mission); KY.: Louisville; LA.: New Orleans (Kenner); MD.: Baltimore, Rockville; MASS.: Boston (Wellesley), MICH.: Detroit; MINN.: Minneapolis (Hopkins); MO.: St. Louis; N.J.: Somerville; N.Y.: Buffalo (Amherst), New York City, Jericho, L.I., Rochester, White Plains; OHIO: Cincinnati (Woodlawn), Cleveland, Columbus; PA.: Philadelphia, Pittsburgh; R.I.: Providence (Warwick); TEXAS: Dallas, Houston;

HEATH
SCHLUMBERGER

WASH.: Seattle; WIS.: Milwaukee.

Circle 100 on reader service card
NOW A PROFESSIONAL BURGLAR-FIRE ALARM SYSTEM YOU CAN INSTALL YOURSELF.

ONLY 139.95

Save hundreds of dollars in alarm installation and monthly service charges. The EICO SS-500 "install-it-yourself" burglar-fire alarm system offers you the kind of professional protection you have been looking for, at a price you can afford. The SS-500 has been designed on the EICO "Expandability Concept" that enables you to "add-on" protection to meet your own special needs. Before you purchase any security system, we suggest you read the EICO Security Handbook and see how easy EICO makes it to "Do-it-Yourself."

FREE EICO CATALOG/SPECIAL OFFER!
Security handbook (Reg. $2.95) only $1.50 with this ad. Includes a catalog on EICO Security Systems, Test Instruments, Stereo, Hobby Kits and name of nearest distributor. For catalog only, check reader service card or send 25¢ for first class mail service.

EICO, 283 Malta Street, Brooklyn, N.Y. 11207

Circle 64 on reader service card

YOU CAN BUILD ANY CIRCUIT IN 3 EASY STEPS WITH THIS FREE VEROBOARD SAMPLE

Vero board is the universal wiring board that eliminates the need for etching, wire, or terminals - the circuitry is built right into the board! It is the simplest, fastest method of circuit building for the technician, engineer, hobbyist or experimenter. Send for your free sample now and we'll send you our brochure, "Everything you want to know about Veroboard."

VERO ELECTRONICS, INC.
171 BRIDGE ROAD, HAUPPAUGE, N.Y. 11787

Circle 65 on reader service card

SECURITY SYSTEM (continued from page 35)

Installation and operation
The electronics package should be mounted out of sight in a convenient location near the front door or other most often used entrance. A 12-volt lantern battery should be mounted nearby and connected by a short length of No. 18 twisted pair "bell-wire". Any small 8-ohm weatherproof speaker can be used with the alarm although those designed for siren applications are most efficient. Connections should be made with No. 18 or larger wire.

All switches used in the closed circuit loop should be of the magnetic reed variety. These are available from most electronic suppliers in molded plastic housing with companion molded magnet assemblies. Adhesive conductive tape, fine wire zig-zagged across skylights, etc. can be wired in series with the switches.

When leaving the house, close all doors and windows. Push the test button to check circuit continuity. Turn the unit on. Open the front door (or any other switched door). Walk through the door and lock it behind you. The alarm is now set and ready to make an awful lot of noise 15 seconds after the next opening of any door or window.

Eliminates Breaker Points. Eliminates Tune-up. Never wears out or needs any maintenance. Timing and Dwell never change.

The ultimate in ignition systems - The Infrared Breakerless Electronic Ignition System by Allison Engineering.

The Allison Breakerless Ignition system eliminates the points and condenser, replacing them with an optical trigger, using a light-emitting diode and phototransistor. Only a system which eliminates breaker points can eliminate tune-up causing wrench arm (contact point rubbing block) wear and size the contact points of the performance ignition system. Only the Allison Breakerless Electronic Ignition gives the true electronic ignition that you can install on your car for under $100.00. The system gives ignition firing 40 times more accurate than systems using breaker points. Actually increase engine efficiency and gas mileage up to 30%. Will not misfire under any conditions. Installs in 20 minutes using existing distributor & coil, no rewiring. Ten times as much energy available for plug firing. Spark plug lasts 3 to 10 times longer. Utilizes P.M. capability. Tests prove dramatic increase in power and performance. Position firing means instant starts in any weather and noticeably smoother running. An average 30% reduction in emissions.

Installing the Allison Breakerless Ignition in your car converts the present inefficient, trouble-prone system to the most advanced electronic ignition system available. Remember. If it is not breakerless then it is not true Electronic Ignition.

To order: state make, year and engine size. $49.95 P.D.D., or $51.00, balance C.O.D. California residents add 6%, tax. Triggers only (converts old units to breakerless) $29.95 P.D.D., $31.00 C.O.D. Allison Automotive Co., P.O. box 972, Tampico City, CA 91780. Units available for all cars, FREE LITERATURE.
GREAT VALUES
FREE $1 BUY WITH EVERY 10 YOU ORDER to "31" Buys FREE GIFT WITH EVERY ORDER

CANADIANS: Ordering is easy — we do the paperwork — try a small order

SHANNON MYLAR RECORDING TAPE

CASSSETTE C-60...........59
CASSSETTE C-90...........72
CASSSETTE C-120........135
8-Track - 64 Min.........1.29
MiniDisc 30 Min.1.39
8-Track - Cleaner1.49

3" TAPE REEL67
3/4" TAPE REEL28
6" TAPE REEL90
7" TAPE REEL24

IMMEDIATE DELIVERY ... Scientific: light packing for safe delivery at minimum cost.
HANDY WAY TO ORDER ... Send or check money order, add extra for shipping. Lists of new offers will be returned in your order.

Please specify refund on shipping overpayment desired: [] CHECK [] POSTAGE STAMPS [] MERCHANDISE (our choice) with advantage to customer

BROOKS RADIO & TV CORP., 487 Columbus Ave., New York, N. Y. 10024 212-874 5800 TELEPHONE

Circle 67 on reader service card
ELECTRONIC TECHNICIANS!

Raise your professional standing and prepare for promotion! Win your diploma in ENGINEERING MATHEMATICS from the Indiana Home Study Institute.

We are proud to announce two great new courses in Engineering Mathematics for the electronic industry. These unusual courses are the result of many years of study and thought by the President of Indiana Home Study, who has personally lectured in the classroom to thousands of men from all walks of life. A great new course on mathematics, and electrical and electronic engineering.

