SPECIAL ISSUE—4-CHANNEL STEREO

Battle of the 4-channel discs
- CBS Matrix
- RCA Discrete

4-channel adapter roundup
R-E tests cassette tapes

Unusual Ways To Use Semiconductors

Bob Scott’s Technical Topics
You can make more money selling the Sylvania color bright 85XR.

And Olive Oyl will look just as beautiful.

Beauty is in the eye of the beholder. And the beauty of the color bright 85XR is that its picture is in the same league as the more expensive "black surround" and "black matrix" color tubes.

Our bright phosphors make the color bright 85XR real competition for any picture tube on the market.

And our simplified manufacturing process lets us sell it to you at a lower price than any "black surround" tube.

The picture will look beautiful to your customer.

The profit will look beautiful in your cash register.

If that isn't beauty, what is?

GTE SYLVANIA
"Best Seller" Electronics Guides

Color-TV Field-Service Guides

Invaluable for servicing color-tv in the customer's home. Each volume contains 80 diagrams covering over 3,000 chassis...sensibly organized with detailed chassis layout charts on one page and specific adjustment procedures on opposite page. Indexed for instant reference.

No. 20864 (3 Vol. set) $14.95
No. 20786 (Vol. 1) $4.95
No. 20807 (Vol. 2) $4.95
No. 20847 (Vol. 3) $4.95

By Roger Melen and Harry Garland

Understanding IC Operational Amplifiers

By Roger Melen and Harry Garland

This book explains how IC op amps work and how they can be used in many practical circuits. Discusses in detail basic semiconductor electronics, integrated op amp circuitry, practical design considerations in circuits using IC op amps, bias current, offset voltage, frequency compensation, slew rate, and more.

No. 20855 $3.95

Commercial Radioelectron License and a Study Guide

By Woodrow Smith and Robert Welborn

This comprehensive study guide contains questions taken from the first four elements of the FCC and present Government publications of "Study Guide and Reference Material for Commercial Radio Operator Examinations," and thus presents questions used in FCC examinations.

No. 24027 $5.95

Practical Design with Transistors—2nd Edition

By Manny Horowitz

This new and updated edition provides engineers and technicians with enough factual material to complete independent circuit design. With the aid of this book, anyone with a working knowledge of algebra and radio electronics should have no difficulty in designing a transistor circuit.

No. 29568 $6.95

Radio Operators License Handbook—2nd Edition

By Edward M. Noll

Covers the laws, rules, regulations, and accepted operating procedures for the non-licensed operator, as well as the licensed operator. Questions and answers based on the FCC exams for Elements I, II, and IX enable the reader to prepare for any FCC license up to, but not including, the Second-Class license. It is an invaluable study guide for obtaining Third-Class license with Broadcast Endorsement. This book is a complete and indispensable reference for the marine radio, aviation radio, citizens band or broadcast operators.

No. 20877 $3.95

Automotive Electronics

By Rudolf F. Graf and George J. Whalen

This book presents a complete picture of all the applications of electronics in a modern automobile. The electronic system of the automobile is divided into several smaller systems and each is explained in detail. A chapter on test equipment and its use will be very helpful to those who like to do their own troubleshooting and repair.

No. 20856 $6.95

Television System Diagnosis

By Richard W. Tinnell

A complete training program providing the necessary job-entry skills for students without previous knowledge of electronics. Circuits are classified into groups according to the need of the reader. The student is qualified to efficiently repair an inoperative black-and-white or color receiver.

No. 20810 $6.95

Howard W. Sams & Co., Inc.

300 West 62nd Street, Indianapolis, Ind. 46206

Order from your Electronics Parts Distributor, or mail to Howard W. Sams & Co., Inc., Send books checked at right, enclosed. Please include sales tax where applicable. Send FREE 1972 Sams Book Catalog.

Name ___________________________ (Please Print)

Address ___________________________

City ___________________ State ________ Zip __________

Enclosed.

□ 20796 □ 20855

□ 20807 □ 24027

□ 20856 □ 20877

□ 20834 □ 20856

□ 20878 □ 20810

□ 20864 □ 20856

□ 20855

RE-022

March 1972 • Radio-Electronics
There's an Amperex replacement tube for any socket in any set you're likely to service...

TV, HiFi, FM or AM, House Radio, Car Radio, P.A. System or Tape Recorder. Imported or Domestic!

AMPEREX ELECTRONIC CORPORATION, DISTRIBUTOR SALES, HICKSVILLE, NEW YORK 11802

AMPEREX SUPPORTS THE INDEPENDENT SERVICE DEALER

Amperex
TOMORROW'S THINKING IN TODAY'S PRODUCTS
A NORTH AMERICAN PHILIPS COMPANY
4-CHANNEL STEREO HI-FI AUDIO

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>By</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>CBS-Sony 4-Channel Matrix Disc</td>
<td>Fred Petras</td>
</tr>
<tr>
<td>32</td>
<td>RCA-Panasonic-JVC 4-Channel Discrete Disc</td>
<td>David Lachenbruch</td>
</tr>
<tr>
<td>35</td>
<td>RCA vs CBS</td>
<td>Lawrence</td>
</tr>
<tr>
<td>36</td>
<td>4-Channel Adapters</td>
<td>Chester H.</td>
</tr>
<tr>
<td>42</td>
<td>Add-On AGC For PA Systems</td>
<td>Diode-resistor</td>
</tr>
<tr>
<td>43</td>
<td>R-E Tests Cassette Tapes</td>
<td>Joe Shane</td>
</tr>
<tr>
<td>50</td>
<td>Stereo Amplifier Design</td>
<td>Mannie Horowitz</td>
</tr>
<tr>
<td>76</td>
<td>Equipment Report</td>
<td>Garrard Zero</td>
</tr>
<tr>
<td>92</td>
<td>Equipment Report</td>
<td>Harman-Kardon Citation</td>
</tr>
</tbody>
</table>

RADIO

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>By</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Technical Topics</td>
<td>Robert F. Scott</td>
</tr>
</tbody>
</table>

GENERAL ELECTRONICS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>By</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Looking Ahead</td>
<td>David Lachenbruch</td>
</tr>
<tr>
<td>22</td>
<td>Appliance Clinic</td>
<td>Jack Darr</td>
</tr>
<tr>
<td>56</td>
<td>All About Electrolytics</td>
<td>Eugene Cunningham</td>
</tr>
<tr>
<td>58</td>
<td>Unusual Semiconductor Applications</td>
<td>Paul Franson</td>
</tr>
</tbody>
</table>

TELEVISION

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>By</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>Kwik-Fix Troubleshooting Charts</td>
<td>Forest H. Belt</td>
</tr>
<tr>
<td>62</td>
<td>Service Clinic</td>
<td>Jack Darr</td>
</tr>
<tr>
<td>63</td>
<td>Reader Questions</td>
<td></td>
</tr>
</tbody>
</table>

DEPARTMENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>By</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Letters</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>New & Timely</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>New Books</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>New Literature</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>New Products</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Next Month</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Reader Service</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Try This One</td>
<td></td>
</tr>
</tbody>
</table>
Home VTR

The Cartrivision home color video tape recorder developed by Cartridge Television Inc. has gained another adherent. Scheduled to introduce 19-inch and 25-inch combination color receivers and VTRs later this year is the West Coast television manufacturer Teledyne Packard Bell. The combination sets are expected to start at close to $1,000. Pre-recorded tapes may be rented, a feature film going for three dollars a day. Other brand names expected to be offering color sets in combination with Cartrivision recorder-players are Admiral, DuMont, Emerson, Montgomery Ward and Sears Roebuck.

Cartrivision uses half-inch tape in cartridge form. Tentative prices for blank tape cartridges are $20 for one hour, $33 for two hours, $45 for 30 minutes and $10 for 15 minutes. Pre-recorded rental tapes are designed to be played only once by the renter and cannot be rewound except on a special machine. An accessory black-and-white camera will be available at about $200. The recorder can record either from the camera or the television receiver.

New uhf tuner

Beginning some time later this year, you'll see a new type of uhf tuner start to come into common use. It's a midget unit with detents which click into place for each of the 70 uhf channels, the exact channel number appearing in a window. The FCC has approved a change in its "comparable tuning" regulations to permit use of the new tuner. The previous rules have classified as "comparable" only uhf tuners with memory fine tuning, and this has led to tuning systems with six uhf positions, which are set by the television dealer or the consumer to bring in specified local uhf channels. While the new type of tuner lacks memory tuning, it has the advantage of easily tuning any uhf channel available and is usable at any place without pre-setting. Channel identification systems for the new tuner will use such devices as counters similar to automobile odometers, and transparent back-lighted plastic tapes with channel numbers printed on them.

Under the FCC's comparable-tuning rule, 10% of each TV set makers' models now in production are required to have the same tuning ease for uhf as for vhf. By July 1, the proportion will rise to 40%; on July 1, 1973, the rule will apply to 70% of TV models, going to 100% on July 1, 1974. The purpose of the rule is to encourage viewing of uhf channels.

TV to cable?

A proposal to revamp the nation's television service by switching most or all of it to cable has been made by Motorola's chairman, Robert W. Galvin. Under the plan, there would be a gradual switchover, while new standards would be set for television—Galvin suggested possibly an 800 or 1000-line picture to make possible 3-by-4-foot wall displays without line structure. Television would be merely the first service on the broadband cable, which could accommodate other forms of one-way and two-way communications systems. For rural areas, some on-the-air broadcasting would continue, perhaps by direct satellite transmission.

The spectrum space freed by moving television to the cable would be earmarked to a large extent for new consumer services, including "personal communications, remote control applications, security products and even the revitalization of amateur radio with expanded functions."

4-channel broadcasting

The FCC apparently is just as confused as everybody else about quadraphonic sound, and it plans to take plenty of time before it authorizes any discrete four-channel FM broadcasting systems, except on an experimental basis. Two discrete four-channel systems actually are on the air, but just for test purposes. The Dorren system is being tested by KIOI in San Francisco, while General Electric is experimenting with its own system during non-broadcast hours on its own WGFN in Schenectady, N.Y. Other systems have been proposed or are being developed by Toshiba and Matsushita (Panasonic) in Japan and by McMartin Industries and William Haistead and Leonard Feldman in the United States.

The proponents of the Dorren system have asked the FCC for approval of regular broadcasting, but have run into opposition from both CBS and NBC, among others. Both networks urged the Commission to look into all systems before approving any one as the standard. Staff sources at the Commission have indicated that the selection of a discrete four-channel system, if one is selected at all, will have a fairly low priority. This doesn't mean that it'll be run as a four-channel broadcasting, though. At press time, at least 70 stereo-FM stations were broadcasting matrixed quadraphonic material, which requires no FCC approval. Matrixed four-channel may be received as regular two-channel stereo, or mono. To receive it in four channels, the listener uses a decoder—the same decoder used for four-channel disc recordings. Most stations now broadcasting matrixed material are using the Electro-Voice system.

If the FCC should eventually approve a discrete four-channel broadcasting system, it obviously would seek complete compatibility with both mono and stereo receivers. There's no assurance that the Commission will even begin to look at such systems in 1972, so it could be a long, long time before there's any regular discrete broadcasting. As a guide to how long it may take—it was seven years from the introduction of stereo records until the FCC's selection of a stereo-FM broadcasting system in 1982.

Car stereo census

The vast majority of car radios are bought as original equipment at the time the car is purchased. But with stereo tape players, it's quite the other way around. The average car-stereo owner picks his player after he has the car. For example, last year it's believed that Americans bought between 2,500,000 and 3,000,000 automobile tape players. Yet, in the 1971 automobile model year, American car manufacturers sold only 288,800 cars equipped with tape players at the factory.

General Motors led the way among auto makers in factory tape installations in the 1971 models, with 197,200 units as compared to 63,100 for Ford Motor Co., 27,100 for Chrysler Corp. and 1,400 for American Motors.

Except for Chrysler, the American car makers offer only eight-track cartridge players as accessories. Chrysler offers both eight-track players and cassette recorders, and in the 1971 model year it sold more cars equipped with cassettes (16,100) than eight-tracks (11,000).

DAVID LACHENBRUCH
CONTRIBUTING EDITOR
How to read a hi-fi ad

Puzzle picture: find the clue that tells you how good the advertised system probably is. Our advice is to check the one component that is the source of the sound—the phono cartridge. We say this because we know that the dealer who's assembled a superior package at a fair price is going to complete it with a superior cartridge within the available price range. This dealer ad above, for example, includes a Shure M91E Hi-Track. Even if you weren't aware of the effortless way it meets your most rigorous trackability demands, you should know that it, as well as virtually every Shure cartridge, has been acclaimed by hi-fi critics and authorities as best in its class, or best for the cost. That's why you see so many of them teamed with "best-in-their-class" components, and why they invariably mean a more-for-the-money total system that's going to make you very happy.

Shure Brothers Inc.,
222 Hartrey Ave., Evanston, Ill. 60204
Circle 3 on reader service card
FTC power output rule

A decision by the FTC to get industry comment on what kinds of test conditions should be set in order to get an accurate measurement of high fidelity amplifiers' power output will delay implementation of their trade rule on output until the 1973 model year.

However, the Commission's decision probably insures that the rule will be issued, after industry comments are received and studied. The rule will require that all advertisements and labels on high fidelity sets must show the continuous RMS power of the amplifier's bandwidth. The measurement must also be the minimum power output of the amplifier as measured against the entire bandwidth. The practice frequently seen in advertisements of listing the power of sets as 150 watts peak power will be halted by the new rule when it goes into effect.

In-warranty service payments

NEA recently completed a survey which indicated a wide variation in the amounts paid by manufacturers for repairs on warranted TV sets and stereo consoles to individual shops across the country. Although the prices paid are slightly higher in California, Oregon, and Texas, the surprising results of the random sampling of service dealers all over the country show that the greatest variations are not by area.

For example, one dealer is paid $15.00 by a manufacturer to make an in-home service call on a black-and-white TV console. Another dealer is paid $7.00 for the same service call performed for another manufacturer. Bench service charges on a black-and-white TV varied between $5.00 and $45.00; pick up and delivery varied between $3.00 and $15.50; and color TV service calls fluctuated from $7.00 to $17.50.

Although the prices paid to one dealer may be very different from those paid to another for the same service, only one of the TV manufacturers averaged far from the other companies when compared in the mean price paid for service.

Here are the average prices paid nationwide:

$47.46 INCLUDES IN-HOME SERVICE CALL ON A COLOR TV; TAKING THE RECEIVER TO THE SHOP FOR A MAJOR REPAIR; PERFORMING BENCH SERVICE AND RETURNING THE SET TO THE HOME. (ONE MANUFACTURER PAID ONLY $13.00 FOR THE WORKS!)

Because of its direct time readout, this Seiko electronic timer offers 100th-of-a-second resolution with no interpolation required. Two hundred light-emitting diodes from Monsanto are used in the digital display. Seiko is planning to offer the timer for sports, industrial, and medical use. Any other applications where stop watches are now being used, but where better accuracy and resolution are desirable, are appropriate.

David Sarnoff dies

One of the foremost figures in the world of communications, David Sarnoff, Honorary Chairman of RCA, died in New York City after a lengthy illness on December 12, 1971. He was 80 years old.

General Sarnoff arrived in this country from his birthplace in Minsk, Russia, when he was 9 years old. As a young wireless operator at the Marconi station atop Wanamaker's department store, he and his wireless were catapulted to world prominence when the Titanic struck an iceberg and sank with the loss of over 1000 lives. Young Sarnoff picked up the message reporting the Titanic's distress signal and made the news available to the world. From the rescue ship he received a list of survivors and other important messages related to the disaster. He remained on duty for 72 hours, and President Taft ordered every other wireless station along the East Coast to maintain silence to prevent (continued on page 12)
PROVIDES YOU WITH A COMPLETE SERVICE FOR ALL YOUR TELEVISION TUNER REQUIREMENTS AT ONE PRICE.

VHF Or UHF Any Type $9.75.
UHF/VHF Combo $15.00.

In this price all parts are included. Tubes, transistors, diodes, and nuvistors are charged at cost.

Fast efficient service at our four conveniently located service centers.

1 year guarantee backed up by the largest tuner manufacturer in the U.S.—SARKES TARZIAN, INC.

All tuners are cleaned inside and out, repaired, realigned and air tested.

REPLACEMENT TUNER

Replacement Tuner $9.75.

This price buys you a complete new tuner built specifically by SARKES TARZIAN INC. for this purpose.

The price is the same for every type of universal replacement tuner.

Specify heater type
Parallel 6.3V
Series 450 mA
Series 600 mA

All shafts have the same length of 12”.

Characteristics are:
Memory Fine Tuning
UHF Plug In
Universal Mounting
Hi-Gain Lo-Noise

If you prefer we’ll customize this tuner for you. The price will be $18.25. Send in original tuner for comparison purposes to our office in INDIANAPOLIS, INDIANA.

TUNER SERVICE CORPORATION
FACTORY-SUPERVISED TUNER SERVICE

MIDWEST 817 N. PENNSYLVANIA ST., Indianapolis, Indiana .. TEL: 317-632-3493 (Home Office)
EAST 547-49 TONNELE AVE., Jersey City, New Jersey .. TEL: 201-792-3730
SOUTH 938 GORDON ST., S.W., Atlanta, Georgia TEL: 404-758-2232
SOUTH-EAST 1505 CYPRESS ST., Tampa, Florida TEL: 813-253-0324
WEST SARKES TARZIAN, Inc. TUNER SERVICE DIVISION 10654 MAGNOLIA BLVD., North Hollywood, California TEL: 213-769-2720

Circle 4 on reader service card
Electronics comes alive with NRI Training Kits
DISCOVER THE EASE AND EXCITEMENT OF TRAINING AT HOME THE NRI WAY

New Achievement Kit—Custom Training Kits—"Bite Size" Texts

Only NRI offers you this pioneering method of simplified "3 Dimensional" home-study training in Electronics, TV/Radio and Broadcasting/Communications. It's a remarkable teaching idea unlike anything you have ever encountered, the result of more than half a century of simplifying, organizing and dramatizing learning-at-home techniques. If you are an ambitious man—regardless of your education—you can effectively learn the Electronics field of your choice the NRI way.

NRI has simplified Electronics by producing "bite size" lesson texts averaging only 40 pages each. Dozens of illustrations open wide a picture window through which you'll see and understand practical uses of Electronics. You start out with NRI's exclusive Achievement Kit, containing everything you need to get started fast. (Illustrated at right.)

NRI has organized Electronics training to take you step-by-step from the first stages into more intriguing areas. Once you know the fundamentals thoroughly, it's easy to grasp more advanced theory and techniques. You move with confidence and enthusiasm into a new adventure filled with the excitement of discovery.

NRI has dramatized Electronics through the careful development of special training equipment that is programmed into your training systematically... beginning with your first group of lessons. Things you read about come alive in your hands as you build, experiment, purposely cause "problems" in circuits... and solve them. You learn to use test equipment, to build radios and TV sets, transmitter, or computer circuits. It's the priceless "third dimension" in NRI training... practical experience.

More than 50 years of leadership in Electronics Training

1. TELEVISION-RADIO SERVICING — Learn to fix all TV sets, including Color. Includes your choice of NRI Color Kit or 19" black-white TV Kit. Also covers radios, stereo hi-fi, etc. Profitable field spared or full-time.

2. INDUSTRIAL-MILITARY ELECTRONICS — Basics to computers. Starts with fundamentals, covers servos, telemetry, multiplexing, phase circuitry, other subjects.

3. COMPLETE COMMUNICATIONS — Operation, service, maintenance of AM, FM and TV broadcasting stations. Also covers marine, aviation, mobile radio, facsimile, radar, microwave.

4. FCC LICENSE — Prepares you for 1st Class FCC License exams. Begin with fundamentals, advance to required subjects in equipment and procedures.

5. MATH FOR ELECTRONICS — Brief course for engineers, technicians seeking quick review of essential math: basic arithmetic, short-cut formulas, digital systems, etc.

6. BASIC ELECTRONICS — For anyone wanting a basic understanding of Radio-TV Electronics terminology and components, and a better understanding of the field.

7. ELECTRONICS FOR AUTOMATION — Not for beginners. Covers process control, ultrasonics, telemetering and remote control, electromechanical measurements, other systems.

8. AVIATION COMMUNICATIONS — Prepares you to install, maintain, service aircraft in-flight and landing systems. Earn your FCC License with Radar Endorsement.

10. MOBILE COMMUNICATIONS — Learn to install, maintain mobile transmitters and receivers. Prepares for FCC License exams.

11. ELECTRICAL APPLIANCE REPAIR — Learn to repair all appliances, including air conditioning, refrigeration, small gas engines. Leads to profitable part or full-time business.

12. ELECTRONICS FOR PRINTERS — Operation and maintenance of Electronic equipment used in graphic arts industry. From basics to computer circuits. Approved by major manufacturers.

YOU GET MORE FOR YOUR MONEY FROM NRI

Mail postage-free card now for your free NRI catalog. Then, compare. You'll find—as have thousands of others—NRI training can't be beat. Read about the new Achievement Kit sent the day you enroll; about "bite size," texts and custom designed training equipment. See why NRI gives you more value. Whatever your reason for wanting more knowledge of Electronics, NRI has an instruction plan for you. Choose from major programs in TV/Radio Servicing, Industrial Electronics and Complete Communications. Or select from special courses to meet specific needs. Check the course of interest to you on postage-free card and mail today for free NRI catalog. No salesman will call. NATIONAL RADIO INSTITUTE, Electronics Div., Washington, D.C. 20016.

Available Under NEW GI BILL
If you served since January 31, 1955, or are in service, check GI line in postage-free card.

MARCH 1972 • RADIO-ELECTRONICS
new & timely
(continued from page 6)

vent interference.
After the world-wide attention focused on General Sarnoff, both the potential of radio and of the young man were recog-
nized. In 1915 General Sarnoff wrote a memorandum proposing a "radio music box" that would receive programs broadcast for public information and entertainment. In 1919, when RCA was formed at the request of the U.S. Government, Sarnoff was named Commercial Manager of the new company. He became General Manager in 1921, and Vice President in 1922. His vision in 1923 was of television as a parallel service to radio broadcasting.

In 1926, Sarnoff organized the National Broadcasting Company as a subsidiary of RCA. He was elected President of RCA in 1930 and Chairman of the Board in 1947. He retired in 1969 to be elected the company's first Honorary Chairman.

In addition to his scientific and industrial activities, General Sarnoff achieved wide recognition for his efforts in military communications, especially during World War II. He was promoted to the rank of Brigadier General in 1944 and was decorated by both the French and United States governments. A recipient of 27 honorary degrees from American colleges and universities, he also received many honors and awards from scientific, industrial, military, civic and cultural associations both here and abroad.

CRT Implosion protection
A simple and effective non-destructive method of determining the tension in bands used for implosion protection on cathode ray tubes has been developed by IBM engineer, Charles Seilio. The method, which involves no additional equipment except for a linear measuring tool, is readily adaptable to CRT production lines, and shows when the tension band around the periphery of the cathode ray tube is properly applied to provide the protection intended. Insufficient tension would result in loss of implosion protection.

As the sketch shows, the band is marked at points 1 and 2. Distance D is measured and then tension is applied to the band. As the tension increases, the band stretches (points b, c), forcing points 1 and 2 closer together. The distance D' is then measured. "The differ-

Radio-Electronics is published by Gernsback Publications, Inc. 200 Park Ave. S. New York, N.Y. 10003 (212) 777-6400
President: M. Harvey Gernsback
Secretary: Bertina Baer

ADVERTISING SALES

EAST
Stanley Levitan, Eastern Sales Mgr.
Radio-Electronics
200 Park Ave. South
New York, N.Y. 10003
(212) 777-6400

MIDWEST/Texas/Arkansas/Okla.
The Ralph Bergen Co.
6319 N. Central Ave.
Chicago, Ill. 60646
(312) 792-3646

PACIFIC COAST/Mountain States
J.E. Publishers Representative Co.,
8560 Sunset Blvd.,
Suite 601.
Los Angeles, Calif. 90069
(213) 659-3810
420 Market St.,
San Francisco, Calif. 94111
(415) 981-4527

SOUTHEAST
E. Lucian Neff Associates
25 Castle Harbor Isle,
Fort Lauderdale, Florida 33308
(305) 566-5656

SUBSCRIPTION SERVICE
Send all subscription correspondence to Radio-Electronics, Subscription Department, Boulder, Colo. 80302

MOVING? For change of address allow six weeks, furnishing both the old and new addresses and if possible attaching label from a recent issue. Otherwise please print clearly your name and address exactly as it appears on your label.

name (please print)
address
SELECT
city state zip code
Mail to: Radio-Electronics
SUBSCRIPTION DEPT., BOULDER, COLO. 80302
We compared our new deluxe preamp to a 10¢ piece of wire.

First we ran a signal through a 10¢ length of shielded cable. What came out the other end was, of course, audibly identical to what went in. Then we ran the same signal through our new TA-2000F preamplifier, and ran an A-B comparison between its output and the wire's. Both were audibly identical. As we'd expected.

This is not to say that sufficiently precise instruments could not detect audible differences between our preamp's signal transmission and a wire's. Whereas a straight wire has no distortion whatsoever, we must admit to having some—three hundredths of one per cent harmonic, and five hundredths of one per cent intermodulation, maximum, at rated output. And whereas a wire theoretically does not affect the noise, its signal-to-noise ratio is still somewhat better than the 73dB obtained through the TA-2000F's phono inputs, or even the 90dB obtained through our Aux, Tape and Tuner inputs.

But, as you'd expect, the big difference in price between our deluxe preamp and two feet of cable, buys a great deal more than just a pure, clean signal. As our preamp's 58 levers, switches, meters, knobs and jacks would indicate.

NEARLY 2,000 RESPONSE SETTINGs
Six of those controls are devoted to precise adjustment of frequency response. The calibrated, 2dB-per-step, bass and treble controls have switches that adjust their turnover frequencies, so you can choose how deeply the tone controls will affect—or not affect—the midrange. Still another switch cuts the tone controls out of the circuit altogether. And a single knob controls the sharply-cutting, 12dB-per-octave, 50Hz and 9kHz filters. Together, these six controls give you a choice of 1,935 precisely repeatable response settings including flat (10Hz-100kHz, +0.0,-2dB) response.

The facilities for tape recording are exceptional and unique, you can record on two tape decks at once, monitoring either (or your program source) at the flick of a switch. You can dub from one machine directly to the other, without external patching or connections. For straight microphone recordings, there's a mic input position on the function selector knob; for voice-over-music, there's a separate mic level control that diminishes all other input signals as it increases the microphone level.

And, of course, the two, front-panel VU meters, are as useful for testing as they are for monitoring record levels.

TOTAL INPUT AND OUTPUT FLEXIBILITY
The TA-2000F can feed two stereo amplifiers (and an additional monophonic or center-channel amp) at one time, at either a 1 volt or 300mV level. The second amplifier output could also be used for still another tape recorder, if you wish to use the ultra-versatile tone controls and filters in recording. The front-panel output jack feeds both high- and low-impedance headphones, or can be used as a tape output, by suitable adjustment of its independent level control; the same knob also controls the center-channel output.

Five of the 8 rear-panel stereo inputs have rear-panel level adjustments. A sixth—the Phono 1 input—has a switch that selects three separate input impedances at the normal 1.2mV sensitivity setting, and two more impedances at the 0.06mV setting that lets you use even the lowest-output cartridges.

96 TRANSISTORS VERSUS A SINGLE WIRE
But all these features merely make our TA-2000F more versatile than any wire. They don't explain how we can come so close to the wire's pure, unadulterated performance. That explanation will rest with our circuit designers, and with the 96 high voltage, and Field Effect transistors they used.

THE TA-3200F: AN AMPLIFIER TO TRULY COMPLEMENT OUR PREAMP
A preamplifier like the TA-2000F deserves, of course, its complement in a power amplifier. Not too surprisingly, we make one: the Sony TA-3200F. Its fully direct-coupled circuitry produces 200 watts continuous (RMS) at 8 ohms, with power bandwidth from 5 to 35,000Hz. IHF Dynamic Power is rated at 320 watts into 8 ohms (and fully 500 watts into a 4 ohm load). Its distortion, at a listening level of one half watt, matches the preamplifier's at 0.03%, at full rated output, it is still a mere 0.1%. And the signal-to-noise ratio is 110dB.

Our amplifier's facilities nearly match our preamp's. The 3200F has controls you've rarely, if ever, seen on power amps before: switch-selected stereo input pairs; a speaker selector switch, a power limiter (which holds output down to 25 or 50 watts, should you so desire), and a rear-panel switch that lets you limit bass response below 30Hz., instead of letting it extend to 10Hz.

For further information, see your Sony dealer, or write us. Or wire Sony Corporation of America, 47-47 Van Dam Street, Long Island City, N.Y. 11101.
Yokes for every use

Triad makes a variety of deflection yokes for the majority of the television receivers in use today—some complete with plug, leads and network for specific application; others with toroidal winding for multi-purpose use (YT’s); "mini-yokes" for color sets, and smaller ones yet for use in domestic and foreign sets with 20 mm. CRT neck size. Triad-Utrad makes many of the original yokes used today in popular color TV receivers. The replacement units reflect the sound engineering and workmanship that goes into the original.

FLYBACKS too.

You can service most of the popular color sets with a Triad exact replacement flyback. For your convenience, we carry a great many flybacks for new black-and-white sets—both domestic and foreign—and also most of the older models. All of these are listed in Sams Photofacts and Counter Facts. Have your distributor refer to his counter copy for the recommended Triad replacements in the sets you are working on. And, be sure to get the Triad TV Replacement Guide. Write to Triad-Utrad Distributor Division, 305 N. Briant St., Huntington, Ind. 46750.

new & timely

(continued from page 12)

ence between D and D' indicates the amount of tension on the band," said Mr. Selzo. "A minimum D-D' distance must be determined for the implosion protection threshold while a maximum D-D' figure is required to ensure the band's elastic limit is not exceeded," he continued. Once the limits are determined, this simple test assures implosion protection on cathode ray tubes.

Hugo Gernsback scholarship winner

John L. Spina of St. Louis, Missouri, has been selected by National Technical Schools to receive the Hugo Gernsback Scholarship Award for 1972. The grant of $125.00 is given annually by Radio-Electricronics magazine to each of eight students learning electronics at home study schools.

In addition to his studies with NTS, Mr. Spina works as electrical foreman in the area of environmental control installations at the Johnson Control Company. Although this is his first home study course, he has also completed a four-year electrical apprenticeship and a number of courses in air-conditioning, basic and semi-conductor electronics, and commercial blue-print reading.

Mr. Spina is 33 years old, has three teenage daughters, and for recreation enjoys water skiing and boating. About his present NTS training program he says: "I am very interested in the behavior of electronic circuitry and electronic equipment. I hope to work in the field of electronics with much more depth than I have in the past."

Free membership grant

Mr. M. L. Finneburgh, Sr., E.H.F., the Chairman of the Board of the Finney Company, announced a remarkable grant of $35,000 contributed to the cause of national service technician associations membership. The contribution was explained at the NEA Board of Directors meeting held in New Britain, Connecticut.

To qualify, a shop applies for membership in either NEA or NATESA, sending along its check for the first year's dues. When the shop is accepted, the association will forward the new member a merchandise certificate in the amount of the first year's dues, which can be used on the purchase of Finco products at dealer's net cost. In this way the shop dealer not only gets back the cost of his membership in the association, he also makes his normal mark-up on the merchandise.

The $35,000 grant from the Finney Company, makers of antennas, accessories, MATV systems, components, and other electronic merchandise, covers the dues for 1,000 new members.

Leap seconds

A new time scale incorporating "leap seconds" went into effect on January 1st, by international agreement. "Leap seconds" are actually atomic seconds, slightly shorter in duration than the astronomical or earth seconds previously used. These leap seconds, or earth seconds, are added when needed to make the new time scale agree with time kept by the earth's rotation. Those government and scientific laboratory clocks, precisely set, will need resetting about once a year, to add a leap second. To the rest of us, with watches that vary a second or more in a year, the change won't make any noticeable difference.

The term "leap second" is used the same way "leap year" is used: to describe a rectification made periodically to compensate for slight variations in our calculations of the duration of time caused by using the earth's rotation and motion as part of our standard.

Home VTR's

RCA is becoming increasingly active in the videoplayer field. While still working on its holographic videoplayer system, which is still several years off, it now working to get competitive manufacturers to adopt its SelectaVision video tape system as the standard (both the holographic and the magnetic systems will use RCA's Selecta-Vision trade name). Although RCA's tape system uses the same ¼ inch tape system as the Sony system, the two are not compatible. RCA claims its magnetic recording system is potentially the lowest priced, most reliable method proposed to date, but at this time no technical details have been released.

