HOW YOU SEE COLOR
Turn to page 34
PICK ANY NUMBER FROM 1G3GT TO 19AU4 AND YOU'RE A WINNER!

Circle 1 on reader's service card

...AND ON AND ON. FOR THE COMPLETE LIST, WRITE AMPEREX ELECTRONIC CORPORATION, HICKSVILLE, L.I., NEW YORK 11802.
INTERNATIONAL Model MO TRANSCEIVER
For CITIZENS RADIO SERVICE

- New Compact Size
- New Solid-State Crystal Switching Circuit
- New Photo-Control Volume Circuit
- New Remote Control With Matching Microphone

The International Model MO Citizens Radio transceiver, custom designed for mobile installation, provides instant push-to-talk crystal controlled operation on any 6 channels with full 5 watts power input. The new compact control head provides complete remote controlled operation. All circuits are dc using solid-state crystal switching. The operating channel is indicated by an illuminated button on the control head. Tubes and silicon transistors are combined to provide a rugged trouble-free circuit.

The complete transceiver includes: a remote control head (about the size of a cigarette package), matching white microphone, new compact transmitting/receiving unit which may be conveniently installed in the trunk, and a matching white speaker which mounts under the dash. Operates from 12 vdc negative ground power source. Other power input units are available on special order.

See the “all new” International Model MO at your dealer today.

INTERNATIONAL
CRYSTAL MFG. CO., INC.
18 NO. LEE • OKLA CITY, OKLA. 73102

Circle 2 on reader's service card
Get on the green.

Get with the new PRECISE Green line for truly new design and decor in test instruments. These unique units have color dynamic front panels featuring easy-on-the-eyes Green to aid readability and accuracy. New functional design and layout make operation fast and foolproof. Inside, they’re on line with sophisticated circuitry checked out for reliability. So when it comes to test instruments, take the best course. Swing with PRECISE scopes, VTVMs, power supplies, signal generators, tube testers, decade boxes and probes.

MODEL 636
AF SINE SQUARE GENERATOR — 20 cps to 200 kc in four ranges. Less than 0.25% sine wave distortion at 10 vrms into 600 ohms load.

MODEL 780
CONTINUOUSLY VARIABLE REGULATED VOLTAGE SUPPLY — Regulated dc output from 0 to 400 v at 150 ma, and 0 to —150 v bias. Also provides unregulated ac. Meters for voltage and current.

MODEL 905
VACUUM TUBE VOLTMETER — Comes with assembled dc/ac-ohms probe. Direct reading of p-p voltages. Separate ac low voltage scale. Low 0.5 vdc range for transistor circuit measurements.

PRECISE ELECTRONICS / Division of Designatronics, Inc. / Mineola, L.I., N.Y.

Circle 3 on reader's service card
Radio-Electronics

GUEST EDITORIAL

33 Color Television 1965-1975 .. David Lachenbruch

COLOR TELEVISION

COVER STORY

34 How We See Color ... Eric Leslie
Inside the color TV tube

36 Chroma Trouble Chart .. Jack Darr
Step-by-step checks help you pounce on color troubles

38 How To Get Better Color ... Matthew Mandl
Set the front panel controls right before you worry about service!

40 Whatever Became of the Chromatron? Peter E. Sutheim
Tube is appearing in sets in Japan

42 Roundup of 1966 Color Receivers .. Chief features of all the new models

46 Convergence in Basic English ... Jack Darr
Ingenious circuitry boiled down to simple terms and diagrams

52 Build a Video Modulator for CCTV Earl T. Hansen
Works with any camera and home sets on channels 2 through 13

59 Which Generator for Color Service? Robert A. Dunn and Don D. Herzog
Rainbow, keyed rainbow or NTSC type?

GENERAL

22 Service Clinic

49 In-the-Ear Hearing Aid Uses Microcircuit

58 What's Your EQ?

AUDIO-HIGH FIDELITY-STERO

50 Repairing Record Changers .. Homer L. Davidson
Second of two parts: what to do when it runs too slow

55 Long Ones, Short Ones, Fat Ones, Tall Ones George L. Augspurger
Bass-reflex enclosures don't have to be huge

67 Equipment Report: AR-2av Speaker System; Garrard Lab 80 Automatic Turntable

RADIO

45 Improvement for Heathkit Multiplex Tuner

54 Selective AF Amplifier Boosts Receiver Performance J. Queen

82 The Phantom Resistor ... Wayne Lemons
Cy and Lucky dig into a hybrid car radio

ELECTRONICS

39 Electronic Nose Smells Gas .. Eric Leslie

TEST INSTRUMENTS

56 Quick Henry! .. Fred Blechman
Measures inductance, resonance and Q

66 Equipment Report: RCA WR-64B Color-Bar/Dot/Corsshatch Generator; Sencore CG135 All-Transistor Deluxe Color-Bar Generator

88 TV Pix on Scope Screen Pretty Common

THE DEPARTMENTS

14 Correspondence
103 New Books
83 New Literature
75 New Products
84 New Semiconductors & Tubes
4 New News-Briefs
100 Noteworthy Circuits
98 Technotes
95 Try This One
58 50 Years Ago

72 Reader's Service Page

Cover illustration by Otto Markiewicz; photographs by Harry Schlack

DU MONT DEAD AT 64

Cathode-ray tube and television pioneer Allen B. Du Mont died Nov. 15, 1965. His interest in electronics dated from age 11, when his father gave him a crystal set while he was recovering from a polio attack. He got a radio-telegraph license at age 15, and operated aboard ship for the next seven summers.

After graduating from Rensselaer Polytechnic Institute in 1924, he worked as tube production engineer for Westinghouse for 4 years, leav-

ing to become chief engineer for de Forest, who was manufacturing vacuum tubes and spinning-disc TV sets.

Du Mont left to set up his own business in 1931. Working in a garage, he improved the cathode-ray tube (until then an expensive imported laboratory curiosity with a life of a few hours) to a point where C-R oscilloscopes became practical, and became a large manufacturer of scopes.

Selling one of his best-known inventions, the electron-ray indicator, or Magic-Eye tube, to RCA, he used the proceeds to start a TV factory in Passaic, selling the first TV sets to the public a few days before RCA reached the market. Du Mont also established TV stations WABD (now WNEW-TV) in New York City, WTTG in Washington and WDTV (now KDKA) in Pittsburgh.

EUROPE ON THE BROADCAST BAND AGAIN

Once again this winter many European broadcast band stations are being heard in the Eastern part of the United States.

Most continental stations go off the air for the night at 6 pm (EST) and return between 12 midnight and 1 am. Most British stations go off at 6:45 pm and return between 12:30 and 1:30 am.

Best time for reception in December and January is from shortly after sunset till 6 or 7 pm and from midnight to 2:30 am EST.

Stations heard the past fall include Madrid 584 kc; BBC (England) 647 kc (this station also broadcasts in Russian from 10:45 to 11:15 pm); Seville 683 kc; Holland 746 kc; Mira-

mar, Portugal 782 kc (till 7:30 pm); Nancy, France 836 kc; Rome 845 kc (24-hour schedule); London 908 kc; Holland 1007 kc; Droitwich, England 1088 kc; Czechoslovakia 1097 kc; Bordeaux 1205 kc; BBC 1214 kc (12:30 am–9 pm); BBC 1295 kc (foreign languages 11 pm–1 am; English 5 to 6 pm); Monte Carlo 1466 kc (midnight–6 pm).

Careful tuning and a very selective receiver are necessary.

BELL HAS HI-FI COMPUTER

The sounds of a trumpet have been generated by a computer at Bell Telephone Labs with such fidelity that they are indistinguishable from those of a real trumpet. The feat was accomplished by a 27-year-old French physicist, Jean Claude Risset, through a special computer program devised by Max Mathews and Joan E. Miller of Bell Labs.

Computer music has imitated the sounds of actual instruments before, and one piece, arranged by Dr. Mathews, has even produced a fair imitation of the human voice. The present experiment, however, has approached the actual instrument far more closely than anything that was done in the past, and provides acoustic researchers with a fresh understanding of the features in a sound wave that give an instrument or the human voice its natural, distinctive quality.

TV RECORDER INTRODUCES NEW TAPE TRANSPORT IDEA

An interesting byproduct of the competition for low-priced TV recorders is a greatly improved tape transport, introduced by Par, Ltd., of Clifton, N. J. This transport consists of a short, endless plastic belt that moves continuously past the head. The tape is cradled in this belt and is held against the head in a way that eliminates any imperfections due to mechanical motion of the tape, prevents tape tension and stretching, and permits the use of thinner tapes than previously possible, according to Par's technical director, Stewart Hegeman.

With the new tape transport the machine produced excellent pictures, marred to some extent, however, by horizontal low-frequency noise lines, which Hegeman states will shortly be eliminated by a line-clamping technique similar to that of dc restoration in TV receivers.

ULTRASONICS SMOOTH WIRE

Wire with a very smooth surface has been produced at Bell Telephone Laboratories by drawing it through dies submerged in an ultrasonically agi-

LASER LOGS LUNAR LINEARITY

Magnified view of aluminum surface used by Bell scientists in determining statistical values for irregularities on moon's surface. They determined average length, height and slope of lunar irregularities by bouncing laser beams off prepared surfaces like this one in the laboratory, and comparing with the way microwaves are backscattered from the moon. Area shown here is .0325 by .025 in.
ELECTRONICS
WHERE CAN YOU EQUAL THIS OPPORTUNITY

TO EARN A GOOD PAYING JOB IN A FAST GROWING FIELD?

DeVry's "BIG 3" AIDS TO PROGRESS ARE DESIGNED TO SPEED YOU QUICKLY TO A REAL FUTURE IN ELECTRONICS

1. EFFECTIVE TRAINING!
 Learn AT HOME in spare time, or day or evening in one of our RESIDENT SCHOOLS.

2. INDUSTRY RECOGNITION!
 DeVry programs, prepared with industry's help, are "JOB-AIMED."

3. EMPLOYMENT SERVICE!
 for ALL graduates through our contacts with many large, respected companies across North America.

ELECTRONICS is one field that spells OPPORTUNITY in big capital letters for many men 18 to 45. This widespread but FAST GROWING field offers trained men some of today's finest, good-paying job opportunities - or a chance to start a profitable servicing shop!

Even if you don't have previous technical experience or an advanced education, DeVry's "BIG 3" aids to progress may very well be YOUR stepping stones to a BETTER FUTURE. You can learn at home in your spare time, while keeping your present job. Or, in a day or evening program in our U.S. or Canadian resident school, you can develop the very skills needed to make wonderful progress. We even work to get resident students part-time jobs to help with tuition or living expenses, if necessary!

Regardless of how you complete your educational program with DeVry, you can count on industry-recognized, effective training aimed directly at providing on-the-job-type "know-how." This is followed by actual EMPLOYMENT SERVICE to help you get started in Electronics. Or, if you are in the field already, remember that a DeVry recommendation has meant plenty of ADDED DOLLARS in income to many who made themselves more valuable to employers.

See for yourself how you, too, may prepare for the INCOME, the PRESTIGE and the FINE FUTURE that goes with the title of Electronics Technician. Mail the coupon NOW for facts without obligation.

WE PREPARE YOU NOT FOR ONE JOB BUT FOR JOBS IN MANY DIVISIONS OF THE FASCINATING FIELD OF ELECTRONICS

MAIL COUPON TODAY!

DeVry Technical Institute
4141 Belmont Avenue, Chicago, Ill. 60641 Dept. RE-1-W

Please give me your two free booklets, "Pocket Guide to Real Earnings," and "Electronics in Space Travel"; also include details on how to prepare for a career in Electronics. I am interested in the following opportunity fields (check one or more):

☐ Space & Missile Electronics
☐ Television and Radio
☐ Communications
☐ Microwaves
☐ Radar
☐ Computers
☐ Automation Electronics
☐ Broadcasting
☐ Industrial Electronics
☐ Electronic Control

☐ Check here if you are under 16 years of age.

Name:
Address:
City__State__Zip__Apt__Code__

Home Study and Resident School training
Available in Canada

JANUARY, 1966

Circle 4 on reader's service card
Simply send us the defective tuner complete; include tubes, shield cover and any damaged parts with model number and complaint. Your tuner will be expertly overhauled and returned promptly, performance restored, aligned to original standards and warranted for 90 days.

UV combination tuner must be single chassis type; dismantle tandem UHF and VHF tuners and send in the defective unit only.

Exact Replacements are available for tuners unfit for overhaul. As low as $22.95 exchange. (Replacements are new or rebuilt.)

*All Labor and Parts (except tubes & transistors) $9.95

Guaranteed Color Alignment-No Add'l Charge

Edward Fuchs of Bell Labs with wire drawing machine he helped design.

tated liquid. By scrubbing the wire clean of foreign particles with ultrasonics it is possible to draw copper wire from .01 to .003 in. in diameter at 1,000 feet a minute with 9 dies, instead of the 14 required by older methods.

FCC CATCHES LAW VIOLATORS

Citizens-band operators need not feel that they are the only ones called to account and fined by the FCC. The large number of Citizens-band operators and their inexperience do result in large numbers of prosecutions. But some staid and sober business organizations have strayed as well. A recent report of the FCC lists monetary forfeitures against two ship stations, two taxicab stations and other business licensees. A public coast station was also fined $100 for repeated failure to operate within its prescribed frequency tolerance.

Most interesting of all were three citations against police radio stations, each of which was assessed $100, one for repeated failure to operate within frequency tolerances, and two for repeated failure to respond to official communications.

LASER TELEPHONE LINK TO OPEN IN MOSCOW

A 3-mile laser link between two Moscow city exchanges is to be opened soon, according to the newspaper Trud. The laser beam has already been operating experimentally in fog and rain, which present the

DR. HARRY F. OLSON HONORED

Dr. Olson (right) is presented with the Maker of the Microphone Award for outstanding scientific contributions to the world of sound. Dr. Olson, director of the Acoustical and Electromechanical Research Laboratory, RCA Labs, Princeton, N. J., was given the award for a number of contributions, chief of which was the development of the velocity microphone. The award was presented by Oliver Berliner (left) in memory of his grandfather, Emile Berliner, credited with the invention of the microphone, disc record and player, and is the third such award presented by the Berliner family.
The meat of the matter... and some boxing news

Undistorted output from a tape—as from any other link in the chain of audio components—is at the very heart of high fidelity enjoyment. Distortion (or the lack of it) is in theory simple enough to evaluate. You start out with something measurable, or worth listening to, and you reproduce it. Everything added, subtracted or modified by the reproduction, that can be measured or heard, is distortion. Since most kinds of distortion increase as you push any component of your system closer to its maximum power capability, you have to label your distortion value to tell whether you did this while coasting or at a hard pant.

Cry “uncle”

To make the distortions contributed by the tape itself big enough to measure and control, we simply drive the tape until it hollers “uncle” and use that power reference as our benchmark. Here’s the procedure. Record a 400-cycle signal (37.5-mil wavelength at 15 ips) and increase its level until in a playback, which is itself pristine, you can measure enough 1200-cycle signal (third harmonic) to represent 2% of the 400-cycle signal level. This spells “uncle!” We use 400 cycles for convenience, but insist upon a reasonably long wavelength because we want to affect the entire oxide depth.

The more output level we can get (holding the reproduce gain constant, of course) before reaching “uncle,” the higher the undistorted output potential of the tape.

Simple, what?

“Wadayamean—undistorted output at two percent?”

That’s what makes a Miss America Contest. Two percent third harmonic is a reference point that we like to contemplate for a picture of oxide performance. Since distortion changes the original sound, it becomes a matter of acumen and definition how little a change is recognizable. If you’re listening, two percent is a compromise between a trained and an untrained ear. If you’re measuring, it comes at a convenient point on the meter. It’s like a manufacturer testing all sports cars at 150 mph, even though some cars are driven by connoisseurs and some by cowboys. Same goes for tape. Two percent tells us a lot about a tape even if, on the average, you never exceed the 0.5% level.

Because undistorted output helps to define the upper limit of the dynamic range, it has a further effect on the realism of the recording. The higher the undistorted output, the easier it is to reproduce the massed timpani and the solo triangle each at its own concert hall level. And this is just another area where Kodak tapes excel... our general-purpose/low-print tape (Type 31A) gives you up to 3 decibels more crisp, clean output range than conventional tapes.

The great unveiling—Kodak’s new library box with removable sleeve!
Discover the excitement of learning Electronics with training kits NRI sends you

New Achievement Kit Custom Training Kits "Bite Size" Texts
Only NRI offers you this pioneering method of "3-Dimensional" home-study training. It's the result of more than half a century of simplifying, organizing, dramatizing subject matter. As an ambitious man you can effectively learn the Electronics field of your choice the NRI way. But NRI training is more than kits and texts. It's personal services, too, which have made NRI a 50-year leader in the home-study field.

YOU GET MORE FOR YOUR MONEY FROM NRI
Everything that you see here is included in just one NRI course. Other courses are equally complete, yet you'll be surprised at the low cost. Text for text, kit for kit, dollar for dollar—your best home study buy is NRI.
Earn $3 to $5 an hour spare or full time in TV-RADIO SERVICING

Want to earn extra money? Looking for a good paying job? Interested in your own full-time business? Radio-TV Servicing is the branch of Electronics offering all these opportunities. In addition to teaching you the facts, NRI shows you how to earn while you learn.

You can learn quickly how to install, maintain and service tube and transistor home and auto radios, TV sets (including booming Color TV), hi-fi and stereo, public address systems. Like thousands of others, you can be earning $3 to $5 an hour in spare-time starting soon after you enroll.

There's glamor and success awaiting you in BROADCASTING—COMMUNICATIONS

Good paying, fascinating positions await competent Communications Operators and Technicians. Broadcast stations, commercial stations, ships, aircraft, land vehicles all need men who know how to maintain and repair transmitting and receiving equipment. With closed-circuit TV, Facsimile, Microwave, Radar, Telemetry and all the communications needs of the Space Age, you can see how important training in this field has become. NRI training includes preparation for your First Class Radiotelephone FCC License. And you must pass the FCC exam or NRI refunds your tuition in full!

Move ahead in America's fast moving industry as an ELECTRONICS TECHNICIAN

There is a serious shortage of qualified Electronics Technicians. Electronics has found its way into hundreds of areas not even dreamed of ten years ago: offices; manufacturing; medical and dental uses; transportation; space exploration; government and military equipment... there's no end of opportunity for trained men. This course stresses the basic principles around which most Electronic devices are built; prepares you for many current job openings. Prepare now. Learn Automation, computers, data processing, ultrasonics, telemetry. Whatever your interest in Electronics, you'll find an NRI training plan for you. Check the course of most interest to you on the postage-free card and mail it today for your free NRI Catalog. No obligation. No salesman will call.

NATIONAL RADIO INSTITUTE
Washington, D. C. 20016.
careers for technicians at IBM

To technicians who seek important roles in today's technology, IBM offers careers in the world of computers. Modern computer systems and new solid state technologies have created rewarding jobs for technicians in Research, Development, Manufacturing and Systems Test. IBM is an Equal Opportunity Employer.

Owego, New York

Chemical Technicians: Experience in chemical technology, engineering physics or in any of the following: electrochemistry, lamination, adhesives, electroplating, etching, oxide coating, photo-resist, evaporation techniques.

Electromechanical Technicians: Experience in assembly and maintenance of automatic production equipment. A thorough understanding of mechanical and electrical technologies is essential.

Electronic Technicians: Experience in maintenance, calibration and repair of complex electronic test equipment, and development of high-speed circuitry.

Toolmakers: Building of semiautomatic and automatic tools to extreme close tolerances.

Qualifications: A.A.S. degree or equivalent in education or experience. Please write, outlining your education and experience, to:

- D. J. Carlson, Dept. 649N
- IBM Corporation
- Space Guidance Center
- Owego, New York 13827

Endicott, New York

Process Engineering Technicians: Planning, design or construction of automatic processing equipment. A.A.S. degree or formal tool and model-maker training required. Related experience preferred.

Electrical Designers: Requires A.A.S. degree or equivalent training in electrical technology. Experience needed in solid state circuitry and printed circuits for design of automatic component and handling equipment.

Toolmakers: Must have completed formalized tool and modelmaker apprentice program; 2 years' experience working to close tolerances on dies, fixtures, gauges and special machine tools.

Qualifications: A.A.S. degree or formal training in electrical technology. Please write, outlining your education and experience, to:

- J. C. Lloyd, Dept. 649N
- IBM Corporation
- 1701 North Street
- Endicott, New York 13760

Fishkill, New York

Electromechanical Technicians: Experienced in assembly and maintenance of automated production equipment. A thorough understanding of mechanical and electrical technologies is essential.

Designers: Mechanism design of automatic production equipment.

Electronic Technicians: Experienced in maintenance, calibration and repair of complex electronic test equipment, and development of high-speed circuitry.

Semiconductor Technicians: Experienced in semiconductor process development and manufacturing.

Toolmakers: Building of semiautomatic and automatic tooling to extreme close tolerances.

Qualifications: A.A.S. degree or equivalent in education or experience. Please write, outlining your education and experience, to:

- T. F. Flaherty, Dept. 649N
- IBM Corporation
- East Fishkill Facility, Route 52
- Hopewell Junction, New York 12533

Kingston, New York

Electronic Technicians: For work assignments with the Kingston manufacturing test organization. Upon completion of initial training, qualified applicants will be given positions involving testing, trouble-shooting and repairing core storage units, tape drives, display devices, drums, transmission control equipment and other peripheral devices associated with some of the world's largest and most advanced electronic data processing equipment.

Qualifications: A.A.S. degree in electronic technology preferred; a certificate of completion from an accredited 2-year technical school or equivalent experience will be considered.

Please write, outlining your education and experience, to:

- P. Palker, Dept. 649N
- IBM Corporation
- Neighborhood Road
- Kingston, New York

IBM

RADIO-ELECTRONICS
most difficult conditions for laser transmission, according to the newspaper. The beam links a skyscraper building of the Moscow University, outside the southwest section of the Soviet capital, with a telephone exchange near the center of the city. The report states that it will transmit simultaneously "tens of thousands of telephone calls" and "tens of standard television channels."

INTERFERENCE CONTROL ACT

MAY COME IN '66

Bill S. 1015, which would give the Federal Communications Commission power to set manufacturing standards on permissible radiation from radios, TV sets, or other electrical or electronic devices, is expected to be acted upon by the Senate Commerce Committee in the 90th Congress.

At present, the FCC cannot compel a manufacturer to construct equipment with radiation below FCC standards. Only when the equipment is in the hands of the user and actually produces radiation is the FCC empowered to proceed against the owner, confiscate the equipment and levy fines and even imprisonment.

The FCC has made more than one attempt to end this absurd situation, and S. 1015 appears to be the most promising of those attempts.

SPACE COOPERATION

NASA and the USSR Soviet Academy of Sciences reached two satisfactory understandings on space cooperation in New York. The first reaffirms an agreement for exchange of weather satellite data between Washington and Moscow. The second is a new agreement for the preparation and publication of a joint review of research in space biology and medicine in the two countries.

LIGHTNING DETECTORS

HELP FIGHT FIRE

The U. S. Forest Service's Northern Forest Fire Laboratory at Misoula, Mont. is using electronic detectors to pick up an electromagnetic field, such as that from a lightning bolt, and by triangulation locate forest areas struck by lightning. Foresters then fly over the area in planes equipped with infrared scanners that detect the heat of small fires the lightning may have started. With this infrared scanning they can detect fires at night, while formerly fires were often not discovered until smoke columns were seen the next day.
Garrard,
Ask your dealer to demonstrate this skating antiskating on the

Correspondence

TOP-CAP-CATHODE TUBES

Dear Editor:
Mr. Al Yeager in his letter about tube proliferation in Correspondence in the October issue of Radio-Electronics mentions that he has not seen a vacuum tube with the plate connection on the bottom and the cathode on the top.

A number of Canadian black-and-white TV sets use the 6AL3 (EY88), with this type of construction. It is a nine-pin damper diode with the cathode connected to a cap on the top of the glass envelope, and the plate and heater connected to the bottom pins.

This 6AL3 cannot be tested on older tube testers, nor on drugstore checkers, so the do-it-yourself customer must use the substitution method or purchase a 6AL3 from his TV service technician.

I find Radio-Electronics' articles on new electronics developments and on servicing electronic equipment interesting and useful.

J. W. Clarke
Toronto, Ont.

[Since Mr. Yeager's letter was printed, we, too, have discovered a tube whose cathode connection is the top cap: Amperex's new 6EC4, also a damper. You'll find it described on page 86 of this issue.—Editor]

MIKE FOR ELECTRONIC STETHOSCOPE

Dear Editor:
Regarding the letter that appeared in the July 1965 Service Clinic: In my days as a high school physics teacher, two students wanted to make a study of heart sounds as related to variables such as exercise, etc. Since our budget would not allow us to buy the special Shure microphone for the purpose, some investigation was done to find a suitable substitute.

We found that a small PM speaker served the purpose admirably. Since we were using a tube amplifier, we used a stepup transformer; for a transistor amplifier this might not be necessary if the proper speaker impedance were chosen. Our results were excellent—we could do oscillographic analyses of heart sounds.

J. Evans Jennings, Jr.
Lindenwold, N. J.

HOW TO HEAR 5.5-MC TV SOUND

Dear Editor:
There is a simple way to receive the sound carrier from German television transmissions on American TV sets. I used this method for 2 years while stationed in Germany.

A separate FM radio set must be available. Wrap about eight turns of insulated No. 22 wire around the first video amplifier tube and connect the other end (bare, of course) to the antenna input of the FM set. Set the dial of the FM set to the low end of the band. Tune in the picture on the TV set. Very carefully tune for the TV sound on the FM set. At first this method is tricky, for the received second harmonic on the FM radio will shift as the TV dial is adjusted. There will be a slight amount of hum, but it will not be noticed if the FM radio tone control is set to treble.

Paul D. Maxam
Eau Gallie, Fla.

FOOLPROOFING THE DUO (MORE)

Dear Editor:
The transistor duo presented by Rufus P. Turner (September R-E, p. 39) needs a bit of refinement before it can be really useful.

Mr. Turner revealed that the "secret" of making a transistor pair behave is the addition of a resistor across the base-emitter junction of the n-p-n transistor. The resistor, he explained, produces a signal voltage "high enough to drive the n-p-n vigorously." This explanation is absolutely backward! That resistor actually reduces the drive to the n-p-n. And well it should. Without it you have two stages in cascade with 100% positive feedback. When the voltage comes on, the slightest leakage in either transistor gets amplified and regenerates, causing instant and total conduction through the duo.

What does Mr. Turner's secret solution do? It merely prevents premature turn-on. With it connected, the leakage current gets up to 400 µA before the duo fires. By that time there is enough volt-
America's most successful space programs have it.

RCA Victor Color TV has it.

The reliability of RCA circuitry. The solid kind.

RCA Solid Copper Circuits won't come loose. Won't short circuit. Won't go haywire. They're the latest advance over old-fashioned "hand wiring" and bring Space Age dependability to Color TV.
A fairly good compromise is shown in the diagram. Parts cost is $1.21. The transistors were chosen for low leakage, high voltage rating and low price. R1 and R3 prevent the amplification of leakage current by either transistor. For the best turn-on characteristic these resistors should be equal. This improved duo turns on when the current through R2 reaches 1 ma. With proper choice of R2, you can get stable firing voltages from 1 to 25 volts.

ROBERT W. HARRIS
Accokeek, Md.

NEAT FILTER TRICK

Dear Editor:
I believe I can improve on or at least offer an alternate approach to Andy Maxim's "Filer for Battery Eliminator" (Try This One, August 1965).

I used the filament winding of an old TV power transformer as an inductor with one very special refinement: I resonated it at the ripple frequency (120 cycles). This is very economical if you put the resonating capacitor in the high-voltage winding. Only a small-value capacitor is required, because it will be reflected across the transformer as the square of the turns ratio.

WAYNE RODERICK
Pocatello, Idaho

KEEP UP "ONE-PIECE" ARTICLES

Dear Editor:
I have been a subscriber (or have purchased newsstand copies) ever since your magazine was called The Experimentenr many years ago. It is an excellent, well composed and well edited magazine from cover to cover.

I have subscribed to Electronic Technician and PF Reporter, but dropped them because the articles are not "together". Almost every article of more than one page, it seems, is scattered in a haphazard manner through the entire magazine. One cannot remove and file the "pages" in a notebook, because the many little pieces become lost, or at other times, the "continued on page so-and-so" items have articles on the other side, making filing or indexing impossible.

I trust you will continue to keep your items close together, and place them in the magazine so that they can be removed as successive pages.

A. F. REDMAN
Ogden, Utah

TRY CAPACITOR-DISCHARGE IGNITION

for your car. Costs a little more than conventional or transistor ignition, but worth it! Better firing of fouled plugs, less drain from the battery, no weak or missed sparks from breaker-point bounce. Uses reliable SCR circuit with transistor power inverter.

Coming in February
RADIO-ELECTRONICS
Free Photofact® Annual Index for your use throughout 1966

covers over 65,000 listings in:
TV Receivers • Home & Auto Radios • Phonos & Hi-Fi
CB Radios • Tape Recorders • Record Changers

NOW INCLUDES—
• Special Index to Color TV Receivers
• Complete Listing of Sams Technical Books
• Complete List of Sams Distributors

Send today for your instant handy guide to the world's finest electronic service data!

1966 Photofact® Annual Index

NEW "PHOTOFACT ANNUAL INDEX" AND 3 SUPPLEMENTS NOW PROVIDE COMPLETE REFERENCE TO PHOTOFACT COVERAGE:

Send for the Photofact Annual Index—your "master" reference throughout 1966. Once you are on our mailing list, you will automatically receive three additional Index Supplements (in February, May, and September, 1966) to keep you up-to-the-minute on Photofact coverage of the latest equipment released.

SEND FOR FREE ANNUAL INDEX

FREE! Famous 14-volume NEW STANDARD ENCYCLOPEDIA—the supreme gift for your family—FREE with your purchase of a PHOTOFACT Library! This invaluable Treasury of Knowledge for all the family sells at retail for $149.50—now yours FREE with the purchase of 225 PHOTOFACT Sets or more. See your Sams Distributor for the exciting details, or send coupon today!

Circle 10 on reader's service card

JANUARY, 1966

www.americanradiohistory.com
Why Fred got a better job...

I laughed when Fred Williams, my old high school buddy and fellow worker, told me he was taking a Cleveland Institute Home Study course in electronics. But when our boss made him Senior Electronic Technician, it made me stop and think. Sure I'm glad Fred got the break... but why him... and not me? What's he got that I don't? There was only one answer... his Cleveland Institute Diploma and his First Class FCC License!

After congratulating Fred on his promotion, I asked him what gives. "I'm going to turn $15 into $15,000," he said. "My tuition at Cleveland Institute was only $15 a month. But, my new job pays me $15 a week more... that's $780 more a year! In twenty years... even if I don't get another penny increase... I will have earned $15,600 more! It's that simple. I have a plan... and it works!"

What a return on his investment! Fred should have been elected most likely to succeed... he's on the right track. So am I now. I sent for my three free books a couple of months ago, and I'm well on my way to Fred's level. How about you? Will you be ready like Fred was when opportunity knocks? Take my advice and carefully read the important information on the opposite page. Then check your area of most interest on the postage-free reply card and drop it in the mail today. Find out how you can move up in electronics too.
How You Can Succeed In Electronics
... Select Your Future From Five Career Programs

The "right" course for your career
Cleveland Institute offers not one, but five different and up-to-date Electronics Home Study Programs. Look them over. Pick the one that is "right" for you. Then mark your selection on the reply card and send it to us. In a few days you will have complete details ... without obligation.

1. Electronics Technology
A comprehensive program covering Automation, Communications, Computers, Industrial Controls, Television, Transistors, and preparation for a 1st Class FCC License.

2. First Class FCC License
If you want a 1st Class FCC ticket quickly, this streamlined program will do the trick and enable you to maintain and service all types of transmitting equipment.

3. Broadcast Engineering
Here's an excellent studio engineering program which will get you a 1st Class FCC License and teach you all about Program Transmission and Broadcast Transmitters.

4. Electronic Communications
Mobile Radio, Microwave, and 2nd Class FCC preparation are just a few of the topics covered in this "compact" program ... Carrier Telephony too, if you so desire.

5. Industrial Electronics & Automation
This exciting program includes many important subjects such as Computers, Electronic Heating and Welding, Industrial Controls, Servomechanisms, and Solid State Devices.

An FCC License ... or your money back!
In addition to providing you with comprehensive training in the area indicated, programs 1, 2, 3, and 4 will prepare you for a Commercial FCC License. In fact, we're so certain of their effectiveness, we make this exclusive offer:

The training programs described will prepare you for the FCC License specified. Should you fail to pass the FCC examination after completing the course, we will refund all tuition payments. You get an FCC License ... or your money back!

CIE's AUTO-PROGRAMMED lessons help you learn faster and easier
Cleveland Institute uses the new programmed learning approach. Our AUTO-PROGRAMMED* lessons present facts and concepts in small, easy-to-understand bits ... reinforce them with clear explanations and examples. Students learn more thoroughly and faster through this modern, simplified method. You, too, will absorb ... retain ... advance at your own pace. *

Free nationwide job placement service ... for life, for every CIE graduate
Once enrolled with CIE, you will get a bi-monthly listing of the many high-paying interesting jobs available with top companies throughout the country. Many Cleveland Institute students and graduates hold such jobs with leading companies like these: American Airlines, American Telephone and Telegraph, General Electric, General Telephone and Electronics, IBM, Motorola, North American Aviation, New York Central Railroad, Raytheon, RCA and Westinghouse.

Electronics is a fast moving, dynamic industry ... Cleveland Institute keeps you current
The Electron Bulletin is CIE's bi-monthly digest of new developments in the world's fastest growing industry. As a CIE student, you will get a free copy throughout your training to keep you up-to-date on Masers, Lasers, Solid State Devices, and other new inventions.

Full accreditation ... your assurance of competence and integrity
Cleveland Institute of Electronics is accredited by the Accrediting Commission of the National Home Study Council. You can be assured of competent electronics training by a staff of skilled electronics instructors.

Cleveland Institute of Electronics
1776 East 17th Street, Dept. RE-12, Cleveland, Ohio 44114

JANUARY, 1966
THE VERTICAL OUTPUT STAGE IN COLOR SETS

The vertical oscillator/output stage in a color set is important. It does a lot more than just waggle an electron beam up and down. It's these other jobs it has that can give us the headaches if we forget 'em.

We get two very important waveforms from the vertical output transformer: the sweep and the vertical convergence. If the sweep isn’t linear, we see the familiar signs—compression, foldover and so on. If the convergence waveform is distorted, we get color fringing. Troubles in this stage show up all over the place!

This column is for your service problems—TV, radio, audio or general and industrial electronics. We answer all questions individually by mail, free of charge, and the more interesting ones will be printed here.

If you’re really stuck, write us. We’ll do our best to help you. Don’t forget to enclose a stamped, self-addressed envelope. Write: Service Editor, Radio-Electronics, 154 West 14th Street, New York 10011.

Fig. 1 shows the vertical output transformer and yoke, but notice the differences from the usual black-and-white set. The little 15-ohm pot across the secondary controls a small direct current that flows through the yoke. This gives us an adjustable, "permanent" magnetic field which controls the vertical positioning of the raster. The B+ is fed to the bottom of the secondary, flows through the whole winding and then on through the primary to the vertical-output-tube plate and other circuits. This is done to get enough current flow here to give the variation needed—not to get a pulse to feed other circuits. Note how well the current is filtered after it goes through the secondary, with a 2,700-ohm resistor and 50-μF electrolytic.

This happens in secondary A. Now let’s look at secondary B, in Fig. 2. We left this for a separate drawing to make it look simpler, which it actually is. It’s a center-tapped winding with the center tap grounded so that we can get two identical waveforms of opposite polarity from it. These are duplicates of the yoke drive waveforms since they come from the same place. P-p amplitude in this set (RCA CT17, -9, etc.) is 10 volts each side. They go to the three tilt controls on the convergence board, and from there into the convergence yoke coils, mixed with a few horizontal waveforms they pick up along the way.

