BUILD IC VOLUME EXPANDER
For better stereo sound

BUILD NEW IC MULTIPLEX DETECTOR
Get 45 dB separation

IC's in Color TV
Dazzle your friends with lightworks.

Sound n' Color®
The now dimension to music pleasure. EICO All Electronic Solid-State Audio-Color Organs transform sound waves into moving synchronized color images. Connect easily to speaker leads of hi-fi or radio. From $29.95.

Translators
The electronics you need to create audio-stimulated light displays to your own imagination. Actuates: Light Display Units, Strobe Lites, any lamp configuration (Xmas trees, patio lights, etc.). From $24.95 kit, $39.95 wired.

Strobe Lites
High-intensity bursts of white light from Xenon tube flash in cadence with each beat of audio. From $24.95 kit, $39.95 wired.

Build the Stereo Kits praised by experts.
All amplifier power ratings according to IHF standards. Cortina® designed and manufactured in U.S.A. and guaranteed by EICO.

70-Watt AM/FM Stereo Receiver including cabinet. Cortina 3770, $189.95 kit, $279.95 wired.
70-Watt FM Stereo Receiver including cabinet. Cortina 3570, $169.95 kit, $259.95 wired.
150-Watt Silicon Solid-State Stereo Amplifier, including cabinet. For the audio perfectionist. Cortina 3150, $149.95 kit, $225 wired.
70-Watt Silicon Solid-State Stereo Amplifier, including cabinet. Cortina 3070, $99.95 kit, $139.95 wired.
FM Stereo Tuner including cabinet. Cortina 3200, $99.95 kit, $139.95 wired.

Build for fun and use with Eicocraft jiffy project kits.
The newest excitement in kits. 100% solid-state and professional. Expandable, interconnectable. Excellent as introductions to electronics. No technical experience needed. Finest parts, pre-drilled etched printed circuit boards, step-by-step instructions, 36 kits to select from. $2.95 to $9.95
Just released: EC-2600 "Super Snoop" $8.95; EC-2700 Police & Fire Converter
EC-1900 TREASURE FINDER $9.95

Shape up your own car/boat with EICO Engine Analyzer
For all 6V/12V systems: 4, 6, 8-cyl. engines. Now you can keep your car or boat engine in tip-top shape with this solid-state, portable, self-powered universal engine analyzer.
Completely tests your total ignition/electrical system. Complete with comprehensive Tune-up & Trouble-shooting Manual: EICO 888, $49.95 kit. $69.95 wired.

The first and only solid-state test equipment guaranteed for 5 years.
Only EICO brings you laboratory precision and long life at lowest cost.

EICO 240 Solid-State FET-TVOM $9.95 kit; $9.95 wired
EICO 379 Solid-State Sine/Square Wave Generator $69.95 kit, $94.50 wired
EICO 242 Solid-State Deluxe FET-TVOM $69.95 kit, $94.50 wired
EICO 150 Solid-State Signal Tracer $49.95 kit, $69.95 wired
EICO 330 Solid-State RF Signal Generator $39.95 kit, $84.50 wired

You save up to 50% with EICO Kits. Since 1945, Best Buys in Electronics. Over 3 Million EICO Instruments Now in Use.

FREE 1970 CATALOG
Send me FREE catalog describing the full EICO line of 200 best buys, and name of nearest dealer.

EICO Electronic Instrument Co., Inc.
283 Malta Street, Brooklyn, N.Y. 11207
Available in Canada

www.americanradiohistory.com
Earn Your DEGREE in Electronics!

This is the "electronics age." Advancements in electronics are coming, one on top of another, so rapidly that the average technician cannot stay abreast of the changes. But some technicians — those who thoroughly understand fundamental principles — are able to stay up with these changes, and they make top pay because of their special ability.

Is your electronics knowledge obsolescent? If so, nothing can make you obsolete so quickly as to neglect the study of basic concepts and fundamental principles.

Upgrade Your Knowledge & Earn Your Degree
Grantham's strong-foundation curriculum in electronics leads to non-obsolescent skills — skills based more on reasoning than one merely doing — and leads first to the Associate and then to the Bachelor of Science Degree in Electronics Engineering.

The Grantham Engineering Degree Curriculum places heavy stress on fundamental concepts of logic and mathematics rather than superficial manipulative skills. Since these fundamental ideas are largely unfamiliar to many electronics technicians, it is necessary to develop them in a systematic manner. Emphasis is on understanding rather than memorizing.

Get Your FCC License Along The Way
You have heard and read, over and over again, about how important an FCC license is to your success in electronics. It is certainly true that an FCC license is important — sometimes essential — but it's not enough! Without further education, you can't make it to the top. Get your FCC license without fail, but don't stop there. To prepare for the best jobs, continue your electronics education and get your degree.

This kind of thinking makes good common sense to those who want to make more money in electronics. It also makes good sense to prepare for your FCC license with the School that gives degree credit for your license training — and with the School that can then take you from the FCC license level to the DEGREE level. The first two semesters of the Grantham degree curriculum prepare you for the first class FCC license and radar endorsement.

Home Study Program Available to Experienced Technicians Only
If you have at least one year of experience as an electronics technician, you are qualified for enrollment for the Associate Degree (Semesters 1 thru 5) by correspondence. The accredited ASEF Degree program by home study consists of a total of 370 lessons, followed by two weeks of resident classes at the School.

To the best of our knowledge, Grantham School of Engineering is the only school in the United States authorized and accredited to grant a degree in an engineering field, entirely on the basis of home-study instruction except for the final two weeks. However, this accredited degree program is available only to experienced technicians who already know the "hardware" side of electronics.

Accreditation, and G.I. Bill Approval
Grantham School of Engineering (founded in Hollywood in 1951) is accredited by the Accrediting Commission of the National Home Study Council, is approved under the G.I. Bill to offer home-study and resident programs, and is authorized under the laws of the State of California to grant academic degrees.

The Grantham Engineering Degree Curriculum
The entire Grantham Electronics Engineering Degree Curriculum consists of five semesters leading to the Associate Degree, followed by three additional semesters leading to the Bachelor's Degree. See the outline below:

Semester 1	Basic Electronics Technology With Math (80 lessons by correspondence, or 4 months in resident classes)
Semester 2	Communications Circuits and Systems (60 lessons by correspondence, or 4 months in resident classes)
Semester 3	Engineering Mathematics & Computer Systems (70 lessons by correspondence, or 4 months in resident classes)
Semester 4	Classical & Modern Physics, & Technical Writing (70 lessons by correspondence, or 4 months in resident classes)
Semester 5	Engineering Calculus, Electrical Networks, and Solid State Circuit Design (70 lessons by correspondence, or 4 months in resident classes)
Review & Exam	Two-Weeks of Review and Comprehensive Examination on Semesters 1 thru 5, for the Associate in Science Degree in Electronics Engineering
Semester 6	Advanced Calculus and Network Analysis (6 months of resident classes, meeting 2 evenings per week)
Semester 7	Network Synthesis, and Advanced Electronics (6 months of resident classes, meeting 2 evenings per week)
Semester 8	Computer Scientific Programming, and Control Systems (6 months of resident classes, meeting 2 evenings per week)
Transfer Credits	Certain credits in English, Social Studies, etc., in addition to Grantham Semesters 1 thru 8, are required for the Bachelor of Science Degree in Electronics Engineering.

Mail the coupon below for our free Bulletin.

Grantham School of Engineering
1505 N. Western Ave., Hollywood, Cal. 90027

Gentlemen:
Please mail me your free Bulletin which explains how the Grantham educational program can prepare me for my FCC license and Associate Degree in Electronics Engineering. I understand no salesman or counselor will call.

Name ____________________________
Address __________________________
City __________________ State ________ Zip _______

Telephone: (213) 469-7878

Circle 9 on reader service card

<-- Circle 8 on reader service card

370

www.americanradiohistory.com
PLAIN ANTI-COLLISION DEVICE IS DEMONSTRATED

Baltimore—An anti-collision device for aircraft that employs radio signals regulated by atomic clocks has been demonstrated. Airlines may begin to install the device in 1971.

Each plane within an operational area would simultaneously transmit a digitally coded message every 3 seconds. Individual planes would be assigned one of 2000 time slots in a 3-second time base. Since all planes transmit at precisely the same time, each plane could compute the distance to other aircraft from the elapsed time of the transmissions.

Altitude information is contained in each plane’s coded transmission. Closing rates can be computed from the Doppler shift in radio frequency.

A small panel is used to indicate when the plane should be flown level, climb or dive. The devices are made by McDonnell-Douglas, Bendix Avionics and Wilcox Electric, and will cost from $30,000 to $50,000 per plane.

ANTENNA IS TESTED FOR CANADIAN TV

Ottawa—A 25-foot dish antenna is undergoing tests for use with the Canadian Domestic Satellite, scheduled for launching in 1972. Operating in the 3.7-4.2 GHz range, the system is being designed to provide color TV reception in remote areas. Station electronics have been designed for unattended operation.

LUNAR TV ‘SERVICE’ GETS HAMMER AWARD

Astronaut Alan Bean was presented with a golden hammer mounted on a plaque for his attempt to repair the defective Apollo 12 color TV camera. Gene Ware, president of the Fort Worth TV service association who made the award, said, “We are proud of the initiative he displayed by trying to make it possible for the millions of TV watchers to view the moon-walk, even though it didn’t work.”

COLOR TV ALIGNMENT SPEEDED

Chicago—A demonstration of a new alignment procedure for color TV’s—completed in less than 10 minutes—was held at a dealer service seminar sponsored here by Taylor Electric and Dynascan Corp.

A field engineer for Dynascan covered all phases of rf, i.f. and color-circuit alignment using the new B&K Sweep/Marker Generator, Model 415. He used a closed circuit TV camera so the audience could view the procedure easily. Various technicians used the generator to align the color set themselves.

(NTC is continued on page 4)

NEW & TIMELY

Volume 41 Number 3 March 1970

LOOKING AHEAD

by DAVID LACENBRUCH CONTRIBUTING EDITOR

New generation in color

Television set manufacturers are poised for what they consider the biggest model changeover since the introduction of the rectangular picture tube. The “new generation” is scheduled to start around midyear 1970, but some preview models could be forthcoming in the manufacturers’ March and April introductions.

Highlighting the new generation will be the “new look” in picture tubes: squared-off corners and a 4-to-3 aspect ratio which shows more of what the camera sees than today’s 3-to-2 tubes. Set manufacturers expect the new 25-inch (viewable diagonal) tube eventually to replace the current 23-inch version, the 21-inch to replace the 20-inch, and the 19-inch, the 18-inch. At first, the new tubes will be used only in higher-priced sets, but even with a midyear introduction, set manufacturers expect the new sizes to represent nearly 20% of 1970’s domestically produced TV set sales.

At the same time, square-cornered 15-inch color tubes are being developed in Japan, with an eye to the US export market. These are expected to reach this country by fall.

In area, the new tubes are not much different from those they replace: The 19-inch shows 185 square inches of picture compared with 180 for the 18-inch; the 21-inch is 226 square inches vs 227 for the current 20-inch, and the 25-inch measures 315 square inches as opposed to 295 in the 23-inch tube.

This year will also see the first color tubes with 110° deflection, shaving at least a couple of inches from the depth of color sets—starting first, this spring, with a short 18-inch set, and followed, probably toward the end of the year, with a 19-inch square-cornered version. At present, there are no active plans for shorter tubes in the larger-screen sizes.

Another innovation scheduled by some major manufacturers this year will be the long-delayed, all-electronic (Looking Ahead is continued on page 6)

IN THIS ISSUE

- Tired of monophonic FM? It’s easy to switch over to stereo FM with the $21 miniature multiplex converter on page 33. In fact, you may improve your present stereo tuner by substituting this one-IC, 31-transistor mini-multiplexer for your decoder.
- Banish annoying background noise from your hi-fi system with a truly linear dynamic expander. The device gives linear 15-dB boost to program material. Hot carrier diodes and IC op-amps are used. Turn to page 36.
- Tape recorders are delivering better performance each year. Starting on page 40, audio expert Norman Crowhurst explains how improved biasing techniques are helping tape recorded sound.

www.americanradiohistory.com
Radio-Electronics
March 1970 • Over 60 Years of Electronics Publishing

AUDIO—HI-FI—STEREO

New Phono Cartridge................. 4 Fred Shunaman
An acoustic amplifier plus FET's
All About Tape Recorder Bias........ 40 Norman Crowhurst
Why you're getting better fidelity from tape
One-Speaker Stereo.................. 90 Fred Shunaman

HI-FI STEREO BUILD-ITS

IC Multiplex Converter.............. 33 Kenneth F. Buegel
Mini stereo decoder uses one IC
IC Volume Expander.................. 36 Kenneth F. Buegel
Linear dynamic expansion with hot carrier diodes
Miniature Bookshelf Hi-Fi Speaker........ 43 Alexander Retsoff
Acoustic-suspension speaker system has smooth, wide response

TELEVISION

In The Shop............................ 24 Jack Darr
KWik-Fix™ Troubleshooting Charts..... 57 Forest H. Belt
6G9BA reacance-controlled color oscillator
TV On A Chip............................ 69 Robert L. Goodman
How to troubleshoot and repair the circuits
Equipment Report 76 Jack Darr
Healthkit 1G-28 Color Bar & Dot Generator
Service Clinic 88 Jack Darr

BUILD THIS ONE

Car Short-Wave Converter............ 50 Larry Lislie
Tune in the world on the road

GENERAL ELECTRONICS

Looking Ahead 2 David Lachenbruch
Current happenings with future overtones
All About Tools 52 Thomas R. Haskett
Buying and using soldering equipment
What's New in Medical Electronics 61 Fred W. Holder
Life-saving electronic systems
CB Troubleshooting 78 Andrew J. Mueller
Conclusion to January's part I
Equipment Report 98 Jack Darr
Hickok model 860 Injecto-Tracer

DEPARTMENTS

CB Troubleshooter's Casebook 85 New Books 87
Coming Next Month 93 New Literature 84
Correspondence 16 New Products 81
New & Timely 2 New Tubes & Semiconductors 86

Noteworthy Circuits 94
Reader Service 79
Technotes 92

Low-cost acoustic suspension speaker provides smooth response. Build two for an extension stereo system. ... see page 43

Radio-Electronics is indexed in
Applied Science & Technology
Index (formerly Industrial
Arts Index)

www.americanradiohistory.com
NEW PHONO PICKUP

Would you believe a pickup that converts the vibrations of the stylus to acoustic signals, picks them up with a microphone, amplifies that signal with an FET transistor amplifier in the cartridge, and puts out a signal comparable in level to that from a conventional magnetic phono cartridge.

by FRED SHUNAMAN

The style similar to the one from a conventional pickup, we see the two familiar arms from the stylus shaft. These form a V, the ends of which are attached to a yoke. Here the resemblance ends. At the ends of the yoke are two bellows-like devices (Fig. 1) called canaliculi (little channels) by the inventor. The stylus vibrations move the ends of the yoke, pushing them against the ends of these bellows and setting up acoustic waves (sound or pressure signals) in them. These canaliculi closed at one end by the yoke and at the other by the microphone diaphragms, are tapered (cone-shaped—see Fig. 2) with the ends at the microphones larger than the ends at the yoke. They thus form an acoustic transformer (as does the bell of a horn speaker). It is a puzzling principle of physics (Pascal’s paradox) that if a piston of a given diameter is coupled by a gas or liquid to one of larger area, the pressure on the small-area piston will be transmitted exactly to each similar area on the large one.

If, for example, we were to make a bellows (square, for ease of measurement) with a small end 1mm square and the large end 5mm on a side, a pressure of 1 dyne on the small end would be transformed to a total pressure of 25 dynes at the large end.

To the pickup, this means that you can have a

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output level</td>
<td>$-26,\text{dB}$ at $1,\text{kHz}$</td>
</tr>
<tr>
<td>Channel balance</td>
<td>$\pm 1,\text{dB}$</td>
</tr>
<tr>
<td>Frequency response</td>
<td>$10,\text{Hz}$ to $25,\text{kHz}$</td>
</tr>
<tr>
<td>Channel separation</td>
<td>$300,\text{Hz}$ to $30,\text{dB}$</td>
</tr>
<tr>
<td></td>
<td>$1,\text{kHz}$ to $26,\text{dB}$</td>
</tr>
<tr>
<td></td>
<td>$10,\text{kHz}$ to $25,\text{dB}$</td>
</tr>
<tr>
<td>Higher order resonance</td>
<td>$26,\text{kHz}$</td>
</tr>
<tr>
<td>Intermodulation distortion</td>
<td>$1.0%$</td>
</tr>
<tr>
<td>Stylus force</td>
<td>$1.5,\text{gram}$</td>
</tr>
<tr>
<td>Vertical tracking angle</td>
<td>$15^\circ \pm 2^\circ$</td>
</tr>
<tr>
<td>Compliance lateral</td>
<td>$20 \times 10^{-5},\text{cm/dyne}$</td>
</tr>
<tr>
<td></td>
<td>14×10^{-5}</td>
</tr>
<tr>
<td>Type of equalization</td>
<td>Displacement type</td>
</tr>
<tr>
<td>Power supply</td>
<td>$1,\text{mA}$ at $24,\text{V dc}$</td>
</tr>
<tr>
<td>Dynamic range</td>
<td>$90,\text{dB}$</td>
</tr>
</tbody>
</table>

* $0\,\text{dB} = 1\,\text{volt at 5 cm/sec}$

Fig. 1

Fig. 2

www.americanradiohistory.com
Give them the world's most fully equipped antenna lab ... and what do they do?

They take their work to lunch with them. Our Engineers are that way ... no matter where or when they get an idea, they develop it on the spot.

Deciding one day that the Color Vector could be made even better, they ruined a perfectly good tablecloth designing changes that give the antenna new mounting flexibility and increased gain on the VHF, UHF and FM Bands.

And they gave it greater wind stability, and made the whole thing easier to handle, assemble and mount.

Then, with lots of tablecloth left, they went ahead and designed an entirely new model for near fringe areas ... just to be sure there's a high gain Color Vector for every specific area.

Don't misunderstand ... our Engineers are perfectly free to do what they want at lunch, and if they spend it improving products, that's fine with us. We'll even pay for the tablecloths.

THE NEW IMPROVED COLOR VECTOR

BY CHANNEL MASTER

DIVISION OF AVNET, INC., ELLENVILLE, N.Y. 12428

Circle 10 on reader service card
very decent pressure on the microphone diaphragm with very low pressure at the yoke end of the caniculus. This results in high compliance. The actual pressure ratio between stylus and diaphragm is 25 to 1, and the resultant compliance 20 x 10⁻⁸ cm/dyne. Since the exact length or size of the caniculus is not critical, mechanical design of the pickup is made easier.

The next new thing is further away from the fixed plate. This changes the capacitance, lowering and raising the voltage between the plates as the capacitance increases or decreases.

The capacitance (condenser) microphone is a very high-quality instrument, but the high-voltage supply is bulky, introduces hum, leakage and other troubles, so other microphone types have become more popular.

The electret is simply a piece of dielectric material (often thin plastic) with a permanent high-voltage positive charge on one side and a negative charge on the other. In the pickup, it is metallized on one side to serve as a diaphragm, as well as to supply the polarizing voltage. As a pressure wave forces the diaphragm toward the backplate, the capacitance increases and the voltage drops; as it moves further away the capacitance decreases and the voltage rises. These variations in voltage appear at the bases of the amplifier transistors (Fig. 3) and the characteristically low output of the capacitor microphone is brought up to the level of a normal magnetic pickup.

N & T continued on page 12

NEW & TIMELY

Looking ahead (continued from page 2)

varactor tuning. Now in common use on the European Continent, it is currently featured in North America by only one manufacturer—Electrohome of Canada. Varactor tuning will make possible quick and silent channel changes and, by the elimination of mechanical parts and contacts, give designers new freedom in the location and design of tuning control panels.

Electrohome, for example, uses an 18-channel "touch-tuning" panel that changes channels when a finger touches a button; bodily resistance keys the channel change. The tuning panel may be removed from the set (to which it is connected by a flat cable). It also contains on-off, volume, color and tint controls. The latter three controls activate light bulbs within the set, with phototransistors substituting for the traditional potentiometers.

New tube type numbers

Ever since Jan. 1, 1967, when the Federal Trade Commission's decree that television screen sizes must be measured by viewable (rather than over-all) diagonal went into effect, service technicians have been putting 25-inch replacement tubes into 23-inch color sets. This interesting situation arose because the FTC's edict applied only to television sets themselves and not to unboxed picture tubes. The picture-tube industry continued to use the old "over-all" measurements to identify their products, while set manufacturers and retailers were required to use the new, generally smaller, measurements.

The situation has finally been corrected. The Electron Tube Council of the Joint Electron Device Engineering Council (Looking Ahead is continued on page 14)
Castle, the pioneer of television tuner overhauling, offers the following services to solve ALL your television tuner problems.

OVERHAUL SERVICE — All makes and models. (1960, or later)

- VHF or UHF tuner: $9.95
- UHF-VHF combination (one piece chassis): $9.95
- TRANSISTOR tuner: $9.95
- COLOR tuner: $9.95

(Guaranteed color alignment ... no additional charge)

Overhaul includes parts, except tubes and transistors.

Simply send us the defective tuner complete; include tubes, shield cover and any damaged parts with model number and complaint. Your tuner will be expertly overhauled and returned promptly, performance restored, aligned to original standards and warranted for 90 days.

UV combination tuner must be single chassis type; dismantle tandem UHF and VHF tuners and send in the defective unit only.

And remember—for over a decade Castle has been the leader in this specialized field ... your assurance of the best in TV tuner overhauling.

Remove all accessories ... or dismantling charge will apply.

CUSTOM REPLACEMENTS

Exact replacements are available for tuners that our inspection reveals are unfit for overhaul. As low as $12.95 exchange. (Replacements are new or rebuilt.)

UNIVERSAL REPLACEMENTS

Prefer to do it yourself?

Castle universal replacement tuners are available with the following specifications.

<table>
<thead>
<tr>
<th>STOCK No.</th>
<th>HEATERS</th>
<th>SHAFT Min.*</th>
<th>SHAFT Max.*</th>
<th>I.F. OUTPUT Snd.</th>
<th>I.F. OUTPUT Pic.</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR6P</td>
<td>Parallel 6.3v</td>
<td>3/4"</td>
<td>3"</td>
<td>45.25</td>
<td>45.75</td>
<td>8.95</td>
</tr>
<tr>
<td>CR7S</td>
<td>Series 600mA</td>
<td>3/4"</td>
<td>3"</td>
<td>45.25</td>
<td>45.75</td>
<td>9.50</td>
</tr>
<tr>
<td>CR9S</td>
<td>Series 450mA</td>
<td>3/4"</td>
<td>3"</td>
<td>45.25</td>
<td>45.75</td>
<td>9.50</td>
</tr>
<tr>
<td>CR6XL</td>
<td>Parallel 6.3v</td>
<td>2 1/2"</td>
<td>12"</td>
<td>45.25</td>
<td>45.75</td>
<td>10.45</td>
</tr>
<tr>
<td>CR7XL</td>
<td>Series 600mA</td>
<td>2 1/2"</td>
<td>12"</td>
<td>45.25</td>
<td>45.75</td>
<td>11.00</td>
</tr>
<tr>
<td>CR9XL</td>
<td>Series 450mA</td>
<td>2 1/2"</td>
<td>12"</td>
<td>45.25</td>
<td>45.75</td>
<td>11.00</td>
</tr>
</tbody>
</table>

*Selector shaft length measured from tuner front apron to extreme tip of shaft.

These Castle replacement tuners are all equipped with memory fine tuning, UHF position with plug input for UHF tuner, rear shaft extension and switch for remote control motor drive ... they come complete with hardware and component kit to adapt for use in thousands of popular TV receivers.

Order universal replacements out of Main Plant (Chicago) only.

CASTLE TV TUNER SERVICE, INC.

MAIN PLANT: 5715 N. Western Ave., Chicago, Illinois 60645
EAST: 130-01 89th Rd., Jamaica, N.Y. 11418

Circle 11 on reader service card
NRI "hands-on" training in TV-Radio, Electronics can give you as much as 2 years of on-the-job experience.

EARN YOUR FCC LICENSE – OR YOUR MONEY BACK

NRI Communications training programs will qualify you for a First Class Commercial Radiotelephone License issued by the FCC. If you fail to pass the FCC examinations for this license after successfully completing an NRI Communications course we will, on request, refund in full the tuition you have paid. This agreement is valid for the period of your active student membership and for six months after completion of your training. No school offers a more liberal FCC License agreement.
Experience is still your best teacher

...here’s how you get it with unique NRI training at home

Ask any teacher, job counselor, engineer, technician or prospective employer about the need for practical application of theory in Electronics. He’ll tell you Electronics is as much a “hands-on” profession as dentistry or chemistry. That’s how you learn at home with NRI. You prove the theory you read in “bite-size” texts, by actual experimentation with the type of solid-state, transistor and tube circuits you’ll find on the job today — not hardware or hobby kits. You introduce circuit defects, analyze results, discover quickly the kind of trouble-shooting and design techniques that will make you employable in Electronics.

Train with the leader — NRI

NRI lab equipment is designed from chassis up for effective, fascinating training — not for entertainment. The fact that end results are usable, quality products is a bonus. In Communications, for example, you build and analyze, stage by stage, your own 25-watt phone/cw transmitter. It’s suitable for use on the 80-meter amateur band, if you have an interest in ham radio. In TV-Radio Servicing your practical training gives you your choice of monochrome or color TV sets. All training equipment is included in the low tuition — you pay nothing extra. Discover for yourself the ease, excitement and value of NRI training.

Mail postage-free card today for new NRI Catalog . . . or use the coupon below. No obligation. No salesman will call on you. NATIONAL RADIO INSTITUTE, Washington, D.C. 20016.

NRI Achievement Kit is educator-claimed and the original “starter” kit in home study training. Imitated but never duplicated, this kit is designed and personalized for you and your training objective. It has one purpose — to get you started quickly and easily.

“Bite-Size” Texts average an easily-digested 40 pages of well-illustrated, scientifically prepared subject matter in the course of your choice. Questions in each book are carefully hand-graded and returned to you with helpful instructional notes. You get unlimited personal help from the day you enroll.

Designed-For-Learning Equipment

Like this phone-cw transmitter (Kit #7 in the Communications course) is engineered from chassis up to demonstrate principles you must know. NRI does not use modified hobby kits for training, but the finest parts money can buy, professionally and educationally applied.

MARCH 1970
A clever tape file
Stores 5 reels in one sturdy plastic case with swing-out compartments. Protects these valuable tapes, keeps them handy, indexed and orderly. Stacks horizontally or vertically, comes in three sizes (for 3-, 5-, 7-inch reels). Handsome two-tone beige. (A neat 8-mm film file too!)

Available through your local distributor, or write to:

RYE INDUSTRIES INC.
123 Spencer Place, Mamaroneck, N.Y. 10543
Circle 12 on reader service card

UNEXCELLED! THE UVM ANTENNA

COMpletely NEW!
Combination UHF-VHF-FM Antennas
for superior performance.

Tuned and engineered featuring a LOG PERIODIC VHF section incorporating a PATENTED MAGNETIC WAVE design for UHF. Discriminate between desired signal and unwanted noise. An absence of minor lobes and extremely high front to back ratio are characteristics of these antennas. Mechanical features include all new fittings and special alloy aluminum tubing for added strength. Six models available.

Write or phone for complete information.