R-E
GREATEST TV Schematic Bargain EVER Offered
NOW-Complete TV Schematics for less than 5¢ each

COLOR TV BLACK & WHITE
Covers ALL Coverage for

TV TECH/MATICS - 8 Giant Volumes
Cover 99% of Color TV-4 Years B & W!
Here are FABULOUS savings on nationally-known TV schematic and service data. Here is everything you need to fill your vital service and data needs for TV model years 1965 through 1968... plus COLOR TV coverage from 1960 through 1968! What it amounts to is a low cost of less than $9.00 per year for your TV service data... with an extra 5 years of Color TV coverage thrown in for good measure!
Compare that with the over $100 a year you may now be paying for comparable information.

SERVICE DATA FOR MORE THAN 20 BRANDS
TV TECH/MATICS is the ideal Service Data package for today's modern technician. It includes complete schematic diagrams and vital servicing data for every TV receiver produced by more than 20 leading American Manufacturers for 1965, 1966, 1967, and 1968. All diagrams and servicing details are completely authentic, based on information provided by the original equipment manufacturers. Each year's coverage is permanently bound into two convenient-to-use volumes which open flat to 11" x 29 1/2", ready to provide you with instant service data at your workbench. Some of the diagrams are as large as 58" x 22".

EASY TO USE
TV TECH/MATICS is easy to use. Brand names are arranged alphabetically by model year. No more hunting through several file drawers to find the schematic you need! And at the special low price, think of the savings you will enjoy on your schematic needs... think of the time you'll save by having the schematics you need right at your fingertips in handy, permanently-bound form!
TV TECH/MATICS is the ideal way to cut down your schematic expenses, and to enjoy the convenience of having all your data needs right at your fingertips.

8 BIG VOLUMES
Regular Price $79.60
NOW YOURS FOR ONLY $34.95

HERE'S WHAT YOU GET
You receive 8 BIG volumes in all, two for each year from 1965 through 1968. Included is a clearly detailed and annotated TV schematic diagram for each specific model. You also get complete replacement parts lists, alignment instructions, tube and component location diagrams, plus key waveforms and voltage readings... all the information you need to service over 90% of the TV receivers you'll encounter!

STREAMLINED AND CONVENIENT
All the information for a given model is contained on two facing sheets. The special bound-leaf format allows pages to lie flat when open. Each volume is organized alphabetically by manufacturer, then numerically by model number. In addition, a handy Chassis/Model Finder is bound into each volume. Regular list price for each year's coverage — 2 BIG volumes — is $19.90. All 8 volumes normally sell for $79.60. Your price is only $34.95... a savings of nearly $45.00!

MONEY-BACK GUARANTEE
You MUST be satisfied that TV TECH/MATICS is the greatest bargain in TV Schematics ever offered. Order at no risk for FREE 10-day examination. Prove to yourself they are worth many times the price. You can return them in 10 days for full refund or cancellation of invoice. No need to send money. But, the supply is limited, so fill-in and mail the NO-RISK coupon today to obtain these time-saving, money-making manuals.

- CONTENTS -

CONTENTS 1965 MODELS
Covers all 1965 models for: Admiral, Airline, Andrea, Coronado, Curtis Mathes, Dumont, Electrowave, Emerson, Firestone, General Electric, Magnavox, Motorola, Muntz, Olympic, Packard-Bell, Philco, RCA Victor, Sears-Silverstone, Setchell-Carlson, Sylvania, Truetone, Westinghouse, and Zenith. Complete schematic diagrams, plus key waveforms and voltage readings... all the information you need to service over 90% of the TV receivers you'll encounter!

CONTENTS 1966 MODELS
Covers all 1966 color and B & W models of: Admiral, Airline, Andrea, Coronado, Curtis Mathes, Dumont, Emerson, General Electric, Hoffman, Magnavox, Motorola, Olympic, Packard-Bell, Philco, RCA Victor, Sears-Silverstone, Setchell-Carlson, Sylvania, Truetone, Westinghouse, and Zenith. Complete schematic diagrams, plus key waveforms and voltage readings... all the information you need to service over 90% of the TV receivers you'll encounter!

CONTENTS 1967 MODELS
Covers all 1967 color and B & W models of: Admiral, Airline, Andrea, Coronado, Curtis Mathes, Dumont, Emerson, General Electric, Hoffman, Magnavox, Motorola, Olympic, Packard-Bell, Philco-Ford, RCA Victor, Sears-Silverstone, Setchell-Carlson, Sylvania, Truetone, Westinghouse, and Zenith. Complete schematic diagrams, plus key waveforms and voltage readings... all the information you need to service over 90% of the TV receivers you'll encounter!

CONTENTS 1968 MODELS
Covers all 1968 color and B & W models for: Admiral, Airline, Andrea, Coronado, Curtis Mathes, Dumont, Emerson, General Electric, Hoffman, Magnavox, Motorola, Olympic, Packard-Bell, Philco-Ford, RCA Victor, Sears-Silverstone, Setchell-Carlson, Sylvania, Truetone, Westinghouse, and Zenith. Complete schematic diagrams, plus key waveforms and voltage readings... all the information you need to service over 90% of the TV receivers you'll encounter!

PUBLISHER'S LIST PRICE
$9.90

PUBLISHER'S LIST PRICE
$19.90

PUBLISHER'S LIST PRICE
$19.90

PUBLISHER'S LIST PRICE
$19.90

PUBLISHER'S LIST PRICE
$19.90

LARGE PAGES contain complete circuit schematics, replacement parts lists, alignment instructions critical part locations, important waveforms and voltage readings.

NO RISK COUPON—MAIL TODAY

| TAB Books, Blue Ridge Summit, Pa. 17214 |
| □ I enclose $34.95 for which please send me your complete 8-Volume Tech/Matics Schematic offer postage prepaid. |
| □ Please invoice me for $34.95 plus postage. Same return privileges. |

Name
Company
Address
City State Zip
(Paid orders shipped prepaid. Pa. resident add 6% Sales Tax. Outside USA 10% extra.)

RE 22

Circle 6 on reader service card

MARCH 1972 • RADIO-ELECTRONICS

15
letters

THE "THIRD WIRE"
I just read Jack Darr's Appliance Clinic in the December 1971 issue of Radio-Electronics, the one about the "Third Wire." It is the best I've read.

The three-wire outlet is much more common here in the Southwest, where much of the construction is relatively new, and where the codes are apparently very strict. There is a new safety problem that comes up under these conditions that might deserve mention.

It is just a fact of life that many people here have both 3-wire and 2-wire appliances in their kitchens. All the 3-wire appliances have a grounded metal case (if it is metal), which means that there are far more chances for touching a "grounded object" than there used to be. And there is still a pretty good chance that a 2-wire appliance will develop leakage to its metal case.

The probability of getting a shock is the same as the probability of touching both a hot and a grounded object at once. The 3-wire appliances increase the probability of touching a grounded object, at the very same time they decrease the probability of touching a "hot" object. The net result is not easy to be precise about, but my guess is that here there may be more probability of getting a shock, not less. There is such a proliferation of small, cheap, never-serviced, 2-wire kitchen appliances these days, and they sit next to stoves, refrigerators, dishwashers, etc., that are grounded.

In my case I found a situation in two different apartments with furnished kitchens where the 2-wire refrigerator was hot (enough to light an incandescent bulb). The nearby electric stove was grounded. Fortunately, I fixed it before anything happened, but I wonder how lucky others have been.

JOHN HUNTELY
Las Vegas, Nevada

TESTING CAPACITORS
Henry Rinton's article in the December 1971 issue of Radio-Electronics, "Testing Capacitors Fast," describes an extremely practical gadget. For the past five years I've been using a similar device so I'd like to clarify a few things and make some suggestions for improvement.

This capacitor checker is really just a leakage checker. It shouldn't be used to estimate capacitance, especially electrolytic capacitance, where the inherent leakage of these units would upset your estimations. But the unit is perfect for showing leakage of small capacitors—
the real cause of trouble in non-electrolytics. It will work fine for checking leakage in capacitors down to 0.5 pF, instead of 0.001 µF as stated in the article.

Incidently, an interesting use for the checker is checking leakage between the windings of i.f. transformers. This method will spot bad i.f.'s fast. (Also diodes!)

A word of caution about using the checker around solid-state components. The current and voltage can wipe out FET's and transistors faster than you can say Radio-Electronics! But because of the ratings of the parts in these circuits, it is very unlikely that you would use the device here.

Here are a few improvements that will provide better performance from this project. The first addition, shown in Fig. 1, is an spdt push button switch. By adding it you won't get a shock from a charged capacitor or from the leads of the unit. This unit can be extremely sensitive to leakage, so the circuit shown in Fig. 2 may be necessary.

I hope these modifications and suggestions help. I'm presenting them to aid the reader and not to knock the author of this extremely interesting article.

GARY MCCLELLAN
Fort Huachuca, Ariz.

Fig. 1—adding an SPDT switch provides a measure of safety. Wire the switch so that you push to test, release to discharge.

Fig. 2—_eliminate false indications of leakage by adding S2 and two resistors to control sensitivity and accuracy.
Save money and improve car performance at the same time.

Maintenance costs go down and performance increases when you put a Delta Mark Ten Capacitive Discharge Ignition System on your car.

For eight years we've been telling you about the tremendous advantages of CDI systems. We've promised and delivered better performance for cars, boats and trucks. Hundreds of thousands of satisfied customers testify to that fact. However, during these very years, we've been asked over and over again, "If CDI systems are so great, why doesn't Detroit adopt them?" It's taken a long time, but finally Detroit has recognized the value of the CDI system. Chrysler, long noted for excellence in engineering, is now installing CDIs in new cars. Have you seen their ads? Heard their commercials? They're repeating what we've said for years. CDI systems not only improve performance, but eliminate the need for most tune-ups. If you're not buying a new car, but want new car performance, put a Mark Ten or Mark Ten B on your present automobile. If you're purchasing a new car with no CDI system, install a Mark Ten or Mark Ten B and enjoy the benefits of low maintenance and increased performance.

HERE'S WHAT A MARK TEN WILL DO FOR YOU:

Mark Ten and Mark Ten B — up to 20% increase in gasoline mileage
- Eliminates 3 out of 4 tune-ups
- Installs in only 10 minutes
- Spark plugs last 3 to 10 times longer
- Dramatic increase in performance
- Promotes more complete combustion
- Instant starts in all weather.

Mark Ten B — Improves combustion, reducing contaminants
- Handy switch with redundant contacts for instant return to standard ignition
- Applicable to ANY 12 volt negative ground engine
- Eliminates starting and idle problems
- Longer spark duration during cranking and idling.

Mark Ten (Assembled) $44.95
ppd

Mark Ten (Deltakit) $29.95
ppd

Kit available in 12 volt only, positive or negative ground

Mark Ten B $59.95 ppd
(12 volt negative ground only)

ORDER TODAY!

Superior Products at Sensible Prices

Antique Radio Buffs Revisited

In the November 1971 issue of Radio-Electronics we called for information from our readers about clubs and associations for antique radio fans, and sources to purchase antique radios. Although the response was not overwhelming, we did receive a few good leads we thought we would pass on to you now.

Society of Wireless Pioneers
P.O. Box 530
Santa Rosa, Calif. 95402
William A. Brennan, Executive Director

Antique Wireless Association
Holcomb, New York 14469
Bruce Kelley, Secretary

Three gentlemen told us that they have collections of old radios. The makes include Alwater Kent, Radiola, Westinghouse, etc. They also have tubes, horns, parts, electric radios and books and manuals on the subject.

Walter J. Christy, Jr. 423 Hemlock Lane
Rancocas Woods, N.J. 08060

Robert A. Lane
2603 Independence Ave.
Kansas City, Missouri 64124

Wiford D. Wilkes
Box 43
Brisbin, Pa. 16620

They ask that if you write to them you include a self-addressed, stamped envelope for a reply.

If you know of any associations or clubs for antique radio enthusiasts, or if you stock old radios, let us know and we'll let all Radio-Electronics readers know.

Editor's Note: A good source of old radios is the "swap and flea" markets, often found operating in drive-in movies on Sunday afternoon.

The blue ones were your pills. You took the brown ones . . . some capacitors.
10 Reasons why RCA Home Training is your best investment for a rewarding career in electronics:

Performing transistor experiments on programmed breadboard — using oscilloscope.
1 LEADER IN ELECTRONICS TRAINING
When you think of electronics, you immediately think of RCA... a name that stands for dependability, integrity, and pioneering scientific advances. For over half a century, RCA Institutes, Inc., a subsidiary of RCA, has been a leader in technical training.

2 RCA AUTOTEXT TEACHES ELECTRONICS FASTER, EASIER, ALMOST AUTOMATICALLY
Beginner or refresher, AUTOTEXT, RCA Institutes’ own method of programmed Home Training will help you learn electronics more quickly and with less effort, even if you’ve had trouble with conventional learning methods in the past.

3 WELL PAID JOBS ARE OPEN TO MEN SKILLED IN ELECTRONICS
RCA Institutes is doing something positive to help men with an interest in electronics to qualify for rewarding jobs in this fascinating field. There are challenging new fields that need electronics technicians...new careers such as computers, automation, television, space electronics where the work is interesting and earnings are greater.

4 WIDE CHOICE OF CAREER PROGRAMS
Start today on the electronics career of your choice. On the attached card is a list of “Career Programs”, each of which starts with the amazing AUTOTEXT method of programmed instruction. Look the list over, pick the one best suited to you and check it off on the card.

5 SPECIALIZED ADVANCED TRAINING
For those already working in electronics or with previous training, RCA Institutes offers advanced courses. You can start on a higher level without wasting time on work you already know.

6 PERSONAL SUPERVISION THROUGHOUT
All during your program of home study, your training is supervised by RCA Institutes experts who become personally involved in your efforts and help you over any “rough spots” that may develop.

7 HANDS-ON TRAINING
To give practical application to your studies, a variety of valuable RCA Institutes engineered kits are included in your program. You get over 250 projects and experiments and as many as 22 kits in some programs. Each kit is complete in itself. You never have to take apart one piece to build another. They’re yours to keep and use on the job.

8 FCC LICENSE TRAINING—MONEY BACK AGREEMENT
Take RCA’s Communications Career program—or enter with advanced standing—and prepare immediately for your 1st, 2nd, or 3rd class FCC Radio Telephone License examinations. RCA Institutes money-back agreement assures you of your money back if you fail to pass the FCC examination taken within 6 months after completing the course.

9 CONVENIENT PAYMENT PLANS
You get a selection of low-cost tuition plans. And, we are an eligible institution under the Federally Insured Student Loan Program.

10 RCA INSTITUTES IS FULLY ACCREDITED
RCA Institutes is an accredited member of the National Home Study Council. Licensed by N.Y. State—courses of study and instructional facilities are approved by the State Education Department.

VETERANS: TRAIN UNDER NEW GI BILL
SEND ATTACHED POSTAGE PAID CARD TODAY! FREE DESCRIPTIVE BOOK YOURS WITHOUT OBLIGATION!
If reply card is detached, send this coupon today.

RCA INSTITUTES, INC.
DEPT. 75B-205-0
320 W. 31 ST.
NEW YORK, N. Y. 10001

Please send me FREE illustrated career catalog. I understand that I am under no obligation.

Name __________________________
Address _________________________
City _____________________________
State ____________________________ ZIP __________
Age ________________
Veterans: Check here □

Construction of Multimeter.

Construction of Oscilloscope.

Temperature experiment with transistors.

MARCH 1972 • RADIO-ELECTRONICS 21
IN ALL-ELECTRIC APPLIANCES, THE CONTROLS ARE SWITCHES. IN ANY APPLIANCE USING GAS, WATER, OR ANYTHING ELSE BUT ELECTRICITY, WE NEED CONTROLS. THEY, TOO, ARE SWITCHES. BUT THEY "SWITCH" WATER, GAS, ETC. TO GET AUTOMATIC OPERATION OF THE UNIT, THEY ARE ELECTRICALLY-OPERATED.

Let's see how they're made.

First and foremost, they must have one feature; they must be "Fail-Safe"! In other words, if anything at all goes wrong; the electrical power supply fails, the gas supply fails, or anything else, the instant and automatic reaction of these devices must be to "SHUT OFF." So, there's the one most important thing to look for, when servicing; if the unit lets anything go through with no power applied, it is BAD, and must be fixed.

The basic design of these units includes some sort of spring-loaded "actuator." The spring holds the valve mechanism in the off or closed position; when power is applied, the actuating coil pulls a plunger up, which opens the valve. Fig. 1 shows the "schematic" of this kind of unit. The spring forces the valve itself into the seat, keeping it closed. The valve itself may be of brass or any other material, but the upper part, the cylinder, will be made of soft iron. So, when electrical power is applied to the actuating coil, this rod is lifted or pulled into the coil, opening the valve. This is called a "solenoid" (and some day I'm going to look up the origin of that word.)

As long as everything is copasetic; normal operating power applied, the valve stays open. If the power fails, or if the regular "turn-off" switch opens (control thermostat, etc.) the spring pushes the valve shut, quickly and positively. This basic action leads to a distinct resemblance between all types of these valves, whether they control gas, water, oil or anything else.

The operating voltage will vary, of course. Some work on 117 volts ac, (or even 240 Vac), others work on 24 volts ac (from a small transformer) and some even work on the very minute voltages developed by a thermocouple (See "Millivolt Systems" in the November, 1971 issue) This will give us different values for test readings, but we can always use the same basic check; apply normal operating power to the thing and see if it works!

For a general rule, if we can read the normal operating voltage across the coil terminals, but the valve will not open, it's defective. In most cases, you'll hear a little "click" or thump when the valve operates. If the control has been taken off, for testing, you can blow into the input connection, then apply power and see if it opens. Simple but effective.

If the coil is open, it will show up on an ohmmeter test. The resistance of the coils will vary. The higher the operating voltage, the lower the coil-resistance. Some of the millivolt-system coils will have a pretty high resistance—they need quite a few turns, of fine wire, to develop a usable magnetic field from such a little supply. By the way, in some of the millivolt systems, you will find coils that are not intended to pull the valve open. When the thermocouple heats up, it will develop enough power to hold the valve open, but you will have to push a lever, etc., to open it manually. Others are designed to pull the valve open; often with what is called a "bleeder" diaphragm. The gas pressure helps to open the valve. More on this in a future issue.

If the coil checks good, but the valve will not open, there's a good possibility that the actuating rod in the solenoid is being bound or jammced by dirt, foreign matter, etc. that has gotten into the valve from the gas or water supply. A great many of these can be taken apart and cleaned without too (continued on page 75)
THE TIMESAVERS ARE HERE FROM THE LEADER

MODEL LSW-330 - SOLID STATE, POST INJECTION SWEEP-MARKER GENERATOR. Compact utility unmatched for color alignment, testing and servicing! Accurate, stable, rugged, it provides all sweep and marker signals for circuit alignment of video and sound IF's; chroma, too! Features automatic limit control and a 10.7MHz sweep for FM-IF use. A great time saver! $409.95

MODEL LBO-301-3" PORTABLE TRIGGERED SCOPE. All solid state, it's the only 3" scope with vertical and horizontal calibration plus all the features you need for bench or field use: DC to 7MHz bandwidth, 1µs/ div. sweep speed, 5X magnification (max. speed 0.2µs/div.), and a horiz. front panel design. A space-saver and a time saver! $374.95

MODEL LBO-54B-5" WIDEBAND OSCILLOSCOPE. Calibrated vertical input; 10MVp-p/cm sensitivity; DC to 10 MHz bandwidth; high linearity sweep range with automatic synch; distortion-free displays! This high performance Leader scope is a real money maker for every service operation. $284.95

MODEL LCG-384 - MINI-PORTABLE, BATTERY OPERATED COLOR BAR GENERATOR. With its digital clock binary system for high quality test patterns, the LCG-384 uses just four 1.5V penlight cells and fits into all tool caddies. Has 2 TV selectable ch. frequencies; 4 basic patterns including gated rainbow; and is fully protected against ambient temperature and line voltage changes. With carry case and extra battery compartment. $129.95

Your time is money. The more you save of one the more you make of the other. That's why LEADER instruments are time savers... and money makers, for you! They're designed and built to the highest performance standards, with rugged reliability and precision. What's more LEADER Instruments combine more features at far more realistic prices than competitive products. They are simple to use, worry free — clearly your best value in test instrumentation. See your distributor. He carries a complete line of LEADER Instruments — ready to save time and make more money for you.

*Prices subject to change without notice.

Send for catalog.

Seeing is believing.
UNANIMOUS ACCLAIM!

First test reports on the Zero 100 by the industry's leading reviewers

Brief excerpts reprinted below. Let us send you the full reports.

HIGH FIDELITY Sept. 1971

Altogether, this new arm strikes us as an excellent piece of engineering; it probably is the best arm yet offered as an integral part of an automatic player. Operation is simple, quiet, and reliable. All told, we feel that Garrard has come up with a real winner in the Zero 100. Even without the tangential-tracking feature of the arm, this would be an excellent machine at a competitive price. With the novel (and effective) arm, the Zero 100 becomes a very desirable "superchanger" with, of course, manual options.

AUDIO July, 1971

The Zero-100 performed just about as we expected after reading the specifications. Wow measured .08 per cent—that is in the band from 0.5 to 6 Hz. Flutter, in the band from 6 to 250 Hz, measured .03 per cent, both of which are excellent. Thus, the Zero 100 is certainly the finest in a long line of automatic turntables which have been around for over 50 years. We think you will like it.

Stereo Review July, 1971

Indeed, everything worked smoothly, quietly, and just as it was meant to. If there were any "bugs" in the Zero 100, we didn't find them. Garrard's Zero 100, in basic performance, easily ranks with the finest automatic turntables on the market. Its novel arm—which really works as claimed—and its other unique design features suggest that a great deal of development time, plus sheer imagination, went into its creation. In our view, the results were well worth the effort.

Popular Electronics August, 1971

Our lab measurements essentially confirmed the claims made by Garrard for the Zero 100. We used a special protractor with an angular resolution of about 0.5°, and the observed tracking error was always less than this detectable amount. The tracking force calibration was accurate, within 0.1 gram over its full range. The Garrard Zero 100 operated smoothly and without any mechanical "bugs."

ROLLING STONE Sept. 16, 1971

This unit has every imaginable gadget and gewgaw one might possibly desire, and it works. And considering how much it does, and how well it does it, at 190 bucks it doesn't even seem expensive. The changer has so much in it that an analysis of its innards is almost a case study in record player design.

A genuine step upward in automatic turntables

GARRARD ZERO 100

The only automatic turntable with Zero Tracking Error

$18950

less base and cartridge
Matrix system makes it possible to put four channels of audio into the grooves of a conventional stereo record

4 CHANNEL STEREO

4 Channels on a Disc

CBS - Sony SQ matrix

by FRED PETRAS

QUADRAPHONIC-FOUR-CHANNEL-SOUND HAS ACTIVELY been on the audio scene for close to three years, but tens of thousands of sound buffs are still enjoying two-channel stereo—and are bypassing this new medium that was to "revolutionize" the world of sound. They've read every word of every article about the several approaches to four-channel sound, but are still biding their time because they are not yet fully convinced that four-channel sound is that much better than two-channel, and, if it is, who has the RIGHT system to reproduce it?, and who has enough software (records, tapes) to really make the investment worthwhile?

Four-channel stereo sound was conceived as a discrete system, in which four distinct channels of sound information would be engraved on four separate tracks of tape, the tape played through a four-channel stereo machine into four channels of amplification, with the sound emanating from four speaker systems. The first commercial tapes of such sound were introduced back in 1961 by Nortronics Co., Inc., under the "Stereo-Four" (patented) designation. But the concept was apparently ahead of its time, and faded from the audio scene.

The multi-source sound idea reappeared in the summer of 1969, under the aegis of Vanguard Recording Society which had been experimenting with the concept for about four years, and Acoustic Research, a company that conducted the first public demonstrations of the four-channel Vanguard tapes labelled "Surround Stereo." Columbia Records joined with experimental 4-channel tapes, which were also demonstrated by AR (Acoustic Research) in its New York City and Cambridge, Mass., demonstration rooms.

In September of 1969, Peter Scheiber, an audio buff/engineer/musician, startled the industry with a "compatible" four-channel stereo phonograph matrix record. It was heralded as the salvation of the new medium since it could be played in the home on a standard stereo record playback system (in conjunction with add-on decoder, etc.), be broadcast in FM stereo, and heard on existing FM stereo receivers (equipped with the needed add-ons).

In the spring of 1970 along came David Hailer, then president of Dynaco, with the "Dynaquad" system, which derived four-channel sound from existing stereo LP records and decoded matrixed records at moderate cost, via a $30 enhancer/decoder and an additional pair of speaker systems.

Shortly thereafter, RCA Records debuted its "Q-8" 8-track, 4-channel discrete cartridge tapes, and Motorola Automotive Products announced that it would produce auto tape players for them. Simultaneously, RCA Corp. showed prototypes of the first low-priced 4-channel home cartridge tape equipment, in compact form, for marketing later in the year.

At the Consumer Electronics Show in June 1970, Sansui Electronics Corp. bowed its QS-1, another form of disc matrixing and playback. In September, JVC announced its CD-4 discrete four-channel disc system, and demonstrated the concept at the October Audio Engineering Society annual meeting. (See separate story on the JVC system elsewhere in this issue.) It was at this same meeting that Electro-Voice took the wraps off its E-V "Stereo-4" matrix system, applicable to discs, tapes and broadcasts.

During this period, and beyond, other were experimenting with various approaches to four-channel sound, in cassette form, in record form, and in radio broadcast form.

And during this period the audio marketplace was seeing all kinds of action—and inaction. Droves of people were coming into stores, listening, asking questions, comparing the sparse offerings of equipment and software, but buying little. Discrete reel tapes were in minimal supply; they were nearly double the price of regular stereo tapes. Full-capability reel tape equipment was beyond the reach of many audiophiles.

MARCH 1972 • RADIO-ELECTRONICS 25
Q-8 tapes were in short supply, stocks of equipment for them were meager. The concept was wrong, said industry observers. Four-channel sound would never take off while restricted to the medium of tape, even if availabilities improved and prices dropped. It would not become popular until it was available in LP disc form—the most widely used medium for prerecorded sound—and in FM stereo broadcast form.

Despite all the announcements about 4-channel phonograph record systems, the pickings were slim in terms of equipment, and in terms of records, the latter largely from small companies, lesser-known artists. What was needed said the industry observers, was “a BIG company willing to get into the four-channel sound business with both feet.” The thinking was that a big company with a big roster of “name” artists and a lot of influence could be instrumental in bringing about a standard, ending the problem of non-compatibility between the quadraphonic record systems, another element keeping four-channel sound from becoming the mass-market medium it was supposed to become.

Enter Columbia Records, with a new matrix system called “SQ”—for stereo/quadraphonic—developed by its CBS Laboratories, and co-sponsored by Sony Corp., giant Japanese electronic equipment manufacturer and also a producer of phonograph records in Japan . . .

How the SQ system works

Like most of today's stereo recordings, an SQ disc is recorded in a studio on a multi-track master tape recorder with sound picked up from as many as 24 microphones and inscribed on the tape. The SQ master tape is then edited or “mixed down”, a process that converts the many channels into the four that are basic 4-channel sound.

Next, these four channels are converted via an **SQ encoder** into two channels of sound that are “cut” into the **SQ master record**. Heart of the SQ encoding process is a new double-helical modulation concept. In addition to retaining the traditional 45-degree/45-degree lateral-vertical left and right channel modulations, which evolve as left and right front sound channels, the system provides additional modulations for the remaining two channels—left back and right back. These recording stylus modulations are circular; as the master record rotates and the groove advances, a clockwise helix is produced for the left back channel, and a counterclockwise helix is produced for the right back channel.

The stylus during playback does not actually rotate clockwise or counterclockwise and follow the conventional 45/45 groove tracing at the same time. What is actually happening is that all four channels of information combine to form a complex single stylus motion that represents the four individual signals. The record groove that the stylus traces is shown in the photo.

To hear the program material reproduced as 4-channel sound on playback, an **SQ decoder** is needed, along with four channels of amplification and four speaker systems, plus of
course, a record player. The latter can be any good stereo model, preferably—but not necessarily—with a high-compliance cartridge. The playback system can be made up of an existing two-channel stereo component-type outfit with tape monitoring facilities, plus two additional speaker systems, and a decoder such as the Sony SQA-200 that contains the additional two amplifier channels. Or a system can be made up of a four-channel receiver, straight SQ decoder, plus four speaker systems and record player. There are other possible combinations, including one built around a four-channel receiver/Q-8 tape cartridge player from CBS’ Masterwork division. (By the time this appears in print there will probably be a fair supply of other SQ-oriented equipment to choose from.)

In playback the SQ decoder senses the four basic SQ modulations from the phono cartridge, separates them, and produces four new signals, each containing predominantly the sounds of the corresponding original four channels before they were encoded. These signals are fed to the four amplifier circuits and four loudspeaker systems placed in four corners of the listening room or listening area, and result in a highly realistic reproduction of the original quadraphonic master tape. Some reports indicate it is almost as realistic as discrete four-channel sound—the ultimate.

An SQ record can be played on regular two-channel stereo phonograph equipment and sound not only as good as any regular stereo disc, but with an added spaciousness that enhances the listening pleasure. Thus, a person wanting to go the SQ route can buy and enjoy SQ records as they are released, on his present equipment, while waiting for the day that he invests in an SQ playback system. According to Columbia Records, playing an SQ record on conventional stereo equipment will not harm the records four-channel capabilities in any way.

Unlike some other matrixing approaches, the SQ system permits FM stereo broadcasts of SQ records without the need for an encoder at the radio station—a saving of major importance to smaller stations around the nation. Equally important, the FM station can broadcast SQ now. However, the listener does need the full complement of equipment as noted above to receive the program as four-channel sound. Otherwise it will be received as conventional two-channel stereo.

The foregoing is the basics. But there are other ramifications to the SQ concept. Columbia states that center front sounds are recorded in the same manner as with a conventional stereo record; they result in a horizontal or lateral modulation of the groove. Furthermore, the sound can be "panned"—caused to move—between the front left and front right loudspeakers in just the same way as with traditional stereo records. This similarity is the basis for the excellent compatibility of SQ with regular stereo record playing equipment.

Sound can also be made to move at will between any adjacent pair of speakers. Any sound at the center back, Columbia claims, is fully reproduced and accurately placed in four (continued on page 83).
"At ComSonics we encourage all our technicians and engineers to enroll with CREI. Know why?"

WARREN BRAUN, President, ComSonics Inc., Virginia Engineer Of The Year, ASE International Award Winner, CREI Graduate
"As a CREI graduate myself, I know the advantages of their home-study programs. CREI education has proven an excellent tool of continuing education for our employees and for me. And I strongly believe in CREI's ability to teach a man to learn independently and to use reference materials on his own.

As President of ComSonics, I see changes taking place in our Electronics business every day. We're in closed circuit TV and acoustical engineering... and pioneered in Cable TV. CREI gives my men the knowledge they need to work in new areas... CREI's new course in Cable TV is an example. The CATV industry is expected to grow 250% in the next three years. I know the opportunities in Cable TV. I designed one of the first CATV systems in 1950. But technical advances are constantly changing the field. And since CREI's experts know most of what's going on in all areas of Electronics, I know that CREI can give my men some of the important, specialized training they'll need to maintain our position in Cable TV and our reputation in Electronics.

"We've interviewed many technicians and engineers for jobs in the past year and had to reject them because their knowledge is archaic and out-of-date. A man is of no value to us if he doesn't keep up-to-date."

Some of the biggest names in electronics buy CREI courses for their own employees. CREI students and graduates prove themselves on the job. They move ahead of the pack by earning promotions and salary increases.

The Future Belongs To You

You've been in Electronics long enough to know that the field is changing more rapidly than ever. New industries, like Cable TV, are born almost overnight. But surveys show that three out of four men now working in Electronics aren't technically qualified to work in these new areas. Clearly, the future will belong to the man who gets the right education now.

Start Learning At Home

But what you learn depends on which school you choose. Here's why CREI is among the best.

With the CREI program you study at home. At your own pace. There are no classes to miss, no work to make up. Each lesson is explained in clear, easy-to-read language. That's why many men do far better in home study than they ever did in school—even if they've been out of school for years. And the study habits they learn from CREI are sustained through life.

As a CREI student, you'll be assigned to an experienced instructor who will grade your assignments and offer constructive comments and criticism. If there's a special problem, the instructor will work with you until you understand it fully. You'll receive personal attention from your instructor because he deals with each student individually—as a class of one.

What Will I Learn?

You'll be learning the latest in advanced technology, geared to specific industry programs. Both theory and practical material are presented to meet all phases of job-related training needs.

CREI courses are written for the man who knows basic Electronics, but whose advancement depends on keeping his technical know-how current. You choose what you want to learn. You study subjects which help you grow and advance in your present job and which relate to your career objectives. CREI offers you the opportunity to continue your education throughout your working life.