You will have to see the lessons to appreciate them! Now you can master engineering mathematics and actually enjoy doing it! We are SURE you no contracts—you order your lessons on a money-back, guaranteed.

In plain language, if you aren't satisfied you don't pay, and there are no strings attached.

Write today for more information and your outline of courses.

You have nothing to lose, and everything to gain!

The INDIANA HOME STUDY INSTITUTE
Dept. RE-4, P.O. Box 1189, Panama City, Fla. 32401

Circle 68 on reader service card
DIGITAL electronics! Complete schematics, parts lists, theories—Discrete Component Digital Clock, $3.00, increase technical competence, hobby skills—Complete course in Digital Electronics is highly effective. $10.00. Free literature.

DYNASIGN, Box 6032, Wayland, Mass. 01778

LOUDspeakers - BOSE 901 replacements, $7.98. Quantity discounts. Money back guarantee. AURATONE, Box 560-38, Del Mar, Cal. 92014

RADIO & TV tubes 36c each. One year guaranteed. Plus many unusual electronic bargains. Free catalog. CORNELL, 4217-E University, San Diego, Calif. 92105

REVERE ELECTRONICS, Box 101, Oiney, Md. 20932

TRIAC
296344 500V 8A TO -220. $5.75

Keyboard Assembly
IBM Data Systems unit; 10 keys-0 to 9 (for 4) 24 lamps; 16 wired circuit board w/144001 diodes, capacitors, transistors, and resistors. All mounted in a 3 1/2" five case approx. 4 1/2 x 4 x 2 1/4. These are used; no manufacturer's guarantee. $56. Each

Seven -segment readout: MAN 7441 1.25 Each only $1.25 7442 1.20 Ten or more, each. 1.00 7446 1.20 W/O decimal point, each. 1.00 7472 1.20 7473 1.60 7474 1.40 7475 1.50 7476 1.30 7477 1.50 7478 1.20 7479 1.10 7480 1.00 7481 1.00 7482 1.20 7483 1.20 7484 1.50 7485 1.20 7486 1.50 7487 1.50 7488 1.00

FREE Catalog of the World's Finest Government Surplus Electronic Equipment
And Better Than Ever

Mail Coupon for your FREE Copy, Dept. RE

FAIR SALES FAIR SALES 1016 E. EURANGA BOX 1105 / LIMA, OHIO 45802

IRREED SPECTOR VIEWERS
LAMPS - TUBES FILTERS - PARTS
An excellent source of hard to find parts. A complete listing of other items currently in inventory is available. We carry parts for MAN, Slide Rule, Planimeter, Talking Handicap Aid, & many others. 25c. Send check or money order with request.

Babylon Electronics
4736 Olive St., St. Louis, Mo. 63108

Circle 79 on reader service card

Power Supply SPECIAL!
723-T (10-5) vari-power supply. 100V - 50V - out. $4.75 723-10 (10-10) adjustable 0-50V 10A 911.35

send for free flyer!
All items are new and fully tested; leads plated with gold or solder. Orders for quantities not sold one by one are charged a 10% discount; smaller orders add 15c per unit. California residents add sales tax. 24 hour delivery on orders over $25. P.O. Box 43727 Sacramento, CA 95861 (916) 332-8611

market center

CLASSIFIED COMMERCIAL RATE (for firms or individuals offering commercial products or services), $1.00 per word minimum 10 words.

NON-SALES COMMERCIAL RATE (for individuals who want to buy or sell personal items) 70¢ per word . . . no minimum.

FIRST WORD AND NAME set in bold caps at no extra charge. Additional bold face at 10¢ per word. Payment must accompany all ads except those placed by accredited advertising agencies. 10% discount on 12 consecutive insertions, if paid in advance. Misleading or objectionable ads not accepted. Copy for June issue must reach us before April 1.

EXPERIMENTERS regulated power supplies 5Vdc-1A integrated circuit supply kit $13.00. 5Vdc-10A integrated circuit supply kit $36.50. (remote current sense $42.50.) Adjustable dual operational amplifier supply kit (provides two independent 1-amp regulated 5-20Vdc supplies) only $19.50. Fixed dual operational amplifier supply kit $13.50 (specify +15Vdc or -15Vdc). 12Vdc 40-ampere, voltage-regulated power supply kit $45.00. Complete kits including printed circuit board, chassis, heat sinks, transformers, regulators, hardware included. Postage. ELECTRONICS UNLIMITED, P.O. Box 91, Oiney, Md. 20932

GIANT 126 page Canadian surplus catalog. $1.00. ETCO ELECTRONICS, Dept. RE, Box 747, Montreal, Montreal, Canada.

COMPUTER KEYBOARD W/ ENCODER $35

Another shipment just received, Alpha-numeric keyboard excellent condition. Once again we expect an early repletion. Price of $35 includes prepaid ship in the US and shipment made within 24 hours of receipt of order.

JUNK KEYBOARDS as above, "as is" for parts $7.00

COMPLETE MEMORY SYSTEM $150

Measures 12 x 7 x 1 inches. Utilizes TTL IC's, 10240 memory cores. 9 installed sense amps. addressed at 1024 locations. 10 lines include 9 data-in, 9 data-out, 10 address-in, powering status and control. Only 40 systems on hand. Schematics included.

DCU $150 pp

AUTOMOBILE REVERB $7.00

Brand new fully assembled, ready to install in your car to give 3rd dimension concert hall effect. Complete with instructions, rear seat speaker, grill, wires, plugs.

8 TRACK STEREO TAPE DECK $14.00

With built-in stereo pre-amp, 115 volt drive motor, channel indicator lamps. Unused, original boxed, less cabinet. Customize your stereo music center with one of these three decks.

$46 $14.00

Please add postage for above. JOHN MESHKA JR.
P.O. Box 62, E. LYNN, MASS. 01904

Circle 78 on reader service card
Here's a real good buy!

RCA CMFT50 25-54 MHz
Transistorized power supply, partially transistorized receiver, 50 watts, 12 volt, fully narrow banded, complete with accessories...

$128

less crystals and antenna

GREGORY ELECTRONICS
Reconditioned & Used
FM & TWO WAY RADIO SAVINGS
Send for New Catalog
Ken Fransen is using his electronics training where it really counts.

Helping to save lives in the U.S. Coast Guard.

It's up to Ken to keep sophisticated electronics communications equipment in top condition.

