ADD-ON ELECTRONICS FOR YOUR CAR

The Truth About Electronic Ignition

Car Cassette Players—See How They Work

Build Handy $23 TV Tuner Subber

Digi-Mod-N Frequency Divider

Don Lancaster's Photo Printing Computer

Jack Darr's Service Clinic
MEET YOUR NEW RIGHT HAND MAN

the Sprague Model TO-6 TEL-OHMIKE® Capacitor Analyzer

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPACITANCE</td>
<td>POWER FACTOR</td>
<td>LEAKAGE CURRENT</td>
<td>INSULATION RESISTANCE</td>
</tr>
<tr>
<td>Measures up to 2000 μF in five overlapping ranges . . . including a special 1 to 100 pF range, exclusive with Sprague. Low ac voltage . . . Capacitors rated at 3V can now be tested without damage.</td>
<td>Power factor of electrolytic capacitors is measured by the highly accurate Wien Bridge method. Reads up to 50% in three ranges for convenience in power factor measurement.</td>
<td>Leakage current of electrolytics is measured directly on easy-to-read meter, with exact rated voltage up to 600V applied from continuously adjustable power supply. 4 ranges: .06, .6, 6, 60 mA.</td>
<td>Insulation resistance of paper, ceramic, and mica capacitors is read directly on meter. Dual range—to 10KΩ @ 30V for low voltage capacitors, to 50KΩ @ 150V for higher voltage units.</td>
</tr>
</tbody>
</table>

A must for checking all capacitors, the TO-6 is moderately priced, yet offers laboratory quality and accuracy.

See the TO-6 TEL-OHMIKE in action at your Sprague Distributor Today . . . or, for more information, write to Sprague Products Company, 81 Marshall Street, North Adams, Mass. 01247.

THE BROAD-LINE PRODUCER OF ELECTRONIC PARTS

Circle 1 on reader service card
The latest word on Electronics!

Sams presents 9 brand new or completely revised books...valuable working aids for anyone in electronics.

TRANSISTOR SPECIFICATIONS MANUAL 5th Edition
by the Howard W. Sams Engineering Staff
160 fact-packed pages of electrical and physical data for nearly 10,000 transistor types. Lists electrical and physical parameters, essential facts for servicing, and manufacturers of each type. All EIA-regulated TO outlines are shown and dimensioned drawings are provided for nonstandard bases.
No. 20883 $4.50

ABC'S OF ELECTRONIC POWER by Rufus P. Turner
A clear explanation of electronic power and how to measure it, each point clearly illustrated by worked-out examples. No step in the mathematical solution is omitted. Covers: fundamentals, dc power measurement, ac power measurement, rf power measurement.
No. 20884 $3.50

TUBE SUBSTITUTION HANDBOOK 15th Edition
by the Howard W. Sams Engineering Staff
The most complete, up-to-date direct tube substitution guide you can use. Includes over 12,000 substitutions for receiving and picture tubes. Easy to use. Sections cover: cross reference of all American receiving tubes, picture tubes and recommended substitutions, cross reference of subminiature tubes, industrial substitutions for receiving tubes, communications and special-purpose tube substitutions, cross reference of American and foreign tubes.
No. 20845 $14.75

TRANSISTOR SUBSTITUTION HANDBOOK 12th Edition
by the Howard W. Sams Engineering Staff
Here is the answer if you can't get an exact replacement for a failed transistor. Using computers, the Sams Engineering Staff made over a billion comparisons of electrical and physical parameters of all transistors. The over 105,000 substitutions that can be safely and satisfactorily made are listed here in easy-to-find order.
No. 20899 $2.25

ABC'S OF BOOLEAN ALGEBRA 3rd Edition
by Allan Lytel and Lawrence Buckmaster
A knowledge of Boolean algebra, the algebra of logic, is essential for anyone wishing to understand the logical functions of computer circuitry. This text introduces and explains symbolic logic and shows, with simple block diagrams and examples, the relations between language and switches, and the principles of logical design. It shows how to write logical expressions, expand and simplify them, and how to use relays and switches in circuits.
No. 20867 $3.50

QUESTIONS AND ANSWERS ABOUT CB OPERATION 2nd Edition
by Leo G. Sands
A quick and handy reference source of information about CB radio; its classes and uses, licensing and FCC rules, operating procedures, selection of CB equipment, and installation of transceivers and antennas in mobile and fixed-station locations. As valuable for anyone who works with CB radio as it is for electronics engineers and technicians.
No. 20863 $2.95

SEMICONDUCTOR DIODE LASERS
by Ralph W. Campbell & Forrest M. Mims
This introduction to the rapidly expanding use of the injection laser shows how the science progressed from ruby lasers to its present high efficiency and economic form of the semiconductor diode laser. It gives information on construction methods, circuits, conventional and infrared photographs, power requirements, power output, practical uses, and future possibilities.
No. 20867 $5.95 (tentative)

SOLID STATE SERVICING
by William S. Scott
Easy-to-understand, practical service information to aid the service technician in repairing and solid state electronic equipment used in black and white TV, color TV, and radio circuits. Includes troubleshooting hints and procedures.
No. 20866 $4.95 (tentative)

RADIO AMATEUR OPERATING HANDBOOK
by Marshall Lincoln, W7DQS
While it is not a technical book on electronics, this book is a practical single-source working guide for hams. It covers all facets of on-the-air operating activities as well as the building, testing, and modifying of equipment. It is particularly intended to improve the ham's operating methods and techniques in radio communication.
No. 24028 $4.05

<table>
<thead>
<tr>
<th>HOWARD W. SAMS & CO., INC.</th>
<th>RE 042</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order from your Electronics Parts Distributor, or mail to Howard W. Sams & Co., Inc., 4300 West 62nd Street, Indianapolis, Indiana 46268.</td>
<td></td>
</tr>
<tr>
<td>No. 20883</td>
<td>No. 20893</td>
</tr>
<tr>
<td>Order from your Electronics Parts Distributor, or mail to Howard W. Sams & Co., Inc., 4300 West 62nd Street, Indianapolis, Indiana 46268.</td>
<td></td>
</tr>
<tr>
<td>No. 20884</td>
<td>No. 20887</td>
</tr>
<tr>
<td>Send books checked at right. $_____. enclosed. Please include sales tax where applicable. Canadian prices slightly higher.</td>
<td></td>
</tr>
<tr>
<td>No. 20889</td>
<td>No. 20888</td>
</tr>
<tr>
<td>Send Free 1972 Sams Book Catalog.</td>
<td></td>
</tr>
<tr>
<td>No. 20899</td>
<td>No. 24028</td>
</tr>
<tr>
<td>Name:</td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
</tr>
<tr>
<td>City</td>
<td>State</td>
</tr>
</tbody>
</table>

Circle 2 on reader service card APRIL 1972 • RADIO-ELECTRONICS 1
It stopped the traffic in Times Square.

We took our new ST-5130 FM stereo/FM-AM tuner to Times Square, where traffic—and ignition interference noise—are at their peak. Then with a flick of a switch, we stopped the noise dead.

That switch cuts in our new, exclusive, Impulse Noise Suppression circuit. It instantaneously cuts out the man-made impulse noises that can plague FM reception.

With this background interference gone, it's easy to hear and appreciate the rest of the 5130's super-tuner performance. The numbers are unbeatable: 1.5 \(\mu \text{V IHF} \) sensitivity, 1.0 dB capture ratio, 100 dB selectivity, and 100 dB rejection of images, i.f., and spurious response (with equally remarkable AM performance, of course).

And you'll also like such features as the 5130's oscilloscope output jacks for multipath indication, and it's independently-controlled headphone jack.

Impulse Noise Suppression. Hear the difference it makes, at your nearby Sony Dealer. Sony Corporation of America, 47-47 Van Dam Street, Long Island City, N.Y. 11101.

New SONY ST-5130 FM Stereo/FM-AM Tuner
Radio-Electronics

For Men with Ideas in Electronics

April 1972

AUTOMOTIVE ELECTRONICS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>Add-On Electronics For Your Car</td>
<td>Fred Holder</td>
</tr>
<tr>
<td>37</td>
<td>How The Staar Cassette Operates</td>
<td>Larry Allen</td>
</tr>
<tr>
<td>54</td>
<td>8-Track Car Tape Player Repair</td>
<td>Joseph J. Carr</td>
</tr>
<tr>
<td>86</td>
<td>Facts & Fallacies Of Electronic Ignition</td>
<td>Joe Shane</td>
</tr>
</tbody>
</table>

STEREO HI-FI AUDIO

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>Stereo Amplifier Design</td>
<td>Mannie Horowitz</td>
</tr>
<tr>
<td>60</td>
<td>Omnisonics</td>
<td>S. H. Mann</td>
</tr>
</tbody>
</table>

BUILD ONE OF THESE

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>TV Tuner Subber</td>
<td>Cedric Western</td>
</tr>
<tr>
<td>42</td>
<td>Digi-Mod-N Frequency Divider</td>
<td>Jack Cazes</td>
</tr>
<tr>
<td>50</td>
<td>Digital Printing Computer</td>
<td>Don Lancaster & Loon Schoenfeld</td>
</tr>
</tbody>
</table>

TELEVISION

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>Equipment Report</td>
<td>B&K 1450 scope</td>
</tr>
<tr>
<td>62</td>
<td>Service Clinic</td>
<td>Jack Darr</td>
</tr>
<tr>
<td>63</td>
<td>Reader Questions</td>
<td>R-E's Service Editor solves reader problems</td>
</tr>
</tbody>
</table>

GENERAL ELECTRONICS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Looking Ahead</td>
<td>David Lachenbruch</td>
</tr>
<tr>
<td>22</td>
<td>Appliance Clinic</td>
<td>Jack Darr</td>
</tr>
<tr>
<td>25</td>
<td>AM Radio Booster</td>
<td></td>
</tr>
</tbody>
</table>

DEPARTMENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Letters</td>
<td>70</td>
</tr>
<tr>
<td>6</td>
<td>New & Timely</td>
<td>77</td>
</tr>
<tr>
<td>7</td>
<td>New Literature</td>
<td>103</td>
</tr>
</tbody>
</table>

ON THE COVER

SURROUNDING THE CUTAWAY view of a 1972 Chevrolet Vega is a variety of automotive electronics. Starting at the top left and going clockwise you'll see an Elco model 888 Engine Analyzer; next is an On-Guard automotive burglar alarm; then a Radio-Shack Realistic 4-Channel 8-Track Stereo Tape Player model 12-1833; dash-mounted tachometer, Lafayette 4-Dimension Auto-Stereo Adapter model 99-85128; Delta Products Mark Ten-B Capacitive-Discharge Electronic Ignition System. . . . see page 33

HANDY FREQUENCY DIVIDER makes it possible to divide almost any frequency signal by almost any number you wish. . . . see page 42

A new color tube

What may be the first direct competition to Sony's Trinitron color tube has been introduced in Japan by Tokyo Shibaura Electric Co. (Toshiba). Called the "Linytron," the new tube has oblong, rather than round, holes in its shadow mask, arranged in a vertical pattern like bricks in a wall. It has three electron guns, but they are arranged horizontally in an in-line pattern. Among the advantages claimed: Higher brightness (because the shadow mask is more "transparent" to electrons), higher resolution and contrast, freedom from convergence and deflection adjustments, cost savings in chassis components. Although it's claimed that the tube can be built in any size, it is making its first appearance in a 9-inch Sharp set, which will be available in the United States at a list price of about $300. As we observed it, the Sharp set had a bright, pleasing picture with a strong resemblance to that of the Trinitron, except that the new tube lacks Trinitron's cylindrically curved face.

CBS drops EVR

Even before the dawning of that fabled "videoplayer age," CBS has backed out of active proprietorship of the first major cartridge video system to be introduced--EVR, or Electronic Video Recording. CBS announced that it would close its ultra-modern EVR cassette production and duplicating plant in Rockleigh, N.J., and discontinue its activity as North American licensor for EVR hardware production. EVR Partnership, a European firm with headquarters in London, will take over North American licensing rights from CBS and now becomes the worldwide EVR proprietor. Motorola, the only American producer of EVR Teleplayers, has produced about 2,000 of the machines by mid-January, with some 1,200 in use, and will continue production. When CBS closes its cassette plant in mid-1972, a British facility, already in production, will take over. Several firms in Europe and Japan are also producing EVR players.

Another pay-TV system

With the increase in channel capacity on CATV systems, there's growing interest in programs which can be seen in the home for a special charge. The latest system, whose proponents say "will get tested soon on cable TV" is called "Theatrevision" and is being sponsored by Telepremiere International, headed by former MGM studio chief Doré Schary. Here's how Theatrevision works: The CATV subscriber is given a schedule of first-run motion pictures, sports and special events which are to be presented on the Theatrevision channel—there may be five or more presentations at the same time. He purchases a ticket, either through the mail or from a local store. At show time, he tunes his set to the Theatrevision channel, inserts the ticket in a slot on top of his television set, and the program of his choice immediately appears on the screen.

The ticket-taking box on the set (which is supplied to the viewer free when he buys his first $15 worth of tickets) contains an auxiliary tuner. The ticket itself is a disposable, printed circuit. When the ticket is inserted in the box, the set is automatically tuned to the proper channel, which isn't a conventional channel but one between Channels 6 and 7, and the encoded picture is unscrambled. The printed-circuit ticket is automatically shredded in the box to prevent re-use. Theatrevision's proponents say their system has these advantages over other pay-by-the-program systems: It can automatically select a specific program from among many presented at the same time, and it makes possible pre-payment for programs through the conventional method of ticket purchase. Other systems involve billing the viewer after he has seen the show.

End of an era

Ampex Corporation, the first American company to produce tape recorders, has decided to leave the consumer market as the result of financial reverses by its home products operation. The company has had a broad line of open-reel and cassette recorders, which gradually will be phased out. The only consumer recorder to remain in its line will be the semi-professional AX300, which lists at about $695. Ampex will continue in the professional audio and video recorder fields, and, in fact, will step up its efforts on Instavideo, its cartridge-type color TV recorder.

First home videoplayer

The first specific announcement—with availability dates and prices—of a home video tape recorder, has come from a rather unusual source. It's Sears, Roebuck & Co., hardly known as an electronics innovator, but certainly a marketing innovator. This column has noted in the past that Sears was planning to introduce the Cartrivision home color VTR made by Cartridge Television, Inc.

Sears announced that its first model—a combination 25-inch color set, VTR with automatic on-off time clock and black-and-white camera—would be offered in June by 18 of its retail stores in Chicago, with sales gradually going nationwide as more VTR decks are available. The first model will be priced at a rather steep $1,600, or $1,350 without the camera. Future models will include a deck that can be connected to color sets at about $750, and a 19-inch color TV-VTR combination at around $1,000. A color camera of unique design is promised for 1973 at around $400. Sears will also offer blank half-inch video tape at prices ranging from $13 for a 15-minute reel to $40 for two hours. Sears stores will offer rental pre-recorded cartridges—everything from sewing lessons to movies. The price for feature films will be about three to five dollars per day. These tapes are packaged in special non-rewindable cartridges which permit only one showing.

The same Cartrivision system will be available under several other brand names later this year, with most sales probably starting this fall.

4-channel box score

Both of the leading quadruphonic disc formats are gaining powerful adherents. CBS's "SQ" matrix system has received a big boost with its adoption by EMI, Ltd., for its 15 worldwide record labels, including Capitol in the United States. RCA, meanwhile, is working to bring Japan Victor Co.'s "CD-4" discrete disc system into complete compatibility, and was undoubtedly cheered by advertisements in Japan indicating that the Philips group, which includes such labels as Mercury Records and Deutsche Grammaphon, will bring out four-channel discs using the CD-4 system.

by DAVID LACHENBRUCH CONTRIBUTING EDITOR
Instant inventory.

Electronic components handy with Malloryth Benchtop Organizers. Each Mallobin contains a popular assortment of electronic components in a stackable interlocking plastic case. Fifteen partitioned drawers keep parts neat. And each drawer is color coded and labeled for quick location of the part you want.

Mallory contains a popular assortment of electronic components in a stackable interlocking plastic case. Fifteen partitioned drawers keep parts neat. And each drawer is color coded and labeled for quick location of the part you want.

Mallory Distributor Products Company

Malobins come with selected components including all types of fixed capacitors, MOL and wire-wound resistors, carbon and wire-wound controls. In addition to regular Malobins, custom assortments are available.

Ask your Mallory distributor for Mallobin prices and details today.

Mallory Distributor Products Company

Batteries - Capacitors - Controls - Crime Alertth - Dura-Paper - Recorders - Resistors - Semiconductors - Sonalertth - Switches - Timers - Vibrators

Circle 4 on reader service card
new & timely

Seminar courses
Special courses to be offered to cable TV personnel are planned by the Magnavox Company, CATV division. The courses from the Magnavox Training Center are given in seminar fashion at seven of the Center extensions located in major cities—New York, Atlanta, Cleveland, Chicago, Dallas, Los Angeles, and San Francisco.

The courses selected for attendance by CATV personnel will be valuable to anyone who must learn general television techniques. Two typical courses require only a basic knowledge of electronics and a basic knowledge of black-and-white TV. "Solid-State Components—Their Operation and Application in Solid-State Radios", for example, will run for two days, and requires only a basic knowledge of electronics. "Colorimetry and Color TV Set-Up" will run for one day and requires a basic knowledge of electronics and black-and-white TV.

Dan Mezzalingua, general manager of Magnavox CATV Division, states that they "realize that one of the cable industry's sorest problems is a scarcity of trained technical personnel and we feel that it is our obligation as system and equipment suppliers to offer our aid in this manner." Magnavox plans to build upon the courses now offered until they are able to give a complete seminar program covering the basic elements of cable system design, installation, operation and maintenance.

Schedules for course times and locations for 1972 may be obtained by writing directly to Mr. J. B. Emerson, Manager, Communications, Magnavox CATV Division, 133 W. Seneca St., Manlius, N.Y. 13104.

Discrete 4-channel FM
The prospects for a reasonably quick approval of companion discrete 4-channel stereo-FM to go with RCA Records' disc format is pretty poor, according to inquiries made by TV Digest at the FCC.

Other FCC action now pending is for commercialization of the Dorren multiplex system, and GE is testing its own system but hasn't petitioned the FCC for acceptance as yet. Toshiba has developed a discrete 4-channel FM system, and others will be making their debut from time to time.

But the FCC doesn't feel that the situation is urgent, according to Harold L. Kassens, chief of the Broadcast Bureau's Rules and Standards Division. He says the issue is "way down on the list" because of other priority FCC problems and lack of personnel for such a large proceeding. Not only that, but if and when the proceedings begin, FM broadcasters can't be depended upon to support it and many may actively oppose it, primarily because of the expense involved in relocating the SCA subcarrier, converting receivers to new frequency, and other expenses.

Record companies which go ahead with matrix 4-channel systems also can be expected to oppose new broadcast standards, since matrixed 4-channel material can be transmitted over regular stereo-FM outlets without FCC permission and can be played back through a decoder.

In the end, if the proceedings should start, they will undoubtedly be lengthy, with plenty of systems proposed and field-tested. All of this gives a speedy approval for discrete 4-channel FM a very dim outlook.

Radio energy increases electron temperatures
A report from the National Oceanic and Atmospheric Administration states that powerful radio frequency energy in the 5- to 10-MHz range can increase electron temperatures in the ionosphere up to 35% and cause other significant changes. Man has already modified the ionosphere with atomic bombs, chemical releases, and linear electron accelerators. With the newly developed radio method man may perform experiments from a distance with no harmful after effects. Radio and optical techniques for monitoring the resulting perturbations make possible almost laboratory-type conditions for accurately verifying the distant phenomena.

Emphasis in the work is placed on the major radio-frequency-reflecting substrata of the ionized layer between 250 and 350 km, the F Layers. It is expected that results of these studies will be significant for interterrestrial and space communications, as well as for better understanding of the aeronomy of the natural atmosphere.

Four-channel patent
Peter Scheiber of the Audiodata Company, and Electro-Voice, Inc. announced that U.S. Patent No. 3,632,886 covering encoding and decoding matrix techniques for four-channel recording and broadcasting has been issued to Peter Scheiber. Mr. Scheiber and Electro-Voice have agreed to pool their efforts in the protection of patents, licensing, and manufacture of equipment using developments from both firms.

Howard Durbin, E-V's senior vice president and technical director stated "Our basic interest is in establishing the four-channel concept as an industry with playback equipment in all price classes." The latest development is equipment capable of completely compatible decoding (continued on page 12)
new lit

All booklets, catalogs, charts, data sheets and other literature listed here with a Reader Service number are free for the asking. Turn to the Reader Service card on page 103 and circle the numbers of the items you want. Then mail the postage-paid card.

NC FLASHER CATALOG, Winter/Spring 1972, offers a complete range of quality tools for the technician. 56 page listing of hundreds of tools, precision instruments and workshop needs and accessories, including test instruments, publications for photographic equipment specialists, metric screws, screwdrivers, micrometers, calipers, etc.—National Camera, 2000 West Union Ave., Englewood, Colo. 80110. Circle 40 on reader service card

WALSCO CROSS-REFERENCE CATALOG, No. FR-135 is an expanded line of exact replacement rubber drives and belts. Included are thousands of possible replacement items, comprised of a variety of phono and recorder drive wheels and pulleys, pinch rollers, round rubber belts, square cross-section rubber belts, spring belts and fabric drive belts. Features also specialized parts such as felt pressure pads, phono mounting "E" and "C" clips in an assortment kit, motor mounting grommets, changer switches, and kit of assorted phono drives and belts. Enlarged cross-reference section, with replacement part numbers listed for equipment made by 194 manufacturers, both domestic and foreign. Charts help in choosing proper size belt for any unusual machine types.—GC Electronics, 400 S. Wyman St., Rockford, Ill. 61101. Circle 41 on reader service card

CAPACITOR REPLACEMENT MANUAL, No. K-110. Forty page manual covers over 300 different makes, including TV sets as well as autos, radios, hi-fi. Lists original part numbers, ratings, recommended capacitor replacements, and prices. More than 2,500 electrolytic capacitors listed.—Sprague Products Co., 81 Marshall St., North Adams, Mass. 01247. Circle 42 on reader service card

SOLDERING INSTRUMENT BROCHURE, The Loner. Full color brochure describes this soldering instrument and explains its difference from a soldering iron. Also shows the thermal guard holder.—Edsyn, Inc., 15954 Arminta St., Van Nuys, Calif. 91406. Circle 43 on reader service card

REPLACEMENT GUIDE, #172. 92-page radio and TV replacement coil cross reference directory for all known domestic and foreign color and black-and-white TV sets, home and car radios. Over 22,000 replacement coils for 327 manufacturers' names are listed.—J. W. Miller Co., 19070 South Reyes Ave., Compton, Calif. 90221. R-E

Save money and improve car performance at the same time.

Maintenance costs go down and performance increases when you put a Delta Mark Ten Capacitive Discharge Ignition System on your car.

For eight years we’ve been telling you about the tremendous advantages of CDI systems. We’ve promised and delivered better performance for cars, boats and trucks. Hundreds of thousands of satisfied customers testify to that fact. However during these eight years, we’ve been asked over and over again, “If CDI systems are so great, why doesn’t Detroit adopt them?” It’s taken a long time, but finally Detroit has recognized the value of the CDI system. Chrysler, long noted for excellence in engineering, is now installing electronic ignitions in new cars. Have you seen their ads? Heard their commercials? They’re repeating what we’ve said for eight years. Electronic ignition systems not only improve performance, but eliminate the need for most tune-ups. If you’re not buying a new car, but want new car performance, put a Mark Ten or Mark Ten B on your present automobile. If you’re purchasing a new car with no CDI system, install a Mark Ten or Mark Ten B and enjoy the benefits of low maintenance and increased performance.

HERE’S WHAT A MARK TEN WILL DO FOR YOU:

Mark Ten and Mark Ten B— up to 20% increase in gasoline mileage. Eliminates 3 out of 4 tune-ups Installs in only 10 minutes. Spark plugs last 3 to 10 times longer. Dramatic increase in performance Promotes more complete combustion Instant starts in all weather.

Mark Ten B—Improves combustion, reducing contaminants Handy switch with redundant contacts for instant return to standard ignition Applicable to ANY 12 volt negative ground engine Eliminates starting and idle problems Longer spark duration during cranking and idling.

Mark Ten (Assembled) $44.95
Mark Ten (Deltakit) $29.95

Kit available in 12 volt only, positive or negative ground

Mark Ten B $59.95 ppd
(12 volt negative ground only)

ORDER TODAY!

Superior Products at Sensible Prices

Mark Ten (Assembled) $44.95
Mark Ten (Deltakit) $29.95

Kit available in 12 volt only, positive or negative ground

Mark Ten B $59.95 ppd
(12 volt negative ground only)

ORDER TODAY!

Superior Products at Sensible Prices

Delta
DELTA PRODUCTS, INC.
P.O. Box 1147 / Grand Junction, Colo. 81501 (303) 242-9000

Please send me literature immediately:

__ Enclosed is $__ Ship ppd. __ Ship C.O.D.

Please send:

__ Mark Ten B @ $59.95
__ Standard Mark Ten (Assembled) @ $44.95
__ 6 Volt. Neg. Ground Only __ Positive Ground
__ 12 Volt. No. Specify __ Negative Ground
__ Standard Mark Ten (Deltakit) @ $29.95
__ 12 Volt Positive Or Negative Ground Only
__ Car Year: Make:
__ Name:
__ Address:
__ City/State:
__ Zip

Circle 5 on reader service card

APRIL 1972 • RADIO-ELECTRONICS 7
NRI "hands-on" training in Television, Communications, Electronics and Computers can give you as much as 2 years of on-the-job experience.

EARN YOUR FCC LICENSE – OR YOUR MONEY BACK
NRI Communications training programs will qualify you for a First Class Commercial Radiotelephone License issued by the FCC. If you fail to pass the FCC examinations for this license after successfully completing an NRI Communications course we will, on request, refund in full the tuition you have paid. This agreement is valid for the period of your active student membership and for six months after completion of your training. No school offers a more liberal FCC License agreement.
Experience is still your best teacher

...here's how you get it with unique NRI training at home

Ask any teacher, job counselor, engineer, technician or prospective employer about the need for practical application of theory in Electronics. He'll tell you Electronics is as much a "hands-on" profession as dentistry or chemistry. That's how you learn at home with NRI. You prove the theory you read in "bite-size" texts, by actual experimentation with the type of solid-state, transistor and tube circuits you'll find on the job today — not hardware or hobby kits. You introduce circuit defects, analyze results, discover quickly the kind of trouble-shooting and design techniques that will make you employable in Electronics.

Train with the leader — NRI

NRI lab equipment is designed from chassis up for effective, fascinating training — not for entertainment. The fact that end results are usable, quality products is a bonus. In Communications, for example, you build and analyze, stage by stage, your own 25-watt phone/cw transmitter. It's suitable for use on the 80-meter amateur band, if you have an interest in ham radio. In TV-Radio Servicing your practical training gives you your choice of monochrome or color TV sets. All training equipment is included in the low tuition — you pay nothing extra. Discover for yourself the ease, excitement and value of NRI training. Mail postage-free card today for new NRI Catalog ... or use the coupon below. No obligation. No salesman will call on you. NATIONAL RADIO INSTITUTE, Washington, D.C. 20016.

APPROVED UNDER NEW GI BILL
If you have served since January 31, 1955, or are in service now, check GI line on postage-free card or in coupon.

MAIL THIS COUPON IF CARD IS GONE

NATIONAL RADIO INSTITUTE 3-042
Washington, D.C. 20016

Please send me your new NRI Catalog. I understand no salesman will call and there is no obligation.

Name____________________Age__________
Address______________________

City________________________State__________Zip_________

☐ Check for facts on new GI Bill

ACCREDITED MEMBER NATIONAL HOME STUDY COUNCIL

APRIL 1972 • RADIO-ELECTRONICS 11
Hugo Gernsback scholarship winner

National Radio Institute has selected Earl J. Immel of Toms River, New Jersey to receive the Hugo Gernsback Scholarship Award for 1972. This is a grant of $125.00 given annually by Radio-Electronics magazine to each of eight students learning electronics at home-study schools. He is enrolled in the Marine Elec-

trons with First Class F.C.C. course.

Earl is married and has two small children. He enlisted in the service in 1965, although he had been accepted at the Milwaukee School of Engineering. He studied electronics, including fixed station radio receiver repair and facilities control prior to his twelve month tour of duty in Vietnam. After he was separated from the service he worked in electronics, doing field and bench repair of facsimile weather chart recorders and business machines, weather Satellite photo machines and ship stabilizers. He is currently doing electronics troubleshooting of long lines circuits for AT&T.

Free access TV

One of the basic issues facing the blossoming cable television industry is the question of “free access”—free air time set aside for any group or individual that wants to put its message across on television. The first, and still the largest, free-access experiment in the country is a non-profit organization called Open Channel, which broadcasts public-service program-

ing to some 90,000 cable-TV subscribers in Manhattan. Its purpose is to give ordinary citizens a chance to express themselves on political, cultural and social issues. Open Channel has given free air time to groups like the Boy Scouts, and local supporters of black radical Angela Davis.