S & A ELECTRONICS, INC.
210 W. Florence St. Phone (419) 693-0528 Toledo, Ohio 43605
Circle 13 on reader service card

New & Timely (continued from page 6)

NEW DYNAMIC CURVE TRACER SPOTS BAD TRANSISTORS "IN CIRCUIT"
LONG ISLAND CITY, N. Y.
—A new technique for servicing circuits using semiconductor devices has been announced by Jud Williams, Technical Director of Leader Instruments. It enables uncovering faulty semiconductors in circuit, rapidly and easily.

The procedure uses a new dynamic transistor curve tracer made by Leader that sweeps the device under test with 120-Hz pulsating dc voltage while the lack of a standard numbering system by transistor manufacturers. Universal replacement types may be matched directly with the tracer, reducing the number of devices required as stock.

HIGH-VOLTAGE METER KIT

A new kit for continuous monitoring of picture tube anode voltage of all color TV chassis has been made by RCA. The 10J110 kit has been designed for use with any of the RCA color test jigs, and can be adapted for mounting in other test jigs.

The meter kit enables service technicians to precisely adjust the high voltage output to manufacturers specifications, avoiding excessive voltage and possible abnormal X-radiation.

Included with the 3½-inch, 2% accurate meter is a multiplier and cable assembly with a resistor calibrated under operating conditions. The meter reads from 0-35kV. R-E
ANALYSE THYSELF

So you can analyse fast and simple with the B&K Model 162 Transistor/FET Tester with features nobody else has.

HIGHER CURRENT CAPABILITIES: Up to 1 ampere. You need this for power transistors and FETs.

THREE TRANSISTOR LEAKAGE TEST: lces-lces-lces. Finds failures missed by other transistor testers. Especially “avalanche mode breakdown” failures, common in horizontal output or other power stages.

CORRECT BETA READING: From 1-5000.

But, the new B&K 162 doesn’t just have the features nobody else has. It has all the features they have, too. And has them better.

Which means all the other transistor and field effect transistor testers are obsolete.

So, if you didn’t just get stuck with somebody else’s outdated unit, go see a good analyst. Ours.

At your nearest B&K distributor.

See B&K . . . you’ll be better in your field.

Price: $99.95

B&K puts an end to test equipment. We’ve developed Silent Partners.

Product of DYNASCAN CORPORATION
1801 W. Belle Plaine Chicago, Illinois 60613

MARCH 1970

Circle 14 on reader service card
The Motorola Home Study Course on Servicing 2-Way Radio.

If you'd like to get into a top-paying prestige job, maybe FM 2-way radio is for you. Each year, more and more businesses are buying 2-way. That means service. And service means money. We can train you to get in on the action. Our special home study course is the place to start. We teach you FM 2-way radio servicing, and prepare you for an FCC license.

☐ Send me FREE Evaluation Examination.
☐ Send details on Home Study Course on FM 2-way radio servicing.
☐ Send details on how you can prepare me for an FCC license.

Accuracy like a VTVM... Convenience like a VOM...

NEW BATTERY-OPERATED FET SOLID-STATE VOLT-OMHMETER #116

Easy-to-build KIT
$29.95 #116K
Factory-Wired & Tested
$39.95 #116W

Now you can get all the benefits of a VTVM (laboratory accuracy, stability and wide range) but with its drawbacks gone: no plugging into an AC outlet, no waiting for warm-up, no bulkiness. New Field Effect Transistor (FET) design makes possible low loading, instant-on battery operation and small size. Excellent for both bench and field work.

Compare these valuable features:
- High impedance low loading: 11 meg-ohms input on DC, 1 megohm on AC. 500 times more sensitive than a standard 20,000 ohms-per-volt VOM.
- Wide-range versatility: 0-P-P AC voltage ranges: 0-33, 330, 1200V; 4 RMS AC voltage ranges: 0-1.2, 12, 120, 1200V; 4 DC voltage ranges: 0-1.2, 12, 120, 1200V; 4 Resistance ranges: 0-10, 0-100, 0-1000, 0-10000; 4 Ohm ranges: -24 to +5600.
- Sensitive easy-to-read 4½" x 200 microamp meter: Zero center position available. Comprises FET transistor, 4 silicon transistors, 2 diodes. Meter and transistors protected against burnout. Etched panel for durability. High-impact bakelite case with handle usable as instrument stand. Kit has simplified step-by-step assembly instructions. Both kit and factory-wired versions shipped complete with batteries and test leads. 5Vd x 6Vd, 2VA, 0.3 lbs.

LOOKING AHEAD (continued from page 12)

Councils (JEDEC), in charge of tube standardization and type designations, has announced a change in its tube numbering system that affects every picture tube sold in the U.S. The new numbering system uses the FTC-prescribed "viewable" diagonal as the key number, adding a "V" to differentiate it from the old system. Under the new system, for example, the former 25AP22A (a color tube with 25-inch over-all diagonal but 23-inch viewable diagonal) now has become the 23VAP22A. It still fits nicely into a 23-inch set.

TV fire furor

How many television sets catch fire each year? Nobody knows for certain, because no accurate records are kept, but the Government's National Commission on Product Safety estimates that the number could be as high as 10,000. Although that's still a small fraction of 1% of all sets in use, the commission has asked manufacturers to come up with tighter safety standards for new sets.

In response to the request, the manufacturers filed proposed new criteria to prevent burning or smoking sets. These were rejected by the commission as not stringent enough although a step in the right direction. The commission has urged the industry to adopt standards barring the use of any flammable components in flyback transformers, capacitors and yokes, and to make all other TV components either flameproof or self-extinguishing.

Two pictures, one channel

A TV multiplex system, which its inventor claims can double the number of channels occupying the TV broadcast band, has been patented by Harold Walker. The first license to "DuoVision" has been granted to Cowles Communications Corp., a publisher and TV broadcaster. A standard TV set is used to receive the multiplexed pictures, but an adapter is placed between the antenna and the antenna terminals. By switching the adapter to "A" or "B" position, the viewer can pick up either of two telecasts on a single channel.

The invention has been proposed as one solution to the pay-TV problem, since the pay-as-you-see channel no longer would require the blackout of a "free" channel. It also is seen as helping to increase the number of educational stations in big-city areas where no channels are now available.

A more novel suggested use is for three-dimensional TV. Some work has already been done on this by General Electronics and others, using the DuoVision system. Slightly different views of the same subject (representing the images seen by the left and right eyes) are broadcast simultaneously on the "A" and "B" subchannels and superimposed on the screen. A special lenticular faceplate covering the viewing screen directs the images to the left and right eyes.

Holographic 3-D movies

Another "no-glasses" 3-D technique—this one for movie theaters—has been patented by CBS Laboratories, which is now negotiating for a major test operation. Invented by Dr. Dennis Gabor, often called the "father of holography," the movie system uses a concave screen in which are embedded "holographic mirrors," designed to direct the proper image to the viewers' left or right eyes. Two projectors are aimed at the screen from different locations at the rear of the theater. CBS Labs claims the stereoscopic effect is visible from any seat in the theater.
You pay for what you don't get

Like the inaudible rumble. The result of a motor that runs at approximately 1/6th the speed of conventional motors to reduce intensity of motor vibration. And a belt-driven system that effectively isolates any possible remaining vibration from the turntable platter.

Like no troublesome mechanical linkages that can cause drag on the arm and result in distracting sour notes. The remarkable, new Sony Magnetodiode (SMD) initiates movement of the arm electronically, rather than mechanically.

Like the absence of distortion, wow and flutter. The result of a servo-control motor that assures precise speed accuracy and can’t be affected by line voltage fluctuation. The electronic servo and the low-speed DC motor reduce total wow and flutter to only 0.08% rms, and rumble to 60dB below the Audible Rumble Loudness Level (ARLL).

Like nothing added to the recording that isn’t on the recording already.

So, you see, you pay for what you don’t get. On the other hand, so you don’t feel cheated, and don’t feel that you are getting nothing for your money—you do get a superb playback system. It includes turntable, precisely balanced tonearm of low mass design that tracks flawlessly, oil finish walnut base and dust cover. You also get the convenience of semi-automatic operation Automatic shut-off after a record has been played. Automatic shut-off while the record is in play, by simply pushing a button or just returning the arm to rest.

You pay $200 for what you don’t get and you enjoy it too. Sony Corporation of America, 47-47 Van Dam Street, Long Island City, New York, 11101
NOW-CHECK ALL TRANSISTORS IN OR OUT OF CIRCUIT...

You won't be stopped when you run into the new FETs that are wired into the latest hi-fi, newest TV receivers and nearly every other new device coming on the market. For the very first time, you can check them all, in or out of circuit. The TF151 works every time using tried and proven signal injection techniques. New, improved tests on special RF transistors and the latest high power transistors, mean that the TF151 is the only up-to-date transistor tester on the market. A new, exclusive setup book in rear compartment guides you to every test for over 12,000 transistors and FETs. The book is not needed for general service troubleshooting. Regular transistors are checked for beta gain and Icbo leakage. FETs are checked for transconductance and Igss leakage. only $129.50

NEW SENCORE TF17 compact in and out of circuit transistor FET tester. Same as TF151 except in new Sencore Handi case and with 4-1/2" meter. . . $109.50

ADD 4.5-MHz SIGNAL TO COLOR GENERATOR

I'd like to add a 4.5-MHz signal output to my version of the color pattern generator you presented in your January 1970 issue. Can you give me any idea as to how it might be done?

WILLIAM V. GLOMB
Hawthorne, Calif.

Adding a 4.5-MHz signal is quite easy. The circuit is shown below. While it cannot be added directly to the existing printed-circuit board (there isn't enough room) it can be built on a piece of perforated phenolic board. There is ample space for the added circuit above integrated circuits IC4, IC5, IC6, IC7, IC8 and IC9. I will leave the details of supporting the board containing the added circuitry to your ingenuity.

Missing from the parts list with the article was the specs for switch S1. It is a 3-pole, 6-position non-shorting switch. Mallory 3236J or equivalent.

RAYMOND KOSTANTY

BONGOS SHORT A WIRE

I built the electronic bongos (Radio-Electronics July 1969) and they work fine. The schematic is correct, but the pictorial diagram of the parts layout needs one more wire—from the junction of R1 and C1 to the junction of R5 and R6.

VIC WILLIAMS
Austin, Tex.

Thanks for the note Vic. We're sure all the other readers who haven't yet put their bongos to work will appreciate it too.

(continued on page 22)
"QT" keeps you ahead with the fastest moving RCA parts.

"QT" is a Quick Turnover Inventory system that brings you a steady supply of the fastest-moving RCA Home Instrument replacement parts. It practically guarantees you’ll have the parts you need for most of your servicing jobs. This means you get the jobs done, without backlogging and last-minute dashes to your distributor for essential "QT" parts.

A "QT" inventory helps you cut down on those stacks of dusty boxes and trays of unused parts—and the dollars you have tied up in them.

The entire system is incredibly handy and efficient... lets you find parts quickly while you're working... reminds you to reorder when your supply is low... makes inventorying and reordering so fast that it's almost automatic.

Suddenly you’ll find yourself with a lot more time to devote to additional servicing jobs.

Check it out with your RCA "QT" Parts Distributor. He’ll discuss the different "QT" inventory plans with you and help you select one tailored to your operation.

After that, things go very smoothly.

Parts and Accessories, Deptford, New Jersey.
We pack your electronics course with kits to make your training fast. You'll enjoy every minute of it.

Your NTS success package

Choose a career in electronics: Computers. Color TV Servicing. Automation. Communications. Whatever the field, NTS has a complete home-study package to get you to the top faster. 10 thorough training courses. Each includes everything to give you the working knowledge required of successful technicians.

NTS Project-Method Training is the practical way to learn electronics. It's a proven combination of lessons and the best professional kit equipment available. NTS provides the biggest selection of kits ever offered in home-study... all at no extra cost. You'll construct these exciting kits to fully understand electronic circuits, components, and concepts. Our Project-Method lets you build skills by putting theory into practice... by working with your hands, as well as your head.

The NTS "learn and practice" approach makes training at home really easy. All it takes is a few hours a week... whether you're starting from scratch or in advanced courses. This is the all-inclusive success package that put thousands of men into the best paying jobs... or into their own business. If "just a living" isn't good enough for you, now is the time to get something better going for you!
NTS COMPUTER ELECTRONICS

This is the future. And it's happening now. The number of computers will increase many times in the next few years.

Exclusive new Compu-Trainer®

NTS offers a solid grounding in computer operation, wiring, data processing and programming. One of the 10 important kits included is our exclusive Computrainer®. It's a fully operational computer logic trainer—loaded with integrated circuits—the first ever offered in home study. It introduces you quickly to how, what, when and why of computers...from theory to practical servicing techniques. This unit is capable of performing 50,000 operations per second. And it's sent at no extra cost.

NTS COLOR TV SERVICING

This is a broad, easily understood program designed to make you a complete home-entertainment service technician. Included, at no extra cost, is a color TV that has more features than any

NTS AUTOMATION/INDUSTRIAL ELECTRONICS

You're trained in the "push-button" electronics that keep industry going and growing...from relay type controls to highly advanced systems essential to production. You receive 16 kits including a 5" wide band oscilloscope, and the new NTS electronics lab: a fascinating NTS exclusive experimental laboratory. A complete workshop which makes you familiar with solid-state, miniature, and integrated circuits.

NTS ELECTRONIC COMMUNICATIONS

The use of 2-way radio systems in private and commercial applications is skyrocketing. NTS prepares you for the big-money opportunities in the field of transmitting and receiving equipment. Your tuition will be refunded in full if you cannot pass the FCC exam for a 1st Class Commercial Radio-Telephone License within six months after successfully completing this course. You build valuable kits including Amateur-Phone 6 Meter VHF Transceiver, solid-state Radio, and a field-effect transistor voltmeter.

CLASSROOM TRAINING AT LOS ANGELES

You can take classroom training at Los Angeles in sunny Southern California. NTS occupies a city block with over a million dollars in facilities devoted exclusively to technical training. Check box in coupon.

NATIONAL TECHNICAL SCHOOLS

World-Wide Training Since 1905

4000 South Figueroa Street
Los Angeles, Calif. 90037, U.S.A.

APPROVED FOR VETERANS

Accredited Member: National Association of Trade and Technical Schools, National Home Study Council.

TODAY, MAIL COUPON FOR FREE COLOR CATALOG AND SAMPLE LESSON.

NATIONAL TECHNICAL SCHOOLS

4000 S. Figueroa St., Los Angeles, Calif. 90037

Please rush Free Color Catalog and Sample Lesson, plus information on field checked below. No obligation. No salesman will call.

☐ MASTER COURSE IN COLOR TV SERVICING
☐ MASTER COURSE IN TV & RADIO SERVICING
☐ MASTER COURSE IN ELECTRONICS TECHNOLOGY
☐ INDUSTRIAL AND AUTOMATION ELECTRONICS
☐ COMPUTER ELECTRONICS
☐ BASIC ELECTRONICS

Name ___
Address ___
City State Zip

☐ Check if interested in Veteran Training
under new G.I. Bill.
☐ Check if interested ONLY In Classroom Training at Los Angeles, Dept. 206-030

MARCH 1970
Introducing the world's only $339 triggered scope.

Before you say you don't need a triggered scope, look what's happening to TV servicing: tubes are out, transistors and IC's are in.

With tubes you could play hit-or-miss, knowing the tube would take the overload. Try the same thing now, and good-bye transistors.

For new-era circuitry, Leader introduces a new-era troubleshooter. A triggered scope, just like the ones the TV designers use.

Now the wave shape is locked in and continuously displayed. Now you can look at a waveform containing high and low frequency components. Now you can determine voltage directly and instantly.

Before you say $339 is a lot of bread, look at what it buys: Leader's LBO-501 5-inch triggered scope, with a bandwidth of DC to 10 MHz and a solid state package.

Going like hotcakes at your Leader distributor.

Clever Kleps

Test probes designed by your needs—
Push to seize, push to release (all Kleps spring loaded).
Kleps 10. Boathook type clamp grips wires, lugs, terminals. Accepts banana plug or bare wire lead. 4 3/4" long. $1.19
Kleps 20. Same, but 7" long. $1.39
Kleps 30. Completely flexible. Forged-tongue gripper. Accepts banana plug or bare lead. 6" long. $1.47
Kleps 40. Completely flexible. 3-segment automatic collet firmly grips wire ends, PC-board terminals, connector pins. Accepts banana plug or plain wire. 6 1/4" long. $2.49
Kleps 1. Economy Kleps for light line work (not lab quality). Meshing claws. 4 1/2" long. $.99
Prof 10. Versatile test prod. Solder connection, molded phenolic. Duplicates as scribbling tool. "Bunch" pin fits banana jack. Phone tip. 5 1/4" long. $.75
All in red or black — specify .

For additional information, write for our complete catalog of — test probes, plugs, sockets, connectors, earphones, headsets, and miniature components.

Available through your local distributor, or write to:
RYE INDUSTRIES, INC.
123 Spencer Place, Mamaroneck, N.Y. 10543

Circle 20 on reader service card

CORRESPONDENCE
(continued from page 16)

CROSSOVER CROSSUP
I was very much interested in Norman Crowhurst's article, "Three-Way Crossover." However, I think that some points need to be clarified. How were the values for the capacitors at the input and output calculated? On p. 44, Fig. 6, the 200-2,000 Hz bandpass filter incorporates the 50 ohm emitter resistor. However, in the 20-200 channel this resistor is not used. Why? Finally, what exactly are safe impedances that can be used with this circuit? I don't believe Mr. Crowhurst was clear on these points. I would appreciate this information.

MICHAEL KUCYK
1733 Linden St.
Brooklyn, N.Y. 11227

Michael Kucyk's letter has drawn attention to an error that apparently escaped us all: there should be a 510-ohm resistor in the position to which he refers, on Fig. 6, page 44 of the October issue.

Had the board been assembled as drawn, a circuit check would quickly have found the empty space, and a 510-ohm resistor could have been dropped in and soldered, and then everything would have been fine. But one can't check a drawing quite that way! We used extra care making sure the etched circuit was correct and then, I suppose, became lazy when I reached the insertion (by drawing) of the very last resistor.

On the question about safe impedances, I presume he means from the viewpoint of achieving correct performance. The input is intended to work from a source impedance that is between zero and 500 ohms, while the output is intended to work into an impedance from 500 ohms to infinity (open circuit). Variation in these ranges will not materially affect performance.

The input and output capacitors, shown as electrolytics, outside the feedback loops, must have a reactance low enough at the lowest frequency each filter handles not to materially affect transmission: that is, less than about 4K ohms on the input and it should be less than about 500 ohms on the output.

In the examples shown, the two filters used 2 μF, on input and output, which would yield reactances of 400-ohms at 200 Hz and 40 ohms at 2,000 Hz. If full response at 20 Hz is vital, 50 μF may be substituted as output capacitor of this filter.

My thanks to Mr. Kucyk for drawing attention to these points.

NORMAN CROWHURST
Gold Beach, Oregon
TWO NEW BELL RINGERS FROM DELTA

DELTAalert
Ultra Sonic Silent Sentry System

The all new economical-to-use DELTAalert, is more than a total motion detection and intrusion alert system. Use it as a convenience item to turn on lights, ring bells, alarms or monitor any area, indoors or out. Merely plug the system into any wall socket and plug the light, bell or alarm into the back of the unit. DELTAalert's Extra Feature variable sensitivity control and adjustable timing features provide you the most advanced sentry system on the market. Unit comes in handsome walnut finish, complete with 110-130V drop ccd.

SPECIFICATIONS:
- Ultrasonic Frequency: 35 KHZ
- Area Coverage: 10-30 feet (depending on environmental conditions such as shape of area)
- Controls: On-Off Switch; Built in Timer; Variable Sensitivity Control
- Output: 110-130V at 1 Amp.
- Power Requirements: 110-130V, 60 HzAC

For Complete Unit, Ready to Use $59.95

HIGH VOLT ANALYST
Complete Auto Analyzer

Delta brings you a new concept in automotive tune-up — The High Volt Analyst. A unique and complete auto analyzer, it provides all the primary advantages of a scope and yet is completely portable.

SPECIFICATIONS:
- Accuracy — Tachometer ± 2% of full scale (all ranges) • Dwell Meter ± 1% (both ranges) • OHMS Scale ± 5% • Low Voltage ± 2% of full scale • High Voltage ± 5% of full scale
- General — Fully protected meter circuit* • Size: 6½W x 8H x 3½D
- Weight: 3½ lbs.
- Ranges — DC Volts 0-15V, 15KV and 45KV • OHMS: 0-1 Meg. (10K center scale) • Dwell: 4, 6 and 8 cylinders • Tachometer: 0-1500 RPM, 6000 RPM

*Batteries (8 Type AA cells) included. Comes complete with standard lead set, a special probe, and high tension lead.

$79.95 ppd. Assembled
$59.95 ppd kit form

DELTA PRODUCTS, INC.
P.O. BOX 1147 • GRAND JUNCTION, COLORADO 81501

Circle 21 on reader service card
In the Shop... With Jack

By JACK DARR
SERVICE EDITOR

PITFALLS WITH PARALLEL PATHS

This column is for your service problems—TV, radio, audio or general and industrial electronics. We answer all questions individually by mail, free of charge, and the more interesting ones will be printed here.

If you're really stuck, write us. We'll do our best to help you. Don't forget to enclose a stamped, self-addressed envelope. Write: Service Editor, Radio-Electronics, 200 Park Ave. South, New York 10003.

THE SUBJECT WAS A MEDIUM-SIZE, Japanese color TV portable. One of my friends lugged it in one morning with a sad look on his face, and we set it up on the bench and lit the fire. The trouble was obvious. The top 2 inches of the screen were blank. Turning the vertical height and linearity controls did nothing but make heads flatten out ludicrously. So, we pulled the back off and looked for the vertical output tube. To my surprise, there was a schematic inside the cabinet. How lucky can you get?

Not very. With the help of a powerful magnifying glass, we discovered the vertical output/oscillator tube was a 10GVS. "A 10-GV-what?" I asked. Without too much hope, we looked on the tube shelf. Nope. None of the five tube lists we had even mentioned such a tube. We looked in the tube substitution book and found the same thing—nothing.

"Well, let's peel it out and see what we can find," I suggested. After locating the 10GV8 socket, we identified the pins of the pentode section and checked the dc voltages. Looked o.k., but since they had carefully managed to omit voltages on the original "bag-of-worms" schematic, this didn't help much. Without too much optimism, I looked in my Sams Photofact file. Lo and behold! There it was. Voltages and all. Things were looking up.

Screen grid voltage on the pentode was just a bit low. Grid voltage seemed to be o.k. Cathode voltage was +40 instead of the +20 volts called for. Hmmm. Was this tube good or was it weak?

"Look here," I said, "we've got 40 volts on the cathode instead of the +20 needed. This ought to mean the tube is drawing more than the normal plate current. If it is, it shouldn't be weak. The control grid voltage is close to normal, and the 55-volt peak-to-peak grid drive signal looks o.k., too. So, what's wrong?"

We located and removed the coupling capacitor, a 0.1-μF, which checked good—no leakage, of course. Then we tried bridging a big electrolytic capacitor from cathode to ground, with no perceptible results.

I turned the thing off, and checked the resistance from cathode to ground. About 2000 ohms plus. That didn't look right. There was also a great deal of trigger-work in there beside that resistor. In fact, the cathode circuit takes in quite a lot of territory.

We both looked at that ohmmeter reading of more than 2000 ohms, and I let him take out that 820 ohm cathode resistor. You guessed it, the resistor was wide open.

Since there was still a complete path to ground through the stuff on the convergence board, the vertical output tube could still try to make a raster. However, since it now had quite a bit more cathode resistance than the book called for, it was simply biasing itself off before it could sweep the full screen.

Putting in a new 820-ohm resistor cured the trouble, and the screen filled out nicely. The moral of a story like this, of course, is: "Don't stop when you've checked only one part of a circuit. There may be more than one path.”

"Dear, have you seen my soldering gun?"
Guns are her business... SHE'S GOT TO BE TOUGH!

She makes the final inspection of every tri-mount electron gun we manufacture for Channel Master Color CRTs ...and she's tough about it! The six different tests for spacing, alignment, angle of deflection and convergence of each gun...hand-crafted to micro-inch tolerances in our dust-free arsenal...guarantee precise aiming at the rare earth target. All of her guns must meet OEM specs. Any that don't are fired on the spot.

The tests she makes are just part of the 117 inspections that each Channel Master Color CRT must pass before it's final OK for shipment. Just part of the reason why there's no finer color CRT you can recommend. The Rest? We use only the finest materials, and assemble them to higher-than-industry specifications.

Color is our specialty...that's why so many people are watching Channel Master!

At Channel Master YOUR Reputation is OUR Business.

CHANNEL MASTER

DIVISION OF AVNET, INC., ELLENVILLE, NEW YORK 12428

MARCH 1970

Circle 25 on reader service card
Second in a series...

Can you solve these problems in electronics?

They're a cinch after you've taken RCA Institutes' new communications electronics program.

It includes new preparation for the FCC license plus the assurance of your money back if you fail to get it.

This one is quite elementary.

In this door bell circuit, which kind of transformer is T₁—step-up or step-down?

Note: If you had completed only the first lesson of any of the RCA Institutes Home Study programs, you'd easily solve this problem.

This one is more advanced.

What is the total capacitance in the above circuit?

Note: You'd know the solution to the problem if you'd taken only the first two lessons in RCA's new Communications Electronics Program.

These are the lessons that prepare you step-by-step for an FCC License.

This license is a requirement for servicing all types of transmitting equipment and can help open doors to jobs commanding high income in communications, radio and broadcasting, aerospace, industrial automation and many others.

For a rewarding career with good pay, take that first step now. Send for complete information—mail the attached card.

RADIO-ELECTRONICS
RCA Institutes Autotext learning method makes problem-solving easier... gets you started faster towards a good-paying career in electronics

Are you just a beginner with an interest in electronics? Or, are you already making a living in electronics, and want to brush-up or expand your knowledge? In either case, RCA has the training you need. And Autotext, RCA Institutes' own method of Home Training will help you learn more quickly and with less effort.

Wide Range of Courses
Select from a wide range of courses. Pick the one that suits you best and check it off on the attached card. Courses are available for beginners and advanced technicians.

- Electronics Fundamentals
- Black & White Television Servicing (Transistorized TV Kit Available)
- Color Television Servicing (Color TV Kit Available)
- FCC License Preparation
- Automatic Controls
- Automation Electronics
- Industrial Electronics
- Nuclear Instrumentation
- Electronics Drafting
- Computer Programming

Plus these new up-to-the-minute courses
- Semiconductor Electronics
- Digital Electronics
- Solid State Electronics
- Communications Electronics

Prepare for good paying positions in fields like these
- Television Servicing
- Telecommunications
- Mobile Communications
- CATV
- Broadcasting
- Marine Communications
- Nuclear Instrumentation
- Industrial Electronics
- Automation
- Computer Programming
- Solid State
- Electronics Drafting

Variety of Kits—Yours to Keep
A variety of RCA Institutes engineered kits are included in your program of study. Each kit is yours to keep when you've completed the course. Among the kits you construct and keep is a working signal generator, a multimeter, a fully transistorized breadboard superheterodyne AM receiver, and the all-important oscilloscope. These 4 kits are at no extra cost. Compare this selection with other home study schools.

Two Convenient Payment Plans
Pay for lessons as you order them. No contract obligating you to continue the course. Or, you can take advantage of RCA's convenient monthly payment plan. No interest charges!

Classroom Training Also Available
RCA Institutes operates one of the largest technical schools of its kind. Day and evening classes. No previous training is required. Preparatory courses are available. Classes start four times a year.