Another waveform, this one a sawtooth at 6 volts p-p, is taken from the cathode of the vertical output tube and fed to the vertical amplitude controls. This is fed on into the convergence yoke and mixed with the rest. Farther along, they’re shaped into the parabolic waveforms we need. What we are interested in here is getting the right-shaped waveforms to feed into this circuitry, and this can be checked very simply with a scope and a direct probe (all is low-impedance here). The waveshapes, of course, depend on the conditions in the vertical oscillator/output stage.

I refuse to draw a schematic of this; it’s just a plain plate-coupled multivibrator, the same as that used in jillions of black-and-white sets! The only difference you’ll find will be the addition of extra wave-shaping networks, and a little
If you are going to buy a color-bar generator—or even if you already own one—here are several facts you should know.

While other types of test instruments may lack one or more features, they may still be useful in skilled hands—provided the user is aware of their shortcomings and provided he has other means of determining what he must know.

This is not true of a color-bar generator. A color-bar generator should allow you to walk away from an adjusted receiver knowing that the owner can turn it on and receive color broadcasts in full-fidelity color and sound.

Not all color-bar generators can give you this assurance.

Let's talk facts.

FACT NO. 1: A gated-rainbow type generator is accepted as the standard of the service industry

You do not need fully saturated NTSC colors to achieve perfect adjustment any more than you need an FCC-type broadcast signal for tuner and if-amplifier alignment. The gated-rainbow type signals are used by virtually all TV manufacturers in establishing service procedures for their sets.

Urgent service needs for a trustworthy color-signal source were met years ago when RCA introduced the gated-rainbow system.

Today, this basic system is used in nearly all service-type color-bar generators. The waveforms and procedures in nearly all color-TV service notes are based on this system.

FACT NO. 2: All gated-rainbow type generators are not alike

In spite of their basic circuit similarities, available models differ in their features, accuracy, and ultimate usefulness. Some of these differences are critical.

FACT NO. 3: The offset subcarrier oscillator must be controlled within a few cycles of its true frequency

This oscillator controls the phase angles (hues) of the color-bar pattern. It is the heart of the color-bar generator.

The subcarrier oscillator should be within ±20 cps of its fundamental frequency of 3.563795 megacycles. In the crystal-controlled RCA WR-64B Color-Bar / Dot / Crosshatch Generator, this deviation is kept well within the ±20 cps limit.

FACT NO. 4: Provision must be included to prevent the subcarrier oscillator from drifting off frequency

The subcarrier oscillator must not only be accurate when the instrument is new—it must stay accurate. Top-quality components minimize undesirable frequency changes.

Check, for instance, the trimmer capacitor used in the 3.56-Mc subcarrier oscillator. You'll find a piston-type ceramic capacitor—not a flat mica type—in the RCA WR-64B.

FACT NO. 5: The generator must have an rf sound carrier to assure proper setting of the fine-tuning control

Unless your color-bar generator has this essential feature, it may produce a perfect color-bar pattern on the receiver, but at the wrong setting of the receiver fine-tuning control. In such cases, the receiver may not correctly reproduce bar patterns.

The WR-64B has this necessary feature. With it, you can accurately set the fine-tuning control before making color adjustments. In the WR-64B the rf sound carrier is also crystal-controlled.

FACT NO. 6: The rf picture carrier must be exactly on frequency to assure that the color subcarrier is correctly placed in the receiver bandpass

Drift, faulty adjustment, or aging of components in the rf oscillator section can move the generator picture carrier off frequency. This shift, in turn, will also move the color subcarrier signal away from its correct position in the receiver bandpass. In some receivers, this shift will affect accuracy of color-circuit adjustments.

A separate crystal-controlled oscillator is used in the WR-64B to keep the picture exactly on frequency.

FACT NO. 7: The axes of the output color-bar pulses should lie on the zero axis—and not on elevated brightness pedestals

Elevated pulses necessitate use of an oscilloscope for accurate checking of receiver phasing.

A generator having zero-axis color-bar pulses, such as the WR-64B, does not require use of an oscilloscope for checking phasing in the customer's home.

FACT NO. 8: The generator should not require frequent adjustment of internal counter circuits

All color-bar generators contain circuits which develop vertical and horizontal sync, and dot-and-bar-pattern signals, by dividing or counting down from a higher frequency: usually 189 Kc. If one of these circuits is unstable, the patterns can jitter, ripple, jump sync or contain the wrong number of dots or bars.

Conventional R-C circuits are used in the counters of most generators. But the RCA WR-64B uses inherently stable iron-core inductors in its counters, thereby assuring long-term counter-circuit stability.

FACT NO. 9: The proper way to check receiver color performance is to feed the generator signal into the antenna terminals

Color performance depends on overall receiver condition—not on that of a single section alone. A color-test signal fed directly into the video amplifier—rather than through the antenna terminals—will not provide a proper check of the complete receiver. The only method you should use in adjusting the receiver, therefore, is the rf-signal-input method the producer method provided by the RCA WR-64B.

FACT NO. 10: There is no "best" dot size or bar width for convergence adjustments

Generator dot size or bar width has no significance for convergence adjustments.

Veteran technicians, however, have found that very small dots or thin bars are difficult to use under average lighting conditions. If receiver brightness is turned up to overcome this handicap, blooming will result. Proper convergence cannot be achieved under this abnormal condition.

The dot and bar size of the WR-64B is small enough to permit exact, speedy adjustment, and large enough to be useful under average lighting conditions.

These are ten specific facts you should know about color-bar generators. They add up to this:

FACT: The new RCA WR-64B has all the features you need for complete color-circuit adjustment

It's the one color-bar generator that meets all servicing requirements—from the company that pioneered and developed the color-TV system now in universal use: RCA! Order it today from your local Authorized RCA Test Equipment Distributor.

$189.50* *Optional distributor resale price. May be slightly higher in Alaska, Hawaii and the West. Prices subject to change without notice.
brand new
... and very important...

QUAM COLOR TV REPLACEMENT SPEAKERS PREVENT COLOR PICTURE DISTORTION

OFTEN CAUSED BY STRAY MAGNETIC FIELDS FROM ORDINARY LOUDSPEAKERS

When you use an ordinary loudspeaker in a color TV set, you're looking for trouble... picture trouble. The external magnetic fields from standard loudspeakers will deflect the primary color beams, causing poor registration and distorted pictures.

QUAM RESEARCH SOLVES THIS PROBLEM
An entirely new construction technique, developed in the Quam laboratories, encases the magnet in steel, eliminating the possibility of stray magnetic fields and the problems they cause! These new Quam speakers have been eagerly adopted by leading color TV set manufacturers. Quam now takes pride in making them available for your replacement use. Five sizes (3" x 5", 4", 4" x 6", 5½", 8")... in stock at your distributor.

When you see an eager customer in steel, the new Quam laboratories, encases an E. I. construction technique, developed by Quam. Magnetic fields from ordinary loudspeakers are used in grid circuits—6.8 megohms, 4.7 megohms, and such. Very small grid currents can set up voltage drops that interfere with the correct operation of the stage. If you run into "odd" troubles, be sure to disconnect and measure all the high-value resistors. You'll have to unhook 'em, for they're usually connected into a circuit that would make any self-respecting spider swell with pride if she could weave a web like it.

We haven't shown the "service" switch used for setup, but it's simple. All it does, in this circuit, is kill the vertical oscillator, usually by grounding the feedback loop. Here is a point that has caused some confusion. Since we've killed the vertical sweep, we have also changed the vertical convergence waveforms. This is going to change the vertical convergence, quite obviously. Service instructions for early sets using this circuit say "Adjust controls for a thin white line." It doesn't often work out that way! In fact, I've seen more that made three lines than I have that made one. The lines will often be displaced ½ inch or more from each other. This is normal: don't readjust the static convergence! If you do, when you turn the raster back on you'll be most beautifully out of convergence! Adjust for three lines of about equal brightness and go on; the convergence will go back to normal when you open the "service" switch.

A slow-heating tube or a part with thermal drift can cause some odd symptoms. The screen will show a pretty poor vertical convergence while it's warming up. Later, it will go back to perfect convergence all by itself. This is due to distortion of the vertical-convergence waveforms during warmup. If this lasts for 10 or 15 minutes, we usually have to fix it. If it goes away in 3--4 minutes, it usually escapes notice. This depends, of course, on the customer. If it bothers him, we fix it!

Change the tubes first and check. If you warm your bar...dot up beforehand, hook it to the set, and then check; you'll be able to see just how badly the set is out and how long the misconvergence lasts. Apply heat or cold to suspected parts during the warmup period, and you may be able to catch the guilty one in a short time. Don't overlook the controls—height and linearity controls have a nasty habit of developing bad contacts under the sliders if they've been left at one setting for quite a while. Spray...clean them and work them back and forth several times.

"Super" degaussing coil?

A standard degaussing coil is 430 turns of No. 20 wire on a 12-inch form. Is there a larger one, more powerful? We need one, I think, for a 23-inch color set that has been hit by lightning.—E. F., Jackson, Miss.

Actually, there's not too much difference in degaussing coils. My own is short of the specified turns (which makes it get just a wee bit hot) but it works just as well as the others, from direct comparison.

Just keep on degaussing until the trouble clears up. Color sets hit by lightning show some peculiar symptoms; mine suddenly developed a bright pink spot about 5 inches in diameter in the center of the screen! However, degaussing for about 3--4 minutes cleared it up.

Look out for troubles in the convergence board. We had another one hit just recently and the convergence board had been damaged. Several ground conductors around the edges just weren't there any more! (PC type board on CTC15.) This upset the convergence just a little (like about 2 inches). So, look for things like that first.

Vertical troubles in CTC12

I've got vertical trouble in an RCA CTC12 color chassis. The vertical linearity isn't right, and there is an intermittent "jump" in the picture; every once in a while it will suddenly drop to about half a raster, then fill out again. Vertical hold is OK.—P. L., Lynchburg, Va.

This is probably due to a slightly dirty or corroded contact between the slider and element on the vertical linearity control itself. Spray it with cleanser, and work it back and forth several times, and recheck. In bad cases, the control will have to be replaced. Check the height control at the same time.

The poor linearity may be due to a loss of capacitance in an electrolytic capacitor, usually the 50-µf on the cathode of the vertical output.

Permanently magnetized color CRT?

I've got an area of impurity on a color CRT that I can't get rid of. I've demagnetized it, moved the speaker, taken off the rim magnets, and done everything I can think of.

This is a glass tube, a 21CYP22A. In your first letter, you said that you'd
YOU GET PRODUCT PLUS FROM YOUR SYLVANIA DISTRIBUTOR

CONSUMERS' CHOICE

Here's how.

<table>
<thead>
<tr>
<th></th>
<th>Brightest Color Picture</th>
<th>Best Overall Color Performance</th>
<th>Clearest Color Picture to Watch</th>
<th>Brightest Black and White Pictures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sylvania color bright 85 picture tube</td>
<td>76.1%</td>
<td>66.6%</td>
<td>68.0%</td>
<td>77.7%</td>
</tr>
<tr>
<td>Picture Tube A</td>
<td>6.9</td>
<td>9.8</td>
<td>8.9</td>
<td>7.4</td>
</tr>
<tr>
<td>Picture Tube B</td>
<td>9.5</td>
<td>13.7</td>
<td>13.4</td>
<td>7.1</td>
</tr>
<tr>
<td>Picture Tube C</td>
<td>7.5</td>
<td>9.9</td>
<td>9.7</td>
<td>7.8</td>
</tr>
</tbody>
</table>

Test made under supervision of John J. Henderson and Associates, N. Y. Note: Not all people answered all questions—votes tabulated for 100% of answers to each.

In six major cities from coast to coast, 9,789 consumers compared the new color bright 85" picture tube to ordinary non-rare-earth color tubes in three leading brands of TV sets. Sylvania's new tube, the first with rare-earth phosphors, was the overwhelming choice.

Here's why.

The vivid colors, derived from europium rare-earth compounds, are unexcelled for true color fidelity. In monochrome, the picture is noticeably brighter; there's better contrast too. And today this extraordinary tube is still the performance leader. Sylvania's new air-spun screening process gives color bright 85 picture tubes the competitive difference in the sharpest images ever displayed.

The color bright 85 tube is available to you now for today's growing color TV market. It is a product of Sylvania Electronic Tube Division, Electronic Components Group, Seneca Falls, N. Y.

Circle 14 on reader's service card

JANUARY, 1966
WHY bother with makeshift twist-prong capacitor replacements?

When you substitute capacitor sizes and ratings, you leave yourself wide open for criticism of your work ... you risk your reputation ... you stand to lose customers. It just doesn't pay to use makeshifts when it's so easy to get the exact replacement from your Sprague distributor!

Get the right SIZE, right RATING every time with improved SPRAGUE TWIST-LOK® CAPACITORS!

1,863 different capacitors to choose from!
The industry's most complete selection of twist-prong capacitors, bar none. Greater reliability, too. Exclusive Sprague cover design provides a leak-proof seal which permits capacitors to withstand higher ripple currents.

seen similar cases in the 21AXP22 metal tubes. What could be doing this a glass tube?—W. S., Kirksville, Mo.

After all you've done, there seems to be only one answer: a bad tube! This must be some kind of permanent magnetism in the shadow mask. That's the only thing left!

As you said, when you moved the yoke, then moved the tube itself, the pattern moved with the tube! So, this just has to be something internal. I'm afraid that replacement will be the only answer in this case. Only one thing might offer a possible solution, and this is pretty wild. Try placing a small permanent magnet from a junked PM speaker near the trouble area. Since the area seems to be pretty small, there is just a small chance that you could counteract the distorting magnetic field with something like this. No guarantees on it, though!

Vertical Warmup Roll In CTC5

I've made all of the production changes listed for an RCA CTC5 color chassis, and it still rolls for about 4-5 minutes after it's turned on. If you leave it on, it'll slow down, stop, and then work OK for the rest of the evening! Vertical hold control winds up all the way clockwise.—D. M., Waco, Tex.

This is a typical set of symptoms for a heat-sensitive resistor. Most of them seem to be normal when cold, and change value when hot. This one seems to be off when cold, and back to almost normal when hot!

I'd change the 6.8-meg resistor in series with the vertical hold control, since this is the most common cause of such troubles. (Of course, don't accept this as gospel; I ran into one where the resistor was in fine shape and the vertical hold control was drifting!) At any rate, it is some component, and most likely a resistor, in the frequency-determining circuits of the vertical oscillator, that is changing value when hot. Try all of them; apply heat with a soldering iron tip and see if this makes the trouble show up, stop or change. If it does, change that part (and then go on and look for more; there may be more than one!).

END
LEARN THE PROFESSIONAL METHOD OF APPLIANCE REPAIR

For extra income, a job skill in demand, a business of your own—or to save money on your own appliance repairs.

SEND FOR FREE BOOKS
Appliance Division, Dept. 503-016, National Radio Institute
3939 Wisconsin Avenue NW, Washington, D.C. 20016
Send me the illustrated free book that tells about opportunities in Professional Appliance Servicing and details of NRI's new course—plus a sample lesson. I understand there is no obligation and no salesman will call.
Name ___________________________ Age ______
Address __________________________
City ______ Zone ______ State ______
Accredited Member National Home Study Council

SEND COUPON FOR THESE FREE BOOKS

A new, short, easy course trains you at home

Now you can prepare quickly to do professional appliance servicing at home in your spare time.

You are ready to start servicing appliances after only a few lessons. The entire course can be finished in months.

This is the fastest way to a new job skill or extra income or a business of your own. Wherever you live or want to live, you'll find a demand for top-notch appliance servicemen.

There are probably thousands of broken appliances right in your neighborhood. These can mean cash profits for you.

This new, low cost course covers—
- Small and large home appliances
- Farm and commercial equipment
- Portable electric tools
- Small gasoline engines

—there is even a special course arrangement to prepare you for the field of air conditioning and refrigeration.

Special equipment is included in your course at no extra cost.

Send coupon or write to Dept. 503-016

APPLIANCE DIVISION, NATIONAL RADIO INSTITUTE
3939 Wisconsin Avenue NW, Washington, D.C. 20016

JANUARY, 1966

www.americanradiohistory.com
"He's a good worker. I'd promote him right now if he had more education in electronics."

NOW! TWO NEW PROGRAMS!
- Industrial Electronics for Automation
- Computer Processing Systems
Could they be talking about you?

You'll miss a lot of opportunities if you try to get along in the electronics industry without an advanced education. Many doors will be closed to you, and no amount of hard work will open them.

But you can build a rewarding career if you supplement your experience with specialized knowledge of one of the key areas of electronics. As a specialist, you will enjoy security, excellent pay, and the kind of future you want for yourself and your family.

Going back to school isn't easy for a man with a full-time job and family obligations. But CREI Home Study Programs make it possible for you to get the additional education you need without attending classes. You study at home, at your own pace, on your own schedule. You study with the assurance that what you learn can be applied to the job immediately.

CREI Programs cover all important areas of electronics including communications, servomechanisms, even spacecraft tracking and control. You're sure to find a program that fits your career objectives.

You're eligible for a CREI Program if you work in electronics and have a high school education. Our FREE book gives complete information. For your copy, airmail postpaid card or write: CREI, Dept. 1401-D, 3224 Sixteenth Street, N.W., Washington, D.C. 20010.
VHF/UHF/FM ANTENNA!

Because it delivers best 82-channel TV performance—COLOR or black/white—plus FM/Stereo—using only a single downlead!

No other antenna works like the 82-channel JFD LPV-VU Color Log Periodic...

- Only the JFD LPV-VU is designed according to the patented log periodic design of the University of Illinois Antenna Research Laboratories.

- Only the JFD LPV-VU utilizes capacitor-coupled Cap-Electronic dipoles for higher mode operation that achieves higher gain, narrower beamwidths on VHF channels 7 to 13 and UHF channels 14 to 83. (Our competition's copies of the JFD LPV-VU use only fundamental mode which resonate as simple dipoles with consequently limited gain.

- Only the JFD LPV-VU offers true frequency-independent performance that insures brilliant color on any channel.

You bet you can have everything you want in one antenna—VHF, UHF, FM—with a single downlead, too! Start teaming up JFD 82-channel LPV-VU Color Log Periodics with all the 82-channel TV sets in your area—see the difference in profits and performance. Call your distributor or write for brochure 806.

32 million readers of LIFE will be seeing spectacular JFD LPV Color Log Periodic advertisements all season long. This unprecedented LIFE campaign will be pre-selling JFD LPV antennas for you!

Full-color television commercials will show millions more why the LPV's patented space-log periodic design works best on any channel—COLOR & black/white.

6 GREAT MODELS TO CHOOSE FROM

<table>
<thead>
<tr>
<th>Model</th>
<th>Color</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPV-VU12</td>
<td>Near-Fringe $49.95</td>
<td></td>
</tr>
<tr>
<td>LPV-VU15</td>
<td>Fringe $59.95</td>
<td></td>
</tr>
<tr>
<td>LPV-VU18</td>
<td>Far-Fringe $69.95</td>
<td></td>
</tr>
<tr>
<td>LPV-VU9</td>
<td>Suburban-Fringe $39.50</td>
<td></td>
</tr>
<tr>
<td>LPV-VU10</td>
<td>Near-Fringe $49.95</td>
<td></td>
</tr>
<tr>
<td>LPV-VU5</td>
<td>For City Use $25.95</td>
<td></td>
</tr>
</tbody>
</table>

JFD ELECTRONICS CORPORATION
15th Avenue at 62nd Street, Brooklyn, N. Y. 11219
JFD Electronics-Southern Inc., Oxford, North Carolina
JFD International, 64-14 Woodside Ave., Woodside 77, N. Y.
JFD Canada, Ltd.

Circle 18 on reader's service card
Radio-Electronics
Hugo Gernsback, Editor-in-Chief

Color Television
1965–1975

It has finally become apparent to everyone that the future of television is in color.

Guest Editorial by DAVID LACHENBRUCH

In the first 11 years of commercial color television, the public purchased some 2.4 million color receivers. In the 12th year—1965—the sales for a single year matched the total for all previous years combined.

This signals the end of color's slow-starting introductory period. Manufacturers expect to be selling color sets at the rate of 5 million a year within the next 3 years. Whether sales level off at this plateau or continue to climb will depend entirely on the extent of new technological developments.

Until the present boom, all color sets were very much alike, inside and outside. But when sales began to take off, changes and differences started to show up. In 1964, the first production-model rectangular color tube went to market—the 23-inch version with 92° deflection. This was followed in 1965 by the introduction of the 25- and 19-inch tubes with 90° deflection. The 1966 sets are bringing more new sizes—11-inch, 15-inch, 21- and 22-inch, all rectangular.

The new tubes are the most spectacular of the changes in color since the beginning of the boom. Among other obvious improvements have been the rare-earth phosphors, which increase brightness and improve color rendition, and automatic degaussing, which reduces the need for routine servicing and makes color sets as easily movable as black-and-white.

Perhaps even more significant have been the "invisible improvements" through the years—closer manufacturing tolerances, new receiving tubes, new production methods, hundreds of minor circuit changes—which have meant better performance and lower manufacturing costs. This spectacular upgrading has improved color-set performance and pushed prices down steadily.

Nevertheless, as a system, the current color TV receiver and its picture tube are relatively unchanged from the first set introduced in 1954. Few, if any, of the technical improvements can be regarded as truly basic.

How much longer can this "basic" tube and receiver run? Is there room for further significant improvement and price reduction within three-gun shadow-mask tube and set design, or is this the end of the line? Is this the cue for the grand re-entrance of the Apples, Bananas and Chromatrons which long ago were to have revolutionized color TV but somehow didn't?

In the near future, the "dramatic breakthroughs" in color tube and set design seem destined to remain in the lab. The current system, in the view of most industry engineers, can support further improvement and simplification. This is where the receiver industry is concentrating its energies while striving to fill a seemingly unsatisfactory demand for more, more, more sets.

Within the framework of today's basic receiver system, it's almost a sure bet that the next major change will be in the direction of solid-state. The first phase of the solid-state changeover has already come to black-and-white. In color the pace is slower; only one manufacturer has gone far beyond the tuner in substituting transistors for tubes in color sets.

But solid-state circuitry makes more sense in color television than it does in high-fidelity equipment. Because of its potential for increasing reliability and reducing bulk and heat, the transistor's application to color TV is in advanced stages of development throughout the industry. It undoubtedly will be the next major step forward. The first virtually all-transistor sets will probably show up within a year. Inside 5 years, the changeover to transistor circuits in color should be complete.

Simultaneously with this changeover will come the introduction of still more new versions of the three-gun shadow-mask tube. In 1966, there will be six sizes from 11 inches (diagonal) to 25 inches in 2-inch steps, omitting only 13- and 17-inch sizes—but with a 22-inch size thrown in for good measure. As in black-and-white, color tubes for portable sets probably will evolve fairly rapidly to 110° deflection, while the larger console tubes will hold to the present 90°.

Great ingenuity will be devoted to cutting costs still further, to help bring color within the reach of more of the American public. Some steps in this direction already have been announced in the disclosure of plans for the new 15-inch rectangular color tube. Among its features will be an "Einzel," or unipotential, lens focus system, which makes a separate focus voltage supply unnecessary and permits a relatively low 20-kv anode voltage, specifications suitable either for transistor or series-string tube operation, and eventually a rim-banded faceplate which eliminates the need for bonded or external safety glass, though first models will use conventional construction.

From the standpoint of owners, for years the crying need has been for more color programs. Suddenly this program shortage no longer exists. Probably in one more year, virtually all network TV programs will be in color—and suddenly the shoe will be on the other foot. All programs in color—but

continued on page 24

David Lachenbruch has reported on the consumer electronics industry for more than 15 years. After serving in the Signal Corps during World War II as a radio and radar technician, he was a newspaper reporter and editor, and an associate editor of Radio-Electronics. He is now editorial director of the industry newsletter, Television Digest. He is the author of the annual TV Set Buyers' Guide, distributed by TV Guide, and of numerous articles on consumer electronics.

JANUARY, 1966
What makes color television? Obviously, the picture tube. Yes, special circuitry is needed, too, but it's those color dots on the face plate that make the difference between black-and-white and "living color."

Three things make a color tube different from an ordinary black-and-white picture tube:

- The gun assembly, with three electron guns instead of one.
- The metal shadow mask, positioned just behind the screen, and containing over 300,000 holes, one hole for each of the three triads of red, green and blue dots.
- The three-color phosphor-dot viewing screen, composed of about a million red, green and blue dots.

The beam from each of the three electron guns is modulated by one of the color signals, as well as by a portion of the brightness signals (the brightness signal is applied to the cathode of each gun, color to the grid) and sends electrons out toward the phosphor screen. On their way they pass through the holes of the mask, assuring that the beam of any of the three colors will fall on the dot of the same color. These dots on the phosphor screen, coated onto the back of the face plate of the tube, give us our final picture.

The real action isn't quite as simple as that. The beam can—and will—stray from its appointed course unless prevented. Various structures inside the tube, magnets outside it, some windings inside the yoke, and special circuits in the set assure that each beam strikes its own color. But more of that later.

The three guns are mounted so that their bases form an equilateral triangle.

Each gun has a separate cylindrical screen grid (grid No. 2, see photo), the voltage on that grid can be adjusted by the red, blue or green screen controls (depending on which gun is being adjusted). The screen voltages may vary from 130 to 370. The focusing electrodes (grid No. 3) for all three guns are connected.

The last electrode is the accelerating anode, composed of three shorter cylinders. The accelerating anode is operated at the utor voltage, usually around 25,000 volts. The pole pieces through which the neck magnets on the outside of the tube concentrate and converge the beams are also attached to the accelerating anode. These magnets and how to position them are explained fully in our articles on converging color sets.

Why convergence?

It is the convergence of these beams that makes the difference between a good and a poor color (or black-and-white) picture. If all three beams fall with equal intensity on adjoining dots we have white light. If they stray a little, the color is marred, or color may appear on a black-and-white program.

Convergence comes in two kinds: static and dynamic. The beams are converged statically (that is, at the center of the screen, with no deflection) by external magnets and the structures in the tubes. Magnets on the neck make it possible to move each beam axially (toward the center or the edge of the tube). Thus the green or the red beam can be moved diagonally, as in Fig. 2, and the blue beam moves up and down.

So it should be possible to focus and aim the three beams so that all fall on the same trio of dots—red, green and blue—on the face of the tube and produce white light. But a look at the drawings shows that while any two of the beams can theoretically be made to cross over each other, the third one's path might pass the other two at some point other than where they converge. Therefore one of them—the blue beam

Fig. 1— The three guns are arranged at the vertices of an equilateral triangle.
—has an additional magnet so it can be moved sideways as well as up and down. (Fig. 2, again.) With this extra magnet (the blue lateral adjustment), the blue beam can be converged exactly with the other two. The blue lateral adjustment pole pieces are mounted near the center of the focusing electrode.

Now, with the help of the magnets, we can converge the beam so that, at the center of the screen, we have exact convergence. However at the left or right end of the scan, the distance from the electron guns to the face of the tube is a little longer than at the center. Therefore, if nothing else were done, the beams would converge before they reached the shadow mask, rather than in one of the holes in the mask, and we would have impure color at the edges of the screen.

To take care of this, dynamic convergence circuits supply voltages to the yoke which "pull" the beams to move the point of convergence farther from the gun as the beam sweeps farther from the center of the tube. Thus a properly converged tube shows colors faithfully out to the very edges. Dynamic convergence is more the job of the yoke and the circuitry than of the tube. See the article "Convergence in Basic English" on page 46 of this issue.

The shadow mask

The mask is the element that causes the red beam to strike only red dots, the green beam to strike only green dots, etc. (after the beams have been properly converged). As viewed from the tube axis, the center of each hole of the mask is exactly the same distance from the center of each phosphor dot in the color trio just beyond it. As seen from a gun, however, each hole is directly ahead of the dot that is the target of that particular beam (Fig. 3). Thus when properly converged and lined up, the red beam strikes red dots only, and the blue and green beams reach only dots of their own color.

Drawings and explanations do not always make it clear that the electron beam may not be confined to one hole in the mask. It may be large enough to cover several. Thus a large number of electrons strike the mask between holes, and are drained off as shadow-mask current. This is the basis for one of the criticisms leveled against the shadow-mask tube: that the greater part of the electrical energy is wasted in shadow-mask current rather than used to produce color by striking the screen.

The shadow-mask holes are smaller than the phosphor dots on the plate, thus making it easier to focus a beam on a particular dot. A color screen has been hailed as a triumph of engineering. Each set of color dots has to be laid down in perfect relationship to the other two sets, and so transferred to the face plate of the tube that the dots of one color do not contaminate those of another. (One of the most ingenious tubes, the Tri-chromoscope, or Geer tube, was invented because of the near impossibility of laying down the three separate colors on the face of the tube.)

Chemical breakthroughs are improving phosphor quality and brightness. Until very recently the green and blue phosphors were much brighter than the red. Therefore the red control was usually run "wide open" and the green and blue adjusted for proper color balance. Recent europium compounds have tremendously increased the efficiency of the red phosphor, and therefore the brightness of the tube in general.

There have been numerous attempts to design better color display devices, ranging from the Chromatron, which is finally coming into commercial use, through the Apples and Bananas to tubes using X-rays, and even revolving tubes. But, from the amount of money being invested by the larger companies in plants for manufacturing the shadow-mask tube, it is apparent that the color TV industry does not expect it to be replaced in the near future.

RCA 15-INCH COLOR TUBE TO USE EINZEL LENS

RCA's new 15-inch rectangular color tube will be the first commercially produced color tube to use the einzell, or single-focus, lens, widely used in black-and-white tubes.

The more common (in color tubes) biopotential lens focuses the electron beam by accelerating it through an electrostatic field formed by two cylinders, one at 5 kv, the other at 25 kv. The einzel lens needs only one high-voltage source. The beam passes through three in-line cylinders. The center one is at ground or low voltage; the end ones are connected together to the final anode voltage.

Because the voltage ratio between einzel-lens focus electrodes is essentially infinite, the lens' focal length is insensitive to variations in the high voltage. The receiver is simplified because there is no need for a focus rectifier.

Einzell-lens electron guns give the required maximum beam current at lower screen-grid voltages than those required in electrostatic design.

A disadvantage of the lens is that it has greater aberrations (distortions in its "optical" field), which must be compensated for elsewhere in the electron-optical system. Also, the nearness of the grounded electrode to the high-voltage electrodes requires extra care in manufacturing.

If the einzel lens seems successful in the 15-inch color tube, RCA expects to use it in the 19- and 25-inch tubes.

Fig. 2—With small permanent magnets on the neck of the tube, beams can be shifted for perfect static convergence.

Fig. 3—How the beams converge in a hole in the shadow mask, then diverge just enough to strike the proper dots without overlap.
This chart covers only color-stage troubles. Unless otherwise stated, the black-and-white picture is good, the sound is good, and supply voltages are normal. We've used the color circuitry of an RCA CTC10 as example, since it has the same basic stages used in all. There will be only minor variations in most other models.

CHROMA TROUBLE CHART

By JACK DARR SERVICE EDITOR

NO COLOR AT ALL, BUT GOOD BLACK-AND-WHITE PICTURE

- Check color killer. Control or switch may be turned off.
- Check all tubes, especially bandpass amplifier and color demodulator(s).
- Check all operating voltages: plate, screen, grid and cathode.
- If voltages aren't right in any stage, check parts—resistors and capacitors.
- Check secondary of bandpass transformer for continuity.

WRONG COLORS IN PICTURE

- Check tint (hue) control; must go from purplish to greenish.
- Check fine-tuning setting.
- Check burst-phase transformer adjustments.
- Check 3.58-mc oscillator and crystal.
- Check reactance control tube of 3.58-mc oscillator.
- Check 6AL5 tube and color phase detector circuit.

Note: Tint control must be able to make faces go from greenish through reddish to purplish. Normal flesh tones should be near center of range.
COLORS "RUNNING" THROUGH PICTURE. NO COLOR SYNC

Check burst amplifier, phase detector, 3.58-mc oscillator, reactance control and demodulator tubes.

Check 3.58-mc crystal, tint control, burst-phase transformer, and 3.58-mc oscillator transformer.

Check for open or leaky capacitors in burst or 3.58-mc signal paths.

No burst on control circuits at any point? Trace burst through with scope.

WRONG-COLORED RASTER WITH PICTURE (WHOLE SCREEN REDDISH, BLUISH, ETC.)

Note: Since the CRT circuits are all dc-coupled back through the video (Y) circuits and the color amplifier stages, anything that upsets the dc operating voltages of these stages will change the color temperature of the picture. The video goes to the CRT cathode, the color signals to the control grids.

Run full color temperature setup procedure on set first, to see if screen or drive control settings have been tampered with.

Check plate, grid and cathode voltages on all three color amplifier tubes, and on CRT control grids.

If any one color is obviously "off", either too much or too little, check that tube and circuits first. (Example: picture purple, green is missing.)

Last resort: Check CRT for weak gun.

TOO LITTLE OF ONE COLOR IN PICTURE: CONTROL WILL NOT INCREASE IT

Leaky coupling capacitor in grid circuit of R-Y amplifier, for example, makes bias go too far positive. Plate current rises, plate voltage drops. With dc coupling, bias on CRT increases and corresponding gun's plate current is reduced.

COLORED SNOW IN PICTURE

Color killer not working, check control setting or switch. Also check age setting, antenna, lead-in.

SIGNAL TRACING

Very easy. Put color-bar pattern on screen, use low-capacitance probe on scope, and follow typical "comb" pattern signal through whole circuit to CRT grids. (Set scope sweep at 30 cycles to get comb pattern.)

Note: The two problems at left are not in the color circuits themselves, but are often confused with troubles there, so we included them here.

COLOR TUNING RANGE TOO NARROW ON FINE-TUNER

Possible misalignment of adjacent-sound trap in i.f. input. If this is set too near sound carrier, it will cut color carrier down and make tuning very hard. Clue: beats ("worms") in colored areas and very narrow tuning range on colors. Cure: realign with sweep generator.

QUICK CHECK FOR COLOR CIRCUITS

Turn color control full up and tune into "worms". If color circuits are passing signals, you'll see multicolored worms. If color killer is too tight, or color circuits dead, there will be no colors in the worms.

END

JANUARY, 1966
HOW TO GET BETTER COLOR

Color TV pictures can be gorgeously lifelike!
Read how to use the panel controls on your set

By MATTHEW MANDL

Sure, color TV demands a little more care in adjustment than black-and-white. But color TV, when it's good, is fantastically good—and so, whether you sell it or service it or just watch it, you'll find it's worth a little extra effort to bring the picture in just right. Don't let anybody tell you that color TV is lousy! It isn't, if the receiver is properly set up.

Some simple steps will help you to improve the tint and hues. In many cases, you need no test equipment at all. (But once you get good quality, don't expect it to be perfectly consistent. Variations can often occur because of differences in cameras, stations, scenes and a few other things.)

Misadjusted black-and-white controls are one of the most common reasons for poor color reception. Many set owners don't realize how much depends on proper adjustment of contrast, brilliance, and fine tuning. They try to correct color faults by using only the color controls.

Set the brightness and contrast controls on a black-and-white picture. Too high contrast may make a harsh black-and-white picture, but on a color picture, too high a contrast setting can subdue color. Advancing the color control to cure this only adds distortion. The proper cure is to lower the contrast setting. Try to hit a happy medium of brightness for both black-and-white as well as color pictures. Don't try for super-brightness or you'll get poor focus and a washed-out color picture. Keep the color intensity looking normal, and avoid the color distortion that begins when the color control is set too high.

The fine-tuning control is much more important in color than in black-and-white. Set improperly, it detunes the local oscillator and shifts the i.f. signal. This decreases color intensity considerably or may cause color dropout. If the fine tuning is too close to the sound carrier, small, wiggly interference lines (Fig. 1) appear in the screen (in black-and-white pictures as well as color, but more noticeable in color).

A horizontal bar generator was used to make Fig. 1 so the uniform displacement of the interference lines could be shown more clearly. The grainy interference that appears when the fine tuning is off to one side is a good clue for correct setting. Back the control off beyond the point where the interference disappears. This will give you the sharpest picture and the best color. If you advance the fine tuning control too near the other extreme, the picture will be slightly fuzzy, and color will be diminished or even eliminated.