The project seems to be meeting with mixed success, but it is being watched closely by government and broadcasting officials across the country as a showcase for the future of do-it-yourself TV.

The two serious difficulties now faced by Open Channel are funding and public awareness. To deal with the problem of money, Miss Theodora Sklover, the executive director of the program, argues that the city’s tax on cable operators—currently 5% of their gross—should be used to finance free access. The problem of lack of public awareness, a major handicap to Open Channel, is less easy to approach. Relatively few groups have taken advantage of the chance to appear on TV, apparently because they don’t know about it. However, Miss Sklover has produced some low-budget shows, very professional in character, and she feels that is crucial to making free access work. “It’s not enough to tell people they have free ac-

cess,” she declares, “you also have to help them make the programs.”

Jack A. Morton dies

On December 11, 1971, Jack A. Mor-

ton, Bell Labs vice president, died at the age of 58.
Mr. Morton was a graduate of Wayne University and took his Masters degree in engineering from the University of Michigan in 1936. He went to work for Bell Labs immediately and was associated with the company until his death, in various capacities, starting in electrical circuit engineering. There he conceived and developed high frequency transmission measuring methods which exceeded the ranges of previously existing means by a factor of ten. Later he aided the development of the grid-return amplifier at microwave frequencies, an achievement which was significant to the war effort in the Pacific during World War II.

Mr. Morton was the author of numerous articles, and a book, "Organizing for Innovation", which was published in 1971. As an inventor and co-inventor, he held 24 patents.

Voice response system

The first solid-state, limitless vocabulary voice response system has been developed by Phonplex Corporation, a subsidiary of Instrument Systems Corporation. It provides an economical and efficient means of accessing a computerized data bank via the telephone. Since any telephone can be converted into a computer terminal, the system is ideal for applications which require rapid, remote verbal information retrieval, such as credit card and bank check verification, reservations control, and stock market quotes.

Phonplex breakthrough permits phoneme vocabulary modules to be stored economically in the solid-state memory, thus using only a small fraction of the space required by other systems and giving far greater system reliability. The phonemes, when programmed, combine to speak words, phrases, sentences, paragraphs and even complete stories. Since phonemes are the smallest parts of speech, they permit programming in any language or combination of languages.

The system can store a nearly unlimited vocabulary because of Phonplex' proprietary development of "phoneme" storage. Phonemes are the smallest units of speech that serve to distinguish one utterance from another in any given language or dialect.

Earlier voice response systems depended on the expensive and restrictive storage of entire words or phrases by prerecording them on bulky and slowly responding tapes, drums or discs. The

World's quietest phone preamp

Infinitely variable stereo panorama control

Silent switching and automatic muting at turn-on and turn-off

Integrated circuit modules

Industry's lowest distortion levels

Full range tone and loudness controls

Guaranteed phase response

3-year parts and labor warranty

Will drive any amplifier

$269. Walnut enclosure $33

Ask your dealer about Crown's new companion D150 power amplifier, which delivers 200 watts IHF output at 8 ohms or 350 watts at 4 ohms. No amp in this power range - however expensive - has better frequency response or lower hum, noise or distortion. It offers performance equal to the famous DC-300, but at medium power and price. It's worth listening into!
We have a boy
for every girl.

We have a tremendous line of receiving tubes—over 1000 at last count.
We have 205 different black-and-white picture tubes.
We have the industry’s most complete line of color picture tubes.
We have semiconductors of all kinds: transistors, FETs, diodes, rectifiers, SCRs, Zener diodes, linear ICs.
These are our boys.
They’re easy to work with.
We’ve organized replacement programs (like our ECG semiconductor program), so that you can keep the least amount of stock on hand to replace the most number of parts.
We publish the Sylvania Technical Manual, which is practically a replacement encyclopedia (32,000 components!).
We have loads of specialized replacement literature. And we help you with any replacement problem.
See your Sylvania distributor and get to know the family.
MULTI-SENSOR ALARM

The semiconductors used in the story "Build A Multi-Sensor Alarm" by C. R. Lewart in the November 1971 issue of Radio-Electronics are made by General Electric Company, Electronic Distributors, Inc. (EDI), 4900 N. Elston, Chicago, Ill. 60630, carries a wide range of G-E semiconductor devices. The prices are:

- 2N6027 - $0.79
- C103-Y - 0.75
- C122-F - 1.20

EDI has a $3.00 minimum-order policy which will be met by the cost of the five semiconductors needed for the project. When ordering, ask for a copy of their annual catalog. It carries many hard-to-find product lines as well as lots of surplus goodies.

ROBERT F. SCOTT
Technical Editor

WOMEN WITH IDEAS IN ELECTRONICS

I'd like to voice my objections and those of my colleagues to the Radio-Electronics tag. "For Men With Ideas In Electronics", which appears on your cover.

May I suggest you redefine your audience. Certainly such a title is an anachronism in today's society where 42.8% of the labor force is female, where the bulk of consumer spending is done by women, and in which more and more areas, professions and occupations, once solely male, are becoming fully integrated. Surely your readership, too, is destined to grow along those same lines.

You would do well to consider the future of your magazine in terms of the men and women in your industry, as well as the "people with ideas" who constitute your readership.

TRUDYE CONNOLLY
New York, N.Y.

We'd like to hear from more of our women readers. What do you feel would be an appropriate "tag line" on our cover? Do you like it as is? Attach your subscription address label to your letter and let us hear from you.—The Editor.

PAUSE CONTROL MODIFICATION

Here is a simpler solution to the "Windshield Wiper Pause Control" problem (December 1971 Radio-Electronics) than the author gave. The difficulty arises because the relay RY must stay closed until cam K turns far enough to close its contacts and so keep the wiper going for one sweep. The very large capacitor C does the trick.

My version has been working on our Buick for the past year.

H. A. COURTICE
Rehoboth Beach, Del.
ALARM SYSTEM

I built the unit described in C. R. Lewart's article, "Multipurpose Alarm System," November 1971 Radio-Electronics. Here is the result, with some changes your readers might enjoy.

The most important change is in the tripping part of the circuit. When wired my way, you can use either normally open or normally closed sensing switches, or both types simultaneously.

You'll see that I used C106Y SCR's in place of the C103's. I started out to use C103 but could not get the circuit to work and eventually burned one of them out. So I switched over to the higher amp 106's which work fine.

I changed R1 to 2 meg and R8 to 750K and used 10-µf capacitors for C1 and C3. These suit my needs for the delays. Since I couldn't find a Sorensen horn relay I used a Delco Remy F-1734.

The C122 SCR was first mounted on a small heat sink made from a piece of aluminum, and then mounted on the board along with the other components. The aluminum chassis I used measures 5 x 7 x 2 inches—a more compact size.

My alarm unit is in the garage and I'm planning to build another one for my car with shorter delay times and omit the horn relay by using the one already in the car.

C. R. Peters
Chicago, Ill.

NEA AWARD

Of the twenty-four awards presented at the recent Convention of the National Electronic Association, only two were presented to electronic companies, and General Electric was one of them. This award was for "Outstanding Service to the Independent Electronic Service Dealers and Technicians."

However, in your November 1971 issue, in the short article "Technicians Meet", you neglected to include any mention of this award.

We at General Electric who through individual effort helped in this achievement are proud of our accomplishments, and we believe that this special recognition should be noted in your pages.

J. J. Pisarczyk
General Electric Company

Editor's Note: We're sorry for the unintentional omission. General Electric is justly proud of this award.

R.F.
The Way to Get Ahead in Electronics is To Get More Knowledge Into Your Head And a Grantham Degree Into Your Pocket!

The above headline makes a point that affects more than your head and pocket. It can affect your pocketbook too. Getting ahead in the pocketbook is of great interest to most of us, and the Grantham ASEE Degree program not only helps you get ahead in the pocketbook but also puts a better one on your shoulders. As an electronics technician, you can really get ahead by getting more education, and if you don’t need a degree in your pocket why not hang it on the wall?

Maybe we don’t write the best ads, but we really know how to teach electronics and related subjects by correspondence. We have been doing it for more than twenty years.

New Grantham Program for Beginners

Until recently we accepted only experienced electronics technicians in our degree program. However, we have now added a new program for beginners and those with very limited experience. The two different programs are described in different catalogs. In your inquiry, be sure to indicate the true level of your experience, so we can send the catalog that fits your particular situation.

Advance beyond the technician level. Become an engineer. If you are a high school graduate and have a good aptitude for electronics and mathematics, you can earn the Degree of Associate in Science in Electronics Engineering mainly by

STUDYING AT HOME

Investigate now the Grantham college-level program in electronics engineering, offered (by correspondence) to working technicians while they remain on their jobs. Grantham lessons place heavy stress on fundamental concepts of logic and mathematics (taught so you can understand them), and build from there in a systematic manner, covering physics, circuits, and systems. The lessons are easy to understand because they are carefully written, with step-by-step explanations and consistent review and regrouping of ideas.

Now is the time, not only to protect yourself from unemployment, but also to prepare yourself for the greater demand in engineering which is sure to come. You can’t become an engineer in a few short weeks; it takes many months. You can be upgrading yourself in your present job while the economy is “slow”, and then be ready to move into engineering when the national economy gets going again. Yes, now is the time to prepare, so that you will be ready to take advantage of opportunity when it presents itself.

When the Degree of Associate in Science in Electronics Engineering is conferred upon you, it will be because you’ve earned it. You’ll have a knowledge and understanding of electronics that won’t fail you. You’ll know what you’re doing, and why you’re doing it. And what’s more — your associates will know that you know what you’re doing. You’ll be proud to say that you’re a GRANTHAM man. The pride that the School takes in its graduates is reflected in this simple statement: GRANTHAM graduates are men who have learned to step up!

STEP UP!

MOVE AHEAD

The Way to Get Ahead in Electronics is To Get More Knowledge Into Your Head And a Grantham Degree Into Your Pocket!
Put More "GO POWER" into Your Electronics Career—

MOVE AHEAD from TECHNICIAN to ASSOCIATE ENGINEER by studying at home with GRANTHAM SCHOOL OF ENGINEERING "the college that comes to you"

The GRANTHAM educational program in ELECTRONICS ENGINEERING is designed to upgrade electronics technicians to the engineering level, mostly by home study.

While you continue your present employment, you can really learn electronics engineering and earn an ACCREDITED DEGREE.

GRANTHAM’s strong-foundation correspondence program in electronics engineering leads to non-obsolescent skills—to skills based on reasoning—and leads to the DEGREE of Associate in Science in Electronics Engineering (the ASEE Degree). Completion of this program will prepare you for positions normally filled by college-graduate engineers, and for many other electronics careers open to men with the proper training.

This accredited degree program for experienced technicians consists of four correspondence courses of 100 lessons each—an overall total of 400 lessons—followed by a two-week graduation seminar held at the School. Upon completion of the four correspondence courses, you are awarded a diploma in Electronics Engineering. Then, upon completion of the two-week graduation seminar, you are awarded the ASEE Degree.

What’s in Your Future—The Same Old Job, or Success in Electronics?
Where will you be five years from today? Are you headed for real advancement in electronics, or in a rut? The experience you have is valuable; it gives you a head start toward a better future. But to get ahead and stay ahead, experience must be supplemented with more education in electronics and such allied subjects as mathematics, physics, computers, and engineering design.

Accreditation and G.I. Bill Approval
Grantham School of Engineering is accredited by the Accrediting Commission of the National Home Study, is approved under the G.I. Bill, and is authorized under the laws of the State of California to grant academic degrees.

For complete details, mail postcard or coupon.

Grantham School of Engineering
1505 N. Western Ave., Hollywood, Calif. 90027
Telephone: (213) 469-7878

Name ____________________________
Address __________________________
City __________________ State ______ Zip ______

APRIL 1972 • RADIO-ELECTRONICS 21
appliance clinic

WHEN WIRING ACTS UP

by JACK DARR
SERVICE EDITOR

A LOT OF THE TIME. THE SIMPLE THINGS cause all of the trouble. What could be simpler than the wiring in the typical appliance? Yet, this is a very important part of it. In two or three different ways, as we shall see.

Wires are more than long skinny hunks of copper connected between things. Modern wiring has several special characteristics. If we know these and what to do with them, we can save a lot of trouble.

When does a piece of wire need replacing? When you can bend it and see the insulation crack. Worse, when you can move it, and the insulation falls off in your hand. (Also, of course, when your ohmmeter shows no continuity, but this is pretty obvious.)

Don't tape up bad places in the insulation! This is a real no-no. Why? Because; if the insulation has gone bad where you can see it, the chances are it has also gone bad at some place where you can't. And there's always the chance of the tape baking out and going bad in turn. Now, what kind of wire to use for a replacement? That's a good question—let's see if we can find a good answer.

Wire-sizes

The most important thing is to use wire big enough to handle the current. Table 1 shows the ratings for common wire-gauge standards. (Which are a lot different than they used to be. I used to believe that No. 14 wire should never be used for more than 4 amperes! Now look at No. 18! 10 amps!) Check the maximum current, given on the rating plate. Rough guess; divide the wattage given by 100 and you've got the amps.

If the wire is fixed, and doesn't have to bend, solid wire is best. If it must be bent or flexed, stranded wire is necessary. The more flexibility needed, the greater the number of strands you should use. For example, for "moderate flexing" of a No. 14 wire, the recommendation is for a 65 x 30 (65 strands of No. 30). For "service flexing", 165 x 34; 165 strands of No. 34, and so on.

Insulation(s)

All insulation used was rubber, a while ago. That's all changed now. We have a great many modern materials, in the various plastics. Rubber was good while it lasted, and you can take that either way. It did have a tendency to embrittleness with age. High heat, and especially the presence of ozone, age rubber much more rapidly. So practically all of the new wire you get will have plastic insulation.

The most common will probably be the vinyls and the polyethylenes. They are thermoplastics. They melt easily. Except in very special uses, they are the ones you'll see. The others are thermostetting plastics. This includes rubber, by the way! The new ones are neoprene, and some of the silicone plastics. These are molded by heat, then they "set", and can't be remelted.

The big difference lies in the maximum temperature that each type can withstand. If it gets too hot, many of the thermoplastics will melt and fall off the wires! For a rule of thumb, plain rubber wire can be used in places where the (continued on page 76)
WHERE IS THE SIGNAL LOST IN A RECEIiver with a "no signal" defect? This simple, self-contained, battery operated test unit enables the TV service technician to eliminate the tuner as the broken link in the signal chain; in most cases without removing the chassis or tuner from the cabinet.

Purpose and construction

The TV Tuner Subber is intended to substitute the tuner in the receiver; either eliminating the tuner as the cause of failure, or indicating that it is probably defective. The subber is designed around a transistor vhf tuner. ... almost any transistor vhf tuner will do. In this case the particular tuner used is a replacement No. RTT-4, complete with knobs, available from Castle TV Tuner Service, Inc. The tuner used MUST HAVE it's antenna input isolated from chassis ground by a blocking capacitor in the i.f. output circuit. The tuner used in the unit described meets these requirements.

The power source for the tuner is 18 volts supplied by two 9-volt transistor batteries in series. The tuner B+ requirement is 14 volts to 18 volts; rf transistor forward bias in the range 1 volt to 2.7 volts is required to control rf amplification from maximum gain to just above cutoff. The range of gain control is better than 40 db. The bias is supplied by divider network R1, R2 and R3 connected across the B supply. Potentiometer R2, mounted on the front panel, sets the rf gain of the tuner, making it independent of the TV receiver age system. Different transistor tuners used in the subber may require different ranges of bias to properly control the rf gain. Ascertain the range of bias voltage required for the particular tuner selected, then adjust the values of R1 and R3 to furnish this range of voltages across the 500-ohm pot, R2.

To conserve the miniature batteries, we decided that some form of indicator lamp would be necessary to indicate when the subber is on. However, any conventional indicator lamp wired across the battery supply consumes as much power as the tuner itself. This would hardly tend to conserve the batteries. To light the lamp in these power starved conditions the B current drawn by the tuner is used. A low-current lamp (GE No. 1302, 6.3 volts, 35-50 mA) was selected and is connected in series with the tuner B+ terminal and the battery. Connected in this manner the lamp lights dimly as an indicator due to the B-supply current and also doubles as a fuse should excessive current be drawn.

The subber i.f. output terminates in a standard phono jack, which is brought out to the rear of the case for convenient connection. The tunable mixer coil on the subber tuner required very little adjustment for best results; however, other tuners used may require greater adjustment of the mixer coil to find the optimum inductance to match the various i.f. cable capacitances with which the unit will be used. Adjust the coil for best bandpass coupling by using the subber with several popular receivers which are known to be working properly.

The subber is housed in a standard plastic instrument case. Construction time should be less than one hour and no special calibration or alignment is necessary. Construction cost will vary with cost of tuner used and available parts. Parts for the unit described here totalled about $23.00.

The tuner is mounted to the case bottom with angle brackets and flat head screws. The batteries are held in place by a pair of capacitor mounting clips. The 1/4-in. diameter hole for the fine-tuning knob was cut with a holesaw. It could also be made by drilling a convenient size hole and then enlarging it with a half-round file. The plastic case is easy to work and presents little problem in this respect. It does scratch easily so be careful if you want a good looking unit. The tuner had an unused terminal board already mounted on the chassis which provided convenient wiring tie points for the rf gain control divider network.

Two 12 to 18-inch i.f. extension cables should be made up as shown in the

TV TUNER SUBBER

Test unit substitutes the tuner in defective TV receivers to prove whether original tuner is good or bad

by CEDRIC WESTERN
Using the subber

In use, only two connections have to be made:

1. **Antenna lead-in** to "subber" antenna terminals.

2. **I.f. shielded cable:** disconnect from receiver tuner and connect to output of subber.

Many TV tuners have their outputs terminated in phono jacks similar to the one of the subber and it is merely necessary to unplug the receiver i.f. cable from the original tuner and plug it into the subber output to use the substitute signal. In receivers where the i.f. cable is too short, the extension cable with the phono plug at one end and phono jack at the other will be required. Receivers with the i.f. cable soldered permanently to the tuner i.f. output feed-through terminal, require unsoldering this cable and connecting the subber output via the extension cable equipped with aligator clips.

After completing the connections, switch on the subber, select a local vhf TV channel, set the rf gain control to approximate center of it's range and tune the fine-tuning control.

If the tuner is functioning normally except for a defective tuner, it will now work again. It may be necessary to adjust the receiver age control and subber rf gain control for best performance. In any event the operation of the receiver's age control should be checked, keeping in mind that it now controls the i.f. amplifier system gain only. Any abnormal operation of the age should be investigated using accepted analyzing techniques.

Use a bias box to override the age voltage if the age system is suspected of supplying improper voltages (refer to TV receiver manufacturer's service literature for proper bias voltages and age operation). Disconnect the age line at original tuner to test for a short in the tuner which may cut down available age voltage.

In some receivers use separate rf and i.f. age systems, sometimes with independent age controls. In such a receiver, the tuner may be shown to appear defective by the subber when the real trouble is a defective rf age circuit causing a perfectly normal tuner to be inoperative. In these receivers, check the rf age system thoroughly before removing the tuner. Over ride the rf age voltage with a bias box of proper voltage (and polarity), if the bias box restores performance of the tuner—the defect is in the age system—not the tuner.

The quality of reception when using the subber will vary from as good as the original tuner to smeary, with ringing, no color, poor sync and weak sound. The difference in quality is caused by the change in bandpass resulting from the change in self-capacitance of the i.f. cable (including any extensions used). In the original receiver circuit the self-capacitance of the i.f. cable is used as part of the common, or low side. "C" component of the tuner to i.f. bandpass coupling.

When the original connections are restored after service of the tuner (if service was indicated), the bandpass will also be restored to original. However; if, while servicing the tuner, the mixer coil was adjusted... or the tuner has been exchanged or replaced by another (even exact part number), then it will be necessary to adjust the mixer coil, in circuit, for best handpass. Do not adjust the first i.f. coil (unless complete i.f. realignment is being done using a sweep generator and oscilloscope).

The subber will not check poor or defective operation of automatic fine-tuning circuits of tuners. If such a tuner performs normally manually (when the aft is defeated, or switched off) but does not work with aft on, then the control circuits should be checked to determine if they are supplying the correct control voltages for the aft diode inside the tuner. If the control voltages are as specified by the receiver manufacturer, the aft circuit in the local oscillator section of the tuner is defective and should be serviced. The subber will substitute this type tuner in its manual function and therefore prove if it is defective in some respect other than the aft operation.

Remember, the subber is only in-
AM Radio Booster

Does your AM radio lack pep and sound weak when compared to other sets? Must you be content only to listen to the stronger stations when you would rather listen to the weaker, but more interesting ones? Than this AM Booster was made for you. Add it to your solid-state radio and watch the AM band come alive! This booster was made to be added to any transistor radio. The parts won't run you more than a few dollars and you can build it easily within an evening.

I built my version on a 1-inch square of perfboard and mounted it inside the radio. You may wish to do the same. The only real considerations in building the booster is adapting it to operate off the voltage your radio supplies. My version was made to operate with a 6-volt, positive ground. To operate off the more common 9-volt positive ground, increase R1 to 56,000 ohms, or adjust its value for one-half the supply voltage at Q1's collector. For negative ground sets, substitute an npn transistor (such as the 2N3904) for Q1. The rest of the wiring is noncritical and it needs no comment.

After the booster is built, open the radio and locate the antenna. Trace out the secondary winding (it does not go to the variable tuning capacitor!) and snip the leads. Connect these leads to the input of the booster. Run leads from the booster's output to the points where the antenna secondary went. You must finally connect up the power and ground and mount the board to be finished. When that is done, turn on the radio and tune in a weak station above 1400. Adjust the set's antenna trimmer and you are done. Happy listening!—Gary McClellan

R-E
The most advanced color TV kit we've ever offered.

The new Heathkit GR-900 25V Color TV has UHF/VHF detent tuning & varactor UHF tuner, angular tint control — more features than any other color TV kit! Better performance than any other set.

UHF/VHF detent power tuning. Push a button and you scan the channels in either direction with detent action locking in on VHF channels 2-13 and any 12 preselected UHF stations. A pushbutton selects either UHF or VHF mode, and a lighted dial indicates tuner position. And you can have full remote-control selection too for just a few dollars more.

New voltage-controlled varactor UHF tuner and specially designed VHF tuner with MOS Field Effect Transistor contribute to better fringe-area reception, increased sensitivity.

New angular tint control. A switch now gives you either "normal" or "wide angle" color demodulation to reduce tint and flesh tone change when changing stations and when programs change. Other deluxe features include "instant on" operation with override for conventional on/off operation; automatic fine tuning, adjustable tone control, and an output for playing TV audio through your stereo hi-fi system.

Exclusive Heath MTX-5 ultra-rectangular tube. It's the largest color screen you can buy anywhere, with a full 25 inch meas. diag., 315 sq. in. viewing area. You see virtually everything the station transmits, in the corners and at the sides. The specially etched face plate cuts glare, and reflection, increases contrast without sacrificing brightness, and each dot is projected through a matrix screen to stand out crisply against a solid black background.

Modular solid-state circuitry. Plug-in circuit boards and plug-in transistors make assembly, adjustment and servicing easy. There are 46 transistors, 57 diodes and four ICs — making this one of the most reliable sets we've ever designed.

Other features include automatic chroma control, adjustable video peaking, adjustable noise limiting and gated AGC.

Exclusive Heath self-service built-ins. Your Heathkit GR-900 includes built-in dot generator, tilt-out convergence panel for set-up and periodic adjustments. A handy volt-ohm meter included in the circuitry helps you check your work during assembly, and can be used in conjunction with the manual for any servicing. Like all Heathkit color TVs, the GR-900 gives you complete installation flexibility. There are four beautiful Heath cabinets to choose from plus the new built-in electronic wall mount with hide-away tambour doors. Or you can custom install your GR-900. We think you'll agree, the GR-900 is truly the most impressive color receiver we've ever offered.

Kit GR-900, TV less cabinet, 125 lbs.599.95*
FREE '72 HEATHKIT Catalog

New AR-1500 stereo receiver 379.95*

Successor to the famed Heathkit AR-15, with impressive improvements in every critical area. 160 watts Dynamic Music Power, 90 watts per channel, 8 ohm load. Less than 0.2% IM and 0.25% harmonic distortion. Greater than 50 dB FM selectivity and 1.8 uV sensitivity. Vastly superior AM, too. It’s the talk of the audio world. Order yours now.
Kit AR-1500, 42 lbs. (less cabinet) . . . 379.95* ARRA-1500-1, walnut cabinet, 6 lbs. 24.95*

New digital multimeter 229.95*

Now, a digital multimeter that meets lab specs at a low, low price! 3½ digits for 100 uV resolution on 200 mV range; 1V on 1000V; 5 DC ranges (100 uV—1000V, either polarity); 5 AC ranges (100 uV—500V); 10 current ranges (100 nA—2A AC or DC); 6 resistance ranges (0.1 ohm—20 meghms); DC calibrator supplied for 0.2% accuracy without external equipment. Can be lab calibrated to 0.1%. Don't miss this outstanding instrument value.
Kit IM-102, 9 lbs. 229.95*

New digital frequency display for Heathkit ham gear ... 179.95*

There's nothing else like it on the ham radio market! Actually computes operating frequency. Six bright readout tubes show you exactly (to within 100 Hz) where you are as you dial across the 80-10 meter amateur bands. Designed for all Heathkit SB-Series Receivers and SB- and HW-Series Multiband Transceivers. With transceivers, the SB-650 reads and displays both received and transmitted frequencies. Manual fully describes and illustrates all interconnections for installation with the specific rig you own. Kit assembles approximately 8 hours. All solid-state circuitry—6 Transistors, 35 ICs.
Kit SB-650, 9 lbs. 179.95*

The better-than-ever '72 Heathkit Catalog has the world's largest selection of fun-to-build, money-saving electronic kits...including color TV, stereo/hi-fi, organs, home appliances, engine tune-up tools, radio control, portables, shortwave, marine gear, metal locator, instruments, hundreds more. If you don't have this catalog, you've missed seeing over 50 new kits, introduced since the last edition. Send for today's for your free copy.

Send for your FREE 1972 Heathkit Catalog today

HEATH COMPANY, Dept. 20-4
Benton Harbor, Michigan 49022

[Blank] Please send FREE Heathkit Catalog.
[Blank] Enclosed is $. , plus shipping.

Please send model(s)
Name
Address
City State Zip

Prices & specifications subject to change without notice.

Mail order prices; F.O.B. factory.

*APRIL 1972 • RADIO-ELECTRONICS 27

Circle 100 on reader service card
Does your mother-in-
law call you a meatball?

Does your boss? Maybe even your wife? On payday.
Know what? If you have read this far, you are not meatball material. Because meatballs don't face the present, the future, the facts. They stay put. Dreaming and talking. And today, more than ever staying put means falling behind. Pretty tragic in a time when people with specific aptitudes are so necessary in so many interesting fields.
Today huge industries depend on people with electronics training.

Today there is a course of action that may lead you toward these well-paying, vital positions. It is RCA Institutes.
RCA Institutes is not for meatballs. RCA Institutes trains you for the fields where the action is:
Computers • Color TV • Automation • Communications • Industrial Electronics • And more.
RCA Institutes not only has years of experience, it has an exclusive line-up of tested methods:
1. Hands-On Training
Over 250 interesting experiments. As many as 22 kits with some of the programs.
2. RCA Autotext
The easy-way-to-learn method that gets you started easier, faster.
3. Wide choice of courses and programs
Training in electronics fundamentals right up to solid state technology and communications electronics.
4. Low-Cost Tuition Plans
You'll find the one just made to fit your own budget.
5. FCC License Training Money-Back Agreement
RCA Institutes' money-back agreement assures you of your money back if you fail to pass the FCC examination taken within six months after completing RCA Institutes' FCC course.
RCA Institutes gets your training started even if you've not had previous experience or training. Just bring us your interest.
Set your own pace depending on your schedule.
If you like to tinker, fiddle, fix, put that ability to work to do a real repair job on your future now.
Don't wait. Get complete information right now. No obligation. Except to yourself. Send us the attached postcard. Or return the coupon.
Veterans: Train under GI Bill. Accredited Member National Home Study Council. RCA Institutes, Inc. is licensed by—and its courses of study and instruction facilities approved by—the N.Y. State Education Department.

Veterans: Train under GI Bill. Accredited Member National Home Study Council. RCA Institutes, Inc. is licensed by—and its courses of study and instruction facilities approved by—the N.Y. State Education Department.

RCA Institutes
Home Study Department 758-204-0
320 W. 31 Street, New York, N.Y. 10001
Please rush me FREE illustrated electronics career catalog. I understand that I am under no obligation.