Constantly Up-Dated Courses

Because of rapid changes in Electronics, CREI courses are constantly being revised and up-dated by professionals who work in Electronics every day. New developments are included as quickly as they occur. Right now, CREI students are getting the latest up-to-the-minute information on such things as Cable TV, LSI chips, microcircuitization, lasers and masers, telemetry systems, servomechanisms, and data links. If it's new in electronics, CREI—and you—will know about it!

Developed By Top Scientists And Engineers

CREI maintains a full-time advisory faculty of some of the top names in Electronics. Each is a specialist in his own field, an expert who plans and develops CREI lesson material. After each expert submits his course plan, it is carefully reviewed and written by the CREI educational staff. Then each course is broken down into individual lessons. And they make certain each lesson is clear and self-explanatory. Just the right length for easy understanding and effective study.

How Can I Qualify?

If you've read this far, your interest in getting ahead in Electronics is evident. Send for our famous book on how to prepare for tomorrow's jobs in Electronics—the book that has helped thousands of men just like you get ahead. For your free copy, simply mail postpaid card today.

CREI, A Division of the McGraw-Hill Continuing Education Company
Dept. E 1403C, 3939 Wisconsin Avenue, Washington, D.C. 20016

Please mail me free book describing CREI Programs.

I am interested in: College Credits for CREI Study of Space Electronics and Electronic Engineering Technology

Name

Address

City State Zip Code

Employed by

Type of Present Work

APPROVED FOR TRAINING UNDER NEW G.I. BILL

MARCH 1972 • RADIO-ELECTRONICS 31
4 Channels on a Disc

RCA-PANASONIC-JVC discrete

4 independent full-frequency channels in one record groove! Playback takes a special cartridge and decoder.

by DAVID LACHENBRUCH
CONTRIBUTING EDITOR

FOR ITS ENTRY INTO THE FOUR-CHANNEL RECORD FIELD, RCA Records has chosen a discrete system based on the principles of multiplex broadcasting technology. The system, currently known as CD-4 (for Compatible Discrete 4-channel)—although RCA mayrename it for commercial purposes—actually is the outgrowth of a technique developed eight years ago by the Victor Corporation of Japan (also known as JVC) to provide three-channel sound from phonograph records. Finding no market for three-channel discs, JVC shelved the development, but reworked it in 1970 as a four-channel system in light of the new interest in quadraphonics.

Last year, JVC introduced to the Japanese market the first CD-4 playback equipment and records, including some made from RCA master tapes. JVC has no corporate relationship with RCA, but is the licensee for RCA Records in Japan—that is, it manufactures and distributed discs there featuring RCA artists and occasionally bearing the RCA label. RCA became interested in the CD-4 system in its search for a method of recording and reproducing discrete four-channel material on phonograph discs as an alternative to the use of matrixing techniques which it regarded as "simulated four-channel."

Although RCA decided JVC's CD-4 system was the best available method for putting quadraphonics on record, it also found some drawbacks, and last summer it started a crash program to eliminate them before introducing discrete four-channel records in the United States. The major disadvantage was the lack of total and universal compatibility with two-channel stereo systems, which has necessitated the issuance in Japan of two versions of each record release—CD-4 and conventional stereo—reminiscent of the days when stereo and mono discs were issued for each selection. RCA says it will not offer four-channel discs until it has developed complete compatibility for the system, so that it can issue a single line of records which may be played monophonically, stereophonically or quadraphonically. RCA Records President Rocco Laginestra recently reported "phenomenal" progress toward this goal, but declined to predict when RCA would release its first quadraphonic disc selections.

While RCA is working to perfect the disc, two other
manufacturers are cooperating to have the playback equipment ready on time and in sufficient quantities. These firms are JVC and Panasonic, both affiliated with Japan's giant Matsushita Electric Corporation. Other manufacturers, including RCA's own Consumer Electronics operation, are expected to join later in producing equipment.

How CD-4 works

The CD-4 disc operates on the same basic plus-and-minus principle used in stereo FM broadcasting. The record itself is similar to the standard “45-45” stereo disc, with the two groove walls at 45-degree angles to the vertical. However, instead of one signal, two signals are recorded in each groove wall—a sum signal and a difference signal. One groove wall contains the left-front-plus-left-rear signal and the left-front-minus-left-rear signal, the other the right-front-plus-right-rear and the right-front-minus-right-rear. The sum signals are recorded in the same manner as left and right are recorded on conventional stereo discs, while the difference signals are modulated on a 30-KHz carrier frequency, using a combination of frequency modulation and phase modulation.

Since the 30-KHz carrier, and therefore the difference signals impressed on it, are well above the audible range (and generally above the capabilities of existing stereo cartridges), the listener hears only the sum signals when the record is played through a conventional stereo system, and of course he hears the sum of all four signals if the record is played monophonically. To hear the record in four-channel sound, the listener must insert a demodulator between the pickup cartridge and his four-channel amplifier. The demodulator unscrambles the sum-and-difference signals into left front, left rear, right front and right rear signals and feeds them into the proper amplifier channels, in much the same way a stereo FM receiver decodes L + R and L–R it receives off the air into left and right signals. When a standard stereo record is played through CD-4 equipment, the demodulator is simply switched out of the circuit.

In addition to the demodulator, one other ingredient is needed to play the discs in the 4-channel mode. This is a highly compliant cartridge which can pick up and pass signals
up to about 45 KHz (the carrier frequency plus the signal's maximum deviation). This sounds like a tough assignment when you consider that heretofore it's been necessary only for cartridges to pass the audible frequency spectrum, up to about 15 KHz or so. But cartridge manufacturers have said that development of a 45-KHz cartridge isn't particularly difficult—they've just never done it because there was never any earthly need for such a gadget. Such cartridges are already available in Japan, and more refined and less costly versions are under development there, in Europe and in the United States. RCA says the initial price will be the same as that of a good stereo cartridge—about $30 and up for starters. Stylus pressure can be as high as three grams.

The system is claimed to have full frequency response (30 to 15,000 Hz) on all four channels, plus a front-to-rear separation of 20 to 25 dB, or about the same as that between left and right channels.

Panasonic and JVC plan to introduce playback equipment in several configurations and price ranges: Complete systems for those starting from scratch, combination demodulators and two-channel amplifiers for those converting their conventional stereo equipment, and separate demodulators to add to existing four-channel systems. The initial cost of a separate demodulator will be about $50, but prices are expected to come down as mass-production versions are designed. The demodulator eventually will be supplied to equipment manufacturers on an IC chip. The first complete systems are expected to sell for about $300 and up.

Here's how the compatibility situation stands today, according to RCA: A CD-4 disc can be played on standard stereo equipment with results and life equivalent to that of a standard stereo disc. A CD-4 disc may be played on four-channel equipment with playing life equal to that of stereo records at the time of stereo's introduction, without any sacrifice in basic signal-to-noise ratio. A stereo disc may be played on CD-4 equipment with "enhancement" due to the use of four speakers. The one problem arises when a four-channel record is played on conventional stereo equipment, and then played later on four-channel equipment. The standard stereo cartridge and stylus has a tendency to wipe out part of the high-frequency carrier. This problem is being attacked on two fronts: RCA is developing a more durable plastic base material for records, and the equipment manufacturers are working on more sensitive demodulators.

RCA, in its progress report, said: "Partial mixed-system playback compatibility has been achieved. Discrete discs, played first on stereo equipment and then on four-channel equipment, have a playback life which has been greatly increased." Although RCA won't estimate when the system will be ready for marketing in the United States, there have been indications that progress has been encouraging enough to warrant hope for introduction this year.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Characteristics of the disc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rpm & Size: same as conventional records</td>
</tr>
<tr>
<td>Compatibility: compatible with 2-channel stereo records and mono records.</td>
</tr>
<tr>
<td>Frequency Range: Sum—30 to 15,000 Hz</td>
</tr>
<tr>
<td>Difference—20,000 to 45,000 Hz</td>
</tr>
<tr>
<td>Cross Talk: Between left and right—25 dB</td>
</tr>
<tr>
<td>Front to rear ±20 dB</td>
</tr>
<tr>
<td>Signal to Noise Ratio: better than 50 dB</td>
</tr>
<tr>
<td>Life: Same as standard stereo disc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristics of 4-channel reproducer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick-up Cartridge:</td>
</tr>
<tr>
<td>Frequency Response: 20 to 45,000 Hz</td>
</tr>
<tr>
<td>Stylus Type: elliptical</td>
</tr>
<tr>
<td>Stylus pressure: 1.5 grams</td>
</tr>
<tr>
<td>4-channel Decoder</td>
</tr>
<tr>
<td>Frequency response: 30 to 15,000 Hz each channel</td>
</tr>
<tr>
<td>Output: 0.1 volt</td>
</tr>
<tr>
<td>Transistors: 29</td>
</tr>
</tbody>
</table>
4-CHANNEL RECORDS

discrete

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| 1. Each channel completely independent.
 a. No crossover between channels.
 b. Excellent front-to-back separation. | 1. Requires wide-frequency range phono cartridge in addition to decoder. Cartridge response to 45,000 Hz required. |
| 2. Each channel has frequency range of 30 Hz to 20,000 Hz. | 2. No records available in U.S. |
| 3. Compatible with existing recording systems.
 a. Plays as 2-channel stereo on 2-channel system.
 b. Plays as monophonic on monophonic system. | 3. Record wear a problem. New record base material under development. |
| 4. Playing time same as for existing 2-channel stereo record. | 4. FM broadcasting requires FCC approval. Only being done experimentally at this time. |

matrix

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Records available now.</td>
<td>1. Channels not completely independent. Front-to-rear crossover varies from 3 dB to 12 dB, depending upon playback system.</td>
</tr>
</tbody>
</table>
| 2. Compatible with existing recording systems.
 a. Plays as 2-channel stereo on 2-channel system.
 b. Plays as monophonic on monophonic system. | 2. Record costs more than equivalent 2-channel disc. |
| 3. Plays on existing equipment with existing cartridge. Only decoder must be added. | 3. Must use extra-cost logic circuit to increase channel separation. |
| 4. Playing time of record same as for existing 2-channel stereo disc. | 4. Playing time of record same as for existing 2-channel stereo disc. |
| 5. Can be broadcast by FM stations now. No FCC approval required. | 5. Can be broadcast by FM stations now. No FCC approval required. |
| 6. Can be recorded on 2-channel tape. | 6. Can be recorded on 2-channel tape. |
by CHESTER H. LAWRENCE

THERE ARE SEVERAL SOURCES OF 4-CHANNEL PROGRAM MATERIAL AVAILABLE TO THE AUDIO ENTHUSIAST TODAY. THEY INCLUDE REEL-TO-REEL TAPE; 4-CHANNEL 8-TRACK CARTRIDGE TAPE; AND TWO NEWLY-ANNOUNCED DISC SYSTEMS. (BOTH DISC SYSTEMS ARE DESCRIBED ELSEWHERE IN THIS ISSUE. THERE'S A COMPLETE STUDY ON THE CBS-SONY MATRIX SYSTEM ON PAGE 25 AND ANOTHER STORY DETAILING THE RCA-PANASONIC-JVC SYSTEM ON PAGE 32.)

Unfortunately, prerecorded tapes and discs for 4-channel playback are relatively rare right now, and expensive when they are available. (By the time this article appears in print CBS matrix records are expected to be available through Columbia Records.) This is especially true of prerecorded tapes where there is a hidden cost—you get half-as-much 4-channel material on the same tape. For instance, one hour's worth of 2-channel tape used for 4-channel material will only play for 30 minutes—the tape doesn't move faster, but more tracks are used simultaneously.

Also, like so many other music lovers, you probably have an extensive library of 2-channel tapes and records, and you listen regularly to 2-channel FM stereo broadcasts. To save all of this existing material from the garbage dump, you must have a way to convert this material into 4-channel sound—enjoyable pseudo 4-channel sound (by pseudo we mean that the program material you are starting with was not originally recorded as 4 channels).

Happily, there are several different kinds of 4-channel adapters available now. But before we step into the world of 4-channel adapters, let's briefly review how 4-channel discrete tapes operate. We'll look at both reel-to-reel and 4-channel 8-track tape systems and how they work.

4-CHANNEL STEREO

4-Channel Adapter

Everyone Has a System

FIG. 1—DISCRETE 4-CHANNEL TAPE SYSTEMS can take either of these two forms: reel-to-reel at the top and 4-channel 8-track cartridge. Note that in reel-to-reel the complete tape is used in one pass. On the cartridge tape it takes two passes to use all the tape.
Roundup

Here's a look at devices that turn existing 2-channel music into 4-channel surround sound

with 4-channel sound. So some kind of adapter will be needed.

DynaQuad—an early approach

One of the first 4-channel adapters to come along was the DynaQuad. What does this system do? Basically, it reproduces sounds in the rear speakers which were present during the original recording, but were hidden or lost when the recording is played through a 2-channel system. It has been called an ambience-recovery system. For the most part, these sounds are "reflected" sounds—sounds that bounced off a studio or concert-hall wall and were picked up by the recording microphones a fraction of a second after the direct sounds.

When you use a DynaQuad adapter to extract these sounds from the original recordings and fed them to two additional speaker systems located at the rear of the listening room as shown in Fig. 2. Doing this heightens stereo realism considerably, as this system does deliver a closer approximation to the sound as it was heard during the recording session.

None of the sound delivered this way are sounds that have been created artificially. They are sounds actually present during the recording and captured on the disc. Because of this, the DynaQuad system is completely compatible with existing 2-channel recordings and matrix processed records.

The great advantage of this approach is that it is inexpensive and only a minimum of additional equipment is required. Two additional speaker systems and one inexpensive (under $30) adapter. This is a good way to get introduced to 4-channel sound in your own home, but you will find the effect of this system varies from record to record and it will not produce a noticeable effect on all recordings. Therefore, you will eventually want to move on to an adapter that works with all existing 2-channel material.

Matrix systems

This category of 4-channel adapters represents the major type of device in use today. Matrix simply means adding and subtracting. The purpose of a matrix system is to take apart the signals recorded in all 2-channel stereo programs, add some together, separate some, and then reassemble them into 4-channel stereo. The major effort in matrix was begun by Electro-Voice and they have just been awarded a patent covering their efforts.

When fed through a matrix circuit, ordinary 2-channel

FIG. 2—SPEAKER PLACEMENT when using the DynaQuad adapter. Note that the listening position is at the rear of the room. Both rear speakers face each other with the listeners positioned between them. The front speakers are angled toward the listeners.
stereo signals L and R (left and right) are distributed as in Fig. 3. Also, it is possible to use the matrix while recording—but that is a different kind of story and will not be covered in detail here.

Using this system it is possible to get effects that are very close to those of discrete 4-channel sound. Fig. 4 shows how this is done.

Phase-shift systems

Modern 2-channel recordings already contain a lot of indirect (reverberation) sounds. If it were possible to select only these reverberation sounds and reproduce them from the rear speakers in a 4-channel system it would be possible to recreate a concert-hall effect in the home without distorting the musical properties of the original sound source.

To see what happens when this kind of system is used, see Fig. 5. Here, the sounds recorded in the L and R channels of a 2-channel stereo record contain the indirect sounds from an infinite number of directions as well as the direct sounds from the instruments. Using matrix circuitry we extract from the L and R signals, the difference signal L - R.

Now let’s take this a step further. Using the L - R signal, only the reverberation sounds are separated from the 2-channel source. But now we are faced with another problem. Reverberation sounds should not be reproduced by the front pair of speaker systems. They must be fed to and reproduced by the rear pair of speakers. Also, to get a realistic reverberation effect the sounds should be spread across the rear of the room and not infinite from some particular spot.

To spread the reverberation effect, the phase-shift system introduces a 90° shift in phase between the left rear and right rear speakers. This creates an unfixed positioning sensation so the listener can no longer tell exactly where the sound is coming from. Fig. 6 shows how this works in the listening room.

Other systems are more correctly called synthesizers—they manufacture a pseudo 4-channel effect and can be adjusted by the listener to produce the mix and balance of sounds he desires. The great advantage of all of these systems is that they enable you to play your existing 2-channel program material through your four-channel system and come up with an effect that sounds like 4-channel discrete. In time discrete will probably be the only way to go. But for now adapters are a must.

FIG. 3—THIS IS HOW MATRIX redistributes 2-channel sound to four speakers in the listening room.

FIG. 4—AT THE RECORDING END matrix can be used to encode music being put on record. Gives close to discrete performance.

FIG. 5—DERIVED L MINUS R channel is fed to rear speakers. Phase-shift system is used to produce wall-of-reverb effect.

FIG. 6—PLAYBACK THROUGH PHASE-SHIFT spreads the directivity of the reverb signals as illustrated here.
Kwik-Fix™ picture and waveform charts

SCREEN SYMPTOMS AS GUIDES

WHERE TO CHECK FIRST

<table>
<thead>
<tr>
<th>SYMPTOM PIC</th>
<th>DESCRIPTION</th>
<th>VOLTAGE</th>
<th>WAVEFORM</th>
<th>PART</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Color normal (for reference)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| ![Color cut off](image) | Color cut off, but one setting of threshold control lets color through | | | C1 shorted
C2 shorted
C2 leaky |
| ![Color blocked off](image) | Color blocked off completely | | | R3, R4, R7,
R8, R10, R11,
R12, R13, C3,
C4, C7, Q2 |
| ![Too much color](image) | Too much color at mid-setting of threshold control | | | C2 leaky |
| ![Color weak](image) | Color weak | | | R3, R11, R12,
R13, C7, Q1 |
| ![Color too high](image) | Color too high, then missing altogether as threshold control turned clockwise | | | R3 low |
| ![Weak or no color](image) | Weak or no color; ringing in bars | | | R7 high
R8 high |
| ![No confetti](image) | No confetti at all, except possibly near mid-setting of threshold control | | | R4 open
R5 open, low
R6 open, low |
| ![Confetti flashing on and off](image) | Confetti flashing on and off at some critical threshold setting | | | C6 open |
| ![Can't cut confetti off](image) | Can't cut confetti off with threshold control | | | C5 leaky
C5 shorted
Q2 shorted |

an Easy Read™ feature by FOREST H. BELT & Associates ©1972
The Stages

The color killer in any color chassis stops the bandpass amplifier section from operating whenever no color signal is present. If left operating, the bandpass stages inject their own noise into the black-and-white signal. The confetti, as it is called, becomes particularly noticeable on the screen when a station signal is weak enough to leave snow.

The turning-off is passive; the turning-on, active. That is, left to itself, the third bandpass amplifier—the stage (not shown) this killer acts on—stays biased off. Nothing, noise or signal, gets past. A color signal reaching the acc/killer detector stage (also not shown) makes the killer voltage change to forward bias for the bandpass stage. Chroma signals can get through to the color demodulators. With only a monochrome signal, the killer allows the bandpass stage to turn off.

The acc/killer detector, which precedes the acc amplifier shown here, does the sensing. Field-effect transistor Q1 transfers the color/no-color indication to the color killer transistor, Q2. At the same time, the fet amplifies whatever effect color—signal strength has on the acc/killer detector, and passes that effect on to a control stage in the automatic color control (acc) system. Chroma levels are thus evened out.

Signal Behavior

These stages handle no signal in the usual sense. They deal with changes in dc levels. The dc shifts may occur suddenly or very gradually. Either one, however, gives a "signal" nature to conditions in the stage, and operation can be described somewhat in that way.

Two kinds of dc shift occur. One, for automatic chroma control, is a gradual up-or-down variation of the dc voltage applied to the gate of fet Q1. The variations can be fairly rapid if signal strength varies rapidly for some reason. But usually acc effects can be considered slow variations.

The voltage change caused by acc action is amplified by the fet. A connection from the drain terminal goes to an acc control transistor (sometimes also a fet) which in turn usually controls gain in the first bandpass amp.

The other "signal" in these stages is the sudden shift when a program changes from monochrome to color. A frequent example: color commercials interspersed in a black-and-white movie. The change in voltage is abrupt, the equivalent of one half-cycle at some fairly high frequency.

Capacitor C1 bypasses any chroma-sideband signal that accidently gets through the acc/killer detector stage. The dc should be reasonably "pure" so the fet senses only legitimate dc shifts. The R1-C2 network may look familiar, being similar to the anti-hunt network in horizontal afc systems. It serves a like purpose here, damping overshoot or ringing that might upset fet operation.

Capacitor C3 keeps the fet source element at rf (and af) ground, and decouples the supply resistances. Capacitor C4 shunts to ground any rf or ringing signals that reach the drain circuit of the fet.

Shifts of dc level in the output circuit of Q1 are coupled to the base of Q2 by R8 and acc control R7. Emitter capacitor C6 decouples and bypasses, keeping the emitter of Q2 at "signal" ground. Network C5-R9 feeds a little "signal" back from the collector of Q2 to the base, again damping any "hunting" characteristic and killing any tendency of the stage to be shock-excited into oscillation. Capacitor C7 mainly decouples the output circuit of Q2 from the bandpass amp it controls, so no chroma signal works its way back to upset killer operation.

DC Distribution

Operating dc voltages for these stages bear no oddities. The gate of Q1 gets bias from the acc/killer detector (not shown), and varies with operation of that stage.

The source of Q1 is biased from an 18-volt dc supply line. R3-R4-R5-R6 make up the divider, with R4 adjustable to set the operating point of Q1. You adjust the pot to keep Q1 cut off until the gate exceeds a certain level of positive voltage. Thermistor R6 stabilizes the fet bias for any temperature variations.

The drain of Q1 gets operating power from the 18-volt dc line through R2.

(text is continued on page 42)
DC Voltages as Guides

<table>
<thead>
<tr>
<th>Voltage change</th>
<th>to zero</th>
<th>very low</th>
<th>low</th>
<th>slightly low</th>
<th>slightly high</th>
<th>high</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1 source</td>
<td>*1.8V</td>
<td>C3 shorted</td>
<td>R3 open</td>
<td>R3 high</td>
<td>C1 shorted</td>
<td>R5 high</td>
</tr>
<tr>
<td>Normal</td>
<td>2.0V</td>
<td></td>
<td>R4 open</td>
<td></td>
<td>C2 shorted</td>
<td>R6 high</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C3 leaky</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C4 leaky</td>
<td></td>
</tr>
<tr>
<td>Q1 gate</td>
<td>*-0.3V</td>
<td>C1 shorted</td>
<td>C1 leaky</td>
<td>R3 high</td>
<td>R1 low</td>
<td>R5 high</td>
</tr>
<tr>
<td>Normal</td>
<td>1.5V</td>
<td></td>
<td>C2 shorted</td>
<td>R7 open</td>
<td>C2 leaky</td>
<td>R6 high</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R8 open</td>
<td>C3 leaky</td>
<td></td>
</tr>
<tr>
<td>Q1 drain</td>
<td>*18V</td>
<td>C3 shorted</td>
<td>R10 open*</td>
<td>R2 high*</td>
<td>C2 leaky</td>
<td>R1 open</td>
</tr>
<tr>
<td>Normal</td>
<td>4.8V</td>
<td></td>
<td></td>
<td>C5 leaky*</td>
<td>C2 leaky</td>
<td>R3 low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R4 open</td>
</tr>
<tr>
<td>Q2 base</td>
<td>*18V</td>
<td>R10 open*</td>
<td>R11 low</td>
<td>R10 open*</td>
<td>C1 leaky</td>
<td>R3 leaky</td>
</tr>
<tr>
<td>Normal</td>
<td>15V</td>
<td></td>
<td>R11 low</td>
<td>C6 leaky</td>
<td>C2 shorted</td>
<td>R4 open</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C6 shorted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q2 emitter</td>
<td>*16V</td>
<td>R10 open*</td>
<td>R11 low</td>
<td>R10 low*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>15.5V</td>
<td></td>
<td>R11 low</td>
<td>C6 leaky</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C6 shorted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q2 collector</td>
<td>*-0.8V</td>
<td>R3 very low</td>
<td>R7 high</td>
<td>R7 high</td>
<td>C5 leaky*</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>15.5V</td>
<td></td>
<td>R4 open</td>
<td>R8 high</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R7 open</td>
<td>R11 low</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R8 open</td>
<td>C6 leaky</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R10 open</td>
<td>C6 shorted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point A</td>
<td>*-0.8V</td>
<td>R3 very low</td>
<td>(fluctuates</td>
<td>R7 high</td>
<td>R12 low</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>4V</td>
<td></td>
<td>when C6 open)</td>
<td>R8 high</td>
<td>R13 low</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R11 low</td>
<td>R13 low</td>
<td>C5 leaky*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R12 low</td>
<td>C6 leaky</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C7 leaky</td>
<td>C7 leaky</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

*no-signal
Use this guide to help you pinpoint the faulty part.
With no station signal, turn KILLER THRESHOLD full counterclockwise (ccw). Then turn it clockwise (cw) till confetti or colored snow is blocked out of raster. If you can’t tell when colored snow stops, just set KILLER THRESHOLD at midrange.
Feed signal from keyed-rainbow color-bar generator into receiver. Set COLOR control of receiver two-thirds up; set generator color knob fully clockwise.
Turn ACC control full ccw. Then turn it cw till color level on screen stops changing. If that point isn’t discernible, set ACC at midrange.
Measure each of the seven key voltages with your vtvm or fet-vom, both with signal and without.
For each, move across to the column that describes whatever incorrectness you find in that voltage.
Read which parts might cause that alteration.
Finally, notice which parts are also named as possible causes of other voltage changes you find.
Test those parts individually for the defect described.

MARCH 1972 • RADIO-ELECTRONICS 41
R8 and acc control R7 connect the base of Q2 back to the drain of Q1 and through R2 to the 18-volt supply. But dc voltage on the base depends mostly on base-emitter resistance of transistor Q2 in series with the R8-R7-R2 return path.

The emitter is divider-fed. R10 and R11 form the divider, across the 18-volt dc line. The collector supply path isn't shown in this schematic, being mainly in the video section. R12 and R13 form a dc path to the bandpass amplifier this killer acts on, but they are not a supply path for Q2.

Signal and Control Effects

Operation in these stages varies widely with signal level, with control settings, and with whether station signal is present or not. In fact, sensing and handling of the presence of signal is the only reason for these stages.

KILLER THRESHOLD control R4 varies the bias at the source terminal of fet Q1. The object is to set the level at which gate voltage allows Q1 out of pinchoff. That determines the color/no-color operating point for both stages.

ACC control R7 does not, as it might seem, control how much dc voltage is applied from the drain of Q1 to the base of Q2. Just the opposite. It affects the acc voltage applied to the control amplifier (not shown) and sets the "normal" operating level of the first (or whichever is controlled) bandpass amplifier. The ACC control has no significant effect on killer action.

Signal and no-signal voltages are listed on the diagram. They represent average conditions with the KILLER THRESHOLD pot set to kill confetti in the snowy (no-station) raster of a normally operating receiver.

Quick Troubleshooting

With no signals, your scope is useless. Your fetvom or other electronic voltmeter gives you the best clues. A good procedure:

1. No station. Measure gate voltage of Q1. Then apply color-bar signal. Voltage at gate should change considerably in positive direction.
2. No station. Measure change of voltage at Q1 source as you rotate KILLER THRESHOLD. Voltage should vary widely.
3. No station. Measure change of voltage at Q1 drain as you rotate KILLER THRESHOLD. Voltage should at some point vary sharply, not gradually.
4. Set KILLER THRESHOLD at midpoint. Still measuring at Q1 drain, note change of voltage as you apply color bar signal. Voltage should alter considerably.
5. Repeat (3) and (4) but measuring at base of Q2. Results should be similar.
6. Repeat (3) and (4) but measuring at collector of Q2. Results should be similar.

This procedure, coupled with analysis of incorrect voltages by the Voltage Guide, should uncover the trouble quickly and easily.

Waveforms as Guides

Because these stages operate mainly on dc voltages and on the effects of changing dc voltages, there are normally no signal waveforms in the stages. Therefore no waveform clues are possible.

add-on agc for pa system

Resistor-diode network in a PA amplifier channel is the easy way to add automatic gain control

Automatic gain control is a useful feature in a PA system. It keeps volume constant as the speaker moves closer or farther away from the mike. The speaker can be matched to the feedback level without being a howl if the speaker raises his voice.

The novel agc circuit shown here was used in a PA system described by Mr. George Hughes in Electronics Australia. It is one of two identical microphone preamp channels in the amplifier. When agc is being used, resistor R1 and diode D2 form a variable voltage divider across the signal path from the output of Q2. Diode D2 is the variable element in the divider. Its impedance varies with the level of a signal-derived dc bias applied to it.

The signal output from Q2 also appears across a 4700-ohm resistor and is rectified by D1 to develop the positive control voltage for D2.

When the amplified mike signal is high enough, D1 conducts and forward-biases D2, lowering its impedance and the signal voltage developed across it. This controlled signal is fed to the following stage in the main amplifier. (If you build this circuit, feed its signal into your amplifier at a high-level point such as radio, crystal phonos or auxiliary input.) When the agc circuit is not needed, R2, selected to match the attenuation at gate threshold level, is cut into the circuit so there is no need for a major change in the volume setting.

The agc circuit begins operating when a signal of about 8 mV is fed into the mike input jack. Agc threshold is constant for all settings of the mike volume control. Best results are obtained by setting the volume control just below the feedback level. Any increase in mike input signal is leveled off before feedback develops. At the same time, the volume is held constant if the speaker drops his voice or turns away from the mike.

Q1 = BC109, BC149, 2N2926, SK3020, ECG123A
Q2 = BC108, BC148, 2N566, SK3020, ECG123A
D1, D2 = BA100, IN5914, OR EQUAL
HOW DO YOU TEST BLANK CASSETTE magnetic recording tape frequency response and get meaningful results? You can try a listening panel, but no matter how sharp the panel's ears, the results of listening tests are subjective. So we used a tape-testing system devised by the Maxell Corporation. We feel it is a good way to check frequency response, although it offers no measure of distortion or noise. And at times these factors can be more important than response.

We start off with a Hewlett-Packard model 141B Dual Trace Storage Scope and a Hewlett-Packard model 3300A Function Generator with a model 3305A Sweep Plug-in. The generator produces a logarithmic sweep from 20 to 20,000 Hz. The sweep time is approximately 0.7 second.

For a tape deck we used a TEAC model A-23 cassette deck that had been biased for TDK SD tape. Incidentally, bias variation to cover all of the tapes commonly available is no more than 10% and this range of adjustment is available in just about any cassette recorder. It is a service adjustment and should only be made by a qualified technician.

The two waveforms in Fig. 1 are our starting point. The top waveform is the output of the signal generator. The bottom waveform shows how this signal looks after it has gone through the record electronics in the TEAC deck. Note that it now cuts off at 12,000 Hz, the top limit of the deck electronics.

With the equipment on hand we went out and purchased a variety of cassette tapes and ran the same tests on 26 different brands. The results of these tests are on the next two pages. Here's how it was done.

The sweep generator output signal is fed to the tape deck and recorded on a fresh sample of blank cassette tape. Then the cassette is rewound and the recorded signal is played back and displayed on the scope. The scope is switched to storage—this freezes the image—and we take a Polaroid picture of the waveform. We have made no attempt to judge the tapes ourselves, but are simply presenting the waveforms and letting you, our readers, draw your own conclusions from the photographs.

However, to help you interpret the waveforms you will have to refer to Fig. 2 at the bottom of this page. It explains what to look for.

If we had optimized the bias setting of the tape recorder for each tape, before we tested it, some of the waveforms might have been improved somewhat, but remember, we're only talking about a 10% variation.

No matter what recorder or what tape you decide upon using there are several points to observe to get the best possible performance. First, decide on a tape (brand and type) and always use that tape. This will permit you to become familiar with one tape's characteristics and abilities. Also, you can now get the record bias of your recorder optimized for the tape you are using.

Now take a look at the waveforms at the bottom of this page. The one in Fig. 3 is typical of what we found when

Fig. 1

Sweep audio generator and a storage scope enable us to produce a waveform that is a measure of recording tape response

Fig. 2—THIS DIAGRAM SHOWS information that can be derived from the scope trace.

a. Superimposed fluctuations indicate irregularity in tape travel usually due to wobbling cassette hub.

b. Response curve (dashed line) can be clearly read.

c. Superimposed rough edge denotes noise level.

d. Exact upper limit of tape deck—usually not a function of the tape.

e. Outer envelope contour denotes equalization characteristic.

f. Large cutout of edge shows dropout.

g. High peak slice indicates blind in cassette or tape travel.

h. When increased levels are used to test for tape saturation visible flats appear in different frequency ranges.

Fig. 3—(left) TYPICAL WAVEFORM of "white-box" tape. We tested several samples and found similar poor performance. We show only one example here.

Fig. 4—(center bottom) SIGNAL PLAYBACK when using chromium-dioxide tape in recorder biased for standard tape. Note exaggerated high-frequency response.

Fig. 5—(below) C120 TAPE has lower signal output than C60 tape. Other characteristics remain similar. Lower output is caused by thinner oxide coating on tape.

MARCH 1972 • RADIO-ELECTRONICS 43
we tried several “white-box” cassettes. Low prices—but low quality too. While we tested several different “white box” tapes they all had about the same performance so we are showing only one waveform here.