In color transmission, the color carrier is suppressed. At the receiver a 3.58-mc crystal-controlled oscillator generates a carrier for reinsertion so the color signal can be properly demodulated. A sync signal is transmitted to keep this oscillator synchronized with the program. This consists of about 10 cycles of a 3.58-mc signal riding on the back porch of the horizontal blanking pulse.

When this 3.58-mc burst signal brings the color receiver oscillator into sync, it is also important that the two signals be as nearly in phase as possible. Incorrect phase disturbs the hue (color correctness) when the phase difference reaches approximately 10°.

The hue control (also called tint control) adjusts the color phase to produce correct reds, blues, greens, etc. Adjust this control so objects on the screen have a natural appearance. Best results usually come from adjusting the hue control while watching a human face on the screen, and trying for normal flesh tone. But don't expect to be able to set the hue control and forget it. Phase errors will often occur when another camera is switched in or the station switches to a color commercial. Phase may also be upset when you switch to another station.

So, unless you compromise a bit with the hue setting, you may have to readjust it often. Engineers are working on automatic hue control—or at least a hue control that can be regulated from the armchair.

The color control adjusts the degree of color amplification in the receiver. When it is turned all the way down the picture is black-and-white. As the control is advanced, colors first appear as pastel shades and become more vivid as the control is turned further. Adjust the color control for normal-appearance scenes, above the pastel region and below overly vivid color reproduction. The setting of the fine-tuning control has a bearing on this, too. It may be necessary to readjust it when switching to another color station.

Back-of-the-set controls

If you haven't had some experience in color servicing, it's wise not to adjust rear-panel controls or components on the neck of the color tube—if they were adjusted properly when the set was installed, and have not been tampered with since. Front-panel adjustments alone should produce a good color picture.

If you see a pale but uniform tint in the picture during black-and-white reception, there are a few "back" readjustments you can try. The controls are screen and drive, shown in Fig. 2.

Because there is no white phosphor in a color picture tube, the red, blue and green phosphor dots must be made to fluoresce at the proper level to produce white. The controls shown in Fig. 2 regulate the balance, preventing one color from predominating and thus tinting black-and-white reception. The blue
Electronic Nose Smells Gas

By ERIC LESLIE

"SEEING IS BELIEVING" IS AN OLD SAYING that most of us accept as true without stopping to think about it. "Seeing is smelling" is a new idea developed by Honeywell in a device used to detect concentrations of vapors in dry-cleaning plants at levels far below possible danger points.

The unit is called Per-ector, because the gas it detects is perchloroethylene, commonly used in dry cleaning. With modifications, this "electronic bloodhound" can detect gasoline, paint, lacquer, ammonia, styrene, foam rubber, tear gas, acids—even ripe apples or bananas. It can measure the number of parts per million of the gas in the air on a meter, as indicated in the photograph, or—more usefully—close a relay that turns on fans when the gas concentration reaches a level that makes more ventilation advisable.

The bloodhound works on the principle that some gases absorb ultraviolet radiation more than others. The unit is shown outside its case in the photograph. A small source of ultraviolet light in the housing at right sends a beam to the phototube at left. When the unit is placed in the case (shown at rear), air is drawn in by the fan through the perforated grill at the end of the case, to circulate through and out a perforated grill at the other end.

If the air contains perchloroethylene gas, it absorbs more ultraviolet light than ordinary air; thus fewer photons reach the phototube. The change in phototube current is amplified and applied to the meter or a relay or both.

This device is intended to be used in dry-cleaning establishments or industrial plants where it will not receive expert attention. Vapors may deposit on the glass envelopes of the tubes, or dust can accumulate. Thus the instrument might in time become inaccurate. To prevent this, an automatic recalibration circuit is included in the unit.

The long glass tube shown in the photograph contains a standard concentration of perchloroethylene gas. Once every 24 hours it is automatically moved up to the space between the two holes in the upright partition, and the ultraviolet light travels through the known concentration.

A motor-driven potentiometer then adjusts a reference voltage so the meter will read correctly. The tube then drops back into its standby position and the equipment is reasonably accurate for the next 24 hours.

The "bloodhound" will detect concentrations of perchloroethylene as low as 10 parts per million. The relay that turns on the ventilating fans is normally set to operate at a concentration of about 40 parts per million.

END
Whatever Became of the Chromatron?

It's still very much around, though not in this country.
An improved version is appearing in Japanese sets

By PETER E. SUTHEIM
ASSOCIATE EDITOR

Cluster before passing through the holes in the shadow mask and striking the trio of phosphor dots on the screen. Because of the construction of the tube, a beam cluster properly converged at the center is grossly misconverged everywhere else. So dynamic convergence signals tug magnetically at the beams along their axes to shift the point of convergence appropriately. Aside from circuit complexity, this means extra work during manufacture or installation. Every set must be converged individually, a time-consuming operation that calls for a bit of skill and a test generator.

Another problem is that the mask itself is easily magnetized by external fields—even as weak as the earth's field, or those created by home appliances. A magnetized area in the mask spoils the aim of the beams and creates pale patches of color in the raster where it should be white. Automatic degaussing coils, in all 1966 sets, have eliminated most of this.

Do it with one beam

Naturally, any approach to color-picture-making that uses only one beam will have no convergence problems, since there will be nothing to converge. The nuisance of "gaussed" shadow masks also disappears.

The Lawrence tube was only recently developed for commercial use (though it was invented in 1951). It is now manufactured and used as the Chromatron in sets by Sony of Japan. Its phosphors are arranged in parallel, vertical stripes instead of dots. The single gun is modulated sequentially with red, green and blue information. The idea is that as the beam passes a green stripe, its intensity at that instant is determined by the green signal; as it passes a red stripe, it carries red signal information, and the same way for blue. The switching is done electronically, much in the same way as in a single-beam, multiple-trace oscilloscope. This is known as time division.

Making the beam strike only a green stripe when it is green-modulated calls for an additional bit of deflection (aside from the normal vertical and horizontal sweep), because the wires of the post-deflection focusing grid (see drawing) "hide" the blue and green stripes from the beam. It's a little like flicking your fingers this way and that as your arm swings back and forth. The second deflection must be exactly synchronized with the switching of the gun control grid from red to green to blue.

To accomplish this deft trick, the Lawrence tube's grid of vertical wires, parallel to the phosphor stripes and just behind the screen, is fed from a 3.58-mc switching voltage generator. (There are 400 wires, but only four are shown in the drawing. For illustration, they are numbered.) All even-numbered wires are interconnected in a single array, and the odd-numbered wires in another. The complete grid assembly thus has two connections, both fed from a 3.58-mc switching-voltage generator.

When there is no potential on the grid (or, actually, when all the wires are at the same potential—at the zero-axis crossing of the 3.58-mc sine wave), the beam shoots undeflected between the wires and strikes a point along a red phosphor stripe. During one half-wave excursion of the sine wave, the charge on the grid wires is such as to make the beam (electrons, remember) negative deflect toward a green stripe. During the other half-wave, the relative charges are reversed and the beam swings the other way, toward a blue element.

Thus the beam can be modulated sequentially at the cathode with the R, G and B signals, and simultaneously deflected near the screen to the corresponding phosphor stripes.

So much for the raw theory. In actual practice, the grid is fed not only with the switching voltage, but also with a dc voltage about one-third of the anode voltage. The effect of this high dc voltage is to make the grid into an electrostatic lens and accelerator, which focuses the beam and intensifies it.

Note that, with the polarity of the grid unchanged, the beam will be directed oppositely as it passes between

recent improvements. At the moment, it is firmly entrenched in American industry; all US television manufacturers are using it, and not one has announced that it is seriously considering switching to the Lawrence or any other type of tube. The shadow mask tube has definite disadvantages, some of which the Chromatron and similar tubes are said to have overcome. But to become a factor in American color TV, the new type will have to prove itself significantly better or significantly cheaper than the shadow-mask.

Two principal drawbacks of the shadow-mask tube are the necessity for convergence, and the comparatively low brightness, a result of inefficient use of the electron beams.

The low brightness can be partially overcome by using brighter phosphors and higher beam currents, but the fact remains that about 85% of the electrons in the shadow-mask tube strike the mask and not the phosphor.

The three independent electron beams must be converged into a precise
The next adjacent space between wires, because, from the viewpoint of the beam, the positive and negative wires have been interchanged. The result is the sequence of stripes shown, with twice as many red stripes as green or blue.

This can be handled in two ways. One is to make the red gating interval half as long as the others, so that although the red stripes are crossed by the electron beam twice as often as the blue or green stripes, the light output is the same. The other way assumes a less efficient red phosphor (which has been the case until the advent of the “europium reds”). That is simply to let the red phosphor get more than its share of excitation, thereby bringing the red light output nearer the green and blue.

According to Japanese data, the 19-inch rectangular Chromatron tube has 400,000 red, 200,000 green and 200,000 blue picture elements (stripes times scanning lines); about 6% of the 525 scanning lines are lost. By comparison, the 21-inch shadow-mask tube has 350,000 color-dot triangles—that is, 350,000 color elements; but some are unused, lying in the dark space between scanning lines, so that the number of active color elements is roughly equivalent for both types of tubes.

A particular advantage of the Chromatron over the shadow-mask tube is in picture brightness. At least 80% of the beam is effective in the Chromatron, compared to only about 15% in the shadow-mask tube. Still, one gun is not sufficient to excite a large screen; therefore, recent commercial designs of the Chromatron use three electron guns—not in a different principle of operation, but simply to increase available electron current and brightness. So, in a literal sense, the present Chromatron is a single-beam, three-gun tube. The picture is 3 times brighter than the picture from a shadow-mask tube, and 70% brighter than that from a single-gun Chromatron, the manufacturer claims.

For black-and-white, the demodulator delivers the same signal voltage to all three outputs. The electronic switch and the second-deflection generator continue to function, but the beam receives the same (monochromatic) information at each “position” of the switch. It thus strikes all phosphor stripes with the same current, producing white light.

The first Chromatron receiver made by Sony has 27 tubes, so it is, if anything, more complex than American shadow-mask designs. Though convergence circuitry is gone, there is now electronic-switching circuitry and a second-deflection generator, which has put out a fair bit of power. The capacitance of the deflection grid is about .001 µf, so the generator must push several amperes through that at 3.58 mc to maintain the necessary voltage. Radiation of this switching voltage, and resultant interference, has apparently been overcome in recent designs.

Deflection power (for primary deflection, that is—to the yoke) is much smaller than for the shadow-mask tube—about the same as for a 90° black-and-white set. AC power requirement for the whole set is about 290 watts.

The Colornetron tube

An offshoot of the Lawrence design is also being made and used in Japan—made by Kobe Kogyo in Kobe and used by Yaou Electric. It is a 9-inch tube called the Colornetron. It works much the same as the Chromatron, but is manufactured differently and has only one gun. At this writing, it is being used in a 9-inch, 90° portable color set. The set is virtually all solid-state; it has 47 transistors, 25 diodes and 6 thermostors. From a 12-volt battery, it draws 22 watts.

The Colornetron differs from the Chromatron designs chiefly in two ways. First, the functions of beam switching and beam focusing are divided between two grids, one behind the other. Second, the phosphors are deposited on a flat, transparent plate which is then installed in the bell of the tube, rather than being deposited directly onto the curved faceplate of the tube. In the photo of the complete set, you can see the comparatively large masked-out area; this is part of tube, not part of the cabinet.

A recently described version of the Colornetron uses a color switching frequency that is described as “very low”, although all sources are very silent about what the frequency is (15,750 cycles would seem logical). One charge leveled against the Chromatron is that it radiates 3.58 mc from its switching grid, though recent designs are said to have overcome that. A lower frequency, such as is apparently being used in the Colornetron, would be one way to solve the problem.

Also noteworthy is the fact that the Yaou receiver, with the Colornetron, uses offset-subcarrier demodulation. The offset subcarrier is commonly used in color generators to produce a complete sweep or “rainbow” of colors during each horizontal scan, but has not been used before (commercially, at least) in color receivers. The Yaou set operates with line sequential color switching, in which each horizontal scanning line is devoted to producing just one of the three primary colors. Beam switching is done during the horizontal retrace time, so there is no loss of brightness from “wasted moments” during the beam’s travel across the screen. The line sequential method has not been popular because of a “crawling” effect in the picture; but the Yaou people claim that this is not visible on the little 9-inch screen.

Information on any of these tubes turned out to be extremely hard to come by. The situation led one of my “sources” to remark that “there must be something wrong with the idea, otherwise there’d be lots of them on the market.” In a future article, we hope to show the actual beam-switching and demodulation circuitry we’ve been talking about here.
ROUNDUP OF 1966 COLOR RECEIVERS

With broadcasters steadily increasing the time devoted to color telecasts, set manufacturers are increasing the number of color receiver models. Many early 1966 models use the 70° 21-inch round tube, but the number of sets using the new 11-, 19-, 23- and 25-inch 90° rectangular tubes will increase as tube production is stepped up. The 90° tubes are shorter than the 70° 21 inch round, making it possible for designers to trim 4 to 7 inches off the front-to-back dimension and develop cabinets much more pleasing to the eye—and much more convenient.

Degaussing circuits are widely used by all manufacturers. Most are automatic but some are controlled by a pushbutton on the back of the set.

Circuitry of most 1966 sets is very similar to earlier chassis. A few designers are using compactrons to reduce the number of tubes. Philco has come out with a hybrid chassis that may well set a trend in circuit design. Transistors are used in the i.f. and agc circuits. If the trend develops, it won't be long before we have all-transistor color sets.

Fine tuning is critical on color sets, so most makers are using tuners with preset fine tuning on each channel. Individual slug-tuned oscillator coils are used. Each slug has a small gear that can be coupled to the fine-tuning control. In some tuners, the gears are engaged by pushing in on the tuning control. Others have gears that are engaged when the fine-tuning control is turned a few degrees in either direction. Magnavox uses a.c. on both vhf and uhf tuners to handle the fine tuning and to compensate for oscillator drift.

On some new sets you will find tint, color and contrast controls indexed with pointers or slide-rule dials to simplify tuning and enable the viewer to return them to the correct positions for optimum performance. The color fidelity control lets viewer tint black-and-white picture.

<table>
<thead>
<tr>
<th>Model</th>
<th>Chassis</th>
<th>Pix (in.)</th>
<th>Auto. degauss</th>
<th>Color demed</th>
<th>Color indic</th>
<th>Video peaking</th>
<th>Color fidelity</th>
<th>Preset tuning</th>
<th>Tone tuning</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADMIRAL</td>
<td>TG2200</td>
<td>1G1155-1</td>
<td>21</td>
<td>No</td>
<td>R-Y, B-Y</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>TG2211, CG2201, CG2211, CG3201</td>
<td>3G1155-2</td>
<td>21</td>
<td>Yes</td>
<td>R-Y, B-Y</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>LG2211, LG2221</td>
<td>2G1156-1</td>
<td>21</td>
<td>Yes</td>
<td>R-Y, B-Y</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>LG2231, LG2232, LG2233, LG2241, LG2243</td>
<td>3G1155-2</td>
<td>21</td>
<td>Yes</td>
<td>R-Y, B-Y</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>LG2251, LG2251D, LG2281, LG2283, LG2289</td>
<td>2G1157-1</td>
<td>21</td>
<td>Yes</td>
<td>R-Y, B-Y</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SRG2201, SMG2201, SMG2205</td>
<td>3G1155-3</td>
<td>21</td>
<td>Yes</td>
<td>R-Y, B-Y</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>LG5301, LG5305</td>
<td>G1255-4</td>
<td>23</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>LG5311, LG5315, LG549, LG5351</td>
<td>G1257-2</td>
<td>23</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>LG5511M, LG5515M, LG5619</td>
<td>G1257-2</td>
<td>23</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>LG5531M, LG5531M, LG55349, LG55351</td>
<td>G1295-1</td>
<td>23</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>LG5551M, LG55619</td>
<td>G1295-1SH9N</td>
<td>23</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SMG5301, SMG5305, SMG5311</td>
<td>G1255-5SH9N 5326AN</td>
<td>23</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SMG5611, SMG5619</td>
<td>G1255-5SH9N 2AA3A</td>
<td>25</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>LG5301W, LG5305W</td>
<td>G1355-2</td>
<td>23</td>
<td>Yes</td>
<td>R-Y, B-Y</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>LG5311W, LG5315W</td>
<td>G1357-1</td>
<td>23</td>
<td>Yes</td>
<td>R-Y, B-Y</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>4, 9</td>
<td></td>
</tr>
<tr>
<td>LG5321W</td>
<td>G1356-1</td>
<td>23</td>
<td>Yes</td>
<td>R-Y, B-Y</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>LG5331W, LG5335W</td>
<td>G1355-2</td>
<td>23</td>
<td>Yes</td>
<td>R-Y, B-Y</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>LG5349W, LG5351W, LG5363W</td>
<td>G1357-1</td>
<td>23</td>
<td>Yes</td>
<td>R-Y, B-Y</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>4, 9</td>
<td></td>
</tr>
<tr>
<td>LG5381W</td>
<td>G1355-2</td>
<td>23</td>
<td>Yes</td>
<td>R-Y, B-Y</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SMG5301W, SMG5305W, SMG5311W, SMG5321W</td>
<td>G1355-3</td>
<td>23</td>
<td>Yes</td>
<td>R-Y, B-Y</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

| ANDREA | VCU-321 | 21 | No | X & Z | No | No | No | Yes | Yes | 2 |

www.americanradiohistory.com
<table>
<thead>
<tr>
<th>Model</th>
<th>Chassis</th>
<th>Pix (in.)</th>
<th>Auto. degauss</th>
<th>Color demod</th>
<th>Color indic</th>
<th>Video peaking</th>
<th>Color fidelity</th>
<th>Preset tuning</th>
<th>Tone</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explorer Mercury</td>
<td>VCV-321</td>
<td>21</td>
<td>No</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Norwood Savoy</td>
<td></td>
</tr>
<tr>
<td>Tivoli Concord</td>
<td></td>
</tr>
<tr>
<td>Belmont</td>
<td></td>
</tr>
<tr>
<td>Imperial Alexis</td>
<td>VCV-325</td>
<td>25</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Beauvais Leonardo</td>
<td></td>
</tr>
<tr>
<td>Montrose</td>
<td></td>
</tr>
<tr>
<td>CURTIS MATHES</td>
<td>CMC22</td>
<td>23</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DELMONICO CCTV-21</td>
<td>13-122B</td>
<td>21</td>
<td>No</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>8</td>
</tr>
<tr>
<td>DuMONT 51C01 thru 51C19</td>
<td></td>
</tr>
<tr>
<td>51K01 thru 51K06</td>
<td>120786-A</td>
<td>21</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>2, 8, 10</td>
</tr>
<tr>
<td></td>
<td>120735-C-D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55K01 thru 55K04</td>
<td>120809</td>
<td>25</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>2, 8, 9, 10</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>55C01 thru 55G09</td>
<td>120809</td>
<td>25</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>8, 9</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>S9P01</td>
<td>120814</td>
<td>19</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>9</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>S3C01 thru 53C04</td>
<td>120835</td>
<td>23</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>9</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ELECTROHOME Brighton,</td>
<td></td>
</tr>
<tr>
<td>Cambridge 13, Talisman,</td>
<td></td>
</tr>
<tr>
<td>Frontenac, Salem, Lisbon,</td>
<td></td>
</tr>
<tr>
<td>Canton 13, Calcutta 13,</td>
<td></td>
</tr>
<tr>
<td>Barcelona 13, 14, 15, 16,</td>
<td></td>
</tr>
<tr>
<td>Centurion Color 27, 28</td>
<td></td>
</tr>
<tr>
<td>Nantucket, Benvenue</td>
<td></td>
</tr>
<tr>
<td>EMERSON 21C05 to 21C19</td>
<td>120786-A</td>
<td>21</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>2, 8, 10</td>
</tr>
<tr>
<td>21K04 to 21K06</td>
<td></td>
</tr>
<tr>
<td>25C01</td>
<td>120790-A</td>
<td>25</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>8, 9</td>
</tr>
<tr>
<td>25C02 thru 25G08</td>
<td>120809</td>
<td>25</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>8, 9</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>25K01</td>
<td>120790</td>
<td>25</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>2, 8, 9, 10</td>
</tr>
<tr>
<td>25K02 thru 25K04</td>
<td>120809</td>
<td>25</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>2, 8, 9, 10</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>23C01 thru 23C03</td>
<td>120835</td>
<td>23</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>9</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>29P01</td>
<td>120814</td>
<td>19</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>9</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>23K01</td>
<td>120835</td>
<td>23</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>2, 9, 10</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>GENERAL ELECTRIC M920B, M930B, M931B, M932B, M940B, M941B, M942B, M950B, M951B, M952B, M938B</td>
<td></td>
</tr>
<tr>
<td>M960B, M961B, M980B</td>
<td>CB</td>
<td>21</td>
<td>Yes (except M920B)</td>
<td>E, Y</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>M213BWD</td>
<td>HB</td>
<td>11</td>
<td>Yes</td>
<td>R, Y</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>HEATH GR-53A</td>
<td></td>
</tr>
<tr>
<td>GR-25</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>HOFFMAN FP5004, LP5001, SP5003, WS5002</td>
<td></td>
</tr>
<tr>
<td>WS510, WS520, SP5311, MS5323, WS5330, SP5331, FP5051, IC5052</td>
<td></td>
</tr>
<tr>
<td>MAGNAVOX</td>
<td></td>
</tr>
<tr>
<td>Series 43</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Series 45</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>T904</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MOTOROLA 23LK414, -416, -418, 23CL325, -328, 23CD347, -350</td>
<td></td>
</tr>
<tr>
<td>23CL319, 23CL320, 23LK414, 23LK413</td>
<td></td>
</tr>
<tr>
<td>ST5-908E</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ST5-914</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>JANUARY, 1966</td>
<td></td>
</tr>
</tbody>
</table>

www.americanradiohistory.com
<table>
<thead>
<tr>
<th>Model</th>
<th>Chassis</th>
<th>Pin (in.)</th>
<th>Auto detass</th>
<th>Color demod</th>
<th>Color indic</th>
<th>Video peaking</th>
<th>Color fidelity</th>
<th>Preset tuning</th>
<th>Tone</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>25CL250, 25CL251</td>
<td>T5917</td>
<td>23</td>
<td>Yes21</td>
<td>R & B</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>19, 23, 31</td>
</tr>
<tr>
<td>23Lk414, -417</td>
<td>T590BD, -E</td>
<td>23</td>
<td>Yes21</td>
<td>R & B</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>2, 13, 19, 23, 31</td>
</tr>
<tr>
<td>23CUs035, -306, 23C5307, 23C5310, -311</td>
<td>T5914</td>
<td>23</td>
<td>Yes21</td>
<td>R & B</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>19, 23</td>
</tr>
<tr>
<td>MUNTZ 1210, 1211, 1411, 1412, 1413, 1510 thru 1512</td>
<td>21</td>
<td>Yes</td>
<td>X & Z</td>
<td>Yes</td>
<td>No</td>
<td>Yes, on CTC17</td>
<td>Yes</td>
<td>No</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>OLYMPIC All models</td>
<td>CTC16, CTC17</td>
<td>21, 23</td>
<td>Yes</td>
<td>X & Z</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>26</td>
</tr>
<tr>
<td>PANASONIC CT-66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>13, 23</td>
</tr>
<tr>
<td>PACKARD BELL 21CT8, 21CT9</td>
<td>99C1</td>
<td>21</td>
<td>Avail as kit on 21CT8, 21CT9</td>
<td>X & Z</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>26</td>
</tr>
<tr>
<td>25CC4, 25CD1</td>
<td>9BC9</td>
<td>23</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>16, 21, 23, 26, 34</td>
</tr>
<tr>
<td>23CCL, 23CC2</td>
<td>9BC10</td>
<td>23</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>16, 1, 19, 23, 26</td>
</tr>
<tr>
<td>25CK1</td>
<td>9BC9</td>
<td>23</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>13, 16, 1, 19, 26</td>
</tr>
<tr>
<td>RCA HG-755, HG-759, HG-761, HG-765, FG, HG and GG series</td>
<td>CTC16X</td>
<td>21</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>16, 34</td>
<td></td>
</tr>
<tr>
<td>GG-288 series</td>
<td>CTC17X</td>
<td>28</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>16, 34</td>
</tr>
<tr>
<td>SETCHELL-CARLSON 3L6600-25</td>
<td>U802</td>
<td>25</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>23, 32, 34</td>
</tr>
<tr>
<td>3L66-23, -25</td>
<td>U802</td>
<td>23 or 25</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>19, 27, 35, 39</td>
</tr>
<tr>
<td>3CM66-23</td>
<td>U802</td>
<td>23</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>19, 27, 35, 36, 39</td>
</tr>
<tr>
<td>3CM66-23, -25</td>
<td>U802</td>
<td>23 or 25</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>19, 35</td>
</tr>
<tr>
<td>SYLVANIA</td>
<td>D02-1, -2, -5, -6</td>
<td>25</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>23, 32, 34</td>
</tr>
<tr>
<td></td>
<td>D03-1, -2</td>
<td>19</td>
<td>Yes</td>
<td>R - Y</td>
<td>B - Y</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>26</td>
</tr>
<tr>
<td>TELEFUNKEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>WESTINGHOUSE CT6500, CK6550, CK6551, CK6552, CK6553, CK6550, CK6552</td>
<td>V-2488</td>
<td>21</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>CC6150, CC6153</td>
<td>V-2476</td>
<td>21</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>27, 34</td>
</tr>
</tbody>
</table>

NOTES

1. Some models have audio take-off points for external amplifiers.
2. Some models have two and three-way speaker systems.
3. Remote control available in some models.
4. Tilt-out control panel.
5. AM-FM tuner.
6. FM stereo.
7. Phonograph.
8. Similar to CTC16.
10. Used on models with stereo amplifier.
11. AM-FM-multiplex tuners and record changer.
12. Remote speaker switch.
13. 21-inch tube.
15. Remote speakers.
16. Convertible to remote control.
17. Phonos or radio can be played through remote speakers while TV is operating.
18. 21K01 to 21K06 are comboc with stereo amplifiers. AM-FM - M multiplex used in 25-inch chassis.
20. Magic Memory Tuning.
21. One-off switch volume, tint, color, horizontal hold, vertical hold, brightness and contrast, and pointers straight up when set for best picture and optimum performance. Customer or technician adjust to best picture for best performance in the area, pulls off knobs and puts them back on with pointers straight up. Also has preset fine tuning.
23. Includes automatic channel control (ACC).
24. Kit.
26. Magna Shield - picture tube is shielded by rectangular "box" that protects it from stray magnetic fields. Instant-on control.
27. Hoffman calls it "Easy-Vision Cinema Control".
28. Color on-off switch.
29. Color on-off switch.
30. Pushbutton tuning for five uhf channels.
31. Has earphone jack.
32. Transistors used in vhf and uhf tuners, three-stage video f.l. amplifier, age amplifier and video driver.
33. Some models have AM-FM-stereo tuner and phone.
34. Unitized construction. Chrome chassis can be removed for test or servicing and set will continue to produce monochrome pictures.
35. All controls on side of cabinet.
36. Unitized construction.
37. Not used in DO-21 chassis.
38. Color and hue controls indexed for resetability.
39. Tuner acf.
Improvement for Heath Kit Multiplex Tuner

The Heathkit Model AJ-41 and similar FM multiplex tuners have a minor problem. The front-panel stereo phase control adjustment is critical and requires frequent attention during warmup to maintain channel separation. A simple modification makes the adjustment very broad and virtually eliminates the need for a front-panel control. The changes are easily made: eight small components are changed or added on the printed-circuit boards and three conductors are rerouted. In the schematic, X's indicate deletions from the original circuit and dotted lines show additions.

In the original circuit, the L – R subcarrier and the 19-kc pilot are routed through V15-a. The stability of the 19-kc oscillator is relatively poor because of the low-amplitude pilot signal, and because of the interaction of the 38-kc signal fed back to the oscillator coil from the 67-kc trap and demodulator circuit. The low-value grid resistor R330 and the cathode degeneration limit the gain of V15-a.

In the changed circuit the L – R signal is taken from the cathode of V13-b and routed to the detector direct. The pilot signal is taken from the plate tuned circuit where it appears considerably amplified. The components of V15-a are changed to assure maximum gain and proper phase shift. The new high-amplitude pilot signal fed to L9 provides a solid phase lock for the oscillator. C334 across L7 must be changed from ceramic to a more stable type, such as silver mica.

Once the changes are made, adjust the circuit: Temporarily remove C341 from the circuit to interrupt the pilot signal. Pull the switch on the phase control to the "adjust phase" position. Set phase control midway. Adjust oscillator coil L9 while listening to a stereo multiplex signal, for near-zero-beat. Connect C334 and adjust L7 for loudest and best sound. Return the phase-adjust switch to normal. Adjust the separation control for best separation.

In some tuners it may be necessary to add a small capacitor from the V14-a grid to ground. The exact value must be determined experimentally to obtain satisfactory operation of the neon stereo indicator. — Earl T. Hansen

<table>
<thead>
<tr>
<th>Model</th>
<th>Chassis</th>
<th>Pix (in.)</th>
<th>Auto. degauss</th>
<th>Color demod</th>
<th>Color indic</th>
<th>Video peaking</th>
<th>Color fidelity</th>
<th>Preset tuning</th>
<th>Tone</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK7000A, CK7001A, CK7003A</td>
<td>V-2489</td>
<td>23</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>27</td>
</tr>
<tr>
<td>CK7020, CK7022</td>
<td>V-2489</td>
<td>23</td>
<td>Yes</td>
<td>X & Z</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>27</td>
</tr>
<tr>
<td>ZENITH 5302, 5304, 5306</td>
<td>24MC32</td>
<td>21</td>
<td>No</td>
<td>R – Y, B – Y</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>23</td>
</tr>
<tr>
<td>5315, 5317, 5319, 5320, 5440</td>
<td>24MC32</td>
<td>21</td>
<td>Yes</td>
<td>R – Y, B – Y</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>6306</td>
<td>24MC42</td>
<td>21</td>
<td>No</td>
<td>R – Y, B – Y</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>23</td>
</tr>
<tr>
<td>5422, 5424, 5425, 5426, 5427</td>
<td>24NC31</td>
<td>21</td>
<td>Yes</td>
<td>R – Y, B – Y</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>23</td>
</tr>
<tr>
<td>7050</td>
<td>24NC31</td>
<td>21</td>
<td>Yes</td>
<td>R – Y, B – Y</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>13, 23</td>
</tr>
<tr>
<td>6426, 6427</td>
<td>24NC31</td>
<td>21</td>
<td>Yes</td>
<td>R – Y, B – Y</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>16, 23</td>
</tr>
<tr>
<td>8320, 8322, 8324, 8326, 8328, 8341, 8342, 8345</td>
<td>25MC36</td>
<td>25</td>
<td>Yes</td>
<td>R – Y, B – Y</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>19, 23, 26, 29</td>
</tr>
<tr>
<td>9600, 9610</td>
<td>25MC36</td>
<td>25</td>
<td>Yes</td>
<td>R – Y, B – Y</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>13, 19, 23, 26, 29</td>
</tr>
<tr>
<td>9341, 9342, 9345, 9351</td>
<td>25MC46</td>
<td>25</td>
<td>Yes</td>
<td>R – Y, B – Y</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>16, 19, 23, 26, 29</td>
</tr>
<tr>
<td>9510</td>
<td>25MC46</td>
<td>25</td>
<td>Yes</td>
<td>R – Y, B – Y</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>13, 23, 26, 29</td>
</tr>
</tbody>
</table>

Figure:
- **Diagram of Changes:**
 - Connections: NEW equipment, CONN, SM, SILVERED MICA.

Table:
- **Columns:** Model, Chassis, Pix (in.), Auto. degauss, Color demod, Color indic, Video peaking, Color fidelity, Preset tuning, Tone, Notes.
CONVERGENCE IN BASIC ENGLISH

Ever wonder what that control marked "R-G Vertical Differential Tilt" really does? And how it does it? Read on.

By JACK DARR SERVICE EDITOR

A LOT OF BAD LANGUAGE HAS BEEN USED ON COLOR CONVERGENCE. I don't mean what harried technicians say when trying to get 100% convergence on older models; that is neither pertinent nor printable. I mean the long words and fuzzy definitions used in early instruction books, and color TV "courses." Let's go over the convergence process and circuitry, in "basic English" and see if we can't straighten them out.

"Convergence" means coming together—focusing to a point. A color tube has three beams. If the tube had a faceplate shaped like half a ball, it would be easy to focus all three at the same place. They would swing around the deflection center of the yoke, as in Fig. 1. If the beams stayed in the same length, they'd focus at points on an arc. Unfortunately, this'd make a funny-looking tube. The faceplate of a color tube is actually spherical (part of a ball), but the radius of this ball is far longer than the actual beam length from deflection center to screen. If we put the deflection center at the end of the actual faceplate radius, the picture tube would be about 7 feet long! So that's out. We have to do something to make the beams come to focus at the same point, all the way across (and up and down) the screen.

If the beams came out of the yoke and hit the middle of the screen, it would be easy. We could focus with permanent magnets; this is static or "standing-still" convergence. In fact, this is what we do. But, to get a focused raster all over the screen, we have to change focus as we sweep, hori-

longly and vertically. This is "focus while moving," or dynamic convergence.

The dynamic action of this circuit is reasonably simple. You know how the deflection yoke works, converting a specially shaped voltage into a specially shaped current, which in turn gives us a specially shaped magnetic field. We do exactly the same thing here.

We've got to do this while the sweeps are in motion. The beam focus must always be directly related to the position of the beams on the screen. So, to make our correction, we take voltage pulses from the sweeps themselves, and so make sure that the correction is always in step with the sweeps.

The basic action of this correction is the same for both vertical and horizontal sweep. The curvature of the tube faceplate is the same in both directions, in the round tubes.
So, although they act at the same time, we can treat them as if they were separate, at least for this discussion.

To get this correction, we feed the pulses into small coils mounted on the neck of the tube. Each has two windings; you’ll see them drawn as if they were on separate legs of the iron core. In actual practice, they’re on the same leg, in case you were wondering. One winding is for vertical and the other for horizontal corrections. One coil is mounted over each gun. Small permanent magnets are on the back of each, although they have nothing to do with the dynamic convergence: they are the static adjustments.

Each, although they have nothing over each and the other for horizontal corrections. One leg, in case you were wondering. One winding is for vertical and the other for horizontal corrections. One coil is mounted over each gun. Small permanent magnets are on the back of each, although they have nothing to do with the dynamic convergence: they are the static adjustments.

By the combined action of the magnets and coils, we get a true “moving focus” (dynamic convergence) and the beams hit the right holes in the mask all the way across (Fig. 2).

Starting at rest, in the center of the screen, we can focus with permanent magnets. This is “zero dynamic correction.” If we swing the beam to either side, or up and down, it goes off focus. As Fig. 2 shows, we have to push the focal point farther away. This means the magnetic field in the coils must be stronger—more current through the correcting coils. Since we do have a uniform curve to the screen, we can use the same basic correcting waveform.

How can we get this? By feeding a properly shaped voltage waveform into an inductance. As in the deflection yoke, we feed in a shaped voltage and get the desired current waveform. In case anyone was wondering, the magnetic field in such a coil is almost exactly the same as the current waveform; so, when we say current, we can also mean the magnetic field “waveshape” as well.

This waveform has to be completely controllable, in size and shape, so that we can adjust it to give the right amount of correction at any point on the screen. Let’s see how we can do so.

We have three guns: red, green and blue. They are set in the tube as in Fig. 4: blue on top, and red and green side by side below. This works out very nicely. The first color sets used separate corrections for all three. Now, we can use one for blue alone, and correct red and green together with another.

Horizontal and vertical corrections use exactly the same kind of fields and currents. The only difference is in the frequency. So, our basic process will apply to either. Let’s begin with the vertical.

We begin with the beam at center. Zero correction needed. Moving to one side, we need more magnetic field, to push the focus farther away. We can represent the field strength with a curve which is zero in the center and rises to a maximum in both directions (Fig. 3).