NAME
ADDRESS
CITY________________STATE______ZIP____
Veterans check here □
B & K precision 1460 triggered-sweep scope

Only a few years ago, if you'd wrapped the B & K precision 1460 triggered-sweep oscilloscope in plain paper and told me you had a full-sized scope in the package, I'd have laughed. They just don't make scopes that compact! They do now. When I put this on the bench alongside my own old monsters, I couldn't believe it. It was about half as big. This takes up no more room than a good-sized vtm.

The 1460 is an all solid-state instrument. Only one tube, the CRT, a 130-mm (a little more than 5 inches) type. Inside the neat box are forty transistors. 5 FETS and 14 diodes! This is one of the most versatile instruments I've seen. It's a triggered-sweep type; becoming steadily more popular since they've gotten them down out of the very high price lab-type and into the area where service shops can afford them.

Triggered-sweep means that any pattern can be locked in with the well-known twist of the wrist, on only one (dual) knob. This controls the trigger point, and the stability. By turning the STABILITY control full-on (CW), you get the old standard "recurrent-sweep" just as before. Here it's called AUTOMATIC.

The sweep circuit can be used on any of 19 ranges, from 0.5 msec/cm up to 0.5 sec/cm, plus two fixed sweep positions, TV-H (horizontal) and TV-V (vertical). Each of these displays two cycles (lines or frames) of the TV signal. You can flip from one to the other and the 4610 locks in instantly. The last position is EXT (external); also useful, as I found when trying to make a Lissajous figure.

For those of us who have trouble "reading" the "seconds/centimeters" type of calibration, being used to the "frequency" type (including one old goat that I know!), it's easy after a little practice. The calibration actually means "time per centimeter per division" of the graticule. The graticule is divided into 10 divisions each way, 1.0 cm apart, horizontal and vertical. To get the time for one full sweep, multiply the sweep-knob setting by 10.

In the vertical gain control department we have another variation. The control is marked VOLTAGE/CM, and works out exactly like the other one. We have 10 divisions on the graticule; so, 1.0 V/cm equals 10 volts p/p for full deflection. This is calibrated from 0.01 V/cm up to 20 V/cm, when the direct probe is used. Switching to the 10:1 attenuator probe multiplies all of these by 10; the top range then becomes 200 V/cm, or 2000 volts full scale. Before we leave these controls, I should mention that each of them has a continuously-variable control.

The vertical amplifier has a bandwidth from dc up to 10.0 MHz. You can count the cycles in the burst, or see the VITS (Vertical Interval Test Signals) in the transmitted TV signal! The probe, even in the direct position, has an input impedance of 1.0 meghm with 35-pF shunt capacitance. In the low-cap position, this too is multiplied by 10, becoming 10.0 meghms and 18 pF.

Due to the very wide bandwidth of both amplifiers, you can use the 1460 as a VectorScope.

The SYNC-SELECTOR has three slide switches. These can be used to select NOR (normal), TV-V or TV-sinc inputs, INT, EXT or LINE sync (the last for sweep-alignment work), and the + or - slope of the waveform for the triggering. The INTENSITY and FOCUS controls are just below the CRT. The two positioning controls just to the right of it, at the top. On the HORIZONTAL POSITIONING control, pulling out on the knob (which is marked PULL 5X MAG) magnifies the pattern 5 times.

All in all, a fine, fast, easy to use piece of test equipment; one that'll make money for you when properly used!
ADD-ON ELECTRONICS FOR YOUR CAR

by FRED W. HOLDER

Ten years ago, electronic accessories available to the auto buff were pretty much limited to transistor ignition, electronic tachometers, and AM/FM radios. Transistors were just coming into their own, IC's were being developed, and terms like MOS and LSI were still fiction. Since then, the electronic circuit has shrunk in size and price to provide a multitude of accessories for the modern car. This was emphasized in the April 1971 Radio-Electronics article covering what Detroit offers as standard equipment and factory options.

Most of the complex electronic systems are available only as factory options. Nevertheless, there is a formidable list of electronic accessories you can get to enhance performance, entertainment and safety while you drive and to stop thieves when you park. Let's see how some of these items work and what they can do for your car.
Capacitor-discharge ignition system

Several companies manufacture C-D (capacitor-discharge) ignition systems that supply from 30,000 to 40,000 volts to the spark plug for improved starting, better high-speed performance, and increased spark plug life.

All C-D ignition systems work in the same general way: they each have a dc-to-dc converter, a storage element (generally a 1.5-µF capacitor), a switching element (silicon controlled rectifier), a trigger circuit connected to the points, and a high-voltage output transformer (generally your car's existing coil) to generate the spark plug voltage. A brief analysis of the Delta Mark Ten circuit (Fig. 1) will illustrate how the elements work together.

In Fig. 1, the dc-to-dc converter (consisting of transistors Q1 and Q2, the transformer, and the full-wage bridge rectifier made up of diodes D1 through D4) converts the 12-volt battery voltage to 400 Vdc. The output of the full-wave bridge charges capacitor C3, through the primary winding of the coil, to approximately 400 volts. Assuming the ignition switch is on and the distributor points are closed, current flows from the battery through R10 and the points to ground. When the points open, current then flows through R10, C2, and D7 to trigger the silicon controlled rectifier (SCR); the SCR switches on.

When the SCR turns on, it short-circuits the converter circuit, effectively stopping converter operation, and provides a discharge path for C3 through L1, the SCR, and the primary winding of the coil. The coil primary voltage rises from zero to 400 volts in approximately two microseconds, producing a pulse of around 40,000 volts for the spark plug. SCR, C3, and the coil form a resonant circuit. The flywheel effect of this circuit restores unused energy to the capacitor as follows: the capacitor discharge-current flows through the SCR and coil primary, creating a magnetic field in the coil. This current continues to flow in the circuit until the capacitor is charged in a reverse direction to approximately 300 volts. At this point, the current attempts to reverse through the SCR, turning it off. The reverse voltage then causes the diode bridge to conduct as a short circuit, discharging the capacitor to zero from its reverse direction and recharging it towards its normal state. When the current supplied by the coil inductance drops to zero, the bridge returns to its normal state and the converter resumes operation.

Diodes D5 and D8, in conjunction with R11, serve to discharge the triggering capacitor C2 completely while the SCR is on. Diode D7 and resistor R8 prevent erratic triggering caused by point bounce. Resistor R7 reverse biases the SCR to prevent erratic triggering due to noise. Diode D10 and the rf choke L1 control the turn-on characteristics of the SCR.

What does all this mean to the auto owner? The performance charts of Fig. 2 illustrate what Delta claims the Mark Ten will do for you. According to several auto buffs we've talked with, Mark Ten does everything Delta claims it will.

Recently, Delta brought out a new model, the Mark Ten "B" (Fig. 3), that has an improved input trigger circuit for modern engines with emission control devices. Delta claims their new Vari Spark circuitry controls the spark duration as well as the spark intensity over all ranges of operation.

It is not possible in this article to cover all existing C-D ignition systems. However, it may be beneficial to look
OPEN CIRCUIT OUTPUT VOLTAGE

<table>
<thead>
<tr>
<th>RPM</th>
<th>TRANSISTOR</th>
<th>STANDARD IGINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>20</td>
</tr>
</tbody>
</table>

MARK I0

TRANSISTOR STANDARD IGNITION

RPM IN 1000'S

FIG. 2—PERFORMANCE CHARTS compare C-D, transistor and standard ignition systems.

PEAK IMPULSE POWER

<table>
<thead>
<tr>
<th>RPM</th>
<th>TRANSISTOR</th>
<th>STANDARD IGINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000</td>
<td>800</td>
</tr>
<tr>
<td>2</td>
<td>800</td>
<td>600</td>
</tr>
<tr>
<td>3</td>
<td>600</td>
<td>400</td>
</tr>
<tr>
<td>4</td>
<td>400</td>
<td>200</td>
</tr>
</tbody>
</table>

MARK I0

TRANSISTOR STANDARD IGNITION

RPM IN 1000'S

SPARK PLUG EROSION

<table>
<thead>
<tr>
<th>RPM</th>
<th>TRANSISTOR</th>
<th>STANDARD IGINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

MARK I0

TRANSISTOR STANDARD IGNITION

RPM IN 1000'S

Fig. 2—PERFORMANCE CHARTS compare C-D, transistor and standard ignition systems.

The Knight-Kit delay wiper KG-301 operates wiper from 1 to 60 sweeps per minute.

Mallory ignition is breakerless.

The Mark Ten B C-D ignition system.

At another, less-complex circuit for comparison. The Compac (manufactured by Sydmur Electronic Specialists) is less complex than the Mark Ten. (See Fig. 4.) Nevertheless, it has all of the basic elements necessary to a C-D ignition system. It's dc-to-dc converter is made up of transistor Q1, transformer T1, and diodes D1 and D2. The storage element is capacitor C5 and switching is accomplished by the SCR. Its trigger circuit, coupling the unit to the points, is comprised of diode D3, resistors R4, R5, and R6, and capacitors C3 and C4. The high voltage-output transformer is the car's ignition coil.

Breakerless ignition system

General Motors has had breakerless ignition systems available as optional items for several years. The GM breakerless system uses a magnetic pulse device to replace the conventional distributor breaker point. According to Mallory Electric Corporation, such systems have two major faults: first, at low engine rpm, such as during cranking on a cold morning, the unit puts out a weak pulse that results in hard starting; second, the unit does not provide uniform
Timing over the full range of operation.

Mallory has come up with a breakerless system they claim is superior to the magnetic pulse system. Their unit uses a tiny computer lamp and a photocell to generate the ignition timing pulse. In their distributor, the cam is replaced with a shutter wheel, that exposes the photocell to light from the computer lamp at the precise point when the ignition should be triggered. The pulse from the unit is amplified and used to drive the Mallory C-D ignition system. Mallory claims that their breakerless ignition system will operate trouble-free throughout the life of the car.

RPM limiters

RPM limiters are a class of governors primarily developed for high-performance and racing engines. They are also useful in both marine and industrial applications to prevent engine runaway if the load is removed. This could happen with a broken drive line, or in the case of marine engines, a lost propeller or a propeller breaking water. The rpm limiter must shut the engine down momentarily when it reaches a critical or preselected rpm. Electronics works very well in this application because it responds rapidly and can easily shut the engine down by killing the ignition. There are various units on the market. The Revgard, manufactured by Automotive Research Electronics (ARE), San Jose, California, and the Mallory Engine Safety Control, manufactured by Mallory Electric Corporation, Carson City, Nevada, illustrate two methods of shutting the engine down.

As shown in Fig. 5, the Mallory unit has an external dial to preset the engine rpm limit. The adjustment is calibrated for 8-cylinder battery-ignition applications. For 4 or 6-cylinder engines, it is necessary to use a tachometer to set the upper limit. The unit connects to the ignition points side of the coil. At a predetermined rpm, set on the dial, the amplifier energizes a relay that grounds the points and turns off the ignition. A few milliseconds later the relay is de-energized and the engine resumes normal operation until it again exceeds the preset rpm.

ARE's Revgard rpm limiters are designed primarily for use high-performance, racing engines. ARE claims that relay operation is too slow for racing engines; they use a thyristor switch instead of a relay. The thyristor shuts the points to kill the ignition. It turns on quickly when the points are open and turns off easily when the points close. ARE will not provide details of how their circuit works; however, they indicate that they do not use a "tachometer-type circuit" to actuate the thyristor.

ARE indicated that most rpm Limiters use a "deadband" of 200 to 500 rpm. (Deadband is defined as the rpm difference between shutting the engine down and restarting it.) Their experiments with a 500-rpm deadband system proved to be "explosive," because quite a bit of unburned gas was allowed to accumulate in both the intake manifold and the exhaust manifold. The explosion resulting when the engine turns on again could be large enough to ruin an expensive blower or a cross-ram manifold. So, they developed what they call the "liveband," which is the range between the point where no ignition pulses are being removed and where all ignition pulses are removed. This is illustrated in Fig. 6. According to ARE, liveband eliminates backfire when the engine restarts.

Another benefit claimed by ARE for their unit is the electrical cure of point bounce. Fig. 7 shows that Revgard does during periods of point bounce. Since point bounce would be interpreted by the unit as excessive rpm, the thyristor will turn on and eliminate the unwanted pulse. ARE claims that this feature will allow the engine to operate at one to two thousand rpm beyond the beginning of point bounce.

There is a calibrated adjustment to set the rpm at which the unit operates. A locknut is provided to prevent the adjustment control shaft from changing during periods of extreme vibration.

Dwell stretcher

Another problem encountered with high-performance engines is dwell time (time during which the points are closed and current is building up in the primary winding of the coil). A normal single-point, single-coil ignition system will not generally have enough dwell time at high rpm to maintain an adequate spark to the plugs. The result is mis-
STAAR CASSETTES for the car

Just read each easily digested frame of information. Then test your grasp of it by answering a multiple choice question. If you choose correctly, you're guided automatically to the next program capsule. If you miss, don't worry; programmed extra information helps you to the correct answer.

Cassettes have grown popular. No loose end dangling from a reel. No worrying about how to thread the recorder you're going to use. No fretting about where to store tapes—cassettes are extremely compact. Executives like them for dictation because of the ease in handling. Prerecorded music is not all that great on stereo cassettes, but fidelity keeps improving. Music lovers now accept the newest ones.

Compactness is an advantage in automobiles. Eight-track cartridges take up a lot of space, but you can fit several cassettes easily into a glove compartment.

One disadvantage, however, has been the awkwardness of cassette loading. Reel-hub spindles must fit into sprocketed holes in the cassette reels. Also, a capstan drive shaft must extend through its hole in the cassette case. Therefore a cassette machine must normally be loaded from the top. That is, you push the cassette down into a well above the playing mechanism. Then when you punch the PLAY or RECORD button to move the recording/playback and bias/erase heads in against the tape surface. At the same time a pressure roller pinches the tape between itself and the capstan drive shaft.

In a moving car, this top-loading process gets unhandy. So does fumbling around for operating buttons. A Belgian inventor named Theo Staar devised a mechanism which permits slot-loading. It puts cassettes on a par with eight-track cartridges as far as handling convenience is concerned. Once you slide a cassette into the slot, the pressure of pushing it into playing position engages the reel hubs and the tape drive, and turns on the machine. With machines that record, you simply hold in a RECORD button as you slip the cassette into the slot.

Question: What is the purpose of the Staar cassette system?

☐ To make the tape run smoother in an automo-

ble. Check your answer in frame 20.

☐ To eliminate the awkwardness of having to fit a cassette into the machine from the top. Turn to frame 13 now.

☐ To improve the fidelity of cassette recordings by holding the tape in tighter contact with the playback head. Move on to frame 7.

Yes and no. The capstan is part of the movable platform in the Staar system, but the pressure roller is not. The pressure roller (sometimes called pinch roller) just sits there until the tape is pushed close to it and the capstan shaft raised up through the hole in the cassette. Then the tape catches between capstan and pressure roller, to be pulled along as the motor turns the capstan. But the idea that the cartridge is part of the platform suggests you may have guessed. Reread frame 22 and try again.

There may be an occasional machine that includes fast-forward or rewind in a play-only format, but such a model is rare. If you took a chance on this answer, don't consider yourself completely wrong but do go back to frame 25 and choose one of the other answers.

That's right. Other factors that affect frequency response are cleanliness of the heads, lack of residual magnetism in the heads, and—in the case of prerecorded music—how well the cassette was recorded in the first place. You're going along fine now. Keep up the momentum as you move up to frame 10.

The solenoid and latching system of one machine are pictured here. In photo A, you can see the platform latching post locked behind the "sawtooth" projection of the latch bar. The spring-loaded solenoid plunger has a pin through its end that extends down through a slot in the latch bar.

When motion of the takeup reel ceases, the timing circuit allows a heavy-duty switch transistor to conduct. Heavy current flows in the coil of the
solenoid. That pulls the plunger of the solenoid inward, moving the latch bar and releasing the platform post.

In photo B, you see the solenoid and latch bar at rest after releasing the platform. The platform has dropped down to its rest position. Notice the comparative positions of the motor in the two photos. In A, with the platform up in the playing position, the motor is high. In B, the platform has dropped down so the motor is hardly even with the stationary mechanism.

One other feature of this shutoff mechanism: If power is removed from the machine, enough charge has been stored in the trigger circuit to fire the solenoid. Therefore, the machine is not left in the latched-up position. The latch bar moves a second or two after power is removed, and the mechanism returns to the off position.

Question: The solenoid plunger connects to the latch bar in what manner?
- A spring. Look in frame 12.
- A pressed pin through the plunger. See frame 16.

No, the eject button has nothing to do with automatic shutoff. Go back to frame 14 and reread. Then pick a different answer.

Oops! You are off on the wrong foot right at the start. As you will discover later, the playing mechanism has little to do with the fidelity of reproduced cassette music. You'd best go back and reread frame 1 more closely closely and then check another answer.

No, yes is wrong. Or rather, to get a yes here, you should have said no. What I mean is, playback-only machines seldom have fast-forward or fast-reverse. If that's clear to you and you know how the fast forward and reverse work, go to frame 14. If not, proceed instead to frame 27. After you read that, you should understand the whole idea better.

Yes, that's exactly how the automatic reversing mechanism works. And in answering this one correctly you have suddenly reached the end of this course in cassettes. Congratulations.

Tape drive in a Staar cassette mechanism hardly differs from that of other tape machines. In fact, few variations occur among cassette machine brands. The motor mounts on the raisable platform, and the motor shaft extends below the platform. A pulley on the motor shaft, which you can see in photo A, drives a round rubber belt that spins the large, heavy flywheel. The weight and inertia of the flywheel tend to damp out any variations in motor speed.

The capstan shaft, which is part of the flywheel, extends through the platform back to the top side. This is the tiny-diameter shaft that extends up into the cassette cartridge behind the tape. The pressure roller mashes the tape tight against the capstan. When the motor is on and turning, the rubber belt drives the flywheel. Its capstan shaft spins, turning the pressure roller and pulling the tape along.

Machines for play-only often have an automatic reversing feature so the user doesn't have to slip the cassette over at the end of play. This requires capstans at each end of the tape. Two capstans require two flywheels. Below the platform, as you can see in the photo B, a single rubber belt from the motor pulley drives both flywheels. The two flywheels turn continuously as long as the motor runs. Which one is pulling the tape depends on the pressure rollers, as you'll see in a later frame.

Question: Name the tape-drive sequence of a Staar cassette recorder or playback machine.
- Motor, motor shaft pulley, rubber drive belt, flywheel, capstan shaft, and pressure roller. If this is your answer, study frame 30.
- Motor, dual flywheel, capstan, drive pulley, drive belt. Check this answer in frame 21.
- Reel hubs, tape, tape heads, and motor mounting. Look at frame 15 for additional information about this answer.

The speed of the tape does have an effect on fidelity, but what's important is how fast it goes past the head. Height of the head above the platform is important or it might otherwise miss the tape track completely. But head height does not affect fidelity directly. The type of tape base means little to fidelity. So this was the wrong answer choice. Go back to frame 29, read it again, and pick another.
No. The spring is a part of the solenoid and plunger, but it is not what links the plunger to the platform latch bar. Just go back and study the photographs in frame 5 and you'll probably see the correct answer there.

Correct. You have grasped frame 1 and the basic nature of why Teho Staar developed his unique system of handling cassettes. Now turn to frame 22 and study the basics of how the Staar mechanism accommodates the cassette cartridge.

When a cassette plays all the way to the end of its tape, you take it out and turn it over if you want to play the other side. Since the cassette is hidden away inside the machine, it could sit there jammed up against the end ad infinitum. You might forget and leave the set for days with the machine on and the capstan sitting there rubbing a hole through the tape and a lump into the pressure roller. Staar automatic shutoff prevents this.

The way it works, a little square cam turns with the takeup reel hub. As the tape moves and the hub turns, the cam flips a leaf-type switch back and forth.

A timing-and-trigger circuit, connected to a solenoid, tries to build up voltage to operate the solenoid. At least it tries while the machine runs. But the little switch clicking back and forth beside the cam keeps the timing circuit discharged and prevents the trigger circuit from actuating the solenoid.

When the tape comes to the end, the takeup reel can no longer turn. With the reel hub stopped, the cam no longer clicks the leaf-switch back and forth. The timing circuit begins building up its voltage. After a second or two, the trigger voltage rises high enough to operate the solenoid.

A latch holds the platform in the operating position. The solenoid plunger jerks inward, letting the latch go. As the platform drops back down to its normal position, the motion flips the cartridge outward and releases the microswitch to shut the machine off.

Question: How long does it normally take for the machine to kick out the cassette and shut off after reaching the end of a tape?
- [] It happens almost immediately. Move on to frame 24.
- [x] It waits until you have operated the eject button. Check frame 6.

A play-only Staar machine reverses automatically. In photo A, you can see the two latches it takes for this particular job. Here's what happens.

You push the cartridge in, the platform raises, and the platform post latches behind the top latch. Meanwhile, the bottom latch has been pushed back far enough to lock behind the platform post. Photo B shows both latches locked.

Remember the two flywheels and two capstans for automatic reverse? If not, look back at the B photo in frame 10. Here in photo 16D, one view shows the left pressure roller pressed in against the left capstan. That's the forward, or side A, position, with both latches locked as in photo B. The turn-on switch activates the motor. The capstan pulls the tape forward.

When the tape comes to its end, the same little cam does what was described in frame 14 and frame 5. A timing circuit builds up bias and lets a trigger transistor actuate the solenoid. The plunger pulls inward on the latch bar.

However, only the bottom latch is tripped. The platform post stays in position, locked behind the top latch, but the bottom latch moves outward and downward (photo C). That latch pushes the rocker bar the pressure rollers are mounted on. The other view in photo D shows the right-side pressure roller is now down against its capstan. This drives the
taped in the reverse direction. A switching circuit shifts the amplifier to different gaps on the playback head, and the second program (side B) plays automatically.

When the tape comes to the end of play in that direction, motion of the reels again stops. The timing circuit again actuates the solenoid and this time the plunger releases the top latch. The platform moves back down to its off position. The machine now shuts off completely.

Question: When a cassette comes to the end of play and is ready to reverse, which latch is released to operate the pressure roller rocker arm?

- The top latch moves forward while the bottom latch moves backward. Move on to frame 28.
- The bottom latch is released and slides forward while the top latch remains in position behind the posts. Check your answer in frame 9.
- The top latch releases and slides forward to push the pressure roller rocker arm, while the bottom latch remains locked behind the posts. If you are correct, frame 23 will give you the good news.

The motor switch is not on the platform, but you can be forgiven for thinking it might be since frame 22 didn’t say. Yes, supports are part of the platform, and the slots guide the platform into the raised position. But the tape head is not a part of the platform. The tape head is stationary, and pushing the cassette into the machine sets the tape against the face of the head. Try a different answer for frame 22.

Yes, it takes about two seconds for the timing circuit to charge up—sometimes more, sometimes less. The little cam and switch keep the circuit discharged until motion of the tape stops. Keeping in mind that when the timing circuit builds up enough voltage, it sends a trigger current through a solenoid, turn to frame 5 and see what the solenoid is actually accomplishing.

This answer was for fun. Go back to frame 29 and pick one that makes sense.

Smoothness of tape operation depends on the motor and drive system. The main object of the Staar mechanism has nothing to do with whether the tape runs smooth or not. It does, however, relate somehow to operation in an automobile. I suggest you review the text of frame 1, which should then guide you to the proper answer.

Some of the parts in that answer are correct. However, the question indicated you should list them in correct sequence. That was not done at all. So turn back to frame 10 and see if you can list the right parts in correct sequence.

You can follow the steps of Staar operation in the photos. The secret of the mechanism lies in a platform that contains the tape-drive capstan and the reel-drive spindles and hubs. The motor, the drive belts, and the flywheel are on this platform too.

This platform raises and lowers. A cassette, as you slide it into the slot, is guided by Teflon tracks. About halfway in, the corners of the cassette case encounter slide posts (photo A). Applying more pressure, you push the cartridge on back, pushing the posts back also.

Photo B shows the platform supports (on one side) with the platform at rest. The pressure that pushes the slide posts backward lifts the platform upwards, guided by the slots. Photo C pictures the slot guides with the platform raised into playing position. To achieve this, the cassette has been pushed all the way into the machine.

Photo D is a top view of the cassette in playing position. You can see how the heads fit tightly against the tape. Over at the left is the pressure roller, and the capstan drive shaft is in its hole adjacent to the pressure roller. At the bottom of photo D you can see the tops of the reel spindles projecting up through their sprocket holes in the cartridge.

Pushing the cassette this far back trips a micro-switch that applies voltage to the motor. The tape starts playing automatically (or recording if you held the RECORD button down).

Question: What parts of the cassette playback mechanism are mounted on the movable platform that raises as you push the cassette into the machine?

- Capstan and flywheel, motor and drive belt, reel drive hubs and spindle. You’ll find out if you’re right in frame 29.
- Motor switch, support guide, tape heads. Move back to frame 17.
- Capstan, pressure roller, and cartridge. If this is your answer, turn back to frame 2.
Well, the news isn't good after all. You got mixed up somewhere. If you think you understand the mechanism, go back and try a new answer in frame 16. If not, read the frame again.

Not really. It happens soon afterwards but not immediately. The time it takes is about two seconds. Read frame 18 and you'll be ready to go on.

Cassette recorders generally include FAST FORWARD and FAST REWIND. Machines using the Staar system are no exception. The fast-forward knob takes any number of shapes; one is pictured in photo A. Play-only machines seldom have the fast-forward or rewind function. Instead, they have automatic reverse.

Photo B shows the fast-rewind pulley. It has a rubber rim, and is coupled to one of the tape reel drive hubs. The REWIND knob lets you hold the pulley against the perimeter of the flywheel. The pulley turns at high speed and spins the tape through in a hurry, from reel B to reel A. In this particular machine, when you hold the knob the other way, on FAST FORWARD, a different idler pulley (not visible in the photo) presses against the rim of the flywheel. A rubber drive belt turns the idler you see, but in the opposite direction from what it turns for rewind. The tape again runs through rapidly, but forward—from reel A to reel B. Question: Would you normally expect REWIND or FAST FORWARD among the front panel controls of a Staar machine designed to play prerecorded stereo cassettes?

☐ Yes. See what frame 8 says.
☐ No. Read frame 27.
☐ Sometimes. Move to frame 3.

Sorry. The solenoid has such a coil, for that's what the current goes through to make the magnetism that pulls the plunger inward. However, none of that has anything to do with linking the plunger to the latch. Better go back and read frame 5 over.

"No" is essentially the correct answer for the question in frame 25. Occasionally a machine breaks the rule, but designers in general put automatic reversing in play-only machines. At least this is true with machines for automobiles, which generally are what use the Staar system. You're getting along fine now. Move on to frame 14.

That somehow sounds like it could be a correct answer, but it's not. Reread frame 16 and take another stab at it.
THE "DIGI-MOD-N" IS A FREQUENCY divider that can divide by any integer from 2 to 4095. The unit is designed around three National DM-8520 integrated circuits. Each IC contains the functional equivalent of about 55 logic gates. Included in each IC are:

a) the internal logic gating that performs EXCLUSIVE-OR logic operations needed to produce a shift register that has a maximum number of stable states (the maximum possible for the number of flip-flops present in the register)

b) a known-state detector that permits only one output pulse per cycle of the register, and

c) provision for data input to short-cycle the register to any cycle length between 2 and 4095 bits

Using the Digi-Mod-N

The Digi-Mod-N can fill many jobs, depending upon the nature of the input and output devices. For example, it can replace mechanical pulse counters in many applications and provide greater reliability.

1. The Digi-Mod-N fills many applications on the digital circuit experimenter/designer's workbench, as a general-purpose frequency divider-scaler, not limited to powers of ten as most scalers are! In this application it provides the accuracy and repeatability of true digital division.

2. It can be used as a variable frequency time-base/oscillator by using a

IC INTERCONNECTIONS are shown here. This diagram connects into circuit on facing page.

Parts List

- R1, R2, R3—22,000 ohms, 1/4-watt
- IC1, IC2, IC3—National DM-8520
- Q1, Q2, Q3, Q4, Q5, Q6—2N5129
- LM1, LM2, LM3—Lamp assembly, miniature, 5V 50 mA
- J1 through J8—Binding posts (H. H. Smith 1517 or equal)
- S1 through S13—spdt miniature toggle (Alco)
- S14—spdt momentary contact pushbutton
- MST-105 or equal)
- Miscellaneous parts: Case, 7"L x 5"W x 3"H: PC boards: wire; solder; etc.

Complete set of transistors and IC's (#DMN-1) are available from Electronetics Co., P.O. Box 278, Cranbury, N. J. 08512. 514.50 including postage and insurance.

