Easy-to build stereo speakers

Soup up your TV tuner

Make a musical horn for your car

Build this all-transistor FM multiplex generator
How to replace top quality tubes with identical top quality tubes

Most of the quality TV sets you are presently servicing were designed around special Frame Grid tubes originated by Amperex. More and more tube types originated by Amperex are going into the sets you'll be handling in the future.

Amperex Frame Grid tubes provide 55% higher gain-bandwidth, simplify TV circuitry and speed up your servicing because their extraordinary uniformity virtually eliminates need for realignment when you replace tubes.

Amperex Frame Grid Tubes currently used by the major TV set makers include:

2ER5 2GK5 2HA5 3EH7 3GK5 3HA5 4EH7 4EJ7 4ES8 4GK5 4HA5 5GJ7 6EH7 6EJ7 6ER5 6ES8 6FY5 6GJ7 6GK5 6HA5 6HGB 7HGB 8GJ7

If your distributor does not yet have all the Amperex types you need, please be patient—in some areas the demand keeps gaining on the supply.

Radio Shack Bonanza

First Time Ever!

Quantity-Users' Sale

Radio Shack's Amazing Realistic

Lifetime Tubes

World's only radio-tv-electronic tubes with a lifetime guarantee!

Order Any 12 Tubes!

<table>
<thead>
<tr>
<th>Tube Type</th>
<th>List Each</th>
<th>Lots Each of 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>6A2</td>
<td>2.50</td>
<td>2.25</td>
</tr>
<tr>
<td>6A9</td>
<td>2.75</td>
<td>2.50</td>
</tr>
<tr>
<td>6A10</td>
<td>3.00</td>
<td>2.75</td>
</tr>
<tr>
<td>6A23</td>
<td>3.50</td>
<td>3.25</td>
</tr>
<tr>
<td>6A25</td>
<td>3.75</td>
<td>3.50</td>
</tr>
<tr>
<td>6A28</td>
<td>4.25</td>
<td>4.00</td>
</tr>
<tr>
<td>6A30</td>
<td>4.50</td>
<td>4.25</td>
</tr>
<tr>
<td>6A35</td>
<td>5.00</td>
<td>4.75</td>
</tr>
<tr>
<td>6A40</td>
<td>6.00</td>
<td>5.75</td>
</tr>
<tr>
<td>6A50</td>
<td>8.00</td>
<td>7.75</td>
</tr>
<tr>
<td>6A60</td>
<td>10.00</td>
<td>9.75</td>
</tr>
<tr>
<td>6A80</td>
<td>12.00</td>
<td>11.75</td>
</tr>
<tr>
<td>6A90</td>
<td>14.00</td>
<td>13.75</td>
</tr>
<tr>
<td>6B25</td>
<td>15.00</td>
<td>14.75</td>
</tr>
<tr>
<td>6B30</td>
<td>20.00</td>
<td>19.75</td>
</tr>
<tr>
<td>6B40</td>
<td>25.00</td>
<td>24.75</td>
</tr>
<tr>
<td>6B50</td>
<td>30.00</td>
<td>29.75</td>
</tr>
<tr>
<td>6B60</td>
<td>40.00</td>
<td>39.75</td>
</tr>
<tr>
<td>6B75</td>
<td>50.00</td>
<td>49.75</td>
</tr>
<tr>
<td>6B80</td>
<td>60.00</td>
<td>59.75</td>
</tr>
<tr>
<td>6B90</td>
<td>70.00</td>
<td>69.75</td>
</tr>
<tr>
<td>6C25</td>
<td>125.00</td>
<td>119.75</td>
</tr>
<tr>
<td>6C35</td>
<td>150.00</td>
<td>144.75</td>
</tr>
<tr>
<td>6C45</td>
<td>200.00</td>
<td>194.75</td>
</tr>
<tr>
<td>6C50</td>
<td>250.00</td>
<td>244.75</td>
</tr>
<tr>
<td>6C60</td>
<td>300.00</td>
<td>294.75</td>
</tr>
<tr>
<td>6C75</td>
<td>400.00</td>
<td>384.75</td>
</tr>
<tr>
<td>6C80</td>
<td>500.00</td>
<td>484.75</td>
</tr>
<tr>
<td>6C90</td>
<td>600.00</td>
<td>584.75</td>
</tr>
</tbody>
</table>

Order any 12 tubes and take advantage of our tremendous savings. Each tube is guaranteed to last the lifetime of the set or your money back.

Your Price: In lots of 12 or more, 60% off list price.

Replace and save with the only tube in the world that's guaranteed to last the life of the set or you get an exact replacement free (less postage, if mailed). It's like an insured investment! Guaranteed backed by Radio Shack's 42-year reputation, and no strings attached.

Radio Shack

Now 51 Stores Coast to Coast!

This coupon must accompany your first 12-tube order.

Mail or bring to your nearest Radio Shack Store.

- Tube Order Attached.
- Send Bargain Catalog Attached.
- Send Industrial Catalog.

Mail Today! Re: 165

Name: ________________________

Street: ________________________

City: ________________________ State: __________ Zip: __________

Special! Add only 50¢ per total order for Pre-Paid Postage & Handling, if mail ordered.

May, 1965

www.americanradiohistory.com
Guest Editorial

29 CATV—Whether, Whither and Why .. Morton Leslie
CATV—A Natural Evolution ... Frederick W. Ford

Test Instruments

Cover Story

30 A Solid State FM Multiplex Generator ... Earl T. Hansen
First all-transistor build-your-own design!
Aligns, demonstrates any kind of FM stereo tuner

Make Your Own Linear-Scale AC Meters ... Joseph H. Sutton
Simple linearized rectifier-type ac meters in variable power box

Equipment Report: Western Reserve 300 Digital Passive Sealer

Audio-High Fidelity-Stereo

40 Low-Cost, Easy-to-Build Stereo Speaker Enclosures Richard G. Lemburg
Two ducted, distributed-port enclosures (for 10- or 12-inch speakers)

44 Nine-Volt Record Changer

62 Equipment Report: Schober TR-2 Transistor Power Amplifier

Electronics

38 Your VTVM Checks Camera Shutters ... Elliott A. McCready
Ingenious charging-capacitor timer you can build in an hour

49 Tube Impedances With Transistors .. David L. Pippen
Recent semiconductor development overcomes many transistor disadvantages

54 SCR Power Control .. Louis M. P. T. Wijnen
Simple flexible circuit can be adapted quickly for large or small appliances

Radio

42 No Squelch? Design It! ... Arthur F. Block
Cookbook approach to ending no-signal noises in your ham or CB rig

General

22 Service Clinic .. Jack Darr
Reference Points

45 What's New

46 Electronic Musical Horn for Your Car .. Lyman E. Greenlee
Easy and cheap to build

48 What's Your EQ?

60 Equipment Report: Slide Rule for Electronics

Television

36 Get All the TV Channels ... Louis W. Reinken
Separate adjustments for each channel produce wonders for almost any set

52 Keyed AGC Isn't So Tough ... Jack Darr
The Old-Timer and Young Ham are at it again

The Departments

48 Correction
10 Correspondence
86 New Books
79 New Literature
83 New Patents
74 New Products
65 New Semiconductors
& Tubes
4 News Briefs
83 Noteworthy Circuits
80 Technicians' News
70 Notes
84 Try This One
82 50 Years Ago

GERNSBACK PUBLICATIONS, INC., 154 W. 14 St., N.Y. 10011. AL 5-7755 Board Chairman Hugo Gernback, President M. Harvey Gernback, Secy. G. Ainge, Treas. Charles A. Ralbie
Choose Your Tailor-Made Course in N.T.S. “PROJECT METHOD” ELECTRONICS!

Now! N.T.S. — one of America’s oldest leading home-study and resident technical schools — offers you GREATER CAREER OPPORTUNITIES IN ELECTRONICS. N.T.S. “Project Method” home training lessons are shop-tested in the Resident School in Los Angeles. You work on practical job projects, learn to use shop manuals and schematics. Your N.T.S. training is individual. You proceed at your own pace. The Schools’ practical methods, plus more than 60 years of experience, have helped thousands of students all over the world to successful careers. Prepare now for a secure future in one of 8 N.T.S. Electronics Courses designed to fit your own particular needs.

CHOSE YOUR FIELD — INSURE YOUR FUTURE!

1 ELECTRONICS-TV-RADIO-SERVICING & COMMUNICATIONS A basic course thoroughly covering fundamentals of electronics, radio, TV servicing and communications.

2 MASTER COURSE IN ELECTRONICS-TV-RADIO, PLUS ADVANCED TV & INDUSTRIAL ELECTRONICS This course covers everything included in Course No. 1 plus Automation and every phase of the Electronics industry.

3 FCC LICENSE Preparation for this government license essential for interesting jobs in radar, radio, television, communications, guided missiles, many others. Upon completion of this course, if you do not pass the FCC exam for a 1st Class Commercial Radiotelephone License your tuition will be refunded.

4 RADIO SERVICING (AM-FM-Transistors) Train for radio sales and service with dealer or distributor.

5 TELEVISION SERVICING (Including Color) Covers installation, adjustment, repair and servicing of black and white and color television . . . prepares you for your own sales and service business.

CLASSROOM TRAINING AT LOS ANGELES

You can take classroom training in our famous Resident School at Los Angeles in Sunny Southern California. N.T.S. is the oldest and largest school of its kind. Associate in Science Degree also offered in our Resident Program. Check Resident School box in coupon for full details.

MAIL COUPON TODAY FOR FREE BOOK AND SAMPLE LESSON In Field of Your Choice. You enroll by Mail — and Save Money. No Salesmen! This means lower tuition for you. Accredited Member N.H.S.C.

HIGH SCHOOL AT HOME

Learn easily. New modern method. National also offers accredited high school programs for men and women. Take only subjects you need. Study at your own pace. Latest approved textbooks — years to keep — everything included at one low tuition. Check High School box in coupon for information.

STEREO, HI-FI AND SOUND SYSTEMS A growing field. Prepares you to build, install and service modern sound equipment for home or industry.

BASIC ELECTRONICS Gives you the fundamentals you must know to build on for a future Electronics career. Also offers an excellent background for Salesmen, Purchasing Agents, and others in Electronics.

ELECTRONICS MATH Simple, easy-to-follow instructions in the specialized math you need in many electronics jobs.

NATIONAL TECHNICAL SCHOOLS

4000 S. Figueroa St., Los Angeles, California 90037

Please Rush FREE Electronics “Opportunity Book” and actual sample lesson on course checked below:

☐ Electronics-TV-Radio Servicing & Communications
☐ Master Course in Electronics-TV-RADIO
☐ Advanced TV & Industrial Electronics
☐ FCC License
☐ Radio Servicing (AM-FM-Transistors)
☐ Television Servicing (Including Color)
☐ Stereo, Hi-Fi and Sound Systems
☐ Basic Electronics ☐ Electronics Math

Name ___________________________ Age ______________
Address ___________________________
City __________________ State ________ Zip ________

☐ Check here if Interested ONLY in Classroom Training at L.A.
☐ Check here for High School Department Catalog only.

RADIO-ELECTRONICS, May 1965, Volume XXXVI, No. 5. Published monthly at Ferry Street, Concord, N. H. 03302. Second-class postage paid at Concord, N. H. SUBSCRIPTION RATES: U.S. and possessions, Canada: $5 for 1, $9 for 2, $12 for 3 years. Pan-American countries: $6 for 1, $11 for 2, $15 for 3 years. Other countries: $6.50 for 1, $12 for 2, $16.50 for 3 years. Single copies: 50¢. © 1965, by Gernsback Publications, Inc. All rights reserved.

POSTMASTERS: Send Form 3579 to 154 W. 14th St., New York 10011.
NEWS BRIEFS

CW RUBY LASER WORKS AT ROOM TEMPERATURE

Scientists at Hughes Aircraft Co.'s Research Labs report continuous operation of a ruby laser at room temperatures. Previously, CW solid-state lasers could operate only at temperatures a little above absolute zero.

Dr. George F. Smith, associate director of Hughes Aircraft Company's Research Laboratories, demonstrates the new room temperature CW ruby laser.

Output is relatively low, according to Dr. George F. Smith, associate director of the Labs, but the technique shows promise of producing significant amounts of power—in the order of watts—at visible frequencies. The laser consists of an ordinary ruby rod, 2 mm in diameter and 2.54 cm long, pumped to threshold by a single mercury lamp operating at 1,000 watts in a specially designed elliptical cavity. The unit is water-cooled.

In a related experiment, Hughes scientists also suppressed all but one mode (one output frequency) from a small pulsed ruby laser. These simple mode-selection techniques are compatible with the CW configuration and therefore should open the way for solid-state lasers—with their much larger power capabilities—to qualify for many of the applications previously limited to gas lasers, Dr. Smith said.

HAMS Seldom TO BLAME FOR TVI

The amateur radio operator is often the first to be accused in many complaints of radio or television interference. A report issued by Britain's Post Office Engineering Department—the equivalent of our FCC—points out that, of 15,134 cases of interference, only 82 were caused by amateurs.

Fifty-four cases of TVI on the vhf channels were traced to amateurs while 343 complaints were caused by radiation from the deflection circuits of other TV receivers. Among the other offenders were 1,585 contact devices (thermostats, switches, etc.), 824 sewing machines, 322 portable electric tools, 210 hair dryers, 149 filament type lamps and 366 neon signs. Overhead power lines accounted for 1,237 complaints. The greatest cause of complaints (6,160) was unsatisfactory conditions at the receiving location.

SHARK-REPELLER TO BE MARKETED

An electronic shark repeller that repels sharks 20 to 30 feet away without harming other fish or humans will be produced in various forms for skin divers, boats, rafts, fishing nets and beach equipment by Marine Industries Inc. of New York. The repeller consists of a dipole antenna, a capacitor and a multivibrator that releases a pulse every second. It is battery-powered.

MORE TUBES THAN TUBS

According to TV Guide magazine, 93.5% of all houses in this country have a television set, whereas only 82% have bathtubs or showers. Furthermore, sets are tuned in an average of 5 hours and 25 minutes each day (or 82 full days a year). This, says TV Guide, means that television occupies 70% of a family's leisure time.

To sweeten these fulsome statistics, the article points out that all this pleasure costs only 13 cents a day for electricity and repairs.

FCC REAFFIRMS STAND ON CITIZENS-BAND ORDER

The FCC Report and Order of July 29, 1964, goes into effect April 26. The FCC announced the Order, which aroused a storm of protest from equipment manufacturers, hobbyists, Citizens-band users and others, had been delayed to give a hearing to those who objected to it.

The document was intended to define more clearly some of the rules covering Citizens-band use. It limits communications between units of different stations to 7 channels out of the 23 allocated. If, for example, a TV service shop has a Citizens-band li-

cese, it can communicate only between base and mobile units of the shop operating as units of the same station, or between two of the shop's mobile units in the field, but not to other Citizens-band stations, except on channels from 9 to 14 and on channel 23.

Use of the stations for hobby purposes or discussions of the performance of the licensees' equipment were also forbidden under the Order, as well as dx, which is defined as communication over a distance of more than 150 miles.

Objectors maintained that the amendments abridged licensees' freedom of speech, were in effect censorship and were generally not in the public interest.

The FCC considered these points and in a Memorandum and Order dated March 1, answered each one in full in considerable detail and, in many cases, with examples to illustrate the types of communication considered under the act. The Order concludes "... all other amendments to Part 95, Citizens Radio Service, adopted by the Report and Order on July 22, 1964, are affirmed; and it is further ordered that these rules shall become effective April 26, 1965."

THIN-FILM MICROWAVE AMPLIFIER HAS 1,000-MC BANDWIDTH

K. M. Eisele, R. S. Engelbrecht and K. Kurosaka of Bell Telephone Laboratories report an amplifier that operates at the highest frequency and the widest bandwidth ever achieved with integrated circuits. It operates from 500 to 3,000 mc (0.5 to 3 gc).

This simplified single-stage circuit diagram of the new integrated-circuit broad-band amplifier shows the balanced circuitry.

This is twice the frequency and bandwidth of the best transistor circuits, and equals or surpasses most traveling-wave tubes in its frequency range.

The wide-band performance was made possible by a balanced amplifier continued on page 6
DeVry Tech Prepares You for Many Types of Jobs in Electronics

In Day or Evening Classes Or In Privacy of Your Home (Spare Time)

If you're a young man looking for a career to grow in, and to grow with — look into electronics. Or if you're 18 to 45, sick of your routine job and fed up with a small paycheck — look into electronics. For here's a field offering real money, a promising future, fine careers. When after thorough training you can say: "I'm an electronics technician," you're a man of standing in your community. And you're ready for many exciting opportunities that depend on electronics — from Radio and Television, Radar, Broadcasting or Industrial Electronics — to Automation, Computer or Missile Control work.

But don't be stopped by the word "electronics." You don't need advanced education or previous technical experience to start our program. DeVry trains you with tools in hand and equipment in front of you, with "programmed" texts and visual aids — either at home or in one of our modernly equipped resident schools. We know you will be pleased with what we have to offer. Fill out and mail the coupon for details.

50,000 GRADUATES
5,000 FIRMS HAVE HIRED OUR GRADUATES
2,200 RESIDENT STUDENTS

DeVry has grown to be one of the world's largest electronics educational centers.

DeVry men are sought after by industry, a real advantage for you when you graduate.

PART TIME INCOME WHILE LEARNING

Make extra money servicing radios, TV sets, Hi-Fi systems in your spare time — surprisingly soon.

MAIL THIS COUPON NOW

DeVRY TECHNICAL INSTITUTE
4141 Belmont Ave., Chicago, Ill. 60641, Dept. RE-5-V

Please give me your two free booklets, "Pocket Guide to Real Earnings" and "Electronics in Space Travel"; also include details on how to prepare for a career in Electronics. I am interested in the following opportunity fields (check one or more):

- Space & Missile Electronics
- Communications
- Television & Radio
- Computers
- Microwaves
- Industrial Electronics
- Automation Electronics
- Broadcasting
- Radar
- Electronic Control

NAME
ADDRESS
CITY
ZONE
STATE

Check here if you are under 16 years of age.

Canadian residents: Write DeVry Tech of Canada, Ltd.
2098 170 Lawrence Avenue West, Toronto 19, Ontario

SEND FOR FREE BOOKLETS NOW

Just send the coupon, get the story of the electronics field — and how you may prepare for it.

DeVry Technical Institute

CHICAGO & TORONTO

MAY, 1965
ALL MAKES—ONE PRICE

9.95

ALL LABOR AND PARTS (EXCEPT TUBES & TRANSISTORS)*

Laser Tuner

Guaranteed Color Alignment—No Addit. Charge

Simply send us the defective tuner complete; include tubes, shield cover and any damaged parts with model number and complaint. Your tuner will be expertly overhauled and returned promptly, performance restored, aligned to original standards and warranted for 90 days.

UV combination tuner must be single chassis type; dismantle tandem UHF and VHF tuners and send in the defective unit only.

Exact Replacements are available for tuners unfit for overhaul. At low as $12.95 exchange. (Replacements are new or rebuilt.)

CASTLE TV TUNER SERVICE, INC.

MAIN PLANT: 5715 N. Western Ave., Chicago 45, Illinois
EAST: 41-96 Vernon Blvd., Long Island City 1, N.Y.
CANADA: 136 Main Street, Toronto 13, Ontario

*Major Parts are additional in Canada

NEWS BRIEFS continued

design. The circuit consists of a pair of electrically similar transistors for each amplifier stage, with their input and output signals combined by a 3-db directional coupler. This design matches the impedances at the input, output and interstages, eliminating the need for tuning adjustments. It permits operation at lower noise figures and higher output powers than is possible with conventional designs.

Typical gains of 6 db per stage in the 1-2-gc range and 3 db per stage in the 2-3-gc range are obtained. The best noise figures, with production germanium transistors, are near 5 db at 1 gc and 8 db at 2.5 gc. This noise performance is comparable to noise figures typically obtained with traveling-wave tubes. With special experimental transistors, gains as high as 12 db in the 1-gc range and 6 db in the 2-gc range have been obtained, with further improvements in noise figures.

SEVEN TV STATIONS ON ONE LASER BEAM

The signals of all seven New York City TV stations were picked up and relayed over a single laser beam, the Army reports from Fort Monmouth, N. J., were the feat was accomplished. The signals were again picked off the laser beam and displayed on seven ordinary television sets.

The signals of New York City's stations, from channel 2 to channel 13, were received on an antenna on the roof of The Hexagon at Fort Monmouth. They were amplified with a "off-the-shelf" broadband amplifier, and

RADIO-ELECTRONICS is published by

Subscribers: When requesting change of address please furnish an address label from a recent issue. Allow one month for change of address.

ELECTRONICS NOW MEASURES GLOSS

An instrument for measuring gloss electronically has been introduced into the United States by Carl Zeiss, Inc. It is expected to find appli-

Principles of the Zeiss GP 2. Goniophotometer is supplied by lamp G and condenser lens K and is focused on the specimen through an illuminating collimator consisting of lens L, and interchangeable stop B. Reflected light goes to photocell P through an identical collimator and current generated by the photocell is measured by meter M.

3-D TELEVISION FROM CZECHOSLOVAKIA?

According to Edouard Hofman, director of the Czech television movie department, Czech television will start
continued on page 8

www.americanradiohistory.com
IT'S TIME FOR A GOOD DEAL
and Centralab has one for you!

FREE!
MINUTE-MENDER
TIMER
when you buy

this special ceramic disc HI-KAPS®
CDM-100 merchandiser kit
100 assorted Centralab Ceramic Disc HI-KAPS
in a clear plastic six-compartment storage box—in the
nine values you most frequently need for radio-tv
servicing... a $21.30 value.

Timer $ 3.95
Kit 21.30
Total $25.25
Your Cost $16.95

An alarm clock in your pocket
with a precision Swiss movement
and hundreds of practical uses:

- Check parking time
- Cook a "tough dog" for 30 minutes
- Be back on time
- Limit that long distance call
- Calculate travel time
- Take 5 and time it
- Pre-heat filaments for ten
- Form new "lytics in five
or... take it home to your wife to:
- Time an egg
- Cook a pizza
- Bake a cake
- Remind her to call you
- Make her happy

Save $8.30 and make more profit
on repair jobs. Now's the time to ask
your Centralab distributor for the
Centralab Minute-Mender-Merchandiser.

DIVISION OF GLOBE-UNION INC.
P. O. Box 591 • Milwaukee, Wisconsin 53201

In Canada: Centralab Canada Ltd., P. O. Box 400, Ajax, Ontario
Teach your dollars to have more cents

Anybody can spend money but it takes sense and savvy to get you more for your dollars. That's why smart record buyers join the University Record and Tape Club. They have learned how easy and how pleasant it is to buy any LP record and tape at whopping discounts—discounts that leave money jingling in your pockets—not ours.

What's this all about? Just in case you haven't heard, University Record and Tape Club brings you:

- $5.98 albums for only $3.71: $3.98 albums down to $2.47. $4.98 albums for $3.29. And so on right down the line. At least 38% off, at all times on every LP record or tape of any label.
- Currently, Extended Play RCA Red Seal and Saria Classical Catalogs a full 50 off. Complete Westminster, Van Cliburn, Vivaldi, Mozart recordings (both mono and stereo) that list at $4.98 only $1.99. Your dollars are beginning to have more cents already!
- "Pop!" Barbra Streisand, Sinatra, Joan Baez, Hello Dolly... and many others... all 45% off.
- Tapes? Name it and you've got it... at least 38% off. Every single RCA, Capitol, Angel currently at 50% off.
- No purchase obligation. Buy just what you like. The club doesn't send a thing until you ask for it.

Sounds great!... But what else can we do for you?

- Free Schwann and Harrison catalogs listing 25,000 albums and every available tape.
- RECORDING NEWS lists frequent specials and latest releases at extra discounts.
- When you order anything it's shipped the same day received—that's right, the same day!
- Book Division provides every book published at a minimum 25% discount.
- Lifetime membership is only $5.00—that's all. No dues, no yearly assessments—just loads of record and tape bargains.

Join Now! For Free! Get it! 25 polyethylene jackets to protect your records.

Got the idea? Now all you have to do is fill in the coupon we've so thoughtfully provided and mail it to us pronto. Gift memberships are only $6.50, because you're acting as our representative. (Makes a thoughtful birthday, graduation or anniversary gift.)

News BrieFs continued

Regular showings of three-dimensional TV this year. Anyone willing to put an inexpensive filter on his television set can view it, Hofman said. The first public trials of this stereoscopic television will be at the Festival of Prague, June 9-18. The principle is said to be somewhat similar to that used in 3-D movies.

Increase in number of women engineers

Mrs. Catherine Dryden Hock, reliability and quality assurance systems engineer at NASA Headquarters, told the New York section of the Society of Women Engineers that the interest in space programs appears to have reversed the declining trend in the number of women government engineers.

Between 1959 and 1963, Mrs. Hock said, the number of women in government ranks of GS-12 and above in computer fields rose 790%, in mathematics and mathematical statistics 137%, in physical sciences 122%.

The decline in percentage of women in engineering jobs from 1.2% in 1950 to 0.9% in 1960 seems to have been reversed by the interest in space. NASA's engineering force is 3% women.

ITU celebrates birthday

The International Telecommunication Union—the intergovernmental organization that regulates world communications—is 100 years old May 17. It was founded in Paris in 1865 as the International Telegraph Union by the signing of the first International Telegraph Convention.

Vladimir K. Zworykin honored by British engineers

Dr. Vladimir K. Zworykin, inventor of the iconoscope and the man who developed television as we know it, has been awarded the Faraday Medal of the Institution of Electrical Engineers, London.

The medal is presented "for notable scientific or industrial achievement in electrical engineering or for conspicuous service rendered to the advancement of electrical science." Dr. Zworykin is the fifth American to receive the medal since the award was instituted in 1922. Earlier American recipients were Dr. D. C. Coolidge, Dr. Irving Langmuir, Dr. Ernest O. Lawrence and Dr. J. A. Stratton.

Dr. Zworykin was cited "for his notable scientific and industrial achievement in inventing the iconoscope and for his important role in medical electronics."

Calendar of events

Sencore Color TV Service Clinics: week of April 19, N. Dako, S. Dakota, S. Dakota; week of April 23; Michigan; week of May 3, Ohio, western Pennsylvania. Information on time and location from local parts distributors.

Symposium on System Theory, Apr. 20-22; Polytechnic Institute of Brooklyn, Brooklyn, N. Y.

19th Annual Frequency Control Symposium, Apr. 20-22; Sherburne Hotel, Atlantic City, N. J.

Southwestern IEEE Conference & Electronics Show (SWIEECO), Apr. 21-23; Dallas Memorial Auditorium, Dallas, Texas.

NAECON (National Aerospace Electronics Conference), May 10-12; Dayton, Ohio.

IFIP Congress '65, May 24-29, New York Hilton Hotel, New York, N. Y.

Proposes antenna farms

Testifying before the House Commerce Committee against a bill that would ban new TV towers over 2,000 feet if they are shown to be a hazard to aircraft, Najeeb E. Halaby, head of the Federal Aviation Agency, said the best method of dealing with the problem was to create antenna "farms," where all towers in a community would be situated.

E. William Henry, chairman of the FCC, concurred and said the commission was making a formal proposal that such farms be established.
Pick the course for your career...

Electronics Technology

A comprehensive program covering Automation, Communications, Computers, Industrial Controls, Television, Transistors, and preparation for a 1st Class FCC License.

First Class FCC License

If you want a 1st Class FCC ticket quickly, this streamlined program will do the trick and enable you to maintain and service all types of transmitting equipment.

Broadcast Engineering

Here's an excellent studio engineering program which will get you a 1st Class FCC License and teach you all about Program Transmission and Broadcast Transmitters.

Get A Commercial FCC License

...Or Your Money Back!

A Commercial FCC License is proof of electronics skill and knowledge. Many top jobs require it... every employer understands its significance. In your possession, an FCC Commercial Ticket stamps you as a man who knows and understands electronics theory... a man who's ready for the high-paid, more challenging positions.

Cleveland Institute home study is far and away the quickest, most economical way to prepare for the FCC License examination. And that's why we can make this exclusive statement:

The training programs described above will prepare you for the FCC License specified. Should you fail to pass the FCC examination after completing the course, we will refund all tuition payments. You get an FCC License... or your money back!

Before you turn this page, select the program that fits your career objective. Then, mark your selection on the coupon below and mail it to us today. We'll send you... without obligation... complete details on our effective Cleveland Institute home study. Act NOW... and insure your future in electronics.

Mail Coupon TODAY For FREE Catalog

Cleveland Institute of Electronics
1776 E. 17th St., Dept. RE-4
Cleveland, Ohio 44114

Please send FREE Career Information prepared to help me get ahead in Electronics, without further obligation.

CHECK AREA OF MOST INTEREST—

- Electronics Technology
- First Class FCC License
- Industrial Electronics
- Electronic Communications
- Broadcast Engineering
- Advanced Engineering

Your present occupation:

Name: ___________________________ Age: __________
Address: ___________________________ City: __________ State: __________ Zip: __________

Please send FREE Career Information prepared to help me get ahead in Electronics, without further obligation.

A leader in electronics training... since 1934

MAY, 1965

Cleveland Institute of Electronics
1776 E. 17th St., Dept. RE-4
Cleveland, Ohio 44114

Accredited Member
Selling Like Hot Cakes! 'THE PRISM'
Brach's All New
COLOR
Indoor Antenna

THE FIRST AND ONLY
RABBIT EAR DESIGNED
FOR COLOR TELEVISION

- 300 Ohm Folded Dipole
- Perfect match and maximum transfer of signal
- Eliminates "color shift" and cancellation of "color burst" caused by standing waves on lead-in
- Smartly styled to fit any home decor. Available in chrome or simulated gold.

Brach Manufacturing Corp. is—and continues to be—a steady source of private brand manufacturing dependability for leading manufacturers and distributors of the most modern, outstanding performing and latest styled Indoor Antennas. We welcome the opportunity to help. Let the "Old Pro" Brach show you the profit angle! Write, phone or wire.

WATCH FOR OUR LATEST MODEL ready about May 15th

MANUFACTURING CORP.
Division of General Bronze Corp.
200 CENTRAL AVENUE
NEWARK 3, NEW JERSEY

Correspondence

TRANSPORTER IGNITION: THUMBS DOWN

Dear Editor:

Over a year ago I bought, by mail, a transistor ignition system, manufactured by a well known electronics company. Installed by a man who specializes in auto ignition, it gave satisfactory service for over a year. Note I say the performance was satisfactory—nothing more. Gas mileage was no different, nor was acceleration. True, the points may have lasted longer. I never had a chance to find out. Also, no condenser was required at the points (a condenser is not exactly an expensive item).

A few weeks ago, however, the car would not start. The engine turned over, but would not "catch". I took the air filter off to be sure the choke plate was open, found it was, and still could not get going. So I called a service station and had the car towed in. I had forgotten all about the transistor ignition. The service man installed new points in the hope this would do something. Before trying to start the car, he said there was no condenser in the distributor and he wanted to install one but could not find a clamp to hold it. Then I remembered the transistor ignition and informed him about it—that was why the condenser had been removed. He tried again to start the car, without success. He then indicated right away that, with the transistor ignition, he could do no more. It was then that I began to realize that the old-fashioned coil and orthodox ignition had a great advantage even if the points did take a beating: Almost every mechanic worthy of the name could work on it.

So the car was towed again, this time to a garage with an excellent reputation. There I was told the trouble was in the transistor ignition, either in the coil or the transistor unit. They could not tell which was defective, and had no equipment to test the units. The only way they could get the car going again would be to disconnect the transistor ignition and put back the old coil. I made a trip back home to find it, but couldn't. (A day or so later, after the car had been repaired with a new coil, I located the old one.)
A HOWARD W. SAMS SPECIAL PUBLICATION

Color TV Guidebook

MOST COMPLETE AND AUTHORITATIVE GUIDE TO COLOR TV, SERVICING TECHNIQUES, EQUIPMENT REQUIRED, AND RELATED SUBJECTS

Nothing else like it! A completely new and different publication, bringing you all the general information you want on color TV, plus the specific facts you need for profitable color TV servicing. A 100% practical guide, written in down-to-earth style and profusely illustrated. A "MUST" BOOK FOR EVERYONE INTERESTED IN COLOR TV!