He's part of our lifesaving team. We count on Ken and need more people like him.

You may or may not have electronics training. If, like Ken, you have training, we'll put you to work fast, on a rewarding job with responsibility and challenges. If you don't have training, we'll train you.

Say your experience goes no further than building a crystal radio set. If you have an aptitude for electronics and qualify, we'll guarantee you 25 to 38 weeks of school and turn you into a seasoned professional who'll be able to troubleshoot the most complex electronics equipment. You'll study everything from theory and principle to practical application.

Those of you who already know your way around electronics systems may qualify for our advanced promotion program. After only ten weeks, you'll be promoted immediately to a higher pay grade (up to 2nd class petty officer with pay of over $400 a month, plus food, housing and medical care). And you may qualify for even more advanced training.

Either way, your job as a Coast Guard electronics technician will give you a broad range of experience. Using the most modern diagnostic tools, you'll maintain, repair and calibrate the latest electronics equipment, including LORAN transceivers, computer controlled transmitters, solid state equipment and AM, FM and SSB transceivers.

You might even qualify to help design, test and evaluate new equipment or prototype models in our research laboratories, or work on cesium and rubidium atomic clocks.

You'll be doing plenty for yourself, too. The training alone is worth thousands of dollars, and the skills you learn can lead to valuable, sought-after jobs in both the Coast Guard and civilian life.

What's more, the Coast Guard offers you a combination of pay and benefits most private companies can't match. (For more about our package of benefits, read the attached card.)

Find out more about a rewarding career in electronics. Mail us the card today.

Help others/Help yourself.
Join the lifesavers.
The Coast Guard.
MARKET CENTER

CONVERT TV TO FT. WIDE SCREEN!
Easy Do-It-Yourself Kit
Project a giant 5'x5' picture onto or wall or screen. The Kit contains detailed plans, instructions and Precision Lens System. Only $12.95 ptd. or write for free illustrated brochure.
The Macromax, Co. Ltd.
Washington, D.C. 10,997

Technical Excellence in Electronics.

On our small display we have a wide selection of items, including the new Bigger Better Extended television receiver, the Sanyo "TV" with a full color television tube, the new Technics "Lavasteer" stereo sound system, and a large selection of Transit出国ers and all sports equipment selected from the world at your own will in order to prepare for competition. Absolutely precise in in accuracy. Electrometers in every 2500 exhibited. BGS obtainable at improved rates.

VALPARAISO TECHNICAL INSTITUTE
Dept. C, Yellowstone Trail, Valparaiso, Indiana 46383

SLA-3 segment LED readouts, 77 numbers, 45mA, red, or yellow $7.95.

MINIATURE TRIMPOTS 5K, 20K, 25K, 50K, 100K, $1.75. $3.00.

MULTI-TURN TRIMPOTS Similar to Bourns 3010 style 3/4". Resists: 50, 100, 500, 2000, 5000, 10,000 and 20,000 ohms. $1.50 ea.

PRINTED CIRCUIT BOARD 4"x6" double sided fiberglass, 1/16" thick, etched $2.60 ea. $2.50.

NIXIE TUBE Similar to Raytheon 8650 tubes, with socket & data sheet $2.25 3/$50.

T15 73 N FET $0.60
2N4401 NPN $0.50
ER 900 TRIGGER DIODES $0.01.

VERICAP PC BOARD This board is a 1/16" single sided paper epoxy board, 4 1/2" x 6 1/2" (standard vericap), DRILLED and etched with 12 pin supplies connections. Is etched for 22 pins $5.25.

FLY 100 Visible LED $0.50
MC 104 LED $0.70
M5026C Visi. LED $0.90
MT 2 PHOTO TRANS $0.80
MCT 2 OPTO-ISOL $0.90
MCD 2 OPTO-ISOL $0.90
Green GpO PSL 16 LED $0.90
Red GpO PSL 3 LED $0.90
Hi-intensity VIS. Red with reflector $0.60
MCA 2 10 photo darlington $0.90
14 pin DIP SOCKETS $0.40

SLICER PICKFORDS

ELECTRONIC music synthesizer. Printed circuit boards and kits. Satisfaction guaranteed. Free information. UNDERWATER LABORATORIES, Inc. 25006, Northgate Station, Seattle, Wash. 98125

ELECTRONIC slot machine type game. Plans $5.00. KAB, 1923 Fern. Royal Oak, Mich. 48073

BURGLAR-fire alarm catalog. Wholesale supplies for home or business. From the simplest to the most professional—alarm parts and tools. Free catalog. "REDI-SECURITY DEVICES", 2145 West 8 Mile, Detroit, Mich. 48219

AIRCRAFT type headset with tube loaded microphone for CB walkie-talkies only $9.95. Literature 25c refundable. Dept. SEP, CAMPELL COMPANY, Box 9654, Los Angeles, Calif. 90009

MAGAZINE for Govt. surplus radios, test sets, scopes, List 50c. BOOKS, 7218 Roanne Drive, Washington, D.C. 20037

TRANSISTOR curve tracer, $10.95, guaranteed one year. APPALACHIAN TECHNICAL, Box 8512 Asheville, N.C. 28802

1/4-WATT resistors all values 2 cents minimum. $2.00 ELECTRONIX, Box 1067, Southgate, Mich. 48195

U.S. GOVT. ELECTRONIC SURPLUS

T.R. Internationally Known Used-Only SURPLUS CENTER offers finest, most expensive, Government Surplus electronic kits and components at a fraction of their original acquisition cost.

IBM COMPUTER POWER SUPPLY

- ITEM #7-234-120 - Dual drain rectifiers, 120-264 VAC, half wave, phone or panel mount, 12V, 2A, 24V, 1.25A, $9.95 each or 3 for $26.95.

- ITEM #7-234-122 - Filter transformer, filtered, 220VAC input, 300VDC output, 15VA 12V 2A, $9.95 each or 3 for $29.95.

- ITEM #7-234-126 - Filter transformer, filtered, 115VAC input, 12VDC, 40VA 1.25A, $29.95.

STANDARD DIAL TELEPHONE

- ITEM #701.5 - Analog - standard wall mounted, wind-up, push button dial, $9.95 each, 3 for $26.95. 30c each 10-50.$.50 each 50-100.

STEP-BY-STEP TELEPHONE SWITCH

- ITEM #7-250-105 - Push button, 2 line, 2 position, $9.95 each, 5 for $49.95 each.