The Digi-Mod-N is a frequency divider that can divide by any integer from 2 to 4095. The unit is designed around three National DM-8520 integrated circuits. Each IC contains the functional equivalent of about 55 logic gates. Included in each IC are:

- a) the internal logic gating that performs EXCLUSIVE-OR logic operations needed to produce a shift register that has a maximum number of stable states (the maximum possible for the number of flip-flops present in the register)
- b) a known-state detector that permits only one output pulse per cycle of the register, and
- c) provision for data input to short-cycle the register to any cycle length between 2 and 4095 bits.

Using the Digi-Mod-N

The Digi-Mod-N can fill many jobs, depending upon the nature of the input and output devices. For example, it can replace mechanical pulse counters in many applications and provide greater reliability.

1. The Digi-Mod-N fills many applications on the digital circuit experimenter/designer's workbench, as a general-purpose frequency divider-scaler, not limited to powers of ten as most scalers are! In this application it provides the accuracy and repeatability of true digital division.

2. It can be used as a variable frequency time-base/oscillator by using a

IC INTERCONNECTIONS are shown here. This diagram connects into circuit on facing page.

Parts List

- R1, R2, R3—22,000 ohms, 1/4-watt
- IC1, IC2, IC3—National DM-8520
- Q1, Q2, Q3, Q4, Q5, Q6—2N5129
- LM1, LM2, LM3—Lamp assembly, miniature, 5V 50 mA
- J1 through J8—Binding posts (H. H. Smith 1517 or equal)
- S1 through S13—spdt miniature toggle (Alco)
- S14—spdt momentary contact pushbutton
- MST-105 or equal)
- Miscellaneous parts: Case, 7"L x 5"W x 3"H: PC boards: wire; solder; etc.

Complete set of transistors and IC's (#DMN-1) are available from Electronetics Co., P.O. Box 278, Cranbury, N. J. 08512. $14.50 including postage and insurance.

Build R-E's

Digi-Mod-N Frequency Divider

Divide any frequency by anything from 2 to 4095. Digital switch panel sets up any "divide by" in seconds

by JACK CAZES

Parts List

- R1, R2, R3—22,000 ohms, 1/4-watt
- IC1, IC2, IC3—National DM-8520
- Q1, Q2, Q3, Q4, Q5, Q6—2N5129
- LM1, LM2, LM3—Lamp assembly, miniature, 5V 50 mA
- J1 through J8—Binding posts (H. H. Smith 1517 or equal)
- S1 through S13—spdt miniature toggle (Alco)
- S14—spdt momentary contact pushbutton
- MST-105 or equal)
- Miscellaneous parts: Case, 7"L x 5"W x 3"H: PC boards: wire; solder; etc.

Complete set of transistors and IC's (#DMN-1) are available from Electronetics Co., P.O. Box 278, Cranbury, N. J. 08512. $14.50 including postage and insurance.

Using the Digi-Mod-N

The Digi-Mod-N can fill many jobs, depending upon the nature of the input and output devices. For example, it can replace mechanical pulse counters in many applications and provide greater reliability.

1. The Digi-Mod-N fills many applications on the digital circuit experimenter/designer's workbench, as a general-purpose frequency divider-scaler, not limited to powers of ten as most scalers are! In this application it provides the accuracy and repeatability of true digital division.

2. It can be used as a variable frequency time-base/oscillator by using a

IC INTERCONNECTIONS are shown here. This diagram connects into circuit on facing page.

Parts List

- R1, R2, R3—22,000 ohms, 1/4-watt
- IC1, IC2, IC3—National DM-8520
- Q1, Q2, Q3, Q4, Q5, Q6—2N5129
- LM1, LM2, LM3—Lamp assembly, miniature, 5V 50 mA
- J1 through J8—Binding posts (H. H. Smith 1517 or equal)
- S1 through S13—spdt miniature toggle (Alco)
- S14—spdt momentary contact pushbutton
- MST-105 or equal)
- Miscellaneous parts: Case, 7"L x 5"W x 3"H: PC boards: wire; solder; etc.

Complete set of transistors and IC's (#DMN-1) are available from Electronetics Co., P.O. Box 278, Cranbury, N. J. 08512. $14.50 including postage and insurance.
simple fixed-frequency oscillator as its input. Adding shaping circuits results in a variable-frequency wave synthesizer.

3. The Digi-Mod-N can serve as an automatically recycling events counter, programmed to produce an output every time a given number of events have occurred. Such applications include counting moving items such as people entering an area, packages moving along a conveyor, etc. The input could be a photocell circuit or a Microswitch while the output might be a solid-state-operated register, a relay, or an alarm. Moving articles could be counted by some convenient unit such as tens, hundreds, dozens, etc. A packaging plant could use a photocell to count items going into a carton and the output pulse, set to occur when the carton is full, would trigger a mechanism that removes the full box and moves an empty one into position. A chemist might use the divider to count operations in an automatic analyzer. Here again, remember that the end use depends upon the ingenuity of the user.

4. To make a precise motor-speed control, use an oscillator on the input and a phase-shifting circuit feeding a stepping motor on the output. This would provide variable speeds at precisely controlled, reproducible increments.

5. The serial output could serve as a recycling pseudo-random bit generator, the length of the cycle ranging from 2 to 4095 bits, depending upon the program switch settings.

How it works

When the outputs of two or more flip-flops in a shift register are fed back to its input via an exclusive-OR gate, a unique progression of stable states results. Proper selection of outputs yields a shift register with a maximum number of stable states. This is often called a **Maximal Sequence Generator**. The three DM-8520's in the Digi-Mod-N are wired so flip-flop outputs 12, 9, 8, and 5 are used to produce a maximal sequence generator. It is called a 12-9-8-5-0 shift register. The maximum number of stable states that can be obtained with such a register is 2^{12} - 1 where '1' is the total number of flip-flops present in the system. In this case, this is $2^{12} - 1$ or 4095.

The all-ones-state (where all flip-flops are in their logical '1' state) occurs only once during each cycle. A logic AND function is used to detect this state when it occurs and to provide a logical '1' output at that time. This is the divider output.

The Digi-Mod-N is programmed to divide by numbers smaller than 4095 by entering and presetting the register to the bit pattern that would exist at the flip-flop outputs when the register is in the state that would normally have been reached after 4096-m input pulses, where 'm' is the desired divisor. Thus, we make the register 'skip' from its initial all ones state to the (4096-m) state by entering that bit pattern via the program switches and depressing the PRESET button.

For example, to divide by 1000, the bit pattern that would normally be present at the flip-flop outputs at the 3096 state, (4096-1000) pulses after the all-ones-state, is set with the program switches and entered into the register by depressing the PRESET button. The Digi-Mod-N "skips" over to the 3096 stable state and can then progress 1000 steps back to its original all-ones state.

Build your unit

The case should be punched first, then painted, and lettering applied. Mount the switches, binding posts, and lamp assemblies next. I used dry-transfer lettering to make all front-panel markings.

Make two circuit boards next, using the foil patterns shown. Solder the integrated circuits directly to the frequency-divider board, being careful not to overheat the ICs. Use L-shaped brackets to mount the board to the inside of the front panel, in a vertical position. Mount the lamp driver components next. The transistors are also heat sensitive; so use a heat sink, such as long-nose pliers, between the board and the transistor while soldering each lead. Mount the lamp-driver board onto the frequency divider board with spacers.

Finally, wire the switches and binding posts and complete all wiring.
<table>
<thead>
<tr>
<th>PROGRAMMING CHART</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>S13</td>
</tr>
<tr>
<td>S14</td>
</tr>
<tr>
<td>S15</td>
</tr>
<tr>
<td>S16</td>
</tr>
<tr>
<td>S17</td>
</tr>
<tr>
<td>S18</td>
</tr>
<tr>
<td>S19</td>
</tr>
<tr>
<td>S20</td>
</tr>
<tr>
<td>S21</td>
</tr>
<tr>
<td>S22</td>
</tr>
<tr>
<td>S23</td>
</tr>
</tbody>
</table>

SWITCH SETTINGS
interconnecting them to the boards. If an internal battery is to be used, install a suitable battery holder, dimensions chosen to fit the space available in the case. Connect it to any ground (negative) and switch S13 (positive).

NOTE: The lamp-driver combination is useful only for the visual observation of input and outputs that proceed at slow rates (i.e., only a few Hertz). If the end use involves only very fast signals or if you are not interested in visually observing these signals, omit the lamps and the lamp driver board.

Lead dress is not critical from an operational point of view, but neatly placed wiring simplifies trouble-shooting and results in a more esthetically pleasing product.

Programming the Digi-Mod-N

Programming is done by setting the proper program bit pattern selected from the programming chart for the divisor desired. Note that the chart gives the required settings for every twelfth divisor. Since the Digi-Mod-N contains twelve flip-flops wired as a shift register with twelve programming inputs, the entire bit sequence for the register is accounted for by listing every twelfth shift, i.e., the program input for every twelfth divisor. Inputs for divisors between those shown in the chart are obtained by interpolation.

As an example, suppose we want to divide by 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or 13. We would note that the desired divisor lies between 2 and 14 in the table and would write the bit patterns for 2 and 14 next to each other and interpolate for the other divisors (Fig. 1).

Thus, we can divide by 8 by setting S1 thru S12:

```
1 1 1 1 1 0 0 0 1
```

Similarly, switch settings for dividing by any number not given in the table (within the range of the Digi-Mod-N, of course) would be obtained by interpolating between two numbers in the table.

Testing and operation

Connect a regulated 5-volt source to J1 and J2 and set S13 to EXT. **(NOTE: If internal batteries are used, install them in their holder and set S13 to INT.)** Connect a square wave or pulse generator to the INPUT (J3 and J4) and set it to a low frequency with an output height of 5 volts. Set the PROGRAM switches for a given divisor and check to see that the output pulse rate equals the input rate divided by the programmed divisor. The panel lamps may be used as indicators if the input is slow enough to count. If not, use a scope to monitor the input and output.

Depressing and holding the PRESET button should stop the division and reset the register to its all-ones starting state. In this condition, the input lamp should still indicate the entering input pulses, but the output lamp should remain on. Releasing the PRESET button should permit division to begin again.

The SERIAL OUTPUT lamp should flash on and off to indicate the individual "1" and "0" bits as they pass through and out of the shift register. The relative sequence of bits at this output should be identical to the sequence in the programming chart. The SERIAL OUTPUT can be thought of as being a

(continued on page 82)
"At ComSonics we encourage all our technicians and engineers to enroll with CREI. Know why?"

WARREN BRAUN, President, ComSonics Inc., Virginia Engineer Of The Year, ASE International Award Winner, CREI Graduate
"As a CREI graduate myself, I know the advantages of their home-study programs. CREI education has proved an excellent tool of continuing education for our employees and me. And I strongly believe in CREI's ability to teach a man to learn independently and to use reference materials on his own.

As President of ComSonics, I see changes taking place in our electronics business every day. We're in closed circuit TV and acoustical engineering...and pioneered in Cable TV. CREI gives me the knowledge they need to work in new areas. CREI's new course in Cable TV is an example. The CATV industry is expected to grow 250% in the next three years. I know the opportunities in Cable TV.

I designed one of the first CATV systems in 1960. But technical advances are constantly changing the field. And since CREI's experts know most of what's going on in all areas of Electronics, I know that CREI can give my men some of the important, specialized training they'll need to maintain our position in Cable TV and our reputation in Electronics.

We've interviewed many technicians and engineers for jobs in the past year and had to reject them because their knowledge is archaic and out-of-date. A man is of no value to us if he doesn't keep up-to-date.

Some of the biggest names in electronics buy CREI courses for their own employees. CREI students and graduates prove themselves on the job. They move ahead of the pack by earning promotions and salary increases.

The Future Belongs To You

You've been in Electronics long enough to know that the field is changing more rapidly than ever. New industries, like Cable TV, are born almost overnight. But surveys show that three out of four men now working in Electronics aren't technically qualified to work in these new areas. Clearly, the future will belong to the man who gets the right education now.

Start Learning At Home

But what you learn depends on which school you choose. Here's why CREI is among the best.

With the CREI program you study at home. At your own pace. There are no classes to miss, no work to make up. Each lesson is explained in clear, easy-to-read language. That's why many men do far better in home study than they ever did in school...even if they've been out of school for years. And the study habits they learn from CREI are sustained through life.

As a CREI student, you'll be assigned to an experienced instructor who will grade your assignments and offer constructive comments and criticism. If there's a special problem, the instructor will work with you until you understand it fully. You'll receive personal attention from your instructor because he deals with each student individually—as a class of one.

What Will I Learn?

You'll be learning the latest in advanced technology, geared to specific industry programs. Both theory and practical material are presented to meet all phases of job-related training needs.

CREI courses are written for the man who knows basic Electronics, but whose advancement depends on keeping his technical know-how current. You choose what you want to learn. You study subjects which help you grow and advance in your present job and which relate to your career objectives. CREI offers you the opportunity to continue your education throughout your working life.

Constantly Up-Dated Courses

Because of rapid changes in Electronics, CREI courses are constantly being revised and up-dated by professionals who work in Electronics every day. New developments are included as quickly as they occur. Right now, CREI students are getting the latest up-to-the-minute information on such things as Cable TV, LSI chips, microminiaturization, lasers and masers, telemetry systems, servomechanisms, and data links. If it's new in electronics, CREI—and you—will know about it!

Developed By Top Scientists And Engineers

CREI maintains a full-time advisory faculty of some of the top names in Electronics. Each is a specialist in his own field, an expert who plans and develops CREI lesson material. After each expert submits his course plan, it is carefully reviewed and written by the CREI educational staff. Then each course is broken down into individual lessons. And they make certain each lesson is clear and self-explanatory. Just the right length for easy understanding and effective study.

How Can I Qualify?

If you've read this far, your interest in getting ahead in Electronics is evident. Send for our famous book on how to prepare for tomorrow's jobs in Electronics—the book that has helped thousands of men just like you get ahead. For your free copy, simply mail postpaid card today.
Build RE's Digital Printing Computer

Don't leave f-stop thinking outside the darkroom. This photo timer has f-stop settings for the ultimate in timing prints and enlargements

by DON LANCASTER and LEON SCHOENFELD

THE RADIO-ELECTRONICS DIGITAL PRINTING Computer (DPC) is a specialized timer for the photo buff who does his own black and white or color printing. It has several brand new circuit features not found on any commercially available device, even those costing many times its price. Unlike any ordinary photo timer, the Digital Printing Computer works directly in quarter stop increments of time. This means it thinks in exactly the same manner that photo paper does. There's now no more guesswork or fancy math involved any more— the computer does it for you. If your prints turn out a half a stop too light, just advance the computer two quarter stop clicks for a perfect print. If you decide to retard your enlarger a stop or two, just click the exposure computer just as much the opposite way, and you're right back where you started—with no guesswork and no math.

The instrument uses all integrated circuits and a very simple switching system that gives permanent calibration and unbreakable long-term accuracy. Both these features are picked up by counting cycles of the stable 60-hertz power-line instead of relying on traditional resistor-capacitor timing schemes that have to be calibrated and drift with age.

You get a range of 29 quarter-stop increments, ranging from 0.5 to 64 seconds, set and read by two overlapping, easy-to-read, red backlit dials. In addition to its "by stops" unique operation, you get all the other features normally found on high-quality timers, including a safety isolated remote control for foot switches, three-wire inputs, outputs and safety ground, dual-complementary ENLARGER SAFELIGHT outputs, focus override and an emergency stop panic button.

About stops

Photographic papers work on a logarithmic rather than on a linear basis. This means you double the light every time you want to go one stop darker. Thus, going from 1 second to 2 seconds exposure time will make a one stop darker exposure. But, going from 31 seconds to 32 seconds will have practically no effect. It's not the time difference that counts, but how much time or light you add as a percentage of what you already have. If a 1 f-stop difference is a 2:1 time or light ratio, a one-half stop difference would be a 1.41 time or light ratio, and a quarter stop difference would be only a 1.2 time or light ratio. Incidentally, a quarter-stop is cutting things pretty fine—few photo experts could spot a quarter stop change even in critical color work. Table I shows the actual time values you get for each quarter-stop increment.

The DPC is a real digital computer that you program as a frequency synthesizer. It generates the needed times to very high accuracy and in the required log scale quarter-stop increments. Figure I shows the block diagram.

The 60-Hz power-line frequency is divided down by six to get a train of 0.1-second reference pulses. These are counted by two cascaded counters, called the F-STOP counter and the BASELINE counter. The f-stop counter divides the 0.1-second reference pulses to switch selectable basic output times of 0.5, 0.6, 0.7, 0.8, 1, 1.2, 1.4, 1.6, and 2.0 seconds, giving either an exact or extremely accurate approximation to a -1 stop, -3/4 stop, -1/2 stop, -1/4 stop,
baseline exposure, $+\frac{1}{4}$ stop, $+\frac{1}{2}$ stop, $+\frac{3}{4}$ stop, or $+1$ stop exposure value. The baseline counter extends the f-stop counter's range to $1, 2, 4, 8, 16,$ or 32 seconds. Together the two give you a continuous range of 0.5 to 64 seconds in quarter-stop increments. Considerable overlap is provided by the two counters for ease of operation.

The computer acts independently each time as a one-shot counter. Every time the START switch is depressed, a special synchronizer locks the counter to the power-line, loads the proper division ratio into the f-stop counter, resets the baseline counter, and starts the count process. When the count is finished the synchronizer goes back to its initial or WAIT state. During the counting time, a signal is routed to a safety isolating relay that turns the safelight off and the enlarger on for the timing duration.

The remaining switching is omitted in Fig. 1 for simplicity. The other circuitry lets you bypass the timer for focus-
FIG. 5—SCHEMATIC OF THE DPC. The selector switches are mounted directly on the PC board to minimize point-to-point wiring. The IC frequency dividers are clocked by the powerline.

PARTS LIST

Resistors
R1, R2, R6—470-ohm, ½-watt carbon
R3—680-ohm, ½-watt carbon
R4—100-ohm, ½-watt carbon
R5—3300-ohm, ½-watt carbon
R7—2200-ohm, ½-watt carbon
R10—470-ohm, ½-watt carbon
R11—13,100-ohm, ½-watt carbon
R12—27-ohm, ½-watt carbon

Capacitors
C1—2500 µF, 10-volt electrolytic
C2—47 or 50 µF, 15-volt electrolytic
C3—0.02 µF, 50-volt Mylar
C4—10 µF, 15-volt electrolytic
C5—0.1 µF, 10-volt disc ceramic

Semiconductors
D1, 15-1-amp, 50 mV silicon power diode, IN5061 or equiv.
D2—14—Silicon computer diode, IN914 or equivalent
D16—5.1-volt, 1-watt Zener diode, IN4733 or equiv.

IC1—MC7473P or SN7473N TTL dual flip-flop
IC2—MC7492P or SN7492N TTL divide-by-sixteen counter
IC3—MC4018P programmable binary divider, TTL
IC4—MC7492P or SN7492N TTL divide-by-twelve counter
Q1, Q2—2N5129 transistor

Miscellaneous
RY1—6-volt spdt relay, 300-ohm coil, 2-amp contacts
S1—1-pole, 6-position non-shorting selector switch
Mallory 3226J, Do not substitute.
S2—2-pole, 9-position non-shorting selector switch
Mallory 3229J, Do not substitute.
S3, S4—spst momentary pushbutton
S5—1-pole, 3-position, rotary selector switch, 2-amp 110 V contacts, non-shorting
T1—6.3-volt, 1.2-ampere filament transformer
Triad F-14X, Stancor P6134, or equal
F1—0.5 amp, 3AG fuse and PC mounting clips

LM1, LM2—No. 47 pilot lamp, 6.3 volts, 150 mA.

MISC: 4¾ x 6” PC board (See text and Fig. 3, 4 and 5), case, bottom plate, and bracket (2); switch hardware; 1½” push-on knobs; dial assemblies including ¾” knob (2), (See Fig. 6 and 7); mounting bracket and red filter (APM 1813-27-RS) and socket for pilot lamps (2), 3 prong ac safety outlets (2); PC board mounting brackets (2); Line cord and strain relief; feet (4); 6-32 hardware; jumpers, sleeving, wire, solder, ground lug, remote control plug and socket, etc.

Note: The following are available from Southwest Technical Products, 271 West Rhapsody, San Antonio, Texas, 78216: PC Board, etched and drilled #ET-1 $5.25. Complete kit of all parts, except case, ETC-1, $34.25. Any and all individual parts also available.

52 RADIO-ELECTRONICS • APRIL 1972
TABLE 1
AVAILABLE QUARTER STOP TIME INCREMENTS

<table>
<thead>
<tr>
<th>F-STOP CORRECTION FACTOR SETTING (S2)</th>
<th>-1</th>
<th>-3/4</th>
<th>-1/2</th>
<th>-1/4</th>
<th>0</th>
<th>+1/4</th>
<th>+1/2</th>
<th>+3/4</th>
<th>+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASELINE</td>
<td>1</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>1.0</td>
<td>1.2</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>EXPOSURE SETTING</td>
<td>2</td>
<td>1.0</td>
<td>1.2</td>
<td>1.4</td>
<td>1.6</td>
<td>2.0</td>
<td>2.4</td>
<td>2.8</td>
<td>3.2</td>
</tr>
<tr>
<td>(S1)</td>
<td>4</td>
<td>2.0</td>
<td>2.4</td>
<td>2.8</td>
<td>3.2</td>
<td>4.0</td>
<td>4.8</td>
<td>5.6</td>
<td>6.4</td>
</tr>
<tr>
<td>8</td>
<td>4.0</td>
<td>4.8</td>
<td>5.6</td>
<td>6.4</td>
<td>8.0</td>
<td>8.0</td>
<td>9.6</td>
<td>11.2</td>
<td>12.8</td>
</tr>
<tr>
<td>16</td>
<td>8.0</td>
<td>9.6</td>
<td>11.2</td>
<td>12.8</td>
<td>16.0</td>
<td>16.0</td>
<td>19.2</td>
<td>22.4</td>
<td>25.6</td>
</tr>
<tr>
<td>32</td>
<td>16.0</td>
<td>19.2</td>
<td>22.4</td>
<td>25.6</td>
<td>32.0</td>
<td>32.0</td>
<td>38.4</td>
<td>44.8</td>
<td>51.2</td>
</tr>
</tbody>
</table>

Fig. 6—Pattern for the PC board. It is 6 inches wide and 4½ inches high overall. Use it to make photographic copy for your board.

Table 1: Available Quarter Stop Time Increments

TABULAR DATA

<table>
<thead>
<tr>
<th>EXPOSURE SETTING</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-1</td>
<td>-3/4</td>
<td>-1/2</td>
<td>-1/4</td>
<td>0</td>
<td>+1/4</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>1.2</td>
<td>1.4</td>
<td>1.6</td>
<td>2.0</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>2.4</td>
<td>2.8</td>
<td>3.2</td>
<td>4.0</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>4.8</td>
<td>5.6</td>
<td>6.4</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>9.6</td>
<td>11.2</td>
<td>12.8</td>
<td>16.0</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td>16.0</td>
<td>19.2</td>
<td>22.4</td>
<td>25.6</td>
<td>32.0</td>
<td>32.0</td>
</tr>
</tbody>
</table>

Construction

A printed-circuit board is a must for this project and may be obtained commercially or the pattern in Fig. 6 may be used. Drilling and layout details are given in Figs. 2 and 3. Fig. 4 shows component and wiring locations.

PC assembly is begun with the sixteen jumpers. These are mounted on the component side exactly where shown. Sleeving should be used on the two longest jumpers. The IC’s are mounted next, noting carefully the alignment dot and notch. IC numbering is counterclockwise from the notch when viewed from the top, starting with pin 1. Use a small iron and fine solder for the IC’s, and follow up with a close inspection with a magnifying glass.

The remainder of the components are then mounted on the component side except for the large switches. Note particularly the type and orientation of the diodes, as well as the + and – terminals on the capacitors. Start with the smaller components and finish up with the transformer, large electrolytic, and relay.

The board may then be flipped over and the switches may be mounted. Half of each switch terminal is cut away so the switch terminals may be freely passed through the holes in the PC board. The switches mount on the foil side. The common terminal is wired to a small jumper and then terminated on its foil pad. Be sure the common switch terminal goes “straight through” the other terminals to reach its common pad; otherwise the switch will be jumped one position and the unit will jump in the middle of a time cycle if you make a mistake, or remotely control any of the functions with a foot switch or two.

The complete schematic and parts list appear in Fig. 5. Note that the two single deck rotary switches do all the time switching. These mount directly on the PC board for very low cost and minimum external wiring.

(continued on page 73)
THE EIGHT-TRACK TAPE PLAYER has, for many people, replaced the auto radio as the primary automotive entertainment. The radio’s lack of program choice and annoying commercials have pushed it into a back seat, as far as many listeners are concerned. Because of the tape player’s immense popularity it will become increasingly difficult to find a service shop that can gracefully refuse to repair units owned by old and valued customers. Let us take a close look at some of the most common tape-player ailments, their causes and remedies.

Automotive electronics has grown to be such a big business that the jargon makers have given the field its own special name: Autotronics. Now that Autotronics has matured into a specialized field it may be wise to consider offering this service to your customers. Very little extra equipment will be required for the average TV technician. A tape repair bench takes up very little space. An audio frequency generator and a signal tracer will be needed. A VTVM is also a must, preferably one with 0.5, 1.5, 5, and 15-volt scales. Since most eight-track players are automotive units it will be necessary to invest in a decent 12-volt battery eliminator. Tape players normally use a solenoid to change programs. It can draw—for a second or so—up to 10 amperes. The supply, therefore, must be able to supply a 10-amp intermittent load without dragging down the output voltage. Most of the battery eliminators available will handle these requirements nicely. A do-it-yourself kit can help keep costs down.

Also handy on a tape-player repair bench will be various tape cartridges used for test purposes. There are several that have recorded segments for checking speed, azimuth, crossstalk, wow, and flutter. Motorola, Delco, GC, and RCA offer such tapes. All are handy, because none of them are best in all tests. Also keep an empty cartridge around. This is used when the customer’s complaint is “breaking tapes” or when the machine must be operated upside-down. The reason for this is that many tape cartridges develop enough drag when turned over to snap the tape. Since nobody seems to offer empty tape cartridges it is necessary to make your own. Merely strip the tape out of a defective cartridge or, if none are available, out of a low-cost “cleaning” cartridge.

Case of the three complaints

The first case is a Delco T-400 series tape player. These are the slim-line players used in many late model General Motors cars. This machine uses a heavy-duty transistor-regulated motor to drive a flywheel-capstan assembly via a rubber drive belt. Track, and therefore, program changing is accomplished by a solenoid-cam assembly. An arm on the solenoid plunger pushes the cam. It, in turn, sets the head height. A small screw on the head carriage allows for minor corrections in head height so that crossstalk can be eliminated. A spring supplies the tension that holds both the cam and the head in position.

In past models of the T-400 that solenoid was fired by an SCR. The manual and automatic track change switches supplied a signal to the SCR gate terminal. This initiated the change cycle by turning on the SCR. The solenoid winding was in series with the SCR anode. It would, therefore, energize whenever the SCR was conducting. The SCR was turned off by a little glass-enclosed thermal circuit breaker in series with the solenoid winding. It would open circuit (hopefully) every time the solenoid was fired. Later models of the T-400 use a simpler method of energizing the solenoid.

This particular tape player came in with three separate complaints... all of them common in T-400 series machines. This player often failed to change tracks, would also occasionally run slow or wow excessively, and had the habit of producing a rattle every time the car hit a bump.

Complaint No. 1

This particular T-400, being out of a 1970 Buick, used the simpler solenoid (Fig. 1) and switch track changing system. When the manual programming switch was depressed the ammeter on the power supply would leap up several amps. The solenoid could be heard at these times (it has a very loud “thunking” sound). This sound generally means that the solenoid itself is in good shape. Lifting the tension spring (see Fig. 1) just a little bit allows us to move the head carriage assembly by hand. It was not binding and would move freely through its entire travel. On the T-400 player this usually means that the head carriage isn’t under enough tension. The condition is corrected merely by lifting that part of the tension spring that rests on the head carriage and bending it back slightly. Not much rebending is necessary—don’t go overboard!

Complaint No. 2

There are several main causes of slow speed and wow in all tape players. One is the motor. These motors have an internal centrifugal speed governor. The motor can be “rough checked” by removing the drive belt and observing the motor shaft. It should speed up considerably when the load is removed. Grip the motor pully firmly between your fingertips. The motor should exhibit a fair degree of torque and should resume its normal speed rapidly upon being re-
leased. Another cause of speed problems is dirt or tape oxide in the capstan assembly. Clean this dirt out every time the player is repaired or, in any event, at least once a year. A stretched or worn drive belt is also frequently the cause of speed problems.

In this particular case, the problem was the pinch arm not seating properly in the locking slot on the side of the tape cartridge. The post the pinch arm is mounted on is made of soft metal that bends easily. If—as in this case—the post is bent, the pinch arm cannot reach the slot. This keeps the pinch roller inside the cartridge from pressing against the capstan shaft.