FACT-PACKED CONTENTS:

- The Manufacturers View Color TV - The facts about the ins and outs of chroma set-making.
- The Networks View Color TV - What the plans are and what the future holds for color TV programming.
- A Look Inside a Color TV Station - An informative description of how the color TV signal originates in the broadcasting station.
- Starting a Color TV Service Business - What it takes and what you should know to realize the big profit potential in this field.
- Using Your Head in Color Servicing - Tells the technician how to think through the problems of color servicing - important for newcomers to the field.
- Selling Color TV - An informative discussion of how to turn those three basic colors into the "long green."
- Are You Equipped for Color? - A complete rundown on the instruments and tools required for successful color TV servicing.
- Color Tube Stock Chart - Invaluable information on the types and quantities of tubes required for practical stocking.
- Color-Picture Symptoms - A four-color picture story showing you how to make use of troubleshooting clues revealed by the screen of a malfunctioning color set.
- The Facts About Color TV Antennas - Full analysis of antennas and how to choose the right one for the job.
- Color Waveform Analysis - A picture story of waveforms encountered in color sets, providing basic information for making a true analysis of waveforms.
- Quicker Checks with Color-Bar Patterns - 4-color picture story showing fast ways to test color sets by observing the effects of color-bar patterns on the TV set screen.
- How to Replace Rectangular Color CRT's - A picture story on how to replace the new 23" and 25" rectangular color CRT's.

THE BIGGEST DOLLAR'S WORTH OF USEFUL, PRACTICAL COLOR TV DATA AVAILABLE TODAY!

AVAILABLE NOW FROM YOUR SAMS DISTRIBUTOR

LIMITED QUANTITY - ORDER TODAY!

HOWARD W. SAMS & CO., INC.
4300 W. 62nd St., Indianapolis, Indiana 46206

ONLY $100

Invaluable new information on many significant aspects of color TV... information everyone interested in the subject will want to have for permanent reference.

- Basic Chroma Circuits for 1965 - Major circuit innovations in the latest sets, typified by Zenith and Motorola.
- How to Get Better Color Reception - Brand-new tricks, including the use of coaxial downlead for better color pictures.
- Transistorized Color TV - A detailed analysis giving you an understanding of the circuits peculiar to these types of sets - exclusive new information.
- Small-Town Color TV - Provides an understanding of color TV servicing problems in fringe areas.
- New Developments - Color CCTV - How industry is finding natural color a distinct help in its operations.
- Building a Color TV Kit - Provides a better knowledge of color TV circuitry, theory and construction through the building of a kit-form color set.

THE INDISPENSABLE REFERENCE FOR EVERYONE INTERESTED IN COLOR TV
CORRESPONDENCE continued

After the ignition was hooked up in the orthodox manner, the engine started promptly. The moral of this story is plain: transistor ignition offers no advantage over regular ignition and, if something fails, you are in real trouble! Of course, my transistor equipment was out of warranty. Even if it had been in warranty, I would have had the problem of getting the car fixed and moving again.

If you are contemplating trying transistor ignition, go ahead, but keep your old ignition equipment in the trunk. You never can tell when you might need it again.

JAMES K. HALL, JR.
Richmond, Va.

TRANSPORTER IGNITION: THUMBS UP

Dear Editor:

There seems to be a lot of dissen- sion among readers about which is the best type of transistor ignition. Everyone seems to agree that the transistor system is better than the conventional. I built the Motorola version of what I now lovingly call "the old reliable" since it was one of the first around. I have run the very same ignition in different cars without ever having it fail. The cars included two older-model six-cylinder Chevrolets, a V-8 Mercury, a Volkswagen and a fuel-injection Stingray.

Except for the Volkswagen, which showed no increase in performance or gas mileage, every car showed an increase of 2 to 4 mpg. Due to the low rpm of the four- and six-cylinder engines, I don't feel they ever reach the operating range where the transistor ignition shows itself at its best.

The high-performance Corvette engine showed the most remarkable gains in both performance and mpg. The first time I took it for a test run, I noticed as I accelerated that, instead of a gradual decrease in acceleration as the engine rpm increased, there was a

SHORTED OUTPUTS! ...

Drawback in transistor amplifiers? Read how manu- facturers build in protection for delicate output transistors. See detailed circuit diagrams of various methods. How well do they really protect?

COMING IN...
June RADIO-ELECTRONICS

new burst of life at about 3,000 rpm. Several months later, when I removed the ignition, I verified that this was not an illusion, for I immediately noticed a great loss of power. I'm all for the guy who can "invent a better transistor ignition."

STEVE STUMPH
Lavendale, Calif.

IT WON'T WORK THAT WAY

Dear Editor:

I am surprised that you printed the letter from Mr. David C. Yeoman (Correspondence, January R-E, p. 27) with the criticism of my method of measuring high resistances. Mr. Yeoman does not understand the problem. Did not read the item carefully and has never tried what he proposes. If he did, he would find that he will almost always get the same answer, about 11 megohms (input resistance of the meter). Since this is likely to be 100 times smaller than the resistance to be measured, it will completely negate measurement of this resistance.

If he will read the item again, he will see that I never parallel the high resistance alone with a vtm, but the entire supply. His method is patently wrong.

THOMAS JASKI
San Jose, Calif.

great profits

that's about the size of it

Microminiaturization has come to cartridge design in the new Sonotone Micro-Ceramic® Cartridge — a king-sized profit-maker in a tiny case. This remarkable new cartridge updates to 1965 performance almost any phonograph using a ceramic cartridge produced within the past 20 years.

The Sonotone Micro-Ceramic Cartridge embodies all the advantages of microminiaturization and lightweight. Designed for low mass, lightweight tonearms — it weighs less than 1 gram (without bracket). Superb stereo performance is assured by — high compliance; ability to track at the low forces required by today's modern record changers; excellent separation and a smooth, clean response over the full audio range. To top it off, all Micro-Ceramic cartridges are equipped with the virtually indestructible Sono-Flex® stylus. For ease of installation, three different standard mounts are available.

Four Micro-Ceramic cartridges cover all of your replacement needs; the "27T," a high capacitance model for transistorized phonographs; the high compliance "25T" for deluxe stereo units; the "26T" and "28T" for replacement in a wide range of popularly priced phonographs.

For comprehensive Cartridge Replacement Guide, write:
Planning his future is one thing... providing for it is another

Can you do it without more education in electronics?

You don't want to accept second-best for yourself and those who depend on you. But you may have to unless you get more education. In electronics, you must learn more to earn more. And, because electronics keeps changing, you must keep learning. Stop—and you soon won't be worth what you're earning now.

Your job and family obligations may keep you from going to school. But you can continue your education in electronics beyond high school through a CREI Home Study Program in Electronic Engineering Technology.

CREI Programs cover all important areas of electronics including communications, servomechanisms, even nuclear engineering technology. They have just one purpose—to get you from where you are now to where you want to be in electronics. They do it by giving you the specialized knowledge of electronics that will make you worth more money to your employer.

You're eligible if you have a high school education and work in electronics. Our free book gives all the facts. Mail coupon or write: CREI, Dept. 1405-C 3224 Sixteenth Street, N. W., Washington 10, D. C.

SEND FOR FREE BOOK

Please send me FREE book describing CREI Programs in Electronics and Nuclear Engineering Technology. I am employed in electronics and have a high school education.

Name______________________Age______________________

Address:______________________

City______________________State______________________Zip Code______________________

Employed by:______________________

Type of Present Work:______________________
Dear Editor:

After reading the item "Earphone Impedance Matching", pages 25 and 26 in the February Service Clinic, I feel compelled to show cause.

Impedance, power, resistance, ohms! Yes, each one is all-important. But have you ever heard of an L-pad? And secondly, why dwell on 2,000-ohm phones? The market is flooded with very good and not too expensive headphones advertised for stereo listening.

They're still good for mono use when the plug is jumpered, and they are low-Z (8 to 16 ohms). Earphones from transistor radios are just as good for the purpose and less expensive.

The diagram shows the more desirable approach to the problem. Since we have a 4-ohm source, and 8 ohms in parallel with 8 ohms, we still have our 4-ohm match. Now we can have our cake and eat it too. That is to say, changing the volume control at either place has no effect on the other person's listening pleasure or temper. If you must use hi-Z phones, simply connect the output transformer mentioned in the February item in place of the phones, with the high-impedance phones across the high-impedance winding.

Above all, no switches, much less wiring, easier for all concerned.

Clinton Brockway
Niagara Falls, N.Y.

[The circuit shown is indeed an ideal one, although it may be considerably more expensive than either of the approaches in the February Clinic. Low-impedance stereo phones are still considerably more expensive than the high-impedance general-purpose type. The Allied catalog showed prices ranging from $15 to $40. High-impedance phones range from $2 to $4.50. (There is also a "professional type" at considerably higher prices.) The little phones from transistor radios, however, are cheap, and usually work well.—Editor]

A DOUBLE-IN NAME ONLY

Dear Editor:

Until we read your "Anonymous Speakers" article, we weren't aware that anyone else had a PRO-I speaker system.

Ours is completely different from the one described in the article. Its 10-inch woofer has a 2-pound Alnico V magnet and a 2-inch voice coil. The system has an extremely soft suspension and is mounted in a sealed enclosure. This model is called PRO, but there is a PRO-II in development. We're sure that there will be a natural tendency to call the present speaker the PRO-I.

We just wanted to be sure that everyone knows you weren't talking about our speaker!

Al Altenhof
Marketing Mgr.
Utah Electronics
Huntington, Ind.

EVEN FOOLPROOFER

Dear Editor:

The circuit shown in Technotes (Aug., 1964) titled "Battery Polarity Warning Reduces Service Calls" may not be entirely foolproof.

If the lamp fails or the set happens to be on when the battery is connected backward, the wrong voltage polarity would get to the set.

An improvement would be to add a series diode D1 (see diagram) of...
A major breakthrough in Antenna design!

FINCO

ALL BAND
UHF•VHF•FM

"COLOR VE-LOG"

Finco's new All-Band Color Ve-Log Antenna does the work of three — gives startlingly clear black and white pictures and beautiful color on both UHF and VHF television channels. Its superlative design also assures the finest in stereophonic and monophonic FM sound reproduction. Comparison tests have proved the superiority of the All-Band UVF Series — superiority backed by Finco's guarantee of supremacy and unquestioned warranty.

Finco's exclusive double contact to drive line
Continuous one-piece drive line and exclusive air insulated polystyrene cross-over spacer

THE FINNEY COMPANY • 34 W. Interstate Street • Bedford, Ohio

Write for beautiful color brochure Number 20-322, Dept. RE

MAY, 1965
Discover the ease and excitement of NRI's

3 DIMENSIONAL METHOD

of ELECTRONICS TV-RADIO TRAINING

10 HOME-STUDY PLANS TO CHOOSE FROM
Ask men whose judgment you respect about NRI's three dimensional method of home-study training. Ask about the new, remarkable NRI Achievement Kit. Ask about NRI custom-designed training equipment, programmed for the training of your choice to make Electronics come alive in an exciting, absorbing, practical way. Ask about NRI "bite-size" texts, as direct and easy to read as 50 years of teaching experience can make them. Achievement Kit . . . training equipment . . . bite-size texts . . . the three dimensions of home-study training; the essentials you must have to make learning easier, more interesting, more meaningful. You get them all from NRI.

Whatever your interest . . . whatever your need . . . whatever your education . . . pick the field of your choice from NRI's 10 instruction plans and mail the postage free card today for your free NRI catalog. Discover just how easy and exciting the NRI 3-DIMENSIONAL METHOD of training at home can be. Do it today. NATIONAL RADIO INSTITUTE, Electronics Division, Washington, D.C. 20016.

BEGIN NOW AN ABSORBING ADVENTURE—LEARN ELECTRONICS THE EASY NRI WAY—MAIL CARD TODAY

OUR 50TH YEAR OF LEADERSHIP IN ELECTRONICS TRAINING
1 Start Fast with NRI's New Remarkable Achievement Kit

The day you enroll with NRI this new starter kit is on its way to you. Everything you need to make a significant start in the Electronics field of your choice is delivered to your door. It's an outstanding way of introducing you to NRI training methods...an unparalleled "first dimension" that opens the way to new discoveries, new knowledge, new opportunity. The Achievement Kit is worth many times the small payment required to start your training. No other school has anything like it. Find out more about the NRI Achievement Kit. Mail the postage-free card today.

2 NRI "Bite-Size" Lesson Texts Program Your Training

Certainly, lesson texts are a necessary part of any training program...but only a part. NRI's "bite-size" texts are simple, direct, well illustrated, and carefully programmed to relate things you read about to training equipment you build. Here is the "second dimension" in NRI's training method. Here are the fundamental laws of electronics, the theory, the training of your choice, presented in a manner you'll appreciate. And in addition to lesson texts, NRI courses include valuable Reference Texts related to the subjects you study, the field of most interest to you.

3 Custom-Designed Training Kits Make Learning Come Alive

Electronics becomes a clear and understandable force under your control as you get your hands on actual parts and build, experiment, explore, discover. Here is the "third dimension"...the practical demonstration of things you read about in NRI texts. NRI pioneered and perfected the use of training kits to aid in learning at home in spare time. Nothing is as effective as learning by doing. NRI invites comparison with equipment offered by any other school, at any price. Prove to yourself what three-quarters-of-a-million NRI students could tell you...that you get more for your money from NRI than from any other home-study Radio-TV, Electronics school. Mail postage free card for your NRI catalog. (No salesman will call.)
What you should know about capacitor stability

Why worry about capacitor stability? After all, aren't all capacitors pretty much alike? Well, as we all know, capacitors aren't "all alike". Matter of fact, there are many circuits where you wouldn't want capacitance to change with either temperature or time. For example, tuned circuits or RC timing networks. And this is especially true in color TV, because the eye notices even minor shifts that would pass unnoticed in black and white. Therefore, capacitor stability is important.

The trouble with most "static" capacitors is that capacitance increases as temperature increases. In other words, they have a positive temperature coefficient. And so do most inductance coils. Put these two creatures together and you'll see why frequency and timing can drift as the set warms up.

Now—what can you do about it? For small capacitance values, your best bet is a DISCAP® disc ceramic capacitor (made by Radio Materials Company, a Mallory division). DISCAPS are available in a vast array of temperature coefficients to exactly match circuit requirements. DISCAP temperature coefficients can be chosen so that they exactly offset the positive drift of coils (or other components). Thus, circuit characteristics stay constant regardless of temperature change. There are NPO (zero change) and up to N1500 (very sharp negative temperature coefficient) types. You'll find these listed in the 1965 Mallory General Catalog.

A brand new type of ultra-stable capacitor is now available. It's called the STYROCAP™. It's a new type of polystyrene capacitor that offers both temperature and time stability. The temperature coefficient is comparable to an N150 DISCAP. And capacitance changes vs. time is practically zero. STYROCAPS are made from a unique form of stretched and fused polystyrene. They're transparent. You can look right through the clear plastic and actually see the aluminum foil! They're available from 5pF to .01 mfd. They're rated 500 WVDG and sizes and prices are right down there with comparable values in ceramics or molded film capacitors.

Styrocaps can be successfully substituted for all sorts of other capacitor types: mica, ceramic, paper, film, or anything else in their capacity and voltage range. But don't think of Styrocaps as substitutes. They're not. They're new. And they're better . . . especially where stability is downright important.

On the other hand you may really need a Mylar® type capacitor. When you do, take a look at the terrific Mallory PVC. These are available in a whole host of values and they're unbeatable in their class. The blue polyvinylchloride coating is just plain moistureproof.

And one more tip. Your Mallory distributor now has the new 1965 Mallory General Catalog. Ask him for your copy today.

Mallory Distributor Products Company, a division of P. R. Mallory & Co. Inc., Indianapolis, Indiana 46206.

CORRESPONDENCE continued

the proper rating. If the polarity is now reversed, the diode will be reverse-di-
ased and will not conduct, protecting the set. (The diodes must be rated to carry more than the maximum operating current.)

D2 is added as an additional refinement. If D1 shorted and the polarity were wrong, the fuse would blow.

Allen A. Gault
Baltimore, Md.

CORRECTION OF A TACHY ERROR

Dear Editor:

I wish to apologize to you and to your readers for an error in my article "Tachometer-Dwellmeter for Your Car" as published in Radio-Electron-
tics for March 1965, page 56. Diode D1, mistakenly identified as 1N474-B, should be 1N484-B.

This error was traced to the original manuscript and was discovered only as the result of an inquiry from one of your readers.

The 1N484-B is a very-high-back-
resistance diode and is used to restrict the reverse current to a very low value even at high temperatures. It is available from parts houses for about 70 cents.

Joseph J. Conradi
Wood River, Ill.

On Feb. 1, after our March issue was printed, Magnetics, Inc. adopted a minimum charge of $10.00 per order and refused single orders for their toroid-
al core specified by Mr. Conradi. We have asked them to make an exception in this case, since they had previously agreed to supply the coils. They agree to make the exception. Address orders attention of Mr. Wm. Irvine.—Editor

END

STABLE TRANSISTOR VOLTMETER!

Author Victor Laughter tells how to build highly practical, stable "vmm" with 200,000 ohm-per-volt input resistance and maximum full-scale sensi-
tivity of 1 volt. Ideal for transistor circuitry measurements. Costs only $20 to $25 to build.

Don't miss it in . . .

June Radio-Electronics
Reference Points

One thing that gets a lot of the young fellows (and a few of the older heads) into trouble in TV work is "reference points." In TV circuits, you're going to find voltages measured from chassis, voltages measured from a floating -12-m, and voltages measured from another tube's cathode! (This last, of course, in the stacked-B circuits.)

There are more of these than you'd think. Stacked video f.f.'s are common. The cascade rf amplifier is a "single-tube stack." The most common one, though, is the audio output-sync separator-plus-other-tubes stack, as in the diagram.

These can give you some really odd troubles. For example, the grid voltage on the audio output tube comes from voltage divider R1-R2 (Fig. 1) Let one of these open up or drift off value, and you may lose sync, video i.f. gain or something in a circuit not apparently connected with the audio output at all. The prize, to me, was the one that killed the raster: the 150-volt line fed the brightness control!

The audio output's bias voltage is the difference between the cathode and grid voltages measured from ground; -5 volts in the diagram. A change in bias causes a change in plate current, hence a change in the plate resistance of the tube, and so in the voltage on the 150-volt line. (The audio output tube's plate resistance is the "dropping resistor" between 300 and 150 volts.)

Leakage in the coupling capacitor between the first audio amplifier and the output tube can cause some funny effects. (Funny peculiar, not funny haha.) There isn't a lot of difference in voltage between the two sides of the capacitor, but if it leaks, look out. Even a small leakage upsetting the audio tube's bias, and can give you some very mysterious distortion, at least.

Another cause of trouble is the filter capacitors, C1, C2 and C3—one from 300 volts to ground, another from 300 volts to cathode and the last from 150 volts to ground. A loss of capacitance, a leakage and especially a leakage between units, if they are in the same can, and you can really get some wild effects!

One of the most peculiar is an open C3 (150 volts to ground, usually about 40-60 µf). This will allow audio modulation to show up on the sync separator plate voltage supply line. This is a very common circuit, and you will find it in quite a few color sets. If this happens, you may find the sync appearing and disappearing in time with music or voice peaks! The voltage can vary enough to cause the sync separator plate voltage to drop and cut off the sync. The typical symptom of this is a wiggle or jumping in the picture. If your eye was wet over the sound-off completely while we're working, to avoid disturbance; we may miss the connection between the wiggling picture and the sound. So, remember this, and turn the sound back up momentarily to check.

The scope, as usual, is the best cure for this. Look on the 150-volt line for any signs of hash, and turn the sound up to a level to see if that causes trouble. One good check is feeding a 400-cycle audio signal into the first audio grid at a fairly high level; check the 150-volt line for any sign of 400-cycle sine wave. If you find some, start looking for a bad filter capacitor.

This kind of trouble can work the other way around, of course. Since the paralleled plate resistances of the tubes fed by the 150-volt line are actually in the cathode circuit of the audio output tube, any change in the total resistance will upset things. So, look for shorted tubes, or tubes in high-impedance circuits with grid emission. These can
WHAT IS THE COMMON DENOMINATOR OF AN ANCIENT EGYPTIAN PYRAMID AND A MODERN ELECTRONICS CAREER?

A STRONG FOUNDATION!

The Egyptian pyramids were built on strong foundations. How firm is the foundation under your electronics career?

Advancement in electronics depends on a solid understanding of basic principles—not merely a nodding acquaintance with them. If you are handicapped by a poor understanding of these vital "basics," you need the strong foundation training offered by Grantham School of Electronics.

"Grantham," year after year, continues to stand for QUALITY electronics training IN A HURRY—quality, in that the Grantham method promotes learning progress through understanding—in a hurry, in that the Grantham method leads to greater accomplishment in much less time than is required by conventional methods. For example, beginners prepare for their first class commercial F.C.C. license in 3 months.

There is nothing fundamentally difficult about learning electronics, when the subject is approached by both teacher and student in a logical, learning-through-understanding manner. In the Grantham lessons, emphasis is placed on basic, easy-to-understand, descriptive discussions which teach through reason rather than through facts to be taken "on faith." Grantham avoids the all-too-common practice of teaching by rule without any reason being given for the rule. Grantham seeks to have the student understand the reasons so well that rules are not memorized by rote but, rather, are understood and therefore remembered. This method makes learning more interesting and thus improves learning speed and retention.

Get complete details in our free 52-page booklet. Mail coupon, or telephone the school nearest you: phone numbers and addresses are listed below.

Prepare for Employment and/or Advancement in Electronics by training with

GRANTHAM SCHOOL OF ELECTRONICS

Los Angeles Division
1505 N. Western Ave., Los Angeles, Calif. 90027
Phone: 469-7878

Seattle Division
408 Marion Street, Seattle, Wash. 98104
Phone: MA 2-7227

Kansas City Division
3123 Gillham Road, Kansas City, Mo. 64109
Phone: JE 1-6320

Washington Division
818 - 18th Street, N.W., Washington, D.C. 20006
Phone: 298-7460

MAY, 1965
The famous RCA 5-inch scope
NOW WITH MORE FEATURES
TO SIMPLIFY YOUR JOB

Here's the latest model of the famous
RCA 5-inch scope: the NEW WO-91B
• Provision for connecting signals di-
rectly to the vertical deflection plates
of the CRT. Permits observation of
high frequency RF waveforms, such as
trapezoidal and wave-envelope modu-
lation patterns.
• Two-stage sync separator simplifies
checking of TV horizontal and vertical
sweep synchronization...provides ex-
ceptionally solid lock-in action on com-
posite TV signals.
• Choice of wide-band or high-sensi-
tivity, narrow-band display.
• Complete with RCA WG-300B Di-
rect/Low Cap. Probe and Cable.

RCA Electronic Components and Devices, Harrison, N. J.

SERVICE CLINIC continued
cause "trouble downstairs" to look like
"trouble upstairs."
To get the correct (working) plate
voltage on any tube in this circuit, or
in any other, for that matter, measure
between plate and cathode. This is the
voltage that the tube works on, and
this is the one you want.

Width-coil problem, Firestone TV
While I was adjusting the width
coil on a Firestone 13-G-54, the raster
went out and the coil started to smoke.
Now I have no high voltage, and noth-
ing works.—B. G., Port Chester, N. Y.

Fig. 2—Shorted width coil kills raster.

Looks as if the width coil shorted
to ground. Take it off and recheck. Since
the width coil is nothing but an "adjust-
able loss" across a section of the flyback,
as you can see in Fig. 2, you can operate
a set without it, at least for tests. In
fact, if the set works OK, leave the thing
off entirely. The iron core of the coil is
grounded, and the winding sometimes
shorts to it.

Air Castle Radio
I've got an old Air Castle radio, with
a 25Z5, a 25L6, two 76's, a 6A7 and a
6D6 in it. Can't find any data on it. Also
has a 6U5 tube for a tuning eye.—
L. E. B., Greensboro, N. C.

Look in Rider's Radio Troubles-
shooter's Manual, back about Vol. 7 or

EASY-TO-BUILD
MUSCLE STIMULATOR . . .

Uses single transistor,
powered by flashlight
batteries. Long prescribed
in physiotherapy, electronic
muscle stimulation has called
for high-priced equipment.
Read how you can build this
low-cost stimulator at home.

COMING IN . . .

June RADIO ELECTRONICS
8, for a set with a similar tube lineup. Air Castle is a trade name for radios built for Spiegel in Chicago, and there are many different "makes" under this name.

This is obviously an ac/dc set, with series heaters. You have about 80 volts of heater, so you'll need a ballast tube or resistor somewhere to "use up" the remaining 30 volts. (Design center then was 110 volts instead of the present 117.)

The 2525 is probably used as a voltage doubler. You can tell by checking the connections: if both plates and both cathodes are tied together, it's a halfwave; otherwise, it's a doubler. Check the filter capacitors, too—their voltage ratings will give you a clue.

Tuner trouble in RCA

I just made a service call on an RCA, and the tuner acts funny. Channels 6 and 4 are pretty good, 8 and 13 very poor. It looks as if someone has been at the tuner with a small screwdriver!—H.E., Kokomo, Ind.

It's happened before, and it'll happen again! However, there are a couple of things to check. You've changed the tubes? (A bad rf amplifier tube can cut out either high or low channels, so can a bad mixer-oscillator.)

Check the antenna balun coils. You can get this same effect from various combinations of open circuits there. If these are all OK, check the antenna lead-in. One side open gives funny effects.

"Extension" TV antennas

We moved to the country and evidently my TV picture fell off the truck! It didn't get here! Seriously, the nearest TV station is more than 100 miles away and we get pretty bad pictures. I have a good high-power all-channel antenna, and I've found a spot on top of a hill about 500 feet from the house, with a strong signal. Should I run a coaxial cable in an underground pipe, or 300-ohm

![Diagram of antenna setup]

Fig. 3—Leave small trees in center of antenna line right-of-way, to support line. Top them at about 6-8 feet.

MAY, 1965

NO COMPETITORS
Nobody else but EMC designs in so much value

No, not a competitive echo. EMC makes the oem, the one who actually builds the product, the one who stands behind it. Nobody else in the world can compete. Nobody else has the comprehensive measurement capability of EMC. Nobody else has the experienced people. Nobody else has the equipment designed for this industry.

Look! A new electronics slide rule

with complete instruction program

Here's a great new way to solve electronic problems accurately, easily ... a useful tool for technicians, engineers, students, radio-TV servicemen and hobbyists. The Cleveland Institute of Electronics Slide Rule® is the only rule designed specifically for the existing requirements of electronics computation. It comes complete with an illustrated Instruction Course. You get four AUTO-PROGRAMMED lessons ... each with a short quiz you can send in for grading and consultation by CIE's expert instructors.

See for yourself. You will learn how to use special scales to solve problems dealing with reactance, resonance, inductance, AC and DC circuitry, etc. And, as an added bonus, you can use this high-quality rule for conventional computation, too.

This all-metal Electronics Slide Rule is a full 10" long and is made to our rigid specifications by a leading manufacturer of measuring instruments. Slide Rule, Self-Training Course and handsome top-grain leather carrying case ... all yours for just $14.95. Cleveland Institute of Electronics, 1776 E. 17th St., Dept. RE-110, Cleveland, Ohio 44114.

Send coupon today

Cleveland Institute of Electronics
1776 East 17th St., Dept. RE-110
Cleveland, Ohio 44114

□ Please send me your Electronics Slide Rule with Instruction Course and top-grain leather carrying case. I'm enclosing $14.95.
□ Please send descriptive brochure only.

NAME __________________________
ADDRESS __
CITY ___________________________ ZIP ____________
STATE __________ COUNTY __________

A leader in electronics training . . . since 1954

www.americanradiohistory.com
SERVICE CLINIC continued

lead-through by a buried plastic pipe, or what?—L. P., Bisbee, Ariz.

I wouldn't recommend coxial cable or the buried 300-ohm lead. For the same reason: too much loss. The least lossy way is 300-ohm open-wire transmission line.

Cut about a 15-foot right-of-way to the top of the hill, to keep small trees from falling on the line in ice storms. Leave some trees in the center, at intervals of about 15-20 ft. Cut these off about 6 ft high, and run a 4-inch stand-off insulator into the top, as in Fig. 3. This keeps the line from hanging low enough to be caught by people, cows, etc.

You shouldn't need a booster, if the signal is fairly good; the loss in this line is only 0.3 db per 100 ft. at 100 mc. However, you can use a booster at the antenna, with the power supply at the TV set. This is useful if you have a high-channel station; loss in these long lines are higher in the high band. We have one near here with over 1/4 mile of lead-in like this—no booster and good pictures.

Intermittent loss of vertical sweep

In an RCA KCS-127 chassis, every so often, the vertical sweep collapses, leaving a thin, bright horizontal line. If

MR TV SERVICEMAN

The NEW STANCOR Part-to-Part Cross Reference Guide is available at your Authorized STANCOR Service Parts Distributor.

COMPLETE FROM A to Z

Over 11,000 Manufacturers' Part Numbers Cross-Referenced to Stancor Standard Replacement Transformers and Sweep Components.

*With 151 other brands in between.

STANCOR ELECTRONICS
ESSEX WIRE CORPORATION
3501 W. ADDISON STREET
CHICAGO, ILLINOIS 60618

In products, performance, purpose ... Essex measures up!
An invitation to one of America's most famous resorts is waiting for you at your participating Sylvania Distributor's. Complete with excellent accommodations, professional entertainment, boating, dancing and other fun and sun features. Be our guest and show the Mrs. the time of her life.

Your Sylvania Distributor will be awarding weekend holidays between now and May 31. So now is the best time to stock up for a busy spring and summer with the quality, fast-moving line of tubes. It may take you to your vacation paradise. Ask your participating Sylvania Distributor for details.

Electronic Tube Division, Sylvania Electronic Components Group.

SYLVANIA
SUBSIDIARY OF
GENERAL TELEPHONE & ELECTRONICS GTE

NEW CAPABILITIES IN: ELECTRONIC TUBES • SEMICONDUCTORS • MICROWAVE DEVICES • SPECIAL COMPONENTS • DISPLAY DEVICES
careers for technicians at IBM

To technicians who seek important roles in today's technology, IBM offers careers in the world of computers. Modern computer systems and new solid state technologies have created rewarding jobs for technicians in Research, Development, Manufacturing, and Systems Test. IBM is an Equal Opportunity Employer.

Kingston, New York

Electronic Technicians: For work assignments with the Kingston manufacturing test organization. Upon completion of initial training, qualified applicants will be given positions involving testing, trouble-shooting, and repairing core storage units, tape drives, display devices, drums, transmission control equipment, and other peripheral devices associated with some of the world's largest and most advanced electronic data processing equipment.

Qualifications: A.A.S. degree in electronic technology preferred; a certificate of completion from an accredited 2-year technical school or equivalent experience will be considered.

Please write, outlining your education and experience, to:
George Shaver, Dept. 649E
IBM Corporation
Neighborhood Road
Kingston, New York

Burlington, Vermont

Electromechanical Technicians: Experienced in assembly and maintenance of automated production equipment. A thorough understanding of mechanical and electrical technologies is essential.

Electronic Technicians: Experienced in maintenance, calibration, and repair of complex electronic test equipment, and development of high-speed circuitry.

Process Technicians: Experience in tinning, paste (resistor and electrode), silk screen techniques, epoxy, and encapsulation or conveyor ovens desirable. Training in physics, metallurgy, or chemistry is necessary.

Qualifications: A.A.S. degree or its equivalent in education or experience.

Please write, outlining your education and experience, to:
W. T. Rochford, Dept. 649E
IBM Corporation, Box A
Essex Junction, Vermont

Endicott, New York

Computer Systems Test: To give final systems tests to newly manufactured computers. A.A.S. degree or equivalent in Electrical Technology, with experience and/or courses in mechanical technology and devices. Should understand solid state switching circuits and computer technology.

Chemical Technicians: A.A.S. degree in Chemical Technology, with experience in any of the following: electrochemistry, lamination, adhesives, electroplating, etching, oxide coatings, photo-resist.

Toolmakers: Must have completed formalized tool and model maker apprentice program; 2 years' experience working to close tolerances on dies, fixtures, gauges, and special machine tools.

This manufacturing and manufacturing research facility is in Endicott, New York, in the Triple-Cities community of the Finger Lakes region.

Please write, outlining your education and experience, to:
M. C. Kennedy, Dept. 649E
IBM Corporation
1701 North Street
Endicott, New York

Fishkill, New York

Electromechanical Technicians: Experienced in assembly and maintenance of automated production equipment. A thorough understanding of mechanical and electrical technologies is essential.

Designers: Electromechanical packaging mechanism design of automated production equipment.

Electronic Technicians: Experienced in maintenance, calibration and repair of complex electronic test equipment, and development of high-speed circuitry.

Semiconductor Technicians: Experienced in semiconductor process development and manufacturing.

Qualifications: A.A.S. degree or its equivalent in education or experience.

Please write, outlining your education and experience, to:
T. R. Edmonds, Dept. 649E
IBM Corporation
P. O. Box 110
Poughkeepsie, New York

IBM

IBM

RADIO-ELECTRONICS

28
The CATV question has produced a great deal of controversy, in which there has been more sound than light. Some look at CATV as a serious threat to independent TV servicing, and ultimately to our present system of free TV itself. Others consider it a legitimate extension of television reception service, and one that will give the TV listener more and better reception without notably increasing his costs.