How can we get this? By feeding a properly shaped voltage waveform into an inductance. As in the deflection yoke, we feed in a shaped voltage and get the desired current waveform. In case anyone was wondering, the magnetic field in such a coil is almost exactly the same as the current waveform; so, when we say current, we can also mean the magnetic field “waveshape” as well.

This waveform has to be completely controllable, in size and shape, so that we can adjust it to give the right amount of correction at any point on the screen. Let’s see how we can do so.

We have three guns: red, green and blue. They are set in the tube as in Fig. 4: blue on top, and red and green side by side below. This works out very nicely. The first color sets used separate corrections for all three. Now, we can use one for blue alone, and correct red and green together with another.

Horizontal and vertical corrections use exactly the same kind of fields and currents. The only difference is in the frequency. So, our basic process will apply to either. Let’s begin with the vertical.

We begin with the beam at center. Zero correction needed. Moving to one side, we need more magnetic field, to push the focus farther away. We can represent the field strength with a curve which is zero in the center and rises to a maximum in both directions (Fig. 3).

How can we get this? By feeding a properly shaped voltage waveform into an inductance. As in the deflection yoke, we feed in a shaped voltage and get the desired current waveform. In case anyone was wondering, the magnetic field in such a coil is almost exactly the same as the current waveform; so, when we say current, we can also mean the magnetic field “waveshape” as well.

This waveform has to be completely controllable, in size and shape, so that we can adjust it to give the right amount of correction at any point on the screen. Let’s see how we can do so.

We have three guns: red, green and blue. They are set in the tube as in Fig. 4: blue on top, and red and green side by side below. This works out very nicely. The first color sets used separate corrections for all three. Now, we can use one for blue alone, and correct red and green together with another.

Horizontal and vertical corrections use exactly the same kind of fields and currents. The only difference is in the frequency. So, our basic process will apply to either. Let’s begin with the vertical.

We begin with the beam at center. Zero correction needed. Moving to one side, we need more magnetic field, to push the focus farther away. We can represent the field strength with a curve which is zero in the center and rises to a maximum in both directions (Fig. 3).

How can we get this? By feeding a properly shaped voltage waveform into an inductance. As in the deflection yoke, we feed in a shaped voltage and get the desired current waveform. In case anyone was wondering, the magnetic field in such a coil is almost exactly the same as the current waveform; so, when we say current, we can also mean the magnetic field “waveshape” as well.

This waveform has to be completely controllable, in size and shape, so that we can adjust it to give the right amount of correction at any point on the screen. Let’s see how we can do so.

We have three guns: red, green and blue. They are set in the tube as in Fig. 4: blue on top, and red and green side by side below. This works out very nicely. The first color sets used separate corrections for all three. Now, we can use one for blue alone, and correct red and green together with another.

Horizontal and vertical corrections use exactly the same kind of fields and currents. The only difference is in the frequency. So, our basic process will apply to either. Let’s begin with the vertical.

We begin with the beam at center. Zero correction needed. Moving to one side, we need more magnetic field, to push the focus farther away. We can represent the field strength with a curve which is zero in the center and rises to a maximum in both directions (Fig. 3).

How can we get this? By feeding a properly shaped voltage waveform into an inductance. As in the deflection yoke, we feed in a shaped voltage and get the desired current waveform. In case anyone was wondering, the magnetic field in such a coil is almost exactly the same as the current waveform; so, when we say current, we can also mean the magnetic field “waveshape” as well.

This waveform has to be completely controllable, in size and shape, so that we can adjust it to give the right amount of correction at any point on the screen. Let’s see how we can do so.

We have three guns: red, green and blue. They are set in the tube as in Fig. 4: blue on top, and red and green side by side below. This works out very nicely. The first color sets used separate corrections for all three. Now, we can use one for blue alone, and correct red and green together with another.

Horizontal and vertical corrections use exactly the same kind of fields and currents. The only difference is in the frequency. So, our basic process will apply to either. Let’s begin with the vertical.
Now, let's field, Amplitude, which determines the strength one end have more amplitude, while lowering the other can. We call this tilt, since what the positive pulse, across the whole winding. Now output in series with frequency. Too.

So we add a simple potentiometer across the sawtooth voltage source. Now, we may have a little odd variation in local conditions, and so need to "push" farther at one end of a sweep than at the other. So, we need control over the waveform, too.

We get this by adding another waveform at the vertical frequency. This comes from the vertical output transformer, from a special secondary winding as in Fig. 6. This is fed in series with the first sawtooth. Its basic waveform is a spiked sawtooth since that's what we have in the vertical output transformer. We need a control on this; so we ground the center tap of the secondary and put a potentiometer across the whole winding. Now we can get positive-going or negative-going pulses, just by setting the control.

What does this do? By adding more or less negative or positive pulse, we can change the waveform of the current as shown in Fig. 6. We can "lift" one end or the other (make one end have more amplitude, while lowering the other end). We call this tilt, since we are actually tilting the waveform plot around the center, which remains at zero.

Now, there are your two basic convergence controls. Amplitude, which determines the strength of the magnetic field, and tilt, which determines the waveform. You'll find these controls in every circuit. If you know how one works, you've got 'em all!

Figs. 5 and 6 show only the blue: a single circuit. Now, let's see how the same things can be used on two guns at once. Since the red and green guns are side by side, we can use the same correction on both at once, by simply hooking the coils in series between an amplitude control and ground. The current is the same in both coils. Now we're correcting red and green at the same time.

Ideally, this works; practically, we'll need a way to make individual corrections to one or the other. So, we add a control which can change the amplitude of the current in the two coils (Fig. 7). This is connected to make the current in one go up while the other goes down. It's called the "difference" or differential amplitude control. Now we can balance the two, if we have to.

Same waveform problems as in the blue: so we feed in correcting waveforms from another secondary on the vertical output transformer. Fig. 8 shows this, and the control used to vary the waveform for tilt action. This, too, has the same "difference" effect—one up and the other down—so this is a differential tilt control.

Now, let's put 'em all together and see what the result looks like. A mess, isn't it? But, just remember that it's nothing but the simple circuits we've been looking at, all tied together. Note that the blue and red-green vertical amplitude controls are simply hooked in series across the vertical output tube's cathode; since we use the same waveform, we can do this. The separate secondaries on the vertical output transformer keep one adjustment from upsetting another. One more control has been added: a red-green differential tilt, across the blue-tilt secondary (Fig. 9).

![Fig. 7-Difference control allot a portion of the waveform to each coil.](image)

Horizontal correction

We make horizontal corrections in exactly the same way; amplitude and tilt controls are used. Because of the higher frequency, you'll find different kinds of parts. Remember that the principles are still the same, and so are the waveforms.

Fig. 10 shows the red-green circuit, with amplitude and tilt controls. Amplitude is controlled by putting an adjustable coil in series with a high-voltage pulse from the flyback (about 250-300 volts peak to peak). The L-C network makes it into the right shape, roughly a sawtooth. This control converges the vertical red and green lines on the right half of the screen. The diode and resistor combination helps in the shaping, and also causes a very small direct current to flow through the coils, which helps to hold center convergence when dynamic adjustments are made.
Red and green coils are connected in parallel; we're feeding the same waveform to both of them, just as before. The variable resistor in the shaper circuit is used to add or subtract various amounts of the capacitance of C; this controls the waveshape. (The output waveform of an integrator circuit, which this is, is determined by the product of L to C, or R to C, if it's an R-C integrator.) So, we can use this for a tilt control. This control converges red and green vertical lines on the left half of the screen.

Individual adjustments for each gun are still needed; we make them by feeding in two smaller pulses, of opposite polarities, at the other ends of the coils. A dual control is used; the sliders connect to red and green coils as shown. This too is a difference control; as one goes up the other goes down; this is the red-green differential tilt. The positive pulse comes from a separate winding on the flyback, not shown.

Now we need a blue correction. Because of the single coil's position on the tube, we can use a simpler correction for it. The 30-volt positive-going pulse from the flyback goes to the shaping network.

There are two adjustable L-C networks in parallel. One, the HORIZ COIL, is used as an amplitude control. The HORIZ AMPLITUDE (center phase control) removes the droop in the middle of the blue lines.

Now, we have controls for everything: waveform, phase, tilt and so on. These controls are designed to have their greatest effect at different points along the parabolic waveform, or the sweep, whichever you want to call it. So, the visible effect shows up at different places on the screen. At last, we're getting controls with such practical labels as "red-green horizontal lines, bottom of screen" instead of abstractions like "red-green vertical differential amplitude control." This tells a technician a heck of a lot more about what the control is supposed to do, and makes the job a lot easier.

It's a very good idea to know what each control is, but more important to know what it does. I like this latest method of naming controls a lot better!

A little table with this article lists the purpose of each control, and its name, for reference. Three cheers for the Red, Green and Blue!

SELF-CONTAINED IN-THE-EAR HEARING AID USES MICROCIRCUIT

A new, completely self-contained integrated-circuit hearing aid fits in the ear almost as inconspicuously as a contact lens fits in the eye. Weighing less than 1/4 ounce with its battery, the aid (called Solitaire) was developed by Zenith Radio Corp.

The integrated circuit which forms the nucleus of the tiny hearing aid does the jobs of 6 transistors and 16 resistors; yet it's so small that the complete aid (about the size of a quarter, though not round) contains a magnetic microphone, a telephone pickup coil, an output transducer, a volume control and an on-off-microphone-telecoil switch (as well as the battery).

The full name of the amplifying chip (and it is just a chip) is a **silicon planar epitaxial monolithic integrated functional electronic block for low-level audio application.** That name, if you can get through the Latin and Greek, describes it pretty well. The monolithic (one-piece) silicon chip measures .065 by .150 by .007 inch. The resistors, conductors and semiconductors are created in and on the chip by a process of masking and etching (not unlike the steps used in printed-circuit manufacture, only on a fantastically smaller scale), diffusion with vapors of "doping" elements, oxidation, resmasking and re-etching, and so forth.

The circuit is a single-ended class-A amplifier, and draws only 2 ma from a 1.55-volt silver-oxide battery.

CORRECTION

A typographical mix-up destroys the sense of the first part of the article "Do You Understand What You Read on Your Meter?" on page 46, November 1965. The text beginning with the fifth paragraph in the first column ("I hooked up the bias box . . . ") and ending with the ninth line of the second column (. . . overloaded completely.") should be inserted between the eleventh and twelfth lines in the third column on page 46.
REPAIRING RECORD CHANGERS

This second half of the story details speed troubles and some adjustments you can make

By HOMER L. DAVIDSON

ONE OF THE MOST FREQUENT RECORD changer complaints is about speed: “My changer runs too slow” or “My changer plays one record and then slows down and stops.” Trouble like that can be caused by slippage (too little friction where it’s needed), dry bearings (too much friction, where it isn’t) or a defective motor.

Take a look at the motor assembly (Fig. 1). The ac motor turns the idler wheel and turntable. (Most of these changer motors are ac, and only a few are ac-dc types.)

A burned-out motor is easy to spot. The field winding will be charred and you will smell “burned transformer”. The whole motor assembly must be replaced. If the motor has a shorted field, it and the whole motor will become very warm in a few minutes.

Even new motors can have stuck or tight bearings. If the motor and turntable have been completely greased within the last month, and the customer complains that the turntable does not rotate, the motor is stuck again and should be replaced.

Field-coil resistance ratings are not usually available from manufacturers. Of course, if an ohmmeter check shows that the field coil is open, the motor is defective. Most motors do run warm after a few hours in operation. This is normal.

Misalignment between motor shafts and bearings will freeze them together. A fine cutting oil can be used to loosen up the shaft bearings. If the motor is full of dirt and grease, take it apart. Clean the bearings, armature and assembly with cleaning fluid. Mark one side of the motor field assembly so you will know which side goes next to the mounting frame. The sides of the field assembly look the same and it is very easy to reverse it when the motor is completely apart. If the field assembly is turned over, the motor will run backward. Oil the motor bearing felt with light machine oil. If the changer motor is in bad shape, it may be replaced.

If an idler motor is stuck, the field coils are bad. Check the field windings. A few hours in operation is a good test.

If the motor runs, the bearings and shafts should be checked. And with the motor running, the idler wheel will turn the motor.

The motor bearing may loosen in the bolted assembly. Sometimes the whole bearing assembly drops down, jamming the motor. A noisy motor indicates lack of oil or really bad bearings.

If there is too much play in the bearings, replace the whole motor assembly. A motor will freeze when the changer jams in operation and is left on, or when the worn rubber drive wheel jams between motor and turntable. The phono motor, though, generally doesn’t cause too much trouble. If it is properly cleaned and greased when the changer is in for repair, it will last for a long time.

The speed of a changer turntable must be checked with some type of speed indicator. Use a strobe disc and light to check for correct speed (Fig. 2). These discs can be picked up at the local wholesale house. A fluorescent or neon light will show if the turntable is running at the correct speed. Fig. 3 shows a strobe light you can build. (Several firms supply small neon strobe lamps with their strobe discs.) Most record changers run slow, almost never too fast.

If the large turntable drive idler wheel is dented or a piece of the rubber is dug out of it, the turntable will thump when this spot comes around. The rubber on these wheels becomes worn, smooth and cracked. Replace the wheel if it looks defective. If the tension spring from idler wheel assembly to the base is loose, tighten it. A couple of turns can be snipped off and the spring fastened back into its original position.

The turntable may be slow for 33 1/3 rpm and OK on all other speeds. If this is the case, check the 33 1/3 idler wheel. Many times shafts become dry or the rubber smooth, reducing the speed. Pull off all three rubber wheels and clean them thoroughly. Use a match or toothpick and place a small amount of petroleum jelly inside the bearing. Do not use too much grease; it will cause slippage. (Many times a customer will oil everything under the turntable to try to gain speed.) Be careful that no oil or grease gets on the turntable drive, rubber idler drives or motor drive shaft.

One of the biggest causes of slow speed is the slipping of the idler wheel on the drive rim of the turntable. Clean the drive rim and use a turntable dressing such as Phono-Magic. This dressing will dry rapidly when the turntable is placed under a shop light. Fig. 4 shows
how to apply dressing to the turntable. If the changer is old and you cannot get the speed up to normal as described so far, take a small spring, a little larger in diameter than the spring on the motor drive spindle, and install it over the old one. File and smooth down any rough ends and, generally, the changer will run a little faster than before. Fig. 5 shows a defective rubber cam drive on an older type of changer. Idler wheels and parts are available at local radio and TV parts distributors or wholesale set distributors.

Adjustments

The landing position of the pickup arm is adjusted with a screw (Fig. 6). It should be set for all three record sizes. Some changers have a hole for this in the top of the turntable base and also on the pickup arm assembly. Make the setting so the stylus falls on the record midway between the outer edge and the beginning of the recorded portion.

Rotate the turntable until the pickup arm is at its highest position. Set the height adjustment screw so there is enough clearance under the next record to drop and enough also above the height of a ten-record stack on the turntable. Some manufacturers provide two height adjustments, to prevent the needle from landing on the motor board out of cycle, and still let it land properly on a stack of records. Most height adjustment screws are located under the pickup arm and between the lift pins. Some changers have a pickup arm tracking force adjustment—a tension spring in the arm itself.

Check the stylus for wear and chipping. Be careful when replacing a needle in a crystal cartridge—crystals are easily damaged. A defective crystal cartridge will have no sound, distorted sound or intermittent sound.

Some service technicians set the changer on ordinary paint cans for repair. The photo at the head of this article shows a homemade stand with a self-contained amplifier for checking out the repaired record changer. END
BUILD A VIDEO MODULATOR FOR CCTV

Low-cost video modulator makes it possible to use any closed-circuit TV camera with any ordinary home TV set

By EARL T. HANSEN

This TV modulator is the connecting link between a closed-circuit TV (CCTV) camera and standard television receivers. With it, the receivers need no internal modification. The modulator will feed several receivers along several hundred feet of transmission line. Crystal carrier control makes it extremely stable.

The bandwidth of the modulator exceeds that of standard receivers and of most cameras. The standard video signal of approximately 1 volt peak-to-peak, terminated in 75 ohms, is more than adequate to drive the modulator.

Tubes rather than transistors were used to keep the cost down. The small size and low power consumption of transistors were of no importance in the planned use. The tubes are operated conservatively for maximum life.

The modulator described here is a thoroughly debugged design. Several units are in operation. With each one, the design was changed to improve performance, simplify adjustment, and reduce the number of parts and cost.

V1 is a conventional overtone crystal oscillator, driving frequency multiplier V2. The output of V2 is coupled to push-pull grid-modulated amplifiers V3 and V4. V6 is a video amplifier and inverter. Its gain is controlled by varying the cathode degeneration (R11). The gain is variable from approximately 5 to 15. The dc component of the video signal (black reference) is restored by clipping in the grid circuit of V3 and V4. The grids conduct on the positive-going sync pulse tips and establish a charge on C11 which sets the sync pulse tips to maximum carrier amplitude regardless of average picture brightness. This effectively restores the dc level.

The power supply is a simple choke-input type. This lowers the dc voltage to the desired value and assures good load regulation at 250 volts for the output stage. Lower voltages for other stages are provided by series dropping resistors and decoupling capacitors. A diode in the rf output circuit provides a convenient test point (J2) for tuning (with a vvm) and checking video modulation (with a scope). The low-value load resistor (R13, 1,800 ohms) on V6 and series peaking coil L4 extend the video bandwidth to approximately 10 mc.

The video input circuit was designed for a high-impedance loop-through. The signal from the coax cable goes in J5 and out J6 via coax, and is used or terminated in another part of the closed-circuit system. If you don't expect to need this feature, omit J6 and use R17 to terminate the line properly inside the modulator.

Construction and adjustment

Most component values are not at all critical and good judgment will allow wide deviation. But good layout and short leads are essential in the rf circuitry. I selected channel 10, but your choice will depend on channel allocations in your location. See the table for information on coils and crystal frequencies.

The coil forms were obtained from the i.f. strip of a junked TV chassis. The crystal is soldered in, and supported only by its leads. I used .001-µf ceramics for rf bypassing, but any capacitors from 470 pF to .005 µf may be used if they are physically small and the leads are kept short. L5, L6 and L7 are not critical and any high-frequency rf choke may be used. [Ohmite Z-50 should be good for channels 2 through 6, and Z-144 for 7 through 13.—Editor]

The sections of C16 may be of high capacitance, if another type is more readily available. V2, V3 and V4 should be shielded. I dipped the shields part way in black paint to improve heat radiation. Shiny tube shields allow high bulb temperatures and may cause tube failure.

C14 and C15 are located at the V2 socket. R9 should be grounded at J4's mounting. The feedback winding on L1 must be phased correctly. If both wind-
Circuit of the video modulator. No unusual parts are used. The coils are easily wound to suit the chosen channel. Type 6A16 (6V) may be hard to come by. If so use 12BY7-A, with a 9-pin miniature socket and altered connections as shown at left.

ings are wound in the same direction, the start of the primary connects to the plate of V1, and the start of the feedback loop goes to ground. Couple the secondary of L2 loosely to the bypassed end of the primary. The secondary of L3 should be tightly coupled to the center of the primary. If a gridip meter is available, check the tuning range of the coils. L1 should tune through the crystal frequency. L2 and L3 should tune to the video frequency of the selected channel.

Apply power and check approximate voltages to chassis, as shown on the schematic. Voltages are approximate and may vary considerably with transformer voltage and tube characteristics. Connect a vtvm to J1. Start with the —50-volt range. Adjust L1 for maximum voltage. If the feedback loop is too loosely coupled, V1 may not oscillate; if too tightly coupled, it will oscillate at any setting of the tuning slug as indicated by a continuous voltage at J1. Adjust coupling by sliding the L1 loop along the form. Tune L1 slightly on the high-frequency side of maximum output to assure reliable starting of the oscillator. Typical readings at J1 range from —25 to —10 volts.

Connect the vtvm to the junction of L4 and C11 and tune L2 for maximum negative voltage. If it is greater than —5 volts, reduce the coupling of the L2 secondary. Connect the vtvm to J2. Tune L3 for maximum output. Connect a 75-ohm load to the HI RF output, J3, and retune L3. The dc voltage at J2 is a direct indication of the average RF output and is very useful for tuning.

Apply a 1-volt peak-to-peak sine wave to the video input (60 cycles or any audio frequency will do). Connect a scope to J2 and observe a sine wave. Adjust the video gain for maximum...
amplitude without clipping.

The average dc level at J2 will drop 25% to 50% as an input signal is applied. This is normal for this type of grid modulation and dc restoration. For actual video input, the voltage at J2 will depend on the average scene brightness.

Using the modulator

The modulator will work well with any video source of approximately 1 volt peak to peak, and negative-going sync. I used a Motorola transistor closed-circuit camera, coupled to the modulator through approximately 150 feet of 75-ohm RG-59/U, with excellent results. The high rf output (J3) puts out about 1 volt, and is intended to feed a long terminated line with coupling to the TV sets through highly attenuating taps. The low output (J1) supplies about 5,000 microvolts and may be coupled directly to several standard receivers.

When only the low-output jack is used, the high-output jack should be terminated with a 75-ohm carbon resistor for best modulation linearity. Make the final adjustment of the video gain while watching a TV receiver. Low gain will show as low contrast. Excessive gain will cause loss of detail in the highlights.

For the final tuning of L3, with the

unit connected to the distribution system, back the slug out for about 20% reduction in dc voltage at J2. This will favor the upper sideband. You need not attempt to reduce the lower sideband greatly. The receiver bandpass characteristics take care of the vestigial sideband problem.

Selective AF Amplifier Boosts Receiver Performance

By I. Queen

EDITORIAL ASSOCIATE

This circuit adds high selectivity when tacked onto the output of a ham CW receiver. It uses commonly available components and requires only two penlight cells. It has a bandwidth of less than 120 cycles at 20 db down, with sufficient output for a high-impedance earpiece. The circuit is peaked at 900 cycles.

Positive feedback occurs through R7, which is adjustable. Negative feedback occurs through the bridged-T network tuned to 900 cycles. Because of the bridged-T, gain is very low at all frequencies except 900 cycles. As R7 is reduced, gain at resonance is boosted. Pushed too far, the circuit becomes unstable and eventually oscillates. Selectivity can be made extremely sharp, but the amplifier will tend to "ring". The bandwidth mentioned above is obtained without reducing R7 so far that ringing sets in.

For maximum selectivity, the signal must not be too great. Results are satisfactory when the voltage across the earpiece is about 30 mv.

The extreme selectivity of 120 cycles at 20 db down may be compared with that of a modern ham receiver, whose selectivity may be rated at 500 cycles at 6 db down. Of course, when they are added together, the result is a very sharp peak, which rejects interference and noise.

R7 must have enough range. If you cannot get oscillation, reduce or eliminate R8. On the other hand, if oscillations cannot be stopped by R7, you may need to increase R8. The polarity of the output transformer must be correct also, otherwise the feedback through it will be negative instead of positive. If you can't get the circuit to oscillate, reverse the leads to one winding.

To use the filter, adjust the bfo tuning, bandspread tuning or both for the best performance.

C1, C4, C5—10 µf, 10 volts electrolytic
C2—0.01 µf, disc
C3—0.01 µf, disc
R1—22,000 ohms
R2—18,000 ohms
R3—1,500 ohms
R4, R5—27,000 ohms
R6—1,000 ohms
R7—1,000 ohm potentiometer

R8—4,700 ohms
all resistors, 1/2 watt
T—transformer, 200,000 ohm pri to 1,500 ohm sec (Argonne AR-144 or equivalent)
D—2N107 or similar
BATT—2 penlight cells, and holder (3 volts)
S—spst switch
perforated board, 3 1/2 x 4 3/4"
Long Ones, Short Ones, Fat Ones, Tall Ones

By GEORGE L. AUGSPURGER

Almost everyone who has worked with bass-reflex speaker enclosures knows that there is a fairly narrow optimum range of sizes and shapes for them. Straying too far in the direction of a column or pipe shape, for instance, can create serious standing-wave problems and unpleasantly colored sound. Most articles warn you to that effect, but hardly any tell you whether it's at all possible to come up with a satisfactory enclosure design if you have to use an odd shape.

[For details on more orthodox designs, see Mr. Augspurger's "Design Your Own Speaker Enclosure" in the August 1964 issue of Radio-Electronics.]

The very small enclosure. Although a general-purpose speaker in a small enclosure will do nicely for background music or a paging system, deep bass tones invariably sound thin. In extreme cases, there may even be a pronounced "honky" quality which is almost impossible to get rid of. Nevertheless, there are instances where this combination of speaker and enclosure is the only one that which can be used, and the assignment is to make the speaker perform as well as possible in the space available.

Fig. 1 gives dimensions for a minimum-volume ported enclosure for an 8-inch speaker. The unit gives good results, yet is compact enough to put on a shelf or behind the back seat of a Volkswagen. Its internal volume is 1.2 cubic feet, and the ducted port is worked out from the chart in Fig. 2. In very small enclosures such as this, it is usually preferable to line all interior surfaces except the front panel with acoustical padding.

The very thin enclosure. There is considerable demand for speaker enclosures shallow enough to be concealed behind draperies or hung on a wall. Not only is such an enclosure very limited in its internal volume, but the squashed-out shape sets up standing waves which may interfere with the normal function of the enclosure. These can be controlled by a liberal use of absorptive padding, but the ordinary utility speaker still does not work quite as well as with boxier proportions.

A recommended thin design is shown in Fig. 3. Note that the port duct is combined with the bracing of the front and back panels. The duct goes back from the front panel and then opens out sideways into the enclosure interior. Thus, the effective length of the duct is roughly equal to the figure recommended in the chart.

The very long enclosure. Often, there is sufficient volume to get good performance from a speaker, but the available space is more in the shape of a pipe than a box. Here again, judicious use of absorptive material will help. By placing speaker and port close together, with the speaker centered at one-fifth the total length of the pipe, standing-wave problems are minimized. The suggested configuration is shown in Fig. 4. A pair of these cabinets placed end to end makes a convenient installation hung on a wall to serve as a shelf, or concealed in a valance above a picture window. Or the enclosures can be set vertically, taking up very little floor space, yet getting the speakers up to a height where sound can be projected over other furniture.

END
Instrument you can build in an evening measures inductance, checks resonance with the help of an audio or rf generator

QUICK HENRY!

By FRED BLECHMAN KB4UGT

Measuring the inductance of a choke, i.f. transformer, toroid or any other coil is a clumsy process. Unless you have an inductance bridge, you usually avoid measuring inductance because of the “difficulty.” With Quick Henry, anyone with an audio generator can measure inductance quickly and easily from less than 1 mh to over 5 henries. With an rf generator, measurements can be made down to a couple of microhenries. Quick Henry will allow you to determine the resonant frequency and Q of audio and rf circuits from below 100 cycles to over 30 mc with reasonable accuracy. The resonant frequency of unmarked i.f. transformers can be found easily, and you can determine the inductance of unmarked filter chokes, slug-tuned coils, and rf chokes. You can design, test and trim audio bandpass circuits to your requirements.

Quick Henry’s built-in meter indicator is optional. If you have a 10,000-ohm/volt or better multimeter, use it instead. The total cost of parts for Quick Henry, including the meter specified in the parts list, is only $8. If you prefer to use a meter you already have, the cost drops to only $3.50!

Circuit description

Fig. 1 is the schematic of Quick Henry. A signal fed to posts J1 or J3 and ground (J2) passes through R or C1 and then through the unknown inductance connected between J4 and J5. Switch S1 selects an appropriate capacitor (C2, C3, C4 or C5), which is placed in parallel with the unknown inductor. The input frequency is varied, and at the resonant frequency of the unknown L and the selected C in parallel, the voltage across J4-J5 increases sharply. This is because at resonance the parallel L-C circuit suddenly becomes a high impedance to the signal, shunting less of it around the meter. The further from resonance, the lower the impedance, depending on the Q, which we’ll get to later.

This ac voltage across the unknown inductor is rectified by diode D and passed on to the sensitive dc microammeter M and the rf choke RFC. When you use an rf generator, the signal is coupled to the resonant circuit through C1, a 20-pf capacitor.

Capacitors C2 through C5, selected by S, allow a broad range of L-C ratios. The open position of S allows you to measure external resonant circuits or to trim an inductor with exactly the value of capacitance needed for resonance.

Quick Henry takes up amazingly little space for its versatility.

Building it

I built my instrument into a standard 4 x 2 1/4 x 2 1/4-inch two-piece aluminum box. Wiring is not critical, but don’t make the leads longer than necessary, and place S, C2, C3, C4 and C5 near J4 and J5. Be sure that all binding posts are insulated from the box; there shouldn’t be any connections to the box.

The 1-inch meter and five-position switch specified in the parts list contribute to the small size of the unit, but any equivalent switch or meter may be used if you don’t mind a bigger box. The alternate meter listed will still fit in the specified box, is less expensive and more sensitive than the meter I used, but it does take up more space.

If you intend to use an external multimeter to detect resonance instead of building a meter into Quick Henry, bring two additional binding posts out on the side of the unit. These points are marked A and B on the schematic. Mark these posts with the proper polarity.
Using it

Most inductors with many turns of wire wound on a ferrite or iron core measure over 1 mh, and can be checked by using an audio generator with Quick Henry. For air-wound coils, use an rf generator. Never connect both generators to Quick Henry at the same time, because all sorts of spurious signals will result. Connect the generator to J2 and either J1 (rf) or J3 (audio). To start, set S to the .001 position. Starting at the low-frequency end, vary the frequency, changing generator frequency bands when necessary, until you see a clear meter deflection. There may be minor spurious responses (especially with an rf generator and measuring in the low microhenry range), but these can be ignored.

If you don't find any response, switch S to the next higher value, and sweep the frequencies again. When you do get a response, it will be quite definite, and might “pin” the meter. Adjust the generator output for a comfortable peak reading. Most audio generators have enough output to deflect the meter well beyond full scale, and rf generators will give at least half scale under most conditions. The best accuracy comes with the highest value of C that gives a sharp peak meter reading, so readjust the position of S if necessary. A broad peak—that is, one which is not too definite as you vary frequency—is "low Q", and may be improved by using a higher value for C (setting S to a higher value).

Once you have found the best setting for S, use Fig. 2 to determine the inductance of the unknown coil if you are using an audio generator, or Fig. 3 if you are using an rf generator. Enter the horizontal axis at the resonant frequency, as read on the generator dial; move directly upward until you intersect the line that represents the value of capacitance selected by S, and then move straight to the left and read the value of the unknown inductance on the vertical scale.

To determine the resonant frequency of, say, an unmarked i.f. transformer, connect one of the windings (an ohmmeter will identify the windings by continuity) to J4 and J5, and set S to OPEN. Using an rf generator, find the frequency that peaks the meter, and read this resonant frequency right off the generator dial. A particular value of capacitor can be connected across an unknown inductor, and the resonant frequency determined the same way.

You can actually plot the audio bandpass of an R-C or L-C network by taking successive meter readings near resonance and plotting them on graph paper, with frequency along the horizontal axis and meter reading along the vertical axis. In this case, it is convenient to set the generator output to read full scale on the meter at resonance.

Figs. 2 and 3 have been plotted showing only the values of capacitance I used. If you want to use other values, either internally or connected to the binding posts externally, you'll find it worth while to get a slide-rule reactance calculator, such as the Shure Reactance Slide Rule (Allied Radio, catalog No. 37 U 950E, $1 postpaid). This covers resonant L-C combinations from 5 cycles to 500 mc.

Series-resonant circuits can also be
measured across J4 and J5 by noting a dip in the meter reading, since at resonance the tuned circuit will effectively short out the meter circuit.

To find the Q (figure of merit) of a resonant circuit, set the peak meter reading to full scale by adjusting the generator output. Now vary the input frequency on both sides of the resonant frequency to the points where the meter reads 0.7 of full scale (3 db down). Note the frequencies where these meter readings occur, and apply the formula given in Fig. 4, which shows an example of a Q calculation.

When you use an external multimeter instead of the built-in meter arrangement to sense resonance, set the multimeter on its lowest dc voltage range, observing proper polarity. Do not use the current scales.

The accuracy of Quick Henry does not qualify it as a laboratory standard by any means. Numerous errors are cumulative, such as the accuracy of your capacitor 'standards,' the internal capacitance of the circuitry, the external capacitance of test leads and the calibration accuracy of the signal generators used. However, for hams and home experimenters, radio and TV service shops even for small labs, Quick Henry will satisfy a long-felt need to measure inductance and resonance quickly and cheaply.

WHAT'S YOUR EQ?

Conducted by E. D. CLARK

Glow-Lamp Memory Circuit

This flip-flop memory circuit uses two NE-23 neon glow lamps and a 30:1 audio output transformer that functions as a voltage-peaking transformer. The output is in the form of transient peaks that exceed 45 volts and are sufficient to fire a nonconducting lamp.

When the circuit is stable, one lamp is on and the other is off. The voltage requirements of NE2 are: firing voltage 75, maintaining voltage 65, and extinguishing voltage 64. NE1 has a firing voltage of 70, maintaining voltage of 60 and extinguishing voltage of 59.

The pushbuttons (S1, S2) are normally open and each is correlated to a glow lamp. When a button is pressed, the lamps will flip. Upon release, they will flip. Can you determine which lamp will flip into steady conduction if S1 is pressed for ½ second and released?

—Kendall Collins

50 Years Ago

In Gernsback Publications
In January, 1916

Electrical Experimenter

Microphonic Device Detects Submarines 20 Miles Away

Transmission of Photographs Telegraphically

Regenerative Audion Circuits for Wireless Receiving

Hearing Through Your Teeth

Ultra-Sensitive [Baldwin] Telephone Receiver

58
Which Generator For Color Service?

Of the three types, the keyed-rainbow generator is taking the lead. But it’s wise to know what else is available, and why.

By ROBERT A. DUNN and DON D. HERZEG*

The most important piece of equipment for servicing color TV is a color generator. It’s a must for setting up new sets and as an aid to servicing sets with problems. It should provide a composite sync and color signal similar to the one transmitted by a television station, and it should develop all the signals and patterns necessary for convergence and testing.

Some color generators are much superior to others and less likely to become obsolete because of changes in receiver sync circuitry.

Should you buy a unit that produces a rainbow pattern, a keyed rainbow or a National Television System Committee (NTSC) signal? Before you decide, learn here how each type of signal looks on the screen and how it can be used.

No less important are the additional patterns necessary for convergence.

Rainbow

The display pattern developed from this signal resembles a rainbow (Fig. 1). The color starts at the left of the screen at green and blends continuously into shades of yellow, red, blue and back to green at the right side. This rainbow color display is produced by the offset subcarrier method. The frequency of the subcarrier is offset 15,750 cycles below the normal color subcarrier of 3.579545 mc, and so becomes 3.561795 mc. This signal and the horizontal sync pulse of 15,750 in composite form are then fed to the TV receiver.

The offset subcarrier signal and the signal from the 3.579545-me oscillator in the receiver are applied to each of the color demodulators. The difference in frequency between these two signals is then 15,750 cycles or 1 cycle of difference for each complete horizontal scanning period. This causes the relative phase between these two signals to change through one complete cycle, 0° to 360° in each horizontal scanning period. Consequently, each demodulator produces a sine-wave output at 1 cycle in each horizontal scan period. The sine-wave output signal has maximum positive amplitude at 90° in an R-Y demodulator, at 180° in a B-Y demodulator, and at approximately 300° in a G-Y demodulator. These three signals produce a continuous rainbow pattern on the picture tube.

Probably the greatest limitation of the rainbow color signal is the impossibility of knowing exactly where on the screen the R - Y (90°) and B - Y (180°) phases occur. It is necessary to be able to locate these points to align receiver demodulators properly. The rainbow color signals do allow some useful troubleshooting, even though it is not possible to determine accurately where specific colors and their phase relationships occur on the screen. For example, absence of any primary color could indicate an inoperative color amplifier, defective or detuned demodulator or a defective color gun.

The rainbow is usable also for checking the range of the hue and color controls by observing the picture. Brightness control is usually not included in the generator, and therefore the display may look washed-out compared to other types of pattern.

Although the rainbow display is useful, it is limited in versatility. It provides some information, but does not contain all the necessary features to do a complete job of servicing.