Job Placement Service, Too!
Companies like Bell Telephone Labs, GE, Honeywell, IBM, RCA, Westinghouse, Xerox, and major radio and TV networks have regularly employed graduates through RCA Institutes' own placement service.

All RCA Institutes courses and programs are approved for veterans under the new G.I. Bill.

Send Attached Postage Paid Card Today. Check Home Study or Classroom Training.

Accredited Member National Home Study Council.

IF REPLY CARD IS DETACHED, SEND THIS COUPON

RCA Institutes Inc.
Home Study Dept. 758-003-0
320 West 31 Street
New York, N.Y. 10001

Please send me FREE illustrated career catalog.

Name_________________________Age___________
Address_______________________
City_________________________State_________Zip______

MARCH 1970
Every minute is longer up there. You can save as many as 20 or 30 of those long minutes when you put up one of our larger antennas, because they're pre-assembled. Our snap-joints take only seconds to lock in place.

Sylvania antennas are equipped with a double boom (for strength and rigidity).

All have strong, seamless, half-inch tubular elements (not rolled-over strips of aluminum).

All aluminum parts are gold-plated inside and out (not sprayed, but dipped).

Even more care goes into the electronics.

We've peaked our antennas for flat response over the entire 6 MHz bandwidth of each TV channel. Flat response is absolutely necessary for good color reception. Otherwise, color rendition may be lost.

You also need high gain—that's obvious. But coupled with high directivity to knock out interference. Polar patterns from our antennas show almost complete rejection of signals from the rear and sides.

We designed our antennas so you wouldn't have to (1) climb back up there or (2) fiddle around up there.

We know that the fiddler on the roof is just fiddling his own money away.

For more information on our line of antennas see your Sylvania distributor.

SYLVANIA
GENERAL TELEPHONE & ELECTRONICS

Here's where we can save you time.
by KEN BUEGEL

Integrated circuit developments often seem to be aimed at exotic applications which are of little interest to the general electronic public. But Motorola's MC1304 and MC1305 are different: on one chip is a complete, advanced-design multiplex decoder. The MC1305, although identical in cost to the MC1304, provides for a separation adjustment and was used in this project.

The internal circuitry is formidable: 10 diodes, 31 transistors and 29 resistors. Even the block diagram for the 1305 (Fig. 1) reveals a level of complexity not often used with discrete-component multiplex adapters.

The IC uses the proven balanced time-switching technique with its inherent SCA rejection without filtering, and also provides a driver for a stereo indicator. Two separate additional inputs provide for stereo-mono switching and audio muting. And as if this weren't enough, a series of diodes with emitter followers serve as temperature-compensated voltage regula-
Fig. 1—Complex functions performed by 31-transistor MC-1305 (inside dotted line). Connections to pins 4 and 5 are optional.

Fig. 2—Schematic showing components mounted externally to the 1305. Use a 12ES (12V, 40 mA) lamp for the lamp PL1.

Parts List

All resistors 1/4W, 5%
R1, R2—20,000 ohms
R3—4700 ohms
R4—5000 ohm, 1/4W trimmer (CTS type X201R50113)
R5, R6—3900 ohms
R7, R8, R10, R11—4300 ohms
R9, R12—2200 ohms
Capacitors
C1, C3—5µF, 50V electrolytic (Mallory MTV 5CB50)
C2, C4—.01µF polystyrene (Mallory SX110)
C5—.022µF polystyrene (Mallory SX222)
C6, C7—.022µF, 100V Mylar (Mallory PVC1122)
C8, C9, C12, C13—.001µF ceramic (Centralab CE102)
C10, C11—.002µF ceramic (Centralab CF202)
C14, C15—.02µF, 10V ceramic (Centralab UK-10-204)
C16—.1µF, 10V ceramic (Centralab UK-10-104)
C17—60µF, 15V electrolytic (Mallory MTV 60CB15)

Other parts

L1, L2—J. W. Miller type 1361
L3—J. W. Miller type 1362
IC1—Motorola MC1305P

The following parts may be ordered from Transitek Co., P.O. Box 98205, Des Moines, Wash. All prices include postage. IC1—$7.20. L1, L2, L3 (set of three) $5.40. PC board MPX, $2.95. Complete kit of all listed parts and drilled board, $21.00.

Constructio and alignment

You can build this project for under $21. The actual-size PC pattern for the decoder is included for do-it-yourselfers, and a complete kit of
Use the same-size printed circuit pattern above to make your decoder. Components specified will fit on the board. Component-side drawing on the right shows where to mount the parts. Some of the wiring to the unit is optional.

parts and drilled PC board is available. Please use the components listed, as the circuit board was laid out for them.

Construction of the project is simple, as is the alignment procedure. A 2.2 x 3.2-inch PC board provides enough component space without crowding. Recommended coils for this circuit are available only in a PC mounting style.

The best technique is to insert the IC and then add other parts outwards from the IC. Don't bend the leads on R4, IC1, or the transformers. After all parts are properly soldered, add the required external wires. If you do not plan to use audio muting or monostereo switching, wires are not connected to pins 4 and 5 of IC1.

Although a multiplexer generator is the easiest alignment method, this unit can be aligned with a broadcast signal. Input level should be about 0.75 volt p-p to achieve maximum channel separation.

Each output should be connected to a 22K load to provide the proper terminating impedance to the Twin-T filters.

Connect an oscilloscope or ac vtm to the junction of pin 1 and C4. Peak L1 and L2 for maximum 19 kHz as seen on the scope. This waveform should be about 1.6 volts p-p with a +15-volt supply. Move the scope probe to the junction of C5 and pin 4 of L3 and peak L3 for a maximum 38-kHz trace. This should be about 22 volts p-p. Caution: if you do not use a low-capacitance probe, the circuit may be slightly detuned when the probe is removed. This detuning will be slight and is corrected in the next step.

Connect the scope or vtm to the right output and set up the generator for a left-only output. Set the wiper of R4 to midposition. Carefully peak L1, L2, and L3 for a minimum output on the right channel. Then set R4 for a minimum output.

Now set the generator for a right-only output and read the output level on the right channel. Then set the generator to a left-only output. The difference in readings is the channel separation. It will not be as high as the figures given earlier since the residual reading also includes 19-kHz and 38-kHz components. An elaborate filter can remove these components for true separation readings, but the separation will not be increased.

FM station alignment

If you do not have access to a multiplexer generator, connect the input to your tuner output. First peak L1, L2 and L3 for maximum output waveforms as described earlier. Connect the scope vertical input to the left output and the horizontal input to the right output. Tune to a monaural station and set the scope gains until the trace is a straight line at a 45° angle. (Fig. 3-a).

Tune to a stereo broadcast and you will probably see something like Fig. 3-b. This indicates limited separation. Now, while watching the scope face, slowly tune L1, L2, L3, and R4 until you get a trace like Fig. 3-c. If you can connect your amplifier to the decoder and also hear the output—preferably in headphones—so much the better.

Some stations have stereo programs which feature highly directional microphone pickup, this type of program material is the easiest to use for alignment. When the output looks like Fig. 3-c, you must identify the channels. It is possible to tune the unit so that the output labeled L is actually the right channel. Careful tests do not show any difference in separation or other specifications, however, so if you wind up with the channels interchanged, simply reverse them when you plug them into your preamp.

Most tube tuners will have more than 0.75 volt p-p output. This adapter will have decreased separation and increased distortion at higher input levels. The input impedance is around 20K so a 100K pot inserted in series with the input may be adjusted until the input is correct.

An interesting feature of this IC is its 8-22-volt supply specification. If the adapter is aligned at 15 volts and the supply voltage decreased, separation stays almost unchanged. This is not true if the adapter is aligned at a lower voltage which is then increased. In no event should the supply exceed ±22 volts. Operation at ±15 volts is highly recommended, since no performance characteristic was improved at higher voltages. As the supply voltage is not critical, a relatively inexpensive Zener diode with capacitor filtering will provide very stable operation.

R-E
BUILD IC VOLUME EXPANDER

Improve apparent S/N ratio in your hi-fi system. Hot carrier diodes and IC's make it work

by KENNETH E. BUEGEL

THE MUSIC LOVER HAS NEVER HAD such an excellent range of equipment to choose from as he has today. Frequency response of the electronics extends far past the limits required and distortion levels are almost at the vanishing point. Signal to noise (S/N) ratios of 70 db or more are common. (At least on the specifications!)

These S/N ratios, however, start deteriorating as soon as the equipment performs its primary function—music reproduction. This is caused by the characteristics of the recorded medium. In tapes it is oxide irregularities which cause the familiar tape hiss. In records it is surface blemishes which continually increase through the useful life of the vinyl impression.

To alleviate these surface noises the recorded signal is artificially compressed when it is recorded. The loudness range experienced by the listener is thus decreased from what he hears at a live performance. In fact at least one major recording studio which claims to have reduced surface noise to new lows has only increased the compression until a solo violin has almost the same level as the full orchestra in a recording.

A device that would linearly expand the reproduced signal would more faithfully recreate the original performance. However, the effect of this expansion on the listener cannot be expressed only by electronic measurements of the signal.

In Fig. 1, the long dashed line shows the fixed linear relationship between input and output levels on an amplifying system without expansion. Note that at some low level near the -40 dB input point, the output signal is only 10 dB above the system output noise. (This noise is from the recording, tape or disc, and will be constant.) We hear the output signal, as it decreases from a high level to a low level, approaching a fixed background noise level.

The solid lines represent the performance of the same amplifying system with linear dynamic expansion included. With a +15 dB expansion characteristic added to our original 40 dB input range our output level now covers a 55 dB change. Even more important, the S/N ratio is still +10 dB at the lower input level.

If we had attempted to get this range of levels without expansion, our signal would have been 5 dB less than the noise level. Not easily depicted on a graph is the subjective response of the ear. Although the S/N ratio is still the same +10 dB at the -40 dB input point, the ear interprets this response as that from a system with much lower overall noise level, the same 15 dB that was added to the dynamic range.

When shopping for tape recorders we are continually faced with a S/N specification which, more or less truthfully, varies around 50 db. Imagine what it would be like to see this read 65 dB. And this is precisely what it sounds like—with linear dynamic expansion.

You can have these benefits without throwing out your entire system and starting over. This project has been designed so that the device is placed between the preamplifier and power amplifier.

All expanders described in the literature to date have used a regen-

Expander specifications are:

Nominal maximum input and output levels: 1V rms. (This may vary from 0.2V to 3.0V.)

IM and THD @ 1V rms output: 0.2% (Decreases to at lower output levels)

Frequency response:
- -1 dB points 30 to 20,000 Hz
- -6 dB points 20 to 40,000 Hz

Signal/Noise ratio:
- @ .01V rms input 85 dB
- @ 1V rms input 45 dB

Expansion Linearity:
- @ +15 dB: less than ±0.5 dB deviation from straight line in any 10 dB segment between 0 to -50 dB input (0 dB = 1V rms).
- @ +8 dB: less than ±0.3 dB deviation from straight line in any 10 dB segment between 0 to -50 input (0 dB = 1V rms).

www.americanradiohistory.com
The amplifier output signal has been used to determine its own input signal. While this type of device actually can increase the dynamic range, it is far from linear.

Assembly has been simplified and the only equipment needed to calibrate the unit is a dc voltmeter or scope, an audio generator and an ac vtm, or scope. The design of several earlier models has been thoroughly evaluated and this version reflects the stress placed on performance as well as ease of calibration.

How it works

All signals used in the expander are derived from the input signal (see Fig. 2). The input signal is applied to the high input impedance of an emitter follower. The follower output is applied to a pot, used to adjust the audio level applied to the variable-gain amplifier. The total follower output is applied to a "perfect" rectifier which rectifies signals lower than 1 mV rms. This full-wave rectified signal is then integrated into a dc voltage. The dc voltage varies as the logarithm of the input signal. (Remember that the gain of an amplifier is expressed in decibels according to the formula:

\[
\text{dB gain} = 20 \log \frac{e_{\text{out}}}{e_{\text{in}}}
\]

This dc control signal is applied to the control element in the variable-gain amplifier so the gain of the amplifier varies directly with the input signal. Thus, as the signal input increases, the dc control signal rises and the output of the variable gain amplifier corresponds to:

\[
e_{\text{out}} = e_{\text{in}} + K \log e_{\text{in}}
\]

The schematic, Fig. 3 shows how we get these functions. IC1 is the "perfect" rectifier. Since D1 and D2 are inside the feedback loop of the op amp, the diode threshold voltage is

PARTS LIST

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1—26.8VCT fil trans.</td>
<td>Triad F90X or equiv.</td>
</tr>
<tr>
<td>R1—1—1A, 50V bridge rectifier</td>
<td></td>
</tr>
<tr>
<td>C18, C19—250 µF 25V electrolytic, Mallory</td>
<td></td>
</tr>
<tr>
<td>D5, C16—-1/2W, 2200Ω, 5% Zener diodes</td>
<td></td>
</tr>
<tr>
<td>R28, R29—1/2W, 2200Ω, 5%</td>
<td></td>
</tr>
<tr>
<td>PC board—PS-1, Transitek</td>
<td></td>
</tr>
<tr>
<td>R2—220K</td>
<td></td>
</tr>
<tr>
<td>R11—20K, R27—1500 ohms</td>
<td></td>
</tr>
<tr>
<td>R15—560 ohms</td>
<td></td>
</tr>
<tr>
<td>R3—1—1A</td>
<td></td>
</tr>
<tr>
<td>R14—750K ohms</td>
<td></td>
</tr>
<tr>
<td>R18—2200K ohms</td>
<td></td>
</tr>
<tr>
<td>R2—222 ohms</td>
<td></td>
</tr>
<tr>
<td>R24—100,000 ohms</td>
<td></td>
</tr>
<tr>
<td>R26—12,000 ohms</td>
<td></td>
</tr>
<tr>
<td>R1—150 µF 15V electrolytic, Mallory</td>
<td></td>
</tr>
<tr>
<td>C2—0.1 µF, 15V ceramic, Centralab UK-10-104 or equiv.</td>
<td></td>
</tr>
<tr>
<td>C3—25 µF, 35V electrolytic, Mallory</td>
<td></td>
</tr>
<tr>
<td>C4—68 µF ceramic</td>
<td></td>
</tr>
<tr>
<td>C5, C9, C14—22 µF ceramic</td>
<td></td>
</tr>
<tr>
<td>C6, C13—470 µF ceramic</td>
<td></td>
</tr>
<tr>
<td>C7—100 µF 15V electrolytic, Mallory</td>
<td></td>
</tr>
<tr>
<td>C8—50 µF 15V electrolytic, Mallory</td>
<td></td>
</tr>
<tr>
<td>C10—0012 µF ceramic</td>
<td></td>
</tr>
<tr>
<td>C11—500 µF, 6V electrolytic, Mallory MTV 500DJ6 or equiv.</td>
<td></td>
</tr>
<tr>
<td>C12—0.2 µF 10V ceramic, Centralab UK-104 or equiv.</td>
<td></td>
</tr>
<tr>
<td>C15—220 µF ceramic</td>
<td></td>
</tr>
<tr>
<td>C16—17—0.1 µF, 20V ceramic, Centralab UK-204 or equiv.</td>
<td></td>
</tr>
<tr>
<td>D1—D2—IN4154, G-E</td>
<td></td>
</tr>
<tr>
<td>EXP—3K</td>
<td></td>
</tr>
<tr>
<td>Board</td>
<td>EXP-3</td>
</tr>
<tr>
<td>C1, C12, C13—709C Operational Amplifier</td>
<td></td>
</tr>
<tr>
<td>S1, S2, S3—4-pdt custom rocker switch</td>
<td></td>
</tr>
<tr>
<td>PC Board—EXP-3</td>
<td></td>
</tr>
<tr>
<td>Items available from Transitek: D3, D4 $1.25; IC1, IC2, IC3 $2.85; S1, S2, S3 $1.40; PC Board EXP-3 $2.75; Board PSI (pwr), $1.00; PSI-K (pwr supply board with all components but T1), $7.00; EXP-3K, (all items for 1 expansion channel), $26.00; Two EXP-3K's, $48.00</td>
<td></td>
</tr>
<tr>
<td>Des Moines, Washington 98016</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3—One of the two expander channels you'll need for a stereo system. The power supply drives two channels. IC1 is the "perfect rectifier," IC2 the integrator, IC3 is the variable-gain amplifier working with a hot carrier diode.

www.americanradiohistory.com
reduced by the open loop gain of the amplifier—typically 7,000 to 15,000. Capactor C8, in the feedback loop of IC2, integrates the rectified signal. The value of C7 and C8 determines low-frequency distortion. If the time constant chosen is extremely short, the expander tends to increase gain on the positive and negative peaks of a low-frequency input signal.

Increasing C7 excessively increases the time constant and causes a noticeable "pumping" action on the volume. However, unless you are a devotee of large pipe organs, for most music the fast position of S3 is best. D3 and R18, in another feedback loop of IC2, provide a modified logarithmic dc feedback. Diode D3 is a hot carrier diode with a much lower threshold voltage than ordinary diodes. The ac gain of IC3 is determined by:

\[
gain = \frac{Z_F + Z_m}{Z_m}
\]

where \(Z_m\) is the impedance of C11 and D4 and \(Z_F = 6.8k\). Capacitor C11 is large so its impedance, even at low frequencies, is much lower than the impedance of D4. Thus the gain of IC3 becomes:

\[
Z_F + R_m
\]

(continued on page 39)

Use the component placement above to build the power supply for a stereo unit. One expander channel board is below. Mount components on the expander like this. Use low-watt- age iron to solder in the IC's, or install IC sockets for 709's.
The modified dc control signal of IC2 varies the current through D4 and thus the dynamic resistance of D4. Since C11 isolates the dc output of IC2, IC3 operates with a dc gain of unity and the output can never have a dc voltage of more than 5 mV. Resistor R13 sets the dc voltage applied to D3 and D4 so even without an audio input signal these diodes do not operate at extremely low current levels where their dc resistances could show wide variations from unit to unit. As a result the low-cost hot-carrier diodes provide nearly ideal results for the circuit.

The power supply is a full-wave center-tapped bridge rectifier providing ±15 volts to the operational amplifiers. Although the op amps do not require extremely low ripple supplies, the base supply of Q1 is sensitive to ripple and the additional filtering provided by C1 and R3 reduces the remaining ripple to negligible values.

Switch S1 either connects the expander or completely removes it from the system. Switch S2 selects either a +8 or a +15 dB expansion range, and S3 selects the fast or slow time constant.

Now let's build one

The device built for this article is in an extruded aluminum cabinet. The only parts mounted to the front cabinet panel are the switches. The power transformer, power supply pc board, and two expander pc boards are arranged along the rear cover plate. Other arrangements are possible for mounting the parts used to construct a dynamic expander.

Use the circuit boards as templates to determine the locations of the mounting holes. The easiest method of construction is to first place all the resistors on the boards in the positions shown on the component layout sheets, then the ceramic capacitors, next IC1 through IC3 and Q1, and finally the upright electrolytic capacitors. Add the external wiring to the expander boards before mounting them with ¼-inch spacers.

The length of the shielded leads to S1, S2, and S3 may be 6-feet long, thus allowing the switches to be placed on an existing panel with the expander itself tucked away in some hidden corner. Use of a 1/16-inch tiplet in a small 37½-watt soldering iron is recommended. A larger tip may be used in soldering leads to the ground foil. Note that each expander board has its own ground return to the power supply. Arrange your board mountings so you have access to R4 and R13 for the calibration adjustments. No switch is used in the power supply line since most systems provide switched ac line outlets.

Calibration techniques

Follow these steps in sequence to calibrate the expander.

1. Check the outputs of the power supply. These should read plus and minus 15 volts ±5%.
2. Apply a short to J1 on both channels. Set S1 to the expander in position and S2 to +15 dB. Set S3 to the fast position.
3. Adjust R13 in each channel until a dc voltmeter or scope reads -0.2V at the output of IC2. (This voltage at pin 6 may be read most easily at one of the contacts of S2-a.) Adjust slowly, this is an integrator!
4. Apply a 1 kHz, 1V rms signal to J1 on both channels and adjust R4 on each channel until the outputs read 1V rms.
5. Reduce the input to 0.01V rms and measure the output on each channel. One channel will probably have slightly higher output than the other. Readjust R13 on the lowest channel until its output is the same as the highest channel.
6. Repeat steps 4 and step 5.

When calibration is complete the unit is ready to use. If your preamp output is low impedance, as virtually all preamps are, you may run 20 feet of shielded cable between its output and J1 on each channel. 40 feet of cable may be used between J2 and the power amplifier.

Expansion ratios can be adjusted by varying the values of R17, R18, R21, and R22. These particular values have been chosen so that the output level does not change significantly when switching S2.

The pot connected between the IC2 outputs on each channel is of doubtful use. When it is used it forces the channel with the lowest input signal to operate at the gain of the loudest channel—which brings up the noise level of the lower channel. Since noise reduction is one significant advantage of linear expansion, this type of connection can only defeat its purpose.

Listeners report that the music in the expanded system sounds more like a live performance, although the rustling of programs is absent! The most convincing demonstration is to play a favorite tape or record with the expander in the circuit, then to remove the expander and play the same music again. In just the few minutes you have listened to the music without the noise background your ears will become accustomed. Without expansion you will immediately notice the noise which appears during softer passages. The difference is similar to going back to black and white after watching color television.

ACTUAL-SIZE PRINTED CIRCUIT PATTERNS

Here's how the PC patterns look from the copper side. Reproduce them photographically to build your dynamic expander. You'll need two of the expander boards (left) for stereo, but only one power supply (below). Parts placement for the boards is on the preceding page.

MARCH 1970

R-E
considered THE FACT THAT TAPE SPEEDS AND CORRESPONDING FIDELITY achieved by off-the-shelf equipment today would have been considered impossible a decade or so ago testifies that changes have been occurring in both tape and tape recording. The variety of changes has led to some confusion, and sometimes to failure to achieve expected performance. To clarify the whole situation, let's examine the purpose and needs of high-frequency bias.

Original need for high-frequency bias
Every text on tape recording explains this. Without high-frequency bias, the waveform recorded was highly distorted because of the inherent nonlinearity of magnetic materials. The initial effect of high-frequency bias, before considering all the other factors, is twofold:

1. It saturates the tape at high frequency and virtually "demagnetizes" the material, leaving the instantaneous value of the audio waveform virtually free of this nonlinear distortion (Fig. 1).

2. It enables a wider recording gap to be used than would be possible without this high-frequency bias. This achieves deeper penetration of the magnetization into the tape, particularly at high frequencies where gap dimensions are important (Fig. 2).

Kinds of tape
In the early days, it was pretty remarkable that we could put a ferrous oxide onto a plastic base that would take magnetization at all. In those days, control of molecular size and the magnetic properties of the material was a long way off. By today's standards, the product was crude, although this was not easy to see, because magnetic properties and molecular size are not visible to the naked eye or even under any ordinary microscope.

In this article, we'll not get into chemistry and methods of preparing and applying magnetic material to tape. That's a specialist's job, and it's enough that we can go out and buy a whole variety of tapes. But modern techniques permit the production of material with smaller molecular structure, enabling more miniscule "magnets" to be formed on the tape. Also, magnetic properties have been changed, so "better" magnets can be made.

The quality of a magnetic material is reflected in its hysteresis loop, which is what happens as it passes through a whole cycle of magnetization. Three properties are of importance in any magnetic application: saturation density, remanence and coercivity. These are illustrated in Fig. 3.

These quantities are all relative, and vary from material to material. But taking the sequence relative to the parameters of one particular material, as magnetization is applied, the magnetism induced in the material responds slowly at first (region A). Then it rises much more rapidly (region B), until it reaches saturation (region C).

When this magnetization is removed, much of the magnetism remains (point D), and the amount remaining is known as the remanence of the material. At first sight, this would appear to be what gets left on the tape when making a recording—or the maximum level, at least. But this ignores the fact that the tape must leave the magnetizing head and transfer this magnetism to a playback head before it can be considered to have done its job.

This means that, unless this remanence is accompanied by another property called coercivity, it won't do much good. So modern tapes are rated on their coercivity. Note that coercivity is also related to the magnetization that has to be applied in the first place to reach saturation. The steep rise (region B) approaching saturation is not reached until the magnetizing force approaching the material's coercivity is neared.

So improvements in magnetic material have advanced through coercivity changes, while at the same time diminishing molecular size, so smaller magnets can be formed that will hold their magnetization through playback. Saturating density and remanence have both been increased somewhat, but coercivity and molecular size have been the important changes.

Early materials had what today would be called low coercivity. In turn, this meant that a lower bias current would push them to saturation. It also meant they were more subject to precise values of bias current.

At lower frequencies (up to, say, 1000 Hz) increasing bias current reduced distortion up to a point of diminishing returns. Actually, the loss that occurs with too much bias current at these audio frequencies is a loss of output, rather than an increase in distortion. But at higher frequencies the
loss of output begins at a much lower bias current.

At the bias frequency and tape speed, combined with the gap dimensions, several periods of bias oscillation occur while the tape is passing the gap. Recording occurs as the tape leaves the gap. At upper audio frequencies to be recorded, loss would occur in the absence of high-frequency bias because gap width is commensurate with the audio wavelength being recorded.

Thus at the higher audio frequencies, the frequency being recorded begins to behave in a manner similar to the bias magnetization. Because of this, too much bias current reduces the “headroom” for recording these upper audio frequencies.

So it happens, with low-coercivity tapes, that optimum bias for reducing distortion at mid-range frequencies does not coincide with optimum bias for achieving high-frequency response (Fig. 4). As good quality is usually defined in terms of both low distortion and good high-frequency response, a compromise bias setting was usually chosen such that neither distortion nor high-frequency response suffered too much.

Then, came high-coercivity tapes. Larger bias currents are needed to saturate them and to utilize the higher coercivity. For a first-time recording, the quality may be as good as with low-coercivity tapes, but unless bias current or erase current is raised from the value that suits the low-coercivity tapes, it will be impossible to reuse high-coercivity tapes because they will not fully erase.

This is shown by comparing the properties of the two kinds of tape (Fig. 5). A bias current that will easily saturate a low-coercivity tape does not even approach saturation in the high-coercivity tape. Conversely, if a head is set to saturate high-coercivity tape, it will considerably oversaturate low-coercivity tape if it should ever be used on the same recorder, resulting in considerable loss of performance.

This means that any good recorder should be adjusted to work with a specific tape or type of tape (similar types from different manufacturers could be used) and then always used with that type. This applies particularly to recording. Playback is not so critical. In fact, once the recording is made, it can be played back on any recorder equipped for playing the particular track configuration impressed on the tape.

Using finer playback heads merely insures that a better rendition of what is on the tape is retrieved. The limitation
The important function, not disturb this accuracy. The waveform of the bias oscillator should be good, as close to a perfect sine wave as possible. If the oscillator waveform departs from sinusoidal, it transfers its nonlinearity, or departure from sine-wave form, to the program signal recorded.

Bias adjustments

The foregoing has discussed adjustment of bias current for optimum performance in general terms. One more thing is important in all cases: The waveform of the bias oscillator should be good, as close to a perfect sine wave as possible. If the oscillator waveform departs from sinusoidal, it transfers its nonlinearity, or departure from sine-wave form, to the program signal recorded.

So the first thing to do in checking bias adjustment is to be sure the waveform is good, whatever the current. Tuning the head inductance with a shunt capacitance will always improve it, as well as get more bias current by using more efficient coupling. But the waveform generated by the oscillator should be good before this improvement is added. It is not sufficient to rely on this method of improvement.

Having made this adjustment, the next step is to adjust the actual bias current to achieve optimum performance with the tape being used (Fig. 9). The method of making this adjustment will vary, according to the recorder facilities. A recorder that has full playback facilities, head and electronics, in addition to the record facilities can use the playback to monitor recording as the adjustments are made.