To shed more light on the matter, Radio-Electronics has gone to authorities on both sides of the question for a statement. Frederick W. Ford, the former FCC Commissioner, is president of the National Community Television Association. Morton Leslie is the president of the Television Accessory Manufacturers Institute, which champions the cause of free TV received directly over the air as opposed to the wire or cable systems, which they feel may ultimately lead to pay-TV.

CATV—Whether, Whither and Why

Guest editorial by Morton Leslie

F ew recall that when cable television made its first appearance about 15 years ago, the avowed purpose was to “bring television entertainment to communities previously denied it.” In many cases it was represented to communities and city councils that the service was purely temporary—a stop-gap until local television should arrive. Today, with 1,500 systems operating or in the construction stage, and growth proceeding at the rate of 30 systems per month, less than half the systems are performing the functions of the original plan. Radio-Electronics is correct in believing it highly appropriate to discuss some of the background, thinking and direction of CATV growth. Why especially appropriate just at this time? We can think of several reasons:

1. Television entertainment is no longer a luxury. It is a must in virtually every household. The householder will do without many other things before he will give up TV! When told he will receive “more TV” or “better TV”, he is a profoundly susceptible buyer.

2. The general economy is at its highest. People are on a tremendous buying spree. We have an electric knife, an electric toothbrush, gold-plated bathroom plumbing—and one major company is test-marketing an electric whisk broom!

3. Risk capital is more plenteous than ever before. The profit and investment returns of CATV is highly attractive. Business Week magazine refers to CATV as a Money Machine and quotes possible investment returns of up to 60%! In one small state 22 applicants are applying for 250 franchises!

Unlimited and unrestricted CATV growth poses many problems too often not immediately apparent to the unwary. Its uncontrolled growth directly affects the general

continued on page 71

MAY, 1965

CATV—A Natural Evolution

Guest editorial by Frederick W. Ford

I t has been said nothing is constant but change itself. Remember how long it took for some radio men to learn how to handle television? The tremendous resentment against printed circuits? The slowness to accept, become familiar with and profit by such developments as color TV, uhf and FM stereo? It is no wonder, then, that many TV technicians are suspicious of Community Antenna TV Systems (CATV).

While CATV is new to most of the country, it has been serving subscribers since 1950. There are now more than 1,600 systems, with new ones starting up every day. But the impact of CATV is just beginning to be felt. It seems quite likely that within the near future almost every American city will be equipped for CATV.

The reason for its sudden prominence is simple. New equipment and techniques have made systems technically and economically feasible in even the largest of cities. The viewing public, in turn, is finding that CATV is the lowest-cost way of getting the programs it wants to watch. It is becoming apparent that the public has an almost insatiable appetite for program variety. While CATV systems originate no programs, they are able to bring in distant channels. Present CATV systems are offering as many as 12 channels.

The impact of the growth of CATV on the TV technician can hardly be underestimated. His business must evolve in step with the industry. Those who adapt will flourish; those who expend their energy trying to hold back change will wither.

Since there are so many systems in the country, we don't have to theorize about what happens when CATV comes to town. We can look at actual case histories.

In almost every instance, local TV dealers and tech-

continued on page 72

29
A SOLID STATE FM MULTIPLEX GENERATOR

Build this stable, accurate, versatile all-transistor FM stereo test generator.

All parts easily available

By EARL T. HANSEN

This generator has all the flexibility and accuracy you could want for adjusting and repairing the multiplex portions of modern FM receivers. It is stable, portable, relatively inexpensive and easily constructed by the experienced technician. It runs cool and requires no warmup time. The cost of parts is about $90. By taking advantage of bargain sales, using imported parts and what you have on hand, cost can be reduced by half without compromising performance.

The generator was designed with transistors, mainly to get away from warmup drift and aging. This also made for a lighter, more compact, less expensive unit. The complete circuit of the generator appears on page 32.

The generator power supply is regulated and operated well below its capacity. It is relatively conventional. The regulator uses a Zener diode reference and two transistors. A unique circuit feature is the feedback provided by R54. It cancels the effect of line-voltage changes and reduces output ripple.

The pilot lamp is connected across one diode (D11) of the bridge. This energizes the lamp for only half the ac cycle, for longer life and less glare. The fuse is in the transformer secondary to be more responsive to overloads without the effect of transformer losses and energizing current. The power supply load current is less than 40 ma.

The heart of the generator is the 19-kc crystal oscillator. Its accuracy of .01% meets multiplex transmission standards. A multivibrator type circuit is used, with a resonant circuit (T1) as one collector load. A high resistance in series with the crystal limits the drive current to a safe and stable level. The 19-kc sine wave is fed through a phase-adjusting network, C38 and R58, and an emitter follower (Q6). It is then used as the variable pilot signal, and as an external signal for scope synchronization.

The 19-kc sine wave from T1 is also full-wave-rectified (by D9 and D10), which doubles the frequency to 38 kc, with the same basic crystal accuracy. This is amplified by Q3 and Q4. Double-tuned transformer T2 removes harmonics and provides a clean, balanced signal to the modulator bridges.

The balanced modulators work much like a single-pole double-throw switch operating at a 38-ke rate, switching the output rapidly between left and right signal sources. This effectively time-shares a single channel to carry two channels of information—which, as you know, is the principle of multiplexed FM stereo transmission.

Fig. 1 — How multiplexing occurs. Bridges here can be viewed as balanced modulators, which produce a 38-ke suppressed-carrier AM signal carrying difference of left and right channels, or as switch that samples left and right audio channels alternately, 38,000 times a second.

During the second half cycle, the polarities are reversed, causing the right-channel bridge to be cut off and the left-channel bridge to conduct. Now the instantaneous value of the left signal appears as the composite output. One half of the 38-ke carrier cycle carries the left-channel information and the other half carries the right. This double-balanced bridge has a carrier output only when there is a difference in the left and right input signals. The 38-ke "sampling" from the bridges is almost a square wave, with many harmonics. L1, L2, L3 and associated components form a low-pass filter which removes the harmonics. L1 is tuned to the second harmonic, and L3 to the third. L2 and C37 attenuate higher-order harmonics. The 19-kc pilot signal is mixed in at the filter output load, R41, through R42. The resulting multiplex signal is available as a direct output, and is also fed to the 100-mc FM oscillator, Q13.

Q13 is a Colpitts oscillator, frequency-modulated by feeding a small amount of the composite signal to the base. The resulting small change in base current causes a change in the capacitance of the transistor, which in turn changes the resonant frequency of the oscillator tank, L5 and C18.
C19, R44 and C22 filter the collector supply voltage to prevent hum modulation. The oscillator is capable of a much wider linear swing than the ±75-kc FM transmission standard.

Q12 is a 67-kc Hartley oscillator controlled by S4. The multiplex signal is disabled when this oscillator is turned on. Q7 and Q8 form a 1,000-cycle phase-shift oscillator. Q9 is a phase splitter providing two equal-amplitude sine waves, 180° apart. A 120-cycle signal, available for channel modulation, is obtained from the power supply bridge. This signal is cleaned of harmonics and attenuated by R33 and C35. Q10 and Q11 are emitter followers providing a low-impedance signal source to drive the balanced modulators. Q10 also supplies the right-channel signal as an output, to be used for scope external synchronization.

Construction and test

I found it most interesting to build and test the generator in sections. Start with the power supply (Fig. 2), then you will have a good dc source to test the other circuits. T3 can have a secondary rating from 22 to 30 volts at 100 ma or more. The one specified and used is rated at 1 ampere, because it is readily available, but is larger and heavier than desirable. Use a good insulated mount for Q15.

When the power supply section is completed, connect a 470-ohm load across C34. Turn the power on and measure the dc voltage across C35. It should be approximately 85% of the T3 secondary rms ac voltage. The voltage across the temporary load should be between 14 and 15 volts. The tolerance of the Zener diode (D15) will probably make adjustment necessary. Parallel R56 with additional resistance to lower the voltage, or parallel R57 to raise it.

Vary the input line voltage 20 volts either side of 117. (This is where a 0-140-volt variable transformer comes in handy.) The power supply output (across C34) should not vary more than 0.4 volt total swing. If it does, change R54 to a different value. If the output voltage decreases with an increase in line voltage, raise the value of R54, and vice versa. The peak-to-peak ripple across C34 should be less than 25 millivolts. Remove the temporary load resistor.

The small components of the 19-kc oscillator and most other circuits are mounted on perforated boards with push-through terminals. Build the 19-kc board as the next step—see Figs. 3 and 4. Mount the board on the chassis, with T1, T2 and associated wiring and components.

Connect a scope to terminal C on T1 (scope ground lead to chassis for all tests). Caution—the 19-kc crystal has

![Fig. 3—Side A of the 19-kc board.](image)

![Fig. 4—Side B of the 19-kc board.](image)

![Fig. 5—Side A of the 1-kc board.](image)

![Fig. 6—Side B of the 1-kc board.](image)

![Fig. 7—Right side view of complete generator, showing panel wiring details.](image)

SPECIFICATIONS

- **Multiplex signal:** 3 volts p-p
- **RF signal:** Internally adjustable over FM band, 10 to 1,000 microvolts, ±75-kc deviation
- **Residual noise:** 50 db below mpx level at mpx output, 40 db below signal level through receiver
- **Crosstalk (separation):** Better than 30 db
- **Modulation:** 1 kc, ±1 kc, 120 cycles and external, switched separately for each channel
- **Pilot tone:** 19 kc, ±0.1%, adjustable from 0 to 200% amplitude
- **Subsidiary Communications (SCA):** 67 kc, internal source
- **Scope sync outputs:** 19 kc, and the right-channel signal
- **Power consumption:** 117 volts, 60 cycles, less than 6 watts
- **Stability:** Negligible drift, unaffected by 20-volt line excursions
- **Semiconductors:** 15 transistors, 15 diodes

MAY, 1965

www.americanradiohistory.com
Schematic of the multiplex generator. Channel selection was performed by the addition of three resistors: R80, R81, and R82. These do not appear in the component layout. A change in the condition of one of these resistors will influence the circuit, the baseline of the waveform of channel 16 will shift.

More information on the schematic and its operation can be found at www.americanradiohistory.com.
This generator was rigorously tested by Leonard Feldman, who studied four commercial multiplex generators in preparation for his Radio-Electronics article "Roundup of Low-Cost FM Stereo Generators" in the November 1964 issue. He also worked with Murray Crosby in the early years of FM stereo development.

Mr. Feldman reported that "performance is generally as described" and that "the unit exhibits negligible drift, both in composite signal waveform and in IF output frequency." Initially, he found fault with the separation, as indicated by the wavy baseline in scope photos 2 and 5. Author Hansen ultimately added R60, R61 and R62 (page 32) to improve separation, which now meets specifications and equals that of the best commercial equipment.

A maximum drive rating of 0.1 millivolt. Do not reduce R4 to less than 470,000 ohms, and do not connect any test equipment to the crystal terminals. Also note that the crystal case is grounded.

Adjust the primary (bottom) of T1 to resonance, as indicated by maximum signal on the scope. Connect the scope to terminal D of T1. Adjust both T1 cores for maximum saw-tooth amplitude. The peak-to-peak amplitude from D (and also F) to ground should be greater than 5 volts. With the scope on terminal C of T2, adjust the primary (bottom) for maximum signal. With the scope on terminal D of T2, adjust both cores for maximum sine-wave 38-kc signal. With the diode bridges connected, the peak-to-peak voltage should be greater than 9.

Build the 1-ke board (Figs. 5 and 6). Connect -14 volts and a ground return to the board. The scope should show a good 1-kc sine wave on the emitter and collector of phase splitter Q9. The amplitudes should be equal within 2%.
otherwise it will be necessary to change R24 or R25 slightly by paralleling with a higher value. The peak-to-peak amplitude should be between 3.5 and 4 volts. The amplitude can be adjusted by changing R17.

Complete the front-panel circuitry. Q10, Q11 and associated components are mounted on the unused terminals of S2 and S3 (Figs. 7 and 8). L1, L2, L3 and L4 should be mounted away from the power transformer to avoid 60-cycle pickup. Complete Q12’s circuitry. Note that the tap on L4 is nearest the ungrounded end of the coil. Set S4 to 67 kc only, and connect a scope to J6. The signal amplitude should be approximately 3 volts peak to peak. Adjust L4 for 67 kc with an audio-frequency meter, a scope with a well-calibrated time base or an accurate audio oscillator as a comparison. This adjustment is not critical but should be within 3%. Another method is to connect an AM radio to the emitter of Q12 through a 22-pf capacitor, and listen for the 10th harmonic at 670 kc, a 20th harmonic at 1340 kc, with nine others in between.

Short leads must be used in the 100-mc oscillator circuit (Fig. 9). Q13, C18, C19, C20 and R47 are mounted on the coil form terminals. Use an FM receiver to adjust L5 to 102 mc or any clear spot on the FM band.

Complete the remainder of the generator. Connect the scope to J4. Set S2 to position 4 (120 cycles). The amplitude should be within 10% of the 1 kc signal amplitude with the switch at position 2 or 3. If not, change R33 to correct it. With the scope on J6, S2 and S3 to QUIET, PILOT LEVEL OFF, and S4 to NORMAL MPX, adjust R35 for minimum 38-kc signal.

Temporarily short terminals D and F on T2 together. Connect an audio signal generator to the junction of R39 and the diode bridges. Adjust it for about 2 volts output at 76 kc. Adjust L1 for minimum signal on the scope. Set the audio generator to 114 kc. Adjust L3 for minimum scope indication. Adjust L2 so the core is approximately two-thirds

CHECK FOR THESE WAVEFORMS

All photos taken with vertical sensitivity of 0.5 volt/cm, except photo 8. All signals are from the MPX output, J5 or J6, except photos 9 and 10. In each instance the scope is externally triggered from the 19-kc output, J1, or the right signal output, J4. The RIGHT selector, S2, is on 1 kc in every case.

<table>
<thead>
<tr>
<th>Scope photo</th>
<th>Scope sync</th>
<th>Time base</th>
<th>Left channel</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19 kc</td>
<td>10 µsec/cm</td>
<td>Quiet</td>
<td>19-kc pilot off</td>
</tr>
<tr>
<td>2</td>
<td>Right, 1 kc</td>
<td>200 µsec/cm</td>
<td>Quiet</td>
<td>19-kc pilot off</td>
</tr>
<tr>
<td>3</td>
<td>Right, 1 kc</td>
<td>200 µsec/cm</td>
<td>—1 kc</td>
<td>19-kc pilot</td>
</tr>
<tr>
<td>4</td>
<td>Right, 1 kc</td>
<td>200 µsec/cm</td>
<td>—1 kc</td>
<td>19-kc pilot 2X</td>
</tr>
<tr>
<td>5</td>
<td>Right, 1 kc</td>
<td>200 µsec/cm</td>
<td>Quiet</td>
<td>19-kc pilot 2X</td>
</tr>
<tr>
<td>6</td>
<td>19 kc</td>
<td>10 µsec/cm</td>
<td>—1 kc</td>
<td>19-kc pilot 2X</td>
</tr>
<tr>
<td>7</td>
<td>19 kc</td>
<td>10 µsec/cm</td>
<td>Quiet</td>
<td>19-kc pilot 2X</td>
</tr>
<tr>
<td>8</td>
<td>19 kc</td>
<td>5 µsec/cm</td>
<td>—1 kc</td>
<td>Double exposure to show 19 kc pilot phase relationship. See text.</td>
</tr>
</tbody>
</table>

9 Same as Photo 1, except scope connected to output of bridge modulator—juction of D2 and R39.

10 Same as Photo 2, at output of bridge modulator.

11 19 kc 5 µsec/cm Quiet 19-kc pilot off

12 19 kc 5 µsec/cm —1 kc 19-kc pilot off

*Baseline should be nearly straight—not wavy as it is here. See page 32 caption.

NOTE: If you do not have access to a scope with triggered sweep calibrated in time units, an ordinary service scope with sweep marked in frequency will do. Adjust its sweep vernier until you get the patterns in the photographs. Synchronize the sweep with the signals listed under “Scope sync”.

Radio-Electronics
into the coil. Vary the audio generator from 10 through 40 kc. If the signal at 40 kc drops more than 15% under that at 10 kc, back the L2 core out slightly. Remove the audio generator and the jumper on T2. Readjust R35 for minimum signal on the scope. It should be less than 10 mv peak to peak.

Connect the scope to J1, and observe a clean 19-kc sine wave of about 4 volts peak to peak. Connect J1 to the external trigger input on the scope. With the scope vertical input connected to J6, set S2 (RIGHT) selector to 1 kc. The display should resemble scope photo 1, approximately 3 volts peak to peak. Set S3 to -1 kc. The pattern should resemble scope photo 2.

Set S2 and S3 to QUIET. Set pilot level control R15 full clockwise (2×). The 19-kc sine wave at J6 should be from 0.5 to 0.6 volt peak to peak. If not, change the value of R42 accordingly. Reduce the setting of R15 until the output is 0.27 volt peak to peak. This should be marked on the panel as the NORMAL position. The setting of the pilot level during use of the generator is not critical. Most multiplex circuits will perform well with less than normal pilot level. Return the control to full clockwise (200%). Retain this scope display. The phase relationship of the 19-kc pilot to the 38-kc difference signal is important. The pilot sine wave should cross the zero axis at the same time (point) as the L - R difference signal (1-kc and -1-kc channel modulation). Scope photo 8 is a double exposure, to illustrate this. The scope sensitivity was changed between exposures (0.1 v/cm for the 19 kc and 0.5 v/cm for the double 38 kc).

To make this adjustment, trigger the scope externally from J1 (19 kc). With the 19-kc signal displayed as above, note carefully the point on the scope face where the sine wave crosses the zero axis. The zero axis location may be determined, and centered if necessary, by momentarily removing the 19 kc from the vertical input. Then turn the pilot signal off and S2 to 1 kc, and S3 to -1 kc. Decrease the vertical sensitivity on the scope. Adjust R58 until one of the crossover points on the scope trace coincides with the point previously noted above. Repeat the procedure as a check. As a further check of phase adjustment, display the pattern shown in scope photo 6. Vary the 19-kc PILOT control between 0 and 200% (OFF and 2×). Alternate crossover points on the scope should remain stationary, while the others move up and down.

The next step is to check the frequency deviation of the 102-mc oscillator. A simple and satisfactory way is to tune it in on an FM receiver and compare the audio output of the generator signal with that of the average FM station. Use 1-kc modulation on both channels. When 1 kc is used on one channel and --1 kc on the other, the sound will cancel out in a monaural receiver, if the receiver and generator are working properly. Change R43 if it is necessary to increase or decrease the deviation. Adjust the output coupling loop of L5 very loosely—about an inch away from L5.

As a final check of pilot frequency accuracy, display a Lissajous pattern of the 19-kc pilot (J1), and the signal from the 19-kc oscillator of a receiver properly receiving a multiple transmission. The difference should be less than 5 beats per second.

I will not explain the use of the generator for receiver adjustment since there is already adequate information. Several books and articles have been written about it, and manufacturers usually supply detailed alignment data.

If the left and right channels appear to be reversed, reverse the wires on T2 terminals D and F. Then readjust the BRIDGE NULL control R35 for minimum output at J6 with the selectors on QUIET.

In using the generator, the variable pilot amplitude is especially useful in checking the lock-in range and initial adjustment of a receiver's 19-ke oscillator. Another proven valuable use for the generator is in a dealer's showroom. By feeding the external inputs with a taped stereo special effects program, a dealer may demonstrate the channel separation of his tuners with spectacular stereo effects not usually available from FM stations. In this application, the treble control on the preamplifier feeding the generator should be advanced to maximum. This will compensate for the lack of pre-emphasis in the generator. Pre-emphasis in the generator would require two additional transistors and circuitry, which would not be justified for this limited need.

The 10- to 1,000-μv range of the RF LEVEL control (R48) is only very approximate, and allows a range of rf control for checking limiter action. For very low-level sensitivity checks, an external attenuator on the receiver terminals will be needed.

The generator has been in use for several months and has proven to be accurate, stable and rugged.

Fig. 8—Prewiring on S3.

Fig. 9—Components of the 100-mc. FM oscillator.

May, 1965
Get All the TV Channels

Adding "gimmick" trimmers to turret strips and aligning brings in pictures like the ones on studio monitors

by LOUIS W. REINKEN

<!— Standing waves and mismatching —>

When both ends of the lead-in are mismatched, reflections travel in both directions. Response across the width of a TV channel will not be uniform—distortion will be like that produced by an i.f. amplifier with a tilted, bumpy response curve.

The intercarrier circuit in modern TV receivers permits the local oscillator frequency to be varied over a small range without losing the sound. Carefully adjusting this "fine tuning" control can compensate for the grosser distortions of standing waves and receiver mismatch.

Other mismatch troubles cannot be reduced by fine tuning. One of these is "wind flutter". With bad mismatch, the lead-in is very sensitive to small changes in capacitance to ground (especially the side of a wet building) and even a slight breeze will cause erratic flutter in the picture.

With correct matching, distant reception is greatly improved. Signal level at the receiver terminals is increased and, with better lead-in balance, noise is much reduced.

With proper match, only the directive antenna picks up signal. This reduces aircraft interference and VHF blindspot from distant transmitters on the same channel.

Turret type tuners, with separate strips for each channel, are equipped with trimmer capacitors, one each for "antenna", "rf" and "mixer input". It is usual to adjust these trimmers, with a sweep generator, for channel 9 or 10. These can be set on the nose for one channel, but it is unlikely that the same setting will be best for all channels. This article explains how to trim up each strip for each channel to be received.

Standing-wave and mismatch troubles make proper antenna circuit tuning the number one improvement. Accurate alignment of the two other circuits is equally important. Tuning these accurately increases the level of weak signals (reducing snow) and provides flat response for locals. Uniform, flat response is necessary in the tuner as in the i.f. amplifier.

To get the most from your tuner, there must be independent trimmers for each circuit in each channel.

Adding independent trimmers

Remove the external trimmers or simply set them to minimum capacitance by removing the trimmer screws. Each channel strip is then equipped with its own set of independent trimmers. This is easier than it sounds, because each trimmer is just a twisted-wire gimmick.

A pair of No. 20 plastic-covered wires, 3 inches long, has a capacitance of, very roughly, 10 pf, and is long enough.

As shown in Fig. 1, the gimmicks are soldered to the same lugs as those used for terminating the strip coils. (Note: no gimmick for the oscillator. The oscillator coil is equipped with a variable-inductance trimmer slug adjusted, usually, from the front.)

Fig. 2—Adding gimmicks doesn’t really change circuit electrically—it merely provides a separate trimmer for each channel.

Study the tuner circuit to make sure that the gimmicks will be, electrically, in the same places as the original external trimmers. Usually, there will be no problem with the rf and mixer input circuits and the gimmicks may be shunted directly across the coils.

However, some tuners have antenna circuits requiring minor wiring changes in the tuner. A before-and-after example of such a circuit is shown in Fig. 2.

I.f. alignment

Initially, the i.f. section must be checked with the usual sweep generator and scope setup and, if needed, carefully realigned for a response curve as close to the textbook ideal as possible. This is essential because, with flat response from each channel in the tuner, picture quality will depend only on how well the i.f. has been aligned. Reminder: the video carrier i.f. must be located "50% down" from the flat top. This must be done carefully before the tuner gimmicks are adjusted.

Gimmick tool

Gimmicks are adjusted by twisting the two wires together to increase the

YOU’LL NEED...

Two 3/8 to 1/2-watt resistors per channel (see text for values).
One or two small capacitors per channel (see text for values).
About 15 feet of No. 20 plastic-covered hookup wire.
Sweep and marker generators, oscilloscope.
Plastic pliers or fuse puller.

www.americanradiohistory.com
capacitance or untwisting to decrease it. Cut off excess length. This may require tightening the remaining twisted portion to compensate for the loss in capacitance when the excess is clipped off.

The ideal tool for adjusting the gimmicks is a pair of plastic pliers. Metal pliers cannot be used because of stray capacitance—even when insulated.

If plastic pliers are not available, an excellent substitute is a fiber or plastic "fuse puller". These pliers are notched inside the jaws to permit a standard cartridge fuse to be extracted from live fuse clips. They can be used as is or can easily be cut to approximate the shape of flat-nosed pliers. A pair of nonmetallic pliers has many uses.

Gimmick adjustment

With all the strips removed from the tuner and equipped with gimmicks, the soldering checked and the contacts cleaned (with De-Noiz or other contact fluid), gimmick adjustment can begin.

One of the strips is snapped back into the turret, at any location, for trimming. Set the sweep generator for the channel. Accurate rf marker signals must be available. (One way of insuring an absolutely accurate video carrier marker, for local channels, is to couple an antenna loosely to the tuner input and use the transmitter's video carrier as an rf marker.)

The scope input may be connected to the video detector to show the overall response including the i.f. amplifier, or to the mixer input (tuner test point). If the scope has enough sensitivity, connect it to the mixer input because this will show only the rf response and simplify adjustment.

With only one strip in the turret there will be plenty of room to insert the plastic pliers to twist or untwist the gimmicks while you observe scope. The rf and mixer input gimmicks should be adjusted to approximately the "best" values as indicated by maximum output at resonance. Do not clip these two gimmicks yet.

Antenna gimmick

The antenna gimmick must be adjusted carefully and patiently. (If the antenna circuit is not properly tuned, mismatch and standing waves will wreck all other rf and i.f. alignment.) The adjustment is correct when increasing or decreasing the capacitance by a few pf reduces the pattern height—that is, tuner output level.

It may be necessary to supplement the gimmick capacitance with from 5 to 25 pf of fixed capacitance. Try different values until you are sure you are at resonance. Two or even three miniature disc capacitors may be paralleled to get the required amount. A small stack of different values, for instance 5, 10 and 20 pf, can then be used to provide any capacitance you need.

Because antenna circuit Q is low, resonance is not sharp and may be hard to locate. It may help to tap a fixed capacitor of several pf on and off (using the plastic pliers) to get a definite change in the CRO pattern. As you approach resonance (from the low-capacitance side), adding the test capacitance increases the pattern height; above resonance, adding capacitance decreases the height. And, especially on channels 2–6, hand capacitance near the tuner input leads has much less effect on the pattern at resonance.

Rf and mixer input gimmicks

After the antenna circuit has been aligned accurately, trim the remaining two gimmicks. Adjust them simultaneously, since a small amount of staggering between these two is permissible to get a flat response over the 6-mc bandwidth of the channel. The Q of these circuits is higher than that of the antenna circuit and it is easy to observe resonance on the scope. Q may be so great (particularly in the rf circuit) that resonant peaks make it hard to get flat response over the band when the circuits are tuned.

Usually, the rf circuit will have a sharp peak and the mixer input a broader, lower one. The peaks can be shifted by adjusting the gimmicks. But, the response must not be flattened just by detuning both circuits. This would simply sacrifice signal strength and increase adjacent-channel interference.

It is better to have the circuits resonate within the band, staggered if necessary, reducing and broadening the peaks as required to produce a response characteristic flat to ±10%. Peaks may be lowered and broadened by shunt resistors across the gimmicks. These should be small (1/8 to 1/2 watt) and have resistances of 3,000 to 10,000 ohms. Mount them as shown in Fig. 1. The best value is the highest that produces a response curve flat to about ±10%.

Overall response

When all three gimmicks have been trimmed, examine the overall response, including the i.f. amplifier, by shifting the scope input connection from the mixer input to the video detector. Because the local oscillator frequency is varied by rotating the fine-tuning control (or by screwing the oscillator slug in or out), you must make sure that the oscillator is at exactly the right frequency. Inject two marker frequencies (one rf and one i.f.) and shift the oscillator frequency until the markers coincide.

The i.f. marker, injected into the tuner test point through about 10,000 ohms, must correspond in frequency to that of the video carrier i.f. during alignment of the i.f. amplifier.

The rf marker corresponds to the video carrier frequency and is injected into the tuner input (along with the sweep input). As previously suggested, for local channels, this frequency may be picked up off the air.

With the fine-tuning control set midway, rotate the oscillator slug until the rf marker has been moved to the
Your VTVM Checks Camera Shutters

Trust your shutter? Build this simple adapter and you can check it any time

By ELLIOTT A. McCREADY

ANYONE WHO DABLES IN PHOTOGRAPHY has probably wondered just how accurately his shutter is calibrated, especially when he has just turned out a mediocre batch of pictures. At such times, I’ve sworn to build a device to check that camera shutter. Such circuits have been published, but have usually been rather complex.

Probably the simplest way to check the duration of any event is to use it to charge a capacitor through a resistor. The duration of the event can then be determined by simply measuring the charge across the capacitor. There’s a predictable charge-time relationship for any combination of R and C.

Knowing that, look at Fig. 1. The camera shutter actuates switch S, which charges capacitor C through resistor R. The voltage across C is measured by meter M and indicates the length of time the circuit was activated.

Before this idealized setup can actually be used to measure camera shutter speeds, several changes must be made. First, as soon as M is connected across C, the capacitor begins to discharge. So a reasonably large capacitor and high-resistance meter must be used to get an accurate reading before the charge dissipates.

Camera rests, lens down, on felt square surrounding hole on top of chassis. 100-watt bulb, shining through open camera back, is light source.

Charge at high shutter speeds, C will acquire a very small charge, and M will read a very low voltage. For this reason R must be kept low (compared to the resistance of M), and E fairly high for maximum voltage across C and usable readings at high shutter speeds.

The last and certainly the toughest change to the basic circuit is finding a switch to synchronize perfectly with the camera shutter. Obviously a photocell, actuated by light passing through the camera shutter, would be the perfect switch. We could use the photocell to drive a relay, but relays are much too slow for this particular job.

Before we go any further, let’s define a switch. In part, the ideal switch has infinite open resistance and zero closed resistance. Real switches have a finite—but high—open resistance and a very low—but measurable—closed resistance. How far can we depart from the ideal and still have a usable switch for our shutter timer?

As the value of R determines the charging time of C, and hence the accuracy of the device, the closed resistance of the switch must not exceed a small percentage of R. The open resistance of the switch will determine the leakage or static current of the circuit and the voltage that will appear across...
C with S open. If the fastest shutter speed we plan to measure is 1/200 second, we can calculate the voltage that will appear across C. A quick check with Ohm's law shows that the open resistance of S must be not less than several thousand megohms.

Finding a photocell or photocell-actuated device that fulfills all these requirements turns out to be much simpler than it looks.

Circuit

Fig. 2 is the schematic of the shutter timer. The meter of Fig. 1 is replaced by an ordinary 11-megohm vacuum-tube voltmeter, which plugs into the circuit. The size of C, together with the fact that the vtvm is connected during the charge cycle, eliminates any problem due to meter lag.

The 1-megohm charging resistor is small in comparison with the resistance of the vtvm, and most of the voltage of the 22½-volt battery will appear across the vtvm.

Switch S of Fig. 1 is replaced by a modified npn silicon transistor. Carefully file off the top of the transistor. The resulting unit is extremely photosensitive. I tried a cadmium sulfide photocell here, but its time constant was too long for all but the slowest shutter speeds. The time constant of silicon junction photo devices is less than 20 microseconds. Dark resistance of the modified transistor is many thousands of megohms; its resistance in moderate light drops to a few thousand ohms.

Switch S is a spdt unit that, in addition to disconnecting the battery, discharges C when it is in the off position.

RCA 2N706-A which is smaller than the 2N696. The slab of silicon inside the transistor was also much smaller and the modified unit showed considerably less sensitivity than the 2N696. The modified transistor is cemented inside a 3/8-inch length of lightproof bakelite or plastic cylinder. I used a 3/8-inch bakelite control protector cap with the closed end sawed off. The completed photocell is then cemented below a 3/8-inch hole in the top of the chassis. Glue a small piece of clear celluloid over the hole in the top of the chassis to protect the photocell, and cement a 2 x 2-inch piece of felt as shown in the photo to make a light seal between camera and chassis.

ConSTRUCTION

The unit is constructed on the U-shaped half of a 3 x 4 x 5-inch box type chassis. A pin jack on the back of the chassis accepts the positive probe of the vtvm. The negative lead clips to a projecting 6-32 screw.

The photocell is constructed by carefully filing the top from a Texas Instruments 2N696 silicon transistor. Other silicon transistors would probably work equally well. However, I tried an

This remarkably uncomplicated black box offers a way to check your camera's shutter speed accurately enough for almost all photographic applications, without using stroscopic techniques or film in the camera. A modified silicon transistor (which normally has extremely low leakage) is used as a light-sensitive switch to charge a capacitor for the length of time the shutter is open. A vtvm measures the voltage across the capacitor. Since the voltage depends precisely on the time the capacitor was allowed to charge, you can read the shutter-open period directly off a chart.

WORKS BEAUTIFULLY FOR SHUTTER SPEEDS FROM 1 SECOND TO 1/200 SECOND, AND FOR STILL HIGHER SPEEDS IF YOUR VTVM IS SENSITIVE ENOUGH.

Operation

Before using the shutter timer, check the minimum voltage by connecting the vtvm (set at its lowest range), covering the photocell and switching the unit on. A properly operating unit should show no vtvm deflection. The manufacturer specifies a maximum leakage current of .002 μA for this transistor. A good transistor will show only a fraction of this leakage and should produce no observable voltage at the vtvm.