MAGNETIC DIGITAL COUNTER (12 x 18-VDC)

- ITEM #7-234-101 - 12 Digit, $9.95 each, 3 for $29.95 each, 3 Digits, $9.95 each, 5 for $39.95 each.

200 AMP... 50 VOLT, SILICON DIODE

- ITEM #7-234-104 - 1200A 50 VDC, $44.95 each, 5 for $179.95 each.

AC PROGRAM TIMING CLOCK

- ITEM #7-104-13 - 12VDC Digital Timer. $11.95. Two track, LCD display, adjustable to 99 minutes, 15.5 x 15.5 x 6.5 cm. 12VDC.

SNAP AROUND VOLT-OHM-AMMETER

- ITEM #7-104-14 - 40A Ammeter, 0-80VDC, 0-1000A, $39.95 each, 3 for $119.95 each. 30A UDC, 0-1000A, $29.95 each, 3 for $99.95 each.

SPECIAL SALE Correspondence Course In ELECTRICAL ENGINEERING $10.79 (Deleas ET I). 5 terms.

- ITEM #7-18-1 - Practical technical training of low cost- home study, Electrical Engineering, covering 18 months. 5 terms. Can be terminated in 12-13 months. All materials, instruction, notes, experiments, experiments, all electrical theory and practical experience are included. Will provide blueprinting, drafting, etc. $10.79.

RUNNING TIME METER

- ITEM #7-234-1B - For record number of cycles, complete with main and test nipples, 15VDC, 125VAC, solid state, $5.95.

COMPUTER TRANSISTORS ON HEAT SINKS

IBM Computer Quality Units

- ITEM #7-234-70 - 1N5438 B - BJT, contains one of 15N5438, power transistor, aluminum heat sink. Many experimental units.

- ITEM #7-234-71 - 3N255 B - BJT, contains one of 3N255, power transistor, aluminum heat sink. Many experimental units.

- ITEM #7-234-72 - 3N255 B - BJT, contains one of 3N255, power transistor, aluminum heat sink. Many experimental units.

Send 20c for our Spring catalog featuring Transistors and Rectifiers, 325 Elm St., Cambridge, Mass.

OLID

Post Office Box 74D

TATE

Somerville, Mass. 02143

ALES

Tel. (617) 547-4005

Surplus Center

DEPT. RE-44

Lincoln, Neb 68501

All Items Shipped F.O.B. Lincoln, Neb. Orders From Other States Must Be Prepaid.
Opto Electronics Sale

LED ELECTRIM MITER DIODE GaAs INDATORS

- **Only** $1.00
- **Take 10%**

Reflective

- **SPECIAL** $1.50
- **Original** $1.95
- **4.95 for 56.**

7-SEGMENT LED READOUTS

<table>
<thead>
<tr>
<th>Type</th>
<th>Char</th>
<th>MAN.3-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAN.3</td>
<td>11.6</td>
<td>1.49</td>
</tr>
<tr>
<td>MAN.3</td>
<td>12</td>
<td>1.49</td>
</tr>
<tr>
<td>MAN.3</td>
<td>3</td>
<td>149</td>
</tr>
</tbody>
</table>

LED SPECIAL

- **$1.50**
- **3 Bits**

MULTIPLEX

- **$3995**

STEREO AM-FM MULTIPLEX

- **$3995**

SPECTRUM CERMET MICRO POTS

- **$14.95**

LED MITY DIGITIC "DCM'S"

- **$9.99**

DIGITAL ALARM CLOCK FACTORY FALLOUT - $1.49 EA

POCKET KEYBOARD

- **For hand-held units, most powerful for chip**
- **$6.95**

OAK LEATHER-TOUCH SWITCHES

- **$3 for $1**

CALCULATOR KEYBOARD

- **Kit of 17 for $6.95**

LED DISPUTS ON A DIP

- **4.95**

OPTO COUPLERS

- **$1.00**

MIX'D DIGITAL CLOCK PC BOARD

- **$2.50**

MICROPROCESSOR TOP HAT ZENERS

- **$5 for $1**

ALLOY COUPLERS

- **$5.00**

POWER SUPPLIES ON A DIP

- **$8.88**

Circle 82 on reader service card
INTERNATIONAL ELECTRONICS UNLIMITED

APRIL SPECIALS

TTL (DIP)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7402</td>
<td>Quad 2-input NOR gate</td>
<td>5.50 ea.</td>
</tr>
<tr>
<td>7410</td>
<td>Triple 3-input gate</td>
<td>5.50 ea.</td>
</tr>
<tr>
<td>7432</td>
<td>Quad 2-input NAND buffer</td>
<td>3.50 ea.</td>
</tr>
<tr>
<td>7438</td>
<td>Quad 2-input NAND buffer O.C.</td>
<td>3.50 ea.</td>
</tr>
<tr>
<td>7446</td>
<td>Dual 4-input expander</td>
<td>4.50 ea.</td>
</tr>
<tr>
<td>7476</td>
<td>Dual J-K flip-flop</td>
<td>5.45 ea.</td>
</tr>
<tr>
<td>7480</td>
<td>Decade counter</td>
<td>1.10 ea.</td>
</tr>
<tr>
<td>74124</td>
<td>One shot monostable multivibrator</td>
<td>0.49 ea.</td>
</tr>
</tbody>
</table>

LINEAR (MINI-DIP)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7403</td>
<td>2 watt audio amplifier</td>
<td>1.50 ea.</td>
</tr>
<tr>
<td>74535</td>
<td>Dual 1-edge driver</td>
<td>0.39 ea.</td>
</tr>
<tr>
<td>74536</td>
<td>(351) Dual peripheral driver</td>
<td>0.49 ea.</td>
</tr>
</tbody>
</table>

CMOS (DIP)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74C00</td>
<td>Quad 2-output NAND gate</td>
<td>7.99 ea.</td>
</tr>
<tr>
<td>74C02</td>
<td>Quad 2-output NOR gate</td>
<td>7.99 ea.</td>
</tr>
<tr>
<td>74C107</td>
<td>Dual J-K flip-flop with clear</td>
<td>2.75 ea.</td>
</tr>
<tr>
<td>74C160</td>
<td>Decade counter with sync. clear</td>
<td>2.75 ea.</td>
</tr>
<tr>
<td>74C181</td>
<td>CMOS Decade counter</td>
<td>2.75 ea.</td>
</tr>
<tr>
<td>74C182</td>
<td>CMOS 16x12 flip-flop</td>
<td>2.75 ea.</td>
</tr>
</tbody>
</table>

LEDs

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74HC03</td>
<td>6N298/299/298 Quad 2N299/2N298</td>
<td>0.50 ea.</td>
</tr>
<tr>
<td>74HC02</td>
<td>6N298/299/298 Quad 2N299/2N298</td>
<td>0.50 ea.</td>
</tr>
<tr>
<td>74HC456</td>
<td>6N298/299/298 Quad 2N299/2N298</td>
<td>0.50 ea.</td>
</tr>
</tbody>
</table>

ON ORDERS OVER $25.00 DEDUCT 10%
Satisfaction guaranteed. All items except as noted are fully tested. Minimum order $5.00 prepaid in U.S. and Canada. Calif. residents add sales tax. Orders filled within three days from receipt.