In Fig. 4 is an unlabelled waveform. It shows what happens when you use chromium dioxide tape in a recorder that is biased for conventional tape. Note the accentuation of the high-frequencies. Some readers may find this a good way to improve high-frequency response of an inexpensive recorder. But when played back on a quality deck the high-frequency boost would probably be undesirable.

The last waveform (Fig. 5), labelled Mallory 120, is typical of all 120-minute cassette tapes. The waveform is very similar to the same manufacturer’s 60-minute cassettes, but because the oxide layer on the tape is thinner on the tape in the 120-minute cassettes, the output signal level is also lower, by about 40%. This is directly related to the thickness of the oxide coating on the tape. The more oxide the more signal.

Here are some numbers to illustrate this point. You can expect a C60 (60-minute cassette) to use 0.5-mil tape with a 0.2-mil oxide coating. By contrast, a C90 cassette (90-minute cassette)

Here are actual Polaroid photographs of tapes we tested using the method and equipment described in this article.

All tapes were purchased locally over the counter in electronics parts stores, department stores, record shops, and photography stores. The brand and type of each tape is in-
uses 0.3-mil tape and a 0.15-mil oxide layer. C120 tapes (120-minute cassettes) use 0.24-mil tape with 0.12-mil oxide.

To get the best possible results from any cassette tape, always run it through your recorder once in each direction (fast forward, then rewind) before using it. This will loosen up the factory-wound tape and insure smooth playing with minimum wow and flutter.

When fresh the tape is wound tighter than it ever will be while you use it.

Next, remember not to use the first ten or fifteen seconds of tape at each end of the reel. This also goes for the last ten or fifteen seconds of tape. This keeps you from using the part of the tape that tends to stretch and wrinkle because of the strains placed on it when it is played.

Another point that is critical for all tape recorders and especially for the narrow track cassette machines is to keep the tape heads clean. Make it a practice to run a cleaning tape through the recorder every ten or twenty hours of use and about once a month use a cotton swab with an appropriate cleaner directly on the heads.

Lastly, don’t forget to clean the rubber pinch roller that presses against the capstan. Use plain alcohol here, again with a cotton swab.

R-E

dicated on the waveform. All tapes tested were C60 (60-minute cassettes). The taller the waveform, the higher the level of playback signal. Other details of evaluating the photos are shown in Fig. 2. Keep in mind that optimizing bias will improve performance.

![Waveform Images]
Great careers

Join the high-paid electronics technicians who got their start through NTS Home Training.

Your home can become your own private classroom-workshop. NTS sends you everything you need to learn valuable technical skills in electronics. You get easy-to-grasp lessons, comprehensive kit manuals, large fold-out charts, and more. Plus the finest professional equipment available today. It's all included in your tuition, yours to keep.

Your equipment is sent to you in kit form, matched to lesson material. With the NTS Project Method, you start with simple projects, then move from basics to more complex concepts. You discover how electronic principles work by performing practical, fascinating experiments. Learn at your own pace.

You quickly become expert in the actual equipment and methods you'll use on the job. And soon you're ready to cash in on the tremendous opportunities in the expanding, exciting world of electronics!

If your field is television, you might decide to join a first-class TV repair center. Or start a shop of your own. Or specialize in industrial applications of television. Once you master an area of electronics, the direction you take is really up to you. And you'll be able to use the test instruments you built yourself!

It all begins at home, with NTS Project Method Training. Find out how fast and easy it is to learn skills that pay off. Check card or coupon today for your free full-color NTS Catalog and complete details. No obligation. No salesman will call.

NTS COLOR AND B&W TV SERVICING

Solid-state B&W TV
74 sq. in. picture (cabinet included)

Learn sophisticated solid-state circuitry as you build this B&W TV receiver. Course covers the full range of home entertainment electronics.
New solid-state 315 sq. in. color TV

The exclusive NTS Compu-Trainer

NTS COMPUTER ELECTRONICS
Build and operate the exclusive NTS Compu-Trainer! Loaded with integrated circuits, it teaches you the how, what, and why of computers faster, more thoroughly. You perform all wiring and patch-cording. No short-cuts. No pre-wired circuit boards. Also receive an FET Volt-Ohmmeter and a 5" wide-band Oscilloscope.

NTS ELECTRONIC COMMUNICATIONS
Gain the prestige and earning power of owning an FCC First Class Radio Telephone License! Two exciting courses in the fields of transmitting and receiving. Experiment with an amateur phone 6-meter VHF transceiver, NTS' exclusive 6-transistor solid-state radio, and a fully transistorized volt-ohmmeter.

5-watt AM transmitter/receiver.

NTS AUTOMATION/INDUSTRIAL ELECTRONICS
Systems automation is the future of industry—and you can play an important role! Enter the age of electronic controls by training on the NTS Electro-Lab—a complete workshop. Also receive a 5" wide-band professionally rated Oscilloscope. Build five industrial controls to regulate motor speed, temperatures, pressure, liquid level and much more.

5" Oscilloscope

CLASSROOM TRAINING AT LOS ANGELES
You can take classroom training at Los Angeles in sunny Southern California. NTS occupies a city block with over a million dollars in facilities devoted exclusively to technical training. Check box in coupon.

APPROVED FOR VETERANS
THE QUANTITY OF POWER THAT CAN BE delivered by a Class-A amplifier is extremely limited. A transistor can dissipate a specific amount of power. Should the transistor conduct current over the entire cycle, as well as when it is idling, a considerable amount of power is wasted just keeping the device operating at its predetermined quiescent bias. This is the state of affairs in Class-A operation.

On the other hand, Class-B power amplifiers are biased so that no collector current flows when the transistor is idling. The transistor does not conduct until the applied signal is of such magnitude and polarity as to put the device into its active region. NPN transistors, for example, do not conduct until the signal applied to the base relative to the emitter, is positive and greater in magnitude than the 0.6 or 0.7 volt necessary to turn on the base-emitter junction.

Even though the amount of power dissipation in Class-B remains identical to its capabilities in Class-A, in Class-B the amplifier will dissipate this power only when conducting useful audio currents. The portion of power wasted in maintaining the Class-A bias is applied here to enable the Class-B amplifiers to deliver more useful signal output.

Only one half of a purely ac sinusoidal cycle will turn on a Class-B biased transistor. To reproduce the alternate half of the cycle, the circuit must use a second transistor to conduct during this latter portion of the cycle. Two transistors are required to reproduce a full cycle in Class-B biased amplifier circuits.

Class-B statistics

A push-pull Class-B amplifier circuit is shown in Fig. 1 using two npn transistors. Should a sinewave be fed to the input, the various waveshapes shown can be found at the specific points in the circuit when they are measured with respect to ground. The dots next to the ends of the input transformer windings indicate that the corresponding leads or terminals are identical in polarity with respect to those at the unmarked ends. The base of Q1 is in phase with respect to its emitter as is the "hot" lead of the input signal with respect to ground. Establishing the proper status for push-pull operation, the polarity at Q2's base is 180° out of phase with that at Q1's base.

During the first half cycle, Q1's base is positive with respect to the emitter, so this transistor conducts. Q1 does not conduct during the second half cycle for this interval, the base-emitter junction is reversed in polarity. The collector voltage is, as shown, for the voltage across the transistor and the upper half of the transformer winding is reduced as the transistor goes into conduction.

The second half of the cycle turns Q2 on; for only then does the signal bias that base positive with respect to the emitter. The waveform of the output voltage at the bottom of the output transformer with respect to the center tap, as well as across the transistor, is as shown. The voltage across the entire primary is relatively sinusoidal, as is the output signal across the load Rl. Ideally, the output signal is a magnified version, power-wise, of the input signal.

As discussed for the Class-A amplifier, the two transistors see the actual load RL reflected as a resistor, Rl', into the entire primary winding of the output transformer T2. Rl' = Rl(Np/Nl)' is an equation describing the relationship. In this formula, Np is the number of turns in the entire primary winding and Nl is the number of turns in the secondary. Either one of the transistors sees a resistance, Rl'', across one half of the transformer winding. Since the number of turns each transistor sees is Np/2, Rl'' = Rl(N2/Nl)2 = (Rl/4) (Np/Nl)2.

Comparing the two equations, we arrive at the important conclusion that Rl'' is equal to ¼Rl' or that the ac load seen by each transistor appearing across half the primary winding of the transformer, is equal to one-fourth that seen by both transistors across the entire transformer.

Each transistor delivers power to the load. To determine the power delivered by two transistors, we need only determine the power one transistor delivers and multiply this number by two.

Using one transistor, draw the PCM maximum power dissipation hyperbola discussed last time, on the collector characteristic curves of the transistor. As was our previous practice, we omit the actual transistor curves to avoid cluttering the drawing. Assuming half the primary winding of T2 has zero resistance, the dc load line, defined by the equation VCE = ECC - ICRl, is a vertical line up from the Ecc voltage point on the VCE axis. Rl in the equation is the resistance of ¼ of the primary winding of transformer T2.

The ac load resistance is Rl'' = (Rl/4) (Np/Nl)2. Assume that at its maximum, the load line is tangent to the PCM curve. (We will deviate from the concept of not working above the PCM curve later on. Here, we assume the load line cannot cross this hyperbola.)

If a sinusoidal signal is at the input, a half cycle of voltage and current appears at the output. For the maximum output, the collector to emitter voltage will swing from Ecc to zero and the
collector current will swing from its ICM maximum to zero. As the rms values of a half sine wave is the peak voltage or current divided by two, the signal power delivered to the ac load, RL''', is

\[P_{RL}'' = \frac{I_{CM}^2}{2} \left(\frac{E_{CC}}{2} \right) \]

\[= \frac{E_{CC}^3}{4I_{CM}^2} R_L'''' \]

This equation is valid regardless of where the ac load line is with respect to the PCEM hyperbola. The maximum power is dissipated by the transistor at the instant the swing is at the center of travel, or

\[P_C \left(\text{max} \right) = \frac{I_{CM}^2}{2} \left(\frac{E_{CC}}{2} \right) \]

This equation is also independent of the PCEM curve. It should be emphasized that \(P_C \left(\text{max} \right) \) is not the average power the transistor will dissipate. It is the power the transistor will dissipate only at the instant the swing is at \(I_{CM}/2 \) and \(E_{CC}/2 \). This is the maximum power it will dissipate at any point in the swing. If the load line is tangent to the maximum allowable power dissipation hyperbola, \(P_C \left(\text{max} \right) \) is equal to \(P_{CEM} \). The power dissipated when averaged over the entire cycle is less than \(P_C \left(\text{max} \right) \) for any two instants in the half cycle as it swings on the load line.

Comparing equations 1 and 2, we note that the transistor can deliver as much power as the maximum instantaneous power it will dissipate in the half cycle. This is double the power the same transistor can deliver in the Class-A mode of operation.

The average or dc current in a half sine wave of collector current is \(I_{CM} \). This was discussed in the article on rectification. The power supply must provide this dc current. It must provide \(E_{CC}^2/I_{CM} \) watts to the transistor. Comparing this with the power delivered to the load, the percent efficiency of the circuit is 100\% \(P_{RL}'' = P_{supply} = 100\% \), or

\[78.5\% - a \text{ decided improvement over the Class-A case.} \]

The transistor dissipates power during \(\frac{1}{2} \) of the cycle only for it does not conduct during the alternate half cycle. Over a complete cycle, one transistor of the push-pull pair will dissipate

\[P_{trans} \text{(for 1 cycle)} = 0.068E_{CC}^2/R_L'''' \text{ watts} \]

if the signal swings the output from zero to its \(E_{CC} \) maximum limit. The average power the device will dissipate over the cycle, is higher if the swing is less than the maximum. Should the transistor deliver about 40\% of the \(P_{RL}'' \) in equation 1, it will dissipate more power than it will dissipate with any other size of signal swing. The power it will dissipate is

\[P_M \text{(av)} = \frac{E_{CC}^2}{4R_L''''} \text{ watts} \]

if the power it delivers to the load is 40\% of the maximum. Comparing this with equation 2, the transistor can deliver about \(2^{1/2} \) times the power it may dissipate.

Averaged over a complete cycle, the transistor may dissipate \(P_{CEM} \) watts. It will cross the \(P_{CEM} \) hyperbola and yet be within the power dissipation rating of the transistor when the dissipation is averaged over the 360°. This differs from the Class-A case for here the idling and average power over the cycle were at \(P_{CEM} \) when the transistor was biased for minimum distortion. As the power during idling (and hence the average during the cycle) was not permitted to exceed \(P_{CEM} \), the load was not permitted above the maximum power dissipation hyperbola.

Class-B design procedure

Assume you want to design a 60-watt push-pull amplifier which will drive an 8-ohm speaker system. How would you proceed to specify the output transistors and transformer? Use the circuit in Fig. 1.

If the two transistors are to deliver 60 watts, each one must be capable of delivering half the power or 30 watts to the load. If the transistor is 25\% efficient, the transistors must deliver 30 watts + 25\% of 30 watts = 37.5 watts to the primary of half the output transformer. Add about 10\% to compensate for losses due to saturation voltage and leakage current, so that the circuit should be designed to be capable of delivering about 42 watts.

A good power transformer for this application is the 2X3055. The maximum collector current that can safely flow through this transistor is 10 amperes.

Adding some leeway, use 6 amperes as the maximum collector current. As the rms current of the half sine wave (see Fig. 3) is 2 = 3 amperes, the load the transistor must see at the primary of the transformer is:

\[R_L'''' = \frac{P_{RL}'''}{I_{L}''''^2} = 42, 9 = 4.66 \text{ ohms} \]

The supply voltage, from equation 1, is:

\[E_{CC} = (4R_L''''P_{RL}''')^{1/2} = (4 \times 4.66 \times 42)^{1/2} = 28 \text{ volts} \]

Maximum power is dissipated by the transistor when the power delivered to the load is about 40\% of 42 watts, or 16.8 watts. When delivering this power, the transistor dissipates \(V_{CC}^2/\pi R_L'''' \) watts = 783(9.9)/4.66 = 17 watts. The 2X3055 can easily cope with this power dissipation requirement.

(1) is interesting to stop for a moment and note several things here. For the full swing, the transistor will dissipate 0.068\% \(E_{CC}^2 \), \(R_L'''' = 0.068 \times 0.366 \times 4.66 = 11.4 \text{ watts} \). This is less than the power dissipated when 40\% of the maximum power is delivered to the load.

(4) The power a transistor will dissipate is equal to the power taken from the supply less the power delivered to the load. The power furnished by the supply can be calculated as follows. Based on equation 1, the square of the collector current swing is \(I_{C2} (40\%) = 4I_{C1} (40\%) \), \(R_L'''' \) for the case where the output is 40\% of maximum. Hence, \(I_{C2} (40\%) = 4(16.8 \text{ watts}) \times 4.66 \text{ ohms} = 14.4 \text{ amperes} \). The current is then \(I_{C2} (40\%) = \sqrt{14.4} = 3.79 \text{ Amperes} \). The power from the supply is \(E_{CC} \left(I_{C2} (40\%) \right) = 28(3.79 \times 3.14) = 33.9 \text{ watts} \). Subtract the 16.8 watts delivered to the output at 40\%, of the maximum output power from the 33.9 watts supplied by the power source, and the transistor must dissipate 17.1 watts. This is very close to the 17 watts solution determined from the \(V_{CC}^2/\pi R_L'''' \) equation above. This alternate method is presented to indicate a logical procedure used to determine the transistor power dissipation at any portion of the maximum power the device can deliver, rather than being required to memorize a nebulous formula.)

Since the impedance across one-half the primary of the output transformer is 4.66 ohms, the impedance from collector to collector, across the entire primary, is 4 x 4.66 ohms, or 18.64 ohms. The impedance ratio of the entire primary to the secondary is 18.64 ohms: 8 ohms = 2.33:1. The turns ratio is the square root of the impedance ratio, or 1.51:1

Turning to Class-AB

A typical set of collector characteristic curves are in Fig. 4, for the 2N3055. Notice that they are not evenly spaced. Should the collector-current swing the full 10 amperes for the half cycle, the
changes in collector current. Should the half cycle of 10 amperes collector current be at the output, the required input base-emitter voltage at the 2 amperes collector current point in the cycle is 0.9 volts, at the 4 amperes point it is 1.1 volt, and at 6 amperes it is 1.3 volts. While the collector current increase is in increments of 2 amperes, the base to emitter voltage increase in one case is 1.1 volts - 0.9 volts = 0.2 volts and in the second case it is 1.3 volts - 1.1 volts = 0.2 volts. Hence equal changes in base emitter voltages produce equal changes in collector current. This is a linear situation favorable to the cause of low distortion.

Good power amplifiers are driven from low impedance voltage sources where transconductance is the controlling factor, rather than high impedance current sources where the varying beta determines the relatively distorted output.

In Fig. 6-a, we apply half a sine wave of voltage to the input between the base and emitter. The collector current at the output appears next to the Ic axis. Note that there are portions in the cycle where there is little or no output current. This is known as the crossover region. For the two transistor push-pull circuit in Fig. 1, the output across the load, R1 would appear as in Fig. 6-b rather than be perfectly sinusoidal. This signal has a considerable amount of odd harmonic distortion and intermodulation distortion. Even worse, in conjunction with transformer and speaker inductance, this abrupt crossover can cause sharp peaks in the circuit which can damage or destroy the transistor.

Crossover distortion can be minimized if the transistor is biased so that it is always conducting some minimal amount of collector current. A normal procedure to determine the minimum base-emitter voltage for this type of operation is to extend the straight line of the curve to the VBE axis. The curve in Fig. 5 crosses this axis at 0.75 volts. The transistor should be biased at this voltage. It may be true that some power will be dissipated due to the idling collector current (about 40 mA at 0.75 volts), but the reduction in crossover distortion is well worth this minor expenditure of power. Some manufacturers cause the transistors to idle at much higher current to assure that the collector current will never be completely cut off. This type of biasing puts the transistor into what is referred to as Class-AB operation.

A drawing of the output current when the transistor is biased at 0.75 volts is shown in Fig. 7. There is no portion of the half cycle during which there is an absence of collector current flow. The distortion is relatively low when compared to the Class-B mode of operation. The output over the full cycle is a relatively good sine wave.

Should the circuit in Fig. 1 be biased for Class-AB operation, it could take the form shown in Fig. 8. The bias voltage is developed across Rx which is applied between the bases and emitters of the two transistors. RB and Rx form a voltage divider with EB as the source of the base bias supply voltage. The quiescent base current can be determined using thevenin's equivalent circuit procedures described in an earlier article. Do not forget to include the dc resistance of the driver transformer's

(continued on page 85)
TECHNICAL TOPICS

Introducing the ESD—a brand-new component with a myriad of applications in electronics—and more

by ROBERT F. SCOTT
TECHNICAL EDITOR

This month I'm going to take most of your time to discuss something really new and interesting—haven't decided whether it is a device or component—and I think you'll find its concepts and applications exciting. It is still in its horse-and-buggy stage but appears to be the answer to many problems. I'm talking about the ESD (energy storage device) made by Gould Ionics. It is an electrochemical capacitor with quite a few unique features. Among those of greatest interest to electronics engineers and experimenters are:

Very high capacitance—Values are rated in farads, not in μF or pF as are conventional types. Currently made in 0.01, 0.1, 0.5, 1.0, 5 and 50 farad units.

Very high capacitive density—the 50-farad unit occupies less than 0.33 cu. in. Density averages 160 farads per cubic inch.

Very high leakage resistance (≥10¹⁰ ohms)—Retains more than 97% of its initial charge after 16 months of storage.

Very low leakage current—Typically less than 1 μA. A particularly useful factor when charging current is a few microamps or less and discharge current is in milliamperes.

Stores large amounts of charge at low voltages.—A 50-farad unit stores up to 25 coulombs at 0.5 volt.

ESD cells can be paralleled or series-connected.—Follow conventional capacitor and battery arrangements for greater voltage and higher current capability.

Low equivalent series resistance (Rₑ).—Rₑ is inversely proportional to the diameter of the device—less than 1 ohm for a 5-farad, 1-inch diameter device and less than 10 ohms for a similar device 0.5 inch in diameter. The Rₑ is the sole factor limiting the ability of the ESD to transfer its charge to a load.

The ESD is composed of chemically stable compressed powders and there is no danger of damaging or destroying adjacent components due to leakage. Shelf-life is said to be indefinite, even when stored under random temperatures ranging from −65°C to +140°C. It is a sturdy component, not prone to catastrophic failure. It takes large amounts of energy to destroy an ESD used outside its ratings.

When used as a power source, it has a low power density when compared with batteries. Further, both its maximum voltage and current per cell (500 mV and 1 mA) are much lower than most other electromotive cells. ESD's can be connected in series, parallel and series-parallel combinations for the desired current and voltage ratings.

Figure 1-a shows the symbol the manufacturer uses for the ESD. Figure 1-b is the constant-current discharge curve for a typical ESD. When used purely as a capacitor, the current-time characteristic capacitance is

\[C = \frac{I}{V} \]

where \(V \) is 500 mV. When used as an energy source, ESD's can be operated at up to 625 mV per cell for an increase in energy storage capability of approximately ten times or 11 + 12.

For example, a 5-farad, 10-cell ESD can provide current for time \(t \) as determined by the current drain. For a 1-volt drop (from 5 to 4 volts) a 100-mA drain can be sustained for about 50 seconds. With a 1-mA drain it would take about 5000 seconds for the charge to...
drop 1 volt. The same ESD charged to 6.25 volts would have a power increase of at least ten times. This allows an increase in current or time or a reduction in device size.

Applications

Source of standby power in cases where loss of primary power can be either dangerous or extremely inconvenient. For example, in a crystal-controlled digital clock, a simple circuit like that in Fig. 1-a might be used to supply the oscillator and counters so they won't lose step during power interruptions. The same applies to memory systems in computers.

An **excellent decoupling device for use** when large numbers of circuits are operated from a common power supply.

Pulse-power source to minimize overall power drain in devices with low-current power sources which must have an occasional low-duty-cycle, high-current output. A typical example might be a remote weather station or flood-warning system powered by solar cells. Power is stored slowly over relatively long periods and then pertinent information is telemetered out in one short burst of energy.

In timing circuits, the charge-storage capability and low leakage-current make the ESD an excellent current-time integrator whose performance is limited only by the characteristics of the external circuit components. Fig. 1-b shows the time versus constant-current charge/discharge curve for the ESD. Note that regardless of the charging current, time t is linearly proportional to voltage. Due to the low voltage at which a charge can be stored in an ESD, the device can be charged from a voltage source through a resistor that holds the constant current.

Since time equals KV (where K is a constant and V is voltage), time can be set as accurately as voltage can be measured. Although some ESD's show capacitance increases up to 0.1% per degree C, the voltage/time repeatability is better than 0.1% when temperature is held constant.

For indefinite life, the maximum charge and discharge currents of an ESD should be limited to 1 mA although occasional higher currents can be tolerated.

In most electronic timers, a capacitor is charged to a given voltage level and then discharged rapidly through a short circuit to reset for the next timed cycle. This method is not particularly suited to this new device. For example, a 0.5 F, 1-inch diameter ESD—when shorted—has an R-C time-constant of about 0.5 second (Rc is less than 1 ohm) and takes around 3.5 seconds to discharge to 0.1% of its initial charged value. When discharged through a 500-ohm resistor—limit current to 1 mA at 0.5 volt—the R-C time-constant is 250 seconds and the period required to discharge to 0.1% is 1750 seconds; nearly 30 minutes.

However, when timing is based on the R-C time-constant—the time in seconds required for the voltage across the charging capacitor to rise to 63% of the applied voltage or to lose 63% of its charged voltage—the long discharge-time required by the ESD may still be acceptable. For example, when charging current is limited to 10 μA, the charge time is 25,000 seconds. When the discharge current is limited to 1 mA, reset time is 250 seconds. 0.1% of the timed interval and quite acceptable in many applications.

When a more rapid reset time is needed, the timed period may be made equal to the sum of the charge and discharge times. In this case, the circuit is held in the required state as long as the ESD is charged above zero (see Fig. 1-c). In this type of design, the ESD is completely discharged and the time delay before the next period begins is a function of the system's logic speed.

Figure 2 shows how the ESD, an op-amp and a few components can be used to make a free-running multivibrator with periods ranging from a few seconds to several million seconds. When power is first applied to the circuit (with the ESD fully discharged) the op-amp output Vout will be positive. Diode D1 is forward-biased so voltage Vref (greater than zero and less than 500 mV) appears at the non-inverting input.

The ESD then charges from Vref (positive) through R3 at a constant-current rate Igs, maximum Igs is 1 mA and circuit values should be adjusted so (Vout - Vref/2)/R3 is less than 1 mA. When the voltage across the ESD—is appearing at the inverting input—is more positive than Vref, ESD changes from positive to negative. This reverse-biases D1 and the voltage at the non-inverting input drops to zero. The ESD is then discharged from the negative Vout through R3. When the voltage across the ESD becomes more negative than zero, the op-amp again switches state—going from negative to positive (the starting condition) and the cycle repeats.

Time t1 equals C(R2/R1 + R2) × R3(Vref - Vref/2)/Vout and approximately equal C(1/R1 + R2/R3). And, if Vref equals 500 mV, t =...
CV_{ref}/I_{RESIDUE} Thus, t1 is 5 seconds when V_{ref} is 500 mV, C = 0.01 farad and I_{REF} is 1 mA. When using the same ESD and setting I_{RES} at 10 µA time increases to 500 seconds. By using higher ESD values and charging currents around 10 µA, times up to 2½ million seconds can be reliably produced.

The circuit in Fig. 2-a provides symmetrical output (t1 = t2). Figure 2-b incorporates changes to permit the op-amp to operate from a single power supply and to provide asymmetrical output. The ratio between t1 and t2 can be as much as 100,000:1 with either t1 or t2 being the greater, depending on the input bias current of the op-amp.

At its present state of development the ESD can be compared to the point-contact transistor of 1948. Thus it is not a component you can rush out and purchase over the counter at your friendly parts dealer. You have to order them from the manufacturer: Gould Ionics Inc., P.O. Box 1377, Canoga Park, Calif., 91304. The eight types covering six capacitance values are $500.00 each and the minimum order is three pieces. Before ordering, I suggest writing to Gould Ionics for copies of Bulletins 70107, 70818, 71304 and 71324.

The "more" on the blurb refers to a broadband signal booster for frequencies ranging from below the broadcast band to well up in the shortwave bands. The circuit in Fig. 3 is one of several for different frequency bands described in Le Haut Parleur. It should be just the thing for BCB and shortwave DX'ers whose receivers are not as sensitive as they would like them to be. It works best into receivers with antenna input impedances between 100 and 500 ohms. With the circuit values shown, the gain is flat from around 150 kHz to 30 MHz.

A Q-multiplier is a scheme of using positive feedback (regeneration) to increase the effective Q of a L-C network. They are used in active filters in lab test gear and are fairly common.

The circuit in Fig. 4 was described by Richard C. Gerdes in Electronics magazine. The parallel-tuned L-C network (resonant at 33 kHz in this case) is in a feedback network between the output and inverting input of an op-amp. Circuit selectivity is shaped by the potentiometer.

Possibly the most unusual use of a Q-multiplier thus far is in shaping the response of the simple crystal filter in the Hallicrafters SX-133 communications receiver shown in Fig. 5. The crystal filter is by-passed and full-fidelity response is available for AM reception when the SELECTIVITY switch is in the NORMAL position. In the BROAD position, the crystal is inserted in series with the input to the first i.f. amplifier. The triode section of the 6E8 acts as the Q-multiplier. Multiplier gain is limited by degeneration across the 680-ohm cathode resistor. The SHARP position of the switch shorts out the 680-ohm resistor; increasing multiplier gain and sharpening i.f. selectivity. A fourth section of the switch decreases the coupling capacitance between the audio stages. This peaks the audio response for best CW reception while eliminating the possibility of audio howl.

FIG. 3 (above)—BROADBAND BOOSTER for broadcast and shortwave receivers that can use more sensitivity.

FIG. 4 (left)—IC Q-MULTIPLIER uses tuned circuit between output and inverting input for selective regeneration.

FIG. 5 (below)—VARIABLE SELECTIVITY in Hallicrafters SX-133 receiver is provided by Q-multiplier around the crystal.
LAST MONTH WE REACHED THE POINT OF testing electrolytics with a scope—moving the vertical input probe along the B+ line as filter capacitors were bridged with good ones to note their effect on ripple and hash.

There is one, and only one, exception to this rule. You will find a fairly high ripple on the input filter capacitor. This is normal, because the dc hasn't gone all the way through the whole filter as yet. Actual ripple voltage here will vary, depending on the design. However, at the filter output, you should never have more than about 1.5 volts p/p ripple, and this for tube-type circuits typically has practically zero ripple. Transistors are much more sensitive to hum than tubes are.

Insufficient filtering

There is one other place where you could run into problems. This is in the cheaper sets where the complaint is often "I've got a light-colored bar floating up and down in the picture." Checking the original electrolytics on a capacitor tester shows that they are all in the ballpark. Yet the scope shows you a peculiar "writing" ripple waveform on the output of the filter!

This, in several cases, turns out to be insufficient filter capacitance in the original design! The cure is obvious; add more capacitance to the circuit. Shunt another electrolytic across the output filter until you have reduced the ripple to a level where it won't cause the light-bar symptom. I have had to add as much as 100 μF of extra filtering in some sets!

Intermittent electrolytics

This discussion wouldn't be complete without mentioning the most annoying fault found in electrolytic capacitors—the intermittent! It is the cause of the infuriating problem where the set has all sorts of symptoms, yet the instant you do anything in the circuit with a test-prod (even a scope probe!) it goes pop! and starts to work perfectly again! In most cases, it will keep right on working, no matter how you hammer on it, etc. Once it is turned off and allowed to cool, the same problem comes back. (In the worst cases, it won't come back at all—that is, until after you have taken the thing home again! There it usually cuts out no later than the next day, and you've got a call-back.)

This type of problem is caused by an intermittently-opening electrolytic capacitor. When you bridge a good capacitor across one of these, the resulting surge of voltage seems to weld the bad contact, and the capacitor seems perfectly good again.

The problem here is identifying the bad one. You can have very similar symptoms with bad solder joints or bad PC board conductors. However, when you see the trouble, check carefully to see if it looks like "open-filter" trouble. (Hum-bars, bending, feedback, etc.) There is one way to check. Turn the set off, and then clip the scope across the suspected unit or circuit. Now turn the set back on. If you see any sign of signal or ripple on the dc power supply, that's it. You can then intentionally "trigger" it back on, by touching it with a voltmeter probe, etc. If the "signal" disappears, OK. Replace the filter capacitors. You can also use this method with a substitute capacitor. Turn the set off and hook your bridging capacitor across the circuit, then turn it on again.

The weirdos

High power-factor or odd troubles inside an electrolytic capacitor can cause some strange and wonderful symptoms, especially in color TV's. In one well-remembered case, the set had absolutely no vertical sync. Everything else worked beautifully, and the composite sync waveform at the sync-separator plate looked fine. After checking all the things that would normally cause this, the scope was used on the power-supply lines. You can see the result in Fig. 10: a high-amplitude, very sharp spike, 60 Hz, coming from the vertical output stage! This was getting into the sync-separator tube's dc plate supply, with exactly the right frequency and phase to literally "punch out" the vertical sync, leaving the horizontal sync untouched! A closer look at that composite-sync waveform showed that there was no vertical sync in it after all! Replacing one of the big electrolytics in the filter system cured it.

The backward feedback case

If you had a color TV, and you could see a small resistor between two sections of an electrolytic, burning up, you'd naturally suspect that the electrolytic on the load-side of the resistor was shorted, wouldn't you? Yet an ohmmeter check here showed a very high resistance—no short at all. Replacing the resistor, it promptly burned up again.

The scope showed why. The circuit is in Fig. 11 (RCA CTC 35). When we put the scope on the load end of the resistor, we found a very high horizontal-frequency pulse voltage! The 40-μF section of the electrolytic was open. The only explanation I could find for the odd reaction was that the 100-μF electrolytic on the line side of the resistor was good. This offered a very low impedance to the high-frequency horizontal pulses. So they flowed backward through the little (680-ohm) resistor, actually overriding the 400 volts of B+; and made the resistor overheat and burn up. I do know this; when we replaced the capacitor and the resistor, it worked!

This is an excellent example of the type of reaction you can get when a big electrolytic capacitor opens. You'll find parts burning up, but there will be no direct short-circuit on the load side to account for it! In such cases, get out the scope and check for high-amplitude pulses.

Electrolytic coupling capacitors

In a great many solid-state circuits you'll find electrolytic capacitors used as
Part II—Faulty electrolytics can cause some weird effects. Here is the dope on some of them.

BY EUGENE CUNNINGHAM

A ONE-FARAD ELECTROLYTIC CAPACITOR provides a whopping amount of filtering and is a mighty handful that you can't expect to find in a transistor radio or recorder.

coupling capacitors. This is mostly in audio amplifiers, but you will run into them in TV circuits as well. These are very small, and tend to be low-voltage types.