Keyed rainbow

The keyed rainbow (gated, or turned on and off) is produced much like the unkeyed type by producing a complete 360° phase shift with each complete line scan. This pattern is then gated or keyed on and off by an additional oscillator, and part of the original spectrum is removed. This produces 12 color bars with a blank area between each color. The bars are spaced exactly 30° apart (Fig. 2). Only 10 are actually visible in the CRT display: the first of the twelve is used as burst and the twelfth occurs during retrace. The blank areas between the 10 bars are no-color areas and contain no color signals.

Seco 990 makes keyed or unkeyed rainbow.

Fig. 1—Rainbow signal runs through the whole gamut of colors during the time of one horizontal sweep. Display is a gradual shading of one color into another, without distinct separation.

BAK Div. of Dynascan Corp.

JANUARY, 1966
Keyed-rainbow generators usually use a crystal-controlled oscillator for accuracy. The crystal will maintain 3.563795 mc within .005%, or ± 175 cycles. Thus the phase between the test signal and the oscillator in the receiver is held fast to produce the correct color at the correct location on the screen. The controlled burst (or starting point) holds the R – Y (90°), B – Y (180°), and so forth, at the correct phase relationship. The combination of accurate 360° phase shift over one cycle and controlled burst to maintain the starting point are the main advantages of keyed rainbow.

To change a rainbow to a color bar or keyed rainbow, the unwanted sections of the rainbow display are blanked out. The desired colors are allowed to come through. The blank portions and the color bars are the same width—each 15° wide.

Controlled burst also provides another advantage in keyed-rainbow color generators. The burst signal from the generator, or reference signal as it is sometimes called, contains a minimum of 8 cycles of color burst. This assures adequate duration of color signals to trigger color-killer circuits and color afe circuits in the receivers.

The keyed rainbow has the same uses as an unkeyed rainbow pattern and offers added advantages. The accurate burst frequency assures a proper starting point for the phase shift and permits accurate checking of the ranges of the color and hue controls. The third and sixth bars on the circle (Fig. 3) contain R – Y (90°) and B – Y (180°) signals and can be used for accurate demodulator alignment. The 90° and 180° phase-shift points occur exactly in the center of these color bars. By watching the exact center of the color bar the user can correctly align the demodulators.

Manufacturers normally suggest that demodulators be aligned with an oscilloscope. However, with proper test techniques and by allowing only the blue gun or only the red gun to operate during any one test, the keyed-rainbow color display can be used to adjust the R – Y and B – Y demodulators. This is the technique:

Disable the red and green guns of the CRT (use a gun-killer—100,000 ohms from grid to ground). This leaves only the blue gun operating. The third and sixth color bars contain the information necessary for aligning the R – Y demodulator. The third bar should contain only red, no blue. And, if the receiver is operating properly, there will be no red in the blue (sixth) bar. There should also be no difference in brightness between the third bar and its adjacent no-color areas. The demodulator should be adjusted to produce equal brightness levels. The procedure can be repeated using only the red gun of the CRT and the sixth or B – Y color bar.

This method is not as accurate as an oscilloscope method. It does make possible checking demodulator alignment with a portable generator. Slight adjustments can thus be made in the home without removing the set.

This keyed-rainbow type of signal is the most widely accepted standard. Most manufacturers refer to the keyed rainbow in their service manuals because it is the most useful economically produced color test signal.

NTSC

The National Television System Committee color signal was established by the NTSC. Ten colors were selected, each with its particular phase relationship to the burst or reference signal (Fig. 4), as well as a brightness level.

Generators producing the true NTSC or "crankshaft" signals (called that because of its shape on a scope screen) are quite expensive and consequently are used primarily for factory alignment.

The NTSC generators are generally large because of their complexity and are not portable. (Commonly available units are approximately 20 x 20 x 10 inches and weigh more than 30 pounds.) Other types of generator, such as the...
keyed-rainbow type, range from 12 x 10 x 6 inches and 10 pounds to the transistorized units, as small as 8 x 8 x 2 inches and less than 3 pounds.

There are, however, several generators that generate NTSC type signals—color signals with accurate phase relationship but without NTSC brightness levels. These generators produce a single color display which the user selects by a switch. Although only a single color is displayed at any one time, many generators allow the burst signals to appear in some area of the screen for reference. By generating and selecting each color individually, the exact NTSC phase relationship to burst can be maintained. R - Y and B - Y signals are exactly 90° and 180° away from burst, respectively. Thus the most accurate color signals possible are available to the user who insists on having them.

NTSC signals (not NTSC type) allow the user all the advantages of rainbow and keyed rainbow in checking for proper operation of all color receiver circuits, as well as the accuracy just mentioned.

Although there doesn't appear to be any real advantage in viewing all colors at the same time, some technicians have trouble initially with NTSC type color signals, which present only one color at a time. Checking the range of hue and color controls requires a little more skill than with other types.

A useful feature in any color generator, regardless of type, is a color amplitude control. This control permits the user to vary the amount of color modulation on the rf carrier—valuable for checking proper sync on color signals, and proper afpc adjustments.

Convergence patterns

Convergence patterns should be considered just as seriously as the color patterns when selecting a color generator. Vertical lines, horizontal lines, crosshatch and dot patterns are necessary for accurate convergence.

Vertical lines are spaced evenly across the screen, producing a display that has a line close to either edge for vertical convergence. These lines are usually slightly less than 1 µsec wide, but a line approximately 0.3 µsec wide or less is a real advantage. It will show a sharper transition between line and background and make convergence much easier. The brightness of the line should not cause excess blooming; that would disturb the high-voltage regulation and thus the focus.

The horizontal pattern should be a single line which originates in the horizontal retrace period and ends just before the next horizontal sync pulse. The single line permits the most accurate convergence. The level of the horizontal lines (and vertical lines) should be adjustable from zero to full output. If the vertical-line amplitude can be reduced to zero, the clear raster can be used for purity adjustments.

Crosshatch is the combination of the horizontal and the vertical lines. Their brightnesses should be equal. The patterns should be straight with the background clean and free of retrace lines at a normal brightness setting.

Dots are the intersections of the vertical and horizontal lines. Therefore, they can be only as sharp as the vertical line—and the narrower (shorter duration) the better. They are usually used for center convergence, but some service technicians prefer dots for all-over convergence.

Certain parts of generator performance can be evaluated nicely by analyzing them on a black-and-white set. The greater video bandwidth of the black-and-white set will show up any _ringing_ (a ghost pattern). Ringing indicates that the pattern will be much more difficult to use on the color set for convergence because the image will not be clean and sharp.

The generator will not be as useful as it can be if the horizontal sync pulse information it provides is not accurate. This is the most important information the color signal must bear, for adjustment of color and hue controls and accurate convergence. Naturally, the set was designed to operate from a TV station signal to assure that the set is color-synchronizing on the back porch section of the horizontal sync pulse. Absence of back porch can cause unstable color sync and may cause you to misadjust something.

The color killer is a threshold adjustment that is made most reliably with a black-and-white sync signal with a back porch. If video signals are present during the back porch period of black-and-white patterns, they may key the color-burst amplifier and cause distortion of the pattern.

An excellent way to select a color generator is to connect it to a color set and observe how easily or how hard the set synes with the color signal, and if the colors appear at the same place every time when the generator is turned off and on. This same sync test can be tried with black-and-white signals to determine the ease with which a set synes to the generator. There should be no need for repeated or finicky sync adjustments.

Fig. 4—The "crankshaft" signal—named for the composite-video scope trace's resemblance to an auto engine crankshaft. Here specific, predecided colors are generated, each with a specific phase relationship to the burst and with a certain amplitude (brightness level).

JANUARY, 1966
WANTED:

half a million
RCA HOME TRAINING CAN PREPARE YOU FOR THE BIGGEST CAREER OPPORTUNITIES IN HISTORY! NEW 'CAREER PROGRAMS' POINT THE WAY!

Electronics Jobs Expanding Every Day; Trained Technicians in Demand; RCA Institutes “Space Age” Methods make learning faster, easier!

Government reports have indicated the increasing demands for manpower in the electronics fields. New developments in modern technology, automation, the growth of new areas of work, such as atomic energy, electronic satellites and other space programs, and systems analysis and processing are changing the occupational picture daily. To help meet this need, RCA Institutes offers a wide variety of Home Training Courses, all geared to a profitable, exciting electronics career in the shortest possible time.

New Career Programs right on target
RCA Institutes new “Career Programs” are complete units that train you for the specific job you want. And each of them starts with the amazing “AUTOTEXT” Programmed Instruction Method—the new scientific way to learn. RCA “AUTOTEXT” helps even those who have had trouble with ordinary home training methods in the past. Learn faster and easier than ever before!

Valuable Equipment Included
With each RCA Institutes Career Program, you receive valuable equipment to keep and use on the job. You’ll get the new Programmed Electronics Breadboard which provides limitless laboratory type experimentation, from which you construct a working signal generator and a superheterodyne AM Receiver. And as a special bonus, you get valuable Multimeter and Oscilloscope Kits—all at no additional cost!

Liberal Tuition Plan Ideal for Today’s Budgets
RCA Institutes offers you this most economical way to learn. You pay for lessons only as you order them. No long term contracts. You can stop your training at any time and you will not owe one cent! Compare this with any other home training plan!

Choose from these Job-Directed Programs.
- TELEVISION SERVICING
- FCC LICENSE PREPARATION
- AUTOMATION ELECTRONICS
- AUTOMATIC CONTROLS
- DIGITAL TECHNIQUES
- TELECOMMUNICATIONS
- INDUSTRIAL ELECTRONICS
- NUCLEAR INSTRUMENTATION
- SOLID STATE ELECTRONICS
- ELECTRONICS DRAFTING
- plus a wide variety of separate courses from Electronics Fundamentals to Computer Programming.

technicians!

CLASSROOM TRAINING ALSO AVAILABLE
You may also learn electronics at one of the most modern laboratory and classroom electronics schools in the country—RCA Institutes Resident School in New York City. Day and Evening Courses start four times a year—and courses are planned so as not to interfere with your job or social life. No previous technical training needed for admission. You are eligible even if you haven’t completed high school.

SEND NOW FOR NEW VALUABLE FREE CAREER BOOK—YOURS WITHOUT COST OR OBLIGATION. SEND POSTAGE PAID CARD TODAY. CHECK HOME TRAINING OR CLASSROOM TRAINING.

Free Placement Service For all Students
Recently, RCA Institutes Free Placement Service has placed 9 out of 10 Resident School graduates in jobs before or shortly after graduation! And, many of these jobs are with top companies—like IBM, Bell Telephone Labs, General Electric, RCA, and radio and TV stations throughout the country. This service is now available to Home Study students as well.

RCA INSTITUTES, Inc. Dept.ZRE16
350 West 4th St., New York, N. Y. 10014
A Service of Radio Corporation of America

The Most Trusted Name in Electronics

Circle 21 on reader’s service card
EQUIPMENT REPORT

RCA WR-64B Color-Bar/ Dot/Crosshatch Generator

Circle 22 on reader's service card

RCA's WR-64B color-bar/dot/crosshatch generator is the latest in their attractive look-alike line of test equipment. However, it's all new and different inside.

The 189-kc crystal oscillator starts the countdown. From 189 kc, dividers manufacture 31.5, 15.75 and 4.5 kc, then 900, 180 and finally 60 cycles.

A highly accurate rf carrier is very important in color work. The WR-64B uses a channel 3 crystal, with another 4.5-mc crystal oscillator giving an accurately spaced sound carrier. The sound carrier can be switched off after the fine tuning of the TV set is adjusted. A channel 4 crystal can be substituted, if you'd rather.

Although the 4.5-mc carrier is referred to as the "sound" it's unmodulated. But without it, you'll hear the squawking and buzzing of the pattern signals in the speaker, turning on the sound carrier quiets this. It should be turned off after the fine-tuning has been set up.

For color bar signals, a 3.563795-mc crystal oscillator is used. Fed into the receiver, this gives a 15,750-cycle beat with the 3.579545-mc oscillator in the set, or one scanning line. So, we get a full 360° "swing" during each line, going through the whole range of colors. This gives us the rainbow pattern on the screen: maximum red at left, blue in the center and green at right.

By squaring and shaping the 189-kc output, we get pulses; these are used to gate the radio signal into ten color-bar signals, accurately spaced at 30° phase intervals. Very narrow brightness (Y) pulses are added at the edges to check the fit of the color signals against the brightness.

This instrument makes exceedingly small dots and a very fine-line crosshatch pattern. I'm a crosshatch man myself, but if you like dots, they're here. Both patterns are most exceedingly stable: in fact, the stability of the whole instrument is very good, including the rf carriers. We gave it a very exhaustive check against a channel 3 TV signal. It came on right on the nose each time and stayed there. This is a very useful thing in field work.

The WR-64B, from a cold start, comes on locked in. One of my favorite tests, that one, and one that was passed with flying colors. (That's a very bad smile, for what I mean is that the generator came on with color bars locked in place every time.)

The ten color bars include R - Y, B - Y, G - Y, J and Q signals (in both polarities, of course). The sine-wave output of the color circuit has maximum amplitude at 90° in the R - Y demodulator, 180° in the B - Y demodulator, and about 300° in the G - Y demodulator. Out of curiosity, I traced the signals through the demods of a CTC9 RCA chassis, and found patterns just like in the book. Pulses, bars and sync are all very clean and sharp. This makes troubleshooting defects in color circuits a lot easier.

The rf output cable is permanently attached to the back panel, terminated in a 300-ohm pad enclosed in RCA's familiar "hairy egg" with two "hot" clips and a ground clip. Another four-wire cable comes out the back for the gun-killer switches. Color-coded alligator clips, with insulation-piercing teeth in the jaws, can be attached to the grid wires of the CRT without taking the socket off.

This is something I like better every time I use it for convergence. Since they started using the combination-red-green circuits, you can get much faster results by killing the blue gun, working up a good yellow pattern, and then overlaying the blue with its controls.

A handy bracket for winding up the cables is fastened to the back panel, but can be taken off if you use the WR-64B for shop work only. A very well written instruction book comes with the instrument, giving full details on how to use it, plus valuable tips for servicing. Counters can be easily adjusted with a low-capacitance probe and scope. Test points are provided just inside the tube-access panel door on the back; you don't have to take the chassis out of the case to reset any counters.

One trouble I ran into on this generator, as on many similar ones: There is no control over the rf output amplitude. If the set you're working on has been used in a fringe area, the age may be set too "hot" and you'll get an age blackout when you feed the strong rf output of a bar-dot gen into it. This is a common cause of instability complaints, in patterns! Remember to reset the age to deal with the high signal input (also to reset it for weaker signals when you take the set home!).

Price: $189.50

Sencore CG135 All-Transistor Deluxe Color-Bar Generator

Circle 22 on reader's service card

INSTANT COFFEE, INSTANT TEA, AND now instant color bars. The Sencore CG135 color-bar/dot/crosshatch generator is all-transistor, and starts in a hurry. Actually it isn't really instant; it takes almost a second and a half (actually timed!) to display a pattern! (Tsk-tsk.) Ac-powered, this instrument uses a total of 23 transistors, three diodes and two silicon rectifiers.

The CG135 uses the crystal-countdown circuit, by now almost standard. A crystal oscillator at 189 kc in a Pierce circuit with a 2N1304 is the starting point. All other signals are derived from it, except the color and sound. A 2N404 is a buffer-shaper, feeding the 189-ke signal to a series of six unjunction transistors (2N2646's) in the "timer" countdown stages. The sequence is 31.5 kc, 15,750 cycles, 6,300, 900, 180 and 60 cycles. All divider circuits are identical for part values.

The 189-ke signal, clipped and shaped, makes vertical lines; the 900-cycle signal makes the horizontal lines. Both are fed into the mixer to get a crosshatch. To give the dot pattern, the mixer diode is biased so that it conducts only when both signals are present. The 15,750 and 60-cycle signals are fed into a sync-former stage. The output of this together with the bar, dot, color and crosshatch signals, goes to the series-diode rf modulator.

The rf oscillator is a Colpitts, tunable from channel 3 through channel 5.

www.americanradiohistory.com
you can see the convergence board over it if you have to. A real, wrinkle-free glass mirror, protected by a foam-plastic pad for traveling, is thoughtfully fastened to the inside of the lid. Sencore's customary test-lead storage compartment at the bottom of the front panel holds all the leads, line cords, etc., with plenty of room; no dangling cables.

It doesn't seem that there would be much trouble with this instrument, but if there is, the timer has adjustable controls. These are accessible by removing the front panel. A well written instruction book is furnished, and the troubleshooting chart and full schematic will help if disaster should strike!

PRICE: $146.95

AR-2a Speaker System

Circle 24 on reader's service card

A **COASTAL RESEARCH** is one firm that has never been guilty of resting on its laurels. Each of its products has undergone constant scrutiny and, when possible, been updated. That is the case with this new (but really not new) AR-2a.

The '2a' designation is the clue. This is a modification of the AR-2a, a three-way acoustic-suspension system that has been a mainstay of the AR line for some years. The AR-2a was, and is, a fine speaker. However, it did suffer somewhat from mid-range weaknesses. The range between that covered by the woofer and tweeter was somehow not in keeping with the very high standards set at both ends of the frequency spectrum.

By way of review, the original AR-2a was an outgrowth of a still earlier speaker, the AR-2. This (and as an AR-2's still is) a fine, low-cost two-way system. It uses a 10-inch acoustic-suspension woofer and two cross-fired 5-inch tweeters. These components were installed in a cabinet 2 feet long and a foot wide and deep. The AR-2a, sharing the same cabinet, was born as a result of AR's deluxe AR-3. The "fried-egg" dome tweeter of the AR-3 was added, with appropriate crossover changes, to the AR-2. The result was the AR-2a—the 10-inch woofer, the dual cross-fired units, now as mid-range, and the little egg yolk as a tweeter.

This speaker has enjoyed wide success, continued on page 70
How To Have Fun While You Save...
Something For Everyone...In This Vast Heathkit Selection!

New Heathkit 10-Band Transistor Portable!
10 bands tune Longwave, Standard Broadcast, FM and 2-22.5 mc Shortwave. 16 transistors, 6 diodes, and 44 factory assembled and pretuned circuits. Two separate AM & FM tuners and IF strips. FM tuner & IF strip are same components used in deluxe Heathkit FM stereo gear. 2 built-in antennas. Battery saver switch cuts current drain up to 35%. Rotating tuning dial. Dial light, 4 simple controls for tuning, volume, tone, AFC and band switching. 4" x 6" PM speaker. Earphone & built-in jack. Optional 117 v. AC converter/battery charger available @ $6.95. Time zone map & "listener's guide." Man size: 13 1/2" W x 5 1/4" D x 10 1/2" H. 17 lbs.

Enjoy World-Wide Listening With This Low-Cost Shortwave Receiver!
Hear live broadcasts from hundreds of foreign countries, Voice of America, Radio Moscow, hams, ship-to-shore radio, weather and popular AM. Covers 550 kc to 30 mc-includes AM plus 3 shortwave bands; 5" speaker; bandspread tuning; signal strength indicator; 7" sliderule dial; BFO; 4-tube circuit plus 2 rectifiers; noise limiter; external antenna connectors; gray aluminum cabinet; AM antenna; 15 lbs.

New Deluxe Shortwave Radio
Compare it to sets costing $150 and more! 5 bands cover 200-400 kc, AM, and 2-30 mc. Tuned RF stage, crystal filter for greater selectivity, 2 detectors for AM and SSB, tuning meter, bandspread tuning, code practice monitor, automatic noise limiter, automatic volume control, antenna trimmer, built-in 4" x 6" speaker, headphone jack, gray metal cabinet, and free SWL antenna. 25 lbs.

New 23-Channel, 5-Watt, Transistor CB Transceiver!
Your best 23-channel CB buy-bar none! Compare! 23 crystal-controlled transmit & receive channels for the utmost reliability...at lowest cost. All-transistor circuit for instant operation, low battery drain...only.75 A transmit, 12 A receive. Compact...3" H x 7" W x 10 1/2" D...ideal for car, boat, and 12 v. neg. gnd. mobile use. 1/2 uv sensitivity for 10 db signal plus noise-to-noise ratio. Includes "S" meter, adjustable squelch, automatic noise limiter, built-in speaker, ceramic PTT mike, gimbal mounting bracket, aluminum cabinet with die-cast chrome-plated front panel. 8 lbs. Kit GWA-14-1, optional power supply for AC operation, 5 lbs...$14.95. GWA-14-2, complete 23 channel crystal package (46 CB crystals)...$135.70 value...only $79.95.

New Deluxe 5-Band SSB Ham Transceiver
Full SSB-CW transceive operation on 80-10 meters. 180 watts PEP SSB-170 watts CW. Switch select for USB/LSB/CW operation. Operates PTT and VOX; VOX operated CW with built-in sidetone. Triple Action Level Control™ allows greater variation in pitch level. Heath SB series Linear Master Oscillator (LMO) for true linear tuning. Mobile or fixed operation with appropriate power supply, 23 lbs. Accessory mobile mount, SBA-100-1 $14.95.

New Heathkit Solid-State Electronic Keyer
All solid-state circuitry. Speed range—15 to 60 words per minute. Solid-state switching—no relays to stick or clatter. Adaptable to either right or left handed operators. Convertible to semi-automatic operation. Variable dot-space ratio. Self-completing dashes. Sealed switches on paddle—no exposed contacts to clean or adjust. Built-in paddle—"feel" is adjustable to your fist during assembly. "Hold" switch for transmitter tuning. Transformer-operated power supply isolates keyer from line power. Fused for protection. 6 lbs.

Kit GR-43
$159.95

Kit GR-64
$37.95

Kit GWA-14
$89.95
Assembled GWW-14
$124.95

Kit SB-100
$360.00

Kit GR-54
$84.95

Kit HD-10
$39.95

www.americanradiohistory.com
...Build A Heathkit®!
Now Choose From 2 Heathkit® Transistor Stereo Receivers!

New 30-Watt Transistor FM Stereo Receiver...
Less Than $100!
Features 31 transistors, 11 diodes for cool, natural transistor sound; 20 watts RMS, 30 watts IHF music power @ ±1 db, 15 to 60,000 cps; wideband FM/FM stereo tuner plus two preamplifiers & two power amplifiers; front panel stereo headphone jack; compact 3½" H x 15¼" W x 12" D size. Assembles in 20 hours or less. Custom mount it in a wall, or optional Heath cabinets (walnut $9.95, beige metal $3.95) 16 lbs.

Kit AR-14
$99.95
(less cabinet)

66-Watt Transistor AM/FM Stereo Receiver
Just add 2 speakers for a complete stereo system. Boasts AM/FM/FM stereo tuning; 46-transistor, 17-diode circuit for cool, instant operation and natural transistor sound; 66 watts IHF music power (40 watts RMS) at ±1 db from 15 to 30,000 cps; automatic switching to stereo; preassembled & aligned "front-end" & AM-FM IF strip; walnut cab. 35 lbs.

Kit AR-13A
Now Only
$184.00

Best Hi-Fi News Of '66...New Low-Cost Transistor Stereo Twins!

New Transistor FM/FM Stereo Tuner
Heath's easiest to build stereo/hi-fi kit...takes only 4 to 6 hours! 14 transistor, 5 diode circuit for cool instant operation, transparent transistor sound. Phase control assures best stereo performance. 3 transistor "front-end" plus 4-stage IF section. Filtered outputs for direct stereo recording. Automatic stereo indicator light. Preassembled & aligned "front-end." Install in a wall or either Heath cabinet (walnut $7.95, beige metal $3.50). 6 lbs.

Kit AJ-14
$49.95
(less cabinet)

Matching 30-Watt Transistor Stereo Amplifier
Assembles in 10 hours or less! 17 transistors, 6 diodes, 20 watts RMS, 30 watts IHF music power @ ±1 db, 15 to 60,000 cps. No audio transformers...assures minimum phase shift, extended response, lower distortion. Solid-state power supply plus electronic filter for regulation within 10%. Accommodates phono, tuner, auxiliary...4, 8, 16 ohm speaker impedances. Lighted panel. Installs in wall, or Heath cabinets (walnut $7.95, metal $3.50). 10 lbs.

Kit AA-14
$59.95
(less cabinet)

NEW 1966 CATALOG!
Free! 108 pages...many in full color...describe these and over 250 easy-to-build Heathkits. Save up to 50%. Mail coupon for your free copy.

JANUARY, 1966
Garrard Lab 80 Automatic Turntable

Circle 25 on reader's service card

GARRARD HAS, FOR YEARS, USED A pusher-platform type of changing mechanism in its top-of-the-line changer. The Lab 80 uses a single long spindle with three extendable arms that hold up the record stack. At the critical moment, the three arms contract, while a collar expands. The collar grabs all of the records except the bottom one, holding them securely by their center holes. The bottom disc, with no hold on it, falls gently to the turntable. Obviously, there is no abrasion of the bottom disc against the one above as was the case with pusher systems.

The tone arm is a long and graceful wooden structure—at least so it appears. It is long and it is graceful—but it is not all wood. Rather, it is a bonding of wood to an aluminum structure, for

Great rigidity and strength. The wood in the arm is not merely decorative. It is lightweight, relatively rigid and tends to damp normal arm resonances.

The Lab 80 arm is of static balance design. A rear weight is adjusted to balance the arm and cartridge, and then spring pressure is applied to provide the proper tracking force. This popular system is stable and isn’t quite so critical about non-level locations. (This is the type of arm that can track upside down.)

The counterweight of the Lab 80 has continuous click-stops as it screws in and out for balance. This makes it easy to obtain hair-perfect balance. Once the arm is balanced, stylus force is dialed on a knurled knob under the arm. This, too, has click-stops. Each click represents an exact force change of 0.15 gram.

A basic law of physics states essentially that any pivoted arm with an offset head will guide toward the center of rotation when the head is placed on a revolving disc. This is skating—the force that tends to pull the arm to the record’s center. With stereo discs, where there is different information on each side wall of the groove, skating pull (even if it isn’t enough to yank the stylus from the groove) can cause distortion in the outer-wall channel because the stylus is

pulled away from intimate contact.

Located near the base of the Lab 80’s arm pivot, an adjustable anti-skating counterweight pushes against the arm to equalize the pressures.

Four levers operate the Lab 80. The first (from the left) is for speed selection: 33 1/3 or 45 rpm. The second and third levers set the unit in operation as either a manual or automatic player. The manual control does one other thing: it activates an arm cue mechanism. This allows you to position the arm manually over any point on the record. Then you depress a lever in the arm rest stand and the arm will float gently down to the record. Once it has done its job, the device becomes completely disengaged from the arm. It’s great; it ends butterfingered stumbling.

The final front-panel lever selects the record size for automatic play. The Lab 80 will not intermix different diameters or speeds of discs. So, for automatic play, you set the control to 12-, 10- or 7-inch and pull the next-to-last lever to AB. The Lab 80 does the rest.

One expected feature I found missing was the ability to play a single record automatically with the short spindle in place. You must position the arm manually (with the cue system). The arm will still pick up automatically at the end of play, or if you activate the auto lever. Performance was consistent and reliable. There was no jamming. Construction seems sound enough for long, trouble-free service.

Rumble and flutter/wow measurements are the two prime barometers of a turntable’s qualities. The rumble on our sample was 33 db below a 3.54-cm/sec recorded tone at 30 cycles. This rumble was centered around 60 cycles. The practical result is that the Lab 80 had some audible rumble when a stereo record was played at high volume settings. This was not judged objectionable. Flutter and wow measurements showed the Lab 80 up as top-notch. Total flutter was 0.08% and total wow 0.15%. These figures compare very favorably with the best manual tables. By ear, even piano tone, the toughest test of all, gave no indication of warble or wow.

The arm will track at 0.25 gram, if you can find a cartridge that will. However, the trip mechanism required 0.4 gram minimum for activation. Either figure is well below the lower force limit of even the best cartridges and the Lab 80 may be used with the highest-compliance, so-called “manual play” cartridges.

Arm resonances were centered at 20 cycles—well below the point where trouble might be caused. Tracking error was also low, never over 1% when used with a standard-mount cartridge.

—Leonard Silke

Price: $99.50 (plus $3.95 for optional walnut base)

BUILD AN ULTRASENSITIVE LIGHT METER

This electronics writer-hobbyist-photographer wanted a simple, extremely sensitive light meter for fine closeup photographs of miniature parts and wiring. He built his own! You can too, for less than $10! See it on the cover next month!

Coming in February RADIO-ELECTRONICS

Price: $128, oiled walnut; $109, unfinished pine
Most People Build Heathkit® Test Gear...

But Many Buy Them Factory Assembled!

Either Way, These 10 Are Best Buys

A. RF Signal Generator... Countless Applications In Radio & TV Servicing! Covers 100 kc to 220 mc in 6 bands; large accurately calibrated dial scales; modulated or unmodulated RF output; 400 cps signal for audio tests. 6 lbs.

Kit IG-102.................................$27.95
Assembled IG-102.......................$54.95

B. Switch-Selected Audio Frequency Generator. Produces near-perfect sine waves; switch-selected output frequencies—10 cps to 100 kcs; less than 0.1 of 1% distortion—20-20,000 cps; calibrated in volts & db; accuracy within ± 5%. 8 lbs.

Kit IG-72.................................$41.95
Assembled IGW-72.....................$64.95

C. Deluxe Capacitor Checker... A Direct-Reading Bridge. Tests all capacitor types; low-bridge voltage for testing miniature electrolytics; 16 leakage test voltages; direct reading scale measures resistance from 5 ohms to 50 megs; measures 10 mfd to 1000 mfd. 1. C, R, 9 lbs.

Kit IT-11.........................$29.95
Assembled ITW-11.....................$49.95

D. Solid-State Regulated DC Power Supply 50 MA, 150 MA, 500 MA, & 1.5 A current ranges; 5, 15, 50 v. DC voltage ranges; filtered output for less than 150 uv ripple; adjustable current limiter, 30 to 100% on each range. 16 lbs.

Kit IP-20.................................$72.95
Assembled IPW-20.....................$114.95

E. "Low-Ripple" Battery Eliminator. Switch selection of 6 or 12 v. DC power; special filter circuit holds AC ripple to less than 0.3%. metered output voltage & current; doubles as a battery charger. 21 lbs.

Kit IP-12.................................$47.50
Assembled IPW-12.....................$59.95

F. World's Largest Selling VTVM. Single AC/DC/Ohms probe; 7 AC/DC/Ohms ranges; 1% precision resistors for high accuracy; frequency response ± 1 db from 25 cps to 1 mc; voltage doubler rectifier; 4½", 200 UA meter. 5 lbs.

Kit IM-11.................................$24.95
Assembled IMW-11.....................$39.95

G. Laboratory AC VTVM... 10 Voltage Ranges! Covers 0.01 to 300 volts RMS full scale in 10 voltage ranges with 5% accuracy; frequency response ± 1 db from 10 cps to 500 kc; 10 megohm input impedance for high accuracy; calibrated db scale for audio measurements. 5 lbs.

Kit IM-21.................................$39.95
Assembled IMW-21....................$52.95

H. Deluxe "Service Bench" VTVM. 7 AC/DC/Ohms ranges; measures AC volts (RMS), DC volts; resistance & db; separate 1.5 & 5 volt AC scales; gimbals mounted for bench, shelf, or wall; 6", 200 UA meter; single AC/Ohms/DC probe; smooth vernier controls for zero & ohms adjust. 8 lbs.

Kit IM-13.................................$32.95
Assembled IMW-13....................$49.95

I. Variable-Voltage Regulated Power Supply. Furnishes +, bias & filament voltages; DC output variable from 0 to 400 volts; separate panel meters for voltage & current; output terminals isolated for safe AC/DC work. 17 lbs.

Kit IF-32.................................$56.95
Assembled IPF-32.....................$84.95

J. Extra-Duty Wide-Band 5" Oscilloscope. Full 5 mc bandwidth for color TV servicing. Heath patented sweep circuit 10 cps to 500 kc, push-pull vertical & horizontal amplifiers; positive trace position controls; peak-to-peak calibration reference; Z-axis input. 24 lbs.

Kit IO-12.................................$76.95
Assembled IOW-12....................$126.95

FREE HEATHKIT® CATALOG!
Packed with over 250 Heathkits including complete Test Instrument line. Save up to 50%, Mail coupon, or write Heath Company, Benton Harbor, Michigan 49023 for your Free copy.

Use To Order And/Or Get FREE Catalog
Heath Company, Dept. 20-1, Benton Harbor, Michigan 49023
☐ Please send FREE 1966 Heathkit Catalog.
☐ Enclosed is $........................... plus shipping.
Please send model(s)

Name...
Address...
City... State... Zip...
Ship Via: ________________________ ☐ Parcel Post ☐ Express Collect ☐ Freight ☐ 20% Included, C.O.D. ☐ Best Way

Prices and specifications subject to change without notice.

January, 1966

71
The following free advertising material is available through

RADIO-ELECTRONICS READER'S SERVICE

ALLIED RADIO CORP. (Pg. 90-93) Circle 124
1966 Catalog.

AMPEREX (Second Cover)
List of tubes.

BRACH MFG. CORP. (Pg. 78) Circle 112
Catalog on antennas.

BROOKS RADIO & TV CORP. (Pg. 98-99) Circle 130
Cataloing sheets and price list of tubes and parts.

BURSTEIN-APPLEBEE (Pg. 80) Circle 115
Catalog.

CASTLE TV TUNER SERVICE (Pg. 6) Circle 5
Information on complete tuner overhaul by mail.

CLEVELAND INSTITUTE OF ELECTRONICS (Pg. 77) Circle 109
Electronics slide rule booklet and data guide.

CONOR INSTRUMENTS (Pg. 22) Circle 11
Catalog on kits.

CORNELL ELECTRONICS, INC. (Pg. 105) Circle 138
Catalog and price list of tubes and parts.

COYNE ELECTRONICS INSTITUTE (Pg. 102) Circle 133
Booklet: "Your Opportunities in Electronics".

DATAK CORP. (Pg. 84) Circle 118
Folder and sample "Instant Lettering".

DE VRY TECHNICAL INSTITUTE (Pg. 5) Circle 4
Booklets "Pocket Guide to Real Earnings" & "Electronics in Space Travel".

EASTMAN KODAK (Pg. 7) Circle 6
24-page booklet "FM Talk" on Tape performance.

ELECTRONIC COMPONENTS CO. (Pg. 106) Circle 137
Information on Rectifiers & Transistors.

FINNEY CO. (Third Cover) Circle 141
Booklets on Color & Log Antennas.

GARREY (Pg. 14) Circle 7
Companion guide on Lab 80 record changer.

GRANTHAM SCHOOL OF ELECTRONICS (Pg. 102) Circle 134
Catalog.

HEALD'S ENGINEERING COLLEGE (Pg. 101) Circle 132
Catalog and registration application.

HEATH COMPANY (Pg. 68, 69, 71) Circle 27
Catalog.

INTERNATIONAL CRYSTAL MFG. CO. (Pg. 1) Circle 2
Information on Model MO Transceiver for Citizens Radio Service.

INTERNATIONAL RADIO EXCHANGE (Pg. 79) Circle 114
List of equipment in stock.

JERROLD ELECTRONICS CORP. (Pg. 86) Circle 122
Information on the Pathfinder TV and FM antennas.

JFD ELECTRONICS CORPORATION (Pg. 32) Circle 18
Information on LFV Color Log Periodic Antennas.

LECTROTECH, INC. (Pg. 97) Circle 129
Catalog on test equipment.

MERCURY ELECTRONICS CORP. (Pg. 16) Circle 9
Catalog on test equipment.

MILWAUKEE SCHOOL OF ENGINEERING (Pg. 102) Booklet: "Your Career". Circle 135
Catalog.

OLSON ELECTRONICS, INC. (Pg. 101) Circle 131
Catalog.

PERMA-POWER CO. (Pg. 75) Circle 106
Information on Color Brite brighteners.

POLY PAKS, INC. (Pg. 107) Circle 139
Catalog of semiconductors.

PRECISE ELECTRONICS & DEVELOPMENT (Pg. 2) Circle 3
Information on test instruments.

QUAM-NICHOLS CO. (Pg. 24) Circle 13
Information on color TV replacement speakers.