INTERNATIONAL ELECTRONICS UNLIMITED
P.O. BOX 1708 • Calif., March 93490

Circle 83 on reader service cards
NEW LOW COST DIGITAL CLOCK/ALARM/CALENDAR CLOCK KIT

This is an updated version of our popular low price clock kit. In addition to the former features which were a decorator without case, six digit blue-green display, the clock now features 24/PS-12510y, dual alarm (24/724-124-24-hour clock) and clock calendar. The clock is controlled by a quartz crystal, since a separate control of the hour and minutes digits has been provided. It is a two digit counter does not affect the contents of any other counter.

New Clock/Alarm/Calendar Clock Kit. Available Jan. 74. Send $10.00 deposit to insure early shipment. Will be shipped C.O.D. for balance of $55.50 to make up full purchase price of $69.50.

DLD Clock Kit. Uses 5311 Clock Chip does not have Alarm/Calendar features incurs hours, minutes, seconds. Available now. $47.50

UNIVERSAL DIGITAL CLOCK – TIMER – STOPWATCH ALARM KIT

This new kit has many features and applications, and we hardly know where to start. To summarize the applications:

- The alarm can be used as a convection clock, either internal or external, from internal batteries, or from the AC source. Makes an excellent travel clock.

- The alarm feature can be set at any time, and will generate a tone with an external speaker.

- The kit can be used as a stopwatch, either registering hours, minutes, or seconds, up to 23:59:59, or minutes, seconds, and 1.66 seconds up to 24 minutes, to an accuracy of 1.60 second.

- The kit can be used as a timer, to trigger an external device at a preset time.

This kit will be available as a complete kit in Jan. 74. To get one of the first, and take advantage of our lower pre-sale price, send $10.00 deposit, will be sold C.O.D. for balance. Total kit price will be $69.50, including all tools in the kit. A $4.75 additional.

The All-Purpose Alarm Clock, a Universal Digital Clock/Calendar Alarm Clock. These large scale integrated LSI chips eliminate literally thousands of compo parts or hundreds of chips in the construction of a clock. For most applications only a single chip and a minimum of components are required.

- **7001 Chip** – Features 28/30/31 day calendar, 12/24 hour clock, 24 hour alarm, snooze alarm, 6 digit display, direct drive to luminous amber tubes or LED segments, single transistor interface with Spyne displays. Segments and digital outputs can be "wired or D" to share displays.

- **MM5314 Chip** – Features 6 digit seven segment output. Operates from 50 or 60 hz input, use for Mains LED's. Luminescent or Spyne displays.

- **MM5311 Chip** – Same as MM5314, but with additional BCD output, replaces the LED.
DELTA ELECTRONICS CO.
BOX 1, LYNN, MASSACHUSETTS 01903
Phone (617) 388-4705

FREE catalog lists resistors, tubes, transistors, rectifiers, condensers, tools, tuners, etc. HYTRON HUDDSON, Dept. AE 2818 Kennedy Blvd., Union City, N.J. 07087.

WANTED
Quick cash... for electronic equipment components, unused tubes. Send list now! BARRY, 512 Broadway, New York, N.Y. 10012, 212 Walker 5-7000

EDUCATION & INSTRUCTION
DEGREE Program in Electronics Engineering. Our 27th Year! Free literature. COOK'S INSTITUTE, Dept. 14, Box 16334, Jackson, Miss. 33809.

SHORTCUTS to success! Highly effective, profitible short courses. (75 choices): Study at home. Diploma awarded. Our 77th year. Free literature. CIEE-E, Box 16334, Jackson, Miss. 33809

PLANS & KITS
ELECTRONIC organ kits, keyboards and many components. Independent and divider tone generators. All diode keying. IC circuitry. Build any type or size organ desired. Supplement your Artisan Organ. 35c for catalog. DENTRONIX ORGAN PRODUCTS, Dept. B, 5827 Amapola Dr., San Jose, Calif. 95129

FREE catalog. Most unusual electronic kits available. Music accessories, surf. wind synthesizers, wind chimes, many others. PAIA Electronics, Box B14359, Oklahoma City, OK 73114

WALL-SIZED TV... Build a TV projector for under $15.00. Free details: MACROCOMA, Box-FDE, Washington, D.C. 20037

DIGITAL ANALOG plans for home & lab!!! For Free Catalog write: MP PUBLISHING CO., Box 378, Belmont, Mass. 02178

CONVERT any television to sensitive, big-screen oscilloscope. Only minor changes required. Free electronic experience necessary. Illustrated plans $2.00. SANDERS, Dept. A-25, Box 92102, Houston, Tex. 77010

3 PRECISION 15 VOLT REGULATORS ON A PC BOARD
This box contains 3 precision 15 volt regulators.2 of the regulators are rated at 3.0 amps, 0.1%, and the third is rated at 6.0 amps, 0.1%. At 5.0 and 10.0 amp, the rating is 0.5%. Each board has 51.50 watt NPN power transistors. 4 are used in the regulators, and 1 is a spare. Ideal for 15 volt op-amp supplies. Boards are brand new, factory cartoned. Send $48.00. STOCK NO.FS169 $11.95 ea. 2/22.00

POWER TRANSFORMERS
The transformers listed below are suitable for many semiconductor projects. and ideal for use with the power supplies to operate the 3 regulator board listed above.