Once again your scope is the best "weapon" to find the trouble. Coupling capacitors, especially, are easy. Just feed in a test signal, and look on both sides of the capacitor for the signal. If you have signals on the input, and none on the output, it's open.

When used in TV circuits, such as vertical oscillators, sync, age, etc., you may find distortion on the output side of the capacitor. Check the waveforms shown on the schematic to see if this is normal. If you see signal clipping on the output, this could indicate excessive leakage through the capacitor, causing the transistor to be improperly biased and clipping.

Tantalum electrolytics

In the very small capacitors used in TV circuits, you may find some that are different. If they are very very small, they will probably be one of the newer type electrolytics, made of tantalum. They are generally found in circuits such as TV vertical oscillators, etc., or any application where the actual capacitance of the electrolytic must be held to tight tolerances. If one of these is defective, replace it with an exact duplicate. If the capacitor is used in a "timing circuit" like a sweep oscillator, actual capacitance is important. (Some of these things can be confused with silicon diodes, they are so small!)

Replacing electrolytics

For some reason, a lot of men have trouble replacing electrolytic capacitors! There is absolutely no reason for it. An electrolytic capacitor of any kind is about the easiest part to find replacements for! (Aside from the critical tantalum types just mentioned). A lot of technicians will complain "I can't find an exact duplicate for this _______ (multiple-section electrolytic).

The reason for this can be summed up in one word—tolerance. There is no part in a set which has a greater tolerance than an electrolytic capacitor! When we're looking for a replacement for any multiple-unit capacitor, we need only two things: One, a minimum capacitance (which is the value given for the original unit) and a minimum voltage rating (the working voltage of the original). If our proposed replacement meets or exceeds both of these ratings, we have a suitable replacement.

Electrolytic capacitors for filtering and bypassing are made with very wide tolerance. This is a one-way tolerance, however. Check the fine print on any new replacement electrolytic in your stock and you may see figures like this: +150%/-10%. If this is a 100-µF capacitor, it means that it can be as high as 250 µF or as low as 90 µF and still be in the ballpark!

Why so dag-bone liberal with us? Because, What do we need for filtering purposes? Enough capacitance to get the dc power supply lines down to the desired "zero impedance". So it doesn't make any difference if the capacitor is bigger than the original, but it shouldn't be smaller. (Reason for this: the engineer that designed the set probably used the very least amount of capacitance he could get by with! When we make replacements, we are under no such restrictions!) Of course, we must equal or exceed the working-voltage rating of the original. If it was a 300-volt unit, we can use a 450-volt unit.

We can sum up the whole bit in three words: Always Go Up. After observing this rule, all you need to do is be sure that your proposed replacement has the same mounting as the original. This applies only to the "twist-lug" mounting; these can have either 3 or 4 lugs, and it's best to match, although you can always use the mounting plate supplied with the replacement. If the capacitor is an insulated-can tubular type, it can be clamped to the apron of the chassis.

To select a suitable replacement for any multiple unit, look through the catalogs of the makers. There's a trick you can use here; if the original had three big capacitors at a high working voltage and one low-voltage section, you can use a 3-section high voltage unit, and replace the low-voltage section with a separate tubular type. These are so small that they can be tucked away anywhere in the chassis.

There's only one definite no-no in replacing electrolytics. If you find one section of a multiple bad, always replace the whole unit. Do not disconnect one section and hook a tubular across it! Worse than this, do not simply bridge a separate unit across the open original and leave it in circuit! Whatever happened to one section of the original to make it go bad is still in there, and it may affect the remaining good sections. So take it out completely.

Electrolytics in solid state

If you're on my side of the generation gap, the sheer size of some of the electrolytic capacitors you find in modern solid-state power supplies will amaze you. You'll find tremendous values in very small cans. I remember hearing a radio engineer give a talk, when I was a boy (and that's a while back!). He was describing a radio he'd built for his own use. He said proudly "And, do you know, I've got over 2,000-µF in it!" We all gasped, of course. At that time, the average total capacitance in a set was about 8-µF.

Not too long ago, I worked on a big transistor amplifier. The output filter capacitor alone was 8,900 µF. (Two units, 4,250-µF each). This one capacitor had more capacitance than a thousand radios, "back in the good old days." Wheeew!!

R-F

HARD-CORE SERVICING

If 8-track auto tape players drive you up a wall don't miss Joe Carr's article in the April issue. There's a complete set of case histories of actual repair jobs.
Incorrect Use of Semiconductors

by PAUL FRANSON

Use semiconductors wrong?

We must distinguish between serious and truly useful odd applications, and interesting but often impractical tricks. For example, the technique of using a forward-biased diode as a voltage reference is well known, valuable, and widely applied. But using a conventional diode or transistor as a potentiometer is of little practical use, even though it's a good item with which to impress unsophisticated newcomers.

Why then, do experimenters and sometimes manufacturers use transistors as diodes, for example? Why not just use a diode instead?

There are a number of reasons why this technique is useful. One is that it simplifies stock requirements, and can reduce prices through quantity purchases. One bin full of a popular plastic-encapsulated silicon transistor such as the 2N3903, for example, can provide not only audio, dc and rf amplifiers and switches, but also high-frequency small-signal diodes. Zener diodes, low-temperature-coefficient voltage references, tuning varactors, and even noise generator diodes! And in many cases, these devices have excellent characteristics, which a designer can learn thoroughly and exploit often. Many pieces of equipment manufactured by relatively small companies contain parts used for this reason.

And not only are the parts cheaper because of the price breaks. A plastic transistor can be bought new in single quantity for 21¢ (2N5172 or MPS5172). Even the cheapest varactors and Zener diodes are considerably more expensive.

Some parts are more readily available than others, too. Plastic transistors with known characteristics are available everywhere; more exotic parts are not. This often makes emergency repairs possible in remote areas of the USA, or abroad, and at inconvenient times. It can also permit immediate building of interesting projects without the long wait and hassle of ordering "special parts" (anything other than a TV repair component, that is). It is also possible to obtain superior, or at least different, characteristics, by using parts in this manner. For example, constant-current diodes are available for currents from about 0.22 to 5 milliamperes. But it is possible to select a conventional FET to give higher or lower currents (and an FET can cost less than fifty cents, while a constant-current diode is more like $4.50).

There are often disadvantages to using components in unconventional ways. When you buy a 6.2-volt, ±5% Zener, you pretty well know what you have (if you use it at the correct current and temperature). But a transistor emitter-base junction used as a Zener might have a value of 5 volts, or it might be 8 volts. Only checking will tell. And its knee or noise characteristics might not be as good as those of a Zener specified and tested for these characteristics.

With these considerations behind us, let's look at some "incorrect" uses to see if they might be useful to you.

Diodes as voltage references

The usual definition of a perfect diode is a device with zero impedance in the forward direction, and infinite impedance in the reverse direction. No practical diodes meet these criteria, of course, and the variations from the ideal provide interesting and valuable applications.

A forward-biased silicon diode has a voltage drop of about 0.7 volt at moderate currents (Fig. 1) and a germanium diode has a similar drop of about 0.3 volt. This property can be exceedingly valuable.

Zener diodes make good references at voltages above 3, but aren't really useful for much lower voltages. But forward-biased diodes provide reasonably good references as low as 0.3 volt, and combinations of diodes can provide many intermediate voltages. As an example, Fig. 2 shows a replacement for the one battery, a flashlight cell, used in many otherwise line-operated voltmeters. The two diodes in series provide 1.4 volts, about the same voltage as a new cell.

The zero adjust potentiometer can compensate for any slight variation.

The major problem with forward-biased diodes as references is that they really aren't very good references. Though it's considerably better than that across a resistor, the voltage across a diode does vary with current (Fig. 3), so the current should be kept relatively constant (unless the varying voltage is useful, as it is in some types of compensating circuits).

Conventional silicon diodes can also be used as voltage regulators, or Zeners, by connecting them as a conventional regulator (Figure 4). Here the regulating voltage is the diode's breakdown voltage, which will be above the diode's rated PIV. For example, a good diode with a PIV rating of 50 volts will have a breakdown above 50 volts. How high above is the question, and it can be found only by trying it out as shown. Be sure to limit the power dissipated by the diode to a reasonable value, say 200 milliwatts for glass diodes, 500 milliwatts for 1-ampere rectifiers. Unfortunately, the regulating characteristics

Many semiconductors can be used for purposes other than those the manufacturer expects them to be used for—and in many cases, they can be used very satisfactorily in such applications. Some of these "incorrect" uses are popular—others are rather obscure, but still very useful. Some odd uses are almost necessary, since other devices to accomplish the desired purpose are either not available or are too expensive for general use.

But some of these applications are not recommended by the manufacturer, either because he sells other devices better suited to the task, or because the application may be unreliable or may even damage the device. But let's take a look at these applications; many are very useful to the engineer, technician or home experimenter in his design, construction and repair work.
Temperature compensation

Another valuable property of the nonideal silicon diodes we use is that the forward voltage drop depends on temperature in a most useful way. For a constant current, the voltage drops 2.2 millivolts for each degree Celsius (centigrade) in temperature. Thus, it has a negative TC (temperature coefficient).

Conveniently enough, conventional regulator (Zener) diodes with breakdown voltages over about 5 or 6 volts have positive temperature coefficients. An example is the 1N5236, a 7.5-volt Zener with a TC of +5.4 millivolts/degree. As shown in Fig. 5, two forward-biased silicon diodes in series with this reverse-biased Zener provide a composite temperature coefficient of only \(+5.4 + 2\cdot(-2.2)\) or 0.1 millivolt/degree. This very respectable characteristic would be useful for regulating a vfo, for example. But don't forget to keep the current almost constant!

Of course, since the three diodes are in series, the resulting reference voltage is above the Zener voltage. It is \([7.5 + 2(0.7)]\) or 8.9 volts, close to the 9-volt standard of many designs.

The diode as a thermistor

The same temperature coefficient makes a silicon diode an excellent "thermistor." This property is widely used in compensating power amplifiers to reduce distortion and prevent thermal runaway with high power output.

The temperature coefficient is also valuable in electronic thermometers for remote temperature readings. A bridge circuit should be used for best results.

Another property of diodes that is possibly useful in thermometers or temperature compensation is the reverse leakage current, which typically doubles for each 10° C rise in temperature. This phenomenon is probably not as useful as the forward-voltage change.

The diode as photosensor

It's long been known that semiconductors are light-sensitive. This property has proved valuable in photodiodes and phototransistors. The same effect caused mysterious circuit malfunctions when germanium and silicon diodes were first used. Circuits would operate properly when sealed in their cases, but act peculiar when opened for servicing. The cause, as you might expect, was that light reaching the semiconductor junction changed its characteristics. Manufacturers soon learned to coat the devices with opaque paint or seal them in black plastic or metal instead of clear plastic or glass.

What this is leading up to is that painted glass diodes can be used as photodiodes by scraping off the paint. As you might expect, the device may be a good photodiode or it may be a poor one, depending on its construction. Consequently, this use, unlike the preceding ones, must be considered more a gimmick than a serious application.

Unusual uses for the Zener

The regulator diode is usually called a Zener, even though, strictly speaking, only diodes with breakdown voltages under about 6 volts are Zeners. Others are avalanche regulators. They have many conventional uses, and a few unusual ones as well. For example, since a Zener can be thought of as simply a conventional diode with known breakdown characteristics, it can be used like any other diode below its breakdown voltage. An obvious example would be forward biased as temperature compensation for another Zener (but this scheme is likely to appeal most to those possessing an unusually bountiful supply of Zeners).

The Zener as noise source

More practically, Zener diodes often make excellent white-noise sources. White noise, the rushing sound evenly distributed across the spectrum, is very useful in electronic musical instruments and in test instruments. It can also mask other noises, a use that may prove a godsend in small apartments with thin walls.

A Zener generates white noise when it is reverse biased, the way Zeners are normally used. This can be a nuisance in most circuits, since the noise must be filtered out. Fortunately, however, the greatest noise appears when the diode voltage is sitting right on the knee, where the Zener is normally not operated. It’s easy to encourage operation on the knee, however, for maximum noise. Simply use a large series resistor to insure low current flow. The circuit is shown in Fig. 6. It's easiest to adjust while looking at the output on an oscilloscope or while listening to it with an amplifier or headphones.

The Zener as a varactor

Voltage-variable-capacitance (VVC) diodes, otherwise known as tuning diodes, varactors, Epicaps or Varicaps, are popular in afc circuits, and in automatic and manual tuning of radios and TV sets. Most VVCs have relatively low capacitance—say under 100 picofarads—as is desirable in the application they are intended for. But if you need a high-capacitance VVC, say over 500 pF, the conventional VCC isn’t much help. Here again the Zener is useful. For example, the 3.9-volt 1N5228 typically has a capacitance of 700 pF at 3.8 volts (just before breakdown). A problem here is the small bias voltage necessary for the high capacitance. It limits the signal across the diode to less than half the value, which is inadequate for many applications.

Zener “capacitance” diodes also have relatively low Q and, often, insufficient capacitance ratio for many applications. In spite of this, Zeners as capacitance diodes should prove useful in some circuits.

MARCH 1972 • RADIO-ELECTRONICS 59
Transistor applications

One of the great attractions of the transistor is that it is a three-terminal device, making it easy to control and to isolate its input from its output. The tunnel diode can amplify, oscillate and switch, much as a transistor can—even better in some cases—but it has only two terminals, making it difficult to use in many practical circuits.

Yet the transistor has many uses when it is treated as a two-terminal device (as a diode, in the common usage*). Since there are three terminals, there are three possible connections, and each can be reverse or forward biased. Oddly enough, all are useful, though some are considerably more so than others. Let’s look at the devices, using the popular and inexpensive 2N3903 plastic-encapsulated npn silicon transistor as an example.

Diodes and varactors

A conventional transistor can be thought of as two back-to-back diodes, with a common anode (the base) for npn transistors, and common cathode for pnp. This is shown in Fig. 7. This analogy is valid except for one case, the collector-emitter connection with collector positive (npn). More on that later.

The collector-base diode of a typical 2N3903 appears to be a conventional diode with a PIV of 40 volts, low leakage, and good high-frequency characteristics. As such, it can be used the same way a similar diode can be used, including taking advantage of the 0.7-volt forward drop when forward biased (base more positive).

In the reverse-biased mode, the C-B junction makes an excellent varactor (VVC), and one with fairly predictable characteristics, since \(C_m\) (or \(C_{ab}\)) is usually specified on its data sheet. Sometimes even in a curve (Fig. 8). This VVC generally has reasonably good high-frequency characteristics, but relatively low capacitance and tuning ratio, since it’s not designed for this use.

A transistor Zener

The base-emitter diode of the 2N3903 and most other small silicon transistors looks like a Zener diode with a breakdown voltage in the 5 to 9-volt range. The voltage seems to be relatively consistent in a given device type, and can be measured easily, as outlined above. The voltage is always above the rated \(BV_{CEO}\) or \(BV_{EON}\). These “Zeners” often have excellent knees and are excellent regulators. Transistor Zeners can be used the same way as conventional Zeners within their power limitations (Fig. 9). For the 2N3903 type, the maximum dissipation is 310 milliwatts at 25°C ambient temperature.

This B-E diode proved especially useful to me at a small company where I worked. We produced a number of high-frequency (3 to 30 MHz) dual receivers for radio astronomy. The problem was to match the sensitivities of the receivers at a given frequency. We decided to do that with a wide-band noise source. A conventional diode was tried in a noise generator much like those popular with VHF experimenters, but the noise was inadequate. Then a Zener was tried, but it was erratic. Finally a cheap plastic transistor (a 2N4412S) was used as a “Zener” noise generator with excellent results. It drew little current, operated to well above 100 megahertz, and produced plenty of smooth white noise; so much, in fact, that it had to be severely attenuated for use with the receivers, which have sensitivities under 0.25 \(\mu V\).

Low TC reference

The final set of terminals of a transistor is the collector and emitter. Here two junctions are involved rather than one, as in the applications just discussed. If the terminals are connected with the collector negative with respect to the emitter, it is equivalent to a Zener (BE) in series with a forward-biased diode (BC). Remembering the discussion of temperature coefficients, we find that this means we have a low-temperature-coefficient reference, since the TC’s of the “Zener” and diode are opposite. In fact, the two junctions are in such intimate contact that they track very well with temperature changes, better than separate devices ever could.

Latching-voltage oscillator

The final two-terminal use of a transistor cannot be explained in terms of series diodes. This is the collector-emitter connection with the collector positive. This, of course, is the way in which the most common device breakdown rating, \(BV_{CEO}\), is specified. The \(BV_{CEO}\) is the maximum voltage that should be applied to a device under any circumstances. It doesn’t tell what happens above this voltage, and there’s probably no reason it should. However, some manufacturers specify \(LV_{CEO}\), latching voltage, instead of \(BV_{CEO}\). This is in recognition of an odd property of transistors: they latch into conduction under certain circumstances. If a planar transistor is connected as shown in Fig. 10, with enough limiting resistance to prevent device damage, and the voltage is slowly increased above the rated \(BV_{CEO}\), the voltmeter reading will rise, peak, then drop back to a stable state (as long as current is limited). If the voltage supply continues to increase, eventually the voltmeter indication will start to rise again, eventually excess current will flow, and the device will destroy itself.

This latching phenomenon can be used in a relaxation oscillator similar to one made with a neon bulb. Its circuit is shown in Fig. 11. The voltage rises as

\[\begin{align*}
\text{FIG. 9} & \quad \text{TRANSISTOR DIODE equivalents reveal some interesting possible applications.} \\
\text{FIG. 10} & \quad \text{LATCHING CHARACTERISTICS make relaxation oscillations a possibility.} \\
\text{FIG. 11} & \quad \text{A RELAXATION OSCILLATOR. An interesting but impractical application.}
\end{align*}\]

*Another definition of a diode is a single-junction device. However, this includes unijunction transistors and excludes four-layer diodes. Confusing, no?
needed, hence the name.

The transistor relaxation oscillator is interesting, but not really too useful. Transistors aren’t made to be used in this way, and tend to give up unless they are treated very carefully. This is one case when a device intended for the use is clearly preferable.

A double-diode

For low voltages (below the breakdown voltage of the emitter-base junction), the transistor simply looks like two back-to-back diodes, and can be so used in full-wave detectors and rectifiers or other circuits where no dc bias is applied. If it were, the transistor might act like a transistor.

The SCR as a 4LD

One of those interesting devices that never caught on is the four-layer diode (4LD), or Shockley diode (not Schottky diode; that’s a hot-carrier diode). The 4LD is a voltage-controlled switch. It is off (doesn’t conduct) until the voltage across it rises to a critical value (the breakerover point); then latches into conduction with only a small voltage drop (about 1 volt). The only way to switch the 4LD out of conduction is to reduce current through it to below the holding current, which is generally about 1 mA. This is usually done by breaking the circuit.

Four-layer diodes can be used in overload circuits and in other ways, but many experimenters hesitate to try them out because they are expensive (around $3.50). It turns out, however, that a silicon-controlled rectifier acts just like a four-layer diode if you ignore its gate. This is especially attractive because low-voltage SCRs’s, the best for use as 4LD’s, are inexpensive.

The breakerover voltage can be determined much as for a Zener voltage (Fig. 12). Simply increase the voltage across a 4LD (through a current-limiting resistor) until current starts flowing. Then the supply voltage is equal to the 4LD breakerover voltage if the supply is relatively stiff.

Constant-current diodes

Zener diodes, which provide a constant voltage with changes in load current, are exceedingly useful and justifiably popular. Their dual is the current-regulating diode (CRD), which provides a constant current with changes in input voltage or load resistance. The symbol for the CRD is shown in Fig. 13.

A constant-current diode is useful in supplying a constant current to a Zener reference, and in other parts of a power supply. It can also be used as a current source in a differential amplifier and in sawtooth-wave generators. One especially interesting application is an ohmmeter with an uncrowded, linear scale. Its schematic is shown in Fig. 14.

If a 1-mA CRD is placed in series with a voltage source and an unknown resistor, the voltage across the resistor will be equal to the resistance times the current (1 mA, or 0.001 ampere). Thus the resistance in ohms will be 1000 times the voltage. Maximum resistance will be limited by the rated operating voltage of the CRD, typically 100.

If you use this circuit, be sure to disconnect the voltmeter when changing resistors. Also start all measurements with the meter range switch above 100 volts to avoid meter damage. There are many other uses for the CRD, but so far it hasn’t found widespread use, as the Zener has. As a consequence, prices are still high ($4.50 apiece) and the current range available is limited, about 0.22 to 4.7 mA. Fortunately, an inexpensive field-effect transistor can be used instead. In fact, the CRD is nothing but a FET with an internal connection between the gate and the source. We can therefore make a CRD by simply shorting the two terminals externally (Fig. 15). This FET equal to the \(I_{DSS} \) (zero-voltage drain current) of the FET. The \(I_{DSS} \) can be found in the device specifications. Normally, a range is provided, such as 2 to 8 mA, and it is necessary to select an FET if a specific value is needed. The selection can be made by connecting the FET/CRD in series with a voltage supply and a milliammeter. This selection process explains part of the cost of a CRD; you may have to try quite a few to find the right value.

If an adjustable current source is needed, a FET can also be used. Simply place a resistor between the gate and source (Fig. 16). The combination acts like a variable CRD that can provide current values below the \(I_{DSS} \).

Conclusion

This article has discussed a number of semiconductor components that can be used in unusual ways. Many of the applications are very valuable. But take care that device ratings are not exceeded by the unconventional applications! And, if parameters are critical, a device specified for the use may be better.
R-E's Service Clinic

diagnosis and the methods thereof

The first step in any repair job is to analyze the fault

JACK DARR
SERVICE EDITOR

This column is for your service problems—TV, radio, audio or general and industrial electronics. We answer all questions individually by mail, free of charge, and the more interesting ones will be printed here. If you’re really stuck, write us. We'll do our best to help you. Don’t forget to enclose a stamped, self-addressed envelope. Write: Service Editor, Radio-Electronics, 200 Park Ave. South, New York 10003.

LET US NOW TAKE A SHORT RIDE ON my favorite hobby-horse—diagnosis, and how she is did. At any moment now, someone will jump up and yell “But you said that a while ago!”. True, I did. And I'll keep on saying it until you (and I) can remember it. In any job, the diagnosis is the most important part.

Frankly, the mass of the mail I get in the Service Clinic is from men who have problems in diagnosis. (To be embarrassingly truthful, most of the times I get stuck on a problem in the Test Lab, it's from the same cause!) So let's see if we can simplify the basic approach. If we use the scientific method, we’ll get better results.

This is really simple. The first thing to do is “State the problem”. There are two steps to this—Examination and Identification. In other words, turn the thing on and see just what it is doing or not doing. From the results of this, we get our first bit of data. This tells us what section of the set to look into. When we find that we have a certain problem, as shown by the symptoms, then we go to the final step. This is Elimination, and it's the longest one.

As we all know too well, there is no such thing as a problem in electronic equipment with only one possible cause! There may be one somewhere, but I haven't found it. So, the answer to our question “What's causing ?” is always a multiple choice! We must check out all possible answers, to be sure.

There's your Basic Method. Take the first two steps, identify the nature and probable location of the fault. Then make out a mental list of the circuits, parts, etc. that could cause it. Now, we patiently, calmly and impartially test each one of these. Somewhere along the line, we'll find the one we're looking for. Notice the last word in there—"Im impartially".

That's the key word! The most valuable asset we can have during diagnosis is a completely Open Mind. We know that there is a faulty part in there somewhere—what difference does it make which one it is? None at all.

However, here is one of the most troublesome things that can happen to you. (It is also one of the most common, as I can testify from years of doing it!) It's surprising how contrary the human mind can be. In far too many instances, we make up our mind that a certain thing is causing the trouble. Then, we make tests, not to locate the real cause, but to verify our first guess! (And at this point, without much data, that's all it is—a guess!)

We have become partial to a certain answer, not impartial. This ruins our scientific objective approach to the whole problem. So when you run into a problem, the first thing to do is "cool it". Sit there and look at it, and note what it is actually doing.

From this point, you make up that list of possible causes. Then, you slowly, carefully and methodically check them out until you find the bad part. This list must be based on a thorough knowledge of how the circuit works. If you do NOT have this, let the thing alone until you can dig out a book and read up on it. Sitting there and "poking at it" with a voltmeter will get you nowhere fast!

I've seen this happen. In fact, I do it myself far too often. When I work out a job in the Test Lab, I make detailed notes of every test made, the reason for it, and the results. When I run into troubles, I can always go back over the notes and see where I went wrong. In every case, I find that somewhere in there I "froze" on a mistaken diagnosis, and then started looking for evidence to "make me be right," instead of really trying to find out what was wrong.

You can try it yourself. Get a clipboard and some paper, and start writing down each step you take, and the reasons, and the results. Even if it does nothing but keep you from repeating yourself, it's worth while. Don't overlook the simple things, either. (I worked on a very "complicated problem" for at least an hour, only to find out that the reason I had no signal-output from the stage was due to zero screen-grid voltage on the tube!)

There's one more common problem; the complaint that "I've checked everything in that circuit and it still doesn't work!" There are two possible answers: One, you haven't checked everything, and Two: the trouble isn't in that circuit at all! Go and look for things which could affect this circuit. Example: all dc voltages, the tubes, ca-
pacitors, transformers, are ok in a bandpass amplifier, but you can't get a color signal through it. The trouble turns out to be a high negative voltage on the grid, cutting the tube off; the color killer is the section at fault!

Other problems can have much more "complex answers", but this just means that our list of "possibilities" is that much longer. For a good example, there are a great many things that could cause the cathode current of a horizontal output tube in a color set to run far above normal. All you have to do is make your little list and patiently eliminate them one at a time, and you'll find it. Just for fun, take a piece of paper, and make out this list. Then, look at it, and see how many actual cases you can remember where something you have left out was causing it! When you get through, pin the list up over your bench.

Reader Questions

RED BLOOM: NO FOCUS?
I can't get good focus in a Sylvania DO-9 chassis, even with the core of the focus coil all the way out. However, it seems that the blue and green focus pretty well, but the red doesn't. Checking with a magnifying glass shows that the red dots are much bigger than the others.

The focus voltage on pin 9 varies from 4,000 to 5,000 volts, with hv of 25 kV. Grid and cathode voltages on the pin tube look ok; about equal on all guns. Does this look like a bad picture tube? - J.A., Dallas, Tex.

BAD TRANSISTORS
I'm trying to fix a KRACO Stereo tape player. Do you have a schematic for this, or know where I can get one? It has two blown 2SB487 transistors (power outputs) and I can't find them listed either! What is a replacement? - T.K., Ohio.

Sorry; nothing at all in my files on "KRACO". You have an orphan. However, I did eventually locate a listing on a 2SB481 transistor, which is the same as the 2SB487. HEP-642 Motorola, RCA SK-3052, GE-30, or Sylvania ECG-131. Be sure to check the little emitter resistors, which will probably be about 1.0 ohm each. If the original transistors shorted, these probably burnt up. (continued on page 68)

The $300.00 Concert Hall

With all the "great", "new", "fantastic", "innovative" things everyone's claiming, how do we prove we've got something remarkable? Send us your ears, and eyes.

Walk into an authorized LDL high fidelity dealer with a favorite record or tape—hopefully, a demanding one. Ask him to hook up your present (or future) amplifier or receiver and a pair of LDL 749 reflecting speakers, and listen.

Listen to the "speakerless" clarity of a multiple-transducer crossoverless system using the finest components. If your record's got fundamental bass, the fundamental's what you'll hear, up to and including the attack of drums and strings. And as for highs, you won't just listen to them—you can pick them apart: violins, trumpets, piccolos and more—each clearly defined.

But good stereo (or quad) is more than frequencies and transients put in their place: it's a spatial phenomenon. Which is where the LDL 749 really excels. Precisely combining forward-radiated sound from the front of the enclosure with panoramically-reflected sound from the rear. Result: the kind of acoustic environment you used to need to get a concert hall to get.

Need more convincing? A-B LDL 749's against other speakers—even the $1000-a-pair variety. We honestly think you'll prefer ours.

Where do your eyes come in? To appreciate the speakers' compact size and elegant looks. Beginning with the $299.95 pricetag...for the pair. Now, where can you get a concert-hall for that?

For the name of your nearest dealer, write or call:

LINEAR DESIGN LABS, INC.
114 Wilkins Avenue, Port Chester, N.Y. 10573 - Phone (914) 937-0622

$300. Not For One...For Both!!!

Circle 13 on reader service card
How to become a “Non-Degree Engineer”

Exciting careers in the new industries of the Seventies are waiting for men with up-to-date electronics training. Thousands of real engineering jobs are being filled by men without engineering degrees—provided they are thoroughly trained in basic electronic theory and modern application. The pay is good, the future is bright...and the training can now be acquired at home—on your own time.

ELECTRONICS, the Science of the Seventies, has created a new breed of professional man—the non-degree engineer. Depending on the branch of electronics he’s in, he may “ride herd” over a sophisticated computer installation, run a powerful TV transmitter, supervise a law enforcement communications control center or work side by side with distinguished scientists fighting pollution or doctors seeking a medical breakthrough.

But you do need to know more than soldering connections, testing circuits and replacing components. You need to really know the fundamentals of electronics. How can you pick up this necessary knowledge? Many of today’s non-degree engineers learned their electronics at home. In fact, some authorities feel that a home-study course is the best way. Popular Electronics said:

“By its very nature, home study develops your ability to analyze and extract information as well as to strengthen your sense of responsibility and initiative.”

CIE Method Makes It Easy

If you do decide to advance your career through home study, it’s best to pick a school that specializes in the home-study method. Electronics is complicated enough without trying to learn it from texts and lessons that were designed for the classroom instead of the home.

Cleveland Institute of Electronics concentrates on home study exclusively. Over
the last 35 years we have developed techniques that make learning at home easy, even if you once had trouble studying. Your instructor gives the lessons and questions you send in his undivided personal attention—it's like being the only student in his "class." He not only grades your work, he analyzes it. And he mails back his corrections and comments the same day he gets your lessons, so you read his notations while everything is still fresh in your mind.

Students who have taken other courses often comment on how much more they learn from CIE, says Mark E. Newland of Santa Maria, California:

"Of 11 different correspondence courses I've taken, CIE's was the best prepared, most interesting and easiest to understand. I passed my 1st Class FCC exam after completing my course, and have increased my earnings by $120 a month."

Always Up-To-Date

Because of rapid developments in electronics, CIE courses are constantly being revised. This year's courses include up-to-the-minute lessons in Microminiaturization, Laser Theory and Application, Suppressed Carrier Modulation, Single Sideband Techniques, Logical Trouble-Shooting, Boolean Algebra, Pulse Theory, Solid-State Devices ... and many more.

An FCC License ... or Your Money Back

CIE'S AUTO-PROGRAMMED® Lessons are so successful that better than 9 out of 10 CIE graduates who take the FCC exam pass it. This is despite the fact that, among non-CIE men, 2 out of every 3 who take the exam fail! That's why CIE can promise in writing to refund your tuition in full if you complete one of its FCC courses and fail to pass the licensing exam.

This Book Can Help You

Thousands who are advancing their electronics careers started by reading our famous book, "How To Succeed in Electronics." It tells of many non-degree engineering jobs and other electronics careers open to men with the proper training. And it tells which courses of study best prepare you for the work you want.

Let us send you this 44-page book free. Just fill out and mail the attached postpaid card. Or, if the card is missing, mail the coupon, or write directly to: Cleveland Institute of Electronics, 1776 East 17th Street, Cleveland, Ohio 44114.

NEW COLLEGE-LEVEL CAREER COURSE FOR MEN WITH PRIOR EXPERIENCE IN ELECTRONICS

ELECTRONICS ENGINEERING ... covers steady-state and transient network theory, solid-state physics and circuitry, pulse techniques, computer logic and mathematics through calculus. A college-level course for men already working in Electronics.

Circle 12 on reader service card
CHANNELLOCK
Gives You More In Hand Tools Including

HELP!
(year in, year out)

When you want to grip, cut, strip, drive, clamp, bend, pull, twist, straighten, tighten or loosen almost anything, CHANNELLOCK will help you get the job done easier, faster, better, year after year. The fine-crafted toughness of CHANNELLOCK tools costs no more and saves you money in the long run. Ask any good mechanic. Specify CHANNELLOCK.

LET US SEND YOU OUR CATALOG. Yours for the asking.

TOOLS BY
CHANNELLOCK
MEADVILLE, PA. 16335

Circle 14 on reader service card

RADIO ELECTRONICS • MARCH 1972
around the bell of the tube. Leave the neck sticking out, but wrap the Quitro...
Naturally Every Speaker Wants to be Loved.

But few manage it as well as the Quam Model 8C6PAX. A jillion of these speakers have already been installed in factories, offices, restaurants, and other locations. What's the secret of success? It's the Sensuous Sound!
The Quam 8C6PAX knows that music often has to compete with inherent situational sounds. It must manage to be audible without being obtrusive. It has to have what it takes.