A recorder which uses the same electronics and/or head for playback as for record must employ a different, somewhat more protracted method of adjustment, but the end objective is the same. In the first, the adjustment is made while watching the playback monitor directly for the desired indication. In the second, a succession of adjustments are made, carefully noting the settings and using voice announcements on the tape to identify them. Then the tape is played back to determine the results. If necessary, a further series is tried until the optimum is achieved.

Some manufacturers specify a way of adjusting the bias current in terms of output level at a specified high frequency, such as to adjust for a maximum output, then back off by a quarter turn on the adjusting screw, or by so many mA on the bias current reading.

This is a method of approximating ideal overall performance based on setting for maximum high-frequency response, and then modifying it to improve distortion properties.

If you want to actually measure distortion, as well as high-frequency response, you'll need to find a way of making this kind of measurement on tape, which is not so easy as measuring distortion in amplifiers. Fluctuation in level, not large enough to matter, due to variation in tape characteristics along the tape, or fluctuation in speed, insufficient to be significant as flutter or wow, can invalidate conventional distortion measurements that use highly sensitive frequency-selective circuits to eliminate the fundamental.

A method of measurement that is not sensitive to these fluctuations but will detect the forms of distortion sought must be used. The CCIF form of intermodulation distortion measurement detects only second-harmonic distortion. But by using the same basic method, with different test frequencies, the method can be adapted to finding the forms of distortion that are important here, and measuring them independently of small fluctuations in speed or amplitude. These we will describe in a future article.
Walnut-veneer finish can make a handsome extension speaker for any hi-fi.

Build bookshelf speaker system

by ALEXANDER N. RETSOFF

WHAT I WANTED WAS A COMPACT speaker system with a wide, smooth frequency response, low distortion and sufficient power-handling capability to fill at least a small room with realistic sound.

The requirement for smooth response and low distortion in a small cabinet calls for an acoustic suspension system. Although horn-loaded speakers provide excellent response and low distortion, the laws of physics being what they are, it is impossible to have a “small” horn-loaded speaker that extends to 50–80 Hz. That being the case, the choice was between a bass-reflex system and an infinite baffle.

Bass-reflex speakers

The bass-reflex approach includes all systems in which the sound emanating from the rear of the speaker is allowed into the room. Such a system may go under the name of “bass-reflex,” “tuned-port,” “ductless-port,” “distributed-port,” “Helmholtz resonator” or some other title. In all cases, a hole somewhere in the cabinet allows the rear sound wave from the speaker to enter into the room. These systems boast relatively high efficiency and extended low-frequency response.

In general, every dynamic loudspeaker exhibits a primary resonance at the lower end of its frequency response. The frequency at which the resonance occurs depends upon the mass of the moving system, i.e. the cone and voice coil, and the compliance of the suspension.

For a speaker in free space, the suspension is made up of the flexible spider, which supports the voice coil end of the cone, and the rim support at the large end of the cone. The system is analogous to a weight on the end of a spring. Once the weight is set in motion it bobs up and down at a rate or frequency that depends on the

This compact acoustic suspension system delivers clean sound with excellent response. Use it for main or extension speakers in your system.

MARCH 1970
mass of the weight and the compliance of the spring. By increasing the size of the weight and/or picking a softer spring, frequency can be lowered. The converse is also true.

The point is that a speaker's output drops off very rapidly below its resonant frequency. Also, at its resonant frequency the cone likes to move and does so very readily, resulting in a peak in the response curve. Just like the weight on the spring, once in motion at its resonant frequency, the speaker tends to keep moving even after the signal has disappeared. This "hangover" causes poor transient response and muddy sound.

The degree to which the peak appears in the response curve and the transient response is impaired is determined by the "Q" of the resonant system. This in turn is controlled by the damping or friction in the moving system. The chief causes of damping are the air loading on the speaker cone, the friction in the suspension system and the damping factor of the amplifier.

If damping is high, there is only a mild peak in the response curve, since the energy is rapidly dissipated in the friction; the cone quickly comes to rest after the excitation is removed. An underdamped system will exhibit a large peak and long "hangover." Obviously this is to be avoided.

What has all this to do with the choice of a speaker enclosure? Well, the speaker and its enclosure must be designed for one another. It is the combination of the two, the speaker in its enclosure, which must be tested for resonance, response, etc.

Now, a bass-reflex enclosure is a box with a hole in it, and a box with a hole in it is a resonant system itself. It is called a Helmholtz resonator. A soda bottle is a Helmholtz resonator if you blow across its mouth.

The design philosophy behind a bass-reflex enclosure is to have the box resonate at the same frequency as the speaker mounted in it. This can be accomplished by properly controlling the volume of the box and the port size and ducting.

When two resonant systems are coupled together like this an odd thing happens. Instead of getting twice as big a resonance as you might suspect, you get two resonant peaks, one higher in frequency than the original and one lower in frequency. A dip appears where the original resonance was. The spread between the two peaks depends on the degree of coupling between speaker and box.

This in turn depends upon the size of the box and the amount of damping material in it. In this way, one can extend the low-frequency response of the speaker system to the lower of the two resonance peaks.

This sounds like a terrific idea, and indeed the bass-reflex system was widely used several years ago, and still is in many smaller enclosures. There are certain disadvantages to this system: (1) increased distortion, especially near the resonant points, since the system is somewhat uncontrolled near resonance; (2) less than optimum transient response, leading to muddy sound; (3) irregular response in the bass region formed by the two resonances and the trough.

Why an infinite baffle?

This leaves us the infinite baffle. The infinite-baffle enclosure includes any type which prevents the sound from the rear of the speaker from getting into the room. In its simplest form it is an infinitely large wall in which the speaker is mounted.

In a more practical form, it is a completely sealed box filled with fiberglass or felt mats to absorb the rear sound energy. The walls of the box are strong and rigid enough so they do not vibrate in sympathy with the speaker. The infinite baffle performs the primary function of the speaker enclosure: preventing the rear sound wave from blending with the front wave. Since the two waves are out of phase, they cancel each other if allowed to meet. (The sound emanating from the port of the bass-reflex enclosure is delayed by the enclosure design enough to emerge in phase with the front wave in the bass reinforcement region. At higher frequencies all rear energy is absorbed by the damping material in the cabinet, and in this region the bass reflex acts as a sort of infinite baffle.)

Early infinite-baffle enclosures were made very large. Since the air trapped in the cabinet acts as a spring behind the speaker cone, system compliance is reduced and the resonant frequency of the speaker system is raised above that of the speaker alone. Since the output of the system drops below the resonant frequency, it appeared advantageous to use a very large cabinet for minimal increase in the resonant frequency.

The acoustic-suspension system is basically an infinite baffle in which the compliance of the trapped air is counted upon to provide some of the speaker suspension. Such a system uses a speaker with a very light (compliant) suspension that has a very low free-air resonance. It is put in a relatively small sealed enclosure. The
trapped air decreases system compliance and substantially raises the resonant frequency by as much as an octave.

Thus one can see the necessity for starting with a very-low-resonant-frequency speaker. The acoustic suspension provided by the trapped air has one very distinct advantage: it lowers the harmonic distortion of the system. The main cause of nonlinear distortion in a speaker system is the nonlinearity of the suspension. The typical spider and rim-surround suspensions do not provide a linear restoring force at extreme cone excursions.

The "spring" provided by the trapped air, however, is extremely linear. In a well-designed acoustic-suspension system, the air cushion provides the majority of the restoring force. For example, if the resonant frequency of the system is one octave above (twice as high) the free-air resonance of the speaker alone, three-quarters of the restoring force is provided by the air cushion and only one-quarter by the speaker suspension. Thus, the effect of the nonlinear suspension, that is the distortion, is reduced three times.

In addition, the air cushion is provided by making the enclosure small instead of large. Further, the response is relatively smooth—assuming good damping to an acceptably low frequency—if the original speaker is of the high-compliance type. We pay for all these advantages with a decrease in overall efficiency.

In choosing a speaker for use in an acoustic-suspension system, one must look for a low resonant frequency. Next, you need a good, powerful magnet, which implies good damping and the capability of long speaker excursions. The latter, although they give rise to Doppler distortion, are unfortunately necessary to get a reasonable sound-pressure level from a small cone.

How to build it

Probably many speakers will fill the bill. I chose to build the system around one available for $8.95 from Lafayette Radio Electronics (catalogue No. 99E0155). It is a 3-inch unit with a 1½-lb magnet and resonant frequency of 40 Hz. It is rated at 16 watts (peak). For a tweeter I chose another Lafayette unit (catalogue No. 99E0156) at $2.95.

The enclosure is 14 x 9 x 9 inches and is constructed from ¾-inch plywood. I chose to construct it from single-sided walnut-veneered plywood, available from several firms. Following the cutting diagram of Fig. 1, two speaker enclosures can be made from one 24 x 48-inch sheet of plywood.

Other veneers are also available. If you like oiled walnut, two-three coats of boiled linseed oil rubbed in with cheesecloth and the excess removed will give you a better finish than you can expect on commercial cabinets. Let each coat dry overnight and rub lightly with the grain using fine steel wool. The recessed front and back of the cabinet will not show and can be made from ¾-inch fir plywood available from any lumber yard. A two-conductor barrier strip is mounted on the recessed rear wall.

Fig. 2 shows how the cabinet is put together. Be sure to make it airtight. Seal all cracks with glue, filler or caulking. The inside of the cabinet should be loosely filled with Tufflex or a similar sound-absorbing material. Such materials are readily available from most parts dealers.

The wiring diagram is shown in Fig. 3. A 4-pF, 50-or 100-volt capacitor is used as a highpass filter to the tweeter. This capacitor should be a paper or mylar type. Aluminum or other electrolytics should not be used.

When wiring the speakers be sure to observe polarity. If you use the speakers recommended, you will find one terminal on each insulated with red fiber washer and the other with a white one. Connect the whites together as the common return and the reds with the capacitor.

More exotic crossover networks could be used with this speaker system, but they are really unnecessary. The woofer used in this system handles itself so gracefully at the higher frequencies that there is no real reason to prevent it from reaching them.

When you're through, connect them to a good amplifier with at least 5 watts per channel capability into 8 ohms and listen. As is true for all speaker systems, bass response is affected by placement of the units in the listening room. As much as 9 dB boost in the low end can be achieved from corner placement.

Impedance curves of the woofer in free air and in the damped cabinet are in Fig. 5. You can see that the resonant frequency rose from 48 Hz to 75 Hz, almost an octave. In addition, the height of the peak is substantially reduced. As explained, the acoustic response of a speaker system falls off at about 12 dB per octave below the resonant frequency. From Fig. 5, you can see the resonant frequency is at 75 Hz, and, sure enough, from Fig. 4, the response starts to fall off at just about that point.

The results of this little system will amaze you. The sound is surprisingly clean and live. The instruments of the orchestra are well defined and project into the room. This is attributable to the smooth mid-range. Except for a dip and peak in the response at 4 kHz and 6 kHz, the response throughout the critical mid-range is extremely smooth and well balanced compared with any system. Couple this with adequate response, again without any sharp variations, out to the limit of audibility (16 kHz), and solid bass response down to 60 Hz or so, and you have a system to put many of its larger and more costly brethren to shame. R-E
Join "THE TROUBLESHOOTERS"

They get paid top salaries for keeping today's electronic world running

Suddenly the whole world is going electronic! And behind the microwave towers, push-button phones, computers, mobile radio, television equipment, guided missiles, etc., stand THE TROUBLESHOOTERS—the men needed to inspect, install, and service these modern miracles. They enjoy their work, and get well paid for it. Here's how you can join their privileged ranks—without having to quit your job or go to college in order to get the necessary training.
JUST THINK how much in demand you would be if you could prevent a TV station from going off the air by repairing a transmitter...keep a whole assembly line moving by fixing automated production controls...prevent a bank, an airline, or your government from making serious mistakes by servicing a computer.

Today, whole industries depend on Electronics. When breakdowns or emergencies occur, someone has got to move in, take over, and keep things running. That calls for one of a new breed of technicians—The Troubleshooters.

Because they prevent expensive mistakes or delays, they get top pay—and a title to match. At Xerox and Philco, they’re called Technical Representatives. At IBM they’re Customer Engineers. In radio or TV, they’re the Broadcast Engineers.

What do you need to break into the ranks of The Troubleshooters? You might think you need a college degree, but you don’t. What you need is know-how—the kind a good TV service technician has—only lots more.

Think With Your Head, Not Your Hands
As one of The Troubleshooters, you’ll have to be ready to tackle a wide variety of electronic problems. You may not be able to dismantle what you’re working on—you must be able to take it apart “in your head.” You’ll have to know enough Electronics to understand the engineering specs, read the wiring diagrams, and calculate how the circuits should test at any given point.

Learning all this can be much simpler than you think. In fact, you can master it without setting foot in a classroom...and without giving up your job!

For over 30 years, the Cleveland Institute of Electronics has specialized in teaching Electronics at home. We’ve developed special techniques that make learning easy, even if you’ve had trouble studying before. Our auto-programmed® lessons build your knowledge as easily and solidly as you’d build a brick wall—one brick at a time. And our instruction is personal. Your teacher not only grades your work, he analyzes it to make sure you are thinking correctly. And he returns it the same day received, while everything is fresh in your mind.

Always Up-To-Date
To keep up with the latest developments, our courses are constantly being revised. This year CIE students are getting new lessons in Laser Theory and Application, Microminiaturization, Single Sideband Techniques, Pulse Theory and Application, and Boolean Algebra.

In addition, there is complete material on the latest troubleshooting techniques including Tandem System, Localizing through Bracketing, Equal Likelihood and Half-Split Division, and In-circuit Transistor Checking. There are special lessons on servicing two-way mobile radio equipment, a lucrative field in which many of our students have set up their own businesses.

Your FCC License—or Your Money Back!
Two-way mobile work and many other types of troubleshooting call for a Government FCC License, and our training is designed to get it for you. But even if your work doesn’t require a license, it’s a good idea to get one. Your FCC License will be accepted anywhere as proof of good electronics training.

And no wonder. The licensing exam is so tough that two out of three non-CIE men who take it fail. But our training is so effective that 9 out of 10 CIE graduates pass. That’s why we can offer this famous warranty with confidence: If you complete a license preparation course, you get your FCC License—or your money back.

Mail Card for 2 Free Books
Want to know more? Send for our 44-page catalog describing our courses and the latest opportunities in Electronics. We’ll send a special book on how to get a Government FCC License. Both are free—just mail the bound-in postpaid card. If card is missing, use coupon below.

ENROLL UNDER NEW G.I. BILL
All CIE courses are available under the new G.I. Bill. If you served on active duty since January 31, 1955, or are in service now, check box on card or coupon for G.I. Bill information.

CIE Cleveland Institute of Electronics
1776 East 17th Street, Cleveland, Ohio 44114

Please send me without cost or obligation:
1. Your 44-page book “How to Succeed in Electronics,” describing the job opportunities in Electronics today, and how your courses can prepare me for them.

I am especially interested in:
☐ Electronics Technology ☐ Broadcast Engineering ☐ First Class FCC License
☐ Electronic Communications ☐ Industrial Electronics ☐ Electronics Engineering

Name ____________________________ (PLEASE PRINT)
Address __
City __________________ State ______ Zip ______
☐ Check here for G. I. Bill information.

MARCH 1970

Circle 26 on reader service card
Under The Dash—
A SHORT-WAVE CONVERTER

Crystal-controlled, double-conversion setup added to your car radio lets you tune in the world

by LARRY LISLE, K9KZT

GETTING A LITTLE TIRED OF THE sound-alike stations on your car's AM radio? You're not alone, judging by the soaring sales of FM radios, tape players and other electronic gear for in-car use. If you've been putting off getting something better for your car, why not invest $10 and a few hours this weekend and try the short waves?

The short-wave broadcast bands are unmatched for variety. You can hear the details of the latest world crisis direct from the capitals where headlines are being made, relax to a program of light comedy, enjoy Leonard Feather's latest jazz picks on Voice of America and match wits with a quiz program panel—all in a single evening. And on a long trip, nothing seems to make the miles pass as

<table>
<thead>
<tr>
<th>PARTS LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube Converter</td>
</tr>
<tr>
<td>C1—220-pF ceramic-disc capacitor</td>
</tr>
<tr>
<td>C2—365-pF variable capacitor</td>
</tr>
<tr>
<td>C3—220-pF ceramic disc capacitor</td>
</tr>
<tr>
<td>C4—500-pF, 25-volt, electrolytic capacitor</td>
</tr>
<tr>
<td>C5—0.005-µF ceramic-disc capacitor</td>
</tr>
<tr>
<td>C6—220-pF ceramic-disc capacitor</td>
</tr>
<tr>
<td>R1—2.2-M ohms, ½-watt resistor</td>
</tr>
<tr>
<td>R2—33,000 ohms, ½-watt resistor</td>
</tr>
<tr>
<td>L1—13 turns of ¼-inch diameter, 16 turns per inch coil stock, (B & W 3011, or Air Dux 616,) or 13 turns of No. 20 solid, plastic-covered hookup wire, close wound on ¼-inch form.</td>
</tr>
<tr>
<td>RFC1, RFC2—2.5-mH radio frequency choke</td>
</tr>
<tr>
<td>RFC3—10-mH radio frequency choke</td>
</tr>
<tr>
<td>S1—spst switch</td>
</tr>
<tr>
<td>S2—dpst switch</td>
</tr>
<tr>
<td>V1—12AD6 tube</td>
</tr>
<tr>
<td>XTAL—See text and Table I</td>
</tr>
<tr>
<td>MISC—Cabinet (Premier CA-1403, etc.) coaxial cable, plugs and sockets to match car radio and antenna, tube socket, crystal socket, wire, solder, etc.</td>
</tr>
</tbody>
</table>

Fig. 1—Pentagrid converter circuit, with crystal-controlled oscillator section. C2 and the car receiver's tuning capacitor are used for tuning international short-wave broadcasts.
quickly as an edge-of-the-seat who-dunit program.

Converters intended for the commercial short-wave broadcast bands need not be elaborate since many stations use extremely high power and have very good directional antennas beamed at North America. The two converters described were designed for maximum simplicity and ease of adjustment. I was pleasantly surprised at their performance—in spite of their elementary nature—and regularly use the transistorized version instead of an 8-tube communications receiver for casual listening at home. The tube version resides under the dash of the family car. Both were included to satisfy the personal preferences of builders.

Operation and construction

The tube model in Fig. 1 is a conventional pentagrid converter with a few unusual features. First, the oscillator portion of the circuit is crystal controlled. This eliminates one tuned circuit, and adds tremendously to the converter's stability when subjected to varying voltages and vibrations during mobile operation.

With a crystal-controlled oscillator, the incoming short-wave signal is beat against the fixed crystal frequency and the i.f. is variable (Fig. 2).

Capacitor C2 peaks the short-wave input to the mixer. The mixer's i.f. difference signal (840-1250 kHz for the 19-meter example shown) is then tuned on the car radio, where the variable local oscillator signal is heterodyned with the 840-1250-kHz variable i.f. signal to produce a fixed i.f.

Another feature is the rf choke instead of a tuned circuit in the output. Several arrangements of coil and capacitor were tried, but none increased performance enough to justify the need for retuning when changing frequency. Components C4, RFC3, and C5 form a filter to reduce electrical noise from the car's ignition system; they are unnecessary if your power source is lantern batteries or other noise-free sources. In an exceptionally noisy car it may be necessary to add another rf choke and .005-µF capacitor between this filter and the electrical system.

Neither parts layout nor component values are especially critical, although mechanical solidity in mounting parts and soldering connections is a must for mobile equipment. Good shielding, including using axial cable for input, output, and power leads, will reduce broadcast feedthrough and ignition interference.

The transistorized version in Fig. 2—Peaked short-wave signal is heterodyned with selected crystal frequency. Variable i.f. is then tuned in on your car radio.

Fig. 2.—Peaked short-wave signal is heterodyned with selected crystal frequency. Variable i.f. is then tuned in on your car radio.

Solid-state construction used by the author at home. A number of high-frequency transistors are suitable. Performance may be improved by varying R1-R3 and other component values for transistor used.

By choosing suitable crystals, the 49-, 31-, 25- and 19-meter broadcast bands can be covered with just two crystals as shown in Table I. Before buying new crystals, however, check those already in the junk box, since many combinations are possible. For instance, a channel 10 Citizens-band crystal (27.075 MHz), when operated in the converter on its fundamental frequency of 9.025 MHz, enables you to tune most of the 31-meter band.

Since there is only one tuned 3 functions similar to the tube model. Transistors found to work well include International Rectifier's TR-20, Motorola's HEP-3, and RCA's SK3007. These transistors are universal replacement types, and should be readily available. Other transistors with a sufficiently high cut-off frequency will also work well [Readers may wish to try JFETS or MOSFETS.]

Since battery drain is low, dry cell operation is recommended; this also eliminates the need for the filter described for the tube model. An antenna switching arrangement has been omitted from the schematic in Fig. 3, and can easily be included if desired.

Some increase in performance may be obtained by substituting different values for bias resistors R1, R2 and R3, since transistors may vary somewhat in electrical characteristics. The tap on L1 may also be adjusted for maximum performance, as can C1 and C3.

How to tune

Using the converters is easy. After connecting antenna, car radio and supplying power, set the broadcast radio to the portion of the dial into which the short-wave signals will be converted with the crystal you're using.

Adjust C2 until signals are heard, then retune the broadcast receiver to a strong short-wave station and adjust C2 for best reception. At first it may be necessary to perform a bit of two-handed juggling between the two controls until the correct position of C2 is located for each band. The best time to tune up the converter is during the evening hours.

By choosing suitable crystals, the 49-, 31-, 25- and 19-meter broadcast bands can be covered with just two crystals as shown in Table I. Before buying new crystals, however, check those already in the junk box, since many combinations are possible. For instance, a channel 10 Citizens-band crystal (27.075 MHz), when operated in the converter on its fundamental frequency of 9.025 MHz, enables you to tune most of the 31-meter band.

Since there is only one tuned

TABLE I

SAMPLE CRYSTAL FREQUENCIES

<table>
<thead>
<tr>
<th>Band</th>
<th>Crystal Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 Meter Band</td>
<td>5.550-6.200 MHz</td>
</tr>
<tr>
<td>31 Meter Band</td>
<td>9.400-9.840 MHz</td>
</tr>
<tr>
<td>25 Meter Band</td>
<td>11.700-12.095 MHz</td>
</tr>
<tr>
<td>19 Meter Band</td>
<td>15.450-15.650 MHz</td>
</tr>
</tbody>
</table>

Example: A channel 10 Citizens-band crystal, 27.075 MHz, 2nd harmonic 11.700 MHz.

MARCH 1970

51

www.americanradiohistory.com
Fig. 3—Transistor version of the converter. Filter is not needed.

circuit resonant on the short-wave bands, some problems may be encountered with "images." These will seldom be a serious problem, however, because of the high power used by the broadcast stations. If your favorite station happens to be on the weak side, though, shifting the crystal frequency slightly, or installing a trap circuit tuned to the image frequency between the antenna and converter should reduce the interference.

SMALL-COMPONENT BREADBOARDS

The problem of breadboarding experimental circuits is becoming more acute as transistors and other miniature components shrink towards the vanishing point. The short leads on TO-18 type cases and epoxy-head transistors admit to one-time only soldering, if that.

The following system is based upon Bakelite screw terminals of the Cinch-Jones variety, and has proved very satisfactory in conserving leads and heat-sensitive components. These terminal strips come in three sizes: Series 140, 141, and 142. The first two, using 5-40 and 6-32 binding head screws, are the most convenient, and cost around twenty cents for a three-terminal unit.

A three-terminal Series 140 strip used to mount small-signal transistors. A white card is cemented to the bottom of each strip, covering the screw holes against accidental contact from metal table tops, etc. The emitter, base, and collector terminals are identified with India ink. The pair of holes at each end of the strips allow easy fastening to breadboards or to metal chassis.

The use of these terminal strips is by no means limited to transistors, as shown in the photo. A 1N561 rectifier is mounted on a Series 141 strip, with a 300,000 ohm potentiometer attached to a 140 strip. The pot is an Ohmite type AB unit and its leads conveniently fasten under the 5-40 binding-head screws. A calibrated card dial gives resistance values at a glance.

These handy terminal strips are available with up to twenty-one terminals in the 140 Series. Whole families of transistors can be set up, as well as decade resistors, condensers, and multi-tapped transformers.—F. W. Chesson

TOOLS FOR ELECTRONICS

by TOM HASKETT

This issue, starting on the facing page, is the next part of our new series of articles on tools for electronics. It starts our description of soldering tools. Next month we will continue the series with the next section of the article on soldering tools. We believe you will find all of this material a handy, practical addition to your R-E Reference Manual.

If you wish you can purchase a special hardcover binder to keep your Reference Manual pages together. It has a dark blue fabric cover and is gold stamped Radio-Electronics Reference Manual. The cost is $1.00, postpaid. Order from N. Estrada, 17 Slate Lane, Central Islip, L.I., N.Y. 11722.
SOLDERING TOOLS

Nearly as old as civilization itself, soldering was used as early as 2800 BC to construct silver jewelry. The ancient Romans soldered lead water pipes together (a technique still used today), and throughout most of recorded history some form of soldering has been used.

It is doubtful that the electronics industry could exist without soldering, for it makes possible the rapid, convenient and efficient connecting of the various components which constitute every electronic assembly.

The earliest crystal sets and spark-gap transmitters were constructed with Fahnstock clips and wooden breadboards, but since about 1920 most electronic circuits have been connected with solder joints.

This section of the series describes the tools and techniques you can use to perform good soldering.

Electrical connections

There are two general ways to make electrical connections between conductors—mechanical and metallurgical. The mechanical methods are crimping, screwing and wrapping the connectors. The metallurgical methods are soldering, brazing and welding.

Soldering is the bonding together of two similar (or dissimilar) metals by means of a third which has a much lower melting point (about 500°F) than the first two. The third metal is called, of course, solder, and it usually consists of an alloy of lead and tin. When melted, solder adheres to the other two metals, and when cooled, it makes a secure electrical connection between them by the creation of a new alloy.

In electronics work, most people use wire solder 1/16 inch or 1/32 inch in diameter, furnished in a coil or on a spool. Wire solder is most useful because you can feed it into a joint conveniently, and its small cross-sectional area allows it to be melted easily with low-heat tools. Bar solder is also available for large jobs, but is seldom used in most electronics work.

Solder alloys

The diagram of Fig. 1 shows the liquid, solid and plastic conditions of various solder alloys of lead and tin. Pure lead melts at 621°F, and

50/50 Type, Rosin Core (414°F) Silver Solder (565°-574°F)
Alpha 53505 (solid core) Alpha 53500
Erzin 50/50 Ersin HM6
Kester 50/50 Jensen U-3

Copper Loaded Type (419°F)
Erzin Savbit

40/60 Hard, Rosin Core (453°F)
Alpha 51406
Erzin 40/60
Kester 40/60

Aluminum Solder
Alpha 53718 Brazing Wire and Flux
Alpha 35003 Fluxless bars
Chemalloy 504 Fluxless bars
Jensen 121 Fluxless

Stainless Steel Solder
Alpha 53982

and are therefore useful for transistor and printed-circuit work, where more heat might damage components; 50/50 solder is a general-purpose type.

When ordinary solder is used with a copper iron or gun tip, some of the tip copper is absorbed into the solder, wearing down the tip. Copper-loaded solder minimizes this wear by preventing such absorption to a great extent.