RCA INSTITUTES (Pg. 62-65) Circle 21
Brochure on home study and classroom study.

RCA TEST INSTRUMENTS (Pg. 23) Circle 12
Information on RCA WR-64B color Bar/Dot/Crosshatch generator.

READING IMPROVEMENT PROGRAM (Pg. 79) Circle 113
Booklet: "Adventures in Reading Improvement".

RADIO SHACK (Pg. 158) Circle 140
Catalog.

SAMS, HOWARD W. CO. INC. (Pg. 17) Circle 10
1966 Photofact Annual Index and information on Encyclopedia offer.

SAMS, HOWARD W. CO. INC. (Pg. 67) Circle 26
Booklist.

SCOTT, H. H. (Pg. 77) Circle 108
Spec sheet on solid-state stereo amplifier kit.

SECO ELECTRONICS CORP. (Pg. 81) Circle 117
Information on all-transistor color bar generator.

SENCO (Pg. 95) Circle 126
Information on CG 135 Transistorized color generator.

SONAR (Pg. 56) Circle 126
Information on Model FR101/102 Monitor Receiver.

SPRAGUE ELECTRIC COMPANY (Pg. 26) Circle 15

SYLVANIA ELECTRIC CO. (Pg. 25) Circle 14
Information on color bright 85 color picture tube.

TEXAS CRYSTALS (Pg. 81) Circle 116
Catalog.

UNIVERSITY SOUND (Pg. 78) Circle 111

WARREN ELECTRONIC COMPONENTS (Pg. 103) Circle 136
Information on Silicon Rectifiers.

WELLER ELECTRIC CORP. (Pg. 94) Circle 125
Literature on soldering guns.

WINSTOR (Pg. 96) Circle 127
Booklet: "The Open Door to TV Profits".

WINEGARD CO. (Pg. 84) Circle 119
Fact-finder #242 with information on Chroma-Tel antenna.

WUERTH PRODUCTS CORP. (Pg. 85) Circle 121
Information on the Surgistor.

RADIO-ELECTRONICS READER'S SERVICE
P.O. Box 7365, Philadelphia, Pa. 19101

The numbers I have circled below indicate the material I would like to receive:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

Here's how you can get manufacturers' literature fast:

1. Tear out the postcard on the facing page. Clearly print or type your name and address.

2. Circle the number on the card that corresponds to the number appearing at the bottom of the New Products, New Literature or Equipment Report listing in which you are interested. For literature on products advertised in this issue circle the number on the card that corresponds to the number appearing at the bottom of the advertisement in which you are interested, or use the convenient checking list in the column at the left.

3. Mail the card to us (no postage required in U. S. A.)

Note: If the postcard has already been detached from your copy of RADIO-ELECTRONICS, use the coupon on this page instead. Enclose the coupon in an envelope and address it to: RADIO-ELECTRONICS READER'S SERVICE, P. O. Box 7365, Philadelphia, Pa. 19101. (Use this address only for Reader's Service requests.)
NEW PRODUCTS

More information on new products is available free from the manufacturers of items identified by a Reader’s Service number. Turn to the Reader’s Service Card facing page 72 and circle the numbers of the new products on which you would like further information. Detach and mail the postage-paid card.

PICTURE-TUBE ANALYZER, the CRT-100, for color or black-and-white. Line-voltage adjustment; grid-cathode leakage measurement; heater-cathode leakage; quality-tests black-and-white CRT’s (continuously variable and calibrated G2 voltage so that all tubes, present and future, can be tested); quality-tests color CRT’s, removes shorts. High-energy rejuvenation, life test; plug-in cables, no unsoldering within instrument necessary; portable, in carrying case.—Lectrotech, Inc.

Circle 46 on reader’s service card

COLOR BAR GENERATOR, model 900, has design feature which produces exceptionally square waveforms. Instead of conventional oscillators for dividers, the 900 uses a ring-counter design with unijunction transistors serving as switches for counters. Has 10 color bars with positive graduation from color to color; bright and sharp single-trace horizontal lines that begin and end during horizontal trace; no blanking on crossover at any intensity level. Zener-regulated power supply, crystal-controlled oscillators. Channel tuner on front panel.—Seco Electronics Corp.

Circle 47 on reader’s service card

SHEilded LEAD-IN, 8290
Shielded Permohm, features an orange-web-insulated 300-ohm pair encapsulated in low-loss cellular polyethylene insulation and Beldfoil, a patented 100% shield that stops transmission-line pickup of electrical noise, including automotive ignition. Noncontaminating polyethylene jacket covers lead-in overall. Standoffs at antenna not required; 8290 can be taped to mast. 50-, 75-, 100-foot lengths with

FADING COLOR?

Perk it up with Perma-Power COLOR-BRITE

Perma-Power does for color TV sets what we’ve done for millions of black and white CRT’s: adds an extra year of useful picture tube life.

When a color tube begins to fade, COLOR-BRITE instantly brings back the lost sharpness and detail. It provides increased filament voltage to boost the electron emission and return full contrast and color quality to the 3 gun color picture tube.

COLOR-BRITE is automatic... no switching or wiring. Just plug it in. Your delighted customers will brighten up as fast as their color sets!

Model C-501, for round color tubes.
List Price $9.75

Model C-511, for rectangular color tubes.
List Price $9.75

Perma-Power COMPANY
5740 N. TRIPP AVE., CHICAGO, ILLINOIS 60646
PHONE (312) 539-7171

Circle 106 on reader’s service card

www.americanradiohistory.com
don't miss this exhibition
February 3 to February 8, 1966
at the Porte de Versailles in Paris

The first world-wide show of the year
the international exhibition of

ELECTRONIC COMPONENTS

and the International Exhibition of
AUDIO EQUIPMENT

featuring the most recent developments in electronic components, tubes and semiconductors, test equipment, control equipment, audio and hi-fi units

For information write directly to:
S.D.S.A., 16, Rue de Presles,
Paris, France. Tel. 273-24-70
Official Carrier:
Air France, Overseas Trade Show Department
683 Fifth Avenue, New York, N.Y. 10022

To get your ticket of admission, fill in this coupon and mail it to S.D.S.A. Relations Extérieures, 16, Rue de Presles, Paris 15, France.

NAME

COMPANY

ADDRESS

INTERNATIONAL EXHIBITION OF ELECTRONIC COMPONENTS

[Ad for factory-installed terminals; also bulk lengths.—Belden Mfg. Co., PO Box 5070A, Chicago, Ill. 60680]

Circle 48 on reader's service card

ANTENNA, Colorguard. Mobile communications antennas made with fluorescent "International Emergency Orange" material, designed for maximum visibility and easy identification of emergency radio-equipped vehicles on CB and business bands.—Antenna Specialists Co.

Circle 49 on reader's service card

COLOR TV TUNER CLEANER, Color Lube, built around chemical formula "TC-5", cleans and lubricates tuners in color sets without causing any frequency drift or detuning.—Chemtronics, Inc.

Circle 50 on reader's service card

LOW-CAPACITANCE LEVER SWITCHES, Series 10000 Lo-Cap, available in 2- and 3-position models, locking and nonlocking types, in variety of circuits from 2-A (dpst) to 8-C (8pdt). All models have flat actuator springs, round contact springs mounted in molded phenolic insulating block which eliminates induced alternating current between springs. Silver contacts are rated at 1 ampere, 100 watts max ac with noninductive load. Tinned terminals.—Switchcraft, Inc.

Circle 51 on reader's service card

www.americanradiohistory.com
LARYNX MIKE, AC-77, energized directly through vibrations of vocal cords, will not pick up sound waves from outside. Available from 50 to 5,000 ohms. Frequency response 200 to 3,000 cycles.

Telephone Dynamics Corp.

Circle 52 on reader's service card

PROJECT CONSTRUCTION KIT, model PK-5. 5 Veroboard and instruction book for these projects: impedance-matching module, engine pulse-counter module, audio amplifier and rf probe module, multivibrator module, audio oscillator module.—Vero Electronics

Circle 53 on reader's service card

STEREO CHANGER, model BC-2, the Balfour Princess, now available with audio cables, ac line cord, cartridge and diamond stylus. Tone arm has free lateral movement for uniform response on stereo channels, plus self-locking device against stylus damage.—RFS Industries, Inc.

Circle 54 on reader's service card

PUSHBUTTON MULTITESTER, model TE-192, has 10 pushbuttons. 50-

JANUARY, 1966

The only lab instrument you need to complete Scott's new 80-watt solid-state stereo amplifier kit

Scott's new solid state amplifier kit is completely protected against transistor blow-out. An ingenious "Fail-Safe" circuit using an ordinary light bulb takes the load off expensive silicon transistors when you first plug in your K-60 ... so, if you've made a wiring error (almost impossible with this kit), no harm done! Other bright new ideas from Scott: preassembled, factory-tested modular circuit boards; full-color instruction book; amazingly low price: $189.95

Circle 108 on reader's service card

LOOK! A NEW ELECTRONICS SLIDE RULE with complete instruction program

Here's a great new way to solve electronic problems accurately, easily . . . a useful tool for technicians, engineers, students, radio-TV servicemen and hobbyists. The Cleveland Institute Electronics Slide Rule is the only rule designed specifically for the exacting requirements of electronics computation. It comes complete with an illustrated Instruction Course. You get four AUTO-PROGRAMMED lessons . . . each with a short quiz you can send in for grading and consultation by CIE's expert instructors.

See for yourself. Learn how to whip through all kinds of reactance, resonance, inductance, AC and DC circuitry problems in seconds . . . become a whiz at conventional computations too!

This all-metal 10" rule is made to our rigid specs by Pickett, Inc. . . . comes complete with top grain leather carrying case and Instruction Course. A $50 value for less than $20. Send coupon for FREE illustrated booklet and FREE heavy vinyl Pocket Electronics Data Guide. Cleveland Institute of Electronics, 1776 E. 17th St., Dept. RE-118, Cleveland, Ohio 44114.

Cleveland Institute of Electronics

GET BOTH FREE!

ELECTRONICS

SLIDE RULE

Send coupon today→

Cleveland Institute of Electronics

1776 E. 17th St., Dept. RE-118 Cleveland, Ohio 44114

Send FREE Electronics Slide Rule Booklet. Special Bonus: Mail promptly and get FREE illustrated booklet and FREE heavy vinyl Pocket Electronics Data Guide too!

NAME ____________________________

ADDRESS ____________________________

CITY ____________________________ STATE __________ ZIP ______

A leader in Electronics Training . . . since 1934

Circle 109 on reader's service card

www.americanradiohistory.com
Otto Werk sent in this Coupon

Look what he got!

Lots of help ... right from the horse's mouth. 'cause now University's got a Mustang! Plus a corral full of other speakers. University speaker guides showed him how to choose a speaker system, how to build a custom system with separate speakers—and much more! Send for these guides right away. You'll be an expert, too. Just like a smart Dane named Otto.

UNIVERSITY SOUND
A DIVISION OF LTV LING ALTEC, INC.
9500 W. Reno Oklahoma City, Oklahoma

Circle 111 on reader's service card

LATEST and GREATEST!

NEW Brach
UHF/VHF TV ANTENNAS
FOR Black/White & Color

- Ultimate in Design!
- Unequalled in Performance!
- Outstanding in Value!

SEND FOR our latest catalog with our complete line of antennas

6651 Gold Finish
6652 Chrome Finish

BRACH MFG. CORP. DIV. of General Bronze Corp.
899 Main Street, Sayreville, N.J. 08872
Circle 112 on reader's service card

SPLITTER/COMBINER, model SC80, a signal-divider network for distributing separate vhf, uhf and FM signals from single antenna system. All input and output connections matched to standard 300-ohm impedance of conventional antennas, transmission lines, TV or FM receivers. Insertion loss 0.5 db. Voltage standing-wave ratio 1.3 to 1. Frequency response in each band flat within ±0.5 db.

-JFD Electronics Corp.
Circle 56 on reader's service card

SKIN DIVERS' "UNDERCOM", called Yack-Yack, has two parts: face mask including mike and special sound diffuser to eliminate bubble sounds, and compact noncorroding plastic case containing the amplifier circuitry, dry-cell battery and speaker. Complete system weighs 25 oz in water. Speech sounds heard 50 ft or more.

-Raytheon Co.
Circle 57 on reader's service card

4-TRACK STEREO TAPE RECORDER, model RK-237. Speeds: 3 1/2 and 7 1/2 ips. Response: 40-15,000 cycles at 7%. Wow/flutter 0.2%. Stereo separation: 45 db. Signal-to-noise ratio: 45 db. Inputs: mike, phone/radio. Outputs: hi-fi preamp, headphone. For 117 volts, 60 cy-

www.americanradiohistory.com
Mfg. Co. in 3 case.

detachable Iles

JANUARY,

GR -43,

releasing plunger.

an gers flare
the

Universal Technical

Circle

3DX-2 (shown), 8-3D-2, feature 2 lead-in cables for uhf and vhf reception, double set of phasing bars, one as uhf reflector and the other for vhf and color reception. 12-position dial switch.—Snyder Mfg. Co.

Circle 59 on reader's service card

MOISTURE-REPELLENT SPRAY. Cranolifen Spray 35, drives out condensation and seals dielectrically. Temperature range -50°C to +200°C, can be used continuously at 180°C, is able to stand temperature of an arc for up to 80 seconds.

-Caig Laboratories

Circle 60 on reader's service card

HAND TOOL, the Triceps. Depress the plunger and 3 resilient, hooked fingers flare out from tip, retract and grasp

an object by positioning the fingers and releasing plunger. Stainless steel, 6 models ranging in length from 4% to 18 in.—Universal Technical Products Co.

Circle 61 on reader's service card

PORTABLE RADIO KIT, model GR-42, all-transistor, 10 bands. Tunes 150-400 kc long-wave, 88-108 me FM,

550-1,600 kc AM, plus 7 short-wave bands covering 2-22.5 mc. 16 transistors, 6 diodes, 44 factory-assembled rf circuits. Two built-in antennas, battery-saver switch. 4 x 6-in. speaker. Runs on 6 "D" flashlight batteries and 1 "C" battery for dial light. Also operates on 117 vac with optional converter/charger.—Heath Co.

Circle 62 on reader's service card

MINIATURE PUSHBUTTON SWITCH, type MX, available for printed-circuit and/or hand wiring. Maximum 15 watts dc, 25 ac; 1 to 12 buttons, each button supplied with maximum of 8 poles, double-throw. Overall thickness under %

Circle 113 on reader's service card

ATTENTION! CB OPERATORS
save on citizens radio equipment

Discontinued Models From
International Radio Exchange

Select that extra transceiver for mobile or base installation, or equip a new station. Our stock includes International types as well as other makes.

Write Today for A Complete List of Equipment in Stock

Circle 114 on reader's service card

Why Do You Read So Slowly?

A noted publisher in Chicago reports there is a simple technique of rapid reading which should enable you to double your reading speed and yet retain much more. Most people do not realize how much they could increase their pleasure, success and income by reading faster and more accurately.

According to this publisher, anyone, regardless of his present reading skill, can use this simple technique to improve his reading ability to a remarkable degree. Whether reading stories, books, technical matter, it becomes possible to read sentences at a glance and entire pages in seconds with this method.

To acquaint the readers of this publication with the easy-to-follow rules for developing rapid reading skill, the company has printed full details of its interesting self-training method in a new book, "Adventures in Reading Improvement" mailed free to anyone who requests it. No obligation. Simply send your request to: Reading, 835 Diversey Parkway, Dept. 4481, Chicago, Ill. 60614. A postcard will do. Include your zip code.

Circle 111 on reader's service card
in; used on printed-circuit board, height above board is less than 15/32 in.—Seacor, Inc., 598 Broadway, Norwood, N.J.

Circle 63 on reader's service card

FM/STEREO TUNER-AMPLIFIER, the RA-727. FM multiplex tuner has input sensitivity of 1 µv, multiplex channel separation of 30 db. Amplifier power output: 44 watts. Frequency response 30 to 30,000 cycles. 9¾ x 12½ x 5½ in.—Olson Electronics

Circle 64 on reader's service card

FM-STEREO MULTIPLEX SIGNAL GENERATOR, model FMX-103. Internal audio oscillator: 500, 2,000, 5,000 cycles ±1 db, 67 kc SCA, 1 volt rms. FM rf output: 107 mc (±2 mc adj) carrier, deviated 75 kc. FM SCA per FCC (rear switch for 60-cycle sweep). Composite MFX output: 0 to 3 volts peak-to-peak composite FM stereo. Pilot carrier: 19 kc ±2 cycles stability, 0 to 10% amplitude control at rear, special 45° selection for left- and right-channel identity and for checking receiver subchannel quadrature null. 1% audio distortion. 35-db left and right stereo separation. Down 50 db residual hum (zero on battery). 1% or less 38-kc carrier residual. Main to stereo subchannel crosstalk: 40 db or more. Printed-circuit chassis, 8 transistors, 9 diodes. 3½ x 1½ x 7½ in.—American Laboratories

Circle 65 on reader's service card

PRINTED-CIRCUIT SPRAY, Poly Spray, a polyurethane composition, forms transparent coating to resist moisture and abrasion, prevents intermittent defects by damping the vibration of parts of printed circuit. To be used after printed-circuit repair.— Injectorall Electronics Corp.

Circle 66 on reader's service card

POTENTIOMETERS with improved linearity announced by Amphenol. The 10-turn 900 series now has ±0.1% absolute linearity; the 3-turn 930 ±0.25%. No additional cost.—Amphenol Controls Div.

Circle 67 on reader's service card

WHY GLOW LAMPS GLOW
Ionic glow lamps (like neon lamps) are used in computers, electronic organs, color television sets, tape recorders, test instruments, regulated power supplies, and hundreds of other kinds of electronic apparatus. How do they work? Read all about them, and try practical circuits on electronic sirens or chimes, computer logic flip-flops, relay triggers.

Coming in February
RADIO-ELECTRONICS
NEW LITERATURE

All booklets, catalogs, charts, data sheets and other literature listed here are free for the asking (except where a price is given). Each item is identified by a Reader’s Service number. Turn to the Reader’s Service Card facing page 72 and circle the number of items you want. Then detach and mail the card. No postage required!

SIMPLIFIED TOOL CATALOG, SD-76. Over 300 items in screwdrivers, nutdrivers, pliers, wrenches, specialty tools. Illustrated.—Yaco Products Co.
Circle 68 on reader’s service card

ANTENNA ROTOR SYSTEMS, Bulletin 252-8P. 8 pages, looseleaf punched, description and photos of CDE series rotor (rotator) and controls, TEN series rotor and controls.—Cornell-Dubilier Electronics. Circle 69 on reader’s service card

BOOKLET, No. 50. How to Plan a Home TV System. Pocket-size, 12 pages, charts for selecting the best TV antenna system for your area.—Blonder-Tongue Labs, Inc. Circle 70 on reader’s service card

COLOR TV REPLACEMENT GUIDE, Stancor 5-00646, 6-page foldout gives replacement numbers for flybacks, yokes, vertical outputs, power transformers on 28 makes of color TV.—Electronic Marketing Div. of Essex Wire Corp. Circle 71 on reader’s service card

GLASS CAPACITORS CATALOG B-8137. 4 pages, specs, charts, dimensions of military type CY and industrial type CYW capacitors.—Westinghouse Electronic Capacitor Dept. Circle 72 on reader’s service card

TOOL CATALOG. No. 65. 8 pages, universal-punched, photos, dimensions, prices of inspection mirrors, magnetic retrieving tool (all-angle and flexible), mechanical fingers, screw starters. Ultman Device Corp. Circle 73 on reader’s service card

SPEAKER/MICROPHONE STAND CATALOG, No. 585. 10 pages, looseleaf-punched, with photos and specs of complete line of speakers, trumpets, driver units, transformers, mike stands, accessories.—Atlas Sound Circle 74 on reader’s service card

'66 TV POCKET PROMPTER, 3 x 6½ in. spiral-bound, 96 pages, illustrates complete line of black-and-white and color TV, solid-state screen. Has foldout feature guides on each category.—Westinghouse Appliance Services & Service Circle 75 on reader’s service card

BUSINESS/INDUSTRIAL COMMUNICATIONS BROCHURE, 6 pages, describes features and applications of line of Messenger 2-way radio equipment, from 1½-watt handheld units to high-power units. FCC type-accepted.—E. F. Johnson Co.
Circle 76 on reader’s service card

WIRE GUIDE, a wall chart which features theoretical values of standard annealed copper wire AWG (B & S), and copper wire stranded construction.—Bimbach Radio Co., Inc. Circle 77 on reader’s service card

REVISED TEFLON ENGINEERING MANUAL, Bulletin 206. Rev. A. 12 pages, well illustrated, gives history of Teflon, applications such as wire harness, tube support, insulating clamps with detailed engineering prints, characteristics chart of Teflon.—TA Mfg. Corp. BND Circle 78 on reader’s service card

All-Transistor Color Bar Generator

Rugged, solid-state Seco 900 puts you on top of the booming Color-TV Service Market... with the finest unit in the field!

Setting new standards in both engineering and design, Seco's new Model 900 will outperform every other color bar generator on the market! A true precision instrument that offers brightest dots and purest color quality, the 900 takes the "guess" out of color TV-servicing, makes possible big new profits in the booming color service field!

Only the Seco 900 offers all of these features:
- Single Burst Dots are bright—"rock" solid... will not move
- Purest Color Quality—10 completely different color bars:... positive graduation from color to color
- Single Trace Horizontal Lines—are bright, sharp... begin and end during horizontal retrace:• No Blinking
- On Cross Hatch—at any intensity level• All Transistor Circuit—for highest reliability and instant operation with no warm-up
- Outstanding Stability—Zero regulated power supply
- crystal controlled oscillators!

SECO ELECTRONICS CORP., 1209-8 So. Clover Dr., Minneapolis, Minn. 55420

*Compare—we’ll match the 900’s performance against any color bar generator in the popular priced field!

$129.95 Dealer Net

Circle 112 on reader’s service card

All Transistor Color Bar Generator

Whether on land, sea or air, your radio communications will be more dependable with TEXAS CRYSTALS... made with the same precision, care and quality as those supplied to numerous space projects. And, you’ll appreciate the attractive prices. Send for descriptive catalog today.

If your dealer can’t supply your TEXAS CRYSTALS needs, send his name with your order to our plant nearest you.

TEXAS CRYSTALS
A Division of Whitehill Electronics Corp.
1000 Crystal Drive 4117 W. Jefferson Blvd. Fort Myers, Florida Los Angeles, California
Phone 813 WE-62109 Phone 213 731-2258

Circle 116 on reader’s service card
THE PHANTOM RESISTOR

A tale of spring love and a shorted transistor on a winter's day

By WAYNE LEMONS

THE WINTER WINDS WERE WHISTLING. Cy, owner of Town & Country TV, had his coat collar turned up and almost missed the bizarre scene in front of the shop. He hadn't realized before just how odd it must look to passersby to see two size 10 shoes attached to spindly legs sticking up toward the ceiling of a car. He recognized the shoes as belonging to his young helper Lucky. He knew the customer must have been very persuasive or very pretty to induce Lucky to pull a car radio on a morning like this.

Cy opened the car door and pecked in.

"Shut that darn door," growled Lucky "I'm having enough trouble with this radio without freezing to death too!"

Cy ignored the outburst. "Just what's the trouble?"

"No trouble," said Lucky disgustedly, "I like pulling car radios on cold mornings. It's good for my circulation."

Cy grinned, "It must be, to look at your face. All that blood up there should fertilize your brain and maybe we can make a technician out of you yet. Just what is the matter? No output or what?"

"That's right," said Lucky, "no output."

"Did you check the speaker?"

"Nope, couldn't get to it."

"Was there a thump in the speaker when you turned the radio on?"

"I don't remember. Should there be?"

"Sure there should be. This is a hybrid radio with transistor output. Always check for a thump when you turn the radio on."

"What does a thump mean?"

"Well, if you hear it, it means the speaker is probably OK, and most likely the transistor output stage too."

"You mean you won't hear a thump if the transistor isn't working?"

"Usually not."

"What if the transistor were shorted? Wouldn't there be a thump in the speaker anyhow?"

"That's a good question," said Cy, "But you forget that, if the transistor is shorted, the chances are the fuse resistor in the emitter is open and so there won't be much thump."

"OK, so I'll turn it on and see what happens."

He turned it on. There was no noticeable noise in the speaker.

"Tubes lit?" asked Cy.

"Yep," said Lucky. "So I know the fuse is good. Should I go ahead and pull the radio now, sir?"

"Not without making another test."

"What's that?"

"The speaker."

"But I told you I couldn't reach it till I get the radio out."

"Well, I'm not so sure about that, but you can reach the heat sink, can't you?"

"Sure."

"So, OK. Wait a minute and I'll get an ohmmeter."

Cy returned with the ohmmeter and handed the leads to Lucky. "Use the R x 1 scale and touch between the heat sink and ground."

"Why that?"

"Well, in this model the heat sink is insulated from the chassis and the transistor collector is tied to it."

There was a scratching sound as Lucky moved the probes about between the heat sink and the chassis.

"What's all this prove?" Lucky wanted to know.

"Well," said Cy, "for one thing it proves that the speaker isn't open and that it's connected to the radio. And it proves that the output transformer isn't open or shorted and"

"It also proves," Lucky broke in, "that the heat sink isn't grounded to the chassis."

"Now you're getting the idea," praised Cy. "The more we find out about the radio before we pull it the better off we'll be."

"Is there anything else to do before I pull a radio?"

"Depends a lot on the trouble," said Cy. "There are several other things that could be done, depending on circumstances."

"What, for instance?"

"Turn the volume full up and listen carefully in the speaker for signs of life . . . a slight pop or crack or a sustained hiss."

"What's that mean?"

"It means you may be able to tell if you really have radio trouble."

"Just what do you mean by that? We know we've got radio trouble!"

"Yep, in this case we do since there wasn't any thump in the speaker and we now know that the speaker is probably OK, but what if we had heard the thump?"

"We'd know the trouble probably wasn't in the output stage."

"Right," Cy agreed. "But you wouldn't know if the trouble was in the radio or if it might be in the antenna."

"I see what you mean. You mean if we had heard a thump the trouble could be any place before the output stage, including the antenna."

"That's what I said, and that's the reason for turning the volume up full and listening for 'signs of life.'"

"But what if we do hear 'signs of life'?"

"Then before we pull the radio we plug in our test antenna and try again."

"So, if there's no music then?"

"Then we probably have either rf or oscillator trouble and, if we can't get the tubes out, we pull the radio."

"Fine," said Lucky. "That's what I've been trying to do for the last hour."

"Nobody's holding you, hop to it," laughed Cy. "But now you can be reasonably sure you're not going to be embarrassed by having to tell that pretty girl in there that you made a mistake and that the radio wouldn't have to be pulled after all."

"Say," said Lucky, "she is kinda pretty at that."

"I figured you noticed," Cy smiled knowingly.

"What do you think is wrong with her radio here?"
"Oh ho," laughed Cy, "so you want to impress the pretty girl with a fast diagnosis and repair. Well, I have nothing against young love. I'll help you if I can, but an unproved diagnosis is just a hunch.

"So what does your hunch say?"

"A defective transistor, I would guess."

"Wouldn't that burn out a fuse?"

"Not very likely, but if it shorted it will probably have blown the emitter fusible resistor."

Ten minutes later Lucky had the set on the bench. He pulled the output transistor and put it in the checker. It was shorted. "That's it," he said half to himself. He installed a new one hurriedly. He hoped the pretty girl was watching. She'd be impressed with his efficiency. He soldered the base connections, tightened up the collector nut, made a check with the ohmmeter and turned on the radio.

He waited a minute, then two, but there was only very weak output on a strong local station. He made a check with the voltmeter and looked dumbfounded; the pretty girl was watching intently now. Cy also noticed the exasperation on Lucky's face and felt a little sorry for him. After all, she was a very pretty girl.

"Still got troubles?" he asked quietly.

"I'm afraid so," admitted Lucky.

"The transistor shorted?"

"Yow."

"You replace the emitter resistor?"

"Nope, it checked OK."

"I was afraid of that."

"Afraid of what?"

"I'll bet you got a false reading."

What did the ohmmeter say?

"I don't know exactly," confessed Lucky, "but somewhere around 20 or 30 ohms. The schematic says the resistor is 33 ohms so I figured it was OK."

"See? 33 ohms," said Lucky.

"Let's look at the parts list," advised Cy. "That value can't be right."

The parts list showed 0.33 ohm.

"Just what I thought. That resistor is always less than 1 ohm. I think your troubles will be over when you replace the emitter resistor. And be sure to replace it with the same type. We have them in stock."

"But how did I get a reading across it? Did it change value to 20 or 30 ohms?"

"I doubt it," Cy said. "Look at the schematic. You were the victim of a common occurrence in transistor circuit testing. You measured across the resistor, and even with it open you still got a reading through the 10-ohm bias resistor R1, through the secondary of the input transformer and through the transistor itself which gave you the 20 or 30 ohms."

"If the ohmmeter probes had been reversed, I wouldn't have got a reading through the transistor, would I?"

"No, not so much, and you would have noticed the difference if you'd reversed the probes after the first reading. However, if you'd known the resistor was a small one, you'd have also known that 20 or 30 ohms was wrong."

"But one other thing I did."

"What's that?"

"I checked the voltage on the emitter and it was just what it was supposed to be. How could it have 12 volts on it with the emitter resistor open?"

"Just like the ohmmeter can read through the transistor. The voltage from the base appears on the emitter when the emitter is open. You should have read between emitter and base. Then you'd have noticed that the transistor was zero-biased—cut off."

"Well, I'll be darned," Lucky muttered.

Neither had noticed till now that the pretty girl was looking over their shoulders.

"Oh, I think you people in electronics are so clever. It's just like detective work, isn't it?"

Lucky reddened but Cy smiled and answered for them both, "A little bit, I guess," he said.

Fifteen or twenty minutes later Cy looked out the front window. Lucky and the girl were in deep conversation. "It must be pretty cold out there," thought Cy. The two young people didn't seem to notice, though. "The first signs of spring," Cy thought happily and turned to his work with a smile.

Electronic Design Charts

By Norman H. Crowhurst

A comprehensive collection of nomographs in one convenient book. Simplifies design procedures. Saves hours of time and effort on computations. Helps solve virtually every electronic design problem quickly. Eliminates uncertainty and mistakes. Large, accurate, clear charts on 8½ x 11 page size. Lies flat or stands up.

Permanently cloth-bound **$5.95**

Money-back guarantee within 10 days if not completely satisfied with book.

| GERNSBACK LIBRARY, Inc., Dept. 166 154 West 14th Street, New York, N. Y. 10011 Enclosed is $__________ Please send___ copy(ies) of Electronic Design Charts @ $5.95. | |

Name___________________________ Street___________________________ City____________ State____ Zip Code____

Now save hours of design time with GERNSBACK LIBRARY'S new ELECTRONIC DESIGN CHARTS

59 CHARTS

128 PAGES

FULL EXPLANATION

EASY-TO-READ TEXT

An invaluable, convenient working tool for engineers and technicians with useful charts like these: Frequency and Wave-length - Reactance and Frequency - Time Constants - Input Chokes - Vector Addition of Complex Quantities - Parallel Resistors and Series Capacitors - AND 53 OTHER CHARTS.

BOOKS PURCHASED FOR PROFESSIONAL PURPOSES ARE TAX DEDUCTIBLE.
Because you’ve got to SEE it to BELIEVE it….we will send you a FREE sample!

A REVOLUTIONARY NEW METHOD FOR MARKING ELECTRONIC EQUIPMENT

Try this sample and you’ll agree “Instant Lettering” is the easiest, quickest way to get professional lettering you’ve ever seen. Self-adhesive letters printed on a special plastic sheet are just pressed down into position on any equipment, drawing, schematic, etc. Transfers to practically any surface. Looks like printing.

AVAILABLE IN THE FOLLOWING SETS AT 545 EACH

• TITLES FOR ELECTRONIC EQUIPMENT
 • TERMINAL & CHASSIS MARKING KIT
 • METER & DIAL MARKING KIT

With these kits you can completely mark prototype electronic equipment from component parts to finished control panel and meters—and make them look like finished production equipment in stock at leading electronics distributors or direct.

SEND FOR FREE SAMPLE AND FOLDER
THE DAKTA CORPORATION
63711 STREET • DEPT. 649 • GUTTENBERG, N. J.
Circle 118 on reader’s service card

Meet Winegard Chroma-Tel

First 1/2 size all-band (UHF, VHF, FM) antenna with full size power

• Delivers Brilliant Color, Beautiful Black and White, Full-Tone FM Sound
• Brings in All the UHF, VHF and FM Stations in Your Area

Now there’s a new All-Band (UHF, VHF, FM) antenna that is actually half the size of most other all-band antennas. It eliminates half the bulk, half the wind loading, half the storage space, half the truck space and half the weight of ordinary all-band antennas...without sacrificing one bit of performance! Features Winegard’s new Chroma-Lens Director System and impedance correlators.

Compare size, cost and performance...you’ll choose Winegard Chroma-Tel every time. Ask your distributor or write for Fact-Finder #242 today.

Winegard Co. ANTENNA SYSTEMS
3000 Kirkwood • Burlington, Iowa
Circle 119 on reader’s service card

NEW SEMI Conductors AND TUBES

NEW TUBES FOR COLOR

The sudden growth of color TV during 1965 spawned schools of new receiving tubes designed especially for the stiffer high-voltage and deflection-power requirements of color, and for the special circuits like chroma demodulators, bandpass amplifiers, and such-like.

Most prolific of the new-tube producers was Sylvania, which racked up a score of 13, not including the heater-rating variations of a single basic type.

New are the 2AV2, a focus rectifier with a 9-pin miniature base; 3BF2, high-voltage rectifier with 12-pin base and peak-inverse-voltage rating of 35 kv; 6AC9 (8AC9), pentode with double diode on 12-pin base, for use as i.f. amplifier and phase detector; 6CE3 (34CE3), 12-pin dampers with 11 watts dissipation; 6CH3, same as the 6CE3 except for a large 9-pin base; 6JS6A (31JS6A), 12-pin horizontal amplifiers with 28 watts plate dissipation; 6KN6 (42KN6), twin beam pentode with sections internally connected in parallel, for high-power horizontal deflection (30 watts total tube dissipation); 6LR8 (21LR8), vertical deflection oscillator and amplifier with 9-pin (large) base, high-mu triode oscillator and low-B-plus beam pentode amplifier; 6LU8 (21LU8), same as 'LR8 except for 12-pin base; 9KC6, frame-grid pentode with 9-pin miniature base and dual-

Radio-Electronics Is Your Magazine!

Tell us what you want to see in it. Your suggestions may make it a better magazine for the rest of the readers as well as yourself. Write to the Editor, Radio-Electronics, 134 West 14th St., New York, N. Y. 10011.
3.58 MC
SUBCARRIER
(90°)
22V P-P

3.58 MC
SUBCARRIER
(0°)
22V P-P

Fig. 1

300k
5.6 PF
22k
270V

620V
47K
I

Fig. 2

STOP!
WRECKING YOUR TV...

Inrush surge currents at 'Turn-On' destroy more TUBES, RECTIFIERS, and CAPACITORS than all other causes. EFFECTIVE, AUTOMATIC REDUCTION of the punishing inrush currents is immediately provided by the...

WUERTH SURGISTORS®

Use SURGISTORS with your TV, Hi-Fi, film Projector, or any other device requiring inrush surge current protection. SEE your distributor or dealer TODAY. Or, send order direct to us for prompt action.

WUERTH PRODUCTS CORP.
1931 Pembroke Road Hollywood, Florida

Circle 121 on reader's service card
control-grid arrangement, for use as chroma bandpass amplifier, color demodulator or video amplifier; 12GN7A, very-high-transconductance video amplifier pentode ($G_m = 36,000$) with 9-pin miniature base; and the 6AF10, a double-dissimilar pentode with 12-pin base, of which the first pentode, with ordinary grid construction, can be used as sound i.f. amplifier, while the other, with a strap frame grid, is intended as a video amplifier.