What Does It Take?

To be the Sensuous Speaker, you have to be well-engineered and well-manufactured.

Do you have a 6 oz. ceramic magnet? Get one! And get a dual cone, too. A frequency response of 50—20,000 Hz. will also help you, the way it has the 8C6PAX.

Fitting In

Don't try to be too deep. The 8C6PAX has just the right shallow construction. At three inches, it can fit almost anywhere. Transformer mounting facilities add to its appeal.

The Easy Way

Maybe it sounds like too much trouble for you to become the Sensuous Speaker.

Especially when Quam has already done all the work...and made all this delectable sound available for you.

Model 8C6PAX, The Sensuous Speaker. At your distributor. Now.

QUAM
QUAM-NICHOLS COMPANY
234 East Marquette Road
Chicago, Illinois 60637
(312) 488-5800
new products

More information on new products is available from the manufacturers of items identified by a Reader Service number. Use the Reader Service Card on page 103 and circle the numbers of the new products on which you would like further information. Detach and mail the postage-paid card.

DIGITAL CLOCK, AMG. Available in 12- and 24-hour models, these solid-state clocks use bright red neon readouts rated 200,000 hours life (22+ years). Instrumentation quality TTL logic components include 15 IC’s, 4 transistors, 7 diodes, fiberglass printed circuit boards. Built-in, rechargeable battery “holds” time in the circuit during power line failures of up to five minutes. The 24-hour clock has a bright red neon light, flashing for 30 seconds every ten minutes as a Station-Ident call reminder for hams. Disable switch provided. 12-hour clock, $93.00; 24-hour clock, $99.00. AeroMetric General, Inc., 155 Franklin St., Dayton, Ohio 45402. Circle 31 on reader service card.

DIGITAL LAMP CLOCK, model #770. This Colorama Tele-Vision clock comes in the "new" colors, avocado, poppy, charcoal brown and white. Big numerals, comforting dual lighting, plastic case, height 4-⅛ in., width 7 in., depth 3-⅜ in., weight 3 lbs. Self-starting electric, 110-120 V, 60 Hz. $17.00.—Pennwood Numechron Co., Tymeter Electronics, 7249 Frankstown Ave., Pittsburgh, Pa. 15208. Circle 32 on reader service card.

DOLBY NOISE REDUCTION UNITS, models AN-180, AN-80, and AN-50. Three different Dolby system noise reduction units designed for recording applications. The AN-180 is a simultaneous record-playback control center with microphone and line

INTERNATIONAL

Frequency meter
FM-2400CH

The FM-2400CH provides an accurate frequency standard for testing and adjustment of mobile transmitters and receivers at predetermined frequencies. The FM-2400CH with its extended range covers 25 to 1000 MHz. The frequencies can be those of the radio frequency channels of operation and/or the intermediate frequencies of the receiver between 5 MHz and 40 MHz.

Frequency Stability: ±.0005% from +50° to +104°F.

Frequency stability with built-in thermometer and temperature corrected charts: ±.00025% from +25° to +125° (0.000125% special 450 MHz crystals available).

Self-contained in small portable case. Complete solid state circuitry. Rechargeable batteries.

WRITE FOR CATALOG!

INTERNATIONAL
CRYSTAL MFG. CO., INC.
14 NO. LEE • OKLA. CITY, OKLA. 73102

Circle 61 on reader service card

MARCH 1972 • RADIO-ELECTRONICS 71
able for each channel instead of two. Does not record and playback at the same time. The AN-50 is more compact than the AN-80 but has essentially the same performance. It is intended for use with cassette equipment. AN-180 is $28.95; AN-80 is $129.50; and the AN-50 is $49.50.—TEAC Corp. of America, 2000 Colorado Ave., Santa Monica, Calif. 90404.

Circle 33 on reader service card

TWO-WAY RADIO, model = 123. 23 channel Citizens Band two-way radio operates from positive or negative voltage source, has both transmit and receive indicator lights to guide nighttime operation, a precision meter in front panel to give relative signal strength of incoming signals and indicate modulation output. Double-conversion receiver with a series gate noise limiter; a local/distance function enables the operator to use the full designated sensitivity of 0.4-μV when operating away from city and auto RFI noises. $129.95.—Pace Communications, div. Palcom, Inc., 24049 South Frampton Ave., Harbor City, Calif. 90710.

Circle 34 on reader service card

AM/FM RECEIVER, model QR6500. Combines receiver with synthesizer for converting standard two-channel stereo sources to four, a decoder for reproducing all compatibly encoded matrixed 4-channel sources; facilities for handling discrete 4-channel sources, such as open-reel and cartridge tapes; and complete set of controls and accessory circuits for all modes and functions. Includes four power-output amplifiers. Amplifier section delivers 280 watts IHF music power (50 watts of continuous power at 4 ohms in each channel; 37 watts at 8 ohms). Frequency response is 20 to 30,000 Hz ±1 dB and distortion at rated output less than 0.5%, either intermodulation or total harmonic. $679.95.—Sansui Electronics Corp., 25-17 61st St., Woodside, N.Y. 11377.

Circle 35 on reader service card

TRANSFER TUNER SPRAY KIT, Slim-Jim. Smaller size and shape for service calls, fits conveniently in a shirt pocket or service caddy. The Slim-Jim is designed to be refillable. Buy economy, bench-size cans of electronic chemicals and use to refill the Slim-Jim which operates in a...
piggy-back fashion, takes 30 seconds, and fills completely to service six to ten tuners each time, depending on how dirty the tuners are. Kits are available with two bench-size cans of Tun-O-Wash, Kit #1; Tun-O-Wash and Tun-O-Brite, Kit #2, or Tun-O-Wash and Tun-O-Foam, Kit #3. Each kit also has two Slim-Jim size cans ready to be filled. Kit #1 is $6.98; Kit #2 is $8.24; Kit #3 is $8.24. —Chemtronics, Inc., 1260 Ralph Ave., Bklyn., N.Y. 11236.

Circle 36 on reader service card

INSTRUMENT CASE, Slant-Front, is used primarily with a mounted keyboard and is a variation of a standard case from off-the-shelf components. Concealed fastenings are used to assemble this aluminum case accented with glare-free, suede-type color finishes of your choice, on the top, bottom, and side feature strips. Standard 8-3/4 in. height with width and depth infinitely variable, determined only by individual specifications. Special chassis fabrication, silk screening and piercing for control panels or keyboards are available. —Buckeye Stamping Co., 555 Marion Road, Columbus, Ohio 43207.

Circle 37 on reader service card

COLOR PICTURE TUBE BRIGHTENER, model W27, for 90’ color picture tubes. Parallel isolation repairs heater cathode shorts. Original 6.3-volt heater supply is boosted to 8.5 volts to brighten picture and extend useful picture tube life. $11.50. —Workman Electronic Products Inc., Box 3828, Sarasota, Fla. 33578.

Circle 38 on reader service card

STEREO CONTROL UNIT, Radford SC-24, is a transistor stereophonic pre-amplifier control unit that may be used with any power amplifier. Mains input 110V, 120V, 130V, 220V, 230V, 240V, 50-60 Hz. Distortion less than 0.01% at 1V rms output level. Suitable for shelf mounting. $345.00.—Audionics, Inc., 8600 N.E. Sandy Blvd., Portland, Ore. 97220.

Circle 39 on reader service card

BURGLAR-FIRE ALARM SYSTEM, the Watchdog Too. Do-it-yourself system comes complete with an eight inch diameter bell that delivers loud, sharp warning signals when activated by solid state control circuitry; three sets of foolproof UL approved weatherproof switches; three UL

FREE!

JUST OFF THE PRESS!!
SEND FOR YOUR EXCITING COPY NOW!

LAFAYETTE 1972 Catalog 720
468 PAGES

YOUR 1st GUIDE TO EVERYTHING IN ELECTRONICS

Our 51st Year

- Stereo/Hi-Fi Components - Musical Instruments and Amplifiers

Send For Your Free Lafayette Catalog Today!
Lafayette Radio Electronics, Dept. 17032
P.O. Box 10, Syosset, L.I., N.Y. 11791

Mail This Coupon Today For Your 1972 Catalog No. 720

Send Me the Free Lafayette Catalog
Name ____________________________
Address __________________________
City ____________________________ State __________ Zip __________
(Please include your zip code)

Circle 63 on reader service card

MARCH 1972 • RADIO-ELECTRONICS 73
FREE! New '72 Edition Radio Shack Electronic Accessories & Parts Catalog

1000's of Products
100's of Exclusives
THE buying guide for kit builders, CBers, installers, experimenters, hobbyists, electricians—anyone in electronics in any way!

Electronics from A to Z—Antennas, Batteries, Capacitors, Diodes, Educational Kits, Fiber Optics, Grit & Cloth, Hi-Fi Speakers, IC's, Jacks, Knobs, L-Pads, Mixers, Needles, Oscillators, P-Bends, Quad- rants, Resistors, Semiconductors, Telephones, Ultrasonic Alarms, VHF Antennas, Wire, Xerox Sproks, Y Adapters, Zener Diodes plus our Science Fair kits and Knight-Kits—and much more!

Get your FREE copy at our nearby store—or mail in coupon today!

2725 W. 7th St. Fort Worth, Texas 76107

Send me your FREE 1972 Catalog #215

Please PRINT Clearly

Name___

Street or Rte & Box___

City___State___Zip___

Circle 64 on reader service card

the tape that
turned the
cassette
into a
high-fidelity
medium

TDK

Until TDK developed gamma ferric oxide, cassette recorders were fine for taping lectures, conferences, verbal memos and family fun—but not for serious high fidelity.

Today you can choose among high-quality stereo cassette decks:

TDK SUPER DYNAMIC (SD) TAPE

The new magnetic oxide used in TDK Super Dynamic Tape distinctively differs from standard formulations in such important properties as coercive force, mysterioos-loop squareness, average particle length (only 0.4 micron!) and particle width/length ratio. These add up to meaningful performance differences. Response capability from 30 to 20,000 Hz, drastically reduced background hiss, higher output level, increased distortion and expanded dynamic range. In response alone, there's about 4 to 10 db more output in the region above 10,000 Hz—and this is immediately evident on any cassette recorder, including older types not designed for high performance. There's a difference in clarity and crispness you can hear.

Available in C60SD and C90SD lengths.

Circle 65 on reader service card

STEREO AMPLIFIER, model D-150. This dual-channel stereo amplifier has these specifications: 150 watts rms into a single channel at 8 ohms, 180 watts per channel at 4 ohms; frequency response ±0.1 dB, 20 to 20,000 Hz at 1 watt; distortion IM less than 0.05%, 0.01 watt to 75 watts, harmonic less than 0.05% at 75 watts; separation better than 90 dB, 20 to 20,000 Hz. $399 without panel, $429 with panel; (walnut cabinet $33.00).—Crown International, Box 1000, Elkhart, Indiana 46514

Circle 41 on reader service card

Circle 100 on reader service card

ITU FREQUENCY LISTS, 6th Edition, 1971. Frequency lists and callbooks published by the International Telecommunications Union, the world-wide treaty registration center for all radio stations and frequencies. Computerized lists of the hundreds of thousands of radio stations are updated quarterly. Typical lists and prices are: List of Ship Stations, $5.25; List of Coast Stations, $6.60; List of Fixed Stations, $22.00; List of Broadcasting Stations Operating Below 5950 kHz, $11.50; Alphabetical List of Call Signs, $7.70. The ITU Frequency List Itself, with every radio station, emission, power, antenna pattern, transmitter hours of operation, who owns and operates, etc., covering half a million stations in 4 volumes with a Preface, $265.00. —Gillett Associates, Inc., Box 239, Park Ridge, N. J. 07656.

ELECTRONIC BURGLAR & FIRE ALARMS, #A-107. Brochure showing plug-in installation of alarm system in different spots in the household. Also describes detector-transmitters, receiver-alarm, and accessories for protection devices.—Functional Devices, Inc., P.O. Box 368, Russiaville, Indiana 46979.

Circle 43 on reader service card

PRECISION TUNER SERVICE ADOPTS NEW NAME. With purchase of entire tuner parts line from Cioam Electronics, plus the addition of two extra lines of repair services—1-f, sub-chassis and 8-track car stereos and tape decks—the company has taken the new name, PTS ELECTRONICS, INC. As before, PTS Electronics remains an industrial supplier. PTS Electronics operates at Box 272, 5233 Highway 37 S., Bloomington, Ind 47401.

Give Happiness The United Way

new lit

All booklets, catalogs, charts, data sheets and other literature listed here with a Reader Service number are free for the asking. Turn to the Reader Service card on page 103 and circle the numbers of the items you want. Then mail the postage-paid card.
much trouble. Fig. 2 shows a typical direct-operated valve of this type. The coil and working parts will be enclosed in a housing, held in place by screws. If you take one of these apart, remember "where everything goes", and in what order!

Any dirt that is jamming the operating parts of the valve can be cleaned out. Polish tightly-fitting parts, such as rods, until they’re very smooth and shiny. If the valve was leaking, check the valve and seat for small particles of dirt which is keeping the valve from seating tightly.

As a general rule, you shouldn’t use too much lubricant on these things. If any, use one of the silicone oils or greases. There is also a spray-can product, available from refrigeration-supply houses, which actually leaves a very thin film of Teflon on the surfaces!

Never use excessive oil or grease. It will tend to make the valve jam sooner than it would. Apply it very sparingly if at all.

When you get it back together, check it very carefully for quick, positive shutoff, and full opening. If it will not work properly, replace it! Don’t take chances; if it isn’t working perfectly, throw it out.

Electronic Ignition?

Facts & Fallacies Of Electronic Ignition appears next month. This article explodes the myths of what electronic ignition can and can’t do for your car.

APPLIANCE CLINIC

(continued from page 22)

READOUT TUBE SPECIALS

BurrOughS 8-7971 GIANT

Alpha-Numeric Nixie Tube.
15 Segment tube makes all digits and complete alphabet, $18.00 value. Comes with socket and information for making simple diode decoder.

3/10.00, 10/25.00

BurrOughS 8-8569

Miniature NIXIE tube. 5/8" digits. Flying leads, ideal for PC mount.

Stock No. J5016 3.00 ea. 4/11.00

HONEYWELL COMPUTER BOARDS

Honeywell Computer boards, 4 1/2" x 12", Transistors, diodes, zeners, capacitors, precision resistors, heat sinks, trimmers, etc. 2 Different boards $1.00. Stock No. J9082.

COMPUTER GRADE CAPACITORS

J2062 40,000 mf. 10 volts 3/4"x4/" 1.75 ea. 6.70
J2118 70,000 mf. 10 volts 3/4"x4/" 1.75 ea. 6.90
J2117 6,000 mf. 55 volts 3/4"x4/" 1.50 ea. 9.75
J2116 3,750 mf. 75 volts 3/4"x4/" 1.50 ea. 6.90

All above are brand new and include terminal hardware.

Many other items—Send for new 32 page catalog.

All merchandise guaranteed. Please include sufficient postage, excess will be refunded.

$1.00 FREE WITH $10.00 ORDER MINIMUM ORDER $3.00

DELTA ELECTRONICS CO.

BOX 1, LYNN, MASSACHUSETTS 01903

Circle 66 on reader service card

IT’S EASY TO ASSEMBLE A SCHOBER ORGAN!

Includes easy to assemble walnut console kit. Amplifier, speaker system, optional accessories extra. Only $1368 if you build your own console.

You couldn’t touch an organ like this in a store for less than $3500—and there hasn’t been a musical instrument with this vast variety of genuine Theatre Organ voices since the days of the silent movies! Haunting tibias, biting strings, blaring reeds—the whole A to Z gamut of real pipe sounds that make the simplest playing a thrilling experience and give the professional organist everything he needs. If you’ve dreamed of the grandeur of authentic big organ sound in your own home, you won’t find a more satisfying instrument anywhere—kit or no kit.

You can learn to play it. And you can build it, from Schober Kits, world famous for ease of assembly without the slightest knowledge of electronics or music, for design and parts quality from the ground up, and—above all—for the highest praise from musicians everywhere.

Send right now for your copy of the full-color Schober catalog, containing specifications of the five Schober Organ models, beginning at $499.50. No charge, no obligation—but lots of good for a healthy musical appetite!

The Schober Organ Corp., Dept. RE-100
43 West 61st Street, New York, N.Y. 10023

□ Please send me Schober Organ Catalog and free 7-inch "sampler" record.

Enclosed please find $1.00 for 12-inch L.P. record of Schober Organ music.

NAME ____________________________
ADDRESS __________________________
CITY STATE ZIP ______________________

Circle 67 on reader service card

THEATRE ORGAN $1730

Draw the line on contact failure...

with an Electrolube pen.

A newly developed contact treatment that:
• Prevents tarnishing
• Inhibits arcing
• Reduces contact resistance
• Improves reliability

Special introductory coupon offer. Regular $2.50 Electrolube pen only $1.95.

Electrolube Corporation
155 Michael Drive
Syosset, N.Y. 11791

Please send me one Electrolube pen. I enclose $1.95.

Name ____________________________
Address __________________________
City STATE ZIP ______________________

Circle 68 on reader service card

MARCH 1972 • RADIO-ELECTRONICS 75
Your #1 enemy is the heart and blood vessel diseases

GIVE... will live HEART FUND.

Contributed by the Publisher

TV TUNER SERVICE

VHF, UHF, FM or IF-Subchassis...

...All Makes

you get...

Fast 8 hr. Service!

1 YEAR GUARANTEE

FIRST TO OFFER 365-DAY GUARANTEE!
COLOR-BLACK & WHITE—TRANSISTOR TUNERS—
ALL MAKES
GUARANTEED COLOR ALIGNMENT—
NO ADDITIONAL CHARGE

LIKE TO DO IT YOURSELF?

PTS makes all tuner parts available to you.

Send one dollar (redeemable) for our TUNER REPLACEMENT GUIDE AND PARTS CATALOG

We offer you finer, faster...

Precision PTS Tuner Service

VHF-UHF-FM $9.95
UV-COMBO $16.95
IF-MODULE $12.50

Major Parts charged at Net Price

(CUSTOMIZED REPLACEMENTS AVAILABLE
FOR $15 UP/NEW OR REBUILT)

PTS ELECTRONICS, INC.

HOME OFFICE—SOUTHEAST—
WEST COAST—SOUTHWEST—
P.O. Box 727—Bloomington, Ind. 47401
P.O. Box 6771—Jacksonville, Fla. 32205
P.O. Box 41354—Sacramento, Calif. 95841
P.O. Box 3189—Springfield, Mass. 01103
P.O. Box 7332—Longview, Tex. 75601
P.O. Box 4145—Denver, Colo. 80204
Tel. 812/248-9331
Tel. 904/386-9952
Tel. 916/482-2220
Tel. 413/734-2737
Tel. 214/755-4236
Tel. 303/244-2818

Garrard Zero 100
Automatic Turntable

LATERAL TRACKING ERROR AND ITS resulting distortion is a well studied phenomenon with mathematical analysis going back thirty years. The geometry of a conventional finite length tone arm requires that the angle between the cartridge axis and the tangent to the record groove (the tracking angle) change as the tone arm travels across the record surface. As will be explained, this tracking error can lead to considerable playback distortion. Garrard has developed the Zero 100 Automatic Turntable, with a tone arm geometry that virtually eliminates it. Fig. 1 (below) graphs the distortion of the Garrard system due to this source as compared to a conventional system. Combined with the turntable's other features the tone-arm system makes this...
equipment report

Disc-handler second to none as a complement to the first-rate audio equipment so common in these days of the solid-state revolution.

Fig. 3

Center line of cartridge tangential to record groove

Fig. 2

Rigid mathematical analysis of tracking distortion depends on such mathematical niceties as Bessel functions which some readers may recall as basic to frequency modulation principles. However, Fig. 2 dramatically demonstrates how tracking distortion is produced. Exaggerated stylus movement is used to show the zero-error condition (above). Since the lateral stylus movement in line with the disk's center hole (along its radius), the stylus exactly traces the recorded sine wave groove modulation and no distortion results.

(continued on page 84)

AR guarantees its published specifications

At Acoustic Research we believe that the publication of complete performance data on our high fidelity components is obligatory. Otherwise, our guarantee would have little meaning.

Find out just what AR guarantees that its products will do. Mail the coupon below, and detailed technical literature will be sent to you free of charge.

Acoustic Research, Inc.
24 Thordike Street
Cambridge, Mass. 02141
Dept. RE-3

Please send measured performance data on AR products to

Name __________________________
Address _________________________

(continued on page 84)

Circle 70 on reader service card

MARCH 1972 • RADIO-ELECTRONICS 77
Grantham’s New Program in
ELECTRONICS TECHNOLOGY & ENGINEERING
Gives You All the Equipment Shown and Much More!

But Grantham training is for the serious student who wants to do more than play with equipment. It is a complete home-study career program including real laboratory equipment and experience.
EARN YOUR DEGREE

What's in your future? Where will you be one year from today—or in two years, or five years? The answer will be determined largely by decisions you make now. You can advance your career by

STUDYING AT HOME

Grantham offers a college-level home-study program in Electronics Technology & Engineering, consisting of a series of three separate correspondence courses which logically follow each other, preparing you for three levels of advancement in your electronics career.

The first course includes F.C.C. license training and computer science, as well as fundamental concepts of electronics and mathematics. Upon completion of this course, you are awarded a Diploma in Electronics Technology.

The second course includes physics, mathematics, and other subjects essential to your upgrading from technician to engineering technician. The final ten lessons of this course are completed at the School, and you are awarded the Degree of Associate in Science.

The third and final course of this series emphasizes engineering analysis and design. Upon completion of this course you are awarded a Diploma in Electronics Engineering and are prepared to fill positions normally held by college-graduate engineers.

Engineers Will Be Needed — Prepare Now

As you know, during the past two years there has been an oversupply of engineers. Now, probably as a result of that condition, the percentage of college students going into engineering has greatly decreased. Also, now the demand for engineers is again increasing and is expected to continue to increase in the foreseeable future. Forecasters see a great shortage of engineers in the Seventies. Therefore, now is the time to get started—to begin studying—in preparation for the greater demand in engineering which is sure to come.

Accreditation & G.I. Bill Approval

Grantham School of Engineering is a college-level correspondence institution, authorized under the laws of the State of California to grant academic degrees. The School is approved under the G.I. Bill, is accredited by the Accrediting Commission of the National Home Study Council, and is an eligible institution under the Federally Insured Student Loan Program.

For complete details, mail postcard or coupon.

Grantham School of Engineering

1505 N. Western Ave., Hollywood, Calif. 90027

Please send me your free Bulletin which explains how the Grantham educational program can prepare me for a degree in electronics.

[] I am a beginner in electronics.

[] I have a little experience with electronic equipment.

[] I am an experienced electronics technician.

Name _____________________________

Address ____________________________

City ____________________________ State ______ Zip ______

MARCH 1972 • RADIO-ELECTRONICS 81
S&A Combination UHF-VHF-FM Antennas
MODEL UVM ANTENNAS

Tuned and engineered featuring a LOG PERIODIC VHF section incorporating a PATENTED MAGNETIC WAVE design for UHF. Discriminate between desired signal and unwanted noise. An absence of minor lobes and extremely high front to back ratio are characteristics of these antennas. Mechanical features include all new fittings and special alloy aluminum tubing for added strength. Six models.

We are Antenna Specialists. Whatever your needs, consult us.

S&A Electronics Inc.

Phone (419) 693-0528
210 W. Florence St.
Toledo, Ohio 43605
Circle 73 on reader service card

Clever Kleps

Test probes designed by your needs — Push to seize, push to release (all Kleps spring loaded).
Kelps 10. Boat hook clamp grips wires, lugs, terminals. Accepts banana plug or bare wire lead. 4 3/4" long. $1.19
Kelps 20. Same, but 7" long. $1.39
Kelps 30. Completely flexible. Forked-tongue gripper. Accepts banana plug or bare lead. 6" long. $1.47
Kelps 40. Completely flexible. 3-segment automatic collet firmly grips wire ends, PC-board terminals, connector pins. Accepts banana plug or plain wire. 6 3/4" long. $2.39
Kelps 1. Economy Kleps for light line work (not lab quality). Meshing claws. 4 3/4" long. $.99
Kelps 10 - 20. Versatile test prod. Solder connection. Molded phenolic. Doubles as scribing tool. "Bunch" pin fits banana jack. Phone tip. 5 1/2" long. $.79
All in red or black — specify. For additional information, write for complete catalog of — test probes, plugs, sockets, connectors, earphones, headsets, miniature components.

Available through your local distributor, or write to:
Rye Industries Inc.
123 Spencer Place, Mamaroneck, N.Y. 10543
In Canada: Rye Industries (Canada) Ltd.
Circle 74 on reader service card

next month

APRIL 1972

- Add-On Electronics For Your Car
 Electronic ignition, tach-dwell meters, rpm limiters, and many other add-on electronic devices that make your car run better are described.

- Facts And Fallacies Of Electronic Ignition
 The truth about electronic ignition—what it really can and can’t do for your car.

- Automotive 8-Track Tape Player Repairs
 Case histories of actual service experiences.

- Programmed Course In the Staar Cassette System
 Step-by-step tour of how this popular car-cassette-tape system operates.

- Build a Digital Printing Computer
 Don Lancaster describes a different kind of darkroom enlarging timer that you won’t want to be without.

- Digi-Mod Frequency Divider
 Easy-to-build battery-powered device is everyone’s frequency divider that has a thousand and one uses.

PLUS

Omnisonics—new kind of surround sound
IC Potpourri
Jack Darr’s Service Clinic
Stereo Amplifier Design
Appliance Clinic

82 RADIO-ELECTRONICS • MARCH 1972
channel playback. It is also fully reproduced but without location in two-channel stereo playback. In monophonic playback it reproduces at a somewhat attenuated level. CBS advises recording engineers to avoid placing soloists in the back center of the recording area, corresponding to the rear two channels. In playback through a two-channel stereo system an SQ record plays in precisely the same manner as a regular stereo record, with its four channels emanating from the two loudspeakers of the stereo outfit. The left front channel is heard in the left loudspeaker, the right front channel is heard in the right loudspeaker. The center sounds are precisely and sharply centered, while the back channels are spread appropriately between the two loudspeakers. An all-around panned sound travels back and forth between the loudspeakers. The overall effect is that you are playing a first-rate two-channel stereo record.

SQ, says CBS, offers "full" right-to-left separation of both the front and rear channels. Separation said to be as great as any you get from a typical good stereo system. A recent Sony ad plugging SQ stated that the separation was "40 dB or so." This separation is said to be "concentrated where psychoacoustic research has shown it is most necessary—side-to-side."

Front-to-back ratio

Front-to-back separation in the SQ format is 3 dB. This is considered by many to be less than adequate. However, CBS defends this parameter by stating that according to the newly-established psychoacoustic principle of "front source dominance," the ear tends to ignore that rear channel information which duplicates information in the front channels—i.e., the front-channel elements which leak through to the rear because of lesser separation contribute only to the total volume we sense in the room, and do not contribute to a sense of directionality.

Henry Akiya, product manager for Sony Corp. of America, told us that use of the firm's SQD-1000 or SQA-200 decoders which use a straight logic circuit, enhance front-back separation by up to 6 dB. Further, he noted, there are other possible combinations of decoding parameters—to effect even greater front-back separation. Akiya said it was possible, for instance, to develop a decoder using wave-matching logic. By so doing, it would be possible to obtain infinite separation between the front and back pairs of channels and up to 20 dB separation between the two front and two back channels. This overcomes one prime objection to the SQ system.

Dispensing with both forms of logic circuitry, and with a slight reduction of separation between the front and back pairs of channels, Akiya said it was possible to create a decoder that would obtain up to 7 dB separation between front and back channels.

Sony claims that a pure matrix decoder—even the matrix at the heart of SQ—can't reproduce a solo instrument without a softer, phantom soloist in other channels. But by adding a logic circuit, these phantom signals can be diminished or eliminated, sharpening the sense of the soloist's position, making him stand out more clearly.

Another claim for the SQ system is total omnidirectionality. No matter where a musician sits when being recorded in the 360-degree quadraphonic circle, he will be heard in playback at exactly the same volume as if he were sitting up front. This holds whether playing an SQ record in 4-channel, or playing it on a regular two-channel stereo system without an SQ decoder.

(continued on page 95)
WE'RE CLOSER
HERE'S 8 REASONS...
...WHY WE'RE CLOSER TO TECHNICIANS who keep Magnavox products working in top-notch condition

NOW 8 LOCATIONS:

NEW YORK CENTER
MAGNAVOX PARTS DIVISION
10 E UNION AVE
E RUTHERFORD N. J 07477
TELEPHONE 211 517 0172
INN (NYC) 212 771 3073
TELETYPE 710 988 0100

LOS ANGELES CENTER:
MAGNAVOX PARTS DIVISION
2850 MANCUSO STREET
TOMRANCE, CALIF 90003
TELEPHONE 213 259 0770
UL 1 213 771 3172
TELETYPE 910 794 8957

ATLANTA CENTER
MAGNAVOX PARTS DIVISION
144 ENTERPRISE BLVD S N
ATLANTA, GEORGIA 30339
TELEPHONE 404 691 4930

SAN FRANCISCO CENTER
MAGNAVOX PARTS DIVISION
136A SAN MATEO AVE
S SAN FRANCISCO, CALIF 94080
TELEPHONE 415 877 5000
TELETYPE 910 371 7237

DALLAS CENTER
MAGNAVOX PARTS DIVISION
MORR CARPENTER FREEWAY
DALLAS, TEXAS 75215
TELEPHONE 214 831 3141
TELETYPE 910 811 5453

CLEVELAND CENTER
MAGNAVOX PARTS DIVISION
24010 COMPUTER ROAD
GEELY, OHIO 44143
TELEPHONE 216 834 1513
TELETYPE 800 127 8117

TORONTO CENTER
MAGNAVOX PARTS DIVISION
500 FRONTAGE RD
ST MARYS, ONTARIO
TELEPHONE 416 879 3651
TELETYPE 910 692 7537

Order parts, tubes, and accessories from your nearest Magnavox Parts Center

THE MAGNAVOX COMPANY
FORT WAYNE, INDIANA, 46804

EQUIPMENT REPORT
(continued from page 77)

The actual situation is a bit more complicated than depicted here since the cartridge is velocity sensitive. The groove velocity is equal to the angular velocity times the radius so the farther away from the record center the greater is the tangential velocity of the groove relative to the stylus. The tracking error becomes less significant as the tangential velocity increases, leading to the conclusion that the second order distortion at the cartridge terminal is proportional to the tracking error divided by the radius of the groove being traced. In other words, a tracking error of 4 degrees at a groove radius of 4 inches produces the same distortion as a tracking error of 3 degrees at a 3-inch radius. A conventional arm is designed so it overhangs the record center allowing the tracking error to pass through zero twice during arm travel, helping to keep the distortion to manageable proportions.

Garrard has conquered the tracking problem by using a two-piece construction consisting of a main arm and an articulated arm. This geometry pivots the cartridge with respect to the main arm to keep the cartridge tangential to the groove as in Fig. 3. Although the system does deviate minutely from zero tracking error, the distortion produced is entirely negligible when added to other distortion sources such as tracing distortion (due to the in- ability of the stylus to precisely follow the groove contour). A listening test proves to bring new life to many records, noticeably reducing distortion on the inner grooves.

We've covered the turntable's headline feature, so let's move on to the others. A lightweight turntable is driven by a magnetically shielded synchronous motor which is rapidly started with a 4 pole induction section. The 33 1/3 and 45 rpm speeds are mechanically variable over a ±3% range. Two stroboscope bands are visible through a window, with only one producing a stationary pattern at the selected speed. The variable speed control surrounds the speed and record size selector. A rotating spindle is provided for the ultimate in single play operation. Wow and flutter are specified as less than ±0.1% and ±0.5%, respectively.

Tone-arm tracking force is adjusted with a sliding weight which is first put in the zero position and then the isolated counterweight positioned for arm balance. The sliding weight is then adjusted for the desired tracking force. A weight movement of 1/8 inches changes the force by only one gram, permitting precise setting. The tone-arm system includes a unique magnetic anti-skating scheme. A magnetic shield is

Unusual tools, hard-to-find items. Send for free catalog!

Diversified collection of tools of all kinds for precision instruments and essential shop items...convenient one-stop shopping from your desk.

NC National Camera
Dept. OBA
Englewood, Colorado, 80110

Circle 77 on reader service card

OTHER SUPERB VALUE from Olson Electronics ONLY $19.95 ELECTRIC EYE WARNING SWITCH

Multi-purpose warning system for business, home, warehouse or industry. Electric Eye is used to signal or count someone entering or breaking the beam, you need only plug in a bell, buzzer, counter or any other device.

Olson Electronics, Dept. L3
260 S. Forge St., Akron, Ohio 44308

- I enclose $19.95 plus $1 for postage and handling. Send me the SW-364 Electric Eye Warning Switch.