Hard and silver solders are used for connections which must operate in high ambient temperatures without melting, such as motors and projector lamps. Hard solders also have greater mechanical strength. Silver solder (which contains about 1% or 2% silver) is useful where corrosion is a problem, as when joining a copper ground strap to a spike or rod set in the earth.

Solderability, oxidation & fluxes

Certain metals are easily solderable with low- or medium-temperature solder alloys. These include gold and tin-plated metals. Copper, silver and cadmium plate are fairly easy to solder, but usually require a hard (high-temperature) solder. Metals which cannot easily be soldered include nickel plate, brass, steel, stainless steel, chromium plate and aluminum. More about joining these metals later.

When exposed to the atmosphere, metal usually oxidizes; that is, a surface film forms on the metal. If not removed, this oxidation film prevents solder from adhering to the metal and making a good bond between
pure tin at 450°F. Note that in each case the metal goes from solid to liquid form sharply. Lead-tin alloys melt at various points, depending on the proportions of lead and tin. The lowest melting point, called the eutectic point, is 361°F for an alloy of 37% lead and 63% tin. At this temperature, the solder alloy goes sharply from solid to liquid.

But note that at all other points on the chart, the alloy changes from solid to plastic form as heat is increased. Eventually the solder becomes a liquid. The heat furnished to the solder joint must be sufficient to take the alloy through the plastic region and into the liquid region, or a poor joint will result.

Table I lists the most popular solder types used in electronics. The low-melting, eutectic and soft types melt at relatively low temperatures

<table>
<thead>
<tr>
<th>Table I: Solder Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Melting Point, Rosin Core (354°F)</td>
</tr>
<tr>
<td>Ersin LMP (62% tin, 36% lead, 2% silver)</td>
</tr>
<tr>
<td>63/37 Eutectic (361°F) Rosin Core</td>
</tr>
<tr>
<td>Ersin Eutectic</td>
</tr>
<tr>
<td>60/40 Soft, Rosin Core (370°F)</td>
</tr>
<tr>
<td>Alpha 13460</td>
</tr>
<tr>
<td>Ersin 60/40</td>
</tr>
<tr>
<td>Kester 60/40</td>
</tr>
</tbody>
</table>

The elements of the joint. To remove the oxide layer, flux is used.

The most common flux used in electronics is made of rosin (or resin), a dark-brown, butterlike paste which works well with the tin- or solder-dipped metals commonly used for wires, lugs and connectors. In fact, most electronics solder in wire form is made with one or more cores of rosin flux, so you don’t have to use external flux. When you heat the joint, the flux flows on the surface and removes the oxide. Then, provided you have sufficient heat, the solder flows and displaces the flux. If you don’t heat the joint sufficiently, the solder never displaces the flux and the result is a rosin joint—a poor connection.

You can use rosin flux to clean certain other metals only under certain conditions. Silver-plated surfaces must not be corroded or tarnished. Cadmium-plated brass, bronze or copper solders well with rosin flux. Copper, brass and phosphor-bronze can be cleaned with rosin flux only if they are not tarnished.

To solder nickel plate, galvanized steel, beryllium copper, silicon bronze, zinc and zinc plate, monel, nichrome and stainless steel, you must use aniline phosphate or zinc chloride fluxes. Unfortunately, these are acid fluxes and leave a corrosive residue which causes damages to joints, conductors and insulation. Acid fluxes should never be used in electronics work.

Aluminum soldering

Aluminum oxidizes so rapidly that you cannot solder it with ordinary solder and flux. One way of overcoming this phenomenon is to coat the aluminum with high-viscosity oil or grease, which protects the surface from the oxygen in the atmosphere. A more popular method is to use aluminum flux and solder, which does the same job. Several types are listed in Table I.

Other hard-to-solder metals are often joined with hard solder or brass and high heat, a process known as brazing.

When two metals are placed in physical contact and heated until both melt and fuse, the process is called welding. Unlike soldering, welding makes a very strong physical bond between the joined metals.

Brazing and welding are seldom used in electronics, for the usual need is an electrical, rather than a physical, connection of conductors.
Preparing the solder joint

Normally you should strip a wire end and wrap it around the lug or connector about three-quarters of a turn. Be sure the connector and wire cannot move. By Murphy's law, if a wire can move during soldering, it will, and you'll get a cold solder joint. Some technicians wrap wires all the way around a lug or connector. While this makes a very secure connection, if you later must remove that wire, you have a problem. The solder joint itself provides a secure mechanical bond, often stronger than the wire itself. But a partial turn of wire provides the mechanical immobility you need for the soldering operation.

Leave about 1/8 inch bare wire between the connector and the wire insulation. Often it helps to tin the wire end before using it, especially when working with stranded wire. (Tinning is cleaning and heating a connector, then flowing solder onto it. Once a wire has been tinned, it solders easily.) When you tin stranded wire, you prevent individual strands from splaying out and shorting to an adjacent terminal. Hookup wire and some terminal lugs are often supplied tinned and you can solder them without further preparation. But dull (oxidized) copper wire or brass connectors should be made shiny before soldering.

Usually it's best to connect all wires to a point before you solder it. But if you have to add another wire at a later time, heat the joint carefully until you see the existing solder liquify. Then add a small amount of fresh solder.

Don't wire resistors, capacitors, diodes or any components with pigtail leads so they are taut. Make small bends or kinks in the wire leads to relieve mechanical stress. When a component is wired tautly from point to point, a mechanical strain exists on the component and it can be damaged by vibration. Also, such an arrangement sometimes produces microphonics.

When you solder a transistor, solid-state diodes or a small resistor, use a heat sink (or other thermal shunt) on the component lead to avoid overheating and damaging it. If you don't have clamping pliers, use a rubber band on the handles of long-nose pliers to hold them in place on the work as a temporary sink. Be sure to use a heat sink on the pins of polystyrene coil forms and similar components; otherwise the heat will melt the adjacent plastic and misalign the pins.

solder to a hot joint, the solder should shrink inward toward the center of mass of the joint by capillary action.

4. Allow the joint to cool without disturbing it. Don't pull wires, move the chassis or allow any vibration to shake the work table or bench. Vibration during the cooling period usually produces a cold solder joint.

If you are making a critical connection, clean the joint after it's cooled, by brushing with isopropyl alcohol, which removes flux residue without leaving any contamination. Sometimes this technique is very useful in high-frequency connections which might otherwise become noisy. It's also helpful in PC-board work, where connections are very close.

Poor soldering

What began many years ago as an art has now become a science. Only the best possible soldering is permitted for the millions of connections required in NASA and similar spacecraft electronics, which must have 99.99% reliability. Military electronics equipment is soldered with almost the same degree of perfection. Industrial and consumer electronics products are manufactured by processes in which soldering practice is somewhat less perfect, but still quite reliable. At the field-maintenance level, soldering quality drops sharply, and the soldering done by hobbyists and kit builders is often very poor.

While you may never equal NASA soldering perfection (partly because it may not be worth your while to invest time and money in the extremely painstaking and critical techniques and inspections they use) you can avoid gross soldering pitfalls. Poor solder joints are particularly annoying because they usually cause intermittent troubles which are difficult to track down. Here are a few solder-joint troubles you should avoid:

- Insufficient solder: Each part of the joint should be at least partially covered by the solder globule.
- Cold solder: This is a gray, mushy appearance without high luster, usually caused by hasty work, too little heat, or moving the joint before it has solidified.
- Rosin joint: Dirt on the parts, excessive flux or low heat may leave rosin flux between parts in the joint. All rosin must be boiled out so the joining is done by the solder.
Mechanics of soldering

To make a solder joint, you need three things: a heating tool (iron or gun), the solder itself and a positioning tool. The best way to make a good, secure solder joint is this:

1. Clean the work mechanically. Solder makes a good connection only with clean, bare metal. If the metal is dirty or grimy, you should clean it with a wire brush, steel wool or sandpaper. Manicurists’ emery boards (sandpaper on narrow, stiff cardboard) are inexpensive and available at most drugstores. They make excellent throwaway solder-cleaning tools. If the wire or connection is new you may not have to mechanically clean it. A flux of rosin should be applied; when it heats, it removes the film of oxide which any metal has on its surface, and which prevents a good solder joint. Since most solder today has a rosin flux core, you can often omit this step. When you apply solder you also apply flux. But remember that flux will not remove paint, dirt or oil.

2. Heat the work where you want to apply solder. It’s very important to heat the work first, before applying solder. Pure tin melts at 450°F and pure lead at 621°F, as you learned earlier. Most alloys of the two metals melt at some temperature below 621°F. But most solder alloys resolidify at about 361°F. If the temperature of the joint never goes higher than the liquid point, you will get a cold solder joint—a connection which has resistance or impedance, or which is intermittent. To prevent this, apply the tip of the soldering tool underneath the joint, if possible, as heat rises. If it’s not possible for the tip to contact all wires and terminals in the joint, make sure it touches and heats the largest piece of metal involved. An experienced technician knows how long it takes to heat a joint to the point where the joint (not the iron or gun tip) melts the solder. But don’t overheat the joint, or the solder itself will oxidize and make a poor connection.

3. Apply solder, letting it flow by gravity and capillary action between the parts you want joined. If the joint won’t melt solder, wait until it will. Don’t feed the solder into the opposite side of the joint from the iron, for this will require more heat on the joint, and might overheat and damage nearby components. Apply enough, but only enough, solder to make a smooth, globular joint, with the solder filling all spaces and crevices. Too much solder is bad, but it is also bad practice if the solder doesn’t flow freely on all elements of the joint. Ideally, when you apply

- Burned insulation: Caused by too much heat, a slip with the iron, or by dripping solder, this is not merely poor workmanship. When insulation is burned away, the possibility exists of a short to a nearby component. And if the iron or gun tip burns the insulation, some debris remains on the tip, which must then be cleaned before using it again.
- Wicking: If you overheat the joint too much or use too much solder, some creeps up the wire under the insulation, weakening or destroying the insulation, and stiffening the stranded wire and reducing its flexibility.

Transformer-type gun

Three basic types of heating tools are used in electronics: the transformer type gun, the pencil or iron and the gas torch.

In Fig. 2 are some typical guns. The handle contains a trigger switch which turns the device on; under the twin barrels is a pilot light. The tip is

Fig. 2—On top is the Weller Tempmatic (left) and the Wen Model 450 guns. Above is the Weller Model 8200 (left), and the Wen Model 100 soldering guns. removable so you can replace it when it eventually corrodes and becomes unusable.

(continued next month)
NEW R-E EXCLUSIVE

Kwik-Fix™ picture and waveform charts

by Forest H. Belt & Associates

<table>
<thead>
<tr>
<th>SCREEN SYMPTOMS AS GUIDES</th>
<th>WHERE TO CHECK FIRST</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYMPTOM PIC</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td></td>
<td>Color killer won't stop confetti</td>
</tr>
<tr>
<td></td>
<td>Pic purple and monochrome, or no color if killer set deep</td>
</tr>
<tr>
<td></td>
<td>Color makes bars intermittently</td>
</tr>
<tr>
<td></td>
<td>Color makes bars across the screen</td>
</tr>
<tr>
<td></td>
<td>Color makes many fine bars across screen</td>
</tr>
<tr>
<td></td>
<td>No color regardless of killer setting</td>
</tr>
<tr>
<td></td>
<td>Phase toward green end</td>
</tr>
<tr>
<td></td>
<td>Phase toward blue end</td>
</tr>
</tbody>
</table>

Use this guide to help you find which key voltage or waveform to check first, or to guide you to the causes of symptoms that don’t have voltage or waveform clues. Study the screen and the action of the Color Killer control. The most helpful clues to the fault are found at the key test points indicated.

Make voltage or waveform checks when indicated for screen symptoms. Use the Voltage Guide and Waveform Guide to analyze results of those tests. For a quick check, test or substitute the parts listed as the most likely cause of the symptoms.
THE CIRCUITS

THE CW OSCILLATOR IN A COLOR SET PROVIDES AN ACCURATE 3.58-MHz SUBCARRIER FOR REINSERTION AT THE COLOR DEMODULATORS. THE CHROMA SIDEBANDS NEED SOMETHING TO BEAT AGAINST.

This 3.58-MHz oscillator is a popular pentode version. It's a form of electron-coupled Pierce circuit, characterized by crystal feedback from screen to grid. Although the 3.58-MHz crystal sets approximate frequency, precise frequency and phase are determined by the reactance-control triode and its plate inductance, L1. They act as a variable load on the crystal, warping its frequency to lock it in on the color-sync signal from the transmitter. The control stage gets a dc voltage from the color-sync phase detector whenever any phase error exists in the oscillator.

SIGNAL BEHAVIOR

The only signal directly involved here is the one generated by the oscillator stage. The screen grid (pin 3) of the pentode acts as the plate of the Pierce oscillator. Some of the signal is fed back through the crystal and C6 to the pentode grid to sustain oscillation. The feedback path is frequency selective because of the crystal. So, the stage oscillates only at 3.58 MHz.

The control stage (sometimes called reactance stage) is dc operated. Its only effect on signals is through its loading of the crystal. It varies the apparent value of L1 and "fine tunes" the crystal frequency.

Bypass capacitors C5 and C3 keep L1 and the tube decoupled for signals. C1, C2 and R1 are an anti-hunt network. Their time constant keeps the control stage from being oversensitive to inconsequential variations that come from the phase detector.

The plate is the output element. That isolates the output from the oscillator feedback circuit. However, C9 feeds a signal sample back to the phase detector. (There, it is compared with the color-sync burst; the resulting dc controls the triode-reactance stage.) Tuned transformer T1, decoupled by C8, couples the phase-accurate 3.58-MHz signal to the color demodulators.

The capacitor at screen-pin-3 isn't for decoupling. It isn't large enough. It's merely part of a signal divider that holds the amount of feedback down to a stable level (C6 and the crystal make the other part of that divider).

DC DISTRIBUTION

Both tubes get operating dc from a 320-volt dc line. Plate voltage for the triode stage comes through R5 and L1. For the pentode oscillator, plate voltage comes through R8 and T1 and screen voltage comes through R7.

Bias for the pentode develops through grid-leak action across R6. The cathode is grounded.

The triode is self-biased from current through R3. Most of that current is what flows through the tube; a small amount of it comes from R4, which makes a dc voltage divider with R5 and R3.

You can't see the dc return for the triode grid. It is through R2 and the phase-detector stage; the latter isn't shown.

SIGNAL AND CONTROL EFFECTS

The station signal has little measurable effect on dc voltages and waveform amplitudes in these stages. Of course, it does affect the phase of the cw signal, but you can't see that on your scope.

When a trouble occurs, the color killer has a certain bearing on what screen symptom you see. Leave the control turned (usually clockwise) so chroma can get through to the demodulators. The voltage and waveform clues from the charts mean more if you do that.

Sometimes turning the tint control helps you diagnose a fault from the screen symptom. The main thing to notice is whether it alters color on the screen.

QUICK TROUBLESHOOTING

Clip a shorting jumper from pin 9 to ground. That isolates the color oscillator and control stages from the effects of the phase detector. Turn the color killer control down and then up. Try adjusting L1 and T1. Horizontal bars of color should float slowly or stand still in the picture.

Then use your scope to check the output of T1. You can sync the scope at its TV-horizontal rate (about 5 or 8 kHz) or so it locks in several cycles of 3.58-MHz sine wave. Output should be 10-15 volts p-p.

If the oscillator is dead, and the only dc clues on the pentode are those caused by the oscillator's quitting (low plate and screen voltage), try a new crystal. It and the tube are the most likely causes of a dead or intermittent oscillator.

If the color bars are there, but tuning L1 can't stabilize them, try a new crystal; the old one may be off frequency. Or, check C5; it may be open. Or, check C9 and C10 by substituting good capacitors. Beyond these hints, use the dc voltage troubleshooting charts; they're more helpful in this stage than signal waveforms. R-E

(waveforms on page 60)
<table>
<thead>
<tr>
<th>Voltage change</th>
<th>to zero</th>
<th>very low</th>
<th>low</th>
<th>slightly low</th>
<th>slightly high</th>
<th>high</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate-pin-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal 85V</td>
<td>R5 open</td>
<td>C6 leaky</td>
<td>R3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C5 shorted</td>
<td>C5 leaky</td>
<td>R3 high, leaky</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L1 open</td>
<td>C6 leaky</td>
<td>R5 low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cathode-pin-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>triode</td>
<td>R5 open</td>
<td>C5 shorted</td>
<td>R4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal 3V</td>
<td>C3 shorted</td>
<td>C5 leaky</td>
<td>R4 high</td>
<td>C5 open, leaky</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L1 open</td>
<td>C6 leaky</td>
<td>R5 low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grid-pin-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pentode</td>
<td>C4 leaky</td>
<td>R2 open</td>
<td>R6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal -2V</td>
<td>C6 leaky</td>
<td>R7 open</td>
<td>R6 low</td>
<td>R7 high</td>
<td>C6 open</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C1 open</td>
<td>R6 low</td>
<td>R7 high</td>
<td>C6 open</td>
<td>XTL dead</td>
</tr>
<tr>
<td>Screen-pin-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pentode</td>
<td>R7 open</td>
<td>C7 shorted</td>
<td>R2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal 125V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R6 open</td>
<td>R6 low</td>
<td>R7 high</td>
<td>R8 open</td>
<td>C6 leaky</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R7 open</td>
<td>R7 high</td>
<td>R8 open</td>
<td>C6 leaky</td>
<td>C7 leaky</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C6 shorted</td>
<td>R8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1 pri open</td>
<td>R8 high</td>
<td>C6 open</td>
<td>C8 leaky</td>
<td>XTL dead</td>
</tr>
<tr>
<td>Plate-pin-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pentode</td>
<td>R8 open</td>
<td>C7 shorted</td>
<td>R2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal 200V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C8 shorted</td>
<td>T1 pri open</td>
<td>R2 high</td>
<td>C4 open</td>
<td>C6 open</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R7 high</td>
<td>C8 leaky</td>
<td>XTL dead</td>
<td></td>
</tr>
</tbody>
</table>

Use this guide to help you pinpoint the faulty part. Measure each of the five key voltages with a vrm. For each, move across to the column that describes the change you find. Notice which parts might cause that change. Finally, notice which parts are repeated in the other voltage changes you find. Test those parts individually for the fault described. NOTE: For more guides to narrow down the faulty part further, see Waveform Guide. NOTE: Dc voltages at other points in this stage are misleading for diagnosis, so are not a part of this guide.
WF 1 Normal 20 V p-p
This is taken at plate-pin-1 of the control triode. It is the 3.58-MHz sine wave from the oscillator, with some modulation that comes from the phase detector. The waveform is locked in with the scope sweep near 500 kHz, which most modern service scopes can manage. Sometimes, schematics show this waveform as you see it below, with the scope set at the TV-horizontal rate-near 5 or 8 kHz. The cycles are not distinguishable, but you can see the "overlap" caused by the modulation.

<table>
<thead>
<tr>
<th>V p-p low</th>
<th>V pp high</th>
<th>V p-p zero</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4 leaky</td>
<td>R8 open, high</td>
<td>R6 v. low</td>
</tr>
<tr>
<td>C7 open</td>
<td>C8 shorted</td>
<td>R7 open, high</td>
</tr>
<tr>
<td></td>
<td>T1 pri open</td>
<td>R7 v. low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C6 open</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C7 shorted, low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XTL dead</td>
</tr>
</tbody>
</table>

Scope at horizontal

20 V p-p
C1 open

7 V p-p
C4 leaky

25 V p-p
R3 open
R5 open
C4 open

WF 2 Normal 7 V p-p
This is the 3.58-MHz sine wave made by the pentode oscillator, taken at grid-pin-2. As you can guess from the absence of waveforms with changed shapes, this waveshape doesn't alter much when trouble occurs anywhere in either stage. With the scope sweep at about 500 kHz, the sine waves are clearly defined. At the scope's TV-horizontal sweep rate, you see the cw waveform below. For troubleshooting, be more concerned with amplitude than with shape.

<table>
<thead>
<tr>
<th>V p-p low</th>
<th>V p-p high</th>
<th>V p-p zero</th>
</tr>
</thead>
<tbody>
<tr>
<td>R4 high</td>
<td>R3 open</td>
<td>R2 open</td>
</tr>
<tr>
<td>C1 open</td>
<td>R8 open, high</td>
<td>R6 v. low</td>
</tr>
<tr>
<td></td>
<td>R8 high</td>
<td>R7 open, high</td>
</tr>
<tr>
<td></td>
<td>C4 open</td>
<td>R7 v. low</td>
</tr>
<tr>
<td></td>
<td>C8 open</td>
<td>C4 leaky</td>
</tr>
<tr>
<td></td>
<td>C8 shorted</td>
<td>C6 open</td>
</tr>
<tr>
<td></td>
<td>T1 pri open</td>
<td>C7 low, shorted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XTL dead</td>
</tr>
</tbody>
</table>

Scope at horizontal

WF 3 Normal 5 V p-p
This is the output waveform at plate-pin-6 of the crystal-controlled Pierce oscillator. The output is electron-coupled. That is, the screen is the true oscillator plate and the tube's electron stream is modulated by the 3.58-MHz oscillations. This waveform isn't much of a troubleshooting aid when there's trouble. But it does offer a sure clue to an open C7, as you can see from the strange waveshape below. For other faults, you get more clues from other waveforms.

<table>
<thead>
<tr>
<th>V p-p low</th>
<th>V p-p high</th>
<th>V p-p zero</th>
</tr>
</thead>
<tbody>
<tr>
<td>C7 open</td>
<td>R2 open</td>
<td>C7 low, shorted</td>
</tr>
<tr>
<td></td>
<td>R6 v. low</td>
<td>C8 shorted</td>
</tr>
<tr>
<td></td>
<td>R7 open, high</td>
<td>T1 pri open</td>
</tr>
<tr>
<td></td>
<td>R8 open, high</td>
<td>XTL dead</td>
</tr>
<tr>
<td></td>
<td>C1 open</td>
<td>C6 open</td>
</tr>
<tr>
<td></td>
<td>C4 open</td>
<td>C6 leaky</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C6 leaky</td>
</tr>
</tbody>
</table>

Scope at horizontal

18 V p-p
C7 open

Use this guide and the Voltages Guide to help you pin down fault possibilities.
Use the direct probe of the scope. Connecting the scope alters whatever symptom you see on the screen, but ignore that when you're checking waveforms.
Check the three key waveforms. The scope sweep should be set at about 500 kHz, to show six or seven cycles of the 3.58-MHz sine wave.

Note amplitude. If it's low or high, check parts under those columns.
Note waveshape. If there's a change that matches one shown, check the parts indicated.
NOTE: Only waveforms that help most with diagnosis are included in this guide.
NOTE: All waveforms in this guide are taken with a color program from a local station tuned in.
New patient-monitoring systems and 3-D X-ray machines may one day save your life.

by FRED W. HOLDER

In 1895, Prof. Wilhelm Roentgen gave the medical profession one of its most valuable diagnostic instruments when he discovered the “X-ray.” Less than a decade later, in 1903, Prof. William Einthoven’s experiments with electrical currents in the human heart led to the development of today’s electrocardiograph (ECG).

Dr. Hans Berger applied the principle of the ECG to the measurement of brain waves in 1929 when he built the first electroencephalograph (EEG) and made tracings of the brain-wave patterns of himself and his family. His invention came before its time, the medical profession wasn’t ready to accept the theory that the brain could send out electrical impulses. As late as 1941, Dr. Berger’s machine was still considered only “a promising tool” for diagnosis of cerebral diseases.

Although these first machines were hardly electronic in operation, their present-day versions are totally electronic. They were made possible largely because the human body is a complex electrochemical machine. The brain, in operation, generates electrical signals and sends them out along the telephone lines (nerves) of the body to initiate complex bodily actions. A tiny nerve shoots electrical impulses into the heart muscle to maintain the rhythmic beat of the heart. If this nerve is damaged, the heart slows down or stops.

The transistor and other solid-state devices have boosted development of complex instrumentation in our space program, and have had a tremendous impact on medical electronic instrumentation. Telemetry, used extensively to return data from spacecraft, now transmits data on a patient’s well-being to distant locations for diagnosis. Instrumentation techniques developed over the past few years allow the handling, monitoring and recording of many vital physiological parameters.

Before the doctor can prescribe treatment for a patient, he must first determine what is wrong. In most cases, this is done with a few simple instruments. In more complex illnesses, however, the doctor may need information that can be obtained only in a laboratory or hospital. Let’s see how some of these electronic devices are helping the doctor to do his job.

X-ray systems

X-rays are high-frequency electromagnetic radiations with an extremely short wavelength (less than 1/10,000 of the wavelength of light). They pass through certain substances more readily than through others. Thus, when X-rays pass through the human body, they cast shadows of its various structures and organs onto a sensitized plate (generally a photographic negative or fluorescent screen). These internal bodily structures may then be studied by the doctor or specialist, known as a radiologist.

X-ray operations fall into three general categories: (1) radiography in which X-rays expose a photographic plate; (2) fluoroscopy in which X-rays activate a fluorescent screen; and (3) tomography, or X-raying of selective sections of the body, in which the X-ray source moves through a given arc in one direction during exposure while the film moves in the opposite direction to eliminate shadows of body structures before and behind the section un-

MARCH 1970

Photo courtesy Hewlett-Packard

www.americanradiohistory.com
der scrutiny by the x-ray specialist.

General Electric’s Telegem diagnostic X-ray system combines fluoroscopy and radiography as well as tomography. This system consists of a fully shielded, pivoting control console, a 90° to 15° table with powered lateral and longitudinal patient movement, and a closed-circuit TV system and monitor for fluoroscopy. The X-ray tube is mounted over the table on a telescoping stand, the tube may be tilted with respect to the table to permit radiography and fluoroscopy at oblique angles, or angulated for

Fig. 1—Typical ECG waveform for healthy heart. The small, rounded pulse prior to the dip at Q indicates auricular contraction, while the QRS waveform relates to ventricular contraction. The small rise after point S corresponds to the end of the ventricular systole action.

Enhancing and magnifying areas of X-ray film is possible with the GE Exploralex radiograph, aiding difficult diagnoses.

The radiologist can watch bodily functions that the x-ray system available in the US that incorporates linear tomography. To accomplish tomography, the X-ray head passes through an arc of 40°, from −20° to +20° (photo). The radiologist can also select a −5° to +5° angle; depth range is from 0 to about 8.6 inches.

Fluoroscopy has an advantage over radiography in that the radiologist can watch bodily functions in action. In earlier versions of fluoroscopes, observations had to be made in a dark room because the shadow images were too faint for eyes accustomed to daylight.

By applying the techniques of closed-circuit TV to the Telegem fluoroscopic functions, this problem is largely eliminated. In this application, X-rays are shot through the patient to a television camera, available in either standard 525-line or 875-line scan rate, with a contrast-improving circuit. The area to be X-rayed can first be viewed through the fluoroscope and then quickly switched to radiography for a permanent photograph.

GE’s CFPD (Cine Fluoro Physiological Display) device permits simultaneous display of both the fluoroscopic image and patient physiological data on a television monitor. The data may also be recorded on motion-picture film or video tape.

Physiological data are presented in the lower right-hand corner of the TV image area and may contain up to four channels of monitored physiological data such as ECG, phonocardiograms and differential blood pressure readings.

Traditional methods of correlating monitored data with film are difficult and inexact, because it is difficult to obtain exact synchronization between the film frames and the physiological data. GE predicts CFPD will find clinical applications in cardiovascular procedures. In determining valve damage, for example, differential pressure readings are directly correlated with specific phases of the heart cycle, an important aid in identifying the location and extent of damage. Normal and abnormal patterns of contraction are directly compared with film frames.