14 V. 3.0 A. & 550 V. 0.150 A. F9783 2.75 ea. 2/5,000
16 V. 4.0 A. P9858 3.75 ea. 2/7,000
38 V. 1.5 A. et 38 V. 0.5 A. F9718 3.50 ea. 4/12,000
32 V.2.0 A. et F9743 4.25 ea. 3/12,000
34 V. 4.0 A.et 5.5 V. 1.5 A. F9448 4.75 ea. 2/9,000

As wt. of above transformers approx. 3 lbs. All transformers about ideal for use with FS169 regulator board shown above. Deduct 10% when 2 or more are ordered. with regulator board.

ANOTHER HONEYWELL BOARD
Parts: banana boards, Precision resistors, capacitors, diodes, pulse transformers, diodes, heat sinks, TO-18, TO-5 and MADT transistors and more.

STOCK NO.J9121 3 Different boards $2.00 9/5,000 20/10.00

MINIMUM ORDER $5.00. Include postage, excess refunded. New edition of our catalog now available.

DELTA ELECTRONICS CO.
BOX 1, LYNN, MASSACHUSETTS 01903
Phone (617) 388-4705

ADVERTISING INDEX
RADIO-ELECTRONICS does not assume responsibility for any errors which maybe appear in the index below.

READER SERVICE CARD NO. PAGE
24 Alarm Devices Mfg. Co. 77
66 Allison Automotive 88
85 Amram Laboratory Equipment Inc. 25
11 Bell & Howell Schools 66,63
16 B & K Division of Dynascan Corp. 32
67 Brooks Radio & TV Corp. 89
24 Cadele TV Laser Service, Inc. Cover TV
61 center for Technical Development 91
12 Chemistry, Inc. 26
29 E. R. Speed and Institute of Electronics Cover TV
111 ERE Division of the McGraw-Hill Continuing Education Center 26,31
20 IBM International 16
28 DEC Products, Inc. 17
26 Digital Electronics Corp. 100
131 Dr. J. D., Electronic Components 83
60 Electronics Laboratory Supply Co. 91
150 Electronics Research Institute 11
69 Indiana Home Study Institute 90
1 International Naval Av. Mfg. Co. 21,22
70 Jerson Food & Allied 91
14 Leader 27
2 Mallory Distribution Products Co. 6
5 Merrimack Instrument Engineering 69
15 MN-Micro-Instrumentation Technology 5
71 Newtown, Mass. Supply Co. 90
30 National Camera Co. 91
81 National Technical Schools 70,73
NRL Training 11
9 PAL Electronics 80
20 PAL Electronics 74
9 Projector Recorder Belt Co. 44
1 PAL Electronics, Inc. Cover TV
5 Radios Shack 13
26 R & G A Radio Instruments 70
27 Radio Instruments 70
4 Sams & Co. & Howard W. 7
15 Schober Organ 27
2 Short Bros. 1
15 Southwest Technical Products 15
21 Sprague Products Corp. 75
9 N. E. A. Technical School 11
Home Study Division 18,21
76 Technical by Panasonic Cover TV
13 Teletronics 26
12 Truftrac Distribution 71
25 TV Investigator Corp. 77
12 Tucker Electronics Co 79
12 U. C. Westward 91,97
65 Zenith Electronics 88
76 Vintage Radio 78
79 WothL UPPER redo 79
27 Winegard Co 14-15
MARKET CENTER
14 X. Research Corp. 92
94 X. Research Corp. 92
20 X. Research Corp. 92
84 B & E Enterprises 101,103
84 Command Products 92
84 Delta Electronics 92
84 Dip-Keys 92
71 Easy Radio Sales 71
71 Gregory Electronics Corp. 92
84 International 300 100
84 JTR Associates 92
84 Lakeside Industries 102
84 Leclo Electronics 92
84 Logic Newsletter 92
84 McCrae's 92
84 McNeal Electric & Equipment Co. 91
79 Mosha Electronics, John 79
79 Phone Corp. 79
84 Polyphase 93,94
84 Solid State Sales 98
84 Supplies Center 98
84 Vapilano Technical Institute 98

Circle 85 on reader service cards
GIANT NIXIE CLOCK KIT

For factories, offices, and commercial establishments...and those who like large displays, characters appear as a bright continuous line which can be read from distances as great as 150 feet. All characters are solid, and unit employs new custom printed circuit board clock chip. Includes hour, minute, and second hands. May be wired for 24 hour or 12 hour operation with a simple jumper change. Kit offered complete with or without case for custom installations. Parts include P.C. board, sockets, voltage stabilizer, etc. $89.50

34 VOLT 5 AMP TRANSFORMER

We have just received a truckload of these high quality transformer supplies. The floors are groaning and we are setting them at a LOCAL LOW price just to clear them out. Excellent for Power Supplies. Audio Amps. $3.95

LIGHTED PUSH BUTTON SWITCHES WITH INSERTS

These lighted push buttons switches measure 1 7/32" x 1 1/4" inches, include clear plastic cap so that legend can be easily read. Price includes two 12 volt bulb contacts. Connectors are DPST. If cap is inserted upside down switch section becomes inoperative. An excellent safeguard for burglar alarms, etc. for people who don't know the trick.

Lighted Push button switch $1.00 each For production prices 10 for $10.50

HEAVY DUTY DATA TERMINAL POWER SUPPLY

Originally manufactured for use in Data Terminals, these are legibly marked cross-regulated power supplies for continuous duty operation. The original cost of these supplies was $278.00 All outputs are regulated to ± 5% by a constant voltage transformer, and in addition two of the outputs are regulated to 0.2% by solid state regulators. Circuits are protected by fuses and circuit breakers. Two types are available:

Type A, 24 VDC ± 2.5%, 7.5 VDC ± 7%, 18 VDC ± 6.5%, 14 V, ± 2.0%, 12 VDC ± 1.5%

Price $29.50

Type B Same as above except includes 5VDC ± 3.25%

14 VDC ± 2.5% AMPs. Instead of 14V for 26.5% price $34.50 Shipping Weight - 30 lbs each (either space)

MANUFACTURERS OVERSTOCK CLEAROUT

AUTO STEREO AMP/MF TAPE PLAYER

This high quality tape player with AM/FM radio is made to fit right into the dashboard of your car. Looks like it's only a race, so's less likely to get trapped in the air. Why not listen to music while you're waiting in line for gas. Prevents fayed speakers and highlights music under specific volume levels, the cassette itself is easily removable. Fully guaranteed by both manufacturer and B & F. For 10 year parts and labor. Super easy installation. Power 4 watts RMS per channel (10 watts peak). Your complete satisfaction is guaranteed.