If the capacitor has just been charged (by exposing the photocell transistor to light, say), and then shorted, a small voltage will appear as soon as the short is removed, due to dielectric absorption. So, before you check the shutter timer initially (and for all checks of high shutter speeds) make sure the unit has been switched off (capacitor shorted) for a few minutes. That will completely dissipate the stored charge.

To check shutter speeds, connect the vtvm and set it to the proper range (consult Fig. 3). Open the back of the camera, open the lens fully, cock the shutter and place the camera, face down, over the photocell. As a light source, use a 100-watt bulb, placed a foot or less from the back of the camera. Now, turn the timer switch on, trip the camera shutter, note the peak voltage on the vtvm and use the graph of Fig. 3 to determine shutter speed.

If you own a vtvm that gives accurate readings at voltages less than 0.1, there is no reason why you can't measure shutter speeds faster than 1/200 second. The graph of Fig. 3 becomes a straight line below about 1/25 second. Simply add another section to the graph and extend the line to the left: 1/500 second becomes .04 volt; 1/1000 second, .02 volt.

After building this gadget, you will be truly amazed at the things you can accomplish with a minimum of parts and equipment!
Low-Cost, Easy-to-Build
Stereo Speaker Enclosures

This stereo pair—and a shelf to put them on—can be built and finished with a minimum of skills and tools

By RICHARD G. LEMBURG

This stereo pair of speaker enclosures—and a shelf to put them on—can be built and finished with a minimum of woodworking skills and tools, all for less than $22. Plastic covering material and solid construction result in good-looking units that deliver excellent stereo sound.

Both enclosures and shelf are cut from one 4 x 8 foot sheet of 3/4-inch plywood (Fig. 1-a). Use a circular saw for

Apply glue liberally to each pair of surfaces to be joined. Top and bottom are glued last. Nails will hold parts tight until glue hardens.

Speaker opening may be cut with sabre or keyhole saw after enclosure has been glued together.

Fig. 1-a—All major parts for both speakers, plus a shelf and some scrap, come out of one 4 x 8-foot sheet of 3/4-inch plywood. b—A piece of 1/4-inch plywood makes the grille cloth panel. c—How to cut and drill the front panel. *Diameter (D) of speaker opening is determined by speaker to be used. See text.

MATERIALS LIST (for two speakers and shelf)

- One 4 x 8-foot sheet 3/4-inch fir plywood
- Two pcs 1/4-inch plywood
- 2 doz. 1 1/2-inch flathead wood screws
- 1/4 lb 3-penny finishing nails
- 8 oz bottle Elmer's Glue-All
- 1 1/2 yd 16-in. Con-Tact
- 36 x 36-in. pc grille cloth
- 8 sq ft 1-in. thick glass-wool insulation
- Two 2-screw terminal strips
- Four 12-in. shelf brackets
- Four 12-in. wall standards
- Sandpaper, putty, staples or tacks
Sides, top and bottom are covered with self-stick plastic. Remove protective paper backing in short sections.

Line top, bottom and ends with 1-in. thick acoustic padding.

Separate grille-cloth-covered board is nailed over front. (Nail will not show.)

One of the finished stereo pair.

accuracy. (Most lumber dealers will cut the plywood to the required dimensions for a small fee.) Two pieces of ¼-inch plywood, each 13 ¾ x 23 ¾ inches, will be needed for mounting the grille cloth (Fig. 1-b).

When all panels and strips have been cut to size, locate and drill the ¼-inch port holes and cut the speaker opening in each of the two front panels (Fig. 1-c). Diameter of the speaker openings will, of course, be determined by the speakers used. Good quality 10- or 12-inch full-range speakers are recommended for optimum results.

Using a liberal amount of glue and two or three nails along each joint, assemble the enclosures as shown in the drawing. Begin by mounting the 3½ x 12½-inch port-duct strip on the front panel, 5 inches in from the end; then fasten the ends to the front panel and, before the glue sets, put on the top and bottom panels and the 1½ x 22-inch back mounting strips. Note that the back-panel mounting strips are glued ¼ inch in from the back edge of the top and bottom panels. (Use a piece of ¾-inch plywood as a guide.) All other joints are made flush. When the glue has dried, countersink the nails and fill the holes and the exposed ends of the top and bottom panels with water-mix putty. Sand the four sides of each enclosure, give them a coat of shellac, and sand again so they are smooth to the touch. (Use a sanding block.)

The next step is to cover the sides of the enclosures with Con-Tact or a similar covering material. A large variety of wood-grain patterns and colors is available. Using a strip 6 feet, 4 inches long and 16 inches wide, start applying the plastic slightly over one edge (see photo). Wrap the plastic completely around the enclosure, carefully smoothing it as you go, and overlap the ends about ¼-inch where they meet. Now press the excess width of material over the front and back edges, making a 45° fold at each corner. Trim off any material that covers the speaker and port openings.

Install the speakers next, and line all four sides of each enclosure with acoustic padding (a 1-inch thickness of glass wool is good). Prepare the back panels by mounting a two-screw terminal strip on each, and drilling holes along the top and bottom edges for the six mounting screws. Wire the speakers to the terminal strip lugs, and fasten the back panels in place with 1½-inch screws.

Mounting the grille cloth is the final step. After cutting out the two ¼-inch plywood boards as shown (Fig. 1-c), cover them with grille cloth, stapling it to the back of each board. (Lightweight, loose-weave flexible cloth is best.) Place the covered board over the front of the enclosure (be sure to line up the speaker opening with the speaker), and drive several 1-inch brads through the boards from the front. With a nail or nail set, countersink the brads below the surface of the grille cloth. They will not show.

[The author used 12-in. Norelco speakers. The enclosure design will suit almost any 12-in. speaker. Those who are familiar with bass-reflex cabinet tuning procedure will find it easy to change the resonant frequency of the enclosure by drilling more 5/4-in. holes or by plugging some up, or by varying the duct length.—Editor]
NO SQUELCH? DESIGN IT!

Two very simple circuits you can tailor-fit to almost any ham, CB or communications radio

By ARTHUR F. BLOCK

Fig. 1 shows that the only difference between the biased diode and a normal diode detector is that the cathode is returned to a small positive voltage instead of direct to ground. This means that the detector plate is more negative than the cathode. The diode will not conduct until the signal peaks override this bias. Thus, we have squelch. Three volts positive at the top of R1 (Fig. 1-h) should give enough range for practically any receiver. With R1 a 1,000-ohm potentiometer, we need only 3 ma to get a 3-volt differential. Any power supply worth its salt can supply that much additional current without turning pink. R2 drops the voltage from the B-plus supply to the necessary amount for R1.

Determining the value of R2 is simple. It must supply 3 ma to R1 and at the same time drop all but 3 volts of the B-plus. Ohm's law is all we need. In figuring the wattage rating for R2, remember that it should be at least twice the calculated power dissipation.

C1 will probably not be necessary but, if you hear hum as R1 is advanced, the power supply hasn't enough filtering for this low-level use. Then add C1 as shown in Fig. 1-b. R2 and C1 then form another filtering section.

Before installing this squelch, check all tubes controlled by avc. If their cathodes are connect direct to ground, connect a resistor between each cathode and ground and bypass it with a disc capacitor of approximately .01 μf. With grounded cathodes, the tubes are normally biased only by the avc produced by stray noise pickup or by received signals. During squelch, this noise is not detected and there is no avc voltage. This leaves the tube with no bias. It may overload itself and the power supply. The cathode resistor restores normal bias with the squelch. For the newer miniature tubes approximately 150 or 200 ohms should do and around 300 ohms for older octal tubes. A tube manual can provide more specific information. Keep the leads short and keep the ground connection close to the tube.

For those of you who have Eico transceivers of the 760, 761 or 762 design, this biased-detector squelch is a natural. Pin 1 of the V5-a (the 6FM8)

IF YOU HAVE A COMMUNICATIONS OR CB receiver or a converter working into a standard broadcast receiver, and would like a simple and effective squelch, one of these circuits will fill the bill nicely. Squelch circuits are no more difficult than any other single stage in a radio. This is especially true of these basic units.

The simplest design (and the easiest to install because no additional tubes or diodes are required) is the biased detector. If your i.f. and rf tubes already have resistor-biased cathodes, the only additional parts needed are a fixed resistor and one potentiometer. (The necessity of cathode bias will be covered later.)

Author's BC-455-B surplus receiver, with squelch control on bracket at right. (Box with tube at top contains home-brew rf amplifier.)
is the cathode of the detector and would be removed from ground to the slider of R1 (Fig. 1-b). (If any other connections are made to pin 1, be sure to remove and ground them.) The size of R2 is determined as before. Cathode resistors and capacitors will have to be added to V1 (6BA6), and the pentode sections of V3 (6US-A) and V4 (6US-A) to restore grid bias.

As with any squelch control, do not advance R1 any more than necessary for squelch action. It operates best if a very small amount of noise is allowed to remain instead of trying for complete cutoff. Going beyond this point will decrease sensitivity. Impulse noise cannot be squelched completely. This is true of most squelch circuits.

One peculiarity of the biased-detector system may be true of other circuits also. It will not squelch if you have regeneration in the set. I tried it in a set with a regenerative i.f. (for selectivity) and squelch action was practically nil. Removing the regeneration permitted normal action. Regeneration appears to produce a spike type of noise which squelches only with the control advanced beyond the point where it will break with normal-strength signals.

Another way

The second circuit is the series back-biased diode, found (with minor variations) in many CB transceivers. It is one of the most sensitive, cleanest-breaking, easiest-to-install squelch circuits I have encountered. A possible exception is the biased-detector circuit just mentioned, but the two circuits cannot be directly compared. Each has its particular characteristics.

Operation is simple (Fig. 2). V is in series with the audio signal and can allow it to pass or cut it off, depending on the relative voltage between plate and cathode. R3 and R4 allow the control voltages to be applied without shunting the audio to ground.

In operation, audio is blocked if the plate of V is negative with respect to the cathode, and allowed to pass if the plate becomes positive. Adjusting R1 to the correct point establishes the operating potential. The plate of V is connected via R4 to the screen of a tube that is avc controlled. When a signal comes through, avc on the control grid of the i.f. tube drives the tube toward cutoff. There is less voltage drop through Rs and a rise of screen voltage. This rise also appears on the plate of V, allowing it to conduct. The audio then passes through to the audio amplifier.

Fig. 2 also shows how the squelch unit is connected to the radio to get the dc control voltage. Audio connections will be covered later. R4 should be placed directly at the socket of the i.f. tube to prevent rf currents from causing regeneration. The line between R4 and the plate of V1 can be any reasonable length, but keep it pressed close to the chassis to prevent stray pickup.

C1 and C2 are merely audio coupling capacitors and can be treated as such. C3 and C4 may not be needed. C3 is of value if R1 happens to be noisy. C4 is an rf bypass; try it if instability appears. It should be connected close to R4. Use as small a size as will cure the instability. It also cuts higher audio frequencies, which may be needed for intelligibility. About 100 to 500 pf should do. Keep below .001 pf if possible.

R1 and R2 are chosen so that the voltage at the top of R1 is higher than the voltage on the screen grid of the tube to which R4 is connected. This allows the squelch point to occur within the rotation of R1. The value of R1 can be from 500,000 ohms to 1 megohm.

Choose R2 the same way as for the biased-detector system.

Although it is usually not necessary, Rs may be increased. This will increase squelch sensitivity somewhat, but it will also lower the screen voltage. Some receivers using this squelch have a value as high as 100,000 ohms for Rs. Be careful not to lower the screen voltage too far or you may cause a decrease in receiver sensitivity.

Although a regular diode of the 6AL5 or 6H6 type is the logical choice, a diode-connected triode may also be used for V1. It is best to stay away from older octal-based triodes, however, because of insufficient cathode-to-heater insulation. The newer miniature tubes are usually insulated for up to 200 volts between cathode and heater. If in doubt,
consult any tube manual. In these circuits, the cathode will operate from 50 to perhaps 100 or more volts while the heater of the tube will usually have one side grounded.

The best place to make the audio connection to the radio is just ahead of the volume control (Fig. 3). Remove the wire from the “top” (ungrounded end) of the volume control and connect it to the input capacitor of the squelch unit. The output capacitor goes to the top of the volume control. Don’t forget the ground connection if you make this an outboard unit. If the volume control also acted as the diode load resistor (Fig. 4), just replace it with a fixed resistor of equal value. This is designated as R, in Fig. 4.

The precaution of a resistor-biased cathode in the r1 and i.f. stages that was necessary in the biased-detector circuit is unnecessary here. We are dealing with audio and have in no way changed the detection system.

With normal undelayed ave, this squelch circuit will open with a signal so weak as to be scarcely readable, but the circuit will not work well with delayed ave. The squelch-opening action depends upon the ave voltage charging the screen voltage, and with a delay circuit this cannot occur until the signal reaches a certain minimum level. Until this level is reached, no squelch break will occur. You can see from this the advisability of removing any delay circuits.

The easiest way to spot delayed ave is to measure the ave voltage with a vtvm and no signal. Then locate an extremely weak signal—one that you cannot even read—and see if the ave voltage rises slightly. If it does, you have nothing to worry about. If it doesn’t, your receiver has delayed ave, and the best method of attack is to locate a diagram to determine which one of several circuits has been used in your particular receiver.

The squelch control should be set at the point where it is just sufficient to quiet the receiver. This point will be very sharply delineated. Any further advancement of the control will adversely affect sensitivity. If there is noise, you will have to decide for yourself the relative importance of silence as compared to the ability to receive weak signals. END

Nine-Volt Record Changer

DC motor with governor runs from 9-volt battery supply or stepped-down, rectified line voltage

BATTERY-OPERATED PORTABLE PHONOGRAPH with transistor amplifiers have been made for several years. The Westinghouse model H-99AC1/2 AC-battery phonograph contains a four-speed record changer that looks exactly like standard BSR 120-volt ac changers used in other models. A switch permits the phonograph to operate from 120 volts ac or six 1.5-volt batteries in series. The circuit of the motor and power supply is shown in the diagram.

When the phonograph is operated on ac, a stepdown transformer and silicon rectifier supply 12 volts dc. This voltage is filtered by the 1,000-µf capacitor and a transistor capacitance multiplier.

The capacitance multiplier is a fast-acting series voltage regulator that acts like a very large filter capacitor. Current drawn by the amplifier flows through the collector–emitter circuit. Current flowing in the voltage divider (R17–R18) charges C8 and biases the transistor base. On music peaks, the amplifier draws more current and the supply voltage tends to drop. The transistor base bias changes in the forward direction and more current flows in the collector–emitter circuit without appreciable voltage drop.

The 9-volt dc motor sets this changer apart from other BSR models used in many Westinghouse phonographs. (An exploded view is shown in the photo.) It is a conventional form of dc motor with a permanent-magnet field. One end of the armature carries a stepped spindle that drives the turntable through a rubber idler wheel. Voltage is delivered to the commutator on the other end of the armature shaft through two small replaceable brushes. A third brush, connected to a centrifugal governor, controls the motor speed. The governor has a simple adjustment screw for setting the speed of the motor. END

REFERENCES

Delayed AVC

Squelch Circuits
RADIO-ELECTRONICS, December 1959, p 57 (Globe squelch)
RADIO-ELECTRONICS, June 1960, p 50 (diode squelch)
RADIO-ELECTRONICS, September 1960, p 55 (Vacoulon squelch)

RADIO-ELECTRONICS, April 1961, p 72 (transistorized squelch)

Nine-Volt Record Changer

DC motor with governor runs from 9-volt battery supply or stepped-down, rectified line voltage

BATTERY-OPERATED PORTABLE PHONOGRAPH with transistor amplifiers have been made for several years. The Westinghouse model H-99AC1/2 AC-battery phonograph contains a four-speed record changer that looks exactly like standard BSR 120-volt ac changers used in other models. A switch permits the phonograph to operate from 120 volts ac or six 1.5-volt batteries in series. The circuit of the motor and power supply is shown in the diagram.

When the phonograph is operated on ac, a stepdown transformer and silicon rectifier supply 12 volts dc. This voltage is filtered by the 1,000-µf capacitor and a transistor capacitance multiplier.

The capacitance multiplier is a fast-acting series voltage regulator that acts like a very large filter capacitor. Current drawn by the amplifier flows through the collector–emitter circuit. Current flowing in the voltage divider (R17–R18) charges C8 and biases the transistor base. On music peaks, the amplifier draws more current and the supply voltage tends to drop. The transistor base bias changes in the forward direction and more current flows in the collector–emitter circuit without appreciable voltage drop.

The 9-volt dc motor sets this changer apart from other BSR models used in many Westinghouse phonographs. (An exploded view is shown in the photo.) It is a conventional form of dc motor with a permanent-magnet field. One end of the armature carries a stepped spindle that drives the turntable through a rubber idler wheel. Voltage is delivered to the commutator on the other end of the armature shaft through two small replaceable brushes. A third brush, connected to a centrifugal governor, controls the motor speed. The governor has a simple adjustment screw for setting the speed of the motor. END

REFERENCES

Delayed AVC

Squelch Circuits
RADIO-ELECTRONICS, December 1959, p 57 (Globe squelch)
RADIO-ELECTRONICS, June 1960, p 50 (diode squelch)
RADIO-ELECTRONICS, September 1960, p 55 (Vacoulon squelch)

RADIO-ELECTRONICS, April 1961, p 72 (transistorized squelch)
WHAT'S NEW

WORLD'S SHORTEST TV CAMERA (behind girl) is fixed onto giant telephoto lens (500-mm focal length, 24 inches long). Camera, one of Cohu Electronics' 2000 series, is only 7 inches long and 3 inches in diameter. It features all-solid-state construction (except for the vidicon, of course), 10-mc bandwidth, 700-line resolution. Camera is designed for every kind of coverage from golf tournaments to military troop movements, boat races to satellite and missile tracking.

LOW-POWER AM—ON A LIGHT BEAM—is as practical as hooking up an audio modulator to a ham transmitter. This optical laser modulator from Sylvania's Electronic Systems division has a bandwidth from 0 to 20 mc and is suitable for audio, video, pulse or rf carrier modulation. To the low-power transistor amplifier used to drive it, it looks like a 20-pf capacitor, so there are no driving problems. The laser's beam shines through the modulator—along its axis.

VOICE AND MUSIC ON NARROW LIGHT BEAMS from this gallium arsenide laser, sent across rivers or canals or other hard-to-build-on features, are tough for unauthorized persons to intercept. Range is 3,200 feet minimum with narrow-band detection. Narrow-band, narrow-beam system can also be used for alarms, smoke or fog monitoring, surveying. It is made by a subsidiary of International Telephone & Telegraph Corp.

NOW WHY DIDN'T SOMEBODY THINK OF THIS BEFORE? Battery nuts knurled on both sides, of course! They are, as Cornell Manufacturing, Inc. points out, always right side up. This stroke is intended less for the user than for the manufacturer, though; the symmetry eliminates hand assembly. Automated assembly with hopper feeding is now possible, since as long as the nut lands flat, it's right side up.

MEASURE MASS OF MOON from lunar orbiter—that's the goal of Hughes Aircraft research project that has so far come up with this unique mass sensor. Cross-shaped rotor of aluminum (right) spins in vacuum chamber (left). Gravitational pull affects rotation, which sets up vibrational modes detected by sensitive piezoelectric strain transducers. Output is translated into terms of the mass of object that causes the gravitational pull. "Noise" from electrical, mechanical, thermal and electronic sources, which would interfere with "dc" gravitational force, is reduced in effect by "chopping" action of rotor to convert normally dc gravitational force to ac signal.
Electronic Musical Horn for Your Car

Up to six loud musical notes with one transistor and a speaker

By LYMAN E. GREENLEE

Fig. 1—Basic electronic auto horn is power oscillator. S1 is horn button. SPKR2 is optional (text explains).

- Oscillation is maintained through feedback capacitor C1. By making this capacitor very large (500 µF) we can feed a powerful audio signal directly to the speaker. Emitter resistor R1 limits current through the transistor to a safe value and helps prevent runaway.
- Resistors R2 and R3 form a voltage divider that fixes the base voltage and also determines the frequency of oscillation. To change the tone, all we have to do is vary the resistance of R3. Actually, the tone depends on the characteristics of the output transformer, the size of C1 and the value of R3. Capacitor C2 and the second speaker will also have some effect on the frequency.
- This second speaker deserves a word of explanation. Just what does it accomplish? Actually, two things. We get more sound, and the quality is different. The two speakers have different size cones and different resonances. The sound output is a highly complex waveform with lots of overtones, like a square wave. In its simplest form, the circuit works well with C2 and the tweeter omitted. In this form, it will make a single-tone horn that is cheap to build and useful for all sorts of signaling. It may be operated from flashlight batteries for portable use.

The complete wiring diagram is shown in Fig. 2. All parts except the two speakers are mounted in an aluminum Minibox, and all connections are made to a terminal strip at the end of this box. The battery connections are left floating so either the positive or negative terminal may be grounded to the case, and the horn will work on cars with either a positive or negative ground.

- All sounds are controlled with the three pushbutton switches. Switches S2 and S3 have a double function. First, they connect their respective resistors (R4 and R5) into the base circuit to generate the required tone; then, only

Fig. 2—More sophisticated six-note design.

C1—500 µF, 50 volts, electrolytic
C2—250 µF, 25 volts, electrolytic
R1—1/4 ohm, 10 watts (or two 1 ohm, 5 watt in parallel)
R2—100 ohms, 1 watt
R3—50 ohms, 10 watts
R4—20 ohms, 10 watts
R5—25 ohms, 10 watts
All resistors 10% tolerance
Q—15 amp power transistor (2N173 or similar)
S1—pushbutton spst, normally closed (CutlerHammer 8411-K8 or equivalent)
S2, S3—pushbutton dpst, normally open (Switchcraft 1004, modified; see text)
T—output transformer; primary 48 ohms ct. secondary 3.2 ohms (Argonne AR-503)
SPKR1—5 3/4-in. pincushion, 10 watts, 3.2 ohms (Quam 52C10)
SPKR2—cone tweeter, 8 ohms, 15 watts (Olson S-297)
Mica insulation (between transistor and case)
Case—aluminum box 3 x 4 x 5 inches (Bud CU-2105-A or equivalent)
10-ampere fuse
Terminal strips, miscellaneous hardware

REMEMBER THE MUSICAL HORNS OF THE CLASSIC EAR that could play tunes like "For He's a Jolly Good Fellow" or "Nobody Knows How Dry I Am"? Most of them could play three or four notes. This transistor version plays six notes with only three pushbuttons to manipulate. Cost is less than $20 for all parts. The sounds produced by it are unlike any you have ever heard from an auto horn. All sorts of novelty sound effects can be created. Battery drain is about 6 amps (72 watts) from the 12-volt car battery, and the sound is enough to wake the dead. If you want something that is really different to dress up your automobile, here it is.

How it works

A basic simplified diagram of the circuit is shown in Fig. 1. In this diagram, the multiple-contact switches of Fig. 2 have been eliminated, and a single tone is sounded when switch S1 is closed. Center-tapped output transformer T serves the dual purpose of oscillator coil and output transformer. Oscillation is maintained through feedback capacitor C1. By making this capacitor very large (500 µF) we can feed a powerful audio signal directly to the speaker. Emitter resistor R1 limits current through the transistor to a safe value and helps prevent runaway.

- Resistors R2 and R3 form a voltage divider that fixes the base voltage and also determines the frequency of oscillation. To change the tone, all we have to do is vary the resistance of R3. Actually, the tone depends on the characteristics of the output transformer, the size of C1 and the value of R3. Capacitor C2 and the second speaker will also have some effect on the frequency.
- This second speaker deserves a word of explanation. Just what does it accomplish? Actually, two things. We get more sound, and the quality is different. The two speakers have different size cones and different resonances. The sound output is a highly complex waveform with lots of overtones, like a square wave. In its simplest form, the circuit works well with C2 and the tweeter omitted. In this form, it will make a single-tone horn that is cheap to build and useful for all sorts of signaling. It may be operated from flashlight batteries for portable use.

The complete wiring diagram is shown in Fig. 2. All parts except the two speakers are mounted in an aluminum Minibox, and all connections are made to a terminal strip at the end of this box. The battery connections are left floating so either the positive or negative terminal may be grounded to the case, and the horn will work on cars with either a positive or negative ground.

- All sounds are controlled with the three pushbutton switches. Switches S2 and S3 have a double function. First, they connect their respective resistors (R4 and R5) into the base circuit to generate the required tone; then, only

Fig. 2—More sophisticated six-note design.
after this connection has been made, the battery is connected as the switch button is fully depressed. To get this type of switch action, you must adjust the contacts to make sure that the resistor connection is completed before contact is made to the battery. This can be done by carefully bending the leaves of the switch with a pair of long-nose pliers.

Depressing S3 sounds a low tone. Depressing S2 sounds a medium tone. If both S2 and S3 are depressed simultaneously, both resistors are in parallel, and we get a much higher tone. This gives three notes with the two switches.

As long as S1 remains closed, R3 will be in the circuit and we can play three notes by manipulating S2 and S3. When we depress S1, R3 is disconnected. Now we can play three additional notes of a lower frequency by manipulating S2 and S3. Of course, S1 does nothing unless S2 or S3 are activated.

No attempt was made to tune the horn to any particular musical scale. The resistance values shown in the parts list are stock values, and tuning to any particular frequency would require special odd values of resistance. The following suggestion is made for those who might wish to experiment with tuning the horn to some particular frequency.

Tuning

Replace R4 with a 10-watt rheostat. Adjust it for the desired pitch. Measure with an ohmmeter and make up a resistor for R4, either by winding one by hand or by connecting resistors in series or parallel to get approximately the correct value. Another way to get the correct resistance is to purchase a fixed resistor with an adjustable slide. Choose a value larger than the value you want, to give plenty of leeway for adjusting the slide. If you use adjustable resistors, do not buy them until you determine the correct values by using the rheostat in a temporary hookup. Follow a similar procedure to determine the correct values for R5 and R3. Choose R3 to move the tone up and down one octave.

Adjustable resistors are a lot more expensive, and I feel that most people will like the sound as is without going to the extra trouble of tuning.

Some towns and states have laws regulating the volume and tone of automobile warning devices. If you live in such a place, you may have to limit this horn to nonautomotive uses—a boat horn, a party noisemaker, a toy, an annunciator that sounds different tones for each doorbell button, telling you instantly where your visitor is waiting. Check your local regulations.

I tried several output transformers for T. The Argonne AR-503 was finally chosen because it was the least expensive one I tried that would oscillate properly with adequate power output. The transistor is a very inexpensive "bargain", similar to the 2N173. Quite a few types of power transistors worked. Any that will carry 15 amps should be adequate. A high-power ignition type works very well. It does not even have to be a very good transistor. One that is noisy and not good for audio use may work very well.

The two speakers specified in the parts list were chosen because of their combination of small size with large power-handling capabilities. Any speakers having similar impedances and power ratings would work equally well, but larger cone sizes may present a serious mounting problem when you try to fit them alongside an automobile radiator. A big speaker might cut the flow of air to the radiator. A large speaker cone is quite unnecessary because the frequencies being reproduced are all in the higher ranges, which are more efficiently generated by a small cone.

The resistors carry a heavy load and get quite warm. The values specified in the parts list are minimum wattage ratings for intermittent use. The Switchcraft pushbutton switches will handle 3 amperes, which is adequate because the load divides between the multiple contacts. Some other switches may not carry the heavy currents involved, so if you substitute, be sure the contacts will carry the load.

Everything fits neatly into the 3 x 4 x 5-inch Minibox. Fig. 3 shows the pattern for drilling the mounting holes. Carefully deburr the holes for the
Speakers are mounted on Masonite (or similar) panel, painted for protection. Mount speaker panel away from possible flying stones or sand, and out of path of radiator air.

transistor. I used a small piece of stove mica as an insulator for the transistor. (Available from your hardware store.)

Be sure to observe the correct polarity when installing capacitors C1 and C2. Resistors should be kept as far away from them as possible. The resistors will get quite hot, so do not let them touch either the transformer or the capacitors. Nothing else is at all critical about parts positioning; just keep those resistors to themselves.

Note that two binding posts are used, one at each end of the terminal strip. One is for the common (car battery) ground, and the other is for the grounded side of the speaker voice coil. Make up a short piece of wire with terminals on both ends. Use it to ground one battery connection. That is, if your car battery negative is grounded, run this wire from the case to terminal 2 on the strip; but if the positive of your car battery is grounded, run the wire from the case to terminal 3. Use No. 18 or heavier hookup wire for all internal connections.

Solder all joints carefully. They carry a large current.

I made up a small bracket to mount the case to the car steering column with a hose clamp. On some cars, it may be more convenient to attach the box to the dash or to the center control console with self-tapping screws. It should be placed so that the pushbuttons can conveniently be reached without interfering with any other driving controls.

Speaker mounting

The two speakers are mounted on a baffle cut from a piece of
4-inch hardboard. It is a good plan to mount this baffle on the car before you cut the holes and fit the speakers. On most cars, there will be ample room at one side of the radiator to mount the baffle and speakers. Use pieces of screen wire or metal speaker grille to protect the cones against damage from flying insects or stones that might be thrown up into this area while driving. It is a good idea to protect the speakers from rain with a sheet of plastic if they are in a direct line with the open grille of the car. Run two pairs of wires from the speakers back to the control box. Do not depend on the car chassis for a return connection. Use No. 18 wire for speakers, and No. 14 for the connections to the battery. The photographs should make clear the mounting of speakers and other parts. Give the speaker baffle a couple of coats of oil paint to protect it against moisture and to prevent warping.

WHAT'S YOUR EQ?

Positive and Negative

This circuit generates both -1,500 and +150 dc volts. Note that both voltages are developed from the secondary of the same transformer whose primary is connected to a battery-operated transistor-blocking oscillator.

I think the fact that I can get both the low and high voltages from the same secondary winding is pretty sneaky. Can you figure out how I do it? Hint: Note diodes' peak inverse rating.—Bob Wigner

Automotive Puzzler

Here's one that could happen to anyone—especially with an older car.

Both taillights and both stop lights lit when they were supposed to, but the left side, in each case, was dimmer than normal. Here's the joker—when the taillights were switched on and the brake depressed, both left-side lights went out leaving only the right-side lights burning.

I suspected a high-resistance ground on the left side, but couldn't rea-son (for a time) why both lights quit when they were supposed to be on together. Can you?—Wesley S. Cole

CORRECTION

We have discovered two more (minor) errors in the T-40/40 Transistor or Stereo Amplifier in the March issue. (A correction note about the transposition of the R8 and R10 markings on the circuit board appeared on page 92 of the April issue.)

1. In the circuit diagram of the amplifier (page 33), R4 is shown connected to the junction of C6, R9 and R11. On the board, R4 is correctly connected instead to point H—the other side of R11. If you wire the amplifier from the schematic, connect R4 to point H rather than as shown. If you use the prepared boards, you have nothing to worry about.

2. Some boards may be supplied without a hole drilled for point E. You can correct this yourself by drilling an extra hole near the top of the largest irregular copper area on the board. (See the pattern in the upper right corner of page 35, in the original article.)

Conducted by E. D. CLARK

Two puzzlers for the students, theoretician and practical man. Simple? Double-check your answers before you say you've solved them. If you have an interesting or unusual puzzle (with an answer) send it to us. We will pay $10 for each one accepted. We're especially interested in service stalkers or engineering stumpers on actual electronic equipment. We get so many letters we can't answer individual ones, but we'll print the more interesting solutions ones the original authors never thought of.

Write EQ Editor, Radio-Electronics, 134 West 16th Street, New York, N. Y. 10011.

Answers to this month's puzzle are on page 82.

END
A new device is being developed (in fact, is in commercial use) that should fill the gap between the vacuum tube and the transistor. The device has been named the unipolar Field Effect Transistor (FET).

The vacuum tube has often been called a voltage-actuated device, while the transistor is current-actuated. The vacuum-tube input circuit requires a voltage but negligible current to operate properly. It is a normally "off" device and needs a voltage (of proper polarity) between its grid and cathode to turn it off—to stop electrons flowing from cathode to plate. Because of the polarity, the input circuit draws no current. The transistor is a normally "off" device, and must be "forward-biased" to turn it on. A small voltage applied to its input circuit causes a relatively large input current to flow. It follows, then, that the vacuum tube is a high-input-impedance, and the transistor a low-input-impedance device.

The FET combines almost all the advantages of the conventional transistor and of a vacuum tube. Like the tube, the FET has very high input impedance, and its output is isolated from its input. The FET is the size of a conventional transistor, requires no filament power, and is not as susceptible to nuclear radiation as are conventional transistors. A low-noise device, the FET produces negligible microphonics even under extreme shock. But it is sensitive to temperature variations.