- Send me the next seven issues of the Olson Catalog, without cost or obligation. FREE

Name ____________________________
Address __________________________
City ____________________________
State ____________________________ Zip ___________

Circle 78 on reader service card
slid between two ceramic magnets: one mounted on the fixed gimbal surround and the other on the rotating arm gimbal. The skating force is adjusted by sliding the shield so the indicator corresponds to the previously adjusted tracking force. Two scales with tracking force markings are calibrated for conical and elliptical styli. All fractional forces have been kept very low, which is probably the reason that Garrard has succeeded with a design using an articulated arm with its four pivots, while previous similar attempts have failed. The cartridge mount has two tilt positions to produce a 15-degree vertical tracking angle at a height of either one record for single player operation, or at a height of three records which is halfway up the six record stack permitted in automatic play. Cartridge installation is facilitated by a plastic gauge with cross hairs used to position the stylus directly below the main arm cartridge pivot. The tone arm may be locked to a spring loaded stand offering protection against accidental arm damage.

The $189.50 Zero 100 consumes 9 watts, measures 1 4/4" wide by 13 1/4" deep by 6 1/2" high and weighs in at 11 1/4 pounds.

Offering simple set-up and flawless performance, this automatic turntable should satisfy the most sophisticated audiophile.

R-E

SOLID-STATE DESIGN

(continued from page 52)

secondary winding in series with the base circuit.

The design procedure in all other facets is identical to that described for Class-B operation. A 10% factor was added there for contingencies such as saturation voltage and leakage current. Perhaps in Class AB, this factor should be increased to 15% or 20%.

R-E

FIG. 8—THE CIRCUIT IN FIG. 1 biased for Class AB operation.

Only one type of push-pull circuit is described here—using transformers. It was used only for convenience sake. Modern designs negate the need for this type of component at the input or at the output.

R-E

POLY-PLANAR IS THE ANYWHERE SPEAKER.

A thin, lightweight, rugged, weatherproof hi-fi speaker. Convert tables, chairs, walls, doors, cabinets— anything— into a hi-fi speaker system.

Send for detailed specifications and installation ideas.

THE SPEAKER YOU DON'T HAVE TO SEE TO HEAR.

The Magitran Company
311 East Park Street • Moonachie, New Jersey 07074

Circle 79 on reader service card

Circle 81 on reader service card

MARCH 1972 • RADIO-ELECTRONICS

R-E
3 Instruments in One!

NEW EICO TRANSISTOR ANALYZER
Model 685 $99.95

FACTORY WIRED $149.95

Nobody but Eico makes the troubleshooting of solid state equipment so quick, easy, versatile and precise for the professional electronics technician and engineer—and at such low cost!

- Dynamically tests transistors in and out of circuit.
- Performs the 4 basic tests on all types of FETs including pinch-off.
- Performs the 3 basic tests on all types of bipolar transistors.
- Tests for true transconductance and AC Beta, in and out of circuit.
- Tests all types of diodes and measures zener voltage.
- Tests SCRs, TRIACS, and UJTs.
- Incorporates easy-to-use DC Voltmeter and Ohmmeter.
- 60 VA laut band meter movement.

FREE 32 PAGE EICO CATALOG
For latest catalog on EICO Test Instruments, Stereo, EICOGRAPH Projects, Environmental Lighting, Burglar/Fire Alarm and name of nearest EICO Distributor, check Reader Service Card or send 25¢ for First Class mail service.

EICO, 283 Malta Street, Brooklyn, N.Y. 11207

Circle 82 on reader service card

new books

A tube manual notably bigger than the preceding edition is a surprise in this age of semiconductors. The new RC-28 is more than 100 pages larger than its predecessor, and describes more than 1600 tube types. New material includes data on more than 190 industrial tubes, as well as those new entertainment-type receiving tubes. Data—in chart form—on RCA picture tubes is also supplied.

The 101-page, five-chapter introduction is still the best short text on receiving tubes available to the technician. Some 80 pages are devoted to a listing of discontinued and replacement-only tube types, including terminal diagram listings cross-referenced by type number and base diagram.

The "regular departments" (application guide, resistance-coupled data, etc.) appear as usual or in expanded form.—FS

Four of the latest additions to the Tab line of servicing/schematic manuals for black-and-white and color TV sets. Each gives the vital service data on the specific brands it covers. Useful for service technicians and hobbyists with "clients" among their friends.

Buy Now And Save Dollars

FREE $1 BUYS WITH EVERY 10 YOU ORDER

ONLY APPLIES TO $1$1 Buys FREE GIFT WITH EVERY ORDER

SARKES TARIAN TUNER 41mc
Latest Compact Model good for all 41 mc TVs. BRAND NEW—

Only applies to $1 Buys FREE GIFT WITH EVERY ORDER

3 ASSORTED GBH SLIDES $3.95
1. DIPPED MYLAR CAPACITORS $1 each price
20. DIPPED MYLAR CAPACITORS $1.00 each price
20. DIPPED MYLAR CAPACITORS $1.00 each price
20. DIPPED MYLAR CAPACITORS $1.00 each price

IMMEDIATE DELIVERY . Scientific light packing for safe delivery at minimum cost. HANDY WAY TO ORDER: Pencil, mark or write amounts wanted in each box, place in box for Free $1 Buy. Enclose with check or money order, add extra for shipping. Tare sheets will be returned as packing slips in your order, plus lists of new offers.

Minimum Order $3.00

Please specify refund on shipping overpayment desired: □ CHECK □ POSTAGE STAMPS □ MERCHANDISE (our choice) with advantage to customer

BROOKS RADIO & TV CORP., 487 Columbus Ave., New York, N. Y. 10024 212-774-5300 TELEPHONE
JACK DARR'S SERVICE CLINIC, No. 2 Tab Books, Blue Ridge Summit, Pa. 17214 5 5/16 x 8 1/8 in. 176 pp. Softcover. $3.95.

Picking up where No. 1 left off, this volume contains material selected as the best and most timely service data published during the past three years. The ten chapters cover service techniques, antennas and reception problems, color CRT's, rf, age, and sync, sweep systems, power supply and control circuits, test equipment and testing, stereo, audio and other devices. Jack Darr's beguiling style lends its magic touch to the serious work of diagnosis and repair. The book is full of diagrams and photos to bring out the points the text makes.

This handy guide for the layman and do-it-yourselfer reviews many of the developments in stereo since its popularization, and offers tips on how to install a system, make recordings, evaluate equipment and sound systems, and what to look for in buying equipment. Discusses how stereo and tape recorders work, how commercial recordings are made, how FM and TV antennas can be used in your stereo system. Includes an examination of 4-channel stereo as well as eight-track cartridges. Complete with photos, charts and diagrams to make things clear.

COMING IN APRIL
Add-on electronics for your car describes those special electronic gadgets that make driving easier and safer. It's one story you won't want to miss.

CANADIANS: Ordering is easy — we do the paperwork — try a small order.

WESTINGHOUSE ALL TRANSISTOR HOME/OFFICE MESSAGE CENTER

IBM COMPUTER SECTIONS
8 essential components we sell for IBM are listed with over 150 valuable parts. Includes: Transistors, Condensers, Resistors, Diodes, etc.

R-E

FREE 32 PAGE EICO CATALOG
For latest catalog on EICO Test Instruments, Stereo, EICOCRAFT Projects, Environmental Lighting, Burglar/Fire Alarm Systems, and name of nearest EICO Distributor, check Reader Service Card or send 25¢ for First Class mail service.

EICO, 283 Malta Street, Brooklyn, N. Y. 11207

Circle 83 on reader service card.

Circle 83 on reader service card.
The new Heathkit GR-900 25V Color TV has UHF/VHF detent tuning & varactor UHF tuner, angular tint control — more features than any other color TV kit! Better performance than any other set.

UHF/VHF detent power tuning. Push a button and you scan the channels in either direction with detent action locking in on VHF channels 2-13 and any 12 presetected UHF stations. A pushbutton selects either UHF or VHF mode, and a lighted dial indicates tuner position. And you can have full remote-control selection too for just a few dollars more.

New voltage-controlled varactor UHF tuner and specially designed VHF tuner with MOS Field Effect Transistor contribute to better fringe-area reception, increased sensitivity.

New angular tint control. A switch now gives you either "normal" or "wide angle" color demodulation to reduce tint and flesh tone change when changing stations and when programs change. Other deluxe features include "instant on" operation with override for conventional on/off operation; automatic fine tuning; adjustable tone control, and an output for playing TV audio through your stereo hi-fi system.

Exclusive Heath TX-5 ultra-rectangular tube. It's the largest color screen you can buy anywhere, with a full 25 inch meas. diag., 315 sq. in. viewing area. You see virtually everything the station transmits, in the corners and at the sides. The specially etched face plate cuts glare, and reflection, increases contrast without sacrificing brightness, and each dot is projected through a matrix screen to stand out crisply against a solid black background.

Modular solid-state circuitry. Plug-in circuit boards and plug-in transistors make assembly, adjustment and servicing easy. There are 46 transistors, 57 diodes and four ICs — making this one of the most reliable sets we've ever designed.

Other features include automatic chroma control, adjustable video peaking, adjustable noise limiting, and gated AGC.

Exclusive Heath self-service built-ins. Your Heathkit GR-900 includes built-in dot generator, tilt-out convergence panel for set-up and periodic adjustments. A handy volt-ohm meter included in the circuitry helps you check your work during assembly, and can be used in conjunction with the manual for any servicing. Like all Heathkit color TVs, the GR-900 gives you complete installation flexibility. There are four beautiful Heath cabinets to choose from plus the new built-in electronic wall mount with hide-away tambour doors. Or you can custom install your GR-900. We think you'll agree, the GR-900 is truly the most impressive color receiver we've ever offered.

Kit GR-900, TV less cabinet, 125 lbs. .. 599.95*
The better-than-ever '72 Heathkit Catalog has the world's largest selection of fun-to-build, money-saving electronic kits...including color TV, stereo hi-fi, organs, home appliances, engine tune-up tools, radio control, portables, shortwave, marine gear, metal locater, instruments, hundreds more. If you don't have this catalog, you've missed seeing over 50 new kits introduced since the last edition. Send today for your free copy.

New AR-1500 stereo receiver 379.95*
Successor to the famed Heathkit AR-15, with impressive improvements in every critical area. 180 watts Dynamic Music Power, 90 watts per channel, 8 ohm load. Less than 0.2% IM and 0.25% harmonic distortion. Greater than 90 db DM selectivity and 1.8 uv sensitivity. Vastly superior AM, too. It's the talk of the audio world. Order yours now.
Kit AR-1500, 42 lbs. (less cabine). 379.95* ARA-1500-1, walnut cabinet, 6 lbs. ... 24.95*

New digital multimeter 229.95*
Now, a digital multimeter that meets lab specs at a low, low kit price! 3½ digits for 100 v resolution on 200 mV range, 10 on 1000v; 5 DC ranges (100 uv-1000v, either polarity); 5 AC ranges (100 uv-500v); 10 current ranges (100 mA, 2mA); 6 resistance ranges (0.1 ohm-20 megohms); 1000V; DC calibrator supplied for 0.2% accuracy. Can be lab calibrated to 0.1%. Don't miss this outstanding instrument value.
Kit IM-102, 9 lbs. 229.95*

New 10 MHz triggered scope 229.95*
A 5" triggered sweep scope at a low kit price you can't afford to pass up. AC-10 MHz response, calibrated attenuator, 50 ns sweep rate with magnification. AC-DC coupling, 50 mV sensitivity. One of the outstanding scope values on the market. Order one for your ham shack, shop, lab or classroom today.
Kit 10-103, 37 lbs. 229.95*

New... Heathkit solid-state 100 MHz counter...only 269.95*
With the IB-1101, Heath closes the price gap in high frequency counters. Till now, "low cost" counters were confined pretty much to the 15 MHz range. Instruments above that range were complex, costly, and often more counter than you could ever use. Now, with the IB-1101, you have a truly low-cost counter in kit form with 1 Hz to 100 MHz capability and a list of features to rival counters costing much more. Compare for yourself. Exclusive Heath-designed input circuit accepts input levels from less than 50 mV to over 200V, depending on frequency, without damaging the instrument; full 5-digit readout can be expanded to 8-digit capability with range selector and overrange circuitry, decimal point automatically positioned with range selection; MHz, kHz overrange and gating conditions indicated by illuminated legends on front panel; one megohm input impedance & low input capacitance minimize possibility of circuit loading; all solid-state circuitry with cold cathode readout tubes for instant operation; count storage circuitry gives non-blinking or count-up readout, changing only with counter; stable time-base crystal has better than ±3 ppm from 17° to 32° C; dual primary, 3-wire line cord & regulated supply for stable operation over long periods. About 10 hrs. assembly time puts the IB-1101 together. The 26 digital IC packages & readout tubes plug into sockets. All other components, including shielded MOSFET, 10 silicon transistor & diodes & 2 zener diodes mounted neatly on one double-sided fiberglass board. If you've been putting off buying that better counter because you "couldn't afford it..."...you've just lost your excuse. Order your IB-1101, today!
Kit IB-1101, 8 lbs. 269.95*

Send for your FREE 1972 Heathkit Catalog today

HEATH COMPANY, Dept. 20-3
Benton Harbor, Michigan 49022

☐ Please send FREE Heathkit Catalog.
☐ Enclosed is $_____, plus shipping.
Please send model(s)

Name:
Address:
City-State-Zip

Prices & specifications subject to change without notice.
*Mail order prices; F.O.B. factory.

Circle 100 on reader service card

MARCH 1972 ◆ RADIO-ELECTRONICS 91
Harman-Kardon “Citation Eleven” Preamplifier

Harman-Kardon’s Citation Eleven—preamplifier is a companion to their outstanding Citation Twelve power amplifier, reviewed previously (Radio-Electronics, January 1971). However, the preamp is designed to operate with virtually any basic power amplifier, solid-state or tube-type. The Citation Eleven is available only as a wired unit, whereas the Citation Twelve can be purchased in either wired or kit form. A kit version of the “Eleven” would no doubt be complex, but it would be an interesting, money-saving challenge for the experienced kit builder. We hope Harman-Kardon decides to make it available some day.

The preamp is big (16 1/16” x 4 3/4” x 12”), heavy (20 pounds) and impressive looking, both front and back. The front is a thick, brushed aluminum panel with an imposing array of controls of three types—knobs, pushbuttons, and sliders. The back bristles with more audio jacks than we’ve ever seen on one piece of “home” equipment—24 in all, plus four ac outlets (three switched, one unswitched). In addition, there is a special receptacle (with matching plug and cable supplied) and terminal strips for speaker connections (more on this, later).

The Citation Eleven’s most distinctive feature is its use of “audio equalizers” instead of conventional bass and treble controls. Five smoothly sliding equalizers cover the audio spectrum, with control midpoints at 60, 320, 1000, 5000, and 12,000 Hz. Each slider provides up to 12 dB of cut or boost. Used properly, these controls offer a much broader and more satisfactory range of adjustment to the reproduced sound than ordinary tone controls can provide. Used improperly, they can create some astounding sounds! A pushbutton switch is provided to switch the audio equalizers completely out of the circuit, for comparing the equalized and non-equalized response, or for assuring absolutely flat reproduction.

Another interesting feature is the Citation’s speaker switching function. Many all-in-one amplifiers and receivers provide switching of the power amplifier outputs between two or more sets of speakers and/or stereophones, but separate preamps do not usually incorporate such control, for the obvious reason that the output lines simply aren’t there to control. Thus, the separate preamp, one reason for which is to gain more sophisticated control, ac-

The Tuner People

OVERHAUL SERVICE — All makes VHF or UHF tuner ($9.95)
Overhaul includes parts, except tubes and transistors.
Dismantle tandem UHF and VHF tuners
Remove all accessories.

CUSTOM EXCHANGE REPLACEMENTS
When our inspection reveals tuner is unfit for overhaul, we offer a custom replacement (Replacements are new or rebuilt.)

EXACT REPLACEMENTS
Castle replacements made to fit exactly

Purchase outright... no exchange $15.95

UNIVERSAL REPLACEMENTS

* Prefer to do it yourself?*

<table>
<thead>
<tr>
<th>STOCK No.</th>
<th>HEATERS</th>
<th>SHAFT</th>
<th>Min.</th>
<th>Max.</th>
<th>S.</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR8P</td>
<td>parallel 6.3v</td>
<td>1 1/4”</td>
<td>3”</td>
<td>4.25</td>
<td>8.95</td>
<td></td>
</tr>
<tr>
<td>CR7S</td>
<td>series 600mA</td>
<td>1 1/4”</td>
<td>3”</td>
<td>4.25</td>
<td>9.50</td>
<td></td>
</tr>
<tr>
<td>CR8S</td>
<td>series 450mA</td>
<td>1 1/4”</td>
<td>3”</td>
<td>4.25</td>
<td>9.50</td>
<td></td>
</tr>
<tr>
<td>CR6XL</td>
<td>parallel 6.3v</td>
<td>2 1/4”</td>
<td>12”</td>
<td>4.25</td>
<td>10.45</td>
<td></td>
</tr>
<tr>
<td>CR7XL</td>
<td>series 600mA</td>
<td>2 1/4”</td>
<td>12”</td>
<td>4.25</td>
<td>11.00</td>
<td></td>
</tr>
<tr>
<td>CR6XL</td>
<td>series 450mA</td>
<td>2 1/4”</td>
<td>12”</td>
<td>4.25</td>
<td>11.00</td>
<td></td>
</tr>
</tbody>
</table>

Order Now... or write for more information.

CASTLE TV TUNER

MAIN PLANT: • Ph. 312-561-6354
5715 N. Western Ave., Chicago, III. 60645

EAST: • Ph. 212-846-5300
130-01 89th Rd., Richmond Hill, N.Y. 11418

92 RADIO-ELECTRONICS • MARCH 1972
tually deprives the user of the ability to switch speakers. This is overcome in the Citation Eleven by building in a complete speaker switching/stereo phone terminal, with input and output connections feeding the power amplifiers to the speakers or two attenuated phone jacks on the front panel. This switching network is completely isolated from the main preamp circuitry and its use is, of course, optional. We used it and liked it, and found the stereo phone level just right; no ear-splitting blast when switching from speakers to phones.

Getting back to the business end of the preamp, we find six pairs of inputs: two low level PHONO inputs, one LINE input, and three AUX inputs. Two of the latter—AUX 1 and AUX 2—have normal sensitivity (150-mV input for 2 volts output), suitable for interfacing with most high-level, equalized outputs from tape recorders, tuners, etc. AUX 3 is attenuated so that twice the signal—300-mV for 2 volts output—is required. This is done to accommodate inputs with what would otherwise be excessive gain. The six inputs are selected by a rotary switch.

Other front panel controls are: LEVEL and BALANCE controls, a MODE selector (stereo, reverse stereo, mono, left and right), and six pushbuttons—left to right, the audio equalizer bypass switch; two (yes, two!) tape monitor switches, to permit comparison of recorded vs input signals from either of two recorders, a high-cut filter that provides a cut of -8 dB at 10,000 Hz, with a 6-dB-per-octave slope; a subsonic filter that gives a -12 dB attenuation at 15 Hz, with a 6-dB-per-octave slope; and the main power switch.

Two sets of main output jacks are provided, for feeding two power amplifiers or a power amplifier and a tape recorder. Outputs are low impedance, allowing long cable runs to the power amp, if necessary.

Harman-Kardon's engineers obviously had the serious recordist in mind when they designed the Citation's tape input and monitoring functions. Two completely separate sets of tape recorder outputs, plus the previously mentioned two sets of tape monitor input.

(continued on page 94)
Today's Best Value in Heat Guns

A model for every need ranging from 150° to 1000°F, without an open flame. Safe and easy to operate ... fingertip switch control permits operator to aim heat at desired point. Temperature can be varied by air intake adjustment. Equipped with heavy duty extension cord for use on 115-volt circuit ... also available for 220 volts upon request.

Meet dozens of needs in laboratory and on production lines ... dries paint or glue ... heat seals ... thaw ... does blister packs ... preheats for welding or soldering ... de-soldering ... excellent for softening, repairing and repositioning molded plastic.

Send for Free Bulletin on other models
New: Electronic Dial controlled heat gun
Torrid Air Blower for continuous duty

MILWAUKEE LOCK & MFG. CO.
5078 N. 37TH STREET - MILWAUKEE, WIS. 53209

Circle 90 on reader service card

EQUIPMENT REPORT
(continued from page 93)

puts are provided. The tape outputs are unaffected by the front panel controls. If it is desired to take advantage of the tone-modifying characteristics of the audio equalizers and/or filters, the extra pair of main outputs can be fed to a recorder.

So much for controls, inputs, outputs and the like. Now, how does it perform? We lived with the Citation duo, for several weeks, showing it off to friends (alienating wife, children, and dog in the process), and trying every conceivable operating situation. We even rigged up two 3-head reel-to-reel recorders, to experience the button-pusher's delight—alternately monitoring two recorders. We taped reel-to-reel and cassettes simultaneously. We tried tapping from the main output jacks, to take advantage of the audio equalizers, which we used to “doctor” the signal to the recorder, to overcome deficiencies in the response of the input signal or the recorder itself.

After this extended in-use test, we concluded that the Citation Eleven fulfills all its intended functions superbly. At first, the audio equalizers took a little getting used to. Frankly, we were never one to fiddle with tone controls very much, but we found the audio equalizers something else again. After a little practice we found we could achieve just the right tonal balance without the obvious sensation that somebody turned the bass (or treble) up (or down). Consequently, we rarely play a record or tape through the Citation without making some adjustment to one or more of the equalizers. And the recordings never sounded better.

The filters

The sub-sonic and high-frequency filters performed their intended functions beautifully, with almost no effect on the program material.

Of course, the Citation Eleven isn't perfect. The little deficiencies in a piece of high-quality audio gear aren't usually noticed at first. But we'd object to the excessively high sensitivity of the phono inputs, requiring caution when switching from a high-level input, lest speakers and windows be shattered. Too much of a good thing, at least with the several cartridges we tried. Some convenient means of backing off a bit, to adjust the levels of the phono inputs to the high-level inputs, would be welcome. Also, for us old-fashioned folks who like to fool around with center channels, a derived L+R output, with its own level control, as the old Citation I had, would be nice. We recall, also, that the Citation I—still, in our opinion, one of the most flexible, versatile preamps ever made—had some other nice touches, like a phase reversing switch, which come in handy now and then.

Finally, on units like this we'd like to see more practical and convenient means for flush-mounting in custom cabinets. The preamp is ostensibly designed for either flush mounting or installation in its optional walnut cabinet, but no really practical way of anchoring the unit in a panel is provided, except for four tapped holes on the bottom plate which are useable only if the underneath of the supporting shelf is accessible (which it isn't, in our installation).

But these are minor complaints, indeed, in light of the many superlative features of the Citation Eleven. It is a top-quality unit worthy of the Citation name, and worth the $295.00 price tag, at least for the well-heeled audio perfectionist.—Terry W. Barnes

R-E
try this one

HANDY IC BREADBOARDS

Tube sockets make handy supports for IC's in breadboard circuits. Tack-solder the IC leads to the socket lugs. Use pin tips or pins from old octal-base tubes and short leads for interconnecting jumpers. The photo shows a simple test setup. —J. Zacarias Malacara H

R-E

CBS-SONY 4-CHANNEL
(continued from page 83)

Other aspects of SQ

An important aspect of the SQ system is that its parent is a major record company. Since Columbia's main business is selling phonograph records in a highly competitive market—and who wants to be Number Two? —you can expect a continuing outpouring of SQ records to feed the format, as opposed to the token offerings other record firms have made for existing quadraphonic record systems. This, in turn, will perpetuate SQ, again in a highly competitive field—home electronics equipment. As we go to press there are some 50 SQ records under the Columbia logo. Vanguard is licensed to produce SQ records. And so is Ampex. In Japan, CBS-Sony Records will produce SQ discs. You can expect other major firms to hop on the SQ record bandwagon.

Incidentally—and perhaps ironically—the Columbia SQ program materials will also appear in the form of discrete Q-8 cartridges. A spokesman for Columbia Records told Radio-Electronics that the firm would be releasing SQ discs at a rate of about 20 every two months for the time being. The releases will cover popular, classical and show music.

SQ's sell for $1 more than conventional stereo records. Some day, we predict—and our prediction is based on previous events and trends in the record/electronic equipment industries—that premium will be eliminated. The premium, we can safely speculate, is to offset research and development costs.

On the equipment front as we go to press is "hardware" from Masterwork, co-sponsor Sony, and Lafayette Radio. Sherwood Laboratories has been licensed to make SQ decoders under its brand name.

Additionally, a decoder from Electro-Voice—a major competitor in the matrix recording system field—has been updated to decode the SQ system. By the time this appears in print there will be other companies producing SQ decoding and playback equipment.

R-E

CAN YOU QUALIFY

for a high paying & secure position as a...

CIRCUIT DESIGNER?

SALARY: $12,000 to $17,500

Requirements:
BSEE or EQUAL

ANY COMPANY EVERYWHERE, USA

DEGREE REQUIREMENT WAIVED!

The need for Circuit Designers is so great that employers will put aside the degree requirement to move up or hire men with these skills. In every industry there are men holding these prestigious positions who do not have a degree in engineering. WHY NOT YOU?

UP-TO-DATE TRAINING!

Our programs are not a rehash of the electronics you already know, but intensive training in the electronics you do not know. They offer you "hands-on" learning of how to design circuits using the latest devices. Included are: transistors, IC's, FET's, IC power supply regulators, UJT's...plus more. ARE YOU READY FOR TODAY'S ELECTRONICS?

LOW COST!

Because these courses are highly specialized, you can choose a curriculum which best suits your needs. And, most important, you can learn at a price you can best afford. CAN YOU AFFORD TO WAIT ANOTHER DAY?

FREE Send for literature on how you can qualify for training as a circuit designer.

THE CENTER FOR TECHNICAL DEVELOPMENT
517 E. Main St., Louisville, Oh., 44641

Gentlemen, please send me complete details on your CIRCUIT DESIGN courses.

Name __________________________ Age _______

Address ____________________________________

ZIP ____________________________

Circle 91 on reader service card

MARCH 1972 • RADIO-ELECTRONICS 95
RADIO-ELECTRONICS MARCH 1972

IMPOSSIBLE? BARGAINS IN SURPLUS ELECTRONICS AND OPTICS

Discounts on technical books are rare, since the publisher discounts are low, but B & F Enterprises is happy to give you a 10% discount and postpaid delivery in the U.S. on what we feel are some of the best books in the electrical engineering field. They are:

SEVEN DIGIT ELECTROMECHEANICAL COUNTER

![Image](https://via.placeholder.com/150)

- **115VAC 60 Hz** counter counts to 9,999,999.
- **120 VOLT SUPPLY** at (B).
- **Display** is supplied, use an external capacitor.
- **12 Volt Supply** $2.75 & 1.00 Postage.

RADIATION METER

![Image](https://via.placeholder.com/150)

- **Geiger Counter** can be ordered with original instruction booklets. List Price $75.00 & F Price $70.00.
- **High Voltage Supply** $10.75.
- **Making Coaxial Connectors** for I.C.'s.
- **Complete kit** for 100 watt transistor amplifier (200 watt musical output) and stereo receiver. List $5825.

NICKEL CADMIUM RECHARGEABLE BATTERIES

These batteries are the type used in electronic flash units, electric knives, mouthbrushes, etc. They are rated at 6 volts, 0.880 ampere hours. They are of sealed construction, and may be operated in any position.

- **Brand New Rechargeable Battery** $2.50
- **Used, Fully Checked Out** $1.50

PHASE LOCKED LOOPS

- **VOLTAGE CONTROLLED OSCILLATORS**
- **50 Hz** counter counts to 9,999,999.
- **50 VOLT SUPPLY** at (B).
- **Display** is supplied, use an external capacitor.
- **50 Volt Supply** $2.75 & 1.00 Postage.

SOCKETS FOR INTEGRATED CIRCUITS

- **16 pin** $0.95 & F $0.80 each.
- **16 pin** $1.60 & F $1.40 each.

SANYO CALCULATOR

- The response to our offering of the Sharp Calculator has prompted us to carry another calculator. The Sanyo is a transistor, and uses smaller, L.E.D. readouts, as opposed to the Sharp's fluorescent. This will be an asset to any hobbyist, to others. The Sanyo uses automatic decimal setting, as opposed to the Sharp's floating decimal point. The Sanyo is a useful feature in dollars and cents calculation, where the Sharp's floating point can prove a slight edge for scientific calculation. The Sanyo is battery operated, using a small coin cell battery, and comes complete with charger for $15.00. Guaranteed by Sanyo USA (and B & F). You can charge it to BankAmericard or Mastercharge. Phone orders accepted.

STANDARD TOGGLE SWITCHES

- 40 S/N 2125.00 Ph. $21.50
- 30 S/N 10.25 Ph. $10.00
- 30 S/N 8.50 Ph. $8.50
- 100 S/N 75.00

MINIATURE TOSOH TO SWITHES

- 100 S/N 1.50 Ph. $1.50
- 50 S/N 10.00 Ph. $10.00
- 50 S/N 8.00 Ph. $8.00
- 100 S/N 70.00 Ph. $7.00
- 500 S/N 100.00 Ph. $10.00

MINIATURE TOGGLE SWITHES

- **96**
- **Circle 92 on reader service card**

DIGITAL CLOCK KIT WITH NIXIE DISPLAY

- We have well over 1,000 surplus units in stock, and because of this overstock, when you purchase we can sell a complete digital clock kit for less than the usual price. The display tubes are used for your own Sanyo clock, or for a complete digital and D.C. panel board. All integrated circuits, complete power supply, display tubes, and a complete nixie front panel with polaroid visor. We have seen no copies available for this kit for less than $100.00 before. Includes NIX.00 outputs for use with door monitors. May be used for 12 volt display. Indicates hours, minutes, seconds.
- **Calk Kit, complete ins outside covers** $57.50
- **Aluminum blue or black anodized cover (specify)** $4.50

7 SEGMENT READOUTS

- **7 Segment Readouts.** Two types are available, one is a model with wire leads for P.C. Board mounting, as Illustrated at (A) and a small size low-current version in a Dual InLine type package for miniature battery operated instruments illustrated at (B).
- **Large Size Readout** $3.45 & F $3.25
- **Small Size Low Current** $1.75 & F $1.65
- **Complete counter kit, including 7410 decade counter, 7404 decoder and printed and fabricated circuit board and choice of either readout.** Price $9.25 & F $9.00
- **Complete counter assembly, with 7415 latch, for storage use** Price $11.25 & F $11.00
- **Complete Birectional counter, with 74192 instead of 7490, for up down counting** Price $11.25 & F $11.00
- **Complete kit, with latch for logic IC's.** Price $12.25 & F $11.25

TEXAS INSTRUMENTS LIGHT EMITTING DIODES (LED'S)

- Use as logic readouts, either on panel or right on circuits. (Specify type).
- **2 for $1.95**
- **10 for $7.00**
- **50 for $27.50**

80 PAGE CATALOG

- **Free with any order or send $0.25**

To our customers:

- B & F is moving to a new location: 119 Florence Street, Peabody, Mass. 01960 (same address, but different building). Our apologies to anyone who experienced delays in the mail. Our new expanded shipping and storage areas will allow us to service your order faster than ever before. Retail customers are now welcome at all working hours (Mondays through Friday, 9 - 5, Saturday, 9 - 3). Special offer of all items are being cleared out, so come and visit our new location and save the thousands of square feet of surplus bargains.

ALL ITEMS WHERE WEIGHT IS NOT SPECIFIED

POSTAGE PAID IN THE U.S.A.

CHARGES WELCOME!

Phone in charges to 617 531-5774 or 617-532-2323.

B. & F. ENTERPRISES

Phone (617) 532-2323

P.O. Box 44, Haverhill, Massachusetts 01832
SERIAL DIAL TELEPHONE

STANDARD DIAL TELEPHONE

-step-by-step telephone switch

200 AMP., 50 VOLT, SILICON DIODE

AC PROGRAM TIMING CLOCK

SNAP AROUND VOLT-OHM-AMMETER

SPECIAL SALE

Correspondence Courses in ELECTRICAL ENGINEERING $8.79 prepaid in U.S.A. $10.79 check or C.O.D.

RUNNING TIME METER

COMPUTER TRANSISTORS ON HEAT SINKS 11/4" O.D. $1.99

3" O.D. $4.91

In all items shipped F.O.B. Lincolnc, Neb. Surplus Center.

U.S. GOVT. ELECTRONIC SURPLUS

IBM COMPUTER POWER SUPPLY

MAGNETIC DIGITAL COMPUTER TRANSISTORS

STEP-BY-STEP TELEPHONE SWITCH

200 AMP., 50 VOLT, SILICON DIODE

AC PROGRAM TIMING CLOCK

SNAP AROUND VOLT-OHM-AMMETER

SPECIAL SALE

Correspondence Courses in ELECTRICAL ENGINEERING $8.79 prepaid in U.S.A. $10.79 check or C.O.D.