Sylvania has developed an interesting circuit around one of the new tubes—the 6J78 (or 8- or 10-). It's shown in Fig. 1. Two J78's are used, leaving one triode section free to work as a color killer or sync separator. Chroma (color) information is applied to the cathodes of both pentode sections (V1-a, V2-a) from a low-impedance source, while the 3.58-mc subcarrier voltage is applied, with the correct phase relationship, to the two No. 1 grids. The demodulated R — Y and B — Y signals are developed across the 18,000-ohm plate resistors, and drive the red and blue guns directly. The G — Y signal is developed across the 120-ohm resistor in the common cathode circuit, and applied through a low-pass filter to the cathode of the triode amplifier, V1-b. The filter blocks the chroma and subcarrier voltages, and prevents the triode (a grounded-grid stage with a low input impedance) from loading the chroma source. The grounded-grid circuit amplifies the G — Y signal in the proper phase to drive the green gun of the picture tube.

Amperex Electronic Corp. has introduced a family of three tubes for use in the horizontal deflection circuitry of color sets. It includes the 3BH12 high-voltage rectifier, with a peak-inverse rating of 35 kv; the 6EC4, a damper diode with an 11-watt plate dissipation rating, and the 6K6G, a beam pentode with a large 9-pin base and a 34-watt dissipation rating. Their base diagrams are shown with the others.

Amperex has designed a comparatively simple horizontal deflection and high-voltage circuit around its three new tubes (Fig. 2). It is designed around a 1.5- to 3-mh yoke requiring about 3 amps peak-to-peak deflection current. B-plus need be only 260 volts nominal, with a current draw of 220 to 310 ma for zero to 850-μ beam-current variation. Nominal high voltage is 24 kv. The horizontal deflection oscillator (not shown) is the pentode half of a 6BL8, connected in a Colpitts-like circuit. The focus rectifier could be omitted by deriving the focus voltage from a high-resistance divider across the high-voltage supply. If component tolerances are small enough, even the horizontal centering circuit could be omitted.

Note the absence of a high-voltage regulator tube (a 6BK4-A in RCA sets, for example). The voltage to the CRT anode is held stiff by a feedback circuit that includes a voltage-dependent resistor (VDR) in the grid circuit of the horizontal output stage. This is considerably simpler than the tube regulator circuit used in most sets. High-voltage swings between 24 and 21.5 kv as beam current rises from zero to 850 μA.

First One-Piece All-Channel Antenna with Individual UHF and VHF Orientation

![Image of a single antenna for UHF and VHF]

New JERROLD Coloraxial Pathfinder™

Take advantage of the growing UHF and FM stereo markets by selling the antenna to answer every home reception need from metropolitan to deep-fringe areas ... Jerrod's new Coloraxial PATHFINDER.

Look at the advanced design of the PATHFINDER (Series PAB and PXB): a cascaded periodic VHF section plus a radically new UHF section hinged for individual orientation and maximum directivity. Here's all the flexibility of separate antennas, without the splitter losses from coupling separate antennas to a common director.

Both 75-ohm Coloraxial and 300-ohm standard outputs for every taste and budget. Prices as low as $21.95. Rugged square-boom construction and Golden Armor corrosion-resistant finish assure long life. Flat response across all 82 channels, low VSWR, excellent front-to-back ratio make PATHFINDER a natural for quick sales and satisfied customers. Send coupon for complete information.

JERROLD ELECTRONICS CORPORATION

Distributor Sales Division, Dept. RE-1
15th & Lehigh Ave., Philadelphia, Pa. 19132

Please send me complete information on PATHFINDER all-channel TV and FM antennas.

Name: ____________________________
Company: __________________________
Address: __________________________
City: ___________________ State: ________ Zip: _______

Circle 122 on reader’s service card

Radio-Electronics

www.americanradiohistory.com
A CHALLENGING INVITATION
for the man who looks to electronics for profitable employment and leisure-time enjoyment...

Everyone talks about the great future of Electronics—but how many people are really doing something about it? If you are the one man in seven who is determined to get ahead in electronics—who wants to cash in on the steadily increasing demand for trained technicians—the Electronics Book Club has astonishing benefits for you.

Your membership in this unique book club will help you protect your future... increase your knowledge and earning power... keep you up-to-date on all the latest electronic developments... and bring you greater enjoyment from leisure hours if electronics is your hobby.

Special Invitation
Judge for yourself—without risk—what the Electronics Book Club can do for you, your job, your future. Examine the special introductory offer and exciting membership benefits described on this page. Then mail the coupon without delay. You will receive immediately, 2 valuable handbooks (originally a $25 home-study course)—yours for only $2 with membership. If not delighted, return both books in 10 days and forget the matter.

JANUARY, 1966

GET THESE 2 INCOME-BOOSTING BOOKS FOR ONLY $2 (originally a $25 home-study course).

Here is a complete self-training course that tells you everything you want to know on HOW TO FIX TRANSISTOR RADIOS AND PRINTED CIRCUITS. Written by servicing expert Leonard C. Lane, it gives you practical, non-math guidance you can use at once to spot trouble in the audio section, pinpoint speaker and headphone circuit defects, check distortion in the audio amplifier, locate front-end troubles, eliminate printed-circuit board pitfalls, and work more effectively with signal generator, vtvm, scope and isolation probe.

NOTHING IS LEFT OUT!
These two giant books treat every area, much of it new, original, unavailable anywhere else in book form. Reveals answers to every question you've ever had on fixing transistor radios and printed circuits. Hundreds of illustrations and schematics practically turn equipment inside out for you to examine. You get practical tips to save shop time, to lessen servicing trial and error, to find and fix any trouble with professional know-how. So mail coupon for your books today!

YOU RISK NOTHING, NOW OR EVER, BY MAILING COUPON

The purpose of this extraordinary invitation is to demonstrate—by your own actual experience—the many benefits you enjoy as a member of the nationally acclaimed Gernsback Electronics Book Club.

Learn more, earn more this easy way:
Every other month the Club’s News Bulletin will tell you about a significant new self-teaching book on color TV, or radio servicing, test instruments, transistors, hobby projects, stereo, tape recording, industrial electronics, communications or on some other area of electronics of vital interest to you. Each handbook is a working tool designed to help you learn the subject quickly and easily.

Cash savings on books you want!
As a member, you alone decide whether you want a particular book or not. You receive 2 books now for only $2, and you need choose only 4 additional books within a year, out of a wide selection. The Club saves you up to 30% off retail prices on books you select!

Free 10-Day Examination!
* Get two valuable books immediately for only $2.
* Act now! If not pleased, return books in 10 days and forget the matter. Books are always returnable, with no obligation!
* Free charts and tables given with many books.
* Choose only 4 additional books a year, from a wide selection.
* Continuous cash savings, regardless of higher retail prices! So mail coupon now.

Gernsback Electronics Book Club, Dept. 166, 154 West 14 Street, New York, N.Y. 10011
Enroll me in the Electronics Book Club and send me the TWO HANDBOOK SET: How to Fix Transistor Radios and Printed Circuits. Bill me only $2 plus shipping. If not pleased, I may return both books in 10 days and forget the matter.
As a member, I understand I may accept as few as 4 additional books within a year—and may resign any time after purchasing these books. All books will be described to me in advance, in the Club Bulletin, and a form will always be provided for my use if I do not wish to receive a forthcoming book. You will bill me the special Club price for each book I take. This will often be as much as 30% off retail prices, plus a few cents postage.

Name ____________________________
Address __________________________
City ______ State _______ Zip Code ______
☐ SAVE POSTAGE COSTS—enclose your payment of $2 now and we will pay postage. Same return guarantee privilege.

87
Service

Many service technicians unconsciously plant the seeds of failure in otherwise healthy operations, simply because they never learned these simple facts of good business practice. Regardless of your technical skills, you may find yourself with a losing proposition unless you follow the do's and don'ts prescribed by service editor Jack Darr. He comes to the heart of the thorny credit-risk tragedy in February RADIO-ELECTRONICS and shows how to maintain a thriving business.

Sound

With the discotheque craze sweeping the country, smart technicians and hobbyists are finding a goldmine in setting up and servicing discotheque sound systems. It's simple, direct and astonishingly easy-to-do, once you know the answers outlined by a man who's piloted a project. What you need, what to do, what not to do, how to charge for your services are all included in February RADIO-ELECTRONICS. You'll discover how much audio power you'll need for different sized rooms, how many speakers, where to mount them, tips on controlling reverberation and wall flutter, how to prevent overload distortion, plus hints on turntables, tone arms, phono cartridges, spare parts and servicing.

Sensitivity

Here's an ultrasensitive light meter you can build for under $10. It all began when this electronics writer, who is also a crack photographer, discovered he needed a simple, extremely sensitive light meter for fine closeup photographs of miniature parts and wiring. When nothing on the market suited his needs, he built his own. And you can too, by following his down-to-earth advice, in February RADIO-ELECTRONICS.

All in February

Radio-Electronics

On sale January 20th—at your favorite newsstands and electronics parts distributors!
shows three pictures of television on a scope screen. That explanation has the virtue of simplicity, at any rate.

Gary Tytler of Hamilton, Ontario, mentions a slightly different experience. "While working on a Philips P-3550 with the picture pulling," he writes, "I connected the scope between the plate of the sync limiter and the first half of the horizontal multivibrator. Lo and behold, there were pictures on the screen.

"I had the scope set at 30 cycles [italics ours—Editor], and between the sync pulses were two fairly clear pictures. My scope is also a Heathkit and the probe was a Heath low-capacitance type."

Now all we need is for someone to write in and tell us he was servicing a wide-band FM tuner with a scope and all of a sudden he saw a perfect full-color TV picture on the scope screen. If somebody does, we won't print it.

BUILD A JIG FOR SPEEDY RECORD-PLAYER SERVICE

The original design of this convenient, easily built adjustable stand for turntables and changers appeared in Funkenschau, a German service/hobby electronics publication.

Dimensions and materials are given in the drawing. Most of the assembly needs no comment, but the chief feature, the adjustable support post, should be built as shown in the detail.

Drill a hole centered in one end of the post, 5/16 inch in diameter and about 1 3/4 inches deep. Drill another hole 1 1/4 inches from the same end, through the post so that it intersects the first hole. File out this second hole to make a rectangular channel through the wood approximately 3/8 inch square (not critical).

Slip a 1/4 x 20 hex nut into the rectangular slot so that it rests over the round hole drilled up from the bottom. Push a 1/4 x 20 bolt about 2 inches long (exact length will depend on the thickness of the bottom board) up through the round hole and thread it a few turns into the nut. (The nut can be held with an open-end wrench or screwdriver tip inserted into the rectangular slot.) Before inserting the bolt, slip a flat washer over it (with an outer diameter of at least 1 inch).

Now slide the post assembly into the slot in the base board, making sure to keep the flat washer on the underside of the board, next to the bolt head. With a little adjustment (and perhaps a little soap), you'll find you can slide the post the length of the slot to accommodate various sizes of turntable and changer chassis. A few small nails driven almost flush into the top of the post will act as stops to prevent changer bases from sliding off it.

The final touch is to install a mirror (preferably unbreakable) in the base, angled so you can see the underside of the player chassis.
send today for your

ALLIED

1966 CATALOG

world's largest selection

SAVE MOST ON:

- Stereo Hi-Fi
- Tape Recording
- CB 2-Way Radio
- FM-AM & AM Radios
- Short Wave Radios
- Portable TV • Phonographs
- Amateur Gear
- Intercoms & P.A.
- Automotive Electronics
- Test Instruments
- TV Tubes & Antennas
- Power Tools, Hardware
- Parts, Tubes, Transistors

MORE OF THE BEST IN ELECTRONICS FOR EVERYONE

EASY TERMS

Use the convenient Allied Credit Fund Plan — over 24 months to pay

ALLIED RADIO

The World's Largest Electronic Supply House

Circle 124 on reader's service card

satisfaction guaranteed or your money back
Special in your FREE 1966 ALLIED CATALOG
see what's new in the wonderful world of Knight-kits®

Knight-Kit GUARANTEE: Buy any Knight-Kit. Build it. Operate it. You must be satisfied or we refund your money.

FREE Send today for your 508-page Allied 1966 value-packed catalog

ALLIED RADIO JANUARY, 1966
Color Television—1965-1975
continued from page 33

not all sets. So long as there is a substantial price differential
between color and monochrome, black-and-white sets will
continue to sell in heavy volume.

There must come a day when color will completely sup-
plant the black-and-white TV receiver. But that won’t come
about without that offspring of necessity—invention.

It seems almost inevitable that there must be a “second

generation” of color sets if color is to sweep the field. The new
system, or systems, to be acceptable, must make these prom-
ises:

1. Substantial cost reduction, to a level perhaps 25% higher
than that of a comparable black-and-white receiver.
2. Reliability at least equal to the present system.
3. Capability of producing far greater brightness.
4. Power requirements low enough for battery opera-
ation.

The boom in color has shifted the electronics spotlight to
consumer products for the first time in more than a decade.
Since the consumer segment is now the fastest-growing part
of the electronics field, it can no longer be the stepchild of
the industry in terms of research and development. There is now
a very strong possibility that electronic innovations will be
aimed directly at consumer products—specifically color TV.

Actually, there are two approaches to color TV in com-
mercial production today—the shadow-mask tube and the
Chromatron, or Lawrence tube—the latter now being pro-
duced in limited quantities in Japan. Although some Chroma-
tron-type receivers may well reach the United States, Amer-
ican picture-tube and receiver manufacturers have almost
unanimously rejected this approach. It seems unlikely that it
will now be given serious consideration in this country, in view
of the well established and proven status of the shadow-mask
design. The next major departure in color TV should, indeed,
be far more significant than a switch to the Chromatron, with
its mixed bag of blessings and drawbacks.

The shadow-mask tube and the existing circuits, without
radical changes, may continue to serve the public’s needs for
the next few years. But the receiver of the 1970’s could show a
major departure from traditional design. Integrated circuitry,
in large-volume production, can substantially cut costs as well
as improve reliability and reduce weight and bulk. Although
progress in electroluminescent display systems has been disap-
pointingly slow, the potential rewards for a new, simple and
compact color-TV screen are so great that they are acceler-
ating developments.

Whether the electroluminescent panel will be the answer
is, of course, not yet known. But the color picture tube of to-
day is destined somehow to be retired to pasture. A true “thin”
or “flat” tube may hold promise. New versions of projection
TV are being explored, including one that uses low-cost plas-
tic lenses and a special distortion corrector, and another that
eliminates the cathode-ray tube by using a layer of viscous
fluid to modulate an external light source.

Without a transfusion of substantial invention and inno-
vation, the boom will come off color’s rose some time in the
1970’s. The TV manufacturing industry is beginning to realize
this and, as never before, the search is on for the new answer
to the receiver for the all-color era.

That answer will be found, and some time after 1970 it is
possible that no more black-and-white entertainment TV sets
will be made—excepting possibly monochrome pocket port-
able.

In terms of consumer purchasing, color is growing at a
rate faster than that set by black-and-white in TV’s early
boom days. In 1965, the public spent more for color than for
monochrome sets. If the industry’s scientific and technical
skills can keep pace with its marketing ability, the color boom
will last another 10 years, or longer.

END

Fastest heating
gun in the world

A Weller gun reaches full soldering temperature
up to 40% faster than other guns. This is just
one of the reasons why Weller is the choice
of nearly all professional electronic service
technicians.

Weller guns also have trigger-controlled dual
heat that permits instant switching to high or
low heat to suit the job. They deliver the most
heat per rated watt, resulting in the greatest
soldering efficiency.

When you buy a soldering gun, be sure to
insist on Weller.

Weller Dual Heat Guns and Kits come in watt-
age ranges from 100 to 325, priced from $6.95
to $12.95 list.

Weller
WELLER ELECTRIC CORP., EASTON, PA.
In England: Horsham, Sussex
World Leader in Soldering Technology
Circle 125 on reader’s service card

RADIO-ELECTRONICS
TRY THIS ONE

THEY SAID IT COULDN'T BE DONE...

The radio was a Titan model TMA 70, a tube-transistor hybrid. I acquired it when it was taken out of a Chevy pickup truck during installation of Citizens-band equipment. I figured it would look nice in a certain '62 Volkswagen, except that the Chevy's battery was 12 volts and the VW's only 6. So the set sat while various voltage-boosting circuits were contemplated. Whoever heard of operating tubes on only 6 volts plate supply?

After nearly deciding on a transistor converter circuit, I thought it wise to check out the radio on its normal 12 volts with a variable dc power supply. Performance was excellent. Now came the thought, why not see how low I can bring the voltage before the audio becomes inaudible or the local oscillator drops out? Down went the voltage, and with it the volume. At 8 volts, there was still output. Finally at 6 volts, two local stations could still be heard, faintly, and with the help of a long outdoor antenna. Could something be done to improve reception to an acceptable level at 6 volts?

First, I checked the tubes. All were in top condition, so no room for improvement here. Next came the power tubes. I identified only as 8P416C. Several replacements were tried, including types 2N256, 2N268A and 2N354, but none equalled the original in output.

Circuit changes were necessary. But any increase in volume was bought at the price of greater distortion. At this point, I noticed R14, a 47-ohm resistor, forming a filter for the B+ with two 500-µf capacitor sections. Shorting out this resistor doubled the volume, bringing in many new stations. It is possible that switching the plate and screen supply connections of the 12DL8 detector-amplifier tube to the other side of the resistor would have done a similar thing. Since a 5-foot antenna now was sufficient, it remained only to replace the 12-volt pilot lamp with a 6-volt type. Warmup time does not exceed 60 to 70 seconds. I do not claim that every 12-volt car radio can be made to operate on 6 volts, but at least there's no reason for not trying.—F. W. Chesson

CORRECTING LOW-LEVEL STEREO UNBALANCE

A trouble in stereo amplifiers with single gain and balance controls is low-level unbalance. At low-level settings, one channel is louder than the other. The cause is small wiper-to-ground resistance differences on the two tandem-mounted pots. To alter the mechanical position of the wiper arms is usually impossible. As this occurs only at the instant... instant color patterns at your finger tips...

zero warm-up time

at last...

THE ALL NEW SENCORE CG135 DELUXE TRANSISTORIZED COLOR GENERATOR

The big push is on in Color TV. Equip yourself now with the new, solid state Sencore CG135 and cash in on the zooming volume of new service business as Color-TV booms! Instant, service-ready RCA standard color bars, cross-hatch, white dots and individual vertical and horizontal bars enable you to set up or trouble-shoot more Color TV sets per day; earn top money in this fast growing service field. It's an analyzer too! Color gun interruptors, unmodulated video for chroma circuit trouble isolation and unmodulated sync pulses to keep Zenith receivers in sync for this test, make color trouble shooting a snap. Sturdy all-steel construction for rugged, heavy duty in the field or shop. Another Best Buy in profit-building service instruments from Sencore at

$149 95

COMPARE THESE FEATURES: SEE WHY THE CG135 IS IN A CLASS BY ITSELF

• Solid state construction employs high priced GE "Unijunctions" to develop six "jump out proof counters" that guarantee stable patterns at all times with no warm-up • Standard RCA licensed patterns as shown on schematics throughout the industry • Handy universal color gun interruptors on front panel • Lead piercing clips insure non obsolescence • CRT adapters optional • Crystal Controlled 4.5mc Sound Carrier Analyzing Signal to insure correct setting of fine tuning control • RF output on Channel 4 adjustable to Channel 3 or 5 from front of generator when Channel 4 is being used • No batteries to run down; uses 115 V AC • Less than one foot square, weighs only 8 lbs.

professional quality — that's the difference!

SENCORE

426 SOUTH WESTGATE DRIVE • ADDISON, ILLINOIS

Circle 126 on reader's service card

JANUARY, 1966
Me...? Rebuild Color Tubes?? Why Not!

Windsor Equipment
Handles Color & Bonded-Face As Well As Black-and-White Tubes.

So What?
Rebuilding with Windsor is a QUALITY PROCESS... and PROFITABLE!!!

Rebuild Color Tubes for a Cost of $11.75 each... You sell them for?? Windsor Equipment pays for itself in a few months.

Financing Available
Free Training at our Plant

Write for our Booklet "The Open Door to TV Profits"
WINDSOR ELECTRONICS, INC.
Equipment Division
999 N. Main St., Glen Ellyn, Illinois

Circle 127 on reader's service card

Slightly higher prices for DC and XTAL control

Model FR-101 — (25-50 mc) $ 89.95 TUNABLE RECEIVER (PC only)
Model FR-102 — (150-175 mc) ...

NOW!—8 Super Deluxe FM communication receivers to meet your particular needs for home, office or car. Powerful and dependable. Engineered for rugged service under all operating conditions. Featuring High frequency oscillator, temperature compensated for stability, RF amplifier for maximum sensitivity, illuminated dial, safety rated components and ALL Aluminum construction plus many other outstanding features. Operates on 110 VAC includes power cord, mounting brackets.

PERFORMANCES EON
FR-GIV-8
illuminated
101-ES

An efficient way to reduce the heat of any ordinary soldering iron is to connect a silicon rectifier in series with it, as shown in the diagram. Reduced heat will lessen oxidation of the tip during long standby periods, and will often be high enough for soldering delicate parts without damage.

A 200-volt diode will do; current rating depends on the demands of the iron. A 1N2069 is fine for 30- to 40-watt irons.—Herbert E. Pasch

PASSIVE "BOOSTER" PERKS UP RADIO DEMONSTRATIONS

This suggestion for radio dealers and service shops appeared in Graetz Nachrichten, a service publication of Graetz GmbH, a German radio-TV manufacturer:

If you work in a steel-frame building and you want to demonstrate an AM transistor portable to a prospective customer, or check out a repaired one in the owner’s presence, the showing is likely to be unconvincing if the radio picks up only half as many stations and twice as much noise as usual, because of the shielding from the building’s frame.

Try taping a long piece of any kind of wire, in a random, zigzag fashion, to the underside of a table or counter, on which you’ll put the radio for all such demonstrations. Connect one end of this wire to an outside long-wire antenna—you may have to experiment. The wire will induce enough extra signal in the radio’s built-in antenna to put performance near normal. If the table has a metal top, try connecting the outside antenna to it.—Pete Sutheim

TRANSMISSION-LINE SPLITTER

Extremely wide-band line splitters with any number of branches may be designed readily with the network configu-

HOW TO KEEP A SERVICE SHOP OPEN

Good will, technical know-how, enthusiasm and capital won’t be enough! Courting bad credit risks and deadbeats can throw a new shop out of business in less than a year! Read Service Editor Jack Darr’s simple approach to staying in the black!

Coming in February
RADIO-ELECTRONICS

www.americanradiohistory.com
ration composed entirely of resistors, shown below.

All resistors are equal, and their value is given by

\[R = Z \left(\frac{N - 1}{N + 1} \right) \]

where \(Z \) is the line impedance and \(N \) is the number of branches.

Attenuation, expressed as a voltage ratio, is equal to \(1/N \).

For balanced lines, resistors of value \(R/2 \) are placed in each side of the line.

The upper limit of frequency response is determined primarily by stray inductance and capacitance, if the resistors themselves are reasonably good. Minimize both for either high frequencies or extremely accurate impedance matches.—Donald H. Rogers

RUBBER CEMENT CATCHES DRILLING CHIPS

Dab rubber cement on the chassis where a hole is to be drilled. The cement catches and holds chips, preventing them from dropping into adjacent wiring or components. The cement dries as you drill and peels off easily later.—H. Josephs

MAKING BANDSPREAD DIALS MORE CONVENIENT

Many short-wave receivers have bandspread tuning dials with calibration from 0 to 100, and designed to be set at one end for normal tuning. However, it would be convenient if the set point were at the middle of the dial, so that the bandspread control could be used for fine tuning in either direction from the setting of the main tuning dial. To do this, set the bandspread dial to 50 and readjust the oscillator trimmer to return the main tuning dial to correct calibration.

If the oscillator trimmer does not have enough range, the set point will have to be placed at some place between 50 and the previous set point. Note that this idea does not apply if the bandspread dial carries actual frequency calibrations.—Charles Erwin Cohn

LECTROTECH V7

A sensational new color generator with 4 major Lectrotech exclusives... plus all of the time-proven standard features... in one compact, portable unit. For the first time, you can install and service color TV completely, accurately and faster! Here are the facts:

EXCLUSIVE—COLOR VECTORSCOPE—Until now, available only in $1500 testers designed for broadcast. Accurately measures color demodulation to check R-Y and B-Y plus all 10 color bars for color phase angles and amplitude. A must for total color and those hard to get skin tones.

EXCLUSIVE—SELF-CALIBRATING—Adjust timing circuit without the use of external test equipment. No need to return unit to a factory for adjustment.

EXCLUSIVE—DIAL-A-LINE—Now, you can adjust horizontal line to any width desired from 1 to 4 lines wide.

EXCLUSIVE—SOLID STATE RELIABILITY—Only two tubes are used in combination with fully transistorized diode-rectifier circuit.

PLUS—the V7 produces all Crosshatch, Dots, Vertical only, Horizontal only and Keyed Rainbow Patterns. RF at channels 3, 4 or 5. Video Output (Pos. and Neg. adjustable) for signal injection trouble-shooting. Red-Blue-Green Gun Killer. All transistor and timer circuits are voltage regulated to operate under wide voltage ranges. Lightweight, compact—only 8½" x 7½" x 12½". Net...

ONE YEAR WARRANTY

For the full story on the V7, write for complete catalog or see your distributor.

V6

Complete color bar generator with all the features of the Lectrotech V7 except the Vectorscope. Only...

99.50

Distributors: Phone or Wire Collect.

LECTROTECH, INC.

Dept. RE-1

1221 Devon Ave. ■ Chicago, Ill. 60626 ■ Area 312 764-7005

Circle 129 on reader's service card

"My wife had a rope made for the car ... thinks I can't drive without her!"

Nortronics Headliner
The RCA CTC15 color chassis with remote control uses two cam switches mounted on the volume-control shaft. When the volume is reduced, the cams operate and turn off the set. The cams prevent turning "off" the sound unless the whole set is turned off. This is very annoying to people who wish to kill the sound for a while, without turning off the pix.

An effective remedy is to run a jumper from the fixed tap on the volume pot to the ground lead on pin 1. When the volume control slider is turned to the point where the tap is, the sound will be completely off.

This quick fix will slightly degrade tone-control action, but the benefit of being able to turn off the volume far outweighs the objection.—J. M. Bruning

DEAD NORELCO EL3542-A RECORDER

If there is no recording or playback on this machine, just a hum in the speaker, the contacts of RY1, the control relay, have probably welded shut, shunting trip magnet RY2 across the B-plus supply.

Pull the contacts apart and burnish them lightly to remove burrs. Check the armature spring for cracks; check R25, R27 for damage. RY1 is accessible from the top of the machine, to the lower left of the takeup spindle. R25 is across two terminals of the electrolytic, and R27 is near the output transformer. Both are accessible from the bottom without dismantling the entire machine.—Steve P. Dow

RCA CTC10-C FADES OUT

An RCA CTC10-C has been getting progressively dimmer and was in constant need of gray-scale adjustment. Finally it got so bad that a picture could be seen only at full brightness setting. The set would go almost black at times, with no apparent pattern to the behavior. All high-voltage and brightness circuits checked out OK.

MOVING DATE EXTENDED—SALE CONTINUES

FREE $1 BUY WITH EVERY 10 YOU ORDER

- 1000--ASST. HARDWARE KIT $1
- 250--ASST. SOLDERING LUGS $1
- 250--ASST. WOOD SCREWS $1
- 250 -- ASST. SELF TAPPING SCREWS #8-32 $1
- 150--ASST. 4/32 SCREWS and 150 6/32 HEX NUTS $1
- 150--ASST. 8/32 SCREWS and 150 8/32 HEX NUTS $1
- 150--6-32 HEX NUTS and 150-8-32 HEX NUTS $1
- 150--ASST. 2/36 SCREWS and 150-2/36 HEX NUTS $1
- 150--ASST. 4/40 SCREWS and 150-4/40 HEX NUTS $1
- 150--ASST. 5/40 SCREWS and 150-5/40 HEX NUTS $1
- 500--ASSORTED RIVETS most useful selected sizes $1
- 500--ASSORTED WASHERS most useful selected sizes $1
- 100 -- ASST. RUBBER & FELT FEET FOR CABINETS best sizes $1
- 10--ASST. SLIDE SWITCHES SPST, SPDT, indicator lights $1
- CHAPITRU DI MIRZIA "JACKPOT" double your money back if not completely satisfied $1

BONANZA "JACKPOT" not sold, not all, has a wealth of electronic items—at least 14 items—money guarantee $1

100--MINIATURE ZIP CORD $1
50 ASSORTED MYLAR CAPS $1
50 150-300 ANODIZED ALUMINUM ALLEN SCREWS $1
10 SETS - DELUXE PLUGS & JACKS ass't for many purposes $1
- 10 - SETS PHONO PLUGS & PIN JACKS RCA type $1
10 - SURE-GRIIP ALLIGATOR CLIPS 2" printed $1
4-50 SPOOLS HOOK-UP WIRE 4 different colors $1
200--BUSS WIRE #20 tinned for headphones, special circuits, etc. $1
50 -- STRIPS ASSORTED SPA-GUETTI PHONE types $1
100--ASSORTED RUBBER GROMMETS best sizes $1
50--ASSORTED PRINTED CIRCUIT SOFT SOCKETS best types $1
3-1/2 MEG VOLUME CONTROLS with switch, both types $1
20--ASSORTED VOLUME CONTROL switches $1
7--ASSORTED VOLUME CONTROLS with switch $1
100--STEREO Oscillators COILS standard 50/500 $1
20--ASST. PILOT LIGHTS #44, 46, 47, 51, etc. $1

IMMEDIATE DELIVERY... Scientific light packing for safe delivery at minimum cost. HANDY WAY TO ORDER: Pencil mark or write amounts wanted in each box, place letter F in box for Free $1 BUY. Enclose with check or money order, add extra for shipping. Tare shears will be returned as packing slips in your order, plus lists of new offers.

Please specify refund on shipping overpayment desired: □ CHECK □ POSTAGE STAMPS □ MERCHANDISE (our choice) with advantage to customer

NAME
ADDRESS

RADIO - ELECTRONICS

www.americanradiohistory.com
The solution finally lay with the series pair of NE-2 neon lamps connected from the brightness control circuit to ground. Although they appeared to be lighting normally, one or both had evidently aged and changed characteristics. Replacing both cured the trouble.

If you make such a change, you will have to readjust the high-voltage regulator current and the horizontal output and check the horizontal-oscillator waveform. I'd recommend a complete color-section alignment.—Robert W. Bachman

DISTORTED SOUND, NO VIDEO IN HEATH COLOR TV

I ran into a rather unusual problem with a Heath GR-53 color set.

The conditions were: sufficient audio, though slightly distorted; a raster, but no video. Since this set uses an intercarrier i.f. system, the i.f. stages were pretty well out as a source of trouble. However, a 400-cycle signal injected into any of the video circuits produced distinct bars, and a 3.58-mc signal injected on either side of the video-detector diode produced color bars; so the video detector and circuits beyond were eliminated.

Re-examining the i.f.'s, I found there was almost no plate or screen voltage on the 6JC6, and R219 showed a whitish ring around it where overheating had bleached it. A control-grid-to-screen-grid short was found in the 6JC6; the circuit diagram shows how audio was received at the sound-sync detector.—Gary Gustafson

MANUFACTURERS' COLOR SERVICE NOTES

G-E—all chassis: reports from the field stressed a drift in color purity after the set was on for 2 or 3 hours. This produced a bright pink area on the right side of the screen. Engineers determined the cause to be insufficient warmup before setup. Every receiver should be warmed up for 20 minutes with the back fastened before any purity adjustments are made.—G-E Service Talk, Vol. 7, No. 7, July 1965.

Philco—15M191D, 16M191: In case one of these chassis needs CRT setup because of rough handling or accidental magnetization during shipping, follow the directions on pages 1—5 of PR3917 with this addition: Before you put the set in its final position in the customer's home, face it north or south for external degaussing and purity adjustments. This lets the internal automatic degauss perform at maximum efficiency to correct for magnetization in the final location, and for accidental magnetization from home appliances.—Philco TV Service Bulletin TV7-65

SARKES TARZIAN TV TUNER 41mc

RCA 110° FLYBACK TRANSFORMER

Schematic

Brooks Radio & TV Corp., 84 Vesey St., Dept. A, New York 7, N. Y. Telephone 99

IBM COMPUTER SECTIONS

8-assorted values we sell for $1 are loaded with over 50 valuable parts. Intnl.——Transistors, Condensers. Hrs. Heat Sink, Diodes, Etc.

Brooks Radio & TV Corp., 84 Vesey St., Dept. A, New York 7, N. Y. Telephone 99

Circle 130 on reader's service card

January, 1966

www.americanradiohistory.com
Let these experts answer your questions on COLOR TV servicing

Color TV Repair
10 servicing experts who write for Radio-Electronics magazine reveal tested techniques, practical ideas, tricks-of-the-trade. Shows how to pinpoint defective color section fast, describes trouble-shooting with a color bar generator, outlines causes of TV failure. Includes servicing of chroma circuits, etc. 224 pages, paperback.
Order #123 $2.95

Servicing Color TV
by Robert G. Middleton. A practical book that shows how to service color TV sets and make money doing it. Includes facts on signal tracing, test equipment, color sync servicing, chroma circuit servicing, matrix testing, etc. 224 pages, paperback.
Order #65 $2.90

TV Sweep Oscillators
by Harry E. Thomas. A practical, nonmathematical handbook that explains relaxation oscillators, pulse techniques, transistorized oscillators, sawtooth generators, synchronization, failure analysis, sweep oscillator servicing, etc. 224 pages, paperback.
Order #119 (at parts jobbers only) $3.95

Horizontal Sweep Servicing Handbook
by Jack Darr. Gives you fast, simple methods of locating and repairing troubles in the sweep system. Practical shortcuts, developed on the bench for rapid isolation of trouble. Includes horizontal oscillator, multivibrator, output stage, etc. 224 pages, paperback.
Order #115 $4.10

Order from your Electronic Parts Distributor today, or mail to:
Gernsback Library, Inc., Dept. RE-166, 154 West 14 Street, New York, N.Y. 10011
Send the following books:
- #123 ($2.95)
- #65 ($2.90)
- #115 ($4.10)
I enclose $ (prices 10% higher in Canada)

Name
Address
City State Zip
I notify distributor is

NOTEWORTHY CIRCUITS

AMPLIFIER BIAS CIRCUIT

Distortion caused by clipping is often the result of poor bias regulation in the audio power output stage. In a stage with cathode bias, increased grid drive increases the cathode current. This drop across the cathode resistor shifts the bias point away from its optimum value. This bias shift decreases the maximum plate swing and causes flat-topping.

One way to eliminate this problem is to replace the cathode resistor with a Zener diode whose voltage rating equals the specified cathode bias voltage and whose wattage rating is at least 50% higher than the product of the bias voltage and the peak cathode current. A Zener diode used for cathode bias in a high-power output stage is rather expensive.

In an article in Hi-Fi News (Croydon, England), Reginald Williamson describes a unique method of using a Zener diode indirectly to regulate the bias of a power amplifier stage. The circuit, for which a patent has been applied for, is shown in the diagram.

With the original cathode-resistor biasing, the amplifier's sine-wave power output was 20 watts, with the clipping point somewhat higher. Using the biasing network shown, the continuous power rating is substantially higher and clipping does not occur below 48 watts output.

Here is how the circuit works: Instead of using an expensive Zener diode rated at 10 watts or higher, the inventor uses a small (1-watt) Zener diode to regulate the base bias of an inexpensive power transistor. The transistor is operated in a common-collector mode with nearly 100% negative feedback, and the emitter and base voltages are essentially equal. Thus, we have a low-power Zener diode regulating cathode bias by regulating the transistor's base voltage.

The transistor can be almost any p-n-p power transistor whose V_{ce} and I_{e} ratings are at least 50% greater than the cathode bias voltage and peak cathode current. In this circuit, however, the transistor's dynamic impedance is very low, so cathode bias remains constant regardless of variations in cathode current. The bypass capacitor protects the transistor against abnormal voltage surges that may appear between emitter and collector.

The transistor dissipates a lot of heat, so mount it in a cool spot on the chassis and use a silicone grease for good heat conductivity.