Tape AM/FM Car Stereo $99.75

Pair of these 10 oz. Magnet Speakers with plastic grills for above $14.75

POWER SUPPLY KIT

This kit includes 24 Volt 5 AMP heavy duty transformer to drive the rectifier. 4000 MF capacitor 723 regulator circuit of 24N305 transistors. D.C. meter, plus all electrical components needed to build a complete regulated laboratory supply. $19.75

CLOSEOUT — CALCULATOR KIT

8 and F was one of the first (if not the first) to introduce an under $100.00 calculator. Now that all the giant corporations have introduced theirs, we feel it's time to move on to new kits and let the "biggies" slug it out. We have enough parts for about 200 more calculators, which we are closing out at $54.50 each. Floating point eight digit display, constant caps, new LED display, and keyboard.

molded ABS case, uses (4) standard AA cells. 14 hour battery life.
Pocket Calculator Kit $54.50

STEREO TAPE CARTRIDGE PLAYER

High quality tape cartridge player has built in preamp, and requires only 115V AC for motor and 12 volts for electronics to operate. Four light indicators indicate channel selected. Output compatible with amplifiers. "Auxiliary" output. Here is the inexpensive high fidelity way to play those tape cartridges for your car player in your home.

Stereo Tape Cartridge Player $19.00

REVERBERATION UNIT & SPEAKER

Useful in conjunction with music synthesizers, organs, and to add "presence" to music. This complete reverberation unit requires only a source of 12 Volts to operate, might also be useful for other audio delay experiments. Includes high quality loudspeaker. Cartridge player brand new, originally made to set for $24.50, now at a price you would pay for the speaker alone.

Reverberation Unit $6.95

1 MHz FREQUENCY STANDARD CRystal

This is a 1,000,000 MHz Crystal + Sinc, -3dB. Can be pulled to exactly 1 MHz ± 3.3ppm with 5.30% trimmer for exactly 1 MHz ± 0.07ppm. Crystal quality CO 4007 makes excellent Oscillator buffer. Circuit included. Super LOW price while 2,000 PCs last.

1 MHz Crystal Standard $4.50

QUARTZ CRYSTAL CHRONOMETER

Revolutionary! Was the reaction of our customers when they saw this kit. Measuring only 2 1/2" x 2 1/4" and accurate to 10 seconds a month, this chronometer promises to entirely replace mechanical clocks in cars, boats, and airplanes.

Fit in a standard 2½" x 1½" instrument panel cutout. The displays are bright, LED displays that only last a lifetime. Setting controls are recessed and operate from a pointed object such as a pencil point or paper clip. In order to keep non-authorised hands off, the clock should only be reset at very great intervals, or in the event of power loss. Replacing battery in car clock, this clock is wired so that the timing circuits are always running but the displays are only lit when the ignition is on, resulting in negligible power drain. The low price is only possible because of a new one chip MOS clock. Operates from 12-24 VDC. An essential accessory which mounts on the back adapts the unit to 220 Volts for twin engine aircraft and larger boats using 24Volts ignition. Know how, displeased are you with the usual car clock? Order this fine unit now for rallying, sports events, navigation, or just to have a fine chronometer that will give you a lifetime of superbly accurate time.

Quartz Chronometer, Kit Form $69.50

Quartz Chronometer, Wired $99.50

24 Volt Adapter $10.00

NICAD BATTERIES

No need to tell you the uses of these sealed Nickel Cadmium batteries in all kinds of portable equipment. A very recent new entry the 6.5 ampere hour nicad is remotely removed from new equipment, guaranteeing years of successful operation. Larger size is 7.5 x 2.5 x 3.5 aluminum case with molded foam rubber inserts...to an audience of over 3000 people. Price $119.95

Catalyst: Check reader's card or write.

POSTAGE EXTRA ON ALL ABOVE ITEMS

Phone in charges to 617 731 5734 or 617 732 2323. Each item at Mfg. price. Mail orders pay minimum 10% C.O.D. charge.

B∪F ENTERPRISES Mass. 01960

Phone 115 Foster Street 731-9277

710 Foster Street

Peabody, Mass. 01960

Circle 84 on reader service card
LIVE IN THE WORLD OF TOMORROW...TODAY!

A BETTER LIFE STARTS HERE

3-CHANNEL COLOR ORGAN KIT

Easy to build low-cost kit needs no technical knowledge. Completed unit has 3 bands of audio frequencies to modulate 3 independent strings of colored lamps (i.e., "lows"—reds, "middles"—greens, "highs"—blues). Just connect hi-fi, radio, power lamps, etc. & plug ea. lamp string into own channel (max. 300w ea.). Kit features 3 neon indicators, color intensity controls, controlled inductor SCR circuits; isolation transformer; custom plastic housing; instr.

Stock No. 41,831EH $17.50 Ppd.

-know your Alpha FROM THETA!

For greater relaxation, concentration, listen to your Alpha-Theta brainwaves. Ultra-sensitive electrocardiograph slips on/off in seconds—eliminates need for messy creams, etc. Attch'd to amplifier, filters brainwaves, signals beep for ea. Alpha or Theta wave passed. Monitoring buttons simulate Alpha sound & visual (LE.O.) feedback. Reliable, easy-to-use unit—comparable to costlier mod.

Completely safe. Comprehensive instr. bkl.

No. 1635EH (83x34")—$128.00 Ppd.

LOW COST "Starter" Unit Stock No. 71,099EH$49.95 Ppd.

130 EXPERIMENTS IN OPTICS...

and photography! Optix Experiments Kit is a complete optical & photography lab for 130 exciting experiments. Lets you recreate the periscope, telescope, microscope, kaleidoscope! ... Build a 35mm reflex camera with interchangeable lens system! Make. develop photographic film! Enjoy the fun and fascination of your own optics lab. Fully illustrated 112-pg. manual: "Optix"-all 111 clearly explains usage of this stimulating kit's 144 precision engineered components.

Stock No. 71,646EH $22.50 Ppd.

MAIL COUPON FOR GIANT FREE CATALOG!

180 PAGES - MORE THAN 4,500 UNUSUAL BARGAINS!

Completely new '74 Catalog. Packed with huge selection of telescopes, microscopes, binoculars, magnets, magnifiers, prisms, photo components, ecology and unique lighting items, parts, kits, accessories, etc. many hard-to-get surplus bargains. 100's of charts, illustrations. For hobbyists, experimenters, schools, industry.