A conventional transistor operates as a bipolar device: two conditions must be present before it will operate properly. These are (1) that the base-emitter junction be forward-biased and (2) that the base-collector junction be reverse-biased. FET operation, radically different from a conventional transistor's, is unipolar: operation depends only on a reverse-biased p-n junction. No forward biasing is needed.

Let's backtrack a moment. You will recall that the majority carrier of a semiconductor material (that is, what carries most of the current) is determined by the impurity material (doping) added to the basic, pure semiconductor.
ductor material (Fig. 1-a). In p-type material, holes are the majority carriers (because there are more of them than of electrons). Free electrons are the minority carriers. In n-type material, the majority carriers are free electrons and the minority carriers are holes.

When p-type and n-type material are joined, the holes from the p-type material and the free electrons from the n-type material diffuse toward each other and combine. This action is shown in Fig. 1-b. Total recombination of all the holes and free electrons is prevented since each combination of a hole and electron forms an electron-pair bond. This leaves uncompensated donor ions (atoms that have "donated" a free electron) near the junction of the two materials. These ions build a barrier (also called a depletion region) which, due to their polarity of charge, prevents total recombination of the holes and electrons.

If a battery is connected across the p-n device so that the junction is reverse-biased, then the barrier is extended (Fig. 1-c), and no current flows through the circuit except for a very small amount of minority carrier current. If the battery is connected so as to forward-bias the p-n junction, then the barrier is compressed to an extent where hole and electron combination can occur again. The external battery then supplies the necessary electrons and holes to keep current flowing through the circuit to the junction (where the combination is taking place). This action is shown in Fig. 1-d.

Now let's connect a battery across a bar of n-type material (Fig. 2-a). Electrons, which are the majority current carriers in n-type material, would leave the negative terminal of the battery and diffuse through the barrier to the positive terminal. Note that there is no barrier to overcome along the electron's path. Maximum current will flow, for it is limited only by the resistivity of the material.

If the battery is disconnected and p-type material added on both sides of the n-type bar (Fig. 2-b), then a barrier is formed around the resulting p-n junction, as indicated by the cross-hatched area. This junction barrier is formed as explained previously. Now if we connect a battery across the n-type bar as shown in Fig. 2-c, electrons diffuse from the negative terminal to the positive terminal, but avoid the p-n junction region because of the barrier setup restriction presented by the junction region barriers. This junction region is called the gate.

If a battery is added between gate and source (labeled S in Fig. 2) of such polarity as to back-bias (reverse-bias) the gate-source junction, then the barrier at this portion of the junction will widen and further restrict flow. Now consider the gate-drain (D) circuit.

As shown in Fig. 2-c, gate battery V_g and drain battery V_d are now in series across the portion of the p-n junction that extends between gate and drain. This back-biases that portion of the junction with a higher voltage than the portion that extends between gate and source. The result is the distorted junction barrier in Fig. 2-d. The majority current carriers now diffuse toward the positive terminal of the barrier. As they approach the barrier set up by the gate, they are repelled by the polarity of the ions within the barrier. This tends to restrict the total current flow from the battery.

You can see now that as V_d is increased and the junction barrier widens, a point will soon be reached where no electrons will be able to diffuse through the barrier because of the fields set up by the junction barriers. The value...
of V_n that causes the majority current carriers to cease flowing through the bar is appropriately named the "pinchoff" voltage. Fig. 3 shows an n-channel FET under various bias conditions. Since the junction barrier between the gate and the other two terminals prevents current flow between the gates and source or drain, the device acts much like a vacuum tube. As a result, the FET has a high input impedance (from 1 to 10 megalohms) and is a normally "on" device.

The p-channel FET operates the same way, except that the operating voltages are reversed; that is, the drain-to-source voltage is negative and the device is cut off or "pinched off" by applying a positive voltage between gate and source. The bar is p-type material and the gate is n-type. Fig. 4 shows how the parts of an n-channel FET are arranged.

The drain voltage (V_d) versus drain current (I_d) curves are very similar to pentode vacuum-tube curves. Fig. 5-a shows the characteristic curves of a Texas Instruments 2N2386 p-channel FET. To show its possibilities as a bilateral switch, the source and drain were interchanged and Fig. 5-b obtained. The p-channel FET curves were made with a Tektronics transistor curve tracer which has a limited gate voltage supply (maximum of 0.2 volt per step). V_n cannot be determined on the p-channel 2N2386 because of the curve-tracer V_n limitation.

As the voltage from drain to source is increased in a negative direction, a point is reached where the gate-to-drain back-biased p-n junction breaks down (avalanches). That shows up as the sharp increase of I_n at a V_n of about 20 volts. The breakdown occurs between gate and drain rather than between drain and source.

To get the feelings of the actual operation of an FET, the circuit shown in Fig. 6-a was constructed. Fig. 6-b shows the voltage gain to be about 20 db for the single stage. To show the linearity of the device, the output was attenuated and inverted to match the input. Fig. 6-c shows no visible distortion in the output.

This shows that the FET can be used effectively in amplifier, oscillator and switching circuits, much like the conventional and familiar vacuum tube. The laboratory I work in needed a high-input-impedance voltmeter that was completely portable and required no external ac power source. Fig. 7 shows the schematic. The circuit uses two FET's as a differential amplifier with an input impedance greater than 18 megohms. It is accurate to within 2% of full scale. (Another FET voltmeter appeared November, 1964, page 36.)

FET's are already being used in missile systems and in commercial equipment. They are expensive compared to most transistors, ranging from $7 for low-gain units to as much as $75 for high-voltage, high-gain types.

The FET is not used extensively just now. But as we look at its potentialities, it seems likely that it will be used in entertainment type equipment as its popularity grows and its price drops. No matter what field you're in, you're going to see more of this versatile semiconductor—the FET.
KEYED AGC
ISN'T SO TOUGH

"THE TROUBLE IN THIS LITTLE TV," exulted the Young Ham, "is that one of these tubes hasn't got any plate voltage at all!"

"Sure it ain't a 6AL5?" asked the Old-Timer with a sly grin, ambling down the long bench to peer over the boy's shoulder.

"Naaah! This is a 6AU6, and I think it's one of the video i.f.'s. That's what's causing the blank screen. Tubes all good, voltages OK, but I can't get sound or picture, just a white screen."

"Entirely possible," agreed the Old-Timer mildly. "Didja check the schematic to see what the voltage ought to be?"

"Not yet, but I will." The Young Ham scrambled in the litter of paper on the bench. "Here it is. Lemme see. 6AU6, plate voltage-HALF A VOLT NEGATIVE! Whaam!

The Old-Timer grinned sympathetically. "Yep, that's what I said the first time I fell over one of the things! That's no i.f., it's a keyed age stage."

"Keyed age?"

"Yup. Ain't no plate voltage on it. No applied dc, that is. Plate's fed by a positive-going pulse from the horizontal sweep circuit."

"But, negative plate voltage! How do y' get that?" demanded the Young Ham in bewilderment.

"It ain't easy," said the Old-Timer.

"All right, come on; we ain't been for at least a half an hour anyhow." And the two made the regular run out the back door, down the alley and into the back door of the drug store. Settled in the booth with their coffee steaming before them, the Old-Timer reached for the inevitable paper napkin and began to sketch rapidly.

How does it work?

"All right, give," said the Young Ham. "How does that deal work? You never told me."

"Tsk, tsk," demurred the Old-Timer, "your education has been sadly neglected!" Ignoring the muttered comment that he was the one who had neglected it, he drew a circuit on the napkin (Fig. 1). "Here, this tube, what happens if we apply the right voltages to it?"

"It conducts current," the Young Ham replied.

"Fine! Now, what if we put ac on one of the elements?"

"Which one?"

"I don't give a dern! Any one. As long as it's within the operating limits of th' tube. For instance, the plate ought to have 150 volts on it. What if we put 150 volts ac on it?"

"Well, lemme see. . . . Oh, yeah! The tube will conduct on the positive half-cycle just like a rectifier!" the Young Ham replied triumphantly.

"Hooray!" congratulated the Old-Timer. "Now, does it make any difference what shape this ac waveform has?"

"Well . . . No. It wouldn't. As long as the plate goes positive, the tube's going to conduct. That is, if the positive part of the waveform swung far enough positive?" The Young Ham looked doubtful.

"Kee-rect! Go to the head of the class," said the Old-Timer, proudly. "Now you've got the basic idea of a keyed stage! What we want to do is make this stage conduct during certain periods of time, while some particular thing is happening. For example, your keyed age stage over there conducts during horizontal retrace intervals. Why?"

"Well, I . . . " the Young Ham looked baffled.

What makes an age voltage?

"Because we want it to," declared the Old-Timer. "We want an age voltage out of it. So, what makes an age voltage? We convert some part of the video signal into a nice useful dc voltage? What part? The video? Nope, that changes constantly. We gotta have something steady. So, since the horizontal sync pulses should always be the equivalent of at least 95% modulation of the TV transmitter, never changing, we use them. By keying the tube with pulses from the flyback, which in turn are controlled by the incoming horizontal sync pulses, we can chop out only the horizontal sync. We feed this into a filter, and wind up with a nice dc voltage. Since the dc is taken from the video signal, the amplitude of the dc is always proportional to the amplitude of the incoming signal! See?"

"Sure! That's just like avc in a radio, isn't it?" asked the Young Ham.

"Similar," replied the Old-Timer, "but not exactly the same. In a radio, we use the rf carrier. Here, we only use a part of the signal, the sync pulses."

"Why?" the Young Ham wanted to know.

"We take out only the horizontal sync pulses for our age because we can get better noise immunity that way. Up in the high-frequency TV bands, we get lots of impulse noise—ears and so on. This is pretty well distributed over the whole signal. So if we take out only a very small part of the signal, we'll reduce the chances of random noise making our picture jump and jitter. We can do this if we 'key' the age stage. Since we've still got that pulse from the flyback, and it's always in step with the incoming horizontal sync, we feed it back and use it as the keying pulse. Here."

And he drew another sketch (Fig. 2).

"See? The keyer tube is conducting only during horizontal retrace time, so it just takes out the tops of the horizontal sync, kind of," and he added some squiggles to another drawing (Fig. 3).

"How does it do that?" asked the Young Ham.

"It works that way, because we make it work that way. We set up the bias on the stage so it's cut off. That's why the grid goes back to B plus and the cathode to a little higher B plus point. See? Now, the tube is biased so high it can't conduct until it gets a positive-going sync tip on the grid. We set the level of these, on the grid, so that only the tips of the horizontal sync will cancel enough of the negative bias to let the tube conduct. So we get a series
of cute lil' square-topped pulses in the plate circuit. Notice one other thing, too. Since the grid is negative, we've got to put on the video waveform so the sync tips are going positive. If we took 'em from a place where the sync was going negative, it wouldn't work. Usually, we get this video from the video amplifier plate circuit, where it's at a high amplitude. We can drop it down to whatever value we need by taking it off a voltage divider.

"So long as we got the right voltage, and the right polarity, huh?"

Where else can we key?

"Roger," replied the Old-Timer. "Now, tell me something else, from examining this diagram, even if it is a little soggy by now," rescuing it from a puddle of spilled coffee, "can you apply a keying pulse like this to any other element of the tube and come out with the same kind of results?"

"Why, I guess so," said the Young Ham, frowning at the slightly messy circuit. "I don't see why not."

"Right!" said the Old-Timer. "You can take any kind of tube, triode, pentode, dual-control pentode like the 6BE6's, or anything you want, set it up for cutoff operation, and then key it into operation by applying the right size and polarity of pulses to it. You can feed your pulses to the plate, control grid, screen grid, cathode—anywhere you want, just as long as they cause the tube to conduct when they hit. Your tube sets there doin' nothing until the pulse comes along and opens the gate. That's why they call these gated circuits, sometimes."

"Well, then, howcome keyed?" asked the Young Ham.

"What do you use to open a locked gate?" The Old-Timer grinned.

"A key. Oh, I get it now. They're the same thing!"

"Good! You got that an' I got th' coffee." The Old-Timer dropped a handful of pennies into the kitty which sat near the coffee-pot, under a large sign reading, "This coffee-pot is operated on the honor system. This means you, you crooks!" They galloped out the back door, ignoring the druggist, who was demanding loudly that they come back and count all those pennies. Back at the shop, the Old-Timer settled down on the stool, and turned the little TV on. When it warmed up, he picked up a scope probe and touched several places in the circuit. He grinned.

Here's the real trouble

"Here y'are, sonny," he said. "Look." He touched the probe to a tiny capacitor. Large spikes showed on the screen. Touching the other end of the capacitor, only a very small spike was seen. "There's your trouble. That capacitor's open."

The Young Ham removed the offending unit and replaced it. Turning the set back on, a very wiggly picture showed up. The Old-Timer turned the age control down and it cleared up.

"See what happened there? This little capacitor was open, so the keying pulses couldn't get through to the plate. We did see some little ones, but they were just feeding through from stray capacitance. Tube didn't have enough voltage during the keying time to conduct. Like so, see?" and he traced out the circuit on the schematic (Fig. 4).

"Fine. Now, there's just one thing that puzzles me," said the Young Ham. "Why is the cotton-picking plate voltage negative?"

"I was wondering when you were going to ask that," laughed the Old-Timer. "That puzzled me for a long time, too! It's like this. Look at your circuit here. When you put a positive pulse on the plate, what happens?"

"Current flows," said the Young Ham.

"Right. Which direction?" "Cathode to plate?"

"Now, if current flows from cathode to plate, where does it go from there? Just jump off into space?"

"No, it's gotta get back to B+ plus through the power supply," said the Young Ham, with an air of 'I wish I hadn't said that!"

"Where's the B+, friend? I don't see any. Looks to me like any current that flows there is going to have to get back to the cathode through those two resistors, here and here (Fig. 4). Plate current has to have some direct path back to the cathode, so it's gonna through the power supply, all right, but it's gonna' through between ground and the cathode! See? Now, what does it look like? Current's a stream of electrons, right? If a stream of electrons flows through a resistor, which end of the resistor assumes the negative potential, huh?"

"The end the electrons are flowing into. Ohh! I get it. That resistor going to ground in the plate circuit! The plate end of it is negative! To ground! And, the more plate current there is flowing, the more electrons, and the more negative that end of the resistor gets! I see it now.

"There's hope for you yet," said the Old-Timer kindly, pating the young man's crew-cut head. "With a little skilled help, you may in time grow up to be an idiot! By the way, remind me next coffee break to show you some keyed circuits that have nothing to do with age."
SCR POWER CONTROL

Basic firing circuit drives SCR's up to 100 amps, for heating and lighting control, motor speed control and other jobs in home, shop and factory

By LOUIS M. P. T. WIJSEN

A relative newcomer to electronics, the SCR (silicon controlled rectifier) has already gained an excellent reputation for long life, compactness and maintenance-free operation. It has replaced thyratrons, rheostats and variable transformers in existing circuits, and has opened up a world of new possibilities as well.

SCR's are now available in current-carrying capacities up to 400 amperes. They can be switched off in about 10 microseconds. Power gains of billions are feasible.

High-current, high-voltage SCR's are not within the budget of the average hobbyist, but lower-rated units are. A 5-amp 400-piv SCR costs less than $5. A 25-amp 300-piv costs $8.40. (A 255-amp 400-piv SCR costs $224.) Prices vary according to operating temperature and gate characteristics.

Used within safe current and voltage limits, the SCR can perform well for many years. Greatest dangers are excessive peak inverse (or reverse) voltage, and excessive current. They will destroy the SCR almost at once. Excessive piv can usually be prevented easily, there is always danger of damaging currents. It is wise to use SCR's whose ratings exceed amply the expected current flow. Also, put a fast-blowing fuse in series with every SCR, with a rating well below that of the unit it protects.

Here is a simple single-phase ac power control device. It can be used for heater control, as a lighting dimmer, power tool controller, or for many other applications. It will work well with SCR's of up to 100 amperes, and can be built cheaply and fast.

You will select the proper SCR's for your particular use. For ordinary applications, the two main factors to reckon with are forward current and reverse voltage. Computation, apart from the trigger pulse amplitudes, are the same as for regular diodes, and are found in the several SCR handbooks now available.

Fig. 1 shows the symbol for the SCR, and identifies its corresponding parts. Note that the stud of the SCR is its anode. The gate may be compared with the grid of a thyratron. The triggering signal is applied between gate and cathode.

(Remote-polarity SCR's—units in which the cathode is connected to the case or stud—are now being made. They are generally identified by the suffix "R" after the type number.—Editor)

Fig. 2-a shows how SCR's should be connected for ac control. Fig. 2-b shows how power can be controlled with one SCR, if it can carry the power demanded. The load gets pulsating dc in this case.

Fig. 2-a—Full-wave ac control with SCR's.

Fig. 2-b—Half-wave control.

When its anode is positive to its cathode the SCR will conduct from the instant we apply a positive pulse to its gate until the end of the half-cycle of line voltage, when anode voltage becomes zero and starts to go negative. By applying gate pulses at the proper time (or phase) with respect to the phase of our line voltage alternations, we can control the length of time that the SCR conducts, and thus the current through it and the load.

For this we need a firing circuit that allows us to control the SCR's from nonconduction (180°) to practically full

One SCR power control, with 70-amp SCR's, occupies considerably less space and is far lighter than variable transformer with similar capacity. This one has been used successfully for about 3 years by author's company.

www.americanradiohistory.com
Fig. 3—Circuit of the power control. If only one SCR is used, as in Fig. 2-b, omit T2 and connect a 47-ohm 1/2-watt resistor between base 1 of Q2 and common (that is, where the primary of T2 is now). Connect the SCR gate to Q2 base 1.

The circuit in Fig. 3 enables us to control the SCR from about 180° to 10°. (The 10° limit does not cause a serious loss of power.) This is a simple unijunction trigger circuit, with only few components, but performs reliably and well.

It works like this: as from the secondary of the isolation transformer is rectified by a full-wave bridge. A 3,000-ohm resistor (R1) and a Zener diode clip the remaining voltage with its 120-cycle ripple to a waveform that resembles a square wave. This ripple is essential for synchronizing the pulse train. It gives us the required phase relationship between our pulses and the line voltage, to control the SCR's.

When the moving contact of control potentiometer R2 is brought up, toward D5, Q1 is biased off by the voltage across R4. By bringing the potentiometer arm down, toward R3, we forward-bias Q1 and throw it into conduction. By making the base more negative to the emitter, we increase conduction. The collector current of Q1 charges C. Q1 acts as a variable resistor, making a variable R-C time constant with C.

When the charge of C exceeds the emitter peak-point voltage of Q2, the unijunction transistor Q2 turns on, making a low-resistance path from base 1 to its emitter across the capacitor, which discharges rapidly through the primary conduction (0°). The circuit in Fig. 3 enables us to control the SCR from about 180° to 10°. (The 10° limit does not cause a serious loss of power.) This is a simple unijunction trigger circuit, with only few components, but performs reliably and well.

It works like this: as from the secondary of the isolation transformer is rectified by a full-wave bridge. A 3,000-ohm resistor (R1) and a Zener diode clip the remaining voltage with its 120-cycle ripple to a waveform that resembles a square wave. This ripple is essential for synchronizing the pulse train. It gives us the required phase relationship between our pulses and the line voltage, to control the SCR's.

When the moving contact of control potentiometer R2 is brought up, toward D5, Q1 is biased off by the voltage across R4. By bringing the potentiometer arm down, toward R3, we forward-bias Q1 and throw it into conduction. By making the base more negative to the emitter, we increase conduction. The collector current of Q1 charges C. Q1 acts as a variable resistor, making a variable R-C time constant with C.

When the charge of C exceeds the emitter peak-point voltage of Q2, the unijunction transistor Q2 turns on, making a low-resistance path from base 1 to its emitter across the capacitor, which discharges rapidly through the primary conduction (0°). The circuit in Fig. 3 enables us to control the SCR from about 180° to 10°. (The 10° limit does not cause a serious loss of power.) This is a simple unijunction trigger circuit, with only few components, but performs reliably and well.

It works like this: as from the secondary of the isolation transformer is rectified by a full-wave bridge. A 3,000-ohm resistor (R1) and a Zener diode clip the remaining voltage with its 120-cycle ripple to a waveform that resembles a square wave. This ripple is essential for synchronizing the pulse train. It gives us the required phase relationship between our pulses and the line voltage, to control the SCR's.

When the moving contact of control potentiometer R2 is brought up, toward D5, Q1 is biased off by the voltage across R4. By bringing the potentiometer arm down, toward R3, we forward-bias Q1 and throw it into conduction. By making the base more negative to the emitter, we increase conduction. The collector current of Q1 charges C. Q1 acts as a variable resistor, making a variable R-C time constant with C.

When the charge of C exceeds the emitter peak-point voltage of Q2, the unijunction transistor Q2 turns on, making a low-resistance path from base 1 to its emitter across the capacitor, which discharges rapidly through the primary conduction (0°). The circuit in Fig. 3 enables us to control the SCR from about 180° to 10°. (The 10° limit does not cause a serious loss of power.) This is a simple unijunction trigger circuit, with only few components, but performs reliably and well.

It works like this: as from the secondary of the isolation transformer is rectified by a full-wave bridge. A 3,000-ohm resistor (R1) and a Zener diode clip the remaining voltage with its 120-cycle ripple to a waveform that resembles a square wave. This ripple is essential for synchronizing the pulse train. It gives us the required phase relationship between our pulses and the line voltage, to control the SCR's.

When the moving contact of control potentiometer R2 is brought up, toward D5, Q1 is biased off by the voltage across R4. By bringing the potentiometer arm down, toward R3, we forward-bias Q1 and throw it into conduction. By making the base more negative to the emitter, we increase conduction. The collector current of Q1 charges C. Q1 acts as a variable resistor, making a variable R-C time constant with C.

When the charge of C exceeds the emitter peak-point voltage of Q2, the unijunction transistor Q2 turns on, making a low-resistance path from base 1 to its emitter across the capacitor, which discharges rapidly through the primary conduction (0°). The circuit in Fig. 3 enables us to control the SCR from about 180° to 10°. (The 10° limit does not cause a serious loss of power.) This is a simple unijunction trigger circuit, with only few components, but performs reliably and well.

It works like this: as from the secondary of the isolation transformer is rectified by a full-wave bridge. A 3,000-ohm resistor (R1) and a Zener diode clip the remaining voltage with its 120-cycle ripple to a waveform that resembles a square wave. This ripple is essential for synchronizing the pulse train. It gives us the required phase relationship between our pulses and the line voltage, to control the SCR's.

When the moving contact of control potentiometer R2 is brought up, toward D5, Q1 is biased off by the voltage across R4. By bringing the potentiometer arm down, toward R3, we forward-bias Q1 and throw it into conduction. By making the base more negative to the emitter, we increase conduction. The collector current of Q1 charges C. Q1 acts as a variable resistor, making a variable R-C time constant with C.

When the charge of C exceeds the emitter peak-point voltage of Q2, the unijunction transistor Q2 turns on, making a low-resistance path from base 1 to its emitter across the capacitor, which discharges rapidly through the primary conduction (0°). The circuit in Fig. 3 enables us to control the SCR from about 180° to 10°. (The 10° limit does not cause a serious loss of power.) This is a simple unijunction trigger circuit, with only few components, but performs reliably and well.

It works like this: as from the secondary of the isolation transformer is rectified by a full-wave bridge. A 3,000-ohm resistor (R1) and a Zener diode clip the remaining voltage with its 120-cycle ripple to a waveform that resembles a square wave. This ripple is essential for synchronizing the pulse train. It gives us the required phase relationship between our pulses and the line voltage, to control the SCR's.
This moves the bias in the direction of greater conductivity, to overcome the decreased voltage across R2. High currents can be reached again and controlled precisely.

Although not an absolute necessity, it is advisable to have some inductance between the SCR's and the input or output terminal. A choke of 3 or 4 µH is enough. This inductance resists the sudden current surge when the SCR's are fired, and if current is excessive, gives the fuses time to blow before the SCR's are damaged. These current surges can be impressive! If the SCR is triggered at 90°, for instance, the current increases instantaneously from zero to peak. Five to 10 turns of wire will be enough to limit the surge.

Construction

The pulse circuit can be placed on a 4 x 4-inch piece of 1/4-inch thick fiberboard. R2, the control potentiometer, can be mounted on the front panel. Keep the pulse board close to the SCR's to conserve the pulses.

The SCR's have to be mounted on heat sinks. The size of the heat sink and its fins depends on the characteristics of the SCR, the application and the heat sink's material and construction. Ready-made heat sinks are relatively cheap.

If you wish to make your own sinks, use 1/4- to 1/2-inch thick copper, brass or aluminum. (These home-made heat sinks should not be used with SCR's that operate at or near maximum current for long periods.) For a 50-amp SCR, use a piece about 6 x 31/2 inches, with two fins about 6 x 2 1/2 inches. For a 25-amp SCR, a 4 x 2 1/2-inch heat sink with 4 x 2-inch fins is satisfactory. In the center of the heat sink, drill a hole with a diameter slightly greater than that of the SCR stud. At one short side of the heat sink piece, at 1/2 inch from the edges, saw out slots 1/8 or 1/4 inch wide, (depending on metal thickness), halfway through to the other end (Fig. 6). Then saw slots out of the fins, lengthwise, 1/8 or 1/4 inch wide, starting in the center of one short side and stopping at the center.

The fins can now be pushed over the heat-sink piece, and the slot will mate. Solder or weld the fins to the heat sink. Paint the whole assembly flat black, except for a small, circular area around the hole, where the anode of the SCR will make contact with the metal.

Mount the SCR with a lockwasher and nut over its stud. The nut must be screwed on tightly, otherwise the heat sink will lose its effectiveness.

The sink, which is at anode potential, has to be insulated from the chassis. Holes in the chassis underneath will aid air circulation. The chassis can be kept small by placing the heat sinks vertically.

You can easily make accurate linear-scale AC meters from 1-ma DC meters with the help of a simple trick. The application shown here is to a variable transformer box (Fig. 1), where ordinary iron-vane meters, unless carefully shielded, might be disturbed by the transformer field. (For example, General Radio advertises that, in their similar transformer box, the meters are carefully shielded.)

The necessary meter resistors and diodes are mounted on a clear plastic platform fastened to the meter terminals. Terminals on the platform are bent from small solder lugs, attached with 2-36 screws. There are six terminals on each side, enough for matched pairs or trios of resistors if required. The plastic will stand a little soldering without melting.

To the Fig. 2 circuit, at points A, B, attach the current meter calibrating system of Fig. 3. Ten volts across the 10 ohm resistor equals one ampere. R1 in Fig. 2 is about 200 ohms (not critical), so R1 plus meter resistance is about 250 ohms. Initially, calibrating resistors R2, R3 are pots or decade boxes. Set R2 at about 10,000 ohms, R3 about 5,000. Then proceed as follows:

Step 1. With the Variac, gradually increase current to 1/2 ampere. With R2, keep 1-ma meter deflection below half scale.

Step 2. At 1/2 ampere current, adjust R2 for half-scale deflection.

Step 3. At 1 ampere current, adjust R3 for full scale deflection.

Step 4. Repeat steps 2 and 3 as necessary.

With your ohmmeter, match the values of R2, R3 with fixed resistors.

Fig. 1—A variable AC supply using the two metering arrangements described in the text.

Fig. 2—Current transformer and half-wave rectifier for measuring alternating current. Connect between A and B in Fig. 1.

Make Your Own Linear-Scale AC Meters

Ordinary DC meters with rectifiers are more useful than iron-vane AC jobs in variable AC supplies and such

By JOSEPH H. SUTTON

www.americanradiohistory.com
will do, but with age they drift more than precision types.

Fig. 4 shows the voltmeter circuit. The .02-µf capacitor blocks any dc that might be present in an experimental circuit connected to the box. The full-wave meter rectifier is a Conant 1101, but a Conant B-160 will work as well. Full-wave rectification had to be used here because of the .02-µf series capacitor.

To calibrate the voltmeter, you need a source of ac voltage and an accurate voltmeter standard. Connect two 700-ohm, 10-watt resistors in series across the 150 volts to give you a 75-volt center tap for midrange measurements. At 75 volts, adjust R2 for half-scale deflection, then adjust R3 for full scale at 150 volts (or whatever your full-scale reading may be). (In my box, R3 is about 2,000 ohms and R2 is around 120,000 ohms to indicate 150 volts.) Since each adjustment affects the other, go back and adjust again till you read exactly 75 volts at half scale and 150 volts at full scale. Then measure R2 and R3 and substitute fixed resistors.

To mark that the meters now indicate ac volts and current, I stuck black decals to the outside of the meter glass. The effect is just as good as if the face were changed, and there is no risk of damaging face or pointer. In cementing the decals, use lacquer thinner sparingly.

Output can be taken either from the Amphenol 78-1M tip jacks J1 and J2 (lower right corner of panel) or the standard ac outlet (lower left corner). Note that the on-off switch disconnects both sides of the ac line, an important safety feature when working with an autotransformer.

A larger variable transformer than my T1 can of course be used, if it will fit in the box. Two 1-ohm resistors can be paralleled across T2 to handle the larger current.

END
Too Busy To Build Heathkit Test Gear?

NOW 10 OF THE FAMOUS HEATHKIT TEST INSTRUMENTS ARE AVAILABLE IN KIT OR ASSEMBLED FORM... EITHER WAY, STILL YOUR BEST BUY!

Acclaimed By Technicians In All Fields! Technicians in virtually every area of the servicing educational, industrial, and research & development fields rely on Heathkit test gear for a multitude of applications. They respect Heathkit equipment for its superlative quality, versatile performance, and long, dependable life...at the lowest possible cost! Many have requested factory-assembled versions. As a result, we now offer this selection of 10 instrument favorites. Join the thousands who put their confidence in Heath...choose your favorite Heathkit Test Instruments now, kit or assembled!

VACUUM TUBE VOLTMETERS!

A Low-Cost VTVM, Kit IM-11...$24.95, Assembled IMW-11...$39.95 Single AC/Ohms/DC probe; 7 AC/DC/Ohms ranges; 1% precision resistors for high accuracy; frequency response ±1 db from 25 cps to 1 mc; voltage doubler rectifier; 4½" 200 UA meter. 5 lbs.

B Deluxe "Service Bench" VTVM, Kit IM-13...$32.95, Assembled IMW-13...$49.95 7 AC/DC/Ohms ranges; measures AC volts (RMS), DC volts, resistance & db; separate 1.5 & 5 volt AC scales; gimbal mount for bench, shelf or wall; 6" 200 UA meter; single AC/Ohms/DC probe. 7 lbs.

C Laboratory AC VTVM, Kit IM-21...$33.95, Assembled IMW-21...$52.95 10 voltage ranges—0.01 to 300 volts RMS full scale; frequency response ±1 db from 10 cps to 500 kc; 10 megohm input impedance; calibrated db scale for audio measurements. 5 lbs.

METER TEST PROBES!

D Etched Circuit RF Probe, Kit 309-C...$3.50, Assembled 309W-C...$4.50 Use with any 11 megohm VTVM for RF measure up to 250 mc. 1 lb.

E 20,000 V. DC High Voltage Probe, Kit 336...$4.50, Assembled 336W...$5.50 Provides multiplication factor of 100 on DC ranges of any 11 megohm VTVM. 1 lb.

WIDE-BAND 5" OSCILLOSCOPE!

F Extra-Duty Wide-Band 5" Oscilloscope, Kit IOW-12...$76.95, Assembled IOW-12...$126.95 Full 5 mc bandwidth for color TV servicing; Heath patented sweep circuit 10 cps to 500 kc, push-pull vertical & horizontal amplifiers, positive trace position controls. 24 lbs.

SCOPE TEST PROBES!

G Scopem Demodulator Probe, Kit 337-C...$3.50, Assembled 337W-C...$4.50 Use in radio & TV servicing to check distortion & presence of modulation. Voltage limits, 30 v. RMS, 500 v. DC. 1 lb.

H Low-Capacitance Oscilloscope Probe, Kit PK-1...$4.95 Minimizes loss of gain, circuit loading or distortion due to overloading of scope input. Includes assortment of connectors to match most scope terminals. 1 lb.
...Then Buy Them Assembled!

GENERATORS!

- RF Signal Generator, Kit IG-102...$27.95, Assembled IGW-102...$54.95
 Covers 100 kc to 220 mc in 6 bands; large, accurately calibrated dial scales; modulated or unmodulated RF output; 400 cps signal for audio tests. 6 lbs.

- Switch-Selected Audio Frequency Generator, Kit IG-72...$41.95, Assembled IGW-72...$64.95
 Produces near-perfect sine waves; switch-selected output frequencies—10 cps to 100 kc; less than .1 or 1% distortion—20 to 20,000 cps; panel metered output is calibrated in volts & db; output level & frequency accurate to within ±5%. 9 lbs.

CAPACITOR CHECKER!

- Low Cost Capacitor Checker, Kit IT-11...$29.95, Assembled ITW-11...$49.95
 Test all capacitor types; low-bridge voltage for testing miniature electrolytics; 16 leakage test voltages; direct reading scales; measures resistance from 5 ohms to 50 megohms; measures capacitance from 10 uuf to 1000 mfd; measures “L”, “C”, or “R” with external standard. 9 lbs.