GE’s new Exploralex radiograph intensifier permits a radiologist to enhance and magnify critical areas of an X-ray film. With full control of the enhancement techniques at his fingertips, the radiologist can now extract information from film that previously could not be obtained by other means of illumination or magnification. The new system can be used to study all types of radiographs, and may be useful in difficult diagnoses such as detection of tumors, vascular anomalies, gallstones, kidney stones and thoracic disorders.

Another form of X-ray photographe enhancement is being developed from space program techniques. For several years NASA’s Jet Propulsion Laboratory in Pasadena, Calif., has been using digital computers to enhance the clarity of pictures returned from spacecraft. Early in 1966, JPL, in cooperation with the NASA Technology Utilization Division, began investigating the technique to clarify medical and biological X-rays. These results have been very promising, enabling doctors to get clearer views of details that otherwise might be lost or overlooked.

Electrocardiograph

The electrocardiograph, normally referred to as an ECG, measures bioelectric currents generated by a beating heart and records them as a graph on moving recording paper. Information is gathered from electrodes placed on various parts of the body and fed into the recording device where they are combined, amplified and used to drive a pen-type plot recorder. The plotted output recording is the electrocardiogram (ECG). Fig. 1 shows a typical QRS (ventricular contraction) complex ECG waveform of a healthy heart.

When a patient’s normal ECG is compared with his
abnormal ECG, the cardiac diagnostician can learn a great deal about the patient's heart condition. Even without the normal ECG, the diagnostician can interpret the tracings on the ECG and partially diagnose the patient's heart condition if necessary.

Early versions of the electrocardiograph were so bulky they could not easily be moved to a patient's bedside. The transistors have helped to solve this problem by reducing the size and weight of the units. Small portable units such as the Hewlett-Packard Model 1500A portable electrocardiograph (photo) weigh only 22 lb, and the physician can take the unit to the patient's home.

Another member of the ECG family is Hewlett-Packard's Cardiotocograph. This unit continuously monitors and records fetal heart rate to indicate fetal distress during labor activity. At the same time, the unit records a strip chart a second trace that corresponds to labor activity, showing the relationship between stresses caused by uterine contractions and fetal heart rate.

A single 1-lb transducer capsule, held in place on the mother's abdomen by an elastic strap, contains two transducers: a microphone that picks up fetal heart sounds, and a spring-loaded plunger that responds to abdominal tension.

Electrical filters remove most of the interference and other sounds that often obscure fetal heart sounds. The electronic circuits then measure the time intervals between four successive heartbeats; only beats establishing definite time relationships are used for the measurement. The inclusion of an indicator of labor activity makes it possible for the physician to diagnose fetal distress from heart patterns that may appear normal when considered by themselves. The new unit may be used as early as the sixth month of pregnancy to help diagnose potentially critical cases even before labor begins.

Patient-monitoring instrumentation

Patient-monitoring instrumentation plays its greatest role in the coronary care unit, the intensive care unit and the recovery room. Intensive care, aided by electronic monitoring instruments, does not replace the nurse or any member of the hospital staff. Actually, it supplements the staff and increases the nurse-to-patient ratio.

Also, in terms of patient care, such instrumentation greatly decreases the mortality rate of patients. No two patient-monitoring or data-acquisition centers are exactly alike. Fig. 2 illustrates a typical patient-monitoring and recording system. A particular installation may have more or less capability than that shown, since the systems are generally modular in nature and structured to meet particular requirements.

For example, one Honeywell patient monitoring system is designed to monitor the basic body functions of a patient such as ECG, heart rate, blood pressure, temperature respiration and related biomedical information. It displays this information in several forms (ECG's on oscilloscope and recorder) to permit the medical staff to determine quickly the condition of the patient.

The complete system consists of one or more bedside units, a central station and related accessories such as leads, electrodes and transducers. The basic bedside unit contains an ECG monitoring channel and oscilloscope for data display, cardiocriminator to detect heat-to-beat heart rate, a precision-meter display unit with high and low adjustable alarm settings and a keyboard containing indicators and controls.

Alarm circuitry in the bedside unit sets off a visual (or audible) signal when a patient's heart rate exceeds preset high or low limits. An indicator button flashes with each heartbeat and can be activated to provide an audible beep with each QRS portion of the ECG waveform. The central station of this system consists of one or two large multitrace oscilloscopes to display data from up to eight individual bedside units simultaneously, a direct-recording recorder with automatic selection, and keyboard indicators and controls identical to those in each bedside unit.

A recent Honeywell development, the mobile "shock cart," contains electronic monitoring and measuring equipment to gather information vital to treatment of patients suffering from shock (see photo). The unit consists of multiple transducers to measure blood flow, intravascular blood pressure, electrocardiogram and other parameters associated with shock. Also included are a multichannel oscilloscope for immediate and permanent recording of the physiological information and a variety of signal-conditioning equipment required for measuring critical data.

Both General Electric and Hewlett-Packard manufacture highly flexible, modular lines of patient life-protection equipment for cardiac and general intensive care units.

(continued on page 94)
"Get more education or get out of electronics...that's my advice."
Ask any man who really knows the electronics industry.

Opportunities are few for men without advanced technical education. If you stay on that level, you'll never make much money. And you'll be among the first to go in a layoff.

But, if you supplement your experience with more education in electronics, you can become a specialist. You'll enjoy good income and excellent security. You won't have to worry about automation or advances in technology putting you out of a job.

How can you get the additional education you must have to protect your future—and the future of those who depend on you? Going back to school isn't easy for a man with a job and family obligations.

CREI Home Study Programs offer you a practical way to get more education without going back to school. You study at home, at your own pace, on your own schedule. And you study with the assurance that what you learn can be applied on the job immediately to make you worth more money to your employer.

You're eligible for a CREI Program if you work in electronics and have a high school education. Our FREE book gives complete information. Mail postpaid card for your copy. If card is detached, use coupon below or write: CREI, Dept. 1403A, 3224 Sixteenth Street, N.W., Washington, D.C. 20010.

CREI, Home Study Division
McGraw-Hill Book Company
Dept. 1403A, 3224 Sixteenth Street, N.W.
Washington, D.C. 20010

Please mail me FREE book describing CREI Programs. I am employed in electronics and have a high school education.

NAME__________________________AGE________________________
ADDRESS__
CITY______________________STATE__________ZIP CODE__________
EMPLOYED BY__________________________

TYPE OF PRESENT WORK__________________________☐ G.I. BILL
I am interested in
☐ Electronic Engineering Technology ☐ Computers
☐ Space Electronics ☐ Nuclear Engineering Technology
☐ Industrial Automation ☐ NEW! Electronics Systems Engineering

APPROVED FOR TRAINING UNDER NEW G.I. BILL
These solid-state modules automatically detect and display body temperature, venous blood pressure, arterial pressure characteristics and heartbeat rate and rhythm. Therapeutic treatment can also be automatically performed through electric stimulation (or pacing) of heart muscles to restore and maintain normal heartbeat.

A unique feature of the GE system is QRS detection and display which minimizes “false alarms” by filtering out false signals of both physiological and electrode origins. It incorporates a detection circuit which recognizes only the QRS-complex waveform and rejects all other ECG waves. The detection circuit is tuned to recognize the dominant frequency of the QRS waveform in much the same way a radio receiver is tuned to a particular radio station.

A new twist in coronary-patient monitoring has grown out of our space program. The Schoefers Ambulance Service in Los Angeles has adapted for ambulance use NASA’s technique for measuring heart-rate information of test pilots. If the patient gives permission, attendants attach small bare wires to the patient’s chest with a special gun that sprays and dries a silver-glue combination. This process takes about 2 minutes and eliminates the need to shave the chest and attach bulky electrodes.

Measurements of the patient’s heartbeat are picked up by the instrumentation in the ambulance and relayed, as an audio tone, via short-wave radio and telephone to the UCLA Medical Center.

A nurse in the emergency room at the medical center receives the information and feeds it into a standard ECG recorder where it is visually displayed for the doctor awaiting the patient’s arrival. This advance information allows the doctor to make necessary hospital preparations and save valuable seconds after the patient arrives.

Cardiac pacemakers

The human heart beats 37 million times a year, or during a normal activity level 68 to 70 times a minute. The heartbeat rate is controlled by the brain. A tiny nerve pulses the heart muscle with an electrical impulse for each heartbeat. If this nerve is damaged or destroyed, the heart will slow down or stop completely. The latter case, known as Stokes-Adams disease, was once inevitably fatal.

The tiny pacemakers, manufactured by GE, consist of a generator with the necessary electronic circuitry to produce pulses at the correct rate and two electrodes which are attached to the heart muscle. The units, powered by long-life mercury batteries, are generally set to pulse 70 times a minute for older patients; however, GE also makes a unit which can be adjusted up to 85 pulses per minute for younger or more active heart patients.

Until recently, installation of these units required a major operation in which the patient’s chest was opened, electrodes attached directly to the heart muscle, and leads run under the skin to the generator unit. The generator usually was located either in the stomach area or under the arm. Such an operation can be quite serious if the person is elderly or very ill.

A new installation technique has been developed which allows the unit to be installed with only local anesthesia and without opening the chest cavity. The electrodes are now inserted through a vein into the heart cavity and then connected to a generator implanted under the arm. The tiny electrical pulses from the generator are transmitted through the blood to the heart muscle to stimulate a regular heat.

According to GE, doctors believe the pacemaker principle may eventually be applied to regulating such common ailments as high blood pressure, diabetes and gall bladder disorders.

Servicing medical electronics equipment

Service on medical electronic equipment is a major problem. The number of suppliers is large (over 1200) and the market area covers the entire world. Large companies having an extensive product line can support a field service organization. GE, for example, has a staff of 600 technicians to service their X-ray equipment. Where such service is not available locally, hospitals and doctors must either attempt repairs themselves, bring in factory technicians with attendant costs and lost time, or return the unit to the factory. In the first two cases calibration is usually not accomplished even though the fault is repaired.

Bendix Commercial Service Corp. has opened medical service centers near Beltsville, Md., and Chicago. These centers offer a three-phase maintenance program to hospitals: (1) periodic inspection and servicing of equipment to prevent breakdowns and improve operation, (2) periodic certification and calibration to manufacturer’s original specifications, and (3) 24-hour, short-notice, emergency repair service.

R-E
by ROBERT L. GOODMAN

IC's—THOSE MICROMINI CIRCUITS spawned by the space age—are rapidly being applied to consumer electronics. Television manufacturers can now go directly from tubes to IC's, skipping "ordinary" transistor circuits.

For the set owner, this type of receiver will mean cooler operation, compact size, more reliability, and eventually a less expensive product. But what will this drastic change mean to the electronic service technician?

One good "spin off" is that the days of the tube jerkers and the "diddle stick" jockey will be numbered. New techniques and troubleshooting methods will have to be developed for IC testing.

Testing the IC 'chip'

Because many components in devices using IC's are on the "chip" fewer tests can be made. Most voltage, resistance and capacitance checks, for example, won't be efficient or practical.

One way to troubleshoot devices containing IC's is to use an oscilloscope for signal tracing and a pulse or square-wave generator for signal injection. In the modern electronics shop, the triggered scope and pulse generator replace the voltmeter and sine-wave oscillator of yesterday as detector and source. A television analyst can also be used to inject pulses into sync stages using IC's.

IC's are more reliable than vacuum tubes, have no cathodes to wear out, vacuum to lose (if a plastic encapsulated unit), or any mechanical electrode structures to vibrate. However, even though better processing and more reliability checks are being performed, IC's can and do fail.

IC defects can be caused by both electrical circuit and mechanical abuse. Tests on IC's are unlike those for other components, because an IC is not a component but a functional circuit in itself. Manufacturing faults may become apparent after a few months of operation. For example, an internal short may be caused by a slow chemical reaction or inadequate activation. Contamination is another defect that may not show up for months.

The external electrical circuit can cause IC failure if some outboard component defect causes excessive voltages or insufficient bias. Obviously, IC's cannot be repaired, so it's no use trying to locate the defective internal component. The technician's job is to positively determine that the IC is defective, and whether the defect was caused by an outboard com-

Servicing receivers with integrated circuits requires special troubleshooting knowhow and techniques. An expert describes some current and experimental circuits on a 'chip'

Fig. 1—Circuit of the µA737 demodulator used by Zenith. Opposite-phase color signals are applied to amplifiers Q11-Q12 and Q13-Q14. Q3-Q6 and Q7-Q10 receive the 3.58 MHz reference. Q19, Q20 and Q21 are emitter followers.

Fig. 2—Color demodulator circuitry utilizing the µA737 with its two double-balanced synchronous detectors. Faulty color difference signals at pins 7, 8 and 9 may indicate the IC is faulty. Bad IC may also have incorrect voltages on pins.
component malfunction in the circuit.

IC chips, field effect transistors (FET's) and unijunction solid-state devices cannot be accurately tested and may be damaged by transistor checkers most service shops now use. Check out these devices in the operating circuitry by injecting a test signal and tracing the pulse through different IC stages with a triggered scope. This is a fast and positive troubleshooting method.

An IC color demodulator

Fairchild has developed an IC, designated µA737, for Zenith color receivers. It contains two double-balanced synchronous detectors that couple to a matrix in which the desired color difference signals are developed (Fig. 1). Note in Fig. 2 that the output of the second color amplifier is coupled to IC2, providing a stable, double-balanced demodulator and amplifier for the color signal. The "chip" is mounted in a case that plugs into a conventional 9-pin miniature tube socket, and is keyed with pin numbers accordingly.

Two chroma signals of opposite polarity (0.2 volt) are coupled to terminals 2 and 3 of IC2. Color difference signals of G - Y, R - Y and B - Y appear at terminals 7, 8 and 9, respectively. Oscillator injection reference (3.58 MHz) is injected at terminals 4 and 5. A scope will tell you if the IC or some outboard component is defective. Also, if the IC is faulty, you may find incorrect voltage readings at the terminals.

Although the chroma output of second color amplifier Q8 at the collector is approximately 6 volts, the stepdown for impedance matching of the second color amplifier transformer (T3-4) results in approximately 0.2 volts to terminals 2 and 3 of IC2. A power input supply of 24 volts is applied across terminals 6 and 1.

Amplification of the IC is greater than 10, providing adequate signal amplitude at the color difference amplifier grids. The operation of the IC is such that the second harmonic (7.2 MHz) of the 3.58-MHz signal is trapped in the output circuit by coils L39, L45, and L51 in the output circuit, which provide a high impedance at 7.2 MHz. (The 3.58-MHz fundamental is mathematically cancelled within the IC.) Although a detailed description of the µA737 circuitry is unnecessary for servicing, it is interesting to note the following:

- Chroma signals of opposite phase are coupled into the parallel connected inputs of amplifiers Q11, Q12 and Q13-Q14.
- The color oscillator reference signals are coupled to the two sets of "switch" transistors Q3 through Q6 and Q7 through Q10.
- The color difference output voltages from the matrix are coupled through emitter followers consisting of...
transistors Q19, Q20 and Q21.
- Remaining transistors provide voltage division and regulation (Q1 acts as a Zener) for stability of the IC's operation.

RCA CTC 40 IC's

Sound circuitry in RCA's solid-state CTC 40 color TV chassis features a newly designed integrated circuit. The integrated circuitry includes the sound i.f. amplifiers, demodulators, preamplifiers and audio driver stages.

The IC may be considered as being divided into three sections (Fig. 3). The first operation is amplifying the 4.5-MHz i.f. signal from the sound detector. The amplified i.f. is then detected by another third of the IC and applied through the volume and tone controls to an audio driver section, which in turn provides power to the discrete audio output stage.

Let's look at the process in more detail. The output of the i.f. amplifier is fed to the discriminator transformer and is next applied to the IC ratio-detector (D2-D5 in Fig. 4). The resultant audio signal is coupled through C307 to the tone and volume controls. Capacitor C308 couples the audio from the volume control to the driver section of the IC. This section provides the current gain necessary to drive the audio output stage. A 275-volt Zener diode, D401, protects the output transistor from high transient voltage spikes.

Resistor R143 coupled between the base and emitter of the output transistor, provides an additional load for the driver section, minimizing the undesirable effects of output transistor leakage current.

Automatic-fine-tuning IC

The basic a.f.t system for the RCA CTC 40 chassis is shown in Fig. 5. An IC discriminator/amplifier produces a differential voltage proportional to the applied i.f. frequency. This voltage corrects local oscillator frequency errors (mistuning), utilizing a special variable capacitance transistor in the v.h.f tuner and a varicap diode in the u.h.f tuner.

The IC system used for the a.f.t (Fig. 6) has an internally regulated power supply. The circuit requires no external reference (bias) voltage for u.h.f defeat action; automatic degeneration of the output amplifiers totally eliminates all a.f.t correction voltage when the output terminals are shorted for the defeat action. Fig. 7 is the schematic diagram of this IC.

Motorola's audio IC

Part of the audio system for the Motorola TS 915/917 color chassis is shown in (Fig. 8). Inside the IC, 12 transistors, 12 diodes and 16 resistors are direct-coupled to perform the various functions. A short or open in one of these internal components will affect total IC current drain.

A dynamic check is the only positive way to determine if the IC is operating properly. Feed a frequency-modulated 4.5-MHz carrier into the input and measure the recovered audio at the output.

With this many functions housed in one device, it's a sure bet a number of sound trouble symptoms can be the fault of the IC; for example: no audio, audio drift, distorted audio, noisy audio, weak audio and poor sound sensitivity. Finally, transformers T1 and T2 play important roles in IC performance. Here again, the best check is with signal injection and the oscilloscope for detection.

Color-processing IC's

General Instrument Corp. is now working on a complete color-processing circuitry using integrated metal-thick-oxide silicon (MTOS) techniques. The design uses four MTOS chips to perform the following functions:

The system (Fig. 9) is now integrated into four chips. Further refinements combining the functions into three, two or even one key chip are possible. The 8103 color burst amplifier and the 8105 color synchronization chip with outboard components is in Fig. 10. The 8105 contains an integrated two-stage amplifier operating at 3.58 MHz, a locked oscillator and limiter.
Fig. 10 (above)—This IC system could cut color TV circuit components 50%. Complete color-processing circuits are on four chips. The 8103 part provides keyed chroma and color burst, while the 8105 operates with an external crystal as a 3.58-MHz oscillator.

Fig. 11—Remaining two IC sections, 8104 and 8102, serve as a dual demodulator and X-Y matrix, respectively. The four separate IC’s may be combined into a larger single chip.
The NEW Heathkit® IG-28

Color Bar — Dot Generator...
Advanced IC Design
Gives 12 Patterns Plus
Clear Raster Display &
Eliminates Divider Chain
Instability Forever!

Stable Integrated Circuitry
And Well-Engineered Layout

The Most Advanced Instrument
In Color TV Service

- All solid-state construction using integrated circuitry
- No divider chain adjustments
- Stable pattern display — no flicker, bounce or jitter
- Produces 12 patterns plus clear raster
- Instant switch selection of all functions
- Exclusive 3x3 display plus standard 9x9 display of all patterns
- Horizontal lines only one raster thick for added accuracy
- Variable front panel tuning for channels 2 through 6
- Variable front panel display and negative video output
- Front panel negative going sync output
- Two handy AC outlets on front panel
- Built-in gun shorting circuit with lead piercing connectors
- Front panel switchable crystal controlled sound carrier oscillator
- Copper-banded transformer to reduce stray fields
- Safe three-wire line cord
- Fast, easy construction with two circuit boards and two wiring harnesses

The new Heathkit IG-28 is the ultimate signal source for all Color and B&W TV servicing. No other instrument at any price will give you as much stable, versatile TV servicing capability. Here are the details:

All Solid-State Circuitry produces dots, cross-hatch, vertical and horizontal lines, color bars and shading bars in the familiar 9x9 display... plus the exclusive Heath 3x3 display of all these patterns so necessary for static convergence, linearity and color demodulator phase adjustments... plus a clear raster that lets you adjust purity without upsetting AGC adjustments. Fifteen J-K Flip-Flops and associated gates count down from a crystal controlled oscillator, eliminating divider chain instability and adjustments.

Time-Saving Versatility. While many generators only give you one or two channel capability, the new IG-28 has variable front panel tuning for channels 2 through 6. The RF tank coil is actually etched into the circuit board for extra stability. Plus and minus going video signals are available at the turn of a front panel control. And for sync, in-circuit video or chroma problems, there's a front panel sync output. Convenient AC outlets are provided for degaussing coil, test instruments, TV set etc. Built-in gun shorting circuits and grid jacks are also included. Add any service type scope (with horizontal input) to the IG-28 and you have vectorscope display capability too. Other features include a crystal controlled sound carrier oscillator, a well regulated full wave power supply with dual primary copper-banded transformer, safe three-wire line cord, and rugged, compact Heath instrument styling. Two circuit boards and two wiring harnesses provide easy construction in about ten hours. Start enjoying the versatility you couldn't get before... put the remarkable new Heathkit IG-28 on your service bench now.

Kit IG-28, 8 lbs. ... $79.95

www.americanradiohistory.com
Exciting New Kit Ideas from Heath

New Heathkit 100-Watt AM/FM/FM-Stereo Receiver
World's finest medium power stereo receiver ... designed in the tradition of the famous Heathkit AR-15. All Solid-State ... 65 transistors, 42 diodes plus 4 integrated circuits containing another 56 transistors and 24 diodes. 100 watts music power output at 8 ohms — 7 to 60,000 Hz response. Less than 0.25% distortion at full output. Direct coupled outputs protected by dissipation-limiting circuitry. Massive power supply. Four individually heat-sinked output transistors. Linear motion bass, treble, balances and volume controls. Push-button selected inputs. Outputs for 2 separate stereo speaker systems. Center speaker capability. Stereo headphone jack. Assembled, aligned FET FM tuner has 1.8 uV sensitivity. Two tuning meters. Computer designed 9-pole L-C filter plus 3 IC's in IF gives ideally shaped bandpass with greater than 70 dB selectivity and eliminates alignment. IC multiplex section. Three FET's in AM tuner. AM rod antenna swivels for best pickup. Kit Exclusive: Modular Plug-In Circuit Boards ... easy to build & service. Kit Exclusive: Built-In Test Circuitry lets you assemble, test and service your AR-29 without external test equipment. The AR-29 will please even the most discriminating stereo listener.

Kit AR-29, (less cabinet), 33 lbs. .. $285.00*
AE-19, Assembled oiled pecan cabinet, 10 lbs. $19.95*

New Heathkit 60-Watt AM/FM/FM Stereo Receiver
The AR-19 circuitry reflects many of the advanced concepts of the AR-29. It uses 108 transistors and 45 diodes including those in 5 integrated circuits. It delivers 60 watts music power at 8 ohms. At any power level, Harmonic and IM Distortion is less than 0.25%. Frequency range response from 6 to 35,000 Hz. Four FET based outputs are protected by dissipation-limiting circuitry. A massive power supply includes a section of electronically regulated power. The assembled, aligned FET FM tuner has 2.0 uV sensitivity.

A preassembled and factory aligned FM IF circuit board gives 35 dB selectivity. The multiplex IC circuit provides inherent SCA rejection. It features two switched noise muting circuits; linear motion controls for bass, treble, volume and balance; input level controls; outputs for 2 separate stereo speaker systems; center speaker capability; two tuning meters; stereo indicator light; front panel stereo headphone jack. The Modular Plug-In Circuit Board design speeds assembly. Built-In Test Circuitry aids assembly, simplifies servicing. "Black Magic" panel lighting, black lower panel, chrome accents. Compare it with any model in its price range ... the AR-19 will prove itself the better buy.

Kit AR-19, (less cabinet), 29 lbs. $225.00*
Assembled AE-19, cabinet, 10 lbs. $19.95*

New Heathkit Deluxe 18-Watt Solid-State Stereo Phono
Looks and sounds like it should cost much more. Here's why: 16-transistor, 8-diode circuit delivers 9 watts music power per channel to each 4%" high-compliance speaker. Speaker cabinets swing out or lift off ... can be placed up to 10" apart for better stereo. Has Maestro's best automatic, 4-speed changer — 16, 33-1/3, 45 & 78 rpm. It plays 6 records, shuts off automatically. Ceramic stereo cartridge with diamond/sapphire stylus. Has volume, balance & tone controls. Changer, cabinet & speaker enclosures come factory built ... one build just one circuit board ... one build just one evening project. Wood cabinet has yellow-gold & brown durable plastic coned covering. This is a portable stereo you can take pride in.

Kit GD-109, 38 lbs. ... $74.95*

New Heathkit 80-10 Meter 2 KW Linear Amplifier
Incomparable performance and value. The new SB-220 has 2000 watts PEP input on SSB & 1000 watts on CW and RTTY. Uses a pair of Eimac 3-500Z's. Prettuned broad band pi input coils. Requires only 100 watts PEP drive. Solid-state power supply operates from 120 or 240 VAC. Circuit breaker protected. Safety interlocked cover. Zener diode regulated operating bias. Double shielded for max. TVI protection. Quiet fan — fast, high volume air flow. Also includes ALC to prevent over-driving. Two meters: one monitors plate current; the other is switched for relative power, plate voltage and grid current. Styled to match Heath SB series. Assembles in about 15 hours.

Kit SB-220, 55 lbs. .. $349.95*

New Heathkit Portable Fish-Spotter
Costs half as much as comparable performers. Probes to 200 ft. Spots individual fish and schools ... can also be used as depth sounder. Manual explains typical dial readings. Transducer mounts anywhere on suction cup bracket. Adjustable Sensitivity Control. Exclusive Heath Noise-Reject Control stops motor ignition noise. Runs for 80 hrs. on two 6 VDC lantern batteries (not included). Stop guessing — fish electronically.

Kit MI-29, 9 lbs. ... $84.95*
NEW IMPROVED 1970 HEATHKIT® COLOR TV
New Lower-Than-Ever Prices

Here's How The Color TV That Thousands Call Best Became Even Better and Lower In Price
Since the very first model was introduced, thousands of owners, electronic experts, and testing labs have praised the superior color picture quality and extra features of Heathkit Color TV. Now Heath has made improvements that make the 1970 models even better.

Sharper, More Detailed Pictures. Latest design improvement in the circuitry of Heathkit Color TV video amplifiers has increased their bandpass capabilities. The result is an increase in the number of lines of resolution...greater than in any other brand of color TV we have tested. This improvement means you get sharper, more detailed pictures as shown by test pattern measurements. You not only get the superior color pictures Heathkit Color TV has always been noted for, but you also get sharper pictures.

New Brighter Tube. Now all Heathkit Color TV models include the new bright picture tube you've read so much about. These new tubes produce noticeably brighter pictures with more life-like, natural colors and better contrast. (We also offer the RCA Hi-Lite Matrix tube as an extra-cost option for the Heath GR-681 and GR-295 kits.)

New Safety Features. As an added safety precaution, AC interlocks have been added to all Heathkit Color TV cabinets.

Now The Best Costs Less. How can Heath make improvements in its Color TV Models and still reduce the prices? We have passed on to you the savings which have accrued due to reduced picture tube prices. The result is your 1970 Heathkit Color TV will cost you $20 to $55 less depending upon which model you choose...proof that Heathkit Color TV is a better buy than ever.