Complaint No. 3

"Rattles when going over bumps" has been a common T-400 complaint for the past couple of years. The cause is usually traced to a sloppy fit between the solenoid plunger and its guide. This assembly can be seen in Figs. 1 and 2. The cure is to slide a piece of insulated tubing over each of the wings on the guide as shown in Fig. 2. Some trimming may be necessary lest the plunger be unable to pull all the way in.

Complaint No. 4

This complaint also involves a Delco tape player. This type unit is the older and bulkier T-200 series. The owner's complaint was that the player would lose its right channel whenever the car was jarred or hit a bump. Signal tracing (see circuit, Fig. 3) turned up the fact that the volume control was at fault. Fig. 4 shows the control with its front section damaged. This is rather common on underdash-mounted tape players. It seems that passengers' legs want to occupy the same space as the equipment.

FIG. 3—A SIMPLE ONE—voltage at B but not at C pinpointed an open volume control.

FIG. 4—KICKED BY A RIDER, this unit still worked—with one intermittent channel.

FIG. 5—CRAIG 3121. The two switches must operate simultaneously or the fuses blow.

The cure, shown in Fig. 5, is rather odd. Both switches must be operated together or the low-resistance winding of the solenoid is shunted to ground. This causes the heavy current that pops the fuse. The switch actuating arms can be adjusted by bending, to restore the Craig to normal operation. Determine which of the two arms is failing to hit properly, then make the adjustments.

Complaint No. 6

Another Craig tape player was in the dock in this case. The complaint was weak and distorted output. A bench check showed that one channel was normal. The audio output stage of this set uses a pair of 6-watt npn transistors in a stacked totem-pole circuit. The difference between this circuit and the quasi-complimentary circuit is that phase is inverted by a split-secondary interstage transformer rather than through complementary transistors.

The voltage readings in Fig. 6 explain why this circuit is considered relatively easy to troubleshoot. The supply voltage is split between the two transistors. At point B in Fig. 6 we measure the full supply voltage. At point A we find approximately one half that amount. In this set the voltage at point A was around 1 to 1½ volts, indicating that the lower transistor was leaky. New transistors fixed the player. (Output transistors are usually matched so use matched pairs as replacements.)

In this type of set the wires to the emitters of the power transistors are really stretched-out fuse resistors. They may well be charred and may require replacement. Also, be careful when using universal replacement transistors. These are 6-watt units. Some replacement substitution guides list transistors that are considerably lower powered than the originals. In one case where the author was involved the guide called for a 150-milliwatt transistor to replace a 6-watt Japanese number ... it blew immediately.
With Sylvania's 3 lines of color tubes, you can meet it. Customers' wallets come in different sizes. Thick, thin and in-between.

With Sylvania's 3 complete families of replacement color picture tubes, you can be sure of having the right-priced tube for each one.

At the top end of the line, you've got the color bright 85®XR, the tube with our brightest phosphors and X-ray inhibiting glass.

And in the middle, you have the color bright 85®RE. This is the tube that brought color TV out of the dark ages. Its bright rare-earth phosphors still make it the tube to watch.

For economy, there is the color screen 85 family of replacement tubes. But, economy doesn't mean cheap construction. You can still give your customer features like Sylvania's Sharp-Spot electron gun and a rare-earth phosphor screen without breaking his budget.

When you sell Sylvania, you're selling from the broadest line in the industry. You'll have the tube to match the set.

And a price to match the wallet.

Every man has his price.
STEREO

how to design your own solid-state audio amplifier

For long and reliable life, a transistor must operate within several fairly rigid limits. Let’s look at these boundaries and see how to use them to our advantage.

by MANNIE HOROWITZ*

TRANSISTOR DATA SHEETS SUPPLIED by the various manufacturers can roughly be divided into two sections. One defines the electrical, mechanical and thermal characteristics of the device. The second section indicates the maximum ratings beyond which operation is hazardous to the transistor. Many of the characteristics of the transistor and methods of applying these characteristics, have been discussed in previous articles. Here, the discussion will center on information contained in the second group of data defining the various limits of the device.

Bipolar transistors

In the article on diodes, the definitions of Zener and avalanche breakdowns were discussed. Breakdown characteristics were applied to the device when it was reverse-biased—its anode negative with respect to the cathode. We saw that above a specific applied voltage peculiar to the individual diode, it would break down and start conducting large amounts of current. The diode was considered to be in avalanche condition if the breakdown voltage was above about 6 and in a Zener breakdown condition if the voltage was below 5, with a combination of the two characteristics evident for breakdown between 5 and 6 volts.

The collector-base junction of a transistor is reverse-biased in normal audio amplifier circuit applications. The junction will break down above a voltage referred to as $V_{BRCEO} = V_{CBEO}$.

(In the following discussion, the first symbol shown is the preferred JEDEC notation for a limiting value. Subsequent symbols, also frequently used in the literature, indicate the same characteristic.) No voltages applied to any pair of terminals or leads of a transistor, should ever exceed the V_{BRCEO} rating.

A tighter limit imposed on the transistor is the breakdown voltage between the collector and emitter. The voltage is at its maximum when a reverse bias is applied between the base and emitter terminals. Here, the symbols for the breakdown voltage are $V_{BRCE} = V_{CEB}$. Starting with V_{BRCE}, the highest collector to emitter breakdown voltage, other collector to emitter breakdown voltage in descending order of magnitude are:

- $V_{BRCEO} = V_{CEO}$, when the base-emitter junction is short-circuited.
- $V_{BRCEO} = V_{CEO}$, when a resistor, R_b is connected between the base and emitter, and
- $V_{BRCEO} = V_{CEO}$, when the base-emitter junction is open circuited.

It is obvious that the smaller the resistor placed across the base-emitter junction, the higher the breakdown voltage will be. The voltage may even be specified for the presence of a particular circuit that may be placed between the base and emitter. In this case, the symbol is $V_{BRCEO} = V_{CEO}$.

The various breakdown voltages occur at low collector currents. At high current, the breakdown voltage is reduced and is referred to as a sustaining voltage. It is simply noted by placing the symbol "(sus)" after the particular breakdown voltage notation. Sustaining voltage should be specified at the specific current used in a circuit. A hypothetical collector characteristic curve showing V_{BRCEO} and $V_{BRCEO(sus)}$ is in Fig. 1.

The base-emitter junction forms a diode subject to Zener or avalanche breakdown when reverse biased. This voltage, $V_{BREBO} = V_{EBO}$, should not be exceeded at any time. Special precautions must be taken when operating in a push-pull Class AB or Class B mode, for a reverse signal is applied to this junction for a portion of the cycle.

Other maximum ratings which must not be exceeded are the collector and base current limits, power dissipation at specific operating temperatures, and the specific maximum temperatures when storing, operating and soldering a device into the circuit.

Junction field-effect transistor

Similar to bipolar devices, the JFET’s are encumbered by limiting factors. The obvious limiting voltages are:

- $V_{BRDS} = V_{GSS}$, the gate-to-source breakdown voltage with the drain connected to the source,
- $V_{BRDG} = V_{DSG}$, the drain-to-gate voltage with the gate connected to the source AND
- $V_{BRDSX} = V_{DSS}$, the drain-to-source voltage with the gate at a specified voltage with respect to the source.

All these voltages are specified on transistor data sheets, as being identical in value.

The maximum allowable drain power dissipation, drain current and the various temperatures are normally stated on data sheets and should of...
course, not be exceeded in any design.

Secondary breakdown

JFETs and small-signal bipolar transistors should *not* be forced to operate outside the limits set by the maximum-power-dissipation hyperbola discussed in the article on power amplifiers. More stringent restrictions are placed on medium- and high-power bipolar devices by a phenomenon known as *second breakdown*.

A transistor is subject to second breakdown when there is a substantial amount of collector current while the collector-emitter voltage, although within all ratings, is relatively high. This phenomenon may occur even if the transistor is operating well within its maximum-power-dissipation rating. At one specific combination of Ic and Vce, the collector-emitter voltage drops suddenly and the collector current rises rapidly. A curve illustrating this is in Fig. 2, where at $V_{BR(SUS)}$ and I_{SEC}, the transistor goes into a second-breakdown state. The voltage across the device in this state is V_{SEC}.

Second breakdown is usually explained by stating: "large amounts of current flow through a tiny area of semiconductor material causing local overheating producing breakdown." Once a device is in second breakdown, the transistor is usually destroyed.

Several precautions should be taken to minimize the chances of second breakdown.

1. Keep the collector-emitter voltage to the minimum consistent with the design requirements.
2. Use single diffused rather than double or triple diffused devices, if this restriction is at all compatible with the circuit.
3. Check the frequency requirements of the circuit carefully. Use the transistor with the lowest high-frequency cutoff specification that will satisfy a design. (The frequency characteristics of a transistor will be discussed in a future article.)

4. Watch out for inductive loads! When a transistor is reverse-biased during a portion of a cycle, it will theoretically not conduct current. However, when the voltage across the transistor is high, an inductive load will discharge current through the device. Current through a small area of the semiconductor flows while V_{CE} is large—the perfect situation to initiate second breakdown.

In this case, the proper precaution is to keep the reverse base-emitter voltage as small as practical so that $V_{BRREVERSE}$ is minimized while the resistor in that circuit is large.

Once transistors have been designed into an audio output circuit, it can be checked against safe-operating-area curves, to ascertain if the transistors are operating within the boundaries necessary to avoid second breakdown. These safe operating curves are provided by the manufacturer of the device. Curves of this type for the 2N3055 transistor are shown in Fig. 3.

A circuit should be established and tests performed to ascertain if the load line for a transistor is within the limits set by the curves. Thus if there is a 100-msec pulse through the transistor, the load line for the transistor should be below the curve marked 100 msec. Similarly, if there is a 100-µsec pulse in the collector circuit, the load line for the transistor should fall below the curve marked 100 µsec. As the pulses get longer, the limiting curves get more severe. For intermediate size pulses not shown on the curves, the limits can be determined by interpolation. It is obvious that for a pulse of any duration, a safe load line will fall below the curve marked *dc operation*. However, this severe limit is not required for the load line should shorter pulses be reproduced.

The question may arise as to how the load line may vary with the duration of the pulse. In a previous article, we drew the dc and ac load lines and disregard their dependendency on frequency. It should be obvious that an inductive load line, such as due to a transformer or speaker load, is frequency sensitive, and will vary in shape and size with the duration of the pulses.

In testing a circuit, sinewaves rather than pulses may be used. Here, operation can be considered safe if the load falls below the pulse limit curve of $f/2$ seconds, where f is the frequency of the sinewave.

The circuit may also be tested by using the action of a hazard signal, such as music or speech, normally present at the output of an audio amplifier. In this case, the load lines may vary with the output of an audio amplifier. In this case, the load lines, continuously varying, should fall below the dc operation curve in Fig. 3. This is a severe test and more indicative of transistor safety in operation than a test performed with any other type of signal.

To perform the test, the transistor in the output circuit can be connected to a calibrated scope in the arrangement shown in Fig. 4.

The collector current flows through R_g. The voltage across R_g is then proportional to collector current I_c. This voltage is plotted on the vertical axis of the scope, in terms of collector current. At the same time, the collector-emitter voltage is applied to the horizontal input of the calibrated scope. The V_{CE}-1c plot on the scope is the load line of the transistor. Vary the frequency fed to the amplifier or change the type of load,
Thermal circuits and limits

The primary source of heat in the bipolar transistor is the power dissipated at the collector junction. The contribution of heat generated at the base-emitter junction to the final temperature of the device, is relatively negligible. The maximum operating junction temperature for silicon transistors is usually specified at 200°C while for germanium devices, it is limited to 100°C.

The heat generated within the transistor must be removed from the junction as it is being generated, if the transistor is not to become too hot and break down. There is a thermal resistance, \(\theta_t \) (units are in degrees Celsius per watt) which resists the flow of heat from the junction. The thermal resistance between the junction and the case is the symbol \(\theta_{JC} \). The case is cooled by the surrounding air which is normally at a lower temperature than is the case. There is a thermal resistance between the case and the air, assigned the symbol \(\theta_{CA} \).

Because the surface area of the case is small, very little air can flow over it within a specified period of time, to remove the heat. The case is usually mounted on a large metal surface or sink. It has a large area exposed to the ambient temperature. There is, however, a thermal resistance between the case and the sink, \(\theta_{CS} \), and between the sink and the air, \(\theta_{SA} \). It is obvious that \(\theta_{CA} = \theta_{CS} + \theta_{SA} \), but it should be noted that \(\theta_{CS} \) is smaller when a heat sink is present than when only the case is exposed to the air. The thermal resistance between the case and sink, \(\theta_{CS} \), can be relatively large, but may be reduced if silicone grease is used between the case and sink to assure good conduction between the surfaces.

Electrical circuits frequently require that the case (usually connected to the transistor collector) be insulated from the grounded heat sink. A mica insulator is usually placed between the case and sink. The thermal resistance between the case and sink is increased when the mica is used, but this is unavoidable. Once again, the situation can be minimized by applying silicone grease to both sides of the washer. Typically, when a plain mica washer is used, \(\theta_{CS} \) is about 0.8°C/W. The addition of silicone grease reduces \(\theta_{CS} \) to approximately 0.4°C/W. Compare this with the thermal resistance when no washer is used. Here, \(\theta_{CS} \) can be 0.2°C/W without the silicone grease and 0.1°C/W with the use of the grease between the contacting surfaces.

Thermal resistance can be put into a thermal equivalent circuit and treated as an ordinary resistor is treated in an electric circuit. The equivalent to the electric current is the power, \(P_{\text{diss}} \), dissipated by the semiconductor. \(P_{\text{diss}} \) flows through the thermal circuit as current flows through an electric circuit.

When current flows through an electric circuit, a voltage is developed across a resistor in the circuit. Heat, measured in °C, is developed across a thermal resistor. We can thus write an equation relating thermal resistance, power and temperature.

\[
P_{\text{diss}} = \frac{T_J - T_A}{\theta_{JA}} = \frac{T_J - T_A}{\theta_{JC} + \theta_{CS} + \theta_{CA}} (1)
\]

where \(T_J \) is the temperature at the junction and \(T_A \) is the ambient temperature. This is an important equation to remember. A diagram presenting the information described by the equation is shown in Fig. 5. \(T_{JA} \), \(T_{CA} \), and \(T_{SA} \) are the differences between the ambient temperature and the temperatures at the junction, case and sink respectively. Each temperature is developed across a thermal resistor shown in the drawing. They represent the temperature rise above the ambient, which is treated as if it were the circuit ground.

Using equation 1, the temperature at the heat sink is \(T_S = \theta_{CS} P_{\text{diss}} + T_A \). Similarly, if the case temperature, \(T_{CA} + T_A \), is known, the junction temperature, \(T_J + T_A = T_{CA} + T_A + \theta_{CS} P_{\text{diss}} \).

It is evident that the junction temperature is directly related to the case temperature. It is further evident that if the junction temperature is limited to some maximum such as, 200°C, the maximum allowable case temperature will decrease as the power dissipated by the semiconductor rises. For example, if \(\theta_{CS} \) is 1.5°C/W, as it is for the 2N3055, and there are 50 watts dissipated by the transistor, the maximum allowable case temperature is 200°C - (1.5°C/W) (50 watts) = 125°C.

A curve can be drawn relating the maximum allowable power dissipation by the device to the temperature of the case. Since the maximum rated dissipation of the transistor is 115 watts, the curve for the 2N3055 (from RCA data) is as shown in Fig. 6. Note that at 125°C, the maximum allowable dissipation as noted on the curve is 50 watts, substantiating our calculation from the data.

If the transistor temperature rises faster than its ability to dispose of the excess heat, the device will obviously overheat. Current flow will increase primarily due to a rise in temperature and a subsequent increase of \(I_{\text{CEO}} \), the collector-base leakage current. This will in turn produce more heat. The cycle will repeat itself, building up until the transistor is destroyed. This is known as thermal runaway. To avoid thermal runaway, the following inequality must be satisfied.

\[
(continued \ on \ page \ 94)
\]
OMNISONICS—
A new kind of sound reproduction system

We are pleased to present the first news of a new development that may have a more profound effect on sound reproducing techniques than did the introduction of stereo

by S. H. MANI, IRE*

To check the possibilities and capabilities of such a system, we set up an experimental assembly based on a technique well known in other branches of electronics but not—as far as I know—used heretofore in sound reproduction. That technique is phase reproduction. As color is transmitted by assigning a given phase of an ac signal to red, another to green, etc., or as an “electronically scanned” antenna may be made to rotate its direction of greatest power output by varying the phases of the current put into it, so can a sound source be pinpointed by varying the phase relations of a battery of microphones.

A classic example of electronic phase-location of a signal source is the Bellini-Tosi radio compass. It uses two crossed loops, as shown in Fig. 1, usually set up in a North-South and East-West direction. These are connected to two coils wound round a small enclosure or box to simulate the N-S, E-W orientation of the antenna. A search coil is mounted inside the enclosure. It can rotate so that it lines up with one of the coils at each 90° of travel or take any position between the two. A radio beacon directly north or south of the station produces a strong current in the N-S antenna and a strong field around the N-S coil. The search coil, when aligned with the N-S coil, picks up a strong signal, which is fed to a radio receiver and amplified to produce an audible or visible output that increases in strength as the search coil is manually positioned in the strongest field.

If the radio beacon is in a north-west position, fields of equal strength are induced in both sets of coils, and the search coil produces the strongest signal at a point midway between them, thus pointing out the direction of the station. (Another bit of phasing—the conventional "sense" antenna—shows whether the signal is coming from NW or -NW, that is, southeast.)

The sound pickup
For the first experiments, four microphones were deemed sufficient. These were mounted in N, S, W, E (or if you prefer: L, R, F, B) position, and powered with two ultrasonic frequencies in the order of 75 kHz. The "mittel-seite" technique (two crossed bidirectional microphones) was also tried, and would probably have worked well if microphones with more pronounced directional patterns had been available. Strain-gage microphones were used, but any non-generating microphone should work, since the system depends on the application of phased outside power. The two frequencies were not synchronized—there is just enough difference between them to cause the vector representing their strongest direction of pickup to rotate through the full 360° in a suitable time interval. The action is something like that of the television rainbow generator.

A sound source near the N microphone would create a strong signal in that microphone, and a weaker signal in the -N or South microphone. Due to the phasing, there would be little output from E or W. A sound source positioned in the NW quadrant would produce signals in the N and W mikes.

*Institute of Reproductive Engineers
These signals are recorded on tape, with a control strip indicating the phase of the signal, to control the playback amplifier. No experiments have been made with phonograph recording, but it would seem comparatively simple to put the phase and control signals on a groove. The system is, in effect, time-sequential multiplexing, now being used so effectively in data transmission.

Reproduction

So much for the pickup and transmission. How about the playback? Here again the problem is simple. By synchronous distribution we can portion out each element of signal to a speaker roughly in the same direction from the listener's position as the original sound was from the microphone. This is analogous to the synchronous detection of the color TV receiver, which allows the correct signal to each of the color tubes (or shares it among them) as a function of the phase of the subcarrier.

Gating each speaker on and off might seem to require cumbersome equipment and a multiple cable of many conductors. Not so! A recent discovery makes it possible to switch positively and without on and off pulses that would disturb the program. The discovery is the charge-coupled scanner announced recently by Bell Laboratories. This device makes it possible to do all the switching with three wires, one of which also carries the signal.

As you remember, the charge-coupled scanner is a series of capacitors along which a charge may be made to move by changing the voltage on the capacitor plates. If plates A and C of Fig. 2 have a negative voltage and B a positive voltage, electrons will be attracted to the area of strip D that is under plate B. Now if the positive voltage is suddenly shifted to plate C and plate B allowed to go negative, the charge moves to the area under plate C. Thus a signal can be made to step-by-step down a line of such plates and—in the original device—be read off at the output as a scanned line.

One of these charge-coupled devices is installed at each speaker in the listening area. It is, of course, desirable that there be the same number of speakers as microphones, and that their placement be analogous. In actual practice, four speakers were omitted in a 12-microphone hookup without noticeable deterioration of the sound.

The charge-coupled units are all connected in parallel; thus the whole series of signals is stepped down each unit. But each speaker is connected to only one of the charge plates. The control signal on the tape steps the charge-coupling plates so that each speaker unit is excited in exact synchronism with its corresponding microphone. Speaker No. 1 reproducing the sound from microphone No. 1, etc. Thus as the signal sweeps through the 360° of its cycle, each speaker reproduces the sound that reached the analogous microphone.

If each speaker is to be actuated by a single charge plate, obviously the portion of the strip under the plate will have to be isolated. The method is shown in Fig. 3. The "active" portion of the strip for each speaker is connected with resistors and capacitors so that the action along the whole strip is much the same as if the strip were continuous, yet the section is practically isolated throughout the audio spectrum. The isolated portion of the strip is connected to a small IC amplifier that operates the speaker.

To simplify matters in the experimental model, the audio signal was applied to the B wire only. The speaker amplifiers were then "clamped" to the average positive level of the B conductor. Its voltage then looks like dc to the equipment, though it might be oscillating in voltage at a rapid rate if compared to earth or other reference. All the amplifiers see is the increase and decrease at an audio rate as the signal adds to or subtracts from the voltage on the B conductor.

But won't this jumping from one signal to another, switching rapidly between amplifiers, create an unholy mess? Not at all—the action is continuous as far as the audio is concerned. The pickup vector swings around the circle at a 75-kHz rate, five times the frequency of the highest audio signal. Thus it requires five pulses on the charge plate to reproduce a single cycle of the highest frequency notes.

This is analogous to the phase detection in television, where a large number of cycles of the 3.58-MHz subcarrier is required to produce a small colored spot on the screen. The cycling frequency can in fact be much lower—down to just above the hearing range—with the only noticeable difference a certain glissando between certain notes.

Conclusion

Much work remains to be done on the prototype. The best microphone technique has not yet been worked out, and the final version of the reproducing equipment will have signal applied to all three series of plates, with a consequent reduction in switching frequency and its associated problems. It is confidently expected, however, that a commercial version will be available in the spring of 1972, and a tentative date for the introduction of the new system has been set for APRIL 1.

R-E

This new proposed audio system is based on the charge-coupled switching concept developed at Bell Labs and announced on page 6 of our June 1971 issue.
R-E's Service Clinic

Dynamic convergence--amp and tilt controls

Get the amp and tilt controls straight and those lines will follow suit

Jack Darr
Service Editor

We've been seeing and using controls on convergence boards for a good while now, and there seems to be just a wee bit of confusion as to exactly what some of the controls are, and what they do. The two most often confused seem to be AMPLITUDE and TILT controls. Thank goodness, the newer sets use names like "Red-Green Horizontal, Lines At The Bottom Of The Screen", and so on. Much less confusing.

However, these are the same controls we had all the time. You'll find AMP and TILT on older sets. So let's find out what the names mean and what they do. Makes it a lot easier when you know what to expect.

We use parabolic waveforms in the convergence yoke, to get the results we must have; that is, good convergence all the way across (and up and down, too, of course) the screen. These change the convergence-point of the three beams while they're moving. After all that's all that "dynamic convergence" means; convergence while in motion. To get exact compensation, we can't use a parabola that is exactly symmetrical. We might need more convergence at one place than at another. So, we use controls on the waveforms.

One regulates the amplitude, just like a volume control, so this is the AMP control; meaning, how much of this waveform do we need. The other regulates the phase of the thing so that we can make one end or the other lift or drop; in other words, we can TILT the waveform. Now what will this do, on the screen? Let's see.

We're trying to get a red line (for instance) to scoot in behind the blue and green that are already nicely overlapped. (Use any color; all the same.) We see something that looks like Fig. 1. The dashed line represent the color that's "showing" too much.

Two of them are nice and straight. The other hangs out on one side at the top and the other side at the bottom! Now move the RED TILT control, and you'll see the line go further out of convergence, going one way, and get closer to "right", going the other. Note that it stays almost stationary in the center! This is the TILT control. If we adjust it properly, we'll see this line straighten out and hide behind the others. Also, we may see an opposite reaction: this line may bow in the middle, touching the others at the top and bottom! This is also a tilt-control reaction. For correct adjustment, we set the control so that the one we're adjusting is as near to parallel with the rest as we can.

Now what about the amplitude? Well, we may find that we have to deliberately introduce a bowing in this line to make it overlap the rest properly. So we set up our bow with the tilt control; perhaps it will be of just the right shape, but not cover the other lines, as in Fig. 2. To make it cover them, we add more amplitude, by turning up the

This column is for your service problems—TV, radio, audio or general and industrial electronics. We answer all questions individually by mail, free of charge, and the more interesting ones will be printed here.

If you're really stuck, write us. We'll do our best to help you. Don't forget to enclose a stamped, self-addressed envelope. Write: Service Editor, Radio-Electronics, 200 Park Ave., South, New York 10003.
AMP control. Once we get the line set up so that it is obviously the right shape (That is, parallel to the others) we have the Tilt set, and all we need to do is adjust the amplitude until it moves in behind the rest and we get the white line we've been looking for all this time (Fig. 3).

There are your clues; if a line is not of the right shape, adjust the tilt control; if it's the right shape but there's 'not enough of it': set the amplitude control, and away we go!

Reader Questions

BAD TRANSISTORS, ORPHAN TAPE PLAYER

I'm trying to fix a KRACO Stereo tape player. Do you have a schematic for this, or know where I can get one? It has two blown 2SB487 transistors (power outputs) and I can't find them listed either! Could be "2SB481"; not sure. What is a replacement for this? -T.K., Wellington, Ohio.

Sorry; nothing at all in my files on "KRACO". You have an orphan. However, I did eventually locate a listing on a 2SB481 transistor, which is the same as the 2SB487. HEP-642 Motorola, RCA SK-3052, GE-30, or Sylvania ECG-131. Be sure to check the little emitter resistors, which will probably be about 1.0 ohm each. If the original transistors shorted, these probably burnt up.

VTVM PROBLEM

I've got a weird intermittent in my vtvm! On the Ohms ranges, it can be ze-

rood, but if I switch to a different scale, the needle jumps around, and may come to rest off-zero. Same on dc voltages. Sometimes I read the correct voltages, then get only 1 or 2 volts! I noticed that once, when I pulled on the test leads, it changed. What's going on here? -W.T., Illinois.

Offhand, one of two things. You may have an intermittent contact inside one of your test leads (which happened to me once, and caused problems!) or your grounding, inside the meter may be poor! At times, the "circuit board", internal framework, etc. may develop a poor ground, connection to the front panel! This can really cause some problems. Take the meter apart and loosen the front panel. Clean the mating surfaces, and tighten the bolts firmly. (Reader later confirmed this. It was a bad ground connection.)

FLOATING BARS IN COLOR

In an almost-new solid-state RCA CTC44B chassis, we have good color, but slowly rising "bars" (horizontal) of red, green, and blue, about 2 in. wide, through the picture. There's also a pretty bad hum at high volume, which is reduced when you turn the treble control full-up. Once in (continued on page 68)

PUT IT TO THE TEST

Leave it to B&K to come up with a new model 179 FET/VOM with features that almost make it unbelievable at its price. Complete DC voltage ranges from 3V to 1000V; DC current ranges .03 to 300 mA; AC voltage ranges .3 to 1000V and AC current ranges .03 to 300 mA. Resistance 0 to 500 Meg and stable operation 0° to 40°C. Fastest and easiest to use.

The 179 uses Field Effect Transistors for drift-free accuracy. High input impedance minimizes circuit loading. And the 179's super-wide variety of ranges makes this an ideal FET/VOM for shop, lab, production line, or school. Includes mirror scale, and stay-put handle.

Now is the time to update your shop with a stable, protected FET/VOM. And the economical, yet professional B&K 179 is the instrument that will give the most usefulness and satisfaction for your money.

B&K Model 179 FET/VOM $74.95

The new standard of stability

Ask your distributor or write us for catalog.

There is a difference in test equipment . . .
ours works!

B&K Precision Model 179 FET/VOM

© 1972 B&K Precision Corp.

Circle 12 on reader service card

APRIL 1972 • RADIO-ELECTRONICS 63
For a solid future...

NTS Home Training makes tomorrow's electronics happen—today!

Now included in two exciting NTS color TV courses, this set is the largest, most advanced color television made. Guided by the NTS "Lab-Project Method" of combining professional kits and easy-to-follow lessons, you build this color TV step by step—learning TV Servicing as you go! NTS has successfully trained thousands of men at home for rewarding careers as electronics technicians. Prepare for the great opportunity fields of TV-Radio Servicing, Computers, Communications, and Automation.

This solid-state color set contains: 45 transistors, 55 diodes, 2 silicon controlled rectifiers, and 4 advanced Integrated Circuits representing an additional 46 transistors and 21 diodes. The first solid-state color TV this large—you to keep! It features Automatic Fine Tuning; "Instant On"; an Ultra-Rectangular Screen (25 in. diagonal measurement) that lets you see the complete transmitted image for the first time—a full 315 square inches; exclusive built-in Self Servicing features which eliminate the need to buy costly test equipment; exclusive design Solid-State VHF Tuner with an MOS Field Effect Transistor; 3-stage Solid-State IF; Automatic Chroma Control; Adjustable Noise Limiting and Gate Automatic Gain Control; High Resolution Circuitry; Matrix Picture Tube; and a specially formulated Etched Face Plate that eliminates unwanted glare, and heightens contrast. Colors are more vivid, fresh tones more natural, and the picture is sharper than ever before. By training on this unique color TV, you'll gain the most up-to-date skills possible in TV Servicing!