EDMUND SCIENTIFIC CO.

300 Edscope Building, Barrington, N. J. 08007

Please rush Free Giant Catalog "EH"

COMPLETE & MAIL WITH CHECK OR M.O.

EDMUND SCIENTIFIC CO.

300 Edscope Building, Barrington, N. J. 08007

How Many Stock No. Description Price Each Total

Please send a GIANT FREE CATALOG "EH" MERCHANDISE TOTAL $ ADD HANDLING CHARGE—$1.00 ON ORDERS UNDER $5.00; 50¢ ON ORDERS OVER $5.00 TOTAL $ I enclose $ money order for $3

30 DAY MONEY-BACK GUARANTEE

You must be satisfied or return any purchase in 30 days for full refund.

Circle 73 on reader service card

(And our FREE CATALOG is packed with exciting and unusual ecological & physical science items—plus 4,500 finds for fun, study or profit...for every member of the family.)

ELECTRONIC SOUND COLLECTOR

The Big Ear(R) is a science toy that's fun for all, to tune in a whisper at 20 ft., normal conversations up to 100 ft., bird calls & high freq. sounds at almost 200 ft. Nearly twice as far over water! Experiment and hobby-ize with it indoors or out—from baby sitting to bird watching. Big 18" plastic reflector disc pulls sound waves into transistor unit; then amplifies them. Mike system; stethoscope earphones, tripod (33") extended. Sets up in secs.

Stock No. 80,176EH $26.50 Ppd.

He-Ne LASERS FROM $59.50!

Edmund quality, TEMoo mode, cold cathode for long life. Completely self-contained units; solid state power supply; 100V AC, 0.3mW min—GREAT GENERAL PURPOSE LASER: 1.2 mm beam dia., 2.0 OmRad beam diver.

Stock No. 79,061EH$99.50

1.0mW min—HI-PERFORMANCE LAB LASER: 1.2mm beam dia., 1.0 OmRad beam Diver.

Stock No. 79,050EH$150.00 Ppd.

3.0mW min—DEPENDABLE HI-POWERED LASER: 1.0mm beam dia., 0.8mRad beam Diver.

Stock No. 79,052EH$325.00 Ppd.

SUPER 6" SPACE CONQUEROR

Superb Astronomical Reflector—Up to 576x! Capable of revealing faint stars of nearly 13th magnitude, split double stars separated by less than 1 sec. of arc. Features aluminized & overcoated 6", f/8 ground and polished Pyrex (T) parabolic mirror accurate to 1 wave. 48 lbs.; 6x automatic finder scope. 4 eyepieces: 4 x Kellner, 1 x 60x, 1 x 152x Ramsden & a Barlow to double or triple power—rack & pinion focusing mount; 47’s aluminum tube; Electric clock drive w/"manual" motion control. Setting circles. Heavy-duty equatorial mount. Pedestal base.

Comes with $325—$375 models.

No. 85,008EH (36" W., 24 lbs.)....$259.50 F.O.B. New York...

4¼" REFL. REFLECTOR C/W CLOCKS DIVER No. 85, 105EH $222.50 F.O.B. New York...

4¼" REFLECTOR W/CLOCK DRIVE No. 85, 107EH $149.55 F.O.B. New York...

3" REFLECTOR (60X to 180X) No. 85,050EH $36.95 F.O.B. New York...
Our most expensive turntable has direct drive.
So does our least expensive.

When Technics introduced direct drive, we set new standards for turntable performance. That's why we use direct drive exclusively in all Technics turntables.

No other system measures up to direct drive. Wow and flutter are less than 0.03% WRMS. And rumble is down to -65dB (DIN A) and -70dB (DIN B).

Our DC motor has no noise- or static-producing brushes and virtually none of the hum normally found in AC motors. It reaches playing speed in half a revolution and has electronic speed control that prevents speed changes due to line fluctuations.

All Technics turntables have illuminated stroboscopes, cast aluminum platters and variable pitch controls. The SL-1200 also has a precision tone arm, viscous damped cueing and low-capacitance 4-channel phono cables.

So does the SL-1100A but with a heavier platter, bigger motor and longer tone arm.

And the SP-10 is for those who insist on choosing their own tone arm.

No matter which Technics turntable you choose, you get the finest drive system that money can buy. But don't take our word for it. Read the reviews.* And you'll agree.

The concept is simple. The execution is precise. The performance is outstanding. The name is Technics.

*SP-10: Audio, 8/71; Stereo Review, 9/71.
SL-1100A: Stereo Review, 7/73; High Fidelity, 9/73.

200 PARK AVE, N.Y., N.Y. 10017. FOR YOUR NEAREST AUTHORIZED TECHNICS DEALER, CALL TOLL FREE 800 447-4700, IN ILLINOIS, 800 322-4460.

Technics
by Panasonic
Invaluable for locating the break in the tuner and i.f. signal chain or analyzing agc system defects in tube TV receivers... essential for speedy location of signal circuit defects in modular IC, solid state and hybrid TV receivers.

A NEW APPROACH to agc system analyzing!
Permits signal injection after the agc controlled stages to simplify testing for agc defects.

- Works with any 40MHz receiver... color or black and white... solid state, tube or hybrid.
- High level, low impedance output furnishes signal usable at input of final i.f. stage.
- Special output circuit works equally well into first i.f. input of late model, link coupled systems and older, low "C" bandpass coupled systems.
- Antenna input and i.f. output electrically isolated; no "hot" chassis hazards.
- No need to disconnect supply leads from suspected tuner being tested. Substitutes antenna input and i.f. output.
- Works with any 40MHz receiver... all complete with extension cables, batteries and instructions.
- All battery only models of the SUBBER may be factory modified for 120 VAC use.

All battery only models of the SUBBER may be factory modified for 120 VAC use.

Contact your distributor.

TV TUNER SUBBER™ Mark IV (Battery model) net $45.95
TV TUNER SUBBER™ Mark IV-A (120 VAC + Battery model) net $54.95

CASTLE TV TUNER SERVICE, INC.
5715 N. Western Ave., Chicago, Illinois 60645 Phone: (312) - 561-6354
In Canada: Len Finkler Ltd., Ontario Circle 74 on reader service card