RUNNING TIME METER

COMPUTER TRANSISTORS ON HEAT SINKS 11/4" O.D. $1.99

3" O.D. $4.91

In all items shipped F.O.B. Lincolnc, Neb. Surplus Center.

U.S. GOVT. ELECTRONIC SURPLUS

IBM COMPUTER POWER SUPPLY

MAGNETIC DIGITAL COMPUTER TRANSISTORS

STEP-BY-STEP TELEPHONE SWITCH

200 AMP., 50 VOLT, SILICON DIODE

AC PROGRAM TIMING CLOCK

SNAP AROUND VOLT-OHM-AMMETER

SPECIAL SALE

Correspondence Courses in ELECTRICAL ENGINEERING $8.79 prepaid in U.S.A. $10.79 check or C.O.D.

RUNNING TIME METER

COMPUTER TRANSISTORS ON HEAT SINKS 11/4" O.D. $1.99

3" O.D. $4.91

In all items shipped F.O.B. Lincolnc, Neb. Surplus Center.
INTEGRATED CIRCUITS / RECTIFIERS
SEMICONDUCTORS / TRIACS

SEVEN SEGMENT COUNTER KIT
Consisting of 7 segment read-out driver 5 volts, having 1/4" display, and a 7447 decoder and 7490 decade counter $9.00
2N3819 General purpose T1434 WFFs
PROGRAMMABLE UJT's similar to D137 with data sheet $7.75
VARIABLE CAPACITANCE DIODES (similar to 1N5463A) used to tune VHF, Color TV & FM broadcast sets $1.00
ER900 TRIGGER DIODES. These (including the data sheet) accepted. Copy No. 562 904 per set $3.50
CLASSIFIED COMMERCIAL Power Visible VARIABLE CAPACITANCE DIODES, PROGRAMMABLE 2N3819 General purpose $0.25
ORDER driven Consisting of
400 1.00 1.80 2.70 2.40
300 .90 1.35 1.90 2.00
200 .70 1.10 1.50 1.60
100 .40

PRY

4744 BCD DECIMAL
DECORDER
4745 QUAD BISTABLE
LATCH
4773 DUAL JK FLIP FLOP $.90
4790 DECADE COUNTER $1.50
7402 DIVIDE BY TWELVE $1.85
7441 16 BIT MEMORY ELEMENT $1.75
7406 HEX INVERTERS $.40
4747 BCD TO SEVEN SEGMENT DECODER DRIVER $2.00
74121 NONSTABLE MULTIVIBRATOR $.90
14 Pin DIP sockets $3.00
Silicon Power Rectifiers
PRY 3A 12A 50A
100 .09 24 .90
200 .12 28 1.25
400 .16 35 1.50
600 .20 50 1.80
800 .28 70 2.30
1000 .35 90 2.75

NIXIE TUBES
Similar to Raytheon 6754 with socket & data sheet $3.00

DECADE COUNTER KIT
CONSISTING OF:
1-NIXIE TUBE and SOCKET
1-7490 1-7475 1-7461
Specially priced at $7.50

TTL IC SERIES
4741 BCD DECIMAL DECORDER $1.75
4745 QUAD BISTABLE LATCH $1.25
4773 DUAL JK FLIP FLOP $.90
4790 DECADE COUNTER $1.50
7402 DIVIDE BY TWELVE $1.85
7441 16 BIT MEMORY ELEMENT $1.75
7406 HEX INVERTERS $.40
4747 BCD TO SEVEN SEGMENT DECODER DRIVER $2.00
74121 NONSTABLE MULTIVIBRATOR $.90
14 Pin DIP sockets $3.00
Silicon Power Rectifiers
PRY 3A 12A 50A
100 .09 24 .90
200 .12 28 1.25
400 .16 35 1.50
600 .20 50 1.80
800 .28 70 2.30
1000 .35 90 2.75

CONTROLLED AVALANCHE or EEE Rectifiers 1 AMP
PRY PRY
100 .06 600 .11
200 .07 800 .15
400 .09 1000 .20

Send for our spring catalog featuring Transistors and Rectifiers: 325 Elm St., Cambridge, Mass.

CLASSIFIED COMMERCIAL RATE (for firms or individuals offering commercial products or services), 90¢ per word, minimum 10 words. NON-COMMERCIAL RATE (for individuals who want to buy or sell personal items) 60¢ per word. no minimum. FIRST WORD and NAME set in bold caps at no extra charge. Additional bold face at 10¢ per word. Payment must accompany all ads except those placed by accredited advertising agencies. 10% discount on 12 consecutive insertions, if paid in advance. Misleading or objectionable ads not accepted. Copy for May issue must reach us before March 1.

CLASSIFIED ADVERTISING FORM

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Words</th>
<th>50 Non-Commercial Rates</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Words in bold caps</td>
<td>50 Commercial Rate</td>
<td></td>
</tr>
<tr>
<td>@ .10</td>
<td>@ .50</td>
<td></td>
</tr>
</tbody>
</table>

Total (Enclosed $) Payment must accompany order unless placed through accredited advertising agency.

Insert number(s) of words: Payment must accompany order unless placed through accredited advertising agency.

NAME

ADDRESS

CITY STATE ZIP

SIGNATURE

FREE CATALOG New Electronic Devices! World's Smallest Transmitter $19.95! Telephone Answerer $49.50! Telephone Recording Device $19.95! "Bug" Detector $59.50! Many more!sonic Devices, 69-29F Queens Blvd., N.Y. 11377

ELECTRONICS ENGINEERING & INSTRUCTION

FCC "TESTS-ANSWERS"... Original exam manual for F.C.C. First and Second Class License: plus "Study-Test Ability Test." Proven $9.95. Satisfaction Guaranteed. COMMAND BOX 26348-E, San Francisco, Ca. 94126

TV TUNER REPAIRS—Complete Course Details, 12 Repair Tricks, Many Plans, Two Lessons, all for $1. Refundable. FRANK BOCEK, Box 3236 (Enterprise), Redding, Ca. 96001

MANUALS for surplus electronics. List 25¢. BOOKS, 4905 Roanne Drive, Washington, D.C. 20021

PLANs and KITS

LINEAR AMPLIFIERS. 250 Watts, 10-15 meters. Plans $1.00. ROBERTS, Box 8791, Ft. Lauderdale, Fla. 33310

ELECTRONIC ORGAN KEYBOARDS, Tone generator kits, etc. All types of components for building your organ. Send 20¢ for list. DEVTRONIX ORGAN PRODUCTS, 5872 Amapola Drive, San Jose, Ca. 95129

PROTECT almost anything with MAX-A-LARM. Complete alarm kit under $25. Information. KUSTOM KIT ELECTRONICS, Box 86 North Dartmouth, Mass. 02747

CONVERT any television to sensitive big-screen oscilloscope. Only minor changes required. No electronic experience necessary. Illustrated plans $2.00. RELCO-A25, Box 10563, Houston, Tx. 77018

BUSINESS OPPORTUNITIES

SEVEN complete mail order opportunities. $2.00 or write A.M. SALES, 32-23(E) 100th Street, East Elmhurst, N.Y. 11369

JAPANESE NEW PRODUCTS MONTHLY! $1.00. Refundable. DEERE, 10639 Riverside, North Hollywood, Ca. 91609

HIGH FIDELITY

MAKE YOUR OWN SPEAKER SYSTEMS. SAVE ½ THE COST. WRITE FOR CATALOG. MCGEE RAIN COMPANY, P.O. Box 1900 McGEE STREET (RE), KANSAS CITY, MO. 64108

Hi-Fi system designed especially for you. Professional help in choosing your components. Write: DONALD DAUGHTERY, 5754-N Backlick, Springfield, Va. 22150

WANTED

QUICK CASH... for electronic EQUIPMENT, COMPONENTS, unused TUBES. Send list now! BARRY, 512 Broadway, N.Y. 10012, 212 WALKER 5-7000
ADVERTISING INDEX

RADIO-ELECTRONICS does not assume responsibility for any errors which may appear in the index below.

READER SERVICE CARD NO. PAGE
70 Acoustic Research
17 Alltel Large Volume Driver
80 Amperex
92 B.F. Enterprises
163 Edmund Scientific Co.
67 Electrohome
67 Electronics, Inc.
105 Cleveland Institute of Electronics
106 Cook's Institute of Electronics Engineering
69 CREI, Division of the McGraw-Hill Continuing Education Program
28-31 Delta Electronics Co.
76 Delta Products, Inc.
17 Edie Electronics, Inc.
72 Edmund Scientific Co.
107 Electrolux Corp.
72 Electronic Distributors, Inc.
82 EICO Electronic Instrument Co.
86 EMIC, Electronic Measurements Corp.
94 Electro-Voice
16 Epoch
190 Garrard (British Industries Corp.)
111 Gerard Industries of Engineering
78 GEC Laboratories
65 GTE Sylvania Electronic Components
101 Heath Co.
79 Indiana Home Study Institute
81 International Crystal Mfg. Co.
84 Judson Research & Mfg. Co.
73 Lafayette Radio Electronics
87 Lear Electronics
13 Linear Design Labs
63 Magellan Co., The
108 Magnum Parts Division
74 Milwaukee Lock & Mfg. Co.
77 National Camera Co.
84 National Radio Institute
81 National Technical Schools
46-49 Nelson-Henshaw Electronics
88 Oklahoma Electronics
71 Pennwood Namekichi
79 Precision Tuner Service
18 Quartz-Nichols Co.
70 Quinton Electric Co.
104 RCA Institutes
72 Rye Industries, Inc.
80 S & A Electronics
105 Sam's and Co., Howard W.
104 Sansui
84 Schwab Organ.
80 Share Brothers, Inc.
15 Sony Corp. of America
13 TAB Books
15 TDK, Electronics
40 Telematic
74 Third Division of Litton Industries
14 Turner Service Corp.
70 Xcetile
22 MARKET CENTER
108 Consumer Products
108 Environmental Products
108 Fair Radio
108 Lakeside Industries
102 John Mesha Jr. Electronics
102 Polypaks
102 Polypaks
106 Park Electronic Products
107 Solid State Systems
107 Southwestern Technical Products
108 Surplus Components
108 Sydnum Electronics
104 Tri-Star Corp.
104 Weigl Industries, Inc.
104 Yeats Appliance Dolly Sales Co.
105 SCHOOL DIRECTORY

GIANr SALE ON NEW TITL TEXAS & NATIONAL ICS
Buy Any 3 — Take 10%, Discount
100 or more. 25% discount

Factors Guaranteed! Factory Tested! Factory Marked!

Type F. Screwdriver Inset.

Order code for 118.

For any 2 for $1

FETS, UJTS, VARACTORS, NIXIES

2N5063 - 3 - 6N137A - 15 - 2N5102 - 3 N-channel FET
2N5114 - 2 P-channel FET
2N2370 - N-channel FET
2N6060 - P-channel FET
2N2660 - DEP, with triac
2N2957 - P, channel, metal TO-5
2N2958 - N, channel metal TO-5
2N2959 - P-channel
2N5064 - N-channel
2N5067 - DEP, with triac
2N2952 - N-channel
2N5063 - P-channel

POTS

2N2958 - N, channel metal TO-5
2N2959 - P-channel
2N5064 - N-channel
2N5067 - DEP, with triac
2N2952 - N-channel
2N5063 - P-channel

COUNTING SYSTEM

4-Pc. Kit

Includes SN74150 decade counter, SN7441 BCD decoder-driver, SN7445 quad BCD truth tables with hookup instructions with tube

$6.99

POLY PAKS

P.O. BOX 942 R
LYNNFIELD, MASS.

Circle 102 on reader service card

MARCH 1972 • RADIO-ELECTRONICS

99
FROM KIT TO CAR IN 80 MINUTES!

Electronic ignition is "in." Update your car with the TOPS in power, efficiency and reliability — the TIGER SST capacitive discharge ignition (CD). The TIGER delivers everything other CD's promise — and more: quicker starting, more power, more gas mileage, tune-ups eliminated lifetime plugs and points, reduced repairs and pollution. The TIGER can be built and installed in your car in 80 minutes. The TIGER is unique! Errors in construction or incorrect installment will not harm the TIGER or the engine. The TIGER will not operate under either condition. The TIGER comes with a switch for TIGER or standard ignition for 12 V negative ground only.

SATISFACTION GUARANTEED or Money Back.

Simpli-Kit $29.95 — Assembled $39.95 POST PAID

WE ACCEPT: Mastercharge or Bank Americard. Send check or money order with order to:

T I T I C C O R N E L L T U B E S

65K MEMORY CORE STACK
Complete memory core stack, 65,536 wired cores brand new condition

$100.00

GIANT NIXIES
$3.00 each, 10/$25
Magnificent alpha-numeric 15 segment nixies. Display full alphabet plus numbers 0-9, all in one tube 4 3/4 inches high with 2 1/2 inch characters. 170 volt operation, make unusual clocks, displays, games, etc.

#9791 $3 each 10/$25. Sockets 50¢ each

3 Watt Laser Diode $5.00

Computer Alpha-Numeric ASCII11 Keyboard with Encoder Board in base. Brand new condition $50.00

MM500 Dual 25 bit shift register $2.50
MM502 Dual 50 bit shift register 3.50
MEM 511 MOS P-channel FET 1.00
1 amp diode 1000 PIV 8/1.00 100/10.00
1 amp diode 1500 PIV 4/1.00 100/20.00
1 amp diode 2000 PIV 6/1.00 100/14.00
1 amp diode 1000 PIV 6/1.00 100/14.00
1 amp 1000 PIV full wave bridge 1.25

Please add postage for above items Send 25¢ for Surplus Catalog...

John Mesmna Jr. ELECTRONICS
P.O. Box 62 E. Lynn, Mass. 01904

Circle 105 on reader service card
THE FIRST OF ITS KIND!

Digital Audio Frequency Meter

Laboratory Quality at Low Cost

<table>
<thead>
<tr>
<th>Frequency Meter Kit</th>
<th>$149.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200W Factory wired and tested</td>
<td>$179.95</td>
</tr>
</tbody>
</table>

The Model 1200 is indispensable when accurate audio or broadcast frequency measurements are required. Crystal control allows precision calibration of electronic organs as well as I.F. strips.

Sold in quantity to engineering and technical school laboratories.

- **Crystal Control** 0.015% accuracy
- **LSI Chips** replaces 16 logic packages
- **LED Displays** never need replacement
- **Frequency Response** 10Hz - 2MHz
- **Sensitivity** 20mV across range
- **Overload Protection** 200VAC 400VDC
- **Input Impedance** 1M 2000
- **Hand Held** 6¾" x 5½" x 2¾"
- **Power** 110 - 125VAC 60Hz

1200 Audio Frequency Meter Kit

Liquid Crystal Readout Assembly

The most advanced readout on the market! Four digits for clocks, JVM's, etc. The .4" numerals are black against a white background. The digits come in one assembly and are supplied with specs and app notes. Will interface with LSI chip below. Initial quantities are limited but we have many more on the way.

LCR-4 Liquid Crystal Readout $29.95

LSI Chip

This LSI powerhouse not only has 4 decade counters with seven-segment decoder but 4 latches for non-blanking displays. It also has a scan oscillator for multiplexing the display and all associated logic circuitry. Requires 5V at 5mA! In 28 pin DIP package with 9 pages of specs and app notes. Will interface with LED's, liquid crystals, and nearly all seven segment displays.

12002 LSI COUNTER/DISPLAY CHIP $24.95

12005 Booklet for 5022 above **$1.50**

OUR GUARANTEE

1. If not happy with purchase, immediate refunding of money, upon return of merchandise.
2. No charge for replacement of parts, labor, return of the original item within 24 hours after receipt of order, or will allow 10% discount.

TTL Digital IC's

<table>
<thead>
<tr>
<th>TTL Digital IC's</th>
<th>Linear IC's</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400 24</td>
<td>7102 85¢</td>
</tr>
<tr>
<td>7401 24</td>
<td>7121 80¢</td>
</tr>
<tr>
<td>7402 25</td>
<td>7122 90¢</td>
</tr>
<tr>
<td>7403 25</td>
<td>7123 1.00</td>
</tr>
<tr>
<td>7404 25</td>
<td>7124 1.10</td>
</tr>
<tr>
<td>7405 25</td>
<td>7125 1.15</td>
</tr>
<tr>
<td>7406 26</td>
<td>7126 1.20</td>
</tr>
<tr>
<td>7407 26</td>
<td>7127 1.25</td>
</tr>
<tr>
<td>7408 26</td>
<td>7128 1.30</td>
</tr>
<tr>
<td>7409 26</td>
<td>7129 1.35</td>
</tr>
<tr>
<td>7410 26</td>
<td>7130 1.40</td>
</tr>
<tr>
<td>7411 27</td>
<td>7131 1.45</td>
</tr>
<tr>
<td>7412 27</td>
<td>7132 1.50</td>
</tr>
<tr>
<td>7413 27</td>
<td>7133 1.55</td>
</tr>
<tr>
<td>7414 27</td>
<td>7134 1.60</td>
</tr>
<tr>
<td>7415 27</td>
<td>7135 1.65</td>
</tr>
<tr>
<td>7416 27</td>
<td>7136 1.70</td>
</tr>
<tr>
<td>7417 27</td>
<td>7137 1.75</td>
</tr>
<tr>
<td>7418 27</td>
<td>7138 1.80</td>
</tr>
<tr>
<td>7419 27</td>
<td>7139 1.85</td>
</tr>
<tr>
<td>7420 27</td>
<td>7140 1.90</td>
</tr>
<tr>
<td>7421 27</td>
<td>7141 1.95</td>
</tr>
<tr>
<td>7422 27</td>
<td>7142 2.00</td>
</tr>
<tr>
<td>7423 27</td>
<td>7143 2.05</td>
</tr>
<tr>
<td>7424 27</td>
<td>7144 2.10</td>
</tr>
<tr>
<td>7425 27</td>
<td>7145 2.15</td>
</tr>
<tr>
<td>7426 28</td>
<td>7146 2.20</td>
</tr>
<tr>
<td>7427 28</td>
<td>7147 2.25</td>
</tr>
<tr>
<td>7428 28</td>
<td>7148 2.30</td>
</tr>
<tr>
<td>7429 28</td>
<td>7149 2.35</td>
</tr>
<tr>
<td>7430 28</td>
<td>7150 2.40</td>
</tr>
<tr>
<td>7431 28</td>
<td>7151 2.45</td>
</tr>
<tr>
<td>7432 28</td>
<td>7152 2.50</td>
</tr>
<tr>
<td>7433 28</td>
<td>7153 2.55</td>
</tr>
<tr>
<td>7434 28</td>
<td>7154 2.60</td>
</tr>
<tr>
<td>7435 28</td>
<td>7155 2.65</td>
</tr>
<tr>
<td>7436 28</td>
<td>7156 2.70</td>
</tr>
<tr>
<td>7437 28</td>
<td>7157 2.75</td>
</tr>
<tr>
<td>7438 28</td>
<td>7158 2.80</td>
</tr>
<tr>
<td>7439 28</td>
<td>7159 2.85</td>
</tr>
<tr>
<td>7440 28</td>
<td>7160 2.90</td>
</tr>
</tbody>
</table>

All IC's are in dual-in-line packages, except 5420 which is up to 20-pin DIP packages.

Liquid Crystal Displays

A complete line of Bansk liquid electronic parts and services is now available. Write for it, or call your nearest service center.

SHORTWAVE PROPAGATION COURSE

Radio Nederland begins broadcasting a Shortwave Propagation Course for SWL's on its weekly "DX Jukebox" on March 9. The course covers many problems related to SW propagation: how it is influenced by distance, season and time of day; and how it is affected by atmospheric, solar and cosmic disturbances. Also covered are such topics as fading, ground and sky absorption, sun spots and flares.

Printed text material is available free of charge. Address applications to DX Juke Box, c/o Radio Nederland, P.O. Box 222, Hilversum, Holland.

The DX Juke Box (via Bonaire, West Indies relay) can be heard on Thursdays in Atlantic, Eastern and Central time zones on 11.73 MHz, beginning at 9:13 EST. In Pacific and Mountain Standard Time zones, listen on 9.715 or 11.73 MHz at 9:13 PST.

CONFERENCE ON FOUR-CHANNEL STEREO

The annual Midwest Acoustic Conference meets Saturday, April 15 on the theme "Four-Channel Sound Reproduction, Creation and Re-creation of a Sound Field." Professionals and non-professionals are invited. The meeting will be held in the Auditorium of the Technical Institute of Northwestern University in Evanston, Ill. Meeting opens at 9:00 am under the chairmanship of Daniel Queen. Other chairmen include Marvin Camras, Bruno Staffen and James Kogan of ITT, Motorola and Shure, respectively.

For further information, contact Mr. Daniel Queen, Daniel Queen Associates, 5524 W. Gladys Ave., Chicago, Ill. 60644 or telephone (312) 261-5738.
NEW ELECTRONIC CALCULATOR—$195.50

Really terrific imported unit with many capabilities. 1st truly complete calculator from England! Absolutely silent assembly. 300-position instant recall memory. Switches: (1) turn calculator on, (2) change mode of operation (decimal, fraction), (3) turn calculator off. Delivers precise answers. No. 68-711EH. Stock No. 78.00EH. $195.50 Ppd.

1st LOW-COST VACUUM PUMP—$99.50

Nothing like it! Top-quality hand-built pump produces & maintains 24" of vacuum. Incl. 100# Stainless steel hose, 5# diameter, 30" long. Add. suction hose, dept. prices. Stock No. 14.50EH. Stock No. 50.00EH (no suction hose) $5.50 Ppd.

BLACK-WRIGHT MIGHTY LIFTS

Relatively small (12") So- no. working cut bright blacklight. Micropower. 30" length, 24" starting 8-watt. Direct high-intensity 60-watt. Over 5000 hours life (no bulb changes). $96.00 electric-light to reality. An excellent stage show, portable, picnicking, etc. Can be used for light weight. Sturdy, fully assembled. $1.50 Ppd. Stock No. 71.50EH

PLAY "BEAT-THE-COMPUTER"

New "baby" computer program. games with, or against the computer. Easy to learn. Great fun — fun for everyone. No experience necessary. Stock No. 71.25EH. $14.95 Ppd.

NUMERICAL INDICATOR TUBES

Designed as direct link, side-by-side readout to basic computer using standard commercial circuits. Ideal cold light. Also available: Fiberoptic paired or unpaired. Costs common mode, 10 quantities in dual mode — the national integrated circuits. Also gives visual display of high-level, low-level, etc. Much higher reliability. Stock No. 71.85EH. $5.95 Ppd.

NEW $99.50 HELIUM-NEON LASER

Completely assembled laser with output of comparable models. Tubing, glass, and fill is either moderate (safe) power. Ex- ecllent results and stability. Safe to use. 4". 5 lbs. maximum. Uses common mode, 10 gal. Analog in. Uses standard sizes 6-9. Also gives visual display of high-level, low-level, etc. Much higher reliability. Stock No. 41.81EH. $99.50 Ppd.

NEW MACBETH HEMATOCRIT SETS

Complete sets. Macro-Dial Tymex, printed instruction booklet. All parts included. Stock No. 41.05EH. $1.95 Ppd. Stock No. 41.15EH for sets of 2. $3.85 Ppd. Stock No. 41.55EH for sets of 4. $6.50 Ppd. Stock No. 41.75EH for sets of 8. $11.50 Ppd.

EMOTION METER "TESTS" YOU

POWER BLOWER HASTENS A BLOADE

Pr书记 blowers, augers, etc. (2). Direct plug, etc. Beautiful. Just press and this powerful four-pose pocket-sized blower can be turned a microwave small area. Ideal for household, etc. Bunch, hinging, turn-on, etc. Great for your team. Can be used with extra filters to fine tune sound. Free drill, bump switch or emergency. Weights only 3 1/2 lbs. but output up to 100 mile-per-hour blasts. Stock No. 41.42EH. $7.75 Ppd. Stock No. 41.43EH. $11.50 Ppd.

FLEXIBLE IMAGE TRANSMITTER

Hi-resolution image-ultras- transmit less yet see into remote, invisible illuminated areas: through pipes or tubes or any #4 opening on home much interest. Provides clear, wide-sight in electronic triggering focuses from less than 3" to infinity. For ideal monitoring and camera, etc. Uses over 1,000 continuous filaments. 3' dia. solid-rigid, frosted plastic sheathing. Stock No. 50.57EH. $140.00 Ppd.

NEW LIGHT-EMITTING-DIODE KIT

Bargain kit ideal for con- structing experiments with amazing L.E.D.s. The tiny solid-state monochromatic lights use low voltage DC, last up to 30,000 hrs. Used in card-tape readers, character recognition, bi- liger detectors, etc. This kit includes 3 L.E.D.s: gallium arsenide 280 mV, 500,000 Hz, 2 visible red emitting (660 A) 1 visible red emitting (680 A) 1 red filter. $5.00 per piece. The kit costs $3.50 Ppd. Stock No. 41.50EH.

TAPE-SLIDE SYNCHRONIZER

Coordinate tape recorders with slide slides. Have separate tape recorder to control projector and T.S.S. — then record what you want with each slide. Play back and T.S.S. AUTOMATICALLY changes slides in sync with tape. Your presentation is seamless. Perfect for talks, lectures, exhibits, etc.

Talking albums" of child's voice on 3" reel. Stock No. 41.22EH. $23.95 Ppd. Stock No. 41.23EH for micro cassette recorder. Stock No. 41.24EH for Kodak Projector. $50.00 Ppd.

AMAZING NEW WANKEL ENGINE KIT!

Thrill to the fun of building your own through comprehen- sive build-up model of revolution- ary Wankel engine. Only engine exists think industry, able to meet new pollution standards. Revolves piston, cylinder, crank assemblies, etc. Also a small diode (coils removed for firing cham- bers). Smaller than conventional; few parts, greater re- liability, same speed w/less horsepower. Stock No. 71.24EH. (4 1/4" x 2 3/4" x 2 3/4") $6.75 Ppd.

NEW! ELECTRONIC DIGITAL COMPUTER KIT!

ELECTRONIC MICRO SCREWDRIVERS

Trigger stills or screwdrivers, stand-up inexpensive, etc. Stock No. 71.57EH. $1.00 Ppd. Stock No. 71.58EH. $1.50 Ppd. Stock No. 71.59EH. $2.00 Ppd. Stock No. 71.60EH. $2.50 Ppd. Stock No. 71.61EH. $3.00 Ppd. Stock No. 71.62EH. $4.00 Ppd. Stock No. 71.63EH. $5.00 Ppd.

NEW $9.95 POLLUTION TEST KIT

Now you can easily test: RAD, WA, VA. WASTE, LAND, etc. — with one low cost kit. LCD with scales, safety chart & apparatus for hundreds of tests. Also: scientific environmental, 60 tests to detect and. Instructs on laboratory methods, measure alkalinity and acidity. Also includes illustrated instruction booklet. Stock No. 41.22EH. $11.95 Ppd.

NEW "SEE-THRU" LIGHTS!

Instantaneous see-thru flash- lights. Great for parties, etc. See into areas. Puts a beam of light through walls, into your closet, etc. For humans, etc. Made of materials previously seen ink & illu- minating area. Hundreds of uses in science, many others. For mechanics, etc. As-sembles in minutes. Use as is or in professional screwdrivers. Stock No. 41.45EH. $8.95 Ppd.

REPLACEMENT LAMPS P-444EH

$4.00 Ppd.

NEW "FISH" WITH A MAGNET!

Hand-filled solid state electron battery. High quality. Practical. Parts become brighter than ever before. More expensive Xenon tube. Great for parties, etc. Outdoors. Adjustable flash range, approximately 10 feet. Take with you. 40 per second. Make stop mo- tion pictures, etc. Perfect for parties, etc. Great for take to parties, dances, outings, etc. Stock No. 41.44EH. $8.95 Ppd.

NAME

ADDRESS

CITY

STATE

ZIP

Mail coupon for Giant Free Catalog

148 PAGES—100% of BARGAINS

COMPLETE NOVEMBER 72 EDITION. Over 1000 pages on electronics, optics, science, etc. Enormous selection of Astronomical Thermo- scopes. Unlisted and many items. Microscopes, Binoculars, Magnifiers, etc. As well as complete selection of all major brands. Mail coupon for catalog "K." EDMUND SCIENTIFIC CO.

EDMUND EDSCORP BUILDING

300 EDSCORP BLDG.

BARRINGTON, NEW JERSEY 08007

ORDER BY STOCK NUMBER

RADIO-ELECTRONICS • MARCH 1972

102

Circle 93 on reader service card
if you go for four channel...

you don’t have to go for broke

Buy yourself a miracle for as little as $214.95 That’s all it takes to get your conventional two-channel stereo to do anything any total four-channel receiver and control center can do, now or in the future.

The Sansui QS500 and QS100 converters are complete Four-Channel Synthesizer-Decoder-Rear-Amplifier-and-Control-Center combinations that transform standard two-channel stereo totally. The only other equipment you need is another pair of speakers.

You can decode any compatibly matrixed four-channel broadcasts or recordings and reproduce them in four authentic channels. You can detect the ambient signals present in most two-channel recordings or broadcasts and propagate them through the rear channels. In Sansui matrixing, the exclusive phase-shift technique prevents the cancellation of some signals and the change in location of others that occur in many matrixing systems. And the exclusive phase modulators restore the effect of the live sound field.

You can plug in a four-channel reel-to-reel or cartridge deck or any other discrete source. In the future — if you should have to — you can add any adaptor, decoder or whatever you for any four-channel system for disc or broadcast that anyone’s even hinted at. And a full complement of streamlined controls lets you select any function or make any adjustment quickly and positively.

The QS500 features three balance controls for front-rear and left-right, separate positions for decoding and synthesizing, two-channel and four-channel tape monitors, electrical rotation of speaker output, alternate-pair speaker selection, and four VU meters. Total IHF power for the rear speakers is 120 watts (continuous power per channel is 40 watts at 4 ohms, 33 watts at 8 ohms), with TH or IM distortion below 0.5% over a power bandwidth of 20 to 40,000 Hz. In its own walnut cabinet, the QS500 sells for $289.95

An alternate four-channel miracle-maker is the modest but well-endowed QS100, with total IHF music power of 50 watts (continuous power per channel of 18 watts at 4 ohms and 15 watts at 8 ohms). In a walnut cabinet, it sells for $214.95

SANSUI ELECTRONICS CORP.
Woodsley, New York 11277 • Gardena, California 90247
SANSUI ELECTRIC CO., LTD., Tokyo, Japan • Sansui Audio Europe S. A., Anwerp, Belgium

Circle 94 on reader service card
The new B & K Precision 1440 General Purpose Oscilloscope breaks through with laboratory performance at a Service Technician price.

And it comes with an exclusive feature: the CALI-BRAIN system of measuring waveform voltages. Only B & K scopes have CALI-BRAIN – a real advance in TV test equipment.

Use this scope for troubleshooting in the latest Transistor & IC equipment. It has 10 MHz frequency response, 35 nS rise time and high sensitivity. A choice of AC or DC coupled vertical amplifier for complete testing flexibility. And sweep rates from 5 Hz to 500 kHz, two TV sweep rates synchronized with built-in automatic TV sync separator. Use the 1440 as a vectorscope for color TV testing or as a general purpose instrument for TV-radio/audio testing.

The B & K Precision 1440 breaks through with greater capability, reliable, all-solid-state design, CALI-BRAIN voltage measuring. And it gives you an ease of operation you will have to see to believe ... So break through to higher servicing profits today!

About the Cali-Brain® System

The CALI-BRAIN voltage measuring system increases your efficiency because it lets you examine any waveform and measure its peak-to-peak voltage without changing your test set-up. Now you can confirm the manufacturer's service data exactly - checking out typical waveforms and peak-to-peak voltage readings at various test points.

Cali-Brain® in Action

Use CALI-BRAIN when you want to measure peak-to-peak voltage of the waveform displayed on the scope screen. Here's what happens when the CALI-BRAIN switch is activated:

A. The horizontal sweep collapses and the waveform under examination appears as a straight vertical line.

B. A numerical indicator in the CRT bezel lights up to show the full scale voltage (including decimal point) corresponding to the Vertical Attenuator setting.

To read peak-to-peak voltages utilizing Cali-Brain, note the full scale voltage reading in the bezel above the screen (fig. 1-100 volts full scale) (fig. 3-3.00 volts full scale). Pull out the Cali-Brain knob and you will notice that the 1st waveform in fig. 2. reads .667 volts P-P and the second waveform in fig. 4. reads 2.95 volts P-P.

The entire CALI-BRAIN action is automatic - and takes less than a second. After you have read waveform voltage, you deactivate CALI-BRAIN system with a single switch, and the waveform is again displayed. One probe and one test instrument - lets you concentrate on trouble shooting, not the test equipment!