Other valuable equipment you build and keep includes an AM SW Radio, Solid-State Radio, FET Volt-Ohmmeter, and Electronic-Tube Tester. All included in your tuition. You learn troubleshooting, hi-fi, multiplex systems, stereo, and color TV servicing. Step right into a technician's job at top pay or open a business of your own! For complete details on all NTS electronics courses, mail the coupon today for the full-color NTS Catalog. No obligation. No salesman will call.
Build this set and learn solid-state circuitry—the electronics of today!

train on solid-state

NTS ELECTRONICS & COMPUTER TECHNOLOGY

Build this exclusive NTS Compu-Trainer! Loaded with integrated circuits, it shows you the how, what, and why of computers. Learn this exciting field faster, more thoroughly. You also assemble and learn to operate an FET Volt-Ohmmeter and 5" wide band Oscilloscope.

NTS BLACK & WHITE TV AND RADIO SERVICING

Learn all phases of television, radio, stereo, and hi-fi. You receive this 74 sq. in. picture Solid-State B&W TV, Lo-Silho "Superhet" Radio, FET Volt-Ohmmeter, Solid-State Radio, Electronic Tube Checker, and Signal Generator. Start earning extra money even before you complete the course!

NTS ELECTRONICS COMMUNICATIONS & F.C.C.

Gain the security and prestige of owning an F.C.C. First Class Radio-Telephone License! Two comprehensive NTS courses cover the big opportunity field of transmitting and receiving. You build 14 kits, including a 5 watt AM Transceiver, 6 Transistor Pocket Radio, and FET Volt-Ohmmeter. Learn 2-way radio, Citizens Band, micro-waves and radar.

NTS INDUSTRIAL & AUTOMATION ELECTRONICS

Automation is the future of industry and you can play an important part! Learn industrial controls by training on the NTS Electro-Lab—a complete workshop. You also build and operate this 5" wide band Oscilloscope. And you perform experiments that involve regulating motor speeds, temperature, pressure, liquid level, and much more.

Classroom Training at Los Angeles. You can take classroom training at Los Angeles in sunny Southern California. NTS occupies a city block with over a million dollars in technical facilities. Check box in coupon.

APPROVED FOR VETERANS
Accredited Member: National Association of Trade & Technical Schools; National Home Study Council.

NATIONAL TECHNICAL SCHOOLS

WORLD-WIDE TRAINING SINCE 1905

4000 South Figueroa Street, Los Angeles, Calif. 90037

Please rush Free Color Catalog and Sample Lesson, plus information on course checked below. No obligation. No salesman will call.

NTS ELECTRONICS TECHNOLOGY

Master Course in High School Electronics

National Technical Schools

4000 S. Figueroa St.
Los Angeles, Calif., 90037

Name
Age
Address
City State Zip

Check it marked only in Classroom Training at Los Angeles.
READER QUESTIONS
(continued from page 63)

a while, the channel-change function of
the remote control acts up, too.—F.D.,
New York.

With so many different things go-
ing on at once, it must have a common
cause! Look for something like an open
filter capacitor. (This was the original
answer, cut down; the reader came back
at us later. He found an open 200-µF
electrolytic capacitor, C1109, in the
remote control receiver!)

NO VERTICAL SWEEP

I've got no vertical sweep on this
little transistor portable, an Emerson
120771 chassis. All of the transis-
tors check good with my in-circuit tester. I get
no sawtooth waveforms at any point in the
vertical circuit. I do see “spikes” which
are at the vertical frequency, and can be
controlled by the vertical hold! What's go-
ing on here?—L.S., New York.

If you have “spikes” (which are
probably the amplified vertical sync
pulses going through the circuit), but no
“saws”, then the trouble is most apt to
be in the “saw-forming” circuit. In this
type of multivibrator circuit, the saw-
tooth waveform needed for operation is
developed by the slow charging and ra-
pid discharging of a “capacitor”; in
quotes because this is actually two sepa-
rate capacitors, the 25- and 40-µF units
between the collector and base of the
“vertical oscillator” transistor. The two
capacitors are used, with the vertical
linearity control connected to the jun-
tion, to make the sweep linear. The dia-
gram shows a partial circuit.

So, on the face of the evidence, if
you have spikes, this means that the am-
plifier function of the circuit is ok. If
you are not developing sawteeth, one of
these capacitors is probably leaky or
open. Your dc voltages will probably be
very close to normal.

By the way, do not use ordinary
aluminum electrolytic capacitors to re-
place these! Your tolerance will not be
tight enough. The originals are the tiny
tantalum types; in this “timing circuit”,
you must get very close to the proper
values, or the circuit will not work.

REPEATED BURNOUT
HORIZONTAL DRIVER
TRANSISTOR

I have a Philco Q1054BK solid-state
tv. Came in with the horizontal driver
transistor (Q10, Sams 896) burnt up. I re-
placed it, and the new one promptly blew
too.—J.G., New Jersey.

A few! One would be to check the
driver transformer, T6. If it is bad, it
probably caused the original transistor
to blow, and will blow the new ones.
To be safe on things like this, use a
Variac in the ac line input. Connect cur-
rent meters into the collector (or sup-
ply) circuit of any suspected transistors,
and then bring the line voltage up very
slowly. If you see more than normal
current being drawn, but the line volt-
age is only up to about 50-60 volts, look
out! This will save a lot of transistors!

NO COLOR SYNC

I've got no color sync in a Magnavox
933 chassis. When I ground the grid of the
reactance tube, and adjust the reactance

INTERNATIONAL

Frequency
Meter FM-2400CH

The FM-2400CH provides an
accurate frequency standard for
testing and adjustment of mobile
transmitters and receivers at pre-
determined frequencies.

The FM-2400CH with its extended range
covers 25 to 1000 MHz. The frequencies
can be those of the radio frequency channels
of operation and/or the intermediate fre-
quencies of the receiver between 5 MHz and
40 MHz.

Frequency Stability: ± .0005% from +50°
to +104°F.

Frequency stability with built-in thermometer
and temperature corrected charts: ± .00025%
from +25° to +125° (.000125% special 450
MHz crystals available).

Self-contained in small portable case. Complete
solid state circuitry. Rechargeable batteries.

WRITE FOR CATALOG!

FM-2400CH

(meter only) $595.00
RF crystals (with tempera-
ture correction) 24.00 ea.
RF crystals (less tempera-
ture correction) 18.00 ea.
IF crystals catalog price

INTERNATIONAL
CRYSTAL MFG. CO., INC.
106 W. 108TH ST., OKLA. CITY, OKLA. 73102

68 RADIO-ELECTRONICS ● APRIL 1972
I get a weird effect! I can get rainbows, then tune the coil slowly toward the point where the color ought to look in, but instead, at that point, it drops out entirely! This does the same thing on either side of what ought to be the resonant point! What is this?—R.T., Arkansas.

Check your dc voltages on the acc and killer diodes. I expect you’ll find them unbalanced. You should get exactly the same voltage, with opposite polarities, on the two diodes in the acc. If they won’t balance, replace them with a matched pair. Same thing for the killer diodes. Aec diodes should read about 13 volts; + on one and - on the other, but they must be able to balance, for the color-oscillator works with exactly zero volts on the control tube grid; + going one way, - the other. (Discriminator action!)

SCANNING LINES SQUEEZED

I’ve got an odd problem. In a Zenith 14133 chassis, the raster is squeezed about 2 inches from the bottom. (Cover full screen.) This makes a bright line across the picture, and distorts it badly. The middle is stretched quite a bit. I’ve checked all of the parts in the feedback loop, since the vertical sync isn’t too good. They are all ok; tubes replaced.

I suspect the vertical output transformer. What do you think?—I.C., Hatfield, Ark.

The first time I saw this, I suspected the transformer, too. However, when I replaced it and it didn’t help at all, I began to doubt the validity of this diagnosis! (hi!) This type of vertical problem is almost always due to trouble in the vertical yoke. This has been verified in at least three recent cases.

This will not cause the familiar keystone effect of a heavy short; it is apparently due to a short in the vertical yoke, but not as bad as if it did key-stone. On one of these, I checked the resistance of each half, and found one half reading 8 ohms, the other 12. (Normal total, 24 ohms, so each half should have read 12 ohms.) The actual resistance is not so important as the fact that the two halves balance. Should read exactly the same.

Incidentally, vertical-output transformer shorts will tend to make the raster either squeeze or stretch at the top of the picture.

SWEEP GENERATOR OUTPUT LOW?

My sweep generator works very well on i.f. alignment, but I can’t get enough scope pattern height on tuner alignment, especially on the high channels. What can I do about this?—E. N., Winnipeg, Man.

This is pretty much “normal.” Most sweep generators use fundamentals on i.f.‘s and even the low TV channels, but go to harmonics for the very high bands. When you double the frequency of an rf signal, you also halve the amplitude! Since we have a good-sized loss in our pickup probes, too, this often leaves us with not a heck of a lot of “curve” on tuner alignment.

You might do two things: One, go on through the first i.f. stage and hook the scope to the second i.f. grid. Shunt the tuned circuit in the first i.f. plate with about a 10,000-ohm resistor, to flatten it and keep it from affecting the curve. Makes the first stage act as a “preamp” for the scope.

The other thing you might do—add a wide-band rf amplifier between the sweep generator and tuner input. A good all-band TV antenna booster might work very well for this, since many of these have overall gains of up to 20-25 db. Some boosters have 75-ohm coax input and output, or 75 in and 300 out, which would make them very useful.

NEXT MONTH

Amplified automobile antennas can improve FM stereo reception. But it takes more than just amplification to do the job. See how it’s done.

EPOXY RECTIFIERS

FIRST GRADE

1A-1000 PIV
5 for $100
1A-1000 PIV

SLIDE SWITCHES

12 for $100
All types. SPDT, DPDT, etc. M106

TRANSISTOR REPAIR KIT

100 for $1.00
Includes resistors, condensers, transistors, transformers and various & ordinary parts used to repair transistor radios, walkie-talkies, tape recorders, etc. M107

RADIO & HI-FI KNOBS

100 for $1.00
All different types, shapes & colors. Some with set screws, others for knurled shafts. M112

RESISTORS

ASSORTED

1 1/2% 1/2 wats & 1 watts. From low to high ohmages. M113

BARRIER TERMINAL BLOCKS

20 assorted for $1.00
These are seconds from 2-14 terminals. Some screws missing. All functional. M126

FUSE HOLDERS

4 for $1.00
Standard, for 3AG fuses. M129

NEEDLE POINT CONTACT PAK OF TRANSISTORS

Standard, All different types. Or, write for 11.10.

FREE CATALOG

BARGAIN BONANZA OF EDLIE HIGHEST QUALITY KITS

ONLY NEW PRODUCTS EXCELLENT MIXTURE

FULL YEAR GUAR. RADIO & TV RECEIVING

All standard ohmages, some 5%. Standard makes. M145

CARBON RESISTORS

200 for $1.00
Most with cut leads (long enough for soldering), some pre-formed. M136

POWER RESISTORS

35 for $1.00
Mostly with cut leads. M109

DISC CAPACITORS

60 for $1.00
Assorted capacitances from .0001 to .1. Different voltages, mostly 600 volts N.P.O. M140

MINIATURE TRANSISTOR ELECTROLYTES

12 for $1.00
Some axial leads, some vertical mount, mixed capacitances and mixed voltages. M121

1 WATT CARBON RESISTORS

70 for $1.00
All standard ohmages, some 5%. Standard makes. M145

MINIATURE RELAYS

12 for $1.00
Used in transistor and miniature applications. M141

CRYSTALS

6 for $1.00
Some for receiving or transmitting; some CB, some Ham, some business hand, in different type holders. M144

RELSYS

4 for $1.00
Assorted types, from 6 volts to 110 volts. Some sell for as much as $10.00. M155

WRITE FOR FREE VALUE PACKED CATALOG BONUS FREE TRANSISTOR KIT

FOR any $5.00 Purchase

1/2 WATT CARBONS

100 for $1.00
All standard ohmages, some 5%. Standard makes. M145

WATT CARBONS

5 for $1.00
All standard ohmages, some 5%. Standard makes. M150

Some boosters have 75-ohm coax input and output, or 75 in and 300 out, which would make them very useful.

EDLIE ELECTRONICS, INC. 2700 MA HEMPSTEAD TPK., LEVITTOWN, N.Y. 11756

Circle 14 on reply service card APRIL 1972 • RADIO-ELECTRONICS 69
new products

More information on new products is available from the manufacturers of items identified by a Reader Service number. Use the Reader Service Card on page 103 and circle the numbers of the new products on which you would like further information. Detach and mail the postage-paid card.

CASSETTE RECORDER, models GXC-40 and GXC-40D (dock). Both deck and amplified recorder have special bias switch to pick up broader frequency response (with higher signal-to-noise ratio) of the chromium dioxide tapes. An over-level switch activates low-noise circuit to 1.5%. Features crystal ferrite head. GXC-40 units have piano key controls, pause button for editing tape, left and right volume slide pot controls, tone control, three-digit counter and two VU meters. Hysteresis synchronous outer-rotor motor GXC-40D is $190.00; GXC-40 is $240.00.—Akai America, Ltd., 2139 E. Del Amo Blvd., Compton, Calif. 90220.

SPEAKER SYSTEM, BR-12-SP. Walnut-finished cabinets use 12-inch high-compliance woofer, large horn midrange speaker, and a 3½ inch closed-back tweeter, as well as a crossover network; all enclosed in air-tight enclosure made of heavy acoustic wood. Offers frequency range from lower to well above what can be heard by human ear. This 3-way speaker system has 8-ohm impedance. Two pairs of matched speakers are now available with new adapter for 4-channel sound use. Single speaker, $49.50; matched pair, $95.00.—Carlu Mfg. Co., 18002 South Hobart, Gardena, Calif. 90248.

Circle 32 on reader service card

SPEAKER ENCLOSURES, Kab Kits. Easy-to-assemble enclosures in kit form are offered to audio enthusiasts. 8-¾ x 8 x 15 in. assemblies for economical speakers (up to 8-inch round or 6 x 9 inch oval). Walnut-finished vinyl exteriors, complete with all hardware, acoustic lining material, and full assembly instructions. Just add the speaker. $16.95.—Kab Kits, Unilarm, P.O. Box 76, Ann Arbor, Mich. 48107.

Circle 33 on reader service card

AMPLIFIER KIT, AA-2004. This 200-watt 4-channel amplifier operates in any of four modes: mono, stereo, discrete 4-channel, or matrixed 4-channel with its own built-in decoder. Provides four conservatively rated and fully protected amplifiers driven by single power supply. Dynamic power is 260 watts into 4 ohms, 200 watts into 8 ohms, and 120 watts into 16 ohms. The amplifiers are controlled in pairs with one complete stereo system for left and right front speakers, and another for left and right rear. Twenty input level controls provided, enough for five quadruphonic program sources. Can be used to power two separate and distinct stereo speaker systems, or two 4-channel speaker systems. Power bandwidth on all channels from less than 5 Hz to more than 30 kHz for .25% total harmonic distortion. IM distortion less than 0.2%. Kit, $349.95. Optional walnut cabinet, AAA-2004-W, $24.95.—Heath Company, Benton Harbor, Mich. 49022.

Circle 100 on reader service card

DIGITAL CALCULATOR KIT, IC-2008. An 8-digit desk-top calculator performs addition, subtraction, multiplication and division electronically, and shows up to 8-figure totals on ¾ inch seven-segment display tubes. Simplified keyboard provides 10 numerical keys (0–9), decimal, plus, minus, multiply, divide, and + / - for performing algebraic calculations with positive and negative numbers. Performs constant or chain operations. The K (constant) key allows multiplication or division of series of figures by one preselected number, or of the constant itself for squaring or taking to a power. Embodies latest digital technology, making it an easy kit to build. All logic functions, keyboard encoder, 3 registers, decoder driver and matrixing circuitry in one IC (LSI). Kit, $129.95.—Heath Company, Benton Harbor, Mich. 49022.

Circle 100 on reader service card

SOLDER JOINT REMOVAL SYSTEM, Sodr-x-tractor SX300. Portable, self-contained, bench-top unit removes solder from all known solder joint configurations including those found in the latest designs of micro-electronic equipment. Pressure, vacuum and hot air jet modes of operation are supplied by controlled air flow and heating levels to suit the range of work from the most delicate micro-miniatu
One set of tips, cleaning brushes, air line, and connect—Pace Inc., 9329 Fraser St., Silver Spring, Md. 20910.

Circle 34 on reader service card

DESIGN TEMPLATE SET, pc-2 (2.1).

Comprehensive template set for printed-circuit layouts and assembly drawings. Component body outlines, layout patterns and pad diameters conform to guidelines established by MIL-STD 275C and The Institute of Printed Circuits bulletin IPC CM-770. All component mounting patterns are on grid centers and are compatible with automatic insertion equipment. Patterns for resistors, capacitors, potentiometers, and the most common semiconductor packages are included on the templates. Available separately at $7.50 each, the PC-2 (2:1) is a two template set for $12.00—Tangent Template Co., P.O. Box 15206, San Diego, Calif. 92115.

Circle 35 on reader service card

DECODER BOARD, Multone, used in data communications terminals, modern interface, traffic control systems, security systems, mobile recall. Features include decoding 12 functions (3 x 4 pad) with Hi-True TTL outputs in decimal form. With an

Circle 61 on reader service card

Circle 62 on reader service card

ELECTRONICS ENGINEERING
through HOME STUDY

HIGHLY EFFECTIVE
HOME STUDY COURSES IN:

- Electronics Engineering Technology
- Electronics Engineering Mathematics
- Earn your Associate in Science Degree in Electronics Engineering and upgrade your status and pay to the engineering level.

Complete college level courses in Electronics Engineering. We're a forward looking school. Outstanding lesson material—thorough and easy to understand. Engineering taught on the basis of application and understanding, rather than on the basis of memorization. Up to date in every respect. Acquire the knowledge and ability that means the difference between a low paying technician job and a high paying engineering position. Low tuition cost with low monthly payments. Free engineering placement service for our graduates. Write for free descriptive literature. Ask for Bulletin F, no salesman will call on you.

MANUFACTURED BY
WORKMAN
Electronics Products Inc.

Circle 56 on reader service card

MOST POPULAR
AUDIO CABLES
ADAPTERS
ON DEALER DISPLAY BOARD

17 Different Cables, 8 Different Audio Adapters on 24"x32" Pegboard
MODEL NO. ACA

Circle 63 on reader service card

IT'S EASY TO ASSEMBLE A SCHOPER ORGAN!

Includes easy to assemble walnut console kit. (Only $1575)
If you build your own console, Amplifier, speaker system, optional accessories extra.

You couldn’t touch an organ like this in a store for less than $4,000—and there never has been an electronic instrument with this vast variety of genuine pipe-organ voices that you can add to and change anytime you like! If you’ve dreamed of the sound of a large pipe organ in your own home, if you’re looking for an organ for your church, you’ll be more thrilled and happy with a Schoper Recital Organ than you could possibly imagine—kit or no kit.

You can learn to play it—and a full-size, full-facility instrument is easier to learn on than any cut-down “home” model. And you can build it, from Schoper Kits, world famous for ease of assembly without the slightest knowledge of electronics or music, for design and parts quality from the ground up, and above all—for the highest praise from musicians everywhere.

Send right now for the full-color Schoper catalog, containing specifications of all five Schoper Organ models, beginning at $499.50. No charge, no obligation. If you like music, you owe yourself a Schoper Organ!

The Schoper Organ Corp., Dept. RE-101
43 West 61st Street, New York, N.Y. 10023

□ Please send me Schoper Organ Catalog and free 7-inch “sampler” record.
□ Enclosed please find $1.00 for 12-inch L.P. record of Schoper Organ music.

NAME

ADDRESS

CITY

STATE

ZIP

Circle 64 on reader service card

APRIL 1972 • RADIO-ELECTRONICS 71
The Schoolmaster

In the old "one room school days" a single schoolmaster did the job, but in today's electronic age, efficiency demands the "SCHOOLMASTER" by 'Nelson-Hershfield Electronics. One, two, or three channel systems with loudspeaking or telephone communication housed in table top, desk cabinet, or rack cabinet; these fine units bridge the communication gap from a few to over 100 classrooms. Options include six channel time program control, safety fire alarm, civil defense signal, with emergency announce. Audio aids include record, tape or tuner options. For further information, write, wire, or call

Nelson-Hershfield Electronics
1948 West Campbell Ave. Phone: 602-264-1348
Phoenix, Arizona 85015

Circle 64 on reader service card

REPLACEMENT PARTS & ACCESSORIES
WELTRON'S GOT 'EM! DO YOU?

- plugs & jacks * stereo switches * universal replacement antennas & bases * volt meters * cables * microphones * power supplies * auto stereo accessories * high precision motors * synchronous motors * shaded pole motors *

COMPLETE CATALOG AVAILABLE. CALL YOUR DISTRIBUTOR NOW!

WELTRON COMPANY, INC.
514 East Peabody Street, Durham, N.C. 27702
919-680-0333

Circle 65 on reader service card

RADIO- ELECTRONICS • APRIL 1972
not work. Also be sure the common terminal and its jumper do not short any foil on the board or other switch terminals. After the switch commons are wired and soldered and the switch is seated, the terminals may be clinched on the component side. Finally, the remaining terminals may be soldered in place.

Dial replicates appear in Fig. 7. Figure 8 shows how these +¾ mounted to the switch shafts. Pilot lamps and red filters are bracket mounted between the PC board and the dials.

Final assembly

An antique brass and walnut-finished case assembly was used on the prototype, although any suitable enclosure should do the job. It has to be large enough to hold the PC board, the three-wire outlets, and has to have a front panel with two cutouts for the dial display. The additional START, STOP, and SELECT switches are mounted on the front panel, while the line cord, output sockets, and the remote control jack mount on the rear panel. The green safety ground from the three-wire line cord goes both to the case and the two output sockets.

The PC board mounts to the bottom of the units via two brackets. Be very careful to align these brackets so the dials, knobs, pilot lamps, and front panel holes line up. When properly aligned, you should see a red numeral on a black background, properly centered and corresponding to the right switch settings. Push-on knobs complete the front assembly.

The unit may be initially tested with 15-watt red and white lamps in the safelight and enlarger sockets. Use an oscilloscope, a kitchen clock, or a stop-watch to verify that each switch setting is correct. As there are no adjustments or calibration needed, this should be all the checkout required. If you are going to use an enlarger lamp greater than 200 watts, add a suitable high-current relay or triac to the output.

Normally, you start off with a nominal baseline exposure, say eight seconds for a normal black and white print to be dodged and burned on a single pass. You also set the CORRECTION FACTOR dial to zero and run a test strip for a test exposure. If you want a small correction after running these tests, advance or retard the correction factor dial as needed. If you ever get to +1 or -1 on the correction factor dial, simply snap to one higher or one lower baseline exposure position and reset the correction factor dial to zero. This way you get a continuous exposure range.

DIGITAL PRINTING COMPUTER

(continued from page 53)

ELECTRONIC TECHNICIANS!

Raise your professional standing and prepare for promotion! Win your diploma in **ENGINEERING MATHEMATICS**

from the Indiana Home Study Institute

We are proud to announce two great new courses in Engineering Mathematics for the electronic industry.

These unusual courses are the result of many years of study and thought by the President of Indiana Home Study, who has personally lectured in the classroom to thousands of men, from all walks of life, on mathematics, and electrical and electronic engineering.

You will have to see the lessons to appreciate them!

NOW you can master engineering mathematics and actually enjoy doing it! WE ARE THIS SURE: you sign no contracts—You order your lessons on a money-back guarantee.

In plain language, if you aren't satisfied you don't pay, and there are no strings attached.

Write today for more information and your outline of courses.

You have nothing to lose, and everything to gain!

The INDIANA HOME STUDY INSTITUTE

Dept. RE-4, P.O. Box 1189, Panama City, Fla. 32401

Circle 67 on reader service card

Great Business Opportunity

Run a Radio Shack Store Under Our **"PARTNERS IN PROFIT" PLAN**

Apply Now for a Radio Shack Store! We're Willing to Bet On Your Future . . . IF You Are!

Capitalize on your ability, share in the profit, enjoy big income—by going into business with us! Radio Shack needs 300 more stores nationwide to meet the growing demand for its products, and maybe YOU can take over a "Partners In Profit" store—perhaps right in your own community!

As our partner, you're backed by the training programs of a 50-year-old company and the best in creative marketing and advertising.

Do your own hiring and control your own local costs and profits! A Security Deposit of $12,000 gets you started. We pay all fixed costs—rent, real estate taxes, depreciation.

So, here you have it—a business where you call most of the shots. You sell stereo, radios, walkie-talkies, hobby kits, test instruments, antennas, tools, batteries, wire, recorders and much more—Realistic, Science Fair, Archer, Micronta—all our exclusive, registered brands.

You'll have the know-how of a thriving 1350-store firm to back you up—and you'll enjoy the added prestige and security of our parent company, the Tandy Corporation, an NYSE-listed, recognized leader among firms in retailing. Act NOW!

CALL COLLECT OR WRITE:

A. A. Bernabei, V.P.
Radio Shack
2617 W. 7th St.
Ft. Worth, Tex. 76107
PHONE: (817) 335-3711

Unusual tools, hard-to-find items.

Send for free catalog!

Diversified collection tools of all kinds precision instruments essential shop items . . . convenient one-stop shopping from your desk.

National Camera

Dept. GBA
Englewood, Colorado, 80110

Circle 68 on reader service card

NC Flasher

Circle 69 on reader service card

APRIL 1972 • RADIO-ELECTRONICS 73
fires on the high end. ARE claims they have solved this problem electronically with their dwell stretcher.

The dwell stretcher also shunts the points with a thyristor. It increases the point dwell in the following manner: When the points open (Fig. 8) the dwell stretcher is triggered. Three hundred microseconds later the thyristor turns on to "quench" the spark, electrically. ARE's theory is that once combustion is begun, within the 300 microseconds, further arc current is not only unnecessary but shortens spark-plug life. Thus, by shortening the time during which the ignition coil is allowed to discharge, the dwell is effectively increased. On an eight-cylinder engine operating at 5000 rpm, the dwell stretcher increases the dwell angle to 41 degrees out of a possible 45 degrees, regardless of the point dwell angle setting.

The dwell angle will, however, change with the rpm of the engine, since the dwell stretcher serves to increase the dwell by shortening the firing pulse to a fixed 300 microseconds. For example, at 10,000 rpm the dwell angle will have decreased to 36 degrees. Nevertheless, it should serve to significantly increase the performance of the engine during high speed operation. Also, like the Revgard, the dwell stretcher helps to eliminate the effects of point bounce.

Figure 7—How the Revgard helps cure point bounce by squelching the bounce pulses.

Figure 8—Dwell stretcher increases dwell by reducing time the coil carries current.
This unit is available in combination with the RPM limiter or as a separate unit.

Tachometer

The electronic tachometer has been around for several years and is produced by a number of manufacturers. Units are available that can be triggered by the car's ignition points, from the current flowing in a spark plug wire, or from the alternator. Normally, the alternator-driven units are used on diesel engines while the spark-triggered units are used on automobiles. The circuit configurations may vary widely; however, each circuit is designed to provide an rpm-dependent current to position an anemometer. Two circuits demonstrate the variety of configurations they may take. First, let's look at the Heathkit Tachometer Model M-18.

Fig. 9 shows the Heathkit tachometer circuit. This is basically a monostable (one-shot) multivibrator triggered by a spark pulse from the engine. The triggering pulse biases transistor Q1 into cutoff, causing transistor Q2 to conduct. The length of time during which Q2 conducts is determined by the value of capacitor C1. (C1 has different values for 8-, 6-, and 4-cylinder engines.) When C1 has discharged through R7, Q1 will again conduct and turn off Q2. The meter in the collector circuit of Q2 is calibrated to read the average collector current in engine rpm. The meter (continued on page 83)

LED DISPLAY

The prices are down! These LED displays are identical to the MAN-1 except that they require 33% less current for the same brightness. The 701 has a “1”, “4”, and “8” (far right). The 700 displays the digits 9, 12, letters, and the LH decimal point. Both mount in 14 pin DIP socket. Life expectancy 100 years. Comes with data sheet and application notes.

- LED700 Numeric LED Display ... $6.95
- LED701 Overrange & Polarity Display $6.75

PC BOARD DRILL BITS

Outlast high speed carbon steel bits 20:1. Made specifically for G-10, but lasts even longer with other board materials. Get professional quality at 25% off list price in singles. Higher discounts in quantity. All popular sizes in stock. Write or check number below for FREE catalog.