ECL800/6KH8 TUBES AVAILABLE

We still get inquiries from readers interested in building the 20-watt, 3-tube stereo power amplifier described in the November 1963 issue of Radio-ELECTRONICS. The unique German-made ECL800 twin-pentode-plus-triode output tubes are still available from Allied Radio Corp., 100 No. Western Ave., Chicago, Ill. 60680, but with a different stock number from that given in the May 1964 issue.

The new ordering information is: type ECL8000, stock No. 39 J 278, price $4.95 apiece.

The output tubes will run somewhat cooler, with no appreciable change in performance, if R19 is increased to 120 or 130 ohms, 10 watts. Also, a smaller, less expensive and lighter power transformer can be used—520 volts ct at 90 ma (Allied stock no. 61 U 412).

In that case, increase R20 to 30,000 or 33,000 ohms, 10 watts.

Zener-plus-transistor bias clamping circuit. Note that collector is at chassis potential—no insulation required.

END
HOW MANY RELAYS?

Four relays can be controlled, as shown in the diagram. If only S1 is operated, pulsating dc is put on the line. The polarity is such that current passes through the rectifier to RY1, but is blocked from RY2 by its rectifier. The cable shield serves as return for all control circuits.

If only S2 is closed, pulsating dc of the opposite polarity is put on the line, passing through the rectifier to RY2, but blocked from RY1. If both S1 and S2 are operated, ac is put on the line, operating both RY1 and RY2. The same sequence holds for S3-RY3, and S4-RY4. The capacitors connected across the relay coils eliminate chatter.

GLOW-LAMP MEMORY CIRCUIT

Assume NE1 is conducting and potential at point A is +60 volts—the maintaining voltage of NE1. When S1 is pressed, the transformer produces an output pulse of +45 volts (or more). This causes the circuit to flip. The pulse passes through NE1, raising the potential of A to a peak that fires NE2. As the output-pulse voltage falls toward zero, N1 is extinguished and N2 remains conducting.

When S1 is released, a negative output pulse of -45 volts (or more) is induced in the transformer secondary. This causes the circuit to flop by firing NE1. As a result, A is clamped at +60 volts and NE2 is extinguished.

If NE2 is initially conducting, the positive output pulse does not switch NE1 into steady conduction. However, the succeeding negative output pulse causes NE1 to flop into conduction and, as a result, NE2 is extinguished.

A positive pulse of sufficient duration (produced by S1) always flops NE1 into steady conduction. Conversely, a negative S2 pulse of sufficient duration always flops NE2 into steady conduction.

Note: An approximation of the output waveform can be obtained by modifying the input circuit (one polarity) as shown in the diagram. Otherwise, when the button is released, the output-pulse amplitude is much greater than when the button is pressed. This is caused by the higher speed of field collapse in the transformer as compared to build-up. The diode simulates a low-impedance zero source when button is released.

END

WHAT'S YOUR EQ?

These are the answers. Puzzles are on page 58.

HOW TO BE A GO-GO SOUND MAN

There’s spare-time cash for you in discothèque sound systems! Read how to set up a system—find out what you need, how to charge for your services, what precautions to take, plus pointers from an author who’s learned by experience!

Coming in February

RADIO-ELECTRONICS
Thinking of college and a space age career in electronics?

Send for this booklet on ENGINEERING TECHNOLOGY AND ENGINEERING

Learn how you can prepare for a dynamic career as an electrical or mechanical engineering technician or engineer in such exciting, growing fields as avionics, missiles, reliability control, fluid mechanics, data processing, metallurgy, microelectronics, and advanced aerospace research.

MSOE offers residence study programs leading to these degrees in engineering technology and engineering:

2 years—Associate in Applied Science
4 years—Bachelor of Science

Also get facts about scholarships and financial aids, job placement and other student services, plus photographs of MSOE technical laboratories and student activities.

For your copy, just mail the coupon — no obligation.

MSOE

Milwaukee School of Engineering
Dept. RE-166, 1025 N. Milwaukee St.,
Milwaukee, Wisconsin 53201

Please send the "Your Career" booklet.

I'm interested in

[] Electrical fields [] Mechanical fields

Name

Age

Address

City

State

ZIP

Circle 135 on reader's service card

RADIO-ELECTRONICS

BASED ELECTRONICS, "AUTOCETX", A PROGRAMMED COURSE IN ELECTRICAL CIRCUITS, edited by Jack W. Friedman, Harry G. Rice, Gerald Mc Ginty of RCA Institutes. Prentice-Hall, Englewood Cliffs, N.J. 6 x 9 in., 384 pp. Cloth, $13. An excellent text for the beginner in electronics, especially for the one who has to study by himself. An answer sheet is removed from the back of the book and laid down in sight as each lesson is studied. The lessons consist of a series of statements and questions. The student's understanding of each paragraph is verified before he goes on to the next. This puts him almost in the position of a student working with an instructor.

ELECTRONIC COMPONENTS HOBBY MANUAL. General Electric, Owensboro, Ky. 5 1/8 x 8 1/2 in., 199 pp. Paper, $1.50. Beginning with a 40-page introduction on operation of components, the book continues with 35 projects (automobile, entertainment, home, workshop). The projects are especially slanted toward the GE-X series of experimenter electronic components, and can readily be constructed with equipment purchasable in any good electronic supply house.

CRC HANDBOOK OF CHEMISTRY AND PHYSICS, 46th Edition, edited by Robert C. Weast, Ph.D., Samuel M. Selby, Ph.D. Chemical Rubber Co., 2310 Superior Ave., Cleveland, Ohio 44114 7 1/2 x 10 in., 1,700 pp. Cloth, $16. The 46th edition carries on the 7 1/2 x 10 in. format introduced with the 45th edition. It has been increased by 200 pages, to a total of over 1,700 pages, and contains nearly 450 tables, including a number made useful by the very latest discoveries in physics and chemistry. The mathematics section has been revised, with many tables set vertically rather than horizontally, and the table of integrals is enlarged.

Covers newer British miniature components, from accelerometers to wires and cables, in 984 large pages. More than 90% of the items listed in this fourth edition are new—readers are referred to the 1963-64 edition for components covered previously.

ADDITIONS TO SIGNAL-MAKERS DIRECTORY

Information and specifications on the Precise line of signal generators listed below did not arrive in time to be included in the directory in the November issue. Perhaps you would like to clip this page and file it in your November issue:

Model 610 rf signal generator tunes from 300 kc to 110 mc in five fundamental ranges and 60 to 220 and 90 to 330 mc on calibrated harmonics. Colpitts oscillator can be modulated by external source or 60- and 400-cycle internal circuits.

Model 610K kit. 610KA kit with prewired and tuned rf head, 610W wired. 8 1/2 x 12 x 5 in., 11 lb (shpg wt).

Model 630 (RF-AF-TV Marker and Band Generator) uses Colpitts rf oscillator to cover 300 kc to 110 mc on five fundamental ranges, 60 to 220 and 90 to 330 mc on calibrated harmonics. A Wien-bridge audio oscillator tunes from 20 to 200,000 cycles, providing sine-wave audio for audio tests and a source of modulating signal for the rf oscillator. Both oscillators can be used separately or in combination, with modulation variable to any desired level at any audio frequency. The modulated rf signal produces bars for vertical and horizontal linear adjustment, and produces harmonics which can be detected by the eye or ear. Features include cathode follower output, rf step attenuator, constant output impedance and external modulation.

Model 630K kit. 630KA kit with prewired and tuned rf head, 630W wired. 8 1/2 x 12 x 5 1/2 in., 11 lb (shpg wt).

Model 635 (AF Sine, Square and Pulse Generator)—one of the latest additions to the Precise line—uses a 5-tube circuit with a Wien-bridge oscillator to produce square waves and pulses to 50 kc with little or no distortion. Sine-wave output from 20 cycles to 200 kc in 5 ranges. Features two cathode-follower outputs with variable output impedance, full-wave transformer power supply, heavy filtering and 1% indicators in frequency-determining circuit.

Model 635K kit. 635W wired. 8 1/2 x 12 x 5 1/2 in. 11 lb (shpg wt). Precise Engineering and Development, Div. of Designatronics, Inc., 76 E. 2nd St., Mineola, N.Y.
MARKET CENTER

DISTRIBUTOR WANTED
No competition. To service and set up new accounts in exclusive territory. Investment secured by fast moving inventory of amazing plastic coating used on all types of surfaces interior or exterior. Eliminates waxing when applied to any type of floor. Eliminates all painting when applied to wood, metal or concrete surfaces.

Minimum Investment——$500
Maximum Investment——$2,000
For details write or call:
Phone: 314 AX-1:500
MERCHANDISING DIVISION
P.O. BOX 66
ST. ANN, MISSOURI 63074

FREE CATALOG!
148 PAGES—NEARLY 4000 BARGAINS
OPTICS • SCIENCE • MATH

CLIP AND MAIL COUPON TODAY
EDMUND SCIENTIFIC CO., Barrington, N. J.
PLEASE SEND ME FREE CATALOG "EDMUND"
NAME: __
ADDRESS: ______________________________________
CITY: __________ STATE: __________

CLASSIFIED ADVERTISING ORDER FORM
For complete data concerning classified advertising please refer to box elsewhere in Market Center section.

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35

1800.00 1000.00
2000.00 1200.00
2500.00 1500.00
3000.00 1800.00
4000.00 2500.00

NAME
ADDRESS
CITY
STATE
ZIP
SIGNATURE
MAIL TO: RADIO-ELECTRONICS, CLASSIFIED AD DEPT., 154 WEST 14TH ST., NEW YORK, N.Y. 10011

FREE Wine Recipes and Home Brewing Supplies Catalog COUNTRY WINEMAKER, Box 243RE, Lexington, Massachusetts.

ALNICO-CERAMIC FLEXIBLE ASSEMBLIES. What we need, you have. MARYLAND MAGNET, 5412G Gist, Baltimore, Maryland 21215.

ADD, SUBTRACT, MULTIPLY, DIVIDE with switches and diodes. Instructions and theory $1.95. FERWALT, Box 27, Lewiston, Idaho 83501.

ENGRAVED BUDGE—call letters or name $1.49—both $1.99. engraved key chain-duced $60. ARNAT, 1864 Jerome, Bronx, New York 10435.

FIBERGLASS boats you make yourself with fabulous new kits. 40 pound dinghy and others, McN AIR, KITS, Box 489, Port Washington, N.Y. 11050.

LOSING HAIR? Balding? Dandruff? Free copyrighted booklet. DR. SHIFFER LABORATORIES, 529 Euclid Avenue, Cleveland, Ohio 44115.

WANTED
QUICK CASH . . . for Electronic EQUIPMENT, COMPONENTS, unused TUBES. Send list now to BARRY, 512 Broadway, New York, N.Y. 10012, 212 WALKER 5-7000.

CASH, SONY TRANSISTOR TV's etc. swapped for B.R.H.P. LAM etc. equipment, special tubes, manuals, military electronics. ENGINEERING ASSOCIATES, 426 Patterson Road, Dayton, Ohio 45419.

ELECTRICAL EXPERIMENTER, most issues 1913-1952 for cash, optical or electronic equipment or will swap Science and Invention. E. KAPRIEIAN, 811 Phila. Rd., Joppa, Md. 21085.

LABORATORY test equipment ELECTRONIC-CRAFT, P. O. Box 13, Binghamton, N.Y. 13902

SERVICES
METERS—MULTIMETERS REPAIRED and calibrated. BIGelow ELECTRONICS, Box 71-B, Bluffton, Ohio.

TRANSPORTORIZED products dealers catalog, $1. INTERMARKET, CPO 1717, Tokyo, Japan.

RONO TUNER SERVICE, P.O. Box 342A, Bloomington, Indiana presents the finest and fastest service in tuner overhauling for WHOLESALE prices. VHF $8.50 UHF $7.95 UV $12.50. Includes ALL parts (except tubes), labor and full ONE YEAR guarantee. All makes. Returned on same day.

AUDIO—HI-FI
RENT STEREO TAPES over 2,500 different—all major labels—free brochure. STEREO-PARTY, 1616 Terrace Way, Santa Rosa, Calif.

WRITE for highest discounts on components, recorders, tapes, from franchised distributors. Send for FREE monthly special. CARSTON, 1685-R Second Ave. N.Y.C. 10028

HI-FI COMPONENTS, Tape Recorders, at guaranteed "WE will not be undersold" prices. 15 day moneyback guarantee. Two-year warranty. NO Catalog. Quotations Free. HI-FIDELITY CENTER, 239th East 49th St., N.Y.C. 10451.

TAPE RECORDER SALE. Brand new, latest models. $10.00 above cost. ARKAY SALES, 1028-E Commonwealth Ave., Boston, Mass. 02116.
Hi-Fidelity Components, Ham Marine and Communication equipment at considerable savings. If you want to save money write for our low prices on all your needs. Airex Radio Corp., 85 (Re) Cortlandt St., N.Y., N.Y. 10007

Stereo Tapes. Save up to 60% (no membership fees, postpaid anywhere) USA. Free 60 page catalog. We discount batteries, recorders, tape accessories. Beware of slogans "not undersold," as the discount information you supply to our competitors is usually reported to the factory. Saxitone, 1776 Columbia Road, Washington, D. C. 20009

Experimenter's Stereo-reverb enhancer mechanism—$7.00 Call's Box 2, Dearborn, Michigan

Meshna Converter Kits convert car radio to short wave receiver plus accessories. Beware of slogans not catalog.

Business Opportunities

New scientific transistor instrument detects buried coins, treasures. Will detect gold, silver, copper, iron, etc. $19.95 up. Free catalog, Relco A-26, Box 10563, Houston 18, Texas.

Employment Opportunities

Technical or Armed services school graduates in electronics are needed to assist in construction and maintenance of research and instructional electronic equipment. Job security and opportunity to further your skills and education. Contact Purdue University, Department of Personnel Administration, mide, P. O. Box 4, Lafayette, Indiana. An Equal opportunity employer.

Electronics

Bargains in Canadian Electronic Equipment and surplus. Send $1.00 for giant catalogs. ETCO, Dept. R, 520 Fifth Avenue, New York 36, N.Y.

Professional Electronics Projects—Organizer. The Best! $5.00. Catalog 75c, refundable. Parks, Box 25565, Seattle, Wash. 98125.

Transistor Ignition! Coll, ballast 7.95 Free parts lists. Transfire Carlisle 20, Mass. 01741

Why are they talking about me?

Because America is no longer ashamed to talk about me and other children with birth defects. And America is doing something to stop birth defects through March of Dimes treatment and research.

Fight Birth Defects! Join March of Dimes

Business AIDS

1,000 Business Cards, "Raised Letters" $3.95 postpaid. Samples. ROUTE RELIEF, 2632 Randleman, Greensboro, N.C. 27416.

How Computers Work. Send $2.00 for this easy-to-understand booklet. Electronics Research Laboratory, Box 57, St. Albans, New York, N.Y. 11412

Business Opportunities

New scientific transistor instrument detects buried coins, treasures. Will detect gold, silver, copper, iron, etc. $19.95 up. Free catalog, Relco A-26, Box 10563, Houston 18, Texas.

Employment Opportunities

Technical or Armed services school graduates in electronics are needed to assist in construction and maintenance of research and instructional electronic equipment. Job security and opportunity to further your skills and education. Contact Purdue University, Department of Personnel Administration, mide, P. O. Box 4, Lafayette, Indiana. An Equal opportunity employer.

Electronics

Bargains in Canadian Electronic Equipment and surplus. Send $1.00 for giant catalogs. ETCO, Dept. R, 520 Fifth Avenue, New York 36, N.Y.

Professional Electronics Projects—Organizer. The Best! $5.00. Catalog 75c, refundable. Parks, Box 25565, Seattle, Wash. 98125.

Transistor Ignition! Coll, ballast 7.95 Free parts lists. Transfire Carlisle 20, Mass. 01741

Why are they talking about me?

Because America is no longer ashamed to talk about me and other children with birth defects. And America is doing something to stop birth defects through March of Dimes treatment and research.

Fight Birth Defects! Join March of Dimes

Business AIDS

1,000 Business Cards, "Raised Letters" $3.95 postpaid. Samples. ROUTE RELIEF, 2632 Randleman, Greensboro, N.C. 27416.

How Computers Work. Send $2.00 for this easy-to-understand booklet. Electronics Research Laboratory, Box 57, St. Albans, New York, N.Y. 11412

Business Opportunities

New scientific transistor instrument detects buried coins, treasures. Will detect gold, silver, copper, iron, etc. $19.95 up. Free catalog, Relco A-26, Box 10563, Houston 18, Texas.

Employment Opportunities

Technical or Armed services school graduates in electronics are needed to assist in construction and maintenance of research and instructional electronic equipment. Job security and opportunity to further your skills and education. Contact Purdue University, Department of Personnel Administration, mide, P. O. Box 4, Lafayette, Indiana. An Equal opportunity employer.

Electronics

Bargains in Canadian Electronic Equipment and surplus. Send $1.00 for giant catalogs. ETCO, Dept. R, 520 Fifth Avenue, New York 36, N.Y.

Professional Electronics Projects—Organizer. The Best! $5.00. Catalog 75c, refundable. Parks, Box 25565, Seattle, Wash. 98125.

Transistor Ignition! Coll, ballast 7.95 Free parts lists. Transfire Carlisle 20, Mass. 01741

Why are they talking about me?

Because America is no longer ashamed to talk about me and other children with birth defects. And America is doing something to stop birth defects through March of Dimes treatment and research.

Fight Birth Defects! Join March of Dimes

Business AIDS

1,000 Business Cards, "Raised Letters" $3.95 postpaid. Samples. ROUTE RELIEF, 2632 Randleman, Greensboro, N.C. 27416.

How Computers Work. Send $2.00 for this easy-to-understand booklet. Electronics Research Laboratory, Box 57, St. Albans, New York, N.Y. 11412

Business Opportunities

New scientific transistor instrument detects buried coins, treasures. Will detect gold, silver, copper, iron, etc. $19.95 up. Free catalog, Relco A-26, Box 10563, Houston 18, Texas.

Employment Opportunities

Technical or Armed services school graduates in electronics are needed to assist in construction and maintenance of research and instructional electronic equipment. Job security and opportunity to further your skills and education. Contact Purdue University, Department of Personnel Administration, mide, P. O. Box 4, Lafayette, Indiana. An Equal opportunity employer.

Electronics

Bargains in Canadian Electronic Equipment and surplus. Send $1.00 for giant catalogs. ETCO, Dept. R, 520 Fifth Avenue, New York 36, N.Y.

Professional Electronics Projects—Organizer. The Best! $5.00. Catalog 75c, refundable. Parks, Box 25565, Seattle, Wash. 98125.

Transistor Ignition! Coll, ballast 7.95 Free parts lists. Transfire Carlisle 20, Mass. 01741

Why are they talking about me?

Because America is no longer ashamed to talk about me and other children with birth defects. And America is doing something to stop birth defects through March of Dimes treatment and research.

Fight Birth Defects! Join March of Dimes
<table>
<thead>
<tr>
<th>Rectifiers & Transistors</th>
<th>SILICON DIODES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amperes</td>
<td>50 PIV</td>
</tr>
<tr>
<td>75</td>
<td>.07</td>
</tr>
<tr>
<td>3</td>
<td>.08</td>
</tr>
<tr>
<td>15</td>
<td>.25</td>
</tr>
<tr>
<td>18</td>
<td>.18</td>
</tr>
<tr>
<td>35</td>
<td>.60</td>
</tr>
<tr>
<td>Amps</td>
<td>300 PIV</td>
</tr>
<tr>
<td>75</td>
<td>.12</td>
</tr>
<tr>
<td>3</td>
<td>.25</td>
</tr>
<tr>
<td>15</td>
<td>.35</td>
</tr>
<tr>
<td>18</td>
<td>.85</td>
</tr>
<tr>
<td>35</td>
<td>1.90</td>
</tr>
<tr>
<td>Amps</td>
<td>700 PIV</td>
</tr>
<tr>
<td>75</td>
<td>.25</td>
</tr>
<tr>
<td>3</td>
<td>.50</td>
</tr>
<tr>
<td>15</td>
<td>1.90</td>
</tr>
<tr>
<td>35</td>
<td>3.10</td>
</tr>
</tbody>
</table>

* Top Hat, Epoxy or Flangeless ** Press Fit pkg.

**100 PIV, 70 1200 PIV, 85 1750 PIV Epoxy, Flangeless
10 Watt S.N. Zener Stud 12-200 $2.95 ea.
1 Watt Jener diode, axial leads 8-200%, 200, 500, ea.
Si. diode, 1500 PIV, 50ma, axial leads 35¢ ea.
Hi-Voltage Silicon epoxy diode, 2÷10% x 0.25% x 0.05%
Hoffman-3000 PIV-200ma $1.49 ea.
Hoffman-6000 PIV-200ma $1.95 ea.
Thermistor, bead, 900 or 1200 ohms, 600°F, 2/$1.00

BLACK/WHITE or COLOR

THE ONLY SAFE NON-DISTRACTIVE TV TUNER CLEANER AVAILABLE AT ALL DISTRIBUTORS

MARKET CENTER

36 PAGE CITIZENS BAND CATALOG. All major brands and accessories. 10C Deal. Inquiries invited. KNOX ELECTRONIC, Dept. RE-2, Gainesville, Ga. 32601

TRANSPORT ignition kits, components. Free diagrams. ANDERSON ENGINEERING, Epsom, N.H. 03239

ADVERTISING INDEX

RADIO-ELECTRONICS does not assume responsibility for any errors which may appear in the index below.

- Allied Radio Corp.
- American Electronic Corp.
- Brach Manufacturing Corp. (Div. of General Bronze Corp.)
- Brooks Radio & TV Corp.
- Burstein-Applebee Co.
- Capitol Radio Engineering Institute, The
- Castle TV Tuner Service, Inc.
- C. A. L. & A. Corp.
- Cleveland Institute of Electronics
- Conar (Div. of National Radio Institute)
- Cornell Electronics Co.
- Datik Corporation, The
- DeVry Technical Institute
- Eastman Kodak Company
- Electronic Measurement Corp. (EMC)
- Finney Co.
- Garrard (British Industries Corp.)
- Gerrishback Library, Inc.
- Heal's Engineering College
- Helicon Company
- IBM Corporation
- International Crystal Mfg. Co., Inc.
- International Exhibition of Electronic Components
- J. E. E.
- Jerrold Electronics Corporation (Distributor Sales Division)
- Jerrold Electronics Corp.
- LectroTech Inc.
- Mercury Corporation
- National Radio Institute
- Olson Electronics, Inc.
- Perma-Power Company
- Philco (Techrep Div.)
- Poly Pak
- Precise Electronics & Development (Div. of Designers, Inc.)
- Quam-Nichols Co.
- Radio Shack
- RCA Components & Devices
- RCA Instruments, Inc.
- RCA Sales Corporation
- Reading Improvement Program
- Sams & Co., Inc.
- Scott, Inc., H. H.
- Seeco Electronics Corp.
- Sencore
- Simon Radio Corporation
- Sprague Products Company
- Syracuse (Subsidiary of General Telephone & Electronics)
- Tarzian, Inc., Sarks
- Texas Crystals (Div. of Whitehall Electronics Corp.)
- University Sound (Div. of LTV Ling Altica, Inc.)
- Warren Electronic Components
- Western Electric Co.
- Windsor Electronics, Inc.
- Winegard Co.
- Wostor Products Corp.

MARKET CENTER

106 - 107

Hoffman-6000 PIV-200ma $1.95 ea.

CLASSIFIED COMMERCIAL RATE (for firms or individuals offering commercial products or services): 60¢ per word . . . minimum 10 words.

NON-COMMERCIAL RATE (for individuals who want to buy or sell personal items): 30¢ per word . . . no minimum.

Payment must accompany all ads except those placed by accredited advertising agencies. 10% discount on 12 consecutive insertions, if paid in advance. Misreading or objectionable ads not accepted, Copy for March issue must reach us before January 10th.

WORD COUNT: Include name and address. Name of city (Des Moines) or state (New York) counts as one word each, Zone or Zip Code numbers not counted. (We reserve the right to omit Zip Code if space does not permit.) Count each abbreviation, initial, single figure or group of figures or letters as a word. Symbols or groups such as 6-10, COD, AC, etc., count as one word. Hyphenated words count as two words. Minor over-wording will be edited to match advance payment.

LOW VOLTAGE VARIABLE CAPACITORS

27, 47, or 100 pf, 4.7, 47, or 470 pf, $1.25 ea.

Silicon Controlled Rectifiers

PRY | **1A** | **7A** | **14A** | **16A** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>.08</td>
<td>.28</td>
<td>.68</td>
<td>.80</td>
</tr>
<tr>
<td>50</td>
<td>.46</td>
<td>.48</td>
<td>.70</td>
<td>1.20</td>
</tr>
<tr>
<td>100</td>
<td>.60</td>
<td>.70</td>
<td>1.50</td>
<td>2.00</td>
</tr>
<tr>
<td>150</td>
<td>.60</td>
<td>.70</td>
<td>1.50</td>
<td>2.00</td>
</tr>
</tbody>
</table>

16A Stud

Money back guarantee. $2.00 min. order, include postage. Catalogue 25¢.

Electronic Components Co.
Box 29029 Baton Rouge, La. 70821

Circle 137 on reader's service card

MARKET CENTER

Chemtronics
Edmond Scientific Corp.
Electronic Components Co.
Fair Radio Sales
Music Associated
Progress Plastics & Paint Corp.
United Radio Co.

SCHOOL DIRECTORY

American Institute of Engineering & Technology
Coyle Electronics Institute
Grantham School of Electronics
Indiana Home Study Institute
Milwaukee School of Engineering
Northrop College of Science & Engineering
Pacific International College
Tri-State College
Valparaiso Technical Institute

106 - 107
SAVE DOLLARS $$$ on your Radio & TV tubes—special purpose—exacting the largest stock in the U.S.A.—at the lowest prices that defies all competition.

Write for TV-Radio or special purpose price list. Our motto—lowest prices in the world for only new unused tubes—United's first quality tubes are 1 yr. guaranteed.

UNITED RADIO CO.
P.O. Box 1000
Newark, N.J.

ZIP stands for the Post Office Department's new Zoning Improvement Plan. When renewing your RADIO-ELECTRONICS subscription, having been a change of address, please let us know what your ZIP Code is. We'll add it to your address mailing plate...and you'll get speedier delivery service from the Post Office.

By the way, when writing to us, address:

RADIO-ELECTRONICS, 154 West 14 St., New York, N.Y. 10011
Radio Shack is Now Selling Realistic "Lifetime" Tubes to Dealers and Servicemen!

- **The World's ONLY Lifetime-Guaranteed Tube**: A FREE Replacement Whenever It Fails in the Set! • A Premium Tube at a Popular Price! • 24K Gold-Clad Contacts!

Hundreds of dealers and service men specify Realistic Lifetime Tubes because of the obvious PROFIT potential. If you're buying at 50% off, list, check these prices — see how much more you'll save by switching to Lifetime Tubes!

Our stores don't compete with you because they sell at "each" prices, substantially more than your cost. Buy 100% GUARANTEED Lifetime Tubes at any Radio Shack, in person or by mail. Nobody but nobody has a deal like Lifetime!

You Buy Up to 70% + 10% Off!

3 of 5 or 10 of

<table>
<thead>
<tr>
<th>Type</th>
<th>Sugg.</th>
<th>List</th>
<th>Each</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>O24</td>
<td>2.92</td>
<td>.77</td>
<td>.69</td>
<td></td>
</tr>
<tr>
<td>I33 / 13GT</td>
<td>2.04</td>
<td>.87</td>
<td>.79</td>
<td></td>
</tr>
<tr>
<td>K3</td>
<td>2.04</td>
<td>.87</td>
<td>.79</td>
<td></td>
</tr>
<tr>
<td>I5</td>
<td>4.05</td>
<td>.92</td>
<td>.83</td>
<td></td>
</tr>
<tr>
<td>U5</td>
<td>2.65</td>
<td>.90</td>
<td>.80</td>
<td>.72</td>
</tr>
<tr>
<td>1X2B</td>
<td>3.05</td>
<td>1.10</td>
<td>.92</td>
<td>.83</td>
</tr>
<tr>
<td>2CYS</td>
<td>3.05</td>
<td>1.10</td>
<td>.92</td>
<td>.83</td>
</tr>
<tr>
<td>3B26</td>
<td>2.30</td>
<td>.83</td>
<td>.69</td>
<td>.62</td>
</tr>
<tr>
<td>3CB6</td>
<td>2.25</td>
<td>.81</td>
<td>.68</td>
<td>.61</td>
</tr>
<tr>
<td>3Y4</td>
<td>2.50</td>
<td>.90</td>
<td>.75</td>
<td>.68</td>
</tr>
<tr>
<td>5A6B</td>
<td>3.95</td>
<td>1.42</td>
<td>1.19</td>
<td>1.07</td>
</tr>
<tr>
<td>5A95</td>
<td>2.35</td>
<td>.85</td>
<td>.71</td>
<td>.64</td>
</tr>
<tr>
<td>5A44</td>
<td>4.50</td>
<td>1.62</td>
<td>1.35</td>
<td>1.21</td>
</tr>
<tr>
<td>5U4GB</td>
<td>2.10</td>
<td>.76</td>
<td>.63</td>
<td>.57</td>
</tr>
<tr>
<td>5UB</td>
<td>3.30</td>
<td>1.19</td>
<td>.99</td>
<td>.90</td>
</tr>
<tr>
<td>5Y3GT</td>
<td>1.75</td>
<td>.63</td>
<td>.53</td>
<td>.48</td>
</tr>
<tr>
<td>6A6G</td>
<td>2.75</td>
<td>1.00</td>
<td>.83</td>
<td>.75</td>
</tr>
<tr>
<td>6A6M</td>
<td>1.85</td>
<td>1.51</td>
<td>1.26</td>
<td>1.16</td>
</tr>
<tr>
<td>6A8M</td>
<td>1.45</td>
<td>1.04</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>6A9A</td>
<td>4.00</td>
<td>1.44</td>
<td>1.20</td>
<td>1.08</td>
</tr>
<tr>
<td>6A9S</td>
<td>2.40</td>
<td>.90</td>
<td>.71</td>
<td>.64</td>
</tr>
<tr>
<td>6AUA</td>
<td>2.00</td>
<td>.70</td>
<td>.60</td>
<td>.54</td>
</tr>
<tr>
<td>6AV6</td>
<td>1.65</td>
<td>.60</td>
<td>.50</td>
<td>.45</td>
</tr>
<tr>
<td>6AW8</td>
<td>3.30</td>
<td>1.11</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>6AX4GT</td>
<td>2.65</td>
<td>.95</td>
<td>.80</td>
<td>.72</td>
</tr>
<tr>
<td>8BA6</td>
<td>2.00</td>
<td>.72</td>
<td>.60</td>
<td>.54</td>
</tr>
</tbody>
</table>

Over 75 Stores Coast-to-Coast

Arizona
- Phoenix: 750 East Washington St.
- Tucson: 218 N. 4th St.
- Littler: 4210 N. 1st Ave.

California
- Anaheim: 108 East Katella Ave.
- La Habra: 17015 Adams Blvd.
- Long Beach: 218 E. 7th St.
- Los Angeles: 1231 S. Los Angeles St.
- Burbank: 12830 Magnolia Blvd.
- West Covina: 2166 East Whittier Ave.
- Fullerton: 1330 N. Nutwood Ave.
- Cameron Park: 1940 S. Cameron Park Dr.
- Fontana: 22519 Hawthorne Blvd.
- Mission Hills: 10919 Sepulveda Blvd.
- Downey: Stonewood Shop. Ctr.
- Torrance: 22519 Hawthorne Blvd.
- Mission Hills: 10919 Sepulveda Blvd.
- Downey: Stonewood Shop. Ctr.

Colorado
- Denver: 775 South Park St.
- Loveland: 956 15th Ave. W.

Connecticut
- New Haven: 1515 So. Worthington Ave.
- Branford: 131 E. Main St.

Illinois
- Chicago: 15-1757 N. Ashland Ave.

Massachusetts
- Boston: 187 Washington St.
- Westwood: 208 W. Washington St.

Maryland
- Towson: 215 W. Old Patrick St.

Michigan
- Grand Rapids: 350 East Ottawa Ave.

Minnesota
- St. Paul: 472 North Main St.

New Hampshire
- Manchester: 236 Hampstead Rd.

New Mexico

New York
- New York: 1232 Broadway, 19th Fl.
- Port Chester: 3010 Broadway, 10th Fl.

Ohio
- Cincinnati: 702 East Vine St.

Oklahoma
- Oklahoma City: 2212 N. Western Ave.

Pennsylvania
- Philadelphia: 8300 Roosevelt Ave., Room 111

Rhode Island
- Providence: 1150 Lafayette Ave.

Texas
- Abilene: 2201 North First St.
- Austin: 800 E. 5th St.

Virginia
- Alexandria: 102 W. 1st St.
- Arlington: 224 S. Glebe Rd.

Wisconsin
- Milwaukee: 3839 S. 27th St.

Please send me the following Lifetime tubes:

Mail Today or Buy at Any Radio Shack Store

<table>
<thead>
<tr>
<th>Quan.</th>
<th>Tube Type</th>
<th>Quan.</th>
<th>Tube Type</th>
<th>Quan.</th>
<th>Tube Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube Type</td>
<td>List</td>
<td>Each</td>
<td>Each</td>
<td>Tube Type</td>
<td>List</td>
</tr>
</tbody>
</table>

Please send me the following Lifetime tubes:

<table>
<thead>
<tr>
<th>Quan.</th>
<th>Tube Type</th>
<th>Quan.</th>
<th>Tube Type</th>
<th>Quan.</th>
<th>Tube Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube Type</td>
<td>List</td>
<td>Each</td>
<td>Each</td>
<td>Tube Type</td>
<td>List</td>
</tr>
</tbody>
</table>

Mail to the following Lifetime tubes:

ADD 50c PER ORDER FOR PACKING AND SHIPPING - ANYWHERE IN THE U.S.A.

Radio Shack Catalog

Name (please print)**

Company

Street

City

State

Zip

Mail Today or Buy at Any Radio Shack Store

Circle 140 on reader's service card

Radio Electronics

24K Gold-Clad Contacts
FINCO COLOR-VE-LOG ANTENNAS
FOR UHF, VHF, FM RECEPTION

ALL-BAND UHF-VHF-FM ANTENNA

The one antenna that does the work of 3! Gives startlingly clear black and white pictures and beautiful color on both UHF and VHF television channels — plus the finest in stereophonic and monophonic sound reproduction.

FINCO Model UVF-24
$59.95 list

FINCO Model UVF-18 — $42.50 list
FINCO Model UVF-16 — $30.50 list
FINCO Model UVF-10 — $18.50 list

FINCO Model VL-10
$34.95 list

FINCO Model VL-13 — $54.50 list
FINCO Model VL-15 — $46.95 list
FINCO Model VL-7 — $23.95 list
FINCO Model VL-5 — $16.95 list

SWEPT-ELEMENT VHF-FM ANTENNA

FINCO’s Color-Ve-Log challenges all competition! Its swept-element design assures the finest in brilliant color and sharply defined black and white television reception — as well as superb FM monaural and stereo quality.

Featuring FINCO’s exclusive Gold Corodizing

FINCO COLOR-VE-LOG

Prices and specifications subject to change without notice
THE FINNEY COMPANY • 34 W. Interstate Street • Bedford, Ohio
Write for beautiful color brochures: Numbers 20-322, and 20-307, Dept. RE
Circle 141 on reader’s service card

www.americanradiohistory.com
RCA all-new, rare-earth Hi-Lite Color Picture Tubes are being stocked by smart dealers who are ready for the replacement color picture tube business.

why?

Hi-Lite's rare-earth phosphors provide picture brightness unsurpassed in the color TV industry. Natural color reproduction. Great black-and-white pictures, too! RCA's Hi-Lite Color Picture Tube Line is here. Now! Available in 19-inch and 25-inch rectangulars and 21-inch round tube types.

What about you? Are you ready for color?

RCA ELECTRONIC COMPONENTS AND DEVICES, HARRISON, N.J.

The Most Trusted Name in Electronics