POWER SUPPLIES!

- "Solid-State" Regulated DC Power Supply, Kit IP-20...$72.95, Assembled IPW-20...$114.95
 50 MA, 150 MA, 500 MA & 1.5 A current ranges; 5, 15, 50 v. DC voltage ranges; filtered output for less than 150 uv ripple; adjustable current limiter, 30 to 100% on each range. 16 lbs.

- Variable-Voltage Regulated Power Supply, Kit IP-32...$56.95, Assembled IPW-32...$84.95
 Furnishes B+, bias & filament voltages; DC output variable from 0 to 400 volts; separate panel meters for voltage & current; output terminals isolated for safe AC/DC work. 17 lbs.

- "Low-Ripple" Battery Eliminator, Kit IP-12...$47.50, Assembled IPW-12...$59.95
 Switch selection of 6 or 12 V. DC power; special filter circuit holds AC ripple to less than 0.3%; metered output voltage & current; doubles as a battery charger. 21 lbs.

FREE!

108 colorful pages packed with over 250 Heathkits, including complete test instrument line! Over 250 ways to have fun & save up to 50%! Use this coupon & send for your FREE 1965 Heathkit catalog now!

SHIP VIA:
- Parcel Post
- Express Collect
- Freight
- 20% Included, C.O.D.
- Best Way

All prices & specifications subject to change without notice.

HEATH COMPANY, Dept. 20-5, Benton Harbor, Michigan 49023
In Canada: Daystrom, Ltd., Cooksville, Ontario
Please send FREE 1965 Heathkit Catalog.

MAY, 1965

www.americanradiohistory.com
EQUIPMENT REPORT

Slide Rule for Electronics

There must be thousands of people in electronics who have never had the marvelous adventure of calculating problems with a slide rule; other thousands have had to content themselves with a slide rule not specifically designed for electronics. For both groups, the new model N-515-T rule designed and marketed by Cleveland Institute of Electronics and built for them by Pickett will open a whole new era of quick calculations.

Even if you have never had a slide rule in your hand before, the 108-page manual that is included takes you by the hand and leads you from simple calculations right through resonance and reactance problems with hardly a hitch. If you already use a slide rule, you'll find the book a first-rate refresher course. And it explains in detail the shortcuts built into this new rule.

On the front of the rule you'll find the regular slide-rule scales: A, B, C, D, E, F, S, T, L, and Ln; but there is also an H scale and a 2r scale as well as markings on the other scales such as X., Xe, t (for frequency), to make it easy to select the correct scales.

One big benefit of the new rule is the "Decimal Point Locator" (DPL) on the reverse side. Here you can find exactly where the decimal point should be, and get a rough calculation of the answer to any reactance or resonance problem. This not only saves a lot of time but greatly reduces the chance for error as compared to finding the decimal point in the usual manner. For example, you can find that a 500-pf capacitor has a reactance of between 100 and 200 ohms at 2 mc in a matter of seconds with the DPL. This is accurate enough for many calculations, but when you need to be more precise, simply turn the rule over, set the frequency on the 2r scale and the capacitance on the C (which is the normal CI) scale and read 159 ohms on the C scale using the X. (usual D) as index.

As another example, you can find from the DPL that the reactance of a 200-µh choke is about 500 ohms at 455 kc. For greater precision, again turn the rule over, set the frequency 455 on the 2r scale, move the slide under the hairline to 200 on the L. (CI) scale and read 573 ohms under the X. (C) index on the D scale.

In both these problems we know nearly what the answer is by reading it approximately on the DPL. This tells us that the answer to the first problem is not 15.9 ohms nor 1,590 ohms but 159, and that the answer to the last problem is not 57.3 nor 5,730 but 573 ohms. (Decimal points must normally be placed by using pencil and paper and rough calculations, with an ordinary slide rule.)

If, for example, you need to know what inductance would have 300 ohms reactance at 100 mc, just set the X, indicator to 300, the hairline to 100 mc and read 0.5 µh from the µh scale, or you could find that a capacitance of 5 pf would have 300 ohms reactance at 100 mc, etc.

With the DPL you can make quick approximations of resonance. You could find, for example, that a 200-pf capacitor and a 500-µh coil resonate near 500 kc. Reading from the front of the rule, on the H scale, shows that the actual frequency is 504 kc. Here again you can solve for any unknown; if you know frequency and capacitance, you can solve for L; if you know frequency and inductance, you can solve for C, or if you know frequency only, you can solve for the L-C product, etc.

In addition to the Decimal Point Locator on the reverse side of the rule, there are more than 60 of the most-used electronics formulas and conversion factors—Ohm's law for dc circuits, Ohm's law for ac circuits, frequency and wavelength, reactance, resonance, decibels, power factor, transformer impedance ratios, parallel resistances, series and parallel impedances, coupled inductance, efficiency, temperature C to F and F to C and Kelvin, effective-to-average and effective-to-peak voltages, feet to meters, meters to miles, horsepower to watts, Q and many others.

The rule has all scales necessary for performing trigonometric functions and more than 30 pages of the instruction book are devoted to solving such problems. These examples are very helpful to users unfamiliar with slide rules.

The rule is all-aluminum, with adjustable slide tension, and comes in a handsome stitched leather case with a thick plastic insert to protect the rule. Every rule comes with a free four-lesson course that will be graded by instructors at CIE if you wish.

I introduced this rule to a group of high-school students studying electronics and struggling through various reactance and resonance problems. After a short course of instruction on the rule they really "came to life" and began solving all sorts of electronics problems for the sheer fun of it.—Wayne Lemons

Radio-Electronics
The Schober TR-2
Transistor Power Amplifier

A commercially available monophonic amplifier is a rare beast today. And a transistor mono amplifier? In high-fi, the word transistor has become linked forever with stereo!

Well, here’s a transistor monophonic power amplifier—and one of the most unusual pieces of audio equipment I’ve seen. The Schober TR-2 is very nearly a black-box power amplifier. It will put out at least 40 watts into 8 ohms anywhere between 20 and 15,000 cycles seemingly forever, with a harmonic distortion well under 1% (verified). Though it is not much smaller than a comparable tube amplifier, it is certainly lighter (no output transformer) and far, far cooler.

The most unusual feature of the Schober TR-2 is its “cooling system.” Instead of the large, finned heat sinks that are almost universally used with power transistors, this amplifier has a chassis of unusually thick aluminum. The six power transistors (four output, one driver and a regulator) are mounted near the edges of the chassis top in two rows of three, with five round 1/4-in. holes in a row between them. Inside the perforated cage is a small fan (see the photo) which draws air through holes in the chassis bottom plate, up around internal components, up through the five big holes near the power transistors, and out. A simple sort of forced-air cooling, in which the convection of a large volume of moving air replaces the cooling-by-radiation of heat sinks.

A bonus of the heavy aluminum chassis is its rigidity—an important thing with a big power transformer.

A sign of the versatility of the TR-2 is the fact that it has both a “volume” control and a “sensitivity” control. The first is a potentiometer at the input jack, fitted with a knob. The second is a rheostat in series between the emitter-follower input stage and the next stage. The sensitivity control is a level-set that makes it possible to set the full-power sensitivity of the TR-2 anywhere from .05 to 0.8 volt, giving the volume control a useful range.

To those who worry about the delicacy and temperament of transistor amplifiers—forget it (at least with this one). Neither running it at full power (even at high frequencies) nor shorting the output terminals will harm it. At most, the resettable circuit breaker will pop open. The only caution is this, quoted from the instruction sheet: “If the amplifier has been operated at a very high power level for a . . . time sufficient to make the chassis feel quite warm or even hot, you must avoid shorting the output . . .

The major secret of this reliability is a 0.3-ohm 10-watt resistor in series with the speaker terminals, plus a bit of negative current feedback to the driver stage. A short across the output terminals is now not a dead short on the power supply through the transistors (which would destroy them in an instant), but a “0.3-ohm short” (plus the 0.24-ohm current-feedback resistor). That small resistance is enough to keep the transistors from being hit with full current at full voltage in case of a shorted output, and the increased signal current increases the negative feedback.

Shot through cage shows cooling fan.
Low boy suffering from sickly bass response and anguished highs? Rejuvenate it economically with a Triad wide-range, shielded SX-series replacement output. There are 8 of them, all neatly packaged into cases just 2½ inches high. Single-ended, push-pull or Williamson circuit, 4.8-16 ohm secondaries, plus or minus 2 db at 20 or 20,000 cycles, high open circuit inductance, low leakage, finest materials, baked varnished finish. And the prices are very right for this kind of performance. For sound doctoring of the highest professional caliber, prescribe Triad SX output transformers for those long-suffering, low-profile patients. Write for complete details: Triad Distributor Division, 305 North Briant Street, Huntington, Indiana.

WHAT IS A “DIGITAL PASSIVE SCALER”? This unit, built by Western Reserve Electronics of Cleveland, Ohio, is a beautifully constructed volt-ohmmeter of high accuracy. It has both regular meter readout and digital readout from manually operated number drums. “Passive” in its name indicates that the instrument requires no external power for operation.

A front-panel switch labeled SEARCH MODE is for normal VOM readings with the meter. When this switch is moved to DIGITAL MODE, the meter is used only to indicate a null. The number drums are rotated until the meter reaches its “target” area. On voltage readings this target area is at the center scale of the meter, on ohms measurements it is at the left or “0” side of the meter.

In search mode, the meter is used the same as any 10,000-ohm-per-volt

SPECIFICATIONS

(All specifications are the manufacturer’s)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power response:</td>
<td>±1.5 db from 20 to 30,000 cycles</td>
</tr>
<tr>
<td>Rated power:</td>
<td>40 watts (into 8 ohms)</td>
</tr>
<tr>
<td>Harmonic distortion:</td>
<td>less than 0.75% from 20 to 20,000 cycles at 40 watts output</td>
</tr>
<tr>
<td>Intermodulation:</td>
<td>1.2% at 40 watts equivalent sine-wave power, using 60 and 7,000 cycles mixed 4:1</td>
</tr>
<tr>
<td>Hum & noise:</td>
<td>83 dB below 40 watts</td>
</tr>
<tr>
<td>Input impedance:</td>
<td>approximately 100,000 ohms</td>
</tr>
<tr>
<td>Sensitivity:</td>
<td>0.5 volt rms for 40 watts output at extreme clockwise setting of sensitivity control</td>
</tr>
<tr>
<td>Dimensions:</td>
<td>11½ x 7½ in (incl. mounting flanges)</td>
</tr>
<tr>
<td>Weight:</td>
<td>13 lb</td>
</tr>
<tr>
<td>Price:</td>
<td>$75.90, kit, including Fed. excise tax</td>
</tr>
</tbody>
</table>

to the driver, cutting the drive power to the output transistors.

The circuit is basically a slight variation on the popular RCA-developed “totem-pole” single-ended push-pull class-B scheme, with four 2N2147 transistors driven by a 2N2148 through a split-driven driver transformer. The supply to the driver and all previous stages is regulated.

Though I didn’t build the kit, a study of the instructions and of the amplifier itself shows no pitfalls even for the first-time novice. The instruction booklet contains excellently written material on basic construction and tool-handling techniques that might be valuable even to seasoned kit builders. Most of the pigtail components are mounted on an etched circuit board with numbered holes. Almost anyone should be able to finish the job in 4 to 5 hours.

What can you use it for? The Schober people are makers of electronic organs; hence a major application of the TR-2 is to supplement or replace the small amplifiers in their lower-priced organs, or to extend large organ systems where multiple-speaker installations are desired. But because of its excellent performance and versatility, it should be useful as a recording or broadcast monitor amplifier, a utility power amplifier for labs and service shops, or as a driver for a center-channel speaker in three-channel stereo.

And let’s not forget the man who just isn’t interested in stereo. Has no use for two channels and simply wants 40 to 50 watts of clean, reliable power to feed to his one speaker.—Peter E. Sutheim
LIVE BETTER ELECTRONICALLY with LAFAYETTE RADIO ELECTRONICS

HI-FI AND CB EQUIPMENT Headquarters

NEW! LAFAYETTE 70-WATT COMPLETE AM-FM STEREO RECEIVER
Just Add Speakers and Enjoy FM, FM Stereo and High-Quality AM Reception
- A powerful 70-Watt Amplifier plus Complete Preamplifier Control Facilities plus a Standard AM Tuner plus a sensitive FM Tuner plus an FM Stereo Tuner—all on One Compact chassis
- Amazing FM "Stereo Search" Circuit
- Signals Presence of Stereo Broadcasts
- Tuned Nuvistor "Front End" provides Greater Sensitivity, Lower Noise
- Bar-Type Tuning Indicator for AM and FM
- Variable AFC Control
- Imported

TAKES REELS UP TO 7"

THE WIDELY ACCLAIMED LAFAYETTE RK-137A TAPE RECORDER
FEATUREING 4—TRACK STEREO PLAYBACK
- TRACK MONOAURAL RECORD PLAYBACK
With Electronic Track Selector
Switch, VU Recording Level
Meter and Pause Switch For Instant Editing
Includes Lightweight carrying case, dynamic microphone, output cable, 7 inch empty tape reel.
- Two Speeds—3/4 & 7 1/2 in. / Pause LeverProvides Instant Stop for Editing
- Record—Erase Safety Switch
- Fast, Rugged Shift Lever Control
- Extension Speaker Jack
- High Impedance Monitoring Jack
- VU Meter Recording Level Indicator
- Electronic Track Selector Switch
- Specially Designed Heavy-Duty 9x4" FM Speaker
- Separate Erase and Record Heads
- Imported

FREE!

LAFAYETTE RADIO ELECTRONICS
1965 CATALOG NO. 650 516 PAGES!
See The Largest Selection in Our 44-Year History
- Stereo Hi-Fi — Famous Brands plus
- Lafayette's own Top-Rated Components
- Citizens Band Equipment
- Tape Recorders
- Ram Gear
- Radio's, TV's and Accessories
- P.A. Equipment; Intercoms
- Test Equipment
- Optical Goods
- Auto Accessories
- Musical Instruments

MAY, 1965

LAFAYETTE RADIO ELECTRONICS
Dept. J.E.P.O., P.O. Box 18
Syosset, L.I., N.Y. 11791

Send me the FREE 1965 Lafayette Catalog 650 $1.00 enclosed; send me...

Name...
Address...
City State Zip...

(Prices do not include shipping charges).

www.americanradiohistory.com
BUILD-IT-YOURSELFERS!

Don't miss these outstanding

BONUS ARTICLES

$25 Transistor Voltmeter!

Author Victor Laughter tells how to build highly practical, stable "tvm" with 200,000 ohm-per-volt input, resistance and maximum full-scale sensitivity of 1 volt. Ideal for transistor circuitry measurements. Costs only $20 to $25 to build.

Easy-to-build Muscle Stimulator...

Uses single transistor, powered by flashlight batteries. Long prescribed in physiotherapy, electronic muscle stimulation has called for high-priced equipment. Read how you can build this low-cost stimulator at home.

Worth many times the cost of your

June RADIO-ELECTRONICS

EQUIPMENT REPORT continued

meter. In the digital mode, the range switch is used normally; turning it moves the decimal point to the proper position for digital readout. The drums are then rotated with thumb wheels until the meter pointer exactly centers on target. The exact voltage or resistance is then read from the number drums.

The 1% accuracy of the digital readout on all ranges makes the Digital Passive Scaler suitable for many calibration applications in shop or factory. In fact, I found that my sample meter was within 1/2% of any reading compared to a laboratory standard voltage source, except on the 100-volt range, where it was within 3/4%. In other words, more than enough accuracy for all but extremely demanding applications.

Other interesting features are built into this professional instrument. A solid-state meter protection circuit is used but, in addition, a sensitive relay disconnects the negative input lead on overloads. If you are reading 85 volts on the 100-volt range and inadvertently switch to the 10-volt range, the relay will open the test lead circuit. A red button on the front panel is used for reset. The 1.5-volt ohmmeter battery is "borrowed" to energize the relay coil during the reset function.

This instrument should be ideal where high accuracy, long-term stability and ruggedness, as well as professional appearance, are important.

The ohmmeter in the search mode and on any of the first four ranges (X1, 10, 100 or 1,000) has on the test leads less than the threshold voltage of silicon semiconductors, so that resistance measurements can be taken with no shunting error in circuits containing these devices. Voltage on any ohmmeter range is small and the current is limited, so that there is no possibility of damage to semiconductors of any kind.

Voltmeter ranges are from 0.1 to 1,000 volts, ac or dc. Current can be measured from 10 µa to 10 amperes dc, resistances from 1 ohm to 1 megohm. (In the search mode, resistance down to 0.2 ohm can be read without trouble.)

Owning the Digital Passive Scaler is comparable to having a good Wheatstone bridge and vvm in one package. The instruction book, which is permanently fixed inside the lid, is one of the best written and most detailed I've come across in a long time. Also housed in the lid of the fiberglass case is an accessories panel for storing test-lead terminations.

It is a nice instrument, one that should find its way into many professional service and industrial applications.

—Wayne Lemos.

Western Reserve Electronics, Inc.,
12430 Euclid Ave., Cleveland, Ohio
44106. $350.

END

RADIO-ELECTRONICS
NEW SEMI-
CONDUCTORS
AND TUBES

SUBMINIATURE REFERENCE TUBES

A line of subminiature voltage reference tubes with extremely close tolerances and a low temperature coefficient has been released by Signalite, Inc. The tubes' working voltage is in the vicinity of 83 volts, depending on the particular type.

Life expectancy for all lamps in the series is 30,000 hours continuous operation. Operating temperature range is -55° to 90° C.

Maximum current is specified as the point at which there will be less than 1 volt change from the reference voltage. One type in the 82-volt series, the Z82R7, handles up to 7 ma; the Z82R10, up to 10, etc. In the "10", there is less than 1-volt change between 0.3 and 10 ma, and less than 0.2 volt from 0.35 to 7 ma.

Breakdown voltages vary from 100 to 107 (dc), depending on type.

UHF REPLACEMENT TRANSISTOR

A universal replacement germanium p-n-p epitaxial transistor called the TV1000 has been announced by Semi- tronics Corp. It is an exact replacement, according to the manufacturer, for front-end and mixer/oscillator transistors in Blonder-Tongue, Jerrold, JFD Finco, Alliance, Channel Master, Wine- gard, Gavin and other TV antenna boosters and master antenna systems. It is said to be equally applicable in TV cameras, video amplifiers and CB and ham equipment.

The TV1000 has a straight-line four-lead design ("straight-line" refers to the fact that its four leads are all in a straight line). Leads are gold-plated. Dealer net price is just under $3.

MORE ON THE MHO-AMP

In February's column we introduced Raytheon's Mho-Amp, a two-stage amplifier with a high-impedance field-effect transistor input, all packaged in a single TO-5 transistor case. The device's input impedance is greater than 1 billion megohms (really) and has 150 db gain.

We mentioned that although it was not, of course, intended as an audio amplifier (its price is up around $100), it was being demonstrated in that capacity, producing 1 watt of audio at less than 5% distortion. We thought you might be interested in seeing the circuit—unusual in many ways. It is no more complex, certainly, than a two- tube phono amplifier, especially since it has separate volume, bass and treble controls.

The circuit shown here requires 400 mv (0.4 volt) across 2 megohms for full output.

For those of you who have money to burn and want to buy an RM3036 Mho-Amp and try the circuit, one word of caution: spend an extra few bucks and buy a 10- or 15-watt isolation transformer. Transformerless circuits can be dangerous.

Circuit of Mho-amp amplifier. Symbol is Raytheon's; device has what amounts to 2 stages even though symbol does not show them.
SOMEONE SHOULD DEVELOP AN EASY WAY TO LEARN ELECTRONICS AT HOME

RCA INSTITUTES DID!

Here is a whole new approach to learning electronics at home! RCA Institutes, one of the nations' largest schools devoted to electronics, has developed a faster, easier way for you to gain the skills and the knowledge you need for the career of your choice. Here for the first time, is a student-proved, scientifically designed way to learn. If you have had any doubts in the past about home training in electronics—if you have hesitated because you thought you might not be able to keep up—or that electronics was too complicated to learn—here is your answer! Read how RCA Institutes has revolutionized its entire home training ideas!
NEW CAREER PROGRAMS
BEGIN WITH "AUTOTEXT" INSTRUCTION METHOD!

Start to learn the field of your choice immediately!

No previous training or experience in electronics needed!

With this new revolutionized method of home training you pick the career of your choice—and RCA Institutes trains you for it. RCA's Career Programs assure you that everything you learn will help you go directly to the field that you have chosen! No wasted time learning things you'll never use on the job! The Career Program you choose is especially designed to get you into that career in the fastest, easiest possible way!

And each Career Program starts with the amazing "AUTOTEXT" Programmed Instruction Method—the new, faster way to learn that's almost automatic "AUTOTEXT" helps even those who have had trouble with conventional home training methods in the past. This is the "Space Age" way to learn everything you need to know with the least amount of time and effort.

CHOOSE A CAREER PROGRAM NOW
Your next step may be the job of your choice. Each one of these RCA Institutes Career Programs is a complete unit. It contains the know-how you need to step into a profitable career. Here are the names of the programs and the kinds of jobs they train you for. Which one is for you?

Television Servicing. Prepares you for a career as a TV Technician/Serviceman; Master Antenna Systems Technician; TV Laboratory Technician; Educational TV Technician.

FCC License Preparation. For those who want to become TV Station Engineers, Communications Laboratory Technicians, or Field Engineers.

Automation Electronics. Gets you ready to be an Automation Electronics Technician; Manufacturer's Representative; Industrial Electronics Technician.

Automatic Controls. Prepares you to be an Automatic Controls Electronics Technician; Industrial Laboratory Technician; Maintenance Technician; Field Engineer.

Digital Techniques. For a career as a Digital Techniques Electronics Technician; Industrial Electronics Technician; Industrial Laboratory Technician.

Telecommunications. For a job as TV Station Engineer, Mobile Communications Technician, Marine Radio Technician, Industrial Electronics. For jobs as Industrial Electronics Technicians; Field Engineers; Maintenance Technicians; Industrial Laboratory Technicians.

Nuclear Instrumentation. For those who want careers as Nuclear Instrumentation Electronics Technicians; Industrial Laboratory Technicians; Industrial Electronics Technicians.

SEPARATE COURSES
In addition, in order to meet specific needs, RCA Institutes offers a wide variety of separate courses which may be taken independently of the Career Programs, on all subjects from Electronics Fundamentals to Computer Programming. Complete information will be sent with your other materials.

LIBERAL TUITION PLAN
RCA offers you a unique Liberal Tuition Plan—your most economical way to learn. You pay for lessons only as you order them. No long term contracts. If you wish to stop your training for any reason, you may do so and not owe one cent until you resume the course.

VALUABLE EQUIPMENT
You receive valuable equipment to keep and use on the job—and you never have to take apart one piece to build another. New—Programmed Electronics Breadboard. You now will receive a scientifically programmed electronic breadboard with your study material. This breadboard provides limitless experimentation with basic electrical and electronic circuits involving vacuum tubes and transistors and includes the construction of a working signal generator and superheterodyne AM Receiver.

Bonus From RCA—Multimeter and Oscilloscope Kits. At no additional cost, you will receive with every RCA Institutes Career Program the instruments and kit material you need to build a multimeter and oscilloscope. The inclusion of both these kits is an RCA extra.

CLASSROOM TRAINING
ALSO AVAILABLE
RCA Institutes maintains one of the largest schools of its kind in New York City where classroom and laboratory training is available in day or evening sessions. You may be admitted without any previous technical training; preparatory courses are available if you haven't completed high school. Coeducational classes start four times a year.

FREE PLACEMENT SERVICE
In recent years, 9 out of 10 Resident School students who used the Free Placement Service had their jobs waiting for them when they graduated. And many of these jobs were with top companies in the field—such as IBM, Bell Telephone Labs, General Electric, RCA, and radio and TV stations and other communications systems throughout the world.

SEND ATTACHED POSTAGE PAID CARD FOR COMPLETE INFORMATION, NO OBLIGATION. NO SALESMAN WILL CALL. FREE BOOK INCLUDED. CHECK HOME STUDY OR CLASSROOM TRAINING.

RCA INSTITUTES, Inc., Dept. RE-55
A Service of Radio Corporation of America
350 West 4th St., New York, N.Y. 10014

The Most Trusted Name in Electronics

MAY, 1965

69
TECHNOTES

NORELCO/PHILIPS CONTINENTAL 400
STEREO RECORDER

Mono playback and recording OK on either track. Stereo recording and playback missing in right channel. Capacitor C108, .015 μF, 400 volts, interstage coupling in right-channel equalized amplifier, leaky. (Leakages as high as 750,000 ohms can block this stage. Triode following is self-biased with grid resistance of 40 meg.) Capacitor, connected between pins 2 and 6 of V103 (12AY7 ECC83), can be replaced by removing bottom plate over preamp section, input panel, and shield over radio phono jack.

AM INTERFERENCE ON FM

Recently I had a transistor AM–FM portable in for service with an odd complaint. A local AM station would break through and disturb the reception of an FM station. The customer lived very close to the 50-kw transmitter of the AM station. An overall check of the set showed no trouble.

The set was an imported make with separate front-ends for AM and FM, a common i.f. system and a switch feeding power to the correct front end and changing the audio circuit to one detector or the other. The tuning capacitor was the combined type with four gangs, two for each section. I noted that the dial setting of the desired FM station corresponded with the setting of the AM station that was breaking through. Shorting the antenna tuning section of the AM front end removed the interference.

The high Q of the tuned circuit and the proximity to the transmitter caused a high resonant voltage across the plates of the tuning capacitor and a high current through the entire circuit. This was somehow modulating the FM oscillator and breaking through the a.c’s help.

Since there are only two FM stations in our locality I decided to alter the frequency of the FM front end, placing the desired station about 1 megacycle lower on the dial than it had been, and about 50 kc off resonance for the AM station. This cured the trouble and did not interfere with the calibration of the FM dial too greatly. Since there was ample room at the ends of the dial, future stations will be receivable without change.—Steve P. Dow

VERTICAL DRIFT IN RCA PORTABLES
CHASSIS KCS120-E–F

One of these sets had a vertical frequency drift that depended on temperature. If the hold control was adjusted when the set was thoroughly warmed up, the picture would roll rapidly downward the next time the set was turned on after cooling off. All components checked good.

I sprayed a chilling chemical on ceramic capacitors C238 and C240 while the set was warm and in sync. At once
it went into a downward roll. I replaced the ceramics with Mylar units—that cured the trouble.

A slow-heating 6AQ5 vertical output tube will cause the same trouble, though less serious.—Charles Andrews

CLEANING TAPE-RECORDER HEADS

To do a fast, efficient job cleaning heads on tape recorders without undue wear on the heads, use relay-cleaning tape K. S. 6528 manufactured by Hope Webbing Co., Inc., 350 5th Aved., New York, N.Y.

Run the tape past the head several times just the way the recording tape runs. If the cleaning tape comes out dirty, use another piece and repeat the process.—George P. Oberto

[Cleaning tapes especially for tape recorders are also available from Elpa Marketing Industries, Robins, Audiotex, Lafayette and possibly other sources.—Editor]

END

CATV—WHETHER, WHITHER AND WHY

continued from page 29

public, the entertainment industry and the thousands of television dealers and service technicians throughout the country. No longer is CATV confined just to outlying and remote regions. It is now virtually in every type of market, large and small. At its present rate of growth, CATV will soon be in every city in the nation with a population of 2,500 or more. Such growth presents a number of dangers:

1. CATV can hurt local TV stations by making available distant big-city stations. By duplicating the big-city stations' programming, they are diluting available audiences, affecting ratings of local stations and possibly their advertising rates. Local stations must be allowed to continue their functions as a local service.

2. Uhf growth and CATV growth are incompatible. It is common thinking in the broadcasting field that no investor will apply for and build a uhf station where a local CATV system is making available big-city TV, uninterrupted FM music and weather channels. At present, more than 1,000 uhf stations are allocated but not yet on the air. They must be permitted and encouraged to proliferate as a true extension of free TV. Within years, more than 20 million all-channel TV receivers will be sold fully equipped to receive those stations.

3. Many persons may find themselves paying for "more TV" but retaining their old viewing habits and watching their favorite stations. In such instances (and there could be hundreds of thousands of them), the set owner would be paying a permanent monthly charge for what he had been getting free. After he has discarded his antenna, worth up to $100, he is reluctant to incur a whole new set of installation expenses and goes on paying his "4, 5, or 6 bucks a month, ad infinitum."

4. We know of no stated plans for utilizing or converting CATV systems into pay-TV facilities—but it is possible. The present cables which carry up to 12 channels of off-the-air program material can easily include a scrambled pay-TV channel. Billing can be done by meter or through a pair of telephone company wires.

5. Is it legally and morally right for CATV to take off-the-air material and retransmit it for a charge without the consent of, and with no compensation to, the owner?

MAY, 1965

America's most popular tube tester

... because it finds the 'tough dogs' others miss!

The New Sencore TC130 Mighty Mite III Tube Tester

New in looks and compactness, updated with many exclusive features. The MIGHTY MITE tester, long America's most popular tube checker because it has the versatility and reliability professional servicemen demand! The MIGHTY MITE III checks them all — more than 2,500 tubes plus picture tubes, including the new frame grid tubes (has four extra sockets for latest tubes). It's fast and thorough, checks for control grid leakage, then, with the flick of a switch, tests for interelement shorts and cathode emission at full operating levels. Uses costly moving coil meter for high sensitivity (100 megohms) to find those "tough dog" tubes other low-sensitivity testers miss. In versatility, reliability, portability and operating simplicity, the TC130 is your best buy in tube checkers at

$74.50

Compare these Mighty Mite III Features:

Lower voltage for Novitors and all frame grid tubes • Unique circuit tests for inter-element shorts, each and every element • Checks cathode emission at full operating levels • Checks control grid leakage at 100 megohms sensitivity, like "eye tube" testers.

Speed-indexed set-up cards greatly reduce look-up time • Simplified panel layout speeds checks, prevents errors • Burn-out proof, stick-proof meter • Sturdy, all-steel case, rubber feet • Styled for modern, professional look

Professional quality — that's the difference!

Sencore

426 South Westgate Drive • Addison, Illinois

MAY, 1965
CATV—A NATURAL EVOLUTION

6. CATV can very easily and naturally become involved in set service—unless cable repair men are clearly barred from servicing.

The existence of an independent servicing industry is threatened. When the receiver fails to work normally, the fault may be in the cable or in the set. The set owner, not wanting to pay for a service call only to be told that the fault is in the CATV system over which he has no jurisdiction, will naturally call the CATV company. Under such circumstances the idea of a service department to handle customers' sets becomes very attractive—almost necessary. Such a situation can lead only to deterioration of the independent service industry on which we depend for the performance of our TV receivers as well as our radios and hi-fi equipment.

There is a truly simple way to bring order to this complex problem. As a legitimate business, CATV has every right to exist and provide whatever service it can bring to its subscribers. But it is too closely linked to broadcasting and the use of the radio spectrum not to be answerable to the same agencies—the Federal Communications Commission. There are those who believe that the FCC has jurisdiction over CATV (referring to Titles II and III of the Communication Act). At least two briefs, one by the American Broadcasting Co., have been filed urging the commission to exercise this jurisdiction. The FCC has thus far failed to reply. The only other avenue for regulation is Federal legislation making CATV subject to the full provisions of the Communications Act.

Regulation and control over CATV by the FCC is desirable for a number of reasons. Here is an agency competently staffed with some of the nation's top engineers and attorneys who, with complete authority and absence of bias, can decide purely in the public interest whether CATV is a boon or bane to the public. Only they can weigh the effect of CATV upon local TV stations and the growth of UHF. They would have absolute power to grant a CATV license, establish technical standards, and if pay-TV must come, assure its having little if any effect upon free TV.

And in the true American tradition, hearings would be held so that all sides of any CATV installation at issue could be heard and aired—and there would be opportunities for appeals where indicated. Local city councils are unequipped and unqualified to decide whether CATV belongs in their communities.
Another important factor is that CATV serves as a tremendous impetus to color TV sales. People who know that they can get excellent color reception consistently are willing to invest in a color set.

Mr. Schlosser says, "Color TV and remote-control sets are now selling. Very few color sets were in use before the cable came. Fading and interference could not be overcome even with expensive antenna installations."

And not even the antenna business is a total loss. In large cities and suburbs, the majority of residents never sign up for the CATV service. Yet the nonsubscribers have a new standard against which they can compare their reception. Not only do the nonsubscribers become more quality conscious, but they are more inclined to reach out for the distant channels being brought in by cable. This means that the aggressive dealer can promote bigger and better antenna installations. And he can often justify their cost by comparing it with the total monthly CATV subscription charges over a several-year period.