Environmental Products

BOX 406
Lafayette, IN 47902

Circle 71 on reader service card

APRIL 1972 • RADIO-ELECTRONICS 75
APPLIANCE CLINIC
(continued from page 22)

temperature will not exceed 60°C (about 132°F). The vinyls and polyethylenes are rated in the same area. If we must go above this, to about 90°C, we'll need neoprene insulation. In fact, UL allows the use of a jacketed neoprene wire up to 105°C. Above that, a silicone-insulated, fiberglass-jacketed wire is needed. A new DuPont plastic, "Hypalon" (chlorosulfonated polyethylene for short) is now coming into use for temperatures up to 130°C.

The old standby for hot wires—asbestos—is still with us. You'll find it used in flexible cords for electric irons, and other high-current appliances. Asbestos covered wire is fine, but it, too, has limitations. In a lot of cases, it will be simply "laid" wrapped around the wire. This needs a stout braid jacket, mainly to keep the asbestos in place! Don't use asbestos-wire with laid insulation in places where it must flex, or where it can touch the metal case of the unit. This insulation can be pulled off the wire with your fingers!

Another thing we must beware of is "crush." In many appliances, especially smaller, hand-held types, the wiring runs in slots or grooves inside two-piece metal handles, cases, and so on. Unless we are very careful putting the thing back together, the wires can be caught between two sharp metal edges. When the bolts are tightened, these can crush the insulation. This could cause a short to the case. Even if the insulation is not crushed when the case is first tightened, it could be softened by heat later on as the unit is used, and then short!

Installation

When we install new wires, they must be handled and worked with the correct methods. This is especially important in some of the things using very small wires. The little wires can be hard to work with, unless you know "the lick it's done with".

In the past, most of us grabbed the end of the wire between the jaws of our diagonals and yanked, pulling the insulation off.

Modern plastics are pretty tough. If the wire inside is very small, you can break it before you pull the insulation off! And, of course, the break will be somewhere inside an apparently undamaged part of the insulation.

There's a very easy way. Just touch the tip of a soldering iron to each side of the insulation, where you want it pulled off. Fig. 1 shows how. Melt a tiny nick in each side, then pull the ins-

LISTEN TO:

INSTANT!

POLICE, FIRE,
& WEATHER REPORTS!

Perfect for
Industrial, Commercial, Utility
and Government Use

SONAR SENTRY

VHF MONITOR RECEIVERS

ADJUSTABLE SQUELCH

Designed and engineered for simplicity of operation, compact enough to fit a shirt pocket yet powerful enough to deliver a clear clean signal — it's dependable. * Operates on three crystal controlled VHF channels and tuneable broadcast band. * Adjustable squelch. * Completely solid state for long life use. * Visible battery indicator to show battery condition at all times. * Built in antenna. * 5 5/8" H x 2 1/2" W x 1 1/2" D. Wt. 11 oz.

$49.95

With Battery & Earphone
less Crystals Crystals $5.00 ea.

SONAR RADIO CORPORATION

73 Worman Ave., Brooklyn, N.Y. 11207

Please send me information on VHF Monitor Receivers

150-175 MHz Dept. 466

MODELS

FR-103-SA

150-175 MHz

IN 4 FREQUENCIES

A-30-33MHz — B-33-38MHz

C-38-43MHz — D-44-50MHz

Circle 73 on reader service card

BECOME A CERTIFIED ELECTRONIC TECHNICIAN

More than 3,000 technicians are registered with the National Electronics Association as Certified Electronic Technicians. Four years experience (including technical training) and a passing score on a 120-question exam are the prerequisites. Not every technician qualifies but if you're a good one, you do.

Join the International Society of CET's. Unite with other CET's working towards maintaining the certification program and making consumer electronics a true profession.

For more information fill in this form and send to ISCET, 1309 W. Market St., Indianapolis, Indiana 46222.

NAME

ADDRESS

STATE

ZIP

Certified Electronics Technician

☐ Send me more information on becoming a CET.

☐ Send me more information on ISCET.
MAY 1972

- Installing Burglar Alarms—MATV—PA—Intercoms
 Wiring a system calls for going through walls and ceilings of an existing house. It's a difficult job at best. This article shows how to handle this "impossible" task.

- Build R-E's IC Tester
 Digital IC's are plentiful and inexpensive. Here's a test instrument that makes it easy to check the dynamic operating characteristics of the IC.

- Solid-State Pocket Calculator
 It adds, subtracts, multiplies and divides. It carries a constant, is battery powered, and fits in your pocket. Complete construction details

- Active Car Antennas
 It takes much more than just a high-gain transistor amplifier to make this kind of antenna perform well.

- IC Logic Demonstrator
 See how digital logic elements work. Use this simple dynamic demonstrator to set up working logic functions and explain how they work.

PLUS:
MATV For The Technician
Kwik-Fix Troubleshooting Charts
Stereo Amplifier Design
Jack Darr's Service Clinic

New, authoritative and indispensable . . .

IEEE STANDARD DICTIONARY OF ELECTRICAL AND ELECTRONICS TERMS

The product of decades of labor by thousands of engineers, scientists, and teachers, the IEEE Standard Dictionary of Electrical and Electronics Terms defines 13,000 technical words from every area of electrical and electronics engineering. Each definition is an official standard of The Institute of Electrical and Electronics Engineers Inc. The dictionary contains hundreds of new terms as well as revisions of earlier ones, making it the most up-to-date and complete single-volume reference of its kind.

Here are some of its special features:

- 13,000 technical definitions, embracing the total technical language of electrical and electronics engineering
- over 700 pages, including more than 140 illustrations
- compilation by leading authorities in 31 fields of specialization
- extensive revision of previously published definitions to eliminate duplications and to reflect recent developments
- hundreds of new terms never before found in dictionary form.

Just published 736 pages 142 illus. $19.95

WILEY-INTERSCIENCE, Dept. 093-A 2708-WI
a division of JOHN WILEY & SONS, Inc.,
605 Third Avenue, New York, N.Y. 10019

I'd like __________ copies of the IEEE Standard Dictionary of Electrical and Electronics Terms (0 471 42806-X) @ $19.95 each.

☐ My check (money order) for $_______ is enclosed. Wiley-Interscience will pay postage and handling.
☐ Bill me. I will pay postage and handling.

Name ____________________________
Company __________________________
Address __________________________
City __ State __ Zip ________________
learn by doing!

Perform more than 200 exciting experiments with CIE's fascinating ELECTRONICS LABORATORY PROGRAM!

Put theory... into practice
You get your own 161-piece electronics laboratory...with authentic electronic components used by industry!

You learn how to construct circuits and connect them with a soldering iron, which is part of your CIE laboratory equipment. This "hands on" experience is extremely valuable in applying what you learn.

Testing and troubleshooting are an important part of your learning experience. Included in your laboratory is a precision "multimeter" to diagnose electrical and electronic troubles quickly and accurately.

Modern space-age components like this IC (integrated circuit) are professional quality and can be used again and again in many of your projects. Lesson by lesson, piece by piece your knowledge grows!

Prepare now for a high income career in Electronics...the Science of the Seventies.

Electronic miracles are changing today's world with breathtaking speed.

And with this growth in electronics technology has come a brand new need...a demand for thousands of electronics technicians, trained in theory and practice to build the products, operate them and service them during the Seventies.

Don't just wait for something to "happen" in your present job. Get ready now for a career you'll really enjoy with a good income and plenty of opportunity for advancement.

Experience with experiments is your best teacher

"Hands on" experience helps to reinforce basic theory. When you learn by doing, you discover the "how" as well as the "why." You'll find out for yourself the right way as well as the wrong way to use electronic components. How to construct your own circuits, to discover trouble spots and learn how to fix them. And with CIE's exclusive Auto-Programmed Lessons, you learn faster and easier than you'd believe possible.

CIE's fascinating course, Electronics Technology with Laboratory, teaches you Electronics by making it work before your eyes. And you do it yourself, with your own hands.

Importance of FCC License and our Money-Back Warranty

An FCC License is a legal requirement for many important jobs. And it is not easy to get!

But better than 9 out of every 10 CIE graduates who take the Government licensing exam pass it!

That's why we can offer this famous Money-Back Warranty: when you complete our Laboratory Course, which provides FCC License preparation, you'll pass the FCC License exam or be entitled to a full refund of all tuition paid. This warranty is valid during the entire completion period established for the course.

You get your FCC License—or your money back!

You'll have high paying job opportunities

Electronics is still young and growing. In nearly every one of the new exciting fields of the Seventies you find electronics skills and knowledge are in demand. Computers and data processing. Air traffic control. Medical technology. Pollution control. Broadcasting and communications. With a CIE Diploma and an FCC License you can choose the career field you want to work for a big corporation, a small company or even go into business for yourself.

Here's how two outstanding CIE students carved out new careers: After his CIE training, Edward J. Dulaney, President of D & A Manufaturing, Inc., Scottsbluff, Nebraska, moved from TV repairman to lab technician to radio station chief engineer to manufacturer of electronic equipment with annual sales of more than $500,000. Ed Dulaney says, "While studying with CIE, I learned the electronics theories that made my present business possible."

Marvin Hutchens, Woodbridge, Virginia, says: "I was surprised at the relevancy of the CIE course to actual working conditions. I'm now servicing two-way radio systems in the Greater Washington area. My earnings have increased $3,000. I bought a new home for my family and I feel more financially secure than ever before."

Don't put it off...send now for 2 FREE BOOKS

Mail the postpaid reply card for our school catalog plus a special book on how to get your FCC License. If the card is missing, use the coupon below or write to: Cleveland Institute of Electronics, 1776 East 17th Street, Cleveland, Ohio 44114. But do it now!
DIGI-MOD-N FREQUENCY DIVIDER
(continued from page 45)

pseudo-random bit generator and can be used as such where a truly random sequence is not required.

The Digi-Mod-N should be able to operate at input rates up to at least 10 MHz.

The circuitry requires a relatively noise-free input approximating a 5-volt square wave for proper operation. For many applications, you must use an input signal conditioning circuit between

Volunteer View of Digi-Mod-N showing how the PC boards are installed.

the input device and the Digi-Mod-N. Some pulse-shaping circuits that can be used are in Fig. 2.

There are lamp indicators at the input and at both outputs. Slow pulse trains can be observed visually on the front panel. For applications where it is desirable to have remote indicators such as lamps, alarms, relays, etc. some of the incident circuits shown in Fig. 3 can be used.

R-E
ter circuit is temperature stabilized by thermistor T and voltage stabilized by Zener diode ZD1. ZD1 provides a constant 6.8 Vdc to the tachometer even though the battery voltage may vary from 10.5 to 17.5 Vdc.

The second circuit is the Knight-Kit model KG-340 electronic engine tachometer shown in Fig. 10. The input circuit is a pulse-shaping and voltage-limiting circuit. It converts the pulse developed across the coil primary, when the points open, to positive and negative spikes of fixed amplitude and shape. These voltage spikes are rectified by the full-bridge rectifier and used to drive the meter. The current flowing through the meter is proportional to the rpm of the engine.

Both the Heathkit and Knight circuits are calibrated with a special meter calibration cord using 60-Hz house current.

Entertainment

Several interesting accessories have been developed for use with AM/FM radios and stereo tape players. For example, AM/FM and FM Stereo Cartridge Tuners are available which plug directly into your 4 or 8-track tape player unit, adding radio reception to your stereo tape player. Also, 8-track to cassette adapter cartridges are available to enable your 8-track stereo tape unit to play cassette tapes. A number of these units are available through J. C. Whitney & Co. (auto accessories, 1917-19 Archer Ave., Chicago, 60616.) Another unit, the Switch-O-Matic, available from GC Electronics, 400 S. Wyman Street, Rockford, Illinois, is an electronic, solid-state switch that permits your car radio to be played through your tape system stereo speakers. When the tape system is being used, Switch-O-Matic automatically cuts itself out of the circuit.

Safety devices

A wide range of safety devices are now available as optional items on new cars. For example, anti-skid brakes, sequential turn signals, and time-delayed windshield wipers. Anti-skid brakes aren't available as an add-on accessory yet, but sequential turn signals are available from J. C. Whitney & Co. and a time-delayed windshield wiper kit is available from Knight Kit.

A new item introduced by TIS Corporation, 505 E. (continued on page 84)

![Circuit Diagram](image)

*4 CYL, USE 0.2 µF
6 CYL, USE 0.15µF
8 CYL, USE 0.1 µF

FIG. 10—KNIGHT-Kit KG-340 tachometer with an input circuit that has combined functions of pulse-shaping and voltage limiting.
Nobody but Eico makes the troubleshooting of solid state equipment so quick, easy, versatile and accurate for the professional electronics technician and engineer—and at such low cost!

- Dynamically tests transistors in and out of circuit.
- Performs the 4 basic tests on all types of FETs including pinch-off.
- Performs the 3 basic tests on all types of bipolar transistors.
- Tests for true transconductance and AC Beta, in and out of circuit.
- Tests all types of diodes and measures zener voltage.
- Tests SCRs, TRIACs, and UJT's.
- Incorporates easy-to-use DC Voltmeter and Ohmmeter.
- 50 mA taut band meter movement.

FREE 32 PAGE EICO CATALOG
For latest catalog on Eico Test Instruments, Stereo, EICOGRAPH Projects, Environmental Lighting, Burglar/Fire Alarm Systems, and name of nearest Eico Distributor, check Reader Service Card or send $25 for First Class mail service.

EICO, 283 Malta Street, Brooklyn, N.Y. 11207

ADD-ON ELECTRONICS FOR YOUR CAR (continued from page 83)

Eisenhower Drive, Loveland, Colorado, should help us to stay awake on those long night drives we often make during vacation time. This Unit, named Lifetimer, mounts on top of your dash and flashes a light every 20 seconds. If you happen to be dozing and fail to press a floorboard contact strip with your foot, a buzzer will sound. If that doesn't wake you up, the Lifetimer shuts off your ignition, flashes your lights, and honks the horn. So other drivers of trouble. The Lifetimer may not keep you awake, but it'll slow up your trip if you go to sleep. It might even save your life!

Burglar alarms

The past few years have seen a flood of new electrical/electronic devices to help protect car owners against thieves. A number of these units are available from J. C. Whitney & Co. In a recent catalog they list eight burglar alarms.

These units are generally actuated in one of two ways: a circuit senses a sudden drop in battery voltage (even a few millivolts) as would happen when the dome light comes on when the door is opened, or switches installed in doors, hood, and trunk are used to turn on the unit. Some models use the car's horn as a sounding device. Others have their own horn or siren. In most cases, the unit puts out a pulsating sound to draw attention to the car. For example, one unit available from James Electronics Inc., 4050 N. Rockwell St., Chicago, Ill. sounds the car's horn 60 times per minute for up to eight minutes and then resets. It's then ready for another burglar.

Shopping Power of Your Dollar

FREE $1 BUY WITH EVERY 10 YOU ORDER

- UHF TUNER - TRANSISTOR $3.95
- STANDARD TUNER - TRANSISTOR (GUIDED GRID) $1
- 20 - DIPPED MYLAR CAPACITORS 1-600V $1.00
- 20 - DIPPED MYLAR CAPACITORS 0.05-0.100U $1.00
- 20 - DIPPED MYLAR CAPACITORS 0.025-0.050U $1.00
- 15 - MOLDED TUBULAR CAPACITORS 0.006-0.010V $1.00
- 6 - MINIATURE ELECTROLYTIC CAPACITORS 9.9-150V $1.00

SARKES TARZIAN TUNER 41mc
Latest Compact Model good for all 41 mc TV's. Brand New—

Best TUNER "SARKES TARZIAN" ever made—last word for stability, definition, smoothness of operation. An opportunity—to improve and bring your TV Receiver up-to-date. $795

COMPLETE with Tubes

IMMEDIATE DELIVERY...Scientific light packing for safe delivery at minimum cost. HANDY WAY TO ORDER: Pencil mark or write amounts wanted in each box, place letter F in box for Free $1 BUY. Enclose with check or money order, add extra for shipping. Tare sheets will be returned as packing slips in your order, plus lists of new offers.

Minimum Order $3.00

Please specify refund on shipping overpayment desired. □ CHECK □ POSTAGE STAMPS □ MERCHANDISE (our choice) with advantage to customer.

BROOKS RADIO & TV CORP., 487 Columbus Ave., New York, N.Y. 10024 212-874 5600 TELEPHONE
Time-delay anti-theft devices

These units are not burglar alarms, but serve as a deterrent to thieves. One unit listed by J. C. Whitney & Co. stops the ignition by burning out a time-delay element when the car is started without disabling the unit; the element must be replaced before the car can be started. A second unit, available from Automark Ind., 641 S. Vermont Street, Palatine, Ill., shuts off the gas flow to the carburetor when the unit is actuated. The car will start, but runs only as far as the fuel in the carburetor lasts.
Proponents of electronic ignition systems will be happy to get the chance to tell you just how much such a system can do for you. Much of what they will tell you is true and part is false; and the reasons behind true or false are rarely explained.

Recently, I considered purchasing an electronic ignition system for a 4-year-old 8-cylinder Chevrolet. But before I ran out and bought a system, I decided to look into what they had to offer.

The first point I found myself confronted with was: "All electronic ignition systems are the same."

Well you can just label that statement "False". There are considerable differences between systems. They vary from one-transistor switching circuits to multi-transistor capacitive-discharge arrangements. Some have a magnetic or photo-electric circuit that eliminates the needs for the points in the distributor.

In all, the capacitive-discharge type of ignition circuit is recognized as the most desirable system for today's cars. Some ignition systems require a special coil to replace the one now in your car. Others use the existing coil. Those that use the existing coil sometimes provide a simple switch that enables the car owner to disconnect the electronic system and reconnect the standard ignition system that was in the car. This is not only great should something go wrong with the electronic system while you are on the road, it permits the owner to easily compare performance with and without the electronic system.

Improved gasoline mileage

The most obvious improvement you can find in any device that helps your car run more efficiently is improved gasoline mileage—more miles per gallon. "An electronic ignition system will deliver more miles per gallon." Label that one "Fact".

A properly installed and operating electronic ignition can improve the gas mileage of your car from 1 to 5 miles per gallon. The reason for the improved gas mileage is that with the electronic system installed, the car is in effect, always in perfect tune and so is always operating at peak efficiency.

Without the electronic system, the only time the car is perfectly tuned is immediately after it leaves the shop. From that time on till it is next tuned up, performance slowly degrades and as it degrades so does your gas mileage.

Longer life for points and plugs

In normal use the plugs and points in your car should be changed about every 10,000 miles. For in this length of time the plugs wear enough for the gap width to become excessive and point contacts erode enough to require replacement. An electronic system increases the voltage but decreases the current, and in turn the plugs and points last longer, much longer. In some instances as much as ten times longer.

There are, however, two new problems to watch for once you have installed the electronic system. First you must be sure that the system passes enough current through the points to keep them clean. This means that the system should be
fallacies of ignition

improve your car’s performance, and can’t do for you

passing about 0.5 ampere through the points. This is enough current to prevent oxidation from forming on the points.

Second the points should be checked periodically to look for wear in the point lifter. If this wears excessively the points will never open. Also it is wise to change the points after about 40,000 miles of use to prevent the breaker spring from snapping because of metal fatigue.

Higher top speed

The possibility of getting a higher maximum speed with an electronic ignition system is both a fact and a fallacy. The way conventional ignition restricts maximum speed is by misfiring at high speeds because the points are opening and closing so rapidly that the coil doesn’t get enough time to build up a voltage level high enough to jump the gap in the spark plugs. But this only becomes a problem around 5,000 to 6,000 rpm.

Fortunately, cars with automatic transmissions rarely reach this rpm range—2500 to 3000 rpm is a typical maximum. So for this kind of car higher-speed is a fallacy. But a car with a standard shift and a high-performance engine will easily turn up 5000 to 6000 rpm. So for this kind of car, the electronic ignition system can boost top speed.

R-E
Let Bell & Howell Schools help you get ready for a rewarding Color TV Service Business of Your Own

Ultra-rectangular, 25" diagonal with full 315 sq. inch screen. Lets you view more of the transmitted image. 25,000 volts. 45 transistors, 55 diodes, 4 advanced IC's. 3-stage solid-state IF. Solid-state VHF, UHF tuners. Automatic fine tuning and many other quality features.

BUILD, KEEP THIS FAMOUS NAME
25" DIAGONAL SOLID-STATE COLOR TV KIT

BUILD, KEEP, USE ALL FOUR OF THESE PRECISION QUALITY KITS

INCLUDES—
Design Console with built-in power supply, test light and speaker. Plus patented plug-in Modular Connectors.

INCLUDES—
Portable 5-inch, wide-band oscilloscope calibrated for peak-to-peak voltage and time measurements.

INCLUDES—
Transistorized Meter ... a multimeter for current, voltage and resistance measurements registered on a large, easily-read dial.

FREE! MAIL CARD TODAY FOR ALL THE FACTS
No Postage Needed
YOU'LL BE READY FOR COLOR TV . . .
B&W AND MOST HOME ENTERTAINMENT
ELECTRONICS DEVICES

This exciting new program offers you the first 315-sq. inch Solid-State Color TV available for at-home training.

As you follow the simple, step-by-step assembly procedures, you become thoroughly familiar with the most advanced solid-state TV circuitry. And as you build this kit you'll prepare yourself for a profitable Color TV service business of your own—either full or part time.

Why Color TV pays better.

Today, Color TV is the big seller. As Color Television goes completely solid-state, the man who has mastered this type of circuitry will be in demand. Obviously, this is where the money is going to be made.

This new Bell & Howell Schools program will also give you an in-depth knowledge of the basics as well as TV circuit theory and analysis. You'll get the theory and practical experience you need to handle radios, hi-fis, stereos, and tape recorders.

You will also receive three precision quality instrument kits which you assemble and keep. These are highly sensitive professional instruments which you'll use constantly.

EXCLUSIVE ELECTRO-LAB®
IS YOURS TO KEEP, USE

This unique at-home laboratory comes to you in 16 shipments and includes a remarkably instructive design console. You can rapidly "breadboard" a great variety of circuits without soldering. The Oscilloscope offers 3-way jacks to handle test leads, wires, plugs. Images on screen are bright, sharp. Your Transistorized Meter is fully portable, features a sensitive, 4-inch, jewel-bearing d'Arsonval meter movement. It's a multimeter for current, voltage and resistance measurements.

CONSIDER THESE ADVANTAGES:

Bell & Howell Schools' Electro-Lab-at-Home Plan gives you the most thorough background possible in solid-state Color TV. Everything comes to you by mail and you go at your own speed. You'll be prepared not only for a service business of your own but for many positions in the Electronics and Television industries. All without missing a paycheck!

When you have completed your program our Lifetime National Placement Service will help you locate in an area that interests you. This service is available at any time—now or in the future.

Approved for G.I. Benefits

Our programs are approved for Veterans' Benefits. If you're a Vet, check the space in the card at left for full details.

Student Loans now available

If you are a non-veteran and need financial assistance, you may qualify for Student Loans, which are also available.

Special Help Sessions. These are scheduled regularly (Saturdays) at seven Bell & Howell Schools and in many other cities. Here you can get expert guidance by top instructors to help you over the rough spots.

Bell & Howell Schools offer you even more. Once you have finished your program at home, you may decide you want more advanced preparation. In this case, you may transfer to any one of our seven schools which are located all across the country.

Mail the postage-free card today for all the facts. There is no cost or obligation of any kind.

DeVRY INSTITUTE OF TECHNOLOGY
ONE OF THE
Bell & Howell Schools

(TV kit is not available in Canada)
APPLIANCE CLINIC
(continued from page 76)

sulation off with a thumbnail. Using this method, you won’t run the chance of cutting or breaking several of the tiny strands of the wire! Better still use the proper wire stripper.

Watch it when making solder joints with this type of wire! Whenever possible, do not solder a thermoplastic insulated wire, if it is leaving the terminal in a sharp bend, as in Fig. 2-a. The wire carries the heat very nicely, softens the insulation, which promptly “straightens out”, leaving you with about an inch of nice bare wire (Fig. 2-b).

![Figure 2](#)

To avoid this, be sure the wire is straight. A better way is to heat-sink it. Grab the wire between the tips of a pair of long-nose pliers, as close to the solder-joint as you can get. It will also help to tin the stranded wires before starting. Hold the wire between the tips of the long-noses, and quickly tin it, with fresh solder. Now, you won’t have to stay on the joint so long to get a good scald on it. Heat-sink it with the pliers anyhow; it couldn’t hurt.

For a final word, study the characteristics of each type of wire. If you know what it can do, and, much more important, what it can’t do, you will find things a lot easier! Use the right wire in the right place.

BUILD R-E’s IC TESTER. It’s an interesting piece of test equipment that tells you if a digital IC is working properly. It’s in May.

People In Trouble Need Your UNITED GIFT

If you don’t do it, It won’t get done
IMPOSSIBLE? BARGAINS IN SURPLUS ELECTRICALS AND OPTICS

THIS MONTH'S SUPER SPECIAL!

CALCULATOR KIT

Fast acquainted in our January advertisement, the response to B & F's calculator kit can only be described as fantastic! We supply you with everything (except a case) to build a practical calculator, for under $100.00. Includes extra large integrated MOS Chips for complex functions, complete professional Keyboard, all parts for clock and dividers, all printed circuit boards, eight, seven segment readouts, plus decimal point. You may order this kit by number (keystools only) as well as by name.

Keyboards

The input is organized to accept the full complement of numbers, plus decimal point. Multiplicator/Divisor Set — Decimal point Set — Clear — Clear Entry — Sum — Execute and Subtract — Execute — Alternate Display — Equals.

Display Functions

The output is designed to produce the following output functions: Eight digit decimal display, in 16 bit code — Negativa Sign Indication — Overflow Indication — Zero Suppression — All nonsignificant zeros are suppressed.

Operational Description

The following descriptions apply for the designated calculation operations:

Add

Enter 16 digits — Up to seven decimal fraction digits — Entry of positive quantities only — Entry may be cleared without destroying intermediate results in accumulator — Decimal point.

Addition

Addition results accumulate to 16 digits — Overflow of 16th digit detected — Signed results possible in chained operations.

Subtraction

Subtract results accumulate to 16 digits — Overflow of 16th digit detected — Signed results possible in chained operations.

Multiplication

Product up to 16 digits with the rightmost significant digits available for display. The test significant eight digits can be displayed on demand of the Alternate Display — Signed results possible in chained operations. Rounded off is not implemented (results truncated if necessary).

Division

Quotient up to 16 digits with eight most significant digits available for display. Signed results equal eight digits can be displayed on demand of the Alternate Display — Signed results possible in chained operations. Solution time is 120 maxima at 200 KHz.

General

Continuous (chained) operation — capability is provided for continuous addition, subtraction, division, and subtraction — Clear — all storage registers and display are cleared.

DECIMAL POINT

Decimal point position is not modified — Storage (the machine storage registers are dynamic shift registers) — Overflow and overflow is indicated but overflow information is not saved. Further operation of keys (except “clear” or “clear entry”) is ignored. —

Calculator keyboard

We are offering the keyboard for our calculator separate. — The keyboard provides a single closure for each key, brought out to an edge connector. — May easily be matrixed or encoded in any fashion by external circuits or used in any fashion by any design. — Brand new.

SILICON MOS

$14.50

BOOKS

Discounts on technical books are rare, but since the publisher discounts are low, B & F is happy to give you a 10% discount and provide the details in the book. We are sure that some of the best books in the electrical engineering field. They are:

Allen and Withrow, Semiconductors Device and Circuits, Wiley, 1971. Without relying on calculus, this book describes clearly and simply the features of the myriad of semiconductor devices. The operations and uses of linear and digital integrated circuits are covered in a thorough manner. List Price $11.95, B & F Price $10.75.

Eimbinder, Semiconductors Memory, Wiley, 1971. A complete study of the storage of information, for L.C.'s. With these you can build low cost I.C. memories by putting together the number of connections required, i.e., two strips of steels for 4 bits, 8 strips for 16 bits, etc. List $10.75, B & F Price $10.75.

Eimbinder, Designing with Linear Integrated Circuits, Wiley, 1969. A complete study of the use of linear integrated circuits. List $16.05, B & F Price $15.05.

CALCULATOR KIT

$14.50

BOOKS

$14.50

RADIATION METER ("Geiger Counter")

You can buy a complete radiation detector, complete with original instruction booklets, at less than the price of the meter movement alone. Range is 0.072 to 50 (megavolts). This is not sensitive enough for professional use, but useful for other radiation measuring and monitoring purposes. It is not used in the usual fashion — the case, the battery holder alone are worth subtracting from the asking price as a basis for building a metal enclosure, etc. Uses standard D cell and 22.5 volt battery.

Radiation Meter

$5.90 — $10.00 postage & handling

ALL PURPOSE 12VOLT SUPPLY

This supply delivers 12-14V D.C. at 1.2 amperes. Useful for hundreds of applications, as a power pack, for experiments, etc.