All Heathkit Color TV's Have These Superior Features
- New brighter American brand rectangular color tube with bonded-face, etched antiglare safety glass
- Exclusive built-in self-servicing aids so you can adjust and maintain the set for best performance always
- Automatic degaussing plus mobile degaussing coil
- New broader video bandwidth for better resolution
- 3-stage IF
- Improved retrace blanking
- Gated automatic gain control for steady pictures
- Automatic color control
- Exclusive Magna-Shield surrounds picture tube for better color purity
- Deluxe VHF tuner with "memory" fine tuning and precious metal contacts (models with automatic fine tuning also are available in all 3 picture tube sizes)
- 2-speed UHF solid-state tuner
- Completely shielded hi-voltage supply
- Extra 6° boost for better definition
- 2 hi-fi sound outputs for built-in speaker or your hi-fi system
- 300 ohm & 75 ohm antenna inputs
- Circuit breaker protection
- Optional wireless remote control can be added anytime
- Factory assembled and adjusted tuners, IF section, and hi-voltage supply
- Exclusive 3-way installation capability — in a wall, custom cabinet or Heath cabinets

Choose Your Heathkit Color TV Now...
It's Better Than Ever in Performance...and A Better Buy Than Ever

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR-681</td>
<td>$469.95</td>
<td>$30</td>
</tr>
<tr>
<td>GR-681MX</td>
<td>$479.95</td>
<td>$20</td>
</tr>
<tr>
<td>GR-295</td>
<td>$419.95</td>
<td>$55</td>
</tr>
<tr>
<td>GR-295MX</td>
<td>$429.95</td>
<td>$55</td>
</tr>
<tr>
<td>GR-581</td>
<td>$399.95</td>
<td>$20</td>
</tr>
<tr>
<td>GR-227</td>
<td>$359.95</td>
<td>$20</td>
</tr>
<tr>
<td>GR-481</td>
<td>$329.95</td>
<td>$30</td>
</tr>
<tr>
<td>GR-180</td>
<td>$299.50</td>
<td>$25</td>
</tr>
<tr>
<td>R-227</td>
<td>$319.50</td>
<td>$20</td>
</tr>
</tbody>
</table>

Choose Your Color TV Now...

www.americanradiohistory.com
EQUIPMENT REPORT

Heath IG-28

For manufacturer’s literature, circle No. 30 on Reader Service Card.

by JACK DARR
SERVICE EDITOR

EVERYTHING'S "COMPUTERS" TODAY.
The integrated circuit, of course, is the parent of the computer. The last word in "IC-ization" (1 can make up words, too!) is the Heathkit IG-28 color bar and dot generator. This versatile instrument uses computer circuits to generate the complex waveforms needed to form the standard color TV test patterns.

Transistors are ideal for this kind of work. They can make very sharp, very short pulses with almost ridiculous ease. The waveforms needed for dot and line patterns are very short, sharp pulses. The sharper the pulse, the cleaner the line on the screen. Heath's engineers have taken full advantage of this; this instrument makes some of the cleanest patterns I've ever seen.

You're going to have to "buy the book" to get the full description of the circuit. Even the block diagram is too big to reproduce here! As briefly as possible, it begins with a crystal-controlled 190.08-kHz master clock oscillator.

There are no less than 15 J-K flip-flops, plus AND gates, NAND gates, OR gates, NOR gates and a few odd things such as RF oscillators, clippers, shapers, blankers, etc. There are 12 "regular" transistors and 10 IC's, one type with 24 transistors in it. The whole thing is powered by a Zener-regulated 3.6-volt dc supply.

The IG-28 will make all of the standard TV convergence-test patterns—the "9x9" dot, vertical and horizontal line and crosshatch. Beside these, it will make a "3x3" line pattern for any of them. The color-bar pattern is the stock 10-bar keyed rainbow; switching to 3x3 gives you a three-bar color pattern: red, blue and green. A "clean raster" pattern for setting purity is provided; also, a "wide crosshatch" bar pattern in either 9 or 3-bar style. This is a very good simulation of a TV picture, and is used for making gray-scale tracking adjustments.

The output of the IG-28 can be either modulated rf, which is tunable from channel 2 to 6, with an adjustable signal level from a very low level to 50,000 µV, or composite video at a level of at least 1 volt p-p. The video output can be varied, or reversed in sync polarity, with the video output control on the panel. There is also a sync out jack on the panel, for those sets having separate sync and video demodulators; output is 3.5 volts p-p at least. A rocker-type switch can be used to get either rf or video output on the same output cable.

Also on the front panel are three jacks for the gun-killer circuit and the jack switches. Insulation-piercing clips are used for convenience. With these hooked up to the grid wires, test leads can be plugged into the red and blue grid jacks. Any service-type scope will then make a "vectorscope" pattern, if it has a separate horizontal input jack. You may think your scope is too old, but try it; you'll be surprised.

The CHROMA control on the panel varies the color level from 0 to 200% as usual. The VIDEO LEVEL control works only on the video output. It does not affect the modulation of the rf output. As a final touch, two three-wire, safety-type ac outlets are provided, one on each end, for whatever you might want to plug into them. A 4.5-MHz signal is provided, for setting up fine tuning when using the color-bar patterns.

The heart of this instrument, as you might have guessed, is a PC.
board. This holds practically all the working parts—the transistors and the 10 IC’s, which plug into sockets.

The wiring is already made up, laced and the ends stripped. All you do is tuck it in place and wire it in. Be sure to follow the book when installing components: solder (then pull carefully on the wire to make sure you did solder!), then trim off the excess lead under the board with a pair of wee dykes. Be sure you don’t leave any wire protruding; it’s easy to make a “wire bridge.”

In this type of instrument, there are no adjustments at all in the counter chain. These were the big headaches in the early models, if you remember. As I do. You have a total of three controls to set—two trimmers and one pot. There is a trimmer on the rf oscillator, but you shouldn’t need it, since the oscillator is continuously tunable.

The instruction book includes a very detailed set of troubleshooting instructions, plus a chart, voltages and waveforms, for making any tests needed for the instrument. There is also a complete set of basic instructions for converging color sets, and aligning color-sync circuits, demodulators, and all sorts of good stuff. Even included is a section on color TV basics, which is handy.

The assembly and testing of this instrument took me about half the time I thought it would. In fact, it surprised me greatly; it almost worked the first time I turned it on! It did make horizontal bars, and after I got a solder bridge out, it worked on all functions. A very useful instrument indeed, and a necessity in the modern TV service shop.

R-E

"Boy is he mad! He just found out solid state doesn't mean Texas."

Clip the coupons!

Present one or more to your participating RCA Test Equipment Distributor for big discounts on these four instruments during RCA’s big Spring Coupon Carnival. (Only one coupon will be accepted per instrument.) Do it today. Offer good only between February 15th and April 30th, 1970.

$7.50 Toward Purchase of RCA WT-501A Transistor Tester

$7.50 Toward Purchase of RCA WT-509A Picture Tube Tester

$10.00 Toward Purchase of RCA WT-509A Transistor Tester

$20.00 Toward Purchase of RCA WR-99A Crystal Calibrated Marker Generator

Look to RCA for instruments to test/measure/view/monitor/generate
RCA Electronic Components, Harrison, N. J. 07029

RCA

Circle 29 on reader service card
FIX CB FAST

*Part II:
Continued from Jan. 1970*

Let's move to the next step which tells us to inject a signal at the volume control. This could be done by touching the top or center terminal of the control (Fig. 2, page 70, January) with your finger or by using a signal generator. No sound.

Now inject a signal at the grid of the 12AU7 amplifier. No sound.

Next we inject a signal at the grid of the second af/squelch tube. Here we get a healthy tone from the speaker, proving that the trouble lies in the first audio stage. Now break out the voltmeter and check the voltages of the grid, plate and cathode of the first af amplifier tube. UnHoly! What do we find? The plate voltage at pin 6 is +5 volts instead of 45 volts.

Moving the probe down to the junction of R1, C1, we also read +5 volts. The other end of R2 reads 370 volts, and we see that R2 is discolored. What part could cause this? Could it be C1? Let's get the ohmmeter.

Measure the resistance from the junction of R1/C1 to ground. The ohmmeter reads 50 ohms. Now, measuring the resistance from pin 6 to ground we find 22K. This indicates that C1 is shorted. Capacitor C1 is removed from the circuit and the ohmmeter reads infinity across it. When C1 is replaced with a new capacitor, the unit works normally. Although R2 appears to be OK, it should be replaced to avoid failure.

Troubleshooting the transmitter

The second case deals with the transmitter. Here we have a General Model VS-6 transceiver with no rf output (Fig. 3, Jan.). The receiver operates normally. Turn to the transmitter servicing chart and proceed.

Turn on the unit and connect it to a power-output and modulation meter. The first step is to see if all the tubes are lighted. If they are not, check the fuses, wiring, etc. If some of them light, check the tubes that don't light as well as the wiring to the tube sockets.

When all the tubes are lighted, press the mike button and observe the rf output on the output/modulation meter. When it's zero, the chart says to check the TR (transmit-receive) switch. But since this unit uses "electronic switching," we'll skip this step and go directly to the radio/bullhorn switch. This measures OK with the ohmmeter.

Now check the mike cord and switch. In this case, both are OK. Next measure the grid voltage of the PA (rf power amplifier) section.

NOTE: It is recommended that you use a vtm here with a 1-meg isolating resistor in the probe. This reduces the loading effect of the meter. See Fig. 4, page 71, January.

This grid voltage should be at least -5 to -10 volts.

But the meter reads -0.5 volt! Now move your vtm probe to the control grid of the oscillator. We should read -5 volts or more. Our meter reads -10 volts, so we can conclude that the oscillator is working. Since the oscillator is working normally, the trouble lies between the plate of the oscillator and the grid of the PA tube. The next test on the chart is to check the voltage and resistance to ground of the plate of the oscillator and grid circuit of the PA tube. These read normal except at the grid of the PA, which reads -0.5 volt. What part could cause this trouble between the oscillator and the PA section? Could it be C1? Let's substitute for it and see what happens. We do this and the unit transmits again. In this case, the coupling capacitor was open, so no rf signal was applied to the grid of the PA tube.

Summary

See how simple it is to troubleshoot your CB rig? With the help of the servicing chart, most common troubles can be easily solved.

For more details, write: SCOTT H.H. Scott, Inc., Dept. 570-03 Maynard, Mass. 01754

Circle 100 on reader service card
NEW PRODUCTS

More information on new products is available from the manufacturers of items identified by a Reader Service number. Use the Reader Service Card at the left and circle the numbers of the new products on which you would like further information. Detach and mail the postage-paid card.

REVERBERATION AMPLIFIER, Model SR-202. Solid-state double-scatter unit provides additional depth and three-dimensional sound. Signal input 3 volts max at 1 kHz, harmonic distortion at 1 kHz less than 0.2%, output level 330 mV. Additional features: front-panel mode and reverberation mode controls. $97.50. Pioneer Electronics U.S.A. Corp., Farmingdale, N.Y.

Circle 46 on reader service card

Circle 47 on reader service card

ANTENNA MOUNT TRIPODS available in 2, 3 and 5-foot sizes. All have plastic diaphragm and specially protected moving system, is completely weatherproof. $24.95. Jensen Mfg. Div., Muter Co., Chicago, Ill.

Circle 50 on reader service card

PSYCHEDELIC LIGHT CONTROL, Model X-93, 33/4" x 3 3/4" x 6 1/2". Operate on 110 to 120 volts 60 Hz. By connecting three lights or sets of lights to the controller, the light intensity is changed in tempo with the music to produce psychedelic light patterns on walls and ceiling. $89.98. Olson Electronics Inc., Akron, Ohio.

Circle 49 on reader service card

COMMERCIAL SOUND LOUDSPEAKER, Model FX-52, 5/8", 8-ohm voice coil. This speaker produces superb low resonance and can use grill screens as small as 6" diameter. Removable universal bracket permits end transformer mounting in shallow spaces or back transformer mounting for deep spaces with small diameters. The speaker, with tuner sensitivity 500 mV, mag phono sensitivity 2.3 mV, ceramic phono 30 mV, tape monitor 500 mV. Transistor-
FAST

COMPLETE SERVICE ON ALL MAKES OF TV TUNERS

Maximum Turn In Shop 24 Hrs.

(WE SHIP C.O.D.)

YOU PAY SHIPPING

$9.95

Black & White or Color.

VHF or UHF

UV Combo’s $16.50

Price includes all labor and parts except Tubes, Diodes & Transistors. If combo tuner needs only one unit repaired, disassemble and ship only defective unit. Otherwise there will be a charge for a combo tuner. When sending tuners for repair, remove mounting brackets, knobs, indicator dials, remote fine tuning arrangements and remote control drive units.

All tuners must have remote control units and/or mounting brackets removed before tuner can be cleaned and repaired. Please remove these accessories before shipping as we will not be responsible for loss or damage.

GEM CITY TUNER REPAIR SERVICE

Box 6E Dabel Station
2631 Mardon Drive
Dayton, Ohio 45420

Circle 112 on reader service card

Service Clinic

By JACK DARR

SERVICE EDITOR

Uhf tuner problem

I've got a uhf problem in a Zenith 25MC33 chassis. The picture and sound are separated. The uhf tuner works fine, and the uhf tuner works fine on another chassis! Another uhf tuner (working) shows the same result on the Zenith. What's going on here? — F. S., Philadelphia, Pa.

This Zenith chassis has the Gold Video Guard turret tuner. On uhf, a special strip converts the uhf tuner into a 40-MHz i.f. amplifier. Since your uhf tuner works on another set, and another uhf tuner shows the same symptoms on the Zenith, this uhf strip must be out of alignment.

Remove enough strips from the turret so that you can see the uhf strip coils while it is switched in. Tune in a signal and check these coils. Better still, feed a 40-MHz swept i.f. signal into the uhf input jack, and adjust the uhf strip coils for the proper curve shape. Last resort is a new uhf strip.

Replacing scope transformer

The power transformer in my old Precise 300-C scope is burned out. Can you tell me where to get a replacement? Will a radio power transformer work? — W. B., Anniston, Ala.

A radio power transformer could be made to work, but it wouldn't be easy. Thordarson-Meissner lists several transformers in its catalogue, including one which is an exact replacement for the Heathkit O-12.

This has 400-volt center-tapped secondary and 650-volt high-voltage windings and enough filament windings to handle any typical scope circuits. The figure shows what this type

of transformer looks like. This is the 24R178.

If you can't get one with the high-voltage rectifier filament winding, use a high-voltage silicon rectifier, such as a boosted-boost rectifier, etc.

Ten-channel remote control on tape

I need a unit that will put 10 inaudible signals on a tape, for controlling a multiple-function remote-control device. They'd have to go on the regular sound track, along with the sound signals. This should be "wireless," for maximum usefulness. — D. F., La Habra, Calif.

Your best bet, probably, would be to use one of the ultrasonic control circuits now found in many remote-control TV sets. These operate in the 38-40-kHz region. For example, you could use one of RCA's 8-channel remote-control receivers, of the type used with some color TV's. If you need the full 10 channels, a couple of extras shouldn't be hard to add.

You will get into one problem, though, if you plan to record or superimpose these signals on a standard tape recorder: You'll probably have to work the amplifier and heads over to get enough response up in the ultrasonic region around 40 kHz. The average home tape recorder gets up to around 20,000 Hz, and even that's doing pretty good for some of them!

You might get better results by using the original transmitter, which has a set of tuned bars struck by spring-loaded hammers.

Suggestion: Replace the original two-track head on the recorder with one of the four-track types. Use two of the tracks for sound, and the other two for control signals. A separate high-frequency amplifier and speaker may be necessary.

You might be able to get a complete remote-control unit, microphone and all, from RCA as an alternative, look for a used TV set with one on it!
Sticking transformer cores

I've got an old Raytheon chassis in for repairs, and the core of the sound i.f. coil is stuck. I'm afraid to use force on it. Any ideas?—S. R. W., Scotland Neck, N. C.

Usual reason for core sticking is wax from the coil form or intentional sealing of the core with wax. Get an Allen wrench that fits snugly inside the core's hex socket. Hold the tip of a soldering iron against the wrench until it gets hot enough to melt the wax.

With long-nose pliers, carefully turn the wrench. If the core doesn't loosen the first time, continue heating the wrench.

Gate switches under ice

At a local hospital, they use electrically operated gates. A pair of treadles work them; when a car passes over. The problem is that they're clogging with snow and ice! What kind of sensing device would work here?—E. L., Denver, Colo.

Any one of several kinds. You might try the pressure-sensitive, sealed Tape-switch kind; these are used in supermarkets, etc., to open doors when you step on them. Being sealed, they should not be affected too much by ice.

Or, try a photo-electric cell device on the gateposts, set up about 4 feet off the ground. Because you need two sensors for each gate, proximity sensor might give trouble due to having the pickup plates so close together. This would have to be checked experimentally. The PE-cell devices can work on very narrow beams.

Horizontal shading in picture

I have a DuMont 758 chassis with picture shading across the screen. On a blank raster, it is not visible. I've seen the same thing in other chassis of this number. I've tried a lot of things, but they haven't helped. Recommendations?—C. T., Berlin, N. Y.

Analysis: This is the same thing as vertical "hum bars," except that it goes crosswise instead of up and down! In other words, you're getting some kind of "sawtooth" voltage, at the horizontal sweep frequency, into the video signal! This isn't in the sweep or B+ circuits, as it could be if you had hum bars from a leaky electrolytic filter capacitor. However, it is due to insufficient filtering somewhere.

The unshaded raster clears the sweep from suspicion; so, check the video signal with a scope. Start at the 6AW8 control grid, and follow it to the CRT cathode. The normal waveforms and peak-to-peak voltages are shown on the diagram.

Note that the normal signal waveforms are flat; they show no slanting up or down in the video portions. If the video slants up from left to right, this will make the picture darker on the right side. Slanting down left to right would make it lighter at the right. (Black is "up" in waveforms with positive-going sync, as on the CRT cathode.)

Possibilities: something like a 15-, 750-Hz sawtooth getting into the +135-volt line. In this chassis, this comes from the cathode of the 6C5U audio output tube. Cause: lack of sufficient filtering, either at the 6C5U cathode or in the boost circuit itself. (The boost feeds the plate of the 6DT6 audio detector, to eliminate warmup buzz. This is a possible path for the interfering sawtooth voltage. It could "modulate" the audio signal on the 6C5U.) Also, and quite conceivably more likely (from the clean-raster symptom!) the sawtooth could be getting into the second video i.f. amplifier stage. This is also fed from that +135-volt line. It also feeds the sync separator, noise inverter and age tubes. Since any of these might have this effect, I'd recommend this as the "most likely suspect."—R-E

The brand for all reasons

BSR McDonald 600

Every BSR McDonald automatic turntable is precision made in Great Britain to the most exacting specifications. Upon their arrival in the U.S., every model is unpacked and re-tested under actual playing conditions. That's why BSR service calls are the lowest in the industry—and perhaps that also explains why BSR sells more turntables than anyone else in the world.

McDONALD

Circle 113 on reader service card
ONE SPEAKER

by FRED SHUNAMAN

STEREO FROM A SINGLE SPEAKER SYSTEM? Sounds impossible, but Jensen has done it with the Stereo-1. And believe it or not, the technique is based on the same $L + R - L - R$ approach that separates the sounds in ordinary stereo. The new system will make stereo feasible in small rooms or apartments that lack the space needed for two-speaker stereo to be really effective.

Fig. 1—How the right and left signals are combined in the Stereo-1 system.

The new speaker is built as shown in Fig. 1. After separating the signals—we’ll get to that later—the $L + R$ signal is led to the 8-inch speaker mounted in the main enclosure, and the $L - R$ signal to the two speakers on the vertical vane mounted ahead of the main speaker and at right angles to it. Since the outputs from the front and rear of a speaker are not the same, it is necessary to have two speakers mounted in opposite directions to have identical output on each side.

How do we matrix the left and right signals back into $L + R$ and $L - R$? There must be many ways—any right and left amplifier connected in parallel or in series will put out an $L + R$ signal when connected in phase and an $L - R$ signal if connected out of phase.

Possibly the simplest way would be with a matrix composed of the output transformer secondaries, the speaker voice coils, and a tapped coil, connected as shown in Fig. 2. The main 8-inch speaker is across the whole circuit and—if the amplifier terminals are correctly phased—receives the $L + R$ signal. The two 5-inch speakers are connected between the center tap of the coil and the common terminal of the two amplifiers. Thus the signal through them is $L - R$. If the instantaneous signal from the left amplifier is greater than that in the right, a current in phase with the left amplifier signal flows, and equally but oppositely if the right amplifier signal is greater. On a mono signal, the two amplifiers should be perfectly balanced with no current through the 5-inch speakers.

Now imagine the cone of the main speaker moving forward and at the same time the cones of the two smaller speakers moving left. The sound going forward is $L + R$ and that going left is $L - R$. The two L's add and the two R's subtract (cancel each other) giving an L or left, signal toward the left. On the right side of the speaker, the cones are moving away from the right side of the main speaker, producing the reverse of the signal on the left side, $L + R$. Thus without the parentheses is $L + R$, and the R's add while the L's subtract, producing an R or right signal toward the right of the speaker. Looks like pure mathematics, but it works!

Jensen's actual circuit, a little harder to understand at first glance, is roughly similar. The matrix is a bridgelike circuit, also using a tapped coil. As shown in Fig. 3 the amplifiers are in phase in parallel ($L + R$) and not in series ($L - R$) at the same time. The left and right hot leads are connected across the $L - R$ speakers. When the L and R signals are identical, no current flows through these speakers—they receive only the difference signal.

The right signal flows through the $L + R$ speaker, one side of the tapped coil and back through the common lead. The left signal flows through the other side of the coil and back through the common, setting up a current in the other half of the

Fig. 2—A tapped coil helps matrix the signals into L plus R and L minus R.
STEREO SOUND

coils by transformer action. This current, of course, flows in the opposite direction to the one that set it up (Lenz's law) and aids the right signal. Thus the signal through the main speaker is L + R.

Furthermore, Jensen states that the L and R sources of varying magnitude and phase are matrixed in the air to create a series of virtual sound sources all across the stage, an effect harder to produce in a two-speaker system. (We are all aware that stereo is more than right and left signal—stereo "sounds different" at the end of a long corridor connected to the listening room by a door on the side—and it may well be that mixing in space gives its own special effect.) It would seem that variations in magnitude and phase would be taken into account in the stereo multiplexer, in two-speaker systems, but of course the end product has to come from two points—the right and left speakers.

Fig. 3—Jensen uses this matrix system.

Simplified Stereo Amplifiers?

JENSEN'S APPROACH TO stereo might possibly be applied to improve or simplify stereo amplifiers. Since the L + R and the L − R signals are used, why not use them direct and save some complexities? Just rectify the L − R signal and amplify it, also amplifying the L + R signal, and use them to operate speakers.

A single amplifier that separates the signals and gives L + R and L − R output was actually described in the December, 1958 issue of RADIO-ELECTRONICS (Benjamin Bauer et al., "2-Way Amplifier." It handled one channel through an all-pushpull amplifier, and amplified the other signal by applying it to the two input grids in parallel. There were two output transformers—one the regular push-pull transformer, the other in the common lead supplying both output tubes.

If a Left signal were applied to one input and a Right signal to the other, the output would be L + R across the pushpull transformer, and L − R across the one for parallel use.

NOW... YOU CAN ZIP-ORDER

Amateur, Monitor and CB CRYSTALS

Your dealer has a new, fast, direct-factory ZIP Crystal Purchase Certificate that enables you to get the Amateur Controlled Quality Crystals you want mailed direct to you promptly. Ask about it.

There's no substitute for SUCCESS...

or IN-CLASS INSTRUCTION!

In electronics, it's the training that makes the difference. Employers require well-trained men and the first thing checked is where you gained your knowledge.

HEALD GRADUATES have many job offers with starting salaries often in excess of $10,000 per year. AND advancement is rapid.

GET STARTED NOW. Be a DRAFTSMAN—12 months TECHNICIAN—15 months ENGINEER (B.S. Deg.)—36 months ARCHITECT (B.S. Deg.)—42 months YOU are eligible for HEALD ENGINEERING COLLEGE if you have a high school education or the equivalent.

Increased income starts with success—success starts with your move to Heald. Send now for FREE brochures with more information on Heald in San Francisco and your future in Engineering.

FREE LIFETIME PLACEMENT SERVICE VETERAN APPROVED

HEALD Engineering College
1215 Van Ness Ave., San Francisco, California 94109

Please send me information about:

ARCHITECTURE

ENGINEERING: Civil Electrical Electronic Mechanical

TECHNOLOGY: Electronic Engineering Technician (FCC)

Radio Television Technician (FCC)

DRAFTING: Mechanical Electrical Structural

I am interested in Day Evening courses Also send an application.

NAME

ADDRESS

CITY

STATE

ZIP

Circle 116 on reader service card

91

www.americanradiohistory.com
TECHNOTES

CHECK VDR IN RCA CTC 35 CHASSIS

The VDR (voltage-dependent resistor) in the vertical output circuit regulates the bias on the vertical output tube to hold the picture height constant with wide variations in line voltage. This element is generally trouble-free but there may be instances when you want to check its operation.

An open-circuited VDR will cause vertical over-scan and some loss of vertical hold due to excessive feedback pulses from the output section to the oscillator. A shorted VDR causes loss of vertical deflection due to the loss of feedback from the output to the oscillator.

One quick check of a VDR is to substitute a new part. Another check is to temporarily replace the VDR with a 1-megohm resistor. If the VDR is defective, this resistor will permit the circuit to operate—but with excessive size and without needed voltage regulation.

A simple out-of-circuit test method is shown in the diagram. It is based on the difference in current through the VDR when two different positive voltages are applied to it. A voltage difference of approximately 1.5 to 1 (405 and 270 volts) results in a 10 to 1 current change. The voltages for the test set-up are readily available from the TV chassis. This test illustrates the operating characteristics of a VDR—RCA Plain Talk and Technical Tips

SCOPE FINDS SHORTED FLYBACKS AND YOKES

This test for shorted turns and partial shorts in flybacks, yokes and linearity and width coils is based on the ability of a tuned circuit to "ring" when a pulse is applied. The scope is used as the indicator and source of the applied pulse. The tests can be made without removing the component from the chassis. This item is based on material that appeared in RCA Plain Talk and Technical Tips.

The test pulse is tapped off the cathode of the scope's sweep oscillator through a 680-pF, 600-volt capacitor and then fed to an insulated binding post—marked SWEEP—on the front panel. The pulse from the SWEEP terminal is applied to the component under test. If the coil is good, the pattern is a damped wave-train as in Fig. 1. If the coil has one or more shorted turns, the pattern is a highly damped wave-train as in Fig. 2.

Adjust the scope sweep rate to display a single waveform as in Figs. 1 and 2. Use a sweep rate in the range of 2500-5000 Hz when testing width and linearity coils, the deflection yoke and the horizontal deflection circuit with yoke attached. Use a sweep range of 500-1000 Hz for flyback tests and for the horizontal deflection circuit with the set's yoke disconnected.

The complete horizontal output system, including flyback and yoke, can be checked by removing the plate cap from the horizontal output tube and connecting the SWEEP lead and the scope probe to the plate-cap lead on the transformer. Connect the scope ground lead to the TV chassis. A single shorted turn will produce the heavily damped wave in Fig. 2. The effect of a shorted turn can be seen when checking a good flyback by temporarily shorting the filament winding.

If a yoke checks bad, be sure to test internal capacitors and other auxiliary components before discarding it.

OLYMPIC CTC19, -20, -21 CHASSIS

Poor horizontal lock, particularly after replacing the 6JW8 horizontal oscillator tube, can be remedied by shunting a 680-pF capacitor across C267, a 0.003-pF unit. Do this on the underside of the board after checking to see if this 680-pF capacitor has been installed at the factory or during prior service.—Olympic Service Bulletin R-E
COMING NEXT MONTH

APRIL 1970

- Match Wits With A Computer
 Build an electronic game computer that predicts what you will pick next (heads or tails). It also keeps score and has a bad habit of defeating the player.