CATV has many enemies. These include:

1. Antenna manufacturers, who fear they will lose business.
2. Broadcasters, who feel that CATV competes with them.
3. Theater owners, who also think of CATV as competition.

Broadcasters often insist that CATV will drive them off the air. Fortunately, this is not true. Let's take a look at the record.

During hearings in 1958 and 1959, the FCC heard testimony from licensees of 12 television stations, who charged that CATV would destroy their economic base.

This never happened. All 12 stations survived. As a matter of fact, none of these stations decreased its rates and 9 of the 12 have increased them since 1959. Ranging from 11% to 66%, these rate increases average out to almost 30%.

Similarly, CATV has been accused of preventing the proliferation of uhf. Again, this is not true. A lot of uhf channels did fail when the band was first opened, but this was due primarily to the lack of TV sets capable of receiving uhf. (The recently enacted all-channel law was designed specifically to remove this roadblock.) Of the 109 uhf stations that have gone off the air, only 18 operated simultaneously with CATV systems in the same community. Two of these stations wrote letters commending the local CATV system for helping them stay on the air as long as they did. And only one uhf station—which later returned to the air as vhf—ever claimed that CATV was a factor. The FCC found insufficient evidence to indicate that the impact of CATV was serious enough to threaten a station's continued existence.

Of course, CATV is competition for other forms of home entertainment. But since when is competition a bad thing? What actually happens in a CATV area is that the local broadcasters are forced to improve their programming. This definitely benefits the public.

And, importantly, CATV is not pay-TV. It is simply a method of improving TV reception. All TV is wired TV, and there is no such thing as free TV. You pay for your TV set, your antenna and maintenance on both. You need a wire between the antenna and the TV set, whether it be 6 inches long or 6 miles long. CATV simply gives you an extra choice. You can buy an indoor antenna, an outdoor antenna or connect your set to the community antenna.

The unalterable fact is that many people want the choice offered by CATV. This is obvious, since many are willing to pay for it. It is good business to give the public what they want... and the business that does just that serves in the public's best interests.
NEW PRODUCTS

SOLID-STATE STEREO AMPLIFIER, model SA-2000, provides 36 watts IHF music power (18 watts per channel). Reproduces all frequencies from 8 to 25,000 cycles with flat response within ±1 db at 1 watt; at full power 10 to 23,000 cycles with flatness of ±1 db. Damping factor 25:1; square-wave rise time 5 µsec; harmonic distortion less than 1%; hum and noise suppression at least 60 db. Controls: volume with power switch; balance; ganged bass and treble; contour switch; low-cut switch; high-cut switch; tape-monitor switch; speaker-defeat switch. 13.5 x 4.5 x 8 in., 9 lb. Harman-Kardon, Inc., 15th & Lehigh Ave., Philadelphia 32, Pa.

SOUND ON THE MOVE!

AMPLI-VOX

SOUND CRUISER

COMPLETE MOBILE SOUND SYSTEM

- Equip any car, truck, bus, or boat for clear powerful soundcasting in just 45 seconds
- 32 watt solid state amplifier plugs into auto cigarette lighter socket
- Noise cancelling hand-held microphone has 5' coil cord, push-to-talk switch
- Two weatherproof horn speakers swivel and lock in any direction, are pre-mounted on car-top carrier ready to clamp to car
- Ideal for voice or music; inputs for tape recorder, turntable, etc.

Model S-310, Complete system, including F.E.T. $169.95
Model S-300, Amplifier only, including F.E.T. $79.95

Write for literature and detailed specifications.

AMPLI-VOX AUDIO PRODUCTS are manufactured in U.S.A. by

PERMA-POWER COMPANY 5740 N. Tripp Ave., Chicago, Ill. 60646
Phone (312) 539-7171

MICROPHONE, model 500 (cardioid), now available with gold finish at no extra cost. — Turner Microphone Co., 909 17th St. N.E., Cedar Rapids, Iowa 52402

CLOSED-CIRCUIT TV CAMERA, type PK-301, has 8134 electrostatic vidicon tube. Power: 117 volts, 50-400 cycles or 12 volts dc. Video output adjustable to 0.7 peak-to-peak noncomposite or 1.0 volt peak-to-peak composite. Horizontal resolution: 700 lines in center of picture, 500 lines in each corner. Video response un

AMPLI-VOX AUDIO PRODUCTS are manufactured in U.S.A. by

PERMA-POWER COMPANY 5740 N. Tripp Ave., Chicago, Ill. 60646
Phone (312) 539-7171

74
wires, rf-cured epoxy bonds at points of strain.—Utah Electronics, 1124 E. Franklin St., Huntington, Ind.

POCKET-SIZE VOLTOMETER, the Mini-Test, model VT-101, measures 65 to 800 volts ac or dc.—I. E. H. Mfg. Co., Inc., 102 Prince St., New York, N.Y.

ORGAN KIT, model GD-983, is kit version of Thomas’ Coronado BL-3 all-transistor organ. 17 true organ voices; 2 full-size 44-note keyboards; 28 chime notes; 13-note heel-and-toe pedalboard with 1-octave range C through C, color-tone attack, repeat and sustain percussion; reverb. Built-in 2-speed Leslie rotating speaker plus 2-unit main speaker system using 12-in. speakers. Stereo chorus control; vibrato; treble accent; manual balance; pedal volume; expression pedal. Headset outlet, all-transistor 75-watt EIA peak music power amplifier. Factory-assembled walnut-finished hardwood cabinet and bench.—Heath Co., Benton Harbor, Mich. 49023

15-WATT STEREO AMPLIFIER, model AM-256. Frequency response 80 to 20,000 cycles; output 15 watts (7.5 per channel); output impedance 4, 8 and 16 ohms. Controls: input selector, volume, tone and balance. Stereo reverse switch. Inputs: crystal or ceramic phono. Vented metal cabinet. 10½ x 8½ x 4 in. Operates on 110-120 volts, ac 50-60 cycles.—Olson Electronics, Inc., 260 S. Forge St., Akron 6, Ohio

AMATEUR COMMUNICATIONS RECEIVER, HA-255, has 14-tube superheterodyne circuit and dual conversion on 6 meters. Frequency coverage from 150 kc to 54 mc in 5 bands: 150–400 kc (Marine Beacon), 1.6–4.8 mc, 4.8–14 mc, 10.5–30 mc, 45–54 mc. Separate filament transformer for mixer and oscillator tubes; calibrated electrical bandspread on operator bands 80 through 10 meters; 0–100 logging scale, sensitivity 0.5 µv for 10-db signal-to-noise ratio. Product detector SSB, BFO, Q-multiplier, crystal calibrator (crystal optional); ANL, 5-meter, jack for tape recorder input, voltage-regulated power supply, 1.5-watt audio output into 8 and 500-ohm terminals (speaker optional). 17 x 7½ x 10 in.—Lafayette Radio Corp., 111 Jericho Turnpike, Syosset, N.Y.

STEREO PICKUP CARTRIDGE, model A. Manufacturer claims frequency response curves no longer significant; response is wide and flat, an incidental consequence of the extremely high compliance and low moving mass of stylus assembly (10 x 10⁻⁶ cm²/dyne dynamic compliance; 0.3 mg dynamic tip mass). Response 10 cycles to beyond 50 kc. Output (with transformer), 4 mv at 5 cm/sec recorded velocity, 6,000-ohm source impedance, without transformer, 1 mv at 5 cm/sec, 400-ohm source impedance. Recommended load resistance, 1 megohm. Tracking force, 1 to 2 grams. Stylus is manufacturer’s Twin Tip design; vertical tracking angle, 15°.—Grado Laboratories, Inc., 4614 Seventh Ave., Brooklyn, N.Y. 11220

VOCAL ACTIVATED BATTERY RECORDER, model 905, features transistorized voice-activated mechanism and automatic gain control. Upper of the 2 units serves as portable recorder when detached; weighs 4½ lb. Placed on base amplifier/speaker, recorder will play back (base also has charger). Power requirements: recorder—4 AA batteries; speaker/100 ohm.

NEW

UHF FIELD STRENGTH METER ADAPTOR

Why Shelve your present VHF Meter when you can Economically move up to the UHF Field with the new SADELCO UA-1 UHF ADAPTOR. The UA-1 is a low noise, highly accurate UHF Receiver, individually calibrated for field strength measurements. Completely self-contained with its own regulated battery supply. WILL WORK WITH ANY VHF METER.

Accuracy... plus or minus 2 DB

Input... 75 ohm • UHF Channels 14-83

Output... 75 ohm • 62 megacycles or

Channels 2-3

Semiconductors... 3 transistors, 2 diodes

SPECIAL FEATURES

• Weighs only 18 ozs. • Tunable plug-in probing antenna • UHF 300 to 75 ohm matching transformer • Holding Bar for quick snap on facility • Built in Battery Meter.

Price $120.00 net

PROVEN

A CHAMPION at only 3½ lbs.

THE SADELCO MODEL FS-2

The World’s Only Truly Compact (8¼" x 4½" x 3") Precision TV-FM Field Strength Meter IDEAL FOR: Field Surveys • Antenna Checking • Gain Measurements Accurately Calibrated in microvolts and DBs.

RANGE:

Band 1 – Channel 2 to 6 plus FM

Band 2 – Channel 7 to 13

Band 3 – UHF Adaptor position

The Model FS-2 has a high accuracy of plus or minus 175 DB and compares favorably with meters costing over $2000.

A Professional Instrument $295.00 net complete with carrying case and batteries

Sadelco Field Strength Meter

SADELCO INC.

101 W. 25th St., N.Y., N.Y. 10001

212 WA 9-2628

Inquire about our Trial Offer.

Write to

SADELCO, INC.

501 W. 25th St., N.Y., N.Y. 10001

212 WA 9-2628

www.americanradiohistory.com
NEW PRODUCTS continued

TUNER REPAIRS
Includes ALL parts (except tubes)... ALL labor on ALL makes for complete overhaul.

$9.50

FAST, 24-HOUR SERVICE with FULL YEAR WARRANTY

Sarkes Tarzian, Inc., largest manufacturer of TV and FM tuners, maintains two completely-equipped Service Centers, offering fast, dependable tuner repair service. Tarzian-made tuners received one day will be repaired and shipped out the next. More time may be required on other makes. Every channel checked and realigned per manufacturer's specs. Tarzian offers full, 12-month guarantee against defective workmanship and parts failure due to normal usage. Cost, including all labor and parts (except tubes), is only $9.50 and $15 for UV combinations. No additional costs. No hidden charges. You pay shipping. Replacements at low cost are available on tuners beyond practical repair. Always send TV make, chassis and Model number with faulty tuner. Check with your local distributor for Sarkes Tarzian replacement tuners, parts, or repair service. Or, use the address nearest you for fast factory repair service.

SARKES TARZIAN, INC.
TUNER SERVICE DIVISION
Dept. 200
537 South Walnut St., Bloomington, Indiana
Tel: 332-0383

Panel instruments, G-Series, 2%, 3% or 4% in., optional mounting bezel; Bar-Ring dc movements; long dominant scale with plenty of dial area; flat insert for masked portion of meter front for personalizing meter (special handling fees). Ae ranges from 10 ma, de ranges from 5 µa. 2 mounting styles shown.—Triplet Electrical Instrument Co., Bluf- ton, Ohio.

REMOTE GARAGE-DOOR OPENER, Doornatic 4000 consists of door-opener mechanism, radio-control receiver, manual pushbutton wall switch, mounting hardware and small tone-modulated transistorized radio-control transmitter operating from self-contained battery. Factory-wired, couples with Part 15 of FCC regulations.—EICO Electronic Instrument Co., Inc., 131-01 39th Ave., Flushing, N.Y. 11352

DEGAUSSING COIL, Walsco 2592, 7 in., molded in hi-impact plastic case. Extension cord and built-in switch with a clip for hanging on back of color TV set—GC Electronics Co., 400 S. Wyman St., Rockford, Ill.

INSULATING SPRAY, NO ARC, for protecting high-voltage components such as flyback transformers, yokes, eliminating arcing, corona and shorts plus coating against humidity and weather.—Chemtronics, Inc. 1260 Ralph Ave., Brooklyn, N.Y. 11236

AUTOMATIC TURNTABLE, Micro- cord 40, pickup arm will track any car-

TWO NEW CONE TWEETERS under the Tempo label. Model T 3C208 is 3 in. square, has frequency response of 1,800 to 17,000 cycles, power capacity of 6 watts. Model T 5C208 is 5 in. square, frequency response of 1,000 to 17,000 cycles, power capacity of 6 watts. Recommended for use in combination with low-resonance woofers.—Oxford Transducer Corp., 2331 N. Washburn Ave., Chicago, Ill. 60647
tridge at recommended stylus-force settings to less than 1 gram, has gram-calibrated dial, plays single records manually or automatically and stacks up to 10 records. Turntable is 1-piece casting, 12-in. diameter, 6 lb. Wow and flutter less than 0.1%, rumble better than 50 db below average signal level.—Benjamin Electronic Sound Corp., 80 Swalm St., Westbury, N. Y.

UIHF TV FIELD-STRENGTH METER ADAPTER. The UA-1 adapts any vhf TV field-strength meter for uhf TV measurements. Features: solid-state voltage regulator so batteries can be used down to 40% below rated voltage; level meter indicates when batteries are exhausted; backward-diode mixer and mesa transistor i.f. stage for low noise and wide dynamic range from below 5 µv to 0.1 volt.—Sadelco Inc., 601 W. 28 St., New York, N. Y. 10001

DUAL-ELEMENT SCREEN YACI, model SY-42-13, 13 db, for TV service requiring high gain at 210 to 216 mc. Direct coaxial input for either 50 or 75 ohms, VSWR 1.5-1, power rating 2,040 watts. 60 x 60-in. reflector, frame of 14-in.-sq. aluminum, screening of ¾-in. reinforcing sleeves.—Technical Appliance Corp., Defense and Industrial Products Div., Sherburne, N. Y.

TV COLOR CONTROL CRYSTALS, No. CTV358. Supplied in HC 6/U hermatically sealed case with 2-in. leads, achieve perfect color control in color burst circuitry (3,579.54 kc). Exact replacements for color TV receivers of all leading makers.—Senortronics Corp., 205 Canal St., New York, N. Y. 10013

NEW MODULE RACK, 5½ x 11 in., can be used with any combination of 1-, 2-, 4- or 8-in. modules; will accept printed-circuit cards in combination modules. 5¼-inch module rack makes it possible to package a power supply and circuit boards or memory unit and logic boards in one compact unit. Available from stock.—Vero Electronics Inc., 48 Allen Blvd., Farmingdale, N. Y.

SPECIAL-PURPOSE PICOFUSES designed for fusing terminal strips and connectors. Ampere ratings from 5 through 50 amps at 125 volts. Short-circuit interrupting capacity of 300 amps at 130 vdc. Blowing time at minimum of 300% of rating. Fuse body, not including terminals, 9/32 x 0.785-in. diameter, weighs 1/5 gram.—Litellfuse, Inc., 500 E. Northwest Highway, Des Plaines, Ill.

with Quam speakers and rear seat kits — multi-taps and exact replacements —

Eight speaker sizes handle virtually any auto radio replacement—but size alone is not enough. You need the right voice-coil impedance—and QUAM has it! Choose multi-tapped models for stocking convenience; or, for specific applications, one of the 25 Quam exact replacements. (In addition, any Quam speaker may be special-ordered with any voice-coil impedance for an extra $1.00 list. This service is a QUAM exclusive.)

Write for your free copy of the Quam Auto Radio Speaker Replacement Guide. It gives complete replacement information on front and rear seat speakers for auto radio models from 1955 to 1963.

QUAM-NICHOLS COMPANY
234 E. MARQUETTE ROAD
CHICAGO, ILLINOIS 60637
YOUR CHOICE OF ANY 2 OF THESE ELECTRONICS BOOKS FOR ONLY $1.99 with your Introductory Demonstration Membership in the GERNSBACK LIBRARY ELECTRONIC BOOK CLUB SAVINGS UP TO 30%
NEW LITERATURE

MOTOR TEST MANUAL, 10 pages, describes all possible tests performed with absorption dynamometer using an electrical hysteretic brake; also automated instruments used in 100% production testing includes brochure on line of absorption dynamometers—John Chatillon & Sons, 85-93 Cliff St., New York, N.Y. 10038

COMMUNICATION ANTENNA SYSTEMS, Catalog No. 564, 64 pages with photos, specs, dimension patterns and technical data section (expanded beyond scope of earlier catalogs)—Communications Products Div., Photos Dodge Electronic Products Corp., Marlboro, N. J. 07746

DATA SHEETS, Bulletin 20164, on model 504 electrostatic charge amplifier. 7 sheets. Specs, photos, applications, characteristics—Kistler Instruments Corp., 809 Sheridan Dr., Clarence, N. Y.

CARTRIDGED TOLERED on alpha-numeric display tubes line, with brochure and bulletin sources on each.—Burroughs Corp., Electronic Components Div., Plainfield, N. J.

"NOTHING BUT NOISE!", 24-page pocket book, illustrated, describes problems and solutions of radio frequency interference in mobile rigs. Question-and-answer style.—Hallett Manufacturing Co., 910 Robeson St., Los Angeles, Calif. 90016

"VACO NEWS" is a monthly publication which lists and illustrates firm's new product literature, with box for checking catalogs desired. 4 pages, with photos, applications, and specifications—Kistler Instruments Corp., 317 E. Ontario St., Chicago, Ill. 60611

"CAREERS IN ELECTRONICS." 44-page booklet, giving explanations and choices of either home training or classroom courses for school with branches in Hollywood, Seattle, Kansas City, Mo., and Washington, D. C. Gives table of contents of books used in courses.—Grantham School of Electronics, 1505 N. Western Ave., Hollywood, Calif. 90027

ALTERNATORS BROCHURE, "There Is No Such Thing as an All-Purpose Alternator," illustrates 40-53, 60-100, and 175-amp sizes, and shows method of calculating electrical require-ment, alternator output, and comparing to be sure alternator matches load. With curves and photos.—Leece-Neville Co., 1374 E. 51 St., Cleveland 3, Ohio

PRECISION SWITCHES CATALOG, 12 pages, looseleaf punched, on Klikswitch snap-action switches—pin, leaf, plunger, roller-actuated switches, slide switches, high-current switches, foot-operated switches and actuators. Photos and specs.—Reagan Electrical, Inc., giving a complete list of Sales Promotion Dept., ITT General Controls, Inc., 801 Allen Ave., Glendale, Calif. 91201

CAPACITORS BROCHURE, 4-pages on ca-pacitors called VacCaps. Photos, diagrams, and specifications.—Etel-McCollough, Inc., 301 Industrial Way, San Carlos, Calif.

1965 MICROPHONE CATALOG, 16-page, 4-color, photos, specs of microphones for CB, broadcasting, amateur, professional and home recording, etc.—Turner Microphone Co., 909 17 St. N.E., Cedar Rapids, Iowa 52402

BULLETIN A105 describes the Alpha solder and flux research and development kit, which contains 36 solder-chemical materials.—Alpha Metals, Inc., 56 Water St., Jersey City, N. J. 07304

BROCHURE 5 ON BOOKS describes 8 publica-tions, most of them revised editions, including two new titles: "Short Wave Antenna—Theory and Practice" and "Home and TV Antenna for All Channel and Satellite Worlds." Publications 1, Lindorfshall, Hallerup, Denmark.

CONDENSED SEMICONDUCTOR CATA-LOG, 42 pages plus foldout, looseleaf punched, with chapters containing a quality-control flow chart, reference list for new design types, how to choose a photosensitive device, circuits utilizing Amperex semiconductors, a list of available Amperex applications reports. Write on company letterhead to Amperex Electronic Corp., Slaterville, R. I. 02876

END

Any or all of these catalogs, bulletins, or periodicals are available to you on request direct to the manufacturer, whose addresses are listed at the end of each item. Use your letterhead—do not use postcards. To facilitate identification, mention the issue and page of RADIO-ELECTRONICS on which the item appears. UNLESS OTHERWISE STATED, ALL ITEMS ARE GRATIS. ALL LITERATURE OFFERS ARE VOID AFTER SIX MONTHS.

ELECTRONIC MUSIC ... Way-out? Or will it graduate to the concert hall? Is the science-fiction sound gimmick attracting interest in the world of serious music? Can the do-it-yourselfer compose and play electronic numbers? James Seawright, technical director, Columbia University Electronic Music Center, authors this full-up-to-date report.

"MUST" READING IN ... June RADIO-ELECTRONICS

Non-Commercial Classified Ads

RADIO-ELECTRONICS now has a new Non-Commercial rate of 30¢ per word for individuals. (Our commercial rate remains at 55¢ per word.)

Readers interested in buying or selling personal items or equipment can now do so at little cost.

See the classified section for details and order form.

NEW!

Winegard

BOOSTER COUPLER

A Dramatic Improvement on an Old Favorite

MODEL

BC-208

Runs 1-4 TV or FM Sets

Replaces Model WBC-4X

ONLY

$29.95

LIST

Winegard engineers have used two of the new 6H45 amplifier shields triode tubes and new circuitry to create the all new Winegard Booster coupler that dramatically increases signal power & cuts noise to a minimum. This increase in power means 8 dB gain to each of 4 outputs, reducing snow, picture smear and interaction between sets.

FM gets a boost in this new circuit as well, because it covers the entire FM Band 88-108MC.

The new BC-208 Booster Coupler is another forward-looking product from Winegard — providing better color, black and white and FM reception. Ask your distributor or write today for spec. sheets.

Winegard Co.

ANTENNA SYSTEMS

3013-F Kirkwood

Burlington, Iowa

IF YOU SELL SERVICE, GIVE ORDERS, YOU NEED
SONARBUSINESS RADIO
FM-4.0

Power-Packed! Engineered for Rugged Business Use!

Excellent performance, dependability and operational convenience provided by FM-40 reflect the experience and design ability that has made Sonar the undisputed leader in this demanding form of business radio art. Greater range be-cause of Voice-Power designed circuitry • Compact and lightweight • Easily installed in smallest vehicles • Smarly styled for office use • Noise free squelch for crisp clear communication • Accessory plug for Sonar Call, emergency Calling System • Accessory plug for high power Linear Amplifier • 12 VDC & 117 VAC • 1 year warranty • Size: 4¾"H x 9" x 11½"L • Weight: 10 lbs.

Complete 1 pr. of Crystals, Power $289.50

Mike, Brackets, & 2 power cables

SONAR RADIO CORPORATION

73 Worcester Ave., Brooklyn 7, N. Y. Dept. 38

Please send me information on Business Radio FM-40 and BR-21 matching Amplifier.

Name

Address

City

Zone

State

MAY, 1965

79

www.americanradiohistory.com
NEA UNDER WAY

The recently formed National Electronics Association has begun issuing a monthly bulletin. The first issue, dated January, was banned "N.E.A. What?" and its editors announced that they were searching for a title (reader contributions invited).

The second (February) issue arrived with "N.E.A. Mirror" as its name, and carried a report of the board of directors' meeting in Des Moines. Particularly interesting business transacted at the meeting was the allocation of funds and authority to "pursue and clarify the uncertainty... in cases of dual distribution as it applies to the electronic sales and service trade."

An NEA Technical Information Committee was initiated to collect and dispense manufacturers' information not normally easily obtained by service technicians.

The NEA's position on CATV seems at the moment to be neutral. Its CATV Committee will prepare and distribute a fact sheet to be used by "local and state associations, intelligently and legally, in supporting or opposing [CATV] activity."

ON HOW TO GO BROKE

A recent issue of the TSA Service News, monthly publication of the King County TV Service Association, centered in Seattle, Wash., carried some very persuasive thoughts on the usually fatal risks of price-cutting on service calls. What follows is an innocent rewrite of the article.

The writer declares that he is always saddened to hear of a failing service business, and of one that couldn't make enough to support its owner's family. He is even sadder when he finds that the shop has been charging far below average rates with the excuse that people "just won't pay a fair price for good service."

The absurdity of this excuse, says the author, is clear from the fact that other shops in the same neighborhood charge from 25% to 50% higher rates than the "sick" shop does.

"Anybody can get business by charging a below-cost rate. The consumer just loves to find such a shop, and the shop can get a lot of business just from those looking for a bargain, and from those who want something for nothing. But what benefit does such business bring, if the owner can't make wages... and leaves his family to exist on a substandard level?"

NEA'S TECHNICIANS' NEWS

A shop does not make money when service rates are too low. "Low rates attract the something-for-nothing type of customer, who not only seeks cheap service, but often objects even to paying... for the service he gets. This customer is not loyal—he will go anywhere he thinks he can save a few pennies." If he hears of another shop willing to charge even less, he runs there, and tells his friends "you how you took him by charging more."

"Most small businessmen scare themselves into taking this road to eventual oblivion. They care a little too much about what the other shop charges, and fail to build their business on good service at a fair price. The shop that does good work seldom needs to worry whether its price is too high. It is too busy making money."

The writer refers to a survey which showed that, in 2 months, only 22 price-cutters advertised in newspapers in all of the State of Washington. Seventeen of them were in Seattle. "Now if the

"TOP BRAND"—RADIO & TV TUBES

NEW DISCOUNT--60/10/10%--IN ANY QUANTITY

<table>
<thead>
<tr>
<th>List</th>
<th>Net</th>
<th>List</th>
<th>Net</th>
</tr>
</thead>
<tbody>
<tr>
<td>6A70A</td>
<td>5.20</td>
<td>6D6A</td>
<td>3.60</td>
</tr>
<tr>
<td>6A76A</td>
<td>4.00</td>
<td>6D6B</td>
<td>3.50</td>
</tr>
<tr>
<td>6A78A</td>
<td>3.80</td>
<td>6C6A</td>
<td>3.50</td>
</tr>
<tr>
<td>6A80A</td>
<td>3.50</td>
<td>6C6B</td>
<td>3.25</td>
</tr>
<tr>
<td>6A82A</td>
<td>3.25</td>
<td>6C6C</td>
<td>2.95</td>
</tr>
<tr>
<td>6A84A</td>
<td>2.95</td>
<td>6C6D</td>
<td>2.65</td>
</tr>
<tr>
<td>6A86A</td>
<td>2.65</td>
<td>6C6E</td>
<td>2.35</td>
</tr>
<tr>
<td>6A88A</td>
<td>2.35</td>
<td>6C6F</td>
<td>2.05</td>
</tr>
<tr>
<td>6A90A</td>
<td>2.05</td>
<td>6C6G</td>
<td>1.75</td>
</tr>
<tr>
<td>6A92A</td>
<td>1.75</td>
<td>6C6H</td>
<td>1.45</td>
</tr>
<tr>
<td>6A94A</td>
<td>1.45</td>
<td>6C6I</td>
<td>1.15</td>
</tr>
<tr>
<td>6A96A</td>
<td>1.15</td>
<td>6C6J</td>
<td>0.85</td>
</tr>
<tr>
<td>6A98A</td>
<td>0.85</td>
<td>6C6K</td>
<td>0.55</td>
</tr>
<tr>
<td>6A10A</td>
<td>0.55</td>
<td>6C6L</td>
<td>0.25</td>
</tr>
<tr>
<td>6A12A</td>
<td>0.25</td>
<td>6C6M</td>
<td>0.05</td>
</tr>
<tr>
<td>6A14A</td>
<td>0.05</td>
<td>6C6N</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Tubes are all brand new in individual factory cartons and sold to you with a money-back guarantee. Your net prices shown above are better than 60/10/10% off—this form makes ordering easy. Just write amounts in boxes & enclose with money-order or check, add extra for shipping, excess refunded—this form will be returned in your order as the packing slip, plus lists of latest offers.

Name ____________________________ Cost of goods __________ Shipping estimated ________
Address __________________________ TOTAL __________

CHECK __________ POSTAGE STAMPS __________

BRIGGS RADIO & TV CORP., 84 Vesey St., Dept. A, New York 7, N. Y.

RADIO-ELECTRONICS
WHAT’S YOUR EQ?

These are the answers. Puzzles are on page 48.

Positive and Negative

The trick lies in the waveform across the transformer’s secondary. The output is a negative pulse with a slight positive ring. Diode (D1) conducts during the negative portion of the pulse and charges C1 to -1,500 volts. D2 conducts only during the positive portion of the pulse, and hence charges D2 to +150 volts.

Both diodes need to have the same peak inverse rating in this peak-charging circuit.

Automotive Puzzler

The left light bracket proved to be completely ungrounded! The lamps used are dual-filament type with common ground, and taillight has lower candlepower but higher resistance than the stop light.

When taillights only were on, the left side was in series with both stop lights and, having much higher resistance, got the lion’s share of the voltage. As a result, the left side was a bit dimmer.

When stop lights only were turned on, the left side was in series with both taillights, resulting in both taillights burning at about half voltage plus the right stop light at full voltage. This made the left side appear considerably dimmer.

END

Wrong Switch

There was an error in the Answers column concerning the “Dialing” puzzler in the March 1965 issue. The sequence of operation (Fig. 2) starts with closing switch S instead of D (which is already closed). In the Question column, switch D should have been shown normally closed.

50 Years Ago

In Gernsback Publications

In May, 1915

Electrical Experimenter

Radio Receiver Protective Gap

Wireless Telegraphy & Telegraphy on

Union Pacific Railroad

The D. C. Arc for Wireless

Improved Conical Tuning Coil

Universal Crystal Detector

IF YOU’RE NOT GETTING THE BEST OUT OF YOUR HI-FI EQUIPMENT, YOU NEED THIS NEW BOOK

Hi-Fi Troubles

How you can avoid them... how you can cure them

by Herman Burstein

HERMAN BURSTEIN, the author of this new book, is a recognized authority in the high fidelity field. He has written over 100 articles for such leading newspapers and magazines as: Audio, High Fidelity, Hi-Fi Stereo, Horizons, Radio-Experimenter, Electronic World, The New York Times, and The New York World. He is the author of 13 books including Hi-Fi Stereo, How It Works, and Fundamentals of High Fidelity.

Order from your local Parts Jobber, or from

GERNSBACK LIBRARY, INC.

154 West 14th Street. New York, N.Y. 10011

Please send me Hi-Fi Troubles. If I am not completely satisfied, I may return the book within ten days without obligation.

NAME ... (Please Print to prevent errors)

STREET

CITY ... STATE ... ZIP CODE

☐ SAVE POSTAGE COSTS by enclosing your payment of $3.95 now—same 10 day return privilege, of course.

3-12-RE/565

Hi-Fi Troubles

How You Can Avoid Them... How You Can Cure Them

by Herman Burstein

Just published! At last, a book which deals directly with the problems you face in maintaining your audio system in peak condition. Tells you how to locate troubles, what to do about them and how to do it—and, just as important: what not to do. Saves you valuable time and money—helps you to achieve the best in listening pleasure from your hi-fi equipment.

How Many of These Problems Interfere with your Listening Pleasure?

- equipment deteriorating - bass and treble problems
- excessive hum - special installation problems
- noise in switches, tubes, resistors, etc. - tuner, amplifier, phone, speaker troubles

Invaluable for anyone who wants to know how to buy and maintain hi-fi equipment.

I60 Pages 139 Illustrations Paperbound $3.95

10 Day Free Examination — Money Back Guarantee

RADIO-ELECTRONICS
NEW LIGHT-DIMMER CIRCUITS

Semiconductor light dimmers and motor speed controls are increasingly popular. Several SCR circuits have been abstracted from manufacturers’ application notes and published in this magazine. The better circuits use two SCR’s and a number of semiconductor components.

Transitron Electronic Corp. has developed two semiconductor elements—a BiSwitch and a special trigger diode—that greatly simplify electronic light dimmers and motor speed controls. A basic dimmer circuit is shown. The BiSwitch is a bilateral switching device comparable to two SCR’s connected in parallel back to back. It can be turned on in either direction by applying a voltage pulse whose amplitude is higher than the breakerover voltage.

The pulses are developed by an ER900 silicon trigger diode. This is a symmetrical multilayer avalanche switching diode that develops a pulse each time its breakerover voltage is exceeded in either direction. In this circuit, the ER900 produces bipolar pulses; one pulse for each half-cycle of the input voltage. The two-section R-C phase shifter (R1-C1 and R2-C2) permits the BiSwitch to be controlled over a range of 0° to 180° of each half-cycle. R2 controls motor speed and lamp brilliance.

The circuit shown can handle lamps and motors up to 750 watts. The trigger or pulse transformer used with it may consist of a primary with 2 turns of No. 24 wire and a secondary of 60 turns of No. 20 wire on a ferrite core. It’s construction is rather critical. Transitron recommends the type 12759 transformer available for $1.85 from Torotel, Inc., 5512 E. 110th St., Kansas City 37, Mo.

The relay control stage is biased close to cutoff by the large cathode resistor. When the NE-2 fires, a large positive voltage is applied to the output grid. This tube saturates and closes the relay. The VOX closes the relay and starts the recorder within 1 millisecond after the initial sound strikes the mike.