Flyback "Tesla" Coil

Add $1.00 postage & handling

Flyback Transformer only, with Instructions

Add $2.75 postage & handling

SANKEN HYBRID AUDIO AMPLIFIERS AND SUPPLY KIT

We have made a fortunate purchase of Sanken Audio Amplifier Hybrid Modules. With these you can build your own audio amplifier without the usual cost of the price of discrete components. Just add a power supply, and a chassis to act as a base unit. It is suggested that you buy a 12 volt D.C. fused battery converter providing a current of 18,000 volts. With this high voltage output you can perform many interesting experiments and demonstrations, such as a jelly catode, or lighting a fluorescent tube by just holding it over the supply. We supply the flyback transformer, two power transistor, instructions, and an experimental manual. List $12 with supply advertised on this page as a supply for the tube of your choice to have one.

Sanken Transformer only, with Instructions

Add $2.75 postage & handling

SEALLED NICKEL CHARGEABLE BATTERIES

These cells have almost infinite use in the small portable electronic equipment. Use for flashlights, small appliances, remote control devices, computers, medical instruments, model toys, miniature radios, pocket calculators, etc. Each cell provides 1.25 volts at 0.5 ampere hour. Recharge 12 hours at 50 milliamperes. Accepts at least 300 charge and discharge cycles. Welded tabs for solder connections, can be provided in Interconnected groups of 1, 2, 3, 5, 10, or 20. Suitable for $5.00.

DIAL DISPLAY

Add $0.50 average daily use.

ALUMINUM MOUNT or Nickel plated (specify)

Add $5.00

VENTED NICKEL CHARGEABLE BATTERIES

The advantage of the vented nickel is in fast recharge. They are vented to allow for 100% charge when charging at 12 hours. Supplied with electrolyte and polarizer charged. Five cells grouped together, provide a 6 volt "normal" systems. Work well even in tube damp weather, perfect for radio control, etc.

2 BATTERY PACK

$5.00

6 PAGE CATALOG

Free with any order or send 50.25

TO OUR CUSTOMERS

B & F is moving to a new location: 119 Fortune Street, Providence, R.I. 02908. Same address, but different phone numbers. We have no connection with any customers who transferred delays in shipments during the move. Our new expanded shipping and storage areas will allow us to service your order faster than ever before. We thank you for your new welcome at all working hours (Monday through Friday, 9-5, Saturday, 9-1). Special few of a kind buck slide, steel out, stone and visit our new location with twenty five square feet of office space, the ideal salesperson, office, complete etched chassis, all the usual facilities. We are now ready to offer you the same kind of personal attention and fast service.

ALL ITEMS IN USE ARE NOT SPECIFIED POSTAGE PAID IN THE USA.

CHARGES WELCOME!

Phone in charges to 617-532-2323
Bank Americard — Mastercharge — $10.00 minimum. No C.O.D. please.

B & F ENTERPRISES

Phone (617) 532-2323
P.O. Box 44, Hatboro, Massachusetts 01937

Circle #70 on reader service card

AUGUST, 1972 • RADIO-ELECTRONICS

93
STEREO AMPLIFIER DESIGN
(continued from page 39)

\[
\theta_{JA} = \frac{T_J - T_A}{I_C E_{CC} - I_C (R_C + R_E)}
\]

where

- \(T_J\) is the junction temperature less the ambient temperature
- \(I_C\) is the idling collector current
- \(S\) is the stability factor discussed in a previous article, and equal to \(\Delta T_C/\Delta T_{EBO}\)
- \(I_C\) is the maximum leakage current (collector to base with the emitter open) for the maximum temperature at which the semiconductor device can be used. As you recall, it approximately doubles for every 6°C rise in the junction temperature of silicon devices and for every 10°C rise in the junction temperature of germanium transistors.

\(E_{CC}\) is the collector supply voltage.

\(R_E\) is the resistance in the collector circuit.

The heat sinks used to help maintain safe temperatures are rated by their thermal resistance. They are used vertically with all surfaces exposed to the air in a type of chimney effect. Once \(\theta_{JA}\) has been calculated, the size of a non-standard heat sink may be estimated from Fig. 7.

Thermal fatigue

It is well known that if a piece of sheet metal is bent back and forth along one line, it will eventually break. Some types of metal can be flexed more often than other types before cracking.

So it is with transistors. They can be brought up to a specific high temperature and then cooled. This can be repeated only for a specific number of times before they break down. The graph (from RCA) in Fig. 8 shows the number of these heating and cooling cycles that a 2N6099 transistor can endure before breaking down. This Thermal-Cycling Rating is related to both the power dissipated by the transistor and to the change in the case temperature.

(continued on page 96)
Circle 91 on reader service card

HONEYWELL COMPUTER BOARDS

Honeywell Computer boards, 4½" x 12". Transistors, diodes, zeners, capacitors, precision resistors, heat sinks, transistors, etc. Different boards $1.00. Stock No. J9082.

COMPUTER GRADE CAPACITORS

J0206 40,000 volts 10 volts 3½" x ½" 1.25 ea. 6/7.00
J1116 70,000 volts 10 volts 3½" x ½" 1.75 ea. 6/9.00
J118 5,000 volts 55 volts 2½" x ½" 1.50 ea. 7/7.00
J116 3,750 volts 75 volts 2½" x ½" 1.75 ea. 6/9.00
All above are brand new and include terminal hardware. Many other items for new 32 page catalog. All merchandise guaranteed. Please include sufficient postage, excess will be refunded.

$1.00 FREE with $10.00 ORDER
MINIMUM ORDER $3.00

DELTA ELECTRONICS CO.

Circle 91 on reader service card

STereo amplifier design

(continued from page 94)

ture during each thermal cycle.

At an average, audio amplifiers can be assumed to go through 1000 of these thermal cycles each year. If you expect the equipment to last five years (another average figure), the transistors must last for at least 5000 cycles. Equipment designed and built by the hobbyist can be made to last through many more cycles, if desired.

In the practical situation, the 2N6099 may be asked to dissipate 20 watts. If the minimum number of thermal cycles should be 5000, the case temperature should not change by more than 50°C. This can be determined from the curves in Fig. 7. Used at an ambient temperature of 20°C, the heat sink should limit the case temperature to 70°C when power is applied to the amplifier.

A Class AB amplifier dissipates different amounts of power when operating at different thermal levels. Assume, as one example, that one transistor of a push-pull pair dissipates 4 watts when operating at low volume levels and that it dissipates 20 watts when producing loud music. Furthermore, assume that it is anticipated that the transistor in the amplifier will be dissipating 4 watts for 10,000 cycles, and that the case temperature will increase 30°C. At the 20-watt level, the case temperature may change by 80°C, but it is required to go through only 2000 cycles. The problem is to determine if the device is being used within its thermal-cycling rating.

At the 4-watt level, the number of cycles permitted with a temperature change of 30°C is 17,500, as determined from the curves. Since only 10,000 cycles are required, 10,000/17,500 or 0.57 of the maximum permissible number of cycles are used here.

Similarly, when operating at the 20-watt level with a temperature change of 80°C, 3000 cycles are permitted. Only 2000/3000 or 0.67 of the permissible number of cycles for this temperature change, is used here.

The sum of 0.57 and 0.67 is 1.24. The transistor is used within its thermal-cycling rating if the sum of the two decimals is equal to or less than "1". Obviously, operation is beyond the rating of the device.

If the number of cycles at the 4-watt level is fixed so that the decimal is 0.57, at the 20-watt level the number should not exceed 1 - 0.57 = 0.43. Since 3000 cycles are permitted when used exclusively at 20°C, the actual number of permitted cycles at the 20-watt level, for the combination of conditions, N, can be calculated from N/3000 = 0.43. Hence N = 1290 cycles.

R-E
U.S. GOV'T ELECTRONIC SURPLUS

* Reasonably Prices World Famous SURPLUS CENTER offers finest, most expensive, Government surplus electronic units and components at a fraction of their original acquisition cost.

IBM COMPUTER POWER SUPPLY

$29.95

STANDARD DIAL TELEPHONE

$7.49

STEP-BY-STEP TELEPHONE SWITCH

$6.29

MAGNETIC DIGITAL COUNTER (12 to 18 VDC)

$1.99

200 AMP., 50 VOLT, SILICON DIODE

$4.99

AC PROGRAM TIMING CLOCK

$15.75

SNAP AROUND VOLT-AMMETER

$36.90

SPECIAL SALE

Correspondence Course in ELECTRICAL ENGINEERING $8.79 Project 810-A.

RUNNING TIME METER

$4.39

COMPUTER TRANSISTORS ON HEAT SINKS

$1.99

All items shipped f.o.b. Lincoln, Nebr.

Order Direct From Ad. Money Back Guarantee.

SUPLUS CENTER

Dept. RE-042 Lincoln, Nebr. 68501

HIGH FIDELITY

MAKE YOUR OWN SPEAKER SYSTEMS. SAVE ½ THE COST. WRITE FOR CATALOG. McGee RADIO COMPANY, 1901 McGee Street (RE), KANSAS CITY, MO. 64108

FOR SALE

FREE CATALOG New Electronic Devices! World's Smallest Transmitter $19.95 Telephone Answer $49.50 Telephone Recording Device $19.95 "Bug" Detector $29.95 Many more! SONIC DEVICES, 69-29 Queens Blvd., N.Y. 11377

AM/FM RADIO INTERCOM, transistorized American chassis for custom installation. New, guaranteed, with instructions. $16.95. TRI-PLETT ELECTRONICS, 1125 Hazel, Huntsville, Tex. 77340

FORDHAM RADIO, 265 E. 149th St. Bronx, N.Y. 10451

PC. BOARDS MAKERS. ONE SQUARE FOOT 1/16 G-10 COPPER CLAD LAMINATE $4.95, AND CUT IN THE SIZE MORE USEFUL FOR YOU. ADD 25% FOR SHIPPING. E P 8, BOX 68, SOMERVILLE, MASS. 02144

MEMORIES SEMICONDUCTORS FREE FLYER, UTI, P.O. Box 252, Waldwick, N.J. 07463

SPECIAL Clearance Sale: Rectifiers, Transistors, small motors, electronic parts. Lowest Prices. Free Catalog. GENERAL SALES COMPANY, 713-265-2368 254 E. Main St. Clute Tx. 77531

ELECTRONIC ORGAN KEYBOARDS, oscillator coils, printed circuits and other components for organ circuitry. 25¢ for catalog. DEVTRONIX ORGAN PRODUCTS, 5872 Amapola Drive, San Jose, Ca. 95129

CLASSIFIED COMMERCIAL RATE (for firms or individuals offering commercial products or services) 90¢ per word - minimum 10 words.

NONCOMMERCIAL RATE (for individuals who want to buy or sell personal items) 60¢ per word - no minimum.

FIRST WORD and NAME set in bold caps at no extra charge. Additional bold face at 10¢ per word. Payment must accompany all ads except those placed by accredited advertising agencies. 10% discount on 12 consecutive insertions, if paid in advance. Misleading or objectionable ads not accepted. Copy for June issue must reach us before March 31.

CLASSIFIED ADVERTISING ORDER FORM

<table>
<thead>
<tr>
<th>No. of Words</th>
<th>NAME</th>
<th>ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CITY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZIP</td>
</tr>
</tbody>
</table>

SIGNATURE

MAIL TO: RADIO-ELECTRONICS, CLASSIFIED AD DEPT., 230 PARK AVE., SOUTH, NEW YORK, N.Y. 10003

APRIL 1972 • RADIO-ELECTRONICS 97
ALPHA-NUMERIC 7-SEGMENT READOUTS

Only 3.95

Buy any 3 — Take 10% Discount

A Poly Pak exclusive! Two different types. Both compatible with SN7440 and SN7447. Print them in 7-SEGMENT ICs. Black with numbers to 9 and numerals with 5 and 0. Each.

■ 16-PIN MICRO MINIATURE

Fits in 16 pin dual in line sockets. Life: 250,000 hours. Delivers 700-710 lamberts, brighten with a single transistor on a 38V supply. 362* x .197" W x .256" H.

■ 9-PIN TUBE TYPE

For printed circuit board or sockets. Life: 100,000 hours. Delivers 6,000-6,500 lamberts with 5 volts 23 milli-amps. Characters 47" H x .26" W.

GIGANT SALE ON NEW TTI TEXAS 4 NATIONAL ICs

Buy any 3 — Take 10% Discount! 100 or more, 25% discount

Factory Guaranteed! Tested Marked!

<table>
<thead>
<tr>
<th>Type</th>
<th>Function</th>
<th>Sale</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN7440N</td>
<td>Quad 2 input NAND gate</td>
<td>...</td>
</tr>
</tbody>
</table>
| SN7401N | SN7402 with open collect | ...
| SN7402N | SN7403 | ...
| SN7404N | Quad inverter | ...
| SN7406N | 8 pin NAND gate | ...
| SN7408N | Quad inverter, open collect | ...
| SN7409N | Triple 3 input NAND gate | ...
| SN7410N | 8 pin NAND gate | ...
| SN7414N | 4 pin NAND buffer | ...
| SN7414N | BCD-to-Decimal driver | 1.25 |
| SN7415N | 4 to 16 line decoder | 1.98 |
| SN7417N | 8 to 3 line decoder | 1.98 |
| SN7417N | 8 to 2 line decoder | 1.98 |
| SN7418N | BCD to 7 seg. dec./driver | 1.98 |
| SN7420N | BCD-to-7 seg. dec./driver | 1.98 |
| SN7424N | Open collector | 1.25 |
| SN7430N | Open collector | 1.25 |
| SN7432N | Open collector | 1.25 |
| SN7437N | Open collector | 1.25 |
| SN7439N | 4 pin NAND gate | 1.25 |
| SN7490N | 2 line counter | 1.25 |
| SN7493N | 2 line latch | 1.25 |
| SN7493N | 4 flip-flop latch | 1.25 |
| SN7494N | 4 bit counter | 1.25 |
| SN7495N | 4-bit binary counter | 1.25 |
| SN7499N | 4-bit binary counter | 1.25 |
| SN7499N | 8-bit binary counter | 1.25 |
| SN7511N | 8-bit binary counter | 1.25 |
| SN7512N | 8-bit binary counter | 1.25 |
| SN7514N | 8-bit binary counter | 1.25 |

ADVERTISING INDEX

RADIO-ELECTRONICS does not assume responsibility for any errors which may appear in the index below.

READER SERVICE CARD NO. 7-109

11 Allied Radio Shack
12 Allied Radio Shack
13 B.F. Enterprises
14 B.K. Industries
15 B.K. Division of Dynascan Corp.
16 BM Industries
17 Brooks Radio & TV Corp.
18 Castle TV Tuner Service, Inc. Cover IV
19 Center For Technical Development, Inc. The
20 Cleveland Institute of Electronics 78-81
21 Cook's Institute of Electronics
22 CREC, Division of the McGraw-Hill
23 Continuing Education Co. 46-49
24 Crown International
25 Delta Electronics Co.
25 Delta Products, Inc.
26 Edilex Electronic, Inc.
27 Edmund Scientific Co.
28 Electronic Chemical Corp.
29 Electronic Instruments, Inc.
30 EICO Electronic Instrument Co.
31 EMCO Electronic Measurement Corp.
32 Enterprise Development Co.
33 Environmental Products
34 GC Electronics
35 Gems & School of Engineering
36 GTE Sylvania Electronic Components
37 Heath Co.
38 Indiana Home Study Institute
40 Jensen Tools & Apparel, Inc.
41 Johnson, Inc.
42 Johnson Research & Mfg. Co.
43 Lectrotech, Inc.
44 Mallory Distributor Products Co.
45 National Camera Co.
46 National Radio Institute
47 National Technical Schools
48 Nelson-Herffield Electronics
49 Newman Organs
50 Olson Electronics
51 PIS Electronics, Inc.
52 Radio Shack
53 RCA Institutes
54 RCA Parts & Accessories
55 RCA Test Equipment
56 RCA Test Equipment
57 Rye Industries, Inc.
58 Sig & Co., Howard W.
59 Schober Organ
60 Selsom, Inc.
61 Sessions, Inc.
62 Sonar Radio
63 Sony Corp. of America
64 Sprague
65 Techno-Tools
66 Tri-Star Corp.
67 Tri-Star Corp.
68 Universal Securities
69 Weltron Co., Inc.
70 Whelan & Sons, Inc.
71 Workman Electronic Prods., Inc.

MARKET CENTER

1987

109 Babylon Electronon
110 Circuit Specialists
111 Cirkit Radio
112 Opti Associates
113 Kimberly Research
114 Lakeside Industries
115 John Mshna Jr. Electronics
116 Park Electronic Products
117 Park Electronic Products
118 Solid State Sales
119 Solid State Systems
120 Solid State Systems
121 Syntum Eyewear
122 Syntum Eyewear
123 Williams Industries
124 Yeats Appliancy Sales Co.

SCHOOL DIRECTORY

100 Valparaiso Technical Institute
IGNITION: 250.1 Coll, Bailas $7.95. Free lists.
TRANSPIKE, Carlisle, Mass., 01741

Cbr's display your call letters, channel, State and first name with 3D sign durable white plastic, raised black lettering, 12%x8%, self sticking corners for inside window mount or front plate outside car. Introductory offer $2.00 PP. PLAS-

TUBES

RADIO & TV Tubes 364 each. One year guaran-
teed. Plus many unusual electronic bargains. Free Catalog. CORNELL 4217-E University, San

SAVE MONEY ON PARTS AND TRANS-
mitting-Receiving TUBES, FOREIGN-DOM-

TICS SEND 254 FOR GIANT CATALOG. RE-
FUND ORDERED. UNITED RADIO

TUBES Receving Factory Boxed, Low Prices,

FREE Price List. TRANSLETORIC, INC. 1306

RECEIVING & INDUSTRIAL TUBES, TRANSIS-
TORS, All Brands--Biggest Discounts. Tech-

nicians, Hobbyists, Experimenters--Request

FREE Giant Catalog and SAVE! ZALYTROK,

469 Jericho Turnpike, Mineola, N.Y. 11501

TUBES Using Factory Boxed, Low Prices,

FREEL Price List. TRANSLETORIC, INC. 1306

AVIATION ELECTRONICS ENGINEER-

TV Tuner Repairs—Complete Course Details,

MANUALS for surplus electronics. List 25c,

2W TV REPAIRS—Complete Course Details, 12

24 Ass't insul. WIRE LUGS #18-22 1.00

Japanese new products MONTHLY! $1.00. Refundable DEERE, 10639 Riverside, North

INVENTIONS & PATENTS

INVENTIONS WANTED, Patented; Unpatented.

GLOBAL MARKETING, 2420-AE 77th Ave.,

WANTED

QUICK CASH . . . for electronic EQUIPMENT,

COMPONENTS, unused TUBES. Send list now!

BARRY, 512 Broadway, N.Y. 10012, 212

ELECTRONIC ENGINEERING & INSTRU-

MANUALS for surplus electronics. List 25c,

24 Ass't insul. WIRE LUGS #14-16 1.00

24 Ass't insul. WIRE LUGS #10-12 1.00

100 ft. spool #22 PVC. Stranded Wire 1.25

100 ft. spool #24 PVC. Stranded Wire 1.25

500 Ft. spool #18 PVC. Stranded Wire 1.25

10 Ft. spool 10 conductor RIBBON WIRE 1.50

PL-259 Amp. CONNECTOR .35

175 U or 175/ U REDUCER FOR PL-259 .15

PL-258 Amp. CONNECTOR .70

Pkg. of 5 PDPT slide switches .25

5%"1/16" Gray or Black Inst. PANEL 2.85

1%"1/16" Gray or Black Inst. PANEL 1.80

24 SPACERS Alum.-Ceramic Ass't 1.00

20 GOLD PLATED TRANSISTORS 1.00

C &K mini-switch SPD1 (on-on) 1.00

C &K mini-switch SPD1 (off-off) 1.80

C &K mini-switch SPD1 (on-off) 1.30

C &K mini-switch SPD1 (off-on) 1.55

NEW P.C. BOARD Inc. 1-sid COPPER-FIBERGLASS

6"X6"-$1.45 12"X12"-$2.50

YOUR SELECTION OF RESISTORS

3% .05 Watt Resistors 1.00

35 .1 Watt Resistors 1.00

.05 Watt Resistors 1.00

FREE—WITH EACH $10.00 ORDER FREE

30 Ft. spool HEAVY WALL G60V. #22 WIRE

Send check or money order, include 35¢ for postage. Minimum ORDER—$3.00

KIMBERLY RESEARCH PRODUCTS

CORP.

1013 MERRICK ROAD

Baldwin, L.I., N.Y. 11510

TEL: (516) 623-3344

Circle 103 on reader service card

APRIL 1972 • RADIO-ELECTRONICS 99
Handy Dandy plastic caps hook onto 1/8" pegboard to hold popular, quick-to-identify food jars (such as baby food) with a 1 15/16" neck. Nothing better for storing screws, nuts, bolts, parts, buttons, etc. For those who prefer; tough, unbreakable, clear plastic jars are also available.

Rebuild Your Own Picture Tube?

With Lakeside Industries precision applicable, you can rebuild any picture tube!

For complete details, send name, address, and check or money order for $2.00 to:

LAKESIDE INDUSTRIES
P.O. Box 10842
Chesapeake, Va. 23324
Phone: 310-623-2199

Yeats Appliance Sales Co.
1503 W. FOND DU LAC AVE.
MILWAUKEE, WIS. 53205

TS-382 AUDIO OSCILLATOR

Frequency range 78 to 27,000 cps in two bands, output 1000 microamps, sensitivity minimum variable 0-10 millivolts. Permits 20 to 150,000 cycle sweep, audio, FM and AM. Pen accuracy ±5%, stability ±2.5% from room temperature to 21°C below rated output; at temperature over 6°F, range switch, output level, output level deviation, signal level and output level, overall level, response, terminal, memory, 250,000 cycles.

—$1.75

BONUS SALE

NEW, LOW, LOW PRICES

free 810 operational amplifier (dual) DIP w/data for all prepaid orders of $10. or more.

FREE 810 op-amp and one LM309X 5 volt 1 amp power supply module (T0-3) with prepaid orders of $25. or more.

$1.00 with prepaid orders for $50. or more you get the $25. bonus plus ten per cent discount on all items purchased.

BONUS OFFER

Digital readout

• Digital readout
 • BCD to 7—segment
 • Decoder/driver
 • 490 decade
 • 7475 latch

Special Offer

$3.40

Prices

At a price everyone can afford
 • Comes from 5 VDC
 • Same as TTL and DTL
 • Will last 250,000 hours.

MOBILE DIGITAL

Power—All

$1.60

MPS6551 $1.75

51258 $1.50

2N2184 $1.00

2N2182 $1.00

2N2181 $1.00

2N2180 $1.00

FREE Illustrated Booklet

Circle 10A on reader service card

CIRCUIT SPECIALISTS CO.
Box 3047, Scottsdale, AZ 85257
FACTORY AUTHORIZED
HEP/CIRCUIT-STIK DISTRIBUTOR

Babylon Electronics

P.O. Box 85
Carmichael, CA 95608
(916) 966-2111

Send for Free Flier

Circle 10A on reader service card

April 1972 • Radio-Electronics 101
LIVE IN THE WORLD OF TOMORROW... TODAY! NEW PRODUCTS, NEW MATERIALS, NEW IDEAS!

ECONOMIC SCIENCE BOYS
UNIQUE HARD TO FIND BARGAINS FOR FUN, STUDY OR PROFIT

NEW ELECTRONIC CALCULATOR—$199.95

Litally terrific, virtually perfect. Loaded with scientific capabilities. 1st truly彩色 calculators available anywhere. Absolutely silent operation. Operates in any air-conditioned space. Only 3 AAA batteries required. A must for home, school, or office. Excellent under classroom conditions. 2-year warranty. Stock No. 76.000EH—$199.95 Pd.

1st LOW-COST VACUUM PUMP

Nothing like it! Top-quality hand-held pump produces & maintains 25" of vacuum. Has future patent tab. 1/2" diameter steel hose (up to 20 ft). 1/4" of water-stopped, stops any air, uses working aspirators, creates vacuum, suitably designed, creates vacuum, fits any air pocket. Powerful motorized mechanism for drawing out air. Stock No. 71.300EH (without gauge/lifter) $5.95 Pd.
Spots trouble fast—tells where it is

This Master Chro-Bar/Signalyst is the most advanced color-bar generator ever developed by RCA

Consider these features:
- Output at RF, IF, and Video on all patterns for TV servicing. The Video output is adjustable up to 2 volts across 75 ohms for use in CCTV, CATV, and MATV.
- RCA's exclusive "Superpulse" pattern for simplified gray scale tracking adjustment, testing for picture smear, and troubleshooting by signal tracing and signal injection.
- RCA's exclusive color-bar marker identifies the third, sixth, and ninth color bars... aids in AFPC alignment and setting the tint control in over-scanned sets.

- Pushbuttons provide color bars, dots, lines, crosshatch, and blank (white, no noise) raster patterns with provision for selecting three or ten horizontal and/or vertical lines with middle of pattern electrically centered.
- 75-ohm or 300-ohm variable level RF, IF, and Video output with + or − video sync. polarity.
- Stability... 75°F ± 70°F; 120-volts AC ± 30-volts AC.
- IC circuitry throughout... provides excellent pattern stability. No counter alignment controls to adjust.
- Stability... 75°F ± 70°F; 120-volts AC ± 30-volts AC.
- IC circuitry throughout... provides excellent pattern stability. No counter alignment controls to adjust.
- The price? Only $179.00! And that includes a full 12-month warranty on parts and labor... complete replacement parts availability.

For immediate delivery and full information on the WR-515A Master Chro-Bar Generator, see your RCA Distributer or write RCA Test Equipment Headquarters, Harrison, N.J. 07029.

*Optional Distributer Resale Price
WHY REPAIR TV TUNERS?

CASTLE REPLACEMENTS

start at

Select by part number. Write, phone or wire order.

No mailing . . . no waiting . . . no nonsense!

UNIVERSAL REPLACEMENTS

Prefer to do it yourself?

These Castle replacement tuners are all equipped with experienced tuning and UHF position with plug input for UHF tuner. They come complete with heater and component kit to adapt for use in thousands of popular TV receivers.

*Supplied with max. length selector shaft (measured from tuner front option to top) .

EXPRESS REPLACEMENTS

Purchase outright . . . no exchange needed. $15.95 ea.

Castle replacements made to fit exactly in place of original tuner. Available in the following popular numbers.

STOCK No.

HEATERS SHAFT I.S. OUTPUT MISC. INCLUDING

<table>
<thead>
<tr>
<th>No.</th>
<th>HEATERS</th>
<th>SHAFT</th>
<th>I.S. OUTPUT</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR8</td>
<td>Parallel 6.3v</td>
<td>1 1/4"</td>
<td>3"</td>
<td>41.25</td>
</tr>
<tr>
<td>CR7S</td>
<td>Series 600mA</td>
<td>1 1/4"</td>
<td>3"</td>
<td>41.25</td>
</tr>
<tr>
<td>CR8S</td>
<td>Series 450mA</td>
<td>1 1/4"</td>
<td>3"</td>
<td>41.25</td>
</tr>
<tr>
<td>CR8X</td>
<td>Parallel 6.3v</td>
<td>2 1/4"</td>
<td>12"</td>
<td>41.25</td>
</tr>
<tr>
<td>CR7XL</td>
<td>Series 600mA</td>
<td>2 1/4"</td>
<td>12"</td>
<td>41.25</td>
</tr>
<tr>
<td>CR8XL</td>
<td>Series 450mA</td>
<td>2 1/4"</td>
<td>12"</td>
<td>41.25</td>
</tr>
</tbody>
</table>

OVERHAUL SERVICE - All makes and models.

VHF or UHF tuner (1960 or later) $9.95

TRANSISTOR tuner $9.95

COLOR tuner $9.95

Overhaul includes parts, except tubes and transistors. Dismantle tandem UHF and VHF tuners and send in defective unit only.

Remove all accessories . . . disassembling charge may apply. Your tuner will be expertly overhauled , aligned to original standards and warranted for 90 days.

CUSTOM EXCHANGE REPLACEMENTS

When our inspection reveals that original tuner is unfit for overhaul, we offer an exact replacement if exact replacement is not available in our stock we custom rebuild the original at the exchange price. (Replacements are new or rebuilt.)

PROFESSIONAL "CONTACT OVERHAUL" KIT

Do your own minor tuner overhauling by using this professional kit of chemicals. Dealer Net $3.50

MADE IN U.S.A.

C A S T L E TV TUNER SERVICE, INC.

MAIN PLANT: 5715 N. Western Ave., Chicago, Ill. 60645 • Ph. 312—561-6354

EAST: 130-01 89th Rd., Richmond Hill, N.Y. 11418 • Ph. 212—846-5300

Circle 97 on reader service card