- Tune Up Your Car With A VOM
 You don't need a dwell meter to tune up that V8 under the hood. Find out how to do it with an instrument you already have — your VOM.

- Excess Speed Warning Indicator
 If you exceed a preset speed while driving, an alarm sounds. Spend a few bucks now and avoid unnecessary speeding tickets.

- Auto Radio Secrets
 Ten solid-state auto radio case histories. Problem, troubleshooting, solution.

- Plus Kwik-Fix, Service Clinic, In The Shop and several other feature articles.

HELP
YOUR OPINION IS IMPORTANT
So Radio-Electronics can continue to present the kinds of articles you want to read we need your answers to the following questions.

1. If you build something from a construction article, how many dollars are you willing to invest in the project? Please check one.
 - Up to $50
 - Up to $75
 - Up to $100
 - Up to $150
 - Up to $200
 - More than $200

2. What kind of construction article do you enjoy most? Please check one.
 - Test Equipment
 - Games
 - Hi-Fi Stereo
 - Automotive
 - Photography
 - Radio
 - Experimenters
 - TV Add Ons

3. What was the last R-E project you built?

4. What project would you like to see published in Radio-Electronics?

Your reply to this questionnaire will help make Radio-Electronics even more interesting to you.
Please clip out and mail to: Larry Steckler, Managing Editor, Radio-Electronics, 200 Park Avenue South, New York, N. Y. 10003

It's yours free for the asking!

GIAN 274 PAGE 1970 RADIO-TV ELECTRONICS CATALOG
YOUR BUYING GUIDE FOR TV's, Radios, Recorders, Phones, Amateur and CB equipment, electronic parts, tubes and test equipment ... featuring B-A's famous big bargain packed section!

Write to:
BURSTEIN-APPLEBEE CO.,
DEPT. RE-3 3199 MERCIER ST., KANSAS CITY, MO. 64111

Name
Address
City
State
Zip Code

Circle 120 on reader service card

www.americanradiohistory.com
NOTEWORTHY CIRCUITS
PORTABLE SCR TESTER

HERE IS A SIMPLE PORTABLE TESTER FOR silicon controlled rectifiers (SCR's) and silicon diode rectifiers. While not as sophisticated as may be necessary for precise laboratory work and semiconductors--comparative evaluation, its straightforward go--no-go operation is ideal for general troubleshooting and service work. It detects opens and shorts in diode rectifiers and SCR's and checks forward blocking ability and triggering on SCR's. Convenient battery operation is particularly useful when you work with automotive, marine, and aircraft equipment. This tester is more expensive than the often-used ohmmeter test because it applies at least 10 volts to the semiconductor under test. Distributor parts cost is less than $20.

Shown below is the circuit of the test set. A good rectifier lights the lamp at each of the first four positions of switch S1. No light at one or more positions means a defective semiconductor. SCR1, which has a sensitive gate-triggering characteristic and acts as a high-gain amplifier, compares the "signal" from the parameter being tested with its own critical gate-triggering voltage, and lights the lamp if that parameter is OK.

Switch S1 has five positions: battery check, forward voltage drop and trigger (for SCR's), reverse leakage, forward leakage (for SCR's only) and off.

Figs. a-d show equivalent test circuits for each position of S1. In the battery check position (a, below), the gate of SCR1 measures a portion of BATT1, the measuring battery. If the voltage is too low, the SCR will not fire and the lamp will not light. If the indicating battery (BATT2) is too weak, again the lamp will fail to light.

In the forward voltage drop test (b, below), the diode or SCR under test is put in series with the measuring circuit, and a gate signal is applied if the unit under test is an SCR. If its forward voltage drop:

- BATT1
- BATT2
- SCR1
- CALIBRATOR
- N449
- CONTROLLED RECTIFIER
- PUSH-TO-TEST
- S1
- S2

Test unit as described for the forward voltage drop test; gate signal is applied. The calibrator must be checked against a known voltage and correct values of gate triggering voltage.

Circle 121 on reader service card

SOLVE YOUR TV REPAIR PROBLEMS WITH TV TECH AID

A monthly TV publication of actual repairs, and troubles encountered in OUR business. The information will be gathered from technicians, field reps, and all the leading manufacturers.

TV TECH AID will present up to 40 different trouble shooting cases each month. Each manufacturer will have its own page. Each symptom will have a clearly marked schematic of the particular faulty stage. The faulty components, and corrections will be listed to aid in repair. No guess work.

It will contain current models, older models, circuit changes and modifications on various models as they occur.

The days of "Trial and Substitution" are over.

Time means money. Don't forfeit those valuable profits.

ONE repair is worth more than four times the investment.

Each monthly issue will contain a series of timely sheets and the cost to you is only $7.95 for a full years subscription.

TV TECH AID
P.O. BOX 603
KINGS PARK, L. I.
NEW YORK 11754

ENCLOSED IS A CHECK OR M.O. FOR $7.95 PLEASE SEND 12 ISSUES OF TV TECH AID TO:

NAME ____________________________
ADDRESS ____________________________
CITY ____________________________
STATE ____________________________ ZIP

Circle 121 on reader service card

It takes a good head to get good sound from your recorder.

KEEP YOURS CLEAN.
CHECK REGULARLY FOR WEAR.
REPLACE WHEN NECESSARY.

Your Nortronics distributor has the right replacement for almost any recorder, domestic or imported, open-reel, cassette or cartridge type.

ASK FOR FREE HEAD CARE BULLETIN NO. 7260

Nortronics COMPANY, INC.
6140 Wayzata Boulevard
Minneapolis, Minnesota 55116
Phone: (612) 544-0811

Circle 122 on reader service card

94

radio-electronics

www.americanradiohistory.com
ward voltage drop is low enough, SCR1 is triggered and the lamp lights.

To measure leakage current, the rectifier or SCR is connected in parallel with the divider of the detecting circuit (circuits c, d below). Excessive leakage current diverts current from "sensing" resistor R2, preventing SCR1 from being triggered and keeping the lamp dark. The off position doesn't need much explaining.

In the FORWARD VOLTAGE DROP position, pushbutton S2 triggers the gate of the SCR under test when it is depressed, and resets SCR1 when it is released between tests. Adjust the pushbutton contacts so that the indicating lamp circuit closes just before the gate circuit does.

CALIBRATE YOUR VTVM

A vtvm should be checked periodically. This is easy if you have the usual balanced-bridge type (Heathkit, RCA, Eico, etc.).

Check the dc calibration with your vorn, or preferably a 1.35-volt mercury cell (Mallory RM-640RT2 or equivalent). This has two tabs for easy clip or solder connection. Shelf life is 2 years or more; but when voltage does decay, it goes down rapidly.

Now check the ac calibration with the circuit shown. Calibrating resistors R5, R6 can be ordinary 10% carbons, matched on your ohmmeter. Select two of nominal 1,000-ohm value that match exactly—they can be high, low, or "off to the nose." After soldering into the circuit, check that the ac voltage is equal across R5 and R6.

Calibration procedure is simple: Set the vtvm and calibrator to dc, and adjust R2 for 13.5 volts across R5 plus R6. Then switch the vtvm and calibrator to ac. The vtvm should indicate 15 volts across R5.

For these readings, explanation is brief. On dc, the vtvm indicates the arithmetic average of the sine half-wave. On ac, the vtvm is switched above to indicate the geometric average (root of the mean square) of half the sine full wave. The ratio of these average values is 2√2 divided by π, which is .9002, or 13.5 to 15.

Because this ratio holds for sine waves only, the calibrator must be connected direct to the power line, not through an isolating transformer. A Variac (or other autotransformer), however, can be used, and can even replace the voltage divider. Accuracy of the ac calibration then depends on the dc calibration.

During calibration, note the line voltage, because dc (and hence ac) indications may vary with it. For an 8% drop in line voltage, from 120 to 110, my Heathkit drops 3% in dc indication, from 1.35 to 1.31 volts. Likewise, for an 8% rise in line voltage, the dc indication rises 1.5%.

This calibrator is an improvement over my previous device (Radio-Electronics, May 1958, page 116) because the dc reading is brought near full scale by matched resistors R5, R6.

Your vorn can now be checked for accuracy by comparison to the vtvm, using the calibrator as a power supply. Due to loading error, the calibrator can't check vorn's directly.—J. H. Sutton R-E
ELECTRONICS

DIAGRAMS, SERVICE INFORMATION, television, radio, $1.50 Specify model. IMPREME, 1760 Balsam, Highland Park, Ill. 60035

BARGAIN TRANSISTORS, short leaded, marked PNP, NPN, classified AF RF, marked: 7 AF $1.00, 15 $2.00, 4 RF $1.00, 9 $2.00 + postage 0.25. ALP. DESLANDES, 334 Murray, Sherbrooke, Que., Canada.

Discharge IGNITION, PHOTOFLASH, Free cata-

log parts. kib. TRANSPARK, Carlisle, Mass. 01741

TUBES—LOWEST PRICES in the world. Hard to get British, German, foreign and American obsolete and present day special purpose trans-

mitting tubes. Send for giant tube parts cata-

logy. UNITED RADIO CO., Dept. R-56, Ferry St., Newark, N.J. 07105

TREASUREPROBES, Patented transistorized de-
fector signals "die" by earphone "beeping" 3-

search head. PC board, two coilpt oscillators improve stability. Kit $13.95, assembled $18.95, with speaker $24.88. 60 day guarantee. Send for Free bibliography "Treasure Maps and Books of U. S." TREASURE HOUSE, R820, Tennant, N.J. 07763

$100,000 INTEGRATED CIRCUIT

PENNY SALE!

EPOXY SILICON TRANSISTORS

5 for $1

Type	Sale
2N706 | 5 for $1
2N222 | 5 for $1
2N2368 | 5 for $1
2N3561 | 5 for $1
2N3565 | 5 for $1
2N3568 | 5 for $1
2N3641-3 | 5 for $1
2N446 | 5 for $1
2N4683 | 5 for $1
2N468 | 5 for $1
2N3793 | 5 for $1
2N4137 | 5 for $1
2N4248 | 5 for $1
2N4288-5 | 5 for $1
2N4288-9 | 5 for $1
2N4310-1 | 5 for $1
2N4310-9 | 5 for $1
2N4311-5 | 5 for $1

INTEGRATED CIRCUIT AUDIO AMPLIFIER! At Transistors x 4 Diodes Price

2 Diodes | 49
4 Diodes | 149

Never before offered! Self-contained, integrated circuit--size of a DEMO! TO-S case, if leads. Use on phone, tape, input & 100% of micromini-

ature audio circuits, mike, phone, tape. Output 1 to 16 ohm speaker. Complete with data.

2 AMP SILICON 800 PIV RECTIFIERS

6 for $1

SALE ON FAIRCHILD COUNTING "ICs" 3 for $14 Guaranteed! $4.95

No. Description
958 Decade Counter
959 Quad Latch
960 Decoder-Driver

POLY PAKS

P.O. BOX 942 R
LYNNFIELD, MASS. 01940

Circle 136 on reader service card

ADVERTISING INDEX

RADIO-ELECTRONICS does not assume responsibility for any errors which may appear in the index below.

READER SERVICE CARD NO. PAGE
28 Arrow Fastener Co. Inc. 76
13 B & K (Division of Dynasona Corp.) 13
111 Brooks Radio and TV Corp. 86-87
113 BSR USA, Ltd. 89
120 Burstein Applebee Co. 93
11 Castle TV Tuner Service 7
10 Channel Master 5
25 Channel Master 27
108 Electronics 56
26 Cleveland Institute of Electronics 46-49
142 Cornell Dubilier 1
111 CREL, Home Study Division of McGraw-Hill Book Co. 64-67
116 Crystal, Division of Whitehall Electronics 91

1 21 Delta Products, Inc. 23
8 EICO, Electronic Instruments Co., Inc. Cover II
124 Electronic Chemical Corp. 95
14 EMC Electronic Measurement Corp. 14
118 GBC Closed Circuit Corp. 92
113 Gems City Tune Repair Service 73-75
1 Grantham School of Electronics 1
9 Heath Engineering College 91
27 Heath Co. 73-75
141 International Crystal Mfg. Co. 100
109 Interetch 85
123 Judson Research & Mfg. Co. 95

107 Lafayette Radio Electronics 83
19 Leader Instrument Corp. 22
15 Motorola Training Institute 14

14 National Radio Institute 8-11
18 National Technical Schools 18-21
122 Nortronics Co., Inc. 94

110 Olson Radio Corp. 87
114 Pennwood Numichron Co. 99
24 Pioneer Electronics 26
22 Quam-Nichols Co. 24
19 Quietrolle Co. 92

10 RCA Electronic Components Tubes Cover IV
11 RCA Institutes 28-31
12 RCA Parts Distributors 77
29 RCA Test Equipment 77
12 Rye Industries, Inc. 12
20 Rye Industries, Inc. 22

13 S & A Electronics 12
106 Schuber Grain Co. 82
10 Scott, Inc., H. H. 78
17 Sencore 16
23 Shure Bros., Inc. 25
16 Sony Corp. of America 86
15 Supreme Publications 86
115 Thruson Center 90
89 Sylvania 32

112 TV Tech Aids 94
7 market center 96-99
138 Arcturus Electronics Corp. Be Electronics
137 Edmond Scientific Co. Lakeside Industries
138 McGee Radio Co. Music Associated
139 General Electric Products
136 Poly Pak
140 Solid State Sales Teradyne Corp.

SCHOOL DIRECTORY 99
1 To-State College
1 Valparaiso Technical Institute
SEND 2511, Denver 80201
COLOR ORGAN
stations Kit
1970
DEERE, catalog
SCA 65
receiver, terms.
FM PROGRAMS
MONTHLY
HI -FI $1.00.

Send your one name
for receiver.

PROJECTION KALEIDOSCOPE
or combos. House
for 1.00.

FILE HANDBOOK
I9I2EH $6.00 Ppd.

GIAN T 55° LIGHT COLUMN!
Really mercurial 4-channel color organ transmits every
out, beat and vibrations of sound blending, chang-
ing, changing patterns of color. Each. Color control
-automatically adjustable to pick up finest sound with
height rhythms. Easily at-
tuned to amplifier stereo.

LIGHT FIXTURE
Ideal for night-stand, hall-
way, living room, bedroom.

WANTED
QUICK CASH... for Electronic EQUIPMENT,
COMPONENTS, unused TUBES. Send list now!
BARRY, 517 Broadway, New York, N. Y. 10012,
212 WALKER 7-5000

GENERAL
JAPANESE NEW PRODUCTS MONTHLY! 1.00
Refundable. DEERE, 10639 Riverside, North
Hollywood, Calif.

ENJOY THE "MUSIC ONLY" FM PROGRAMS
M. A. D.
MUSIC ASSOCIATED'S DETECTOR for continuous, commercial-free music with ANY FM tuner or receiver

AUDIO – HI-FI
Tapemakers makes available to you ALL 4-TRACK STEREO TAPES. All labels–postpaid to your door–at tremendous savings. For free brochure write: TAPEMATES CLUB, 2580 RE West Pico Blvd., Los Angeles, Calif. 90019
FABULOUS OLD TIME RADIO ON TAPE. BOX 2511, Denver 80201

TPA RECORDER SALE. Brand new nationally advertised brands. $10.00 above cost. Amazing discounts. For free brochure write: NATIONAL ELECTRONICS, 1028 E Commonwealth Avenue, Boston, Mass. 02215
INTEGRATED CIRCUIT KITS: Computers, audio, other, 1970 catalog free. WRITE ENGINEERING, Box 3932-D, Long Beach, Calif. 90803
WRITE for highest discounts on components, recorders, tapes, from franchised distributors. Send for FREE E-Z CATALOG. CARSTON, RFP #4, Route 7, Brookfield, Conn. 06804

MARCH 1970
LATEST ARCTURUS SPECIALS

- Color focus rectifiers, 14,000 P.I.V. at 1 MA, 99¢ each. 6.5 KV—79¢
- Color TV yokes 70° & 90° types. Fit almost all sets $10.95.
- 1,700 Transistor types—39¢
- DS-501, 2N278 power transistor types. Cat. #349, 69¢
- HEP170, Motorola HV/Curr-ent epoxy silicon rectifiers, 2.5 amps at 1,000 PIV, 49¢
- Fully transistorized UHF tuners. Fit most sets. Cat. #UHF567, $4.95 each.
- UHF tuners, 1 tube type. Fit most sets. Cat. #UHF3, $3.95 each.

Complete listings of electronic items at similar bargain prices are available. Write for our latest catalog. Minimum order $5.00, plus postage.

ARCTURUS ELECTRONICS CORP.
502-22nd St., Union City, N. J. 07087
Phone: 201-864-5568

Circle 138 on reader service card

COLOR T.V.
IS TERRIFIC with TERADO
VOLTAGE ADJUSTERS CORRECTS HIGH OR LOW VOLTAGE TO NORMAL
C.A.P. 101 to 500 watts
SATURN (shown) Moled no. 50-172 List $7.95
POLARIS (w/o meter) Model no. 50-204 List $16.50

FULL DEALER DISCOUNTS
See your ELECTRONICS DISTRIBUTOR or write

TERADO CORPORATION
1055 Raymond Ave., St. Paul, Minn. 55103

HOBBYISTS, EXPERIMENTERS, TECHNICIANS, INVENTORS, now you can have your BLACK AND WHITE TELEVISION CONVERTED TO COLOR, BY MEANS OF A NEW PATENTED CIRCUIT. COMPLETE INSTRUCTIONS AND BLUE PRINTS, WRITE, BELE ELECTRONICS CORP. 121 S.E. FIRST ST. MIAMI, FLORIDA. 33131

WRITE NOW FOR FREE 1970 CATALOG
HGE RADIO COMPANY
1001 BARGAINS IN SPEAKERS—PARTS TUBES—HIGH FIDELITY COMPONENTS RECORD CHANGERS—TAPE RECORDERS—KITS EVERYTHING IN ELECTRONICS
1901 McGee St., Kansas City Re, Missouri 64108

PEP'S Dollar Sale

$1 Money Back guarantee $1
1 amp Silicon Rectifier choice of package
Bullet—Miniature Glass-
5-500V units $1.00
4-1000V units $1.00
3-1200V units $1.00

3 AMP Epoxy Package
1-1000V units $1.00
4-500V units $1.00
2-1000V units $1.00

5 AMP Epoxy Package
6-200V units $1.00
6-250V units $1.00
3-300V units $1.00

SILICON STUD MOUNT
12 AMP
5-100V units $1.00
2-200V units $1.00
1-1000V units $1.00

SILICON STUD MOUNT
10 AMP
3-100V units $1.00
3-200V units $1.00
1-1000V units $1.00

SILICON STUD MOUNT
40 AMP
3-200V units $1.00
1-1000V units $1.00

SILICON STUD MOUNT
60 AMP
2-500V units $1.00
1-1000V units $1.25

SILICON GLASS DIODES
DO-7
10-100V units $1.00

SPECIAL INTEGRATED CIRCUITS
Dual 1 Input NAND Gate
Digital $1.50
Quad 2 Input NAND Gate
Digital $1.50
J K Flip Master Slave
Stabilized $1.75
Linear C 1 Operational
Amplifier Type $1.75

POWER TRANSISTOR
85 Watt Similar to 2N
217-1274-1208
1 Unit $1.00

NO SALES TAX WE PAY POSTAGE

PARK ELECTRONIC PRODUCTS
P. O. Box 78 N. Salem, N. H. 03073
Tel. (603) 983-0276

Circle 139 on reader service card

MILITARY TEST SET DIRECTORY, four volumes cover many commercial, military units: 1500 pages, $50.00 plus $7.86 postage. GORDON WHIT}
5716 N. King's Highway, Alexandria, Va. 22303

INVENTORS: protect your ideas! Free recommended procedure. WASHINGTON IN-
VENTORS SERVICE. 422X Washington Build-
ings, Washington, D.C. 20005

EDUCATION/ INSTRUCTION

FREE "Directory of 500 Corporations Seeking New Products." For information regarding developments, sale licensing of your patented/un-
patented invention. Write: RAYMOND LEE OR-
GANIZATION, 290 U Park Avenue, New York City 10017.

INVENTIONS WANTED. Patented: Unpatented. GLOBAL MARKETING, 2420 AE 77th Ave., Oak-
lard, Calif. 94605

GOVERNMENT SURPLUS

JEEPS Typically from $33.00 ... Trucks From $78.40 ... Boats, Typewriters, Airplanes, Multimeters, Oscilloscopes, Transceivers, Elec-
tronics Equipment. Used. 100,000 Bid Bargains Direct From Government Nationwide. Complete Sales Directory and Surplus Catalog $1.00 (De-
ductible First $10.00 Order). SURPLUS SERVICE, Box 820-REL, Holland, Michigan 49423

EQUIPMENT REPORT

Hickok 860 Injecto-Tracer
For more information circle reader service No. 60
THE AVERAGE SHOP CAN SERVICE small radios profitably with the proper "instrumentation." The Hickok 860 Injecto-Tracer could be it. This is a combination signal generator, signal tracer and power supply, all in one compact package. The 860 and a voltm or viwm could be all you need, plus the service data to tell you where everything is in the radio.

The "son" of the famous Model 155 Tracmeter, the 860 provides several features not in that instrument. A transistor-regulated dc power supply has two output ranges, 0-5 and 0-15 volts, adjustable to a desired voltage. A panel meter reads the actual voltage, and can be switched to read the current drawn by the radio. Two ranges are provided, 0-10 and 0-100 mA.

The signal generator provides all necessary frequencies for testing: audio at 1000 Hz, AM i.f. signals from 240 kHz up and rf signals from 50 to 1750 kHz. These can be modulated or unmodulated. A 10.7-MHz FM i.f. signal is also included.

The handiest thing in this in-

www.americanradiohistory.com
MARCH 1970

SCHOOL DIRECTORY

GET INTO ELECTRONICS

V.A.T.I. Training leads to success in the electronics, radio, television, computer, motorcycle, electrical and electrical engineering fields. Graduate gets practical training and hands-on experience in a modern learning laboratory and a clinic. Engineering Technicians, Radio Technician and Electrical Engineering Technicians degrees are available. Over 1000 graduates since 1945. Write today for more information.

VALPARAISO TECHNICAL INSTITUTE
Dept. C, Valparaiso, Indiana 46383

tri-state college

The small transistor radio is a signal tracer. This covers audio and radio frequencies in the same range as the signal generator (same dial is used), and will detect and amplify any signal in this range. With this, stage-by-stage test points can be found through any audio or radio-frequency circuit, or the "place where the signal stops" can be very rapidly located. The high impedance signal tracing probe causes little disturbance to tuned circuits.

The inputs of a stereo amplifier can be tied together, and a signal fed into them. Then, with the 860's probe, you can make A-B checks of signal levels to corresponding points in each channel. This will help to locate stages with lower-than-normal gain or distortion, or dead stages. It's also invaluable for following signals through multiple-stage, direct-coupled ("totem-pole") transistor output circuits.

Small transistor auto radios can be checked with the 860's built-in power supply. The variable-voltage feature of the power supply, along with the signal tracer, can be used to check for oscillator dropout, intermodulations and such troubles.

Intermittent troubles can be monitored by using a load resistor in place of the set's speaker and connecting the signal-tracing probe to any point in the circuit. If the signal drops out there, the probe is moved to the next test point, and so on. The instruction book includes a good "short course" in radio testing techniques using this method. - Jack Darr

CLASSIFIED ADVERTISING ORDER FORM

<table>
<thead>
<tr>
<th>No. of Words</th>
<th>30 Non-Commercial Rates</th>
<th>40 Commercial Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$5.00</td>
<td>$7.00</td>
</tr>
<tr>
<td>2</td>
<td>$5.30</td>
<td>$7.25</td>
</tr>
<tr>
<td>3</td>
<td>$5.60</td>
<td>$7.60</td>
</tr>
<tr>
<td>4</td>
<td>$5.95</td>
<td>$8.00</td>
</tr>
<tr>
<td>5</td>
<td>$6.30</td>
<td>$8.35</td>
</tr>
</tbody>
</table>

NAME
ADDRESS
CITY, STATE, ZIP
SIGNATURE
RADIO-ELECTRONICS, CLASSIFIED AD DEPT, 200 PARK AVE. SOUTH, NEW YORK, N.Y. 10003

Circle 140 on reader service card
three in one...

INTERNATIONAL'S 6024 FREQUENCY METER

- SECONDARY FREQUENCY STANDARD
- SIGNAL GENERATOR
- POWER METER

The 6024 packs three test instruments into one small package for fast, professional servicing on all makes of Citizens Radio transceivers. You have at the flick of a switch, a SECONDARY FREQUENCY STANDARD, range 26.965 to 27.255 MHz with Counter Circuit, zero to 2500 Hz; SIGNAL GENERATOR, 26.965 to 27.555 MHz and DUMMY LOAD/POWER METER, up to 5 watts.

Order your International 6024 today!

Complete with connecting cable, dummy load, rechargeable battery and charger. $345.00

PRACTICAL CB RADIO SERVICING

A reference manual for CB'rs, servicemen and students

This book covers virtually every servicing problem faced by CB radio enthusiasts, technicians, servicemen, and students. It provides all the theory and detailed procedures needed to repair and maintain equipment in a professional manner. Ideal tool for spot-testing and trouble shooting. Complete with tables and charts. $4.75 postpaid

WRITE FOR CATALOG

INTERNATIONAL

CRYSTAL MFG. CO., INC.
10 NO. LEE * OKLA. CITY, OKLA. 73102

Circle 141 on reader service card

www.americanradiohistory.com
"These capacitors practically sell themselves, like in a supermarket!"

Says Alexander Wellington, owner of Sylvan-Wellington, Inc., New York City, in speaking about The Re-Place, Cornell-Dubilier's new capacitor replacement center. "I am amazed at the increase in turnover, and the ease of selling."

A pioneer in electronic servicing, Mr. Wellington was also one of the first of those alert distributors who have installed The Re-Place in their stores.

The Re-Place is both a showcase and a self-service store within a store, all in a compact 5' x 2' area. It organizes capacitor inventory and makes it easy for customers to select and buy from a complete stock of twist-prong aluminum electrolytics, tubular electrolytics, miniature electrolytics, ceramic discs and mica capacitors.

You can provide instant service to your customers with The Re-Place—and profitably increase your turnover, too. Call your CDE Representative today. Or write for full information about The Re-Place."
The brilliance of our new color replacement tube is matched only by the sharpness of its pictures

RCA MATRIX

Now it’s easier to sell up to the best. RCA has added brightness without sacrificing sharpness! Here’s how and why:

To produce the brightest color picture tube in RCA’s history, we developed a new phosphor-dot screening process that incorporates a jet-black matrix. But we didn’t stop there. We wanted a tube that could deliver sharp, vivid pictures even in strong room light. So, we added the brilliance of new phosphors and deposited each red, green and blue phosphor-dot within the black matrix. Result: brighter pictures with no loss of contrast. Thanks to the matrix technique, combined with our new high resolution gun and greatly improved phosphors, the Matrix is also the sharpest color picture tube in RCA’s history. Matrix owners can turn up brightness without “turning down” color!

Will your customers see the difference? You bet! What’s more, they’ll be pre-sold on the difference— every time they see the 1970 big-screen color sets people are talking about! So when they need a replacement tube, satisfy their appetite for brighter, sharper pictures. Don’t replace their old tubes with another “old” tube. Give their set’s new brilliance and more vividly detailed pictures with RCA Matrix. The Matrix Tube is 100% brighter than any previous color picture tube manufactured by RCA.

For complete details, call your RCA Distributor.

RCA Electronic Components,
Harrison, New Jersey