The author recommends operating the recorder at its lowest speed to provide rapid starting and to minimize tape spilling when the relay opens. The relay contacts should be able to handle the motor’s surge currents. If it cannot, then it should be used to control an auxiliary power relay. Connect a capacitor of around 0.1 µf from the chassis to one of the relay contacts to suppress the arc that occurs when the relay opens. When the recorder has separate drive and takeup motors, the relay should break both circuits simultaneously.

VOC FOR TAPE RECORDERS

Voice-operated or voice-controlled break-in, commonly called VOX, is widely used in amateur phone transmitters. A portion of the audio modulating voltage is rectified and used to turn on the transmitter. A similar device is a valuable accessory for tape recorders—particularly when recording speech or dictation.

The tape recorder VOX circuit in the diagram was published in Radio, Television & Hobbies (Sydney, Australia). The input signal is tapped off the plate of the recorder’s first amplifier ahead of the volume control.

This signal is amplified in the 12AT7 and rectified by the 6AL5 to develop a negative voltage on the grid of the first section of the 12AU7. This triode is biased toward cutoff, and its plate voltage rises until it reaches the striking voltage of the NE-2.

The relay control stage is biased close to cutoff by the large cathode resistor. When the NE-2 fires, a large positive voltage is applied to the output grid. This tube saturates and closes the relay. The VOX closes the relay and starts the recorder within 1 millisecond after the initial sound strikes the mike.

The author recommends operating the recorder at its lowest speed to provide rapid starting and to minimize tape spilling when the relay opens. The relay contacts should be able to handle the motor’s surge currents. If it cannot, then it should be used to control an auxiliary power relay. Connect a capacitor of around 0.1 µf from the chassis to one of the relay contacts to suppress the arc that occurs when the relay opens. When the recorder has separate drive and takeup motors, the relay should break both circuits simultaneously.

NEW SAMS BOOKS

Color TV Training Manual, New Second Edition

by C. P. Oliphant & Verne M. Ray. This newly revised comprehensive manual is the most up-to-date guide available for technicians preparing to service color TV receivers. Describes the science of color, requirement of components, and non-composite color signal, latest color circuitry, basic troubleshooting procedures. Full-color picture tube photos are invaluable for setup and alignment procedures as well as troubleshooting. Chapters: Color TV Placement, Color TV Requirements, Tubes & Associated Circuits, Basic Troubleshooting.

Industrial Transistor Circuits

by Allan Levy. Semiconductor characteristics—extremely long life and reliability, plus low power and small space requirements—make them ideal for many industrial applications. This valuable reference book describes design of solid-state circuits designed for reliable industrial service. Schematics and explanation of the principle and operation of each circuit. Covers solid-state circuitry for controls, amplifiers, rectifiers, line regulators, dimmers, timers, motor controls, etc. An important book for technicians, designers, and engineers—over 500 pages; $5.95. Order FTL-1, only $4.95

Basic Electricity / Electronics Lab Workbook

by Training & Research, Inc. This comprehensive programmed-type workbook is the project-teaching supplement for the popular Sams Basic Electricity & Electronics series. The workbook includes dozens of lab projects keyed to the 5-volume series. Each project is accompanied by test examples and answers. Laboratory wiring exercises guide the reader through the actual construction of each project. (and answers) help in gain understanding of the project and its principles. Workbook includes workbook instructions to amplification of a telephone recorder, 256 pages, $5.95. Order ECT-Y, only $4.95

Basic Electricity / Electronics Series

Vol. 1 Basic Principles & Applications $2.95
Vol. 2 How AC & DC Circuits Work $3.95
Vol. 3 Understanding Tube & Transistor Circuits $3.95
Vol. 4 Understanding & Using Test Instruments $3.95
Vol. 5 Motors & Generators—How They Work $3.95

5-Vol. Softbound Edition, order ECT-1, only $19.95
5-Vol. Hardbound Edition, order ECT-2, only $24.95

Electronic Systems for Convenience, Safety & Enjoyment

by Edward A. Altshuler. In this new book, the author forcefully points out to TV enthusiasts, radio amateurs, distributors and manufacturers the need for a new marketing approach to electronics under demonstration. He shows convincingly that electronics markets will expand rapidly—requiring growing services from technicians, distributors, and manufacturers—as totally integrated electronic systems are developed and adopted for entertainment, communications, control, and special services. He cites striking examples of how today’s electronics technology can be applied and sold in home, plant, office, school, and hospital.

"…satisfying for any man with a stake in electronics. 256 pages $5.95." Order SAS-1, (softbound), only $4.95
Order SAS-1, (hardbound), only $5.95

Howard W. Sams & Co., Inc.

Order from your Sams Distributor today, or mail order to Howard W. Sams & Co., Inc., Dept. RE-5, 4300 W. 62nd Street, Indianapolis, Ind. 46260

Send the following books:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECT-2</td>
<td>Basic Electricity Lab Workbook</td>
</tr>
<tr>
<td>ECT-3</td>
<td>Basic Electronics Lab Workbook</td>
</tr>
<tr>
<td>ECT-5</td>
<td>Basic Electronics Lab Workbook</td>
</tr>
<tr>
<td>SAS-1</td>
<td>Basic Electronics Lab Workbook</td>
</tr>
</tbody>
</table>

Enclose your check payable to Howard W. Sams & Co., Inc.

For Library Use Only

Book for the Library.

Address

City State Zip

My Distributor is:

Sams...IN CANADA: A. C. Simmons & Sons, Ltd., Toronto 7
TRY THIS ONE

GAGING SMALL SCOPE-TRACE CHANGES

To read small changes in the height of a scope trace, cover all but a small portion of the signal with a piece of paper. The relative changes will then be greater and more easily seen.—Tom Jaski

CARTONS MAKE QUICK SPEAKER ENCLOSURES

Excellent “no-cost” speaker enclosures can be made quickly from ordinary corrugated cardboard shipping cartons. Auto radio extension (rear-seat) speakers or emergency PA jobs are two uses that come to mind right away. These cartons eliminate time-consuming work in making a suitable enclosure. They are ideal for protecting test speakers, and a little paint, a grill cloth framed by (perhaps) a discarded picture frame makes an attractive enclosure for permanent installation.

EASY-TO-BUILD MUSCLE STIMULATOR

Uses single transistor, powered by flashlight batteries. Long prescribed in physiotherapy, electronic muscle stimulation has called for high-priced equipment. Read how you can build this low-cost stimulator at home.

COMING IN...

June RADIO-ELECTRONICS

Speakers are often shipped in cardboard cartons of ideal proportions for quick conversion into a permanent enclosure. The only tools needed are screwdrivers, a nail to punch holes and a safety razor blade to cut the grille opening. The corners of the carton can be reinforced with wooden blocks, but this is usually unnecessary since the cellular construction of corrugated cardboard enables it to withstand almost as much weight as thin plywood. It can readily be shaped without woodworking tools.

HIFI SALES AID:

PRE-MARKED CONNECTIONS

When I sell hi-fi components to customers who wish to do their own installation, I have spared much time and trouble by numbering the wires. Then speaker phasing and input connections require no time-consuming technical explanations.

Assign numbers to each connection that must be made by the customer. Wires to speakers are numbered at both ends on both conductors, and corresponding numbers are placed on the speakers and on the amplifier. By doing this, the technician “presets” the impedance and phasing correctly. All the user has to do is place plugs in their sockets and wires on their screws. Numerals can be attached easily by folding cellulose or masking tape over the lead and writing on it with a good ballpoint pen.—Steve P. Dow

END

No salesman valuable “shoestring.”

work in shop at home. Get money low cost.

Home Training. We show you how to start your own business for Profit.-H5 CHICAGO 7, Illinois.

For FREE Training.

In one installation, a large carton was used and reinforced inside with pieces of Masonite. Experimenting with extra strips of corrugated cardboard made a “sound chamber.” Usually, however, the speaker shipping carton is suitable as it is for the enclosure, and it needs only slight reinforcement to make it as sturdy as a wooden cabinet.—Glen F. Stillwell
NEW PATENTS

FUEL CELL

PATENT NO. 3,138,490

William E. Trager, Scotia, Robert L. Fulmaan, Schenectady, and Ralph E. Carter, Colonie, N. Y. (Assigned to General Electric Co.)

This source of low-voltage dc utilizes heat that might be wasted otherwise. The cell has two electrodes, both liquid at the high operating temperature (approximately 1,700°C). The electrodes are in separate containers.

One electrode is iron saturated with carbon, and it is in contact with a carbon conductor. The other electrode, silver, is contacted by a stainless steel conductor. As electricity is generated, the carbon conductor dissolves. The silver is kept saturated with oxygen, supplied through a tube. The voltage under load is approximately 0.75.

ELECTRONIC SIREN

Patent No. 3,137,846

Harold G. Keeling, N. Tonamanda, N. Y. (Assigned to Kenneth Tower, Tonamanda, N. Y.)

There are two multivibrators in this circuit: Q1, Q2, and Q3, Q4. The first pair generates a frequency of only a few cycles per second, while the second pair oscillates in the audio range. Q3 of the audio multivibrator receives its bias from voltage across C, which is charged and discharged by Q2. Transistor Q2 switches abruptly from conduction to nonconduction, but C smooths the transition. The periodic voltage fluctuations across C vary the frequency of the audio multivibrator and produce the sirenlike sound. It is fed through a matching transformer to the speaker. The audio tone is originally a sawtooth, but D clips the peaks. Therefore the output is more nearly a square wave, which produces a piercing alarm.

ZIP stands for the Post Office Department's new Zoning Improvement Plan. When renewing your RADIO-ELECTRONICS subscription, or sending us a change of address, please let us know what your ZIP Code is. We'll add it to your address mailing plate... and you'll get speedier delivery service from the Post Office. By the way, when writing to us, address: RADIO-ELECTRONICS, 154 West 14th St., New York, N. Y. 10011.

ELECTRONICS Engineering-Technicians

Bachelor of Science Degree, 30 Months

Save Two Years' Time

- [] Radio-Television Plus Color Technician (12 Months)
- [] Electronics Engineering Technology (15 Months)
- [] Electronic Engineering (B.S. Degree)
- [] Electrical Engineering (B.S. Degree)
- [] Mechanical Engineering (B.S. Degree)
- [] Civil Engineering (B.S. Degree)
- [] Architecture (B.S. Degree) (36 Months)

Approved for Veterans

DAY AND EVENING CLASSES

Write for Catalog and Registration Application. New Term Starting Soon.

<table>
<thead>
<tr>
<th>Your Name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>City</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td></td>
</tr>
</tbody>
</table>

HEALD'S

ENGINEERING COLLEGE

Est. 1863—101 Years

Van Ness at Post, RE
San Francisco, Calif.

MAY. 1965
NEW BOOKS

Advanced and broad coverage of the analysis and design of systems. Also describes components for these systems.

Requires no previous technical background. It covers use of tools, theory of radio circuits and components, troubleshooting and test procedures. Written especially for assemblers and wiremen.

AN INTRODUCTION TO PATENTS FOR INVENTORS AND ENGINEERS, by C. D. Tasaka. Dover Publications, 180 Varick St., New York, N.Y. 10014. 5 7/8 x 8 1/4 in., 192 pp. Paper. $1.50

ADVANCED SERVICING TECHNIQUES (Vol. II), by John F. Rider Publisher, 116 W. 14 St., New York, N.Y. 10011. 8 1/4 x 11 in., 178 pp. Cloth, $5.95

The second volume of what was originally a purely TV service course is devoted to servicing non-TV electronics, and is divided into a number of subjects, covered by different authors: Stereo Amplifiers, FM and FM Multiplex bye Orville Neely; Record Changers, by Lawrence Massaro and Robert S. Harris; Tape Recorders, by M. P. Rosenthal; Home Intercoms, by William P. Kist, and Combination Receivers, also by William P. Kist.

The 19th edition of the short-wave listener's Bible, "the only book available to short-wave listeners, broadcast-station operators, hams, etc. that contain details on every short-wave and TV station throughout the world," is up to 302 pages. It also contains a listing of long-wave stations, and all the medium-wave broadcast stations of the world, except those of the United States (only US stations of more than 10 kw are listed).

STANDARD ELECTRONICS QUESTIONS AND ANSWERS (Vols. 1 and 2), by Steve Elanko and Julian L. Bernstein. McGraw-Hill Book Co., 330 W. 42 St., New York, N.Y. 10036. 5 1/2 x 8 in., Total pages 452 pp. Cloth, $8.50 per vol., $15.95 for set

Vol. I covers basic electronics, Vol. 2 goes on to industrial applications. Both written in non-technical language without math. They cover a wide range of topics, from simple dc and ac circuits to color TV and test equipment.

The theory, construction and operation of recorders are described for service technicians and hi-fi listeners. Testing, special applications and typical schematics are included.

ELECTRONICS GADGETS FOR YOUR CAR, by Len Buckwalter. Howard W. Sams & Co., Inc., 4300 W. 62 St., Indianapolis 6, Ind. 5 1/2 x 8 1/4 in., 126 pp. Paper, $2.95

All information for constructing an emergency flashlight, dwell indicator, directional-light beeper, trunk alarm and 6 other useful items.

LIGHTNING IN HIS HAND, THE LIFE STORY OF NIKOLA TESLA, by Inez Hunt and Wanetta W. Draper. Sage Books, 2679 S. York St., Denver, Colo. 80210. 5 7/8 x 8 1/4 in., 269 pp. Cloth, $5.95

Although over-sentimental in places, this book contains more detail than most biographies of Tesla, and includes a number of facts not noted in recent biographies.

RADIO SERVICING PROBLEMS, by W. A. L. Smith. Norman Price, Ltd., distributed by Sim-Tech Book Co., P.O. Box 69, Agincourt, Ont., Canada. 5 1/2 x 8 1/4 in., 64 pp. Paper, $1.79

A book of simple mathematics exercises all applied to actual radio service problems.

COMMUNICATIONS IN SPACE, by Orrin E. Dunlap, Jr., Harper & Row, Inc., 307 Ash St., Scranton, Penn. 5 1/2 x 8 1/4 in., 260 pp. Cloth, $5.95

A fascinating history that revives memories and fires the imagination. From wireless to countdowns, it tells the stories behind the Titanic, KDKA, World War II radar, Marconi, deForest, Armstrong, Popov and all the others.

One of Radio-Electronics' best writers, who now teaches English at California State College in addition to his work as a professional electronic engineer, lays down some rules and gives advice to other authors or would-be authors. Turner's clear English style is maintained throughout the book. An especially interesting feature is Chapter 12, a 50-page Glossary of Usage.

Training manual used by BBC engineers. Principles and operation of TV cameras, recorders and transmitters. END
ADVERTISING INDEX

RADIO- ELECTRONICS does not assume responsibility for any errors which may appear in the index below.

Amplex Electronic Corp. Second Cover
Brach Manufacturing Corp. (Div. of General Electric Co.) ... 10
Brooks Radio & TV Corp ... 80-81
Capitol Radio Engineering Institute, The ... 13
Central TV Co., Inc. ... 6
Central (Div. of Globe-Union Inc.) ...

CLASSIFIED ... 88
Cleveland Institute of Electronics ... 9, 25
Cron Electronic Institute (Home Training Div.) ... 84
DeVry Technical Institute ... 5
Electronic Measurements Corp. (EMC) ... 25
Fixer Co. ... 15
Gernsbach Library, Inc. ... 78, 82
Grandham School of Electronics ... 23
Heald's Engineering College ... 85
Hinchman and Winston, Inc. ... 61
IBM ... 28
International Crystal Mfg. Co., Inc. ... 92
Lafayette Radio Electronics ... 63
Mallory Distributor Products Company (Div. of P. R. Mallory & Co., Inc.) ... 20
National Radio Institute ... 16-19
National Technical Institute ... 3
Oxford Transister Corporation ... 14
Perma-Power Company ... 74
Pocket Socket, Inc. ... 70
Poly Pak ... 91
Precise Electronics & Development (Div. of Designateronics, Inc.) ... 21
Progressive Electrical Co. ... 72
Quan-Nichols Co. ... 77
Quinton Co. ... 86
Radar Devices Manufacturing Corp. Third Cover
Radio Shack ... 1
Ray-Fel (Raritan) ... 1
RCA Electronics Components and Devices Test Equipment ... 24
Tubes ... Fourth Cover
RCA Institutes, Inc. ... 66-69
Rider Publishing, Inc., John F. ... 65
Rye Sound Corporation ... 22
Sadelco, Inc. ... 75
Sams & Co., Inc., Howard W. ... 11, 83
Sarkis Tarzian, Inc. (Tuner Service Div.) ... 26
Scott, Inc., H. R. ... 21
Semitronics Corp. ... 85
Senator ... 71
Sonar Radio Corporation ... 79
Somotone Corp. (Electronic Applications Div.) ... 12
Sprague Electric (Elias Wire Corporation) ... 26
Sylvania (Subsidiary of General Telephone & Electronics Corporation) ... 27
Tarzian, Inc., Sarkis (Tuner Service Div.) ... 76
Triad Distributor Div. (Div. of Liton Industries) ... 62
United Radio Co. ... 89
University Record Club ... 8
Warren Electronic Components ... 86
Webster ... 70
Wineco, Inc. ... 79

MARKET CENTER ... 88
Edmund Scientific ... 88
Eutech Service Co. ... 21
Electronic Components Co. ... 88
Fair Radio Sales ... 88
Music Associated ... 88
Octagon Publications ... 88
Relco ... 88
Transistors Unlimited Company ... 88

SCHOOL DIRECTORY ... 87
American Institute of Engineering & Technology ... 87
Central Technical Institute ... 87
Cory Electronics Institute (Resident Training Div.) ... 87

Electronics Weekly Institute ... 87
Indiana Home Study Institute, The ... 87
Milwaukee School of Engineering ... 87
Northeast Institute of Technology ... 87
Tri-State College ... 87
Valparaiso Technical Institute ... 87

MAY, 1965
Rectifiers & Transistors

* 750 ma Silicon diodes
 Silicon Power Diode Studs
 Epoxy or *Top Hat*
 3 amps

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>200A</td>
<td>2n456A 700</td>
<td>25</td>
<td>6.00</td>
</tr>
<tr>
<td>200B</td>
<td>2n458A 900</td>
<td>50</td>
<td>4.00</td>
</tr>
<tr>
<td>300A</td>
<td>2n702 -100mc</td>
<td>100</td>
<td>3.50</td>
</tr>
</tbody>
</table>

Light Sensitive
Varicap- voltage variable capacitor

MOTION PICTURES

COORDINATED GOLF INSTRUCTION on 8mm
Film Johnny Revolta, Mickey Wright, Grasp & Stance, Short Irons, Greater Distance, Cure Slice Each 50' now $2.50 ppd. All 4—$9.75

SPORTLIGHT FILMS, 20-RE N. Wacker Drive,
Chicago, Illinois 60606

AUDIO — HI-FI

Component quotations—tapes Mylar 1800' post-paid $1.59 each. BAYLA, Box 131RE Wantagh, N.Y.

DISCOUNT RECORDS — All labels. Free list. Write CLIFF HOUSE, Box 42912, Ulica, N.Y.

WRITE for highest discounts on components, recorders, tapes, from franchised distributors. Send for FREE, monthly specialists CARSTON, 125 R E 88, N.Y. 30082

RENT STEREO TAPES—over 2500 different—all major labels — free brochure. STEREO-PARTS, 1616 Terrace Way, Santa Rosa, Calif.

STEREO TAPES. Save up to 60% (no membership fees). We discount recorders, batteries, accessories, and mail-ordered tape prepaid anywhere that United States rates prevail. Free 60 page catalog. SAXITONE, 1776 Columbia Road N.W., Washington, D.C. 20009

RECORDS made from your tapes, 45 or 33 rpm. For price list and format send $1 BARRIE LABORATORIES, Box 206, North Wales, Pa.

RECORDS SALE.

TAPE RECORDER SALE.
Discount recorders, batteries,
Components, free brochure.
SAXITONE, 1776 Columbia Road N.W., Washington, D.C. 20009

PHILOSOPHICAL SOUND

LOW QUOTES, DYNIA, A.R. GARRARD E.V.
PIV, Roslyn, Pa. 19001

PHILOSOPHICAL SOUND EFFECTS, Quarter-track tape recorder, $1.50. SOUNTAGE, Box 176, Levittown, New York 11756

MUSIMATIC F.M. music without commercials
Tapes, 45 or 33 rpm, to your order. $15.50 complete. DON HENDERSON ENTERPRISES, Box 343, Saco, Calif.

BUSINESS OPPORTUNITIES

PIANO Tuning learned quickly at home. Tre-
mendous field! Musical knowledge unnecessary.
Information free. EMPIRE SCHOOL OF PIANO
TUNING, Dep't. RE 327, Shenedoah Sta-
tion, Calif. 95455 (Founded 1935)
JOBS, all kinds, Florida. Bonus on Caribbean
islands and ships. List employers $1. BRYCE,
101 Dover, Essex, Florida.

ARCTIC POSITIONS now open to men with elec-
tronic experience or knowledge. For full infor-
mation send $1, to cover charges, to: DEW
PERSONNEL, Box 466, Barron, Alaska

BUSINESS AIDS

JUST STARTING IN TV SERVICE? Write for FREE BROCHURE. CATALOG of Service Offer
books, invoices, job tickets, phone message books,
file systems, DEO-RICH PUBLICA-
TIONS, 1665 W. Higgins, Chicago, Ill. 60656
1,000 Business Cards, "Raised Letters" $3.95
postpaid. Samples. ROUTH REL-2, 2633 Randles-
man, Greensboro, N.C. 27406

CLASSIFIED ADVERTISING ORDER FORM

Please refer to heading at top of classified section for complete data concerning terms, frequency discounts, closing dates, word count, etc.

<table>
<thead>
<tr>
<th>No. of Words</th>
<th>Commercial Rate</th>
<th>Non-Commercial Rate</th>
<th>Total Enclosed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>City</th>
<th>State</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SIGNATURE:
MAIL TO: RADIO-ELECTRONICS, CLASSIFIED AD
DEPT., 154 WEST 14TH ST., NEW YORK, N.Y. 10011

CLASSIFIED ADVERTISING OPPORTUNITIES

PARTS — SERVICE

* FOR ALL GERMAN *

RADOIS-PHONOGRAPH

TAPE RECORDERS

EUROTECH SERVICE CO. 66-44 FOREST AVENUE
BROOKLYN 27, N.Y. HY 7-1448

MARKET CENTER

RADOIS-PHONOGRAPH **TAPE RECORDERS**

EUROTECH SERVICE CO.
66-44 FOREST AVENUE
BROOKLYN 27, N.Y.
HY 7-1448

www.americanradiohistory.com
EDUCATION / INSTRUCTION

LEARN ELECTRONIC ORGAN SERVICING. New home study course covering all makes electronic organ including transistors. Experimental kits included. Correspondence course. NHCSCI Approved. Write for free booklet.

NUTLEY TV SCHOOL, 3631 Stockton Blvd., Dept. F, Sacramento 20, Calif.

HIGHLY-effective home study review for FCC commercial phone exams. Free literature!

COOK'S SCHLS. OF ELECTRONICS, Craig- mont, Idaho 83232.

FCC LICENSE in 6 weeks. First Class Radio Telephone, TV, and Television Licenses. Diodes, Resistors, Transistor hobbyists, experimenters, hobbyists. Latest theory in basic magnetism. Create new products by experiment. Make modern ladder light, telegraph key, telegraph sounder using direct current plans $1.00. JESSE COSTA, Box 26, Waquoit, Mass. 02570

BUILD DIGITAL CIRCUITS that add, subtract, multiple, divide, etc. Some require only switches and diodes. Complete instructions $2. FERWALD, Box 27, Lewiston, 10450.

NEED RESISTORS? Factory fresh! NAME BRAND, high-quality, standard carbon resistors. Any regular value from 10 ohms to 2-2 megohms. $10.00 postpaid. Quantity assorted. Minimum order $1.00. TEPCO, Box 508, Tulalip, Tenna.

NEW MAGNETIC DEVICE, engineers, inventors, experimenters, hobbyists. Latest theory in basic magnetism. Create new products by experiment. Make modern ladder light, telegraph key, telegraph sounder using direct current plans $1.00. JESSE COSTA, Box 26, Waquoit, Mass. 02570

Silicon Controlled Switches—3N128—$1.50. 3N159—$1.60, 3N60—$1.75. Glass Silicon Rectifiers, 600 Volts, $10.00 per 100—$9.75. 1000 Volts, $10.50. DC to 115V AC—50-80K 9.95. NICAD, Recyclable Batteries, 2-1/4 Amps, 6 volts—$3.95. ADVANCE ELECTRONICS—79A Cont. Lathe, etc., New York, N.Y. 10007

RED HOT SPECIALS! 3 asst. Webster Cartridges, best types, complete with sulphates. $1.00. Also, 40W. TIFIERS, 2241305, 100 C.B. w. nuts $1.00. BROOKS RADIO & TV CORP., 84 Vessey St., New York, N.Y.

BROADCASTING, Communications Electronics for radio or television. All solid state transistors, crystals, transformers, etc. FREE catalog, Wholesale electronics. Hundreds of items. Pay more? ROYAL, Box 2591, El Cajon, California

KOMTRON introduces its selection of device circuits, starting with a $3.87 10,000 ppi reset-set flip-flop. Send 50 cents for specifications on all circuits. Dept. RE, Box 275, Little Falls, New Jersey, N.J., 07424.

FREE catalog, Wholesale electronics. Hundreds of items. Pay more? ROYAL, Box 2591, El Cajon, California

MAY, 1965

Over 3000 Sold in 3 Months! Not One Returned To Date!

JUMBO PAKS!

16 TONS of mfr's Make-Over runs

COMPLETE SATISFACTION—MONEY BACK GUARANTEE

1,000,000 PARTS SALE

$8.88

per pound

WORTH $8.88

More for $2.98

$42.00

Both FREE with any $10 order

50 TERMINAL POINTS

$5

SPECIALS!

$1 POWER RESISTORS, 100w.

$1 X-AMP "CARTWHEEL" transistors, very popular.

$1.60; 2N704, 200w.

$1.60; 2N2222, 100w.

$1; 2N790, 50w.

$1.60; 2N3904, 10w.

$1.60; 2N704, 200w.

$85; 2N3904, 10w.

$1; 2N790, 50w.

$1.60; 2N3904, 10w.

$85; 2N3904, 10w.

$1; 2N790, 50w.

$1.60; 2N3904, 10w.

$85; 2N3904, 10w.

$1; 2N790, 50w.

$1.60; 2N3904, 10w.

$85; 2N3904, 10w.

$1; 2N790, 50w.

$1.60; 2N3904, 10w.

$85; 2N3904, 10w.

$1; 2N790, 50w.

$1.60; 2N3904, 10w.

$85; 2N3904, 10w.

$1; 2N790, 50w.

$1.60; 2N3904, 10w.

$85; 2N3904, 10w.

$1; 2N790, 50w.

$1.60; 2N3904, 10w.

$85; 2N3904, 10w.

$1; 2N790, 50w.

$1.60; 2N3904, 10w.

$85; 2N3904, 10w.

$1; 2N790, 50w.

$1.60; 2N3904, 10w.

$85; 2N3904, 10w.

$1; 2N790, 50w.

$1.60; 2N3904, 10w.

$85; 2N3904, 10w.

$1; 2N790, 50w.

$1.60; 2N3904, 10w.

$85; 2N3904, 10w.

$1; 2N790, 50w.

$1.60; 2N3904, 10w.

$85; 2N3904, 10w.

$1; 2N790, 50w.

$1.60; 2N3904, 10w.

$85; 2N3904, 10w.

$1; 2N790, 50w.

$1.60; 2N3904, 10w.

$85; 2N3904, 10w.

$1; 2N790, 50w.

$1.60; 2N3904, 10w.

$85; 2N3904, 10w.

$1; 2N790, 50w.

$1.60; 2N3904, 10w.

$85; 2N3904, 10w.

$1; 2N790, 50w.

$1.60; 2N3904, 10w.

$85; 2N3904, 10w.
NEW FOR '65

INTERNATIONAL MODEL 440
CITIZENS RADIO TRANSCEIVER

The Model 440 introduces a distinctive new panel and engineering concept to the line of International Citizens Radio transceivers. Designed for base or mobile use, the Model 440 is packed with outstanding performance features. The most discriminating CB operator will acclaim its dependable day after day operation. Silicon transistors and tubes are combined in a new hybrid circuit for optimum performance. The International Model 440 operates from 6/12 and 115 vac power sources. Complete with crystals, dynamic microphone with coil cord.

- New Hybrid Circuits Combining Silicon Transistors And Tubes
- New Zener Speech Limiter
- Distinctive New Panel Design
- Frequency Synthesized Crystal Controlled 23 Channel Operation
- Transistor Power Supply
- Dual Conversion Receiver
- Illuminated Channel Selector Dial
- Ideal For Mobile Or Base Installations
- Ten Tubes
- Five Silicon Transistors
- Two Power Transistors
- Eleven Silicon Diodes

WRITE TODAY FOR THE NAME OF YOUR NEAREST INTERNATIONAL DEALER.

INTERNATIONAL CRYSTAL MFG. CO. INC.
18 NORTH LEE — OKLA. CITY, OKLA.

FCC Citizens Radio license required. All use must conform with Part 95, FCC Rules and Regulations.

www.americanradiohistory.com
Every 40 seconds a burglary takes place in the United States.

At that rate, it's a multi-million dollar a year business...for burglars.

And an even better business opportunity for you.

Why? Because burglary can be stopped...with an effective alarm system.

In fact, police and insurance officials have proved that an alarm system reduces, and in many cases, eliminates losses—even helps police apprehend the criminal.

Here's where you come in.

Only a small percentage of the more than 100 million buildings—stores, offices, factories, schools, churches and homes are protected by an effective alarm system.

That means virtually every home, every business is a prospect.

You can sell them!

And you don't have to be a super-salesman to sell the best protection available—a Radar Sentry Alarm unit. All you have to do is demonstrate it...it sells itself.

A glance at the technical information shows why.

It's the most unique and effective alarm system ever invented.

And here's the proof:

In the past six years, thousands of RADAR SENTRY ALARM units have been sold in the Detroit, Michigan area alone—sold by men like yourself on a part-time and full-time basis.

Here are just a few customers who are protected by RADAR SENTRY ALARMS:

- U.S. Government
- U.S. Air Force
- Detroit Board of Education
- Hundreds of Churches
- Banks, Businesses and Homes.

Everyone is a prospect.

So take advantage of your profession. Put your technical knowledge and experience to work for you in a totally new area—an area that will make money for you!

Don't wait!

Get in on the ground floor of this new money-making business.

Become a distributor.

Write now for free details.

TECHNICAL INFORMATION

The RADAR SENTRY ALARM is a complete U.H.F. Doppler Radar System which saturates the entire protected area with invisible r.f. microwaves. It provides complete wall to wall—floor to ceiling protection for an area of up to 5,000 square feet. Without human movement in the protected area, the microwave signal remains stable. Any human movement (operation is unaffected by rodents and small animals) in the area causes the doppler signal to change frequency approximately 2 to 4 cps. An ultra-stable low frequency detector senses this small frequency change, amplifies it and triggers the police type siren—which is heard up to a half mile away.

In addition, the RADAR SENTRY ALARM's protection can be extended to other areas with the use of the following optional accessories:

- remote detectors for extending coverage to over 10,000 sq. ft.
- rate of rise fire detector U.L. approved for 2,500 sq. ft. of coverage each (no limit on the number of remote detectors that can be used)
- hold-up alarm
- central station or police station transmitter and receiver (used with a leased telephone line)
- relay unit for activating house lights
- battery operated horn or bell which sounds in the event of: powerline failure; equipment malfunction or tampering.
Your black and white skills are not enough for Color TV

You need this book to help you cash in on Color TV business

NEW RCA COLOR TV TROUBLESHOOTING PICT-O-GUIDE, 1A1389

You're missing more and more chances for profit if you're not in color TV service. There are 3 million color sets in use now... and the total should be at least 5 million by the end of the year.

The new, completely revised RCA Color TV Pict-O-Guide, with its many color photos and illustrated step-by-step instructions makes it possible for you to recognize and understand the visible symptoms of troubles and maladjustments in color receivers. Use the Pict-O-Guide whenever you work on a color set.

RCA ELECTRONIC COMPONENTS AND DEVICES, HARRISON, N. J.

WHAT THE RCA COLOR TV PICT-O-GUIDE GIVES YOU:
- Color Fundamentals
- Receiver Set-Up
- Functions of the Color Set Controls
- How to Use Color Test Equipment
- Troubleshooting Color and Black and White Sections of Receiver
- Servicing and Alignment Techniques
- And much, much more. 150 pages. This book should more than pay for itself the first time you use it.

ORDER THROUGH YOUR LOCAL AUTHORIZED RCA TUBE DISTRIBUTOR

(For a complete course in the principles and practices of color TV you will find the 8 lesson Color TV Home Study Course by RCA Institutes, 1A1325, invaluable.)

RCA

The Most Trusted Name in Electronics

www.americanradiohistory.com